WorldWideScience

Sample records for abiotic natural gas

  1. Enhanced Prognosis for Abiotic Natural Gas and Petroleum Resources

    CERN Document Server

    Herndon, J M

    2006-01-01

    The prognosis for potential resources of abiotic natural gas and petroleum depends critically upon the nature and circumstances of Earth formation. Until recently, that prognosis has been considered solely within the framework of the so-called "standard model of solar system formation", which is incorrect and leads to the contradiction of terrestrial planets having insufficiently massive cores. By contrast, that prognosis is considerably enhanced (i) by the new vision I have disclosed of Earth formation as a Jupiter-like gas giant; (ii) by core formation contemporaneous with raining out from within a giant gaseous protoplanet rather than through subsequent whole-Earth re-melting after loss of gases; (iii) by the consequences of whole-Earth decompression dynamics, which obviates the unfounded assumption of mantle convection, and; (iv) by the process of mantle decompression thermal-tsunami. The latter, in addition to accounting for much of the heat leaving the Earth's surface, for the geothermal gradient observ...

  2. Natural gas; Gas Natural

    Energy Technology Data Exchange (ETDEWEB)

    Lopes, Carlos A.; Moraes, Claudia C.D. [Eletricidade de Sao Paulo S.A. (ELETROPAULO), Sao Paulo, SP (Brazil); Fonseca, Carlos H.F. [Centrais Eletricas de Santa Catarina S.A., Florianopolis, SC (Brazil); Silva, Clecio Fabricio da; Alves, Ricardo P. [Companhia Paranaense de Energia (COPEL), Curitiba, PR (Brazil); Sposito, Edivaldo Soares; Hulle, Lutero [Espirito Santo Centrais Eletricas S.A. (ESCELSA), Vitoria, ES (Brazil); S. Martins, Icaro da [Centrais Eletricas do Norte do Brasil S.A. (ELETRONORTE), Belem, PA (Brazil); Vilhena, Joao Luiz S. de [Companhia Energetica de Minas Gerais (CEMIG), Belo Horizonte, MG (Brazil); Fagundes, Zaluar Aquino [Companhia Estadual de Energia Eletrica do Estado do Rio Grande do Sul, Porto Alegre, RS (Brazil)

    1996-12-31

    An increase in the consumption of natural gas in Brazil is an expected fact in what concerns energetic planning. This work presents the existing situation in what concerns natural gas utilization in the main world economies, as well as an analysis of the participation of this fuel among the energy final consumption per sources. The Brazilian consumption of natural gas is also analysed as well as the international agreement between Brazil and Bolivia for natural gas commercialization. Some legal, institutional and political aspects related to natural gas commercialization are also discussed. Finally, several benefits to be brought by the utilization of natural gas are presented 10 refs., 3 tabs.

  3. Natural gas

    OpenAIRE

    Bakar, Wan Azelee Wan Abu; Ali, Rusmidah

    2015-01-01

    Natural gas fuel is a green fuel and becoming very demanding because it is environmental safe and clean. Furthermore, this fuel emits lower levels of potentially harmful by-products into the atmosphere. Most of the explored crude natural gas is of sour gas and yet, very viable and cost effective technology is still need to be developed. Above all, methanation technology is considered a future potential treatment method for converting the sour natural gas to sweet natural gas.

  4. Abiotic gas: atypical but not rare

    OpenAIRE

    Etiope, G.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italia; Schoell, M.

    2014-01-01

    Abiotic gaseous hydrocarbons comprise a fascinating, but poorly understood, group of Earth fl uids generated by magmatic and gas–water–rock reactions that do not directly involve organic matter. At least nine different inorganic mechanisms, including Fischer-Tropsch type reactions, occur over a wide range of temperatures. Trace amounts (typically parts per million by volume) are formed in volcanic and geothermal fl uids, but considerable amounts of methane, reaching 80–90 vol%,...

  5. Natural gas

    International Nuclear Information System (INIS)

    The reform of the EEG in Germany, a positive global development in natural gas, the decline in oil prices, questions about the security of supply in Europe, and not least the effect of the decision by E.on at the end of 2014 have moved the gas industry. Gas has the lowest CO2 emissions of fossil fuels. Flexibility, storability, useful for networks and the diversity in the application make it an ideal partner for renewable energy. However, these complementary properties are valued at wind and photovoltaics internationally and nationally different. The situation in the gas power plants remains tense. LNG - liquefied natural gas - is on the rise.

  6. Natural Gas Transport

    Directory of Open Access Journals (Sweden)

    Tomás Correa

    2009-06-01

    Full Text Available This paper reviews the present and future on natural gas transportation options, from oil and gas fields to markets, including liquefied natural gas, gas pipeline, compressed natural gas, natural gas hydrates, and gas to liquids and the perspectives of using them in Colombia, since this is the main fuel alternative to supply the world in at least the next 50 years.

  7. Natural gas marketing II

    International Nuclear Information System (INIS)

    This book covers all aspects of gas marketing, from the basic regulatory structure to the latest developments in negotiating agreements and locating markets. Topics include: Federal regulation of the gas industry; Fundamentals of gas marketing contracts; FERC actions encouraging competitive markets; Marketing conditions from the pipelines' perspective; State non-utility regulation of natural gas production, transportation, and marketing; Natural gas wellhead agreements and tariffs; Natural gas processing agreements; Effective management of producer's natural gas contracts; Producer-pipeline litigation; Natural gas purchasing from the perspective of industrial gas users; Gas marketing by co-owners: problems of disproportionate sales, gas balancing, and accounting to royalty owners; Alternatives and new directions in marketing

  8. Natural gas annual 1991

    International Nuclear Information System (INIS)

    The Natural Gas Annual provides information on the supply and disposition of natural gas to a wide audience including industry, consumers, Federal and State agencies, and educational institutions. The 1991 data are presented in a sequence that follows natural gas (including supplemental supplies) from its production to its end use. Tables summarizing natural gas supply and disposition form 1987 to 1991 are given for each Census Division and each State. Annual historical data are shown at the national level

  9. Natural gas annual 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-11-01

    The Natural Gas Annual provides information on the supply and disposition of natural gas to a wide audience including industry, consumers, Federal and State agencies, and educational institutions. The 1995 data are presented in a sequence that follows natural gas (including supplemental supplies) from its production to its end use. This is followed by tables summarizing natural gas supply and disposition from 1991 to 1995 for each Census Division and each State. Annual historical data are shown at the national level.

  10. Natural Gas Basics

    Energy Technology Data Exchange (ETDEWEB)

    None

    2016-06-08

    Natural gas powers about 150,000 vehicles in the United States and roughly 22 million vehicles worldwide. Natural gas vehicles (NGVs) are a good choice for high-mileage fleets -- such as buses, taxis, and refuse vehicles -- that are centrally fueled or operate within a limited area or along a route with natural gas fueling stations. This brochure highlights the advantages of natural gas as an alternative fuel, including its domestic availability, established distribution network, relatively low cost, and emissions benefits.

  11. Natural Gas Basics

    Energy Technology Data Exchange (ETDEWEB)

    2016-06-01

    Natural gas powers about 150,000 vehicles in the United States and roughly 22 million vehicles worldwide. Natural gas vehicles (NGVs) are a good choice for high-mileage fleets -- such as buses, taxis, and refuse vehicles -- that are centrally fueled or operate within a limited area or along a route with natural gas fueling stations. This brochure highlights the advantages of natural gas as an alternative fuel, including its domestic availability, established distribution network, relatively low cost, and emissions benefits.

  12. Natural gas annual 1993

    International Nuclear Information System (INIS)

    The Natural Gas Annual provides information on the supply and disposition of natural gas to a wide audience including industry, consumers, Federal and State agencies, and educational institutions. The 1993 data are presented in a sequence that follows natural gas (including supplemental supplies) from its production to its end use. Tables summarizing natural gas supply and disposition from 1989 to 1993 are given for each Census Division and each State. Annual historical data are shown at the national level

  13. NATURAL GAS TRANSPORTATION

    OpenAIRE

    Stanis³aw Brzeziñski

    2007-01-01

    In the paper, Author presents chosen aspects of natural gas transportation within global market. Natural gas transportation is a technicaly complicated and economicly expensive process; in infrastructure construction and activities costs. The paper also considers last and proposed initiatives in natural gas transportation.

  14. Natural gas annual 1991

    International Nuclear Information System (INIS)

    The Natural Gas Annual 1991 provides information on the supply and disposition of natural gas to a wide audience including industry, consumers Federal and State agencies, and education institutions. This report, the Natural Gas Annual 1991 Supplement: Company Profiles, presents a detailed profile of selected companies

  15. Abiotic Nitrous Oxide Production in Natural and Artificial Seawater

    Science.gov (United States)

    Ochoa, H.; Stanton, C. L.; Cavazos, A. R.; Ostrom, N. E.; Glass, J. B.

    2014-12-01

    The ocean contributes approximately one third of global sources of nitrous oxide (N2O) to the atmosphere. While nitrification is thought to be the dominant pathway for marine N2O production, mechanisms remain unresolved. Previous studies have carried the implicit assumption that marine N2O originates directly from enzymatic sources. However, abiotic production of N2O is possible via chemical reactions between nitrogenous intermediates and redox active trace metals in seawater. In this study, we investigated N2O production and isotopic composition in treatments with and without added hydroxylamine (NH2OH) and nitric oxide (NO), intermediates in microbial oxidation of ammonia to nitrite, and Fe(III). Addition of substrates to sterile artificial seawater was compared with filtered and unfiltered seawater from Sapelo Island, coastal Georgia, USA. N2O production was observed immediately after addition of Fe(III) in the presence of NH2OH at pH 8 in sterile artificial seawater. Highest N2O production was observed in the presence of Fe(III), NO, and NH2OH. The isotopomer site preference of abiotically produced N2O was consistent with previous studies (31 ± 2 ‰). Higher abiotic N2O production was observed in sterile artificial seawater (salinity: 35 ppt) than filtered Sapelo Island seawater (salinity: 25 ppt) whereas diluted sterile artificial seawater (18 ppt) showed lowest N2O production, suggesting that higher salinity promotes enhanced abiotic N2O production. Addition of Fe(III) to unfiltered Sapelo Island seawater stimulated N2O production. The presence of ammonia-oxidizing archaea (AOA), which lack known N2O producing enzymes, in Sapelo Island seawater was confirmed by successful amplification of the archaeal amoA gene, whereas ammonia-oxidizing bacteria (AOB), which contain N2O-producing enzymes were undetected. Given the few Fe-containing proteins present in AOA, it is likely that Fe(III) addition promoted N2O production via an abiotic vs. enzymatic N2O mechanism

  16. Natural gas annual 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-10-01

    The Natural Gas Annual provides information on the supply and disposition of natural gas to a wide audience including industry, consumers, Federal and State agencies, and educational institutions. The 1997 data are presented in a sequence that follows natural gas (including supplemental supplies) from its production to its end use. This is followed by tables summarizing natural gas supply and disposition from 1993 to 1997 for each Census Division and each State. Annual historical data are shown at the national level. 27 figs., 109 tabs.

  17. Natural gas and sustainability

    International Nuclear Information System (INIS)

    The evaluation of energy sources in terms of sustainable development has to include ecological, economic and social aspects. Natural gas as a piped energy source is shown by such an evaluation to be an important option among the sustainable means of satisfying the demand for energy. Apart from the problem of CO2 emissions, where interesting solutions are also being defined, the use of natural gas brings no drawbacks in terms of sustainable development. Anyway, natural gas has the most favorable greenhouse-gas balance among all fossil energy sources

  18. World Natural Gas Model

    Energy Technology Data Exchange (ETDEWEB)

    1994-12-01

    RAMSGAS, the Research and Development Analysis Modeling System World Natural Gas Model, was developed to support planning of unconventional gaseoues fuels research and development. The model is a scenario analysis tool that can simulate the penetration of unconventional gas into world markets for oil and gas. Given a set of parameter values, the model estimates the natural gas supply and demand for the world for the period from 1980 to 2030. RAMSGAS is based on a supply/demand framwork and also accounts for the non-renewable nature of gas resources. The model has three fundamental components: a demand module, a wellhead production cost module, and a supply/demand interface module. The demand for gas is a product of total demand for oil and gas in each of 9 demand regions and the gas share. Demand for oil and gas is forecast from the base year of 1980 through 2030 for each demand region, based on energy growth rates and price-induced conservation. For each of 11 conventional and 19 unconventional gas supply regions, wellhead production costs are calculated. To these are added transportation and distribution costs estimates associated with moving gas from the supply region to each of the demand regions and any economic rents. Based on a weighted average of these costs and the world price of oil, fuel shares for gas and oil are computed for each demand region. The gas demand is the gas fuel share multiplied by the total demand for oil plus gas. This demand is then met from the available supply regions in inverse proportion to the cost of gas from each region. The user has almost complete control over the cost estimates for each unconventional gas source in each year and thus can compare contributions from unconventional resources under different cost/price/demand scenarios.

  19. The natural gas liquefaction

    Energy Technology Data Exchange (ETDEWEB)

    Petit, P.

    1996-03-01

    This work deals with the transport of natural gas and more particularly with the natural gas liquefaction. Indeed, the transport distances (several thousands of kilometers) and the existing seaways have incited to develop a marine transport chain: the liquefied natural gas is carried out at - 161 degrees Celsius in thermically isolated containers of methane tankers. The interest of liquefying the natural gas is that it allows to reduce a lot the storage containers (650 m{sup 3} of gas at the atmospheric pressure only gives 1 m{sup 3} at the liquid state). In this study, the main constituents of the natural gas are given. The different liquefaction plants which exist in the world are described. Two units types exist at present: the base load and the peak shaving units. The liquefaction processes are then explained (the Pictet cycles, the auto-refrigerated cascade cycle and the combined cycles). The liquid obtained from natural gas has then to be re-gasified before being distributed. The re-gasification processes are then given. The heat exchangers used in liquefaction or re-gasification plants equipment are cryogenic exchangers: they can run with very weak temperature variations and on a very large temperature range. They are compared into details. The important quantities of the cryogenic liquid that constitutes the natural gas liquid contain a considerable energetic potential. In order to recover this energy, several solutions have been elaborated, for instance in using as cold source the natural gas liquid under re-gasification. A cost estimation of a natural gas plant is given too. (O.M.). 18 figs., 7 tabs.

  20. The natural gas market

    International Nuclear Information System (INIS)

    This chapter presents a brief history of the natural gas market highlighting the changes in the gas market and examining risk management in practice detailing the types of price risks, and the use of hedging using forwards and swaps. Options to manage risk are identified, and the role of risk management in financing, the role of the intermediary, and the market outlook are discussed. Panels describing the market structure, storage and natural gas risk management, the art of risk management, the winter 1995-96 basis blowout, spark spreads, the UK gas market and Europe, and weather derivatives are presented

  1. Natural Gas Acquisition Program

    Data.gov (United States)

    General Services Administration — The "NGAP" system is a web based application which serves NGAP GSA users for tracking information details for various natural gas supply chain elements like Agency,...

  2. Oil and natural gas

    International Nuclear Information System (INIS)

    The natural gas industry and market prospects in Canada are reviewed from a producer's point of view. In the first eight months of 1993, $2.3 billion in new equity was raised for natural gas exploration and production, compared to $900 million in 1991 and $1.2 billion in 1992. The number of wells drilled in the western Canada basin is expected to reach 8,000-9,000 in 1993, up from 5,600 in 1992, and Canadian producers' share of the North American natural gas market will probably reach 20% in 1993, up from 13% in 1986. Potential and proved gas supply in North America is ca 750 trillion ft3, of which ca 30% is in Canada. Factors affecting gas producers in Canada are the deregulated nature of the market, low costs for finding gas (finding costs in the western Canada basin are the lowest of any basin in North America), and the coming into balance of gas supply and demand. The former gas surplus has been reduced by expanding markets and by low prices which reduced the incentive to find new reserves. This surplus is largely gone, and prices have started rising although they are still lower than the pre-deregulation prices. Progress is continuing toward an integrated North American gas market in which a number of market hubs allow easy gas trading between producers and consumers. Commodity exchanges for hedging gas prices are beginning operation and electronic trading of gas contracts and pipeline capacity will also become a reality. 4 figs

  3. Natural gas outlook

    Energy Technology Data Exchange (ETDEWEB)

    Turner, R. [TransCanada Transmission, Calgary, AB (Canada)

    2004-07-01

    This presentation reviewed natural gas supply and demand issues facing Ontario and outlined TransCanada's role as a key player in Ontario's energy industry. TransCanada's gas transmission assets include 39,000 km of wholly owned pipelines from British Columbia to Atlantic Canada that carry 11 Bcf of gas per day. In addition, TransCanada operates 29 power generating plants, of which 6 are in Ontario. The company is also involved the proposed Mackenzie Valley and Alaska pipeline. A map illustrating Ontario and Quebec operations was included along with graphs depicting the 2004 base case for North American gas demand by region. Historical and forecasted gas demand by end use sector in Ontario and Quebec was also illustrated. A chart of North American gas supply indicates that new supply is needed to meet energy demands. Production forecasts for Western Canada for conventional and unconventional reserves indicates that by 2015, unconventional reserves such as coalbed methane (CBM) will make up a larger portion of the production mix. A map indicating existing and proposed import terminals along the Atlantic and Pacific coasts for liquefied natural gas (LNG) was included. The challenges facing the North American gas market include price volatility, the need to update energy policies, the need to improve regulatory efficiency, and aligning the interests of market participants. It was concluded that although natural gas from Western Canada will continue to be a stable supply source for many years, the natural gas market in North America is seeking new supply in frontier gas, LNG and CBM to meeting growing demand. 1 tab., 11 figs.

  4. Natural gas; Erdgas

    Energy Technology Data Exchange (ETDEWEB)

    Graf, Frank [Karlsruher Institut fuer Technologie (KIT), Karlsruhe (Germany). DVGW-Forschungsstelle; Groeschl, Frank; Wetzel, Uwe [DVGW, Bonn (Germany); Heikrodt, Klaus [Hochschule Ostwestfalen-Lippe, Lemgo (Germany); Krause, Hartmut [Technische Univ. Bergakademie Freiberg (Germany). DBI Gastechnologisches Institut, An-Institut; Sametschek, Christian; Witschen, Bernhard [Team Consult AM G.P.E. GmbH, Berlin (Germany)

    2013-04-01

    With some delay, the year 2012 has directed the energy-policy debate in Germany on important, fundamental aspects for the energy supply in Germany and thus on the competitiveness of the German economy: How can the costs for the energy policy turnaround be controlled? What are the impacts of the expansions of reserves and resources of petroleum and natural gas by means of the exploration of tight petroleum deposits and shale gas? How can the secure energy supply be guaranteed despite the forced expansion of volatile renewable energy sources? What might be the role of natural gas?.

  5. Nitrogenous gas emissions induced by abiotic nitrite reactions with soil organic matter of a Norway spruce forest

    Science.gov (United States)

    Wei, Jing; Vereecken, Harry; Schloter, Michael; Brüggemann, Nicolas

    2016-04-01

    As an important intermediate of the nitrogen cycle, nitrite is highly reactive to soil organic matter (SOM) in forest soils under acidic conditions. However, there is little knowledge about how much its abiotic reactions with SOM contribute to nitrogen (N) gas emissions of forest soils till now. In this study, we provide data on N gas (N2O, NO, NO2) emissions from abiotic nitrite reactions with different fractions of soil organic matter in spruce forest soil, as well as the mechanisms involved. Soil samples were taken from the Oh layer at the TERENO-Wüstebach catchment, Germany, where Norway spruce (Picea abies) dominates. SOM was fractionated into dissolved organic matter (DOM), fulvic acid (FA), humic acid (HA) and humin (HN) according to their solubility. The dynamics of simultaneous NOx and N2O emissions were analyzed with a dynamic flow-through chamber system, coupled to an infrared laser absorption analyzer for N2O and a chemo-luminescence analyzer for NOx (NO and NO2), which allowed emission measurements with high time resolution. The 15N labelling technique was used for tracing the fate of nitrite-N towards establishment of a total N balance. When nitrite was added to the soil fractions, a large amount of NOx was immediately emitted, mostly in the form of NO. N2O emission was delayed by approximately 0.5-1 h. The NO and N2O emission pattern could be almost perfectly fitted with the Hill equation. The N2O formation rates increased significantly in the following order: DOM, FA, HA and HN, while the total amounts of the gases emitted increased significantly in the opposite order. These results revealed that abiotic reactions of nitrite with SOM in spruce forest soil play an important role in N gas emissions, while the chemical nature of the different SOM fractions determines the rate and amount of N gas emissions.

  6. Natural gas deregulation

    International Nuclear Information System (INIS)

    With the aim of establishing realistic options for deregulation in the natural gas industry, this paper first considers the structural evolution of this industry and evidences how it differs from the petroleum industry with which it exhibits some essential characteristics in common. This comparison is made in order to stress that, contrary to popular belief, that which is without doubt good for the petroleum industry is not necessarily so also for the natural gas industry. The paper concludes with separate analyses of the natural gas markets in the principal industrialized countries. Arguments are provided to show that the 'soft' deregulation option for the natural gas industry is not feasible, and that 'total' deregulation instead, backed by the passing of a suitable package of anti-trust laws 'unbundling' the industry's four major activities, i.e., production, storage, primary and secondary distribution, is the preferable option. The old concept of guaranteed supplies for minor users of natural gas should give way to the laws of supply and demand governing inter-fuel competition ensured through the strict supervision of vigilance committees

  7. A significant abiotic pathway for the formation of unknown nitrogen in nature

    Science.gov (United States)

    Jokic, A.; Schulten, H.-R.; Cutler, J. N.; Schnitzer, M.; Huang, P. M.

    2004-03-01

    The global nitrogen cycle is of prime importance in natural ecosystems. However, the origin and nature of up to one-half of total soil N remains obscure despite all attempts at elucidation. Our data provide, for the first time, unequivocal evidence that the promoting action of Mn (IV) oxide on the Maillard reaction (sugar-amino acid condensation) under ambient conditions results in the abiotic formation of heterocyclic N compounds, which are often referred to as unknown nitrogen, and of amides which are apparently the dominant N moieties in nature. The information presented is of fundamental significance in understanding the role of mineral colloids in abiotic transformations of organic N moieties, the incorporation of N in the organic matrix of fossil fuels, and the global N cycle.

  8. Natural gas; Erdgas

    Energy Technology Data Exchange (ETDEWEB)

    Graf, Frank [DVGW-Forschungsstelle am KIT, Karlsruhe (Germany); Groeschl, Frank; Wetzel, Uwe [DVGW, Bonn (Germany); Heikrodt, Klaus [Hochschule Ostwestfalen-Lippe, Lemgo (Germany); Krause, Hartmut [DBI Gastechnologisches Institut, An-Institut der TU Bergakademie, Freiberg (Germany); Beestermoeller, Christina; Witschen, Bernhard [Team Consult G.P.E. GmbH, Berlin (Germany); Albus, Rolf; Burmeister, Frank [Gas- und Waerme-Institut Essen e.V., Essen (Germany)

    2015-07-01

    The reform of the EEG in Germany, a positive global development in natural gas, the decline in oil prices, questions about the security of supply in Europe, and not least the effect of the decision by E.on at the end of 2014 have moved the gas industry. Gas has the lowest CO{sub 2} emissions of fossil fuels. Flexibility, storability, useful for networks and the diversity in the application make it an ideal partner for renewable energy. However, these complementary properties are valued at wind and photovoltaics internationally and nationally different. The situation in the gas power plants remains tense. LNG - liquefied natural gas - is on the rise. [German] Die Reform des EEG in Deutschland, eine positive Entwicklung beim Gas weltweit, der Verfall der Oelpreises, Fragen zur Versorgungssicherheit in Europa und nicht zuletzt die Auswirkung der Entscheidung von E.on Ende 2014 haben die Gaswirtschaft bewegt. Gas weist die geringsten CO{sub 2}-Emissioen der fossilen Energietraeger auf. Flexibilitaet, Speicherbarkeit, Netzdienlichkeit sowie die Vielfalt in der Anwendung machen es zum idealen Partner der erneuerbaren Energien. Allerdings werden diese komplementaeren Eigenschaften zu Wind und Photovoltaik international und national unterschiedlich bewertet. Die Lage bei den Gaskraftwerken bleibt weiter angespannt. LNG - verfluessigtes Erdgas - ist auf dem Vormarsch.

  9. US crude oil, natural gas, and natural gas liquids reserves

    International Nuclear Information System (INIS)

    This report presents estimates of proved reserves of crude oil, natural gas, and natural gas liquids as of December 31, 1991, as well as production volumes for the United States, and selected States and State subdivisions for the year 1991. Estimates are presented for the following four categories of natural gas: total gas (wet after lease separation), its two major components (nonassociated and associated-dissolved gas), and total dry gas (wet gas adjusted for the removal of liquids at natural gas processing plants). In addition, two components of natural gas liquids, lease condensate and natural gas plant liquids, have their reserves and production data presented. Also included is information on indicated additional crude oil reserves and crude oil, natural gas, and lease condensate reserves in nonproducing reservoirs. A discussion of notable oil and gas exploration and development activities during 1991 is also presented

  10. Venezuela natural gas outlook

    International Nuclear Information System (INIS)

    This paper reports on the natural gas outlook for Venezuela. First of all, it is very important to remember that in the last few years we have had frequent and unforeseen changes in the energy, ecological, geopolitical and economical fields which explain why all the projections of demand and prices for hydrocarbons and their products have failed to predict what later would happen in the market. Natural gas, with its recognized advantages over other traditional competitors such as oil, coal and nuclear energy, is identified as the component that is acquiring more weight in the energy equation, with a strengthening projection, not only as a resource that covers demand but as a key element in the international energy business. In fact, natural gas satisfies 21% of overall worldwide energy consumption, with an annual increase of 2.7% over the last few years, which is higher than the global energy growth of other fossil fuels. This tendency, which dates from the beginning of the 1980's, will continue with a possibility of increasing over the coming years. Under a foreseeable scenario, it is estimated that worldwide use of natural gas will increase 40% over the next 10 years and 75% on a longer term. Specifically for liquid methane (LNG), use should increase 60% during this last decade. The LPG increase should be moderate due to the limited demand until 1995 and to the stable trends that will continue its use until the end of this century

  11. Natural Gas Price Rises

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    @@ As was projected in the third-quarter monetary policy implementation report published by the People's Bank of China on November 15th, 2006, the residents' consumption price index in China would reach 1.5% in 2006. Prices of consumer commodities such as water, power and natural gas would rise and the pressure of inflation would persist in the future.

  12. US crude oil, natural gas, and natural gas liquids reserves

    Energy Technology Data Exchange (ETDEWEB)

    1990-10-05

    This report presents estimates of proved reserves of crude oil, natural gas, and natural gas liquids as of December 31, 1989, and production volumes for the year 1989 for the total United States and for selected states and state sub-divisions. Estimates are presented for the following four categories of natural gas: total gas (wet after lease separation), its two major components (nonassociated and associated-dissolved gas), and total dry gas (wet gas adjusted for the removal of liquids at natural gas processing plants). In addition, two components of natural gas liquids, lease condensate and natural gas plant liquids, have their reserves and production reported separately. Also included is information on indicated additional crude oil reserves and crude oil, natural gas, and lease condensate reserves in nonproducing reservoirs. 28 refs., 9 figs., 15 tabs.

  13. Abiotic degradation of four phthalic acid esters in aqueous phase under natural sunlight irradiation

    Institute of Scientific and Technical Information of China (English)

    Ruttapol Lertsirisopon; Satoshi Soda; Kazunari Sei; Michihiko Ike

    2009-01-01

    Abiotic degradability of four phthalic acid esters (PAEs) in the aquatic phase was evaluated over the wide pH range (5-9). The PAE solutions in glass test tubes were placed in the dark and under natural sunlight irradiation for evaluating the degradation rate via hydrolysis and photolysis plus hydrolysis, respectively, at ambient temperature for 140 d from autumn to winter in Osaka, Japan. The efficiency of abiotic degradation of the PAEs with relatively short alkyl chain, butylbenzyl phthalate (BBP) and di-n-butyl phthalate (DBP) at neutral pH was significant less than that in the acidic or alkaline condition. Photolysis was considered to mainly contribute to total abiotic degradation at any pH. Neither hydrolysis nor photolysis of di-ethylhexyl phthalate (DEHP) proceeded significantly at any pH, especially hydrolysis at neutral pH was negligible. On the other hand, the degradation rate of di-isononyl phthalate (DINP) mainly catalyzed by photolysis was much higher compared with that of the other PAEs, and almost complete removal was observed during the experimental period at pH 5.0 and 9.0. As a whole, according to the half-life (t1/2) obtained in the experiments, the abiotic degradability of the PAEs was in the sequence, DINP (32-140 d) > DBP (50-360 d), BBP (58-480 d) > DEHP (390-1600 d) under sunlight irradiation (via photolysis plus hydrolysis). Although the abiotic degradation rate for BBP, DBP, and DEHP are much lower than their biodegradation rate reported, the photolysis rate for DINP is comparable to its biodegradation rate in the acidic or alkaline condition.

  14. Natural gas marketing and transportation

    International Nuclear Information System (INIS)

    This book covers: Overview of the natural gas industry; Federal regulation of marketing and transportation; State regulation of transportation; Fundamentals of gas marketing contracts; Gas marketing options and strategies; End user agreements; Transportation on interstate pipelines; Administration of natural gas contracts; Structuring transactions with the nonconventional source fuels credit; Take-or-pay wars- a cautionary analysis for the future; Antitrust pitfalls in the natural gas industry; Producer imbalances; Natural gas futures for the complete novice; State non-utility regulation of production, transportation and marketing; Natural gas processing agreements and Disproportionate sales, gas balancing, and accounting to royalty owners

  15. Markets for natural gas development

    International Nuclear Information System (INIS)

    This paper analyses the role of markets in the development of natural gas industry in different countries: the role of marketing in the development of natural gas uses in the residential and tertiary sectors in Italy; the valorization of natural gas in the fertilizers industry in Algeria; the cogeneration and the development of power networks in Spain; the development of natural gas air conditioning in Greece; two examples of new gas uses in Tunisia: development of a combined cycle plant and natural gas conversion of electric and refuse fuel potter furnaces; and an application of natural gas in the phosphate industry in Morocco. (J.S.)

  16. Thermoacoustic natural gas liquefier

    Energy Technology Data Exchange (ETDEWEB)

    Swift, G.W. [Los Alamos National Lab., NM (United States). Condensed Matter and Thermal Physics Group

    1997-05-01

    Cryenco and Los Alamos are collaborating to develop a natural-gas-powered natural-gas liquefier that will have no moving parts and require no electrical power. It will have useful efficiency, remarkable reliability, and low cost. The liquefaction of natural gas, which occurs at only 115 Kelvin at atmospheric pressure, has previously required rather sophisticated refrigeration machinery. The 1990 invention of the thermoacoustically driven orifice pulse-tube refrigerator (TA-DOPTR) provides cryogenic refrigeration with no moving parts for the first time. In short, this invention uses acoustic phenomena to produce refrigeration from heat. The required apparatus consists of nothing more than helium-filled heat exchangers and pipes, made of common materials, without exacting tolerances. In the Cryenco-Los Alamos collaboration, the authors are developing a version of this invention suitable for use in the natural-gas industry. The project is known as acoustic liquefier for short. The present program plans call for a two-phase development. Phase 1, with capacity of 500 gallon per day (i.e., approximately 40,000 scfd, requiring a refrigeration power of about 7 kW), is large enough to illuminate all the issues of large-scale acoustic liquefaction without undue cost, and to demonstrate the liquefaction of 60--70% of input gas, while burning 30--40%. Phase 2 will target versions of approximately 10{sup 6} scfd = 10,000 gallon per day capacity. In parallel with both, they continue fundamental research on the technology, directed toward increased efficiency, to build scientific foundations and a patent portfolio for future acoustic liquefiers.

  17. Natural variation in abiotic stress responsive gene expression and local adaptation to climate in Arabidopsis thaliana.

    Science.gov (United States)

    Lasky, Jesse R; Des Marais, David L; Lowry, David B; Povolotskaya, Inna; McKay, John K; Richards, James H; Keitt, Timothy H; Juenger, Thomas E

    2014-09-01

    Gene expression varies widely in natural populations, yet the proximate and ultimate causes of this variation are poorly known. Understanding how variation in gene expression affects abiotic stress tolerance, fitness, and adaptation is central to the field of evolutionary genetics. We tested the hypothesis that genes with natural genetic variation in their expression responses to abiotic stress are likely to be involved in local adaptation to climate in Arabidopsis thaliana. Specifically, we compared genes with consistent expression responses to environmental stress (expression stress responsive, "eSR") to genes with genetically variable responses to abiotic stress (expression genotype-by-environment interaction, "eGEI"). We found that on average genes that exhibited eGEI in response to drought or cold had greater polymorphism in promoter regions and stronger associations with climate than those of eSR genes or genomic controls. We also found that transcription factor binding sites known to respond to environmental stressors, especially abscisic acid responsive elements, showed significantly higher polymorphism in drought eGEI genes in comparison to eSR genes. By contrast, eSR genes tended to exhibit relatively greater pairwise haplotype sharing, lower promoter diversity, and fewer nonsynonymous polymorphisms, suggesting purifying selection or selective sweeps. Our results indicate that cis-regulatory evolution and genetic variation in stress responsive gene expression may be important mechanisms of local adaptation to climatic selective gradients.

  18. Natural gas monthly, April 1999

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-05-06

    The Natural Gas Monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information. There are two feature articles in this issue: Natural gas 1998: Issues and trends, Executive summary; and Special report: Natural gas 1998: A preliminary summary. 6 figs., 28 tabs.

  19. Chemical Reactivity Probes for Assessing Abiotic Natural Attenuation by Reducing Iron Minerals.

    Science.gov (United States)

    Fan, Dimin; Bradley, Miranda J; Hinkle, Adrian W; Johnson, Richard L; Tratnyek, Paul G

    2016-02-16

    Increasing recognition that abiotic natural attenuation (NA) of chlorinated solvents can be important has created demand for improved methods to characterize the redox properties of the aquifer materials that are responsible for abiotic NA. This study explores one promising approach: using chemical reactivity probes (CRPs) to characterize the thermodynamic and kinetic aspects of contaminant reduction by reducing iron minerals. Assays of thermodynamic CRPs were developed to determine the reduction potentials (ECRP) of suspended minerals by spectrophotometric determination of equilibrium CRP speciation and calculations using the Nernst equation. ECRP varied as expected with mineral type, mineral loading, and Fe(II) concentration. Comparison of ECRP with reduction potentials measured potentiometrically using a Pt electrode (EPt) showed that ECRP was 100-150 mV more negative than EPt. When EPt was measured with small additions of CRPs, the systematic difference between EPt and ECRP was eliminated, suggesting that these CRPs are effective mediators of electron transfer between mineral and electrode surfaces. Model contaminants (4-chloronitrobenzene, 2-chloroacetophenone, and carbon tetrachloride) were used as kinetic CRPs. The reduction rate constants of kinetic CRPs correlated well with the ECRP for mineral suspensions. Using the rate constants compiled from literature for contaminants and relative mineral reduction potentials based on ECRP measurements, qualitatively consistent trends were obtained, suggesting that CRP-based assays may be useful for estimating abiotic NA rates of contaminants in groundwater. PMID:26814150

  20. Natural gas monthly, July 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-07-01

    The Natural Gas Monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information. The feature article this month is entitled ``Intricate puzzle of oil and gas reserves growth.`` A special report is included on revisions to monthly natural gas data. 6 figs., 24 tabs.

  1. Natural gas monthly, October 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-10-01

    The Natural Gas Monthly (NGM) is prepared in the Data Operations Branch of the Reserves and Natural Gas Division, Office of Oil and Gas, Energy Information Administration (EIA), U.S. Department of Energy (DOE). The NGM highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information.

  2. Natural gas monthly, May 1999

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-05-01

    The Natural Gas Monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time the NGM features articles designed to assist readers in using and interpreting natural gas information. 6 figs., 27 tabs.

  3. Natural gas monthly, October 1998

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-10-01

    The Natural Gas Monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information. 6 figs., 27 tabs.

  4. Natural gas monthly, June 1998

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-06-01

    The Natural Gas Monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information. 6 figs., 27 tabs.

  5. Natural gas monthly, August 1994

    Energy Technology Data Exchange (ETDEWEB)

    1994-08-24

    The Natural Gas Monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information.

  6. Natural Gas Monthly, March 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-25

    The Natural Gas Monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information.

  7. Natural gas monthly, July 1998

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-07-01

    The Natural Gas Monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information. 6 figs., 25 tabs.

  8. Natural gas monthly, June 1999

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-06-01

    The Natural Gas Monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information. 6 figs., 25 tabs.

  9. Natural gas monthly, November 1998

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-11-01

    The Natural Gas Monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. 6 figs., 27 tabs.

  10. Natural gas monthly, January 1999

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-02-01

    The Natural Gas Monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. 6 figs., 28 tabs.

  11. Natural gas monthly, December 1998

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-01

    The Natural Gas Monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. 6 figs., 28 tabs.

  12. Natural gas for vehicles (NGV)

    International Nuclear Information System (INIS)

    Following a decade-long upsurge in the use of natural gas in the energy sector (heating and especially electricity), new outlets for natural gas are being developed in the transport sector. For countries endowed with substantial local resources, development in this sector can help reduce oil dependence. In addition, natural gas is often used to reduce pollution, particularly in cities. (author)

  13. Natural gas monthly, February 1999

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-02-01

    The Natural Gas Monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. 6 figs., 28 tabs.

  14. Natural gas for vehicles (NGV)

    Energy Technology Data Exchange (ETDEWEB)

    Prieur, A

    2006-07-01

    Following a decade-long upsurge in the use of natural gas in the energy sector (heating and especially electricity), new outlets for natural gas are being developed in the transport sector. For countries endowed with substantial local resources, development in this sector can help reduce oil dependence. In addition, natural gas is often used to reduce pollution, particularly in cities. (author)

  15. Natural gas monthly, May 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-05-01

    The Natural Gas Monthly highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information. The feature article this month is ``Restructuring energy industries: Lessons from natural gas.`` 6 figs., 26 tabs.

  16. Natural Gas Monthly, October 1993

    Energy Technology Data Exchange (ETDEWEB)

    1993-11-10

    The (NGM) Natural Gas Monthly highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information. This month`s feature articles are: US Production of Natural Gas from Tight Reservoirs: and Expanding Rule of Underground Storage.

  17. Natural gas monthly, October 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-10-01

    The Natural Gas Monthly highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information. The feature article in this issue is a special report, ``Comparison of Natural Gas Storage Estimates from the EIA and AGA.`` 6 figs., 26 tabs.

  18. Natural gas monthly, December 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-01

    The Natural Gas Monthly highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information. The article this month is entitled ``Recent Trends in Natural Gas Spot Prices.`` 6 figs., 27 tabs.

  19. What drives natural gas prices?

    OpenAIRE

    Stephen P. A. Brown; Yücel, Mine K.

    2007-01-01

    For many years, fuel switching between natural gas and residual fuel oil kept natural gas prices closely aligned with those for crude oil. More recently, however, the number of U.S. facilities able to switch between natural gas and residual fuel oil has declined, and over the past five years, U.S. natural gas prices have been on an upward trend with crude oil prices but with considerable independent movement. Natural gas market analysts generally emphasize weather and inventories as drivers o...

  20. Natural gas monthly, March 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    The Natural Gas Monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information. The feature article is entitled ``Natural gas analysis and geographic information systems.`` 6 figs., 27 tabs.

  1. Natural gas monthly, August 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-08-24

    The Natural Gas Monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information. This month`s feature article is on US Natural Gas Imports and Exports 1994.

  2. Natural gas monthly, November 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-11-01

    The report highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the Natural Gas Monthly features articles designed to assist readers in using and interpreting natural gas information. The feature article this month is ``US natural gas imports and exports-1995``. 6 figs., 24 tabs.

  3. Thermoacoustic natural gas liquefier

    Energy Technology Data Exchange (ETDEWEB)

    Swift, G.W. [Los Alamos National Lab., NM (United States)

    1995-06-01

    In collaboration with Cryenco Inc. and NIST-Boulder, we intend to develop a natural gas-powered natural-gas liquefier which has absolutely no moving parts and requires no electrical power. It will have high efficiency, remarkable reliability, and low cost. Progress on the liquefier to be constructed at Cryenco continues satisfactorily. The thermoacoustic driver is still ahead of the pulse tube refrigerator, because of NIST`s schedule. We completed the thermoacoustics design in the fall of 1994, with Los Alamos providing physics input and checks of all aspects, and Cryenco providing engineering to ASME code, drafting, etc. Completion of this design represents a significant amount of work, especially in view of the many unexpected problems encountered. Meanwhile, Cryenco and NIST have almost completed the design of the pulse tube refrigerator. At Los Alamos, we have assembled a half-size scale model of the thermoacoustic portion of the 500 gal/day TANGL. This scale model will enable easy experimentation in harmonic suppression techniques, new stack geometries, new heat-exchanger geometries, resonator coiling, and other areas. As of March 1995, the scale model is complete and we are performing routine debugging tests and modifications.

  4. Natural gas monthly, April 1998

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-04-01

    This issue of the Natural Gas Monthly presents the most recent estimates of natural gas data from the Energy Information Administration (EIA). Estimates extend through April 1998 for many data series. The report highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, feature articles are presented designed to assist readers in using and interpreting natural gas information. This issue contains the special report, ``Natural Gas 1997: A Preliminary Summary.`` This report provides information on natural gas supply and disposition for the year 1997, based on monthly data through December from EIA surveys. 6 figs., 28 tabs.

  5. Natural gas monthly, September 1998

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-09-01

    The National Gas Monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information. 6 figs., 27 tabs.

  6. Natural gas and Brazilian energetic matrix; Gas natural no Brasil

    Energy Technology Data Exchange (ETDEWEB)

    Moraes, Ricardo Luchese de [White Martins S.A., Rio de Janeiro, RJ (Brazil)

    1997-07-01

    Recent projection of the market in global scale shows a tendency in natural gas using replacing mostly the fuel oil. Its market share well increase from 21.1% in 1994 to 24.0% in 2010. The annual energetic use will reach 29.23 x 10{sup 9} Gcal in 2010 (8990 million Nm{sup 3} natural gas/day) versus 18.90 x 10{sup 9} Gcal in 1994 (5810 million Nm{sup 3} natural gas/day). For Brazil, its consumption will increase from 8.7 million Nm{sup 3} natural gas/day in 1994 to 35.9 million Nm{sup 3} natural gas/day in 2010. Projects like Brazil-Bolivia natural gas pipeline, will supply 18 million Nm{sup 3} natural gas/day, which expected to start-up before the year 2000. This projects will supply the Brazilian southern regions, that do not consume natural gas at the current moment. Although there are many different kind of natural gas consumption in the industry this paper presents the technical and economical estimate of the injection in the blast furnace operating with coke or charcoal. The process simulation is done assisted by math modeling developed by White Martins/Praxair Inc. (author)

  7. 75 FR 13524 - Northern Natural Gas Company, Southern Natural Gas Company, Florida Gas Transmission Company, LLC...

    Science.gov (United States)

    2010-03-22

    ... Energy Regulatory Commission Northern Natural Gas Company, Southern Natural Gas Company, Florida Gas... of Application March 16, 2010. Take notice that on March 5, 2010, Northern Natural Gas Company... other owners, Southern Natural Gas Company, Florida Gas Transmission Company, LLC, Transcontinental...

  8. Natural gas monthly, February 1994

    Energy Technology Data Exchange (ETDEWEB)

    1994-02-25

    The NGM highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. The NGM also features articles designed to assist readers in using and interpreting natural gas information.

  9. Essentials of natural gas microturbines

    CERN Document Server

    Boicea, Valentin A

    2013-01-01

    Addressing a field which, until now, has not been sufficiently investigated, Essentials of Natural Gas Microturbines thoroughly examines several natural gas microturbine technologies suitable not only for distributed generation but also for the automotive industry. An invaluable resource for power systems, electrical, and computer science engineers as well as operations researchers, microturbine operators, policy makers, and other industry professionals, the book: Explains the importance of natural gas microturbines and their use in distributed energy resource (DER) systemsDiscusses the histor

  10. Natural gas monthly, March 1998

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    The March 1998 edition of the Natural Gas Monthly highlights activities, events, and analyses associated with the natural gas industry. Volume and price data are presented for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. This report also features an article on the correction of errors in the drilling activity estimates series, and in-depth drilling activity data. 6 figs., 28 tabs.

  11. Natural gas market under the Natural Gas Policy Act

    Energy Technology Data Exchange (ETDEWEB)

    Carlson, M.; Ody, N.; O' Neill, R.; Rodekohr, M.; Shambaugh, P.; Thrasher, R.; Trapmann, W.

    1981-06-01

    This first of a series of analyses presents data on the exploration, development, production, and pricing of US natural gas since the passage of the Natural Gas Policy Act in 1978. Designed to give pricing incentives for new-well activity, the NGPA has apparently eliminated many of the pricing differences that existed between interstate and intrastate markets. Estimates of the annual production volumes in trillion CF/yr of gas for the categories defined by the NGPA include new gas 4.5, new onshore wells 4.1, high-cost unconventional gas 0.7, and stripper wells 0.4. Preliminary statistics on the end-use pricing of natural gas suggest that significant changes in the average wellhead prices have not caused correspondingly large increases in the price of delivered gas.

  12. Natural gas monthly, October 1991

    Energy Technology Data Exchange (ETDEWEB)

    1991-11-05

    The Natural Gas Monthly (NGM) is prepared in the Data Operations Branch of the Reserves and Natural Gas Division, Office of Oil and Gas, Energy Information Administration (EIA), US Department of Energy (DOE). The NGM highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. The data in this publication are collected on surveys conducted by the EIA to fulfill its responsibilities for gathering and reporting energy data. Some of the data are collected under the authority of the Federal Energy Regulatory Commission (FERC), an independent commission within the DOE, which has jurisdiction primarily in the regulation of electric utilities and the interstate natural gas industry. Geographic coverage is the 50 States and the District of Columbia. 16 figs., 33 tabs.

  13. Natural gas pipeline technology overview.

    Energy Technology Data Exchange (ETDEWEB)

    Folga, S. M.; Decision and Information Sciences

    2007-11-01

    The United States relies on natural gas for one-quarter of its energy needs. In 2001 alone, the nation consumed 21.5 trillion cubic feet of natural gas. A large portion of natural gas pipeline capacity within the United States is directed from major production areas in Texas and Louisiana, Wyoming, and other states to markets in the western, eastern, and midwestern regions of the country. In the past 10 years, increasing levels of gas from Canada have also been brought into these markets (EIA 2007). The United States has several major natural gas production basins and an extensive natural gas pipeline network, with almost 95% of U.S. natural gas imports coming from Canada. At present, the gas pipeline infrastructure is more developed between Canada and the United States than between Mexico and the United States. Gas flows from Canada to the United States through several major pipelines feeding U.S. markets in the Midwest, Northeast, Pacific Northwest, and California. Some key examples are the Alliance Pipeline, the Northern Border Pipeline, the Maritimes & Northeast Pipeline, the TransCanada Pipeline System, and Westcoast Energy pipelines. Major connections join Texas and northeastern Mexico, with additional connections to Arizona and between California and Baja California, Mexico (INGAA 2007). Of the natural gas consumed in the United States, 85% is produced domestically. Figure 1.1-1 shows the complex North American natural gas network. The pipeline transmission system--the 'interstate highway' for natural gas--consists of 180,000 miles of high-strength steel pipe varying in diameter, normally between 30 and 36 inches in diameter. The primary function of the transmission pipeline company is to move huge amounts of natural gas thousands of miles from producing regions to local natural gas utility delivery points. These delivery points, called 'city gate stations', are usually owned by distribution companies, although some are owned by

  14. Natural Gas Energy Educational Kit.

    Science.gov (United States)

    American Gas Association, Arlington, VA. Educational Services.

    Prepared by energy experts and educators to introduce middle school and high school students to natural gas and its role in our society, this kit is designed to be incorporated into existing science and social studies curricula. The materials and activities focus on the origin, discovery, production, delivery, and use of natural gas. The role of…

  15. Natural gas monthly, July 1990

    Energy Technology Data Exchange (ETDEWEB)

    1990-10-03

    This report highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. A glossary is included. 7 figs., 33 tabs.

  16. Natural gas monthly, August 1990

    Energy Technology Data Exchange (ETDEWEB)

    1990-11-05

    This report highlights activities, events, and analyses of interest to public and private sector oganizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. 33 tabs.

  17. Natural gas industry in Bulgaria

    International Nuclear Information System (INIS)

    An overview of the Bulgarian natural gas industry is presented. The starting point was the discovery of the indigenous Chiren gas-field in 1967. The first agreement with the ex-USSR for supply of natural gas and construction of main pipelines was signed in 1968. The state gas company BULGARGAZ is responsible for transportation, storage, distribution, processing and marketing of the gas to over 150 industrial companies in the country, as well as for the transportation services to gas importers in neighboring Turkey. The GAZSTROJMONTAZH company accomplish the construction of the local and transit pipelines to Turkey and Greece, as well as of some objects in Iran, Syria, Ukraine and Germany. In the past 20 years, 87890 million m3 natural gas from Russia are supplied and 846 million m3 - from domestic sources. The share of natural gas in the overall energy balance is 13.6% for 1992. The restructuring and further development of gas industry require to take into account some factors as: security in supply; investments for technical assurance; pricing policy for natural gas; development of private business. Some administrative problems are also mentioned. 2 tabs., 1 fig

  18. Natural gas monthly, August 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-08-01

    This analysis presents the most recent data on natural gas prices, supply, and consumption from the Energy Information Administration (EIA). The presentation of the latest monthly data is followed by an update on natural gas markets. The markets section examines the behavior of daily spot and futures prices based on information from trade press, as well as regional, weekly data on natural gas storage from the American Gas Association (AGA). This {open_quotes}Highlights{close_quotes} closes with a special section comparing and contrasting EIA and AGA storage data on a monthly and regional basis. The regions used are those defined by the AGA for their weekly data collection effort: the Producing Region, the Consuming Region East, and the Consuming Region West. While data on working gas levels have tracked fairly closely between the two data sources, differences have developed recently. The largest difference is in estimates of working gas levels in the East consuming region during the heating season.

  19. North American Natural Gas Markets

    Energy Technology Data Exchange (ETDEWEB)

    1988-12-01

    This report sunnnarizes the research by an Energy Modeling Forum working group on the evolution of the North American natural gas markets between now and 2010. The group's findings are based partly on the results of a set of economic models of the natural gas industry that were run for four scenarios representing significantly different conditions: two oil price scenarios (upper and lower), a smaller total US resource base (low US resource case), and increased potential gas demand for electric generation (high US demand case). Several issues, such as the direction of regulatory policy and the size of the gas resource base, were analyzed separately without the use of models.

  20. North American Natural Gas Markets

    Energy Technology Data Exchange (ETDEWEB)

    1989-02-01

    This report summarizes die research by an Energy Modeling Forum working group on the evolution of the North American natural gas markets between now and 2010. The group's findings are based partly on the results of a set of economic models of the natural gas industry that were run for four scenarios representing significantly different conditions: two oil price scenarios (upper and lower), a smaller total US resource base (low US resource case), and increased potential gas demand for electric generation (high US demand case). Several issues, such as the direction of regulatory policy and the size of the gas resource base, were analyzed separately without the use of models.

  1. North American Natural Gas Markets

    International Nuclear Information System (INIS)

    This report summarizes die research by an Energy Modeling Forum working group on the evolution of the North American natural gas markets between now and 2010. The group's findings are based partly on the results of a set of economic models of the natural gas industry that were run for four scenarios representing significantly different conditions: two oil price scenarios (upper and lower), a smaller total US resource base (low US resource case), and increased potential gas demand for electric generation (high US demand case). Several issues, such as the direction of regulatory policy and the size of the gas resource base, were analyzed separately without the use of models

  2. North American Natural Gas Markets

    International Nuclear Information System (INIS)

    This report sunnnarizes the research by an Energy Modeling Forum working group on the evolution of the North American natural gas markets between now and 2010. The group's findings are based partly on the results of a set of economic models of the natural gas industry that were run for four scenarios representing significantly different conditions: two oil price scenarios (upper and lower), a smaller total US resource base (low US resource case), and increased potential gas demand for electric generation (high US demand case). Several issues, such as the direction of regulatory policy and the size of the gas resource base, were analyzed separately without the use of models

  3. The European natural gas market

    International Nuclear Information System (INIS)

    An increasing amount of natural gas is flowing into continental Europe, one of the largest gas markets in the world. There are three main sources of gas: Africa, Russia and Norway. Norway is an important supplier of gas, but may be vulnerable to competition. The demand for gas is increasing on a global basis and the largest increase is expected in Asia, followed by America and Europe. It is expected that Norwegian gas deliveries will be a principle source of natural gas for North Europe in the next years and that they will take an increasing part of the British market as the gas deliveries from the British shelf is going down. The European gas market is likely to become liberalized according to the EU's competition- and gas directives. This will not necessarily be a problem, and Norway may be able to increase the export of gas to Great Britain considerably from the year 2010, perhaps up to 40 billion standard m3 per year. Russia is expected to take an increased share of the European gas market, especially in East- and Central Europe, Germany and North Italy. But large investments in existing fields, new developments and new strategic pipelines are necessary

  4. Natural gas transportation and distribution

    International Nuclear Information System (INIS)

    An overview of the Canadian natural gas industry is provided, with a focus on transportation and distribution services and markets. The western Canada basin has the largest established reserves of marketable gas of any North American Basin, an estimated 95 trillion ft3 or 20-25 years of supply at current levels of production. In British Columbia alone, ultimate potential gas reserves are estimated at 38-50 trillion ft3. The basin remains relatively undeveloped and drilling and exploration activities are increasing. Gas supplies are adequate to serve new and existing markets, and output is about evenly split between domestic and export consumption. Growth in demand is expected from increasing residential and commercial use of gas; areas of potential growth include gas-fired cogeneration and increased use of natural gas for powering vehicles. Ongoing expansion of gas delivery infrastructure is enhancing the reliability and efficiency of gas service. In the past 20 years, the length of Canada's transmission pipelines has doubled to over 40,000 miles while distribution lines have tripled to over 100,000 miles. The gas delivery network is managed by computerized systems that allow nearly instant response to changes in demand. Issues that could alter the industry's outlook are discussed in the areas of gas marketing, deregulation, competition, and prices

  5. Natural Gas Monthly August 1998

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-08-01

    The Natural Gas Monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information. Explanatory notes supplement the information found in tables of the report. A description of the data collection surveys that support the NGM is provided. A glossary of the terms used in this report is also provided to assist readers in understanding the data presented in this publication.

  6. Natural gas industry in Iran

    Energy Technology Data Exchange (ETDEWEB)

    Omidvar, Hedayat

    2010-09-15

    Iran holds the second largest gas reserves in the word with over 27.5 trillion cubic meters (TCM) of natural gas. Due to lack of geological surveys in certain geographical regions in Iran, it is likely to explore further reserves in the future.

  7. Natural gas and energy security

    Energy Technology Data Exchange (ETDEWEB)

    Saga, B.P.

    1996-12-31

    This paper relates to energy security by natural gas supply seen in an International Energy Agency perspective. Topics are: Security of supply, what is it; the role gas on the European energy scene; short term security of supply; long term security of supply; future structural and regulatory developments and possible implications for security of supply. 6 figs.

  8. Natural gas monthly, November 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-11-01

    This issue of the Natural Gas Monthly presents the most recent estimates of natural gas data from the Energy Information Administration. Estimates extend through November for many data series, and through August for most natural gas prices. Highlights of the most recent data estimates are: (1) Preliminary estimates of dry natural gas production and total consumption available through November 1997 indicate that both series are on track to end the year at levels close to those of 1996. Cumulative dry production is one-half percent higher than in 1996 and consumption is one-half percent lower. (2) Natural gas production is estimated to be 52.6 billion cubic feet per day in November 1997, the highest rate since March 1997. (3) After falling 8 percent in July 1997, the national average wellhead price rose 10 percent in August 1997, reaching an estimated $2.21 per thousand cubic feet. (4) Milder weather in November 1997 compared to November 1996 has resulted in significantly lower levels of residential consumption of natural gas and net storage withdrawls than a year ago. The November 1997 estimates of residential consumption and net withdrawls are 9 and 20 percent lower, respectively, than in November 1996.

  9. Natural gas in India

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    The Indian gas market is expected to be one of the fastest growing in the world over the next two decades. This paper analyses this market, highlighting the current challenges. It first looks at the industry structure, presents the main players from industry as well as government, and gives an overview of the regulatory framework. The issue of pricing remaining crucial for both upstream and downstream development, the paper looks at both supply -- domestic production and LNG imports -- and demand.

  10. Natural gas monthly, March 1999

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    This issue of the Natural Gas Monthly contains estimates for March 1999 for many natural gas data series at the national level. Estimates of national natural gas prices are available through December 1998 for most series. Highlights of the data contained in this issue are listed below. Preliminary data indicate that the national average wellhead price for 1998 declined to 16% from the previous year ($1.96 compared to $2.32 per thousand cubic feet). At the end of March, the end of the 1998--1999 heating season, the level of working gas in underground natural gas storage facilities is estimated to be 1,354 billion cubic feet, 169 billion cubic feet higher than at the end of March 1998. Gas consumption during the first 3 months of 1999 is estimated to have been 179 billion cubic feet higher than in the same period in 1998. Most of this increase (133 billion cubic feet) occurred in the residential sector due to the cooler temperatures in January and February compared to the same months last year. According to the National Weather Service, heating degree days in January 1999 were 15% greater than the previous year while February recorded a 5% increase.

  11. Reservoir-forming features of abiotic origin gas in Songliao Basin

    Institute of Scientific and Technical Information of China (English)

    郭占谦; 王先彬; 刘文龙

    1997-01-01

    The vertical structure of the crustal block of the Songliao Basin can be divided into upper, middle and low Earth’s crust according to density. There is an about 3-km-thick low density interval between the upper crust and the middle crust. This interval may be a magma chamber accumulated in crust by "fluid phase" which is precipitated and separated from upper mantle meltmass. The abiogenetic natural gas, other gaseous mass and hydrothermal fluids are provided to the Songliao rifted basin through crustal faults and natural earthquakes. This is a basic condition to form an abiogenetic gas reservoir in the Songliao Basin. On both flanks of the upper crust (or named basin basement) fault there are structural traps in and above the basement and unconformity surface or lateral extended sand, which contains communicated pores, as migration pathway and natural gas reservoir; up to gas reservoirs there is shale as enclosed cap rock, and the suitable arrangement of these conditions is the basic features of abioge

  12. Recalcitrance and degradation of petroleum biomarkers upon abiotic and biotic natural weathering of Deepwater Horizon oil.

    Science.gov (United States)

    Aeppli, Christoph; Nelson, Robert K; Radović, Jagoš R; Carmichael, Catherine A; Valentine, David L; Reddy, Christopher M

    2014-06-17

    Petroleum biomarkers such as hopanoids, steranes, and triaromatic steroids (TAS) are commonly used to investigate the source and fate of petroleum hydrocarbons in the environment based on the premise that these compounds are resistant to biotic and abiotic degradation. To test the validity of this premise in the context of the Deepwater Horizon disaster, we investigated changes to these biomarkers as induced by natural weathering of crude oil discharged from the Macondo Well (MW). For surface slicks collected from May to June in 2010, and other oiled samples collected on beaches in the northern Gulf of Mexico from July 2010 until August 2012, hopanoids with up to 31 carbons as well as steranes and diasteranes were not systematically affected by weathering processes. In contrast, TAS and C32- to C35-homohopanes were depleted in all samples relative to 17α(H),21β(H)-hopane (C30-hopane). Compared to MW oil, C35-homohopanes and TAS were depleted by 18 ± 10% and 36 ± 20%, respectively, in surface slicks collected from May to June 2010, and by 37 ± 9% and 67 ± 10%, respectively, in samples collected along beaches from April 2011 through August 2012. Based on patterns of relative losses of individual compounds, we hypothesize biodegradation and photooxidation as main degradation processes for homohopanes and TAS, respectively. This study highlights that (i) TAS and homohopanes can be degraded within several years following an oil spill, (ii) the use of homohopanes and TAS for oil spill forensics must account for degradation, and (iii) these compounds provide a window to parse biodegradation and photooxidation during advanced stages of oil weathering.

  13. Natural gas in Latin America

    International Nuclear Information System (INIS)

    Despite having proven reserves equal to that of North America, natural gas has traditionally played a minor role in the energy policies of Latin American countries, being considered secondary to oil. There has, therefore, been a neglect of the sector with a resultant lack of an adequate infrastructure throughout the region, perhaps with the exception of Argentina. However, with a massive increase in energy demand, growing concerns with environmental matters and a need to reduce the massive pollution levels in major cities in the region, natural gas is forecast to play a much greater role in Latin America's energy profile, with final consumption forecast to rise at 5.4% per annum for the next 15 years. This book assesses both the development of the use of natural gas in the power industrial sector and proposals for its growth into the residential, commercial and transport sectors. It analyses the significant investment required and the governments' need to turn to the private sector for investment and innovation. Natural Gas in Latin America analyses the possibilities and pitfalls of investing in the sector and describes the key trends and issues. It analyses all aspects of the gas industry from exploration and production to transportation and distribution to end users. (Author)

  14. Natural gas market in Europe

    International Nuclear Information System (INIS)

    The natural gas market is opened to competition since August 2000. The economical impact of this new situation remains moderate in 2001 because the conditions of competition are not fulfilled everywhere. In France, for instance, the European directive on markets deregulation has not been transposed yet and the conditions of access of third parties to the national gas network have not been clearly defined. In this context of uncertainties, several questions remain unanswered. This study draws out a precise status of the situation of the 7 main European gas markets. It comprises also an analysis of the behaviour and strategy of the 18 main actors of this sector. (J.S.)

  15. Nitrogen removal from natural gas

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-04-01

    According to a 1991 Energy Information Administration estimate, U.S. reserves of natural gas are about 165 trillion cubic feet (TCF). To meet the long-term demand for natural gas, new gas fields from these reserves will have to be developed. Gas Research Institute studies reveal that 14% (or about 19 TCF) of known reserves in the United States are subquality due to high nitrogen content. Nitrogen-contaminated natural gas has a low Btu value and must be upgraded by removing the nitrogen. In response to the problem, the Department of Energy is seeking innovative, efficient nitrogen-removal methods. Membrane processes have been considered for natural gas denitrogenation. The challenge, not yet overcome, is to develop membranes with the required nitrogen/methane separation characteristics. Our calculations show that a methane-permeable membrane with a methane/nitrogen selectivity of 4 to 6 would make denitrogenation by a membrane process viable. The objective of Phase I of this project was to show that membranes with this target selectivity can be developed, and that the economics of the process based on these membranes would be competitive. Gas permeation measurements with membranes prepared from two rubbery polymers and a superglassy polymer showed that two of these materials had the target selectivity of 4 to 6 when operated at temperatures below - 20{degrees}C. An economic analysis showed that a process based on these membranes is competitive with other technologies for small streams containing less than 10% nitrogen. Hybrid designs combining membranes with other technologies are suitable for high-flow, higher-nitrogen-content streams.

  16. Natural Gas Gathering and Purification in Sichuan Gas Fields

    Institute of Scientific and Technical Information of China (English)

    Zhang Zhilin

    1996-01-01

    @@ Natural Gas Gathering and Transmission Technology The construction of gas gathering & transmission lines and stations is an important part of the surface construction of gas fields, whose investment accounts for about half of the total in gas field's development.

  17. Natural Gas Multi-Year Program Plan

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-01

    This document comprises the Department of Energy (DOE) Natural Gas Multi-Year Program Plan, and is a follow-up to the `Natural Gas Strategic Plan and Program Crosscut Plans,` dated July 1995. DOE`s natural gas programs are aimed at simultaneously meeting our national energy needs, reducing oil imports, protecting our environment, and improving our economy. The Natural Gas Multi-Year Program Plan represents a Department-wide effort on expanded development and use of natural gas and defines Federal government and US industry roles in partnering to accomplish defined strategic goals. The four overarching goals of the Natural Gas Program are to: (1) foster development of advanced natural gas technologies, (2) encourage adoption of advanced natural gas technologies in new and existing markets, (3) support removal of policy impediments to natural gas use in new and existing markets, and (4) foster technologies and policies to maximize environmental benefits of natural gas use.

  18. Natural gas news; Gaz actualites

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1998-12-01

    This brochure is a compilation of practical information concerning the Gaz de France group: organization chart, daughter companies, services, economical activity, natural gas market, trade, regulations etc. A list of partners, directions, centres, groups, associations and other various organisms in relation with Gaz de France company is given. (J.S.)

  19. Staff Handbook on Natural Gas.

    Science.gov (United States)

    Gorges, H. A., Ed.; Raine, L. P., Ed.

    The Department of Commerce created a Natural Gas Action Group early in the fall of 1975 to assist industrial firms and the communities they serve to cope with the effects of potentially severe and crippling curtailment situations. This action group was trained to assess a specific local situation, review the potential for remedial action and…

  20. Natural gas monthly, January 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-01-01

    This publication, the Natural Gas Monthly, presents the most recent data on natural gas supply, consumption, and prices from the Energy Information Administration (EIA). Of special interest in this issue are two articles summarizing reports recently published by EIA. The articles are {open_quotes}Natural Gas Productive Capacity{close_quotes} and {open_quotes}Outlook for Natural Gas Through 2015,{close_quotes} both of which precede the {open_quotes}Highlights{close_quotes} section. With this issue, January 1997, changes have been made to the format of the Highlights section and to several of the tabular and graphical presentations throughout the publication. The changes to the Highlights affect the discussion of developments in the industry and the presentation of weekly storage data. An overview of the developments in the industry is now presented in a brief summary followed by specific discussions of supply, end-use consumption, and prices. Spot and futures prices are discussed as appropriate in the Price section, together with wellhead and consumer prices.

  1. Technology characterization: liquified natural gas

    Energy Technology Data Exchange (ETDEWEB)

    None

    1976-12-01

    A technology characterization for liquefied natural gas (LNG) was made. The scope of work was confined to a literature review of LNG processes including natural gas production, liquefaction, and revaporization. The work was divided into five major categories as follows: (1) status of LNG projects, (2) general process description, (3) environmental aspects, (4) safety, and (5) economics. Each of these categories forms a major heading for this report. In addition, an LNG reference system of 250 million standard cubic feet per day (MMSCFD) is included in the report at Argonne National Laboratory's (Argonne) request. Information concerning this system was derived from other LNG systems in the literature. The report does not include an assessment of the market potential for the product gas or its end use. Published cost estimates in the literature have been identified but the original cost estimates have not been provided. Plant layouts, conceptual designs, and socioeconomic analysis are not provided.

  2. Natural gas industry competitiveness study

    International Nuclear Information System (INIS)

    A national study on the competitiveness of the natural gas industry was undertaken by the BC Oil and Gas Commission in cooperation with, and with the encouragement of the Canadian Association of Petroleum Producers (CAPP). The objective of the study was to compare the cost competitiveness of natural gas exploration , production, gathering and processing in British Columbia to the costs of the same processes in Alberta. The study was carried out by building an 'expected case' for each gas producing area in British Columbia and Alberta by averaging past events in such specific areas as pool sizes, production profiles, loads, drilling success rates, gas compositions, land, drilling, exploration and production/gathering costs, third party production/gathering and processing fees and abandonment costs; by constructing a cash flow model for each case, calculating unit cost, and ranking cases. The report provides the details of the methodology, displays the results of the investigation in graphical form, comments on the results factoring in also labour costs and cost differences due to resource characteristics, identifies some trends such as an increase in the proportion of connections to smaller plants, and provides suggestions for improvements

  3. Cytosine methylation alteration in natural populations of Leymus chinensis induced by multiple abiotic stresses.

    Directory of Open Access Journals (Sweden)

    Yingjie Yu

    Full Text Available BACKGROUND: Human activity has a profound effect on the global environment and caused frequent occurrence of climatic fluctuations. To survive, plants need to adapt to the changing environmental conditions through altering their morphological and physiological traits. One known mechanism for phenotypic innovation to be achieved is environment-induced rapid yet inheritable epigenetic changes. Therefore, the use of molecular techniques to address the epigenetic mechanisms underpinning stress adaptation in plants is an important and challenging topic in biological research. In this study, we investigated the impact of warming, nitrogen (N addition, and warming+nitrogen (N addition stresses on the cytosine methylation status of Leymus chinensis Tzvel. at the population level by using the amplified fragment length polymorphism (AFLP, methylation-sensitive amplified polymorphism (MSAP and retrotransposon based sequence-specific amplification polymorphism (SSAP techniques. METHODOLOGY/PRINCIPAL FINDINGS: Our results showed that, although the percentages of cytosine methylation changes in SSAP are significantly higher than those in MSAP, all the treatment groups showed similar alteration patterns of hypermethylation and hypomethylation. It meant that the abiotic stresses have induced the alterations in cytosine methylation patterns, and the levels of cytosine methylation changes around the transposable element are higher than the other genomic regions. In addition, the identification and analysis of differentially methylated loci (DML indicated that the abiotic stresses have also caused targeted methylation changes at specific loci and these DML might have contributed to the capability of plants in adaptation to the abiotic stresses. CONCLUSIONS/SIGNIFICANCE: Our results demonstrated that abiotic stresses related to global warming and nitrogen deposition readily evoke alterations of cytosine methylation, and which may provide a molecular basis for rapid

  4. PANORAMA OF NATURAL GAS EXPLORATION IN CHINA

    Institute of Scientific and Technical Information of China (English)

    Song Yan; Li Xianqi; Fang Dequan

    1997-01-01

    @@ According to the anticipation of the International Energy Convention,natural gas will be an important substitute energy in the next century,and thus natural gas industry development has become a world trend.China not only has abundant natural gas resources, but also is one of the earliest countries to make use of gas in the world.After a prolonged wavering and slow development, China's natural gas industry has acquired rapid development since the 1980's.

  5. Western Pacific liquefied natural gas

    International Nuclear Information System (INIS)

    This presentation addressed issues facing WestPac Terminals' proposed construction of a liquefied natural gas (LNG) terminal and associated facilities on the Ridley Island on the coast of British Columbia. WestPac Terminals Inc. has expertise in natural gas supply and demand, transportation, LNG and economic optimization. Although a review of proposals for receiving terminals in North America has demonstrated the urgency and attractiveness of LNG imports, west coast terminals are not proceeding, largely due to lack of support by local communities. WestPac's proposal includes a deep enough port to accommodate the largest LNG tankers; a port en route to west coast terminal locations to serve as a transshipment hub; sufficient space for LNG storage tanks and natural gas liquids extraction; sea, rail, air and highway access. Other solutions include selecting locations where communities are pro-development where LNG terminals can provide direct financial benefits to the community, and using existing infrastructure to minimize socio-economic impacts. The advantages of developing LNG at the proposed site were discussed in terms of serving energy markets and provincial benefits. LNG source and cost issues were reviewed along with existing markets and required infrastructure for LNG market development. tabs., figs

  6. Natural gas as public service; Gas natural como servico publico

    Energy Technology Data Exchange (ETDEWEB)

    Gois, Breno Vincius de; Franca, Vladimir da Rocha [Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN (Brazil)

    2008-07-01

    The Natural Gas passes through an outbreak of enormous growth in Brazil. Important in several economies in the world and is one of the main components of the energy matrix of various countries, including neighbouring Southern Cone, such as Argentina and Bolivia, he begins to own as a major viable alternatives to replace oil, along with alcohol and biodiesel. When the distribution of the gas flowing, this should be governed by a system of public law, according to the principles governing the administration, is emphasizing the principle of continuity, efficiency, and generally modest, because this is public service, and how to see this be seen on a strong regulation of the Member States of the Federation, which has the power to provide them directly or by concession. (author)

  7. Globalization of the Natural Gas Industry

    International Nuclear Information System (INIS)

    This document deals with the foreseeable evolution of natural gas demand in the next 15 years. Natural gas consumption is growing faster than any other fossil fuel and, according to ENRON, the natural consumption growth will continue. The environmental aspect of natural gas use for power generation is presented, showing that gas use reduces pollution emissions (when compared with coal). On top of that, it appears that the conversion efficiency of gas is much higher than the conversion efficiency of coal steam. Eventually, natural gas resources should meet energy demand for decades. (TEC)

  8. 76 FR 4417 - Liberty Natural Gas LLC, Liberty Liquefied Natural Gas (LNG) Deepwater Port License Application

    Science.gov (United States)

    2011-01-25

    ... Maritime Administration Liberty Natural Gas LLC, Liberty Liquefied Natural Gas (LNG) Deepwater Port License... Deepwater Port License Application. The application describes an offshore natural gas deepwater port.... Summary of the Application Liberty Natural Gas, LLC, proposes to own, construct, and operate a natural...

  9. EPA's Natural Gas Extraction -- Hydraulic Fracturing Website

    Data.gov (United States)

    U.S. Environmental Protection Agency — Natural gas plays a key role in our nation's clean energy future. The U.S. has vast reserves of natural gas that are commercially viable as a result of advances in...

  10. Natural gas 1995: Issues and trends

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-11-01

    Natural Gas 1995: Issues and Trends addresses current issues affecting the natural gas industry and markets. Highlights of recent trends include: Natural gas wellhead prices generally declined throughout 1994 and for 1995 averages 22% below the year-earlier level; Seasonal patterns of natural gas production and wellhead prices have been significantly reduced during the past three year; Natural gas production rose 15% from 1985 through 1994, reaching 18.8 trillion cubic feet; Increasing amounts of natural gas have been imported; Since 1985, lower costs of producing and transporting natural gas have benefitted consumers; Consumers may see additional benefits as States examine regulatory changes aimed at increasing efficiency; and, The electric industry is being restructured in a fashion similar to the recent restructuring of the natural gas industry.

  11. U.S. crude oil, natural gas, and natural gas liquids reserves 1997 annual report

    Energy Technology Data Exchange (ETDEWEB)

    Wood, John H.; Grape, Steven G.; Green, Rhonda S.

    1998-12-01

    This report presents estimates of proved reserves of crude oil, natural gas, and natural gas liquids as of December 31, 1997, as well as production volumes for the US and selected States and State subdivisions for the year 1997. Estimates are presented for the following four categories of natural gas: total gas (wet after lease separation), nonassociated gas and associated-dissolved gas (which are the two major types of wet natural gas), and total dry gas (wet gas adjusted for the removal of liquids at natural gas processing plants). In addition, reserve estimates for two types of natural gas liquids, lease condensate and natural gas plant liquids, are presented. Also included is information on indicated additional crude oil reserves and crude oil, natural gas, and lease condensate reserves in nonproducing reservoirs. A discussion of notable oil and gas exploration and development activities during 1997 is provided. 21 figs., 16 tabs.

  12. On natural gas pricing reform in China

    Directory of Open Access Journals (Sweden)

    Aolin Hu

    2015-10-01

    Full Text Available Since April 1, 2015, for those non-residential gas users, the stock gas and incremental gas prices have been unified, and direct-supply gas prices have been released. This means that natural gas pricing reform has entered a new stage of development in China. In view of this, we first summarized and analyzed the achievements, status quo and existing problems in natural gas pricing reform in recent years in China. Then, we made an overview on the global natural gas pricing and marketing experiences and domestic situation in natural gas sector. On this basis, we presented the following proposals and implement approaches to ultimately achieving the market-oriented reform of natural gas pricing in China. First, the ex-factory prices for those residential gas users will be adjusted, which should be differentiated from those for the non-residential gas users. Second, the present natural gas pricing mechanism should be perfected with pipeline fees and gas storage fees being both added. Third, an integrated natural gas pricing system should be improved with differential prices implemented. Fourth, natural gas spot transaction should be promoted and energy measurement in gas metering and pricing should also be put into practice.

  13. 40 CFR 1065.715 - Natural gas.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 32 2010-07-01 2010-07-01 false Natural gas. 1065.715 Section 1065.715... PROCEDURES Engine Fluids, Test Fuels, Analytical Gases and Other Calibration Standards § 1065.715 Natural gas. (a) Except as specified in paragraph (b) of this section, natural gas for testing must meet...

  14. NITROGEN REMOVAL FROM NATURAL GAS

    Energy Technology Data Exchange (ETDEWEB)

    K.A. Lokhandwala; M.B. Ringer; T.T. Su; Z. He; I. Pinnau; J.G. Wijmans; A. Morisato; K. Amo; A. DaCosta; R.W. Baker; R. Olsen; H. Hassani; T. Rathkamp

    1999-12-31

    The objective of this project was to develop a membrane process for the denitrogenation of natural gas. Large proven reserves in the Lower-48 states cannot be produced because of the presence of nitrogen. To exploit these reserves, cost-effective, simple technology able to reduce the nitrogen content of the gas to 4-5% is required. Technology applicable to treatment of small gas streams (below 10 MMscfd) is particularly needed. In this project membranes that selectively permeate methane and reject nitrogen in the gas were developed. Preliminary calculations show that a membrane with a methane/nitrogen selectivity of 3 to 5 is required to make the process economically viable. A number of polymer materials likely to have the required selectivities were evaluated as composite membranes. Polyacetylenes such as poly(1-trimethylsilyl-1-propyne) [PTMSP] and poly(4-methyl-2-pentyne) [PMP] had high selectivities and fluxes, but membranes prepared from these polymers were not stable, showing decreasing flux and selectivity during tests lasting only a few hours. Parel, a poly(propylene oxide allyl glycidyl ether) had a selectivity of 3 at ambient temperatures and 4 or more at temperatures of {minus}20 C. However, Parel is no longer commercially available, and we were unable to find an equivalent material in the time available. Therefore, most of our experimental work focused on silicone rubber membranes, which have a selectivity of 2.5 at ambient temperatures, increasing to 3-4 at low temperatures. Silicone rubber composite membranes were evaluated in bench-scale module tests and with commercial-scale, 4-inch-diameter modules in a small pilot plant. Over six days of continuous operation at a feed gas temperature of {minus}5 to {minus}10 C, the membrane maintained a methane/nitrogen selectivity of about 3.3. Based on the pilot plant performance data, an analysis of the economic potential of the process was prepared. We conclude that a stand-alone membrane process is the lowest

  15. Natural synthesis of bioactive greigite by solid-gas reactions

    Science.gov (United States)

    Igarashi, Kensuke; Yamamura, Yasuhisa; Kuwabara, Tomohiko

    2016-10-01

    Greigite, a ferrimagnetic iron sulfide Fe(II)Fe(III)2S4, is thought to have played an essential role in chemical evolution leading to the origin of life. Greigite contains a [4Fe-4S] cluster-like structure and has been synthesized in the laboratory by liquid-state reactions. However, it is unclear how greigite can be synthesized in nature. Herein, we show that greigite is synthesized by the solid-gas reaction of Fe(III)-oxide-hydroxides and H2S. We discovered that the hyperthermophilic hydrogenotrophic methanogen Methanocaldococcus jannaschii reduced elemental sulfur, and the resulting sulfide generated greigite from hematite. The time course and pH dependence of the reaction respectively indicated the involvement of amorphous FeS and H2S as reaction intermediates. An abiotic solid-gas reaction of hematite and H2S (g) under strictly anaerobic conditions was developed. The solid-gas reaction fully converted hematite to greigite/pyrite at 40-120 °C within 12 h and was unaffected by the bulk gas phase. Similar abiotic reactions occurred, but relatively slowly, with aqueous H2S in acidulous liquids using hematite, magnetite, or amorphous FeO(OH) as starting materials, suggesting that greigite was extensively produced in the Hadean Eon as these Fe(III)-oxide-hydroxides were shown to be present or routinely produced during that era. Surprisingly, the obtained greigite induced methanogenesis and growth of hydrogenotrophic methanogens, suggesting that the external greigite crystals enhanced reactions that would otherwise require enzymes, such as [4Fe-4S] cluster-harboring membrane-bound hydrogenases. These data suggested that the greigite produced by the solid-gas and solid-dissolved gas reactions was bioactive.

  16. Natural gas industry R and D

    International Nuclear Information System (INIS)

    The last three decades have witnessed significant developments in engineering relative to the distribution and use of natural gas. This paper reviews these developments which, in natural gas distribution, include - polyethylene conduits, the use of radar to trace buried conduits, telemetering, innovative pressure reducing techniques and equipment, optimized retrofitting of buried pipelines, leak detection techniques, and energy recovery systems applied to pressure reducing operations. Relative to the efficient combustion and new uses of natural gas, the paper reviews the state-of-the-art in the design of compact wall mounted gas fired boilers for building space heating, gas fuelled space heating ventilation and air conditioning systems, and natural gas fed fuel cells

  17. REVIEW OF NATURAL GAS LIQUEFACTION PROCESSES

    Directory of Open Access Journals (Sweden)

    Katarina Simon

    2009-12-01

    Full Text Available High pressure pipelines are the most common way of natural gas transport from a gas field to a processing plant and further to consumers. In case when the distance between natural gas production and consumption regions is more than 4000 kilometers, and due to necessity of natural gas supply diversification, gas liquefaction and its transport by ships is being applied. The final choice of liquefaction process depends on the project variables, the development level of new or upgrading of already existing processes and available equipment. Current natural gas liquefaction processes and their usage in practice are shown in this paper (the paper is published in Croatian.

  18. Business cycles and natural gas prices

    Energy Technology Data Exchange (ETDEWEB)

    Apostolos, S.; Asghar, S. [University of Calgary, Alberta (Canada). Department of Economics

    2005-03-01

    This paper investigates the basic stylised facts of natural gas price movements using data for the period that natural gas has been traded on an organised exchange and the methodology suggested by Kydland and Prescott (1990). Our results indicate that natural gas prices are procyclical and lag the cycle of industrial production. Moreover, natural gas prices are positively contemporaneously correlated with United States consumer prices and lead the cycle of consumer prices, raising the possibility that natural gas prices might be a useful guide for US monetary policy, like crude oil prices are, possibly serving as an important indicator variable. (author)

  19. Prediction of natural gas consumption

    International Nuclear Information System (INIS)

    Distributors of natural gas need to predict future consumption in order to purchase a sufficient supply on contract. Distributors that offer their customers equal payment plans need to predict the consumption of each customer 12 months in advance. Estimates of previous consumption are often used for months when meters are inaccessible, or bimonthly-read meters. Existing methods of predicting natural gas consumption, and a proposed new method for each local region are discussed. The proposed model distinguishes the consumption load factors from summer to other seasons by attempting to adjust them by introducing two parameters. The problem is then reduced to a quadratic programming problem. However, since it is not necessary to use both parameters simultaneously, the problem can be solved with a simple iterative procedure. Results show that the new model can improve the two-equation model to a certain scale. The adjustment to heat load factor can reduce the error of prediction markedly while that to base load factor influences the error marginally. 3 refs., 11 figs., 2 tabs

  20. 75 FR 70350 - Liberty Natural Gas LLC, Liberty Liquefied Natural Gas (LNG) Deepwater Port License Application

    Science.gov (United States)

    2010-11-17

    ... Maritime Administration Liberty Natural Gas LLC, Liberty Liquefied Natural Gas (LNG) Deepwater Port License.... Coast Guard received an application from Liberty Natural Gas LLC for all Federal authorizations required... the transportation, storage, and further handling of oil or natural gas for transportation to...

  1. Natural gas conversion. Part VI

    International Nuclear Information System (INIS)

    This volume contains peer-reviewed manuscripts describing the scientific and technological advances presented at the 6th Natural Gas Conversion Symposium held in Alaska in June 2001. This symposium continues the tradition of excellence and the status as the premier technical meeting in this area established by previous meetings. The 6th Natural Gas Conversion Symposium is conducted under the overall direction of the Organizing Committee. The Program Committee was responsible for the review, selection, editing of most of the manuscripts included in this volume. A standing International Advisory Board has ensured the effective long-term planning and the continuity and technical excellence of these meetings. The titles of the contributions are: Impact of syngas generation technology selection on a GTL FPSO; Methane conversion via microwave plasma initiated by a metal initiator; Mechanism of carbon deposit/removal in methane dry reforming on supported metal catalysts; Catalyst-assisted oxidative dehydrogenation of light paraffins in short contact time reactors; Catalytic dehydrogenation of propane over a PtSn/SiO2 catalyst with oxygen addition: selective oxidation of H2 in the presence of hydrocarbons; Hydroconversion of a mixture of long chain n-paraffins to middle distillate: effect of the operating parameters and products properties; Decomposition/reformation processes and CH4 combustion activity of PdO over Al2O3 supported catalysts for gas turbine applications; Lurgi's mega-methanol technology opens the door for a new era in down-stream applications;Expanding markets for GTL fuels and specialty products; Some critical issues in the analysis of partial oxidation reactions in monolith reactors

  2. Natural Gas Prices on Three Continents

    Directory of Open Access Journals (Sweden)

    Mihály Ormos

    2012-10-01

    Full Text Available We investigate the pricing formation of natural gas markets on three different continents (Europe, Asia and North America. We find that natural gas markets showed a strong relationship with the crude oil market between 1992 and 2001 and natural gas prices tended to thermal parity with crude oil prices. From 2002 natural gas markets exhibited a less pronounced relationship with the crude oil market and major natural gas markets were severely underpriced compared to crude oil. A globally integrated natural gas market, comparable to the global oil market, has not evolved. The main natural gas markets, however, exhibit some level of integration, especially over a longer time. The European market exhibits the strongest levels of integration, while the North American market exhibits the weakest.

  3. 78 FR 38309 - Northern Natural Gas Company; Southern Natural Gas Company, L.L.C.; Florida Gas Transmission...

    Science.gov (United States)

    2013-06-26

    ... Energy Regulatory Commission Northern Natural Gas Company; Southern Natural Gas Company, L.L.C.; Florida... Natural Gas Company (Northern), 1111 South 103rd Street, Omaha, Nebraska 68124; on behalf of itself, Southern Natural Gas Company, L.L.C., and Florida Gas Transmission Company, LLC, (collectively,...

  4. US crude oil, natural gas, and natural gas liquids reserves, 1992 annual report

    International Nuclear Information System (INIS)

    This report presents estimates of proved reserves of crude oil, natural gas, and natural gas liquids as of December 31, 1992, as well as production volumes for the United States, and selected States and State subdivisions for the year 1992. Estimates are presented for the following four categories of natural gas: total gas (wet after lease separation), its two major components (nonassociated and associated-dissolved gas), and total dry gas (wet gas adjusted for the removal of liquids at natural gas processing plants). In addition, two components of natural gas liquids, lease condensate and natural gas plant liquids, have their reserves and production data presented. Also included is information on indicated additional crude oil reserves and crude oil, natural gas, and lease condensate reserves in nonproducing reservoirs. A discussion of notable oil and gas exploration and development activities during 1992 is provided

  5. US crude oil, natural gas, and natural gas liquids reserves, 1992 annual report

    Energy Technology Data Exchange (ETDEWEB)

    1993-10-18

    This report presents estimates of proved reserves of crude oil, natural gas, and natural gas liquids as of December 31, 1992, as well as production volumes for the United States, and selected States and State subdivisions for the year 1992. Estimates are presented for the following four categories of natural gas: total gas (wet after lease separation), its two major components (nonassociated and associated-dissolved gas), and total dry gas (wet gas adjusted for the removal of liquids at natural gas processing plants). In addition, two components of natural gas liquids, lease condensate and natural gas plant liquids, have their reserves and production data presented. Also included is information on indicated additional crude oil reserves and crude oil, natural gas, and lease condensate reserves in nonproducing reservoirs. A discussion of notable oil and gas exploration and development activities during 1992 is provided.

  6. Natural gas pricing: concepts and international overview

    Energy Technology Data Exchange (ETDEWEB)

    Gorodicht, Daniel Monnerat [Gas Energy, Rio de Janeiro, RJ (Brazil); Veloso, Luciano de Gusmao; Fidelis, Marco Antonio Barbosa; Mathias, Melissa Cristina Pinto Pires [Agencia Nacional do Petroleo, Gas Natural e Biocombustiveis (ANP), Rio de Janeiro, RJ (Brazil)

    2012-07-01

    The core of this article is a critical analysis of different forms of pricing of natural gas existing in the world today. This paper is to describe the various scenarios of natural gas price formation models. Along the paper, the context is emphasized by considering their cases of applications and their results. Today, basically, there are three main groups of models for natural gas pricing: i) competition gas-on-gas, i.e., a liberalized natural gas market, II) gas indexed to oil prices or its products and III) bilateral monopolies and regulated prices. All the three groups of models have relevant application worldwide. Moreover, those are under dynamic influence of economic, technological and sociopolitical factors which bring complexity to the many existing scenarios. However, at first this paper builds a critical analysis of the international current situation of natural gas today and its economic relevance. (author)

  7. Future impact on natural gas pipelines

    Energy Technology Data Exchange (ETDEWEB)

    Croom, J.H.

    1982-01-01

    The future for natural gas pipelines is forecast by examining the sources and uses of energy today and projecting respective changes. No significant changes are expected over the next 20 yr in natural gas usage, but regionally, some demand shift could impact certain gas transmission facilities. The conclusion is that natural gas will continue to displace oil in some stationary uses, while coal will displace natural gas in some power plant and feedstock applications. Although these shifts will result in some regional construction activity, they will probably not necessitate major arterial increases to the pipeline network. However, significant changes in supply sources may have a major impact on pipeline planning and construction.

  8. The domestic natural gas shortage in China

    Science.gov (United States)

    Guo, Ting

    This thesis analyzes the domestic shortage in the Chinese natural gas market. Both the domestic supply and demand of natural gas are growing fast in China. However, the supply cannot catch up with the demand. Under the present pricing mechanism, the Chinese natural gas market cannot get the equilibrium by itself. Expensive imports are inadequate to fill the increasing gap between the domestic demand and supply. Therefore, the shortage problem occurs. Since the energy gap can result in the arrested development of economics, the shortage problem need to be solved. This thesis gives three suggestions to solve the problem: the use of Unconventional Gas, Natural Gas Storage and Pricing Reform.

  9. Potential recoverable natural gas resources in China

    Institute of Scientific and Technical Information of China (English)

    Liu Chenglin; Zhu Jie; Che Changbo; Liu Guangdi

    2008-01-01

    Natural gas resources in China are abundant. The undiscovered recoverable natural gas resources in China are estimated to be 19.27×1012 m3. Natural gas is mainly distributed in the middle and west China and offshore areas of China. The Tarim Basin, Sichuan Basin, Ordos Basin, East China Sea Basin, Tsaidam Basin, Yinggehai Basin, and Qiongdongnan Basin are the main gas-beating basins. The natural gas resources are not distributed evenly and are under-explored in China. The deeper horizons in east China, foreland basins and craton paleo-uplifts in the middle and west China, and the offshore basins are the main exploration areas in the future.

  10. Natural gas applications in waste management

    International Nuclear Information System (INIS)

    The Institute of Gas Technology (IGT) is engaged in several projects related to the use of natural gas for waste management. These projects can be classified into four categories: cyclonic incineration of gaseous, liquid, and solid wastes; fluidized-bed reclamation of solid wastes; two-stage incineration of liquid and solid wastes; natural gas injection for emissions control. 5 refs., 8 figs

  11. Life-cycle analysis of shale gas and natural gas.

    Energy Technology Data Exchange (ETDEWEB)

    Clark, C.E.; Han, J.; Burnham, A.; Dunn, J.B.; Wang, M. (Energy Systems); ( EVS)

    2012-01-27

    The technologies and practices that have enabled the recent boom in shale gas production have also brought attention to the environmental impacts of its use. Using the current state of knowledge of the recovery, processing, and distribution of shale gas and conventional natural gas, we have estimated up-to-date, life-cycle greenhouse gas emissions. In addition, we have developed distribution functions for key parameters in each pathway to examine uncertainty and identify data gaps - such as methane emissions from shale gas well completions and conventional natural gas liquid unloadings - that need to be addressed further. Our base case results show that shale gas life-cycle emissions are 6% lower than those of conventional natural gas. However, the range in values for shale and conventional gas overlap, so there is a statistical uncertainty regarding whether shale gas emissions are indeed lower than conventional gas emissions. This life-cycle analysis provides insight into the critical stages in the natural gas industry where emissions occur and where opportunities exist to reduce the greenhouse gas footprint of natural gas.

  12. Market development in the natural gas market

    International Nuclear Information System (INIS)

    Options for the liberalization of the Dutch natural gas market have been investigated. Three models are compared and assessed for the impacts on the economic performance, the national interests and the so-called public tasks. The results of the report can be used to base the proposals for a new Natural Gas Act, which is expected to be sent to the Dutch parliament in the spring of 1999. The three liberalization models are specified according to the different phases in the industrial column of natural gas. Except for transport (limited possibilities) and distribution (monopolistic character and thus not suitable for market development), market development is possible in all the phases of the column. The models are the cooperation model (equal position for the natural gas trade company Gasunie and the natural gas distribution companies, and management of the natural gas infrastructure and the Dutch gas reserves by means of mutual tuning, cooperation and coordination), the EZ-model (price mechanism for the tariffs for natural gas, and access to the natural gas network through negotiated third party access (TPA) with indicative prices and conditions), and the market model (optimal use of market development options to stimulate the economic performance, introduction of price mechanism options, access through regulated TPA with tariffs, based on long-term marginal costs, role of the government limited to a favorable policy with respect to access to the network, competition and security of the interests which arise from the exploitation of the Dutch natural gas fields). 26 refs

  13. Origin of natural gas; Tennen gas no kigen

    Energy Technology Data Exchange (ETDEWEB)

    Katayama, Y. [The Institute of Applied Energy, Tokyo (Japan)

    1996-03-20

    Natural gas, which is a general term of flammable hydrocarbon gases such as methane, is classified by origin into the following categories : (1) oil field gas (oil gas), (2) aquifers (bacteria-fermented methane), (3) coal gas (coal field gas), and (4) abiogenetic gas. The natural gas which has (1-4) origins and is now used as resource in a large quantity is (1) oil field gas. This gas is a hydrocarbon gas recovered in the production process of petroleum and contains components such as ethane, propane and butane. To the contrary, (2) aquifers and (3) coal gas have methane as main component. As (4) abiogenetic methane, there are gas formed in inorganic reaction in activities of submarine volcanos and deep gas (earth origin gas). Oil field gas has kerogen origin. Aquifers were formed by fermentation of organic matters. Coal gas was formed by coalification of vitrinite. As abiogenetic methane, there are inorganic reaction formation gas and deep gas, the latter of which exists little as resource. 7 refs., 11 figs., 1 tab.

  14. Gas supplies of interstate/natural gas pipeline companies 1989

    Energy Technology Data Exchange (ETDEWEB)

    1990-12-18

    This publication provides information on the interstate pipeline companies' supply of natural gas during calendar year 1989, for use by the FERC for regulatory purposes. It also provides information to other Government agencies, the natural gas industry, as well as policy makers, analysts, and consumers interested in current levels of interstate supplies of natural gas and trends over recent years. 5 figs., 18 tabs.

  15. Natural gas leakage of Mizhi gas reservoir in Ordos Basin, recorded by natural gas fluid inclusion

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Abundant natural gas inclusions were found in calcite veins filled in fractures of Central Fault Belt across the centre of Ordos Basin. Time of the calcite veins and characteristics of natural gas fluid inclusion were investigated by means of dating of thermolum luminescence (TL) and analyzing stable isotope of fluid inclusion. Results show that natural gas inclusion formed at 130―140℃ with salinity of 5.5 wt%―6.0 wt% NaCl. It indicates that natural gas inclusion is a kind of thermal hydrocarbon fluid formed within the basin. Method of opening inclusion by heating was used to analyze composition of fluid inclusion online, of which the maximal hydrocarbon gas content of fluid inclusion contained in veins is 2.4219 m3/t rock and the maximal C1/Σci ratio is 91%. Laser Raman spectroscopy (LRS) was used to analyze chemistry of individual fluid inclusion in which the maximal hydrocarbon gas content is 91.6% compared with little inorganic composition. Isotope analysis results of calcite veins show that they were deposited in fresh water, in which the δ13CPDB of calcite veins is from -5.75‰ to 15.23‰ andδ18OSMOW of calcite veins is from 21.33‰ to 21.67‰. Isotope results show thatδ13C1 PDB of natural gas fluid inclusion is from -21.36‰ to -29.06‰ and δDSMOW of that is from -70.89‰ to -111.03‰. It indicates that the gas of fluid inclusion formed from coal source rocks and it is the same as that of natural gas of Mizhi gas reservoir. Results of TL dating show that time of calcite vein is (32.4±3.42)×104 a, which is thought to be formation time of gas inclusion. It indicated that natural gas inclusion contained in calcite veins recorded natural gas leakage from Mizhi gas reservoir through the Central Fault Belt due to Himalayan tectonic movement.

  16. Conceptos Basicos Sobre el Gas Natural

    Energy Technology Data Exchange (ETDEWEB)

    2016-08-01

    El gas natural abastece cerca de 150.000 vehiculos en los Estados Unidos y aproximadamente 22 millones de vehiculos en todo el mundo. Los vehiculos de gas natural (NGV, por sus siglas en ingles) son una buena opcion para las flotas de vehiculos de alto kilometraje, tales como autobuses, taxis, vehiculos de recoleccion de basura, los cuales son alimentados centralmente u operan dentro de un area limitada o a lo largo de una ruta con estaciones de servicio de gas natural. Las ventajas del gas natural como combustible alternativo incluyen su disponibilidad interna, la red de distribucion establecida, un costo relativamente bajo, y los beneficios de las emisiones.

  17. Natural gas 1998: Issues and trends

    International Nuclear Information System (INIS)

    Natural Gas 1998: Issues and Trends provides a summary of the latest data and information relating to the US natural gas industry, including prices, production, transmission, consumption, and the financial and environmental aspects of the industry. The report consists of seven chapters and five appendices. Chapter 1 presents a summary of various data trends and key issues in today's natural gas industry and examines some of the emerging trends. Chapters 2 through 7 focus on specific areas or segments of the industry, highlighting some of the issues associated with the impact of natural gas operations on the environment. 57 figs., 18 tabs

  18. Natural gas 1998: Issues and trends

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-06-01

    Natural Gas 1998: Issues and Trends provides a summary of the latest data and information relating to the US natural gas industry, including prices, production, transmission, consumption, and the financial and environmental aspects of the industry. The report consists of seven chapters and five appendices. Chapter 1 presents a summary of various data trends and key issues in today`s natural gas industry and examines some of the emerging trends. Chapters 2 through 7 focus on specific areas or segments of the industry, highlighting some of the issues associated with the impact of natural gas operations on the environment. 57 figs., 18 tabs.

  19. Natural gas vehicles in Europe: Commercialization prospects

    International Nuclear Information System (INIS)

    This paper tables numerous statistical data to evidence that whereas the use of natural gas as an automotive fuel for private and public vehicles is growing in Asia, North and South America, in Europe this trend is currently being followed only in Italy. However, with the relatively recent expansion of the European Communities' natural gas distribution network, coupled with growing interest in this fuel as a cost effective and environmentally compatible alternative to petroleum, the demand for natural gas automotive fuels is expected to increase even in this continent. The trucking industry in particular should derive significant benefits from the switch to natural gas

  20. Natural gas is more than gas power plants

    International Nuclear Information System (INIS)

    Through the Statpipe gas line at Karmoey, Norway supplies 20% of the natural gas on the European market. The pipeline is 'leaking' a little bit of gas to the local communities at Karmoey and Haugesund. These communities have replaced 65% of their oil consumption with natural gas, which is a fine contribution to a better environment. The supplier of the natural gas, Gasnor ASA in this case, claims an energy efficiency of 90% at the end user because the gas burns directly and the loss in the pipeline is minimal. The efficiency of natural gas utilisation is twice that of the planned gas power stations in West-Norway, subtracting the losses in the electrical network. Gasnor ASA competes with oil suppliers and, if necessary, with electric utilities. The county hospital at Haugesund is quoted as an example. The hospital has two large boilers with dual fuel burners. They have been using natural gas since 1998 because it was worth while both economically and environmentally. The use of natural gas in the transport sector would be very important, but the necessary infrastructure is very little developed. For instance, five diesel-powered ferries on the Boknafjord emit as much NOx as the planned gas power plant at Kaarstoe

  1. U.S. crude oil, natural gas, and natural gas liquids reserves 1995 annual report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-11-01

    The EIA annual reserves report series is the only source of comprehensive domestic proved reserves estimates. This publication is used by the Congress, Federal and State agencies, industry, and other interested parties to obtain accurate estimates of the Nation`s proved reserves of crude oil, natural gas, and natural gas liquids. These data are essential to the development, implementation, and evaluation of energy policy and legislation. This report presents estimates of proved reserves of crude oil, natural gas, and natural gas liquids as of December 31, 1995, as well as production volumes for the US and selected States and State subdivisions for the year 1995. Estimates are presented for the following four categories of natural gas: total gas (wet after lease separation), nonassociated gas and associated-dissolved gas (which are the two major types of wet natural gas), and total dry gas (wet gas adjusted for the removal of liquids at natural gas processing plants). In addition, reserve estimates for two types of natural gas liquids, lease condensate and natural gas plant liquids, are presented. Also included is information on indicated additional crude oil reserves and crude oil, natural gas, and lease condensate reserves in nonproducing reservoirs. A discussion of notable oil and gas exploration and development activities during 1995 is provided. 21 figs., 16 tabs.

  2. Natural gas annual 1993 supplement: Company profiles

    Energy Technology Data Exchange (ETDEWEB)

    1995-02-01

    The Natural Gas Annual provides information on the supply and disposition of natural gas to a wide audience including industry, consumers, Federal and State agencies, and educational institutions. This report, the Natural Gas Annual 1993 Supplement: Company Profiles, presents a detailed profile of 45 selected companies in the natural gas industry. The purpose of this report is to show the movement of natural gas through the various States served by the companies profiled. The companies in this report are interstate pipeline companies or local distribution companies (LDC`s). Interstate pipeline companies acquire gas supplies from company owned production, purchases from producers, and receipts for transportation for account of others. Pipeline systems, service area maps, company supply and disposition data are presented.

  3. The economy of natural gas; De economie van het gas

    Energy Technology Data Exchange (ETDEWEB)

    Scholtens, B. [Rijksuniversiteit Groningen, Groningen (Netherlands)

    2013-03-08

    The Dutch government uses the benefits of natural gas especially for public consumption expenditures. Re-establishment of a natural gas fund would lead to productive investment and create a more prosperous Dutch economy [Dutch] De Nederlandse overheid gebruikt de aardgasbaten nu met name voor consumptieve overheidsbestedingen. Heroprichting van een aardgasfonds zou tot productieve investeringen leiden en Nederland welvarender maken.

  4. Development Trends and Prospect of China Natural Gas Industry%Development Trends and Prospect of China Natural Gas Industry

    Institute of Scientific and Technical Information of China (English)

    Sun Hui; Li Wei; Yanq Yi; Zhuang Tao

    2011-01-01

    China natural gas industry maintained a vigorous deveJopment trend in 2010. Either domestic natural gas production or natural gas import has witnessed a significant increase; natural gas pipelines and other infrastructure have been upgraded; natural gas consumption has kept rising, and consumption mix has been optimized increasingly; natural gas price reform has taken big step.

  5. Biotic and abiotic oxidation and reduction of iron at circumneutral pH are inseparable processes under natural conditions

    NARCIS (Netherlands)

    Ionescu, Danny; Heim, Christine; Polerecky, L.; Thiel, Volker; de Beer, Dirk

    2015-01-01

    Oxidation and reduction of iron can occur through abiotic (chemical) and biotic (microbial) processes. Abiotic iron oxidation is a function of pH and O2 concentration. Biotic iron oxidation is carried out by a diverse group of bacteria, using O2 or NO3 as terminal electron acceptors. At circumneutra

  6. Natural gas in the transportation sector

    Energy Technology Data Exchange (ETDEWEB)

    Ask, T.Oe.; Einang, P.M.; Stenersen, D. [MARINTEK (Norway)

    1996-12-01

    The transportation sector is responsible for more than 50% of all oil products consumed, and it is the fastest growing oil demand sector and the fastest growing source of emissions. During the last 10 years there have been a considerable and growing effort in developing internal combustion gas engines. This effort has resulted in gas engines with efficiencies comparable to the diesel engines and with emissions considerably lower than engines burning conventional fuels. This development offers us opportunities to use natural gas very efficiently also in the transportation sector, resulting in reduced emissions. However, to utilize all the built in abilities natural gas has as engine fuel, the natural gas composition must be kept within relatively narrow limits. This is the case with both diesel and gasoline today. A further development require therefore specified natural gas compositions, and the direct use of pipeline natural gas as today would only in limited areas be acceptable. An interesting possibility for producing a specified natural gas composition is by LNG (Liquid Natural Gas) production. (EG)

  7. Natural gas : a highly lucrative commodity

    International Nuclear Information System (INIS)

    Exploration and production of natural gas has become highly profitable as natural gas is becoming a leading future commodity. With new technology, high demand and environmental benefits, natural gas is the preferred choice over petroleum as the leading source of energy to heat home and businesses. Canada is the world's third largest producer of natural gas with its Sable Offshore Energy Project being the fourth largest producing natural gas basin in North America. The basin will produce high quality sweet natural gas from 28 production wells over the course of the next 20 to 25 years. The gas will be transported to markets through Nova Scotia, New Brunswick and into the Northeastern United States via the Maritimes and Northeast Pipeline. The 1051 kilometer underground gas pipeline is currently running laterals to Halifax, Nova Scotia and Saint John, New Brunswick. Market studies are being conducted to determine if additional lines are needed to serve Cape Breton, Prince Edward Island and northern New Brunswick. A recent survey identified the following 5 reasons to convert to natural gas: (1) it is safe, (2) it is reliable, (3) it is easy to use, (4) it is cleaner burning and environmentally friendly compared to other energy sources, and (5) it saves the consumer money

  8. Hydrolysis and Photolysis of Herbicide Clomazone in Aqueous Solutions and Natural Water Under Abiotic Conditions

    Institute of Scientific and Technical Information of China (English)

    CAO Jia; DIAO Xiao-ping; HU Ji-ye

    2013-01-01

    The hydrolysis and photolysis of clomazone in aqueous solutions and natural water were assessed under natural and controlled conditions. Kinetics of hydrolysis and photolysis of clomazone were determined by HPLC-DAD. Photoproducts were identiifed by HPLC-MS. No noticeable hydrolysis occurred in aqueous buffer solutions ((25±2)°C, pH (4.5±0.1), pH (7.4±0.1), pH (9.0±0.1);(50±2)°C, pH (4.5±0.1), pH (7.4±0.1)) or in natural water up to 90 d. At pH (9.0±0.1) and (50±2)°C the half-life of clomazone was 50.2 d. Clomazone photodecomposition rate in aqueous solutions under UV radiation and natural sunlight followed ifrst-order kinetics. Degradation rates were faster under UV light (half-life of 51-59 min) compared to sunlight (half-life of 87-136 d). Under UV light, four major photoproducts were detected and tentatively identiifed according to HPLC-MS spectral information such as 2-chlorobenzamide, N-hydroxy-(2-benzyl)-2-methylpropan-amide, 2-[2-phenol]-4,4-dimethyl-3-isoxazolidinone and 2-[(4,6-dihydroxyl-2-chlorine phenol)]-4,4-dimethyl-3-isoxazolidinone. These results suggested that clomazone photodegradation proceeds via several reaction pathways:1) dehalogenation;2) substitution of chlorine group by hydroxyl;3) cleavage of the side chain. Photosensitizers, such as H2O2 and ribolfavin, could enhance photolysis of clomazone in natural sunlight. In summary, we found that photoreaction is an important dissipation pathway of clomazone in natural water systems.

  9. Mercury Removal from Natural Gas in Egypt

    International Nuclear Information System (INIS)

    Worldwide natural gas is forecasted to be the fastest growing primary energy source. In Egypt, natural gas is recently playing a key role as one of the major energy sources. This is supported by adequate gas reserves, booming gas industry, and unique geographical location. Egypt's current proven gas reserves accounted for about 62 TCF, in addition to about 100 TCF as probable gas reserves. As a result, it was decided to enter the gas exporting market, where gas is transported through pipelines as in the Arab Gas pipelines project and as a liquid through the liquefied natural gas (LNG) projects in Damietta, and ld ku. With the start up of these currently implemented LNG projects that are dealing with the very low temperatures (down to -162 degree c), the gas has to be subjected to a regular analysis in order to check the compliance with the required specifications. Mercury is a trace component of all fossil fuels including natural gas, condensates, crude oil, coal, tar sands, and other bitumens. The use of fossil hydrocarbons as fuels provides the main opportunity for emissions of mercury they contain to the atmospheric environment: while other traces exist in production, transportation and processing systems

  10. China Encourages Natural Gas Development and Utilization

    Institute of Scientific and Technical Information of China (English)

    Zhou Xuehou; Jiang Shiang

    1997-01-01

    @@ China is one of the earliest nations in developing and utilizing natural gas with modern drilling technique adopted as early as in the 1940s, and the scale of the country's gas resources exploration and development has been expanded since 1950s. At the end of 1995, its yearly gas production reached 17.4 × 109 m3.

  11. Impact of Recent Discoveries on Petroleum and Natural Gas Exploration: Emphasis on India

    CERN Document Server

    Herndon, J Marvin

    2010-01-01

    Two discoveries have greatly impacted understanding relevant to the origination and emplacement of petroleum and natural gas deposits. One discovery, pertaining to hydrocarbon formation from methane broadens significantly potential regions where abiotic petroleum and natural gas deposits might be found. The other, discovery of the physical impossibility of Earth-mantle convection, restricts the range and domain of geodynamic behavior, and leads to new insights on the formation of petroleum and natural gas deposits. This article highlights the impact and implications of those discoveries, especially as they relate to petroleum and natural gas exploration in India and throughout the world. From the reasoning developed here, the generality of the considerations involved, the understanding developed with respect to the East African Rift System, and the experience garnered from the larger and older Siberian Traps, the prognosis and potential for the region beneath the Deccan Traps of India to eventually become a m...

  12. Deregulation of natural gas in Georgia

    International Nuclear Information System (INIS)

    The Natural Gas Competition and Deregulation Act of 1997 in Georgia is discussed. New legislation passed the Natural Gas Consumer Relief Act in 2002 legislative session to provide additional protection and increase competition. This Act and its impacts are discussed in detail. Additional commission responsibilities are summarized. (R.P.)

  13. Natural gas annual 1994: Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-11-01

    The Natural Gas Annual provides information on the supply and disposition of natural gas to a wide audience including industry, consumers, Federal and State agencies, and educational institutions. This report, Volume 2, presents historical data fro the Nation from 1930 to 1994, and by State from 1967 to 1994.

  14. Natural gas foothold in world energy market

    International Nuclear Information System (INIS)

    In this article, the expansion of natural gas from the '50s to the early '80s is analyzed. Following its positive success in industrial, residential and thermoelectric uses, natural gas still has new market spaces to win both in conventional and technical and process innovation-oriented industries

  15. British Columbia natural gas: Core market policy

    International Nuclear Information System (INIS)

    The core market for natural gas in British Columbia is defined as all natural gas consumers in the residential, institutional, commercial, and industrial sectors not currently purchasing natural gas directly and not exempted from the core market by the British Columbia Utilities Commission (BCUC). The intent of the definition is to include all customers who must be protected by contracts which ensure long-term security of supply and stable prices. Core market customers are excluded from direct natural gas purchase and will be served by distribution utilities. A customer may apply to BCUC to leave the core market; such an application may be approved if it is demonstrated that the customer has adequate long-term natural gas supplies or alternative fuel supplies to protect him from supply interruptions. The non-core market is defined as all large industrial customers who elect to make their own natural gas supply arrangements and who can demonstrate to the BCUC sufficient long-term natural gas supply protection or alternative fuel capability to ensure security of the industry. Non-core market customers have full and open access to the competitive natural gas market. The British Columbia government will not apply its core market policy to other jurisdictions through Energy Removal Certificates

  16. Natural gas 1994: Issues and trends

    Energy Technology Data Exchange (ETDEWEB)

    1994-07-01

    This report provides an overview of the natural gas industry in 1993 and early 1994 (Chapter 1), focusing on the overall ability to deliver gas under the new regulatory mandates of Order 636. In addition, the report highlights a range of issues affecting the industry, including: restructuring under Order 636 (Chapter 2); adjustments in natural gas contracting (Chapter 3); increased use of underground storage (Chapter 4); effects of the new market on the financial performance of the industry (Chapter 5); continued impacts of major regulatory and legislative changes on the natural gas market (Appendix A).

  17. Natural gas 1994: Issues and trends

    International Nuclear Information System (INIS)

    This report provides an overview of the natural gas industry in 1993 and early 1994 (Chapter 1), focusing on the overall ability to deliver gas under the new regulatory mandates of Order 636. In addition, the report highlights a range of issues affecting the industry, including: restructuring under Order 636 (Chapter 2); adjustments in natural gas contracting (Chapter 3); increased use of underground storage (Chapter 4); effects of the new market on the financial performance of the industry (Chapter 5); continued impacts of major regulatory and legislative changes on the natural gas market (Appendix A)

  18. Produce synthesis gas by steam reforming natural gas

    Energy Technology Data Exchange (ETDEWEB)

    Marsch, H.D.; Herbort, H.J.

    1982-06-01

    For production of synthesis gas from natural gas the steam reforming process is still the most economical. It generates synthesis gas for ammonia and methanol production as well as hydrogen, oxo gas and town gas. After desulfurization, the natural gas is mixed with steam and fed to the reforming furnace where decomposition of hydrocarbons takes place in the presence of a nickel-containing catalyst. Synthesis gas that must be free of CO and CO/sub 2/ is further treated in a CO shift conversion, a CO/sub 2/ scrubbing unit and a methanation unit. The discussion covers the following topics - reforming furnace; the outlet manifold system; secondary reformer; reformed gas cooling. Many design details of equipment used are given.

  19. SEAPORT LIQUID NATURAL GAS STUDY

    Energy Technology Data Exchange (ETDEWEB)

    COOK,Z.

    1999-02-01

    The Seaport Liquid Natural Gas Study has attempted to evaluate the potential for using LNG in a variety of heavy-duty vehicle and equipment applications at the Ports of Los Angeles and Oakland. Specifically, this analysis has focused on the handling and transport of containerized cargo to, from and within these two facilities. In terms of containerized cargo throughput, Los Angeles and Oakland are the second and sixth busiest ports in the US, respectively, and together handle nearly 4.5 million TEUs per year. At present, the landside handling and transportation of containerized cargo is heavily dependent on diesel-powered, heavy-duty vehicles and equipment, the utilization of which contributes significantly to the overall emissions impact of port-related activities. Emissions from diesel units have been the subject of increasing scrutiny and regulatory action, particularly in California. In the past two years alone, particulate matter from diesel exhaust has been listed as a toxic air contaminant by CAM, and major lawsuits have been filed against several of California's largest supermarket chains, alleging violation of Proposition 65 statutes in connection with diesel emissions from their distribution facilities. CARE3 has also indicated that it may take further regulatory action relating to the TAC listing. In spite of these developments and the very large diesel emissions associated with port operations, there has been little AFV penetration in these applications. Nearly all port operators interviewed by CALSTART expressed an awareness of the issues surrounding diesel use; however, none appeared to be taking proactive steps to address them. Furthermore, while a less controversial issue than emissions, the dominance of diesel fuel use in heavy-duty vehicles contributes to a continued reliance on imported fuels. The increasing concern regarding diesel use, and the concurrent lack of alternative fuel use and vigorous emissions reduction activity at the Ports

  20. Petroleum and natural gas in Illinois

    Energy Technology Data Exchange (ETDEWEB)

    None

    1979-01-01

    Presentations made at the 7th Annual Illinois Energy Conference are compiled and reported. Specific topics include: Illinois petroleum and natural gas supply; energy use patterns for Illinois and the nation; impacts of the National Energy Act on the natural gas industry; natural gas for North America; natural gas supply under the Natural Gas Policy; US access to international oil; deregulation and its impact on the US petroleum supply; the US Energy Policy; petroleum pricing and taxation policies in Illinois; the high cost of energy and its impact on the poor; impact of increased fuel prices on Illinois' industrial future; energy prices and inflation; opportunities for energy conservation in transportaton; overview of energy and synfuels from biomass and wastes; an inventory of energy potential from biomass in Illinois; problems and potential of alcohol from agriculture; liquid and gaseous fuels from coal; and alternatives to liquid and gaseous fuels.

  1. Natural gas - Market and environmental needs

    International Nuclear Information System (INIS)

    The paper discusses the natural gas market and environmental needs with topics as follow: Importance of the North Sea region; sustainable development on the balance between economic use and environmental protection; role of natural gas in meeting energy demand: market needs, technologies, environmental aspects. According to the author, natural gas causes minimal pollutants because it contains virtually no pollutant-forming substances such as heavy metals, sulphur, chlorine or fluorine. No solid residues exist in the combustion space such as ash, slag, dust or soot, and the formation of thermal NOx through natural gas combustion has decreased to a very large extent as a result of technical advances. Natural gas can make a significant contribution towards reducing CO2 emissions due to its very high hydrogen content. 12 figs

  2. Natural gas monthly, September 1991. [Contains glossary

    Energy Technology Data Exchange (ETDEWEB)

    1991-10-18

    The Natural Gas Monthly highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production distribution consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information. The data in this publication are collected on surveys conducted by the EIA to fulfill its responsibilities for gathering and reporting energy data. Some of the data are collected under the authority of the Federal Energy Regulatory Commission (FERC), an independent commission within the DOE, which has jurisdiction primarily in the regulation of electric utilities and the interstate natural gas industry. Geographic coverage is the 50 States and the District of Columbia.

  3. Economics of natural gas resources and supply

    Energy Technology Data Exchange (ETDEWEB)

    O' Neill, R.P.; Shambaugh, P.; Wood, J.

    1984-04-01

    The relative availability and cost of finding and producing natural gas fields of varying size, located in regions of the US at various depth intervals, are examined under different economic assumptions. First, historical trends related to the discovery and availability of natural gas are identified and discussed. These include trends in drilling activity, reserves production, and field-size distributions. Exploration, drilling, and production costs are presented and analyzed. This information is integrated, along with other data, as part of an economic evaluation of the natural gas discovery and production process in the US. Finally, possible future discoveries of natural gas are projected based on varying assumptions related to the underlying distribution of natural gas resources.

  4. Natural gas exports and macroeconomic performance

    International Nuclear Information System (INIS)

    Alberta, in volumetric terms, is Canada's leading exporter of natural gas, crude oil, bitumen, and coal. Alberta natural gas shipments to other Canadian provinces and exports to the United States have developed into an increasingly important component of Alberta economy. This article attempts to measure the impact of gas production and exports on different sectors of the Alberta economy as the energy producing province of Canada

  5. IGNITION IMPROVEMENT OF LEAN NATURAL GAS MIXTURES

    Energy Technology Data Exchange (ETDEWEB)

    Jason M. Keith

    2005-02-01

    This report describes work performed during a thirty month project which involves the production of dimethyl ether (DME) on-site for use as an ignition-improving additive in a compression-ignition natural gas engine. A single cylinder spark ignition engine was converted to compression ignition operation. The engine was then fully instrumented with a cylinder pressure transducer, crank shaft position sensor, airflow meter, natural gas mass flow sensor, and an exhaust temperature sensor. Finally, the engine was interfaced with a control system for pilot injection of DME. The engine testing is currently in progress. In addition, a one-pass process to form DME from natural gas was simulated with chemical processing software. Natural gas is reformed to synthesis gas (a mixture of hydrogen and carbon monoxide), converted into methanol, and finally to DME in three steps. Of additional benefit to the internal combustion engine, the offgas from the pilot process can be mixed with the main natural gas charge and is expected to improve engine performance. Furthermore, a one-pass pilot facility was constructed to produce 3.7 liters/hour (0.98 gallons/hour) DME from methanol in order to characterize the effluent DME solution and determine suitability for engine use. Successful production of DME led to an economic estimate of completing a full natural gas-to-DME pilot process. Additional experimental work in constructing a synthesis gas to methanol reactor is in progress. The overall recommendation from this work is that natural gas to DME is not a suitable pathway to improved natural gas engine performance. The major reasons are difficulties in handling DME for pilot injection and the large capital costs associated with DME production from natural gas.

  6. Historic Change for China's Natural Gas Exploration

    Institute of Scientific and Technical Information of China (English)

    Hu Chaoyuan

    1994-01-01

    @@ Brilliant History China has enjoyed a long history for natural gas exploration and utilization. In the first year of Xijin Dynasty (AC 280year), cable tool was used to drill wells in Sichuan's Ziliujing Gasfield for the production of gas and brine. By Ming Dynasty,the depth of well was about 600m. In 1840, the depth of gas production well was 1000.1 m. In 1850, the Jialingjiang Group in lower Tertiary of major gas zone was penetrated.

  7. Natural gas consumption and economic growth: Are we ready to natural gas price liberalization in Iran?

    International Nuclear Information System (INIS)

    This paper examines the relationship between natural gas consumption and economic growth in Iran within a multivariate production model. We also investigate the effects of natural gas price on its consumption and economic growth using a demand side model. The paper employs bounds test approach to level relationship over the period of 1972–007. We find evidence of bidirectional positive relationship between natural gas consumption and economic growth in short-run and long-run, based on the production model. The findings also suggest that real GDP growth and natural gas have positive and negative impacts on gross fixed capital formation, respectively. Employment, however, was found to have negative but insignificant impact on gross fixed capital formation. Moreover, the estimation results of demand side model suggest that natural gas price has negative and significant impact on natural gas consumption only in the long-run, though there is insignificant impact on economic growth. These results imply that the Iranian government's decision for natural gas price liberalization has the adverse effects on economic growth and policy makers should be cautious in doing this policy. - Highlights: • Iran has been considered as a major natural gas producer in the world. • This paper examines the relationship between gas consumption and growth in Iran. • Positive impact of gas consumption on growth has been obtained. • The paper finds that gas consumption and income reinforce each other in Iran. • Natural gas price has also negative and significant impact on natural gas consumption in Iran

  8. Natural gas vehicles : Status, barriers, and opportunities.

    Energy Technology Data Exchange (ETDEWEB)

    Rood Werpy, M.; Santini, D.; Burnham, A.; Mintz, M.; Energy Systems

    2010-11-29

    In the United States, recent shale gas discoveries have generated renewed interest in using natural gas as a vehicular fuel, primarily in fleet applications, while outside the United States, natural gas vehicle use has expanded significantly in the past decade. In this report for the U.S. Department of Energy's Clean Cities Program - a public-private partnership that advances the energy, economic, and environmental security of the U.S. by supporting local decisions that reduce petroleum use in the transportation sector - we have examined the state of natural gas vehicle technology, current market status, energy and environmental benefits, implications regarding advancements in European natural gas vehicle technologies, research and development efforts, and current market barriers and opportunities for greater market penetration. The authors contend that commercial intracity trucks are a prime area for advancement of this fuel. Therefore, we examined an aggressive future market penetration of natural gas heavy-duty vehicles that could be seen as a long-term goal. Under this scenario using Energy Information Administration projections and GREET life-cycle modeling of U.S. on-road heavy-duty use, natural gas vehicles would reduce petroleum consumption by approximately 1.2 million barrels of oil per day, while another 400,000 barrels of oil per day reduction could be achieved with significant use of natural gas off-road vehicles. This scenario would reduce daily oil consumption in the United States by about 8%.

  9. Well log characterization of natural gas hydrates

    Science.gov (United States)

    Collett, Timothy S.; Lee, Myung W.

    2011-01-01

    In the last 25 years we have seen significant advancements in the use of downhole well logging tools to acquire detailed information on the occurrence of gas hydrate in nature: From an early start of using wireline electrical resistivity and acoustic logs to identify gas hydrate occurrences in wells drilled in Arctic permafrost environments to today where wireline and advanced logging-while-drilling tools are routinely used to examine the petrophysical nature of gas hydrate reservoirs and the distribution and concentration of gas hydrates within various complex reservoir systems. The most established and well known use of downhole log data in gas hydrate research is the use of electrical resistivity and acoustic velocity data (both compressional- and shear-wave data) to make estimates of gas hydrate content (i.e., reservoir saturations) in various sediment types and geologic settings. New downhole logging tools designed to make directionally oriented acoustic and propagation resistivity log measurements have provided the data needed to analyze the acoustic and electrical anisotropic properties of both highly inter-bedded and fracture dominated gas hydrate reservoirs. Advancements in nuclear-magnetic-resonance (NMR) logging and wireline formation testing have also allowed for the characterization of gas hydrate at the pore scale. Integrated NMR and formation testing studies from northern Canada and Alaska have yielded valuable insight into how gas hydrates are physically distributed in sediments and the occurrence and nature of pore fluids (i.e., free-water along with clay and capillary bound water) in gas-hydrate-bearing reservoirs. Information on the distribution of gas hydrate at the pore scale has provided invaluable insight on the mechanisms controlling the formation and occurrence of gas hydrate in nature along with data on gas hydrate reservoir properties (i.e., permeabilities) needed to accurately predict gas production rates for various gas hydrate

  10. The continuing natural gas revolution

    International Nuclear Information System (INIS)

    This was the keynote address of the Conference, delivered by the Chairman of the National Energy Board of Canada. Consistent with the Conference theme, the speaker reviewed the major issues and trends seen in the industry today, setting the stage for more detailed discussion of these challenges by other speakers. Among major issues identified were the possibility of further-developing downstream gas deregulation, gas/electricity convergence, changing marketing techniques, the industry's ability to respond to an expanding consumer market, adopt new procedures and technology and reduce supply costs, as well as as assure ongoing profitability at modest gas prices. 11 figs

  11. European natural gas supplies in year 2010

    International Nuclear Information System (INIS)

    This article attempts to forecast european (Western and Eastern) natural gas demand an gas supplies up to 2010. It shows that at such a horizon both Norway and North Africa will have substantially increased their gas exports supplied to the European markets while the largest increase in terms of additional volumes will comes the former USSR, essentially from Russia. According to this analysis, Russia would be able to produce the required volumes even without putting into production the Yamal Peninsula fields, while the Russian Barentz Sea gas reserves (namely Stockmanovskoye) could be developed by 2005 or even earlier. During the period 1995-2005 only very limited gas exports to Europe would be required from the Middle East gas sources but the first gas pipeline between this region and Europe could begin to operate around 2010. Later on additional Middle East gas will be required in order to keep Europe's gas supplies in line with the demand. (author)

  12. Natural gas in Norway - Possibilities and limitations

    International Nuclear Information System (INIS)

    Norway is rich in gas resources. In recent years, gas sales from the Norwegian continental shelf have been in the order of 25 to 30 billion Sm3/yr and are expected to increase strongly the next 10 to 15 years. However, a scattered population, a difficult topography, long distances between large potential consumers and where the gas is brought ashore, make it difficult to utilize the gas commercially in this country. Moreover, the gas will have to compete with a highly developed hydro-electric network. This report evaluates possibilities and hindrances in the establishment of a home market for natural gas in Norway. The low population density implies that using gas for preheating of water, heating of rooms etc will not become important except, perhaps, locally, where gas may be available for other reasons. As a source of energy and raw material in many industrial processes, natural gas can become important in some coastal areas and in central parts of eastern Norway. Discussions are in progress on gas power stations for electricity production. This has aroused some controversy because of environmental problems, and for political acceptance gas power will have to replace coal power. As a fuel, gas may be of interest for domestic ferries and for busses. A lack of capital under financial risk and gas prices limit the market development. Although tax policy is presently favourable to gas power, the risk taken by private investors in converting to natural gas is increased by their not knowing for how long the gas will be exempt from environmental tax. 74 refs., 8 figs., 27 tabs

  13. Natural gas contracts in efficient portfolios

    Energy Technology Data Exchange (ETDEWEB)

    Sutherland, R.J.

    1994-12-01

    This report addresses the {open_quotes}contracts portfolio{close_quotes} issue of natural gas contracts in support of the Domestic Natural Gas and Oil Initiative (DGOI) published by the U.S. Department of Energy in 1994. The analysis is a result of a collaborative effort with the Public Service Commission of the State of Maryland to consider {open_quotes}reforms that enhance the industry`s competitiveness{close_quotes}. The initial focus of our collaborative effort was on gas purchasing and contract portfolios; however, it became apparent that efficient contracting to purchase and use gas requires a broader consideration of regulatory reform. Efficient portfolios are obtained when the holder of the portfolio is affected by and is responsible for the performance of the portfolio. Natural gas distribution companies may prefer a diversity of contracts, but the efficient use of gas requires that the local distribution company be held accountable for its own purchases. Ultimate customers are affected by their own portfolios, which they manage efficiently by making their own choices. The objectives of the DGOI, particularly the efficient use of gas, can be achieved when customers have access to suppliers of gas and energy services under an improved regulatory framework. The evolution of the natural gas market during the last 15 years is described to account for the changing preferences toward gas contracts. Long-term contracts for natural gas were prevalent before the early 1980s, primarily because gas producers had few options other than to sell to a single pipeline company, and this pipeline company, in turn, was the only seller to a gas distribution company.

  14. Method and system for natural gas utilization

    International Nuclear Information System (INIS)

    The invention relates to an method on reducing the emission of carbon oxides during methanol production. (a) A first part of the natural feeding gas is to be converted to synthesis gas consisting of CO, H2, CO2, H2O and non-converted natural gas. (b) A second part of the natural feeding gas is to be combusted for the generation of heat used in the conversion process by means of which the volumes of CO2 and H2O are formed. (c) The synthesis gas from (a) is to be converted to a product gas flow consisting of methanol and non-converted synthesis gas. (d) The product gas flow from (c) is to be cooled, and methanol is to be separated. (e) A first part of the non-converted gas from the separation step (d) is to be combined with the synthesis gas from (a). (f) A second part of the non-converted gas from the separation step (d) together with CO2 and H2O from step (b) is to be led to a shift reactor for making the equilibrium of CO, H2, CO, and H2O. (g) CO from step (f) is to be converted with methanol from step (d) for production of acetic acid. 1 fig

  15. North American Natural Gas Markets. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    1988-12-01

    This report sunnnarizes the research by an Energy Modeling Forum working group on the evolution of the North American natural gas markets between now and 2010. The group`s findings are based partly on the results of a set of economic models of the natural gas industry that were run for four scenarios representing significantly different conditions: two oil price scenarios (upper and lower), a smaller total US resource base (low US resource case), and increased potential gas demand for electric generation (high US demand case). Several issues, such as the direction of regulatory policy and the size of the gas resource base, were analyzed separately without the use of models.

  16. North American Natural Gas Markets. Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    1989-02-01

    This report summarizes die research by an Energy Modeling Forum working group on the evolution of the North American natural gas markets between now and 2010. The group`s findings are based partly on the results of a set of economic models of the natural gas industry that were run for four scenarios representing significantly different conditions: two oil price scenarios (upper and lower), a smaller total US resource base (low US resource case), and increased potential gas demand for electric generation (high US demand case). Several issues, such as the direction of regulatory policy and the size of the gas resource base, were analyzed separately without the use of models.

  17. SCHEMES OF GAS PRODUCTION FROM NATURAL GAS HYDRATES

    Institute of Scientific and Technical Information of China (English)

    李淑霞; 陈月明; 杜庆军

    2003-01-01

    Natural gas hydrates are a kind of nonpolluting and high quality energy resources for future, the reserves of which are about twice of the carbon of the current fossil energy (petroleum, natural gas and coal) on the earth. And it will be the most important energy for the 21st century. The energy balance and numerical simulation are applied to study the schemes of the natural gas hydrates production in this paper,and it is considered that both depressurization and thermal stimulation are effective methods for exploiting natural gas hydrates, and that the gas production of the thermal stimulation is higher than that of the depressurization. But thermal stimulation is non-economic because it requires large amounts of energy.Therefore the combination of the two methods is a preferable method for the current development of the natural gas hydrates. The main factors which influence the production of natural gas hydrates are: the temperature of injected water, the injection rate, the initial saturation of the hydrates and the initial temperature of the reservoir which is the most important factor.

  18. Refueling stations for natural gas vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Blazek, C.F.; Kinast, J.A.; Biederman, R.T.; Jasionowski, W.

    1991-01-01

    The unavailability of natural gas vehicle (NGV) refueling stations constitutes one of the major barriers to the wide spread utilization of natural gas in the transportation market. The purpose of this paper is to review and evaluate the current technical and economic status of compressed natural gas vehicle refueling stations and to identify the components or design features that offer the greatest potential for performance improvements and/or cost reductions. Both fast-fill- and slow-fill-type refueling systems will be discussed. 4 refs., 10 figs., 6 tabs.

  19. Natural gas annual 1992: Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    1993-11-22

    This document provides information on the supply and disposition of natural gas to a wide audience including industry, consumers, Federal and State agencies, and education institutions. The 1992 data are presented in a sequence that follows natural gas (including supplemental supplies) from its production top its end use. Tables summarizing natural gas supply and disposition from 1988 to 1992 are given for each Census Division and each State. Annual historical data are shown at the national level. Volume 2 of this report presents State-level historical data.

  20. Natural gas market review 2006 - towards a global gas market

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    Natural gas is essential to the world economy. Gas now accounts for almost a quarter of OECD primary energy requirements and is expected to become the second most important fuel in the world in the next decade. Industrial and residential consumers increasingly rely on natural gas to keep their houses warm, their lights on and their factories running. Meanwhile the gas industry itself has entered a new phase. Where gas used to be restricted to regional markets, it is now increasingly traded on a global scale. While gas production and transport requires long-term investment, now it is optimised on a short-term basis. Demand continues to grow, but local gas production has become much more expensive. How should we react? How will demand be satisfied? What changes are required to promote flexibility and trade? What are the implications for gas security, investment and interdependence? At stake is an opportunity to diversify supply and demand - but this goal is threatened by barriers to competition and investment. This book is the first of a new IEA publication series. It takes an unprecedented look at developments in natural gas to 2010, analysing not only the three IEA regions (Asia Pacific, North America and Europe) but also broader global trends, such as the interaction of pipeline gas with LNG which binds the regions together. The Review provides invaluable insights for understanding this dynamic market.

  1. Tapping methane hydrates for unconventional natural gas

    Science.gov (United States)

    Ruppel, Carolyn

    2007-01-01

    Methane hydrate is an icelike form of concentrated methane and water found in the sediments of permafrost regions and marine continental margins at depths far shallower than conventional oil and gas. Despite their relative accessibility and widespread occurrence, methane hydrates have never been tapped to meet increasing global energy demands. With rising natural gas prices, production from these unconventional gas deposits is becoming economically viable, particularly in permafrost areas already being exploited for conventional oil and gas. This article provides an overview of gas hydrate occurrence, resource assessment, exploration, production technologies, renewability, and future challenges.

  2. A Comparative Study of Liquefied Natural Gas: An Overview

    OpenAIRE

    Muhammad Khan Memon; Saleem Qadir Tunio; Khalil Rehman Memon; Arshad Ahmed Lashari

    2014-01-01

    Natural gas is the world’s fastest growing fuel and being produced by many countries of the world in the commercial quantities. Increasing natural gas price and new development in the technologies, liquefied natural gas industry is economically attractive in the major gas exporting countries. Liquefied Natural Gas (LNG) is an important energy source and continued to contribute the growth of natural gas industry. The new advance LNG technology is used for natural gas transportation for long di...

  3. Combustion gas properties. 2: Natural gas fuel and dry air

    Science.gov (United States)

    Wear, J. D.; Jones, R. E.; Trout, A. M.; Mcbride, B. J.

    1985-01-01

    A series of computations has been made to produce the equilibrium temperature and gas composition for natural gas fuel and dry air. The computed tables and figures provide combustion gas property data for pressures from 0.5 to 50 atmospheres and equivalence ratios from 0 to 2.0. Only samples tables and figures are provided in this report. The complete set of tables and figures is provided on four microfiche films supplied with this report.

  4. Natural gas production verification tests

    International Nuclear Information System (INIS)

    This Environmental Assessment (EA) has been prepared by the Department of Energy (DOE) in compliance with the requirements of the National Environmental Policy Act of 1969. The Department of Energy (DOE) proposes to fund, through a contract with Petroleum Consulting Services, Inc. of Canton, Ohio, the testing of the effectiveness of a non-water based hydraulic fracturing treatment to increase gas recovery from low-pressure, tight, fractured Devonian Shale formations. Although Devonian Shales are found in the Appalachian, Michigan, and Illinois Basins, testing will be done only in the dominant, historical five state area of established production. The objective of this proposed project is to assess the benefits of liquid carbon dioxide (CO2)/sand stimulations in the Devonian Shale. In addition, this project would evaluate the potential nondamaging (to the formation) properties of this unique fracturing treatment relative to the clogging or chocking of pores and fractures that act as gas flow paths to the wellbore in the target gas-producing zones of the formation. This liquid CO2/sand fracturing process is water-free and is expected to facilitate gas well cleanup, reduce the time required for post-stimulation cleanup, and result in improved production levels in a much shorter time than is currently experienced

  5. Australia's changing natural gas and pipeline industry

    International Nuclear Information System (INIS)

    The future is bright for continued development of Australia's natural gas pipeline infrastructure, as well as for privatization and private energy infrastructure growth. Gas demands are growing and the development of open access principles for all natural gas transmission and distribution pipelines heralds a much more market focused industry. Within the next few years gas-on-gas competition will apply to supply, pipelines, and retail marketing. No longer will operators be able to pass on high costs resulting from inefficiencies to their customers. This article describes the changing Australian gas industry, evaluates the drivers for change and looks at ways the industry is responding to new regulatory regimes and the development and use of new pipeline technology

  6. Methane leakage in natural gas operations

    International Nuclear Information System (INIS)

    The world gas industry is efficient in conservation of natural gas within its systems. As the influence of methane as an infra-red absorbent gas has been more widely recognized, the considerations of methane's greenhouse effect has become vitally important to gas companies around the world. The industry is universally environmentally conscious. natural gas transmission and distribution companies want to maintain their image as suppliers of clean fuel. Further reductions in methane leakage --- particularly in older distribution systems --- can, should and will be pursued. Unfortunately, there has been little exchange of views on methane leakages between commentators on environmental matters and gas companies and organizations. There is absolutely no need for the industry to avoid the issue of greenhouse gases. Without industry involvement, the environmental debate concerning fossil fuels could lead to selective interpretation of scientific views and available evidence. Companies and authorities would be presented with confusing, contradictory evidence on which to base policy approaches and regulations

  7. Natural gas at thermodynamic equilibrium Implications for the origin of natural gas

    Directory of Open Access Journals (Sweden)

    Jarvie Daniel

    2009-06-01

    Full Text Available Abstract It is broadly accepted that so-called 'thermal' gas is the product of thermal cracking, 'primary' thermal gas from kerogen cracking, and 'secondary' thermal gas from oil cracking. Since thermal cracking of hydrocarbons does not generate products at equilibrium and thermal stress should not bring them to equilibrium over geologic time, we would not expect methane, ethane, and propane to be at equilibrium in subsurface deposits. Here we report compelling evidence of natural gas at thermodynamic equilibrium. Molecular compositions are constrained to equilibrium, and isotopic compositions are also under equilibrium constraints: The functions [(CH4*(C3H8] and [(C2H62] exhibit a strong nonlinear correlation (R2 = 0.84 in which the quotient Q progresses to K as wet gas progresses to dry gas. There are striking similarities between natural gas and catalytic gas generated from marine shales. A Devonian/Mississippian New Albany shale generates gas with Q converging on K over time as wet gas progresses to dry gas at 200°C. The position that thermal cracking is the primary source of natural gas is no longer tenable. It is challenged by its inability to explain the composition of natural gas, natural gases at thermodynamic equilibrium, and by the existence of a catalytic path to gas that better explains gas compositions.

  8. Solar power into natural gas grid

    Energy Technology Data Exchange (ETDEWEB)

    Koenemann, Detlef

    2011-07-01

    If a 100 % renewable energy supply is to be successful, then enormous storage capacities will be required to balance out fluctuations in energy availability. Such a massive storage already exists in many countries, however: the natural gas grid. (orig.)

  9. Natural gas annual 1992: Supplement: Company profiles

    Energy Technology Data Exchange (ETDEWEB)

    1994-01-01

    The data for the Natural Gas Annual 1991 Supplement : Company Profiles are taken from Form EIA-176, (open quotes) Annual Report of Natural and Supplemental Gas Supply and Disposition (close quotes). Other sources include industry literature and corporate annual reports to shareholders. The companies appearing in this report are major interstate natural gas pipeline companies, large distribution companies, or combination companies with both pipeline and distribution operations. The report contains profiles of 45 corporate families. The profiles describe briefly each company, where it operates, and any important issues that the company faces. The purpose of this report is to show the movement of natural gas through the various States served by the 45 large companies profiled.

  10. Natural gas 1996 - issues and trends

    International Nuclear Information System (INIS)

    This publication presents a summary of the latest data and information relating to the U.S. natural gas industry, including prices, production, transmission, consumption, and financial aspects of the industry

  11. Natural gas 1992: Issues and trends

    International Nuclear Information System (INIS)

    This report provides an overview of the natural gas industry in 1991 and 1992, focusing on trends in production, consumption, and pricing of natural gas and how they reflect the regulatory and legislative changes of the past decade (Chapter 1). Also presented are details of FERC Order 636 and the Energy Policy Act of 1992, as well as pertinent provisions of the Clean Air Act Amendments of 1990 (Chapter 2). In addition, the report highlights a range of issues affecting the industry, including: Trends in wellhead prices and natural gas supply activities (Chapter 3); Recent rate design changes for interstate pipeline companies (Chapter 4); Benefits to consumers from the more competitive marketplace (Chapter 5); Pipeline capacity expansions during the past 2 years (Chapter 6); Increasing role of the natural gas futures market (Chapter 7)

  12. Natural gas 1996 - issues and trends

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-01

    This publication presents a summary of the latest data and information relating to the U.S. natural gas industry, including prices, production, transmission, consumption, and financial aspects of the industry.

  13. Flexibility in natural gas supply and demand

    OpenAIRE

    Cornot-Gandolphe, Sylvie

    2015-01-01

    "In most IEA Member countries, natural gas demand varies strongly during the year, according to temperature. Flexibility is needed to cover seasonal swings and variations in gas demand, especially for household customers. It is also needed to maintain short-term supply security in the case of a disruption of a supply source. Over the years, gas companies have devised a variety of flexibility tools, such as supply swing, storage and interruptible contracts. This enabled them to balance supply ...

  14. Natural Gas Extraction, Earthquakes and House Prices

    OpenAIRE

    Hans R. A. Koster; Jos N. van Ommeren

    2015-01-01

    The production of natural gas is strongly increasing around the world. Long-run negative external effects of extraction are understudied and often ignored in social) cost-benefit analyses. One important example is that natural gas extraction leads to soil subsidence and subsequent induced earthquakes that may occur only after a couple of decades. We show that induced earthquakes that are noticeable to residents generate substantial non-monetary economic effects, as measured by their effects o...

  15. Liquefied natural gas projects in Altamira: impacts on the prices of the natural gas; Proyectos de gas natural licuado en Altamira: impactos sobre los precios del gas natural

    Energy Technology Data Exchange (ETDEWEB)

    Perez Cordova, Hugo; Elizalde Baltierra, Alberto [Petroleos Mexicanos (PEMEX), (Mexico)

    2004-06-15

    The possible incorporation of new points of supply of natural gas to the Sistema National de Gasoductos (SNG) through the import of Liquified Natural Gas or (GNL) could cause an important modification in the national balance of supply-demand of the fuel and in its price, if large volumes are received. An analysis is presented of the possible impact that would have in the natural gas national market and in its prices the import of GNL made by the region of Altamira, Tamaulipas. [Spanish] La posible incorporacion de nuevos puntos de oferta de gas natural al Sistema Nacional de Gasoductos (SNG) a traves de la importacion de Gas Natural Licuado (GNL), podria provocar una modificacion importante en el balance oferta-demanda nacional del combustible y en su precio, si se reciben fuertes volumenes. Se presenta un analisis del posible impacto que tendria en el mercado nacional del gas natural y en sus precios la importacion de GNL realizada por la region de Altamira, Tamaulipas.

  16. Norwegian Natural Gas. Liberalization of the European Gas Market

    International Nuclear Information System (INIS)

    Leading abstract. This book focuses on issues that are important for Norway as a major gas exporter and to the development of a liberalized European market. Chapter 2 explains main features of the European gas market. Natural gas is sold in regional markets with independent pricing structure and particularities. In Europe, this has led to large investments for the producers and long-term contracts. The strong market growth and EU's actions to liberalize the market may change this. The organization of the Norwegian gas production and sale is discussed, as well as the reorganization taking place in 2001. Pricing mechanisms are discussed in Chapter 3, both in the ''old'' / existing structure and how a liberalization of the market may change price formation. The increased importance of energy taxation in EU countries is covered in Chapter 4. Even though natural gas is the most environmentally friendly of the fossil fuels, the use of natural gas may be taxed far harder in the future. The report discusses price effects of such a development. Chapter 5 discusses whether or not a gas producer, like Norway, necessarily must earn a resource rent. With the use of economic theory for exhaustible resources it is shown how prices to consumers may increase at the same time as prices to producers drop, where the difference is made up by higher gas taxes to the consuming countries. Transportation of natural gas involves considerable scale advantages and there are often scope advantages from production, storage and sale, as well. Chapter 6 discusses how competition and regulation may influence the functioning and social efficiency of the market, and the concentration of market power. When companies become large, they may exploit market power, supported by the authorities of their respective countries. Chapter 7 focuses on regulatory challenges for the EU, and how the transporters may change between conflicting and cooperation with the EU. Chapter 8 focuses on schedules for

  17. 78 FR 46581 - Orders Granting Authority To Import and Export Natural Gas, and To Import Liquefied Natural Gas...

    Science.gov (United States)

    2013-08-01

    ... Granting Authority To Import and Export Natural Gas, and To Import Liquefied Natural Gas During June 2013... authority to import and export natural gas and to import liquefied natural gas. These orders are summarized... of Fossil Energy, Office of Natural Gas Regulatory Activities, Docket Room 3E-033, Forrestal...

  18. 77 FR 19277 - Orders Granting Authority To Import and Export Natural Gas and Liquefied Natural Gas During...

    Science.gov (United States)

    2012-03-30

    ... Granting Authority To Import and Export Natural Gas and Liquefied Natural Gas During February 2012 FE..., ULC 12-13-NG ENCANA NATURAL GAS INC 11-163-NG ALCOA INC 12-11-NG JPMORGAN LNG CO 12-15-LNG CNE GAS... 2012, it issued Orders granting authority to import and export natural gas and liquefied natural...

  19. 78 FR 35014 - Orders Granting Authority to Import and Export Natural Gas, and to Import Liquefied Natural Gas...

    Science.gov (United States)

    2013-06-11

    ... Granting Authority to Import and Export Natural Gas, and to Import Liquefied Natural Gas During April 2013... INC 13-41-NG CASCADE NATURAL GAS CORPORATION 13-43-NG ENCANA MARKETING (USA) INC 13-44-NG CITIGROUP... natural gas and to import liquefied natural gas. These orders are summarized in the attached appendix...

  20. 77 FR 31838 - Notice of Orders Granting Authority to Import and Export Natural Gas and Liquefied Natural Gas...

    Science.gov (United States)

    2012-05-30

    ... of Orders Granting Authority to Import and Export Natural Gas and Liquefied Natural Gas During April... Capital International, LLC....... 12-33-NG Phillips 66 Company 12-34-NG Northwest Natural Gas Company 12..., it issued Orders granting authority to import and export natural gas and liquefied natural gas....

  1. Research into the transmission of natural gas by gas pipeline

    Energy Technology Data Exchange (ETDEWEB)

    Gadonneix, P.

    1998-12-31

    This paper is the press release of the talk given at the `Gaz de France scientific meeting with the press` by P. Gadonneix, chairman of Gaz de France company, on October 7, 1998. The aim of this talk concerns the new French and European supply link for bringing natural gas from the Norwegian North Sea fields. This new supply link is the first direct link between Norway and France and the NorFra gas pipeline which brings natural gas from the North Sea to France is the longest offshore pipeline in the world. The `Artere des Hauts de France` pipeline (the largest diameter gas pipeline ever laid in France) is devoted to the transfer of natural gas from Dunkerque to the Gournay-sur-Aronde underground storage site. This paper describes successively: the French European gas supply hub, the NorFra project, the Artere des Hauts de France pipeline, the network performance research, the safety and quality guaranties, the reduction of overland natural gas transmission costs (improvement of pipe-laying techniques and optimization of line route and welding operations), the specific techniques used for road and river crossing (micro-tunnel digging, river-crossing ditches) and for anchoring (buoyancy compensation). Finally, the environmental impact of the laying operations is briefly described. (J.S.)

  2. Will Abundant Natural Gas Solve Climate Change?

    Science.gov (United States)

    McJeon, H. C.; Edmonds, J.; Bauer, N.; Leon, C.; Fisher, B.; Flannery, B.; Hilaire, J.; Krey, V.; Marangoni, G.; Mi, R.; Riahi, K.; Rogner, H.; Tavoni, M.

    2015-12-01

    The rapid deployment of hydraulic fracturing and horizontal drilling technologies enabled the production of previously uneconomic shale gas resources in North America. Global deployment of these advanced gas production technologies could bring large influx of economically competitive unconventional gas resources to the energy system. It has been hoped that abundant natural gas substituting for coal could reduce carbon dioxide (CO2) emissions, which in turn could reduce climate forcing. Other researchers countered that the non-CO2 greenhouse gas (GHG) emissions associated with shale gas production make its lifecycle emissions higher than those of coal. In this study, we employ five state-of-the-art integrated assessment models (IAMs) of energy-economy-climate systems to assess the full impact of abundant gas on climate change. The models show large additional natural gas consumption up to +170% by 2050. The impact on CO2 emissions, however, is found to be much smaller (from -2% to +11%), and a majority of the models reported a small increase in climate forcing (from -0.3% to +7%) associated with the increased use of abundant gas. Our results show that while globally abundant gas may substantially change the future energy market equilibrium, it will not significantly mitigate climate change on its own in the absence of climate policies.

  3. Natural gas utilization study: offshore Newfoundland, 1998

    International Nuclear Information System (INIS)

    This study is designed to quantify the natural gas resources of Newfoundland, identify production and transportation options and outline the terms of reference for a follow-up study. Phase One of the study (i.e. this one) is considered a scoping study, whereas Phase Two will be devoted to a comprehensive examination of all critical issues. The ultimate objective is to create a development strategy for natural gas in Newfoundland. Current estimates of the natural gas resource base for the Province is 61.9 Tcf. Of the discovered resources (8.2 Tcf in total) 4.2 Tcf, to perhaps 5.2 Tcf, are in the Jeanne d'Arc Basin. In the near term, the resources of the Jeanne d'Arc represent the best opportunity for development, although a preliminary analysis of stand-alone gas development in the Jeanne d'Arc Basin does not show a positive rate of return on the cost/price assumptions used in the study. Chapters 1 and 2 of the report contain background on natural gas resources throughout the world, and a summary and conclusions with regard to the study of Newfoundland natural gas resources. Chapters 3 to 6 contain a detailed assessment of the resource endowment in Newfoundland and Labrador, an overview of natural gas production and transportation systems, and the results of a preliminary economic analysis of natural gas potential in Newfoundland taking into account resource size, timing, development and operating costs, prices and fiscal systems. Chapter 7 provides the terms of reference for Phase Two of the study

  4. Proposals for China's Natural Gas Industry

    Institute of Scientific and Technical Information of China (English)

    Hua Ben

    2010-01-01

    @@ Demand,supply and consumption of natural gas in China Increased natural gas demand due to economic development,energy and environmental impact In China,the available energy resource is rich in coal and lack in oil and gas.Because of this special fuel pattern,the increasing energy demand needed to sustain the rapid economic development in the past 30 years relies heavily on the coal supply.This makes coal contributing for over70% of the primary energy consumed and leads to SO2 and NOx emission exceeding 70% of the environmental carrying capacity which causes ecological degradation.

  5. NATURAL GAS RESOURCES IN DEEP SEDIMENTARY BASINS

    Energy Technology Data Exchange (ETDEWEB)

    Thaddeus S. Dyman; Troy Cook; Robert A. Crovelli; Allison A. Henry; Timothy C. Hester; Ronald C. Johnson; Michael D. Lewan; Vito F. Nuccio; James W. Schmoker; Dennis B. Riggin; Christopher J. Schenk

    2002-02-05

    From a geological perspective, deep natural gas resources are generally defined as resources occurring in reservoirs at or below 15,000 feet, whereas ultra-deep gas occurs below 25,000 feet. From an operational point of view, ''deep'' is often thought of in a relative sense based on the geologic and engineering knowledge of gas (and oil) resources in a particular area. Deep gas can be found in either conventionally-trapped or unconventional basin-center accumulations that are essentially large single fields having spatial dimensions often exceeding those of conventional fields. Exploration for deep conventional and unconventional basin-center natural gas resources deserves special attention because these resources are widespread and occur in diverse geologic environments. In 1995, the U.S. Geological Survey estimated that 939 TCF of technically recoverable natural gas remained to be discovered or was part of reserve appreciation from known fields in the onshore areas and State waters of the United. Of this USGS resource, nearly 114 trillion cubic feet (Tcf) of technically-recoverable gas remains to be discovered from deep sedimentary basins. Worldwide estimates of deep gas are also high. The U.S. Geological Survey World Petroleum Assessment 2000 Project recently estimated a world mean undiscovered conventional gas resource outside the U.S. of 844 Tcf below 4.5 km (about 15,000 feet). Less is known about the origins of deep gas than about the origins of gas at shallower depths because fewer wells have been drilled into the deeper portions of many basins. Some of the many factors contributing to the origin of deep gas include the thermal stability of methane, the role of water and non-hydrocarbon gases in natural gas generation, porosity loss with increasing thermal maturity, the kinetics of deep gas generation, thermal cracking of oil to gas, and source rock potential based on thermal maturity and kerogen type. Recent experimental simulations

  6. Quickening construction of natural gas infrastructures and ensuring safe supply of natural gas in China

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Peng; Zhongde, Zhao; Chunliang, Sun; Juexin, Shen

    2010-09-15

    Compared with North America or Europe in respect of natural gas resources, markets and pipeline networks, the current China stands in a special period with natural gas market in quick development, accordingly, it's recommended to strengthen cooperation and coordination between investors by way of diversified investment and joint adventures and on the basis of diversified resource supply modes, so as to accelerate the construction of infrastructures including the natural gas pipeline networks and the storage and peak-shaving facilities, quick up the market development, realize the situation of mutual-win-win, and finally ensure safety of natural gas utilization in the domestic markets.

  7. Market brief : natural gas in Turkey

    International Nuclear Information System (INIS)

    Turkey may soon become an important transit route to Europe for natural gas imported from the Caucasus, Iran, and other Middle Eastern countries. This market brief provided an overview of Turkey's natural gas market and industry, and examined investment and business opportunities for Canadian businesses. Consumption of natural gas in Turkey has grown by 14.8 per cent annually in the last decade. Transmission equipment expenditures total approximately $400 million annually. It is expected that the demand for environmental and engineering services for natural gas-related industries will grow by 15 per cent annually over the next decade. There are currently several opportunities for Canadian suppliers of equipment, engineering, and construction services. Turkey's expected full European Union (EU) membership will require Turkey to adopt EU environmental and emissions standards. Potential investors in Turkey require operating licences from Turkey's Energy Market Regulatory Authority (EMRA). All state procurement is by tender, while BOTAS, the state-owned gas company dominates both imports and the transmission of gas. Market entry considerations were also presented. 7 refs., 4 tabs., 2 figs

  8. Securing growth markets for natural gas

    International Nuclear Information System (INIS)

    The Industry Development Strategy 2000-2005 (IDS) identifies the major growth markets for natural gas, as the industry readies itself for the challenges of the new millenium. An integral part of this process is to examine the key barriers to market expansion, and to devise strategies that both The Australian Gas Association (AGA) and the wider industry can pursue to underpin improvement in overall gas consumption. This is the task of the IDS which examines the opportunities confronting the industry over the next five year period. The significant growth prospects of the gas industry both in the short term (2000-2005) and long term (2005-2015) are indicated in two comprehensive and independent studies. The first, Australian Energy Market Developments and Projections to 2014-15, was released earlier this year by the Australian Bureau of Agricultural and Resource Economics (the ABARE Energy Report). The second, Natural Gas Consumption in Australia to 2015-Prospects by State, Industry and Sector, was commissioned by the AGA, and was completed by the National Institute of Economic and Industry Research in September 1999 (NIEIR Report). Both reports indicate that in terms of consumption levels, in the period up to 2015 the gas industry is forecast to more than double its current size. Natural gas is also projected to increase its primary energy share ranking from third to second place

  9. 2013 - The Natural Gas Year in Review

    International Nuclear Information System (INIS)

    Natural gas consumption only rose by 1.3%, down from an average growth of 2.8% per year in the previous decade. Natural gas still suffers in particular from severe competition with coal in the power generation sector. Inside the EU-28, actual consumption was estimated down 1.9% to 460 Billion cubic metres (Bcm). This poor performance brought European consumption to levels not seen in more than 15 years. In the US, rising gas prices compared to 2012 has often made coal more competitive and penalized gas consumption in the power generation sector, causing it to fall by 10.5%. Global growth in natural gas has been increasingly constrained by supply. In 2013, the growth in gas production slowed substantially to 0.8%, bringing the total volume to 3377 Bcm. As before, the gas supply shortfall was due to the decline of mature and conventional fields, and an insufficient renewal of reserves. The lack of upstream investment is especially acute in emerging markets, due to a lack of a favourable regulatory and fiscal climate. The moderation of natural gas supply and investment has also been increasingly driven by geopolitical challenges. Deterioration of security, internal conflicts and resulting damage to infrastructures have caused some production outages and supply disruptions in some countries. In 2013, marketed production fell especially heavily in Africa (Algeria, Nigeria, Libya and Egypt). With the exception of Europe, other regions posted positive production gains. The largest of them were recorded in the CIS (+ 2.7%) and the Middle East (+ 3.4%). International gas trade increased significantly by 2.1% to 1048 Bcm, due to the growing dependence of consumer markets on increasingly distant production sources, sometimes located in economically and politically unstable areas. The rise in the international gas trade was only driven by inter-regional pipeline gas exports from the CIS to Europe (+ 15%) and China (+ 36%). Geopolitical risks are having an ever

  10. 78 FR 21349 - Orders Granting Authority To Import and Export Natural Gas, To Export Liquefied Natural Gas, To...

    Science.gov (United States)

    2013-04-10

    ... Granting Authority To Import and Export Natural Gas, To Export Liquefied Natural Gas, To Export Compressed Natural Gas, Vacating Prior Authority and Denying Request for Rehearing During January 2013 ] FE Docket... GAS LLC 12-168-CNG MERRILL LYNCH COMMODITIES CANADA, ULC 12-169-NG GAS NATURAL PUERTO RICO INC...

  11. Alternative ways to transport natural gas; Transporte alternativo de gas natural

    Energy Technology Data Exchange (ETDEWEB)

    Moura, N.R.; Campos, F.B. [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil). Centro de Pesquisas (CENPES)

    2008-07-01

    The Brazilian energy matrix has been showing a huge increase in the demand of natural gas due mainly to industries and power plants. Today the Brazilian gas market is supplied with gas produced by PETROBRAS and imported from Bolivia. To increase the Brazilian gas supply, on the short and middle term, PETROBRAS will import LNG (liquefied natural gas) and exploit the new offshore fields discovered on the pre-salt area. The only proven technology available today to bring this offshore gas to the market is the pipeline, but its costs for the pre-salt area are high enough to keep the solution economically attractive. So, PETROBRAS are evaluating and developing alternative ways to transport offshore gas, such as LNG, CNG (Compressed Natural Gas), GTS (Gas-to-Solids or Natural Gas Hydrates) and ANG (Adsorbed Natural Gas). Using information available in the literature, this paper analyses the main concepts of CNG and LNG floating unities. This paper also presents the PETROBRAS R and D results on ANG and GTS aiming at offshore application. (author)

  12. Revolution in the natural gas industry?

    International Nuclear Information System (INIS)

    The demand for cleaner automotive fuels has created an opening for converting natural gas to liquid transport fuels and blending agents using Fischer-Tropsch technology. While the technology is well established, it is not yet clear whether the conversion can compete with crude oil refining or with pipelines and liquefied natural gas. Although all the oil giants are interested in the technology, the only commercial-sized plant in the world was the Shell plant in Malaya which had capacity of 12,000 bpd, but the profitability of the plant came from the wax by-products. The plant has been closed since a fire and explosion in 1997. The process chain is described. The gas-to-liquid activities and achievements of Saol, Exxon and Texaco are reported. It was concluded that although there are still some problems to be ironed-out, there is a promising future for gas-to-liquid conversion. (UK)

  13. Comparative Assessment Of Natural Gas Accident Risks

    Energy Technology Data Exchange (ETDEWEB)

    Burgherr, P.; Hirschberg, S

    2005-01-01

    The study utilizes a hierarchical approach including (1) comparative analyses of different energy chains, (2) specific evaluations for the natural gas chain, and (3) a detailed overview of the German situation, based on an extensive data set provided by Deutsche Vereinigung des Gas- und Wasserfaches (DVGW). According to SVGW-expertise DVGW-data can be regarded as fully representative for Swiss conditions due to very similar technologies, management, regulations and safety culture, but has a substantially stronger statistical basis because the German gas grid is about 30 times larger compared to Switzerland. Specifically, the following tasks were carried out by PSI to accomplish the objectives of this project: (1) Consolidation of existing ENSAD data, (2) identification and evaluation of additional sources, (3) comparative assessment of accident risks, and (4) detailed evaluations of specific issues and technical aspects for severe and smaller accidents in the natural gas chain that are relevant under Swiss conditions. (author)

  14. 77 FR 12274 - Orders Granting Authority To Import and Export Natural Gas and Liquefied Natural Gas During...

    Science.gov (United States)

    2012-02-29

    ... Orders Granting Authority To Import and Export Natural Gas and Liquefied Natural Gas During January 2012.... DOMINION COVE POINT LNG, LP 11-98-LNG ENERGY PLUS NATURAL GAS LLC 11-155-NG BROOKFIELD ENERGY MARKETING L.P... 2012, it issued Orders granting authority to import and export natural gas and liquefied natural...

  15. Acid Gas Removal from Natural Gas with Alkanolamines

    DEFF Research Database (Denmark)

    Sadegh, Negar

    Some 40 % of the world’s remaining gas reserves are sour or acid, containing large quantities of CO2 and H2S and other sulfur compounds. Many large oil and gas fields have more than 10 mole % CO2 and H2S content. In the gas processing industry absorption with chemical solvents has been used...... commercially for the removal of acid gas impurities from natural gas. Alkanolamines, simple combinations of alcohols and ammonia, are the most commonly used category of chemical solvents for acid gas capture. This Ph.D. project is aboutthermodynamics of natural gas cleaning process with alkanolamines......-MEA-H2O, H2S-MDEA-H2O, H2SCH4-MDEA-H2O systems and the constituent binary subsystems of the mentioned mixtures. The experimental part of the project includes vapor-liquid equilibrium measurements for CO2-MDEAH2O and CO2-MDEA-PZ-H2O at atmospheric pressure, high pressure vapor-liquid equilibrium...

  16. Natural gas and production of electricity

    International Nuclear Information System (INIS)

    The forthcoming power supply shortage in Switzerland due to increasing consumption is discussed, as are the possibilities for securing the future supply. Today, the main sources are hydroelectric (roughly 55 %) and nuclear (40 %) power. The share of electricity from natural gas amounts to only 1.4 %. The possibilities of further economic production of hydropower are practically exhausted. Therefore, further electric power has to be either imported or generated from other energy sources (renewable, nuclear, fossil) in the country itself. Due to the low acceptance of nuclear energy and the limited potential of renewable energy sources, natural gas is the most favoured candidate. The advantages of distributed production in cogeneration plants are compared with the centralized production in larger plants using combined cycles. Finally, a project currently under development is presented: an existing thermal power plant fueled with heavy fuel oil shall be refurbished and converted to natural gas as the new fuel

  17. Natural gas: Fuel for urban fleets

    International Nuclear Information System (INIS)

    The search for new ecological solutions for public transport has given an important role to natural gas for vehicles in the national context. Under current prices of fuel and costs of plants, the management of a bus fleet running on natural gas allows consistent savings, besides reducing the atmospheric pollution of urban centres. Within this context, solutions offered by current technology available on the market are examined. Low polluting emissions are taken into consideration and a complete analysis of costs and savings is reported. Reference is made to the Thermie European programme which calls for fuel diversification, energy conservation and air pollution abatement

  18. On modelling the market for natural gas

    Energy Technology Data Exchange (ETDEWEB)

    Mathiesen, Lars

    2001-12-01

    Several features may separately or in combination influence conduct and performance of an industry, e.g. the numbers of sellers or buyers, the degree of economies of scale in production and distribution, the temporal and spatial dimensions, etc. Our main focus is on how to model market power. In particular, we demonstrate the rather different solutions obtained from the price-taking behavior versus the oligopolistic Coumot behavior. We also consider two approaches to model the transportation of natural gas. Finally, there is a brief review of previous modeling efforts of the European natural gas industry. (author)

  19. Glidarc assisted production of synthesis gas from natural gas

    Energy Technology Data Exchange (ETDEWEB)

    Czernichowski, A. [Orleans Univ., Department of Physics, 45 - Orleans (France); Czernichowski, M. [Etudes Chimiques et Physiques (ECP), 45 - La Ferte Saint Aubin (France); Czernichowski, P. [with WESCO, Conroe (United States)

    2003-09-01

    Natural gas is reformed in a presence of high-voltage discharges (called GlidArc plasma) that assist the Partial Oxidation of the feed using air as oxidant. Electric energy consumption for this non-catalytic reformer is less than 2 % of the output H{sub 2}+CO energy content. Recycling such a small portion of energy is, in our opinion, an acceptable compromise as very active (and also very simple) GlidArc discharges play a role of an igniter and homogeneous phase catalyst; they also activate and stabilize a post-plasma reaction zone of our reformer. Here presented bench-scale 1-Liter reactor works at atmospheric pressure and needs less than 100 W of electric assistance to produce up to 1.4 m3(n)/h of pure SynGas corresponding to 4.5 kW of electric power of an ideal Fuel Cell fed by such SynGas. Up to 99 % of natural gas is converted at up to 63% energetic efficiency and the total absence of soot. We present also some tests with the natural gas that is intentionally polluted (up to 1000 ppm Sulfur) via controlled mixing of that clean gas with concentrated Hydrogen Sulfide. H{sub 2}S presence has no effect on performances of our plasma-assisted reforming. This fact as well as our previous experiments on GlidArc assisted splitting of pure H{sub 2}S let us claim that our technology can be directly used at any H{sub 2}S level in natural gas. (authors)

  20. Natural gas at thermodynamic equilibrium Implications for the origin of natural gas

    OpenAIRE

    Jarvie Daniel; Mango Frank D; Herriman Eleanor

    2009-01-01

    Abstract It is broadly accepted that so-called 'thermal' gas is the product of thermal cracking, 'primary' thermal gas from kerogen cracking, and 'secondary' thermal gas from oil cracking. Since thermal cracking of hydrocarbons does not generate products at equilibrium and thermal stress should not bring them to equilibrium over geologic time, we would not expect methane, ethane, and propane to be at equilibrium in subsurface deposits. Here we report compelling evidence of natural gas at ther...

  1. Natural gas pipeline leaks across Washington, DC.

    Science.gov (United States)

    Jackson, Robert B; Down, Adrian; Phillips, Nathan G; Ackley, Robert C; Cook, Charles W; Plata, Desiree L; Zhao, Kaiguang

    2014-01-01

    Pipeline safety in the United States has increased in recent decades, but incidents involving natural gas pipelines still cause an average of 17 fatalities and $133 M in property damage annually. Natural gas leaks are also the largest anthropogenic source of the greenhouse gas methane (CH4) in the U.S. To reduce pipeline leakage and increase consumer safety, we deployed a Picarro G2301 Cavity Ring-Down Spectrometer in a car, mapping 5893 natural gas leaks (2.5 to 88.6 ppm CH4) across 1500 road miles of Washington, DC. The δ(13)C-isotopic signatures of the methane (-38.2‰ ± 3.9‰ s.d.) and ethane (-36.5 ± 1.1 s.d.) and the CH4:C2H6 ratios (25.5 ± 8.9 s.d.) closely matched the pipeline gas (-39.0‰ and -36.2‰ for methane and ethane; 19.0 for CH4/C2H6). Emissions from four street leaks ranged from 9200 to 38,200 L CH4 day(-1) each, comparable to natural gas used by 1.7 to 7.0 homes, respectively. At 19 tested locations, 12 potentially explosive (Grade 1) methane concentrations of 50,000 to 500,000 ppm were detected in manholes. Financial incentives and targeted programs among companies, public utility commissions, and scientists to reduce leaks and replace old cast-iron pipes will improve consumer safety and air quality, save money, and lower greenhouse gas emissions.

  2. Reform Trend of China Natural Gas Price Policy

    Institute of Scientific and Technical Information of China (English)

    Du Wei; Liu Xinping

    2012-01-01

    China's natural gas price policy reform lags behind refined oil price reform comparatively, and current natural gas price policy could not adapt to the new situation of large scale import of foreign natural gas. Natural gas price reform could refer to the reform mode of refined oil price.

  3. Natural gas strategic plan and program crosscut plans

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-06-01

    The natural gas strategic plan recognizes the challenges and opportunities facing increased U.S. natural gas use. Focus areas of research include natural gas supply, delivery, and storage, power generation, industrial, residential and commercial, natural gas vehicles, and the environment. Historical aspects, mission, situation analysis, technology trends, strategic issues, performance indicators, technology program overviews, and forecasting in the above areas are described.

  4. Some economic aspects of the European natural gas market

    International Nuclear Information System (INIS)

    The thesis consists of five papers with following titles: Optimal utilization of natural gas. Computation of the resource rent for Norwegian natural gas; The relationship between the price of natural gas and crude oil - some aspects of efficient contracts; Bargaining and international trade - the case of Norwegian natural gas; On bilateral monopoly - a Nash-Wicksell Approach; Bertrand games and duopoly

  5. Natural Gas and Indoor Air Pollution: A Comparison With Coal Gas and Liquefied Petroleum Gas

    Institute of Scientific and Technical Information of China (English)

    YUE ZHANG; BAO-SHENG CHEN; GUANG-QUAN LIU; JU-NING WANG; ZHEN-HUA ZHAO; LIAN-QING LIN

    2003-01-01

    The study was designed to compare the combustion products of coal gas, liquefied petroleum gas and natural gas in relation to indoor air pollution. Methods Regular pollutants including B(a)P were monitored and 1-hydroxy pyrene were tested in urine of the enrolled subjects.Radon concentrations and their changes in four seasons were also monitored in the city natural gas from its source plant and transfer stations to final users. To analyze organic components of coal gas,liquefied petroleum gas and natural gas, a high-flow sampling device specially designed was used to collect their combustion products, and semi-volatile organic compounds contained in the particles were detected by gas chromatograph-mass spectrograph (GC/MS). Results Findings in the study showed that the regular indoor air pollutants particles and CO were all above the standard in winter when heating facilities were operated in the city, but they were lowest in kitchens using natural gas;furthermore, although NO2 and CO2 were slightly higher in natural gas, B(a)P concentration was lower in this group and 1-hydroxy pyrene was lowest in urine of the subjects exposed to natural gas.Organic compounds were more complicated in coal gas and liquefied petroleum gas than in natural gas. The concentration of radon in natural gas accounted for less than 1‰ of its effective dose contributing to indoor air pollution in Beijing households. Conclusion Compared to traditional fuels, gases are deemed as clean ones, and natural gas is shown to be cleaner than the other two gases.

  6. Progress in studies of natural gas conversion in China

    Institute of Scientific and Technical Information of China (English)

    Yu Changchun; Shen Shikong

    2008-01-01

    Progress in natural gas conversion in China is presented in this paper, including processes of natural gas to synthesis gas (syngas), syngas to liquid hydrocarbons, oxygenates synthesis, methanol to olefins (MTO), methane to aromatics and oxidative coupling of methane (OCM).

  7. The Bolivian natural gas crisis and the future of natural gas industry in Brazil; Crise do gas boliviano e o futuro da industria de gas natural no Brasil

    Energy Technology Data Exchange (ETDEWEB)

    Almeida, Edmar de

    2007-07-01

    The recent Bolivian natural crisis exhibits the worst scenery for the Brazilian natural gas industry. The government and PETROBRAS strategies for guaranteeing the gas supply undoubtedly failed. Independent of the discussion on the existence of other possible strategies, today the distributors and the consumers does not know how the PETROBRAS and government will guarantee the supply for the years to come. An also the agents do not know which will be the gas price in the future, as both the Bolivia but also the Natural Gas Industry in Brazil alternatives will be highly expensive.

  8. Mitchell firmly retrenched in natural gas services

    Energy Technology Data Exchange (ETDEWEB)

    Share, J.

    1997-09-01

    The past three years, Mitchell Energy and Development Corp. has undergone a massive restructuring that has changed the face of one of the nation`s largest and best-known natural gas/natural gas liquids companies. Facing a rapidly changing industry that frequently has been stung by volatile swings in energy markets, management of the independent company, founded by George Mitchell in 1946, sold off $300 million in non-core assets; reduced its long-term debt by $400 million; instituted a hiring freeze and reduced its workforce by a third, from 2,900 to 1,950, over the last three years. Mitchell negotiated a buyout of its hugely profitable North Texas gas sales contract with Natural Gas Pipeline Company of America as a means of easing its transition to a market-sensitive price environment and reducing its debt. Mitchell also took operational control. Finally, Mitchell has left the real estate business, culminating July 31 with the sale of its real estate subsidiary, The Woodlands Corporation, for $543 million ($460 million net after-tax), further reducing its workforce to 1,100. On Aug. 18, the company said it will use the proceeds to repurchase common stock, retire another $200 million of public debt, make asset niche energy acquisitions and increase capital spending for existing programs. The result is a renewed focus on its exploration and production and gas gathering, processing and marketing businesses.

  9. Normalization of natural gas composition data measured by gas chromatography

    International Nuclear Information System (INIS)

    The composition of natural gas determined by gas chromatography is routinely used as the basis for calculating physico-chemical properties of the gas. Since the data measured by gas chromatography have particular statistical properties, the methods used to determine the composition can make use of a priori assumptions about the statistical model for the data. We discuss a generalized approach to determining the composition, and show that there are particular statistical models for the data for which the generalized approach reduces to the widely used method of post-normalization. We also show that the post-normalization approach provides reasonable estimates of the composition for cases where it cannot be shown to arise rigorously from the statistical structure of the data

  10. Foam drilling in natural gas hydrate

    Directory of Open Access Journals (Sweden)

    Wei Na

    2015-01-01

    Full Text Available The key problem of foam drilling in natural gas hydrate is prediction of characteristic parameters of bottom hole. The simulation shows that when the well depth increases, the foam mass number reduces and the pressure increases. At the same depth, pressure in drill string is always higher than annulus. The research findings provide theoretical basis for safety control.

  11. Bibliography on Liquefied Natural Gas (LNG) safety

    Science.gov (United States)

    Ordin, P. M.

    1976-01-01

    Approximately 600 citations concerning safety of liquefied natural gas and liquid methane are presented. Each entry includes the title, author, abstract, source, description of figures, key references, and major descriptors for retrieving the document. An author index is provided as well as an index of descriptors.

  12. NGTC`s natural gas heat pumps

    Energy Technology Data Exchange (ETDEWEB)

    Binet, M. [Natural Gas Technologies Centre, Boucherville, PQ (Canada)

    1996-12-01

    An overview of natural gas heat pumps and cooling systems evaluation projects carried out by the Natural Gas Technologies Centre (NGTC) in Boucherville, Quebec, was presented. Technological description of three natural gas engine-driven technologies were provided, as well as the results of laboratory and field tests. The residential sector was covered by the 3-ton York Triathlon heat pump, the commercial sector by the 10-ton Trico natural gas engine-driven condensing unit, and the institutional sector by 25-ton Carrier engine-driven rooftops. The York Triathlon heat pump showed a good performance at the given conditions, with an average COP of 1.29 in cooling mode and of 1.03 in heating mode. The Trico unit was fully instrumented at NGTC; performance testing will be carried out later in 1996. The Carrier rooftops showed performance levels below those of the manufacturer`s suggested characteristics, although user satisfaction with the comfort provided by the units was high. 7 refs., 9 figs., 3 tabs.

  13. Mexican demand for US natural gas

    International Nuclear Information System (INIS)

    This study describes the Mexican natural gas industry as it exists today and the factors that have shaped the evolution of the industry in the past or that are expected to influence its progress; it also projects production and use of natural gas and estimates the market for exports of natural gas from the United States to Mexico. The study looks ahead to two periods, a near term (1993--1995) and an intermediate term (1996--2000). The bases for estimates under two scenarios are described. Under the conservative scenario, exports of natural gas from the United States would decrease from the 1992 level of 250 million cubic feet per day (MMCF/d), would return to that level by 1995, and would reach about 980 MMCF/D by 2000. Under the more optimistic scenario, exports would decrease in 1993 and would recover and rise to about 360 MMCF/D in 1995 and to 1,920 MMCF/D in 2000

  14. Mexican demand for US natural gas

    Energy Technology Data Exchange (ETDEWEB)

    Kanter, M.A.; Kier, P.H.

    1993-09-01

    This study describes the Mexican natural gas industry as it exists today and the factors that have shaped the evolution of the industry in the past or that are expected to influence its progress; it also projects production and use of natural gas and estimates the market for exports of natural gas from the United States to Mexico. The study looks ahead to two periods, a near term (1993--1995) and an intermediate term (1996--2000). The bases for estimates under two scenarios are described. Under the conservative scenario, exports of natural gas from the United States would decrease from the 1992 level of 250 million cubic feet per day (MMCF/d), would return to that level by 1995, and would reach about 980 MMCF/D by 2000. Under the more optimistic scenario, exports would decrease in 1993 and would recover and rise to about 360 MMCF/D in 1995 and to 1,920 MMCF/D in 2000.

  15. Naturally fractured tight gas reservoir detection optimization

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-06-01

    Building upon the partitioning of the Greater Green River Basin (GGRB) that was conducted last quarter, the goal of the work this quarter has been to conclude evaluation of the Stratos well and the prototypical Green River Deep partition, and perform the fill resource evaluation of the Upper Cretaceous tight gas play, with the goal of defining target areas of enhanced natural fracturing. The work plan for the quarter of November 1-December 31, 1998 comprised four tasks: (1) Evaluation of the Green River Deep partition and the Stratos well and examination of potential opportunity for expanding the use of E and P technology to low permeability, naturally fractured gas reservoirs, (2) Gas field studies, and (3) Resource analysis of the balance of the partitions.

  16. A study on the geochemical characteristics of natural gas and gas sources in the Bozhong sag

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Natural gas is composed largely of hydrocarbon gas, especially wet gas in the Bozhong sag. The carbon isotopic composition shows that the gas is of organic origin. The carbon isotopic values of ethane indicate that the natural gas is dominated by mixed gas with minor coal-generated gas and oil-type gas. A gas-source correlation study showed that the source rocks of natural gas are those of the Lower Dongying Formation, the Shahejie Formation and the pre-Tertiary. The natural gas is characterized by multi-source and continuous generation in the study area, indicating that gas exploration potential is good in the Bozhong sag.

  17. Wood ethanol and synthetic natural gas pathways

    International Nuclear Information System (INIS)

    This report provided details of updates to the wood ethanol pathway recently added to the GHGenius model, an analytical tool used to analyze emissions from conventional and alternative fuel combustion processes. The pathway contains data developed by the United States Department of Energy. A number of co-products were added to the wood and agricultural residue pathways, including furfural, xylitol, lignin, and glycerol. New chemical inputs included nitrogen gas, ammonia, enzymes and yeast. Biological ethanol pathways were reviewed, and separate inputs for wood, agricultural residues, corn ethanol, and wheat ethanol were added. The model was updated to reflect current research conducted on the gasification of wood and the upgrading of the gas to produce pipeline quality natural gas. New process developments in producing pipeline quality gas from coal were also added. The ability to model enzyme consumption was added to all ethanol pathways. 25 refs., 41 tabs., 8 figs

  18. Wood ethanol and synthetic natural gas pathways

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-11-30

    This report provided details of updates to the wood ethanol pathway recently added to the GHGenius model, an analytical tool used to analyze emissions from conventional and alternative fuel combustion processes. The pathway contains data developed by the United States Department of Energy. A number of co-products were added to the wood and agricultural residue pathways, including furfural, xylitol, lignin, and glycerol. New chemical inputs included nitrogen gas, ammonia, enzymes and yeast. Biological ethanol pathways were reviewed, and separate inputs for wood, agricultural residues, corn ethanol, and wheat ethanol were added. The model was updated to reflect current research conducted on the gasification of wood and the upgrading of the gas to produce pipeline quality natural gas. New process developments in producing pipeline quality gas from coal were also added. The ability to model enzyme consumption was added to all ethanol pathways. 25 refs., 41 tabs., 8 figs.

  19. 78 FR 21351 - Orders Granting Authority to Import and Export Natural Gas, To Import Liquefied Natural Gas, To...

    Science.gov (United States)

    2013-04-10

    ... Granting Authority to Import and Export Natural Gas, To Import Liquefied Natural Gas, To Export Liquefied Natural Gas, and Vacating Prior Authority During February 2013 FE Docket Nos. J.P. MORGAN COMMODITIES... US INC 13-05-NG GAS NATURAL APROVISIONAMIENTOS SDG, S.A 13-07-LNG SOCIETE GENERALE ENERGY INC...

  20. Natural gas in the World 2014

    International Nuclear Information System (INIS)

    This document summarizes the key findings of the 160-page 2014 edition of CEDIGAZ's flagship survey 'Natural Gas in the World': Worldwide proved natural gas reserves grew by 0.5% (981 bcm) in 2013. On January 1, 2014, reserves were estimated by Cedigaz to stand at 200,576 bcm, compared to 199,595 bcm for the previous year. Out of the seven regions in our regional breakdown, only North America and the C.I.S. have seen an increase in their reserves base in 2013. The strongest gain, both in absolute terms (+739 bcm) and as a percentage (+6.8%), was recorded in North America, reflecting the growth of unconventional gas reserves, both in the U.S. and Canada. The C.I.S. also posted a solid 669 bcm increase, representing a 1% rise. OPEC countries control about half of the world's gas reserves (47%) whereas C.I.S. countries account for almost one-third (33%). Proved unconventional gas reserves are concentrated in North America, especially in the U.S., which held in particular 3.7 tcm of proven shale gas reserves. Outside North America, large coal bed methane (CBM) reserves also exist in Australia and China. Marketed production was up by only 1% from 2012, reaching 3394 bcm, compared to the average growth rate for the last ten years (2.5%/year). This slowdown is partly explained by growing coal-togas competition on the demand side and a gas supply shortfall on the supply side, especially in emerging markets, where the lack of upstream investment is acute. The highest production increases were recorded in the Middle East (+3.1%) and the C.I.S. (+2.6%), which compensated for output losses in Europe (-2.3%) and Africa (-6.6%). In 2013, the two leading regional producing markets, North America and the C.I.S., accounted for 26% and 24% of global production respectively, followed by the Middle East (17%) and Asia Oceania (15%). In 2013, growth in unconventional gas production was driven by North America, China and Australia. North America no longer accounts

  1. Formation rate of natural gas hydrate

    Energy Technology Data Exchange (ETDEWEB)

    Mork, Marit

    2002-07-01

    The rate of methane hydrate and natural gas hydrate formation was measured in a 9.5 litre stirred tank reactor of standard design. The experiments were performed to better understand the performance and scale-up of a reactor for continuous production of natural gas hydrates. The hydrate formation rate was measured at steady-state conditions at pressures between 70 and 90 bar and temperatures between 7 and 15 deg C. Between 44 and 56 % of the gas continuously supplied to the reactor was converted to hydrate. The experimental results show that the rate of hydrate formation is strongly influenced by gas injection rate and pressure. The effect of stirring rate is less significant and subcooling has no observable effect on the formation rate. Hydrate crystal concentration and gas composition do not influence the hydrate formation rate. Observations of produced hydrate crystals indicate that the crystals are elongated, about 5 micron in diameter and 10 micron long. Analysis of the results shows that the rate of hydrate formation is dominated by gas-liquid mass transfer. A mass transfer model, the bubble-to-crystal model, was developed for the hydrate formation rate in a continuous stirred tank reactor, given in terms of concentration driving force and an overall mass transfer coefficient. The driving force is the difference between the gas concentration at the gas-liquid interface and at the hydrate crystal surface. These concentrations correspond to the solubility of gas in water at experimental temperature and pressure and the solubility of gas at hydrate equilibrium temperature and experimental pressure, respectively. The overall mass transfer coefficient is expressed in terms of superficial gas velocity and impeller power consumption, parameters commonly used in study of stirred tank reactors. Experiments and modeling show that the stirred tank reactor has a considerable potential for increased production capacity. However, at higher hydrate production rates the

  2. Status and Development of Natural Gas Utilization in China

    Institute of Scientific and Technical Information of China (English)

    Wu Kangyu; Ma An

    1995-01-01

    @@ Recently, the world's proven reserves of natural gas are increasing and are likely to exceed those of oil within the future one or two decades.Natural gas has efficient and clean-burning characteristics. Many countries attach importance to the natural gas utilization. Now China is the fifth largest oil producing country and produced 147 million tons of crude oil in 1994. As natural gas once was regarded as a useless by-product of oil production, so the output of natural gas is low in comparison with that of crude oil. China is now the twentifourth natural gas producing country based on gas output and produced 16. 67 billion cubic meters natural gas in 1994. Natural gas consumption occupies only two percent of total energy consumption in China. With the growth of economy and improvement of exploration and development technologies,it is sure that the output and utilization of natural gas will develop greatly before 2000 in China.

  3. Rapidly Estimating Natural Gas Compressibility Factor

    Institute of Scientific and Technical Information of China (English)

    Alireza Bahadori; Saeid Mokhatab; Brian F. Towler

    2007-01-01

    Natural gases containing sour components exhibit different gas compressibility factor (Z) behavior than do sweet gases. Therefore, a new accurate method should be developed to account for these differences. Several methods are available today for calculating the Z-factor from an equation of state. However, these equations are more complex than the foregoing correlations, involving a large number of parameters, which require more complicated and longer computations. The aim of this study is to develop a simplified calculation method for a rapid estimating Z-factor for sour natural gases containing as much as 90% total acid gas. In this article, two new correlations are first presented for calculating the pseudo-critical pressure and temperature of the gas mixture as a function of the gas specific gravity. Then, a simple correlation on the basis of the standard gas compressibility factor chart is introduced for a quick estimation of sweet gases' compressibility factor as a function of reduced pressure and temperature. Finally, a new corrective term related to the mole fractions of carbon dioxide and hydrogen sulfide is developed.

  4. Peru's Downstream Natural Gas Sector : A Preliminary Assessment

    OpenAIRE

    Reinstein, David; Benítez, Daniel A. Benítez; Todd M. Johnson

    2011-01-01

    This study assesses the natural gas market in Peru. In the process of evaluating the downstream market, the study identifies opportunities for meeting the Government s aspirational goals with respect to energy and natural gas development, including the efficient use of natural gas in the power and other sectors, strengthening and coordinating national energy planning for the gas sector, in...

  5. Ambitious Blueprint of CNPC for Natural Gas Distribution Business

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    @@ China National Petroleum Corporation (CNPC),China's leading company in natural gas production and transportation, has made ambitious plans to increase its portfolio in the urban natural gas distribution sector. The company will use its dominance in the upstream business,which is gas production and supplies, to further develop its gas retail operation and accelerate construction of gas pipeline network nationwide.

  6. SCADA Architecture for Natural Gas plant

    Directory of Open Access Journals (Sweden)

    Turc Traian

    2009-12-01

    Full Text Available The paper describes the Natural Gas Plant SCADA architecture. The main purpose of SCADA system is remote monitoring and controlling of any industrial plant. The SCADA hardware architecture is based on multi-dropping system allowing connecting a large number of different fiels devices. The SCADA Server gathers data from gas plant and stores data to a MtSQL database. The SCADA server is connected to other SCADA client application offers a intuitive and user-friendly HMI. The main benefit of using SCADA is real time displaying of gas plant state. The main contriobution of the authors consists in designing SCADA architecture based on multi-dropping system and Human Machine Interface.

  7. China: Striding into the Era of Natural Gas

    Institute of Scientific and Technical Information of China (English)

    Li Zhanbin; Li Chunhui

    2005-01-01

    @@ As the earliest country discovered natural gas in the ancient time in the world, the production and sales of natural gas in China started booming only in the recent years. China's natural gas production in 1949 was only 10million cubic meters. The production exceeded 10 billion cubic meters (BCM) in 1979, and reached 25.2 BCM in 1999. Despite the inspiring increase of China's natural gas production, comparing with the 24% average proportion of international natural gas in energy consumption constitution, China's gas consumption only accounts for 3% of the total energy consumption. Global average gas consumption per capita is 403 cubic meters, whereas Chinese average is only 25 cubic meters.

  8. LIQUID NATURAL GAS (LNG): AN ALTERNATIVE FUEL FROM LANDFILL GAS (LFG) AND WASTEWATER DIGESTER GAS

    Energy Technology Data Exchange (ETDEWEB)

    VANDOR,D.

    1999-03-01

    This Research and Development Subcontract sought to find economic, technical and policy links between methane recovery at landfill and wastewater treatment sites in New York and Maryland, and ways to use that methane as an alternative fuel--compressed natural gas (CNG) or liquid natural gas (LNG) -- in centrally fueled Alternative Fueled Vehicles (AFVs).

  9. Sorption dehumidification of natural gas exhaust

    Energy Technology Data Exchange (ETDEWEB)

    Lazzarin, R.M.; Longo, G.A. (Padua Univ. (Italy)); Piccininni, F. (Politecnico di Bari (Italy). Ist. di Fisica Tecnica)

    1992-09-01

    The calorific value of natural gas can be fully utilized only if the water vapour in the exhaust gases is condensed. This can be achieved in condensing boilers. Another possibility is to dry the exhaust before discharge by sorption dehumidification. The sorbent can be regenerated directly by the boiler. The vapour developed in the regenerator can be condensed in a condenser with useful effect. Simulations given an efficiency higher than 97% with respect to the Gross Calorific value. (author).

  10. California Natural Gas Pipelines: A Brief Guide

    Energy Technology Data Exchange (ETDEWEB)

    Neuscamman, Stephanie [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Price, Don [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Pezzola, Genny [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Glascoe, Lee [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2013-01-22

    The purpose of this document is to familiarize the reader with the general configuration and operation of the natural gas pipelines in California and to discuss potential LLNL contributions that would support the Partnership for the 21st Century collaboration. First, pipeline infrastructure will be reviewed. Then, recent pipeline events will be examined. Selected current pipeline industry research will be summarized. Finally, industry acronyms are listed for reference.

  11. Nigeria: petroleum; natural gas and economic crisis

    International Nuclear Information System (INIS)

    Conflicts in Nigeria have recently deepened and they show a continuous escalation. The endless attacks against all infrastructures led to a reduction of oil production, thus effecting international oil market as well. This article provides a Nigeria's economy and energy framework. First, we will focus on troubles characterizing oil companies activities in Nigeria. Then, we will analyze how a higher exploitation of natural gas could affect Nigeria's economy, politics and society.

  12. North American natural gas market outlook

    International Nuclear Information System (INIS)

    A series of graphs were used to provide an overview of the projected natural gas productive capacity for the United States in 1999. It is expected to decline by 2 to 4 per cent. This is due in part to rapid decline rates in the OCS. Additional deepwater supplies are also likely to offset declines on the shelf in 1999. The most likely scenario would be for some decline in prices for the non-heating season, but prices could be strong for the heating season. Another graph showed how power generation accounts for 20 per cent of total gas consumption in the U.S. It was noted that the future for coal generation will have a significant impact on power and natural gas markets. By September 2002, NOx will be a major challenge for many units. An even greater challenge will be the control of fine particulates for which full compliance will be mandatory by 2008. It was also illustrated that strong gas demand growth will put pressure on prices. 1 tab., 7 figs

  13. Consortium for Petroleum & Natural Gas Stripper Wells

    Energy Technology Data Exchange (ETDEWEB)

    Joel L. Morrison; Sharon L. Elder

    2006-09-30

    The Pennsylvania State University, under contract to the U.S. Department of Energy (DOE), National Energy Technology Laboratory (NETL) established a national industry-driven Stripper Well Consortium (SWC) that is focused on improving the production performance of domestic petroleum and/or natural gas stripper wells. The consortium creates a partnership with the U.S. petroleum and natural gas producers, trade associations, state funding agencies, academia, and the National Energy Technology Laboratory. This report serves as the tenth quarterly technical progress report for the SWC. Key activities for this reporting period include: {lg_bullet} 2004 SWC Final Project Reports distribution; {lg_bullet} Exhibit and present at the Midcontinent Oil and Gas Prospect Fair, Great Bend, KS, September 12, 2006; {lg_bullet} Participate and showcase current and past projects at the 2006 Oklahoma Oil and Gas Trade Expo, Oklahoma City, OK, October 26, 2006; {lg_bullet} Finalize agenda and identify exhibitors for the northeastern US, Fall SWC Technical Transfer Workshop, Pittsburghhh, PA, November 9, 2006; {lg_bullet} Continue distribution of the public broadcast documentary, ''Independent Oil: Rediscovering American's Forgotten Wells''; {lg_bullet} Communications/outreach; and {lg_bullet} New members update.

  14. LNG (Liquefied Natural Gas): the natural gas becoming a world commodity and creating international price references; GNL (Gas Natural Liquefeito): o gas natural se tornando uma commodity mundial e criando referencias de preco internacionais

    Energy Technology Data Exchange (ETDEWEB)

    Demori, Marcio Bastos [PETROBRAS, Rio de Janeiro, RJ (Brazil). Coordenacao de Comercializacao de Gas e GNL; Santos, Edmilson Moutinho dos [Universidade de Sao Paulo (USP), SP (Brazil). Inst. de Eletrotecnica e Energia. Programa Interunidades de Pos-Graduacao em Energia (PIPGE)

    2004-07-01

    The transportation of large quantities of natural gas through long distances has been done more frequently by Liquefied Natural Gas (LNG). The increase of natural gas demand and the distance of major reserves, allied to technological improvements and cost reduction through LNG supply chain, have triggered the expressive increase of LNG world market This paper tries to evaluate the influence that LNG should cause on natural gas world market dynamic, analyzing the tendency of gas to become a world commodity, creating international price references, like oil and its derivates. For this, are shown data as natural gas world reserves, the participation of LNG in natural gas world market and their increase. Furthermore, will be analyzed the interaction between major natural gas reserves and their access to major markets, still considering scheduled LNG projects, the following impacts from their implementation and price arbitrage that should be provoked on natural gas markets. (author)

  15. World future prospects of natural gas industry and research programs on natural gas led by Institut Francais du Petrole (IFP)

    International Nuclear Information System (INIS)

    This paper gives a general overview on future prospects of world natural gas industry till 2020. In a first part, statistical data on energy demand, natural gas resources, natural gas and liquefied natural gas production and transport, supply, trade, costs and prices are offered. In the second part, the paper describes briefly research programs led by Institut Francais du Petrole (IFP) in several fields: exploration and underground storage, production and transport, treatment and liquefaction, gas uses. 4 figs., 2 tabs

  16. Hydrogen-Enhanced Natural Gas Vehicle Program

    Energy Technology Data Exchange (ETDEWEB)

    Hyde, Dan; Collier, Kirk

    2009-01-22

    The project objective is to demonstrate the viability of HCNG fuel (30 to 50% hydrogen by volume and the remainder natural gas) to reduce emissions from light-duty on-road vehicles with no loss in performance or efficiency. The City of Las Vegas has an interest in alternative fuels and already has an existing hydrogen refueling station. Collier Technologies Inc (CT) supplied the latest design retrofit kits capable of converting nine compressed natural gas (CNG) fueled, light-duty vehicles powered by the Ford 5.4L Triton engine. CT installed the kits on the first two vehicles in Las Vegas, trained personnel at the City of Las Vegas (the City) to perform the additional seven retrofits, and developed materials for allowing other entities to perform these retrofits as well. These vehicles were used in normal service by the City while driver impressions, reliability, fuel efficiency and emissions were documented for a minimum of one year after conversion. This project has shown the efficacy of operating vehicles originally designed to operate on compressed natural gas with HCNG fuel incorporating large quantities of exhaust gas recirculation (EGR). There were no safety issues experienced with these vehicles. The only maintenance issue in the project was some rough idling due to problems with the EGR valve and piping parts. Once the rough idling was corrected no further maintenance issues with these vehicles were experienced. Fuel economy data showed no significant changes after conversion even with the added power provided by the superchargers that were part of the conversions. Driver feedback for the conversions was very favorable. The additional power provided by the HCNG vehicles was greatly appreciated, especially in traffic. The drivability of the HCNG vehicles was considered to be superior by the drivers. Most of the converted vehicles showed zero oxides of nitrogen throughout the life of the project using the State of Nevada emissions station.

  17. Papers of the Canadian Institute's forum on natural gas purchasing strategies : critical information for natural gas consumers in a time of diminishing natural gas supplies and higher prices

    International Nuclear Information System (INIS)

    This conference provided insight into how to prosper in an increasingly complex natural gas marketplace. The presentations from key industry players offered valuable information on natural gas purchasing strategies that are working in the current volatile price environment. Diminishing natural gas supplies in North America mean that higher prices and volatility will continue. Other market challenges stem from potential cost increases in gas transportation, unbundling of natural gas services, and the changing energy marketing environment. The main factors that will affect prices for the winter of 2004 were outlined along with risk management and the best pricing strategies for businesses. The key strategies for managing the risks associated with natural gas purchase contracts were also reviewed, along with the issue of converging natural gas and electricity markets and the impact on energy consumers. The conference featured 15 presentations, of which 4 have been indexed separately for inclusion in this database. refs., tabs., figs

  18. Gas exchange measurements in natural systems

    International Nuclear Information System (INIS)

    Direct knowledge of the rates of gas exchange in lakes and the ocean is based almost entirely on measurements of the isotopes 14C, 222Rn and 3He. The distribution of natural radiocarbon has yielded the average rate of CO2 exchange for the ocean and for several closed basin lakes. That of bomb produced radiocarbon has been used in the same systems. The 222Rn to 226Ra ratio in open ocean surface water has been used to give local short term gas exchange rates. The radon method generally cannot be used in lakes, rivers, estuaries or shelf areas because of the input of radon from sediments. A few attempts have been made to use the excess 3He produced by decay of bomb produced tritium in lakes to give gas transfer rates. The uncertainty in the molecular diffusivity of helium and in the diffusivity dependence of the rate of gas transfer holds back the application of this method. A few attempts have been made to enrich the surface waters of small lakes with 226Ra and 3H in order to allow the use of the 222Rn and 3He methods. While these studies give broadly concordant results, many questions remain unanswered. The wind velocity dependence of gas exchange rate has yet to be established in field studies. The dependence of gas exchange rate on molecular diffusivity also remains in limbo. Finally, the degree of enhancement of CO2 exchange through chemical reactions has been only partially explored. 49 references, 2 figures, 2 tables

  19. Gas exchange measurements in natural systems

    Energy Technology Data Exchange (ETDEWEB)

    Broecker, W.S.; Peng, T.H.

    1983-01-01

    Direct knowledge of the rates of gas exchange in lakes and the ocean is based almost entirely on measurements of the isotopes /sup 14/C, /sup 222/Rn and /sup 3/He. The distribution of natural radiocarbon has yielded the average rate of CO/sub 2/ exchange for the ocean and for several closed basin lakes. That of bomb produced radiocarbon has been used in the same systems. The /sup 222/Rn to /sup 226/Ra ratio in open ocean surface water has been used to give local short term gas exchange rates. The radon method generally cannot be used in lakes, rivers, estuaries or shelf areas because of the input of radon from sediments. A few attempts have been made to use the excess /sup 3/He produced by decay of bomb produced tritium in lakes to give gas transfer rates. The uncertainty in the molecular diffusivity of helium and in the diffusivity dependence of the rate of gas transfer holds back the application of this method. A few attempts have been made to enrich the surface waters of small lakes with /sup 226/Ra and /sup 3/H in order to allow the use of the /sup 222/Rn and /sup 3/He methods. While these studies give broadly concordant results, many questions remain unanswered. The wind velocity dependence of gas exchange rate has yet to be established in field studies. The dependence of gas exchange rate on molecular diffusivity also remains in limbo. Finally, the degree of enhancement of CO/sub 2/ exchange through chemical reactions has been only partially explored. 49 references, 2 figures, 2 tables.

  20. Remote sensing of leaf responses to leaking underground natural gas

    OpenAIRE

    Smith, Karon Lesley

    2002-01-01

    Detection of leaking gas pipelines is important for safety, economic and environmental reasons. Remote sensing of vegetation offers the potential to identify gas leakage. The research aim was to determine the effects of elevated soil concentrations of natural gas on overlying vegetation. Pot-scale investigations were carried out to determine whether changes in spectral characteristics were specific to natural gas or were a generic response to soil-oxygen displacement. Natural gas, argon, ...

  1. World trade in liquefied natural gas

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, P. J.; Daniels, E. J.

    1978-01-01

    Descriptions of LNG projects make it evident that significant activity is continuing on the development of base-load LNG projects to serve all three major gas markets: Europe, Japan, and the United States. These activities have resulted in the development of an international LNG trade of approximately 48.2 billion m/sup 3//y. This represents nearly one-third of the current level of pipeline import/exports of natural gas. By 1982, when all of the projects considered to be firm or under construction are implemented, LNG trade will have grown to a level of 53.7 billion m/sup 3//y. With the implementation of the probable projects by the mid-1980's, this level could increase to more than 112.55 billion m/sup 3//y. Assuming that the 102.2 billion m/sup 3//y of pipeline import/export projects currently proposed and under construction are implemented in the same period, LNG's relatively more rapid growth will have increased to 48% of the amount of natural gas traded by pipeline.

  2. Regulatory issues of natural gas distribution; Aspectos regulatorios acerca da distribuicao de gas natural

    Energy Technology Data Exchange (ETDEWEB)

    Leite, Fabio Augusto C.C.M.; Costa, Hirdan Katarina de M. [Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN (Brazil). Faculdade de Direito

    2004-07-01

    In these past few years, natural gas in Brazil has arised as one of the alternatives for the energetic crisis suffered by the country. Such situation was one of the motives for its expansion, rising, after that, the importance of the regulation of its distribution. The regulation of canalized natural gas distribution can be found in the Federal Constitution, after Constitutional Amendment n. 05/95, in the article n. 25, para. 2nd, which say that belongs to the Federal States the concession or direct exercise of canalized natural gas services, now clearly classified as a public service. In order of these events, its imperative the analysis of natural gas distribution's public service, because it belongs to the Federal States. According to this situation, the study of the new regulatory function of the Administration and the tracing of action for the regulatory state agencies are the main goals of this work. As so, the present research aims to focus the reflexes from the actual dimension of natural gas distribution, specially referring to its regulatory statements, the limitations of state agencies, the National Petroleum Agency and the market where distribution belongs, and particularly the open access of new agents. (author)

  3. Synthetic Natural Gas. Large-scale introduction of green natural gas in existing gas grids

    Energy Technology Data Exchange (ETDEWEB)

    Zwart, R.W.R. [ECN Biomass, Coal and Environmental Research, Petten (Netherlands)

    2007-10-15

    Attention is paid to definitions, SNG production technology, motivation for green gas, potential and application, green gas and SNG implementation, availability and import of biomass, the economy of SNG production, and the SNG development trajectory.

  4. Practical Results of Forecasting for the Natural Gas Market

    OpenAIRE

    Potocnik, Primoz; Govekar, Edvard

    2010-01-01

    Natural gas consumption forecasting is required to balance the supply and consumption of natural gas. Companies and natural gas distributors are motivated to forecast their consumption by the economic incentive model that dictates the cash flow rules corresponding to the forecasting accuracy. The rules are quite challenging but enable the company to gain positive cash flow by forecasting accurately their short-term natural gas consumption. In this chapter, some practical forecasting results f...

  5. Substitute natural gas from biomass gasification

    Energy Technology Data Exchange (ETDEWEB)

    Tunaa, Per (Lund Inst. of Technology, Lund (SE))

    2008-03-15

    Biomass is by many considered as the only alternative to phase-out the usage of fossil fuels such as natural gas and oil especially for the transportation sector where alternative solutions, such as hydrogen fuel cells and batteries, are not yet fully developed. Thermal gasification or other methods such as pyrolysis of the biomass must be applied in order to produce an intermediate product suitable for further upgrading to either gaseous or liquid products. This thesis will evaluate the possibilities of producing, substitute natural gas, (SNG) from biomass gasification by using computer simulation. Three different gasification techniques were evaluated; entrained-flow, fluidized-bed and indirect gasification coupled with two different desulphurisation systems and two methanation processes. The desulphurisation systems were a zinc oxide bed and a Rectisol wash system. Methanation were performed by a series of adiabatic reactors with gas recycling and by an isothermal reactor. The impact on SNG efficiency from system pressure, isothermal methanation temperature and PSA methane recovery were evaluated as well. The results show that the fluidized-bed and the indirect gasifier have the highest SNG efficiency. Furthermore there are little to no difference between the methanation processes and small differences for the gas cleanup systems. SNG efficiencies in excess of 50 % were possible for all gasifiers. SNG efficiency is defined as the energy in the SNG product divided by the total input to the system from biomass, drying and oxygen. Increasing system pressure has a negative impact on SNG efficiency as well as increasing operating costs due to increased power for compression. Isothermal methanation temperature has no significant impact on SNG efficiency. Recovering as much methane as possible in the PSA is the most important parameter. Recovering methane that has been dissolved in condensed process water increases the SNG efficiency by 2-10% depending on system.

  6. Gasoline and other transportation fuels from natural gas in Canada

    International Nuclear Information System (INIS)

    Ways in which natural gas might displace cude oil as a source of fuels for the Canadian transportation market are reviewed. Three approaches are possible: (1) direct use as compressed natural gas; (2)conversion of natural gas to methanol; and (3) further conversion of methanol to synthetic gasoline. (author)

  7. 75 FR 48321 - Corning Natural Gas Corporation; Notice of Application

    Science.gov (United States)

    2010-08-10

    ... Energy Regulatory Commission Corning Natural Gas Corporation; Notice of Application August 4, 2010. Take notice that on July 26, 2010, Corning Natural Gas Corporation (Corning), 330 W. William Street, Corning... Natural Gas Act (NGA) requesting the determination of a service area with which Corning may,...

  8. Does Increased Extraction of Natural Gas Reduce Carbon Emissions?

    International Nuclear Information System (INIS)

    Without an international climate agreement, extraction of more natural gas could reduce emissions of CO2 as more 'clean' natural gas may drive out ''dirty'' coal and oil. Using a computable equilibrium model for the Western European electricity and natural gas markets, we examine whether increased extraction of natural gas in Norway reduces global emissions of CO2. We find that both in the short run and in the long run total emissions are reduced if the additional quantity of natural gas is used in gas power production in Norway. If instead the additional quantity is exported directly, total emissions increase both in the short run and in the long run. However, if modest CO2-taxes are imposed, increased extraction of natural gas will reduce CO2 emissions also when the additional natural gas is exported directed

  9. Liquefied natural gas: a harbor plan; Plano diretor portuario para o gas natural liquefeito

    Energy Technology Data Exchange (ETDEWEB)

    Moreira, Aluisio de Souza; Baitelo, Ricardo Lacerda [Universidade de Sao Paulo (USP), SP (Brazil). Escola Politecnica; Rego, Erik Eduardo [Excelencia Energetica Consultoria Empresarial Ltda., Sao Paulo, SP (Brazil); Rosim, Sidney Olivieri [Rosim e Papaleo Consultoria e Participacoes Ltda., Sao Paulo, SP (Brazil)

    2008-07-01

    The objective of this article is to present the structuring of a port directing plan for the liquefied natural gas. In this sense, an integrated approach between the applied logistic and the requested market conditions was used. For the large distances transportation of liquefied natural gas, the marine modal must attain technical requirements that are not usual in the port routine. Apart from the proper dimensioning of the naval fleet in order to maximize the transported load, providing the optimization of the economic distance, the entire port infra-structure is planned for the reception of liquefied natural gas, in order to attend the physical peculiarities as well as security aspects of extreme importance. The selection of the studied local was motivated by the fuel supply shortage suffered by the country, especially in the northeast region, which owns already installed thermal units in need of the fuel supply to be operated. (author)

  10. The 1991 natural gas vehicle challenge: Developing dedicated natural gas vehicle technology

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, R.; Rimkus, W. (Argonne National Lab., IL (United States)); Davies, J. (General Motors of Canada Ltd., Toronto, ON (Canada)); Zammit, M. (AC Rochester, NY (United States)); Patterson, P. (USDOE, Washington, DC (United States))

    1992-01-01

    An engineering research and design competition to develop and demonstrate dedicated natural gas-powered light-duty trucks, the Natural Gas Vehicle (NGV) Challenge, was held June 6--11, 1191, in Oklahoma. Sponsored by the US Department of Energy (DOE), Energy, Mines, and Resources -- Canada (EMR), the Society of Automative Engineers (SAE), and General Motors Corporation (GM), the competition consisted of rigorous vehicle testing of exhaust emissions, fuel economy, performance parameters, and vehicle design. Using Sierra 2500 pickup trucks donated by GM, 24 teams of college and university engineers from the US and Canada participated in the event. A gasoline-powered control testing as a reference vehicle. This paper discusses the results of the event, summarizes the technologies employed, and makes observations on the state of natural gas vehicle technology.

  11. The 1991 natural gas vehicle challenge: Developing dedicated natural gas vehicle technology

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, R.; Rimkus, W. [Argonne National Lab., IL (United States); Davies, J. [General Motors of Canada Ltd., Toronto, ON (Canada); Zammit, M. [AC Rochester, NY (United States); Patterson, P. [USDOE, Washington, DC (United States)

    1992-02-01

    An engineering research and design competition to develop and demonstrate dedicated natural gas-powered light-duty trucks, the Natural Gas Vehicle (NGV) Challenge, was held June 6--11, 1191, in Oklahoma. Sponsored by the US Department of Energy (DOE), Energy, Mines, and Resources -- Canada (EMR), the Society of Automative Engineers (SAE), and General Motors Corporation (GM), the competition consisted of rigorous vehicle testing of exhaust emissions, fuel economy, performance parameters, and vehicle design. Using Sierra 2500 pickup trucks donated by GM, 24 teams of college and university engineers from the US and Canada participated in the event. A gasoline-powered control testing as a reference vehicle. This paper discusses the results of the event, summarizes the technologies employed, and makes observations on the state of natural gas vehicle technology.

  12. Natural gas: energy, environment, development and externalities; Gas natural: energia, meio-ambiente, desenvolvimento e externalidades

    Energy Technology Data Exchange (ETDEWEB)

    Sousa, Eduardo F. de [Universidade Salvador (UNIFACS), BA (Brazil)

    2010-07-01

    Natural gas is a major source of non-renewable energy in the Brazilian energy matrix, and the noticeable increase in demand for this energy. This can be checked with the expansion of investments in Brazil and in the state of Bahia for the various sectors. The environmental benefits of natural gas highlight the advantages of using this input to the other fossil fuels. This paper discusses the availability of natural gas in Brazil and how it occurs its participation in the national energy matrix. This issue of the vulnerability of the market by the conflict between the growing demand from various industries and the need for order of thermal. It indicates scenarios and future prospects, and limiting factors for their growth. (author)

  13. Natural gas and oil technology partnership support

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, T.W.

    1996-06-01

    The Natural Gas and Oil Technology Partnership expedites development and transfer of advanced technologies through technical interactions and collaborations between the national laboratories and the petroleum industry - majors, independents, service companies, and universities. The Partnership combines the expertise, equipment, facilities, and technologies of the Department of Energy`s national laboratories with those of the US petroleum industry. The laboratories utilize unique capabilities developed through energy and defense R&D including electronics, instrumentation, materials, computer hardware and software, engineering, systems analysis, physics, and expert systems. Industry contributes specialized knowledge and resources and prioritizes Partnership activities.

  14. Lightweight Tanks for Storing Liquefied Natural Gas

    Science.gov (United States)

    DeLay, Tom

    2008-01-01

    Single-walled, jacketed aluminum tanks have been conceived for storing liquefied natural gas (LNG) in LNG-fueled motor vehicles. Heretofore, doublewall steel tanks with vacuum between the inner and outer walls have been used for storing LNG. In comparison with the vacuum- insulated steel tanks, the jacketed aluminum tanks weigh less and can be manufactured at lower cost. Costs of using the jacketed aluminum tanks are further reduced in that there is no need for the vacuum pumps heretofore needed to maintain vacuum in the vacuum-insulated tanks.

  15. Fuel tank for liquefied natural gas

    Science.gov (United States)

    DeLay, Thomas K. (Inventor)

    2012-01-01

    A storage tank is provided for storing liquefied natural gas on, for example, a motor vehicle such as a bus or truck. The storage tank includes a metal liner vessel encapsulated by a resin-fiber composite layer. A foam insulating layer, including an outer protective layer of epoxy or of a truck liner material, covers the composite layer. A non-conducting protective coating may be painted on the vessel between the composite layer and the vessel so as to inhibit galvanic corrosion.

  16. Environmental effects of submarine seeping natural gas

    Science.gov (United States)

    Dando, P. R.; Hovland, M.

    1992-10-01

    It is suspected that most shallow reservoirs of natural gas vent to the surface to some degree. This seeping may be through diffusion of dissolved gas or by a flow of gas bubbles which entrain interstitial water during the rise through the sediments to the surface. Methane bubbles dissolved other gases, notably hydrogen sulphide and carbon dioxide, during their ascent. Under suitable temperature-pressure conditions gas hydrates may be formed close to or at the seabed Black suphide-rich sediments and mats of sulphur oxidizing bacteria are frequently observed close to the sediments surface at seep sites, including a sharp oxic/anoxic boundary. Animal species associated with these gas seeps include both species which obtain nutrition from symbiotic methane-oxidizing bacteria and species with symbolic sulphur-oxidizing bacteria. It is suspected that at some microseepage an enhanced biomass of meiofauna and macrofauna is supported by a food chain based on free-living and symbiotic sulphur-oxidizing and methane-oxidizing bacteria. The most common seep-related features of sea floor topography are local depressions including pockmark craters. Winnowing of the sediment during their creation leads to an accumulation of larger detritis in the depressions. Where the deprssions overlies salt diapirs they may be filled with hypersaline solutions. In some areas dome-shaped features are associated with seepage and these may be colonized by coral reefs. Other reefs, "hard-grounds", columnar and disc-shaped protrusions, all formed of carbonate-cemented sediments, are common on the sea floor in seep areas. Much of the carbonate appears to be derived from carbon dioxide formed as a result of methane oxidation. The resulting hard-bottoms on the sea floor are often colonized by species not found on the neighboring soft-bottoms. As a result seep areas may be characterized by the presence of a rich epifauna.

  17. Regional Cooperation Towards Trans-country Natural Gas Market

    DEFF Research Database (Denmark)

    Shukla, P.R.; Dhar, Subash

    2009-01-01

    India began gas imports since 2004 through liquified natural gas (LNG) route. Imports through trans-country gas pipelines could help in bringing gas directly into the densely populated Northern part of India, which are far from domestic gas resources as well as coastal LNG terminals. The purpose ...

  18. Field tests and commercialization of natural gas leak detectors

    Energy Technology Data Exchange (ETDEWEB)

    Choi, D.S.; Jeon, J.S.; Kim, K.D.; Cho, Y.A. [R and D Center, Korea Gas Corporation, Ansan (Korea)

    1999-09-01

    Objectives - (1) fields test of industrial gas leak detection monitoring system. (2) commericialization of residential gas leak detector. Contents - (1) five sets of gas leak detection monitoring system were installed at natural gas transmition facilities and tested long term stability and their performance. (2) improved residential gas leak detector was commercialised. Expected benefits and application fields - (1) contribution to the improvement of domestic gas sensor technology. (2) localization of fabrication technology for gas leak detectors. 23 refs., 126 figs., 37 tabs.

  19. Study on the natural gas utilization in the ceramic industry; Estudo sobre a utilizacao do gas natural na industria ceramica

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-07-01

    The production, principal applications, characteristics and properties, advantages of the gas natural is showed. A sectorial overview of the ceramic industry and the utilization of the natural gas in the ceramic industry is presented. The expectations are systematized and the impact of the natural gas utilization in the ceramic industry is evaluated. Some conclusions are withdrawn and recommendations suggested.

  20. Natural gas participation on brazilian demand supply of liquefied petroleum gas

    International Nuclear Information System (INIS)

    Natural Gas Liquids Production, Liquefied Petroleum Gas (LPG) among them, has undergone a continuous growth and technological development until the first half of the eighties. This paper presents the natural gas processing activity development in Brazil, in the last 20 years, and the increasing share of LPG produced from natural gas in the supply of LPG domestic market. Possibilities of achieving greater shares are discussed, based on economics of natural gas processing projects. Worldwide gas processing installed capacity and LPG pricing tendencies, and their influence in the construction of new Natural Gas Processing Units in Brazil, are also discussed. (author)

  1. The Impact of Wind Power on European Natural Gas Markets

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-09-06

    Due to its clean burning properties, low investment costs and flexibility in production, natural gas is often put forward as the ideal partner fuel for wind power and other renewable sources of electricity generation with strongly variable output. This working paper examines three vital questions associated with this premise: 1) Is natural gas indeed the best partner fuel for wind power? 2) If so, to what extent will an increasing market share of wind power in European electricity generation affect demand for natural gas in the power sector? and 3) Considering the existing European natural gas markets, is natural gas capable of fulfilling this role of partner for renewable sources of electricity?.

  2. Natural gas supply strategies for European energy market actors

    International Nuclear Information System (INIS)

    The liberalization of the European energy markets leads to the diversification of supplies. Hence, we analyse the natural gas importation problem in a power producer point of view. Upstream and downstream natural gas markets are concentrated. In this oligopoly context, our topic is to focus on strategies which modify natural gas sourcing price. This by studying the surplus sharing on the natural gas chain. A European firm can bundle gas and electricity outputs to increase its market share. Therefore, a bundling strategy of a power producer in competition with a natural gas reseller on the final European energy market increases upstream natural gas price. Bundling also acts as a raising rival cost strategy and reduces the rivals' profit. Profits opportunities incite natural gas producers to enter the final market. Vertical integration between a natural gas producer and a European gas reseller is a way, for producers, to catch end consumer surplus. Vertical integration results in the foreclosure of the power producer on the upstream natural gas market. To be active on the natural gas market, the power producer could supply bundles. But, this strategy reallocates the rent. The integrated firm on natural gas gets the rent of electricity market in expenses of the power producer. Then, a solution for the power producer is to supply gas and electricity as complements. Then, we consider a case where vertical integration is not allowed. Input price discrimination by a monopolist leads to a lower natural gas price for the actor which diversifies its supplying sources. Furthermore, a bundling strategy increases the gap between the price proposed to the firm which also diversify its output and the firm which is fully dependent from the producer to supply natural gas on final market. (author)

  3. Emissions credits from natural gas vehicles

    International Nuclear Information System (INIS)

    Dedicated natural gas vehicles (NGVs) often are capable of testing to lower than federally required engine certification standards. NGVs often meet inherently low emission vehicle (ILEV) and ultra low emission vehicle (ULEV) standards. Over the useful life of the vehicle, a significant amount of mobile source emission reduction credits (MSERCs) can be generated. This paper will discuss key elements of establishing a workable methodology to quantify the emissions benefits generated through the purchase and use of heavy-duty natural gas vehicles instead of heavy-duty diesel vehicles. The paper will focus on a public fleet of transit buses owned by the Massachusetts Bay Transit Agency, the Massachusetts Port Authority, and a private fleet of waste haulers. Public fleets may generate emission credits as a key compliance option to offset emission shortfalls from changes to the Employee Commute Options (ECO) program, the Inspection and Maintenance program, and facilitate annual surface transportation conformity. Private fleets may generate emission credits for open market trading to area and stationary sources seeking to buy credits from mobile sources, where allowed by EPA and state policy

  4. Reformed natural gas. Appendix; Reformeret naturgas. Appendiks

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-02-01

    A steam reforming unit has been developed during this project. The unit converts natural gas into reformed natural gas (RNG), which contain hydrogen. The RNG is combusted in an SI engine, which produces power and heat. Hydrogen was supposed to reduce hydrocarbon emissions and increase the combustion efficiency. An efficient control strategy has been developed, and the plant has been operating automatically without problems for more than one week. An increase in power efficiency of 0,5% was achieved, but almost no reduction in hydrocarbon emissions. However, the engine was unable to operate at excess air ratios beyond 2, where 10% reduction in unburned hydrocarbon emissions was seen. It is believed that larger plants, which operates with more excess air, will demonstrate more reduction in unburned hydrocarbons with RNG. An increase in compression ratio with RNG over NG is possible since the engine operates more stable on RNG. This could further improve power efficiency with 2-3%. The payback time for the plant was calculated to be 81 years without the effect from increased compression ratio. This does not support implementation of the plant in practice. (au)

  5. Gasoline from natural gas by sulfur processing

    Energy Technology Data Exchange (ETDEWEB)

    Erekson, E.J.; Miao, F.Q. [Institute of Gas Technology, Des Plaines, IL (United States)

    1995-12-31

    The overall objective of this research project is to develop a catalytic process to convert natural gas to liquid transportation fuels. The process, called the HSM (Hydrogen Sulfide-Methane) Process, consists of two steps that each utilize a catalyst and sulfur-containing intermediates: (1) converting natural gas to CS{sub 2} and (2) converting CS{sub 2} to gasoline range liquids. Catalysts have been found that convert methane to carbon disulfide in yields up to 98%. This exceeds the target of 40% yields for the first step. The best rate for CS{sub 2} formation was 132 g CS{sub 2}/kg-cat-h. The best rate for hydrogen production is 220 L H{sub 2} /kg-cat-h. A preliminary economic study shows that in a refinery application hydrogen made by the HSM technology would cost $0.25-R1.00/1000 SCF. Experimental data will be generated to facilitate evaluation of the overall commercial viability of the process.

  6. Sustainability and energy security : the squeeze on natural gas

    International Nuclear Information System (INIS)

    This paper outlines the impact of environmental policy on natural gas demand and describes alternative energy sources such as wind, solar, biomass and clean coal that can increase energy supplies. This briefing also establishes the short-, medium-, and long-term consequences of current natural gas realities. It also outlines the driving forces in Canada and the United States behind the demand for natural gas. The impact of policy formation and the phase-out of coal in Ontario are addressed along with natural gas supply prospects and the prospects and obstacles for riskier incremental supplies such as liquefied natural gas, natural gas from coal, and frontier natural gas. It was concluded that strong demand and tight supply are the factors that have driven up natural gas prices. Continued high natural gas prices in the short term will likely motivate conservation strategies at the personal household level as well as in the business and industrial sectors. Although wind power is seen as a clean, competitively prices alternative to natural gas-fired electricity generation, its contribution is not expected to change the supply and demand equilibrium. Initiatives such as the Mackenzie Valley Pipeline, the Alaskan Pipeline and drilling in the Atlantic may help balance natural gas supply and demand in the mid-term. 44 refs., 2 tabs., 7 figs

  7. PetroChina, Wuhan City Signs Natural Gas Supply Contract

    Institute of Scientific and Technical Information of China (English)

    Wang Keyu

    2001-01-01

    @@ In mid-November 200 1, PetroChina and Wuhan City, the capital of Hubei Province, signed a contract for natural gas sales and transmission via ZhongxianWuhan pipeline to provide natural gas for the city that is the largest gas consumer of the pipeline. The contract is in line with the "take or pay" clause of the international convention on natural gas marketing.

  8. Legislative competence relative to natural gas; Competencia legislativa atinente ao gas natural

    Energy Technology Data Exchange (ETDEWEB)

    Galvao, Rafael Silva Paes Pires; Silveira Neto, Otacilio dos Santos [Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN (Brazil). Programa de Recursos Humanos da ANP para Habilitacao em Petroleo e Gas Natural, PRH-36

    2004-07-01

    The expansion of the gas industry in our country in the actual days, allied to the constitutional authorization for the private initiative acting in this sector provides the establishment of precise rules to the consequent market consolidation. In spite of the exigencies, one realises that the law no. 9.487/97, often denominated as Oil Law, does not rule in its fullness the specifics situations concerned to the natural gas. Despite the elaboration of the natural gas Law is a target of the governmental politics, overcoming the question pondered, there is not, until now, a detailed study of the legislative competency regimen relative to the natural gas. This very work, notably, gathers relevance in front of the State shape adopted in our country and the federative pact historically built; while aiming the complex distribution of legislative power made to each one of the political entities, there is need to establish the limits of performance to the sort of the coming gas Law, under penalty its arising with an unconstitutionality defect confronting to the federative pact. In the sense of clarifying the probably doubts around the subject and allowing that power comes closer to the people are our considerations proposed for. (author)

  9. Israel-New natural gas producer in the Mediterranean

    Energy Technology Data Exchange (ETDEWEB)

    Shaffer, Brenda, E-mail: bshaffer@univ.haifa.ac.il [School of Political Sciences, University of Haifa, Mount Carmel, Haifa 31905 (Israel)

    2011-09-15

    In 2009 and 2010, major offshore natural gas reserves were discovered near the State of Israel. This article examines Israel's newly discovered natural gas reserves and the implications of this discovery for Israel, the Middle East, and the Mediterranean region. The article will discuss Israel's energy security approach; the role of natural gas in Israel's energy consumption patterns; the organization of Israel's natural gas sector; regional political and security implications of the natural gas discoveries; the prospects for export, and the outlook for various natural gas markets. These new discoveries significantly improve Israel's energy security. They may also spur Israel to develop technologies related to utilization of natural gas in a variety of sectors, such as transportation. The discoveries may contribute to the emergence of a number of maritime border delimitation conflicts in the Eastern Mediterranean. At current volumes, the Israeli discoveries will not be a game-changer for gas markets in southern Europe or liquefied natural gas (LNG) markets. However, they will lead to expanded natural gas consumption in the region. In addition, offshore exploration efforts in Israel and in neighboring countries are intensifying. Additional discoveries may turn the Eastern Mediterranean region into a new source of natural gas and oil. - Highlights: > In 2009 and 2010, major natural gas deposits were discovered offshore of Israel's port city of Haifa. > They will satisfy a large portion of Israel's domestic energy consumption needs for a number of decades. > The gas discoveries have created an opportunity to fundamentally change the country's energy policies. > Additional discoveries may turn the Eastern Mediterranean region into a new source of natural gas and oil. > Israel could become a supplier of natural gas to neighbors in the Middle East region, such as Jordan.

  10. Israel-New natural gas producer in the Mediterranean

    International Nuclear Information System (INIS)

    In 2009 and 2010, major offshore natural gas reserves were discovered near the State of Israel. This article examines Israel's newly discovered natural gas reserves and the implications of this discovery for Israel, the Middle East, and the Mediterranean region. The article will discuss Israel's energy security approach; the role of natural gas in Israel's energy consumption patterns; the organization of Israel's natural gas sector; regional political and security implications of the natural gas discoveries; the prospects for export, and the outlook for various natural gas markets. These new discoveries significantly improve Israel's energy security. They may also spur Israel to develop technologies related to utilization of natural gas in a variety of sectors, such as transportation. The discoveries may contribute to the emergence of a number of maritime border delimitation conflicts in the Eastern Mediterranean. At current volumes, the Israeli discoveries will not be a game-changer for gas markets in southern Europe or liquefied natural gas (LNG) markets. However, they will lead to expanded natural gas consumption in the region. In addition, offshore exploration efforts in Israel and in neighboring countries are intensifying. Additional discoveries may turn the Eastern Mediterranean region into a new source of natural gas and oil. - Highlights: → In 2009 and 2010, major natural gas deposits were discovered offshore of Israel's port city of Haifa. → They will satisfy a large portion of Israel's domestic energy consumption needs for a number of decades. → The gas discoveries have created an opportunity to fundamentally change the country's energy policies. → Additional discoveries may turn the Eastern Mediterranean region into a new source of natural gas and oil. → Israel could become a supplier of natural gas to neighbors in the Middle East region, such as Jordan.

  11. The perspectives of the natural gas in Mexico; Las perspecivas del gas natural en Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Vazquez S, Luis [DIAVAZ S.A de C.V, Mexico, D.F. (Mexico)

    2001-07-01

    As never before in the last year we have suffered the increases in the cost of the natural gas. For those who are not aware, the prices have gone from 2.48 dollars per million BTU a year ago to 9.57 last month. The truth is that we are facing a true world-wide energy crisis. From one year to date the prices of all the energy sources have increased an average superior to 30%, including increases in Diesel oil, LP Gas, Natural Gas, Turbine fuel. The causes are many and very varied, from efficiency decisions, as in the case of the electrical Generation that has chosen to incline definitively to the natural gas, confusing de-regulations as in the case of California, increases of demand beyond the anticipated by economic activity, changes of consumption pattern, etc.. This demonstrates the well focussed and the opportunity of this Seminar, since there is no doubt that it has become imperative a single and efficient criterium on this so limited resource. In Mexico, the situation is very similar. Recently a measurement has been implemented that tries to palliate the conjunctural effects of this crisis and PEMEX has put to the disposition of the users a contract at fixed price, for three years and by a specific amount. [Spanish] Como nunca antes en el ultimo ano hemos resentido los incrementos en el gasto del gas natural. Para quien no este al tanto los precios han pasado de 2.48 dolares por millon de BTU hace un ano a 9.57 el mes pasado. La verdad es que os estamos enfrentando a una verdadera crisis energetica mundial. De un ano para aca todos los energeticos han aumentado un promedio superior al 30%, incluyendo aumentos en Diesel, Gas LP, Gas Natural, Turbosina. Las causas son muchas y muy variadas, desde decisiones de eficiencia, como en el caso de la Generacion electrica que ha optado por inclinarse definitivamente por el gas natural, desregulaciones confusas como en el caso de California, incrementos de demanda mas alla de lo previsto por actividad economica, cambios

  12. Naturally fractured tight gas reservoir detection optimization

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-11-30

    The work plan for October 1, 1997 to September 30, 1998 consisted of investigation of a number of topical areas. These topical areas were reported in four quarterly status reports, which were submitted to DOE earlier. These topical areas are reviewed in this volume. The topical areas covered during the year were: (1) Development of preliminary tests of a production method for determining areas of natural fracturing. Advanced Resources has demonstrated that such a relationship exists in the southern Piceance basin tight gas play. Natural fracture clusters are genetically related to stress concentrations (also called stress perturbations) associated with local deformation such a faulting. The mechanical explanation of this phenomenon is that deformation generally initiates at regions where the local stress field is elevated beyond the regional. (2) Regional structural and geologic analysis of the Greater Green River Basin (GGRB). Application of techniques developed and demonstrated during earlier phases of the project for sweet-spot delineation were demonstrated in a relatively new and underexplored play: tight gas from continuous-typeUpper Cretaceous reservoirs of the Greater Green River Basin (GGRB). The effort included data acquisition/processing, base map generation, geophysical and remote sensing analysis and the integration of these data and analyses. (3) Examination of the Table Rock field area in the northern Washakie Basin of the Greater Green River Basin. This effort was performed in support of Union Pacific Resources- and DOE-planned horizontal drilling efforts. The effort comprised acquisition of necessary seismic data and depth-conversion, mapping of major fault geometry, and analysis of displacement vectors, and the development of the natural fracture prediction. (4) Greater Green River Basin Partitioning. Building on fundamental fracture characterization work and prior work performed under this contract, namely structural analysis using satellite and

  13. 18 CFR 2.78 - Utilization and conservation of natural resources-natural gas.

    Science.gov (United States)

    2010-04-01

    ... generation of steam or electricity, including the utilization of gas turbines for the generation of... conservation of natural resources—natural gas. (a)(1) The national interests in the development and...

  14. NewSituation of China Natural Gas Industry

    Institute of Scientific and Technical Information of China (English)

    Xu Bo; Wu Jie

    2015-01-01

    China natural gas industry is at a turning point. Growth of mid-long term natural gas consumption may maintain at about 10%, supply is sufficient or even “over-sufficient”, natural gas price will be determined by competition, oil and gas pipeline facilities will be opened fairly, and private enterprises will play important roles in natural gas exploration, development, storage, transportation, and trade. It can been foreseen that China natural gas industry is very likely to take a turn in next 10 years, and a modern natural gas market with consumption about 500 billion cubic meters will come into being characterized by complete supervision system, diversified market, steady supply, fairly opened pipelines, transparent trading mechanism, and competitive prices.

  15. PetroChina to Harness New Natural Gas Resources

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    @@ As climate change is alarming policymakers,a string of oil companies are eyeing to harness China's plentiful unconventional natural gas resources,such as coalbed methane gas,deeply locked in China's bountiful coal reserves,which is expected to reduce China's reliance on natural gas imports for decades to come.

  16. Development of Competitive Natural Gas Markets in the United States

    OpenAIRE

    Juris, Andrej

    1998-01-01

    The United States has the world's largest natural gas market. Fifteen years of deregulation have delivered significant gains to consumers in the form of lower prices and more services. The experience shows that liberalizing wholesale gas prices and the bulk supply of natural gas frees market forces in segments where competition is feasible. But regulators must focus on improving the regula...

  17. China Ranks 15th for 2001 Natural Gas Production

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    @@ China's natural gas output totaled 30.302 billion cubic meters in 2001, an 11 percent increase as compared with the previous year. However, China ranked 15th in the world for its natural gas production last year while Malaysia jumped to the 12th place in the ranking since the country saw a considerable increase in gas production.

  18. Development of natural gas vehicles in China

    Energy Technology Data Exchange (ETDEWEB)

    Zongmin, Cheng

    1996-12-31

    Past decade and current status of development of natural gas vehicles (NGVs) in China is described. By the end of 1995, 35 CNG refueling stations and 9 LPG refueling stations had been constructed in 12 regions, and 33,100 vehicles had been converted to run on CNG or LPG. China`s automobile industry, a mainstay of the national economy, is slated for accelerated development over next few years. NGVs will help to solve the problems of environment protection, GHGs mitigation, and shortage of oil supply. The Chinese government has started to promote the development of NGVs. Projects, investment demand, GHG mitigation potential, and development barriers are discussed. China needs to import advanced foreign technologies of CNGs. China`s companies expect to cooperate with foreign partners for import of CNG vehicle refueling compressors, conversions, and light cylinders, etc.

  19. Natural Gas in the World 2012

    International Nuclear Information System (INIS)

    On 1 January 2012, proved natural gas reserves grew by 1.7% over revised reserves of 2011 and were estimated at 199.6 trillion cubic meters (bcm), according to CEDIGAZ. The Commonwealth of Independent states (CIS) made the largest contribution to this growth, essentially as a result of reserves additions/re-evaluation by Russia. The Middle East also showed a significant increase (+ 565 bcm), led by Iran and Saudi Arabia. In North America, shale gas reserves continue to post a sustained growth. Whereas 72% of oil reserves are held by OPEC members, the bulk of gas reserves are distributed between OPEC countries, with 47.6% of the world total, and in the C.I.S. with 32.4%. These two economic blocks thus share responsibility for closing the future world gas balance. World production increased significantly in 2011 to adapt to the expansion of gas demand in a large number of markets, with the exception of Europe, where demand collapsed. World gross production increased 2% in 2011 to 4127 bcm, of which 449.5 bcm was reinjected, 126.5 bcm was flared and 253 bcm was lost through shrinkage. World marketed production climbed 2.8% to reach a new record level of 3299 bcm in 2011. This growth corresponds to the average recorded in the past-ten years. The Middle East recorded the strongest production growth in volume terms (+ 44 bcm), overtaking Asia Oceania to become the third largest producing regional market. North America and the CIS bolstered their standing as the leading producing regions, accounting for 25.6% and 24.9% of global output respectively. For the second consecutive year, the large majority of the volumetric growth in gas supply was led by three countries: the US, Qatar and Russia. In addition, China and Iran improved their rankings. Production of shale gas in the US pursued an exponential growth in 2011, under the impetus of the Haynesville and Marcellus fields. Shale gas represent 30% of the country's gas output today. The interest for unconventional resources

  20. Greater focus needed on methane leakage from natural gas infrastructure.

    Science.gov (United States)

    Alvarez, Ramón A; Pacala, Stephen W; Winebrake, James J; Chameides, William L; Hamburg, Steven P

    2012-04-24

    Natural gas is seen by many as the future of American energy: a fuel that can provide energy independence and reduce greenhouse gas emissions in the process. However, there has also been confusion about the climate implications of increased use of natural gas for electric power and transportation. We propose and illustrate the use of technology warming potentials as a robust and transparent way to compare the cumulative radiative forcing created by alternative technologies fueled by natural gas and oil or coal by using the best available estimates of greenhouse gas emissions from each fuel cycle (i.e., production, transportation and use). We find that a shift to compressed natural gas vehicles from gasoline or diesel vehicles leads to greater radiative forcing of the climate for 80 or 280 yr, respectively, before beginning to produce benefits. Compressed natural gas vehicles could produce climate benefits on all time frames if the well-to-wheels CH(4) leakage were capped at a level 45-70% below current estimates. By contrast, using natural gas instead of coal for electric power plants can reduce radiative forcing immediately, and reducing CH(4) losses from the production and transportation of natural gas would produce even greater benefits. There is a need for the natural gas industry and science community to help obtain better emissions data and for increased efforts to reduce methane leakage in order to minimize the climate footprint of natural gas. PMID:22493226

  1. Production of Substitute Natural Gas from Coal

    Energy Technology Data Exchange (ETDEWEB)

    Andrew Lucero

    2009-01-31

    The goal of this research program was to develop and demonstrate a novel gasification technology to produce substitute natural gas (SNG) from coal. The technology relies on a continuous sequential processing method that differs substantially from the historic methanation or hydro-gasification processing technologies. The thermo-chemistry relies on all the same reactions, but the processing sequences are different. The proposed concept is appropriate for western sub-bituminous coals, which tend to be composed of about half fixed carbon and about half volatile matter (dry ash-free basis). In the most general terms the process requires four steps (1) separating the fixed carbon from the volatile matter (pyrolysis); (2) converting the volatile fraction into syngas (reforming); (3) reacting the syngas with heated carbon to make methane-rich fuel gas (methanation and hydro-gasification); and (4) generating process heat by combusting residual char (combustion). A key feature of this technology is that no oxygen plant is needed for char combustion.

  2. The natural gas ducts and the ICMS; Os dutos de gas natural e o ICMS

    Energy Technology Data Exchange (ETDEWEB)

    Galvao, Rafael Silva Paes Pires; Silveira Neto, Otacilio dos Santos; Gomes, Carlos Roberto de Miranda [Rio Grande do Norte Univ., Natal, RN (Brazil). Programa de Recursos Humanos da ANP para o Setor Petroleo e Gas, PRH-36

    2005-07-01

    With the advent of the Constitutional Emendation no. 9/95 operated it the open of the industry of the oil and the natural gas for companies others that came to be contracted by the State. Ahead of the insertion of new players, the regulation of the sector was given for the Law (no. 9.478/97), as well for legal acts edited for the National Agency of the Oil - ANP. Meanwhile, the Oil norm little disciplined the industry of the natural gas that, for its peculiarities, imposes specific rules. In this context, the transport of the natural gas by means of ducts become prominent for the lack of debates on the correct form to classify them. The present work has for target to analyze the legal types instituted by the Law and for the ANP acts for the ducts, as form of if having a correct understanding of the matter. Thus, will reveal as each one of the adopted classifications can cause (or not) the incidence of the ICMS, or either, as the legal regimen of the gas-lines is correlated with the tax. (author)

  3. TREATMENT OF NATURAL GAS BY ADSORPTION OF CO2

    Directory of Open Access Journals (Sweden)

    Kristýna Hádková

    2015-12-01

    Full Text Available Apart from burning, one of the possible uses of natural gas is as a fuel for motor vehicles. There are two types of fuel from natural gas — CNG (Compressed Natural Gas or LNG (Liquefied Natural Gas. Liquefaction of natural gas is carried out for transport by tankers, which are an alternative to long-distance gas pipelines, as well as for transport over short distance, using LNG as a fuel for motor vehicles. A gas adjustment is necessary to get LNG. As an important part of the necessary adjustment of natural gas to get LNG, a reduction of CO2 is needed. There is a danger of the carbon dioxide freezing during the gas cooling. This work deals with the testing of adsorption removal of CO2 from natural gas. The aim of these measurements was to find a suitable adsorbent for CO2 removal from natural gas. Two different types of adsorbents were tested: activated carbon and molecular sieve. The adsorption properties of the selected adsorbents were tested and compared. The breakthrough curves for CO2 for both adsorbents were measured. The conditions of the testing were estimated according to conditions at a gas regulation station — 4.0MPa pressure and 8 °C temperature. Natural gas was simulated by model gas mixture during the tests. The breakthrough volume was set as the gas volume passing through the adsorber up to the CO2 concentration of 300 ml/m3 in the exhaust gas. The thermal and pressure desorption of CO2 from saturated adsorbents were also tested after the adsorption.

  4. 10 CFR 221.11 - Natural gas and ethane.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Natural gas and ethane. 221.11 Section 221.11 Energy DEPARTMENT OF ENERGY OIL PRIORITY SUPPLY OF CRUDE OIL AND PETROLEUM PRODUCTS TO THE DEPARTMENT OF DEFENSE UNDER THE DEFENSE PRODUCTION ACT Exclusions § 221.11 Natural gas and ethane. The supply of natural...

  5. Opportunities to reduce methane emissions in the natural gas industry

    Energy Technology Data Exchange (ETDEWEB)

    Cowgill, R.M. [Radian Corporation, Austin, TX (United States)

    1995-12-31

    The U.S. Environmental Protection Agency (EPA) and the Gas Research Institute (GRI) cofunded a project to quantify methane (CH{sub 4}) emissions from the U.S. natural gas industry. Methane, the major constituent of natural gas, is a potent greenhouse gas that is believed to increase the effect of global warming when released to the atmosphere. Reducing emissions from natural gas systems would lessen the greenhouse gas effect attributable to atmospheric CH{sub 4}. Further, mitigation methods to reduce emissions of natural gas, a marketable resource, could save money and increase energy efficiency. This presentation summarizes the major sources and quantity of methane being emitted to the atmosphere for all segments of the U.S. gas industry: production; processing; storage; transmission; and distribution. A description of how those emissions were determined is included here, as well as a discussion of which sources are potential candidates for reducing emissions. (author)

  6. Development of Natural Gas Chemical Engineering in China

    Institute of Scientific and Technical Information of China (English)

    Yuan Qingmin

    1996-01-01

    @@ The equivalent ratio of natural gas to oil has reached 0.73:1 worldwide by 1994. The Chinese output of natural gas and oil ranks the 22nd and 5th respectively in the world's oil and gas production. The quantity equivalent ratio of gas to oil in China is only 0.11:1, which can not meet the needs of future economic development. Since the beginning of the 1990s, the discovery and expansion of natural gas reserves in Sichuan, Shaanxi, Xinjiang and Hainan Provinces and offshore area have brought about a solid foundation for the rapid development of the country's natural gas industry. It is sure that a new era of the development of China's natural gas chemical engineering is coming.

  7. Abiotic and biotic factors associated with the presence of Anopheles arabiensis immatures and their abundance in naturally occurring and man-made aquatic habitats

    Directory of Open Access Journals (Sweden)

    Gouagna Louis

    2012-07-01

    Full Text Available Abstract Background Anopheles arabiensis (Diptera: Culicidae is a potential malaria vector commonly present at low altitudes in remote areas in Reunion Island. Little attention has been paid to the environmental conditions driving larval development and abundance patterns in potential habitats. Two field surveys were designed to determine whether factors that discriminate between aquatic habitats with and without An. arabiensis larvae also drive larval abundance, comparatively in man-made and naturally occurring habitats. Methods In an initial preliminary survey, a representative sample of aquatic habitats that would be amenable to an intensive long-term study were selected and divided into positive and negative sites based on the presence or absence of Anopheles arabiensis larvae. Subsequently, a second survey was prompted to gain a better understanding of biotic and abiotic drivers of larval abundance, comparatively in man-made and naturally occurring habitats in the two studied locations. In both surveys, weekly sampling was performed to record mosquito species composition and larval density within individual habitats, as well as in situ biological characteristics and physico-chemical properties. Results Whilst virtually any stagnant water body could be a potential breeding ground for An. arabiensis, habitats occupied by their immatures had different structural and biological characteristics when compared to those where larvae were absent. Larval occurrence seemed to be influenced by flow velocity, macrofauna diversity and predation pressure. Interestingly, the relative abundance of larvae in man-made habitats (average: 0.55 larvae per dip, 95%CI [0.3–0.7] was significantly lower than that recorded in naturally occurring ones (0.74, 95%CI [0.5–0.8]. Such differences may be accounted for in part by varying pressures that could be linked to a specific habitat. Conclusions If the larval ecology of An. arabiensis is in general very complex

  8. Economic balance sheet of a natural gas vehicle fleet

    International Nuclear Information System (INIS)

    Natural gas fuels for vehicles bear an important and variable additional cost which corresponds to the cost for compression. This short paper gives a cost-benefit comparative estimation of the m3 of natural gas cost when the FUELMAKER and the CIRRUS compressors are used, respectively. A comparative economic estimation between petrol and natural gas for vehicles is given for two Renault vehicles. (J.S.)

  9. Using Natural Gas for Vehicles: Comparing Three Technologies

    Energy Technology Data Exchange (ETDEWEB)

    2015-12-01

    Natural gas could be used as a transportation fuel, especially with the recent expansion of U.S. resource and production. This could mean burning natural gas in an internal combustion engine like most of the vehicles on the road today. Or, with the advanced vehicles now becoming available, other pathways are possible to use natural gas for personal vehicles. This fact sheet summarizes a comparison of efficiency and environmental metrics for three possible options.

  10. THE UK NATURAL GAS MARKET AND THE THEORY OF STORAGE

    OpenAIRE

    Preziosi, Davide

    2010-01-01

    ABSTRACT This dissertation analyses the UK natural gas market through the lens of the Theory of Storage. Unlike other storable commodities, natural gas does not corroborate conventional theory due to its particular storage characteristics and key role in power generation. Particular emphasis is given to the estimation of convenience yield, its determinants, and the month-of-the-year effect. Natural gas prices volatility and its relationship with storage levels is also estimated by mean...

  11. Greater focus needed on methane leakage from natural gas infrastructure

    OpenAIRE

    Alvarez, Ramón A.; Pacala, Stephen W.; James J. Winebrake; Chameides, William L.; Hamburg, Steven P.

    2012-01-01

    Natural gas is seen by many as the future of American energy: a fuel that can provide energy independence and reduce greenhouse gas emissions in the process. However, there has also been confusion about the climate implications of increased use of natural gas for electric power and transportation. We propose and illustrate the use of technology warming potentials as a robust and transparent way to compare the cumulative radiative forcing created by alternative technologies fueled by natural g...

  12. Natural Gas in China: Market evolution and strategy

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-07-01

    In 2007, Chinas natural gas consumption increased by 23.8% and attained 69.5 billion cubic metres (bcm) (NBS 2008). Thanks to this rapid increase, China became one of the world's top 10 countries in terms of natural gas consumption. Moreover, according to the IEA's World Energy Outlook 2008, China will become the top natural gas consuming country in the Asia-Pacific region, overtaking Japan by 2015.

  13. Biogas in the natural gas distribution network; Biogas til nettet

    Energy Technology Data Exchange (ETDEWEB)

    Kvist Jensen, T.

    2009-05-15

    With the Danish 'Thorsoe Biogas Plant' as reference case, an assessment of the possibility of using the existing natural gas distribution network for distributing biogas was carried out. Technologies for and cost of upgrading biogas to natural gas quality are presented. Furthermore, a socio-economic analysis has been performed, including the Danish financial conditions, the market models, and the role of the natural gas distribution companies.

  14. New Market Order Grows out of Natural Gas New Policy

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    @@ Natural gas new deal: more rationality in market The most important implication of the "Policy for the Natural Gas Utilization" is to set up an intangible "barrier" between suppliers and irrational consumers so as to check the unreasonable demand in the natural gas market and attain the purpose of "puttinq good material in the most suitable place and standardizing the market demand order with limited resources.

  15. ELECROGASDYNAMIC GENERATOR-EXPANDER FOR NATURAL GAS LIQUEFIERS

    OpenAIRE

    Бумагин, Г. И.; Бородин, Д. В.; Зиновьева, А. В.; Роханский, А. Е.; Рогальский, Е. И.

    2015-01-01

    The paper deals with various ways of obtaining liquefied natural gas (LNG) in liquefiers of different cold producing elements such as an expansion valve, a vortex tube and a turboexpander. It provides a brief analysis of their efficiency, advantages and disadvantages. The electrogasdynamic generator-expander as a cold producing element in natural gas liquefiers is proposed. Utilizing energy of compressed pipe-line natural gas should be taken into account. The circuits of the new stage and the...

  16. Land based use of natural gas - distribution solutions

    International Nuclear Information System (INIS)

    The report presents results from the project ''Landbasert bruk av naturgass - distribusjonsloesninger'' (Land based use of natural gas - distribution solutions). It describes the aims of the project, the political external conditions for the use of natural gas, some environmental profits by changing from petroleum and coal to natural gas, the Norwegian infrastructure, the optimisation of energy transport, strategic consequences of the introduction of LNG and the practical consequences of the Enova strategy

  17. Comparison of three methods for natural gas dehydration

    Institute of Scientific and Technical Information of China (English)

    Michal Netusil; Pavel Ditl

    2011-01-01

    This paper compares three methods for natural gas dehydration that are widely applied in industry:(1) absorption by triethylene glycol,(2)adsorption on solid desiccants and (3) condensation.A comparison is made according to their energy demand and suitability for use.The energy calculations are performed on a model where 105 Nm3/h water saturated natural gas is processed at 30 ℃.The pressure of the gas varies from 7 to 20 MPa.The required outlet concentration of water in natural gas is equivalent to the dew point temperature of - 10 ℃ at gas pressure of 4 MPa.

  18. IMPROVED NATURAL GAS STORAGE WELL REMEDIATION

    Energy Technology Data Exchange (ETDEWEB)

    James C. Furness; Donald O. Johnson; Michael L. Wilkey; Lynn Furness; Keith Vanderlee; P. David Paulsen

    2001-12-01

    This report summarizes the research conducted during Budget Period One on the project ''Improved Natural Gas Storage Well Remediation''. The project team consisted of Furness-Newburge, Inc., the technology developer; TechSavants, Inc., the technology validator; and Nicor Technologies, Inc., the technology user. The overall objectives for the project were: (1) To develop, fabricate and test prototype laboratory devices using sonication and underwater plasma to remove scale from natural gas storage well piping and perforations; (2) To modify the laboratory devices into units capable of being used downhole; (3) To test the capability of the downhole units to remove scale in an observation well at a natural gas storage field; (4) To modify (if necessary) and field harden the units and then test the units in two pressurized injection/withdrawal gas storage wells; and (5) To prepare the project's final report. This report covers activities addressing objectives 1-3. Prototype laboratory units were developed, fabricated, and tested. Laboratory testing of the sonication technology indicated that low-frequency sonication was more effective than high-frequency (ultrasonication) at removing scale and rust from pipe sections and tubing. Use of a finned horn instead of a smooth horn improves energy dispersal and increases the efficiency of removal. The chemical data confirmed that rust and scale were removed from the pipe. The sonication technology showed significant potential and technical maturity to warrant a field test. The underwater plasma technology showed a potential for more effective scale and rust removal than the sonication technology. Chemical data from these tests also confirmed the removal of rust and scale from pipe sections and tubing. Focusing of the underwater plasma's energy field through the design and fabrication of a parabolic shield will increase the technology's efficiency. Power delivered to the underwater plasma unit

  19. Advanced Natural Gas Reciprocating Engine(s)

    Energy Technology Data Exchange (ETDEWEB)

    Kwok, Doris; Boucher, Cheryl

    2009-09-30

    Energy independence and fuel savings are hallmarks of the nation’s energy strategy. The advancement of natural gas reciprocating engine power generation technology is critical to the nation’s future. A new engine platform that meets the efficiency, emissions, fuel flexibility, cost and reliability/maintainability targets will enable American manufacturers to have highly competitive products that provide substantial environmental and economic benefits in the US and in international markets. Along with Cummins and Waukesha, Caterpillar participated in a multiyear cooperative agreement with the Department of Energy to create a 50% efficiency natural gas powered reciprocating engine system with a 95% reduction in NOx emissions by the year 2013. This platform developed under this agreement will be a significant contributor to the US energy strategy and will enable gas engine technology to remain a highly competitive choice, meeting customer cost of electricity targets, and regulatory environmental standard. Engine development under the Advanced Reciprocating Engine System (ARES) program was divided into phases, with the ultimate goal being approached in a series of incremental steps. This incremental approach would promote the commercialization of ARES technologies as soon as they emerged from development and would provide a technical and commercial foundation of later-developing technologies. Demonstrations of the Phase I and Phase II technology were completed in 2004 and 2008, respectively. Program tasks in Phase III included component and system development and testing from 2009-2012. Two advanced ignition technology evaluations were investigated under the ARES program: laser ignition and distributed ignition (DIGN). In collaboration with Colorado State University (CSU), a laser ignition system was developed to provide ignition at lean burn and high boost conditions. Much work has been performed in Caterpillar’s DIGN program under the ARES program. This work

  20. Flow restriction of multicontrolled natural gas; Restritor de fluxo de gas natural microcontrolado

    Energy Technology Data Exchange (ETDEWEB)

    Cruz, Lauro C.; Reis, Antonio M.; Maldonado, Waldemar; Suzuqui, Moises [Universidade para o Desenvolvimento do Estado e da Regiao do Pantanal (UNIDERP), Campo Grande, MS (Brazil). Nucleo de Energia, Automacao e Controle; Scucuglia, Jose W.; Cortez, Marco A.A. [Universidade para o Desenvolvimento do Estado e da Regiao do Pantanal (UNIDERP), Campo Grande, MS (Brazil). Curso de Engenharia Eletrica; Teixeira, Marcelo C.M. [UNESP, Ilha Solteira, SP (Brazil). Faculdade de Engenharia Eletrica; Carrasco, Benjamim N. [PETROBRAS, Rio de Janeiro, RJ (Brazil)

    2004-07-01

    One of the specific cases of control in the operation of natural gas distribution is of the automatic restriction of the outflow due the violations of standards of draining of the natural gas in the ducts. With the objective to get a device of low cost, with national technology and high technological value aggregate, developed an electronic, microcontrolled, programmable device, and of low cost, that will function connected the sensors and valves of flow control, of form to monitor in real time the outflow of draining of the natural gas in the respective ducts and to restrict of automatic form the outflow, that necessary or always convenient. The developed hardware was conceived using micro controllers of high performance with capacity of reading of sensors of pressure, temperature and measurers of outflow. Had to a serial communication and the storage in memory of mass with 264 capacity of Kbytes is possible the pertinent visualization of graphs and reports to the behavior of the outflow and performance of the system. An internal RTC - Real Clock Teams, added to the hardware a clock and a calendar for acquisition of data in the schedule defined, as well as the possibility of unloading of the data through the telephonic line, using one embedded modem. (author)

  1. Juridical consequences of liberalization. Part 2. Natural Gas Law and reorganization of the gas utility

    International Nuclear Information System (INIS)

    The liberalization of the natural gas market in Europe has all kinds of juridical aspects. Not only with respect to new legislation (Natural Gas Law and Mining Law), but also changes in juridical structures of natural gas companies, caused by privatization or splitting up in a mains management company and a distribution company. In a series of articles lawyers of the Energy Working Group of Houthoff Buruma in The Hague, Netherlands, discuss the developments at the natural gas market. In this first part, attention will be paid to actual developments with respect to the new Natural Gas Law and the Mining Law in the Netherlands

  2. Consortium for Petroleum & Natural Gas Stripper Wells

    Energy Technology Data Exchange (ETDEWEB)

    Morrison, Joel

    2011-12-01

    The United States has more oil and gas wells than any other country. As of December 31, 2004, there were more than half a million producing oil wells in the United States. That is more than three times the combined total for the next three leaders: China, Canada, and Russia. The Stripper Well Consortium (SWC) is a partnership that includes domestic oil and gas producers, service and supply companies, trade associations, academia, the Department of Energy’s Strategic Center for Natural Gas and Oil (SCNGO) at the National Energy Technology Laboratory (NETL), and the New York State Energy Research and Development Authority (NYSERDA). The Consortium was established in 2000. This report serves as a final technical report for the SWC activities conducted over the May 1, 2004 to December 1, 2011 timeframe. During this timeframe, the SWC worked with 173 members in 29 states and three international countries, to focus on the development of new technologies to benefit the U.S. stripper well industry. SWC worked with NETL to develop a nationwide request-for-proposal (RFP) process to solicit proposals from the U.S. stripper well industry to develop and/or deploy new technologies that would assist small producers in improving the production performance of their stripper well operations. SWC conducted eight rounds of funding. A total of 132 proposals were received. The proposals were compiled and distributed to an industry-driven SWC executive council and program sponsors for review. Applicants were required to make a formal technical presentation to the SWC membership, executive council, and program sponsors. After reviewing the proposals and listening to the presentations, the executive council made their funding recommendations to program sponsors. A total of 64 projects were selected for funding, of which 59 were fully completed. Penn State then worked with grant awardees to issue a subcontract for their approved work. SWC organized and hosted a total of 14 meetings

  3. Debunking the myths: Natural gas and SO2 allowance solutions

    International Nuclear Information System (INIS)

    During the decade of the 1990's and beyond, natural gas is expected to be the fuel of choice for a significant portion of new generation capacity. Natural gas already enjoys a greater than 50% market share as a fuel source in the non-regulated cogeneration and Independent Power Producer market. With the new administration in Washington, increased environmental focus will likely increase the attractiveness of natural gas based capacity expansions. While these various issues may appear to contribute to making this decade, the decade for natural gas, there are a number of challenges that must be met if the natural gas and power generation industries are going to satisfy the ever increasing needs of the marketplace. These challenges include: (1) myths of natural gas supply availability, (2) transportation and operational coordination issues, (3) uncertainty of price and reliability, and (4) natural gas for NOx and SO2 compliance. The author believes that these challenges are actively being met and that there are existing solutions already being offered and incorporated into contracts by natural gas suppliers. The focus of this paper is how electric utilities need to become comfortable with the new natural gas industry and how services can be structured to meet these challenges of serving the electric market requirements

  4. The drivers behind the globalization of natural gas markets

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed El Hachemi Mazighi [Sonatrach Commercialisation, Algiers (Algeria)

    2006-06-15

    Today, the globalisation of natural gas markets is a topic much discussed amongst gas industry practitioners, policy makers and academics. If there is a consensus on a tendency towards the ''commoditisation'' of natural gas markets, there is less agreement on the certainty of the global approach to gas marketing. The aim of this paper is to untangle the main drivers behind the globalisation of natural gas markets, both on the demand and supply sides, and to discuss problems related to the market structure, such as price arbitrages and organised markets. The paper will conclude that the globalisation of natural gas markets cannot be approached as a deterministic problem and as a consequence, there is still no precise answer as to when the different regional gas markets will forge a global one. (author)

  5. The drivers behind the globalization of natural gas markets

    International Nuclear Information System (INIS)

    Today, the globalisation of natural gas markets is a topic much discussed amongst gas industry practitioners, policy makers and academics. If there is a consensus on a tendency towards the ''commoditisation'' of natural gas markets, there is less agreement on the certainty of the global approach to gas marketing. The aim of this paper is to untangle the main drivers behind the globalisation of natural gas markets, both on the demand and supply sides, and to discuss problems related to the market structure, such as price arbitrages and organised markets. The paper will conclude that the globalisation of natural gas markets cannot be approached as a deterministic problem and as a consequence, there is still no precise answer as to when the different regional gas markets will forge a global one. (author)

  6. Pressure Fluctuations in Natural Gas Networks caused by Gas-Electric Coupling

    OpenAIRE

    Chertkov, Misha; Fisher, Michael; Backhaus, Scott; Bent, Russell; Misra, Sidhant

    2015-01-01

    The development of hydraulic fracturing technology has dramatically increased the supply and lowered the cost of natural gas in the United States, driving an expansion of natural gas-fired generation capacity in several electrical inter-connections. Gas-fired generators have the capability to ramp quickly and are often utilized by grid operators to balance intermittency caused by wind generation. The time-varying output of these generators results in time-varying natural gas consumption rates...

  7. Methane hydrates and the future of natural gas

    Science.gov (United States)

    Ruppel, Carolyn

    2011-01-01

    For decades, gas hydrates have been discussed as a potential resource, particularly for countries with limited access to conventional hydrocarbons or a strategic interest in establishing alternative, unconventional gas reserves. Methane has never been produced from gas hydrates at a commercial scale and, barring major changes in the economics of natural gas supply and demand, commercial production at a large scale is considered unlikely to commence within the next 15 years. Given the overall uncertainty still associated with gas hydrates as a potential resource, they have not been included in the EPPA model in MITEI’s Future of Natural Gas report. Still, gas hydrates remain a potentially large methane resource and must necessarily be included in any consideration of the natural gas supply beyond two decades from now.

  8. Buying natural gas in the spot market: risks related to the natural gas industry globalization; Aquisicao de gas natural em bases 'spot': riscos associados a globalizacao da industria do gas natural

    Energy Technology Data Exchange (ETDEWEB)

    Mathias, Melissa Cristina [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil); Szklo, Alexandre Salem [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia (COPPE). Programa de Planejamento Energetico

    2008-07-01

    The growth of the international natural gas trade during the last decade resulted in the expectation that this product would be traded as a commodity. This expectation created a boom in the investments related to the commercialization of natural gas between borders, especially in the distinct segments of the chain of liquefied natural gas (LNG). Different agents launched themselves into liquefaction and regasification enterprises, and the ordering of ships also showed significant growth. Despite that, the natural gas market still cannot be considered global, and international gas transactions are primarily done within regional markets. This article investigates the challenges posed to the constitution of a global natural gas market. These challenges represent risks to the commercialization of this product in spot bases, for the agents that launch themselves into projects to export or import LNG to be commercialized through short term contracts in the international market for this product. (author)

  9. A Comparative Study of Liquefied Natural Gas: An Overview

    Directory of Open Access Journals (Sweden)

    Muhammad Khan Memon

    2014-05-01

    Full Text Available Natural gas is the world’s fastest growing fuel and being produced by many countries of the world in the commercial quantities. Increasing natural gas price and new development in the technologies, liquefied natural gas industry is economically attractive in the major gas exporting countries. Liquefied Natural Gas (LNG is an important energy source and continued to contribute the growth of natural gas industry. The new advance LNG technology is used for natural gas transportation for long distances. LNG can be transported by the large insulated cryogenic tankers at affordable cost. This study presents an overview of LNG liquidation facilities from natural gas as feed gas to LNG storage and transport. The main objective of the study is to highlight the current data for reviewers on LNG world market, mainly on LNG production, supply, demand, price and new development of LNG plants. The technology is growing gradually with increasing number of LNG consuming countries in overall the world. In the near future, LNG price may be affected by the advanced shale gas production in the United States of America and China. Australia becomes the world second largest exporter of LNG market after Qatar. Australia will increase LNG supply by 15 Bcf/day from 2014 and accounting for 25% of world LNG production by 2030. Global LNG production forecast will be reached 540 Bcm by 2020 and LNG trade will be reached 425 Mtpa by 2025. New countries are interested to enter in the LNG world market as importers and exporters.

  10. Multi-criteria evaluation of natural gas resources

    International Nuclear Information System (INIS)

    Geologically estimated natural gas resources are 500 Tcm. With the advance in geological science increase of estimated resources is expected. Natural gas reserves in 2000 have been proved to be around 165 Tcm. As it is known the reserves are subject to two constraints, namely: capital invested in the exploration and drilling technologies used to discover new reserves. The natural gas scarcity factor, i.e. ratio between available reserves and natural gas consumption, is around 300 years for the last 50 years. The new discovery of natural gas reserves has given rise to a new energy strategy based on natural gas. Natural gas utilization is constantly increasing in the last 50 years. With new technologies for deep drilling, we have come to know that there are enormous gas resources available at relatively low price. These new discoveries together wth high demand for the environment saving have introduced a new energy strategy on the world scale. This paper presents an evaluation of the potential natural gas utilization in energy sector. As the criteria in this analysis resource, economic, environmental, social and technological indicators are used. Among the potential options of gas utilization following systems are considered: Gas turbine power plant, combine cycle plant, CHP power plant, steam turbine gas-fired power plant, fuel cell power plant. Multi-criteria method was used for the assessment of potential options with priority given to the Resource, Economic and Social Indicators. Results obtained are presented in graphical form representing priority list of potential options under specific constraints in the priority of natural gas utilization strategy in energy sector. (author)

  11. Canadian natural gas market dynamics and pricing : an update

    International Nuclear Information System (INIS)

    This energy market assessment (EMA) report discusses natural gas price formation and describes the current functioning of regional gas markets in Canada. This EMA also describes the factors affecting the price of natural gas in Canada and examines natural gas markets on a region-by region basis. It is shown that as part of an integrated North American market, prices of natural gas in Canada reflect supply and demand factors in both Canada and the United States. During the low oil price period of 1997/1998, high demand for natural gas outpaced the supply because of low drilling and production activity by producers. In response to the increased demand and lower levels of supply, the price of natural gas increased significantly in 1999 and 2000. This was followed by a period of market adjustment. The importance of electronic trading systems for enhancing price discovery was also discussed with reference to how spot and futures markets allow market participants to manage price volatility. It was determined that Canadians have had access to natural gas on terms and conditions equal to export customers, and at equal pricing. In early November 2000, natural gas prices in North American began to rise due to low levels of natural gas in storage. The price shocks were felt unevenly across the North American market. In response to the high prices, consumers conserved energy use, and many industrial users switched to cheaper fuels. By the spring 2001, demand continued to decrease at a time when production was high. These factors contributed to the downward pressure on gas prices. This EMA discusses the structure of market transactions and market adjustment mechanisms. It is presented in the context of the approaching 2002/2003 winter season where the tightening between natural gas supply and demand is expected to result in price volatility. 28 figs

  12. Market prospective of natural gas 2010-2025; Prospectiva del mercado de gas natural 2010-2025

    Energy Technology Data Exchange (ETDEWEB)

    Diaz Bautista, Alejandro; Doniz Gonzalez, Virginia; Navarrete Barbosa, Juan Ignacio [Secretaria de Energia, Mexico, D.F. (Mexico)

    2010-07-01

    The Ministry of Energy, in compliance to Article 109 of the Natural Gas Regulations, publishes the Prospective natural gas market 2010-2025, which contains the most current information about the historical evolution and growth prospects of the domestic market country's natural gas and its role in the international context. This foresight is attached to the lines of action established in the National Energy Strategy, ratified by Congress in April 2010 in regard to strengthening the transportation infrastructure of natural gas, in order to ensure the supply of this fuel, therefore remains congruence with the instruments of power sector planning. The first one concerns the international panorama of natural gas in the different producing and consuming regions around the world. Chapter two provides a current perspective of those actions in the sector within the regulatory framework for natural gas in Mexico. The third chapter details the issues that occurred in the natural gas market during the period 1999-2009 and the fourth chapter discusses the expected evolution of demand and domestic supply of natural gas by 2025. [Spanish] La Secretaria de Energia, en el cumplimiento al Articulo 109 del Reglamento de Gas Natural, publica la Prospectiva del mercado de gas natural 2010-2025, la cual contiene la informacion mas actualizada acerca de la evolucion historica y las expectativas de crecimiento del mercado interno de gas natural del pais y su papel en el contexto internacional. Esta Prospectiva se apega a las lineas de accion establecidas en la Estrategia Nacional de Energia, ratificada por el Congreso en abril de 2010, en lo relativo a fortalecer la infraestructura de transporte de gas natural, con el fin de asegurar el suministro de este combustible, por lo cual se mantiene congruencia con los instrumentos de planeacion del sector energetico. La Prospectiva esta integrada por cuatro capitulos. El primero se refiere al panorama internacional del gas natural en las

  13. Corporate renewal in the natural gas industry

    International Nuclear Information System (INIS)

    The changes occurring at the gas-related operating companies of Nova Corporation of Alberta are reviewed. These companies include Nova Gas Transmission, Alberta's major gas pipeline company, which moved 3.8 trillion ft3 of gas in 1993; Nova Gas Services, a provider of gas management services to customers in Canada, USA, and Mexico; and Novacorp International, a joint venture investor in gas pipeline developments and consulting. The changes were made in response to increased competition in the gas transport industry following the deregulation process that started in the mid-1980s. A strategic direction based on growth rather than cost-cutting was chosen in order to make the Nova companies dominant players in North American gas supply. Nova's confidence in being able to implement such a strategy is based on four factors: abundant supply of gas and high potential for growth in the Western Canada Sedimentary Basin; steadily growing demand for gas; the development of a market-responsive industry; and the emergence of a truly North American market that includes Mexico. Business transformation teams were established with the task of finding out the right business design to meet customer needs and to provide exceptional service. Detailed plans for implementing the transformation are being completed, and a performance measurement system with clear targets has been developed to measure the success of the transformation

  14. The international natural gas market : the role for developing countries

    International Nuclear Information System (INIS)

    In the year 2000, natural gas accounted for 24 per cent of global energy consumption. This is expected to rise to 27 per cent in 2020 because natural gas has many advantages over other fossil fuels. It is abundant, there are 60 years of reserves, plus it is a clean fuel that is being used increasingly for electric power generation. The main focus of this paper is to assess the role that will be played by developing countries in the natural gas industry in terms of natural gas supply on a global scale in the coming 20 years. A review is presented of the current status of companies involved in gas production, gas marketing, and gas distribution via pipeline. Industrialized countries currently hold 47 per cent of the world reserves of natural gas, but they produce 73 per cent of commercialized gas and they consume 85 per cent. In contrast, developing countries hold the remaining 53 per cent of the world reserves of natural gas, produce 27 per cent, but only consume 15 per cent. Six of the 12 top world gas producers are developing countries. These include Algeria, Indonesia, Iran, Saudi Arabia, Malaysia, and Mexico. Of these 6, only Algeria, Indonesia and Malaysia export natural gas. A large proportion of recent gas discoveries have occurred in developing countries such as Nigeria, Congo, Algeria, Argentina, Bolivia, Brazil, and Trinity and Tobago. This paper also presented an analysis of risks facing international developers is presented. The risks include those associated with gas market volatility and pipelines in developing countries. 3 refs., 4 tabs

  15. Why natural gas for CO2 and climate control?

    International Nuclear Information System (INIS)

    The Intergovernmental Panel on Climate Change (IPCC) and the US Environmental Protection Agency (EPA) have suggested that increased use of natural gas is a possible strategy for reducing the potential for global warming. Carbon dioxide (CO2) contributes as much to global warming as all other greenhouse gases combined. During combustion, natural gas generates less CO2 per unit of energy produced than either coal or oil. On the basis of the amount of CO2 emitted, the potential for global warming could be reduced by substituting natural gas to coal or oil. However, since natural gas is primarily methane, a potent greenhouse gas, these emissions could reduce natural gas's inherent advantage of lower CO2 emissions. To address this issue and compare the fuels on an equivalent basis, it is necessary to account for emissions of all greenhouse gases throughout the fuel cycle of each fuel and to determine the impact of these gases on global warming. Gas Research Institute and EPA jointly funded a study to quantify methane emissions from the natural gas industry so that this information could be used as input to address the issue of the fuel switching strategy. The study found that the natural gas industry emitted 1.4% of natural gas production (314 Bscf of methane) to the atmosphere in 1992. Today, due to voluntary reductions from the gas industry, the percent leaked is even less. This 1992 amount has been analyzed over a broad range of global warming potentials, and the conclusion that fuel switching to natural gas reduces the potential for global warming is supported. The results of this study are presented in this paper

  16. Natural gas prices in the North American market

    International Nuclear Information System (INIS)

    The current high cost of natural gas is discussed, explaining it primarily in terms of high demand for electricity, coupled with a desire for cleaner-burning fuels, and more stringent environmental standards. The supply and demand equation is the key to natural gas prices, affected to some degree by considerations of gas available in storage, transportation costs, and the cost of other available energy choices such as coal, oil, nuclear and renewable energy sources. The emergence of a continent-wide market for natural gas is an another factor which, combined with a strong economy, makes it attractive for natural gas explorers and producers to increase drilling and production to record levels. According to estimates released by the National Energy Board, there is about 555 trillion cubic feet of remaining recoverable natural gas available in Canada, sufficient to meet demands at today's production levels for about 85 years. It should be noted, however, that much of this gas is found in deeper formations and in more distant frontier areas such as offshore Atlantic Canada, the Northwest Territories and the Yukon, making it more expensive to produce and to deliver it to markets. This suggests that natural gas prices are likely to remain high for some time, since these deeper and more distant natural gas formations are not economic at lower prices. 5 figs

  17. Assessing climate benefits of natural gas and coal electricity generation

    Science.gov (United States)

    Zhang, Xiaochun; Myhrvold, Nathan; Caldeira, Ken

    2015-04-01

    A transition from a system of coal electricity generation to near-zero emission electricity generation will be central to any effort to mitigate climate change. Natural gas is increasingly seen as a 'bridge fuel' for transitions form coal to near-zero emission energy sources. However, various studies use different metrics to estimate the climate impact of natural gas utilization, and led to differing conclusions. Thus, there is a need to identify the key factors affecting the climate effects of natural gas and coal electricity production, and to present these climate effects in as clear and transparent a way as possible. Here, we identify power plant efficiency and methane leakage rate as the key factors that explain most of the variance in greenhouse gas emissions by natural gas and coal power plants. We then develop a power plant GHG emission model, apply available life-cycle parameters to calculate associated CO2 and CH4 emissions and assess climate effects. Simple underlying physical changes can be obscured by abstract evaluation metrics, thus we base our discussion on temperature changes over time. We find that, during the period of plant operation, if there is substantial natural gas leakage, natural gas plants can produce greater near-term warming than a coal plant with the same power output. If leakage rates can be made to be low and efficiency high, natural gas plants can produce some reduction in near-term warming. However, without carbon capture and storage natural gas power plants cannot achieve the deep reductions that would be required to avoid substantial contribution to additional global warming. Achieving climate benefits from the use of natural gas depends on building high-efficiency natural gas plants, controlling methane leakage, and on developing a policy environment that assures a transition to future lower-emission technologies. For more information please see http://iopscience.iop.org/1748-9326/9/11/114022/article .

  18. Lifecycle greenhouse gas emissions of coal, conventional and unconventional natural gas for electricity generation

    Science.gov (United States)

    An analysis of the lifecycle greenhouse gas (GHG) emissions associated with natural gas use recently published by Howarth et al. (2011) stated that use of natural gas produced from shale formations via hydraulic fracturing would generate greater lifecycle GHG emissions than petro...

  19. Future considerations: Imperial finds new promise in natural gas

    International Nuclear Information System (INIS)

    After decades of having natural gas a minor part of its operations, Imperial Oil has reevaluated the importance of that resource within the company's strategy. A comprehensive business review of the industry was conducted in 1987 and prompted Imperial's subsidiary, Esso Resources Canada, to adopt the goal of becoming an industry leader in natural gas reserves, production, and marketing. Imperial's natural gas business started in 1921, when it assumed control of the company whose Turner Valley gas find sparked an oil rush in 1914. By the early 1940s, when Turner Valley was still Canada's only major oil field, Imperial was considering the manufacture of synthetic oil from natural gas, but then it discovered the first well of the Leduc oil boom in 1947. Imperial built the first gas conservation plant in Canada in 1950, but largely left other companies to develop gas fields. The deregulated gas market of the mid-1980s saw Imperial buying its first major acquisition in over 20 years, Sulpetro Ltd.; this boosted Imperial's annual gas production and its reserves by a third. A further purchase of Ocelot Industries increased overall gas production by another 20%. Imperial also made substantial gas finds in the Mackenzie Delta, and the company's holdings at Obed (Alberta) will add 8% to gas production

  20. Greenhouse gas emissions from high demand, natural gas-intensive energy scenarios

    International Nuclear Information System (INIS)

    Since coal and oil emit 70% and 30% more CO2 per unit of energy than natural gas (methane), fuel switching to natural gas is an obvious pathway to lower CO2 emissions and reduced theorized greenhouse warming. However, methane is, itself, a strong greenhouse gas so the CO2 advantages of natural gas may be offset by leaks in the natural gas recovery and supply system. Simple models of atmospheric CO2 and methane are used to test this hypothesis for several natural gas-intensive energy scenarios, including the work of Ausubel et al (1988). It is found that the methane leaks are significant and may increase the total 'greenhouse effect' from natural gas-intensive energy scenarios by 10%. Furthermore, because methane is short-lived in the atmosphere, leaking methane from natural gas-intensive, high energy growth scenarios effectively recharges the concentration of atmospheric methane continuously. For such scenarios, the problem of methane leaks is even more serious. A second objective is to explore some high demand scenarios that describe the role of methane leaks in the greenhouse tradeoff between gas and coal as energy sources. It is found that the uncertainty in the methane leaks from the natural gas system are large enough to consume the CO2 advantages from using natural gas instead of coal for 20% of the market share. (author)

  1. Development of Natural Gas Vehicle(NGV)Industry in China

    Institute of Scientific and Technical Information of China (English)

    Shi Baoheng

    1996-01-01

    @@ Present Situation of ChineseNGV Industry Natural gas has been used as vehicle fuel since 1950s in China.In the early time, the Iow pressure natural gas was filled in big rubber bags placed on the top of the vehicles. This kind of vehicles were inferior and had caused many problems.

  2. Shell and PetroChina Launch Changbei Natural Gas Project

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    @@ PetroChina and Shell China Exploration and Production Company Limited announced on May 17, 2005, that they would go ahead with the joint development of Changbei natural gas field in China's Shaanxi Province and Inner Mongolia Autonomous Region, the first onshore natural gas field project of Shell in China. The total development costs for the project will be about US$ 600 million.

  3. 7 CFR 2900.4 - Natural gas requirements.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 15 2010-01-01 2010-01-01 false Natural gas requirements. 2900.4 Section 2900.4 Agriculture Regulations of the Department of Agriculture (Continued) OFFICE OF ENERGY POLICY AND NEW USES, DEPARTMENT OF AGRICULTURE ESSENTIAL AGRICULTURAL USES AND VOLUMETRIC REQUIREMENTS-NATURAL GAS POLICY...

  4. Rapid Growth in China Natural Gas Demand and Production

    Institute of Scientific and Technical Information of China (English)

    Li Min

    2003-01-01

    @@ China's natural gas production will exceed 35 billion cubic meters in 2003,more than 7 percent up from last year,according to the estimation by the related department. There are now more than 60 enterprises engaged in natural gas production in China.

  5. Policies for technical innovations to promote natural gas market development

    International Nuclear Information System (INIS)

    Short-term and long-term perspectives of the natural gas market worldwide are discussed, covering demand and supply trends. Technologies determining the future of the natural gas market, and R and D needs for implementing future technological challenges are considered. (R.P.)

  6. Recent Development of China's Natural Gas Business

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    Natural gas will overtake coal as the most popular fuel after oil, with its share of the global energy mix increasing to more than 25 percent by 2035. Natural gas use in power generation, in particular, will be the main source of demand growth in the futu

  7. Natural gas imports and exports. Second quarter report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    The Office of Natural Gas and Petroleum Import and Export Activities prepares quarterly reports summarizing the data provided by companies authorized to import or export natural gas. Companies are required, as a condition of their authorizations, to file quarterly reports. This report is for the second quarter of 1997 (April through June).

  8. World resources of crude oil and natural gas

    Energy Technology Data Exchange (ETDEWEB)

    Masters, C.D.; Root, D.H.; Attanasi, E.D. (Geological Survey, Reston, VA (United States))

    1991-01-01

    An abstract is given of a paper presented at the World Petroleum Congress 1991 on the world estimates of identified reserves and undiscovered resources for crude oil, natural gas and natural gas liquids. Data are presented for Canada, Mexico, USA, South America, Western Europe, Eastern Europe, USSR, Africa, Middle East, Asia/Oceania and Antartica. (UK).

  9. Statistics of interstate natural gas pipeline companies, 1991

    International Nuclear Information System (INIS)

    This report, presents financial and operating information of all major interstate natural gas pipeline companies that operated in the United States during 1991. This report is used by the Federal Energy Regulatory Commission (FERC), State utility commissions, other government agencies, and the general public. The information is taken from FERC Form 2, ''Annual Report of Major Natural Gas Companies,'' as filed with FERC

  10. 77 FR 51795 - Coordination Between Natural Gas and Electricity Markets

    Science.gov (United States)

    2012-08-27

    ... Conferences) ( http://elibrary.ferc.gov/idmws/common/opennat.asp?fileID=13023450 ); 77 FR 41184 (July 12, 2012) ( http://www.gpo.gov/fdsys/pkg/FR-2012-07-12/pdf/2012-16997.pdf ). \\2\\ Coordination between Natural Gas... Energy Regulatory Commission Coordination Between Natural Gas and Electricity Markets Supplemental...

  11. Current Status and Prospects of Natural Gas Utilization in China

    Institute of Scientific and Technical Information of China (English)

    Shi Xin

    2002-01-01

    @@ 1 Overview and Current Status of Utilization of China's Natural Gas Resources Natural gas as a green fuel with low carbon content can comply with the trend in the epoch for development of non carbonaceous energy source, and has a lot of advantages such as its abundance in resources, convenience in applica tion and cost competitiveness. The application of natural gas as a premium fuel has become a focus pursued aggres sively by international players, and the perspectives for gas demand growth will be better than that for oil globally.

  12. Natural gas: a crucial role in national energy policy

    International Nuclear Information System (INIS)

    Developing Australia's natural gas market is a central consideration in the Council of Australian Governments' current Energy Market review and national energy policy. In its submission the Australian gas Association emphasised that given the significant economic, regional, environmental and energy-choice benefits of natural gas, a priority outcome of the national energy policy must be the continued development and expansion of Australia's natural gas industry. The review provides an opportunity for Australia to establish a more environmentally sustainable energy mix, meeting our growing demand for energy, while maintaining the industrial competitiveness and standard of living

  13. Natural gas imports and exports, third quarter report 2000

    Energy Technology Data Exchange (ETDEWEB)

    None

    2000-12-01

    The Office of Natural Gas and Petroleum Import and Export Activities prepares quarterly reports showing natural gas import and export activity. Companies are required to file quarterly reports. Attachments show the percentage of takes to maximum firm contract levels and the weighted average per unit price for each of the long-term importers during the 5 most recent quarters, volumes and prices of gas purchased by long-term importers and exporters during the past 12 months, volume and price data for gas imported on a short-term or spot market basis, and the gas exported on a short-term or spot market basis to Canada and Mexico.

  14. Natural gas imports and exports, fourth quarter report 1999

    Energy Technology Data Exchange (ETDEWEB)

    None

    2000-03-01

    The Office of Natural Gas and Petroleum Import and Export Activities prepares quarterly reports showing natural gas import and export activity. Companies are required to file quarterly reports. Attachments show the percentage of takes to maximum firm contract levels and the weighted average per unit price for each of the long-term importers during the five most recent quarters, volumes and prices of gas purchased by long-term importers and exporters during the past 12 months, volume and price data for gas imported on a short-term or spot market basis, and the gas exported on a short-term or spot market basis to Canada and Mexico.

  15. Natural gas imports and exports, first quarter report 2000

    Energy Technology Data Exchange (ETDEWEB)

    None

    2000-06-01

    The Office of Natural Gas and Petroleum Import and Export Activities prepares quarterly reports showing natural gas import and export activity. Companies are required to file quarterly reports. Attachments show the percentage of takes to maximum firm contract levels and the weighted average per unit price for each of the long-term importers during the 5 most recent reporting quarters, volumes and prices of gas purchased by long-term importers and exporters during the past 12 months, volume and price data for gas imported on a short-term or spot market basis, and the gas exported on a short-term or spot market basis to Canada and Mexico.

  16. Natural gas imports and exports, third quarter report 2000

    International Nuclear Information System (INIS)

    The Office of Natural Gas and Petroleum Import and Export Activities prepares quarterly reports showing natural gas import and export activity. Companies are required to file quarterly reports. Attachments show the percentage of takes to maximum firm contract levels and the weighted average per unit price for each of the long-term importers during the 5 most recent quarters, volumes and prices of gas purchased by long-term importers and exporters during the past 12 months, volume and price data for gas imported on a short-term or spot market basis, and the gas exported on a short-term or spot market basis to Canada and Mexico

  17. Natural gas imports and exports, first quarter report 2000

    International Nuclear Information System (INIS)

    The Office of Natural Gas and Petroleum Import and Export Activities prepares quarterly reports showing natural gas import and export activity. Companies are required to file quarterly reports. Attachments show the percentage of takes to maximum firm contract levels and the weighted average per unit price for each of the long-term importers during the 5 most recent reporting quarters, volumes and prices of gas purchased by long-term importers and exporters during the past 12 months, volume and price data for gas imported on a short-term or spot market basis, and the gas exported on a short-term or spot market basis to Canada and Mexico

  18. Natural gas imports and exports, fourth quarter report 1999

    International Nuclear Information System (INIS)

    The Office of Natural Gas and Petroleum Import and Export Activities prepares quarterly reports showing natural gas import and export activity. Companies are required to file quarterly reports. Attachments show the percentage of takes to maximum firm contract levels and the weighted average per unit price for each of the long-term importers during the five most recent quarters, volumes and prices of gas purchased by long-term importers and exporters during the past 12 months, volume and price data for gas imported on a short-term or spot market basis, and the gas exported on a short-term or spot market basis to Canada and Mexico

  19. Power industry and the environment IV. Natural gas

    International Nuclear Information System (INIS)

    A total of 26 contributions to the conference are presented, two of them in a Supplement. Seven contributions have been inputted in INIS, viz.: Natural gas: an environmentally friendly and energy saving fuel; Pollutants from the combustion of fuels; Consequences of increasing the consumption of gaseous fuels in national economy; Conversion of energy sources to gas consumption: effects on air quality; Experience of the Czech National Energy Inspectorate from the conversion of energy sources in the North-Bohemian region to gas fuel; Environmental consequences of gas fuel uses in towns; Natural gas: evaluation, control, and improvement of its environmental impacts; and Cogeneration units. (J.B.)

  20. Natural gas hydrates and the mystery of the Bermuda Triangle

    Energy Technology Data Exchange (ETDEWEB)

    Gruy, H.J.

    1998-03-01

    Natural gas hydrates occur on the ocean floor in such great volumes that they contain twice as much carbon as all known coal, oil and conventional natural gas deposits. Releases of this gas caused by sediment slides and other natural causes have resulted in huge slugs of gas saturated water with density too low to float a ship, and enough localized atmospheric contamination to choke air aspirated aircraft engines. The unexplained disappearances of ships and aircraft along with their crews and passengers in the Bermuda Triangle may be tied to the natural venting of gas hydrates. The paper describes what gas hydrates are, their formation and release, and their possible link to the mystery of the Bermuda Triangle.

  1. Development of Purification Technology of Natural Gas in Sichuan

    Institute of Scientific and Technical Information of China (English)

    Chen Genliang

    1995-01-01

    @@ Sichuan is an important base of natural gas production in China. Its output is about 70×108 m3/a which makes up over 40% of that in whole country. The composition of natural gas from various fields in Sichuan is different. Most of the gas contains H2S which reaches its summit of above 490 g/m3. It also contains CO2. According to the criterion, H2S conent in natural gas should be lower than 20 mg/m3, about 70%of the gas produced in Sichuan has to be purified before it comes into use for commercial purpose. Therefore it is of great significance for our natural gas industry to develop the purification technology.

  2. Advanced Natural Gas Reciprocating Engine(s)

    Energy Technology Data Exchange (ETDEWEB)

    Pike, Edward

    2014-03-31

    The objective of the Cummins ARES program, in partnership with the US Department of Energy (DOE), is to develop advanced natural gas engine technologies that increase engine system efficiency at lower emissions levels while attaining lower cost of ownership. The goals of the project are to demonstrate engine system achieving 50% Brake Thermal Efficiency (BTE) in three phases, 44%, 47% and 50% (starting baseline efficiency at 36% BTE) and 0.1 g/bhp-hr NOx system out emissions (starting baseline NOx emissions at 2 – 4 g/bhp-hr NOx). Primary path towards above goals include high Brake Mean Effective Pressure (BMEP), improved closed cycle efficiency, increased air handling efficiency and optimized engine subsystems. Cummins has successfully demonstrated each of the phases of this program. All targets have been achieved through application of a combined set of advanced base engine technologies and Waste Heat Recovery from Charge Air and Exhaust streams, optimized and validated on the demonstration engine and other large engines. The following architectures were selected for each Phase: Phase 1: Lean Burn Spark Ignited (SI) Key Technologies: High Efficiency Turbocharging, Higher Efficiency Combustion System. In production on the 60/91L engines. Over 500MW of ARES Phase 1 technology has been sold. Phase 2: Lean Burn Technology with Exhaust Waste Heat Recovery (WHR) System Key Technologies: Advanced Ignition System, Combustion Improvement, Integrated Waste Heat Recovery System. Base engine technologies intended for production within 2 to 3 years Phase 3: Lean Burn Technology with Exhaust and Charge Air Waste Heat Recovery System Key Technologies: Lower Friction, New Cylinder Head Designs, Improved Integrated Waste Heat Recovery System. Intended for production within 5 to 6 years Cummins is committed to the launch of next generation of large advanced NG engines based on ARES technology to be commercialized worldwide.

  3. Research and Development Concerning Coalbed Natural Gas

    Energy Technology Data Exchange (ETDEWEB)

    William Ruckelshaus

    2008-09-30

    The Powder River Basin in northeastern Wyoming is one of the most active areas of coalbed natural gas (CBNG) development in the western United States. This resource provides clean energy but raises environmental concerns. Primary among these is the disposal of water that is co-produced with the gas during depressurization of the coal seam. Beginning with a few producing wells in Wyoming's Powder River Basin (PRB) in 1987, CBNG well numbers in this area increased to over 13,600 in 2004, with projected growth to 20,900 producing wells in the PRB by 2010. CBNG development is continuing apace since 2004, and CBNG is now being produced or evaluated in four other Wyoming coal basins in addition to the PRB, with roughly 3500-4000 new CBNG wells permitted statewide each year since 2004. This is clearly a very valuable source of clean fuel for the nation, and for Wyoming the economic benefits are substantial. For instance, in 2003 alone the total value of Wyoming CBNG production was about $1.5 billion, with tax and royalty income of about $90 million to counties, $140 million to the state, and $27 million to the federal government. In Wyoming, cumulative CBNG water production from 1987 through December 2004 was just over 380,000 acre-feet (2.9 billion barrels), while producing almost 1.5 trillion cubic feet (tcf) of CBNG gas statewide. Annual Wyoming CBNG water production in 2003 was 74,457 acre-feet (577 million barrels). Total production of CBNG water across all Wyoming coal fields could total roughly 7 million acre-feet (55.5 billion barrels), if all of the recoverable CBNG in the projected reserves of 31.7 tcf were produced over the coming decades. Pumping water from coals to produce CBNG has been designated a beneficial water use by the Wyoming State Engineer's Office (SEO), though recently the SEO has limited this beneficial use designation by requiring a certain gas/water production ratio. In the eastern part of the PRB where CBNG water is generally of good

  4. Experimental Study of Gas Explosions in Hydrogen Sulfide-Natural Gas-Air Mixtures

    Directory of Open Access Journals (Sweden)

    André Vagner Gaathaug

    2014-01-01

    Full Text Available An experimental study of turbulent combustion of hydrogen sulfide (H2S and natural gas was performed to provide reference data for verification of CFD codes and direct comparison. Hydrogen sulfide is present in most crude oil sources, and the explosion behaviour of pure H2S and mixtures with natural gas is important to address. The explosion behaviour was studied in a four-meter-long square pipe. The first two meters of the pipe had obstacles while the rest was smooth. Pressure transducers were used to measure the combustion in the pipe. The pure H2S gave slightly lower explosion pressure than pure natural gas for lean-to-stoichiometric mixtures. The rich H2S gave higher pressure than natural gas. Mixtures of H2S and natural gas were also studied and pressure spikes were observed when 5% and 10% H2S were added to natural gas and also when 5% and 10% natural gas were added to H2S. The addition of 5% H2S to natural gas resulted in higher pressure than pure H2S and pure natural gas. The 5% mixture gave much faster combustion than pure natural gas under fuel rich conditions.

  5. Globalization of the natural gas industry

    International Nuclear Information System (INIS)

    After presenting a panorama of the international gas industry, a description of changes affecting the world gas industry, and an analysis of how environment-related demands give gas an opportunity to become the leading source of energy in the 21. century, Mr Jacques Deyirmendjan, Senior Executive-Vice-President of Gaz de France, tells his interviewer how French industry and national companies are designing their strategies to respond effectively to these changes

  6. North American Natural Gas Markets: Selected technical studies

    International Nuclear Information System (INIS)

    The Energy Modeling Forum (EMF) was established in 1976 at Stanford University to provide a structural framework within which energy experts, analysts, and policymakers could meet to improve their understanding of critical energy problems. The ninth EMF study, North American Natural Gas Markets, was conducted by a working group comprised of leading natural gas analysts and decision-makers from government, private companies, universities, and research and consulting organizations. The EMF 9 working group met five times from October 1986 through June 1988 to discuss key issues and analyze natural gas markets. This third volume includes technical papers that support many of the conclusions discussed in the EMF 9 summary report (Volume 1) and full working group report (Volume 2). These papers discuss the results from the individual models as well as some nonmodeling analysis related to US natural gas imports and industrial natural gas demand. Individual papers have been processed separately for inclusion in the Energy Science and Technology Database

  7. North American Natural Gas Markets: Selected technical studies

    Energy Technology Data Exchange (ETDEWEB)

    Huntington, H.G.; Schuler, G.E. (eds.)

    1989-04-01

    The Energy Modeling Forum (EMF) was established in 1976 at Stanford University to provide a structural framework within which energy experts, analysts, and policymakers could meet to improve their understanding of critical energy problems. The ninth EMF study, North American Natural Gas Markets, was conducted by a working group comprised of leading natural gas analysts and decision-makers from government, private companies, universities, and research and consulting organizations. The EMF 9 working group met five times from October 1986 through June 1988 to discuss key issues and analyze natural gas markets. This third volume includes technical papers that support many of the conclusions discussed in the EMF 9 summary report (Volume 1) and full working group report (Volume 2). These papers discuss the results from the individual models as well as some nonmodeling analysis related to US natural gas imports and industrial natural gas demand. Individual papers have been processed separately for inclusion in the Energy Science and Technology Database.

  8. North American Natural Gas Markets: Selected technical studies. Volume 3

    Energy Technology Data Exchange (ETDEWEB)

    Huntington, H.G.; Schuler, G.E. [eds.

    1989-04-01

    The Energy Modeling Forum (EMF) was established in 1976 at Stanford University to provide a structural framework within which energy experts, analysts, and policymakers could meet to improve their understanding of critical energy problems. The ninth EMF study, North American Natural Gas Markets, was conducted by a working group comprised of leading natural gas analysts and decision-makers from government, private companies, universities, and research and consulting organizations. The EMF 9 working group met five times from October 1986 through June 1988 to discuss key issues and analyze natural gas markets. This third volume includes technical papers that support many of the conclusions discussed in the EMF 9 summary report (Volume 1) and full working group report (Volume 2). These papers discuss the results from the individual models as well as some nonmodeling analysis related to US natural gas imports and industrial natural gas demand. Individual papers have been processed separately for inclusion in the Energy Science and Technology Database.

  9. Migration and accumulation of natural gas in Kela-2 gas field

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    With the guidance of petroleum system theory, the dynamic filling history of natural gas in the Kela-2 gas field is analyzed by using a large suite of oil and gas geochemistry evidence in combination with the tectonic evolution history and reservoir evolution history. It concludes that the Kela-2 gas field was formed by capturing the gas generated during the main gas generation period, while the late kerogen cracking gas contributed a little to the gas field. It suggests that the gas generated during the main gas generation accumulated in the early-formed wide-gentle anticline, which is the necessary condition for natural gas to re-migrate and enrich late to form the large-scale gas reservoir. The newest research shows that the filling history of gas in the Dabei-1, Yinan-2, Tuziluoke and Dina-2 gas fields was related with the natural gas accumulation in the early wide- gentle anticline as well as late re-migration and enrichment of natural gas.

  10. South American natural gas trade: the road ahead

    International Nuclear Information System (INIS)

    The current state and future prospects for the natural gas sector in South America were examined, including the ability of the natural gas resource base to meet potential gas demand in the Southern Cone region (Argentina, Bolivia, Brazil, Chile, Paraguay, Peru and Uruguay). The physical, legal, fiscal, regulatory and political developments in the hydrocarbon-producing countries in the Southern Cone region were reviewed. For example, in Colombia, the domestic gas market potential and resource base argue in favor of a closed domestic gas sector development policy. In contrast, Venezuela, a country that already has a well developed domestic gas sector, is pursuing offshore market development through both petrochemical and liquefied natural gas initiatives. Following a comprehensive description of individual gas resources, markets and market potential, and legal, institutional and political environments, the study reports on a number of alternative scenarios concerning natural gas integration in the Southern Cone region, developed by using the South America Natural Gas (SANG) model. The following scenarios were reviewed: (1) closure and confinement, (2) integration and expansion, and (3) gains from technology. It was estimated that potential gas demand in the Southern Cone region is projected to grow from 900 billion cubic feet per year in 1994 to over 5.3 trillion cubic feet in 2021. The majority of growth is expected in Brazil. The overall conclusion of the study was that regardless of the scenario, Southern Core gas sector integration has strong economic and commercial merit, and that the natural gas resource base in the Southern Cone, as represented by the gas reserves database, is more than adequate to service potential demand. 100 refs., 50 tabs., 54 figs

  11. Rising natural gas prices : impacts on U.S. industries

    International Nuclear Information System (INIS)

    The impact of rising natural gas prices on the United States economy and domestic industries was examined in this PowerPoint presentation. Industry comments were solicited on the effects of natural gas prices on their business performance from 2000 to 2004 in order to collect data, and macroeconomic impacts were determined through the use of an inter-industry model. Results of the survey and subsequent model suggested that in 2000 and 2001, real gross domestic product (GDP) growth was depressed by 0.2 per cent because of higher natural gas prices. Between 2000 and 2004, the civilian workforce was lower by 489,000 jobs. It was determined that nitrogenous fertilizer manufacturing was the most gas intensive industry. The results indicated that higher natural gas prices were an additional burden on manufacturing industries, and that the economic performance of natural gas intensive industries was poor between 2000-2004. However, it was just as poor between 1997-2000, when gas prices were relatively low and stable. Natural gas intensive industries passed along price increases in their products to their downstream consumers. Despite job losses, wages in natural gas intensive industries were higher and grew faster than in the rest of the manufacturing industry in the 2000-2004 period. Although capital expenditures declined between 2000 to 2004, they declined more rapidly in the 1997-2000 period. There has been no evidence of a decline in international competitiveness of natural gas intensive industries. It was concluded that rising natural gas prices have had a significant impact on the growth of the economy and workforce. tabs., figs

  12. Natural gas origins of large and medium-scale gas fields in China sedimentary basins

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    China sedimentary basins present abundant natural gas resource thanks to its unique geological settings.Marine highly-matured hydrocarbon source rocks,widespread coal-measure strata and low temperature Quaternary saline strata,etc.,indicate the wide foreground of China natural gas resources. Up to now,most of the petroliferous basins have been discovered to have wholesale natural gas accumulation from Precambrian,Paleozoic,Mesozoic to Cenozoic in the east,the central,the west and the coast of China.These large and medium-scale gas reservoirs are mainly composed of hydrocarbon gas with big dry coefficient,tiny non-hydrocarbon,wide carbon isotope distribution and varying origin types,the hydrocarbon gas includes coal-formed gas,oil-formed gas,biogenic gas and inorganic gas, etc.Coal-formed gas is the main type of China natural gas resources,in particular several explored large-scale gas fields(>100 billion cubic meter)of Kela 2,Sulige and Daniudi,etc.,they all belong to coal-formed gas fields or the gas fields consisting mostly of coal-formed gas.Oil-formed gas is also abundant in China marine basins,for example marine natural gas of Sichuan Basin generated from crude oil cracking gas.Primary and secondary biogenic gas fields were discovered respectively in the Qaidam Basin and Western Slope of Songliao Basin.In addition,inorganic gases are mainly distributed in the eastern China,in particular the Songliao Basin with abundant carbon dioxide accumulation,indicating that the eastern China present large exploration potential of inorganic gas.

  13. Conversion of diesel engines for natural gas engines; Conversao de motores diesel para gas natural

    Energy Technology Data Exchange (ETDEWEB)

    Mauro Junior, Leonardo; Almeida, Silvio Carlos Anibal de [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil)], e-mail: leonardomauro@terra.com.br, e-mail: silvio@gmail.com

    2006-07-01

    The present project approach the conversion of a Scania engine DSI 11, originally Diesel cycle, used for stationary generation, to operate at a Otto cycle natural gas. The conversion dedicated to Otto cycle allows a better performance at a lower cost generation to the consumer providing an energy economy when operating at a peak hours compared with the fees charged by the distributors. In the power range of this engine (231 kw), there is no other engine available at the brazilian market. An economic study of the conversion shows that the cost is significantly less than the importation of a similar engine. (author)

  14. Natural gas supply-demand situation and prospect in China

    Directory of Open Access Journals (Sweden)

    Zhang Kang

    2014-10-01

    Full Text Available Since the 21st century, the reserves of conventional natural gas as well as tight gas in China have been decreasing and their annual production growth rates have been generally reduced from double-digit to one-digit number of percentage. It is predicted that natural gas production will possibly reach up to 134 billion m3 in 2015; and if the marketable rate is 90%, the gas supply volume will probably be 120.6 billion m3 in 2015. Since shale gas development just has started currently, about 0.6 billion m3 of the marketable shale gas will be added to gas supply in 2015. The CBM gas production especially such gas consumption has long been lagged behind the expected targets, and what's more, flaws exist in their statistics; on this basis, it is assumed that the marketable CBM gas will be 4 billion Nm 3 in 2015. With so many achievements made in the coal gas exploitation, it is forecasted that about 5.5 billion m3 coal gas will be added to gas supply in 2015. In total, the domestic fuel gas supply is roughly estimated to be 131 billion m3 in 2015; if the gas consumption in the year is presumably 231 billion m3, about 100 billion m3 gas will then be imported in 2015. From the presumable actual imports of piped gas and LNG terminals, there is still a gap of 27–30 billion m3 in 2015. Therefore, it is suggested that more LNG receiving terminals be put into production in advance and the increment of import gas be needed from Middle Asia. Also, it is proposed that the statistics be completed on the practical marketable fuel gas quantity in the fundamental study of energy planning in the National 13th Five-Year Plan. In conclusion, the economic system reform process is the key to the further development of oil and gas industry in China.

  15. Annual survey on the natural gas market: results for 2013

    International Nuclear Information System (INIS)

    Illustrated by graphs and tables, this publication presents and discusses data regarding the French natural gas market in 2013: origin of the consumed gas and share of the national production, evolution of the inlet-outlet ratio for gas-pipe and gas harbour terminals in France, adjustment of resources to demand in terms of jobs, production, imports and storage, evolution of stored quantities, evolution of consumption, evolution of consumption per sector since 2007, regional supplies in 2012 and 2013

  16. 18 CFR 382.202 - Annual charges under the Natural Gas Act and Natural Gas Policy Act of 1978 and related statutes.

    Science.gov (United States)

    2010-04-01

    ... the Natural Gas Act and Natural Gas Policy Act of 1978 and related statutes. 382.202 Section 382.202... GENERAL RULES ANNUAL CHARGES Annual Charges § 382.202 Annual charges under the Natural Gas Act and Natural Gas Policy Act of 1978 and related statutes. The adjusted costs of administration of the natural...

  17. A proposal for developing natural gas in Peru; Uma proposta de acao para o desenvolvimento do gas natural no Peru

    Energy Technology Data Exchange (ETDEWEB)

    Carlos, Maria E.M. [Universidade Federal, Rio de Janeiro, RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia

    1996-12-31

    The discovery of natural gas in the South region of Peru (Camisea) has shown that reserves are four times petroleum reserves. A study that would contribute to the economical development of the South region of Peru for exploiting natural gas is proposed. 6 refs.

  18. Overview of natural gas in Rio Grande do Norte, Brazil; Panorama do gas natural no Rio Grande do Norte

    Energy Technology Data Exchange (ETDEWEB)

    Teixeira, Pedro Helio Gomes [Universidade Federal do Rio Grande do Norte (GREEN/UFRN), Natal, RN (Brazil). Centro de Tecnologia. Grupo de Estudos Energeticos

    2008-07-01

    This work draws a picture of what the natural gas means to Rio Grande do Norte in its quantitative dimension, expressed in the numbers and reserve indicators, production and structure of consume. In another dimension, it broaches the processes of energetic substitution by the natural gas in the state energetic matrix. (author)

  19. Research and Development Concerning Coalbed Natural Gas

    Energy Technology Data Exchange (ETDEWEB)

    William Ruckelshaus

    2008-09-30

    The Powder River Basin in northeastern Wyoming is one of the most active areas of coalbed natural gas (CBNG) development in the western United States. This resource provides clean energy but raises environmental concerns. Primary among these is the disposal of water that is co-produced with the gas during depressurization of the coal seam. Beginning with a few producing wells in Wyoming's Powder River Basin (PRB) in 1987, CBNG well numbers in this area increased to over 13,600 in 2004, with projected growth to 20,900 producing wells in the PRB by 2010. CBNG development is continuing apace since 2004, and CBNG is now being produced or evaluated in four other Wyoming coal basins in addition to the PRB, with roughly 3500-4000 new CBNG wells permitted statewide each year since 2004. This is clearly a very valuable source of clean fuel for the nation, and for Wyoming the economic benefits are substantial. For instance, in 2003 alone the total value of Wyoming CBNG production was about $1.5 billion, with tax and royalty income of about $90 million to counties, $140 million to the state, and $27 million to the federal government. In Wyoming, cumulative CBNG water production from 1987 through December 2004 was just over 380,000 acre-feet (2.9 billion barrels), while producing almost 1.5 trillion cubic feet (tcf) of CBNG gas statewide. Annual Wyoming CBNG water production in 2003 was 74,457 acre-feet (577 million barrels). Total production of CBNG water across all Wyoming coal fields could total roughly 7 million acre-feet (55.5 billion barrels), if all of the recoverable CBNG in the projected reserves of 31.7 tcf were produced over the coming decades. Pumping water from coals to produce CBNG has been designated a beneficial water use by the Wyoming State Engineer's Office (SEO), though recently the SEO has limited this beneficial use designation by requiring a certain gas/water production ratio. In the eastern part of the PRB where CBNG water is generally of good

  20. Natural gas in Denmark - from monopoly to competition

    International Nuclear Information System (INIS)

    For years the Danish natural gas companies have been protected against competition. Now, however, as in other countries the natural gas market in Denmark is in a process of liberalisation. This implies that new market players now get the opportunity to go into the market and challenge the Danish gas companies, that the customers can freely choose their gas supplier, and that open access to the natural gas grid will be given to everybody interested in transporting gas. In this study we have investigated the following aspects of liberalising the Danish gas market: Are the changes as seen in market organisation in accordance with the guidelines of liberalisation?; Have Danish gas prices been adapted to the liberalised gas market?; What will be the consequences of harmonising energy taxes?; What kind of regulation is needed?; How is the Danish gas market different from the European gas market? By applying a general equilibrium model, ENERGAS, we have analysed the effects for the Danish gas market of carrying through a tax harmonisation. Two different scenarios have been analysed: 1. To introduce the energy tax proposal made by the Commission in the autumn of 2002; 2. To impose green taxes equivalent to the environmental costs by using energy. (BA)

  1. Natural gas : the green fuel of the future

    International Nuclear Information System (INIS)

    Studies have shown that the demand for crude oil exceeds supply and other energy sources are needed to met the shortfall. Natural gas and coal are the only 2 current energy sources that have the global capacity to, by themselves, address increased energy demand in a timely manner. Both these resources have been used primarily for power generation and heating. This paper discussed the transition that will likely occur in which natural gas and coal will be used increasingly as transportation fuels. It presented data comparing the environmental impact of using methane versus coal and proposed natural gas as the future green fuel. A strengths, weaknesses, opportunities and threats (SWOT) analysis was conducted to obtain a better understanding of the current Canadian natural gas market. The strengths include recent discoveries in the Horn River Basin and the Montney plays in British Columbia which are expected to triple natural gas production within the next decade. The weaknesses include an oversupply of gas compared to current demand; gas prices are currently in a range that are barely economic for many shale plays; and Canadian gas is disadvantaged for sales in the United States by additional pipeline transportation costs. The opportunities include global export opportunities of liquefied natural gas (LNG) through the proposed Kitimat LNG export facility and others off the west coast of Canada. The threat facing natural gas development is the strong competition for market share with coal. However, emissions data and energy efficiencies provide evidence to support the choice to use natural gas. 5 refs., 2 tabs., 26 figs.

  2. Natural gas : the green fuel of the future

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, R.S.; Harbinson, S.W. [Halliburton Energy Services, Calgary, AB (Canada); Tertzakian, P. [ARC Financial, Calgary, AB (Canada); Wall, T.; Wilkinson, J. [Apache Canada Ltd., Calgary, AB (Canada); Graham, M. [EnCana Corp., Calgary, AB (Canada); Young, P.J. [DYAD Consulting, Cambridge, MA (United States)

    2010-07-01

    Studies have shown that the demand for crude oil exceeds supply and other energy sources are needed to met the shortfall. Natural gas and coal are the only 2 current energy sources that have the global capacity to, by themselves, address increased energy demand in a timely manner. Both these resources have been used primarily for power generation and heating. This paper discussed the transition that will likely occur in which natural gas and coal will be used increasingly as transportation fuels. It presented data comparing the environmental impact of using methane versus coal and proposed natural gas as the future green fuel. A strengths, weaknesses, opportunities and threats (SWOT) analysis was conducted to obtain a better understanding of the current Canadian natural gas market. The strengths include recent discoveries in the Horn River Basin and the Montney plays in British Columbia which are expected to triple natural gas production within the next decade. The weaknesses include an oversupply of gas compared to current demand; gas prices are currently in a range that are barely economic for many shale plays; and Canadian gas is disadvantaged for sales in the United States by additional pipeline transportation costs. The opportunities include global export opportunities of liquefied natural gas (LNG) through the proposed Kitimat LNG export facility and others off the west coast of Canada. The threat facing natural gas development is the strong competition for market share with coal. However, emissions data and energy efficiencies provide evidence to support the choice to use natural gas. 5 refs., 2 tabs., 26 figs.

  3. Natural gas pipelines: emerging market challenges

    International Nuclear Information System (INIS)

    The Australian gas industry has come a long way in recent years. Most of the formerly government owned gas transmission, distribution and retail businesses have been privatised; major utility companies have been fundamentally restructured; the convergence of energy markets has seen many companies stepping outside the boundaries of their traditional businesses; and national competition policy has led to profound changes in the regulatory landscape. Yet despite the magnitude of these changes, it is clear that the journey of competitive reform has a long way to go. The Australian Gas Association's Industry Development Strategy identifies the potential for gas to increase its share of Australia's primary energy market, from around 18 percent at present to 22 percent by 2005, and 28 percent by 2015. Our analysis, using ACIL's Eastern Australian Gas Model, clearly shows that in the absence of major new sources of gas, these challenging targets will not be met and, indeed, there will be an increasing supply shortfall. However, with the emergence of new competitive supply sources such as Papua New Guinea and the Timor Sea, our modelling suggests that most of this demand can be satisfied at prices which will maintain gas' competitiveness in energy markets. Such developments provide both opportunities and challenges for the industry. In particular, they will profoundly affect the owners and operators of transmission pipeline systems. (Authors)

  4. Projections of demand of natural gas in Mexico; Proyecciones de demanda de gas natural en Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Quintanilla Martinez, Juan [Programa Universitario de Energia, UNAM (Mexico)

    1996-07-01

    The projections of demand of energy for Mexico, in the global and regional scope, for period 1992-2020 are presented. The projections are based on the use of a simulation model built in the University Program of Energy of the Universidad Nacional Autonoma de Mexico (UNAM), which allows to project the demand in the short and medium term of the primary and final energy. Projections of the demands of energy or for fuels by sectors and subsectors are obtained in accordance with different scenarios of growth. Particularly the demand of natural gas is analyzed, both, as energy and as raw material for the petrochemical industry, and as fuel oil, under different scenarios of economic growth and policies of environmental character. [Spanish] Se presentan las proyecciones de demanda de energia para Mexico, en el ambito global y regional, para el periodo 1992-2020. Las proyecciones estan basadas en el uso de un modelo de simulacion construido en el Programa Universitario de Energia de la Universidad Nacional Autonoma de Mexico (UNAM), el cual permite proyectar la demanda de energia primaria y final en el corto y mediano plazos. Se obtienen proyecciones de las demandas de energia por sectores y subsectores o por combustibles de acuerdo con diferentes escenarios de crecimiento. En particular se analiza la demanda de gas natural, tanto como energetico como materia prima para la petroquimica, y combustoleo bajo diferentes escenarios de crecimiento economico y politicas de caracter ambiental.

  5. China to Regulate Natural Gas Import from Mid-Year

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    @@ The Chinese government plans to introduce new measures on June 10 to regulate imports of natural gas in order to protect its three major gas importers from intense domestic competition. The Ministry of Commerce said late-May that the move would end the chaotic competition between China's big-three oil and gas companies - China National Petroleum Corporation (CNPC), China Petrochemical Corporation (Sinopec) and China National Offshore Oil Corporation (CNOOC) - in the purchase of gas,which has helped overseas exporters raise prices. The competition has been blamed on the lax import system for natural gas that is currently in place. Enterprises, at present, do not have to satisfy any conditions to obtain import permits for natural gas. After June 10, each application for an import permit will be examined and approved.

  6. A trend discontinuity: The mystery of natural gas prices

    International Nuclear Information System (INIS)

    For the last fifteen years, the natural gas price forecasting experts have had a terrible record of forecasting future natural gas prices. (In the early 80's, the gas price was forecasted to be over $10/MMBtu in the late 80's). To make matters even worse, they can't seem to understand why the price is what it is, even in hindsight. If these experts can't even get it right in hindsight, how can one ever expect to get it right in foresight? It is concluded that the traditional laws of supply and demand don't work very well in this new quasi-regulated natural gas industry. Evidently, Social Influences and Political Influences are more important than the Economic Influence on natural gas prices

  7. The use of compressed natural gas as a strategy of development of natural gas industry; Utilizacao do GNC (Gas Natural Comprimido) como estrategia de desenvolvimento da industria do gas natural

    Energy Technology Data Exchange (ETDEWEB)

    Bock, Jucemara [Companhia de Gas do Estado do Rio Grande do Sul (Sulgas), Porto Alegre, RS (Brazil). Coordenacao de Segmento Veicular; Rickmann, Cristiano [Companhia de Gas do Estado do Rio Grande do Sul (Sulgas), Porto Alegre, RS (Brazil). Gerencia de Novos Negocios; Maestri, Juares [Companhia de Gas do Estado do Rio Grande do Sul (Sulgas), Porto Alegre, RS (Brazil). Gerencia de Mercado de Grandes Consumidores

    2008-07-01

    This work emphasizes the Compressed Natural Gas (CNG) as modal of transport, used by the Company of Gas of the State of Rio Grande do Sul - Sulgas, through experience in pioneering project in Brazil: the introduction of the technology of Compressed Natural Gas (CNG) to assist areas where there is not the infrastructure of pipeline for the transport. The article offers a display of the project of expansion of the Natural gas in Rio Grande do Sul, through the supply of CNG to the company Tramontina in Carlos Barbosa's city in the year of 2002. The last aspect focused by this article demonstrates as the use of this transport technology impelled the development of the transport market in the State and it has been used as an important strategy for the development of the market of Natural Gas Vehicle (NGV) in the state. (author)

  8. Natural gas network resiliency to a "shakeout scenario" earthquake.

    Energy Technology Data Exchange (ETDEWEB)

    Ellison, James F.; Corbet, Thomas Frank,; Brooks, Robert E.

    2013-06-01

    A natural gas network model was used to assess the likely impact of a scenario San Andreas Fault earthquake on the natural gas network. Two disruption scenarios were examined. The more extensive damage scenario assumes the disruption of all three major corridors bringing gas into southern California. If withdrawals from the Aliso Canyon storage facility are limited to keep the amount of stored gas within historical levels, the disruption reduces Los Angeles Basin gas supplies by 50%. If Aliso Canyon withdrawals are only constrained by the physical capacity of the storage system to withdraw gas, the shortfall is reduced to 25%. This result suggests that it is important for stakeholders to put agreements in place facilitating the withdrawal of Aliso Canyon gas in the event of an emergency.

  9. Modeling and forecasting natural gas demand in Bangladesh

    International Nuclear Information System (INIS)

    Natural gas is the major indigenous source of energy in Bangladesh and accounts for almost one-half of all primary energy used in the country. Per capita and total energy use in Bangladesh is still very small, and it is important to understand how energy, and natural gas demand will evolve in the future. We develop a dynamic econometric model to understand the natural gas demand in Bangladesh, both in the national level, and also for a few sub-sectors. Our demand model shows large long run income elasticity - around 1.5 - for aggregate demand for natural gas. Forecasts into the future also show a larger demand in the future than predicted by various national and multilateral organizations. Even then, it is possible that our forecasts could still be at the lower end of the future energy demand. Price response was statistically not different from zero, indicating that prices are possibly too low and that there is a large suppressed demand for natural gas in the country. - Highlights: → Natural gas demand is modeled using dynamic econometric methods, first of its kind in Bangladesh. → Income elasticity for aggregate natural gas demand in Bangladesh is large-around 1.5. → Demand is price insensitive, indicating too low prices and/or presence of large suppressed demand. → Demand forecasts reveal large divergence from previous estimates, which is important for planning. → Attempts to model demand for end-use sectors were successful only for the industrial sector.

  10. Use of compressed natural gas in automotive vehicles; Uso del gas natural comprimido aplicado en vehiculos automotores

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez R, Adrian [Comision Nacional para el Ahorro de Energia (CONAE) (Mexico)

    2005-07-01

    The natural gas is natural origin energy (fossil fuel); it contains predominantly 90 percent methane; does not require transformation process for its use; is supplied the 24 hours to commerce, industries and homes by underground pipes; it is lighter than air; it is not corrosive, nor absorbent or toxic. For those reasons a study was performed where it is widely justified why the natural gas ought to be used in vehicles. [Spanish] El gas natural es un energetico de origen natural (combustible fosil), contiene predominantemente 90 por ciento de metano, no requiere proceso de transformacion para su utilizacion, llega directamente las 24 horas del dia a los hogares, comercios e industrias por tuberias subterraneas, es mas ligero que el aire, no es corrosivo, no es absorbente y no es toxico. Por esas razones se hizo un estudio donde se justifica ampliamente porque el gas natural debe utilizarse en vehiculos.

  11. On the demand for natural gas in urban China

    International Nuclear Information System (INIS)

    Using a set of unbalanced panel data for Chinese's cities during the period of 2006–2009, this study aims to estimate the price and income elasticities of residential demand for natural gas. Natural gas consumption is specified as a function of its own price; substitute prices; urban wages; and other supply, climate, and housing characteristics. Using a feasible generalised least squares (FGLS) technique, which controls for panel heteroskedasticity and panel correlation, we find that natural gas consumption is price elastic and income inelastic when other covariates (e.g., the supply of natural gas pipeline and heating degree days) are controlled. In addition, there are large variations in demand behaviours across China's regions. There is a substantial income effect on demand for natural gas in southern China, whereas the northern regions are found to have a higher price effect. In addition, the substitution effect between coal and natural gas is significant in North China but is not significant in South China. These findings have several important policy implications for natural gas pricing and supply cost analysis in the context of China. - Highlights: • We estimate the price and income elasticities of residential demand for natural gas. • We use a set of unbalanced panel data for Chinese's cities during 2006–2009. • We use a feasible generalised least squares approach. • We find that natural gas consumption is price elastic and income inelastic. • We find large variations in demand behaviours across China's regions

  12. Scenarios for Russia's natural gas exports to 2050

    International Nuclear Information System (INIS)

    Russia is an important energy supplier as it holds the world's largest natural gas reserves and it is the world's largest exporter of natural gas. Despite a recent reduction in Russia's exports to Europe, it plans to build new pipelines. We explore the long-term (up to 2050) scenarios of Russian natural gas exports to Europe and Asia using the MIT Emissions Prediction and Policy Analysis (EPPA) model, a computable general equilibrium model of the world economy. We found that over the next 20–40 years natural gas can still play a substantial role in Russian exports and there are substantial reserves to support a development of the gas-oriented energy system both in Russia and in its current and potential gas importers. Based on the considered scenarios, Russia does not need any new pipeline capacity to the EU unless it wants to diversify its export routes to supply the EU without any gas transit via Ukraine and Belarus. Asian markets are attractive to Russian gas and substantial volumes may be exported there. Relatively cheap shale gas in China may sufficiently alter the prospects of Russian gas, especially in Asian markets. In the Reference scenario, exports of natural gas grow from Russia's current 7 Tcf to 11–12 Tcf in 2030 and 13–14 Tcf in 2050. Alternative scenarios provide a wider range of projections, with a share of Russian gas exports shipped to Asian markets rising to more than 30% by 2030 and almost 50% in 2050. Europe's reliance on LNG imports increases, while it still maintains sizable imports from Russia. - Highlights: • In the Reference scenario exports of natural gas grow from Russia’s current 7 Tcf to 11–12 Tcf in 2030 and 13–14 Tcf in 2050. • In alternative scenarios a share of Russian exports to Asian markets is rising to about 30% by 2030 and 50 % in 2050. • Cheap shale gas in China can sufficiently alter Russian natural gas export. • Reduction in nuclear generation in Europe can lead to increased exports of natural gas from

  13. Operation and planning of coordinated natural gas and electricity infrastructures

    Science.gov (United States)

    Zhang, Xiaping

    Natural gas is becoming rapidly the optimal choice for fueling new generating units in electric power system driven by abundant natural gas supplies and environmental regulations that are expected to cause coal-fired generation retirements. The growing reliance on natural gas as a dominant fuel for electricity generation throughout North America has brought the interaction between the natural gas and power grids into sharp focus. The primary concern and motivation of this research is to address the emerging interdependency issues faced by the electric power and natural gas industry. This thesis provides a comprehensive analysis of the interactions between the two systems regarding the short-term operation and long-term infrastructure planning. Natural gas and renewable energy appear complementary in many respects regarding fuel price and availability, environmental impact, resource distribution and dispatchability. In addition, demand response has also held the promise of making a significant contribution to enhance system operations by providing incentives to customers for a more flat load profile. We investigated the coordination between natural gas-fired generation and prevailing nontraditional resources including renewable energy, demand response so as to provide economical options for optimizing the short-term scheduling with the intense natural gas delivery constraints. As the amount and dispatch of gas-fired generation increases, the long-term interdependency issue is whether there is adequate pipeline capacity to provide sufficient gas to natural gas-fired generation during the entire planning horizon while it is widely used outside the power sector. This thesis developed a co-optimization planning model by incorporating the natural gas transportation system into the multi-year resource and transmission system planning problem. This consideration would provide a more comprehensive decision for the investment and accurate assessment for system adequacy and

  14. China Adjusts Natural Gas Price for Better Allocation of Resources

    Institute of Scientific and Technical Information of China (English)

    Luo Shichao

    2010-01-01

    @@ China has recently increased the wholesale prices of natural gas by around 25 percent to curb demand and better allocate resources.Natural gas benchmark prices went up by 230 yuan to 1,155 yuan per thousand cubic meters,according to the announcement made by the National Development and Reform Commission(NDRC)at the end of May."It is necessary to make the adjustment,as the country's natural gas price is significantly lower than that of other fuels,"said Cap Changqing,head of NDRC's pricing department.

  15. Europe's Common Market: Natural gas sector normatives and certification

    International Nuclear Information System (INIS)

    Europe's Common Market offers an interesting challenge to its member countries' natural gas distribution system operators in that which regards the creation of a European-wide natural gas control board, and European standardization and regulatory committees contemporaneously guaranteeing a free market for suppliers, as well as, consumer protection. Relative legislation and normatives activities will be deemed the responsibility of the European administrative structure and the the European Normatives Committee respectively. This paper briefly illustrates the progress that has been accomplished thus far in the standardization of technical aspects. Focus is on the certification of natural gas distribution system constructors

  16. Natural gas opens up a new era for Oman

    International Nuclear Information System (INIS)

    Oman, currently seeking to diversify its hydrocarbon industry, away from dependence on oil, is currently planning to exploit its huge reserves of natural gas. Three projects are described. The first involves the construction of a regional gasline to the emirate of Ras al-Khaimah. The second two projects are export based. The first entails producing liquefied natural gas (LNG) for export by sea to markets in the Far East. The last project includes pumping natural gas to India via a marine pipeline through the Arabian Sea. (UK)

  17. Compressed natural gas vehicles motoring towards a green Beijing

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Ming; Kraft-Oliver, T. [International Institute for Energy Conservation (IIEC) - Asia, Bangkok (Thailand); Guo Xiao Yan [China North Vehicle Research Institute (CNVRI), Beijing (China)

    1996-12-31

    This paper first describes the state-of-the-art of compressed natural gas (CNG) technologies and evaluates the market prospects for CNG vehicles in Beijing. An analysis of the natural gas resource supply for fleet vehicles follows. The costs and benefits of establishing natural gas filling stations and promoting the development of vehicle technology are evaluated. The quantity of GHG reduction is calculated. The objective of the paper is to provide information of transfer niche of CNG vehicle and equipment production in Beijing. This paper argues that the development of CNG vehicles is a cost-effective strategy for mitigating both air pollution and GHG.

  18. Discussion of gas enrichment mechanism and natural gas origin in marine sedimentary basin, China

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    There are abundant natural gas resources in Chinese marine sedimentary basin. The exploration hot shots of natural gas are the Palaeozoic marine strata here in recent years, and several large scale gas fields have been discovered. Chinese Palaeozoic high-post matured and coal measure hydrocarbon source rocks are mainly prone to gas generation in the present. This research considered that gas source rocks and TSR are the key cause of gas enrichment of marine strata. High-quality argillaceous and coal measure hydrocarbon rocks are distributed widely in the Palaeozoic marine strata, which have been in highly matured phase in the present. The argillaceous source rock generally contains various sulfates that could accelerate crude oil cracking to gas for TSR occurrence, and coal measure source rock mainly generates gas, so Chinese marine basin gives priority to accumulating gas. Marine strata have not founded oil reservoirs in the Sichuan Basin and Ordos Basin, and they consist mainly of dry gas. Marine natural gases are the mixed gases of oil cracking gas and coal-formed gas in a general way,oil cracking gases contain usually some H2S and CO2. Hydrocarbon carbon isotopes are very complicated, and methane and ethane isotopic values bear apparent reversal caused by thermal evolution and mixing among different genetic types of natural gas. Coal-formed gases are the main component of Chinese marine natural gas. The Upper Permian of the Sichuan Basin and the Carboniferous-Permian of the Ordos Basin coal measure hydrocarbon source rock present large hydrocarbon generation potential, which are the prospecting highlight of marine natural gas hereafter. Oil cracking gas exploration will be paid much attention to in the Tarim Basin because of the lack of coal measure hydrocarbon source rock.

  19. Natural Gas Value-Chain and Network Assessments

    Energy Technology Data Exchange (ETDEWEB)

    Kobos, Peter H. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Outkin, Alexander V. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Beyeler, Walter E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Walker, LaTonya Nicole [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Malczynski, Leonard A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Myerly, Melissa M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Vargas, Vanessa N. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Tenney, Craig M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Borns, David J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-09-01

    The current expansion of natural gas (NG) development in the United States requires an understanding of how this change will affect the natural gas industry, downstream consumers, and economic growth in order to promote effective planning and policy development. The impact of this expansion may propagate through the NG system and US economy via changes in manufacturing, electric power generation, transportation, commerce, and increased exports of liquefied natural gas. We conceptualize this problem as supply shock propagation that pushes the NG system and the economy away from its current state of infrastructure development and level of natural gas use. To illustrate this, the project developed two core modeling approaches. The first is an Agent-Based Modeling (ABM) approach which addresses shock propagation throughout the existing natural gas distribution system. The second approach uses a System Dynamics-based model to illustrate the feedback mechanisms related to finding new supplies of natural gas - notably shale gas - and how those mechanisms affect exploration investments in the natural gas market with respect to proven reserves. The ABM illustrates several stylized scenarios of large liquefied natural gas (LNG) exports from the U.S. The ABM preliminary results demonstrate that such scenario is likely to have substantial effects on NG prices and on pipeline capacity utilization. Our preliminary results indicate that the price of natural gas in the U.S. may rise by about 50% when the LNG exports represent 15% of the system-wide demand. The main findings of the System Dynamics model indicate that proven reserves for coalbed methane, conventional gas and now shale gas can be adequately modeled based on a combination of geologic, economic and technology-based variables. A base case scenario matches historical proven reserves data for these three types of natural gas. An environmental scenario, based on implementing a $50/tonne CO 2 tax results in less proven

  20. Strengthening Canada's position in the North American natural gas market

    International Nuclear Information System (INIS)

    The Canadian Gas Association (CGA) is the industry organization that represents the Canadian natural gas and energy delivery industry. It is on the frontline of consumer perceptions regarding natural gas, which is the fuel of choice for Canadian homeowners. Canadian consumers have benefitted from the deregulation initiatives of the mid-1980s which provided significant growth opportunities. Given the tumultuous energy environment throughout North America, the CGA believes that a national energy strategy should be developed to address future supply issues and also to examine ways to ensure that extreme market shifts are anticipated and mitigated as much as possible. The CGA is ready to provide governments with input for such a strategy representing the perspective of the Canadian consumer. The CGA recommends that the Government of Canada, the provinces and territories adopt the following initiatives regarding the use of natural gas: (1) recognize and promote the environmental qualities and applications of natural gas, (2) encourage competition, (3) promote transparent and consistent approach to regulation, (4) reaffirm commitment to market-based policies, (5) facilitate economic research, analysis and communication about trends in the natural gas market, and (6) promote the development of new technologies that expand the uses of natural gas and support research in infrastructure development. The government's actions in the areas proposed in this report will contribute to advancing Canada's environmental objectives and economic growth. 2 figs

  1. Natural gas imports and exports: First quarter report 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-07-01

    The Office of Fuels Programs prepares quarterly reports summarizing the data provided by companies authorized to import or export natural gas. Companies are required, as a condition of their authorizations, to file quarterly reports with the OFP. This quarter`s focus is market penetration of gas imports into New England. Attachments show the following: % takes to maximum firm contract levels and weighted average per unit price for the long-term importers, volumes and prices of gas purchased by long-term importers and exporters, volumes and prices for gas imported on short-term or spot market basis, and gas exported short-term to Canada and Mexico.

  2. Ternary geochemical-tracing system in natural gas accumulation

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The establishment of geochemical-tracing system of gas generation and accumulation is helpful to re-elucidating the gas migration and accumulation in time and space. To deduce the complex process of gas accumulation, a ternary geochemical-tracing system is set up, according to stable isotope inheritance of source rocks, kinetic fractionation of stable isotopes, time-accumulating effect of noble gas isotopes, mantle-derived volatile inheritance, and organic molecule inheritance of light hydrocarbons and thermally kinetic fractionation in their generation, in combination with the previous achievements of gas geochemistry and geochemical parameters of gas-source correlation. There are tight interactions for the geochemical parameters with much information about parent inheritance and special biomarkers, in which they are confirmed each other, reciprocally associated and preferentially used for the requirement so that we can use these geochemical parameters to effectively demonstrate the sources of natural gas, sedimentary environments and thermal evolution of source rocks, migration and accumulation of natural gas, and rearrangement of natural gas reservoirs. It is necessary for the ternary geochemical-tracing system to predict the formation of high efficient gas reservoir and their distribution in time and space.

  3. Measure Guideline: High Efficiency Natural Gas Furnaces

    Energy Technology Data Exchange (ETDEWEB)

    Brand, L.; Rose, W.

    2012-10-01

    This Measure Guideline covers installation of high-efficiency gas furnaces. Topics covered include when to install a high-efficiency gas furnace as a retrofit measure, how to identify and address risks, and the steps to be used in the selection and installation process. The guideline is written for Building America practitioners and HVAC contractors and installers. It includes a compilation of information provided by manufacturers, researchers, and the Department of Energy as well as recent research results from the Partnership for Advanced Residential Retrofit (PARR) Building America team.

  4. Measure Guideline. High Efficiency Natural Gas Furnaces

    Energy Technology Data Exchange (ETDEWEB)

    Brand, L. [Partnership for Advanced Residential Retrofit (PARR), Des Plaines, IL (United States); Rose, W. [Partnership for Advanced Residential Retrofit (PARR), Des Plaines, IL (United States)

    2012-10-01

    This measure guideline covers installation of high-efficiency gas furnaces, including: when to install a high-efficiency gas furnace as a retrofit measure; how to identify and address risks; and the steps to be used in the selection and installation process. The guideline is written for Building America practitioners and HVAC contractors and installers. It includes a compilation of information provided by manufacturers, researchers, and the Department of Energy as well as recent research results from the Partnership for Advanced Residential Retrofit (PARR) Building America team.

  5. Natural gas in transport. An assessment of different routes

    Energy Technology Data Exchange (ETDEWEB)

    Kampman, B.; Croezen, H.; Aarnink, S. [CE Delft, Delft (Netherlands); Verbeek, R.; Ligterink, N.; Meulenbrugge, J.; Koornneef, G. [TNO, Delft (Netherlands); Kroon, P.; De Wilde, H. [ECN Policy Studies, Petten (Netherlands)

    2013-05-15

    Compressed or liquid natural gas (CNG, LNG) along with energy carriers produced from natural gas like electricity, hydrogen and Gas to Liquid (GTL) can limit emissions of greenhouse gases and air pollutants in the transport sector. This is particularly the case if electricity, hydrogen or CNG are used to power cars and buses, with LNG being used for trucks and ships. To reduce the overall greenhouse gas emissions of shipping, however, methane emissions also need to be limited. To ensure the safety of LNG, effective control of the distribution infrastructure is also required, moreover. This study compares various types of natural gas with diesel and petrol as primary energy sources in the transport sector. The analysis covers the environment, costs and safety. Taking 2025 as a horizon, the entire fuel chain is considered, from production at source to combustion in the engine.

  6. The research on natural gas pipeline transportation price formulation method

    Directory of Open Access Journals (Sweden)

    YU Wenjia

    2014-02-01

    Full Text Available This paper will introduce a method of natural gas pipeline transportation price on the basis of two-part tariff.Distance,investment and income have been taken into consideration.The total fee is divided into three parts:reservation fee,usage fee and peak-load regulation fee.Because there are different types of users in the natural gas market who show great difference in the continuity and reliability of gas supply,capacity of bearing price,elastic demand and balance use of gas,according to the method,the different types of users can pay reasonable fee.This method not only considers the investment income recovery but also considers the different types of users paying a reasonable fee.We hope the new pricing model can give a reference to the development of China's natural gas industry.

  7. Prospects for the natural gas supply in Europe

    International Nuclear Information System (INIS)

    An overview is given of the current significance of and future prospects for natural gas in Europe. Special attention is given to the impressive development of natural gas in the energy markets of Europe during the last 20 years, the development of demand for natural gas, the procurement situation, and political framework conditions. By virtue of the environmental and energy political dictates governing modern industrial societies, the European gas economy finds itself dealing in an excellent product whose share in the energy market will continue to grow. The decisive challenge lies in procuring additional quantities, which will largely have to come from outside the territory of the European Community. In order to succeed in this task the gas economies need an energy political framework that strengthens, and not weakens, their position in the Community. (orig./HSCH)

  8. Liquefied Natural Gas (LNG) project: a tax overview; Projeto Gas Natural Liquefeito (GNL): uma abordagem tributaria

    Energy Technology Data Exchange (ETDEWEB)

    Correia, Claudia W.M.; Faria, Viviana C.S. [PETROBRAS, Rio de Janeiro, RJ (Brazil)

    2008-07-01

    In the second semester of 2008, the Liquefied Natural Gas (LNG) will be introduced in the Brazilian energy matrix, it will be done through an innovator project according technical and tax points of view. Mentioned the enormous effort of adapting the federal legislation approved for this new activity which begins in the country, uncharged both the admission of the vessel as the import of the commodity in the incidence of federal taxes. The market for LNG demand simplified customs procedures in order to benefit from the dynamism that this industry offers, and in addition, a tax burden that encourages the use of a competitive and compatible with the precepts of sustainable development of the country. (author)

  9. LNG (Liquefied Natural Gas): emerging control; GNL (Gas Natural Liquefeito): controle de emergencia

    Energy Technology Data Exchange (ETDEWEB)

    Berardinelli, Ricardo Porto; Correa, Kleber Macedo; Moura Filho, Nelson Barboza de; Matos, Jose Eduardo Nogueira de; Fernandez, Carlos Antonio [TRANSPETRO, Rio de Janeiro, RJ (Brazil). Gerencia de Seguranca, Meio Ambiente e Saude

    2008-07-01

    The operation to Liquefied Natural Gas (LNG) is innovative for the PETROBRAS System. PETROBRAS Transporte - TRANSPETRO will operate two LNG flexible terminals. In accordance with the health, safety and environmental policy - training, education and awareness action plans were formulated by TRANSPETRO to assure the operational safety for the activity. Part of this action plan includes the training of LNG spill control and fire suppression. The training was carried out in 20 hours and divided into two parts: theoretical and practice. In the practice part, 3.000 gallons of LNG were unloaded and the students could verify the behaviour of the LNG and the effectiveness of the resources available for the emergency control. The knowledge was introduced in the company to create specific procedures, local emergency plans and develop internal instructors. (author)

  10. Natural gas turbine topping for the iris reactor

    Energy Technology Data Exchange (ETDEWEB)

    Oriani, L.; Lombardi, C. [Politecnico di Milano, Milan (Italy); Paramonov, D. [Westinghouse Electric Corp., LLC, Pittsburgh, PA (United States)

    2001-07-01

    Nuclear power plant designs are typically characterized by high capital and low fuel costs, while the opposite is true for fossil power generation including the natural gas-fired gas turbine combined cycle currently favored by many utilities worldwide. This paper examines potential advantages of combining nuclear and fossil (natural gas) generation options in a single plant. Technical and economic feasibility and attractiveness of a gas turbine - nuclear reactor combined cycle where gas turbine exhaust is used to superheat saturated steam produced by a low power light water reactor are examined. It is shown that in a certain range of fuel and capital costs of nuclear and fossil options, the proposed cycle offers an immediate economic advantage over stand-alone plants resulting from higher efficiency of the nuclear plant. Additionally, the gas turbine topping will result in higher fuel flexibility without the economic penalty typically associated with nuclear power. (author)

  11. MOFs for storage of natural gas in mobile applications

    Energy Technology Data Exchange (ETDEWEB)

    Marx, S.; Arnold, L.; Gaab, M.; Maurer, S.; Weickert, M.; Mueller, U. [BASF SE, Ludwigshafen (Germany); Gummaraju, R.; SantaMaria, M.; Wilson, K.; Garbotz, C.; Lynch, J. [BASF Corporation, Iselin, NJ (United States)

    2013-11-01

    Metal-organic frameworks (MOFs) are supposed to have high potential in gas storage, particular in the storage of natural gas (NG) for mobile applications. Due to the shale gas exploration and the cost advantage of natural gas on the North American market as well as the environmental benign behavior upon combustion, storage of gaseous fuels will become more important for future mobility. The main challenge with all gaseous fuels is the limited range of the fuel stored on board of a vehicle. Instead of increasing the pressure in the tank, which would lead to heavy tanks and high compression costs, MOFs might help to improve the energy density of the gas stored in a tank resulting in an increased driving distance or reduced space needed for the gas tanks. (orig.)

  12. Natural gas turbine topping for the iris reactor

    International Nuclear Information System (INIS)

    Nuclear power plant designs are typically characterized by high capital and low fuel costs, while the opposite is true for fossil power generation including the natural gas-fired gas turbine combined cycle currently favored by many utilities worldwide. This paper examines potential advantages of combining nuclear and fossil (natural gas) generation options in a single plant. Technical and economic feasibility and attractiveness of a gas turbine - nuclear reactor combined cycle where gas turbine exhaust is used to superheat saturated steam produced by a low power light water reactor are examined. It is shown that in a certain range of fuel and capital costs of nuclear and fossil options, the proposed cycle offers an immediate economic advantage over stand-alone plants resulting from higher efficiency of the nuclear plant. Additionally, the gas turbine topping will result in higher fuel flexibility without the economic penalty typically associated with nuclear power. (author)

  13. The modifications on natural gas industry legislation: focus on the transportation sector; As alteracoes na legislacao da industria de gas natural: enfoque no setor de transporte

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Hirdan Katarina de Medeiros; Morales Udaeta, Miguel Edgar [Universidade de Sao Paulo (USP), SP (Brazil). Inst. de Eletrotecnica e Energia. Programa Interunidades de Pos-Graduacao em Energia]. E-mails: hirdanmedeiros@iee.usp.br; udaeta@pea.usp.br; Ferreira, Jurandir Goncalves [Universidade de Sao Paulo (USP), SP (Brazil). Faculdade de Economia, Administracao e Contabilidade]. E-mail: jurasferreira@gmail.com

    2006-07-01

    The present paper aims to dissertation, specifically, concerning to legislative proposals deal with the transport natural gas. In methodological sense we show one brief historical exposition of the natural gas industry in Brazil, as well as the approach given for the Law of the Oil and the Resolutions of the National Agency of Oil, Gas Natural and Bio fuels (ANP) for the natural gas transport. Therefore relevant questions to the natural gas transport are detailed in the Legislative Bills proposals for the natural gas Brazilian industry. As conclusions, it is presented a parallel between legal security and the accomplishment of investments in the sector of natural gas transport. (author)

  14. Risk management technique for liquefied natural gas facilities

    Science.gov (United States)

    Fedor, O. H.; Parsons, W. N.

    1975-01-01

    Checklists have been compiled for planning, design, construction, startup and debugging, and operation of liquefied natural gas facilities. Lists include references to pertinent safety regulations. Methods described are applicable to handling of other hazardous materials.

  15. An introduction to the economics of natural gas

    Energy Technology Data Exchange (ETDEWEB)

    Banks, F.E.

    2003-03-01

    This paper is an up-to-date, but only moderately technical survey, of the natural gas market. Supply, demand and pricing are discussed, and, in the light of the electricity deregulation experiment in California, where the expression ''dangerous failure'' has been repeatedly used to describe the extensive losses suffered by final consumers and utilities (or retailers), a modicum of attention is paid to the prospects for deregulating natural gas. Some microeconomics of the natural gas market is presented at a more elementary level than in author's energy economics textbook (2000) or book ''The Political Economy of Natural Gas'' (1987), and the author makes a studied attempt to avoid bringing the misleading Hotelling model (of exhaustible resource depletion) into the exposition. Finally, some comments on risk management with futures contracts are provided, and there is a brief mathematical appendix on futures, options and two-part pricing. (author)

  16. In situ bioremediation of chlorinated solvent with natural gas

    International Nuclear Information System (INIS)

    A bioremediation system for the removal of chlorinated solvents from ground water and sediments is described. The system involves the the in-situ injection of natural gas (as a microbial nutrient) through an innovative configuration of horizontal wells

  17. Discussion on rheology in petroleum and nature gas teservoir stimulation

    Institute of Scientific and Technical Information of China (English)

    卢拥军; 梁冲; 胥云; 陈彦东

    2008-01-01

    Petroleum and nature gas not only are important resources,but also are important strategic materials of our country.All methods the enhancing the producing degree of petroleum and natural gas reservoir,increasing single well production and extending the stimulation period of validity are important stratagem for petroleum and natural gas exploitation.Fracturing and acidizing are the main methods for stimulation as well as one of representative examples of rheology theory application in engineering.Based on analysis of low permeability reservoir characteristics,the fracturing and acidizing stimulation principles and main controlling factors were discussed.And the mechanical characteristics,chemical reaction and rheological behavior in the stimulation process were reviewed.Furthermore research trends afterwards including the material and fluid rheology in oil and natural gas production process,the deep rock fracture initiation and extension rheology,and the fracturing and acidizing application rheology were also proposed in this paper.

  18. China Has Great Potential for Tapping Natural Gas Hydrate

    Institute of Scientific and Technical Information of China (English)

    Shang Yingtao

    2010-01-01

    @@ China has successfully excavated natural gas hydrate,in permanent tundra in the south margin of the country's northwestern Qilian Mountains,according to the information recently made available from China's Ministry of Land and Resources.

  19. Forecasting China's natural gas consumption based on a combination model

    Institute of Scientific and Technical Information of China (English)

    Gang Xu; Weiguo Wang

    2010-01-01

    Ensuring a sufficient energy supply is essential to a country.Natural gas constitutes a vital part in energy supply and therefore forecasting natural gas consumption reliably and accurately is an essential part of a country's energy policy.Over the years,studies have shown that a combinative model gives better projected results compared to a single model.In this study,we used Polynomial Curve and Moving Average Combination Projection (PCMACP) model to estimate the future natural gas consumption in China from 2009 to 2015.The new proposed PCMACP model shows more reliable and accurate results:its Mean Absolute Percentage Error (MAPE) is less than those of any previous models within the investigated range.According to the PCMACP model,the average annual growth rate will increase for the next 7 years and the amount of natural gas consumption will reach 171600 million cubic meters in 2015 in China.

  20. An introduction to the economics of natural gas

    International Nuclear Information System (INIS)

    This paper is an up-to-date, but only moderately technical survey, of the natural gas market. Supply, demand and pricing are discussed, and, in the light of the electricity deregulation experiment in California, where the expression ''dangerous failure'' has been repeatedly used to describe the extensive losses suffered by final consumers and utilities (or retailers), a modicum of attention is paid to the prospects for deregulating natural gas. Some microeconomics of the natural gas market is presented at a more elementary level than in author's energy economics textbook (2000) or book ''The Political Economy of Natural Gas'' (1987), and the author makes a studied attempt to avoid bringing the misleading Hotelling model (of exhaustible resource depletion) into the exposition. Finally, some comments on risk management with futures contracts are provided, and there is a brief mathematical appendix on futures, options and two-part pricing. (author)

  1. The outlook for natural gas in Germany

    International Nuclear Information System (INIS)

    In a generally stagnant energy market, gas will be the energy with the highest growth rate in Germany, especially because of its steadily rising shares in the residential and commercial sector. In western Germany there is to be accepted that the demand forecasts, which were raised from one conference to the next, have passed their zenith. Great uncertainty exists as regards the future use of gas for power generation. In the absence of any significant expansion of this market sector, which is considered rather improbable in western Germany, it can be stated that anticipated gas demand up to the year 2005 is already covered by existing import contracts and scheduled domestic production. The picture is completely different in eastern Germany, where a doubling of consumption is quite feasible. To achieve the requisite diversification of supplies, substantial additional imports from western sources will have to be contracted. Russia can and should remain eastern Germany's main supplier in the long run, but Russian deliveries must be placed on a reliable, long-term contractual basis. As far as new gas projects are concerned, deliveries from Norway, to a limited extent from the United Kingdom and above all as part of the new Russian export initiative are under discussion. Generally speaking, transit will be an increasingly significant issue, especially for additional supplies from Russia. The efficiency and reliability of gas marketing companies will become far more important in an environment characterised by growing uncertainties. The reliable customer offering a dependable market outlet will be increasingly sought. With energy prices likely to increase only slightly, the management of uncertainties and the safeguarding of economic driving forces will be the main challenge facing our supply projects. 15 figs

  2. Naturally fractured tight gas reservoir detection optimization

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-09-30

    The work plan for the quarter of October 1, 1997--December 31, 1997 consisted of two tasks: (1) Present results of Rulison field test at various conferences, seminars, and to Barrett Resources and Snyder Oil Co. and (2) Continue work into developing a predictive quantitative method for locating fault-related natural fractures. The first task was completed during this reporting period. The second task continues the beginning of quantitative fracture mechanics analysis of the geologic processes that are involved for the development of fault-related natural fractures. The goal of this work is to develop a predictive capability of locating natural fractures prior to drilling.

  3. Natural gas passenger vehicles: challenges and way forward

    International Nuclear Information System (INIS)

    Natural gas vehicles have been used in the world for many years: at present, there are about 3 million vehicles running on natural gas and many governments and vehicle manufactures are involved in programs for further developing the market for natural gas vehicles. In comparison to other forms of energy for vehicles, natural gas (NG) engenders low pressures on the environment. At the same time, because of its technical characteristics, NG is very suitable for motor use. The economic advantage of converting a vehicles (NGVs) would be expected to attract the interest of a great number of people, and achieve rapid and widespread diffusion. On the contrary, traditional fuels still dominate the scene, and show no sign of going out of fashion. The use of natural gas as automotive fuel has become of national and worldwide interests particularly so with the recent increase in petrol price, depleting petrol reserves and stringent control of exhaust emission levels. For automotive applications, shifting from petrol to gas needs technological research and development. Within the framework of the reciprocating piston based engine this development is very challenging with technological issues of low range, refueling infrastructure, heavy fuel storage, safety, emissions control and gas operating pressures. Other issues include available expertise and experience in research management. This paper describes the advances being made with passenger vehicles natural gas engines worldwide and in Malaysia more specific. The significant milestones in the development of NGV in Malaysia and the rationale behind the choice of NGV industry including the NGV vehicle population growth, the development of service station as well as the expansion of the sales volume will be illustrated. The presentation presents also development stages and advances in development, fabrication and testing a Compressed Natural Gas Direct Injection vehicle and NGV refueling station. This presentation discuses the

  4. Smart with Natural Gas in the built environment; Slim met Gas in de gebouwde omgeving

    Energy Technology Data Exchange (ETDEWEB)

    Ensing, H.; Oude Elberink, L.; Holwerda, B. [et al.] (ed.)

    2011-12-15

    This magazine addresses the future of the energy system, the role of natural gas in the energy transition process and innovative (gas) technology for the built environment [Dutch] In dit magazine komen de toekomst van de energievoorziening, de rol van aardgas in het energietransitieproces en innovatieve (gas)technologie voor de gebouwde omgeving aan bod.

  5. The green gas: an alternative to natural gas?

    International Nuclear Information System (INIS)

    The author proposes an overview of opportunities of biogas which allows both organic wastes to be valorised and the carbon gas impact to be reduced. She shows that biogas promotes a circular economy as it recycles many different organic wastes (farming wastes, household wastes, and some industrial wastes like sludge from water treatment plants). It can also be captured from landfills. She briefly describes the methanation process, evokes some researches on hydrogen production by bacteria, and the interest of co-generation units

  6. The economic value of Indonesia's natural gas: a quantitative assessment of three gas policies

    NARCIS (Netherlands)

    Hutagalung, Aldi Martino

    2014-01-01

    Natural gas is regarded as the future energy of Indonesia and the natural gas sector has a strategic role to play in national development. This role can be seen in the state revenue and multiplier effect it generates, for example, in the growth of employment levels. Its contribution to the national

  7. Sceneries and projections of demands of natural gas in Brazil; Cenario e projecoes das demandas de gas natural no pais

    Energy Technology Data Exchange (ETDEWEB)

    Chianca, Marcos Duilio de Oliveira; Marques, Ziney Dias [SENAI - Servico Nacional de Aprendizagem Industrial, Rio de Janeiro, RJ (Brazil). Sistema FIRJAN

    2004-07-01

    Interest in Natural Gas in Brazil emerged in the second half of the twentieth century, against a background in which the global giants of the petroleum and gas industries stated that reserves within the country were not commercially viable. This scenario changed with the discovery of numerous oil and gas fields and resulted in the participation of numerous foreign companies bidding for exploration and production rights in the new fields established by ANP. Natural Gas has come to assume a new dimension with further recent discoveries in Santos, Espirito Santo, Sergipe and Urucu, with proven reserves in the order of 490 billion m3. This new dimension is reinforced by PETROBRAS's current strategic plan which considers investments in the order of 3.5 Billion U$ dollars for the production, processing and transport of Natural Gas and half a billion dollars for thermoelectric power stations. The use of Natural Gas in industries, in general, and in the generation of electricity will provide a strong push for the country's economy, substituting other sources of energy with the recognized advantages for production and reduced environmental impact. In this new era 24 gas distribution companies, widely distributed throughout Brazil, are also programming new investments to make best the use of Natural Gas for industry, commerce, for the residential sector and throughout all the national territory. (author)

  8. Easing the natural gas crisis: Reducing natural gas prices through increased deployment of renewable energy and energy efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Wiser, Ryan; Bolinger, Mark; St. Clair, Matt

    2004-12-21

    Heightened natural gas prices have emerged as a key energy-policy challenge for at least the early part of the 21st century. With the recent run-up in gas prices and the expected continuation of volatile and high prices in the near future, a growing number of voices are calling for increased diversification of energy supplies. Proponents of renewable energy and energy efficiency identify these clean energy sources as an important part of the solution. Increased deployment of renewable energy (RE) and energy efficiency (EE) can hedge natural gas price risk in more than one way, but this paper touches on just one potential benefit: displacement of gas-fired electricity generation, which reduces natural gas demand and thus puts downward pressure on gas prices. Many recent modeling studies of increased RE and EE deployment have demonstrated that this ''secondary'' effect of lowering natural gas prices could be significant; as a result, this effect is increasingly cited as justification for policies promoting RE and EE. This paper summarizes recent studies that have evaluated the gas-price-reduction effect of RE and EE deployment, analyzes the results of these studies in light of economic theory and other research, reviews the reasonableness of the effect as portrayed in modeling studies, and develops a simple tool that can be used to evaluate the impact of RE and EE on gas prices without relying on a complex national energy model. Key findings are summarized.

  9. Knowledge based decision making: perspective on natural gas production

    Energy Technology Data Exchange (ETDEWEB)

    Ydstie, B. Erik; Stuland, Kjetil M.

    2009-07-01

    Conclusions (drawn by the author): Decarbonization of energy sources - From coal to renewable. Natural Gas Abundantly available - Norway is no. 3 exporter. Natural gas important as - Hydrogen source for chemicals; - Electricity; - End consumer usage (heating etc). Large potential for application of model based decision making; - Where and when to install platforms and drill wells - How to operate platforms and pipeline systems; - How to operate and optimize chemical production; - Optimization of electricity generation systems. (author)

  10. Convergence and Divergence of Crude Oil and Natural Gas Prices

    Science.gov (United States)

    Romagus, George M.

    This research investigates the possibility that WTI crude oil and Henry Hub natural gas prices share a stable link. Economic theory suggests that the two commodities are linked by both supply and demand given that the commodities can be coproduced and many consumers have the ability to switch between the fuels. In general, it would appear that the two commodities support this theory with natural gas prices tracking crude oil prices fairly well until late 2008. However, since the end of 2008 the two price series have diverged and appear to move independently of each other. Reduced fuel switching capabilities in U.S. industry and electric power generation coupled with increased technology and production from shale formations have potentially changed the driving force behind natural gas prices. However, a severe recession has impacted world economies over the same time period making the cause of the disparity between crude oil and natural gas prices unclear. Therefore, this research analyzed the possible long-term link between the two commodities over two timeframes. Using an error correction model that includes exogenous factors affecting the short-run dynamics of natural gas prices over the period January 1999 through September 2008, I find evidence of a long-run cointegrating relationship between natural gas and crude oil prices. Additionally, crude oil prices are found to be weakly exogenous to the system, suggesting causality runs from crude oil to natural gas prices. Extending this series through February 2012 yields much weaker evidence of a cointegrating relationship and provides evidence for the decoupling crude oil and natural gas prices.

  11. Costs Associated With Compressed Natural Gas Vehicle Fueling Infrastructure

    Energy Technology Data Exchange (ETDEWEB)

    Smith, M.; Gonzales, J.

    2014-09-01

    This document is designed to help fleets understand the cost factors associated with fueling infrastructure for compressed natural gas (CNG) vehicles. It provides estimated cost ranges for various sizes and types of CNG fueling stations and an overview of factors that contribute to the total cost of an installed station. The information presented is based on input from professionals in the natural gas industry who design, sell equipment for, and/or own and operate CNG stations.

  12. Liquefied natural gas production at Hammerfest: A transforming marine community

    NARCIS (Netherlands)

    Bets, van L.K.J.; Tatenhove, van J.P.M.; Mol, A.P.J.

    2016-01-01

    Global energy demand and scarce petroleum resources require communities to adapt to a rapidly changing Arctic environment, but as well to a transforming socio-economic environment instigated by oil and gas development. This is illustrated by liquefied natural gas production by Statoil at Hammerfest,

  13. Advanced catalytic converter system for natural gas powered diesel engines

    Energy Technology Data Exchange (ETDEWEB)

    Strots, V.O.; Bunimovich, G.A.; Matros, Y.S. [Matros Technologies Inc., Chesterfield, Missouri (United States); Zheng, M.; Mirosh, E.A. [Alternative Fuel Systems Inc., Calgary, Alberta (Canada)

    1998-12-31

    The paper discusses the development of catalytic converter for aftertreatment of exhaust gas from diesel engines powered with natural gas. The converter, operated with periodical reversals of the flow, ensures destruction of CO and hydrocarbons, including methane. Both computer simulation and engine testing results are presented. 8 refs.

  14. Benefit assessment of solar-augmented natural gas systems

    Science.gov (United States)

    Davis, E. S.; French, R. L.; Sohn, R. L.

    1980-01-01

    Report details how solar-energy-augmented system can reduce natural gas consumption by 40% to 70%. Applications discussed include: domestic hot water system, solar-assisted gas heat pumps, direct heating from storage tank. Industrial uses, solar-assisted appliances, and economic factors are discussed.

  15. Natural gas imports and exports. Fourth quarter report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-31

    This report summarizes the data provided by companies authorized to import or export natural gas. Data includes volume and price for long term and short term, and gas exported to Canada and Mexico on a short term or spot market basis.

  16. Inventory of methane losses from the natural gas industry

    International Nuclear Information System (INIS)

    Natural gas is being considered as an important transition fuel in an integrated national strategy to reduce emissions of greenhouse gases in the United States due to its lower carbon dioxide (CO2) emission per unit of energy produced. However, the contribution of atmospheric methane (CH4) from the production and handling of natural gas must also be considered. Radian Corporation has been working with the Gas Research Institute and the US Environmental Protection Agency to detail the sources of methane from the natural gas industry in the United States. All aspects of natural gas production, processing, transmission, storage and distribution are being examined. Preliminary results of preliminary testing for the below-ground gas distribution industry segment are presented. The emission rate (scf/hr) is the product of the leak rate per unit length of underground pipe and the total length of US distribution system pipelines. Preliminary estimates for the below-ground distribution segment are nearly 9 billion scf/yr. This total likely underestimates below-ground methane emissions for several reasons. These preliminary analyses suggest that significant uncertainty surround current methane emission estimates from below-ground distribution systems. Emission estimates from all segments of the US Natural Gas Industry, broken down by fugitive sources and non-fugitive sources, are also presented. The specific test methods being implemented to quantify emissions from each segment are described

  17. Case Study - internal corrosion in natural gas pipelines; Estudo de caso - corrosao interna em dutos transportadores de gas natural

    Energy Technology Data Exchange (ETDEWEB)

    Nobrega, A.C.V. da; Barbosa, A.F.F.; Silva, D.R. da [Rio Grande do Norte Univ., Natal, RN (Brazil). Dept. de Quimica. Lab. de Corrosao]. E-mail: anacecilia@eol.com.br; andreafranciscab@yahoo.com; djalma@ccet.ufrn.br; Pimenta, G.S. [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil). Centro de Pesquisas; Peixoto, D.G. [PETROBRAS S.A., Natal/Fortaleza, RN/CE (Brazil). Unidade de Negocios

    2003-07-01

    One of the aspects what more characterize the gas natural is the possibility of your state physical can be adapted the conditions of transport , since the zone where is producing until the region where it is consumer (distant only one from another), you can stand out this three principal alternatives: gas pipelines; in the form of liquefied, in cryogenic ships; in the form of derive compounds that can be liquids or solid. For susceptibilities to the corrosion of the carbons steels used in the equipment and natural gas pipelines of the production reservoirs until the denominated city gates, it makes be necessary to identify the acting corrosive agents and monitoring them along time, because, the failures for internal corrosion in natural gas pipelines can carry serious environmental problems, damages to the image of the distributors companies and prejudices related to operational continuity. Some aspects of the processing of the natural gas are argued, as well as your effect regarding the internal corrosion in natural gas pipelines. To leave of this analysis, it tries establishing a monitoring and controlling methodology of the internal corrosion in field for natural gas pipelines. For chemical characterization of the samples of the black powder were used analyses for Scanning Electron Microscopy, X-Ray Diffraction, X-Ray Fluorescence. (author)

  18. Design of a Natural Gas Liquefaction System with Minimum Components

    International Nuclear Information System (INIS)

    In this work an economic method for liquefying natural gas by diminishing its temperature by means of the Joule-Thomson effect is presented.The pressures from and to which the gas must be expanded arose from a thermodynamic calculation optimizing the cost per unit mass of Liquefied Natural Gas LNG).It was determined that the gas should be expanded from 200 atm to 4 atm.This expansion ratio can be used in different scales.Large Scale: liquefaction of gas at well.It takes advantage of the fact that the gas inside the well is stored at high pressure.The gas is expanded in a valve / nozzle and then compressed to the pressure of the local pipeline system.The objective of this project is to export natural gas as LNG, which is transported by ships to the markets of consumption.Using this method of liquefaction, the LNG production levels are limited to a fraction of the production of the well, due to the injection of the un condensed gas into the local pipelines system.Medium Scale: A high pressure pipeline is the source of the gas.The expansion is performed and then the gas is again compressed to the pressure of a lower pressure pipeline into which the gas is injected.The pressure reductions of natural gas are performed nearby big cities.The aim of this project scale is the storage of fuel for gas thermal power plants during periods of low energy consumption for later burning when the resource is limited. Another possibility that offers this size of plant is the transportation of gas to regions where the resource is unavailable.This transportation would be carried out by means of cistern trucks, in the same way that conventional liquid fuels are transported.Small scale: the place of production would be a CNG refueling station. The source of gas is in this case a gas pipeline of urban distribution and the gas should be compressed with the compressor of the refueling station.Compressors have generally low loading factor and the periods of time when they are not producing

  19. Liquefied synthetic natural gas from woody biomass. Investigation of cryogenic technique for gas upgrading

    OpenAIRE

    Garcia Jarque, Sílvia; Birgen, Cansu

    2012-01-01

    Biomass-based liquefied natural gas (bio-LNG) is very valuable renewable fuel as it has high energy density and transportability. Bio-LNG requires liquefaction of the synthetic natural gas (bio-SNG). Cryogenic technology is a promising option for integration of the gas upgrading and liquefaction streams with the main biomass gasification and methane synthesis plant. This thesis investigates the feasibility of this technology for future commercial bio-SNG production plants based on indirect ga...

  20. LNG systems for natural gas propelled ships

    Science.gov (United States)

    Chorowski, M.; Duda, P.; Polinski, J.; Skrzypacz, J.

    2015-12-01

    In order to reduce the atmospheric pollution generated by ships, the International Marine Organization has established Emission Controlled Areas. In these areas, nitrogen oxides, sulphur oxides and particulates emission is strongly controlled. From the beginning of 2015, the ECA covers waters 200 nautical miles from the coast of the US and Canada, the US Caribbean Sea area, the Baltic Sea, the North Sea and the English Channel. From the beginning of 2020, strong emission restrictions will also be in force outside the ECA. This requires newly constructed ships to be either equipped with exhaust gas cleaning devices or propelled with emission free fuels. In comparison to low sulphur Marine Diesel and Marine Gas Oil, LNG is a competitive fuel, both from a technical and economical point of view. LNG can be stored in vacuum insulated tanks fulfilling the difficult requirements of marine regulations. LNG must be vaporized and pressurized to the pressure which is compatible with the engine requirements (usually a few bar). The boil-off must be controlled to avoid the occasional gas release to the atmosphere. This paper presents an LNG system designed and commissioned for a Baltic Sea ferry. The specific technical features and exploitation parameters of the system will be presented. The impact of strict marine regulations on the system's thermo-mechanical construction and its performance will be discussed. The review of possible flow-schemes of LNG marine systems will be presented with respect to the system's cost, maintenance, and reliability.

  1. Towards the future french organization of the natural gas industry

    International Nuclear Information System (INIS)

    In the framework of the new directive on the internal gas market of 1998, the government proposed a discussion by the presentation of this white book, providing information and questions. This book proposes seven main chapters: the gas industry activity and the directive on the internal gas market; the gas actors, the key numbers and the juridical context in France; define and strengthen the natural gas public utility; useful actions for each gas facilities (transport, distribution, storage and retailers); the realization of progresses for the consumer; the operating of an efficiency control; actions to develop the gas operators in the world. The text of the 98/30/CE directive is also provided. (A.L.B.)

  2. Effect of Bed Deformation on Natural Gas Production from Hydrates

    Directory of Open Access Journals (Sweden)

    Mohamed Iqbal Pallipurath

    2013-01-01

    Full Text Available This work is based on modelling studies in an axisymmetric framework. The thermal stimulation of hydrated sediment is taken to occur by a centrally placed heat source. The model includes the hydrate dissociation and its effect on sediment bed deformation and resulting effect on gas production. A finite element package was customized to simulate the gas production from natural gas hydrate by considering the deformation of submarine bed. Three sediment models have been used to simulate gas production. The effect of sediment deformation on gas production by thermal stimulation is studied. Gas production rate is found to increase with an increase in the source temperature. Porosity of the sediment and saturation of the hydrate both have been found to significantly influence the rate of gas production.

  3. Logistical management system for natural gas distribution; Sistema de gestao logistica para a distribuicao de gas natural

    Energy Technology Data Exchange (ETDEWEB)

    Arruda, Joao Bosco F.; Nobre Junior, Ernesto F.; Praca, Eduardo R. [Universidade Federal do Ceara (UFC), Fortaleza, CE (Brazil). Nucleo de Pesquisa em Logistica, Transportes e Desenvolvimento

    2004-07-01

    The Brazilian Federal Government has the very purpose of increasing the participation of the Natural Gas in the primary energy internal supply from 7,5% nowadays to about 12% till 2010. However, for that, it is necessary to eliminate the great impedance represented by the restricted accessibility to the product, due to the high distribution costs involved. So, there is an urgent need for availability of technologies to help natural gas distribution systems. This paper proposes an innovative logistics-based approach on the subject of the natural gas distribution, through a computational tool (GASLOG System) to be applied in the North and Northeastern urban and country areas of Brazil, with initial case study in the city of Fortaleza. In its conception, the GASLOG System focuses on the point-of-view of everyone of the actors involved with the natural gas distribution process trying to respond their particular necessities in the sector. (author)

  4. Gas analysis modeling system forecast for the Energy Modeling Forum North American Natural Gas Market Study

    International Nuclear Information System (INIS)

    The Gas Analysis Modeling System is a large computer-based model for analyzing the complex US natural gas industry, including production, transportation, and consumption activities. The model was developed and first used in 1982 after the passage of the NGPA, which initiated a phased decontrol of most natural gas prices at the wellhead. The categorization of gas under the NGPA and the contractual nature of the natural gas market, which existed at the time, were primary factors in the development of the basic structure of the model. As laws and regulations concerning the natural gas market have changed, the model has evolved accordingly. Recent increases in competition in the wellhead market have also led to changes in the model. GAMS produces forecasts of natural gas production, consumption, and prices annually through 2010. It is an engineering-economic model that incorporates several different mathematical structures in order to represent the interaction of the key groups involved in the natural gas market. GAMS has separate supply and demand components that are equilibrated for each year of the forecast by means of a detailed transaction network

  5. Medium and Long Term Natural Gas Outlook - February 2015

    International Nuclear Information System (INIS)

    World natural gas demand is expected to grow by 1.8%/year over 2013- 2035. Asia-Oceania explains 42% of the incremental demand (China: 28%), followed by the Middle East (24%). Natural gas share in world primary energy supply is projected to increase from an estimated 21.3% in 2013 to 23.6% in 2035 to the detriment of other fossil fuels. Although the expansion of gas demand is spread across all of the main consuming sectors, gas-fired power generation remains the largest contributor to growth. Natural gas production is growing everywhere, with the exception of Europe (-2.1%/year). The largest regional production gains are expected in Asia Oceania, the Middle East and North America. Shale gas will provide one third of the incremental natural gas supply by 2035. In the US, shale gas production will account for 56% of national output by 2035, versus 44% in 2013. Net inter-regional trade is forecast to grow by 3.1%/year to 821 bcm by 2035. The CIS will record the largest volumetric growth in net exports (+ 191 bcm). The share of LNG in net inter-regional flows will increase from 46% in 2013 to 50% in 2035. The international LNG market is expected to tighten after 2020. The price differentials between the US, Europe and Japan will narrow in a context of globalization of gas markets via a strong expansion of the LNG trade (flexible LNG). A number of powerful factors argue in favour of a growing contribution of natural gas to meet the economic, environmental and security challenges of the world energy system. In terms of supply, costly investments must be made to meet future demand, limit tensions on international markets and favour supply security, flexibility and diversification. Despite a growing component of spot indexing in pricing formulas, oil indexing (Asia) and long term contracts will remain necessary to meet the massive investment requirements in new and capital-intensive projects. The competitiveness of natural gas remains a major challenge. The orientation of

  6. 77 FR 2126 - Pipeline Safety: Implementation of the National Registry of Pipeline and Liquefied Natural Gas...

    Science.gov (United States)

    2012-01-13

    ... Registry of Pipeline and Liquefied Natural Gas Operators AGENCY: Pipeline and Hazardous Materials Safety... 72878), titled: ``Pipeline Safety: Updates to Pipeline and Liquefied Natural Gas Reporting Requirements... registry of pipeline and liquefied natural gas operators. FOR FURTHER INFORMATION CONTACT: Jamerson...

  7. 77 FR 28331 - Standards for Business Practices for Interstate Natural Gas Pipelines

    Science.gov (United States)

    2012-05-14

    ... Business Practices for Interstate Natural Gas Pipelines, notice of proposed rulemaking, 77 FR 10415 (Feb... Natural Gas Pipelines AGENCY: Federal Energy Regulatory Commission, DOE. ACTION: Request for additional... North American Energy Standards Board (NAESB) applicable to natural gas pipelines. The...

  8. Natural gas power generation: interruptible gas distribution network regulation; Geracao termoeletrica a gas natural: regulacao do segmento interruptivel de distribuicao de gas canalizado

    Energy Technology Data Exchange (ETDEWEB)

    Paula, Claudio Paiva de; Kann, Zevi [Agencia Reguladora de Saneamento e Energia do Estado de Sao Paulo (ARSESP), SP (Brazil)

    2008-07-01

    The paper relates studies regarding the natural gas distribution network interruptible branch. This new service can be appropriate for thermal power generation on flexible dispatch mode, as 'take or pay' contracts surplus jobs. The paper indicates no regulatory restraints in an interruptible network implantation. The final conclusion is that interruptible contracts can be an improvement on the distribution business and certainly can accommodate a suitable demand and supply volumes in the long-term gas market balance. (author)

  9. Natural gas distribution in Brazil - opportunities of improvement; Distribuicao de gas natural no pais - oportunidades de melhoria

    Energy Technology Data Exchange (ETDEWEB)

    Correa, Silvia R. [PETROBRAS, Rio de Janeiro, RJ (Brazil); Quintella, Odair M.; Farias Filho, Jose R. de [Universidade Federal Fluminense, Niteroi, RJ (Brazil)

    2005-07-01

    Great are the challenges established by the Brazilian Government related to goals to be achieved for the increment of the Natural Gas participation in brazilian energetic matrix, from current 5% to 12%, up to 2010. The enlargement of the distribution infrastructure of the gas (gas-pipelines 'mesh') in Brazil is considered one of the greatest challenges for the growth of the Brazilian market of Natural Gas, accomplishment that involves elevated investments. This paper presents a model of Management System for the good organizational performance of the small Natural Gas Supplying Brazilian Companies focused on criteria of Leadership, Strategies and Plans and Results, established by the Premio TOP Empresarial and by the 'Rumo a Excelencia', held by the 'Progama Qualidade Rio' and 'Fundacao para o Premio Nacional da Qualidade', respectively. The management practices of these companies were reviewed, considering the context of the energetic Brazilian scenario, subjected to the political and operational definitions and uncertainties, the available financial resources, limited or not prioritized, and actual barriers to be surpassed by the Gas Supplying Companies in order to achieve the pre-established government goals for this segment. The implementation of the proposed simplified Model, seen as improvement opportunities for the segment of Natural Gas distribution, will lead the Gas Distribution Companies to a intermediary stage envisioning the real steps towards the excellence of the performance. (author)

  10. Assessment finds more natural gas resources but less oil

    Science.gov (United States)

    Showstack, Randy

    2012-05-01

    The latest report on undiscovered conventional oil and gas resources outside the United States estimates that there are more undiscovered and technically recoverable natural gas and natural gas liquids (NGLs) but less oil than had previously been thought. The 18 April report, issued by the U.S. Geological Survey (USGS) as part of its World Petroleum Resource Project, estimates that there are 5606 trillion cubic feet of natural gas, compared with 4669 trillion cubic feet in the previous assessment, in 2000, and 167 billion barrels of NGLs compared with an earlier 207 billion barrels. The assessment also estimates that there are 565 billion barrels of oil compared with an earlier 649 billion. About 75% of those resources outside the United States are located in four regions: South America and the Caribbean, sub-Saharan Africa, the Middle East and North Africa, and the Arctic provinces portion of North America, according to the new assessment.

  11. Co-pyrolysis characteristics of coal and natural gas

    Energy Technology Data Exchange (ETDEWEB)

    Kang, L.R.; Zhang, J.M.; Lian, H.; Luo, M. [Shanghai University of Science & Technology, Shanghai (China)

    2007-05-15

    A co-pyrolysis experiment of coal and natural gas was investigated on a fixed-bed reactor. SEM was used to study the structure changes of the exterior surface of char prepared in this co-pyrolysis experiment, while GC was also utilized to analyze the associated gas. The result showed that, with increasing temperature, the coal char tended to agglomerate. GC and SEM results show that the CH{sub 4} decomposition on the exterior surface of char was turned to filamentous char and extended around like coral. It was also proved that the co-pyrolysis of coal and natural gas promoted syngas production. A synergistic effect of coal and natural gas does exist during this process.

  12. Improving emissions factors for estimating urban natural gas leakage

    Science.gov (United States)

    Phillips, Nathan

    2013-04-01

    Emissions factors for pipeline natural gas leaks are in need of refinement. In addition to limitations from the small sample sizes of leaks that were initially used to develop emissions factors, a further limitation to emissions factors is lack of knowledge of characteristic statistical distributions of pipeline leak rates. For example, leaks were implicitly assumed to be normally distributed so that an average leak rate was used for pipelines of a given construction. Our natural gas leak data from Boston, USA, in which we found over 3,000 natural gas leaks, indicates that leaks rates are highly skewed, with relatively few leaks likely contributing disproportionately to the total. The long-tailed distribution of gas leak rates is mirrored by a similarly skewed distribution of surface methane concentrations in air. These data suggest that emissions factors should be based on correctly specified statistical distributions, and that fixing relatively few large leaks first may provide the most environmental benefit per cost.

  13. Thermodynamic Modeling of Natural Gas Systems Containing Water

    DEFF Research Database (Denmark)

    Karakatsani, Eirini K.; Kontogeorgis, Georgios M.

    2013-01-01

    with a heavy phase were previously obtained using cubic plus association (CPA) coupled with a solid phase model in the case of hydrates, for the binary systems of water–methane and water–nitrogen and a few natural gas mixtures. In this work, CPA is being validated against new experimental data, both water......As the need for dew point specifications remains very urgent in the natural gas industry, the development of accurate thermodynamic models, which will match experimental data and will allow reliable extrapolations, is needed. Accurate predictions of the gas phase water content in equilibrium...... content and phase equilibrium data, and solid model parameters are being estimated for four natural gas main components (methane, ethane, propane, and carbon dioxide). Different tests for the solid model parameters are reported, including vapor-hydrate-equilibria (VHE) and liquid-hydrate-equilibria (LHE...

  14. Radiation energy devaluation in diffusion combusting flows of natural gas

    International Nuclear Information System (INIS)

    Abstract: CFD (Computational fluid dynamics) is used to evaluate the thermodynamic second-law effects of thermal radiation in turbulent diffusion natural gas flames. Radiative heat transfer processes in gas and at solid walls are identified as important causes of energy devaluation in the combusting flows. The thermodynamic role of thermal radiation cannot be neglected when compared to that of heat conduction and convection, mass diffusion, chemical reactions, and viscous dissipation. An energy devaluation number is also defined, with which the optimum fuel–air equivalence for combusting flows can be determined. The optimum fuel–air equivalence ratio for a natural gas flame is determined to be 0.7. The CFD model is validated against experimental measurements. - Highlights: • Thermodynamic effects of thermal radiation in combusting flows analyzed. • General equation for second-law analyses of combusting flows extended. • Optimum fuel–air equivalence ratio determined for natural gas flame

  15. Calorimetric Determination of Enthalpy of Formation of Natural Gas Hydrates

    Institute of Scientific and Technical Information of China (English)

    高军; KennethN.Marsh

    2003-01-01

    This paper reports the measurements of enthalpies of natural gas hydrates in typical natural gas mixture containing methane, ethane, propane and iso-butane at pressure in the vicinity of 2000 kPa (300 psi) and 6900 kPa(1000psi). The measurements were made in a multi-cell differential scanning calorimeter using modified high pressure cells. The enthalpy of water and the enthalpy of dissociation of the gas hydrate were determined from the calorimeter response during slow temperature scanning at constant pressure. The amount of gas released from the dissociation of hydrate was determined from the pumped volume of the high pressure pump. The occupation ratio (mole ratio) of the water to gas and the enthalpy of hydrate formation are subject to uncertainty of 1.5%.The results show that the enthalpy of hydrate formation and the occupation ratio are essentially independent of pressure.

  16. Natural gas imports and exports. Second quarter report, 1998

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-11-01

    The Office of Natural Gas and Petroleum Import and Export Activities prepared quarterly reports summarizing the data provided by companies authorized to import or export natural gas. Companies are required, as a condition of their authorizations, to file quarterly reports. This report is for the second quarter of 1998 (April through June). Attachment A shows the percentage of takes to maximum firm contract levels and the weighted average per unit price for each of the long-term importers during the five most recent reporting quarters. Attachment B shows volumes and prices of gas purchased by long-term importers and exporters during the past 12 months. Attachment C shows volume and price information pertaining to gas imported on a short-term or spot market basis. Attachment D shows the gas exported on a short-term or spot market basis to Canada and Mexico.

  17. Dongfang Starts to Supply Natural Gas to Hainan

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    @@ The onshore terminal of Dongfang 1-1 Gas Field was recently completed for construction, two months ahead of the schedule. The operating personnel are now working to get the terminal ready for production. The offshore natural gas is scheduled to go through the terminal on trial late in July 2003.The terminal links Dongfang 1-1 Gas Field, 113 kilometers away with a water depth of around 70 meters, to the important industrial bases like Basuo,Yangpu and Haikou. The terminal is responsible for treatment of natural gas coming from the undersea pipeline and then transmission of gas to the onshore users in Yangpu and Haikou. In addition, it also monitors the working conditions of all the operating systems including the drilling platform.

  18. 96/97 statistics of natural gas industry in France

    International Nuclear Information System (INIS)

    This documents presents an overview of the gases market in France (natural gas, LPG, methane, etc..). Details about uses, resources, foreign supplies, intervening parties, transportation and storage facilities are given for the natural gas sector. After a presentation of the gas industry conjuncture in 1996 and a general presentation of the French gas industry, the main economical data are presented as tables, diagrams and graphics: combustible gases (resources and uses, domestic production and imports, regional and industrial distribution and consumption..), and gas distribution networks (resources, exchanges, transformations, sectoral and seasonal analysis of sales, installations, industrial consumption by sector and region, pipelines, underground storage facilities, LNG terminal and storage facilities, tanker-ships, personnel). (J.S.)

  19. Natural gas imports and exports: Third quarter report, 1998

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-31

    The Office of Natural Gas and Petroleum Import and Export Activities prepares quarterly reports summarizing the data provided by companies authorized to import or export natural gas. Companies are required, as a condition of their authorizations, to file quarterly reports. This report is for the third quarter of 1998 (July--September). Attachment A shows the percentage of takes to maximum firm contract levels and the weighted average per unit price for each of the long-term importers during the five most recent calendar quarters. Attachment B shows volumes and prices of gas purchased by long-term importers and exporters during the past 12 months. Attachment C shows volume and price information pertaining to gas imported on a short-term or spot market basis. Attachment D shows the gas exported on a short-term or spot market basis to Canada and Mexico.

  20. Helping consumers manage their exposure to volatile natural gas prices

    International Nuclear Information System (INIS)

    This presentation provided a customer's view of forward gas prices and outlined different buying behaviours in terms of characteristics of novice and seasoned buyers. It presented a portfolio overview of natural gas and described the risks facing customers in terms of fixed prices and fixed volumes. An energy smart price plan considers floating gas prices instead of a fixed market price. An automobile manufacturer was presented as an example of a gas consumer that would prefer to manage internal costs of production rather than manage gas volatility. The importance of understanding the drivers of individual businesses was emphasized. Natural Resources Canada and the Office of Energy Efficiency offer financial incentives for manufacturers for energy retrofit feasibility studies that result in energy retrofit projects in lighting, heating, boiler replacement, chiller upgrades, and heat recovery. tabs., figs

  1. The EROI of Conventional Canadian Natural Gas Production

    Directory of Open Access Journals (Sweden)

    Jon Freise

    2011-11-01

    Full Text Available Canada was the world’s third largest natural gas producer in 2008, with 98% of its gas being produced by conventional, tight gas, and coal bed methane wells in Western Canada. Natural gas production in Western Canada peaked in 2001 and remained nearly flat until 2006 despite more than quadrupling the drilling rate. Canada seems to be one of many counter examples to the idea that oil and gas production can rise with sufficient investment. This study calculated the Energy Return on Energy Invested and Net Energy of conventional natural gas and oil production in Western Canada by a variety of methods to explore the energy dynamics of the peaking process. All these methods show a downward trend in EROI during the last decade. Natural gas EROI fell from 38:1 in 1993 to 15:1 at the peak of drilling in 2005. The drilling intensity for natural gas was so high that net energy delivered to society peaked in 2000–2002, while production did not peak until 2006. The industry consumed all the extra energy it delivered to maintain the high drilling effort. The inability of a region to increase net energy may be the best definition of peak production. This increase in energy consumption reduces the total energy provided to society and acts as a contracting pressure on the overall economy as the industry consumes greater quantities of labor, steel, concrete and fuel. It appears that energy production from conventional oil and gas in Western Canada has peaked and entered permanent decline.

  2. Autothermal Reforming of Natural Gas to Synthesis Gas

    Energy Technology Data Exchange (ETDEWEB)

    Steven F. Rice; David P. Mann

    2007-04-13

    This Project Final Report serves to document the project structure and technical results achieved during the 3-year project titled Advanced Autothermal Reformer for US Dept of Energy Office of Industrial Technology. The project was initiated in December 2001 and was completed March 2005. It was a joint effort between Sandia National Laboratories (Livermore, CA), Kellogg Brown & Root LLC (KBR) (Houston, TX) and Süd-Chemie (Louisville, KY). The purpose of the project was to develop an experimental capability that could be used to examine the propensity for soot production in an Autothermal Reformer (ATR) during the production of hydrogen-carbon monoxide synthesis gas intended for Gas-to-Liquids (GTL) applications including ammonia, methanol, and higher hydrocarbons. The project consisted of an initial phase that was focused on developing a laboratory-scale ATR capable of reproducing conditions very similar to a plant scale unit. Due to budget constraints this effort was stopped at the advanced design stages, yielding a careful and detailed design for such a system including ATR vessel design, design of ancillary feed and let down units as well as a PI&D for laboratory installation. The experimental effort was then focused on a series of measurements to evaluate rich, high-pressure burner behavior at pressures as high as 500 psi. The soot formation measurements were based on laser attenuation at a view port downstream of the burner. The results of these experiments and accompanying calculations show that soot formation is primarily dependent on oxidation stoichiometry. However, steam to carbon ratio was found to impact soot production as well as burner stability. The data also showed that raising the operating pressure while holding mass flow rates constant results in considerable soot formation at desirable feed ratios. Elementary reaction modeling designed to illuminate the role of CO2 in the burner feed showed that the conditions in the burner allow for the direct

  3. Regulation Strategy in Natural Gas Sector. The Romanian Case

    Directory of Open Access Journals (Sweden)

    Coralia Angelescu

    2006-10-01

    Full Text Available This study provides a methodological analysis to evaluate the regulation strategy in Romanian natural gas sector. The market oriented reforms are not only associated with the gap between internal prices and world prices. In the same time, the market oriented reforms are mixed with the other forms of government intervention. The industry network theory provides a good pillar for maintaining natural monopoly in public utilities. The conclusions which are presented in this article offer a good theory for the activity of the National Authority of Regulation in Romanian natural gas sector.

  4. Regulation Strategy in Natural Gas Sector. The Romanian Case

    Directory of Open Access Journals (Sweden)

    Aura Socol

    2006-12-01

    Full Text Available This study provides a methodological analysis to evaluate the regulation strategy in Romanian natural gas sector. The market oriented reforms are not only associated with the gap between internal prices and world prices. In the same time, the market oriented reforms are mixed with the other forms of government intervention. The industry network theory provides a good pillar for maintaining natural monopoly in public utilities. The conclusions which are presented in this article offer a good theory for the activity of the National Authority of Regulation in Romanian natural gas sector.

  5. Necessary conditions for the planning on the natural gas market; Condicoes necessarias para o planejamento no mercado de gas natural

    Energy Technology Data Exchange (ETDEWEB)

    Almeida, Edmar de; Iootty, Mariana

    2007-07-01

    In 2004, the natural gas agents discovered a radical change in the sector panoram. Since 1998, when the Bolivia-Brazil gas pipeline was inaugurated, the market situation was a supply excess. The major problem of the distributors and the PETROBRAS was how to accelerate the market development to accomplish with the contract for buying natural gas compromised with Bolivia. From 2004 on progressively, the supply insurance occupied the discussions agenda. The agents discovered to be real the risks of the supply not to follow the demand.

  6. Focus on the Development of Natural Gas Hydrate in China

    Directory of Open Access Journals (Sweden)

    Zhongfu Tan

    2016-05-01

    Full Text Available Natural gas hydrate, also known as combustible ice, and mainly composed of methane, is identified as a potential clean energy for the 21st century. Due to its large reserves, gas hydrate can ease problems caused by energy resource shortage and has gained attention around the world. In this paper, we focus on the exploration and development of gas hydrate as well as discussing its status and future development trend in China and abroad. We then analyze its opportunities and challenges in China from four aspects, resource, technology, economy and policy, with five forces model and Politics Economics Society Technology method. The results show China has abundance gas hydrate resource; however, backward technologies and inadequate investment have seriously hindered the future development of gas hydrate; thus, China should establish relevant cooperation framework and intuitional arrangement to attract more investment as well as breaking through technical difficulties to commercialization gas hydrate as soon as possible.

  7. Natural gas deregulation: have the handcuffs really been removed?

    International Nuclear Information System (INIS)

    The natural gas market in New York State was reviewed and characterized as being very competitive. A brief description of the New York State Electric and Gas Corp. (NYSEG) was given. As regards recent developments, in October 1993, the New York Public Service Commission (NYPSC) instituted a proceeding (93-G-0932) on the restructuring of the gas market. Several guidelines for market restructuring were established as a result. The guidelines were in respect to service to consumers, safety of distribution, environmental implications, consumer concerns, gas rates, regulation, and access for core customers. The speaker noted that these guidelines did not promote deregulation. Competitive issues faced by local gas distributors were enumerated. Among these were (1)service to core and non-core customers (2)transition costs, (3)streaming, (4)unbundling and repackaged services, (5)price differentiation, and (6)small customer aggregation. It was expected that marketers would oppose the Public Service Commission giving local gas distributors additional pricing flexibility

  8. Prospective of the Natural Gas marketing 2002-2011; Prospectiva del Mercado de Gas Natural 2002-2011

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-07-01

    According with the 109 Th Article of the Natural Gas Regulations the Secretaria de Energia publishes this prospective of the Natural gas market 2002-2011 which describes and analyses the necessities of Mexico in relation with this industry in the mentioned period. Here aspects such as: the present and future international panorama of the natural gas market, international prices, the world demand with base in the Department of Energy (DOE) turnover of the United States, Advances of the in force regulatory framework, Sales, the National Gas pipeline system, Evolution of the National market, Demand at regional and sectoral scales, Supply analysis, Programs and projects of energy savings, natural gas balance with the high demand scene, the methodology of the Instituto Mexicano del Petroleo for calculating the self-generation demand of the electric energy by sector, a glossary with the more used terms, conversion factors and abbreviations and acronyms used in the document are treated. In the next ten years, the national demand of natural gas will suffer an annual average growth of 7.4% passing from 4358 millions of daily cubic feet (mm pcd) in 2001 to 8883 mm pcd in 2011. (Author)

  9. Liquefied natural gas: safety issues, public concerns, and decision making

    Energy Technology Data Exchange (ETDEWEB)

    Van Horn, A.J.; Wilson, R.

    1976-11-01

    Natural gas is an important, widely used fossil fuel which is convenient and relatively non-polluting. Because U.S. domestic suppliers have been declining since 1972, suppliers have sought to import additional gas in the form of liquefied natural gas (LNG), which is 1/600 the volume of natural gas and is therefore convenient for transportation and storage. If present plans and proposals pending approval are implemented, there will be a rapid increase in the use of liquefied natural gas in the United States. The facilities required include liquefaction plants, large ocean-going tankers, import-receiving terminals, storage depots, and gas-transmission pipelines. A description is presented of the risks and impacts presented by LNG operations in the near future. The safety issues are summarized and the origins of public concern in two LNG facilities siting disputes are examined. Some of the important criteria that need to be evaluated for responsible decision making are suggested. On balance, the overall risks of LNG supply systems are probably less than those of some energy systems now in use. Nevertheless, continued attention to the potential risks is needed to ensure that this remains true.

  10. Towards a fundamental understanding of natural gas hydrates.

    Science.gov (United States)

    Koh, Carolyn A

    2002-05-01

    Gas clathrate hydrates were first identified in 1810 by Sir Humphrey Davy. However, it is believed that other scientists, including Priestley, may have observed their existence before this date. They are solid crystalline inclusion compounds consisting of polyhedral water cavities which enclathrate small gas molecules. Natural gas hydrates are important industrially because the occurrence of these solids in subsea gas pipelines presents high economic loss and ecological risks, as well as potential safety hazards to exploration and transmission personnel. On the other hand, they also have technological importance in separation processes, fuel transportation and storage. They are also a potential fuel resource because natural deposits of predominantly methane hydrate are found in permafrost and continental margins. To progress with understanding and tackling some of the technological challenges relating to natural gas hydrate formation, inhibition and decomposition one needs to develop a fundamental understanding of the molecular mechanisms involved in these processes. This fundamental understanding is also important to the broader field of inclusion chemistry. The present article focuses on the application of a range of physico-chemical techniques and approaches for gaining a fundamental understanding of natural gas hydrate formation, decomposition and inhibition. This article is complementary to other reviews in this field, which have focused more on the applied, engineering and technological aspects of clathrate hydrates. PMID:12122641

  11. The Spatial Footprint of Natural Gas-Fired Electricity

    Science.gov (United States)

    Jordaan, S. M.; Heath, G.; Macknick, J.; Mohammadi, E.; Ben-Horin, D.; Urrea, V.; Marceau, D.

    2015-12-01

    Consistent comparisons of the amount of land required for different electricity generation technologies are challenging because land use associated with fossil fuel acquisition and delivery has not been well characterized or empirically grounded. This research focuses on improving estimates of the life cycle land use of natural gas-fired electricity (m2/MWh generated) through the novel combination of inventories of natural gas-related infrastructure, satellite imagery analysis and gas production estimates. We focus on seven counties that represent 98% of the total gas production in the Barnett Shale (Texas), evaluating over 500 sites across five life cycle stages (gas production, gathering, processing, transmission, and power generation as well as produced water disposal). We find that a large fraction of total life cycle land use is related to gathering (midstream) infrastructure, particularly pipelines; access roads related to all stages also contribute a large life cycle share. Results were sensitive to several inputs, including well lifetime, pipeline right of way, number of wells per site, variability of heat rate for electricity generation, and facility lifetime. Through this work, we have demonstrated a novel, highly-resolved and empirical method for estimating life cycle land use from natural gas infrastructure in an important production region. When replicated for other gas production regions and other fuels, the results can enable more empirically-grounded and robust comparisons of the land footprint of alternative energy choices.

  12. 76 FR 2093 - Eni USA Gas Marketing LLC; Application for Blanket Authorization To Export Liquefied Natural Gas

    Science.gov (United States)

    2011-01-12

    ... Gas Marketing LLC; Application for Blanket Authorization To Export Liquefied Natural Gas AGENCY... liquefied natural gas (LNG) that previously had been imported into the United States from foreign sources in an amount up to the equivalent of 100 billion cubic feet (Bcf) of natural gas. The LNG would...

  13. Natural gas geochemistry and its origins in Kuqa depression

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    According to gas compositional and carbon isotopic measurement of 114 gas samples from the Kuqa depression,accumulation of the natural gases in the depression is dominated by hydrocarbon gases, with high gas dryness(C1/C1-4)at the middle and northern parts of the depression and low one towards east and west sides and southern part.The carbon isotopes of methane and its homologues are relatively enriched in 13 C,and the distributive range ofδ13C 1 ,δ13C 2 andδ13C 3 is-32‰―-36‰,-22‰―-24‰and-20‰―-22‰,respectively.In general,the carbon isotopes of gaseous alkanes become less negative with the increase of carbon numbers.Theδ13C CO2 value is less than-10‰in the Kuqa depression,indicating its organogenic origin.The distributive range of 3 He/ 4 He ratio is within n×10-8 and a decrease in 3 He/ 4 He ratio from north to south in the depression is observed.Based on the geochemical parameters of natural gas above,natural gas in the Kuqa depression is of characteristics of coal-type gas origin.The possible reasons for the partial reversal of stable carbon isotopes of gaseous alkanes involve the mixing of gases from one common source rock with different thermal maturity or from two separated source rock intervals of similar kerogen type,multistages accumulation of natural gas under high-temperature and over-pressure conditions,and sufficiency and diffusion of natural gas.

  14. Hydraulic fracturing for natural gas: impact on health and environment.

    Science.gov (United States)

    Carpenter, David O

    2016-03-01

    Shale deposits exist in many parts of the world and contain relatively large amounts of natural gas and oil. Recent technological developments in the process of horizontal hydraulic fracturing (hydrofracturing or fracking) have suddenly made it economically feasible to extract natural gas from shale. While natural gas is a much cleaner burning fuel than coal, there are a number of significant threats to human health from the extraction process as currently practiced. There are immediate threats to health resulting from air pollution from volatile organic compounds, which contain carcinogens such as benzene and ethyl-benzene, and which have adverse neurologic and respiratory effects. Hydrogen sulfide, a component of natural gas, is a potent neuro- and respiratory toxin. In addition, levels of formaldehyde are elevated around fracking sites due to truck traffic and conversion of methane to formaldehyde by sunlight. There are major concerns about water contamination because the chemicals used can get into both ground and surface water. Much of the produced water (up to 40% of what is injected) comes back out of the gas well with significant radioactivity because radium in subsurface rock is relatively water soluble. There are significant long-term threats beyond cancer, including exacerbation of climate change due to the release of methane into the atmosphere, and increased earthquake activity due to disruption of subsurface tectonic plates. While fracking for natural gas has significant economic benefits, and while natural gas is theoretically a better fossil fuel as compared to coal and oil, current fracking practices pose significant adverse health effects to workers and near-by residents. The health of the public should not be compromized simply for the economic benefits to the industry.

  15. Hydraulic fracturing for natural gas: impact on health and environment.

    Science.gov (United States)

    Carpenter, David O

    2016-03-01

    Shale deposits exist in many parts of the world and contain relatively large amounts of natural gas and oil. Recent technological developments in the process of horizontal hydraulic fracturing (hydrofracturing or fracking) have suddenly made it economically feasible to extract natural gas from shale. While natural gas is a much cleaner burning fuel than coal, there are a number of significant threats to human health from the extraction process as currently practiced. There are immediate threats to health resulting from air pollution from volatile organic compounds, which contain carcinogens such as benzene and ethyl-benzene, and which have adverse neurologic and respiratory effects. Hydrogen sulfide, a component of natural gas, is a potent neuro- and respiratory toxin. In addition, levels of formaldehyde are elevated around fracking sites due to truck traffic and conversion of methane to formaldehyde by sunlight. There are major concerns about water contamination because the chemicals used can get into both ground and surface water. Much of the produced water (up to 40% of what is injected) comes back out of the gas well with significant radioactivity because radium in subsurface rock is relatively water soluble. There are significant long-term threats beyond cancer, including exacerbation of climate change due to the release of methane into the atmosphere, and increased earthquake activity due to disruption of subsurface tectonic plates. While fracking for natural gas has significant economic benefits, and while natural gas is theoretically a better fossil fuel as compared to coal and oil, current fracking practices pose significant adverse health effects to workers and near-by residents. The health of the public should not be compromized simply for the economic benefits to the industry. PMID:26943595

  16. Natural gas in the Middle East and North Africa

    International Nuclear Information System (INIS)

    Natural Gas in the Middle East and North Africa gives an in-depth country-by-country survey of both the region's ambitious gas development plans and the problems it faces. It provides details of production costs, the extent and accessibility of gas reserves and the degree of host government support. The report addresses all the essential questions surrounding investment opportunities in this area and guides you through gas demand in the region. It also includes a detailed study of 11 major gas producing and consuming countries in the area, covering: Algeria; Egypt; Iran; Kuwait; Libya; Oman; Qatar; Saudia Arabia; Syria; UAE; Yemen. The report is divided into two sections for ease of use. The first section examines the demand factors for the region's gas exports, the second provides details of gas exploitation programmes in individual countries. The report also provides you with details of: gas reserves, production and use - a country-by-country review; maps of major pipelines - internal networks and export routes; growth in international gas trade; political and fiscal analysis - key to measuring investment risk and short- to medium-term political stability; and major limitations to the region's gas development - geography, political instability and US geopolitical influence in the region. (author)

  17. Bioconversion of natural gas to liquid fuel: opportunities and challenges.

    Science.gov (United States)

    Fei, Qiang; Guarnieri, Michael T; Tao, Ling; Laurens, Lieve M L; Dowe, Nancy; Pienkos, Philip T

    2014-01-01

    Natural gas is a mixture of low molecular weight hydrocarbon gases that can be generated from either fossil or anthropogenic resources. Although natural gas is used as a transportation fuel, constraints in storage, relatively low energy content (MJ/L), and delivery have limited widespread adoption. Advanced utilization of natural gas has been explored for biofuel production by microorganisms. In recent years, the aerobic bioconversion of natural gas (or primarily the methane content of natural gas) into liquid fuels (Bio-GTL) by biocatalysts (methanotrophs) has gained increasing attention as a promising alternative for drop-in biofuel production. Methanotrophic bacteria are capable of converting methane into microbial lipids, which can in turn be converted into renewable diesel via a hydrotreating process. In this paper, biodiversity, catalytic properties and key enzymes and pathways of these microbes are summarized. Bioprocess technologies are discussed based upon existing literature, including cultivation conditions, fermentation modes, bioreactor design, and lipid extraction and upgrading. This review also outlines the potential of Bio-GTL using methane as an alternative carbon source as well as the major challenges and future research needs of microbial lipid accumulation derived from methane, key performance index, and techno-economic analysis. An analysis of raw material costs suggests that methane-derived diesel fuel has the potential to be competitive with petroleum-derived diesel.

  18. Lessons learned from Brazilian natural gas industry reform

    International Nuclear Information System (INIS)

    Over the past decades many countries have reformed their infrastructure industries. Although these reforms have been broadly similar for the most part, aiming at introducing competition in potentially competitive segments, the contexts in which they have been carried out differ. This is due to the past regulatory experience in each country, the maturity of the industry and/or the number of agents when the reform process started. The Brazilian natural gas reform stands out due to the country's singular conditions. The development of the natural gas industry in Brazil was grounded on stepping up supplies through integration with neighboring nations (particularly Bolivia) and establishing a competitive environment by lowering the barriers hampering the arrival of new investors. However, natural gas is located at the crossroads of two main energy chains: oil and hydroelectricity. This article analyzes the Brazilian natural gas reform, and extracts lessons from this process. The low capillarity of transportation and distribution systems continues to be the main bottleneck of the country's natural gas industry. The challenges of the new legal framework are to encourage investments in networks and guarantee supply, to allow the industry to consolidate and mature, against a backdrop of rapid changes in the world market. (author)

  19. Bioconversion of natural gas to liquid fuel: Opportunities and challenges

    Energy Technology Data Exchange (ETDEWEB)

    Fei, Q; Guarnieri, MT; Tao, L; Laurens, LML; Dowe, N; Pienkos, PT

    2014-05-01

    Natural gas is a mixture of low molecular weight hydrocarbon gases that can be generated from either fossil or anthropogenic resources. Although natural gas is used as a transportation fuel, constraints in storage, relatively low energy content (MJ/L), and delivery have limited widespread adoption. Advanced utilization of natural gas has been explored for biofuel production by microorganisms. In recent years, the aerobic bioconversion of natural gas (or primarily the methane content of natural gas) into liquid fuels (Bio-GTL) by biocatalysts (methanotrophs) has gained increasing attention as a promising alternative for drop-in biofuel production. Methanotrophic bacteria are capable of converting methane into microbial lipids, which can in turn be converted into renewable diesel via a hydrotreating process. In this paper, biodiversity, catalytic properties and key enzymes and pathways of these microbes are summarized. Bioprocess technologies are discussed based upon existing literature, including cultivation conditions, fermentation modes, bioreactor design, and lipid extraction and upgrading. This review also outlines the potential of Bio-GTL using methane as an alternative carbon source as well as the major challenges and future research needs of microbial lipid accumulation derived from methane, key performance index, and techno-economic analysis. An analysis of raw material costs suggests that methane-derived diesel fuel has the potential to be competitive with petroleum-derived diesel. (C) 2014 The Authors. Published by Elsevier Inc.

  20. Bioconversion of Natural Gas to Liquid Fuel. Opportunities and Challenges

    Energy Technology Data Exchange (ETDEWEB)

    Fei, Qiang [National Renewable Energy Lab. (NREL), Golden, CO (United States); Guarnieri, Michael T. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Tao, Ling [National Renewable Energy Lab. (NREL), Golden, CO (United States); Laurens, Lieve M. L. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Dowe, Nancy [National Renewable Energy Lab. (NREL), Golden, CO (United States); Pienkos, Philip T. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2014-05-01

    Natural gas is a mixture of low molecular weight hydrocarbon gases that can be generated from either fossil or anthropogenic resources. Although natural gas is used as a transportation fuel, constraints in storage, relatively low energy content (MJ/L), and delivery have limited widespread adoption. Advanced utilization of natural gas has been explored for biofuel production by microorganisms. In recent years, the aerobic bioconversion of natural gas (or primarily the methane content of natural gas) into liquid fuels (Bio-GTL) by biocatalysts (methanotrophs) has gained increasing attention as a promising alternative for drop-in biofuel production. Moreover, methanotrophic bacteria are capable of converting methane into microbial lipids, which can in turn be converted into renewable diesel via a hydrotreating process. In this paper, biodiversity, catalytic properties and key enzymes and pathways of these microbes are summarized. Bioprocess technologies are discussed based upon existing literature, including cultivation conditions, fermentation modes, bioreactor design, and lipid extraction and upgrading. Our review also outlines the potential of Bio-GTL using methane as an alternative carbon source as well as the major challenges and future research needs of microbial lipid accumulation derived from methane, key performance index, and techno-economic analysis. An analysis of raw material costs suggests that methane-derived diesel fuel has the potential to be competitive with petroleum-derived diesel.

  1. Safety distance between underground natural gas and water pipeline facilities

    International Nuclear Information System (INIS)

    A leaking water pipe bursting high pressure water jet in the soil will create slurry erosion which will eventually erode the adjacent natural gas pipe, thus causing its failure. The standard 300 mm safety distance used to place natural gas pipe away from water pipeline facilities needs to be reviewed to consider accidental damage and provide safety cushion to the natural gas pipe. This paper presents a study on underground natural gas pipeline safety distance via experimental and numerical approaches. The pressure–distance characteristic curve obtained from this experimental study showed that the pressure was inversely proportional to the square of the separation distance. Experimental testing using water-to-water pipeline system environment was used to represent the worst case environment, and could be used as a guide to estimate appropriate safety distance. Dynamic pressures obtained from the experimental measurement and simulation prediction mutually agreed along the high-pressure water jetting path. From the experimental and simulation exercises, zero effect distance for water-to-water medium was obtained at an estimated horizontal distance at a minimum of 1500 mm, while for the water-to-sand medium, the distance was estimated at a minimum of 1200 mm. - Highlights: • Safe separation distance of underground natural gas pipes was determined. • Pressure curve is inversely proportional to separation distance. • Water-to-water system represents the worst case environment. • Measured dynamic pressures mutually agreed with simulation results. • Safe separation distance of more than 1200 mm should be applied

  2. Safety in Liquefied Natural Gas (LNG) Operations

    Energy Technology Data Exchange (ETDEWEB)

    Buhrow, C. [Technische Univ. Bergakademie, Freiberg (Germany). Lehrstuhl Bergbau/Tiefbau; Niemann-Delius, C.; Okafor, E. [Technische Hochschule Aachen (Germany). Lehrstuhl und Inst. fuer Bergbaukunde 3

    2005-07-01

    Germany needs an LNG receiving terminal to import LNG and supplement expected future gas supply shortages. Enormous economic benefits also abound if Germany is to install an LNG receiving terminal. Jobs will be created for several hundred people. New tax revenues will be generated for state and local governments and this will further enhance the economic competitiveness of Germany. Additionally, it will provide Germany with a reliable source of clean-burning energy. Any proposed LNG receiving terminal should incorporate safety right from the start. These safety requirements will: ensure that certain public land uses, people, and structures outside the LNG facility boundaries are protected in the event of LNG fire, prevent vapour clouds associated with an LNG spill from reaching a property line that can be built upon, prevent severe burns resulting from thermal radiation, specify requirements for design, construction and use of LNG facilities and other equipments, and promote safe, secure and reliable LNG operations. The German future LNG business will not be complete without the evolution of both local and international standards that can apply to LNG operations. Currently existing European standards also appear inadequate. With an OHSAS 18001 management system integrated with other existing standards we can better control our LNG occupational health and safety risks, and improve performance in the process. Additionally, an OHSAS 18001 System will help future German LNG contractors and operators safeguard their most important assets - their employees. (orig.)

  3. The Asia Pacific natural gas market: Large enough for all?

    International Nuclear Information System (INIS)

    Among natural gas producing nations, there has been some concern about how the Asia Pacific will meet future demand for energy. We argue that natural gas, both regional and global, will play a vital role. Estimates of potential gas consumption in the region are analyzed and used to develop consensus projections to 2030. These consumption profiles are compared with gas supply estimates including indigenous, pipeline and LNG for the Asia Pacific market. From this analytical framework, we find that demand will be sufficiently large to accommodate supplies from diverse sources including North America, the Middle East, Central Asia, Russia, and the Asia Pacific itself. An important policy implication is that gas producing and consuming nations should benefit from promoting gas trade and not be concerned about a situation of potential lack of demand coupled with oversupply. - Highlights: • Estimates of gas consumption in the Asia Pacific (AP) in 2030 are presented. • Compared with supply estimates for AP including indigenous, pipeline, and LNG. • Find that demand in AP large enough to accommodate supply from all regions. • Nations should promote gas trade policy and not be overly concerned about oversupply

  4. Russian natural gas policy and its possible effects on European gas markets

    International Nuclear Information System (INIS)

    There is a growing perception among Western European gas experts that Russia has developed a considerable gas surplus - the Russian gas bubble. Thus, the question clearly arises how much gas is available for export and how much gas, over the next 15 to 20 years, can the Russian quasi-monopolist Gazprom market in Western Europe. We consider that Gazprom's export strategy mirrors the approach of Russia's natural gas policy towards the Western European market. In this paper, we will focus on the characteristics of Gazprom's export strategy, its underlying logic, and its impact on Western European gas markets. As a consequence of Gazprom's export strategy, the Russian gas company faces today a price quantity dilemma. Gazprom's problem is to place as much gas as possible in the growing Western European gas market, without destroying downstream gas prices. We argue that Gazprom has adopted a market share expansion and downstream vertical integration strategy, aimed at capturing a part of the downstream gas rent. Although this strategy appears to have initiated a form of gas to gas competition in a number of European consumer markets, this strategy is not based on an aggressive price policy. However, in order to live up to its ambitions, there is a chance that Gazprom will have to somewhat relax traditional contract clauses, such as contract length, indexation terms and take or pay conditions. (author)

  5. Developments on the European energy market. Part 1. Natural gas supply. Extra import covers growing natural gas demand in Europe

    International Nuclear Information System (INIS)

    This first part of a series on developments in the European gas market features the growth in gas supply. 35% of the gas demand must be covered from sources outside Europe. For the future additional imports are required from countries such as the Russian Federation, Algeria and Nigeria. Over the next few years the artificial link between ga and oil prices will disappear, bringing the gas price to a structurally lower level. It will be of crucial importance that gas suppliers will not be able to form cartels to keep prices high. All competing projects will curb price increases on the European market, but will definitely result in more freedom of choice for European natural gas consumers

  6. Challenges facing the natural gas industry and its regulators

    Energy Technology Data Exchange (ETDEWEB)

    Stewart, R.W.

    1984-09-27

    The author of this article, the chief executive officer of a holding company whose subsidiaries include a natural gas distribution company, urges some fundamental changes in the structure and operating practices of the gas industry in order to distribute business risks more equitably among the primary parties. Formulation of public policy does not rest solely with legislators, however, as regulatory practices - particularly those of the Federal Energy Regulatory Commission - determine to a large extent the economic signals sent throughout the gas market. A thorough reexamination by the FERC of pipeline rate design, minimum bill provisions, take-or-pay and price escalation provisions, and treatment of pipeline tax investment credits is recommended as a most-important first step toward resolution of the end-use market problems posed by current natural gas policies.

  7. The world's first supply ship powered by natural gas

    International Nuclear Information System (INIS)

    The article describes the newly developed natural gas powered supply ship ''Viking Energy'', which reduces the emission of NOx by 200 tonnes per year. The shipping company has for many years been working on the developing of environmentally friendly ships with less fuel consumption. The gas is stored in liquid form at a temperature of 160 oC. The engines can run on gas or diesel as needed. These dual-fuel engines offers great flexibility, which is very desirable since liquid natural gas is not widely available along the coast. This type of engine has been used in power stations and on offshore platforms, but not in ships. The operating conditions are quite different for ships than for power stations. So far, both investment and operating costs are higher than for conventional ships

  8. Contribution of natural gas for sustainable development in Portugal

    Directory of Open Access Journals (Sweden)

    Manuela Sarmento

    2010-09-01

    Full Text Available Portugal has strongly limited domestic energy resources, since imports almost 90% of its energy needs and its energy production is totally from renewable energy sources. The addition of natural gas to the Portuguese energy mix in 1997 helped to diversify Portugal’s energy sources and is a contribution to the mitigation of environmental problems. In 1997 also ceased the production and use of domestic coal. In fact, Portugal is working to reduce the growth in energy use and CO2 emissions, in order to follow the Kyoto Protocol. This measure can be linked to environmental sustainability policies, creating the opportunity for new business to appear. Natural gas, in some applications, can substitute the electricity, implying a decrease in price. Security of gas supply is an important issue, since Portugal depends mainly on a single supplier. This paper aims at analysing the emerging gas market, (threats and opportunities, its evolution andcomparison with other OECD countries.

  9. [A mobile sensor for remote detection of natural gas leakage].

    Science.gov (United States)

    Zhang, Shuai; Liu, Wen-qing; Zhang, Yu-jun; Kan, Rui-feng; Ruan, Jun; Wang, Li-ming; Yu, Dian-qiang; Dong, Jin-ting; Han, Xiao-lei; Cui, Yi-ben; Liu, Jian-guo

    2012-02-01

    The detection of natural gas pipeline leak becomes a significant issue for body security, environmental protection and security of state property. However, the leak detection is difficult, because of the pipeline's covering many areas, operating conditions and complicated environment. A mobile sensor for remote detection of natural gas leakage based on scanning wavelength differential absorption spectroscopy (SWDAS) is introduced. The improved soft threshold wavelet denoising was proposed by analyzing the characteristics of reflection spectrum. And the results showed that the signal to noise ratio (SNR) was increased three times. When light intensity is 530 nA, the minimum remote sensitivity will be 80 ppm x m. A widely used SWDAS can make quantitative remote sensing of natural gas leak and locate the leak source precisely in a faster, safer and more intelligent way. PMID:22512213

  10. INVESTIGATION INTO NATURAL GAS LIQUEFACTION METHODS, LNG TRANSPORT AND STORAGE

    Directory of Open Access Journals (Sweden)

    Atakan AVCI

    1995-03-01

    Full Text Available Liquefied Natural Gas (LNG processes are very new in Turkey. The Government of Turkey, due to diversification of supply and balancing of seasonal load, decided to import LNG from Algeria. The first shipment in Marmara Ereğli import terminal has been carried out in the August the 3 rd, 1994. LNG after regasification will be injected into the main transmission pipeline. The share of LNG in the world natural gas trade was approixmately 22.1% in 1988. According to the forecast, LNG share will be rapidly spreading all over the world in near future. In this paper, treatment, liquefaction, transport, storage, regasification, distribution and utilisation of LNG are examined. Particular attention has given into liquefaction of natural gas.

  11. STUDY FOR NATURAL GAS HYDRATE CONVERSED FROM ICE

    Institute of Scientific and Technical Information of China (English)

    WANG Shengjie; SHEN Jiandong; HAO Miaoli; LIU Furong

    2003-01-01

    Natural gas hydrates are crystalline clathrate compounds composed of water and gases of small molecular diameters that can be used for storage and transport of natural gas as a novel method. In the paper a series of experiments of aspects and kinetics for hydrate formed from natural gas and ice were carried out on the industrial small scale production apparatus. The experimental results show that formation conditions of hydrate conversed from ice are independent of induction time, and bigger degrees of supersaturation and supercooling improved the driving force and advanced the hydrate formation.Superpressure is also favorable for ice particle conversion to hydrate. In addition, it was found there have an optimal reaction time during hydrate formation.

  12. Natural gas : key role in NSW greenhouse work

    International Nuclear Information System (INIS)

    Established in 1996, the NSW Sustainable Energy Development Authority (SEDA) has one main objective-to reduce the level of greenhouse gas emissions in the State. To achieve this, the agency has implemented various programs to encourage energy efficiency and renewable energy supply-including initiatives that support an uptake of natural gas, as part of a transition to sustainable energy solutions. This article outlines the initiatives, and their role in an overall distributed energy approach to achieving emissions reductions

  13. The natural gas vehicles; Le gaz naturel vehicules

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    The NGV (Natural Gas Vehicles) is a new ''clean'' fuel used for the urban public transports which can be adapted to the vehicles. It is the same gas as those for the cooking and the heating, but compressed at 200 bars. this document presents this abundant energy sources, the bound emissions standards, the technical and economical aspects, the environmental advantages, the today implementation and compare the french policy towards the NGV to other countries. (A.L.B.)

  14. Natural Gas Hydrates - from the Microstructure towards a Geological Understanding

    OpenAIRE

    Klapp, Stephan A.

    2009-01-01

    The dissertation addresses mineralogical characteristics of natural gas hydrates from cold seeps in the Gulf of Mexico and the eastern Black Sea. The investigated properties are the crystal structure, the crystallite sizes and size distributions, the compositions of the hydrate-forming gases, the hydrate porosity as well as the grain boundary networks. That was accomplished using X-ray diffraction, gas chromatography, Raman-spectroscopy, and scanning electron microscopy. "Bragg tomography" wa...

  15. An examination of the International Natural Gas Trade

    International Nuclear Information System (INIS)

    Recent developments in the liquefied natural gas (LNG) industry, particularly the ongoing projects of liquefaction and regasification and the increasing number of LNG-carriers to be delivered in forthcoming years, have led some specialists to argue that LNG is today a crossroads between regionalisation and globalisation. Other specialists think that, by LNG's share of the total international trade of natural gas will be predominant, compared to that of pipelines. All these assumptions are based on an examination of the duration and ongoing international gas projects. The objective of our article is to examine the historical patterns of the international natural gas and discuss the conditions for the globalisation of LNG trade. Using some evidence on the international trade of natural gas from 1970 to 1997, we show the A strong correlation exists between the international trade of gas by pipeline and LNG becomes predominant, we need a delinking of these two means of trading gas. Globalisation of the LNG trade is not only linked to an increase in the relative share trade; it is also and primarily linked to an increase in the inter-area trade of LNG. There is a negligible change in the pattern of inter-area and intra-area trade of even during the late 1990s; this is due to the contracted nature of the LNG international that resulted in a stickiness of LNG routes. The emergence of a global LNG market requires the satisfaction of four conditions: economic, technical and institutional conditions - therefore, it will certainly take more years to make ING a global commodity. (author)

  16. Security resolution minute for natural gas distribution pipeline; Minuta de resolucao de seguranca na distribuicao do gas natural

    Energy Technology Data Exchange (ETDEWEB)

    Teles, Marcus de Barros [ARCE - Agencia Reguladora de Servicos Publicos Delegados do Estado do Ceara, Fortaleza, CE (Brazil)

    2003-07-01

    In the current scenery of natural gas distribution regulation, there is no specific resolution about security. The security is boarded in few concession contracts of some private gas companies, but not as principal theme. The security resolution minute presented in this paper aim break the direct and indirect causes of accidents, eliminating their potential. In this new point of view, the quality of services is the principal cause to guarantee the security of natural gas distribution systems. The methodology used to develop the minute was based on the research of Brazilian and American resolutions of state regulation agencies, concession contracts of private distribution gas companies, American code of federal regulation, ASME code for pressure piping B31.8 - 1999 edition and the NBR 12712 standard. The result of the research was the elaboration of an specific minute resolution of security that can be used as reference in the fiscalization of the natural gas distribution piping companies activities. This minute, can be an important instrument to avoid accidents and incidents, eliminating prejudices to the people, to properties, to environment and to the image of natural gas distribution companies and regulation agencies. (author)

  17. Yangzi Petrochemical Company Uses Natural Gas to Supplement Steam Cracker Fuel Gas

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    @@ A major energy conservation and retrofitting project-ap-plication of natural gas as supplementary fuel for steam crackers has been successfully put into operation starting April 30, 2008 at the SINOPEC Yangzi Petrochemical Company.

  18. Natural gas distribution network of Lima and Callao, Peru

    Energy Technology Data Exchange (ETDEWEB)

    Maroye, Stephane; Aerssens, Andre [Tractebel Engineering, Lima (Peru)

    2005-07-01

    In May 2002, Suez-Tractebel was awarded by the government of Peru a 30-year concession for the construction and operation of the gas distribution network in Lima, Peru. On 10 July, 2004, first gas was delivered to Lima, 1 month ahead of the official date. This gas distribution network, operated by GNLC (Gas Natural de Lima y Callao), delivers gas to some of the largest industries and power generators in and around Lima and the harbour area of Callao. Gas delivered in Lima comes through a 700 km HP gas pipeline from Camisea fields. This pipeline is operated by TGP (Transportadora de Gas del Peru). A City Gate is located at Lurin, on the southern side of the city. The gas distribution network is made of a 62 km main pipeline (20') with 25 km laterals. The main pipeline is operated at 50 bar, as the main customer, the Etevensa power plant, is located on the northern side of the city. Due to this high operating pressure combined to the surroundings, specific design philosophies were adopted to meet the extreme safety requirements. This paper highlights the specific measures taken during construction phase and the experience of the first months of operation of this challenging project. (author)

  19. Seismic response to natural gas anomalies in crystalline rocks

    Institute of Scientific and Technical Information of China (English)

    YANG WenCai; JIN ZhenMin; YU ChangQing

    2008-01-01

    According to the geological and seismic reflection data of the Chinese Continental Scientific Drilling (CCSD) main-hole (MH), and the anomalies of CH4, CO2, and He are correlated to the three-component seismic reflectors, especially in horizontal component profiles. However, the seismic response is difficult to be explained as the porosity of crystalline rocks is only about 1% in well section where the gas anomalies occur. Seismic velocity measurement of the MH cores indicated that compared with water-saturated rock samples, seismic velocity (especially the S-wave) could be distinctly decreased by gas contained in tiny cracks despite of the low porosity, and then notable seismic response could be induced in gas-filled crystalline rocks. It could be predicated that if the porosity of certain rocks in the middle crust rose due to water-rock interaction and had natural gas filled, then there would be more probability for natural gas in top of the mid-crust to fill in the crystalline rocks with increased porosity. In such case, based on the decrease of S-wave velocity in crystalline rocks, seismic method could be applied in the future to explore natural gas reservoirs in the middle crust.

  20. Seismic response to natural gas anomalies in crystalline rocks

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    According to the geological and seismic reflection data of the Chinese Continental Scientific Drilling (CCSD) main-hole (MH), and the anomalies of CH4, CO2, and He are correlated to the three-component seismic reflectors, especially in horizontal component profiles. However, the seismic response is dif-ficult to be explained as the porosity of crystalline rocks is only about 1% in well section where the gas anomalies occur. Seismic velocity measurement of the MH cores indicated that compared with wa-ter-saturated rock samples, seismic velocity (especially the S-wave) could be distinctly decreased by gas contained in tiny cracks despite of the low porosity, and then notable seismic response could be induced in gas-filled crystalline rocks. It could be predicated that if the porosity of certain rocks in the middle crust rose due to water-rock interaction and had natural gas filled, then there would be more probability for natural gas in top of the mid-crust to fill in the crystalline rocks with increased porosity. In such case, based on the decrease of Swave velocity in crystalline rocks, seismic method could be applied in the future to explore natural gas reservoirs in the middle crust.