WorldWideScience

Sample records for abiotic constraints response

  1. Structure, function and networks of transcription factors involved in abiotic stress responses

    DEFF Research Database (Denmark)

    Lindemose, Søren; O'Shea, Charlotte; Jensen, Michael Krogh

    2013-01-01

    Transcription factors (TFs) are master regulators of abiotic stress responses in plants. This review focuses on TFs from seven major TF families, known to play functional roles in response to abiotic stresses, including drought, high salinity, high osmolarity, temperature extremes...... and the phytohormone ABA. Although ectopic expression of several TFs has improved abiotic stress tolerance in plants, fine-tuning of TF expression and protein levels remains a challenge to avoid crop yield loss. To further our understanding of TFs in abiotic stress responses, emerging gene regulatory networks based...... on TFs and their direct targets genes are presented. These revealed components shared between ABA-dependent and independent signaling as well as abiotic and biotic stress signaling. Protein structure analysis suggested that TFs hubs of large interactomes have extended regions with protein intrinsic...

  2. Recent Molecular Advances on Downstream Plant Responses to Abiotic Stress

    Directory of Open Access Journals (Sweden)

    Cláudia Regina Batista de Souza

    2012-07-01

    Full Text Available Abiotic stresses such as extremes of temperature and pH, high salinity and drought, comprise some of the major factors causing extensive losses to crop production worldwide. Understanding how plants respond and adapt at cellular and molecular levels to continuous environmental changes is a pre-requisite for the generation of resistant or tolerant plants to abiotic stresses. In this review we aimed to present the recent advances on mechanisms of downstream plant responses to abiotic stresses and the use of stress-related genes in the development of genetically engineered crops.

  3. Abiotic stressors and stress responses

    DEFF Research Database (Denmark)

    Sulmon, Cecile; Van Baaren, Joan; Cabello-Hurtado, Francisco

    2015-01-01

    Abstract Organisms are regularly subjected to abiotic stressors related to increasing anthropogenic activities, including chemicals and climatic changes that induce major stresses. Based on various key taxa involved in ecosystem functioning (photosynthetic microorganisms, plants, invertebrates), we...... review how organisms respond and adapt to chemical- and temperature-induced stresses from molecular to population level. Using field-realistic studies, our integrative analysis aims to compare i) how molecular and physiological mechanisms related to protection, repair and energy allocation can impact...... life history traits of stressed organisms, and ii) to what extent trait responses influence individual and population responses. Common response mechanisms are evident at molecular and cellular scales but become rather difficult to define at higher levels due to evolutionary distance and environmental...

  4. Cell Wall Metabolism in Response to Abiotic Stress

    Science.gov (United States)

    Gall, Hyacinthe Le; Philippe, Florian; Domon, Jean-Marc; Gillet, Françoise; Pelloux, Jérôme; Rayon, Catherine

    2015-01-01

    This review focuses on the responses of the plant cell wall to several abiotic stresses including drought, flooding, heat, cold, salt, heavy metals, light, and air pollutants. The effects of stress on cell wall metabolism are discussed at the physiological (morphogenic), transcriptomic, proteomic and biochemical levels. The analysis of a large set of data shows that the plant response is highly complex. The overall effects of most abiotic stress are often dependent on the plant species, the genotype, the age of the plant, the timing of the stress application, and the intensity of this stress. This shows the difficulty of identifying a common pattern of stress response in cell wall architecture that could enable adaptation and/or resistance to abiotic stress. However, in most cases, two main mechanisms can be highlighted: (i) an increased level in xyloglucan endotransglucosylase/hydrolase (XTH) and expansin proteins, associated with an increase in the degree of rhamnogalacturonan I branching that maintains cell wall plasticity and (ii) an increased cell wall thickening by reinforcement of the secondary wall with hemicellulose and lignin deposition. Taken together, these results show the need to undertake large-scale analyses, using multidisciplinary approaches, to unravel the consequences of stress on the cell wall. This will help identify the key components that could be targeted to improve biomass production under stress conditions. PMID:27135320

  5. WRKY proteins: signaling and regulation of expression during abiotic stress responses.

    Science.gov (United States)

    Banerjee, Aditya; Roychoudhury, Aryadeep

    2015-01-01

    WRKY proteins are emerging players in plant signaling and have been thoroughly reported to play important roles in plants under biotic stress like pathogen attack. However, recent advances in this field do reveal the enormous significance of these proteins in eliciting responses induced by abiotic stresses. WRKY proteins act as major transcription factors, either as positive or negative regulators. Specific WRKY factors which help in the expression of a cluster of stress-responsive genes are being targeted and genetically modified to induce improved abiotic stress tolerance in plants. The knowledge regarding the signaling cascade leading to the activation of the WRKY proteins, their interaction with other proteins of the signaling pathway, and the downstream genes activated by them are altogether vital for justified targeting of the WRKY genes. WRKY proteins have also been considered to generate tolerance against multiple abiotic stresses with possible roles in mediating a cross talk between abiotic and biotic stress responses. In this review, we have reckoned the diverse signaling pattern and biological functions of WRKY proteins throughout the plant kingdom along with the growing prospects in this field of research.

  6. The Role of Tomato WRKY Genes in Plant Responses to Combined Abiotic and Biotic Stresses

    Directory of Open Access Journals (Sweden)

    Yuling Bai

    2018-06-01

    Full Text Available In the field, plants constantly face a plethora of abiotic and biotic stresses that can impart detrimental effects on plants. In response to multiple stresses, plants can rapidly reprogram their transcriptome through a tightly regulated and highly dynamic regulatory network where WRKY transcription factors can act as activators or repressors. WRKY transcription factors have diverse biological functions in plants, but most notably are key players in plant responses to biotic and abiotic stresses. In tomato there are 83 WRKY genes identified. Here we review recent progress on functions of these tomato WRKY genes and their homologs in other plant species, such as Arabidopsis and rice, with a special focus on their involvement in responses to abiotic and biotic stresses. In particular, we highlight WRKY genes that play a role in plant responses to a combination of abiotic and biotic stresses.

  7. Understanding the Posttranscriptional Regulation of Plant Responses to Abiotic Stress

    KAUST Repository

    AlShareef, Sahar A.

    2017-06-01

    Constitutive and alternative splicing of pre-mRNAs from multiexonic genes controls the diversity of the proteome; these precisely regulated processes also fine-tune responses to cues related to growth, development, and biotic and abiotic stresses. Recent work showed that AS is pervasive across plant species, with more than 60% of intron-containing genes producing different isoforms. Mammalian cell-based assays have discovered various AS small-molecule inhibitors that perturb splicing and thereby provide invaluable tools for use as chemical probes to uncover the molecular underpinnings of splicing regulation and as potential anticancer compounds. Here, I show that the macrolide Pladienolide B (PB) and herboxidiene (GEX1A) inhibits both constitutive and alternative splicing, mimics an abiotic stress signal, and activates the abscisic acid (ABA) pathway in plants. Moreover, PB and GEX1A activate genome-wide transcriptional patterns involved in abiotic stress responses in plants. PB and GEX1A treatment triggered the ABA signaling pathway, activated ABA-inducible promoters, and led to stomatal closure. Interestingly, PB and GEX1A elicited similar cellular changes, including alterations in the patterns of transcription and splicing, suggesting that these compounds might target the same spliceosome complex in plant cells. This work establishes PB and GEX1A as potent splicing inhibitors in plants that can be used to probe the assembly, dynamics, and molecular functions of the spliceosome and to study the interplay between splicing stress and abiotic stresses, as well as having potential biotechnological applications.

  8. Abiotic stress responses in plants: roles of calmodulin-regulated proteins

    Science.gov (United States)

    Virdi, Amardeep S.; Singh, Supreet; Singh, Prabhjeet

    2015-01-01

    Intracellular changes in calcium ions (Ca2+) in response to different biotic and abiotic stimuli are detected by various sensor proteins in the plant cell. Calmodulin (CaM) is one of the most extensively studied Ca2+-sensing proteins and has been shown to be involved in transduction of Ca2+ signals. After interacting with Ca2+, CaM undergoes conformational change and influences the activities of a diverse range of CaM-binding proteins. A number of CaM-binding proteins have also been implicated in stress responses in plants, highlighting the central role played by CaM in adaptation to adverse environmental conditions. Stress adaptation in plants is a highly complex and multigenic response. Identification and characterization of CaM-modulated proteins in relation to different abiotic stresses could, therefore, prove to be essential for a deeper understanding of the molecular mechanisms involved in abiotic stress tolerance in plants. Various studies have revealed involvement of CaM in regulation of metal ions uptake, generation of reactive oxygen species and modulation of transcription factors such as CAMTA3, GTL1, and WRKY39. Activities of several kinases and phosphatases have also been shown to be modulated by CaM, thus providing further versatility to stress-associated signal transduction pathways. The results obtained from contemporary studies are consistent with the proposed role of CaM as an integrator of different stress signaling pathways, which allows plants to maintain homeostasis between different cellular processes. In this review, we have attempted to present the current state of understanding of the role of CaM in modulating different stress-regulated proteins and its implications in augmenting abiotic stress tolerance in plants. PMID:26528296

  9. Understanding the Posttranscriptional Regulation of Plant Responses to Abiotic Stress

    KAUST Repository

    Alshareef, Sahar

    2017-01-01

    Constitutive and alternative splicing of pre-mRNAs from multiexonic genes controls the diversity of the proteome; these precisely regulated processes also fine-tune responses to cues related to growth, development, and biotic and abiotic stresses

  10. Alternative Splicing Control of Abiotic Stress Responses.

    Science.gov (United States)

    Laloum, Tom; Martín, Guiomar; Duque, Paula

    2018-02-01

    Alternative splicing, which generates multiple transcripts from the same gene, is an important modulator of gene expression that can increase proteome diversity and regulate mRNA levels. In plants, this post-transcriptional mechanism is markedly induced in response to environmental stress, and recent studies have identified alternative splicing events that allow rapid adjustment of the abundance and function of key stress-response components. In agreement, plant mutants defective in splicing factors are severely impaired in their response to abiotic stress. Notably, mounting evidence indicates that alternative splicing regulates stress responses largely by targeting the abscisic acid (ABA) pathway. We review here current understanding of post-transcriptional control of plant stress tolerance via alternative splicing and discuss research challenges for the near future. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Identification of Arabidopsis candidate genes in response to biotic and abiotic stresses using comparative microarrays.

    Directory of Open Access Journals (Sweden)

    Arjun Sham

    Full Text Available Plants have evolved with intricate mechanisms to cope with multiple environmental stresses. To adapt with biotic and abiotic stresses, plant responses involve changes at the cellular and molecular levels. The current study was designed to investigate the effects of combinations of different environmental stresses on the transcriptome level of Arabidopsis genome using public microarray databases. We investigated the role of cyclopentenones in mediating plant responses to environmental stress through TGA (TGACG motif-binding factor transcription factor, independently from jasmonic acid. Candidate genes were identified by comparing plants inoculated with Botrytis cinerea or treated with heat, salt or osmotic stress with non-inoculated or non-treated tissues. About 2.5% heat-, 19% salinity- and 41% osmotic stress-induced genes were commonly upregulated by B. cinerea-treatment; and 7.6%, 19% and 48% of genes were commonly downregulated by B. cinerea-treatment, respectively. Our results indicate that plant responses to biotic and abiotic stresses are mediated by several common regulatory genes. Comparisons between transcriptome data from Arabidopsis stressed-plants support our hypothesis that some molecular and biological processes involved in biotic and abiotic stress response are conserved. Thirteen of the common regulated genes to abiotic and biotic stresses were studied in detail to determine their role in plant resistance to B. cinerea. Moreover, a T-DNA insertion mutant of the Responsive to Dehydration gene (rd20, encoding for a member of the caleosin (lipid surface protein family, showed an enhanced sensitivity to B. cinerea infection and drought. Overall, the overlapping of plant responses to abiotic and biotic stresses, coupled with the sensitivity of the rd20 mutant, may provide new interesting programs for increased plant resistance to multiple environmental stresses, and ultimately increases its chances to survive. Future research

  12. Plant Responses to Abiotic Stress Regulated by Histone Deacetylases

    Directory of Open Access Journals (Sweden)

    Ming Luo

    2017-12-01

    Full Text Available In eukaryotic cells, histone acetylation and deacetylation play an important role in the regulation of gene expression. Histone acetylation levels are modulated by histone acetyltransferases and histone deacetylases (HDACs. Recent studies indicate that HDACs play essential roles in the regulation of gene expression in plant response to environmental stress. In this review, we discussed the recent advance regarding the plant HDACs and their functions in the regulation of abiotic stress responses. The role of HDACs in autophagy was also discussed.

  13. Transcriptomic Profiling of the Maize (Zea mays L.) Leaf Response to Abiotic Stresses at the Seedling Stage.

    Science.gov (United States)

    Li, Pengcheng; Cao, Wei; Fang, Huimin; Xu, Shuhui; Yin, Shuangyi; Zhang, Yingying; Lin, Dezhou; Wang, Jianan; Chen, Yufei; Xu, Chenwu; Yang, Zefeng

    2017-01-01

    Abiotic stresses, including drought, salinity, heat, and cold, negatively affect maize ( Zea mays L.) development and productivity. To elucidate the molecular mechanisms of resistance to abiotic stresses in maize, RNA-seq was used for global transcriptome profiling of B73 seedling leaves exposed to drought, salinity, heat, and cold stress. A total of 5,330 differentially expressed genes (DEGs) were detected in differential comparisons between the control and each stressed sample, with 1,661, 2,019, 2,346, and 1,841 DEGs being identified in comparisons of the control with salinity, drought, heat, and cold stress, respectively. Functional annotations of DEGs suggested that the stress response was mediated by pathways involving hormone metabolism and signaling, transcription factors (TFs), very-long-chain fatty acid biosynthesis and lipid signaling, among others. Of the obtained DEGs (5,330), 167 genes are common to these four abiotic stresses, including 10 up-regulated TFs (five ERFs, two NACs, one ARF, one MYB, and one HD-ZIP) and two down-regulated TFs (one b-ZIP and one MYB-related), which suggested that common mechanisms may be initiated in response to different abiotic stresses in maize. This study contributes to a better understanding of the molecular mechanisms of maize leaf responses to abiotic stresses and could be useful for developing maize cultivars resistant to abiotic stresses.

  14. Roles of arabidopsis WRKY18, WRKY40 and WRKY60 transcription factors in plant responses to abscisic acid and abiotic stress

    OpenAIRE

    Chen Zhixiang; Xiao Yong; Shi Junwei; Lai Zhibing; Chen Han; Xu Xinping

    2010-01-01

    Abstract Background WRKY transcription factors are involved in plant responses to both biotic and abiotic stresses. Arabidopsis WRKY18, WRKY40, and WRKY60 transcription factors interact both physically and functionally in plant defense responses. However, their role in plant abiotic stress response has not been directly analyzed. Results We report that the three WRKYs are involved in plant responses to abscisic acid (ABA) and abiotic stress. Through analysis of single, double, and triple muta...

  15. Genetic and Computational Approaches for Studying Plant Development and Abiotic Stress Responses Using Image-Based Phenotyping

    Science.gov (United States)

    Campbell, M. T.; Walia, H.; Grondin, A.; Knecht, A.

    2017-12-01

    The development of abiotic stress tolerant crops (i.e. drought, salinity, or heat stress) requires the discovery of DNA sequence variants associated with stress tolerance-related traits. However, many traits underlying adaptation to abiotic stress involve a suite of physiological pathways that may be induced at different times throughout the duration of stress. Conventional single-point phenotyping approaches fail to fully capture these temporal responses, and thus downstream genetic analysis may only identify a subset of the genetic variants that are important for adaptation to sub-optimal environments. Although genomic resources for crops have advanced tremendously, the collection of phenotypic data for morphological and physiological traits is laborious and remains a significant bottleneck in bridging the phenotype-genotype gap. In recent years, the availability of automated, image-based phenotyping platforms has provided researchers with an opportunity to collect morphological and physiological traits non-destructively in a highly controlled environment. Moreover, these platforms allow abiotic stress responses to be recorded throughout the duration of the experiment, and have facilitated the use of function-valued traits for genetic analyses in major crops. We will present our approaches for addressing abiotic stress tolerance in cereals. This talk will focus on novel open-source software to process and extract biological meaningful data from images generated from these phenomics platforms. In addition, we will discuss the statistical approaches to model longitudinal phenotypes and dissect the genetic basis of dynamic responses to these abiotic stresses throughout development.

  16. Auxin Response Factors (ARFs are potential mediators of auxin action in tomato response to biotic and abiotic stress (Solanum lycopersicum.

    Directory of Open Access Journals (Sweden)

    Sarah Bouzroud

    Full Text Available Survival biomass production and crop yield are heavily constrained by a wide range of environmental stresses. Several phytohormones among which abscisic acid (ABA, ethylene and salicylic acid (SA are known to mediate plant responses to these stresses. By contrast, the role of the plant hormone auxin in stress responses remains so far poorly studied. Auxin controls many aspects of plant growth and development, and Auxin Response Factors play a key role in the transcriptional activation or repression of auxin-responsive genes through direct binding to their promoters. As a mean to gain more insight on auxin involvement in a set of biotic and abiotic stress responses in tomato, the present study uncovers the expression pattern of SlARF genes in tomato plants subjected to biotic and abiotic stresses. In silico mining of the RNAseq data available through the public TomExpress web platform, identified several SlARFs as responsive to various pathogen infections induced by bacteria and viruses. Accordingly, sequence analysis revealed that 5' regulatory regions of these SlARFs are enriched in biotic and abiotic stress-responsive cis-elements. Moreover, quantitative qPCR expression analysis revealed that many SlARFs were differentially expressed in tomato leaves and roots under salt, drought and flooding stress conditions. Further pointing to the putative role of SlARFs in stress responses, quantitative qPCR expression studies identified some miRNA precursors as potentially involved in the regulation of their SlARF target genes in roots exposed to salt and drought stresses. These data suggest an active regulation of SlARFs at the post-transcriptional level under stress conditions. Based on the substantial change in the transcript accumulation of several SlARF genes, the data presented in this work strongly support the involvement of auxin in stress responses thus enabling to identify a set of candidate SlARFs as potential mediators of biotic and abiotic

  17. Herboxidiene triggers splicing repression and abiotic stress responses in plants

    KAUST Repository

    Alshareef, Sahar

    2017-03-27

    Background Constitutive and alternative splicing of pre-mRNAs from multiexonic genes controls the diversity of the proteome; these precisely regulated processes also fine-tune responses to cues related to growth, development, and stresses. Small-molecule inhibitors that perturb splicing provide invaluable tools for use as chemical probes to uncover the molecular underpinnings of splicing regulation and as potential anticancer compounds. Results Here, we show that herboxidiene (GEX1A) inhibits both constitutive and alternative splicing. Moreover, GEX1A activates genome-wide transcriptional patterns involved in abiotic stress responses in plants. GEX1A treatment -activated ABA-inducible promoters, and led to stomatal closure. Interestingly, GEX1A and pladienolide B (PB) elicited similar cellular changes, including alterations in the patterns of transcription and splicing, suggesting that these compounds might target the same spliceosome complex in plant cells. Conclusions Our study establishes GEX1A as a potent splicing inhibitor in plants that can be used to probe the assembly, dynamics, and molecular functions of the spliceosome and to study the interplay between splicing stress and abiotic stresses, as well as having potential biotechnological applications.

  18. Functional Characterization of TaSnRK2.8 Promoter in Response to Abiotic Stresses by Deletion Analysis in Transgenic Arabidopsis

    Directory of Open Access Journals (Sweden)

    Hongying Zhang

    2017-07-01

    Full Text Available Drought, salinity, and cold are the major factors limiting wheat quality and productivity; it is thus highly desirable to characterize the abiotic-stress-inducible promoters suitable for the genetic improvement of plant resistance. The sucrose non-fermenting 1-related protein kinase 2 (SnRK2 family genes show distinct regulatory properties in response to abiotic stresses. The present study characterized the approximately 3000-bp upstream sequence (the 313 bp upstream of the ATG was the transcription start site of the Triticum aestivum TaSnRK2.8 promoter under abscisic acid (ABA and abiotic stresses. Four different-length 5′ deletion fragments of TaSnRK2.8 promoter were fused with the GUS reporter gene and transformed into Arabidopsis. Tissue expression analysis showed that the TaSnRK2.8 promoter region from position -1481 to -821 contained the stalk-specific elements, and the region from position -2631 to -1481 contained the leaf- and root-specific elements. In the ABA-treated seedlings, the deletion analysis showed that the TaSnRK2.8 promoter region from position -821 to -2631 contained ABA response elements. The abiotic stress responses of the TaSnRK2.8 promoter derivatives demonstrated that they harbored abiotic-stress response elements: the region from position -821 to -408 harbored the osmotic-stress response elements, whereas the region from position -2631 to -1481 contained the positive regulatory motifs and the region from position -1481 to -821 contained the leaf- and stalk-specific enhancers. Further deletion analysis of the promoter region from position -821 to -408 indicated that a 125-bp region from position -693 to -568 was required to induce an osmotic-stress response. These results contribute to a better understanding of the molecular mechanisms of TaSnRK2.8 in response to abiotic stresses, and the TaSnRK2.8 promoter seems to be a candidate for regulating the expression of abiotic stress response genes in transgenic plants.

  19. Abscisic Acid and Gibberellins Antagonistically Mediate Plant Development and Abiotic Stress Responses

    Directory of Open Access Journals (Sweden)

    Kai Shu

    2018-03-01

    Full Text Available Phytohormones regulate numerous important biological processes in plant development and biotic/abiotic stress response cascades. More than 50 and 100 years have passed since the initial discoveries of the phytohormones abscisic acid (ABA and gibberellins (GA, respectively. Over the past several decades, numerous elegant studies have demonstrated that ABA and GA antagonistically regulate many plant developmental processes, including seed maturation, seed dormancy and germination, root initiation, hypocotyl and stem elongation, and floral transition. Furthermore, as a well-established stress hormone, ABA plays a key role in plant responses to abiotic stresses, such as drought, flooding, salinity and low temperature. Interestingly, recent evidence revealed that GA are also involved in plant response to adverse environmental conditions. Consequently, the complex crosstalk networks between ABA and GA, mediated by diverse key regulators, have been extensively investigated and documented. In this updated mini-review, we summarize the most recent advances in our understanding of the antagonistically regulatory roles of ABA and GA in different stages of plant development and in various plant–environment interactions, focusing on the crosstalk between ABA and GA at the levels of phytohormone metabolism and signal transduction.

  20. RING E3 ligases: key regulatory elements are involved in abiotic stress responses in plants.

    Science.gov (United States)

    Cho, Seok Keun; Ryu, Moon Young; Kim, Jong Hum; Hong, Jeong Soo; Oh, Tae Rin; Kim, Woo Taek; Yang, Seong Wook

    2017-08-01

    Plants are constantly exposed to a variety of abiotic stresses, such as drought, heat, cold, flood, and salinity. To survive under such unfavorable conditions, plants have evolutionarily developed their own resistant-mechanisms. For several decades, many studies have clarified specific stress response pathways of plants through various molecular and genetic studies. In particular, it was recently discovered that ubiquitin proteasome system (UPS), a regulatory mechanism for protein turn over, is greatly involved in the stress responsive pathways. In the UPS, many E3 ligases play key roles in recognizing and tethering poly-ubiquitins on target proteins for subsequent degradation by the 26S proteasome. Here we discuss the roles of RING ligases that have been defined in related to abiotic stress responses in plants. [BMB Reports 2017; 50(8): 393-400].

  1. Spatial variability of biotic and abiotic tree establishment constraints across a treeline ecotone in the Alaska range.

    Science.gov (United States)

    Stueve, Kirk M; Isaacs, Rachel E; Tyrrell, Lucy E; Densmore, Roseann V

    2011-02-01

    Throughout interior Alaska (U.S.A.), a gradual warming trend in mean monthly temperatures occurred over the last few decades (approximatlely 2-4 degrees C). The accompanying increases in woody vegetation at many alpine treeline (hereafter treeline) locations provided an opportunity to examine how biotic and abiotic local site conditions interact to control tree establishment patterns during warming. We devised a landscape ecological approach to investigate these relationships at an undisturbed treeline in the Alaska Range. We identified treeline changes between 1953 (aerial photography) and 2005 (satellite imagery) in a geographic information system (GIS) and linked them with corresponding local site conditions derived from digital terrain data, ancillary climate data, and distance to 1953 trees. Logistic regressions enabled us to rank the importance of local site conditions in controlling tree establishment. We discovered a spatial transition in the importance of tree establishment controls. The biotic variable (proximity to 1953 trees) was the most important tree establishment predictor below the upper tree limit, providing evidence of response lags with the abiotic setting and suggesting that tree establishment is rarely in equilibrium with the physical environment or responding directly to warming. Elevation and winter sun exposure were important predictors of tree establishment at the upper tree limit, but proximity to trees persisted as an important tertiary predictor, indicating that tree establishment may achieve equilibrium with the physical environment. However, even here, influences from the biotic variable may obscure unequivocal correlations with the abiotic setting (including temperature). Future treeline expansion will likely be patchy and challenging to predict without considering the spatial variability of influences from biotic and abiotic local site conditions.

  2. Poaceae vs. Abiotic Stress: Focus on Drought and Salt Stress, Recent Insights and Perspectives

    Directory of Open Access Journals (Sweden)

    Simone Landi

    2017-07-01

    Full Text Available Poaceae represent the most important group of crops susceptible to abiotic stress. This large family of monocotyledonous plants, commonly known as grasses, counts several important cultivated species, namely wheat (Triticum aestivum, rice (Oryza sativa, maize (Zea mays, and barley (Hordeum vulgare. These crops, notably, show different behaviors under abiotic stress conditions: wheat and rice are considered sensitive, showing serious yield reduction upon water scarcity and soil salinity, while barley presents a natural drought and salt tolerance. During the green revolution (1940–1960, cereal breeding was very successful in developing high-yield crops varieties; however, these cultivars were maximized for highest yield under optimal conditions, and did not present suitable traits for tolerance under unfavorable conditions. The improvement of crop abiotic stress tolerance requires a deep knowledge of the phenomena underlying tolerance, to devise novel approaches and decipher the key components of agricultural production systems. Approaches to improve food production combining both enhanced water use efficiency (WUE and acceptable yields are critical to create a sustainable agriculture in the future. This paper analyzes the latest results on abiotic stress tolerance in Poaceae. In particular, the focus will be directed toward various aspects of water deprivation and salinity response efficiency in Poaceae. Aspects related to cell wall metabolism will be covered, given the importance of the plant cell wall in sensing environmental constraints and in mediating a response; the role of silicon (Si, an important element for monocots' normal growth and development, will also be discussed, since it activates a broad-spectrum response to different exogenous stresses. Perspectives valorizing studies on landraces conclude the survey, as they help identify key traits for breeding purposes.

  3. Differential contributions to the transcriptome of duplicated genes in response to abiotic stresses in natural and synthetic polyploids.

    Science.gov (United States)

    Dong, Shaowei; Adams, Keith L

    2011-06-01

    Polyploidy has occurred throughout plant evolution and can result in considerable changes to gene expression when it takes place and over evolutionary time. Little is known about the effects of abiotic stress conditions on duplicate gene expression patterns in polyploid plants. We examined the expression patterns of 60 duplicated genes in leaves, roots and cotyledons of allotetraploid Gossypium hirsutum in response to five abiotic stress treatments (heat, cold, drought, high salt and water submersion) using single-strand conformation polymorphism assays, and 20 genes in a synthetic allotetraploid. Over 70% of the genes showed stress-induced changes in the relative expression levels of the duplicates under one or more stress treatments with frequent variability among treatments. Twelve pairs showed opposite changes in expression levels in response to different abiotic stress treatments. Stress-induced expression changes occurred in the synthetic allopolyploid, but there was little correspondence in patterns between the natural and synthetic polyploids. Our results indicate that abiotic stress conditions can have considerable effects on duplicate gene expression in a polyploid, with the effects varying by gene, stress and organ type. Differential expression in response to environmental stresses may be a factor in the preservation of some duplicated genes in polyploids. © 2011 The Authors. New Phytologist © 2011 New Phytologist Trust.

  4. Regulation of abiotic and biotic stress responses by plant hormones

    DEFF Research Database (Denmark)

    Grosskinsky, Dominik Kilian; van der Graaff, Eric; Roitsch, Thomas Georg

    2016-01-01

    Plant hormones (phytohormones) are signal molecules produced within the plant, and occur in very low concentrations. In the present chapter, the current knowledge on the regulation of biotic and biotic stress responses by plant hormones is summarized with special focus on the novel insights...... into the complex hormonal crosstalk of classical growth stimulating plant hormones within the naturally occurring biotic and abiotic multistress environment of higher plants. The MAPK- and phytohormone-cascades which comprise a multitude of single molecules on different signalling levels, as well as interactions...

  5. Identification of the AQP members involved in abiotic stress responses from Arabidopsis.

    Science.gov (United States)

    Feng, Zhi-Juan; Xu, Sheng-Chun; Liu, Na; Zhang, Gu-Wen; Hu, Qi-Zan; Xu, Zhao-Shi; Gong, Ya-Ming

    2018-03-10

    Aquaporins (AQPs) constitute a highly diverse family of water channel proteins that play crucial biological functions in plant growth and development and stress physiology. In Arabidopsis, 35 AQPs are classified into four subfamilies (PIPs, TIPs, NIPs and SIPs). However, knowledge about the roles of different subfamily AQPs remains limited. Here, we explored the chromosomal location, gene structure and expression patterns of all AQPs in different tissues or under different abiotic stresses based on available microarray data. Tissue expression analysis showed that different AQPs had various expression patterns in tissues (root, leaf, flower and seed). Expression profiles under stress conditions revealed that most AQPs were responsive to osmotic, salt and drought stresses. Phenotypic and physiological identification showed that Tip2;2 loss-of-function mutant exhibited less sensitive to abiotic stresses (mannitol, NaCl and PEG) compared with wild-type, as evident by analysis of germination rate, root growth, survival rate, ion leakage, malondialdehyde (MDA) and proline contents. Mutant of TIP2;2 modulated the transcript levels of SOS1, SOS2, SOS3, DREB1A, DREB2A and P5CS1, under abiotic stress conditions. This study provides a basis for further functional identification of stress-related candidate AQPs in Arabidopsis. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Roots Withstanding their Environment: Exploiting Root System Architecture Responses to Abiotic Stress to Improve Crop Tolerance

    Science.gov (United States)

    Koevoets, Iko T.; Venema, Jan Henk; Elzenga, J. Theo. M.; Testerink, Christa

    2016-01-01

    To face future challenges in crop production dictated by global climate changes, breeders and plant researchers collaborate to develop productive crops that are able to withstand a wide range of biotic and abiotic stresses. However, crop selection is often focused on shoot performance alone, as observation of root properties is more complex and asks for artificial and extensive phenotyping platforms. In addition, most root research focuses on development, while a direct link to the functionality of plasticity in root development for tolerance is often lacking. In this paper we review the currently known root system architecture (RSA) responses in Arabidopsis and a number of crop species to a range of abiotic stresses, including nutrient limitation, drought, salinity, flooding, and extreme temperatures. For each of these stresses, the key molecular and cellular mechanisms underlying the RSA response are highlighted. To explore the relevance for crop selection, we especially review and discuss studies linking root architectural responses to stress tolerance. This will provide a first step toward understanding the relevance of adaptive root development for a plant’s response to its environment. We suggest that functional evidence on the role of root plasticity will support breeders in their efforts to include root properties in their current selection pipeline for abiotic stress tolerance, aimed to improve the robustness of crops. PMID:27630659

  7. Abscisic Acid and Abiotic Stress Signaling

    OpenAIRE

    Tuteja, Narendra

    2007-01-01

    Abiotic stress is severe environmental stress, which impairs crop production on irrigated land worldwide. Overall, the susceptibility or tolerance to the stress in plants is a coordinated action of multiple stress responsive genes, which also cross-talk with other components of stress signal transduction pathways. Plant responses to abiotic stress can be determined by the severity of the stress and by the metabolic status of the plant. Abscisic acid (ABA) is a phytohormone critical for plant ...

  8. Arabidopsis cysteine-rich receptor-like kinase 45 functions in the responses to abscisic acid and abiotic stresses

    KAUST Repository

    Zhang, Xiujuan; Yang, Guanyu; Shi, Rui; Han, Xiaomin; Qi, Liwang; Wang, Ruigang; Xiong, Liming; Li, Guojing

    2013-01-01

    The phytohormone abscisic acid (ABA) regulates seed germination, plant growth and development, and response to abiotic stresses such as drought and salt stresses. Receptor-like kinases are well known signaling components that mediate plant responses

  9. The Tyrosyl-DNA Phosphodiesterase 1β (Tdp1β Gene Discloses an Early Response to Abiotic Stresses

    Directory of Open Access Journals (Sweden)

    Maria Elisa Sabatini

    2017-11-01

    Full Text Available Tyrosyl-DNA phosphodiesterase 1 (Tdp1 is involved in DNA repair pathways as it mends the topoisomerase I—DNA covalent complexes. In plants, a small Tdp1 gene family, composed by Tdp1α and Tdp1β genes, was identified, but the roles of these genes in abiotic stress responses are not fully understood. To investigate their specific stress response patterns, the present study made use of bioinformatic and molecular tools to look into the Tdp1β gene function, so far described only in the plant kingdom, and compare it with Tdp1α gene coding for the canonical, highly conserved α isoform. The expression profiles of Tdp1α and Tdp1β genes were examined under abiotic stress conditions (cold, heat, high osmolarity, salt, and UV-B in two model species, Arabidopsis thaliana and Medicago truncatula. The two isoforms of topoisomerase I (TOP1α and TOP1β were also taken into consideration in view of their known roles in DNA metabolism and cell proliferation. Data relative to gene expression in Arabidopsis were retrieved from the AtGenExpress microarray dataset, while quantitative Real-Time PCR was carried out to evaluate the stress response in M. truncatula cell cultures. These analyses revealed that Tdp1β gene expression was enhanced during the first hour of treatment, whereas Tdp1α enhanced expression succeeded at subsequent timepoints. In agreement with the gene-specific responses to abiotic stress conditions, the promoter regions of Tdp1α and Tdp1β genes are well equipped with stress-related cis-elements. An in-depth bioinformatic characterization of the HIRAN motif, a distinctive feature of the Tdp1β protein, showed its wide distribution in chromatin remodeling and DNA repair proteins. The reported data suggests that Tdp1β functions in the early response to abiotic stresses.

  10. Identification and Expression Profiling of the Auxin Response Factors in Dendrobium officinale under Abiotic Stresses.

    Science.gov (United States)

    Chen, Zhehao; Yuan, Ye; Fu, Di; Shen, Chenjia; Yang, Yanjun

    2017-05-04

    Auxin response factor (ARF) proteins play roles in plant responses to diverse environmental stresses by binding specifically to the auxin response element in the promoters of target genes. Using our latest public Dendrobium transcriptomes, a comprehensive characterization and analysis of 14 DnARF genes were performed. Three selected DnARFs , including DnARF1 , DnARF4 , and DnARF6 , were confirmed to be nuclear proteins according to their transient expression in epidermal cells of Nicotiana benthamiana leaves. Furthermore, the transcription activation abilities of DnARF1 , DnARF4 , and DnARF6 were tested in a yeast system. Our data showed that DnARF6 is a transcriptional activator in Dendrobium officinale . To uncover the basic information of DnARF gene responses to abiotic stresses, we analyzed their expression patterns under various hormones and abiotic treatments. Based on our data, several hormones and significant stress responsive DnARF genes have been identified. Since auxin and ARF genes have been identified in many plant species, our data is imperative to reveal the function of ARF mediated auxin signaling in the adaptation to the challenging Dendrobium environment.

  11. Analysis of global gene expression in Brachypodium distachyon reveals extensive network plasticity in response to abiotic stress.

    Directory of Open Access Journals (Sweden)

    Henry D Priest

    Full Text Available Brachypodium distachyon is a close relative of many important cereal crops. Abiotic stress tolerance has a significant impact on productivity of agriculturally important food and feedstock crops. Analysis of the transcriptome of Brachypodium after chilling, high-salinity, drought, and heat stresses revealed diverse differential expression of many transcripts. Weighted Gene Co-Expression Network Analysis revealed 22 distinct gene modules with specific profiles of expression under each stress. Promoter analysis implicated short DNA sequences directly upstream of module members in the regulation of 21 of 22 modules. Functional analysis of module members revealed enrichment in functional terms for 10 of 22 network modules. Analysis of condition-specific correlations between differentially expressed gene pairs revealed extensive plasticity in the expression relationships of gene pairs. Photosynthesis, cell cycle, and cell wall expression modules were down-regulated by all abiotic stresses. Modules which were up-regulated by each abiotic stress fell into diverse and unique gene ontology GO categories. This study provides genomics resources and improves our understanding of abiotic stress responses of Brachypodium.

  12. Supplementary Material for: Herboxidiene triggers splicing repression and abiotic stress responses in plants

    KAUST Repository

    Alshareef, Sahar; Ling, Yu; Butt, Haroon; Mariappan, Kiruthiga; Benhamed, Moussa; Mahfouz, Magdy

    2017-01-01

    Abstract Background Constitutive and alternative splicing of pre-mRNAs from multiexonic genes controls the diversity of the proteome; these precisely regulated processes also fine-tune responses to cues related to growth, development, and stresses. Small-molecule inhibitors that perturb splicing provide invaluable tools for use as chemical probes to uncover the molecular underpinnings of splicing regulation and as potential anticancer compounds. Results Here, we show that herboxidiene (GEX1A) inhibits both constitutive and alternative splicing. Moreover, GEX1A activates genome-wide transcriptional patterns involved in abiotic stress responses in plants. GEX1A treatment -activated ABA-inducible promoters, and led to stomatal closure. Interestingly, GEX1A and pladienolide B (PB) elicited similar cellular changes, including alterations in the patterns of transcription and splicing, suggesting that these compounds might target the same spliceosome complex in plant cells. Conclusions Our study establishes GEX1A as a potent splicing inhibitor in plants that can be used to probe the assembly, dynamics, and molecular functions of the spliceosome and to study the interplay between splicing stress and abiotic stresses, as well as having potential biotechnological applications.

  13. Molecular and physiological responses to abiotic stress in forest trees and their relevance to tree improvement.

    Science.gov (United States)

    Harfouche, Antoine; Meilan, Richard; Altman, Arie

    2014-11-01

    Abiotic stresses, such as drought, salinity and cold, are the major environmental stresses that adversely affect tree growth and, thus, forest productivity, and play a major role in determining the geographic distribution of tree species. Tree responses and tolerance to abiotic stress are complex biological processes that are best analyzed at a systems level using genetic, genomic, metabolomic and phenomic approaches. This will expedite the dissection of stress-sensing and signaling networks to further support efficient genetic improvement programs. Enormous genetic diversity for stress tolerance exists within some forest-tree species, and due to advances in sequencing technologies the molecular genetic basis for this diversity has been rapidly unfolding in recent years. In addition, the use of emerging phenotyping technologies extends the suite of traits that can be measured and will provide us with a better understanding of stress tolerance. The elucidation of abiotic stress-tolerance mechanisms will allow for effective pyramiding of multiple tolerances in a single tree through genetic engineering. Here we review recent progress in the dissection of the molecular basis of abiotic stress tolerance in forest trees, with special emphasis on Populus, Pinus, Picea, Eucalyptus and Quercus spp. We also outline practices that will enable the deployment of trees engineered for abiotic stress tolerance to land owners. Finally, recommendations for future work are discussed. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  14. Bacillus amyloliquefaciens Confers Tolerance to Various Abiotic Stresses and Modulates Plant Response to Phytohormones through Osmoprotection and Gene Expression Regulation in Rice

    Directory of Open Access Journals (Sweden)

    Shalini Tiwari

    2017-08-01

    Full Text Available Being sessile in nature, plants have to withstand various adverse environmental stress conditions including both biotic and abiotic stresses. Comparatively, abiotic stresses such as drought, salinity, high temperature, and cold pose major threat to agriculture by negatively impacting plant growth and yield worldwide. Rice is one of the most widely consumed staple cereals across the globe, the production and productivity of which is also severely affected by different abiotic stresses. Therefore, several crop improvement programs are directed toward developing stress tolerant rice cultivars either through marker assisted breeding or transgenic technology. Alternatively, some known rhizospheric competent bacteria are also known to improve plant growth during abiotic stresses. A plant growth promoting rhizobacteria (PGPR, Bacillus amyloliquefaciens NBRI-SN13 (SN13 was previously reported by our lab to confer salt stress tolerance to rice seedlings. However, the present study investigates the role of SN13 in ameliorating various abiotic stresses such as salt, drought, desiccation, heat, cold, and freezing on a popular rice cv. Saryu-52 under hydroponic growth conditions. Apart from this, seedlings were also exogenously supplied with abscisic acid (ABA, salicylic acid (SA, jasmonic acid (JA and ethephon (ET to study the role of SN13 in phytohormone-induced stress tolerance as well as its role in abiotic and biotic stress cross-talk. All abiotic stresses and phytohormone treatments significantly affected various physiological and biochemical parameters like membrane integrity and osmolyte accumulation. SN13 also positively modulated stress-responsive gene expressions under various abiotic stresses and phytohormone treatments suggesting its multifaceted role in cross-talk among stresses and phytohormones in response to PGPR. To the best of our knowledge, this is the first report on detailed analysis of plant growth promotion and stress alleviation by a

  15. Revisiting the Role of Plant Transcription Factors in the Battle against Abiotic Stress.

    Science.gov (United States)

    Khan, Sardar-Ali; Li, Meng-Zhan; Wang, Suo-Min; Yin, Hong-Ju

    2018-05-31

    Owing to diverse abiotic stresses and global climate deterioration, the agricultural production worldwide is suffering serious losses. Breeding stress-resilient crops with higher quality and yield against multiple environmental stresses via application of transgenic technologies is currently the most promising approach. Deciphering molecular principles and mining stress-associate genes that govern plant responses against abiotic stresses is one of the prerequisites to develop stress-resistant crop varieties. As molecular switches in controlling stress-responsive genes expression, transcription factors (TFs) play crucial roles in regulating various abiotic stress responses. Hence, functional analysis of TFs and their interaction partners during abiotic stresses is crucial to perceive their role in diverse signaling cascades that many researchers have continued to undertake. Here, we review current developments in understanding TFs, with particular emphasis on their functions in orchestrating plant abiotic stress responses. Further, we discuss novel molecular mechanisms of their action under abiotic stress conditions. This will provide valuable information for understanding regulatory mechanisms to engineer stress-tolerant crops.

  16. Using Phenomic Analysis of Photosynthetic Function for Abiotic Stress Response Gene Discovery

    KAUST Repository

    Rungrat, Tepsuda

    2016-09-09

    Monitoring the photosynthetic performance of plants is a major key to understanding how plants adapt to their growth conditions. Stress tolerance traits have a high genetic complexity as plants are constantly, and unavoidably, exposed to numerous stress factors, which limits their growth rates in the natural environment. Arabidopsis thaliana, with its broad genetic diversity and wide climatic range, has been shown to successfully adapt to stressful conditions to ensure the completion of its life cycle. As a result, A. thaliana has become a robust and renowned plant model system for studying natural variation and conducting gene discovery studies. Genome wide association studies (GWAS) in restructured populations combining natural and recombinant lines is a particularly effective way to identify the genetic basis of complex traits. As most abiotic stresses affect photosynthetic activity, chlorophyll fluorescence measurements are a potential phenotyping technique for monitoring plant performance under stress conditions. This review focuses on the use of chlorophyll fluorescence as a tool to study genetic variation underlying the stress tolerance responses to abiotic stress in A. thaliana.

  17. The Calcium Sensor CBL-CIPK Is Involved in Plant’s Response to Abiotic Stresses

    Directory of Open Access Journals (Sweden)

    S. M. Nuruzzaman Manik

    2015-01-01

    Full Text Available Abiotic stress halts the physiological and developmental process of plant. During stress condition, CBL-CIPK complex is identified as a primary element of calcium sensor to perceive environmental signals. Recent studies established that this complex regulates downstream targets like ion channels and transporters in adverse stages conditions. Crosstalks between the CBL-CIPK complex and different abiotic stresses can extend our research area, which can improve and increase the production of genetically modified crops in response to abiotic stresses. How this complex links with environmental signals and creates adjustable circumstances under unfavorable conditions is now one of the burning issues. Diverse studies are already underway to delineate this signalling mechanism underlying different interactions. Therefore, up to date experimental results should be concisely published, thus paving the way for further research. The present review will concisely recapitulate the recent and ongoing research progress of positive ions (Mg2+, Na+, and K+, negative ions (NO3-, PO4-, and hormonal signalling, which are evolving from accumulating results of analyses of CBL and CIPK loss- or gain-of-function experiments in different species along with some progress and perspectives of our works. In a word, this review will give one step forward direction for more functional studies in this area.

  18. Molecular Analysis of Rice CIPKs Involved in Both Biotic and Abiotic Stress Responses

    Institute of Scientific and Technical Information of China (English)

    CHEN Xi-feng; Gu Zhi-min; LIU Feng; MA Bo-jun; ZHANG Hong-sheng

    2011-01-01

    Plant calcineurin B-like (CBL) proteins have been proposed as important Ca2+ sensors and specifically interact with CBL-interacting protein kinases (CIPKs) in plant-specific calcium signaling.Here,we identified and isolated 15 CIPK genes in a japonica rice variety Nipponbare based on the predicted sequences of rice CIPK gene family.Gene structure analysis showed that these 15 genes were divided into intron-less and intron-rich groups,and OsCIPK3 and OsCIPK24 exhibited alternative splicing in their mature process.The phylogenetic analyses indicated that rice CIPKs shared an ancestor with Arabidopsis and poplar CIPKs.Analyses of gene expression showed that these OsCIPK genes were differentially induced by biotic stresses such as bacterial blight and abiotic stresses (heavy metal such as Hg2+,high salinity,cold and ABA).Interestingly,five OsCIPK genes,OsCIPK1,2,10,11 and 12,were transcriptionally up-regulated after bacterial blight infection whereas four OsCIPK genes,OsCIPK2,10,11 and 14,were induced by all treatments,indicating that some of OsCIPK genes are involved in multiple stress response pathways in plants.Our finding suggests that CIPKs play a key role in both biotic and abiotic stress responses.

  19. The Zinc-Finger Thylakoid-Membrane Protein FIP Is Involved With Abiotic Stress Response in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Karina L. Lopes

    2018-04-01

    Full Text Available Many plant genes have their expression modulated by stress conditions. Here, we used Arabidopsis FtsH5 protease, which expression is regulated by light stress, as bait in a yeast two-hybrid screen to search for new proteins involved in the stress response. As a result, we found FIP (FtsH5 Interacting Protein, which possesses an amino proximal cleavable transit peptide, a hydrophobic membrane-anchoring region, and a carboxyl proximal C4-type zinc-finger domain. In vivo experiments using FIP fused to green fluorescent protein (GFP showed a plastid localization. This finding was corroborated by chloroplast import assays that showed FIP inserted in the thylakoid membrane. FIP expression was down-regulated in plants exposed to high light intensity, oxidative, salt, and osmotic stresses, whereas mutant plants expressing low levels of FIP were more tolerant to these abiotic stresses. Our data shows a new thylakoid-membrane protein involved with abiotic stress response in Arabidopsis thaliana.

  20. Role of miRNAs and siRNAs in biotic and abiotic stress responses of plants

    KAUST Repository

    Khraiwesh, Basel

    2012-02-01

    Small, non-coding RNAs are a distinct class of regulatory RNAs in plants and animals that control a variety of biological processes. In plants, several classes of small RNAs with specific sizes and dedicated functions have evolved through a series of pathways. The major classes of small RNAs include microRNAs (miRNAs) and small interfering RNAs (siRNAs), which differ in their biogenesis. miRNAs control the expression of cognate target genes by binding to reverse complementary sequences, resulting in cleavage or translational inhibition of the target RNAs. siRNAs have a similar structure, function, and biogenesis as miRNAs but are derived from long double-stranded RNAs and can often direct DNA methylation at target sequences. Besides their roles in growth and development and maintenance of genome integrity, small RNAs are also important components in plant stress responses. One way in which plants respond to environmental stress is by modifying their gene expression through the activity of small RNAs. Thus, understanding how small RNAs regulate gene expression will enable researchers to explore the role of small RNAs in biotic and abiotic stress responses. This review focuses on the regulatory roles of plant small RNAs in the adaptive response to stresses. This article is part of a Special Issue entitled: Plant gene regulation in response to abiotic stress. © 2011 Elsevier B.V.

  1. Cross-family translational genomics of abiotic stress-responsive genes between Arabidopsis and Medicago truncatula.

    Directory of Open Access Journals (Sweden)

    Daejin Hyung

    Full Text Available Cross-species translation of genomic information may play a pivotal role in applying biological knowledge gained from relatively simple model system to other less studied, but related, genomes. The information of abiotic stress (ABS-responsive genes in Arabidopsis was identified and translated into the legume model system, Medicago truncatula. Various data resources, such as TAIR/AtGI DB, expression profiles and literatures, were used to build a genome-wide list of ABS genes. tBlastX/BlastP similarity search tools and manual inspection of alignments were used to identify orthologous genes between the two genomes. A total of 1,377 genes were finally collected and classified into 18 functional criteria of gene ontology (GO. The data analysis according to the expression cues showed that there was substantial level of interaction among three major types (i.e., drought, salinity and cold stress of abiotic stresses. In an attempt to translate the ABS genes between these two species, genomic locations for each gene were mapped using an in-house-developed comparative analysis platform. The comparative analysis revealed that fragmental colinearity, represented by only 37 synteny blocks, existed between Arabidopsis and M. truncatula. Based on the combination of E-value and alignment remarks, estimated translation rate was 60.2% for this cross-family translation. As a prelude of the functional comparative genomic approaches, in-silico gene network/interactome analyses were conducted to predict key components in the ABS responses, and one of the sub-networks was integrated with corresponding comparative map. The results demonstrated that core members of the sub-network were well aligned with previously reported ABS regulatory networks. Taken together, the results indicate that network-based integrative approaches of comparative and functional genomics are important to interpret and translate genomic information for complex traits such as abiotic stresses.

  2. Expression of an engineered heterologous antimicrobial peptide in potato alters plant development and mitigates normal abiotic and biotic responses.

    Directory of Open Access Journals (Sweden)

    Ravinder K Goyal

    Full Text Available Antimicrobial cationic peptides (AMPs are ubiquitous small proteins used by living cells to defend against a wide spectrum of pathogens. Their amphipathic property helps their interaction with negatively charged cellular membrane of the pathogen causing cell lysis and death. AMPs also modulate signaling pathway(s and cellular processes in animal models; however, little is known of cellular processes other than the pathogen-lysis phenomenon modulated by AMPs in plants. An engineered heterologous AMP, msrA3, expressed in potato was previously shown to cause resistance of the transgenic plants against selected fungal and bacterial pathogens. These lines together with the wild type were studied for growth habits, and for inducible defense responses during challenge with biotic (necrotroph Fusarium solani and abiotic stressors (dark-induced senescence, wounding and temperature stress. msrA3-expression not only conferred protection against F. solani but also delayed development of floral buds and prolonged vegetative phase. Analysis of select gene transcript profiles showed that the transgenic potato plants were suppressed in the hypersensitive (HR and reactive oxygen species (ROS responses to both biotic and abiotic stressors. Also, the transgenic leaves accumulated lesser amounts of the defense hormone jasmonic acid upon wounding with only a slight change in salicylic acid as compared to the wild type. Thus, normal host defense responses to the pathogen and abiotic stressors were mitigated by msrA3 expression suggesting MSRA3 regulates a common step(s of these response pathways. The stemming of the pathogen growth and mitigating stress response pathways likely contributes to resource reallocation for higher tuber yield.

  3. Arbuscular mycorrhizal fungal responses to abiotic stresses: A review.

    Science.gov (United States)

    Lenoir, Ingrid; Fontaine, Joël; Lounès-Hadj Sahraoui, Anissa

    2016-03-01

    The majority of plants live in close collaboration with a diversity of soil organisms among which arbuscular mycorrhizal fungi (AMF) play an essential role. Mycorrhizal symbioses contribute to plant growth and plant protection against various environmental stresses. Whereas the resistance mechanisms induced in mycorrhizal plants after exposure to abiotic stresses, such as drought, salinity and pollution, are well documented, the knowledge about the stress tolerance mechanisms implemented by the AMF themselves is limited. This review provides an overview of the impacts of various abiotic stresses (pollution, salinity, drought, extreme temperatures, CO2, calcareous, acidity) on biodiversity, abundance and development of AMF and examines the morphological, biochemical and molecular mechanisms implemented by AMF to survive in the presence of these stresses. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Tomato NAC transcription factor SlSRN1 positively regulates defense response against biotic stress but negatively regulates abiotic stress response.

    Directory of Open Access Journals (Sweden)

    Bo Liu

    Full Text Available Biotic and abiotic stresses are major unfavorable factors that affect crop productivity worldwide. NAC proteins comprise a large family of transcription factors that play important roles in plant growth and development as well as in responses to biotic and abiotic stresses. In a virus-induced gene silencing-based screening to identify genes that are involved in defense response against Botrytis cinerea, we identified a tomato NAC gene SlSRN1 (Solanum lycopersicum Stress-related NAC1. SlSRN1 is a plasma membrane-localized protein with transactivation activity in yeast. Expression of SlSRN1 was significantly induced by infection with B. cinerea or Pseudomonas syringae pv. tomato (Pst DC3000, leading to 6-8 folds higher than that in the mock-inoculated plants. Expression of SlSRN1 was also induced by salicylic acid, jasmonic acid and 1-amino cyclopropane-1-carboxylic acid and by drought stress. Silencing of SlSRN1 resulted in increased severity of diseases caused by B. cinerea and Pst DC3000. However, silencing of SlSRN1 resulted in increased tolerance against oxidative and drought stresses. Furthermore, silencing of SlSRN1 accelerated accumulation of reactive oxygen species but attenuated expression of defense genes after infection by B. cinerea. Our results demonstrate that SlSRN1 is a positive regulator of defense response against B. cinerea and Pst DC3000 but is a negative regulator for oxidative and drought stress response in tomato.

  5. Transcriptional regulation of Arabidopsis MIR168a and argonaute1 homeostasis in abscisic acid and abiotic stress responses.

    Science.gov (United States)

    Li, Wei; Cui, Xiao; Meng, Zhaolu; Huang, Xiahe; Xie, Qi; Wu, Heng; Jin, Hailing; Zhang, Dabing; Liang, Wanqi

    2012-03-01

    The accumulation of a number of small RNAs in plants is affected by abscisic acid (ABA) and abiotic stresses, but the underlying mechanisms are poorly understood. The miR168-mediated feedback regulatory loop regulates ARGONAUTE1 (AGO1) homeostasis, which is crucial for gene expression modulation and plant development. Here, we reveal a transcriptional regulatory mechanism by which MIR168 controls AGO1 homeostasis during ABA treatment and abiotic stress responses in Arabidopsis (Arabidopsis thaliana). Plants overexpressing MIR168a and the AGO1 loss-of-function mutant ago1-27 display ABA hypersensitivity and drought tolerance, while the mir168a-2 mutant shows ABA hyposensitivity and drought hypersensitivity. Both the precursor and mature miR168 were induced under ABA and several abiotic stress treatments, but no obvious decrease for the target of miR168, AGO1, was shown under the same conditions. However, promoter activity analysis indicated that AGO1 transcription activity was increased under ABA and drought treatments, suggesting that transcriptional elevation of MIR168a is required for maintaining a stable AGO1 transcript level during the stress response. Furthermore, we showed both in vitro and in vivo that the transcription of MIR168a is directly regulated by four abscisic acid-responsive element (ABRE) binding factors, which bind to the ABRE cis-element within the MIR168a promoter. This ABRE motif is also found in the promoter of MIR168a homologs in diverse plant species. Our findings suggest that transcriptional regulation of miR168 and posttranscriptional control of AGO1 homeostasis may play an important and conserved role in stress response and signal transduction in plants.

  6. The Role of MAPK Modules and ABA during Abiotic Stress Signaling

    KAUST Repository

    Zé licourt, Axel de; Colcombet, Jean; Hirt, Heribert

    2016-01-01

    To respond to abiotic stresses, plants have developed specific mechanisms that allow them to rapidly perceive and respond to environmental changes. The phytohormone abscisic acid (ABA) was shown to be a pivotal regulator of abiotic stress responses

  7. Plant Core Environmental Stress Response Genes Are Systemically Coordinated during Abiotic Stresses

    Directory of Open Access Journals (Sweden)

    Kenneth W. Berendzen

    2013-04-01

    Full Text Available Studying plant stress responses is an important issue in a world threatened by global warming. Unfortunately, comparative analyses are hampered by varying experimental setups. In contrast, the AtGenExpress abiotic stress experiment displays intercomparability. Importantly, six of the nine stresses (wounding, genotoxic, oxidative, UV-B light, osmotic and salt can be examined for their capacity to generate systemic signals between the shoot and root, which might be essential to regain homeostasis in Arabidopsis thaliana. We classified the systemic responses into two groups: genes that are regulated in the non-treated tissue only are defined as type I responsive and, accordingly, genes that react in both tissues are termed type II responsive. Analysis of type I and II systemic responses suggest distinct functionalities, but also significant overlap between different stresses. Comparison with salicylic acid (SA and methyl-jasmonate (MeJA responsive genes implies that MeJA is involved in the systemic stress response. Certain genes are predominantly responding in only one of the categories, e.g., WRKY genes respond mainly non-systemically. Instead, genes of the plant core environmental stress response (PCESR, e.g., ZAT10, ZAT12, ERD9 or MES9, are part of different response types. Moreover, several PCESR genes switch between the categories in a stress-specific manner.

  8. Differential expression of poplar sucrose nonfermenting1-related protein kinase 2 genes in response to abiotic stress and abscisic acid.

    Science.gov (United States)

    Yu, Xiang; Takebayashi, Arika; Demura, Taku; Ohtani, Misato

    2017-09-01

    Knowledge on the responses of woody plants to abiotic stress can inform strategies to breed improved tree varieties and to manage tree species for environmental conservation and the production of lignocellulosic biomass. In this study, we examined the expression patterns of poplar (Populus trichocarpa) genes encoding members of the sucrose nonfermenting1-related protein kinase 2 (SnRK2) family, which are core components of the abiotic stress response. The P. trichocarpa genome contains twelve SnRK2 genes (PtSnRK2.1- PtSnRK2.12) that can be divided into three subclasses (I-III) based on the structures of their encoded kinase domains. We found that PtSnRK2s are differentially expressed in various organs. In MS medium-grown plants, all of the PtSnRK2 genes were significantly upregulated in response to abscisic acid (ABA) treatment, whereas osmotic and salt stress treatments induced only some (four and seven, respectively) of the PtSnRK2 genes. By contrast, soil-grown plants showed increased expression of most PtSnRK2 genes under drought and salt treatments, but not under ABA treatment. In soil-grown plants, drought stress induced SnRK2 subclass II genes in all tested organs (leaves, stems, and roots), whereas subclass III genes tended to be upregulated in leaves only. These results suggest that the PtSnRK2 genes are involved in abiotic stress responses, are at least partially activated by ABA, and show organ-specific responses.

  9. Additional insights into the adaptation of cotton plants under abiotic ...

    African Journals Online (AJOL)

    Abiotic stress is the primary cause of crop losses worldwide. In addition to protein coding genes, microRNAs (miRNAs) have emerged as important players in plant stress responses. Though miRNAs are key in regulating many aspects of plant developmental plasticity under abiotic stresses, very few information are available ...

  10. Cross-tolerance to biotic and abiotic stresses in plants: a focus on resistance to aphid infestation.

    Science.gov (United States)

    Foyer, Christine H; Rasool, Brwa; Davey, Jack W; Hancock, Robert D

    2016-03-01

    Plants co-evolved with an enormous variety of microbial pathogens and insect herbivores under daily and seasonal variations in abiotic environmental conditions. Hence, plant cells display a high capacity to respond to diverse stresses through a flexible and finely balanced response network that involves components such as reduction-oxidation (redox) signalling pathways, stress hormones and growth regulators, as well as calcium and protein kinase cascades. Biotic and abiotic stress responses use common signals, pathways and triggers leading to cross-tolerance phenomena, whereby exposure to one type of stress can activate plant responses that facilitate tolerance to several different types of stress. While the acclimation mechanisms and adaptive responses that facilitate responses to single biotic and abiotic stresses have been extensively characterized, relatively little information is available on the dynamic aspects of combined biotic/abiotic stress response. In this review, we consider how the abiotic environment influences plant responses to attack by phloem-feeding aphids. Unravelling the signalling cascades that underpin cross-tolerance to biotic and abiotic stresses will allow the identification of new targets for increasing environmental resilience in crops. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  11. Physiological and transcriptomic responses in the seed coat of field-grown soybean (Glycine max L. Merr.) to abiotic stress.

    Science.gov (United States)

    Leisner, Courtney P; Yendrek, Craig R; Ainsworth, Elizabeth A

    2017-12-12

    Understanding how intensification of abiotic stress due to global climate change affects crop yields is important for continued agricultural productivity. Coupling genomic technologies with physiological crop responses in a dynamic field environment is an effective approach to dissect the mechanisms underpinning crop responses to abiotic stress. Soybean (Glycine max L. Merr. cv. Pioneer 93B15) was grown in natural production environments with projected changes to environmental conditions predicted for the end of the century, including decreased precipitation, increased tropospheric ozone concentrations ([O 3 ]), or increased temperature. All three environmental stresses significantly decreased leaf-level photosynthesis and stomatal conductance, leading to significant losses in seed yield. This was driven by a significant decrease in the number of pods per node for all abiotic stress treatments. To understand the underlying transcriptomic response involved in the yield response to environmental stress, RNA-Sequencing analysis was performed on the soybean seed coat, a tissue that plays an essential role in regulating carbon and nitrogen transport to developing seeds. Gene expression analysis revealed 49, 148 and 1,576 differentially expressed genes in the soybean seed coat in response to drought, elevated [O 3 ] and elevated temperature, respectively. Elevated [O 3 ] and drought did not elicit substantive transcriptional changes in the soybean seed coat. However, this may be due to the timing of sampling and does not preclude impacts of those stresses on different tissues or different stages in seed coat development. Expression of genes involved in DNA replication and metabolic processes were enriched in the seed coat under high temperate stress, suggesting that the timing of events that are important for cell division and proper seed development were altered in a stressful growth environment.

  12. Resistance Responses of Potato to Vesicular-Arbuscular Mycorrhizal Fungi under Varying Abiotic Phosphorus Levels.

    Science.gov (United States)

    McArthur, D A; Knowles, N R

    1992-09-01

    In mycorrhizal symbioses, susceptibility of a host plant to infection by fungi is influenced by environmental factors, especially the availability of soil phosphorus. This study describes morphological and biochemical details of interactions between a vesicular-arbuscular mycorrhizal (VAM) fungus and potato (Solanum tuberosum L. cv Russet Burbank) plants, with a particular focus on the physiological basis for P-induced resistance of roots to infection. Root infection by the VAM fungus Glomus fasciculatum ([Thaxt. sensu Gerdemann] Gerdemann and Trappe) was extensive for plants grown with low abiotic P supply, and plant biomass accumulation was enhanced by the symbiosis. The capacity of excised roots from P-deficient plants to produce ethylene in the presence or absence of exogenous 1-amino cyclopropane-1-carboxylic acid (ACC) was markedly reduced by VAM infection. This apparent inhibition of ACC oxidase (ACC(ox)) activity was localized to areas containing infected roots, as demonstrated in split-root studies. Furthermore, leachate from VAM roots contained a potent water-soluble inhibitor of ethylene generation from exogenous ACC by nonmycorrhizal (NM) roots. The leachate from VAM-infected roots had a higher concentration of phenolics, relative to that from NM roots. Moreover, the rates of ethylene formation and phenolic concentration in leachates from VAM roots were inversely correlated, suggesting that this inhibitor may be of a phenolic nature. The specific activity of extracellular peroxidase recovered in root leachates was not stimulated by VAM infection, although activity on a fresh weight basis was significantly enhanced, reflecting the fact that VAM roots had higher protein content than NM roots. Polyphenol oxidase activity of roots did not differ between NM and VAM roots. These results characterize the low resistance response of P-deficient plants to VAM infection. When plants were grown with higher abiotic P supply, the relative benefit of the VAM symbiosis

  13. Effect of abiotic and biotic stress factors analysis using machine learning methods in zebrafish.

    Science.gov (United States)

    Gutha, Rajasekar; Yarrappagaari, Suresh; Thopireddy, Lavanya; Reddy, Kesireddy Sathyavelu; Saddala, Rajeswara Reddy

    2018-03-01

    In order to understand the mechanisms underlying stress responses, meta-analysis of transcriptome is made to identify differentially expressed genes (DEGs) and their biological, molecular and cellular mechanisms in response to stressors. The present study is aimed at identifying the effect of abiotic and biotic stress factors, and it is found that several stress responsive genes are common for both abiotic and biotic stress factors in zebrafish. The meta-analysis of micro-array studies revealed that almost 4.7% i.e., 108 common DEGs are differentially regulated between abiotic and biotic stresses. This shows that there is a global coordination and fine-tuning of gene regulation in response to these two types of challenges. We also performed dimension reduction methods, principal component analysis, and partial least squares discriminant analysis which are able to segregate abiotic and biotic stresses into separate entities. The supervised machine learning model, recursive-support vector machine, could classify abiotic and biotic stresses with 100% accuracy using a subset of DEGs. Beside these methods, the random forests decision tree model classified five out of 8 stress conditions with high accuracy. Finally, Functional enrichment analysis revealed the different gene ontology terms, transcription factors and miRNAs factors in the regulation of stress responses. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Arabidopsis cysteine-rich receptor-like kinase 45 functions in the responses to abscisic acid and abiotic stresses

    KAUST Repository

    Zhang, Xiujuan

    2013-06-01

    The phytohormone abscisic acid (ABA) regulates seed germination, plant growth and development, and response to abiotic stresses such as drought and salt stresses. Receptor-like kinases are well known signaling components that mediate plant responses to developmental and environmental stimuli. Here, we characterized the biological function of an ABA and stress-inducible cysteine-rich receptor-like protein kinase, CRK45, in ABA signaling in Arabidopsis thaliana. The crk45 mutant was less sensitive to ABA than the wild type during seed germination and early seedling development, whereas CRK45 overexpression plants were more sensitive to ABA compared to the wild type. Furthermore, overexpression of CRK45 led to hypersensitivity to salt and glucose inhibition of seed germination, whereas the crk45 mutant showed the opposite phenotypes. In addition, CRK45 overexpression plants had enhanced tolerance to drought. Gene expression analyses revealed that the expression of representative stress-responsive genes was significantly enhanced in CRK45 overexpression plants in response to salt stress. ABA biosynthetic genes such as NCED3,. 22NCED3, 9-Cis-Epoxycarotenoid Dioxygenase 3.NCED5,. 33NCED5, 9-Cis-Epoxycarotenoid Dioxygenase 5.ABA2,. 44ABA2, Abscisic Acid Deficient 2. and AAO355AAO3, Abscisic Aldehyde Oxidase 3. were also constitutively elevated in the CRK45 overexpression plants. We concluded that CRK45 plays an important role in ABA signaling that regulates Arabidopsis seeds germination, early seedling development and abiotic stresses response, by positively regulating ABA responses in these processes. © 2013 Elsevier Masson SAS.

  15. An endoplasmic reticulum-localized Coffea arabica BURP domain-containing protein affects the response of transgenic Arabidopsis plants to diverse abiotic stresses.

    Science.gov (United States)

    Dinh, Sy Nguyen; Kang, Hunseung

    2017-11-01

    The Coffea arabica BURP domain-containing gene plays an important role in the response of transgenic Arabidopsis plants to abiotic stresses via regulating the level of diverse proteins. Although the functions of plant-specific BURP domain-containing proteins (BDP) have been determined for a few plants, their roles in the growth, development, and stress responses of most plant species, including coffee plant (Coffea arabica), are largely unknown. In this study, the function of a C. arabica BDP, designated CaBDP1, was investigated in transgenic Arabidopsis plants. The expression of CaBDP1 was highly modulated in coffee plants subjected to drought, cold, salt, or ABA. Confocal analysis of CaBDP1-GFP fusion proteins revealed that CaBDP1 is localized in the endoplasmic reticulum. The ectopic expression of CaBDP1 in Arabidopsis resulted in delayed germination of the transgenic plants under abiotic stress and in the presence of ABA. Cotyledon greening and seedling growth of the transgenic plants were inhibited in the presence of ABA due to the upregulation of ABA signaling-related genes like ABI3, ABI4, and ABI5. Proteome analysis revealed that the levels of several proteins are modulated in CaBDP1-expressing transgenic plants. The results of this study underscore the importance of BURP domain proteins in plant responses to diverse abiotic stresses.

  16. Transcriptional Regulation of Arabidopsis MIR168a and ARGONAUTE1 Homeostasis in Abscisic Acid and Abiotic Stress Responses1[W

    Science.gov (United States)

    Li, Wei; Cui, Xiao; Meng, Zhaolu; Huang, Xiahe; Xie, Qi; Wu, Heng; Jin, Hailing; Zhang, Dabing; Liang, Wanqi

    2012-01-01

    The accumulation of a number of small RNAs in plants is affected by abscisic acid (ABA) and abiotic stresses, but the underlying mechanisms are poorly understood. The miR168-mediated feedback regulatory loop regulates ARGONAUTE1 (AGO1) homeostasis, which is crucial for gene expression modulation and plant development. Here, we reveal a transcriptional regulatory mechanism by which MIR168 controls AGO1 homeostasis during ABA treatment and abiotic stress responses in Arabidopsis (Arabidopsis thaliana). Plants overexpressing MIR168a and the AGO1 loss-of-function mutant ago1-27 display ABA hypersensitivity and drought tolerance, while the mir168a-2 mutant shows ABA hyposensitivity and drought hypersensitivity. Both the precursor and mature miR168 were induced under ABA and several abiotic stress treatments, but no obvious decrease for the target of miR168, AGO1, was shown under the same conditions. However, promoter activity analysis indicated that AGO1 transcription activity was increased under ABA and drought treatments, suggesting that transcriptional elevation of MIR168a is required for maintaining a stable AGO1 transcript level during the stress response. Furthermore, we showed both in vitro and in vivo that the transcription of MIR168a is directly regulated by four abscisic acid-responsive element (ABRE) binding factors, which bind to the ABRE cis-element within the MIR168a promoter. This ABRE motif is also found in the promoter of MIR168a homologs in diverse plant species. Our findings suggest that transcriptional regulation of miR168 and posttranscriptional control of AGO1 homeostasis may play an important and conserved role in stress response and signal transduction in plants. PMID:22247272

  17. ThWRKY4 from Tamarix hispida Can Form Homodimers and Heterodimers and Is Involved in Abiotic Stress Responses

    Directory of Open Access Journals (Sweden)

    Liuqiang Wang

    2015-11-01

    Full Text Available WRKY proteins are a large family of transcription factors that are involved in diverse developmental processes and abiotic stress responses in plants. However, our knowledge of the regulatory mechanisms of WRKYs participation in protein–protein interactions is still fragmentary, and such protein–protein interactions are fundamental in understanding biological networks and the functions of proteins. In this study, we report that a WRKY protein from Tamarix hispida, ThWRKY4, can form both homodimers and heterodimers with ThWRKY2 and ThWRKY3. In addition, ThWRKY2 and ThWRKY3 can both bind to W-box motif with binding affinities similar to that of ThWRKY4. Further, the expression patterns of ThWRKY2 and ThWRKY3 are similar to that of ThWRKY4 when plants are exposed to abscisic acid (ABA. Subcellular localization shows that these three ThWRKY proteins are nuclear proteins. Taken together, these results demonstrate that ThWRKY4 is a dimeric protein that can form functional homodimers or heterodimers that are involved in abiotic stress responses.

  18. ThWRKY4 from Tamarix hispida Can Form Homodimers and Heterodimers and Is Involved in Abiotic Stress Responses.

    Science.gov (United States)

    Wang, Liuqiang; Zheng, Lei; Zhang, Chunrui; Wang, Yucheng; Lu, Mengzhu; Gao, Caiqiu

    2015-11-13

    WRKY proteins are a large family of transcription factors that are involved in diverse developmental processes and abiotic stress responses in plants. However, our knowledge of the regulatory mechanisms of WRKYs participation in protein-protein interactions is still fragmentary, and such protein-protein interactions are fundamental in understanding biological networks and the functions of proteins. In this study, we report that a WRKY protein from Tamarix hispida, ThWRKY4, can form both homodimers and heterodimers with ThWRKY2 and ThWRKY3. In addition, ThWRKY2 and ThWRKY3 can both bind to W-box motif with binding affinities similar to that of ThWRKY4. Further, the expression patterns of ThWRKY2 and ThWRKY3 are similar to that of ThWRKY4 when plants are exposed to abscisic acid (ABA). Subcellular localization shows that these three ThWRKY proteins are nuclear proteins. Taken together, these results demonstrate that ThWRKY4 is a dimeric protein that can form functional homodimers or heterodimers that are involved in abiotic stress responses.

  19. Plant survival in a changing environment: the role of nitric oxide in plant responses to abiotic stress

    Directory of Open Access Journals (Sweden)

    Marcela eSimontacchi

    2015-11-01

    Full Text Available Nitric oxide in plants may originate endogenously or come from surrounding atmosphere and soil. Interestingly, this gaseous free radical is far from having a constant level and varies greatly among tissues depending on a given plant´s ontogeny and environmental fluctuations.Proper plant growth, vegetative development, and reproduction require the integration of plant hormonal activity with the antioxidant network, as well as the maintenance of concentration of reactive oxygen and nitrogen species within a narrow range. Plants are frequently faced with abiotic stress conditions such as low nutrient availability, salinity, drought, high ultraviolet (UV radiation and extreme temperatures, which can influence developmental processes and lead to growth restriction making adaptive responses the plant´s priority. The ability of plants to respond and survive under environmental-stress conditions involves sensing and signalling events where nitric oxide becomes a critical component mediating hormonal actions, interacting with reactive oxygen species, and modulating gene expression and protein activity. This review focuses on the current knowledge of the role of nitric oxide in adaptive plant responses to some specific abiotic stress conditions, particularly low mineral nutrient supply, drought, salinity and high UV-B radiation.

  20. Plant Survival in a Changing Environment: The Role of Nitric Oxide in Plant Responses to Abiotic Stress

    Science.gov (United States)

    Simontacchi, Marcela; Galatro, Andrea; Ramos-Artuso, Facundo; Santa-María, Guillermo E.

    2015-01-01

    Nitric oxide in plants may originate endogenously or come from surrounding atmosphere and soil. Interestingly, this gaseous free radical is far from having a constant level and varies greatly among tissues depending on a given plant’s ontogeny and environmental fluctuations. Proper plant growth, vegetative development, and reproduction require the integration of plant hormonal activity with the antioxidant network, as well as the maintenance of concentration of reactive oxygen and nitrogen species within a narrow range. Plants are frequently faced with abiotic stress conditions such as low nutrient availability, salinity, drought, high ultraviolet (UV) radiation and extreme temperatures, which can influence developmental processes and lead to growth restriction making adaptive responses the plant’s priority. The ability of plants to respond and survive under environmental-stress conditions involves sensing and signaling events where nitric oxide becomes a critical component mediating hormonal actions, interacting with reactive oxygen species, and modulating gene expression and protein activity. This review focuses on the current knowledge of the role of nitric oxide in adaptive plant responses to some specific abiotic stress conditions, particularly low mineral nutrient supply, drought, salinity and high UV-B radiation. PMID:26617619

  1. Abiotic stress growth conditions induce different responses in kernel iron concentration across genotypically distinct maize inbred varieties

    Science.gov (United States)

    Kandianis, Catherine B.; Michenfelder, Abigail S.; Simmons, Susan J.; Grusak, Michael A.; Stapleton, Ann E.

    2013-01-01

    The improvement of grain nutrient profiles for essential minerals and vitamins through breeding strategies is a target important for agricultural regions where nutrient poor crops like maize contribute a large proportion of the daily caloric intake. Kernel iron concentration in maize exhibits a broad range. However, the magnitude of genotype by environment (GxE) effects on this trait reduces the efficacy and predictability of selection programs, particularly when challenged with abiotic stress such as water and nitrogen limitations. Selection has also been limited by an inverse correlation between kernel iron concentration and the yield component of kernel size in target environments. Using 25 maize inbred lines for which extensive genome sequence data is publicly available, we evaluated the response of kernel iron density and kernel mass to water and nitrogen limitation in a managed field stress experiment using a factorial design. To further understand GxE interactions we used partition analysis to characterize response of kernel iron and weight to abiotic stressors among all genotypes, and observed two patterns: one characterized by higher kernel iron concentrations in control over stress conditions, and another with higher kernel iron concentration under drought and combined stress conditions. Breeding efforts for this nutritional trait could exploit these complementary responses through combinations of favorable allelic variation from these already well-characterized genetic stocks. PMID:24363659

  2. Sulfate transporters in the plant’s response to drought and salinity: regulation and possible functions

    Directory of Open Access Journals (Sweden)

    Karine eGallardo

    2014-10-01

    Full Text Available Drought and salinity are two frequently combined abiotic stresses that affect plant growth, development, and crop productivity. Sulfate, and molecules derived from this anion such as glutathione, play important roles in the intrinsic responses of plants to such abiotic stresses. Therefore, understanding how plants facing environmental constraints re-equilibrate the flux of sulfate between and within different tissues might uncover perspectives for improving tolerance against abiotic stresses. In this review, we took advantage of genomics and post-genomics resources available in Arabidopsis thaliana and in the model legume species Medicago truncatula to highlight and compare the regulation of sulfate transporter genes under drought and salt stress. We also discuss their possible function in the plant’s response and adaptation to abiotic stresses and present prospects about the potential benefits of mycorrhizal associations, which by facilitating sulfate uptake may assist plants to cope with abiotic stresses. Several transporters are highlighted in this review that appear promising targets for improving sulfate transport capacities of crops under fluctuating environmental conditions.

  3. Bureaucratic Dilemmas: Civil servants between political responsiveness and normative constraints

    DEFF Research Database (Denmark)

    Christensen, Jørgen Grønnegård; Opstrup, Niels

    2017-01-01

    The interaction between political executives and civil servants rests on a delicate balance between political responsiveness and the duty of civil servants and ministers to respect legal and other normative constraints on executive authority. In Danish central government, this balance is stressed...... by norms that define the correct behavior when the civil service provides ministers with political advice and assistance. Organizational factors strongly influence civil servants’ behavior when they have to balance responsiveness against constraints on their role as political advisers. Moreover, civil...

  4. Abscisic Acid and abiotic stress signaling.

    Science.gov (United States)

    Tuteja, Narendra

    2007-05-01

    Abiotic stress is severe environmental stress, which impairs crop production on irrigated land worldwide. Overall, the susceptibility or tolerance to the stress in plants is a coordinated action of multiple stress responsive genes, which also cross-talk with other components of stress signal transduction pathways. Plant responses to abiotic stress can be determined by the severity of the stress and by the metabolic status of the plant. Abscisic acid (ABA) is a phytohormone critical for plant growth and development and plays an important role in integrating various stress signals and controlling downstream stress responses. Plants have to adjust ABA levels constantly in responce to changing physiological and environmental conditions. To date, the mechanisms for fine-tuning of ABA levels remain elusive. The mechanisms by which plants respond to stress include both ABA-dependent and ABA-independent processes. Various transcription factors such as DREB2A/2B, AREB1, RD22BP1 and MYC/MYB are known to regulate the ABA-responsive gene expression through interacting with their corrosponding cis-acting elements such as DRE/CRT, ABRE and MYCRS/MYBRS, respectively. Understanding these mechanisms is important to improve stress tolerance in crops plants. This article first describes the general pathway for plant stress response followed by roles of ABA and transcription factors in stress tolerance including the regulation of ABA biosynthesis.

  5. Abscisic Acid and Abiotic Stress Tolerance in Crop Plants

    Science.gov (United States)

    Sah, Saroj K.; Reddy, Kambham R.; Li, Jiaxu

    2016-01-01

    Abiotic stress is a primary threat to fulfill the demand of agricultural production to feed the world in coming decades. Plants reduce growth and development process during stress conditions, which ultimately affect the yield. In stress conditions, plants develop various stress mechanism to face the magnitude of stress challenges, although that is not enough to protect them. Therefore, many strategies have been used to produce abiotic stress tolerance crop plants, among them, abscisic acid (ABA) phytohormone engineering could be one of the methods of choice. ABA is an isoprenoid phytohormone, which regulates various physiological processes ranging from stomatal opening to protein storage and provides adaptation to many stresses like drought, salt, and cold stresses. ABA is also called an important messenger that acts as the signaling mediator for regulating the adaptive response of plants to different environmental stress conditions. In this review, we will discuss the role of ABA in response to abiotic stress at the molecular level and ABA signaling. The review also deals with the effect of ABA in respect to gene expression. PMID:27200044

  6. Overexpression of a cytosolic abiotic stress responsive universal stress protein (SbUSP mitigates salt and osmotic stress in transgenic tobacco plants

    Directory of Open Access Journals (Sweden)

    Pushpika eUdawat

    2016-04-01

    Full Text Available The Universal Stress Protein (USP is a ubiquitous protein and plays an indispensable role in plant abiotic stress tolerance. The genome of Salicornia brachiata contains two homologues of intron less SbUSP gene which encodes for salt and osmotic responsive universal stress protein. In vivo localization reveals that SbUSP is a membrane bound cytosolic protein. The role of the gene was functionally validated by developing transgenic tobacco and compared with control (wild type and vector control plants under different abiotic stress condition. Transgenic lines (T1 exhibited higher chlorophyll, relative water, proline, total sugar, reducing sugar, free amino acids, polyphenol contents, osmotic potential, membrane stability and lower electrolyte leakage and lipid peroxidation (malondialdehyde content under stress treatments than control (WT and VC plants. Lower accumulation of H2O2 and O2- radicals was also detected in transgenic lines compared to control plants under stress conditions. Present study confers that overexpression of the SbUSP gene enhances plant growth, alleviates ROS buildup, maintains ion homeostasis and improves the physiological status of the plant under salt and osmotic stresses. Principal component analysis (PCA exhibited a statistical distinction of plant response to salinity stress, and a significant response was observed for transgenic lines under stress, which provides stress endurance to the plant. A possible signaling role is proposed that some downstream genes may get activated by abiotic stress responsive cytosolic SbUSP, which leads to the protection of cell from oxidative damages. The study unveils that ectopic expression of the gene mitigates salt or osmotic stress by scavenging ROS and modulating the physiological process of the plant.

  7. Overexpression of a Cytosolic Abiotic Stress Responsive Universal Stress Protein (SbUSP) Mitigates Salt and Osmotic Stress in Transgenic Tobacco Plants

    Science.gov (United States)

    Udawat, Pushpika; Jha, Rajesh K.; Sinha, Dinkar; Mishra, Avinash; Jha, Bhavanath

    2016-01-01

    The universal stress protein (USP) is a ubiquitous protein and plays an indispensable role in plant abiotic stress tolerance. The genome of Salicornia brachiata contains two homologs of intron less SbUSP gene which encodes for salt and osmotic responsive USP. In vivo localization reveals that SbUSP is a membrane bound cytosolic protein. The role of the gene was functionally validated by developing transgenic tobacco and compared with control [wild-type (WT) and vector control (VC)] plants under different abiotic stress condition. Transgenic lines (T1) exhibited higher chlorophyll, relative water, proline, total sugar, reducing sugar, free amino acids, polyphenol contents, osmotic potential, membrane stability, and lower electrolyte leakage and lipid peroxidation (malondialdehyde content) under stress treatments than control (WT and VC) plants. Lower accumulation of H2O2 and O2− radicals was also detected in transgenic lines compared to control plants under stress conditions. Present study confers that overexpression of the SbUSP gene enhances plant growth, alleviates ROS buildup, maintains ion homeostasis and improves the physiological status of the plant under salt and osmotic stresses. Principal component analysis exhibited a statistical distinction of plant response to salinity stress, and a significant response was observed for transgenic lines under stress, which provides stress endurance to the plant. A possible signaling role is proposed that some downstream genes may get activated by abiotic stress responsive cytosolic SbUSP, which leads to the protection of cell from oxidative damages. The study unveils that ectopic expression of the gene mitigates salt or osmotic stress by scavenging ROS and modulating the physiological process of the plant. PMID:27148338

  8. Origin of Abiotic Methane in Submarine Hydrothermal Systems

    Science.gov (United States)

    Seewald, J. S.; German, C. R.; Grozeva, N. G.; Klein, F.; McDermott, J. M.; Ono, S.; Reeves, E. P.; Wang, D. T.

    2018-05-01

    Results of recent investigations into the chemical and isotopic composition of actively venting submarine hydrothermal fluids and volatile species trapped in fluid inclusions will be discussed in the context of processes responsible for abiotic CH4 formation.

  9. Genome-wide analysis of WRKY gene family in the sesame genome and identification of the WRKY genes involved in responses to abiotic stresses.

    Science.gov (United States)

    Li, Donghua; Liu, Pan; Yu, Jingyin; Wang, Linhai; Dossa, Komivi; Zhang, Yanxin; Zhou, Rong; Wei, Xin; Zhang, Xiurong

    2017-09-11

    Sesame (Sesamum indicum L.) is one of the world's most important oil crops. However, it is susceptible to abiotic stresses in general, and to waterlogging and drought stresses in particular. The molecular mechanisms of abiotic stress tolerance in sesame have not yet been elucidated. The WRKY domain transcription factors play significant roles in plant growth, development, and responses to stresses. However, little is known about the number, location, structure, molecular phylogenetics, and expression of the WRKY genes in sesame. We performed a comprehensive study of the WRKY gene family in sesame and identified 71 SiWRKYs. In total, 65 of these genes were mapped to 15 linkage groups within the sesame genome. A phylogenetic analysis was performed using a related species (Arabidopsis thaliana) to investigate the evolution of the sesame WRKY genes. Tissue expression profiles of the WRKY genes demonstrated that six SiWRKY genes were highly expressed in all organs, suggesting that these genes may be important for plant growth and organ development in sesame. Analysis of the SiWRKY gene expression patterns revealed that 33 and 26 SiWRKYs respond strongly to waterlogging and drought stresses, respectively. Changes in the expression of 12 SiWRKY genes were observed at different times after the waterlogging and drought treatments had begun, demonstrating that sesame gene expression patterns vary in response to abiotic stresses. In this study, we analyzed the WRKY family of transcription factors encoded by the sesame genome. Insight was gained into the classification, evolution, and function of the SiWRKY genes, revealing their putative roles in a variety of tissues. Responses to abiotic stresses in different sesame cultivars were also investigated. The results of our study provide a better understanding of the structures and functions of sesame WRKY genes and suggest that manipulating these WRKYs could enhance resistance to waterlogging and drought.

  10. The Role of MAPK Modules and ABA during Abiotic Stress Signaling

    KAUST Repository

    Zélicourt, Axel de

    2016-05-01

    To respond to abiotic stresses, plants have developed specific mechanisms that allow them to rapidly perceive and respond to environmental changes. The phytohormone abscisic acid (ABA) was shown to be a pivotal regulator of abiotic stress responses in plants, triggering major changes in plant physiology. The ABA core signaling pathway largely relies on the activation of SnRK2 kinases to mediate several rapid responses, including gene regulation, stomatal closure, and plant growth modulation. Mitogen-activated protein kinases (MAPKs) have also been implicated in ABA signaling, but an entire ABA-activated MAPK module was uncovered only recently. In this review, we discuss the evidence for a role of MAPK modules in the context of different plant ABA signaling pathways. Abiotic stresses impact average yield in agriculture by more than 50% globally.Since ABA is a key regulator of abiotic stress responses, an understanding of its functioning at the molecular level is essential for plant breeding. Although the ABA core signaling pathway has been unraveled, several downstream events are still unclear.MAPKs are involved in most plant developmental stages and in response to stresses. Several members of the MAPK family were shown to be directly or indirectly activated by the ABA core signaling pathway.Recent evidence shows that the complete MAP3K17/18-MKK3-MPK1/2/7/14 module is under the control of ABA, whose members are under the transcriptional and post-translational control of the ABA core signaling pathway. © 2016 Elsevier Ltd.

  11. Pre-mRNA splicing repression triggers abiotic stress signaling in plants

    KAUST Repository

    Ling, Yu

    2016-09-24

    Alternative splicing (AS) of precursor RNAs enhances transcriptome plasticity and proteome diversity in response to diverse growth and stress cues. Recent work has shown that AS is pervasive across plant species, with more than 60% of intron-containing genes producing different isoforms. Mammalian cell-based assays have discovered various inhibitors of AS. Here, we show that the macrolide pladienolide B (PB) inhibits constitutive splicing and AS in plants. Also, our RNA sequencing (RNA-seq) data revealed that PB mimics abiotic stress signals including salt, drought and abscisic acid (ABA). PB activates the abiotic stress- and ABA-responsive reporters RD29A

  12. Pre-mRNA splicing repression triggers abiotic stress signaling in plants

    KAUST Repository

    Ling, Yu; Alshareef, Sahar; Butt, Haroon; Lozano-Juste, Jorge; Li, Lixin; Galal, Aya A.; Moustafa, Ahmed; Momin, Afaque Ahmad Imtiyaz; Tashkandi, Manal; Richardson, Dale N.; Fujii, Hiroaki; Arold, Stefan T.; Rodriguez, Pedro L.; Duque, Paula; Mahfouz, Magdy M.

    2016-01-01

    Alternative splicing (AS) of precursor RNAs enhances transcriptome plasticity and proteome diversity in response to diverse growth and stress cues. Recent work has shown that AS is pervasive across plant species, with more than 60% of intron-containing genes producing different isoforms. Mammalian cell-based assays have discovered various inhibitors of AS. Here, we show that the macrolide pladienolide B (PB) inhibits constitutive splicing and AS in plants. Also, our RNA sequencing (RNA-seq) data revealed that PB mimics abiotic stress signals including salt, drought and abscisic acid (ABA). PB activates the abiotic stress- and ABA-responsive reporters RD29A

  13. Current perspectives in proteomic analysis of abiotic stress in Grapevines

    Directory of Open Access Journals (Sweden)

    Iniga Seraphina George

    2014-12-01

    Full Text Available Grapes are an important crop plant which forms the basis of a globally important industry. Grape and wine production is particularly vulnerable to environmental and climatic fluctuations, which makes it essential for us to develop a greater understanding of the molecular level responses of grape plants to various abiotic stresses. The completion of the initial grape genome sequence in 2007 has led to a significant increase in research on grapes using proteomics approaches. In this article, we discuss some of the current research on abiotic stress in grapevines, in the context of abiotic stress research in other plant species. We also highlight some of the current limitations in grapevine proteomics and identify areas with promising scope for potential future research.

  14. Identification and expression of the WRKY transcription factors of Carica papaya in response to abiotic and biotic stresses.

    Science.gov (United States)

    Pan, Lin-Jie; Jiang, Ling

    2014-03-01

    The WRKY transcription factor (TF) plays a very important role in the response of plants to various abiotic and biotic stresses. A local papaya database was built according to the GenBank expressed sequence tag database using the BioEdit software. Fifty-two coding sequences of Carica papaya WRKY TFs were predicted using the tBLASTn tool. The phylogenetic tree of the WRKY proteins was classified. The expression profiles of 13 selected C. papaya WRKY TF genes under stress induction were constructed by quantitative real-time polymerase chain reaction. The expression levels of these WRKY genes in response to 3 abiotic and 2 biotic stresses were evaluated. TF807.3 and TF72.14 are upregulated by low temperature; TF807.3, TF43.76, TF12.199 and TF12.62 are involved in the response to drought stress; TF9.35, TF18.51, TF72.14 and TF12.199 is involved in response to wound; TF12.199, TF807.3, TF21.156 and TF18.51 was induced by PRSV pathogen; TF72.14 and TF43.76 are upregulated by SA. The regulated expression levels of above eight genes normalized against housekeeping gene actin were significant at probability of 0.01 levels. These WRKY TFs could be related to corresponding stress resistance and selected as the candidate genes, especially, the two genes TF807.3 and TF12.199, which were regulated notably by four stresses respectively. This study may provide useful information and candidate genes for the development of transgenic stress tolerant papaya varieties.

  15. Impact of Post-Translational Modifications of Crop Proteins under Abiotic Stress

    Directory of Open Access Journals (Sweden)

    Akiko Hashiguchi

    2016-12-01

    Full Text Available The efficiency of stress-induced adaptive responses of plants depends on intricate coordination of multiple signal transduction pathways that act coordinately or, in some cases, antagonistically. Protein post-translational modifications (PTMs can regulate protein activity and localization as well as protein–protein interactions in numerous cellular processes, thus leading to elaborate regulation of plant responses to various external stimuli. Understanding responses of crop plants under field conditions is crucial to design novel stress-tolerant cultivars that maintain robust homeostasis even under extreme conditions. In this review, proteomic studies of PTMs in crops are summarized. Although the research on the roles of crop PTMs in regulating stress response mechanisms is still in its early stage, several novel insights have been retrieved so far. This review covers techniques for detection of PTMs in plants, representative PTMs in plants under abiotic stress, and how PTMs control functions of representative proteins. In addition, because PTMs under abiotic stresses are well described in soybeans under submergence, recent findings in PTMs of soybean proteins under flooding stress are introduced. This review provides information on advances in PTM study in relation to plant adaptations to abiotic stresses, underlining the importance of PTM study to ensure adequate agricultural production in the future.

  16. Abiotic stressors and stress responses: What commonalities appear between species across biological organization levels?

    International Nuclear Information System (INIS)

    Sulmon, Cécile; Baaren, Joan van; Cabello-Hurtado, Francisco; Gouesbet, Gwenola; Hennion, Françoise; Mony, Cendrine; Renault, David; Bormans, Myriam; El Amrani, Abdelhak; Wiegand, Claudia; Gérard, Claudia

    2015-01-01

    Organisms are regularly subjected to abiotic stressors related to increasing anthropogenic activities, including chemicals and climatic changes that induce major stresses. Based on various key taxa involved in ecosystem functioning (photosynthetic microorganisms, plants, invertebrates), we review how organisms respond and adapt to chemical- and temperature-induced stresses from molecular to population level. Using field-realistic studies, our integrative analysis aims to compare i) how molecular and physiological mechanisms related to protection, repair and energy allocation can impact life history traits of stressed organisms, and ii) to what extent trait responses influence individual and population responses. Common response mechanisms are evident at molecular and cellular scales but become rather difficult to define at higher levels due to evolutionary distance and environmental complexity. We provide new insights into the understanding of the impact of molecular and cellular responses on individual and population dynamics and assess the potential related effects on communities and ecosystem functioning. - Highlights: • Responses to chemical and thermal stressors are reviewed across organization levels. • Common responses between taxa are evident at the molecular and cellular scales. • At individual level, energy allocation connects species-specific stress responses. • Commonality decreases at higher levels due to increasing environmental complexity. - The commonality of stress responses to chemical and thermal stressors among taxa is evident at the molecular and cellular scales but remains unclear at higher levels of organization

  17. Abiotic and biotic factors responsible for antimonite oxidation in Agrobacterium tumefaciens GW4

    Science.gov (United States)

    Li, Jingxin; Yang, Birong; Shi, Manman; Yuan, Kai; Guo, Wei; Wang, Qian; Wang, Gejiao

    2017-03-01

    Antimonite [Sb(III)]-oxidizing bacteria can transform the toxic Sb(III) into the less toxic antimonate [Sb(V)]. Recently, the cytoplasmic Sb(III)-oxidase AnoA and the periplasmic arsenite [As(III)] oxidase AioAB were shown to responsible for bacterial Sb(III) oxidation, however, disruption of each gene only partially decreased Sb(III) oxidation efficiency. This study showed that in Agrobacterium tumefaciens GW4, Sb(III) induced cellular H2O2 content and H2O2 degradation gene katA. Gene knock-out/complementation of katA, anoA, aioA and anoA/aioA and Sb(III) oxidation and growth experiments showed that katA, anoA and aioA were essential for Sb(III) oxidation and resistance and katA was also essential for H2O2 resistance. Furthermore, linear correlations were observed between cellular H2O2 and Sb(V) content in vivo and chemical H2O2 and Sb(V) content in vitro (R2 = 0.93 and 0.94, respectively). These results indicate that besides the biotic factors, the cellular H2O2 induced by Sb(III) also catalyzes bacterial Sb(III) oxidation as an abiotic oxidant. The data reveal a novel mechanism that bacterial Sb(III) oxidation is associated with abiotic (cellular H2O2) and biotic (AnoA and AioAB) factors and Sb(III) oxidation process consumes cellular H2O2 which contributes to microbial detoxification of both Sb(III) and cellular H2O2.

  18. Analysis of Brassica oleracea early stage abiotic stress responses reveals tolerance in multiple crop types and for multiple sources of stress.

    Science.gov (United States)

    Beacham, Andrew M; Hand, Paul; Pink, David Ac; Monaghan, James M

    2017-12-01

    Brassica oleracea includes a number of important crop types such as cabbage, cauliflower, broccoli and kale. Current climate conditions and weather patterns are causing significant losses in these crops, meaning that new cultivars with improved tolerance of one or more abiotic stress types must be sought. In this study, genetically fixed B. oleracea lines belonging to a Diversity Fixed Foundation Set (DFFS) were assayed for their response to seedling stage-imposed drought, flood, salinity, heat and cold stress. Significant (P ≤ 0.05) variation in stress tolerance response was found for each stress, for each of four measured variables (relative fresh weight, relative dry weight, relative leaf number and relative plant height). Lines tolerant to multiple stresses were found to belong to several different crop types. There was no overall correlation between the responses to the different stresses. Abiotic stress tolerance was identified in multiple B. oleracea crop types, with some lines exhibiting resistance to multiple stresses. For each stress, no one crop type appeared significantly more or less tolerant than others. The results are promising for the development of more environmentally robust lines of different B. oleracea crops by identifying tolerant material and highlighting the relationship between responses to different stresses. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  19. When bad guys become good ones: the key role of reactive oxygen species and nitric oxide in the plant responses to abiotic stress

    Directory of Open Access Journals (Sweden)

    Fernanda Dos Santos Farnese

    2016-04-01

    Full Text Available The natural environment of plants is composed of a complex set of abiotic stresses and their ability to respond to these stresses is highly flexible and finely balanced through the interaction between signaling molecules. In this review, we highlight the integrated action between reactive oxygen species (ROS and reactive nitrogen species (RNS, particularly nitric oxide (NO, involved in the acclimation to different abiotic stresses. Under stressful conditions, the biosynthesis transport and the metabolism of ROS and NO influence plant response mechanisms. The enzymes involved in ROS and NO synthesis and scavenging can be found in different cells compartments and their temporal and spatial locations are determinant for signaling mechanisms. Both ROS and NO are involved in long distances signaling (ROS wave and GSNO transport, promoting an acquired systemic acclimation to abiotic stresses. The mechanisms of abiotic stresses response triggered by ROS and NO involve some general steps, as the enhancement of antioxidant systems, but also stress-specific mechanisms, according to the stress type (drought, hypoxia, heavy metals, etc, and demand the interaction with other signaling molecules, such as MAPK, plant hormones and calcium. The transduction of ROS and NO bioactivity involves post-translational modifications of proteins, particularly S-glutathionylation for ROS, and S-nitrosylation for NO. These changes may alter the activity, stability, and interaction with other molecules or subcellular location of proteins, changing the entire cell dynamics and contributing to the maintenance of homeostasis. However, despite the recent advances about the roles of ROS and NO in signaling cascades, many challenges remain, and future studies focusing on the signaling of these molecules in planta are still necessary.

  20. When Bad Guys Become Good Ones: The Key Role of Reactive Oxygen Species and Nitric Oxide in the Plant Responses to Abiotic Stress.

    Science.gov (United States)

    Farnese, Fernanda S; Menezes-Silva, Paulo E; Gusman, Grasielle S; Oliveira, Juraci A

    2016-01-01

    The natural environment of plants is composed of a complex set of abiotic stresses and their ability to respond to these stresses is highly flexible and finely balanced through the interaction between signaling molecules. In this review, we highlight the integrated action between reactive oxygen species (ROS) and reactive nitrogen species (RNS), particularly nitric oxide (NO), involved in the acclimation to different abiotic stresses. Under stressful conditions, the biosynthesis transport and the metabolism of ROS and NO influence plant response mechanisms. The enzymes involved in ROS and NO synthesis and scavenging can be found in different cells compartments and their temporal and spatial locations are determinant for signaling mechanisms. Both ROS and NO are involved in long distances signaling (ROS wave and GSNO transport), promoting an acquired systemic acclimation to abiotic stresses. The mechanisms of abiotic stresses response triggered by ROS and NO involve some general steps, as the enhancement of antioxidant systems, but also stress-specific mechanisms, according to the stress type (drought, hypoxia, heavy metals, etc.), and demand the interaction with other signaling molecules, such as MAPK, plant hormones, and calcium. The transduction of ROS and NO bioactivity involves post-translational modifications of proteins, particularly S-glutathionylation for ROS, and S-nitrosylation for NO. These changes may alter the activity, stability, and interaction with other molecules or subcellular location of proteins, changing the entire cell dynamics and contributing to the maintenance of homeostasis. However, despite the recent advances about the roles of ROS and NO in signaling cascades, many challenges remain, and future studies focusing on the signaling of these molecules in planta are still necessary.

  1. The Grape VlWRKY3 Gene Promotes Abiotic and Biotic Stress Tolerance in Transgenic Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Rongrong Guo

    2018-04-01

    Full Text Available WRKY transcription factors are known to play important roles in plant responses to various abiotic and biotic stresses. The grape WRKY gene, WRKY3 was previously reported to respond to salt and drought stress, as well as methyl jasmonate and ethylene treatments in Vitis labrusca × V. vinifera cv. ‘Kyoho.’ In the current study, WRKY3 from the ‘Kyoho’ grape cultivar was constitutively expressed in Arabidopsis thaliana under control of the cauliflower mosaic virus 35S promoter. The 35S::VlWRKY3 transgenic A. thaliana plants showed improved salt and drought stress tolerance during the germination, seedling and the mature plant stages. Various physiological traits related to abiotic stress responses were evaluated to gain further insight into the role of VlWRKY3, and it was found that abiotic stress caused less damage to the transgenic seedlings than to the wild-type (WT plants. VlWRKY3 over-expression also resulted in altered expression levels of abiotic stress-responsive genes. Moreover, the 35S::VlWRKY3 transgenic A. thaliana lines showed improved resistance to Golovinomyces cichoracearum, but increased susceptibility to Botrytis cinerea, compared with the WT plants. Collectively, these results indicate that VlWRKY3 plays important roles in responses to both abiotic and biotic stress, and modification of its expression may represent a strategy to enhance stress tolerance in crops.

  2. Novel NAC transcription factor TaNAC67 confers enhanced multi-abiotic stress tolerances in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Xinguo Mao

    Full Text Available Abiotic stresses are major environmental factors that affect agricultural productivity worldwide. NAC transcription factors play pivotal roles in abiotic stress signaling in plants. As a staple crop, wheat production is severely constrained by abiotic stresses whereas only a few NAC transcription factors have been characterized functionally. To promote the application of NAC genes in wheat improvement by biotechnology, a novel NAC gene designated TaNAC67 was characterized in common wheat. To determine its role, transgenic Arabidopsis overexpressing TaNAC67-GFP controlled by the CaMV-35S promoter was generated and subjected to various abiotic stresses for morphological and physiological assays. Gene expression showed that TaNAC67 was involved in response to drought, salt, cold and ABA treatments. Localization assays revealed that TaNAC67 localized in the nucleus. Morphological analysis indicated the transgenics had enhanced tolerances to drought, salt and freezing stresses, simultaneously supported by enhanced expression of multiple abiotic stress responsive genes and improved physiological traits, including strengthened cell membrane stability, retention of higher chlorophyll contents and Na(+ efflux rates, improved photosynthetic potential, and enhanced water retention capability. Overexpression of TaNAC67 resulted in pronounced enhanced tolerances to drought, salt and freezing stresses, therefore it has potential for utilization in transgenic breeding to improve abiotic stress tolerance in crops.

  3. Electrode impedance analysis of chronic tungsten microwire neural implants: understanding abiotic vs. biotic contributions

    Directory of Open Access Journals (Sweden)

    Viswanath eSankar

    2014-05-01

    Full Text Available Changes in biotic and abiotic factors can be reflected in the complex impedance spectrum of the microelectrodes chronically implanted into the neural tissue. The recording surface of the tungsten electrode in vivo undergoes abiotic changes due to recording site corrosion and insulation delamination as well as biotic changes due to tissue encapsulation as a result of the foreign body immune response. We reported earlier that large changes in electrode impedance measured at 1 kHz were correlated with poor electrode functional performance, quantified through electrophysiological recordings during the chronic lifetime of the electrode. There is a need to identity the factors that contribute to the chronic impedance variation. In this work, we use numerical simulation and regression to equivalent circuit models to evaluate both the abiotic and biotic contributions to the impedance response over chronic implant duration. COMSOL® simulation of abiotic electrode morphology changes provide a possible explanation for the decrease in the electrode impedance at long implant duration while biotic changes play an important role in the large increase in impedance observed initially.

  4. Identification and Expression Profiling of the Auxin Response Factors in Capsicum annuum L. under Abiotic Stress and Hormone Treatments

    Directory of Open Access Journals (Sweden)

    Chenliang Yu

    2017-12-01

    Full Text Available Auxin response factors (ARFs play important roles in regulating plant growth and development and response to environmental stress. An exhaustive analysis of the CaARF family was performed using the latest publicly available genome for pepper (Capsicum annuum L.. In total, 22 non-redundant CaARF gene family members in six classes were analyzed, including chromosome locations, gene structures, conserved motifs of proteins, phylogenetic relationships and Subcellular localization. Phylogenetic analysis of the ARFs from pepper (Capsicum annuum L., tomato (Solanum lycopersicum L., Arabidopsis and rice (Oryza sativa L. revealed both similarity and divergence between the four ARF families, and aided in predicting biological functions of the CaARFs. Furthermore, expression profiling of CaARFs was obtained in various organs and tissues using quantitative real-time RT-PCR (qRT-PCR. Expression analysis of these genes was also conducted with various hormones and abiotic treatments using qRT-PCR. Most CaARF genes were regulated by exogenous hormone treatments at the transcriptional level, and many CaARF genes were altered by abiotic stress. Systematic analysis of CaARF genes is imperative to elucidate the roles of CaARF family members in mediating auxin signaling in the adaptation of pepper to a challenging environment.

  5. Involvement of co-repressor LUH and the adapter proteins SLK1 and SLK2 in the regulation of abiotic stress response genes in Arabidopsis.

    Science.gov (United States)

    Shrestha, Barsha; Guragain, Bhuwan; Sridhar, Vaniyambadi V

    2014-02-24

    During abiotic stress many genes that are important for growth and adaptation to stress are expressed at elevated levels. However, the mechanisms that keep the stress responsive genes from expressing under non stress conditions remain elusive. Recent genetic characterization of the co-repressor LEUNIG_HOMOLOG (LUH) and transcriptional adaptor proteins SEUSS-LIKE1 (SLK1) and SLK2 have been proposed to function redundantly in diverse developmental processes; however their function in the abiotic stress response is unknown. Moreover, the molecular functions of LUH, SLK1 and SLK2 remain obscure. Here, we show the molecular function of LUH, SLK1 and SLK2 and the role of this complex in the abiotic stress response. The luh, slk1 and slk2 mutant plants shows enhanced tolerance to salt and osmotic stress conditions. SLK1 and SLK2 interact physically with the LUFS domain in LUH forming SLK1-LUH and SLK2-LUH co-repressor complexes to inhibit the transcription. LUH has repressor activity, whereas SLK1 and SLK2 function as adaptors to recruit LUH, which in turn recruits histone deacetylase to the target sequences to repress transcription. The stress response genes RD20, MYB2 and NAC019 are expressed at elevated levels in the luh, slk1 and slk2 mutant plants. Furthermore, these stress response genes are associated with decreased nucleosome density and increased acetylation levels at H3K9 and H3K14 in the luh, slk1 and slk2 mutant plants. Our results indicate that SLK1, SLK2 and LUH form a co-repressor complex. LUH represses by means of an epigenetic process involving histone modification to facilitate the condensation of chromatin thus preventing transcription at the target genes.

  6. The Promoter of AtUSP Is Co-regulated by Phytohormones and Abiotic Stresses in Arabidopsis thaliana.

    Science.gov (United States)

    Bhuria, Monika; Goel, Parul; Kumar, Sanjay; Singh, Anil K

    2016-01-01

    Universal stress proteins (USPs) are known to be expressed in response to various abiotic stresses in a wide variety of organisms, such as bacteria, archaebacteria, protists, algae, fungi, plants, and animals. However, in plants, biological function of most of the USPs still remains obscure. In the present study, Arabidopsis USP gene ( AtUSP ) showed induction in response to abscisic acid (ABA) and various abiotic stresses viz . heat, dehydration, salt, osmotic, and cold stresses. Additionally, in silico analysis of AtUSP promoter identified several cis -elements responsive to phytohormones and abiotic stresses such as ABRE, ERE, DRE, and HSE, etc. To functionally validate the AtUSP promoter, the 1115 bp region of promoter was characterized under phytohormone and abiotic stress treatments. Deletion analysis of promoter was carried out by cloning the full length promoter (D0) and its three 5' deletion derivatives, D1 (964 bp), D2 (660 bp), and D3 (503 bp) upstream of the β-glucuronidase (GUS) reporter gene, which were then stably transformed in Arabidopsis plants. The AtUSP promoter (D0) showed minimal activity under non-stress conditions which was enhanced in response to phytohormone treatments (ABA and ACC) and abiotic stresses such as dehydration, heat, cold, salt, and osmotic stresses. The seedlings harboring D1 and D2 deletion fragments showed constitutive GUS expression even under control condition with increased activity almost under all the treatments. However, D3 seedlings exhibited complete loss of activity under control condition with induction under ACC treatment, dehydration, heat, oxidative, salt, and osmotic stresses. Thus, present study clearly showed that AtUSP promoter is highly inducible by phytohormones and multiple abiotic stresses and it can be exploited as stress inducible promoter to generate multi-stress tolerant crops with minimal effects on their other important traits.

  7. Methane clumped isotopes in the Songliao Basin (China): New insights into abiotic vs. biotic hydrocarbon formation

    Science.gov (United States)

    Shuai, Yanhua; Etiope, Giuseppe; Zhang, Shuichang; Douglas, Peter M. J.; Huang, Ling; Eiler, John M.

    2018-01-01

    Abiotic hydrocarbon gas, typically generated in serpentinized ultramafic rocks and crystalline shields, has important implications for the deep biosphere, petroleum systems, the carbon cycle and astrobiology. Distinguishing abiotic gas (produced by chemical reactions like Sabatier synthesis) from biotic gas (produced from degradation of organic matter or microbial activity) is sometimes challenging because their isotopic and molecular composition may overlap. Abiotic gas has been recognized in numerous locations on the Earth, although there are no confirmed instances where it is the dominant source of commercially valuable quantities in reservoir rocks. The deep hydrocarbon reservoirs of the Xujiaweizi Depression in the Songliao Basin (China) have been considered to host significant amounts of abiotic methane. Here we report methane clumped-isotope values (Δ18) and the isotopic composition of C1-C3 alkanes, CO2 and helium of five gas samples collected from those Xujiaweizi deep reservoirs. Some geochemical features of these samples resemble previously suggested identifiers of abiotic gas (13C-enriched CH4; decrease in 13C/12C ratio with increasing carbon number for the C1-C4 alkanes; abundant, apparently non-biogenic CO2; and mantle-derived helium). However, combining these constraints with new measurements of the clumped-isotope composition of methane and careful consideration of the geological context, suggests that the Xujiaweizi depression gas is dominantly, if not exclusively, thermogenic and derived from over-mature source rocks, i.e., from catagenesis of buried organic matter at high temperatures. Methane formation temperatures suggested by clumped-isotopes (167-213 °C) are lower than magmatic gas generation processes and consistent with the maturity of local source rocks. Also, there are no geological conditions (e.g., serpentinized ultramafic rocks) that may lead to high production of H2 and thus abiotic production of CH4 via CO2 reduction. We propose

  8. A WRKY gene from Tamarix hispida, ThWRKY4, mediates abiotic stress responses by modulating reactive oxygen species and expression of stress-responsive genes.

    Science.gov (United States)

    Zheng, Lei; Liu, Guifeng; Meng, Xiangnan; Liu, Yujia; Ji, Xiaoyu; Li, Yanbang; Nie, Xianguang; Wang, Yucheng

    2013-07-01

    WRKY transcription factors are involved in various biological processes, such as development, metabolism and responses to stress. However, their exact roles in abiotic stress tolerance are largely unknown. Here, we demonstrated a working model for the function of a WRKY gene (ThWRKY4) from Tamarix hispida in the stress response. ThWRKY4 is highly induced by abscisic acid (ABA), salt and drought in the early period of stress (stress for 3, 6, or 9 h), which can be regulated by ABF (ABRE binding factors) and Dof (DNA binding with one finger), and also can be crossregulated by other WRKYs and autoregulated as well. Overexpression of ThWRKY4 conferred tolerance to salt, oxidative and ABA treatment in transgenic plants. ThWRKY4 can improve the tolerance to salt and ABA treatment by improving activities of superoxide dismutase and peroxidase, decreasing levels of O2 (-) and H2O2, reducing electrolyte leakage, keeping the loss of chlorophyll, and protecting cells from death. Microarray analyses showed that overexpression of ThWRKY4 in Arabidopsis leads to 165 and 100 genes significantly up- and downregulated, respectively. Promoter scanning analysis revealed that ThWRKY4 regulates the gene expression via binding to W-box motifs present in their promoter regions. This study shows that ThWRKY4 functions as a transcription factor to positively modulate abiotic stress tolerances, and is involved in modulating reactive oxygen species.

  9. The transcriptional regulatory network in the drought response and its crosstalk in abiotic stress responses including drought, cold and heat

    Directory of Open Access Journals (Sweden)

    Kazuo eNakashima

    2014-05-01

    Full Text Available Drought negatively impacts plant growth and the productivity of crops around the world. Understanding the molecular mechanisms in the drought response is important for improvement of drought tolerance using molecular techniques. In plants, abscisic acid (ABA is accumulated under osmotic stress conditions caused by drought, and has a key role in stress responses and tolerance. Comprehensive molecular analyses have shown that ABA regulates the expression of many genes under osmotic stress conditions, and the ABA-responsive element (ABRE is the major cis-element for ABA-responsive gene expression. Transcription factors (TFs are master regulators of gene expression. ABRE-binding protein (AREB and ABRE-binding factor (ABF TFs control gene expression in an ABA-dependent manner. SNF1-related protein kinases 2, group A 2C-type protein phosphatases, and ABA receptors were shown to control the ABA signaling pathway. ABA-independent signaling pathways such as dehydration-responsive element-binding protein (DREB TFs and NAC TFs are also involved in stress responses including drought, heat and cold. Recent studies have suggested that there are interactions between the major ABA signaling pathway and other signaling factors in stress responses. The important roles of these transcription factors in crosstalk among abiotic stress responses will be discussed. Control of ABA or stress signaling factor expression can improve tolerance to environmental stresses. Recent studies using crops have shown that stress-specific overexpression of TFs improves drought tolerance and grain yield compared with controls in the field.

  10. The transcriptional regulatory network in the drought response and its crosstalk in abiotic stress responses including drought, cold, and heat.

    Science.gov (United States)

    Nakashima, Kazuo; Yamaguchi-Shinozaki, Kazuko; Shinozaki, Kazuo

    2014-01-01

    Drought negatively impacts plant growth and the productivity of crops around the world. Understanding the molecular mechanisms in the drought response is important for improvement of drought tolerance using molecular techniques. In plants, abscisic acid (ABA) is accumulated under osmotic stress conditions caused by drought, and has a key role in stress responses and tolerance. Comprehensive molecular analyses have shown that ABA regulates the expression of many genes under osmotic stress conditions, and the ABA-responsive element (ABRE) is the major cis-element for ABA-responsive gene expression. Transcription factors (TFs) are master regulators of gene expression. ABRE-binding protein and ABRE-binding factor TFs control gene expression in an ABA-dependent manner. SNF1-related protein kinases 2, group A 2C-type protein phosphatases, and ABA receptors were shown to control the ABA signaling pathway. ABA-independent signaling pathways such as dehydration-responsive element-binding protein TFs and NAC TFs are also involved in stress responses including drought, heat, and cold. Recent studies have suggested that there are interactions between the major ABA signaling pathway and other signaling factors in stress responses. The important roles of these TFs in crosstalk among abiotic stress responses will be discussed. Control of ABA or stress signaling factor expression can improve tolerance to environmental stresses. Recent studies using crops have shown that stress-specific overexpression of TFs improves drought tolerance and grain yield compared with controls in the field.

  11. Molecular responses of genetically modified maize to abiotic stresses as determined through proteomic and metabolomic analyses.

    Directory of Open Access Journals (Sweden)

    Rafael Fonseca Benevenuto

    Full Text Available Some genetically modified (GM plants have transgenes that confer tolerance to abiotic stressors. Meanwhile, other transgenes may interact with abiotic stressors, causing pleiotropic effects that will affect the plant physiology. Thus, physiological alteration might have an impact on the product safety. However, routine risk assessment (RA analyses do not evaluate the response of GM plants exposed to different environmental conditions. Therefore, we here present a proteome profile of herbicide-tolerant maize, including the levels of phytohormones and related compounds, compared to its near-isogenic non-GM variety under drought and herbicide stresses. Twenty differentially abundant proteins were detected between GM and non-GM hybrids under different water deficiency conditions and herbicide sprays. Pathway enrichment analysis showed that most of these proteins are assigned to energetic/carbohydrate metabolic processes. Among phytohormones and related compounds, different levels of ABA, CA, JA, MeJA and SA were detected in the maize varieties and stress conditions analysed. In pathway and proteome analyses, environment was found to be the major source of variation followed by the genetic transformation factor. Nonetheless, differences were detected in the levels of JA, MeJA and CA and in the abundance of 11 proteins when comparing the GM plant and its non-GM near-isogenic variety under the same environmental conditions. Thus, these findings do support molecular studies in GM plants Risk Assessment analyses.

  12. Expression Patterns and Identified Protein-Protein Interactions Suggest That Cassava CBL-CIPK Signal Networks Function in Responses to Abiotic Stresses.

    Science.gov (United States)

    Mo, Chunyan; Wan, Shumin; Xia, Youquan; Ren, Ning; Zhou, Yang; Jiang, Xingyu

    2018-01-01

    Cassava is an energy crop that is tolerant of multiple abiotic stresses. It has been reported that the interaction between Calcineurin B-like (CBL) protein and CBL-interacting protein kinase (CIPK) is implicated in plant development and responses to various stresses. However, little is known about their functions in cassava. Herein, 8 CBL ( MeCBL ) and 26 CIPK ( MeCIPK ) genes were isolated from cassava by genome searching and cloning of cDNA sequences of Arabidopsis CBL s and CIPK s. Reverse-transcriptase polymerase chain reaction (RT-PCR) analysis showed that the expression levels of MeCBL and MeCIPK genes were different in different tissues throughout the life cycle. The expression patterns of 7 CBL and 26 CIPK genes in response to NaCl, PEG, heat and cold stresses were analyzed by quantitative real-time PCR (qRT-PCR), and it was found that the expression of each was induced by multiple stimuli. Furthermore, we found that many pairs of CBLs and CIPKs could interact with each other via investigating the interactions between 8 CBL and 25 CIPK proteins using a yeast two-hybrid system. Yeast cells co-transformed with cassava MeCIPK24, MeCBL10 , and Na + /H + antiporter MeSOS1 genes exhibited higher salt tolerance compared to those with one or two genes. These results suggest that the cassava CBL-CIPK signal network might play key roles in response to abiotic stresses.

  13. Expression Patterns and Identified Protein-Protein Interactions Suggest That Cassava CBL-CIPK Signal Networks Function in Responses to Abiotic Stresses

    Directory of Open Access Journals (Sweden)

    Chunyan Mo

    2018-03-01

    Full Text Available Cassava is an energy crop that is tolerant of multiple abiotic stresses. It has been reported that the interaction between Calcineurin B-like (CBL protein and CBL-interacting protein kinase (CIPK is implicated in plant development and responses to various stresses. However, little is known about their functions in cassava. Herein, 8 CBL (MeCBL and 26 CIPK (MeCIPK genes were isolated from cassava by genome searching and cloning of cDNA sequences of Arabidopsis CBLs and CIPKs. Reverse-transcriptase polymerase chain reaction (RT-PCR analysis showed that the expression levels of MeCBL and MeCIPK genes were different in different tissues throughout the life cycle. The expression patterns of 7 CBL and 26 CIPK genes in response to NaCl, PEG, heat and cold stresses were analyzed by quantitative real-time PCR (qRT-PCR, and it was found that the expression of each was induced by multiple stimuli. Furthermore, we found that many pairs of CBLs and CIPKs could interact with each other via investigating the interactions between 8 CBL and 25 CIPK proteins using a yeast two-hybrid system. Yeast cells co-transformed with cassava MeCIPK24, MeCBL10, and Na+/H+ antiporter MeSOS1 genes exhibited higher salt tolerance compared to those with one or two genes. These results suggest that the cassava CBL-CIPK signal network might play key roles in response to abiotic stresses.

  14. Novel perspectives for the engineering of abiotic stress tolerance in plants.

    Science.gov (United States)

    Cabello, Julieta V; Lodeyro, Anabella F; Zurbriggen, Matias D

    2014-04-01

    Adverse environmental conditions pose serious limitations to agricultural production. Classical biotechnological approaches towards increasing abiotic stress tolerance focus on boosting plant endogenous defence mechanisms. However, overexpression of regulatory elements or effectors is usually accompanied by growth handicap and yield penalties due to crosstalk between developmental and stress-response networks. Herein we offer an overview on novel strategies with the potential to overcome these limitations based on the engineering of regulatory systems involved in the fine-tuning of the plant response to environmental hardships, including post-translational modifications, small RNAs, epigenetic control of gene expression and hormonal networks. The development and application of plant synthetic biology tools and approaches will add new functionalities and perspectives to genetic engineering programs for enhancing abiotic stress tolerance. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Nitrogen fertility and abiotic stresses management in cotton crop: a review.

    Science.gov (United States)

    Khan, Aziz; Tan, Daniel Kean Yuen; Afridi, Muhammad Zahir; Luo, Honghai; Tung, Shahbaz Atta; Ajab, Mir; Fahad, Shah

    2017-06-01

    This review outlines nitrogen (N) responses in crop production and potential management decisions to ameliorate abiotic stresses for better crop production. N is a primary constituent of the nucleotides and proteins that are essential for life. Production and application of N fertilizers consume huge amounts of energy, and excess is detrimental to the environment. Therefore, increasing plant N use efficiency (NUE) is important for the development of sustainable agriculture. NUE has a key role in crop yield and can be enhanced by controlling loss of fertilizers by application of humic acid and natural polymers (hydrogels), having high water-holding capacity which can improve plant performance under field conditions. Abiotic stresses such as waterlogging, drought, heat, and salinity are the major limitations for successful crop production. Therefore, integrated management approaches such as addition of aminoethoxyvinylglycine (AVG), the film antitranspirant (di-1-p-menthene and pinolene) nutrients, hydrogels, and phytohormones may provide novel approaches to improve plant tolerance against abiotic stress-induced damage. Moreover, for plant breeders and molecular biologists, it is a challenge to develop cotton cultivars that can tolerate plant abiotic stresses while having high potential NUE for the future.

  16. Unraveling the role of fungal symbionts in plant abiotic stress tolerance

    Science.gov (United States)

    Singh, Lamabam Peter

    2011-01-01

    Fungal symbionts have been found to be associated with every plant studied in the natural ecosystem, where they colonize and reside entirely or partially in the internal tissues of their host plant. Fungal endophytes can express/form a range of different lifestyle/relationships with different host including symbiotic, mutualistic, commensalistic and parasitic in response to host genotype and environmental factors. In mutualistic association fungal endophyte can enhance growth, increase reproductive success and confer biotic and abiotic stress tolerance to its host plant. Since abiotic stress such as, drought, high soil salinity, heat, cold, oxidative stress and heavy metal toxicity is the common adverse environmental conditions that affect and limit crop productivity worldwide. It may be a promising alternative strategy to exploit fungal endophytes to overcome the limitations to crop production brought by abiotic stress. There is an increasing interest in developing the potential biotechnological applications of fungal endophytes for improving plant stress tolerance and sustainable production of food crops. Here we have described the fungal symbioses, fungal symbionts and their role in abiotic stress tolerance. A putative mechanism of stress tolerance by symbionts has also been covered. PMID:21512319

  17. Differences in Competitive Ability between Plants from Nonnative and Native Populations of a Tropical Invader Relates to Adaptive Responses in Abiotic and Biotic Environments

    Science.gov (United States)

    Liao, Zhi-Yong; Zhang, Ru; Barclay, Gregor F.; Feng, Yu-Long

    2013-01-01

    The evolution of competitive ability of invasive plant species is generally studied in the context of adaptive responses to novel biotic environments (enemy release) in introduced ranges. However, invasive plants may also respond to novel abiotic environments. Here we studied differences in competitive ability between Chromolaena odorata plants of populations from nonnative versus native ranges, considering biogeographical differences in both biotic and abiotic environments. An intraspecific competition experiment was conducted at two nutrient levels in a common garden. In both low and high nutrient treatments, C. odorata plants from nonnative ranges showed consistently lower root to shoot ratios than did plants from native ranges grown in both monoculture and competition. In the low nutrient treatment, C. odorata plants from nonnative ranges showed significantly lower competitive ability (competition-driven decreases in plant height and biomass were more), which was associated with their lower root to shoot ratios and higher total leaf phenolic content (defense trait). In the high nutrient treatment, C. odorata plants from nonnative ranges showed lower leaf toughness and cellulosic contents (defense traits) but similar competitive ability compared with plants from native ranges, which was also associated with their lower root to shoot ratios. Our results indicate that genetically based shifts in biomass allocation (responses to abiotic environments) also influence competitive abilities of invasive plants, and provide a first potential mechanism for the interaction between range and environment (environment-dependent difference between ranges). PMID:23977140

  18. A novel F-box protein CaF-box is involved in responses to plant hormones and abiotic stress in pepper (Capsicum annuum L.).

    Science.gov (United States)

    Chen, Rugang; Guo, Weili; Yin, Yanxu; Gong, Zhen-Hui

    2014-02-10

    The F-box protein family is characterized by an F-box motif that has been shown to play an important role in regulating various developmental processes and stress responses. In this study, a novel F-box-containing gene was isolated from leaves of pepper cultivar P70 (Capsicum annuum L.) and designated CaF-box. The full-length cDNA is 2088 bp and contains an open reading frame of 1914 bp encoding a putative polypeptide of 638 amino acids with a mass of 67.8 kDa. CaF-box was expressed predominantly in stems and seeds, and the transcript was markedly upregulated in response to cold stress, abscisic acid (ABA) and salicylic acid (SA) treatment, and downregulated under osmotic and heavy metal stress. CaF-box expression was dramatically affected by salt stress, and was rapidly increased for the first hour, then sharply decreased thereafter. In order to further assess the role of CaF-box in the defense response to abiotic stress, a loss-of-function experiment in pepper plants was performed using a virus-induced gene silencing (VIGS) technique. Measurement of thiobarbituric acid reactive substances (TBARS) and electrolyte leakage revealed stronger lipid peroxidation and cell death in the CaF-box-silenced plants than in control plants, suggesting CaF-box plays an important role in regulating the defense response to abiotic stress resistance in pepper plants.

  19. Metabolomics as a Tool to Investigate Abiotic Stress Tolerance in Plants

    Directory of Open Access Journals (Sweden)

    Aurelio Gómez-Cadenas

    2013-03-01

    Full Text Available Metabolites reflect the integration of gene expression, protein interaction and other different regulatory processes and are therefore closer to the phenotype than mRNA transcripts or proteins alone. Amongst all –omics technologies, metabolomics is the most transversal and can be applied to different organisms with little or no modifications. It has been successfully applied to the study of molecular phenotypes of plants in response to abiotic stress in order to find particular patterns associated to stress tolerance. These studies have highlighted the essential involvement of primary metabolites: sugars, amino acids and Krebs cycle intermediates as direct markers of photosynthetic dysfunction as well as effectors of osmotic readjustment. On the contrary, secondary metabolites are more specific of genera and species and respond to particular stress conditions as antioxidants, Reactive Oxygen Species (ROS scavengers, coenzymes, UV and excess radiation screen and also as regulatory molecules. In addition, the induction of secondary metabolites by several abiotic stress conditions could also be an effective mechanism of cross-protection against biotic threats, providing a link between abiotic and biotic stress responses. Moreover, the presence/absence and relative accumulation of certain metabolites along with gene expression data provides accurate markers (mQTL or MWAS for tolerant crop selection in breeding programs.

  20. Hydrogen peroxide and polyamines act as double edged swords in plant abiotic stress responses

    Directory of Open Access Journals (Sweden)

    Kamala Gupta

    2016-09-01

    Full Text Available The specific genetic changes through which plants adapt to the multitude of environmental stresses are possible because of the molecular regulations in the system. These intricate regulatory mechanisms once unveiled will surely raise interesting questions. Polyamines and hydrogen peroxide have been suggested to be important signalling molecules during biotic and abiotic stresses. Hydrogen peroxide plays a versatile role from orchestrating physiological processes to stress response. It helps to achieve acclimatization and tolerance to stress by coordinating intra-cellular and systemic signalling systems. Polyamines, on the other hand, are low molecular weight polycationic aliphatic amines, which have been implicated in various stress responses. It is quite interesting to note that both hydrogen peroxide and polyamines have a fine line of inter-relation between them since the catabolic pathways of the latter releases hydrogen peroxide. In this review we have tried to illustrate the roles and their multifaceted functions of these two important signalling molecules based on current literature. This review also highlights the fact that over accumulation of hydrogen peroxide and polyamines can be detrimental for plant cells leading to toxicity and pre-mature cell death.

  1. Hydrogen Peroxide and Polyamines Act as Double Edged Swords in Plant Abiotic Stress Responses.

    Science.gov (United States)

    Gupta, Kamala; Sengupta, Atreyee; Chakraborty, Mayukh; Gupta, Bhaskar

    2016-01-01

    The specific genetic changes through which plants adapt to the multitude of environmental stresses are possible because of the molecular regulations in the system. These intricate regulatory mechanisms once unveiled will surely raise interesting questions. Polyamines and hydrogen peroxide have been suggested to be important signaling molecules during biotic and abiotic stresses. Hydrogen peroxide plays a versatile role from orchestrating physiological processes to stress response. It helps to achieve acclimatization and tolerance to stress by coordinating intra-cellular and systemic signaling systems. Polyamines, on the other hand, are low molecular weight polycationic aliphatic amines, which have been implicated in various stress responses. It is quite interesting to note that both hydrogen peroxide and polyamines have a fine line of inter-relation between them since the catabolic pathways of the latter releases hydrogen peroxide. In this review we have tried to illustrate the roles and their multifaceted functions of these two important signaling molecules based on current literature. This review also highlights the fact that over accumulation of hydrogen peroxide and polyamines can be detrimental for plant cells leading to toxicity and pre-mature cell death.

  2. The tomato DWD motif-containing protein DDI1 interacts with the CUL4–DDB1-based ubiquitin ligase and plays a pivotal role in abiotic stress responses

    Energy Technology Data Exchange (ETDEWEB)

    Miao, Min [Ministry of Education Key Laboratory for Bio-resource and Eco-environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610064 (China); School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei 230009 (China); Department of Plant, Soil and Entomological Sciences, University of Idaho, Moscow, ID 83844-2339 (United States); Zhu, Yunye [School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei 230009 (China); Qiao, Maiju [Ministry of Education Key Laboratory for Bio-resource and Eco-environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610064 (China); Tang, Xiaofeng [Ministry of Education Key Laboratory for Bio-resource and Eco-environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610064 (China); School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei 230009 (China); Zhao, Wei [School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei 230009 (China); Xiao, Fangming [Department of Plant, Soil and Entomological Sciences, University of Idaho, Moscow, ID 83844-2339 (United States); Liu, Yongsheng, E-mail: liuyongsheng1122@hfut.edu.cn [Ministry of Education Key Laboratory for Bio-resource and Eco-environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610064 (China); School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei 230009 (China)

    2014-08-08

    Highlights: • We identify DDI1 as a DAMAGED DNA BINDING PROTEIN1 (DDB1)-interacting protein. • DDI1 interacts with the CUL4–DDB1-based ubiquitin ligase in the nucleus. • DDI1 plays a positive role in regulating abiotic stress response in tomato. - Abstract: CULLIN4(CUL4)–DAMAGED DNA BINDING PROTEIN1 (DDB1)-based ubiquitin ligase plays significant roles in multiple physiological processes via ubiquitination-mediated degradation of relevant target proteins. The DDB1–CUL4-associated factor (DCAF) acts as substrate receptor in the CUL4–DDB1 ubiquitin ligase complex and determines substrate specificity. In this study, we identified a tomato (Solanum lycopersicum) DDB1-interacting (DDI1) protein as a DCAF protein involved in response to abiotic stresses, including UV radiation, high salinity and osmotic stress. Co-immunoprecipitation and bimolecular fluorescence complementation assay indicated that DDI1 associates with CUL4–DDB1 in the nucleus. Quantitative RT-PCR analysis indicated the DDI1 gene is induced by salt, mannitol and UV-C treatment. Moreover, transgenic tomato plants with overexpression or knockdown of the DDI1 gene exhibited enhanced or attenuated tolerance to salt/mannitol/UV-C, respectively. Thus, our data suggest that DDI1 functions as a substrate receptor of the CUL4–DDB1 ubiquitin ligase, positively regulating abiotic stress response in tomato.

  3. The tomato DWD motif-containing protein DDI1 interacts with the CUL4–DDB1-based ubiquitin ligase and plays a pivotal role in abiotic stress responses

    International Nuclear Information System (INIS)

    Miao, Min; Zhu, Yunye; Qiao, Maiju; Tang, Xiaofeng; Zhao, Wei; Xiao, Fangming; Liu, Yongsheng

    2014-01-01

    Highlights: • We identify DDI1 as a DAMAGED DNA BINDING PROTEIN1 (DDB1)-interacting protein. • DDI1 interacts with the CUL4–DDB1-based ubiquitin ligase in the nucleus. • DDI1 plays a positive role in regulating abiotic stress response in tomato. - Abstract: CULLIN4(CUL4)–DAMAGED DNA BINDING PROTEIN1 (DDB1)-based ubiquitin ligase plays significant roles in multiple physiological processes via ubiquitination-mediated degradation of relevant target proteins. The DDB1–CUL4-associated factor (DCAF) acts as substrate receptor in the CUL4–DDB1 ubiquitin ligase complex and determines substrate specificity. In this study, we identified a tomato (Solanum lycopersicum) DDB1-interacting (DDI1) protein as a DCAF protein involved in response to abiotic stresses, including UV radiation, high salinity and osmotic stress. Co-immunoprecipitation and bimolecular fluorescence complementation assay indicated that DDI1 associates with CUL4–DDB1 in the nucleus. Quantitative RT-PCR analysis indicated the DDI1 gene is induced by salt, mannitol and UV-C treatment. Moreover, transgenic tomato plants with overexpression or knockdown of the DDI1 gene exhibited enhanced or attenuated tolerance to salt/mannitol/UV-C, respectively. Thus, our data suggest that DDI1 functions as a substrate receptor of the CUL4–DDB1 ubiquitin ligase, positively regulating abiotic stress response in tomato

  4. Diagnosis of abiotic and biotic stress factors using the visible symptoms in foliage

    International Nuclear Information System (INIS)

    Vollenweider, P.; Guenthardt-Goerg, Madeleine S.

    2005-01-01

    Visible symptoms in the foliage of trees are recorded to monitor the effects of abiotic and biotic stress. Difficulties are reported in diagnosing the origin of stress. The present paper discusses several diagnostic criteria which are usable in different species for a better determination of the stress factor type. A new diagnosis scheme to differentiate between classes of abiotic and biotic stress factors is supplied. Abiotic stress generates gradients of symptoms. The symptom specificity is determined by the degree of interaction between the stress factor and plant defense system. Symptoms caused by abiotic stress and natural autumnal senescence can be morphologically different or undistinguishable according to the stress and plant species. With biotic stress, the class of parasitic is generally recognizable on the basis of the visible symptoms. Structurally and physiologically based explanations of the symptom morphology are still missing for many stress factors. - The morphology and distribution of visible stress symptoms in tree foliage provides diagnostic tools to identify plant defense responses and differentiate stress from natural senescence symptoms

  5. AtHD2D gene plays a role in plant growth, development and response to abiotic stresses in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Zhaofen eHan

    2016-03-01

    Full Text Available Abstracts: The histone deacetylases play important roles in the regulation of gene expression and the subsequent control of a number of important biological processes, including those involved in the response to environmental stress. A specific group of histone deacetylase genes, HD2, is present in plants. In Arabidopsis, HD2s include HD2A, HD2B, HD2C and HD2D. Previous research showed that HD2A, HD2B and HD2C are more related in terms of expression and function, but not HD2D. In this report, we studied different aspects of AtHD2D in Arabidopsis with respect to plant response to drought and other abiotic stresses. Bioinformatics analysis indicates that HD2D is distantly related to other HD2 genes. Transient expression in Nicotiana benthamiana and stable expression in Arabidopsis of AtHD2D fused with gfp showed that AtHD2D was expressed in the nucleus. Overexpression of AtHD2D resulted in developmental changes including fewer main roots, more lateral roots, and a higher root:shoot ratio. Seed germination and plant flowering time were delayed in transgenic plants expressing AtHD2D, but these plants exhibited higher degrees of tolerance to abiotic stresses, including drought, salt and cold stresses. Physiological studies indicated that the malondialdehyde (MDA content was high in wild-type plants but in plants overexpressing HD2D the MDA level increased slowly in response to stress conditions of drought, cold, and salt stress. Furthermore, electrolyte leakage in leaf cells of wild type plants increased but remained stable in transgenic plants. Our results indicate that AtHD2D is unique among HD2 genes and it plays a role in plant growth and development regulation and these changes can modulate plant stress responses.

  6. Modeling regeneration responses of big sagebrush (Artemisia tridentata) to abiotic conditions

    Science.gov (United States)

    Schlaepfer, Daniel R.; Lauenroth, William K.; Bradford, John B.

    2014-01-01

    Ecosystems dominated by big sagebrush, Artemisia tridentata Nuttall (Asteraceae), which are the most widespread ecosystems in semiarid western North America, have been affected by land use practices and invasive species. Loss of big sagebrush and the decline of associated species, such as greater sage-grouse, are a concern to land managers and conservationists. However, big sagebrush regeneration remains difficult to achieve by restoration and reclamation efforts and there is no regeneration simulation model available. We present here the first process-based, daily time-step, simulation model to predict yearly big sagebrush regeneration including relevant germination and seedling responses to abiotic factors. We estimated values, uncertainty, and importance of 27 model parameters using a total of 1435 site-years of observation. Our model explained 74% of variability of number of years with successful regeneration at 46 sites. It also achieved 60% overall accuracy predicting yearly regeneration success/failure. Our results identify specific future research needed to improve our understanding of big sagebrush regeneration, including data at the subspecies level and improved parameter estimates for start of seed dispersal, modified wet thermal-time model of germination, and soil water potential influences. We found that relationships between big sagebrush regeneration and climate conditions were site specific, varying across the distribution of big sagebrush. This indicates that statistical models based on climate are unsuitable for understanding range-wide regeneration patterns or for assessing the potential consequences of changing climate on sagebrush regeneration and underscores the value of this process-based model. We used our model to predict potential regeneration across the range of sagebrush ecosystems in the western United States, which confirmed that seedling survival is a limiting factor, whereas germination is not. Our results also suggested that modeled

  7. A Study on Response Strategy to Cope with International and Domestic Constraints on the Development of Nuclear Fuel Cycle.

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Chung in; Park, Hahn Kyu; Kim, Tak Won; Lee, Dong Yoon; Lee, Yong Hwan [Yonsei University, Seoul (Korea, Republic of)

    1997-12-01

    The purpose of this study is to analyze international and domestic constraints on the development of nuclear fuel cycle technology in Korea and to develop response strategies to deal with these constraints. This study proceeded as follows: Chapter 2 examined multilateral international constrains including IAEA safeguards system and NPT, bilateral international constraints such as the U.S.-Korea Nuclear Energy Cooperation Agreement and the U.S. nonproliferation policy, and domestic constraints like residents' anti nuclear movement and environmental protest movement. In Chapter 3, this study conducted a case study on Japan's nuclear fuel cycle programs as a basic research for the establishment of relevant response strategies vis-a-vis the international and domestic constraints. In this chapter, the focus of analysis was on Japan's strategies to deal with multilateral and bilateral pressures and domestic constraints. In Chapters 4 and 5, this study sought to elaborate Korea's strategies to cope with multilateral international constraints and U.S. constraints on the development of a domestic nuclear fuel cycle in Korea, respectively. The response strategies to domestic constraints were also illuminated in Chapter 6. 44 refs., 2 tabs., 9 figs. (author)

  8. The wheat transcription factor, TabHLH39, improves tolerance to multiple abiotic stressors in transgenic plants.

    Science.gov (United States)

    Zhai, Yiqian; Zhang, Lichao; Xia, Chuan; Fu, Silu; Zhao, Guangyao; Jia, Jizeng; Kong, Xiuying

    2016-05-13

    Although bHLH transcription factors play important roles regulating plant development and abiotic stress response and tolerance, few functional studies have been performed in wheat. In this study, we isolated and characterized a bHLH gene, TabHLH39, from wheat. The TabHLH39 gene is located on wheat chromosome 5DL, and the protein localized to the nucleus and activated transcription. TabHLH39 showed variable expression in roots, stems, leaves, glumes, pistils and stamens and was induced by polyethylene glycol, salt and cold treatments. Further analysis revealed that TabHLH39 overexpression in Arabidopsis significantly enhanced tolerance to drought, salt and freezing stress during the seedling stage, which was also demonstrated by enhanced abiotic stress-response gene expression and changes to several physiological indices. Therefore, TabHLH39 has potential in transgenic breeding applications to improve abiotic stress tolerance in crops. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Changes in the Arabidopsis thaliana Proteome Implicate cAMP in Biotic and Abiotic Stress Responses and Changes in Energy Metabolism

    KAUST Repository

    Alquraishi, May Majed; Gehring, Christoph A; Marondedze, Claudius

    2016-01-01

    The second messenger 3′,5′-cyclic adenosine monophosphate (cAMP) is increasingly recognized as having many different roles in plant responses to environmental stimuli. To gain further insights into these roles, Arabidopsis thaliana cell suspension culture was treated with 100 nM of cell permeant 8-bromo-cAMP for 5 or 10 min. Here, applying mass spectrometry and comparative proteomics, 20 proteins were identified as differentially expressed and we noted a specific bias in proteins with a role in abiotic stress, particularly cold and salinity, biotic stress as well as proteins with a role in glycolysis. These findings suggest that cAMP is sufficient to elicit specific stress responses that may in turn induce complex changes to cellular energy homeostasis.

  10. Changes in the Arabidopsis thaliana Proteome Implicate cAMP in Biotic and Abiotic Stress Responses and Changes in Energy Metabolism

    KAUST Repository

    Alquraishi, May Majed

    2016-06-01

    The second messenger 3′,5′-cyclic adenosine monophosphate (cAMP) is increasingly recognized as having many different roles in plant responses to environmental stimuli. To gain further insights into these roles, Arabidopsis thaliana cell suspension culture was treated with 100 nM of cell permeant 8-bromo-cAMP for 5 or 10 min. Here, applying mass spectrometry and comparative proteomics, 20 proteins were identified as differentially expressed and we noted a specific bias in proteins with a role in abiotic stress, particularly cold and salinity, biotic stress as well as proteins with a role in glycolysis. These findings suggest that cAMP is sufficient to elicit specific stress responses that may in turn induce complex changes to cellular energy homeostasis.

  11. Involvement of Calmodulin and Calmodulin-like Proteins in Plant Responses to Abiotic Stresses

    Directory of Open Access Journals (Sweden)

    B W Poovaiah

    2015-08-01

    Full Text Available Transient changes in intracellular Ca2+ concentration have been well recognized to act as cell signals coupling various environmental stimuli to appropriate physiological responses with accuracy and specificity in plants. Calmodulin (CaM and calmodulin-like proteins (CMLs are major Ca2+ sensors, playing critical roles in interpreting encrypted Ca2+ signals. Ca2+-loaded CaM/CMLs interact and regulate a broad spectrum of target proteins such as channels/pumps/antiporters for various ions, transcription factors, protein kinases, protein phosphatases, metabolic enzymes and proteins with unknown biochemical functions. Many of the target proteins of CaM/CMLs directly or indirectly regulate plant responses to environmental stresses. Basic information about stimulus-induced Ca2+ signal and overview of Ca2+ signal perception and transduction are briefly discussed in the beginning of this review. How CaM/CMLs are involved in regulating plant responses to abiotic stresses are emphasized in this review. Exciting progress has been made in the past several years, such as the elucidation of Ca2+/CaM-mediated regulation of AtSR1/CAMTA3 and plant responses to chilling and freezing stresses, Ca2+/CaM-mediated regulation of CAT3, MAPK8 and MKP1 in homeostasis control of ROS signals, discovery of CaM7 as a DNA-binding transcription factor regulating plant response to light signals. However, many key questions in Ca2+/CaM-mediated signaling warrant further investigation. Ca2+/CaM-mediated regulation of most of the known target proteins is presumed based on their interaction. The downstream targets of CMLs are mostly unknown, and how specificity of Ca2+ signaling could be realized through the actions of CaM/CMLs and their target proteins is largely unknown. Future breakthroughs in Ca2+/CaM-mediated signaling will not only improve our understanding of how plants respond to environmental stresses, but also provide the knowledge base to improve stress-tolerance of crops.

  12. Life without water: cross-resistance of anhydrobiotic cell line to abiotic stresses

    Science.gov (United States)

    Gusev, Oleg

    2016-07-01

    Anhydrobiosis is an intriguing phenomenon of natural ability of some organisms to resist water loss. The larvae of Polypedilum vanderplanki, the sleeping chironomid is the largest and most complex anhydrobionts known to date. The larvae showed ability to survive variety of abiotic stresses, including outer space environment. Recently cell line (Pv11) derived from the embryonic mass of the chironomid was established. Initially sensitive to desiccation cells, are capable to "induced" anhydrobiosis, when the resistance to desiccation can be developed by pre-treatment of the cells with trehalose followed by quick desiccation. We have further conducted complex analysis of the whole genome transcription response of Pv11 cells to different abiotic stresses, including oxidative stress and irradiation. Comparative analysis showed that the gene set, responsible for formation of desiccation resistance (ARID regions in the genome) is also activated in response to other types of stresses and likely to contribute to general enhancing of the resistance of the cells to harsh environment. We have further demonstrated that the cells are able to protect recombinant proteins from harmful effect of desiccation

  13. Cloning and expression analysis of 14 lipid transfer protein genes from Tamarix hispida responding to different abiotic stresses.

    Science.gov (United States)

    Wang, Chao; Yang, Chuanping; Gao, Caiqiu; Wang, Yucheng

    2009-12-01

    Plant lipid transfer proteins (LTPs) are ubiquitous lipid-binding proteins that are involved in various stress responses. In this study, we cloned 14 unique LTP genes (ThLTP 1-14) from Tamarix hispida Willd. (Tamaricaceae) to investigate their roles under various abiotic stress conditions. The expression profiles of the 14 ThLTPs in response to NaCl, polyethylene glycol (PEG), NaHCO(3), CdCl(2) and abscisic acid (ABA) exposure in root, stem and leaf tissues were investigated using real-time RT-PCR. The results showed that all 14 ThLTPs were expressed in root, stem and leaf tissues under normal growth conditions. However, under normal growth conditions, ThLTP abundance varied in each organ, with expression differences of 9000-fold in leaves, 540-fold in stems and 3700-fold in roots. These results indicated that activity and/or physiological importance of these ThLTPs are quite different. Differential expression of the 14 ThLTPs was observed (> 2-fold) for NaCl, PEG, NaHCO(3) and CdCl(2) in at least one tissue indicating that they were all involved in abiotic stress responses. All ThLTP genes were highly induced (> 2-fold) under ABA treatment in roots, stems and/or leaves, and particularly in roots, suggesting that ABA-dependent signaling pathways regulated ThLTPs. We hypothesize that ThLTP expression constitutes an adaptive response to abiotic stresses in T. hispida and plays an important role in abiotic stress tolerance.

  14. Transcriptional profiling of Medicago truncatula under salt stress identified a novel CBF transcription factor MtCBF4 that plays an important role in abiotic stress responses

    Directory of Open Access Journals (Sweden)

    Su Zhen

    2011-07-01

    Full Text Available Abstract Background Salt stress hinders the growth of plants and reduces crop production worldwide. However, different plant species might possess different adaptive mechanisms to mitigate salt stress. We conducted a detailed pathway analysis of transcriptional dynamics in the roots of Medicago truncatula seedlings under salt stress and selected a transcription factor gene, MtCBF4, for experimental validation. Results A microarray experiment was conducted using root samples collected 6, 24, and 48 h after application of 180 mM NaCl. Analysis of 11 statistically significant expression profiles revealed different behaviors between primary and secondary metabolism pathways in response to external stress. Secondary metabolism that helps to maintain osmotic balance was induced. One of the highly induced transcription factor genes was successfully cloned, and was named MtCBF4. Phylogenetic analysis revealed that MtCBF4, which belongs to the AP2-EREBP transcription factor family, is a novel member of the CBF transcription factor in M. truncatula. MtCBF4 is shown to be a nuclear-localized protein. Expression of MtCBF4 in M. truncatula was induced by most of the abiotic stresses, including salt, drought, cold, and abscisic acid, suggesting crosstalk between these abiotic stresses. Transgenic Arabidopsis over-expressing MtCBF4 enhanced tolerance to drought and salt stress, and activated expression of downstream genes that contain DRE elements. Over-expression of MtCBF4 in M. truncatula also enhanced salt tolerance and induced expression level of corresponding downstream genes. Conclusion Comprehensive transcriptomic analysis revealed complex mechanisms exist in plants in response to salt stress. The novel transcription factor gene MtCBF4 identified here played an important role in response to abiotic stresses, indicating that it might be a good candidate gene for genetic improvement to produce stress-tolerant plants.

  15. Transcriptional profiling of Medicago truncatula under salt stress identified a novel CBF transcription factor MtCBF4 that plays an important role in abiotic stress responses

    Science.gov (United States)

    2011-01-01

    Background Salt stress hinders the growth of plants and reduces crop production worldwide. However, different plant species might possess different adaptive mechanisms to mitigate salt stress. We conducted a detailed pathway analysis of transcriptional dynamics in the roots of Medicago truncatula seedlings under salt stress and selected a transcription factor gene, MtCBF4, for experimental validation. Results A microarray experiment was conducted using root samples collected 6, 24, and 48 h after application of 180 mM NaCl. Analysis of 11 statistically significant expression profiles revealed different behaviors between primary and secondary metabolism pathways in response to external stress. Secondary metabolism that helps to maintain osmotic balance was induced. One of the highly induced transcription factor genes was successfully cloned, and was named MtCBF4. Phylogenetic analysis revealed that MtCBF4, which belongs to the AP2-EREBP transcription factor family, is a novel member of the CBF transcription factor in M. truncatula. MtCBF4 is shown to be a nuclear-localized protein. Expression of MtCBF4 in M. truncatula was induced by most of the abiotic stresses, including salt, drought, cold, and abscisic acid, suggesting crosstalk between these abiotic stresses. Transgenic Arabidopsis over-expressing MtCBF4 enhanced tolerance to drought and salt stress, and activated expression of downstream genes that contain DRE elements. Over-expression of MtCBF4 in M. truncatula also enhanced salt tolerance and induced expression level of corresponding downstream genes. Conclusion Comprehensive transcriptomic analysis revealed complex mechanisms exist in plants in response to salt stress. The novel transcription factor gene MtCBF4 identified here played an important role in response to abiotic stresses, indicating that it might be a good candidate gene for genetic improvement to produce stress-tolerant plants. PMID:21718548

  16. Identification of multiple small heat-shock protein genes in Plutella xylostella (L.) and their expression profiles in response to abiotic stresses.

    Science.gov (United States)

    Chen, Xi'en; Zhang, Yalin

    2015-01-01

    We identify and characterize 14 small heat-shock protein (sHSP) genes from the diamondback moth (DBM), Plutella xylostella (L.), a destructive pest. Phylogenetic analyses indicate that, except for sHSP18.8 and sHSP19.22, the other 12 DBM sHSPs belong to five known insect sHSP groups. Developmental expression analysis revealed that most sHSPs peaked in the pupal and adult stages. The transcripts of sHSPs display tissue specificity with two exhibiting constitutive expression in four tested tissues. Expression of sHSP18.8 in fourth instar larvae is not induced by the tested abiotic stressors, and unless sHSP21.8 is not sensitive to thermal stress, 12 sHSPs are significantly up-regulated. The messenger RNA (mRNA) levels of all sHSPs are reduced under oxidative stress. Food deprivation leads to significant down-regulation of three sHSPs. The majority of sHSPs show expression variation to various heavy metals, whereas mRNA abundances of sHSP22.1 and sHSP 28.9 are reduced by four heavy metals. The responses of sHSPs to indoxacarb and cantharidin are varied. Beta-cypermethrin and chlorfenapyr exposure results in an increase of 13 sHSP transcripts and a reduction of 12 sHSP transcripts, respectively. These results show that different sHSPs might play distinct roles in the development and regulation of physiological activities, as well as in response to various abiotic stresses of DBM.

  17. Utilizing Genetic Resources and Precision Agriculture to Enhance Resistance to Biotic and Abiotic Stress in Watermelon

    Directory of Open Access Journals (Sweden)

    Mihail KANTOR

    2018-03-01

    Full Text Available Originally from Africa, watermelon is a staple crop in South Carolina and rich source of important phytochemicals that promote human health. As a result of many years of domestication and selection for desired fruit quality, modern watermelon cultivars are susceptible to biotic and abiotic stress. The present review discusses how genetic selection and breeding combined with geospatial technologies (precision agriculture may help enhance watermelon varieties for resistance to biotic and abiotic stress. Gene loci identified and selected in undomesticated watermelon accessions are responsible for resistance to diseases, pests and abiotic stress. Vegetable breeding programs use traditional breeding methodologies and genomic tools to introduce gene loci conferring biotic or abiotic resistance into the genome background of elite watermelon cultivars. This continuous approach of collecting, evaluating and identifying useful genetic material is valuable for enhancing genetic diversity and tolerance and combined with precision agriculture could increase food security in the Southeast.

  18. A novel ethylene-responsive factor from Tamarix hispida, ThERF1, is a GCC-box- and DRE-motif binding protein that negatively modulates abiotic stress tolerance in Arabidopsis.

    Science.gov (United States)

    Wang, Liuqiang; Qin, Liping; Liu, Wenjin; Zhang, Daoyuan; Wang, Yucheng

    2014-09-01

    Ethylene-responsive factor (ERF) family is one of the largest families of plant-specific transcription factor that can positively or negatively regulate abiotic stress tolerance. However, their functions in regulating abiotic stress tolerance are still not fully understood. In this study, we characterized the functions of an ERF gene from Tamarix hispida, ThERF1, which can negatively regulate abiotic stress tolerance. The expression of ThERF1 was induced by salinity, PEG-simulated drought and abscisic acid (ABA) treatments. ThERF1 can specifically bind to GCC-box and DRE motifs. Overexpression of ThERF1 in transgenic Arabidopsis plants showed inhibited seed germination, and decreased fresh weight gain and root growth compared with wild-type (WT) plants. In addition, the transcript levels of several superoxide dismutase (SOD) and peroxidase (POD) genes in transgenic plants were significantly inhibited compared with in WT plants, resulting in decreased SOD and POD activities in transgenic plants under salt and drought stress conditions. Furthermore, the reactive oxygen species (ROS) levels, malondialdehyde (MDA) contents and cell membrane damage in ThERF1-transformed plants were all highly increased relative to WT plants. Our results suggest that ThERF1 negatively regulates abiotic stress tolerance by strongly inhibiting the expression of SOD and POD genes, leading to decreased ROS-scavenging ability. © 2014 Scandinavian Plant Physiology Society.

  19. Safety aspects of genetically modified crops with abiotic stress tolerance

    NARCIS (Netherlands)

    Liang, C.; Prins, T.W.; Wiel, van de C.C.M.; Kok, E.J.

    2014-01-01

    Abiotic stress, such as drought, salinity, and temperature extremes, significantly reduce crop yields. Hence, development of abiotic stress-tolerant crops by modern biotechnology may contribute to global food security. Prior to introducing genetically modified crops with abiotic stress tolerance to

  20. A database of annotated tentative orthologs from crop abiotic stress transcripts.

    Science.gov (United States)

    Balaji, Jayashree; Crouch, Jonathan H; Petite, Prasad V N S; Hoisington, David A

    2006-10-07

    A minimal requirement to initiate a comparative genomics study on plant responses to abiotic stresses is a dataset of orthologous sequences. The availability of a large amount of sequence information, including those derived from stress cDNA libraries allow for the identification of stress related genes and orthologs associated with the stress response. Orthologous sequences serve as tools to explore genes and their relationships across species. For this purpose, ESTs from stress cDNA libraries across 16 crop species including 6 important cereal crops and 10 dicots were systematically collated and subjected to bioinformatics analysis such as clustering, grouping of tentative orthologous sets, identification of protein motifs/patterns in the predicted protein sequence, and annotation with stress conditions, tissue/library source and putative function. All data are available to the scientific community at http://intranet.icrisat.org/gt1/tog/homepage.htm. We believe that the availability of annotated plant abiotic stress ortholog sets will be a valuable resource for researchers studying the biology of environmental stresses in plant systems, molecular evolution and genomics.

  1. Recent advances in utilizing transcription factors to improve plant abiotic stress tolerance by transgenic technology

    Directory of Open Access Journals (Sweden)

    Hongyan eWang

    2016-02-01

    Full Text Available Agricultural production and quality are adversely affected by various abiotic stresses worldwide and this will be exacerbated by the deterioration of global climate. To feed a growing world population, it is very urgent to breed stress-tolerant crops with higher yields and improved qualities against multiple environmental stresses. Since conventional breeding approaches had marginal success due to the complexity of stress tolerance traits, the transgenic approach is now being popularly used to breed stress-tolerant crops. So identifying and characterizing the the critical genes involved in plant stress responses is an essential prerequisite for engineering stress-tolerant crops. Far beyond the manipulation of single functional gene, engineering certain regulatory genes has emerged as an effective strategy now for controlling the expression of many stress-responsive genes. Transcription factors (TFs are good candidates for genetic engineering to breed stress-tolerant crop because of their role as master regulators of many stress-responsive genes. Many TFs belonging to families AP2/EREBP, MYB, WRKY, NAC, bZIP have been found to be involved in various abiotic stresses and some TF genes have also been engineered to improve stress tolerance in model and crop plants. In this review, we take five large families of TFs as examples and review the recent progress of TFs involved in plant abiotic stress responses and their potential utilization to improve multiple stress tolerance of crops in the field conditions.

  2. The role of peu-miR164 and its target PeNAC genes in response to abiotic stress in Populus euphratica.

    Science.gov (United States)

    Lu, Xin; Dun, Hui; Lian, Conglong; Zhang, Xiaofei; Yin, Weilun; Xia, Xinli

    2017-06-01

    Plant miR164 family is highly conserved and miR164 members regulate conserved targets belonging to NAC transcription factors. Our previous studies have revealed that peu-miR164a-e and its target gene POPTR_0007s08420 participate in abiotic stress response in Populus euphratica according to deep sequencing and degradome sequencing. In this study, miR164 family comprises six members that generate two mature products (miR164a-e and miR164f) and target seven NAC genes in P. euphratica. Co-expression in Nicotiana benthamiana and 5' RACE confirmed that peu-miR164 directs PeNAC070, PeNAC012 and PeNAC028 mRNAs cleavage. Expression profiles of primary peu-miR164 a/b/c/d/e bear similarity to those of peu-miR164a-e, whereas PeNAC070 and PeNAC081 showed inverse expression patterns with peu-miR164a-e under abiotic stresses. Existence of cis-acting elements in PeNAC070 promoter (ABRE,MBs, Box-W1, GC-motif, and W-box) and in peu-MIR164b promoter (HSE) further confirmed different responses of peu-miR164 and PeNAC070 to abiotic stresses. Histochemical β-glucuronidase (GUS) staining revealed that GUS activities increased when Pro PeNAC070 ::GUS transgenic Arabidopsis plants were exposed to NaCl, mannitol and abscisic acid (ABA), whereas GUS activity of Pro peu-MIR164b ::GUS plants decreased under ABA treatment. Subcellular localization and transactivation assays showed that PeNAC070 protein was localized to the nucleus and exhibited transactivation activity at the C-terminal. Overexpression of PeNAC070 in Arabidopsis promoted lateral root development, delayed stem elongation, and increased sensitivity of transgenic plants to drought and salt stresses. This study aids in understanding the adaptability of P. euphratica to extreme drought and salt environment by analysing tissue-specific expression patterns of miR164-regulated and specific promoter-regulated PeNAC genes. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  3. Linking Species Traits to the Abiotic Template of Flowing Waters: Contrasting Eco physiologies Underlie Displacement of Zebra Mussels by Quagga Mussels in a Large River-Estuary

    Science.gov (United States)

    Casper, A. F.

    2005-05-01

    The St. Lawrence River-Estuary was the gateway of entry for dreissenids to North America and holds some of the oldest populations. The St. Lawrence also has four distinct physical-chemical water masses (a regional scale abiotic template) that both species inhabit. Despite their ecological similarities, quagga mussels are supplanting zebra mussels in much of their shared range. In order to try to better understand the changing distributions of these two species we compared glycogen, shell mass and tissue biomass in each of the water masses. This comparative physiological combined with experimental approaches (estuarine salinity experiments and reciprocal transplants) showed that while quagga mussels should dominate in most habitats, that abiotic/bioenergetic constraints in two regions (the Ottawa River plume and the freshwater-marine transition zone) might prevent them from dominating these locations. These findings are an example of how the interaction of landscape scale abiotic heterogeneity and a species-specific physiology can have strong impacts of distribution of biota large rivers.

  4. Resilience of cereal crops to abiotic stress: A review | Ahmad ...

    African Journals Online (AJOL)

    In the last century, conventional selection and breeding program proved to be highly effective in improving crops against abiotic stresses. Therefore, breeding for abiotic stress tolerance in crop plants should be given high research priority as abiotic stresses are the main factor negatively affecting crop growth and ...

  5. Quantifying Wheat Sensitivities to Environmental Constraints to Dissect Genotype × Environment Interactions in the Field.

    Science.gov (United States)

    Parent, Boris; Bonneau, Julien; Maphosa, Lance; Kovalchuk, Alex; Langridge, Peter; Fleury, Delphine

    2017-07-01

    Yield is subject to strong genotype-by-environment (G × E) interactions in the field, especially under abiotic constraints such as soil water deficit (drought [D]) and high temperature (heat [H]). Since environmental conditions show strong fluctuations during the whole crop cycle, geneticists usually do not consider environmental measures as quantitative variables but rather as factors in multienvironment analyses. Based on 11 experiments in a field platform with contrasting temperature and soil water deficit, we determined the periods of sensitivity to drought and heat constraints in wheat ( Triticum aestivum ) and determined the average sensitivities for major yield components. G × E interactions were separated into their underlying components, constitutive genotypic effect (G), G × D, G × H, and G × H × D, and were analyzed for two genotypes, highlighting contrasting responses to heat and drought constraints. We then tested the constitutive and responsive behaviors of two strong quantitative trait loci (QTLs) associated previously with yield components. This analysis confirmed the constitutive effect of the chromosome 1B QTL and explained the G × E interaction of the chromosome 3B QTL by a benefit of one allele when temperature rises. In addition to the method itself, which can be applied to other data sets and populations, this study will support the cloning of a major yield QTL on chromosome 3B that is highly dependent on environmental conditions and for which the climatic interaction is now quantified. © 2017 American Society of Plant Biologists. All Rights Reserved.

  6. MicroRNA Regulation of Abiotic Stress Response in 7B-1 Male-Sterile Tomato Mutant

    Czech Academy of Sciences Publication Activity Database

    Omidvar, Vahid; Mohorianu, I.; Dalmay, T.; Fellner, Martin

    2015-01-01

    Roč. 8, č. 3 (2015), s. 1-13 ISSN 1940-3372 R&D Projects: GA MŠk(CZ) LO1204 Institutional support: RVO:61389030 Keywords : 7B-1 mutant * abiotic stress * miRNAs Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.509, year: 2015

  7. Cloning and Expression Analysis of an AP2/ERF Gene and Its Responses to Phytohormones and Abiotic Stresses in Rice

    Directory of Open Access Journals (Sweden)

    Hao-li MA

    2010-03-01

    Full Text Available Ethylene response factors (ERFs play important roles in response to plant biotic and abiotic stresses. In this study, a gene encoding a putative AP2/ERF domain-containing protein was isolated by screening a SSH cDNA library from rice and designated as Oryza sativa AP2/ERF-like protein (OsAP2LP gene. OsAP2LP is 1491 bp in length, interrupted by seven introns, and encodes a putative protein of 348 amino acids. Temporal and spatial expression analysis showed that the OsAP2LP gene was preferentially expressed in roots, panicles, mature embryos and seeds in rice. Real-time quantitative PCR analysis indicated that the expression levels of the OsAP2LP gene were increased under the treatments of drought and gibberellin but decreased under the treatments of low temperature, salt, abscisic acid (ABA and zeatin. Taken together, these results suggest that OsAP2LP might be involved in stress responses, and probably plays roles as a transcription regulator when plants response to cold, salt and drought stresses through ABA and gibberellin pathways.

  8. Responses of transgenic Arabidopsis plants and recombinant yeast cells expressing a novel durum wheat manganese superoxide dismutase TdMnSOD to various abiotic stresses.

    Science.gov (United States)

    Kaouthar, Feki; Ameny, Farhat-Khemakhem; Yosra, Kamoun; Walid, Saibi; Ali, Gargouri; Faiçal, Brini

    2016-07-01

    In plant cells, the manganese superoxide dismutase (Mn-SOD) plays an elusive role in the response to oxidative stress. In this study, we describe the isolation and functional characterization of a novel Mn-SOD from durum wheat (Triticum turgidum L. subsp. Durum), named TdMnSOD. Molecular phylogeny analysis showed that the durum TdMnSOD exhibited high amino acids sequence identity with other Mn-SOD plants. The three-dimensional structure showed that TdMnSOD forms a homotetramer and each subunit is composed of a predominantly α-helical N-terminal domain and a mixed α/β C-terminal domain. TdMnSOD gene expression analysis showed that this gene was induced by various abiotic stresses in durum wheat. The expression of TdMnSOD enhances tolerance of the transformed yeast cells to salt, osmotic, cold and H2O2-induced oxidative stresses. Moreover, the analysis of TdMnSOD transgenic Arabidopsis plants subjected to different environmental stresses revealed low H2O2 and high proline levels as compared to the wild-type plants. Compared with the non-transformed plants, an increase in the total SOD and two other antioxidant enzyme activities including catalase (CAT) and peroxidases (POD) was observed in the three transgenic lines subjected to abiotic stress. Taken together, these data provide evidence for the involvement of durum wheat TdMnSOD in tolerance to multiple abiotic stresses in crop plants. Copyright © 2016 Elsevier GmbH. All rights reserved.

  9. Evaluating physiological responses of plants to salinity stress

    KAUST Repository

    Negrã o, Só nia; Schmö ckel, S. M.; Tester, Mark A.

    2016-01-01

    Background Because soil salinity is a major abiotic constraint affecting crop yield, much research has been conducted to develop plants with improved salinity tolerance. Salinity stress impacts many aspects of a plant’s physiology, making

  10. The Abiotic Depletion Potential: Background, Updates, and Future

    Directory of Open Access Journals (Sweden)

    Lauran van Oers

    2016-03-01

    Full Text Available Depletion of abiotic resources is a much disputed impact category in life cycle assessment (LCA. The reason is that the problem can be defined in different ways. Furthermore, within a specified problem definition, many choices can still be made regarding which parameters to include in the characterization model and which data to use. This article gives an overview of the problem definition and the choices that have been made when defining the abiotic depletion potentials (ADPs for a characterization model for abiotic resource depletion in LCA. Updates of the ADPs since 2002 are also briefly discussed. Finally, some possible new developments of the impact category of abiotic resource depletion are suggested, such as redefining the depletion problem as a dilution problem. This means taking the reserves in the environment and the economy into account in the reserve parameter and using leakage from the economy, instead of extraction rate, as a dilution parameter.

  11. Characterization of Rice Homeobox Genes, OsHOX22 and OsHOX24, and Over-expression of OsHOX24 in Transgenic Arabidopsis Suggest their Role in Abiotic Stress Response

    Directory of Open Access Journals (Sweden)

    Annapurna eBhattacharjee

    2016-05-01

    Full Text Available Homeobox transcription factors are well known regulators of plant growth and development. In this study, we carried out functional analysis of two candidate stress-responsive HD-ZIP I class homeobox genes from rice, OsHOX22 and OsHOX24. These genes were highly upregulated under various abiotic stress conditions at different stages of rice development, including seedling, mature and reproductive stages. The transcript levels of these genes were enhanced significantly in the presence of plant hormones, including abscisic acid (ABA, auxin, salicylic acid and gibberellic acid. The recombinant full-length and truncated homeobox proteins were found to be localized in the nucleus. Electrophoretic mobility shift assay established the binding of these homeobox proteins with specific DNA sequences, AH1 (CAAT(A/TATTG and AH2 (CAAT(C/GATTG. Transactivation assays in yeast revealed the transcriptional activation potential of full-length OsHOX22 and OsHOX24 proteins. Homo- and hetero-dimerization capabilities of these proteins have also been demonstrated. Further, we identified putative novel interacting proteins of OsHOX22 and OsHOX24 via yeast-two hybrid analysis. Over-expression of OsHOX24 imparted higher sensitivity to stress hormone, ABA, and abiotic stresses in the transgenic Arabidopsis plants as revealed by various physiological and phenotypic assays. Microarray analysis revealed differential expression of several stress-responsive genes in transgenic lines as compared to wild-type. Many of these genes were found to be involved in transcriptional regulation and various metabolic pathways. Altogether, our results suggest the possible role of OsHOX22/OsHOX24 homeobox proteins as negative regulators in abiotic stress responses.

  12. Integrated physiological and molecular approaches to improvement of abiotic stress tolerance in two pulse crops of the semi-arid tropics

    Directory of Open Access Journals (Sweden)

    Arbind K. Choudhary

    2018-04-01

    Full Text Available Chickpea (Cicer arietinum L. and pigeonpea [Cajanus cajan L. (Millsp.] play an important role in mitigating protein malnutrition for millions of poor vegetarians living in regions of the semi-arid tropics. Abiotic stresses such as excess and limited soil moisture (water-logging and drought, heat and chilling (high and low temperature stresses, soil salinity, and acidity are major yield constraints, as these two crops are grown mostly under rainfed conditions in risk-prone marginal and degraded lands with few or no inputs. Losses due to such stresses vary from 30% to 100% depending on their severity. The literature abounds in basic information concerning screening techniques, physiological mechanisms, and genetics of traits associated with resistance/tolerance to abiotic stresses in these two crops. However, the final outcome in terms of resistant/tolerant varieties has been far from satisfactory. This situation calls for improving selection efficiency through precise phenotyping and genotyping under high-throughput controlled conditions using modern tools of genomics. In this review, we suggest that an integrated approach combining advances from genetics, physiology, and biotechnology needs to be used for higher precision and efficiency of breeding programs aimed at improving abiotic stress tolerance in both chickpea and pigeonpea.

  13. Abiotic methane formation during experimental serpentinization of olivine.

    Science.gov (United States)

    McCollom, Thomas M

    2016-12-06

    Fluids circulating through actively serpentinizing systems are often highly enriched in methane (CH 4 ). In many cases, the CH 4 in these fluids is thought to derive from abiotic reduction of inorganic carbon, but the conditions under which this process can occur in natural systems remain unclear. In recent years, several studies have reported abiotic formation of CH 4 during experimental serpentinization of olivine at temperatures at or below 200 °C. However, these results seem to contradict studies conducted at higher temperatures (300 °C to 400 °C), where substantial kinetic barriers to CH 4 synthesis have been observed. Here, the potential for abiotic formation of CH 4 from dissolved inorganic carbon during olivine serpentinization is reevaluated in a series of laboratory experiments conducted at 200 °C to 320 °C. A 13 C-labeled inorganic carbon source was used to unambiguously determine the origin of CH 4 generated in the experiments. Consistent with previous high-temperature studies, the results indicate that abiotic formation of CH 4 from reduction of dissolved inorganic carbon during the experiments is extremely limited, with nearly all of the observed CH 4 derived from background sources. The results indicate that the potential for abiotic synthesis of CH 4 in low-temperature serpentinizing environments may be much more limited than some recent studies have suggested. However, more extensive production of CH 4 was observed in one experiment performed under conditions that allowed an H 2 -rich vapor phase to form, suggesting that shallow serpentinization environments where a separate gas phase is present may be more favorable for abiotic synthesis of CH 4 .

  14. Abiotic stress miRNomes in the Triticeae

    OpenAIRE

    Alptekin, Burcu; Langridge, Peter; Budak, Hikmet

    2016-01-01

    The continued growth in world population necessitates increases in both the quantity and quality of agricultural production. Triticeae members, particularly wheat and barley, make an important contribution to world food reserves by providing rich sources of carbohydrate and protein. These crops are grown over diverse production environments that are characterized by a range of environmental or abiotic stresses. Abiotic stresses such as drought, heat, salinity, or nutrient deficiencies and tox...

  15. Genome-wide characterization of the WRKY gene family in radish (Raphanus sativus L.) reveals its critical functions under different abiotic stresses.

    Science.gov (United States)

    Karanja, Bernard Kinuthia; Fan, Lianxue; Xu, Liang; Wang, Yan; Zhu, Xianwen; Tang, Mingjia; Wang, Ronghua; Zhang, Fei; Muleke, Everlyne M'mbone; Liu, Liwang

    2017-11-01

    The radish WRKY gene family was genome-widely identified and played critical roles in response to multiple abiotic stresses. The WRKY is among the largest transcription factors (TFs) associated with multiple biological activities for plant survival, including control response mechanisms against abiotic stresses such as heat, salinity, and heavy metals. Radish is an important root vegetable crop and therefore characterization and expression pattern investigation of WRKY transcription factors in radish is imperative. In the present study, 126 putative WRKY genes were retrieved from radish genome database. Protein sequence and annotation scrutiny confirmed that RsWRKY proteins possessed highly conserved domains and zinc finger motif. Based on phylogenetic analysis results, RsWRKYs candidate genes were divided into three groups (Group I, II and III) with the number 31, 74, and 20, respectively. Additionally, gene structure analysis revealed that intron-exon patterns of the WRKY genes are highly conserved in radish. Linkage map analysis indicated that RsWRKY genes were distributed with varying densities over nine linkage groups. Further, RT-qPCR analysis illustrated the significant variation of 36 RsWRKY genes under one or more abiotic stress treatments, implicating that they might be stress-responsive genes. In total, 126 WRKY TFs were identified from the R. sativus genome wherein, 35 of them showed abiotic stress-induced expression patterns. These results provide a genome-wide characterization of RsWRKY TFs and baseline for further functional dissection and molecular evolution investigation, specifically for improving abiotic stress resistances with an ultimate goal of increasing yield and quality of radish.

  16. Protection of the Abiotic Environment

    International Nuclear Information System (INIS)

    Michel, R.; Hutmacher, K. E.; Landfermann, H. H.

    2004-01-01

    Environmental protection against the dangers arising from ionizing radiation, radioactive materials, and other harmful substances is more than to avoid acute dangers or risks for humans or for non-human living organisms. To allow for a sustainable development the abiotic part of the environment must not be neglected in concepts of environmental protection. The environmental impact of some selected long-lived anthropogenic radionuclides is used to exemplify adverse effects for which a unified approach is needed. To this end, indicators are needed for the assessment of the human impact on the abiotic environment which allows to compare different human actions with respect to sustainability and to choose appropriate measures in the competition for a sustainable development. Such indicators have to account for the dynamics of the different environmental compartments. Using the long-lived radionuclides 14C, 36Cl, 85Kr, and 129I as examples, the importance to consider dynamical models and ecological lifetimes in quantifications of the human impact on the environment is emphasized. Particular problems arise from the natural occurrences and variability of radionuclides and other harmful substances. Suitable indicators for the assessment of human impact on the abiotic compartments air, water, and soil are discussed. (Author) 18 refs

  17. Transcriptome Analysis of Sunflower Genotypes with Contrasting Oxidative Stress Tolerance Reveals Individual- and Combined- Biotic and Abiotic Stress Tolerance Mechanisms.

    Directory of Open Access Journals (Sweden)

    Vemanna S Ramu

    Full Text Available In nature plants are often simultaneously challenged by different biotic and abiotic stresses. Although the mechanisms underlying plant responses against single stress have been studied considerably, plant tolerance mechanisms under combined stress is not understood. Also, the mechanism used to combat independently and sequentially occurring many number of biotic and abiotic stresses has also not systematically studied. From this context, in this study, we attempted to explore the shared response of sunflower plants to many independent stresses by using meta-analysis of publically available transcriptome data and transcript profiling by quantitative PCR. Further, we have also analyzed the possible role of the genes so identified in contributing to combined stress tolerance. Meta-analysis of transcriptomic data from many abiotic and biotic stresses indicated the common representation of oxidative stress responsive genes. Further, menadione-mediated oxidative stress in sunflower seedlings showed similar pattern of changes in the oxidative stress related genes. Based on this a large scale screening of 55 sunflower genotypes was performed under menadione stress and those contrasting in oxidative stress tolerance were identified. Further to confirm the role of genes identified in individual and combined stress tolerance the contrasting genotypes were individually and simultaneously challenged with few abiotic and biotic stresses. The tolerant hybrid showed reduced levels of stress damage both under combined stress and few independent stresses. Transcript profiling of the genes identified from meta-analysis in the tolerant hybrid also indicated that the selected genes were up-regulated under individual and combined stresses. Our results indicate that menadione-based screening can identify genotypes not only tolerant to multiple number of individual biotic and abiotic stresses, but also the combined stresses.

  18. Transcriptome-Based Analysis of Dof Family Transcription Factors and Their Responses to Abiotic Stress in Tea Plant (Camellia sinensis

    Directory of Open Access Journals (Sweden)

    Hui Li

    2016-01-01

    Full Text Available Tea plant (Camellia sinensis (L. O. Kuntze is affected by abiotic stress during its growth and development. DNA-binding with one finger (Dof transcription factors (TFs play important roles in abiotic stress tolerance of plants. In this study, a total of 29 putative Dof TFs were identified based on transcriptome of tea plant, and the conserved domains and common motifs of these CsDof TFs were predicted and analyzed. The 29 CsDof proteins were divided into 7 groups (A, B1, B2, C1, C2.1, C2.2, and D2, and the interaction networks of Dof proteins in C. sinensis were established according to the data in Arabidopsis. Gene expression was analyzed in “Yingshuang” and “Huangjinya” under four experimental stresses by qRT-PCR. CsDof genes were expressed differentially and related to different abiotic stress conditions. In total, our results might suggest that there is a potential relationship between CsDof factors and tea plant stress resistance.

  19. Roots withstanding their environment : Exploiting root system architecture responses to abiotic stress to improve crop tolerance

    NARCIS (Netherlands)

    Koevoets, Iko T; Venema, Jan Henk; Elzenga, J Theo M; Testerink, Christa

    2016-01-01

    To face future challenges in crop production dictated by global climate changes, breeders and plant researchers collaborate to develop productive crops that are able to withstand a wide range of biotic and abiotic stresses. However, crop selection is often focused on shoot performance alone, as

  20. Polyamines and abiotic stress in plants: A complex relationship

    Directory of Open Access Journals (Sweden)

    Rakesh eMinocha

    2014-05-01

    Full Text Available The physiological relationship between abiotic stress in plants and polyamines was reported more than 40 years ago. Ever since there has been a debate as to whether increased polyamines protect plants against abiotic stress (e.g. due to their ability to deal with oxidative radicals or cause damage to them (perhaps due to hydrogen peroxide produced by their catabolism. The observation that cellular polyamines are typically elevated in plants under both short-term as well as long-term abiotic stress conditions is consistent with the possibility of their dual effects, i.e. being a protector as well as a perpetrator of stress damage to the cells. The observed increase in tolerance of plants to abiotic stress when their cellular contents are elevated by either exogenous treatment with polyamines or through genetic engineering with genes encoding polyamine biosynthetic enzymes is indicative of a protective role for them. However, through their catabolic production of hydrogen peroxide and acrolein, both strong oxidizers, they can potentially be the cause of cellular harm during stress. In fact, somewhat enigmatic but strong positive relationship between abiotic stress and foliar polyamines has been proposed as a potential biochemical marker of persistent environmental stress in forest trees in which phenotypic symptoms of stress are not yet visible. Such markers may help forewarn forest managers to undertake amelioration strategies before the appearance of visual symptoms of stress and damage at which stage it is often too late for implementing strategies for stress remediation and reversal of damage. This review provides a comprehensive and critical evaluation of the published literature on interactions between abiotic stress and polyamines in plants, and examines the experimental strategies used to understand the functional significance of this relationship with the aim of improving plant productivity, especially under conditions of abiotic stress.

  1. ROS-mediated abiotic stress-induced programmed cell death in plants

    Directory of Open Access Journals (Sweden)

    Veselin ePetrov

    2015-02-01

    Full Text Available During the course of their ontogenesis, plants are continuously exposed to a large variety of abiotic stress factors which can damage tissues and jeopardize the survival of the organism unless properly countered. While animals can simply escape and thus evade stressors, plants as sessile organisms have developed complex strategies to withstand them. When the intensity of a detrimental factor is high, one of the defense programs employed by plants is the induction of programmed cell death (PCD. This is an active, genetically controlled process which is initiated to isolate and remove damaged tissues thereby ensuring the survival of the organism. The mechanism of PCD induction usually includes an increase in the levels of reactive oxygen species (ROS which are utilized as mediators of the stress signal. Abiotic stress-induced PCD is not only a process of fundamental biological importance, but also of considerable interest to agricultural practice as it has the potential to significantly influence crop yield. Therefore, numerous scientific enterprises have focused on elucidating the mechanisms leading to and controlling PCD in response to adverse conditions in plants. This knowledge may help to develop novel strategies to obtain more resilient crop varieties with improved tolerance and enhanced productivity. The aim of the present review is to summarize the recent advances in research on ROS-induced PCD related to abiotic stress and the role of the organelles in the process.

  2. Alcohol dehydrogenase 1 (ADH1) confers both abiotic and biotic stress resistance in Arabidopsis.

    Science.gov (United States)

    Shi, Haitao; Liu, Wen; Yao, Yue; Wei, Yunxie; Chan, Zhulong

    2017-09-01

    Although the transcriptional regulation and upstream transcription factors of AtADH1 in response to abiotic stress are widely revealed, the in vivo roles of AtADH1 remain unknown. In this study, we found that the expression of AtADH1 was largely induced after salt, drought, cold and pathogen infection. Further studies found that AtADH1 overexpressing plants were more sensitive to abscisic acid (ABA) in comparison to wide type (WT), while AtADH1 knockout mutants showed no significant difference compared with WT in ABA sensitivity. Consistently, AtADH1 overexpressing plants showed improved stress resistance to salt, drought, cold and pathogen infection than WT, but the AtADH1 knockout mutants had no significant difference in abiotic and biotic stress resistance. Moreover, overexpression of AtADH1 expression increased the transcript levels of multiple stress-related genes, accumulation of soluble sugars and callose depositions. All these results indicate that AtADH1 confers enhanced resistance to both abiotic and biotic stresses. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Rubisco Activase Is Also a Multiple Responder to Abiotic Stresses in Rice.

    Directory of Open Access Journals (Sweden)

    Yue Chen

    Full Text Available Ribulose-1,5-bisphosphate carboxylase/oxygenase activase (RCA is a nuclear gene that encodes a chloroplast protein that plays an important role in photosynthesis. Some reports have indicated that it may play a role in acclimation to different abiotic stresses. In this paper, we analyzed the stress-responsive elements in the 2.0 kb 5'-upstream regions of the RCA gene promoter and the primary, secondary and tertiary structure of the protein. We identified some cis-elements of multiple stress-related components in the RCA promoter. Amino acid and evolution analyses showed that the RCA protein had conserved regions between different species; however, the size and type varied. The secondary structures, binding sites and tertiary structures of the RCA proteins were also different. This might reflect the differences in the transcription and translation levels of the two RCA isoforms during adaptation to different abiotic stresses. Although both the transcription and translation levels of RCA isoforms in the rice leaves increased under various stresses, the large isoform was increased more significantly in the chloroplast stroma and thylakoid. It can be concluded that RCA, especially RCAL, is also a multiple responder to abiotic stresses in rice, which provides new insights into RCA functions.

  4. Functional and DNA-protein binding studies of WRKY transcription factors and their expression analysis in response to biotic and abiotic stress in wheat (Triticum aestivum L.).

    Science.gov (United States)

    Satapathy, Lopamudra; Kumar, Dhananjay; Kumar, Manish; Mukhopadhyay, Kunal

    2018-01-01

    WRKY, a plant-specific transcription factor family, plays vital roles in pathogen defense, abiotic stress, and phytohormone signalling. Little is known about the roles and function of WRKY transcription factors in response to rust diseases in wheat. In the present study, three TaWRKY genes encoding complete protein sequences were cloned. They belonged to class II and III WRKY based on the number of WRKY domains and the pattern of zinc finger structures. Twenty-two DNA-protein binding docking complexes predicted stable interactions of WRKY domain with W-box. Quantitative real-time-PCR using wheat near-isogenic lines with or without Lr28 gene revealed differential up- or down-regulation in response to biotic and abiotic stress treatments which could be responsible for their functional divergence in wheat. TaWRKY62 was found to be induced upon treatment with JA, MJ, and SA and reduced after ABA treatments. Maximum induction of six out of seven genes occurred at 48 h post inoculation due to pathogen inoculation. Hence, TaWRKY (49, 50 , 52 , 55 , 57, and 62 ) can be considered as potential candidate genes for further functional validation as well as for crop improvement programs for stress resistance. The results of the present study will enhance knowledge towards understanding the molecular basis of mode of action of WRKY transcription factor genes in wheat and their role during leaf rust pathogenesis in particular.

  5. Plant Abiotic Stress Proteomics: The Major Factors Determining Alterations in Cellular Proteome

    Science.gov (United States)

    Kosová, Klára; Vítámvás, Pavel; Urban, Milan O.; Prášil, Ilja T.; Renaut, Jenny

    2018-01-01

    HIGHLIGHTS: Major environmental and genetic factors determining stress-related protein abundance are discussed.Major aspects of protein biological function including protein isoforms and PTMs, cellular localization and protein interactions are discussed.Functional diversity of protein isoforms and PTMs is discussed. Abiotic stresses reveal profound impacts on plant proteomes including alterations in protein relative abundance, cellular localization, post-transcriptional and post-translational modifications (PTMs), protein interactions with other protein partners, and, finally, protein biological functions. The main aim of the present review is to discuss the major factors determining stress-related protein accumulation and their final biological functions. A dynamics of stress response including stress acclimation to altered ambient conditions and recovery after the stress treatment is discussed. The results of proteomic studies aimed at a comparison of stress response in plant genotypes differing in stress adaptability reveal constitutively enhanced levels of several stress-related proteins (protective proteins, chaperones, ROS scavenging- and detoxification-related enzymes) in the tolerant genotypes with respect to the susceptible ones. Tolerant genotypes can efficiently adjust energy metabolism to enhanced needs during stress acclimation. Stress tolerance vs. stress susceptibility are relative terms which can reflect different stress-coping strategies depending on the given stress treatment. The role of differential protein isoforms and PTMs with respect to their biological functions in different physiological constraints (cellular compartments and interacting partners) is discussed. The importance of protein functional studies following high-throughput proteome analyses is presented in a broader context of plant biology. In summary, the manuscript tries to provide an overview of the major factors which have to be considered when interpreting data from proteomic

  6. Resilience of Penicillium resedanum LK6 and exogenous gibberellin in improving Capsicum annuum growth under abiotic stresses.

    Science.gov (United States)

    Khan, Abdul Latif; Waqas, Muhammad; Lee, In-Jung

    2015-03-01

    Understanding how endophytic fungi mitigate abiotic stresses in plants will be important in a changing global climate. A few endophytes can produce phytohormones, but their ability to induce physiological changes in host plants during extreme environmental conditions are largely unexplored. In the present study, we investigated the ability of Penicillium resedanum LK6 to produce gibberellins and its role in improving the growth of Capsicum annuum L. under salinity, drought, and heat stresses. These effects were compared with exogenous application of gibberellic acid (GA3). Endophyte treatment significantly increased shoot length, biomass, chlorophyll content, and the photosynthesis rate compared with the uninfected control during abiotic stresses. The endophyte and combined endophyte + GA3 treatments significantly ameliorated the negative effects of stresses compared with the control. Stress-responsive endogenous abscisic acid and its encoding genes, such as zeaxanthin epoxidase, 9-cis-epoxycarotenoid dioxygenase 3, and ABA aldehyde oxidase 3, were significantly reduced in endophyte-treated plants under stress. Conversely, salicylic acid and biosynthesis-related gene (isochorismate synthase) had constitutive expressions while pathogenesis related (PR1 and PR5) genes showed attenuated responses during endophyte treatment under abiotic stresses. The present findings suggest that endophytes have effects comparable to those of exogenous GA3; both can significantly increase plant growth and yield under changing environmental conditions by reprogramming the host plant's physiological responses.

  7. Designing cooperatively folded abiotic uni- and multimolecular helix bundles

    Science.gov (United States)

    de, Soumen; Chi, Bo; Granier, Thierry; Qi, Ting; Maurizot, Victor; Huc, Ivan

    2018-01-01

    Abiotic foldamers, that is foldamers that have backbones chemically remote from peptidic and nucleotidic skeletons, may give access to shapes and functions different to those of peptides and nucleotides. However, design methodologies towards abiotic tertiary and quaternary structures are yet to be developed. Here we report rationally designed interactional patterns to guide the folding and assembly of abiotic helix bundles. Computational design facilitated the introduction of hydrogen-bonding functionalities at defined locations on the aromatic amide backbones that promote cooperative folding into helix-turn-helix motifs in organic solvents. The hydrogen-bond-directed aggregation of helices not linked by a turn unit produced several thermodynamically and kinetically stable homochiral dimeric and trimeric bundles with structures that are distinct from the designed helix-turn-helix. Relative helix orientation within the bundles may be changed from parallel to tilted on subtle solvent variations. Altogether, these results prefigure the richness and uniqueness of abiotic tertiary structure behaviour.

  8. Regulation of Translation Initiation under Biotic and Abiotic Stresses

    Directory of Open Access Journals (Sweden)

    Ana B. Castro-Sanz

    2013-02-01

    Full Text Available Plants have developed versatile strategies to deal with the great variety of challenging conditions they are exposed to. Among them, the regulation of translation is a common target to finely modulate gene expression both under biotic and abiotic stress situations. Upon environmental challenges, translation is regulated to reduce the consumption of energy and to selectively synthesize proteins involved in the proper establishment of the tolerance response. In the case of viral infections, the situation is more complex, as viruses have evolved unconventional mechanisms to regulate translation in order to ensure the production of the viral encoded proteins using the plant machinery. Although the final purpose is different, in some cases, both plants and viruses share common mechanisms to modulate translation. In others, the mechanisms leading to the control of translation are viral- or stress-specific. In this paper, we review the different mechanisms involved in the regulation of translation initiation under virus infection and under environmental stress in plants. In addition, we describe the main features within the viral RNAs and the cellular mRNAs that promote their selective translation in plants undergoing biotic and abiotic stress situations.

  9. Global Transcriptome Analysis of Combined Abiotic Stress Signaling Genes Unravels Key Players in Oryza sativa L.: An In silico Approach

    Directory of Open Access Journals (Sweden)

    Pandiyan Muthuramalingam

    2017-05-01

    Full Text Available Combined abiotic stress (CAbS affects the field grown plants simultaneously. The multigenic and quantitative nature of uncontrollable abiotic stresses complicates the process of understanding the stress response by plants. Considering this, we analyzed the CAbS response of C3 model plant, Oryza sativa by meta-analysis. The datasets of commonly expressed genes by drought, salinity, submergence, metal, natural expression, biotic, and abiotic stresses were data mined through publically accessible transcriptomic abiotic stress (AbS responsive datasets. Of which 1,175, 12,821, and 42,877 genes were commonly expressed in meta differential, individual differential, and unchanged expressions respectively. Highly regulated 100 differentially expressed AbS genes were derived through integrative meta-analysis of expression data (INMEX. Of this 30 genes were identified from AbS gene families through expression atlas that were computationally analyzed for their physicochemical properties. All AbS genes were physically mapped against O. sativa genome. Comparative mapping of these genes demonstrated the orthologous relationship with related C4 panicoid genome. In silico expression analysis of these genes showed differential expression patterns in different developmental tissues. Protein–protein interaction of these genes, represented the complexity of AbS. Computational expression profiling of candidate genes in response to multiple stresses suggested the putative involvement of OS05G0350900, OS02G0612700, OS05G0104200, OS03G0596200, OS12G0225900, OS07G0152000, OS08G0119500, OS06G0594700, and Os01g0393100 in CAbS. These potential candidate genes need to be studied further to decipher their functional roles in AbS dynamics.

  10. Exogenous application of hydrogen sulfide donor sodium hydrosulfide enhanced multiple abiotic stress tolerance in bermudagrass (Cynodon dactylon (L). Pers.).

    Science.gov (United States)

    Shi, Haitao; Ye, Tiantian; Chan, Zhulong

    2013-10-01

    As a gaseous molecule, hydrogen sulfide (H2S) has been recently found to be involved in plant responses to multiple abiotic stress. In this study, salt (150 and 300 mM NaCl), osmotic (15% and 30% PEG6000) and cold (4 °C) stress treatments induced accumulation of endogenous H2S level, indicating that H2S might play a role in bermudagrass responses to salt, osmotic and cold stresses. Exogenous application of H2S donor (sodium hydrosulfide, NaHS) conferred improved salt, osmotic and freezing stress tolerances in bermudagrass, which were evidenced by decreased electrolyte leakage and increased survival rate under stress conditions. Additionally, NaHS treatment alleviated the reactive oxygen species (ROS) burst and cell damage induced by abiotic stress, via modulating metabolisms of several antioxidant enzymes [catalase (CAT), peroxidase (POD) and GR (glutathione reductase)] and non-enzymatic glutathione antioxidant pool and redox state. Moreover, exogenous NaHS treatment led to accumulation of osmolytes (proline, sucrose and soluble total sugars) in stressed bermudagrass plants. Taken together, all these data indicated the protective roles of H2S in bermudagrass responses to salt, osmotic and freezing stresses, via activation of the antioxidant response and osmolyte accumulation. These findings might be applicable to grass and crop engineering to improve abiotic stress tolerance. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  11. Adherence to abiotic surface induces SOS response in Escherichia coli K-12 strains under aerobic and anaerobic conditions.

    Science.gov (United States)

    Costa, Suelen B; Campos, Ana Carolina C; Pereira, Ana Claudia M; de Mattos-Guaraldi, Ana Luiza; Júnior, Raphael Hirata; Rosa, Ana Cláudia P; Asad, Lídia M B O

    2014-09-01

    During the colonization of surfaces, Escherichia coli bacteria often encounter DNA-damaging agents and these agents can induce several defence mechanisms. Base excision repair (BER) is dedicated to the repair of oxidative DNA damage caused by reactive oxygen species (ROS) generated by chemical and physical agents or by metabolism. In this work, we have evaluated whether the interaction with an abiotic surface by mutants derived from E. coli K-12 deficient in some enzymes that are part of BER causes DNA damage and associated filamentation. Moreover, we studied the role of endonuclease V (nfi gene; 1506 mutant strain) in biofilm formation. Endonuclease V is an enzyme that is involved in DNA repair of nitrosative lesions. We verified that endonuclease V is involved in biofilm formation. Our results showed more filamentation in the xthA mutant (BW9091) and triple xthA nfo nth mutant (BW535) than in the wild-type strain (AB1157). By contrast, the mutant nfi did not present filamentation in biofilm, although its wild-type strain (1466) showed rare filaments in biofilm. The filamentation of bacterial cells attaching to a surface was a consequence of SOS induction measured by the SOS chromotest. However, biofilm formation depended on the ability of the bacteria to induce the SOS response since the mutant lexA Ind(-) did not induce the SOS response and did not form any biofilm. Oxygen tension was an important factor for the interaction of the BER mutants, since these mutants exhibited decreased quantitative adherence under anaerobic conditions. However, our results showed that the presence or absence of oxygen did not affect the viability of BW9091 and BW535 strains. The nfi mutant and its wild-type did not exhibit decreased biofilm formation under anaerobic conditions. Scanning electron microscopy was also performed on the E. coli K-12 strains that had adhered to the glass, and we observed the presence of a structure similar to an extracellular matrix that depended on the

  12. Phytohormones and their metabolic engineering for abiotic stress tolerance in crop plants

    Directory of Open Access Journals (Sweden)

    Shabir H. Wani

    2016-06-01

    Full Text Available Abiotic stresses including drought, salinity, heat, cold, flooding, and ultraviolet radiation causes crop losses worldwide. In recent times, preventing these crop losses and producing more food and feed to meet the demands of ever-increasing human populations have gained unprecedented importance. However, the proportion of agricultural lands facing multiple abiotic stresses is expected only to rise under a changing global climate fueled by anthropogenic activities. Identifying the mechanisms developed and deployed by plants to counteract abiotic stresses and maintain their growth and survival under harsh conditions thus holds great significance. Recent investigations have shown that phytohormones, including the classical auxins, cytokinins, ethylene, and gibberellins, and newer members including brassinosteroids, jasmonates, and strigolactones may prove to be important metabolic engineering targets for producing abiotic stress-tolerant crop plants. In this review, we summarize and critically assess the roles that phytohormones play in plant growth and development and abiotic stress tolerance, besides their engineering for conferring abiotic stress tolerance in transgenic crops. We also describe recent successes in identifying the roles of phytohormones under stressful conditions. We conclude by describing the recent progress and future prospects including limitations and challenges of phytohormone engineering for inducing abiotic stress tolerance in crop plants.

  13. Species associations overwhelm abiotic conditions to dictate the structure and function of wood-decay fungal communities.

    Science.gov (United States)

    Maynard, Daniel S; Covey, Kristofer R; Crowther, Thomas W; Sokol, Noah W; Morrison, Eric W; Frey, Serita D; van Diepen, Linda T A; Bradford, Mark A

    2018-04-01

    Environmental conditions exert strong controls on the activity of saprotrophic microbes, yet abiotic factors often fail to adequately predict wood decomposition rates across broad spatial scales. Given that species interactions can have significant positive and negative effects on wood-decay fungal activity, one possibility is that biotic processes serve as the primary controls on community function, with abiotic controls emerging only after species associations are accounted for. Here we explore this hypothesis in a factorial field warming- and nitrogen-addition experiment by examining relationships among wood decomposition rates, fungal activity, and fungal community structure. We show that functional outcomes and community structure are largely unrelated to abiotic conditions, with microsite and plot-level abiotic variables explaining at most 19% of the total variability in decomposition and fungal activity, and 2% of the variability in richness and evenness. In contrast, taxonomic richness, evenness, and species associations (i.e., co-occurrence patterns) exhibited strong relationships with community function, accounting for 52% of the variation in decomposition rates and 73% in fungal activity. A greater proportion of positive vs. negative species associations in a community was linked to strong declines in decomposition rates and richness. Evenness emerged as a key mediator between richness and function, with highly even communities exhibiting a positive richness-function relationship and uneven communities exhibiting a negative or null response. These results suggest that community-assembly processes and species interactions are important controls on the function of wood-decay fungal communities, ultimately overwhelming substantial differences in abiotic conditions. © 2018 by the Ecological Society of America.

  14. The shifting influence of abiotic drivers during landslide succession in Puerto Rico

    Science.gov (United States)

    L. R. Walker; A. B. Shiels; P. J. Bellingham; A. D. Sparrow; N. Fetcher; F. H. Landau; D. J. Lodge

    2013-01-01

    Summary 1. Abiotic variables are critical drivers of succession in most primary seres, but how their influence on biota changes over time is rarely examined. Landslides provide good model systems for examining abiotic influences because they are spatially and temporally heterogeneous habitats with distinct abiotic and biotic gradients and post-landslide erosion. 2. In...

  15. Genome-wide identification, phylogeny, and expression analyses of the 14-3-3 family reveal their involvement in the development, ripening and abiotic stress response in banana

    Directory of Open Access Journals (Sweden)

    meiying li

    2016-09-01

    Full Text Available Plant 14-3-3 proteins act as critical components of various cellular signaling processes and play an important role in regulating multiple physiological processes. However, less information is known about the 14-3-3 gene family in banana. In this study, 25 14-3-3 genes were identified from the banana genome. Based on the evolutionary analysis, banana 14-3-3 proteins were clustered into ε and non-ε groups. Conserved motif analysis showed that all identified banana 14-3-3 genes had the typical 14-3-3 motif. The gene structure of banana 14-3-3 genes showed distinct class-specific divergence between the ε group and the non-ε group. Most banana 14-3-3 genes showed strong transcript accumulation changes during fruit development and postharvest ripening in two banana varieties, indicating that they might be involved in regulating fruit development and ripening. Moreover, some 14-3-3 genes also showed great changes after osmotic, cold, and salt treatments in two banana varieties, suggested their potential role in regulating banana response to abiotic stress. Taken together, this systemic analysis reveals the involvement of banana 14-3-3 genes in fruit development, postharvest ripening, and response to abiotic stress and provides useful information for understanding the functions of 14-3-3 genes in banana.

  16. Arbuscular Mycorrhizal Fungal 14-3-3 Proteins Are Involved in Arbuscule Formation and Responses to Abiotic Stresses During AM Symbiosis.

    Science.gov (United States)

    Sun, Zhongfeng; Song, Jiabin; Xin, Xi'an; Xie, Xianan; Zhao, Bin

    2018-01-01

    Arbuscular mycorrhizal (AM) fungi are soil-borne fungi belonging to the ancient phylum Glomeromycota and are important symbionts of the arbuscular mycorrhiza, enhancing plant nutrient acquisition and resistance to various abiotic stresses. In contrast to their significant physiological implications, the molecular basis involved is poorly understood, largely due to their obligate biotrophism and complicated genetics. Here, we identify and characterize three genes termed Fm201 , Ri14-3-3 and RiBMH2 that encode 14-3-3-like proteins in the AM fungi Funneliformis mosseae and Rhizophagus irregularis , respectively. The transcriptional levels of Fm201 , Ri14-3-3 and RiBMH2 are strongly induced in the pre-symbiotic and symbiotic phases, including germinating spores, intraradical hyphae- and arbuscules-enriched roots. To functionally characterize the Fm201 , Ri14-3-3 and RiBMH2 genes, we took advantage of a yeast heterologous system owing to the lack of AM fungal transformation systems. Our data suggest that all three genes can restore the lethal Saccharomyces cerevisiae bmh1 bmh2 double mutant on galactose-containing media. Importantly, yeast one-hybrid analysis suggests that the transcription factor RiMsn2 is able to recognize the STRE (CCCCT/AGGGG) element present in the promoter region of Fm201 gene. More importantly, Host-Induced Gene Silencing of both Ri14-3-3 and RiBMH2 in Rhizophagus irregularis impairs the arbuscule formation in AM symbiosis and inhibits the expression of symbiotic PT4 and MST2 genes from plant and fungal partners, respectively. We further subjected the AM fungus- Medicago truncatula association system to drought or salinity stress. Accordingly, the expression profiles in both mycorrhizal roots and extraradical hyphae reveal that these three 14-3-3-like genes are involved in response to drought or salinity stress. Collectively, our results provide new insights into molecular functions of the AM fungal 14-3-3 proteins in abiotic stress responses and

  17. Reference Gene Selection for qRT-PCR Normalization Analysis in kenaf (Hibiscus cannabinus L. under Abiotic Stress and Hormonal Stimuli

    Directory of Open Access Journals (Sweden)

    Xiaoping Niu

    2017-05-01

    Full Text Available Kenaf (Hibiscus cannabinus L., an environmental friendly and economic fiber crop, has a certain tolerance to abiotic stresses. Identification of reliable reference genes for transcript normalization of stress responsive genes expression by quantitative real-time PCR (qRT-PCR is important for exploring the molecular mechanisms of plants response to abiotic stresses. In this study, nine candidate reference genes were cloned, and their expression stabilities were assessed in 132 abiotic stress and hormonal stimuli samples of kenaf using geNorm, NormFinder, and BestKeeper algorithms. Results revealed that HcPP2A (Protein phosphatase 2A and HcACT7 (Actin 7 were the optimum reference genes across all samples; HcUBC (Ubiquitin-conjugating enzyme like protein was the worst reference gene for transcript normalization. The reliability of the selected reference genes was further confirmed by evaluating the expression profile of HcWRKY28 gene at different stress durations. This work will benefit future studies on discovery of stress-tolerance genes and stress-signaling pathways in this important fiber crop.

  18. The CarERF genes in chickpea (Cicer arietinum L.) and the identification of CarERF116 as abiotic stress responsive transcription factor.

    Science.gov (United States)

    Deokar, Amit A; Kondawar, Vishwajith; Kohli, Deshika; Aslam, Mohammad; Jain, Pradeep K; Karuppayil, S Mohan; Varshney, Rajeev K; Srinivasan, Ramamurthy

    2015-01-01

    The AP2/ERF family is one of the largest transcription factor gene families that are involved in various plant processes, especially in response to biotic and abiotic stresses. Complete genome sequences of one of the world's most important pulse crops chickpea (Cicer arietinum L.), has provided an important opportunity to identify and characterize genome-wide ERF genes. In this study, we identified 120 putative ERF genes from chickpea. The genomic organization of the chickpea ERF genes suggested that the gene family might have been expanded through the segmental duplications. The 120 member ERF family was classified into eleven distinct groups (I-X and VI-L). Transcriptional factor CarERF116, which is differentially expressed between drought tolerant and susceptible chickpea cultivar under terminal drought stress has been identified and functionally characterized. The CarERF116 encodes a putative protein of 241 amino acids and classified into group IX of ERF family. An in vitro CarERF116 protein-DNA binding assay demonstrated that CarERF116 protein specifically interacts with GCC box. We demonstrate that CarERF116 is capable of transactivation activity of and show that the functional transcriptional domain lies at the C-terminal region of the CarERF116. In transgenic Arabidopsis plants overexpressing CarERF116, significant up-regulation of several stress related genes were observed. These plants also exhibit resistance to osmotic stress and reduced sensitivity to ABA during seed germination. Based on these findings, we conclude that CarERF116 is an abiotic stress responsive gene, which plays an important role in stress tolerance. In addition, the present study leads to genome-wide identification and evolutionary analyses of chickpea ERF gene family, which will facilitate further research on this important group of genes and provides valuable resources for comparative genomics among the grain legumes.

  19. Comparative physiological, metabolomic, and transcriptomic analyses reveal mechanisms of improved abiotic stress resistance in bermudagrass [Cynodon dactylon (L). Pers.] by exogenous melatonin

    Science.gov (United States)

    Shi, Haitao; Jiang, Chuan; Ye, Tiantian; Tan, Dun-xian; Reiter, Russel J.; Zhang, Heng; Liu, Renyi; Chan, Zhulong

    2015-01-01

    Melatonin (N-acetyl-5-methoxytryptamine), a well-known animal hormone, is also involved in plant development and abiotic stress responses. In this study, it is shown that exogenous application of melatonin conferred improved salt, drought, and cold stress resistances in bermudagrass. Moreover, exogenous melatonin treatment alleviated reactive oxygen species (ROS) burst and cell damage induced by abiotic stress; this involved activation of several antioxidants. Additionally, melatonin-pre-treated plants exhibited higher concentrations of 54 metabolites, including amino acids, organic acids, sugars, and sugar alcohols, than non-treated plants under abiotic stress conditions. Genome-wide transcriptomic profiling identified 3933 transcripts (2361 up-regulated and 1572 down-regulated) that were differentially expressed in melatonin-treated plants versus controls. Pathway and gene ontology (GO) term enrichment analyses revealed that genes involved in nitrogen metabolism, major carbohydrate metabolism, tricarboxylic acid (TCA)/org transformation, transport, hormone metabolism, metal handling, redox, and secondary metabolism were over-represented after melatonin pre-treatment. Taken together, this study provides the first evidence of the protective roles of exogenous melatonin in the bermudagrass response to abiotic stresses, partially via activation of antioxidants and modulation of metabolic homeostasis. Notably, metabolic and transcriptomic analyses showed that the underlying mechanisms of melatonin could involve major reorientation of photorespiratory and carbohydrate and nitrogen metabolism. PMID:25225478

  20. Understanding abiotic stress tolerance mechanisms in soybean: a comparative evaluation of soybean response to drought and flooding stress.

    Science.gov (United States)

    Mutava, Raymond N; Prince, Silvas Jebakumar K; Syed, Naeem Hasan; Song, Li; Valliyodan, Babu; Chen, Wei; Nguyen, Henry T

    2015-01-01

    Many sources of drought and flooding tolerance have been identified in soybean, however underlying molecular and physiological mechanisms are poorly understood. Therefore, it is important to illuminate different plant responses to these abiotic stresses and understand the mechanisms that confer tolerance. Towards this goal we used four contrasting soybean (Glycine max) genotypes (PI 567690--drought tolerant, Pana--drought susceptible, PI 408105A--flooding tolerant, S99-2281--flooding susceptible) grown under greenhouse conditions and compared genotypic responses to drought and flooding at the physiological, biochemical, and cellular level. We also quantified these variations and tried to infer their role in drought and flooding tolerance in soybean. Our results revealed that different mechanisms contribute to reduction in net photosynthesis under drought and flooding stress. Under drought stress, ABA and stomatal conductance are responsible for reduced photosynthetic rate; while under flooding stress, accumulation of starch granules played a major role. Drought tolerant genotypes PI 567690 and PI 408105A had higher plastoglobule numbers than the susceptible Pana and S99-2281. Drought stress increased the number and size of plastoglobules in most of the genotypes pointing to a possible role in stress tolerance. Interestingly, there were seven fibrillin proteins localized within the plastoglobules that were up-regulated in the drought and flooding tolerant genotypes PI 567690 and PI 408105A, respectively, but down-regulated in the drought susceptible genotype Pana. These results suggest a potential role of Fibrillin proteins, FBN1a, 1b and 7a in soybean response to drought and flooding stress. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  1. Jasmonic acid distribution and action in plants: regulation during development and response to biotic and abiotic stress.

    Science.gov (United States)

    Creelman, R A; Mullet, J E

    1995-05-09

    Jasmonic acid (JA) is a naturally occurring growth regulator found in higher plants. Several physiological roles have been described for this compound (or a related compound, methyl jasmonate) during plant development and in response to biotic and abiotic stress. To accurately determine JA levels in plant tissue, we have synthesized JA containing 13C for use as an internal standard with an isotopic composition of [225]:[224] 0.98:0.02 compared with [225]:[224] 0.15:0.85 for natural material. GC analysis (flame ionization detection and MS) indicate that the internal standard is composed of 92% 2-(+/-)-[13C]JA and 8% 2-(+/-)-7-iso-[13C]JA. In soybean plants, JA levels were highest in young leaves, flowers, and fruit (highest in the pericarp). In soybean seeds and seedlings, JA levels were highest in the youngest organs including the hypocotyl hook, plumule, and 12-h axis. In soybean leaves that had been dehydrated to cause a 15% decrease in fresh weight, JA levels increased approximately 5-fold within 2 h and declined to approximately control levels by 4 h. In contrast, a lag time of 1-2 h occurred before abscisic acid accumulation reached a maximum. These results will be discussed in the context of multiple pathways for JA biosynthesis and the role of JA in plant development and responses to environmental signals.

  2. Evolution and Adaptation of Wild Emmer Wheat Populations to Biotic and Abiotic Stresses.

    Science.gov (United States)

    Huang, Lin; Raats, Dina; Sela, Hanan; Klymiuk, Valentina; Lidzbarsky, Gabriel; Feng, Lihua; Krugman, Tamar; Fahima, Tzion

    2016-08-04

    The genetic bottlenecks associated with plant domestication and subsequent selection in man-made agroecosystems have limited the genetic diversity of modern crops and increased their vulnerability to environmental stresses. Wild emmer wheat, the tetraploid progenitor of domesticated wheat, distributed along a wide range of ecogeographical conditions in the Fertile Crescent, has valuable "left behind" adaptive diversity to multiple diseases and environmental stresses. The biotic and abiotic stress responses are conferred by series of genes and quantitative trait loci (QTLs) that control complex resistance pathways. The study of genetic diversity, genomic organization, expression profiles, protein structure and function of biotic and abiotic stress-resistance genes, and QTLs could shed light on the evolutionary history and adaptation mechanisms of wild emmer populations for their natural habitats. The continuous evolution and adaptation of wild emmer to the changing environment provide novel solutions that can contribute to safeguarding food for the rapidly growing human population.

  3. Chemical Priming of Plants Against Multiple Abiotic Stresses: Mission Possible?

    KAUST Repository

    Savvides, Andreas

    2015-12-15

    Crop plants are subjected to multiple abiotic stresses during their lifespan that greatly reduce productivity and threaten global food security. Recent research suggests that plants can be primed by chemical compounds to better tolerate different abiotic stresses. Chemical priming is a promising field in plant stress physiology and crop stress management. We review here promising chemical agents such as sodium nitroprusside, hydrogen peroxide, sodium hydrosulfide, melatonin, and polyamines that can potentially confer enhanced tolerance when plants are exposed to multiple abiotic stresses. The challenges and opportunities of chemical priming are addressed, with the aim to boost future research towards effective application in crop stress management.

  4. Chemical Priming of Plants Against Multiple Abiotic Stresses: Mission Possible?

    KAUST Repository

    Savvides, Andreas; Ali, Shawkat; Tester, Mark A.; Fotopoulos, Vasileios

    2015-01-01

    Crop plants are subjected to multiple abiotic stresses during their lifespan that greatly reduce productivity and threaten global food security. Recent research suggests that plants can be primed by chemical compounds to better tolerate different abiotic stresses. Chemical priming is a promising field in plant stress physiology and crop stress management. We review here promising chemical agents such as sodium nitroprusside, hydrogen peroxide, sodium hydrosulfide, melatonin, and polyamines that can potentially confer enhanced tolerance when plants are exposed to multiple abiotic stresses. The challenges and opportunities of chemical priming are addressed, with the aim to boost future research towards effective application in crop stress management.

  5. Genome-wide identification of WRKY transcription factors in kiwifruit (Actinidia spp.) and analysis of WRKY expression in responses to biotic and abiotic stresses.

    Science.gov (United States)

    Jing, Zhaobin; Liu, Zhande

    2018-04-01

    As one of the largest transcriptional factor families in plants, WRKY transcription factors play important roles in various biotic and abiotic stress responses. To date, WRKY genes in kiwifruit (Actinidia spp.) remain poorly understood. In our study, o total of 97 AcWRKY genes have been identified in the kiwifruit genome. An overview of these AcWRKY genes is analyzed, including the phylogenetic relationships, exon-intron structures, synteny and expression profiles. The 97 AcWRKY genes were divided into three groups based on the conserved WRKY domain. Synteny analysis indicated that segmental duplication events contributed to the expansion of the kiwifruit AcWRKY family. In addition, the synteny analysis between kiwifruit and Arabidopsis suggested that some of the AcWRKY genes were derived from common ancestors before the divergence of these two species. Conserved motifs outside the AcWRKY domain may reflect their functional conservation. Genome-wide segmental and tandem duplication were found, which may contribute to the expansion of AcWRKY genes. Furthermore, the analysis of selected AcWRKY genes showed a variety of expression patterns in five different organs as well as during biotic and abiotic stresses. The genome-wide identification and characterization of kiwifruit WRKY transcription factors provides insight into the evolutionary history and is a useful resource for further functional analyses of kiwifruit.

  6. Electromechanical response and failure modes of a dielectric elastomer tube actuator with boundary constraints

    International Nuclear Information System (INIS)

    Zhou, Jianyou; Jiang, Liying; Khayat, Roger E

    2014-01-01

    As a widely used configuration for dielectric elastomer (DE) actuators, DE tube actuators (or cylindrical actuators) are also found to be susceptible to electromechanical instability (EMI), which may lead to a premature electrical breakdown (EB), and inhibit the potential actuation of DE actuators. This work investigates the electromechanical response of a DE tube actuator with and without boundary constraints to demonstrate an alternative to avoid EMI while achieving large actuation. Our simulation results based on the Gent strain energy model show that the EMI of a DE tube actuator can be eliminated, and larger actuation deformation can be achieved by applying boundary constraints. As a result of these constraints, consideration is also given to the possible mechanical buckling failure that may occur. Mechanisms of possible failure modes of constrained and unconstrained DE tube actuators, such as electromechanical instability, electrical breakdown and mechanical buckling, are elucidated. This paper should provide better theoretical guidance on how to improve the actuation performance of DE actuators, thus leading to the optimal design of DE-based devices. (paper)

  7. Thermomechanical constraints and constitutive formulations in thermoelasticity

    Directory of Open Access Journals (Sweden)

    Baek S.

    2003-01-01

    Full Text Available We investigate three classes of constraints in a thermoelastic body: (i a deformation-temperature constraint, (ii a deformation-entropy constraint, and (iii a deformation-energy constraint. These constraints are obtained as limits of unconstrained thermoelastic materials and we show that constraints (ii and (iii are equivalent. By using a limiting procedure, we show that for the constraint (i, the entropy plays the role of a Lagrange multiplier while for (ii and (iii, the absolute temperature plays the role of Lagrange multiplier. We further demonstrate that the governing equations for materials subject to constraint (i are identical to those of an unconstrained material whose internal energy is an affine function of the entropy, while those for materials subject to constraints (ii and (iii are identical to those of an unstrained material whose Helmholtz potential is affine in the absolute temperature. Finally, we model the thermoelastic response of a peroxide-cured vulcanizate of natural rubber and show that imposing the constraint in which the volume change depends only on the internal energy leads to very good predictions (compared to experimental results of the stress and temperature response under isothermal and isentropic conditions.

  8. Genome-wide identification and analysis of biotic and abiotic stress regulation of small heat shock protein (HSP20) family genes in bread wheat.

    Science.gov (United States)

    Muthusamy, Senthilkumar K; Dalal, Monika; Chinnusamy, Viswanathan; Bansal, Kailash C

    2017-04-01

    Small Heat Shock Proteins (sHSPs)/HSP20 are molecular chaperones that protect plants by preventing protein aggregation during abiotic stress conditions, especially heat stress. Due to global climate change, high temperature is emerging as a major threat to wheat productivity. Thus, the identification of HSP20 and analysis of HSP transcriptional regulation under different abiotic stresses in wheat would help in understanding the role of these proteins in abiotic stress tolerance. We used sequences of known rice and Arabidopsis HSP20 HMM profiles as queries against publicly available wheat genome and wheat full length cDNA databases (TriFLDB) to identify the respective orthologues from wheat. 163 TaHSP20 (including 109 sHSP and 54 ACD) genes were identified and classified according to the sub-cellular localization and phylogenetic relationship with sequenced grass genomes (Oryza sativa, Sorghum bicolor, Zea mays, Brachypodium distachyon and Setaria italica). Spatio-temporal, biotic and abiotic stress-specific expression patterns in normalized RNA seq and wheat array datasets revealed constitutive as well as inductive responses of HSP20 in different tissues and developmental stages of wheat. Promoter analysis of TaHSP20 genes showed the presence of tissue-specific, biotic, abiotic, light-responsive, circadian and cell cycle-responsive cis-regulatory elements. 14 TaHSP20 family genes were under the regulation of 8 TamiRNA genes. The expression levels of twelve HSP20 genes were studied under abiotic stress conditions in the drought- and heat-tolerant wheat genotype C306. Of the 13 TaHSP20 genes, TaHSP16.9H-CI showed high constitutive expression with upregulation only under salt stress. Both heat and salt stresses upregulated the expression of TaHSP17.4-CI, TaHSP17.7A-CI, TaHSP19.1-CIII, TaACD20.0B-CII and TaACD20.6C-CIV, while TaHSP23.7-MTI was specifically induced only under heat stress. Our results showed that the identified TaHSP20 genes play an important role under

  9. Abiotic stresses affect Trichoderma harzianum T39-induced resistance to downy mildew in grapevine.

    Science.gov (United States)

    Roatti, Benedetta; Perazzolli, Michele; Gessler, Cesare; Pertot, Ilaria

    2013-12-01

    Enhancement of plant defense through the application of resistance inducers seems a promising alternative to chemical fungicides for controlling crop diseases but the efficacy can be affected by abiotic factors in the field. Plants respond to abiotic stresses with hormonal signals that may interfere with the mechanisms of induced systemic resistance (ISR) to pathogens. In this study, we exposed grapevines to heat, drought, or both to investigate the effects of abiotic stresses on grapevine resistance induced by Trichoderma harzianum T39 (T39) to downy mildew. Whereas the efficacy of T39-induced resistance was not affected by exposure to heat or drought, it was significantly reduced by combined abiotic stresses. Decrease of leaf water potential and upregulation of heat-stress markers confirmed that plants reacted to abiotic stresses. Basal expression of defense-related genes and their upregulation during T39-induced resistance were attenuated by abiotic stresses, in agreement with the reduced efficacy of T39. The evidence reported here suggests that exposure of crops to abiotic stress should be carefully considered to optimize the use of resistance inducers, especially in view of future global climate changes. Expression analysis of ISR marker genes could be helpful to identify when plants are responding to abiotic stresses, in order to optimize treatments with resistance inducers in field.

  10. Improving abiotic stress tolerance of quinoa

    DEFF Research Database (Denmark)

    Yang, Aizheng

    Global food security faces the challenges of rapid population growth and shortage of water resources. Drought, heat waves and soil salinity are becoming more frequent and extreme due to climatic changes in many regions of the world, and resulting in yield reduction of many crops. It is hypothesized...... that quinoa has the potential to grow under a range of abiotic stresses, tolerating levels regarded as stresses in other crop species. Therefore cultivation of quinoa (Chenopodium quinoa Willd.) could be an alternative option in such regions. Even though quinoa is more tolerant to abiotic stress than most...... other crops, its productivity declines under severe drought, high salt conditions and harsh climate conditions. Different management approaches including water-saving irrigation methods (such as deficit irrigation, DI and alternate root-zone drying irrigation, ARD), inoculating crop seeds with plant...

  11. Comparative physiological, metabolomic, and transcriptomic analyses reveal mechanisms of improved abiotic stress resistance in bermudagrass [Cynodon dactylon (L). Pers.] by exogenous melatonin.

    Science.gov (United States)

    Shi, Haitao; Jiang, Chuan; Ye, Tiantian; Tan, Dun-Xian; Reiter, Russel J; Zhang, Heng; Liu, Renyi; Chan, Zhulong

    2015-02-01

    Melatonin (N-acetyl-5-methoxytryptamine), a well-known animal hormone, is also involved in plant development and abiotic stress responses. In this study, it is shown that exogenous application of melatonin conferred improved salt, drought, and cold stress resistances in bermudagrass. Moreover, exogenous melatonin treatment alleviated reactive oxygen species (ROS) burst and cell damage induced by abiotic stress; this involved activation of several antioxidants. Additionally, melatonin-pre-treated plants exhibited higher concentrations of 54 metabolites, including amino acids, organic acids, sugars, and sugar alcohols, than non-treated plants under abiotic stress conditions. Genome-wide transcriptomic profiling identified 3933 transcripts (2361 up-regulated and 1572 down-regulated) that were differentially expressed in melatonin-treated plants versus controls. Pathway and gene ontology (GO) term enrichment analyses revealed that genes involved in nitrogen metabolism, major carbohydrate metabolism, tricarboxylic acid (TCA)/org transformation, transport, hormone metabolism, metal handling, redox, and secondary metabolism were over-represented after melatonin pre-treatment. Taken together, this study provides the first evidence of the protective roles of exogenous melatonin in the bermudagrass response to abiotic stresses, partially via activation of antioxidants and modulation of metabolic homeostasis. Notably, metabolic and transcriptomic analyses showed that the underlying mechanisms of melatonin could involve major reorientation of photorespiratory and carbohydrate and nitrogen metabolism. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  12. The Importance of Biotic vs. Abiotic Drivers of Local Plant Community Composition Along Regional Bioclimatic Gradients.

    Directory of Open Access Journals (Sweden)

    Kari Klanderud

    Full Text Available We assessed if the relative importance of biotic and abiotic factors for plant community composition differs along environmental gradients and between functional groups, and asked which implications this may have in a warmer and wetter future. The study location is a unique grid of sites spanning regional-scale temperature and precipitation gradients in boreal and alpine grasslands in southern Norway. Within each site we sampled vegetation and associated biotic and abiotic factors, and combined broad- and fine-scale ordination analyses to assess the relative explanatory power of these factors for species composition. Although the community responses to biotic and abiotic factors did not consistently change as predicted along the bioclimatic gradients, abiotic variables tended to explain a larger proportion of the variation in species composition towards colder sites, whereas biotic variables explained more towards warmer sites, supporting the stress gradient hypothesis. Significant interactions with precipitation suggest that biotic variables explained more towards wetter climates in the sub alpine and boreal sites, but more towards drier climates in the colder alpine. Thus, we predict that biotic interactions may become more important in alpine and boreal grasslands in a warmer future, although more winter precipitation may counteract this trend in oceanic alpine climates. Our results show that both local and regional scales analyses are needed to disentangle the local vegetation-environment relationships and their regional-scale drivers, and biotic interactions and precipitation must be included when predicting future species assemblages.

  13. Glutathione S-Transferases: Role in Combating Abiotic Stresses Including Arsenic Detoxification in Plants

    Directory of Open Access Journals (Sweden)

    Smita Kumar

    2018-06-01

    Full Text Available Arsenic (As, naturally occurring metalloid and a potential hazardous material, is found in low concentrations in the environment and emerges from natural sources and anthropogenic activities. The presence of As in ground water, which is used for irrigation, is a matter of great concern since it affects crop productivity and contaminates food chain. In plants, As alters various metabolic pathways in cells including the interaction of substrates/enzymes with the sulfhydryl groups of proteins and the replacement of phosphate in ATP for energy. In addition, As stimulates the generation of free radicals and reactive oxygen species (ROS, resulting in oxidative stress. Glutathione S-transferases (GSTs quench reactive molecules with the addition of glutathione (GSH and protect the cell from oxidative damage. GSTs are a multigene family of isozymes, known to catalyze the conjugation of GSH to miscellany of electrophilic and hydrophobic substrates. GSTs have been reported to be associated with plant developmental processes and are responsive to multitude of stressors. In past, several studies suggested involvement of plant GST gene family in As response due to the requirement of sulfur and GSH in the detoxification of this toxic metalloid. This review provides updated information about the role of GSTs in abiotic and biotic stresses with an emphasis on As uptake, metabolism, and detoxification in plants. Further, the genetic manipulations that helped in enhancing the understanding of the function of GSTs in abiotic stress response and heavy metal detoxification has been reviewed.

  14. Identification and expression analyses of WRKY genes reveal their involvement in growth and abiotic stress response in watermelon (Citrullus lanatus).

    Science.gov (United States)

    Yang, Xiaozhen; Li, Hao; Yang, Yongchao; Wang, Yongqi; Mo, Yanling; Zhang, Ruimin; Zhang, Yong; Ma, Jianxiang; Wei, Chunhua; Zhang, Xian

    2018-01-01

    Despite identification of WRKY family genes in numerous plant species, a little is known about WRKY genes in watermelon, one of the most economically important fruit crops around the world. Here, we identified a total of 63 putative WRKY genes in watermelon and classified them into three major groups (I-III) and five subgroups (IIa-IIe) in group II. The structure analysis indicated that ClWRKYs with different WRKY domains or motifs may play different roles by regulating respective target genes. The expressions of ClWRKYs in different tissues indicate that they are involved in various tissue growth and development. Furthermore, the diverse responses of ClWRKYs to drought, salt, or cold stress suggest that they positively or negatively affect plant tolerance to various abiotic stresses. In addition, the altered expression patterns of ClWRKYs in response to phytohormones such as, ABA, SA, MeJA, and ETH, imply the occurrence of complex cross-talks between ClWRKYs and plant hormone signals in regulating plant physiological and biological processes. Taken together, our findings provide valuable clues to further explore the function and regulatory mechanisms of ClWRKY genes in watermelon growth, development, and adaption to environmental stresses.

  15. Identification and expression analyses of WRKY genes reveal their involvement in growth and abiotic stress response in watermelon (Citrullus lanatus.

    Directory of Open Access Journals (Sweden)

    Xiaozhen Yang

    Full Text Available Despite identification of WRKY family genes in numerous plant species, a little is known about WRKY genes in watermelon, one of the most economically important fruit crops around the world. Here, we identified a total of 63 putative WRKY genes in watermelon and classified them into three major groups (I-III and five subgroups (IIa-IIe in group II. The structure analysis indicated that ClWRKYs with different WRKY domains or motifs may play different roles by regulating respective target genes. The expressions of ClWRKYs in different tissues indicate that they are involved in various tissue growth and development. Furthermore, the diverse responses of ClWRKYs to drought, salt, or cold stress suggest that they positively or negatively affect plant tolerance to various abiotic stresses. In addition, the altered expression patterns of ClWRKYs in response to phytohormones such as, ABA, SA, MeJA, and ETH, imply the occurrence of complex cross-talks between ClWRKYs and plant hormone signals in regulating plant physiological and biological processes. Taken together, our findings provide valuable clues to further explore the function and regulatory mechanisms of ClWRKY genes in watermelon growth, development, and adaption to environmental stresses.

  16. COP1 Controls Abiotic Stress Responses by Modulating AtSIZ1 Function Through its E3 Ubiquitin Ligase Activity

    Directory of Open Access Journals (Sweden)

    Joo Yong Kim

    2016-08-01

    Full Text Available Ubiquitination and sumoylation are essential post-translational modifications that regulate growth and development processes in plants, including control of hormone signaling mechanisms and responses to stress. This study showed that COP1 (Constitutive photomorphogenic 1 regulated the activity of Arabidopsis E3 SUMO (Small ubiquitin-related modifier ligase AtSIZ1 through its E3 ubiquitin ligase activity. Yeast two hybrid analysis demonstrated that COP1 and AtSIZ1 directly interacted with one another, and subcellular localization assays indicated that COP1 and AtSIZ1 co-localized in nuclear bodies. Analysis of ubiquitination showed that AtSIZ1 was polyubiquitinated by COP1. The AtSIZ1 level was higher in cop1-4 mutants than in wild-type seedlings under light or dark conditions, and overexpression of a dominant-negative (DN-COP1 mutant led to a substantial increase in AtSIZ1 accumulation. In addition, under drought, cold, and high salt conditions, SUMO-conjugate levels were elevated in DN-COP1-overexpressing plants and cop1-4 mutant plants compared to wild-type plants. Taken together, our results indicate that COP1 controls responses to abiotic stress by modulation of AtSIZ1 levels and activity.

  17. The core regulatory network of the abscisic acid pathway in banana: genome-wide identification and expression analyses during development, ripening, and abiotic stress.

    Science.gov (United States)

    Hu, Wei; Yan, Yan; Shi, Haitao; Liu, Juhua; Miao, Hongxia; Tie, Weiwei; Ding, Zehong; Ding, XuPo; Wu, Chunlai; Liu, Yang; Wang, Jiashui; Xu, Biyu; Jin, Zhiqiang

    2017-08-29

    Abscisic acid (ABA) signaling plays a crucial role in developmental and environmental adaptation processes of plants. However, the PYL-PP2C-SnRK2 families that function as the core components of ABA signaling are not well understood in banana. In the present study, 24 PYL, 87 PP2C, and 11 SnRK2 genes were identified from banana, which was further supported by evolutionary relationships, conserved motif and gene structure analyses. The comprehensive transcriptomic analyses showed that banana PYL-PP2C-SnRK2 genes are involved in tissue development, fruit development and ripening, and response to abiotic stress in two cultivated varieties. Moreover, comparative expression analyses of PYL-PP2C-SnRK2 genes between BaXi Jiao (BX) and Fen Jiao (FJ) revealed that PYL-PP2C-SnRK2-mediated ABA signaling might positively regulate banana fruit ripening and tolerance to cold, salt, and osmotic stresses. Finally, interaction networks and co-expression assays demonstrated that the core components of ABA signaling were more active in FJ than in BX in response to abiotic stress, further supporting the crucial role of the genes in tolerance to abiotic stress in banana. This study provides new insights into the complicated transcriptional control of PYL-PP2C-SnRK2 genes, improves the understanding of PYL-PP2C-SnRK2-mediated ABA signaling in the regulation of fruit development, ripening, and response to abiotic stress, and identifies some candidate genes for genetic improvement of banana.

  18. The Ubiquitin-Conjugating Enzyme Gene Family in Longan (Dimocarpus longan Lour.: Genome-Wide Identification and Gene Expression during Flower Induction and Abiotic Stress Responses

    Directory of Open Access Journals (Sweden)

    Dengwei Jue

    2018-03-01

    Full Text Available Ubiquitin-conjugating enzymes (E2s or UBC enzymes play vital roles in plant development and combat various biotic and abiotic stresses. Longan (Dimocarpus longan Lour. is an important fruit tree in the subtropical region of Southeast Asia and Australia; however the characteristics of the UBC gene family in longan remain unknown. In this study, 40 D. longan UBC genes (DlUBCs, which were classified into 15 groups, were identified in the longan genome. An RNA-seq based analysis showed that DlUBCs showed distinct expression in nine longan tissues. Genome-wide RNA-seq and qRT-PCR based gene expression analysis revealed that 11 DlUBCs were up- or down-regualted in the cultivar “Sijimi” (SJ, suggesting that these genes may be important for flower induction. Finally, qRT-PCR analysis showed that the mRNA levels of 13 DlUBCs under SA (salicylic acid treatment, seven under methyl jasmonate (MeJA treatment, 27 under heat treatment, and 16 under cold treatment were up- or down-regulated, respectively. These results indicated that the DlUBCs may play important roles in responses to abiotic stresses. Taken together, our results provide a comprehensive insight into the organization, phylogeny, and expression patterns of the longan UBC genes, and therefore contribute to the greater understanding of their biological roles in longan.

  19. The Novel Wheat Transcription Factor TaNAC47 Enhances Multiple Abiotic Stress Tolerances in Transgenic Plants.

    Science.gov (United States)

    Zhang, Lina; Zhang, Lichao; Xia, Chuan; Zhao, Guangyao; Jia, Jizeng; Kong, Xiuying

    2015-01-01

    NAC transcription factors play diverse roles in plant development and responses to abiotic stresses. However, the biological roles of NAC family members in wheat are not well understood. Here, we reported the isolation and functional characterization of a novel wheat TaNAC47 gene. TaNAC47 encoded protein, localizing in the nucleus, is able to bind to the ABRE cis-element and transactivate transcription in yeast, suggesting that it likely functions as a transcriptional activator. We also showed that TaNAC47 is differentially expressed in different tissues, and its expression was induced by the stress treatments of salt, cold, polyethylene glycol and exogenous abscisic acid. Furthermore, overexpression of TaNAC47 in Arabidopsis resulted in ABA hypersensitivity and enhancing tolerance of transgenic plants to drought, salt, and freezing stresses. Strikingly, overexpression of TaNAC47 was found to activate the expression of downstream genes and change several physiological indices that may enable transgenic plants to overcome unfavorable environments. Taken together, these results uncovered an important role of wheat TaNAC47 gene in response to ABA and abiotic stresses.

  20. Evidence of rock matrix back-diffusion and abiotic dechlorination using a field testing approach

    Science.gov (United States)

    Schaefer, Charles E.; Lippincott, David R.; Klammler, Harald; Hatfield, Kirk

    2018-02-01

    An in situ field demonstration was performed in fractured rock impacted with trichloroethene (TCE) and cis-1,2-dichloroethene (DCE) to assess the impacts of contaminant rebound after removing dissolved contaminants within hydraulically conductive fractures. Using a bedrock well pair spaced 2.4 m apart, TCE and DCE were first flushed with water to create a decrease in dissolved contaminant concentrations. While hydraulically isolating the well pair from upgradient contaminant impacts, contaminant rebound then was observed between the well pair over 151 days. The magnitude, but not trend, of TCE rebound was reasonably described by a matrix back-diffusion screening model that employed an effective diffusion coefficient and first-order abiotic TCE dechlorination rate constant that was based on bench-scale testing. Furthermore, a shift in the TCE:DCE ratio and carbon isotopic enrichment was observed during the rebound, suggesting that both biotic and abiotic dechlorination were occurring within the rock matrix. The isotopic data and back-diffusion model together served as a convincing argument that matrix back-diffusion was the mechanism responsible for the observed contaminant rebound. Results of this field demonstration highlight the importance and applicability of rock matrix parameters determined at the bench-scale, and suggest that carbon isotopic enrichment can be used as a line of evidence for abiotic dechlorination within rock matrices.

  1. Can plant-natural enemy communication withstand disruption by biotic and abiotic factors?

    Science.gov (United States)

    Clavijo McCormick, Andrea

    2016-12-01

    The attraction of natural enemies towards herbivore-induced plant volatiles is a well-documented phenomenon. However, the majority of published studies are carried under optimal water and nutrient regimes and with just one herbivore. But what happens when additional levels of ecological complexity are added? Does the presence of a second herbivore, microorganisms, and abiotic stress interfere with plant-natural enemy communication? or is communication stable enough to withstand disruption by additional biotic and abiotic factors?Investigating the effects of these additional levels of ecological complexity is key to understanding the stability of tritrophic interactions in natural ecosystems and may aid to forecast the impact of environmental disturbances on these, especially in climate change scenarios, which are often associated with modifications in plant and arthropod species distribution and increased levels of abiotic stress.This review explores the literature on natural enemy attraction to herbivore-induced volatiles when, besides herbivory, plants are challenged by additional biotic and abiotic factors.The aim of this review was to establish the impact of different biotic and abiotic factors on plant-natural enemy communication and to highlight critical aspects to guide future research efforts.

  2. A Novel Energy Saving Algorithm with Frame Response Delay Constraint in IEEE 802.16e

    Science.gov (United States)

    Nga, Dinh Thi Thuy; Kim, Mingon; Kang, Minho

    Sleep-mode operation of a Mobile Subscriber Station (MSS) in IEEE 802.16e effectively saves energy consumption; however, it induces frame response delay. In this letter, we propose an algorithm to quickly find the optimal value of the final sleep interval in sleep-mode in order to minimize energy consumption with respect to a given frame response delay constraint. The validations of our proposed algorithm through analytical results and simulation results suggest that our algorithm provide a potential guidance to energy saving.

  3. Genome-wide identification of VQ motif-containing proteins and their expression profiles under abiotic stresses in maize

    Directory of Open Access Journals (Sweden)

    Weibin eSong

    2016-01-01

    Full Text Available VQ motif-containing proteins play crucial roles in abiotic stress responses in plants. Recent studies have shown that some VQ proteins physically interact with WRKY transcription factors to activate downstream genes. In the present study, we identified and characterized genes encoding VQ motif-containing proteins using the most recent version of the maize genome sequence. In total, 61VQ genes were identified. In a cluster analysis, these genes clustered into nine groups together with their homologous genes in rice and Arabidopsis. Most of the VQ genes (57 out of 61 numbers identified in maize were found to be single-copy genes. Analyses of RNA-seq data obtained using seedlings under long-term drought treatment showed that the expression levels of most ZmVQ genes (41 out of 61 members changed during the drought stress response. Quantitative real-time PCR analyses showed that most of the ZmVQ genes were responsive to NaCl treatment. Also, approximately half of the ZmVQ genes were co-expressed with ZmWRKY genes. The identification of these VQ genes in the maize genome and knowledge of their expression profiles under drought and osmotic stresses will provide a solid foundation for exploring their specific functions in the abiotic stress responses of maize.

  4. Biotic and abiotic variables show little redundancy in explaining tree species distributions

    DEFF Research Database (Denmark)

    Meier, Elaine S.; Kienast, Felix; Pearman, Peter B.

    2010-01-01

    Abiotic factors such as climate and soil determine the species fundamental niche, which is further constrained by biotic interactions such as interspecific competition. To parameterize this realized niche, species distribution models (SDMs) most often relate species occurrence data to abiotic var...

  5. Flowering phenology, growth forms, and pollination syndromes in tropical dry forest species: Influence of phylogeny and abiotic factors.

    Science.gov (United States)

    Cortés-Flores, Jorge; Hernández-Esquivel, Karen Beatriz; González-Rodríguez, Antonio; Ibarra-Manríquez, Guillermo

    2017-01-01

    Analyses of the influence of temporal variation in abiotic factors on flowering phenology of tropical dry forest species have not considered the possible response of species with different growth forms and pollination syndromes, while controlling for phylogenetic relationships among species. Here, we investigated the relationship between flowering phenology, abiotic factors, and plant functional attributes, while controlling for phylogenetic relationship among species, in a dry forest community in Mexico. We characterized flowering phenology (time and duration) and pollination syndromes of 55 tree species, 49 herbs, 24 shrubs, 15 lianas, and 11 vines. We tested the influence of pollination syndrome, growth form, and abiotic factors on flowering phenology using phylogenetic generalized least squares. We found a relationship between flowering duration and time. Growth form was related to flowering time, and the pollination syndrome had a more significant relationship with flowering duration. Flowering time variation in the community was explained mainly by abiotic variables, without an important phylogenetic effect. Flowering time in lianas and trees was negatively and positively correlated with daylength, respectively. Functional attributes, environmental cues, and phylogeny interact with each other to shape the diversity of flowering patterns. Phenological differentiation among species groups revealed multiples strategies associated with growth form and pollination syndromes that can be important for understanding species coexistence in this highly diverse plant community. © 2017 Botanical Society of America.

  6. Financial Constraints and the Response of Business Investment to Monetary Policy Shocks

    Directory of Open Access Journals (Sweden)

    Haase Timothy J.

    2016-09-01

    Full Text Available In this study I investigate what impact monetary policy shocks have on firms’ fixed investment, the less liquid portion of gross investment that requires more planning. I account for firms facing financial constraints firms by utilizing a common measure of asset size, which is used in previous literature. I use two exogenous, continuous series of monetary policy shocks to show that constrained firms have statistically different responses to policy than unconstrained firms. Specifically, I find that constrained firms’ fixed investment significantly responds more to monetary policy shocks than unconstrained firms.

  7. Effect of abiotic stress under light and dark conditions on carotenoid ...

    African Journals Online (AJOL)

    The aim of this study was to observe the effect of abiotic stress under light and dark conditions on pumpkin calluses carotenoid. Plant elicitors used to create abiotic stress in this study were Polyethylene Glycol 4000 for drought stress, Jasmonic Acid and Salicylic Acid for hormones stress and Murashige and Skoog Salt for ...

  8. Cross-talk between abscisic acid-dependent and abscisic acid-independent pathways during abiotic stress.

    Science.gov (United States)

    Roychoudhury, Aryadeep; Paul, Saikat; Basu, Supratim

    2013-07-01

    Salinity, drought and low temperature are the common forms of abiotic stress encountered by land plants. To cope with these adverse environmental factors, plants execute several physiological and metabolic responses. Both osmotic stress (elicited by water deficit or high salt) and cold stress increase the endogenous level of the phytohormone abscisic acid (ABA). ABA-dependent stomatal closure to reduce water loss is associated with small signaling molecules like nitric oxide, reactive oxygen species and cytosolic free calcium, and mediated by rapidly altering ion fluxes in guard cells. ABA also triggers the expression of osmotic stress-responsive (OR) genes, which usually contain single/multiple copies of cis-acting sequence called abscisic acid-responsive element (ABRE) in their upstream regions, mostly recognized by the basic leucine zipper-transcription factors (TFs), namely, ABA-responsive element-binding protein/ABA-binding factor. Another conserved sequence called the dehydration-responsive element (DRE)/C-repeat, responding to cold or osmotic stress, but not to ABA, occurs in some OR promoters, to which the DRE-binding protein/C-repeat-binding factor binds. In contrast, there are genes or TFs containing both DRE/CRT and ABRE, which can integrate input stimuli from salinity, drought, cold and ABA signaling pathways, thereby enabling cross-tolerance to multiple stresses. A strong candidate that mediates such cross-talk is calcium, which serves as a common second messenger for abiotic stress conditions and ABA. The present review highlights the involvement of both ABA-dependent and ABA-independent signaling components and their interaction or convergence in activating the stress genes. We restrict our discussion to salinity, drought and cold stress.

  9. Abiotic ozone and oxygen in atmospheres similar to prebiotic Earth

    International Nuclear Information System (INIS)

    Domagal-Goldman, Shawn D.; Segura, Antígona; Claire, Mark W.; Robinson, Tyler D.; Meadows, Victoria S.

    2014-01-01

    The search for life on planets outside our solar system will use spectroscopic identification of atmospheric biosignatures. The most robust remotely detectable potential biosignature is considered to be the detection of oxygen (O 2 ) or ozone (O 3 ) simultaneous to methane (CH 4 ) at levels indicating fluxes from the planetary surface in excess of those that could be produced abiotically. Here we use an altitude-dependent photochemical model with the enhanced lower boundary conditions necessary to carefully explore abiotic O 2 and O 3 production on lifeless planets with a wide variety of volcanic gas fluxes and stellar energy distributions. On some of these worlds, we predict limited O 2 and O 3 buildup, caused by fast chemical production of these gases. This results in detectable abiotic O 3 and CH 4 features in the UV-visible, but no detectable abiotic O 2 features. Thus, simultaneous detection of O 3 and CH 4 by a UV-visible mission is not a strong biosignature without proper contextual information. Discrimination between biological and abiotic sources of O 2 and O 3 is possible through analysis of the stellar and atmospheric context—particularly redox state and O atom inventory—of the planet in question. Specifically, understanding the spectral characteristics of the star and obtaining a broad wavelength range for planetary spectra should allow more robust identification of false positives for life. This highlights the importance of wide spectral coverage for future exoplanet characterization missions. Specifically, discrimination between true and false positives may require spectral observations that extend into infrared wavelengths and provide contextual information on the planet's atmospheric chemistry.

  10. Abiotic racemization kinetics of amino acids in marine sediments

    DEFF Research Database (Denmark)

    Steen, Andrew; Jørgensen, Bo Barker; Lomstein, Bente Aagaard

    2013-01-01

    Enantiomeric ratios of amino acids can be used to infer the sources and composition of sedimentary organic matter. Such inferences, however, rely on knowing the rates at which amino acids in sedimentary organic racemize abiotically. Based on a heating experiment, we report Arrhenius parameters...... between different amino acids or depths. These results can be used in conjunction with measurements of sediment age to predict the ratio of D:L amino acids due solely to abiotic racemization of the source material, deviations from which can indicate the abundance and turnover of active microbial...

  11. Review of Microbial Responses to Abiotic Environmental Factors in the Context of the Proposed Yucca Mountain Repository

    International Nuclear Information System (INIS)

    Meike, A.; Stroes-Gascoyne, S.

    2000-01-01

    A workshop on Microbial Activities at Yucca Mountain (May 1995, Lafayette, CA) was held with the intention to compile information on all pertinent aspects of microbial activity for application to a potential repository at Yucca Mountain. The findings of this workshop set off a number of efforts intended to eventually incorporate the impacts of microbial behavior into performance assessment models. One effort was to expand an existing modeling approach to include the distinctive characteristics of a repository at Yucca Mountain (e.g., unsaturated conditions and a significant thermal load). At the same time, a number of experimental studies were initiated as well as a compilation of relevant literature to more thoroughly study the physical, chemical and biological parameters that would affect microbial activity under Yucca Mountain-like conditions. This literature search (completed in 1996) is the subject of the present document. The collected literature can be divided into four categories: (1) abiotic factors, (2) community dynamics and in-situ considerations, (3) nutrient considerations and (4) transport of radionuclides. The complete bibliography represents a considerable resource, but is too large to be discussed in one document. Therefore, the present report focuses on the first category, abiotic factors, and a discussion of these factors in order to facilitate the development of a model for Yucca Mountain

  12. Light and abiotic stresses regulate the expression of GDP-L-galactose phosphorylase and levels of ascorbic acid in two kiwifruit genotypes via light-responsive and stress-inducible cis-elements in their promoters.

    Science.gov (United States)

    Li, Juan; Liang, Dong; Li, Mingjun; Ma, Fengwang

    2013-09-01

    Ascorbic acid (AsA) plays an essential role in plants by protecting cells against oxidative damage. GDP-L-galactose phosphorylase (GGP) is the first committed gene for AsA synthesis. Our research examined AsA levels, regulation of GGP gene expression, and how these are related to abiotic stresses in two species of Actinidia (kiwifruit). When leaves were subjected to continuous darkness or light, ABA or MeJA, heat, or a hypoxic environment, we found some correlation between the relative levels of GGP mRNA and AsA concentrations. In transformed tobacco plants, activity of the GGP promoter was induced by all of these treatments. However, the degree of inducibility in the two kiwifruit species differed among the GGP promoter deletions. We deduced that the G-box motif, a light-responsive element, may have an important function in regulating GGP transcripts under various light conditions in both A. deliciosa and A. eriantha. Other elements such as ABRE, the CGTCA motif, and HSE might also control the promoter activities of GGP in kiwifruit. Altogether, these data suggest that GGP expression in the two kiwifruit species is regulated by light or abiotic stress via the relative cis-elements in their promoters. Furthermore, GGP has a critical role in modulating AsA concentrations in kiwifruit species under abiotic stresses.

  13. GhWRKY25, a group I WRKY gene from cotton, confers differential tolerance to abiotic and biotic stresses in transgenic Nicotiana benthamiana.

    Science.gov (United States)

    Liu, Xiufang; Song, Yunzhi; Xing, Fangyu; Wang, Ning; Wen, Fujiang; Zhu, Changxiang

    2016-09-01

    WRKY transcription factors are involved in various processes, ranging from plant growth to abiotic and biotic stress responses. Group I WRKY members have been rarely reported compared with group II or III members, particularly in cotton (Gossypium hirsutum). In this study, a group I WRKY gene, namely, GhWRKY25, was cloned from cotton and characterized. Expression analysis revealed that GhWRKY25 can be induced or deduced by the treatments of abiotic stresses and multiple defense-related signaling molecules. Overexpression of GhWRKY25 in Nicotiana benthamiana reduced plant tolerance to drought stress but enhanced tolerance to salt stress. Moreover, more MDA and ROS accumulated in transgenic plants after drought treatment with lower activities of SOD, POD, and CAT. Our study further demonstrated that GhWRKY25 overexpression in plants enhanced sensitivity to the fungal pathogen Botrytis cinerea by reducing the expression of SA or ET signaling related genes and inducing the expression of genes involved in the JA signaling pathway. These results indicated that GhWRKY25 plays negative or positive roles in response to abiotic stresses, and the reduced pathogen resistance may be related to the crosstalk of the SA and JA/ET signaling pathways.

  14. Comparison of U and Np uptake on biogenic and abiotic ferrihydrite by XAFS

    International Nuclear Information System (INIS)

    Krawczyk-Baersch, Evelyn; Schmeide, Katja; Kvashnina, Kristina O.; Rossberg, Andre; Scheinost, Andreas C.

    2017-01-01

    XAS spectra of U and Np sorption biogenic ferrihydrite samples were compared to abiotic samples. The k 3 -weighted χ-spectrum and its Fourier-transform of the studied biogenic ferrihydrite sample bears close resemblance to the bidentate edge-sharing innersphere sorption 1 E complex, which is the main sorption species on abiotic ferrihydrite. Based on the shell fit analysis, the distances of the coordination shells U-O eq , U-O ax , and U-Fe are similar to those determined for abiotic ferrihydrite samples.

  15. Overexpression of GmHsp90s, a heat shock protein 90 (Hsp90 gene family cloning from soybean, decrease damage of abiotic stresses in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Jinyan Xu

    Full Text Available Hsp90 is one of the most conserved and abundant molecular chaperones and is an essential component of the protective stress response; however, its roles in abiotic stress responses in soybean (Glycine max remain obscure. Here, 12 GmHsp90 genes from soybean were identified and found to be expressed and to function differentially under abiotic stresses. The 12 GmHsp90 genes were isolated and named GmHsp90A1-GmHsp90A6, GmHsp90B1, GmHsp90B2, GmHsp90C1.1, GmHsp90C1.2, GmHsp90C2.1 and GmHsp90C2.2 based on their characteristics and high homology to other Hsp90s according to a new nomenclature system. Quantitative real-time PCR expression data revealed that all the genes exhibited higher transcript levels in leaves and could be strongly induced under heat, osmotic and salt stress but not cold stress. Overexpression of five typical genes (GmHsp90A2, GmHsp90A4, GmHsp90B1, GmHsp90C1.1 and GmHsp90C2.1 in Arabidopsis thaliana provided useful evidences that GmHsp90 genes can decrease damage of abiotic stresses. In addition, an abnormal accumulation of proline was detected in some transgenic Arabidopsis plants suggested overexpressing GmHsp90s may affect the synthesis and response system of proline. Our work represents a systematic determination of soybean genes encoding Hsp90s, and provides useful evidence that GmHsp90 genes function differently in response to abiotic stresses and may affect the synthesis and response system of proline.

  16. The Role of Silicon under Biotic and Abiotic Stress Conditions

    Directory of Open Access Journals (Sweden)

    İlkay YAVAŞ

    2017-06-01

    Full Text Available Biotic and abiotic stress factors can adversely affect the agricultural productivity leading to physiological and biochemical damage to crops. Therefore, the most effective way is to increase the resistance to stresses. Silicon plays a ro le in reducing the effects of abiotic and biotic stresses (drought, salt stress, disease and insect stress etc. on plants. Silicon is accumulated in the cell walls and intercellular spaces and thus it has beneficial effects on disease infestations in especially small grains. The application of silicon may reduce the effects of environmental stresses on plants while making effective use of plant nutrients such as nitrogen and phosphorous. Also, silicon may reduce the toxic effects of heavy metals in soil. I t may protect the foliage and increase light uptake and reduce respiration. Therefore, in this review, we discussed the effects of silicon on abiotic and biotic stresses in especially field crops.

  17. Comparison of U and Np uptake on biogenic and abiotic ferrihydrite by XAFS

    Energy Technology Data Exchange (ETDEWEB)

    Krawczyk-Baersch, Evelyn [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany). Biogeochemistry; Schmeide, Katja [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany). Surface Processes; Kvashnina, Kristina O.; Rossberg, Andre; Scheinost, Andreas C. [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany). Molecular Structures

    2017-06-01

    XAS spectra of U and Np sorption biogenic ferrihydrite samples were compared to abiotic samples. The k{sup 3}-weighted χ-spectrum and its Fourier-transform of the studied biogenic ferrihydrite sample bears close resemblance to the bidentate edge-sharing innersphere sorption {sup 1}E complex, which is the main sorption species on abiotic ferrihydrite. Based on the shell fit analysis, the distances of the coordination shells U-O{sub eq}, U-O{sub ax}, and U-Fe are similar to those determined for abiotic ferrihydrite samples.

  18. Mineral supply constraints necessitate a global policy response

    Science.gov (United States)

    Nickless, Edmund

    2016-04-01

    Adoption on 12 December 2015 of The Paris Agreement, the first universal climate agreement, suggests that nations will invest in infrastructures for renewable energy sources paving the way to a global low-carbon society. These large-scale changes will require vast amounts of metals and minerals. Regardless of whether known supplies are enough to meet demand in the near future, efforts must be made now to forestall unpredictable yet inevitable supply shortages in the decades to come, shortages that would dramatically impact the building of additional generation and distribution capacity, and deployment of low-carbon technology. But in response to the current downturn in commodity prices, the global mining industry is downsizing and reducing investment in the new exploration, putting at risk future security of supply. Mining and climate change are inextricably linked; the new adaptive technologies needed to tackle climate change depend on extraction of minerals and metals. An interdisciplinary group supported by the International Union of Geological Sciences, the International Council for Science Unions and UNESCO proposes measures to avert the looming minerals crisis that is developing in the context of current recycling capacity and exploration trends. Our immediate goal is to stimulate discussion of supply constraints using available data on mineral reserves. We build on recent discussions of supply risk and criticality with a focus on the source of primary resources over the next two to three decades when the availability of metals for recycling will remain low. Current massive production of iron ore and other such commodities despite record low prices indicates a failure of the traditional supply and demand constraints. Broader discussions of metal and mineral supply beyond current criticality are needed given the pace of technological and demographic change as well as rapid development spurts. Furthermore, accessible mineral deposits are irregularly distributed

  19. Abiotic ozone and oxygen in atmospheres similar to prebiotic Earth

    Energy Technology Data Exchange (ETDEWEB)

    Domagal-Goldman, Shawn D. [Planetary Environments Laboratory, NASA Goddard Space Flight Center, 8800 Greenbelt Road, Greenbelt, MD 20771 (United States); Segura, Antígona; Claire, Mark W.; Robinson, Tyler D.; Meadows, Victoria S., E-mail: shawn.goldman@nasa.gov [NASA Astrobiology Institute—Virtual Planetary Laboratory (United States)

    2014-09-10

    The search for life on planets outside our solar system will use spectroscopic identification of atmospheric biosignatures. The most robust remotely detectable potential biosignature is considered to be the detection of oxygen (O{sub 2}) or ozone (O{sub 3}) simultaneous to methane (CH{sub 4}) at levels indicating fluxes from the planetary surface in excess of those that could be produced abiotically. Here we use an altitude-dependent photochemical model with the enhanced lower boundary conditions necessary to carefully explore abiotic O{sub 2} and O{sub 3} production on lifeless planets with a wide variety of volcanic gas fluxes and stellar energy distributions. On some of these worlds, we predict limited O{sub 2} and O{sub 3} buildup, caused by fast chemical production of these gases. This results in detectable abiotic O{sub 3} and CH{sub 4} features in the UV-visible, but no detectable abiotic O{sub 2} features. Thus, simultaneous detection of O{sub 3} and CH{sub 4} by a UV-visible mission is not a strong biosignature without proper contextual information. Discrimination between biological and abiotic sources of O{sub 2} and O{sub 3} is possible through analysis of the stellar and atmospheric context—particularly redox state and O atom inventory—of the planet in question. Specifically, understanding the spectral characteristics of the star and obtaining a broad wavelength range for planetary spectra should allow more robust identification of false positives for life. This highlights the importance of wide spectral coverage for future exoplanet characterization missions. Specifically, discrimination between true and false positives may require spectral observations that extend into infrared wavelengths and provide contextual information on the planet's atmospheric chemistry.

  20. Abiotic dechlorination in rock matrices impacted by long-term exposure to TCE.

    Science.gov (United States)

    Schaefer, Charles E; Towne, Rachael M; Lippincott, David R; Lacombe, Pierre J; Bishop, Michael E; Dong, Hailiang

    2015-01-01

    Field and laboratory tests were performed to evaluate the abiotic reaction of trichloroethene (TCE) in sedimentary rock matrices. Hydraulically conductive fractures, and the rock directly adjacent to the hydraulically conductive fractures, within a historically contaminated TCE bedrock aquifer were used as the basis for this study. These results were compared to previous work using rock that had not been exposed to TCE (Schaefer et al., 2013) to assess the impact of long-term TCE exposure on the abiotic dechlorination reaction, as the longevity of these reactions after long-term exposure to TCE was hitherto unknown. Results showed that potential abiotic TCE degradation products, including ethane, ethene, and acetylene, were present in the conductive fractures. Using minimally disturbed slices of rock core at and near the fracture faces, laboratory testing on the rocks confirmed that abiotic dechlorination reactions between the rock matrix and TCE were occurring. Abiotic daughter products measured in the laboratory under controlled conditions were consistent with those measured in the conductive fractures, except that propane also was observed as a daughter product. TCE degradation measured in the laboratory was well described by a first order rate constant through the 118-d study. Observed bulk first-order TCE degradation rate constants within the rock matrix were 1.3×10(-8) s(-1). These results clearly show that abiotic dechlorination of TCE is occurring within the rock matrix, despite decades of exposure to TCE. Furthermore, these observed rates of TCE dechlorination are expected to have a substantial impact on TCE migration and uptake/release from rock matrices. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. S-Nitrosylated proteins in pea (Pisum sativum L.) leaf peroxisomes: changes under abiotic stress.

    Science.gov (United States)

    Ortega-Galisteo, Ana P; Rodríguez-Serrano, María; Pazmiño, Diana M; Gupta, Dharmendra K; Sandalio, Luisa M; Romero-Puertas, María C

    2012-03-01

    Peroxisomes, single-membrane-bounded organelles with essentially oxidative metabolism, are key in plant responses to abiotic and biotic stresses. Recently, the presence of nitric oxide (NO) described in peroxisomes opened the possibility of new cellular functions, as NO regulates diverse biological processes by directly modifying proteins. However, this mechanism has not yet been analysed in peroxisomes. This study assessed the presence of S-nitrosylation in pea-leaf peroxisomes, purified S-nitrosylated peroxisome proteins by immunoprecipitation, and identified the purified proteins by two different mass-spectrometry techniques (matrix-assisted laser desorption/ionization tandem time-of-flight and two-dimensional nano-liquid chromatography coupled to ion-trap tandem mass spectrometry). Six peroxisomal proteins were identified as putative targets of S-nitrosylation involved in photorespiration, β-oxidation, and reactive oxygen species detoxification. The activity of three of these proteins (catalase, glycolate oxidase, and malate dehydrogenase) is inhibited by NO donors. NO metabolism/S-nitrosylation and peroxisomes were analysed under two different types of abiotic stress, i.e. cadmium and 2,4-dichlorophenoxy acetic acid (2,4-D). Both types of stress reduced NO production in pea plants, and an increase in S-nitrosylation was observed in pea extracts under 2,4-D treatment while no total changes were observed in peroxisomes. However, the S-nitrosylation levels of catalase and glycolate oxidase changed under cadmium and 2,4-D treatments, suggesting that this post-translational modification could be involved in the regulation of H(2)O(2) level under abiotic stress.

  2. Energy harvesting by implantable abiotically catalyzed glucose fuel cells

    Science.gov (United States)

    Kerzenmacher, S.; Ducrée, J.; Zengerle, R.; von Stetten, F.

    Implantable glucose fuel cells are a promising approach to realize an autonomous energy supply for medical implants that solely relies on the electrochemical reaction of oxygen and glucose. Key advantage over conventional batteries is the abundant availability of both reactants in body fluids, rendering the need for regular replacement or external recharging mechanisms obsolete. Implantable glucose fuel cells, based on abiotic catalysts such as noble metals and activated carbon, have already been developed as power supply for cardiac pacemakers in the late-1960s. Whereas, in vitro and preliminary in vivo studies demonstrated their long-term stability, the performance of these fuel cells is limited to the μW-range. Consequently, no further developments have been reported since high-capacity lithium iodine batteries for cardiac pacemakers became available in the mid-1970s. In recent years research has been focused on enzymatically catalyzed glucose fuel cells. They offer higher power densities than their abiotically catalyzed counterparts, but the limited enzyme stability impedes long-term application. In this context, the trend towards increasingly energy-efficient low power MEMS (micro-electro-mechanical systems) implants has revived the interest in abiotic catalysts as a long-term stable alternative. This review covers the state-of-the-art in implantable abiotically catalyzed glucose fuel cells and their development since the 1960s. Different embodiment concepts are presented and the historical achievements of academic and industrial research groups are critically reviewed. Special regard is given to the applicability of the concept as sustainable micro-power generator for implantable devices.

  3. Fixed Costs and Hours Constraints

    Science.gov (United States)

    Johnson, William R.

    2011-01-01

    Hours constraints are typically identified by worker responses to questions asking whether they would prefer a job with more hours and more pay or fewer hours and less pay. Because jobs with different hours but the same rate of pay may be infeasible when there are fixed costs of employment or mandatory overtime premia, the constraint in those…

  4. Compartment specific importance of glutathione during abiotic and biotic stress

    Directory of Open Access Journals (Sweden)

    Bernd eZechmann

    2014-10-01

    Full Text Available The tripeptide thiol glutathione (γ-L-glutamyl-L-cysteinyl-glycine is the most important sulfur containing antioxidant in plants and essential for plant defense against abiotic and biotic stress conditions. It is involved in the detoxification of reactive oxygen species, redox signaling, the modulation of defense gene expression and important for the regulation of enzymatic activities. Even though changes in glutathione contents are well documented in plants and its roles in plant defense are well established, still too little is known about its compartment specific importance during abiotic and biotic stress conditions. Due to technical advances in the visualization of glutathione and the redox state of plants through microscopical methods some progress was made in the last few years in studying the importance of subcellular glutathione contents during stress conditions in plants. This review summarizes the data available on compartment specific importance of glutathione in the protection against abiotic and biotic stress conditions such as high light stress, exposure to cadmium, drought, and pathogen attack (Pseudomonas, Botrytis, Tobacco Mosaic Virus. The data will be discussed in connection with the subcellular accumulation of ROS during these conditions and glutathione synthesis which are both highly compartment specific (e.g. glutathione synthesis takes place in chloroplasts and the cytosol. Thus this review will reveal the compartment specific importance of glutathione during abiotic and biotic stress conditions.

  5. Brassinosteroid Mediated Cell Wall Remodeling in Grasses under Abiotic Stress

    Directory of Open Access Journals (Sweden)

    Xiaolan Rao

    2017-05-01

    Full Text Available Unlike animals, plants, being sessile, cannot escape from exposure to severe abiotic stresses such as extreme temperature and water deficit. The dynamic structure of plant cell wall enables them to undergo compensatory changes, as well as maintain physical strength, with changing environments. Plant hormones known as brassinosteroids (BRs play a key role in determining cell wall expansion during stress responses. Cell wall deposition differs between grasses (Poaceae and dicots. Grass species include many important food, fiber, and biofuel crops. In this article, we focus on recent advances in BR-regulated cell wall biosynthesis and remodeling in response to stresses, comparing our understanding of the mechanisms in grass species with those in the more studied dicots. A more comprehensive understanding of BR-mediated changes in cell wall integrity in grass species will benefit the development of genetic tools to improve crop productivity, fiber quality and plant biomass recalcitrance.

  6. The novel wheat transcription factor TaNAC47 enhances multiple abiotic stress tolerances in transgenic plants

    Directory of Open Access Journals (Sweden)

    Li Na eZhang

    2016-01-01

    Full Text Available NAC transcription factors play diverse roles in plant development and responses to abiotic stresses. However, the biological roles of NAC family members in wheat are not well understood. Here, we reported the isolation and functional characterization of a novel wheat TaNAC47 gene. TaNAC47 encoded protein, localizing in the nucleus, is able to bind to the ABRE cis-element and transactivate transcription in yeast, suggesting that it likely functions as a transcriptional activator. We also showed that TaNAC47 is differentially expressed in different tissues, and its expression was induced by the stress treatments of salt, cold, polyethylene glycol (PEG and exogenous abscisic acid (ABA. Furthermore, overexpression of TaNAC47 in Arabidopsis resulted in ABA hypersensitivity and enhancing tolerance of transgenic plants to drought, salt and freezing stresses. Strikingly, overexpression of TaNAC47 was found to activate the expression of downstream genes and change several physiological indices that may enable transgenic plants to overcome unfavorable environments. Taken together, these results uncovered an important role of wheat TaNAC47 gene in response to ABA and abiotic stresses.

  7. Electric dipole response of {sup 208}Pb and constraints on the symmetry energy

    Energy Technology Data Exchange (ETDEWEB)

    Tamii, A. [Research Center for Nuclear Physics, Osaka University, 10-1 Mihogaoka, Ibaraki 567-0047 (Japan)

    2014-05-02

    The electric dipole (E1) response of {sup 208}Pb has been precisely determined by measuring polarized proton inelastic scattering at very forward angles including zero degrees. The electric dipole polarizability, that is defined as the inverse energy-weighted sum rule of the E1 reduced transition strength, has been extracted as α{sub D} = 20.1 ±0.6 fm{sup 3}. A constraint band has been extracted in the plane of the symmetry energy (J) and its slope parameter (L) at the saturation density.

  8. The C-terminal region (640-967) of Arabidopsis CPL1 interacts with the abiotic stress- and ABA-responsive transcription factors

    International Nuclear Information System (INIS)

    Bang, Woo Young; Kim, Se Won; Jeong, In Sil; Koiwa, Hisashi; Bahk, Jeong Dong

    2008-01-01

    Proteins in CPL1 family are unique to plants and contain a phosphatase catalytic domain and double-stranded RNA (dsRNA)-binding motifs (DRMs) in a single peptide. Though DRMs are important for the function of Arabidopsis CPL1 in vivo, the role of CPL1 DRM has been obscure. We have isolated two transcription factors, ANAC019 (At1g52890) and AtMYB3 (At1g22640), which specifically interact with the C-terminal region (640-967) of AtCPL1 containing two DRMs. Detailed interaction analysis indicated that AtMYB3 specifically interacted with the first DRM but not with the second DRM in CPL1 C-terminal fragment. GFP-fusion analysis indicated that AtMYB3 localized in nuclei-like CPL1, and its expression is induced by abiotic stress and ABA treatment. These results suggest that AtMYB3 function in abiotic stress signaling in concert with CPL1

  9. Conceptual Design Optimization of an Augmented Stability Aircraft Incorporating Dynamic Response Performance Constraints

    Science.gov (United States)

    Welstead, Jason

    2014-01-01

    This research focused on incorporating stability and control into a multidisciplinary de- sign optimization on a Boeing 737-class advanced concept called the D8.2b. A new method of evaluating the aircraft handling performance using quantitative evaluation of the sys- tem to disturbances, including perturbations, continuous turbulence, and discrete gusts, is presented. A multidisciplinary design optimization was performed using the D8.2b transport air- craft concept. The con guration was optimized for minimum fuel burn using a design range of 3,000 nautical miles. Optimization cases were run using xed tail volume coecients, static trim constraints, and static trim and dynamic response constraints. A Cessna 182T model was used to test the various dynamic analysis components, ensuring the analysis was behaving as expected. Results of the optimizations show that including stability and con- trol in the design process drastically alters the optimal design, indicating that stability and control should be included in conceptual design to avoid system level penalties later in the design process.

  10. Abiotic and biotic controls over biogeochemical cycles in drylands: Insights from climate change and nitrogen deposition experiments on the Colorado Plateau

    Science.gov (United States)

    Reed, S.; Ferrenberg, S.; Tucker, C.; Rutherford, W. A.; Wertin, T. M.; McHugh, T. A.; Morrissey, E.; Kuske, C.; Mueller, R.; Belnap, J.

    2016-12-01

    As for all ecosystems, biogeochemical cycling in drylands represents numerous intricate connections between biotic and abiotic controls. However, patterns of many fundamental ecosystem processes that generally hold across global gradients fall apart at the arid and semiarid end of the spectrum, and data point to an exceptionally strong role for abiotic controls in explaining these patterns. Further, there are multiple dryland characteristics - such as extreme aridity and high UV radiation, as well as specialized biological communities - which can point to a conclusion that "drylands are different". Indeed, drylands are often characterized by their harsh environment, by the diverse classes of biota representing a range of traits aimed at surviving such harsh conditions, and, more recently, by the suggestion of dramatic biotic responses to seemingly subtle changes in abiotic factors. In this talk, we will explore a range of biotic and abiotic controls over fundamental biogeochemical cycling in drylands using data from a suite of manipulation experiments on the Colorado Plateau, USA. We will present results from field treatments that speak to the effects of increasing temperature, altered precipitation regimes, increased nitrogen availability via deposition, and the effects of altered litterfall inputs. Biogeochemical processes we explore will include plant photosynthesis, soil photosynthesis and respiration (with a focus on biological soil crusts), litter decomposition, and nutrient cycling. In addition, we will assess how treatments alter dryland community composition, as well as the resultant feedbacks of community shifts to environmental change. Taken together we will use these diverse datasets to ask questions about what makes drylands different or, instead, if a holistic joining of biotic and abiotic perspectives suggests they are not so different after all. These data will not only lend insight into the partitioning of and balance between biotic and abiotic

  11. The bZIP protein from Tamarix hispida, ThbZIP1, is ACGT elements binding factor that enhances abiotic stress signaling in transgenic Arabidopsis.

    Science.gov (United States)

    Ji, Xiaoyu; Liu, Guifeng; Liu, Yujia; Zheng, Lei; Nie, Xianguang; Wang, Yucheng

    2013-10-04

    Tamarix spp. are woody halophyte, which are very tolerant to abiotic stresses such as salinity and drought, but little is known about their specific stress response systems. Basic leucine zipper proteins (bZIPs) play important roles in the ability of plants to withstand adverse environmental conditions. However, their exact roles in abiotic stress tolerance are still not fully known. In the current study, we functionally characterized a bZIP gene (ThbZIP1) from Tamarix hispida in response to abiotic stresses. We addressed the regulatory network of ThbZIP1 in three levels, i.e. its upstream regulators, the cis-acting elements recognized by ThbZIP1, and its downstream target genes. Two MYCs were found to bind to E-box, in the promoter of ThbZIP1 to activate its expression. Expression of ThbZIP1 is induced by ABA, salt, drought, methyl viologen and cold. ThbZIP1 can specifically bind to ACGT elements, with the highest binding affinity to the C-box, followed by the G-box and lastly the A-box. Compared with wild-type (Col-0) Arabidopsis, transgenic plants expressing ThbZIP1 had an increased tolerance to drought and salt, but had an increased sensitivity to ABA during seed germination and root growth; meanwhile, ROS level, cell death and water loss rate in transgenic plants were significantly reduced. Microarray analyses showed that many ROS scavenging genes were up-regulated by ThbZIP1 under salt stress conditions. Based on these data, we suggest that ThbZIP1 confers abiotic stress tolerance through activating stress tolerance genes to modulate ROS scavenging ability and other physiological changes involved in stress tolerance, and plays an important role in the ABA-mediated stress response of T. hispida.

  12. Titania may produce abiotic oxygen atmospheres on habitable exoplanets.

    Science.gov (United States)

    Narita, Norio; Enomoto, Takafumi; Masaoka, Shigeyuki; Kusakabe, Nobuhiko

    2015-09-10

    The search for habitable exoplanets in the Universe is actively ongoing in the field of astronomy. The biggest future milestone is to determine whether life exists on such habitable exoplanets. In that context, oxygen in the atmosphere has been considered strong evidence for the presence of photosynthetic organisms. In this paper, we show that a previously unconsidered photochemical mechanism by titanium (IV) oxide (titania) can produce abiotic oxygen from liquid water under near ultraviolet (NUV) lights on the surface of exoplanets. Titania works as a photocatalyst to dissociate liquid water in this process. This mechanism offers a different source of a possibility of abiotic oxygen in atmospheres of exoplanets from previously considered photodissociation of water vapor in upper atmospheres by extreme ultraviolet (XUV) light. Our order-of-magnitude estimation shows that possible amounts of oxygen produced by this abiotic mechanism can be comparable with or even more than that in the atmosphere of the current Earth, depending on the amount of active surface area for this mechanism. We conclude that titania may act as a potential source of false signs of life on habitable exoplanets.

  13. Oxygen dependency of neutrophilic Fe(II) oxidation by Leptothrix differs from abiotic reaction

    NARCIS (Netherlands)

    Vollrath, S.; Behrends, T.; Van Cappellen, P.

    2012-01-01

    Neutrophilic Fe(II) oxidizing microorganisms are found in many natural environments. It has been hypothesized that, at low oxygen concentrations, microbial iron oxidation is favored over abiotic oxidation. Here, we compare the kinetics of abiotic Fe(II) oxidation to oxidation in the presence of

  14. Quantifying the effects of ecological constraints on trait expression using novel trait-gradient analysis parameters.

    Science.gov (United States)

    Ottaviani, Gianluigi; Tsakalos, James L; Keppel, Gunnar; Mucina, Ladislav

    2018-01-01

    Complex processes related to biotic and abiotic forces can impose limitations to assembly and composition of plant communities. Quantifying the effects of these constraints on plant functional traits across environmental gradients, and among communities, remains challenging. We define ecological constraint ( C i ) as the combined, limiting effect of biotic interactions and environmental filtering on trait expression (i.e., the mean value and range of functional traits). Here, we propose a set of novel parameters to quantify this constraint by extending the trait-gradient analysis (TGA) methodology. The key parameter is ecological constraint, which is dimensionless and can be measured at various scales, for example, on population and community levels. It facilitates comparing the effects of ecological constraints on trait expressions across environmental gradients, as well as within and among communities. We illustrate the implementation of the proposed parameters using the bark thickness of 14 woody species along an aridity gradient on granite outcrops in southwestern Australia. We found a positive correlation between increasing environmental stress and strength of ecological constraint on bark thickness expression. Also, plants from more stressful habitats (shrublands on shallow soils and in sun-exposed locations) displayed higher ecological constraint for bark thickness than plants in more benign habitats (woodlands on deep soils and in sheltered locations). The relative ease of calculation and dimensionless nature of C i allow it to be readily implemented at various scales and make it widely applicable. It therefore has the potential to advance the mechanistic understanding of the ecological processes shaping trait expression. Some future applications of the new parameters could be investigating the patterns of ecological constraints (1) among communities from different regions, (2) on different traits across similar environmental gradients, and (3) for the same

  15. C2H2 type of zinc finger transcription factors in foxtail millet define response to abiotic stresses.

    Science.gov (United States)

    Muthamilarasan, Mehanathan; Bonthala, Venkata Suresh; Mishra, Awdhesh Kumar; Khandelwal, Rohit; Khan, Yusuf; Roy, Riti; Prasad, Manoj

    2014-09-01

    C2H2 type of zinc finger transcription factors (TFs) play crucial roles in plant stress response and hormone signal transduction. Hence considering its importance, genome-wide investigation and characterization of C2H2 zinc finger proteins were performed in Arabidopsis, rice and poplar but no such study was conducted in foxtail millet which is a C4 Panicoid model crop well known for its abiotic stress tolerance. The present study identified 124 C2H2-type zinc finger TFs in foxtail millet (SiC2H2) and physically mapped them onto the genome. The gene duplication analysis revealed that SiC2H2s primarily expanded in the genome through tandem duplication. The phylogenetic tree classified these TFs into five groups (I-V). Further, miRNAs targeting SiC2H2 transcripts in foxtail millet were identified. Heat map demonstrated differential and tissue-specific expression patterns of these SiC2H2 genes. Comparative physical mapping between foxtail millet SiC2H2 genes and its orthologs of sorghum, maize and rice revealed the evolutionary relationships of C2H2 type of zinc finger TFs. The duplication and divergence data provided novel insight into the evolutionary aspects of these TFs in foxtail millet and related grass species. Expression profiling of candidate SiC2H2 genes in response to salinity, dehydration and cold stress showed differential expression pattern of these genes at different time points of stresses.

  16. ABI-like transcription factor gene TaABL1 from wheat improves multiple abiotic stress tolerances in transgenic plants.

    Science.gov (United States)

    Xu, Dong-Bei; Gao, Shi-Qing; Ma, You-Zhi; Xu, Zhao-Shi; Zhao, Chang-Ping; Tang, Yi-Miao; Li, Xue-Yin; Li, Lian-Cheng; Chen, Yao-Feng; Chen, Ming

    2014-12-01

    The phytohormone abscisic acid (ABA) plays crucial roles in adaptive responses of plants to abiotic stresses. ABA-responsive element binding proteins (AREBs) are basic leucine zipper transcription factors that regulate the expression of downstream genes containing ABA-responsive elements (ABREs) in promoter regions. A novel ABI-like (ABA-insensitive) transcription factor gene, named TaABL1, containing a conserved basic leucine zipper (bZIP) domain was cloned from wheat. Southern blotting showed that three copies were present in the wheat genome. Phylogenetic analyses indicated that TaABL1 belonged to the AREB subfamily of the bZIP transcription factor family and was most closely related to ZmABI5 in maize and OsAREB2 in rice. Expression of TaABL1 was highly induced in wheat roots, stems, and leaves by ABA, drought, high salt, and low temperature stresses. TaABL1 was localized inside the nuclei of transformed wheat mesophyll protoplast. Overexpression of TaABL1 enhanced responses of transgenic plants to ABA and hastened stomatal closure under stress, thereby improving tolerance to multiple abiotic stresses. Furthermore, overexpression of TaABL1 upregulated or downregulated the expression of some stress-related genes controlling stomatal closure in transgenic plants under ABA and drought stress conditions, suggesting that TaABL1 might be a valuable genetic resource for transgenic molecular breeding.

  17. Balancing healthy meals and busy lives: associations between work, school, and family responsibilities and perceived time constraints among young adults.

    Science.gov (United States)

    Pelletier, Jennifer E; Laska, Melissa N

    2012-01-01

    To characterize associations between perceived time constraints for healthy eating and work, school, and family responsibilities among young adults. Cross-sectional survey. A large, Midwestern metropolitan region. A diverse sample of community college (n = 598) and public university (n = 603) students. Time constraints in general, as well as those specific to meal preparation/structure, and perceptions of a healthy life balance. Chi-square tests and multivariate logistic regression (α = .005). Women, 4-year students, and students with lower socioeconomic status perceived more time constraints (P balance (P ≤ .003). Having a heavy course load and working longer hours were important predictors of time constraints among men (P life balance despite multiple time demands. Interventions focused on improved time management strategies and nutrition-related messaging to achieve healthy diets on a low time budget may be more successful if tailored to the factors that contribute to time constraints separately among men and women. Copyright © 2012 Society for Nutrition Education and Behavior. Published by Elsevier Inc. All rights reserved.

  18. Cis-regulatory element based targeted gene finding: genome-wide identification of abscisic acid- and abiotic stress-responsive genes in Arabidopsis thaliana.

    Science.gov (United States)

    Zhang, Weixiong; Ruan, Jianhua; Ho, Tuan-Hua David; You, Youngsook; Yu, Taotao; Quatrano, Ralph S

    2005-07-15

    A fundamental problem of computational genomics is identifying the genes that respond to certain endogenous cues and environmental stimuli. This problem can be referred to as targeted gene finding. Since gene regulation is mainly determined by the binding of transcription factors and cis-regulatory DNA sequences, most existing gene annotation methods, which exploit the conservation of open reading frames, are not effective in finding target genes. A viable approach to targeted gene finding is to exploit the cis-regulatory elements that are known to be responsible for the transcription of target genes. Given such cis-elements, putative target genes whose promoters contain the elements can be identified. As a case study, we apply the above approach to predict the genes in model plant Arabidopsis thaliana which are inducible by a phytohormone, abscisic acid (ABA), and abiotic stress, such as drought, cold and salinity. We first construct and analyze two ABA specific cis-elements, ABA-responsive element (ABRE) and its coupling element (CE), in A.thaliana, based on their conservation in rice and other cereal plants. We then use the ABRE-CE module to identify putative ABA-responsive genes in A.thaliana. Based on RT-PCR verification and the results from literature, this method has an accuracy rate of 67.5% for the top 40 predictions. The cis-element based targeted gene finding approach is expected to be widely applicable since a large number of cis-elements in many species are available.

  19. Changes in biotic and abiotic processes following mangrove clearing

    Science.gov (United States)

    Granek, Elise; Ruttenberg, Benjamin I.

    2008-12-01

    Mangrove forests, important tropical coastal habitats, are in decline worldwide primarily due to removal by humans. Changes to mangrove systems can alter ecosystem properties through direct effects on abiotic factors such as temperature, light and nutrient supply or through changes in biotic factors such as primary productivity or species composition. Despite the importance of mangroves as transitional habitats between land and sea, little research has examined changes that occur when they are cleared. We examined changes in a number of biotic and abiotic factors following the anthropogenic removal of red mangroves ( Rhizophora mangle) in the Panamanian Caribbean, including algal biomass, algal diversity, algal grazing rates, light penetration, temperature, sedimentation rates and sediment organic content. In this first study examining multiple ecosystem-level effects of mangrove disturbance, we found that areas cleared of mangroves had higher algal biomass and richness than intact mangrove areas. This increase in algal biomass and richness was likely due to changes in abiotic factors (e.g. light intensity, temperature), but not biotic factors (fish herbivory). Additionally the algal and cyanobacterial genera dominating mangrove-cleared areas were rare in intact mangroves and included a number of genera that compete with coral for space on reefs. Interestingly, sedimentation rates did not differ between intact and cleared areas, but the sediments that accumulated in intact mangroves had higher organic content. These findings are the first to demonstrate that anthropogenic clearing of mangroves changes multiple biotic and abiotic processes in mangrove forests and that some of these changes may influence adjacent habitats such as coral reefs and seagrass beds. Additional research is needed to further explore the community and ecosystem-level effects of mangrove clearing and their influence on adjacent habitats, but it is clear that mangrove conservation is an

  20. Wheat EST resources for functional genomics of abiotic stress

    Directory of Open Access Journals (Sweden)

    Links Matthew G

    2006-06-01

    Full Text Available Abstract Background Wheat is an excellent species to study freezing tolerance and other abiotic stresses. However, the sequence of the wheat genome has not been completely characterized due to its complexity and large size. To circumvent this obstacle and identify genes involved in cold acclimation and associated stresses, a large scale EST sequencing approach was undertaken by the Functional Genomics of Abiotic Stress (FGAS project. Results We generated 73,521 quality-filtered ESTs from eleven cDNA libraries constructed from wheat plants exposed to various abiotic stresses and at different developmental stages. In addition, 196,041 ESTs for which tracefiles were available from the National Science Foundation wheat EST sequencing program and DuPont were also quality-filtered and used in the analysis. Clustering of the combined ESTs with d2_cluster and TGICL yielded a few large clusters containing several thousand ESTs that were refractory to routine clustering techniques. To resolve this problem, the sequence proximity and "bridges" were identified by an e-value distance graph to manually break clusters into smaller groups. Assembly of the resolved ESTs generated a 75,488 unique sequence set (31,580 contigs and 43,908 singletons/singlets. Digital expression analyses indicated that the FGAS dataset is enriched in stress-regulated genes compared to the other public datasets. Over 43% of the unique sequence set was annotated and classified into functional categories according to Gene Ontology. Conclusion We have annotated 29,556 different sequences, an almost 5-fold increase in annotated sequences compared to the available wheat public databases. Digital expression analysis combined with gene annotation helped in the identification of several pathways associated with abiotic stress. The genomic resources and knowledge developed by this project will contribute to a better understanding of the different mechanisms that govern stress tolerance in

  1. The WRKY transcription factors in the diploid woodland strawberry Fragaria vesca: Identification and expression analysis under biotic and abiotic stresses.

    Science.gov (United States)

    Wei, Wei; Hu, Yang; Han, Yong-Tao; Zhang, Kai; Zhao, Feng-Li; Feng, Jia-Yue

    2016-08-01

    WRKY proteins comprise a large family of transcription factors that play important roles in response to biotic and abiotic stresses and in plant growth and development. To date, little is known about the WRKY gene family in strawberry. In this study, we identified 62 WRKY genes (FvWRKYs) in the wild diploid woodland strawberry (Fragaria vesca, 2n = 2x = 14) accession Heilongjiang-3. According to the phylogenetic analysis and structural features, these identified strawberry FvWRKY genes were classified into three main groups. In addition, eight FvWRKY-GFP fusion proteins showed distinct subcellular localizations in Arabidopsis mesophyll protoplasts. Furthermore, we examined the expression of the 62 FvWRKY genes in 'Heilongjiang-3' under various conditions, including biotic stress (Podosphaera aphanis), abiotic stresses (drought, salt, cold, and heat), and hormone treatments (abscisic acid, ethephon, methyl jasmonate, and salicylic acid). The expression levels of 33 FvWRKY genes were upregulated, while 12 FvWRKY genes were downregulated during powdery mildew infection. FvWRKY genes responded to drought and salt treatment to a greater extent than to temperature stress. Expression profiles derived from quantitative real-time PCR suggested that 11 FvWRKY genes responded dramatically to various stimuli at the transcriptional level, indicating versatile roles in responses to biotic and abiotic stresses. Interaction networks revealed that the crucial pathways controlled by WRKY proteins may be involved in the differential response to biotic stress. Taken together, the present work may provide the basis for future studies of the genetic modification of WRKY genes for pathogen resistance and stress tolerance in strawberry. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  2. Abiotic drivers of Chihuahuan Desert plant communities

    Science.gov (United States)

    Laura Marie Ladwig

    2014-01-01

    Within grasslands, precipitation, fire, nitrogen (N) addition, and extreme temperatures influence community composition and ecosystem function. The differential influences of these abiotic factors on Chihuahuan Desert grassland communities was examined within the Sevilleta National Wildlife Refuge, located in central New Mexico, U.S.A. Although fire is a natural...

  3. Abiotic and microbial interactions during anaerobic transformations of Fe(II and NOx-

    Directory of Open Access Journals (Sweden)

    Flynn ePicardal

    2012-03-01

    Full Text Available Microbial Fe(II oxidation using NO3- as the terminal electron acceptor (nitrate-dependent Fe(II oxidation; NDFO has been studied for over 15 years. Although there are reports of autotrophic isolates and stable enrichments, many of the bacteria capable of NDFO are known organotrophic NO3- -reducers that require the presence of an organic, primary substrate, e.g., acetate, for significant amounts of Fe(II oxidation. Although the thermodynamics of Fe(II oxidation are favorable when coupled to either NO3- or NO2- reduction, the kinetics of abiotic Fe(II oxidation by NO3- are relatively slow except under special conditions. NDFO is typically studied in batch cultures containing millimolar concentrations of Fe(II, NO3-, and the primary substrate. In such systems, NO2- is often observed to accumulate in culture media during Fe(II oxidation. Compared to NO3-, abiotic reactions of biogenic NO2- and Fe(II are relatively rapid. The kinetics and reaction pathways of Fe(II oxidation by NO2- are strongly affected by medium composition and pH, reactant concentration, and the presence of Fe(II-sorptive surfaces, e.g., Fe(III oxyhydroxides and cellular surfaces. In batch cultures, the combination of abiotic and microbial Fe(II oxidation can alter product distribution and, more importantly, results in the formation of intracellular precipitates and extracellular Fe(III oxyhydroxide encrustations that apparently limit further cell growth and Fe(II oxidation. Unless steps are taken to minimize or account for potential abiotic reactions, results of microbial NDFO studies can be obfuscated by artifacts of the chosen experimental conditions, the use of inappropriate analytical methods, and the resulting uncertainties about the relative importance of abiotic and microbial reactions.In this manuscript, abiotic reactions of NO3- and NO2- with aqueous Fe2+, chelated Fe(II, and solid-phase Fe(II are reviewed along with factors that can influence overall NDFO reac

  4. A pea chloroplast translation elongation factor that is regulated by abiotic factors

    International Nuclear Information System (INIS)

    Singh, B.N.; Mishra, R.N.; Agarwal, Pradeep K.; Goswami, Mamta; Nair, Suresh; Sopory, S.K.; Reddy, M.K.

    2004-01-01

    We report the cloning and characterization of both the cDNA (tufA) and genomic clones encoding for a chloroplast translation elongation factor (EF-Tu) from pea. The analysis of the deduced amino acids of the cDNA clone reveals the presence of putative transit peptide sequence and four GTP binding domains and two EF-Tu signature motifs in the mature polypeptide region. Using in vivo immunostaining followed by confocal microscopy pea EF-Tu was localized to chloroplast. The steady state transcript level of pea tufA was high in leaves and not detectable in roots. The expression of this gene is stimulated by light. The differential expression of this gene in response to various abiotic stresses showed that it is down-regulated in response to salinity and ABA and up-regulated in response to low temperature and salicylic acid treatment. These results indicate that regulation of pea tufA may have an important role in plant adaptation to environmental stresses

  5. Abiotic Deposition of Fe Complexes onto Leptothrix Sheaths

    Science.gov (United States)

    Kunoh, Tatsuki; Hashimoto, Hideki; McFarlane, Ian R.; Hayashi, Naoaki; Suzuki, Tomoko; Taketa, Eisuke; Tamura, Katsunori; Takano, Mikio; El-Naggar, Mohamed Y.; Kunoh, Hitoshi; Takada, Jun

    2016-01-01

    Bacteria classified in species of the genus Leptothrix produce extracellular, microtubular, Fe-encrusted sheaths. The encrustation has been previously linked to bacterial Fe oxidases, which oxidize Fe(II) to Fe(III) and/or active groups of bacterial exopolymers within sheaths to attract and bind aqueous-phase inorganics. When L. cholodnii SP-6 cells were cultured in media amended with high Fe(II) concentrations, Fe(III) precipitates visibly formed immediately after addition of Fe(II) to the medium, suggesting prompt abiotic oxidation of Fe(II) to Fe(III). Intriguingly, these precipitates were deposited onto the sheath surface of bacterial cells as the population was actively growing. When Fe(III) was added to the medium, similar precipitates formed in the medium first and were abiotically deposited onto the sheath surfaces. The precipitates in the Fe(II) medium were composed of assemblies of globular, amorphous particles (ca. 50 nm diameter), while those in the Fe(III) medium were composed of large, aggregated particles (≥3 µm diameter) with a similar amorphous structure. These precipitates also adhered to cell-free sheaths. We thus concluded that direct abiotic deposition of Fe complexes onto the sheath surface occurs independently of cellular activity in liquid media containing Fe salts, although it remains unclear how this deposition is associated with the previously proposed mechanisms (oxidation enzyme- and/or active group of organic components-involved) of Fe encrustation of the Leptothrix sheaths. PMID:27271677

  6. Abiotic Deposition of Fe Complexes onto Leptothrix Sheaths

    Directory of Open Access Journals (Sweden)

    Tatsuki Kunoh

    2016-06-01

    Full Text Available Bacteria classified in species of the genus Leptothrix produce extracellular, microtubular, Fe-encrusted sheaths. The encrustation has been previously linked to bacterial Fe oxidases, which oxidize Fe(II to Fe(III and/or active groups of bacterial exopolymers within sheaths to attract and bind aqueous-phase inorganics. When L. cholodnii SP-6 cells were cultured in media amended with high Fe(II concentrations, Fe(III precipitates visibly formed immediately after addition of Fe(II to the medium, suggesting prompt abiotic oxidation of Fe(II to Fe(III. Intriguingly, these precipitates were deposited onto the sheath surface of bacterial cells as the population was actively growing. When Fe(III was added to the medium, similar precipitates formed in the medium first and were abiotically deposited onto the sheath surfaces. The precipitates in the Fe(II medium were composed of assemblies of globular, amorphous particles (ca. 50 nm diameter, while those in the Fe(III medium were composed of large, aggregated particles (≥3 µm diameter with a similar amorphous structure. These precipitates also adhered to cell-free sheaths. We thus concluded that direct abiotic deposition of Fe complexes onto the sheath surface occurs independently of cellular activity in liquid media containing Fe salts, although it remains unclear how this deposition is associated with the previously proposed mechanisms (oxidation enzyme- and/or active group of organic components-involved of Fe encrustation of the Leptothrix sheaths.

  7. An insertional mutagenesis programme with an enhancer trap for the identification and tagging of genes involved in abiotic stress tolerance in the tomato wild-related species Solanum pennellii

    OpenAIRE

    Atarés Huerta, Alejandro; Moyano, Elena; Morales, Belén; Schleicher, Peter; García Abellán, José Osvaldo; ANTÓN MARTÍNEZ, MARÍA TERESA; García Sogo, Begoña; Pérez Martin, Fernando; Lozano, Rafael; Borja Flores, Francisco; Moreno Ferrero, Vicente; BOLARIN JIMENEZ, MARIA DEL CARMEN; Pineda Chaza, Benito José

    2011-01-01

    [EN] Salinity and drought have a huge impact on agriculture since there are few areas free of these abiotic stresses and the problem continues to increase. In tomato, the most important horticultural crop worldwide, there are accessions of wild-related species with a high degree of tolerance to salinity and drought. Thus, the finding of insertional mutants with other tolerance levels could lead to the identification and tagging of key genes responsible for abiotic stress tolerance. To this en...

  8. Abiotic factors drives floristic variations of fern's metacommunity in an Atlantic Forest remnant.

    Science.gov (United States)

    Costa, L E N; Farias, R P; Santiago, A C P; Silva, I A A; Barros, I C L

    2018-02-15

    We analyzed floristic variations in fern's metacommunity at the local scale and their relationship with abiotic factors in an Atlantic Forest remnant of northeastern Brazil. Floristic and environmental variations were accessed on ten plots of 10 × 20 m. We performed cluster analyses, based on Bray-Curtis dissimilarity index to establish the floristic relationship. The influence of abiotic factors: luminosity, temperature, relative air humidity and relative soil moisture was evaluated from a redundancy analysis. We found 24 species belonging to 20 genera and 12 families. The fern's flora showed high floristic heterogeneity (>75% for most of the plot's associations). The fern's metacommunity was structured along an abiotic gradient modulated by temperature, luminosity, and relative soil moisture.

  9. Isolation and characterization of a catalase gene "HuCAT3" from pitaya (Hylocereus undatus) and its expression under abiotic stress.

    Science.gov (United States)

    Nie, Qiong; Gao, Guo-Li; Fan, Qing-jie; Qiao, Guang; Wen, Xiao-Peng; Liu, Tao; Peng, Zhi-Jun; Cai, Yong-Qiang

    2015-05-25

    Abiotic stresses usually cause H2O2 accumulation, with harmful effects, in plants. Catalase may play a key protective role in plant cells by detoxifying this excess H2O2. Pitaya (Hylocereus undatus) shows broad ecological adaptation due to its high tolerance to abiotic stresses, e.g. drought, heat and poor soil. However, involvement of the pitaya catalase gene (HuCAT) in tolerance to abiotic stresses is unknown. In the present study, a full-length HuCAT3 cDNA (1870 bp) was isolated from pitaya based on our previous microarray data and RACE method. The cDNA sequence and deduced amino acid sequence shared 73-77% and 75-80% identity with other plant catalases, respectively. HuCAT3 contains conserved catalase family domain and catalytic sites. Pairwise comparison and phylogenetic analysis indicated that HuCAT3 is most similar to Eriobotrya japonica CAT, followed by Dimocarpus longan CAT and Nicotiana tabacum CAT1. Expression profile analysis demonstrated that HuCAT3 is mainly expressed in green cotyledons and mature stems, and was regulated by H2O2, drought, cold and salt stress, whereas, its expression patterns and maximum expression levels varied with stress types. HuCAT activity increased as exposure to the tested stresses, and the fluctuation of HuCAT activity was consistent with HuCAT3 mRNA abundance (except for 0.5 days upon drought stress). HuCAT3 mRNA elevations and HuCAT activities changes under cold stress were also in conformity with the cold tolerances among the four genotypes. The obtained results confirmed a major role of HuCAT3 in abiotic stress response of pitaya. This may prove useful in understanding pitaya's high tolerance to abiotic stresses at molecular level. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Multiple abiotic stress tolerance of the transformants yeast cells and the transgenic Arabidopsis plants expressing a novel durum wheat catalase.

    Science.gov (United States)

    Feki, Kaouthar; Kamoun, Yosra; Ben Mahmoud, Rihem; Farhat-Khemakhem, Ameny; Gargouri, Ali; Brini, Faiçal

    2015-12-01

    Catalases are reactive oxygen species scavenging enzymes involved in response to abiotic and biotic stresses. In this study, we described the isolation and functional characterization of a novel catalase from durum wheat, designed TdCAT1. Molecular Phylogeny analyses showed that wheat TdCAT1 exhibited high amino acids sequence identity to other plant catalases. Sequence homology analysis showed that TdCAT1 protein contained the putative calmodulin binding domain and a putative conserved internal peroxisomal targeting signal PTS1 motif around its C-terminus. Predicted three-dimensional structural model revealed the presence of four putative distinct structural regions which are the N-terminal arm, the β-barrel, the wrapping and the α-helical domains. TdCAT1 protein had the heme pocket that was composed by five essential residues. TdCAT1 gene expression analysis showed that this gene was induced by various abiotic stresses in durum wheat. The expression of TdCAT1 in yeast cells and Arabidopsis plants conferred tolerance to several abiotic stresses. Compared with the non-transformed plants, the transgenic lines maintained their growth and accumulated more proline under stress treatments. Furthermore, the amount of H2O2 was lower in transgenic lines, which was due to the high CAT and POD activities. Taken together, these data provide the evidence for the involvement of durum wheat catalase TdCAT1 in tolerance to multiple abiotic stresses in crop plants. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  11. Energy constraints and organizational change in US production

    Energy Technology Data Exchange (ETDEWEB)

    1980-12-01

    There is still considerable uncertainty about the way in which energy-supply constraints affect industrial thinking and activity. Yet, this is an important issue in determining the effectiveness of conservation programs and in formulating energy policy. The authors expand on a survey of US business attitudes and responses to energy constraints first published in the September 1979 Energy Policy with the results of further analysis of their survey. In particular, they examine correlations between perceived causes and preferred solutions of energy problems, organizational adjustments to energy constraints in energy-intensive industries, and the ways in which production operations have changed in response to supply problems. 5 references, 5 tables.

  12. Evaluation and prioritization of rice production practices and constraints under temperate climatic conditions using Fuzzy Analytical Hierarchy Process (FAHP)

    International Nuclear Information System (INIS)

    Mir, S.A.; Padma, T.

    2016-01-01

    Due to overwhelming complex and vague nature of interactions between multiple factors describing agriculture, Multi-Criteria Decision Making (MCDM) methods are widely used from farm to fork to facilitate systematic and transparent decision support, figure out multiple decision outcomes and equip decision maker with confident decision choices in order to choose best alternative. This research proposes a Fuzzy Analytical Hierarchy Process (FAHP) based decision support to evaluate and prioritize important factors of rice production practices and constraints under temperate climatic conditions and provides estimate of weightings, which measure relative importance of critical factors of the crop under biotic, abiotic, socio-economic and technological settings. The results envisage that flood, drought, water logging, late sali, temperature and rainfall are important constraints. However, regulating transplantation time; maintaining planting density; providing training to the educated farmers; introducing high productive varieties like Shalimar Rice-1 and Jhelum; better management of nutrients, weeds and diseases are most important opportunities to enhance rice production in the region. Therefore, the proposed system supplements farmers with precise decision information about important rice production practices, opportunities and constraints.

  13. Evaluation and prioritization of rice production practices and constraints under temperate climatic conditions using Fuzzy Analytical Hierarchy Process (FAHP

    Directory of Open Access Journals (Sweden)

    Shabir A. Mir

    2016-12-01

    Full Text Available Due to overwhelming complex and vague nature of interactions between multiple factors describing agriculture, Multi-Criteria Decision Making (MCDM methods are widely used from farm to fork to facilitate systematic and transparent decision support, figure out multiple decision outcomes and equip decision maker with confident decision choices in order to choose best alternative. This research proposes a Fuzzy Analytical Hierarchy Process (FAHP based decision support to evaluate and prioritize important factors of rice production practices and constraints under temperate climatic conditions and provides estimate of weightings, which measure relative importance of critical factors of the crop under biotic, abiotic, socio-economic and technological settings. The results envisage that flood, drought, water logging, late sali, temperature and rainfall are important constraints. However, regulating transplantation time; maintaining planting density; providing training to the educated farmers; introducing high productive varieties like Shalimar Rice-1 and Jhelum; better management of nutrients, weeds and diseases are most important opportunities to enhance rice production in the region. Therefore, the proposed system supplements farmers with precise decision information about important rice production practices, opportunities and constraints.

  14. Evaluation and prioritization of rice production practices and constraints under temperate climatic conditions using Fuzzy Analytical Hierarchy Process (FAHP)

    Energy Technology Data Exchange (ETDEWEB)

    Mir, S.A.; Padma, T.

    2016-07-01

    Due to overwhelming complex and vague nature of interactions between multiple factors describing agriculture, Multi-Criteria Decision Making (MCDM) methods are widely used from farm to fork to facilitate systematic and transparent decision support, figure out multiple decision outcomes and equip decision maker with confident decision choices in order to choose best alternative. This research proposes a Fuzzy Analytical Hierarchy Process (FAHP) based decision support to evaluate and prioritize important factors of rice production practices and constraints under temperate climatic conditions and provides estimate of weightings, which measure relative importance of critical factors of the crop under biotic, abiotic, socio-economic and technological settings. The results envisage that flood, drought, water logging, late sali, temperature and rainfall are important constraints. However, regulating transplantation time; maintaining planting density; providing training to the educated farmers; introducing high productive varieties like Shalimar Rice-1 and Jhelum; better management of nutrients, weeds and diseases are most important opportunities to enhance rice production in the region. Therefore, the proposed system supplements farmers with precise decision information about important rice production practices, opportunities and constraints.

  15. Arabidopsis Raf-Like Mitogen-Activated Protein Kinase Kinase Kinase Gene Raf43 Is Required for Tolerance to Multiple Abiotic Stresses.

    Directory of Open Access Journals (Sweden)

    Nasar Virk

    Full Text Available Mitogen-activated protein kinase (MAPK cascades are critical signaling modules that mediate the transduction of extracellular stimuli into intracellular response. A relatively large number of MAPKKKs have been identified in a variety of plant genomes but only a few of them have been studied for their biological function. In the present study, we identified an Arabidopsis Raf-like MAPKKK gene Raf43 and studied its function in biotic and abiotic stress response using a T-DNA insertion mutant raf43-1 and two Raf43-overexpressing lines Raf43-OE#1 and Raf43-OE#13. Expression of Raf43 was induced by multiple abiotic and biotic stresses including treatments with drought, mannitol and oxidative stress or defense signaling molecule salicylic acid and infection with necrotrophic fungal pathogen Botrytis cinerea. Seed germination and seedling root growth of raf43-1 were significantly inhibited on MS medium containing mannitol, NaCl, H2O2 or methyl viologen (MV while seed germination and seedling root growth of the Raf43-OE#1 and Raf43-OE#13 lines was similar to wild type Col-0 under the above stress conditions. Soil-grown raf43-1 plants exhibited reduced tolerance to MV, drought and salt stress. Abscisic acid inhibited significantly seed germination and seedling root growth of the raf43-1 line but had no effect on the two Raf43-overexpressing lines. Expression of stress-responsive RD17 and DREB2A genes was significantly down-regulated in raf43-1 plants. However, the raf43-1 and Raf43-overexpressing plants showed similar disease phenotype to the wild type plants after infection with B. cinerea or Pseudomonas syringae pv. tomato DC3000. Our results demonstrate that Raf43, encoding for a Raf-like MAPKKK, is required for tolerance to multiple abiotic stresses in Arabidopsis.

  16. Evaluating the impact of spatio-temporal smoothness constraints on the BOLD hemodynamic response function estimation: an analysis based on Tikhonov regularization

    International Nuclear Information System (INIS)

    Casanova, R; Yang, L; Hairston, W D; Laurienti, P J; Maldjian, J A

    2009-01-01

    Recently we have proposed the use of Tikhonov regularization with temporal smoothness constraints to estimate the BOLD fMRI hemodynamic response function (HRF). The temporal smoothness constraint was imposed on the estimates by using second derivative information while the regularization parameter was selected based on the generalized cross-validation function (GCV). Using one-dimensional simulations, we previously found this method to produce reliable estimates of the HRF time course, especially its time to peak (TTP), being at the same time fast and robust to over-sampling in the HRF estimation. Here, we extend the method to include simultaneous temporal and spatial smoothness constraints. This method does not need Gaussian smoothing as a pre-processing step as usually done in fMRI data analysis. We carried out two-dimensional simulations to compare the two methods: Tikhonov regularization with temporal (Tik-GCV-T) and spatio-temporal (Tik-GCV-ST) smoothness constraints on the estimated HRF. We focus our attention on quantifying the influence of the Gaussian data smoothing and the presence of edges on the performance of these techniques. Our results suggest that the spatial smoothing introduced by regularization is less severe than that produced by Gaussian smoothing. This allows more accurate estimates of the response amplitudes while producing similar estimates of the TTP. We illustrate these ideas using real data. (note)

  17. Evaluation of Abiotic Resource LCIA Methods

    Directory of Open Access Journals (Sweden)

    Rodrigo A. F. Alvarenga

    2016-02-01

    Full Text Available In a life cycle assessment (LCA, the impacts on resources are evaluated at the area of protection (AoP with the same name, through life cycle impact assessment (LCIA methods. There are different LCIA methods available in literature that assesses abiotic resources, and the goal of this study was to propose recommendations for that impact category. We evaluated 19 different LCIA methods, through two criteria (scientific robustness and scope, divided into three assessment levels, i.e., resource accounting methods (RAM, midpoint, and endpoint. In order to support the assessment, we applied some LCIA methods to a case study of ethylene production. For RAM, the most suitable LCIA method was CEENE (Cumulative Exergy Extraction from the Natural Environment (but SED (Solar Energy Demand and ICEC (Industrial Cumulative Exergy Consumption/ECEC (Ecological Cumulative Exergy Consumption may also be recommended, while the midpoint level was ADP (Abiotic Depletion Potential, and the endpoint level was both the Recipe Endpoint and EPS2000 (Environmental Priority Strategies. We could notice that the assessment for the AoP Resources is not yet well established in the LCA community, since new LCIA methods (with different approaches and assessment frameworks are showing up, and this trend may continue in the future.

  18. Transgenic Alfalfa Plants Expressing the Sweetpotato Orange Gene Exhibit Enhanced Abiotic Stress Tolerance

    Science.gov (United States)

    Wang, Zhi; Ke, Qingbo; Kim, Myoung Duck; Kim, Sun Ha; Ji, Chang Yoon; Jeong, Jae Cheol; Lee, Haeng-Soon; Park, Woo Sung; Ahn, Mi-Jeong; Li, Hongbing; Xu, Bingcheng; Deng, Xiping; Lee, Sang-Hoon; Lim, Yong Pyo; Kwak, Sang-Soo

    2015-01-01

    Alfalfa (Medicago sativa L.), a perennial forage crop with high nutritional content, is widely distributed in various environments worldwide. We recently demonstrated that the sweetpotato Orange gene (IbOr) is involved in increasing carotenoid accumulation and enhancing resistance to multiple abiotic stresses. In this study, in an effort to improve the nutritional quality and environmental stress tolerance of alfalfa, we transferred the IbOr gene into alfalfa (cv. Xinjiang Daye) under the control of an oxidative stress-inducible peroxidase (SWPA2) promoter through Agrobacterium tumefaciens-mediated transformation. Among the 11 transgenic alfalfa lines (referred to as SOR plants), three lines (SOR2, SOR3, and SOR8) selected based on their IbOr transcript levels were examined for their tolerance to methyl viologen (MV)-induced oxidative stress in a leaf disc assay. The SOR plants exhibited less damage in response to MV-mediated oxidative stress and salt stress than non-transgenic plants. The SOR plants also exhibited enhanced tolerance to drought stress, along with higher total carotenoid levels. The results suggest that SOR alfalfa plants would be useful as forage crops with improved nutritional value and increased tolerance to multiple abiotic stresses, which would enhance the development of sustainable agriculture on marginal lands. PMID:25946429

  19. Transcriptomic analysis of grain amaranth (Amaranthus hypochondriacus using 454 pyrosequencing: comparison with A. tuberculatus, expression profiling in stems and in response to biotic and abiotic stress

    Directory of Open Access Journals (Sweden)

    Vargas-Ortiz Erandi

    2011-07-01

    Full Text Available Abstract Background Amaranthus hypochondriacus, a grain amaranth, is a C4 plant noted by its ability to tolerate stressful conditions and produce highly nutritious seeds. These possess an optimal amino acid balance and constitute a rich source of health-promoting peptides. Although several recent studies, mostly involving subtractive hybridization strategies, have contributed to increase the relatively low number of grain amaranth expressed sequence tags (ESTs, transcriptomic information of this species remains limited, particularly regarding tissue-specific and biotic stress-related genes. Thus, a large scale transcriptome analysis was performed to generate stem- and (abiotic stress-responsive gene expression profiles in grain amaranth. Results A total of 2,700,168 raw reads were obtained from six 454 pyrosequencing runs, which were assembled into 21,207 high quality sequences (20,408 isotigs + 799 contigs. The average sequence length was 1,064 bp and 930 bp for isotigs and contigs, respectively. Only 5,113 singletons were recovered after quality control. Contigs/isotigs were further incorporated into 15,667 isogroups. All unique sequences were queried against the nr, TAIR, UniRef100, UniRef50 and Amaranthaceae EST databases for annotation. Functional GO annotation was performed with all contigs/isotigs that produced significant hits with the TAIR database. Only 8,260 sequences were found to be homologous when the transcriptomes of A. tuberculatus and A. hypochondriacus were compared, most of which were associated with basic house-keeping processes. Digital expression analysis identified 1,971 differentially expressed genes in response to at least one of four stress treatments tested. These included several multiple-stress-inducible genes that could represent potential candidates for use in the engineering of stress-resistant plants. The transcriptomic data generated from pigmented stems shared similarity with findings reported in developing

  20. Age-related Decline of Abiotic Stress Tolerance in Young Drosophila melanogaster Adults.

    Science.gov (United States)

    Colinet, Hervé; Chertemps, Thomas; Boulogne, Isabelle; Siaussat, David

    2016-12-01

    Stress tolerance generally declines with age as a result of functional senescence. Age-dependent alteration of stress tolerance can also occur in early adult life. In Drosophila melanogaster, evidence of such a decline in young adults has only been reported for thermotolerance. It is not known whether early adult life entails a general stress tolerance reduction and whether the response is peculiar to thermal traits. The present work was designed to investigate whether newly eclosed D melanogaster adults present a high tolerance to a range of biotic and abiotic insults. We found that tolerance to most of the abiotic stressors tested (desiccation, paraquat, hydrogen peroxide, deltamethrin, and malathion) was high in newly eclosed adults before dramatically declining over the next days of adult life. No clear age-related pattern was found for resistance to biotic stress (septic or fungal infection) and starvation. These results suggest that newly eclosed adults present a culminating level of tolerance to extrinsic stress which is likely unrelated to immune process. We argue that stress tolerance variation at very young age is likely a residual attribute from the previous life stage (ontogenetic carryover) or a feature related to the posteclosion development. © The Author 2015. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  1. Karrikin-KAI2 signalling provides Arabidopsis seeds with tolerance to abiotic stress and inhibits germination under conditions unfavourable to seedling establishment.

    Science.gov (United States)

    Wang, Lu; Waters, Mark T; Smith, Steven M

    2018-05-04

    The control of seed germination in response to environmental conditions is important for plant success. We investigated the role of the karrikin receptor KARRIKIN INSENSITIVE2 (KAI2) in the response of Arabidopsis seeds to osmotic stress, salinity and high temperature. Germination of the kai2 mutant was examined in response to NaCl, mannitol and elevated temperature. The effect of karrikin on germination of wild-type seeds, hypocotyl elongation and the expression of karrikin-responsive genes was also examined in response to such stresses. The kai2 seeds germinated less readily than wild-type seeds and germination was more sensitive to inhibition by abiotic stress. Karrikin-induced KAI2 signalling stimulated germination of wild-type seeds under favourable conditions, but, surprisingly, inhibited germination in the presence of osmolytes or at elevated temperature. By contrast, GA stimulated germination of wild-type seeds and mutants under all conditions. Karrikin induced expression of DLK2 and KUF1 genes and inhibited hypocotyl elongation independently of osmotic stress. Under mild osmotic stress, karrikin enhanced expression of DREB2A, WRKY33 and ERF5 genes, but not ABA signalling genes. Thus, the karrikin-KAI2 signalling system can protect against abiotic stress, first by providing stress tolerance, and second by inhibiting germination under conditions unfavourable to seedling establishment. © 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.

  2. Diurnal and Seasonal Responses of High Frequency Chlorophyll Fluorescence and PRI Measurements to Abiotic Stress in Almonds

    Science.gov (United States)

    Bambach-Ortiz, N. E.; Paw U, K. T.

    2016-12-01

    Plants have evolved to efficiently utilize light to synthesize energy-rich carbon compounds, and at the same time, dissipate absorbed but excessive photon that would otherwise transfer excitation energy to potentially toxic reactive oxygen species (ROS). Nevertheless, even the most rapidly growing plants with the highest rates of photosynthesis only utilize about half of the light their leaves absorb during the hours of peak irradiance in sun-exposed habitats. Usually, that daily peak of irradiance coincides with high temperature and a high vapor pressure deficit, which are conditions related to plant stomata closure. Consequently, specially in water stressed environments, plants need to have mechanisms to dissipate most of absorbed photons. Plants avoid photo-oxidative damage of the photosynthetic apparatus due to the formation of ROS under excess light using different mechanisms in order to either lower the amount of ROS formation or detoxify already formed ROS. Photoinhibition is defined as a reduction in photosynthetic activity due largely to a sustained reduction in the photochemical efficiency of Photosystem II (PSII), which can be assessed by monitoring Chlorophyll a fluorescence (ChlF). Alternatively, monitoring abiotic stress effects upon photosynthetic activity and photoinhibition may be possible using high frequency spectral reflectance sensors. We aim to find the potential relationships between high frequency PRI and ChlF as indicators of photoinhibition and permanent photodamage at a seasonal scale. Preliminary results show that PRI responses are sensitive to photoinhibition, but provide a poor representation of permanent photodamage observed at a seasonal scale.

  3. A bHLH gene from Tamarix hispida improves abiotic stress tolerance by enhancing osmotic potential and decreasing reactive oxygen species accumulation.

    Science.gov (United States)

    Ji, Xiaoyu; Nie, Xianguang; Liu, Yujia; Zheng, Lei; Zhao, Huimin; Zhang, Bing; Huo, Lin; Wang, Yucheng

    2016-02-01

    Basic helix-loop-helix (bHLH) leucine-zipper transcription factors play important roles in abiotic stress responses. However, their specific roles in abiotic stress tolerance are not fully known. Here, we functionally characterized a bHLH gene, ThbHLH1, from Tamarix hispida in abiotic stress tolerance. ThbHLH1 specifically binds to G-box motif with the sequence of 'CACGTG'. Transiently transfected T. hispida plantlets with transiently overexpressed ThbHLH1 and RNAi-silenced ThbHLH1 were generated for gain- and loss-of-function analysis. Transgenic Arabidopsis thaliana lines overexpressing ThbHLH1 were generated to confirm the gain- and loss-of-function analysis. Overexpression of ThbHLH1 significantly elevates glycine betaine and proline levels, increases Ca(2+) concentration and enhances peroxidase (POD) and superoxide dismutase (SOD) activities to decrease reactive oxygen species (ROS) accumulation. Additionally, ThbHLH1 regulates the expression of the genes including P5CS, BADH, CaM, POD and SOD, to activate the above physiological changes, and also induces the expression of stress tolerance-related genes LEAs and HSPs. These data suggest that ThbHLH1 induces the expression of stress tolerance-related genes to improve abiotic stress tolerance by increasing osmotic potential, improving ROS scavenging capability and enhancing second messenger in stress signaling cascades. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  4. Relationships between biotic and abiotic factors and regeneration of chestnut oak, white oak, and northern red oak

    Science.gov (United States)

    Songlin Fei; Kim C. Steiner; James C. Finley; Marc E. McDill

    2003-01-01

    A series of substantial field surveys of 38 mixed-oak stands in central Pennsylvania were carried out during 1996-2000. All the stands were surveyed 1 year prior to harvest, and 16 stands have been surveyed 1 year after harvest. Three abiotic factors at stand scale, four abiotic factors at plot scale, and two biotic factors and one abiotic factor at subplot scale was...

  5. Ectopic Expression of Pumpkin NAC Transcription Factor CmNAC1 Improves Multiple Abiotic Stress Tolerance in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Haishun Cao

    2017-11-01

    Full Text Available Drought, cold and salinity are the major environmental stresses that limit agricultural productivity. NAC transcription factors regulate the stress response in plants. Pumpkin (Cucurbita moschata is an important cucurbit vegetable crop and it has strong resistance to abiotic stress; however, the biological functions of stress-related NAC genes in this crop are largely unknown. This study reports the function of CmNAC1, a stress-responsive pumpkin NAC domain protein. The CmNAC1-GFP fusion protein was transiently expressed in tobacco leaves for subcellular localization analysis, and we found that CmNAC1 is localized in the nucleus. Transactivation assay in yeast cells revealed that CmNAC1 functions as a transcription activator, and its transactivation domain is located in the C-terminus. CmNAC1 was ubiquitously expressed in different organs, and its transcript was induced by salinity, cold, dehydration, H2O2, and abscisic acid (ABA treatment. Furthermore, the ectopic expression (EE of CmNAC1 in Arabidopsis led to ABA hypersensitivity and enhanced tolerance to salinity, drought and cold stress. In addition, five ABA-responsive elements were enriched in CmNAC1 promoter. The CmNAC1-EE plants exhibited different root architecture, leaf morphology, and significantly high concentration of ABA compared with WT Arabidopsis under normal conditions. Our results indicated that CmNAC1 is a critical factor in ABA signaling pathways and it can be utilized in transgenic breeding to improve the abiotic stress tolerance of crops.

  6. WRKY transcription factors in plant responses to stresses.

    Science.gov (United States)

    Jiang, Jingjing; Ma, Shenghui; Ye, Nenghui; Jiang, Ming; Cao, Jiashu; Zhang, Jianhua

    2017-02-01

    The WRKY gene family is among the largest families of transcription factors (TFs) in higher plants. By regulating the plant hormone signal transduction pathway, these TFs play critical roles in some plant processes in response to biotic and abiotic stress. Various bodies of research have demonstrated the important biological functions of WRKY TFs in plant response to different kinds of biotic and abiotic stresses and working mechanisms. However, very little summarization has been done to review their research progress. Not just important TFs function in plant response to biotic and abiotic stresses, WRKY also participates in carbohydrate synthesis, senescence, development, and secondary metabolites synthesis. WRKY proteins can bind to W-box (TGACC (A/T)) in the promoter of its target genes and activate or repress the expression of downstream genes to regulate their stress response. Moreover, WRKY proteins can interact with other TFs to regulate plant defensive responses. In the present review, we focus on the structural characteristics of WRKY TFs and the research progress on their functions in plant responses to a variety of stresses. © 2016 Institute of Botany, Chinese Academy of Sciences.

  7. Abiotic/biotic coupling in the rhizosphere: a reactive transport modeling analysis

    Science.gov (United States)

    Lawrence, Corey R.; Steefel, Carl; Maher, Kate

    2014-01-01

    A new generation of models is needed to adequately simulate patterns of soil biogeochemical cycling in response changing global environmental drivers. For example, predicting the influence of climate change on soil organic matter storage and stability requires models capable of addressing complex biotic/abiotic interactions of rhizosphere and weathering processes. Reactive transport modeling provides a powerful framework simulating these interactions and the resulting influence on soil physical and chemical characteristics. Incorporation of organic reactions in an existing reactive transport model framework has yielded novel insights into soil weathering and development but much more work is required to adequately capture root and microbial dynamics in the rhizosphere. This endeavor provides many advantages over traditional soil biogeochemical models but also many challenges.

  8. Importance of biotic and abiotic components in feedback between plants and soil

    OpenAIRE

    Hanzelková, Věra

    2017-01-01

    The plant-soil feedback affects the forming of a plant community. Plants affect their own species as well as other species. The plant-soil feedback can be both positive and negative. Plants affect soil, change its properties, and the soil affects the plants reciprocally. Soil components can be divided into biotic and abiotic ones. The abiotic component is represented by physical and chemical properties of the soil. The main properties are the soil structure, the soil moisture, the soil temper...

  9. De novo transcriptome sequence assembly and identification of AP2/ERF transcription factor related to abiotic stress in parsley (Petroselinum crispum.

    Directory of Open Access Journals (Sweden)

    Meng-Yao Li

    Full Text Available Parsley is an important biennial Apiaceae species that is widely cultivated as herb, spice, and vegetable. Previous studies on parsley principally focused on its physiological and biochemical properties, including phenolic compound and volatile oil contents. However, little is known about the molecular and genetic properties of parsley. In this study, 23,686,707 high-quality reads were obtained and assembled into 81,852 transcripts and 50,161 unigenes for the first time. Functional annotation showed that 30,516 unigenes had sequence similarity to known genes. In addition, 3,244 putative simple sequence repeats were detected in curly parsley. Finally, 1,569 of the identified unigenes belonged to 58 transcription factor families. Various abiotic stresses have a strong detrimental effect on the yield and quality of parsley. AP2/ERF transcription factors have important functions in plant development, hormonal regulation, and abiotic response. A total of 88 putative AP2/ERF factors were identified from the transcriptome sequence of parsley. Seven AP2/ERF transcription factors were selected in this study to analyze the expression profiles of parsley under different abiotic stresses. Our data provide a potentially valuable resource that can be used for intensive parsley research.

  10. De novo transcriptome sequence assembly and identification of AP2/ERF transcription factor related to abiotic stress in parsley (Petroselinum crispum).

    Science.gov (United States)

    Li, Meng-Yao; Tan, Hua-Wei; Wang, Feng; Jiang, Qian; Xu, Zhi-Sheng; Tian, Chang; Xiong, Ai-Sheng

    2014-01-01

    Parsley is an important biennial Apiaceae species that is widely cultivated as herb, spice, and vegetable. Previous studies on parsley principally focused on its physiological and biochemical properties, including phenolic compound and volatile oil contents. However, little is known about the molecular and genetic properties of parsley. In this study, 23,686,707 high-quality reads were obtained and assembled into 81,852 transcripts and 50,161 unigenes for the first time. Functional annotation showed that 30,516 unigenes had sequence similarity to known genes. In addition, 3,244 putative simple sequence repeats were detected in curly parsley. Finally, 1,569 of the identified unigenes belonged to 58 transcription factor families. Various abiotic stresses have a strong detrimental effect on the yield and quality of parsley. AP2/ERF transcription factors have important functions in plant development, hormonal regulation, and abiotic response. A total of 88 putative AP2/ERF factors were identified from the transcriptome sequence of parsley. Seven AP2/ERF transcription factors were selected in this study to analyze the expression profiles of parsley under different abiotic stresses. Our data provide a potentially valuable resource that can be used for intensive parsley research.

  11. Induction of abiotic stress tolerance in plants by endophytic microbes.

    Science.gov (United States)

    Lata, R; Chowdhury, S; Gond, S K; White, J F

    2018-04-01

    Endophytes are micro-organisms including bacteria and fungi that survive within healthy plant tissues and promote plant growth under stress. This review focuses on the potential of endophytic microbes that induce abiotic stress tolerance in plants. How endophytes promote plant growth under stressful conditions, like drought and heat, high salinity and poor nutrient availability will be discussed. The molecular mechanisms for increasing stress tolerance in plants by endophytes include induction of plant stress genes as well as biomolecules like reactive oxygen species scavengers. This review may help in the development of biotechnological applications of endophytic microbes in plant growth promotion and crop improvement under abiotic stress conditions. Increasing human populations demand more crop yield for food security while crop production is adversely affected by abiotic stresses like drought, salinity and high temperature. Development of stress tolerance in plants is a strategy to cope with the negative effects of adverse environmental conditions. Endophytes are well recognized for plant growth promotion and production of natural compounds. The property of endophytes to induce stress tolerance in plants can be applied to increase crop yields. With this review, we intend to promote application of endophytes in biotechnology and genetic engineering for the development of stress-tolerant plants. © 2018 The Society for Applied Microbiology.

  12. Abiotic transformation of estrogens in synthetic municipal wastewater: An alternative for treatment?

    Energy Technology Data Exchange (ETDEWEB)

    Marfil-Vega, Ruth [School of Energy, Environmental, Biological and Medical Engineering, University of Cincinnati, 701 Engineering Research Center, Cincinnati, OH 45221-0071 (United States); Suidan, Makram T., E-mail: Makram.Suidan@uc.ed [School of Energy, Environmental, Biological and Medical Engineering, University of Cincinnati, 701 Engineering Research Center, Cincinnati, OH 45221-0071 (United States); Mills, Marc A. [USEPA, Office of Research and Development, National Risk Management Research Laboratory, Cincinnati, OH 45268 (United States)

    2010-11-15

    The abiotic transformation of estrogens, including estrone (E1), estradiol (E2), estriol (E3) and ethinylestradiol (EE2), in the presence of model vegetable matter was confirmed in this study. Batch experiments were performed to model the catalytic conversion of E1, E2, E3 and EE2 in synthetic wastewater. Greater than 80% reduction in the parent compounds was achieved for each target chemical after 72 h with the remaining concentration distributed between aqueous and solid phases as follows: 13% and 7% for E1, 10% and 2% for E2, 6% and 2% for E3, and 8% and 3% for EE2, respectively. Testosterone, androstenedione and progesterone were also monitored in this study, and their concentrations were found to be in agreement with initially spiked amount. Data collected under laboratory conditions provided the basis for implementing new abiotic wastewater treatment technologies that use inexpensive materials. - Abiotic transformation of estrogens in wastewater matrices can be harnessed for improving their removal from the environment.

  13. Abiotic transformation of estrogens in synthetic municipal wastewater: An alternative for treatment?

    International Nuclear Information System (INIS)

    Marfil-Vega, Ruth; Suidan, Makram T.; Mills, Marc A.

    2010-01-01

    The abiotic transformation of estrogens, including estrone (E1), estradiol (E2), estriol (E3) and ethinylestradiol (EE2), in the presence of model vegetable matter was confirmed in this study. Batch experiments were performed to model the catalytic conversion of E1, E2, E3 and EE2 in synthetic wastewater. Greater than 80% reduction in the parent compounds was achieved for each target chemical after 72 h with the remaining concentration distributed between aqueous and solid phases as follows: 13% and 7% for E1, 10% and 2% for E2, 6% and 2% for E3, and 8% and 3% for EE2, respectively. Testosterone, androstenedione and progesterone were also monitored in this study, and their concentrations were found to be in agreement with initially spiked amount. Data collected under laboratory conditions provided the basis for implementing new abiotic wastewater treatment technologies that use inexpensive materials. - Abiotic transformation of estrogens in wastewater matrices can be harnessed for improving their removal from the environment.

  14. Cortex proliferation in the root is a protective mechanism against abiotic stress.

    Science.gov (United States)

    Cui, Hongchang

    2015-01-01

    Although as an organ the root plays a pivotal role in nutrient and water uptake as well anchorage, individual cell types function distinctly. Cortex is regarded as the least differentiated cell type in the root, but little is known about its role in plant growth and physiology. In recent studies, we found that cortex proliferation can be induced by oxidative stress. Since all types of abiotic stress lead to oxidative stress, this finding suggests a role for cortex in coping with abiotic stress. This hypothesis was tested in this study using the spy mutant, which has an extra layer of cortex in the root. Interestingly, the spy mutant was shown to be hypersensitive to salt and oxidizing reagent applied to the leaves, but it was as tolerant as the wild type to these compounds in the soil. This result lends support to the notion that cortex has a protective role against abiotic stress arising from the soil.

  15. Use of dose constraints for occupational exposure

    International Nuclear Information System (INIS)

    Kaijage, Tunu

    2015-02-01

    The use of dose constraints for occupational exposure was reviewed in this project. The role of dose constraints as used in optimization of protection of workers was described. Different issues to be considered in application of the concept and challenges associated with their implementation were also discussed. The situation where dose constraints could be misinterpreted to dose limits is also explained as the two are clearly differentiated by the International Commission of Radiological Protection (ICRP) Publication 103. Moreover, recommendations to all parties responsible for protection and safety of workers were discussed. (au)

  16. The Stable Isotope Fractionation of Abiotic Reactions: A Benchmark in the Detection of Life

    Science.gov (United States)

    Summers, David P.

    2003-01-01

    One very important tool in the analysis of biogenic, and potentially biogenic, samples is the study of their stable isotope distributions. The isotope distribution of a sample depends on the process(es) that created it. One important application of the analysis of C & N stable isotope ratios has been in the determination of whether organic matter in a sample is of biological origin or was produced abiotically. For example, the delta C-13 of organic material found embedded in phosphate grains was cited as a critical part of the evidence for life in 3.8 billion year old samples. The importance of such analysis in establishing biogenicity was highlighted again by the role this issue played in the recent debate over the validity of what had been accepted as the Earth s earliest microfossils. These kinds of analysis imply a comparison with the fractionation that one would have seen if the organic material had been produced by alternative, abiotic, pathways. Could abiotic reactions account for the same level of fractionation? Additionally, since the fractionation can vary between different abiotic reactions, understanding their fractionations can be important in distinguishing what reactions may have been significant in the formation of different abiological samples (such as extraterrestrial samples). There is however, a scarcity of data on the fractionation of carbon and nitrogen by abiotic reactions. In order to interpret properly what the stable isotope ratios of samples tell us about their biotic or abiotic nature, more needs to be known about how abiotic reactions fractionate C and N. Carbon isotope fractionations have been studied for a few abiotic processes. These studies presumed the presence of a reducing atmosphere, focusing on reactions involving spark discharge, W photolysis of reducing gas mixtures, and cyanide polymerization in the presence of ammonia. They did find that the initial products showed a depletion in I3C with values in the range of a few per

  17. Abiotic factors drives floristic variations of fern’s metacommunity in an Atlantic Forest remnant

    Directory of Open Access Journals (Sweden)

    L. E. N. Costa

    2018-02-01

    Full Text Available Abstract We analyzed floristic variations in fern’s metacommunity at the local scale and their relationship with abiotic factors in an Atlantic Forest remnant of northeastern Brazil. Floristic and environmental variations were accessed on ten plots of 10 × 20 m. We performed cluster analyses, based on Bray-Curtis dissimilarity index to establish the floristic relationship. The influence of abiotic factors: luminosity, temperature, relative air humidity and relative soil moisture was evaluated from a redundancy analysis. We found 24 species belonging to 20 genera and 12 families. The fern’s flora showed high floristic heterogeneity (>75% for most of the plot’s associations. The fern’s metacommunity was structured along an abiotic gradient modulated by temperature, luminosity, and relative soil moisture.

  18. Comparison of the abiotic preferences of macroinvertebrates in tropical river basins.

    Directory of Open Access Journals (Sweden)

    Gert Everaert

    Full Text Available We assessed and compared abiotic preferences of aquatic macroinvertebrates in three river basins located in Ecuador, Ethiopia and Vietnam. Upon using logistic regression models we analyzed the relationship between the probability of occurrence of five macroinvertebrate families, ranging from pollution tolerant to pollution sensitive, (Chironomidae, Baetidae, Hydroptilidae, Libellulidae and Leptophlebiidae and physical-chemical water quality conditions. Within the investigated physical-chemical ranges, nine out of twenty-five interaction effects were significant. Our analyses suggested river basin dependent associations between the macroinvertebrate families and the corresponding physical-chemical conditions. It was found that pollution tolerant families showed no clear abiotic preference and occurred at most sampling locations, i.e. Chironomidae were present in 91%, 84% and 93% of the samples taken in Ecuador, Ethiopia and Vietnam. Pollution sensitive families were strongly associated with dissolved oxygen and stream velocity, e.g. Leptophlebiidae were only present in 48%, 2% and 18% of the samples in Ecuador, Ethiopia and Vietnam. Despite some limitations in the study design, we concluded that associations between macroinvertebrates and abiotic conditions can be river basin-specific and hence are not automatically transferable across river basins in the tropics.

  19. Atypical Enteropathogenic Escherichia coli Strains form Biofilm on Abiotic Surfaces Regardless of Their Adherence Pattern on Cultured Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Hebert F. Culler

    2014-01-01

    Full Text Available The aim of this study was to determine the capacity of biofilm formation of atypical enteropathogenic Escherichia coli (aEPEC strains on abiotic and biotic surfaces. Ninety-one aEPEC strains, isolated from feces of children with diarrhea, were analyzed by the crystal violet (CV assay on an abiotic surface after 24 h of incubation. aEPEC strains representing each HEp-2 cell type of adherence were analyzed after 24 h and 6, 12, and 18 days of incubation at 37°C on abiotic and cell surfaces by CFU/cm2 counting and confocal laser scanning microscopy (CLSM. Biofilm formation on abiotic surfaces occurred in 55 (60.4% of the aEPEC strains. There was no significant difference in biofilm biomass formation on an abiotic versus prefixed cell surface. The biofilms could be visualized by CLSM at various developmental stages. aEPEC strains are able to form biofilm on an abiotic surface with no association with their adherence pattern on HEp-2 cells with the exception of the strains expressing UND (undetermined adherence. This study revealed the capacity of adhesion and biofilm formation by aEPEC strains on abiotic and biotic surfaces, possibly playing a role in pathogenesis, mainly in cases of persistent diarrhea.

  20. Changes in abiotic influences on seed plants and ferns during 18 years of primary succession on Puerto Rican landslides

    Science.gov (United States)

    Lawrence R. Walker; Aaron B. Shiels; Peter J. Bellingham; Ashley D. Sparrow; Ned Fetcher; Fred H. Landau; Deborah J. Lodge

    2013-01-01

    Abiotic variables are critical drivers of succession in most primary seres, but how their influence on biota changes over time is rarely examined. Landslides provide good model systems for examining abiotic influences because they are spatially and temporally heterogeneous habitats with distinct abiotic and biotic gradients and post-landslide erosion. In an 18-year...

  1. Parameter constraints of grazing response functions. Implications for phytoplankton bloom initiation

    Directory of Open Access Journals (Sweden)

    Jordi Solé

    2016-09-01

    Full Text Available Phytoplankton blooms are events of production and accumulation of phytoplankton biomass that influence ecosystem dynamics and may also have effects on socio-economic activities. Among the biological factors that affect bloom dynamics, prey selection by zooplankton may play an important role. Here we consider the initial state of development of an algal bloom and analyse how a reduced grazing pressure can allow an algal species with a lower intrinsic growth rate than a competitor to become dominant. We use a simple model with two microalgal species and one zooplankton grazer to derive general relationships between phytoplankton growth and zooplankton grazing. These relationships are applied to two common grazing response functions in order to deduce the mathematical constraints that the parameters of these functions must obey to allow the dominance of the lower growth rate competitor. To assess the usefulness of the deduced relationships in a more general framework, the results are applied in the context of a multispecies ecosystem model (ERSEM.

  2. Valley plugs, land use, and phytogeomorphic response: Chapter 14

    Science.gov (United States)

    Pierce, Aaron R.; King, Sammy L.; Shroder, John F.

    2013-01-01

    Anthropogenic alteration of fluvial systems can disrupt functional processes that provide valuable ecosystem services. Channelization alters fluvial parameters and the connectivity of river channels to their floodplains which is critical for productivity, nutrient cycling, flood control, and biodiversity. The effects of channelization can be exacerbated by local geology and land-use activities, resulting in dramatic geomorphic readjustments including the formation of valley plugs. Considerable variation in the response of abiotic processes, including surface hydrology, subsurface hydrology, and sedimentation dynamics, to channelization and the formation of valley plugs. Altered abiotic processes associated with these geomorphic features and readjustments influence biotic processes including species composition, abundance, and successional processes. Considerable interest exists for restoring altered fluvial systems and their floodplains because of their social and ecological importance. Understanding abiotic and biotic responses of channelization and valley-plug formation within the context of the watershed is essential to successful restoration. This chapter focuses on the primary causes of valley-plug formation, resulting fluvial-geomorphic responses, vegetation responses, and restoration and research needs for these systems.

  3. A meta-analysis of soil microbial biomass responses to forest disturbances

    Directory of Open Access Journals (Sweden)

    Sandra Robin Holden

    2013-06-01

    Full Text Available Climate warming is likely to increase the frequency and severity of forest disturbances, with uncertain consequences for soil microbial communities and their contribution to ecosystem C dynamics. To address this uncertainty, we conducted a meta-analysis of 139 published soil microbial responses to forest disturbances. These disturbances included abiotic (fire, harvesting, storm and biotic (insect, pathogen disturbances. We hypothesized that soil microbial biomass would decline following forest disturbances, but that abiotic disturbances would elicit greater reductions in microbial biomass than biotic disturbances. In support of this hypothesis, across all published studies, disturbances reduced soil microbial biomass by an average of 29.4%. However, microbial responses differed between abiotic and biotic disturbances. Microbial responses were significantly negative following fires, harvest, and storms (48.7%, 19.1%, and 41.7% reductions in microbial biomass, respectively. In contrast, changes in soil microbial biomass following insect infestation and pathogen-induced tree mortality were non-significant, although biotic disturbances were poorly represented in the literature. When measured separately, fungal and bacterial responses to disturbances mirrored the response of the microbial community as a whole. Changes in microbial abundance following disturbance were significantly positively correlated with changes in microbial respiration. We propose that the differential effect of abiotic and biotic disturbances on microbial biomass may be attributable to differences in soil disruption and organic C removal from forests among disturbance types. Altogether, these results suggest that abiotic forest disturbances may significantly decrease soil microbial abundance, with corresponding consequences for microbial respiration. Further studies are needed on the effect of biotic disturbances on forest soil microbial communities and soil C dynamics.

  4. Assessing the effects of abiotic stress and livestock grazing disturbance on an alpine grassland with CSR model

    Science.gov (United States)

    Wang, Jun; Luo, Peng; Mou, Chengxiang; Yang, Hao; Mo, Li; Luo, Chuan; Kattge, Jens

    2016-04-01

    How the abiotic factors represented by cold environment and biotic factors represented by livestock grazing will affect the vegetation structure of alpine grassland is a core issue in understanding the cause of biodiversity change on Tibetan Plateau. Past studies on changes of floristic composition, growth forms did not adequately answer question. Given the fact that the response of plant to environment change depend on its life strategy, a synthetical method that based on plant life strategy may deepen our understanding of the mechanism. Using Grime's concept of CSR plant classification, we carried out a vegetation survey along a gradient (three levels) of graze intensity on the south-east of Tibet Plateau, in order to evaluate the role and mechanism of abiotic stress and grazing disturbance in driving plant diversity change, by analyzing the plant life strategy compositions in each of the community and by comparing the characteristic of the strategy compositions along the graze gradient. When the graze intensity was relative low, the dominant plant life strategy gathered in the stress tolerance corner, which conformed the theory of environmental filter, indicating that the ideal top plant community may be dominated by the species with stress tolerant strategy. We also found that the response of strategy dominance to graze intensity increase is positively correlated with the competitive capacity (R 2=0.671; Pstrategy (R 2=0.047; P=0.42). This reflected a general shift of plant strategy from stress tolerant to competitive (rather than ruderal as expected) and suggested that the mechanism of graze to affect plant community is different from that of other disturbance like fire, clipping, till, etc. The particular selective foraging and escaping from feces may provide more opportunities for competitive than ruderal strategy to dominant the community. This study demonstrated that CSR plant strategy be a useful tool to evaluate the effects of abiotic and biotic factors

  5. Pathways for abiotic organic synthesis at submarine hydrothermal fields.

    Science.gov (United States)

    McDermott, Jill M; Seewald, Jeffrey S; German, Christopher R; Sylva, Sean P

    2015-06-23

    Arguments for an abiotic origin of low-molecular weight organic compounds in deep-sea hot springs are compelling owing to implications for the sustenance of deep biosphere microbial communities and their potential role in the origin of life. Theory predicts that warm H2-rich fluids, like those emanating from serpentinizing hydrothermal systems, create a favorable thermodynamic drive for the abiotic generation of organic compounds from inorganic precursors. Here, we constrain two distinct reaction pathways for abiotic organic synthesis in the natural environment at the Von Damm hydrothermal field and delineate spatially where inorganic carbon is converted into bioavailable reduced carbon. We reveal that carbon transformation reactions in a single system can progress over hours, days, and up to thousands of years. Previous studies have suggested that CH4 and higher hydrocarbons in ultramafic hydrothermal systems were dependent on H2 generation during active serpentinization. Rather, our results indicate that CH4 found in vent fluids is formed in H2-rich fluid inclusions, and higher n-alkanes may likely be derived from the same source. This finding implies that, in contrast with current paradigms, these compounds may form independently of actively circulating serpentinizing fluids in ultramafic-influenced systems. Conversely, widespread production of formate by ΣCO2 reduction at Von Damm occurs rapidly during shallow subsurface mixing of the same fluids, which may support anaerobic methanogenesis. Our finding of abiogenic formate in deep-sea hot springs has significant implications for microbial life strategies in the present-day deep biosphere as well as early life on Earth and beyond.

  6. Expression of a finger millet transcription factor, EcNAC1, in tobacco confers abiotic stress-tolerance.

    Directory of Open Access Journals (Sweden)

    Venkategowda Ramegowda

    Full Text Available NAC (NAM, ATAF1-2, and CUC2 proteins constitute one of the largest families of plant-specific transcription factors and have been shown to be involved in diverse plant processes including plant growth, development, and stress-tolerance. In this study, a stress-responsive NAC gene, EcNAC1, was isolated from the subtracted stress cDNA library generated from a drought adapted crop, finger millet, and characterized for its role in stress-tolerance. The expression analysis showed that EcNAC1 was highly induced during water-deficit and salt stress. EcNAC1 shares high amino acid similarity with rice genes that have been phylogenetically classified into stress-related NAC genes. Our results demonstrated that tobacco transgenic plants expressing EcNAC1 exhibit tolerance to various abiotic stresses like simulated osmotic stress, by polyethylene glycol (PEG and mannitol, and salinity stress. The transgenic plants also showed enhanced tolerance to methyl-viologen (MV induced oxidative stress. Reduced levels of reactive oxygen species (ROS and ROS-induced damage were noticed in pot grown transgenic lines under water-deficit and natural high light conditions. Root growth under stress and recovery growth after stress alleviation was more in transgenic plants. Many stress-responsive genes were found to be up-regulated in transgenic lines expressing EcNAC1. Our results suggest that EcNAC1 overexpression confers tolerance against abiotic stress in susceptible species, tobacco.

  7. Current trends in genetic manipulations to enhance abiotic and ...

    African Journals Online (AJOL)

    Hitherto, tolerant plants were mainly produced by classical breeding techniques. Success in breeding for better adapted varieties to abiotic and biotic stresses depends on the concerted efforts of various research domains including plant and cell physiology, molecular biology, genetics and breeding. However, such process ...

  8. Regulation of water, salinity, and cold stress responses by salicylic acid

    Directory of Open Access Journals (Sweden)

    Kenji eMiura

    2014-01-01

    Full Text Available Salicylic acid (SA is a naturally occurring phenolic compound. SA plays an important role in the regulation of plant growth, development, ripening, and defense responses. The role of SA in the plant-pathogen relationship has been extensively investigated. In addition to defense responses, SA plays an important role in the response to abiotic stresses, including drought, low temperature, and salinity stresses. It has been suggested that SA has great agronomic potential to improve the stress tolerance of agriculturally important crops. However, the utility of SA is dependent on the concentration of the applied SA, the mode of application, and the state of the plants (e.g., developmental stage and acclimation. Generally, low concentrations of applied SA alleviate the sensitivity to abiotic stresses, and high concentrations of applied induce high levels of oxidative stress, leading to a decreased tolerance to abiotic stresses. In this chapter, the effects of SA on the water stress responses and regulation of stomatal closure are reviewed.

  9. Disentangling effects of abiotic factors and biotic interactions on cross-taxon congruence in species turnover patterns of plants, moths and beetles.

    Science.gov (United States)

    Duan, Meichun; Liu, Yunhui; Yu, Zhenrong; Baudry, Jacques; Li, Liangtao; Wang, Changliu; Axmacher, Jan C

    2016-04-01

    High cross-taxon congruence in species diversity patterns is essential for the use of surrogate taxa in biodiversity conservation, but presence and strength of congruence in species turnover patterns, and the relative contributions of abiotic environmental factors and biotic interaction towards this congruence, remain poorly understood. In our study, we used variation partitioning in multiple regressions to quantify cross-taxon congruence in community dissimilarities of vascular plants, geometrid and arciinid moths and carabid beetles, subsequently investigating their respective underpinning by abiotic factors and biotic interactions. Significant cross-taxon congruence observed across all taxon pairs was linked to their similar responses towards elevation change. Changes in the vegetation composition were closely linked to carabid turnover, with vegetation structure and associated microclimatic conditions proposed causes of this link. In contrast, moth assemblages appeared to be dominated by generalist species whose turnover was weakly associated with vegetation changes. Overall, abiotic factors exerted a stronger influence on cross-taxon congruence across our study sites than biotic interactions. The weak congruence in turnover observed particularly between plants and moths highlights the importance of multi-taxon approaches based on groupings of taxa with similar turnovers, rather than the use of single surrogate taxa or environmental proxies, in biodiversity assessments.

  10. Interactive biotic and abiotic regulators of soil carbon cycling: evidence from controlled climate experiments on peatland and boreal soils.

    Science.gov (United States)

    Briones, María Jesús I; McNamara, Niall P; Poskitt, Jan; Crow, Susan E; Ostle, Nicholas J

    2014-09-01

    Partially decomposed plant and animal remains have been accumulating in organic soils (i.e. >40% C content) for millennia, making them the largest terrestrial carbon store. There is growing concern that, in a warming world, soil biotic processing will accelerate and release greenhouse gases that further exacerbate climate change. However, the magnitude of this response remains uncertain as the constraints are abiotic, biotic and interactive. Here, we examined the influence of resource quality and biological activity on the temperature sensitivity of soil respiration under different soil moisture regimes. Organic soils were sampled from 13 boreal and peatland ecosystems located in the United Kingdom, Ireland, Spain, Finland and Sweden, representing a natural resource quality range of C, N and P. They were incubated at four temperatures (4, 10, 15 and 20 °C) at either 60% or 100% water holding capacity (WHC). Our results showed that chemical and biological properties play an important role in determining soil respiration responses to temperature and moisture changes. High soil C : P and C : N ratios were symptomatic of slow C turnover and long-term C accumulation. In boreal soils, low bacterial to fungal ratios were related to greater temperature sensitivity of respiration, which was amplified in drier conditions. This contrasted with peatland soils which were dominated by bacterial communities and enchytraeid grazing, resulting in a more rapid C turnover under warmer and wetter conditions. The unexpected acceleration of C mineralization under high moisture contents was possibly linked to the primarily role of fermented organic matter, instead of oxygen, in mediating microbial decomposition. We conclude that to improve C model simulations of soil respiration, a better resolution of the interactions occurring between climate, resource quality and the decomposer community will be required. © 2014 John Wiley & Sons Ltd.

  11. Abiotic stress and antioxidant enzymes expression in sunflower leaf discs

    International Nuclear Information System (INIS)

    Yannarelli, G.G.; Azpilicueta, C.E.; Gallego, S.M.; Benavides, M.P.; Tomaro, M.L.

    2004-01-01

    Full text: Overproduction of reactive oxygen species (ROS) occur in plants under abiotic stress conditions. Although ROS act as mediators of oxidative damage, a signalling role for O 2 - and H 2 O 2 has been proposed. In the present work, the effect of cadmium (300 and 500 μM CdCl 2 ) or UVB radiation (30 KJ/m 2 ) on expression of Cu-Zn superoxide dismutase (sod3) and catalase (cat1 and cat3) was evaluated in sunflower (Helianthus annuus L.) leaf discs. Samples were collected at 0, 4, 8, 12 and 16 h of Cd treatments or white light recuperation after UVB treatment. RNA extractions and semiquantitative RT-PCR analysis were performed. Treatment of 300 μM Cd induced 6.4, 2.9 and 6 fold the expression of sod3, cat1 and cat3 over the controls, respectively, after 8 h of treatment, but 500 μM Cd showed lesser induction levels. Immediately after UVB irradiation, the mRNA of the three enzymes decreased. After 8 h of white light recovery, cat1 and cat3 were induced (1.9 and 3.5 fold, respectively) and the maximum sod3 expression was observed at 12 h (7 fold), respect to control. In conclusion, the balance between superoxide dismutase and peroxidases activities in cells is crucial for determining the steady-state level of O 2 - and H 2 O 2 . In our assay conditions, sod3, cat1 and cat3 were induced in response to abiotic stress at a late phase (8-12 h). The main induction of cat3 suggests that core-catalases of peroxisomes might play a key regulatory role in controlling H 2 O 2 level. (author)

  12. Resilience of cereal crops to abiotic stress: A review

    African Journals Online (AJOL)

    SAM

    2014-07-16

    Jul 16, 2014 ... Key words: Cereal crops, abiotic stresses, food insecurity, molecular breeding, quantitative trait loci (QTLs), salinity, water stress. ... production of genetically modified (GM) crops, exo- genous use of osmo protectants etc. ... stressful environments is important to fulfill food demand of the ever-increasing world ...

  13. STRESS ECOLOGY IN FUCUS : ABIOTIC, BIOTIC AND GENETIC INTERACTIONS

    NARCIS (Netherlands)

    Wahl, Martin; Jormalainen, Veijo; Eriksson, Britas Klemens; Coyer, James A.; Molis, Markus; Schubert, Hendrik; Dethier, Megan; Karez, Rolf; Kruse, Inken; Lenz, Mark; Pearson, Gareth; Rohde, Sven; Wikstrom, Sofia A.; Olsen, Jeanine L.; Lesser, M

    2011-01-01

    Stress regimes defined as the synchronous or sequential action of abiotic and biotic stresses determine the performance and distribution of species. The natural patterns of stress to which species are more or less well adapted have recently started to shift and alter under the influence of global

  14. Metabolite Profiling and Transcript Analysis Reveal Specificities in the Response of a Berry Derived Cell Culture to Abiotic Stresses

    Directory of Open Access Journals (Sweden)

    Biruk eAyenew

    2015-09-01

    Full Text Available As climate changes, there is a need to understand the expected effects on viticulture. In nature, stresses exist in a combined manner, hampering the elucidation of the effect of individual cues on grape berry metabolism. Cell suspension culture originated from pea-size Gamy Red grape berry was used to harness metabolic response to high light (2500 µmol m-2s-1, high temperature (40 0C and their combination in comparison to 25 0C and 100 µmol m-2s-1 under controlled condition. When LC-MS and GC-MS based metabolite profiling was implemented and integrated with targeted RT-qPCR transcript analysis specific responses were observed to the different cues. High light enhanced polyphenol metabolism while high temperature and its combination with high light induced amino acid and organic acid metabolism with additional effect on polyphenols. The trend of increment in TCA cycle genes like ATCs, ACo1 and IDH in the combined treatment might support the observed increment in organic acids, GABA shunt, and their derivatives. The apparent phenylalanine reduction with polyphenol increment under high light suggests enhanced fueling of the precursor towards the downstream phenylpropanoid pathway. In the polyphenol metabolism, a differential pattern of expression of flavonoid 3’,5’ hydroxylase and flavonoid 3’ hydroxylase was observed under high light and combined cues which were accompanied by characteristic metabolite profiles. High temperature decreased glycosylated cyanidin and peonidin forms while the combined cues increased acetylated and coumarylated peonidin forms. Transcription factors regulating anthocyanin metabolism and their methylation, MYB, OMT, UFGT and DFR, were expressed differentially among the treatments, overall in agreement with the metabolite profiles. Taken together these data provide insights into the coordination of central and secondary metabolism in relation to multiple abiotic stresses.

  15. Abiotic synthesis of organic compounds from carbon disulfide under hydrothermal conditions.

    Science.gov (United States)

    Rushdi, Ahmed I; Simoneit, Bernd R T

    2005-12-01

    Abiotic formation of organic compounds under hydrothermal conditions is of interest to bio, geo-, and cosmochemists. Oceanic sulfur-rich hydrothermal systems have been proposed as settings for the abiotic synthesis of organic compounds. Carbon disulfide is a common component of magmatic and hot spring gases, and is present in marine and terrestrial hydrothermal systems. Thus, its reactivity should be considered as another carbon source in addition to carbon dioxide in reductive aqueous thermosynthesis. We have examined the formation of organic compounds in aqueous solutions of carbon disulfide and oxalic acid at 175 degrees C for 5 and 72 h. The synthesis products from carbon disulfide in acidic aqueous solutions yielded a series of organic sulfur compounds. The major compounds after 5 h of reaction included dimethyl polysulfides (54.5%), methyl perthioacetate (27.6%), dimethyl trithiocarbonate (6.8%), trithianes (2.7%), hexathiepane (1.4%), trithiolanes (0.8%), and trithiacycloheptanes (0.3%). The main compounds after 72 h of reaction consisted of trithiacycloheptanes (39.4%), pentathiepane (11.6%), tetrathiocyclooctanes (11.5%), trithiolanes (10.6%), tetrathianes (4.4%), trithianes (1.2%), dimethyl trisulfide (1.1%), and numerous minor compounds. It is concluded that the abiotic formation of aliphatic straight-chain and cyclic polysulfides is possible under hydrothermal conditions and warrants further studies.

  16. Elucidating the Role of Carbon Sources on Abiotic and Biotic Release of Arsenic into Cambodian Aquifers

    Science.gov (United States)

    Koeneke, M.

    2017-12-01

    Arsenic (As) is a naturally occurring contaminant in Cambodia that has been contaminating well-water sources of millions of people. Commonly, studies look into the biotic factors that cause the arsenic to be released from aquifer sediments to groundwater. However, abiotic release of As from sediments, though little studied, may also play key roles in As contamination of well water. The goal of this research is to quantitatively compare organic-carbon mediated abiotic and biotic release of arsenic from sediments to groundwater. Batch anaerobic incubation experiments under abiotic (sodium azide used to immobilize microbes) and biotic conditions were conducted using Cambodian aquifer sediments, four different organic carbon sources (sodium lactate, sodium citrate, sodium oxalate, and humic acid), and six different carbon concentrations (0, 1, 2.5, 5, 10, 25mg C/L). Dissolved arsenic, iron(Fe), and manganese(Mn) concentrations in the treatments were measured 112 days . In addition, sediment and solution carbon solution was measured . Collectively, these show how different carbon sources, different carbon concentrations, and how abiotic and biotic factors impact the release of arsenic from Cambodian sediments into aquifers. Overall, an introduction of organic carbon to the soil increases the amount of As released from the sediment. The biotic + abiotic and abiotic conditions seemed to play a minimal role in the amount of As released. Dissolved species analysis showed us that 100% of the As was As(V), Our ICP-MS results vary due to the heterogeneity of samples, but when high levels are Fe are seen in solution, we also see high levels of As. We also see higher As concentrations when there is a smaller amount of Mn in solution.

  17. Constraint Differentiation

    DEFF Research Database (Denmark)

    Mödersheim, Sebastian Alexander; Basin, David; Viganò, Luca

    2010-01-01

    We introduce constraint differentiation, a powerful technique for reducing search when model-checking security protocols using constraint-based methods. Constraint differentiation works by eliminating certain kinds of redundancies that arise in the search space when using constraints to represent...... results show that constraint differentiation substantially reduces search and considerably improves the performance of OFMC, enabling its application to a wider class of problems....

  18. Genome-wide analysis of heat shock proteins in C4 model, foxtail millet identifies potential candidates for crop improvement under abiotic stress.

    Science.gov (United States)

    Singh, Roshan Kumar; Jaishankar, Jananee; Muthamilarasan, Mehanathan; Shweta, Shweta; Dangi, Anand; Prasad, Manoj

    2016-09-02

    Heat shock proteins (HSPs) perform significant roles in conferring abiotic stress tolerance to crop plants. In view of this, HSPs and their encoding genes were extensively characterized in several plant species; however, understanding their structure, organization, evolution and expression profiling in a naturally stress tolerant crop is necessary to delineate their precise roles in stress-responsive molecular machinery. In this context, the present study has been performed in C4 panicoid model, foxtail millet, which resulted in identification of 20, 9, 27, 20 and 37 genes belonging to SiHSP100, SiHSP90, SiHSP70, SiHSP60 and SisHSP families, respectively. Comprehensive in silico characterization of these genes followed by their expression profiling in response to dehydration, heat, salinity and cold stresses in foxtail millet cultivars contrastingly differing in stress tolerance revealed significant upregulation of several genes in tolerant cultivar. SisHSP-27 showed substantial higher expression in response to heat stress in tolerant cultivar, and its over-expression in yeast system conferred tolerance to several abiotic stresses. Methylation analysis of SiHSP genes suggested that, in susceptible cultivar, higher levels of methylation might be the reason for reduced expression of these genes during stress. Altogether, the study provides novel clues on the role of HSPs in conferring stress tolerance.

  19. Overexpression of an abiotic-stress inducible plant protein in the ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-09-17

    Sep 17, 2008 ... the universal stress hormone, is supplied in the culture ... various abiotic stress like water deficit, high salinity and low temperature or exogenous ... period in a plant growth chamber (NIPPON, LHP-100-RDS, Tokyo,. Japan).

  20. Abiotic factors drives floristic variations of fern’s metacommunity in an Atlantic Forest remnant

    OpenAIRE

    L. E. N. Costa; R. P. Farias; A. C. P. Santiago; I. A. A. Silva; I. C. L. Barros

    2018-01-01

    Abstract We analyzed floristic variations in fern’s metacommunity at the local scale and their relationship with abiotic factors in an Atlantic Forest remnant of northeastern Brazil. Floristic and environmental variations were accessed on ten plots of 10 × 20 m. We performed cluster analyses, based on Bray-Curtis dissimilarity index to establish the floristic relationship. The influence of abiotic factors: luminosity, temperature, relative air humidity and relative soil moisture was evaluated...

  1. Constraint-based scheduling applying constraint programming to scheduling problems

    CERN Document Server

    Baptiste, Philippe; Nuijten, Wim

    2001-01-01

    Constraint Programming is a problem-solving paradigm that establishes a clear distinction between two pivotal aspects of a problem: (1) a precise definition of the constraints that define the problem to be solved and (2) the algorithms and heuristics enabling the selection of decisions to solve the problem. It is because of these capabilities that Constraint Programming is increasingly being employed as a problem-solving tool to solve scheduling problems. Hence the development of Constraint-Based Scheduling as a field of study. The aim of this book is to provide an overview of the most widely used Constraint-Based Scheduling techniques. Following the principles of Constraint Programming, the book consists of three distinct parts: The first chapter introduces the basic principles of Constraint Programming and provides a model of the constraints that are the most often encountered in scheduling problems. Chapters 2, 3, 4, and 5 are focused on the propagation of resource constraints, which usually are responsibl...

  2. [Inhibitors of proteolytic enzymes under abiotic stresses in plants (review)].

    Science.gov (United States)

    Mosolov, V V; Valueva, T A

    2011-01-01

    Data on the role of proteolytic enzyme inhibitors in plant adaptation to various unfavorable environmental abiotic factors--water deficiency, salinization of soil, extreme temperatures, etc.--and also probable functions of proteinases inhibitors in natural plant senescense are considered.

  3. An Expressed Sequence Tag Analysis of the Intertidal Brown Seaweeds Fucus serratus (L.) and F. vesiculosus (L.) (Heterokontophyta, Phaeophyceae) in Response to Abiotic Stressors

    NARCIS (Netherlands)

    Pearson, Gareth A.; Hoarau, Galice; Lago-Leston, Asuncion; Coyer, James A.; Kube, Michael; Reinhardt, Richard; Henckel, Kolja; Serrao, Ester T. A.; Corre, Erwan; Olsen, Jeanine L.

    In order to aid gene discovery and uncover genes responding to abiotic stressors in stress-tolerant brown algae of the genus Fucus, expressed sequence tags (ESTs) were studied in two species, Fucus serratus and Fucus vesiculosus. Clustering of over 12,000 ESTs from three libraries for heat

  4. Abiotic factors influencing tropical dry forests regeneration

    Directory of Open Access Journals (Sweden)

    Ceccon Eliane

    2006-01-01

    Full Text Available Tropical dry forests represent nearly half the tropical forests in the world and are the ecosystems registering the greatest deterioration from the anthropogenic exploitation of the land. This paper presents a review on the dynamics of tropical dry forests regeneration and the main abiotic factors influencing this regeneration, such as seasonal nature, soil fertility and humidity, and natural and anthropic disturbances. The main purpose is to clearly understand an important part of TDF succession dynamics.

  5. Financial Constraints and Nominal Price Rigidities

    DEFF Research Database (Denmark)

    Menno, Dominik Francesco; Balleer, Almut; Hristov, Nikolay

    This paper investigates how financial market imperfections and the frequency of price adjustment interact. Based on new firm-level evidence for Germany, we document that financially constrained firms adjust prices more often than their unconstrained counterparts, both upwards and downwards. We show...... that these empirical patterns are consistent with a partial equilibrium menu-cost model with a working capital constraint. We then use the model to show how the presence of financial frictions changes profits and the price distribution of firms compared to a model without financial frictions. Our results suggest...... that tighter financial constraints are associated with higher nominal rigidities, higher prices and lower output. Moreover, in response to aggregate shocks, aggregate price rigidity moves substantially, the response of inflation is dampened, while output reacts more in the presence of financial frictions...

  6. Characterization and comparison of iron oxyhydroxide precipitates from biotic and abiotic groundwater treatments

    DEFF Research Database (Denmark)

    Arturi, Katarzyna R.; Bender Koch, Christian; Søgaard, Erik G.

    2017-01-01

    Removal of iron is an important step in groundwater treatment for drinking water production. It is performed to prevent organoleptic issues and clogging in water supply systems. Iron can be eliminated with a purely physico-chemical (abiotic) method or biotically with the help of iron......-oxidizing bacteria (FeOB). Each of the purification methods requires different operating conditions and results in formation of iron oxyhydroxide (FeOOH) precipitates. Knowledge about the differences in composition and properties of the biotic and abiotic precipitates is desirable from a technical, but also...

  7. Quantifying Components of Soil Respiration and Their Response to Abiotic Factors in Two Typical Subtropical Forest Stands, Southwest China

    Science.gov (United States)

    Yu, Lei; Wang, Yujie; Wang, Yunqi; Sun, Suqi; Liu, Liziyuan

    2015-01-01

    Separating the components of soil respiration and understanding the roles of abiotic factors at a temporal scale among different forest types are critical issues in forest ecosystem carbon cycling. This study quantified the proportions of autotrophic (R A) and heterotrophic (R H) in total soil (R T) respiration using trenching and litter removal. Field studies were conducted in two typical subtropical forest stands (broadleaf and needle leaf mixed forest; bamboo forest) at Jinyun Mountain, near the Three Georges Reservoir in southwest China, during the growing season (Apr.–Sep.) from 2010 to 2012. The effects of air temperature (AT), soil temperature (ST) and soil moisture (SM) at 6cm depth, solar radiation (SR), pH on components of soil respiration were analyzed. Results show that: 1) SR, AT, and ST exhibited a similar temporal trend. The observed abiotic factors showed slight interannual variability for the two forest stands. 2) The contributions of R H and R A to R T for broadleaf and needle leaf mixed forest were 73.25% and 26.75%, respectively, while those for bamboo forest were 89.02% and 10.98%, respectively; soil respiration peaked from June to July. In both stands, CO2 released from the decomposition of soil organic matter (SOM), the strongest contributor to R T, accounted for over 63% of R H. 3) AT and ST were significantly positively correlated with R T and its components (psoil respiration. 4) Components of soil respiration were significantly different between two forest stands (psoil respiration and its components. PMID:25680112

  8. MICROSCALE METABOLIC, REDOX AND ABIOTIC REACTIONS IN HANFORD 300 AREA SUBSURFACE SEDIMENTS

    Energy Technology Data Exchange (ETDEWEB)

    Beyenal, Haluk [WSU; McLEan, Jeff [JCVI; Majors, Paul [PNNL; Fredrickson, Jim [PNNL

    2013-11-14

    The Hanford 300 Area is a unique site due to periodic hydrologic influence of river water resulting in changes in groundwater elevation and flow direction. This area is also highly subject to uranium remobilization, the source of which is currently believed to be the region at the base of the vadose zone that is subject to period saturation due to the changes in the water levels in the Columbia River. We found that microbial processes and redox and abiotic reactions which operate at the microscale were critical to understanding factors controlling the macroscopic fate and transport of contaminants in the subsurface. The combined laboratory and field research showed how microscale conditions control uranium mobility and how biotic, abiotic and redox reactions relate to each other. Our findings extended the current knowledge to examine U(VI) reduction and immobilization using natural 300 Area communities as well as selected model organisms on redox-sensitive and redox-insensitive minerals. Using innovative techniques developed specifically to probe biogeochemical processes at the microscale, our research expanded our current understanding of the roles played by mineral surfaces, bacterial competition, and local biotic, abiotic and redox reaction rates on the reduction and immobilization of uranium.

  9. SERDP ER-1421 Abiotic and Biotic Mechanisms Controlling In Situ Remediation of NDMA: Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Szecsody, James E.; McKinley, James P.; Crocker, Fiona H.; Breshears, Andrew T.; Devary, Brooks J.; Fredrickson, Herbert L.; Thompson, Karen T.

    2009-09-30

    This laboratory-scale project was initiated to investigate in situ abiotic/biotic mineralization of NDMA. Under iron-reducing conditions, aquifer sediments showed rapid abiotic NDMA degradation to dimethylamine (DMA), nitrate, formate, and finally, CO2. These are the first reported experiments of abiotic NDMA mineralization. The NDMA reactivity of these different iron phases showed that adsorbed ferrous iron was the dominant reactive phase that promoted NDMA reduction, and other ferrous phases present (siderite, iron sulfide, magnetite, structural ferrous iron in 2:1 clays) did not promote NDMA degradation. In contrast, oxic sediments that were biostimulated with propane promoted biomineralization of NDMA by a cometabolic monooxygenase enzyme process. Other monooxygenase enzyme processes were not stimulated with methane or toluene additions, and acetylene addition did not block mineralization. Although NDMA mineralization extent was the highest in oxic, biostimulated sediments (30 to 82%, compared to 10 to 26% for abiotic mineralization in reduced sediments), large 1-D column studies (high sediment/water ratio of aquifers) showed 5.6 times higher NDMA mineralization rates in reduced sediment (half-life 410 ± 147 h) than oxic biomineralization (half life 2293 ± 1866 h). Sequential reduced/oxic biostimulated sediment mineralization (half-life 3180 ± 1094 h) was also inefficient compared to reduced sediment. These promising laboratory-scale results for NDMA mineralization should be investigated at field scale. Future studies of NDMA remediation should focus on the comparison of this in situ abiotic NDMA mineralization (iron-reducing environments) to ex situ biomineralization, which has been shown successful in other studies.

  10. Respective contribution of CML8 and CML9, two arabidopsis calmodulin-like proteins, to plant stress responses.

    Science.gov (United States)

    Zhu, Xiaoyang; Perez, Manon; Aldon, Didier; Galaud, Jean-Philippe

    2017-05-04

    In their natural environment, plants have to continuously face constraints such as biotic and abiotic stresses. To achieve their life cycle, plants have to perceive and interpret the nature, but also the strength of environmental stimuli to activate appropriate physiological responses. Nowadays, it is well established that signaling pathways are crucial steps in the implementation of rapid and efficient plant responses such as genetic reprogramming. It is also reported that rapid raises in calcium (Ca 2+ ) levels within plant cells participate in these early signaling steps and are essential to coordinate adaptive responses. However, to be informative, calcium increases need to be decoded and relayed by calcium-binding proteins also referred as calcium sensors to carry-out the appropriate responses. In a recent study, we showed that CML8, an Arabidopsis calcium sensor belonging to the calmodulin-like (CML) protein family, promotes plant immunity against the phytopathogenic bacteria Pseudomonas syringae pv tomato (strain DC3000). Interestingly, other CML proteins such as CML9 were also reported to contribute to plant immunity using the same pathosystem. In this addendum, we propose to discuss about the specific contribution of these 2 CMLs in stress responses.

  11. Simultaneous influence of indigenous microorganism along with abiotic factors controlling arsenic mobilization in Brahmaputra floodplain, India

    Science.gov (United States)

    Sathe, Sandip S.; Mahanta, Chandan; Mishra, Pushpanjali

    2018-06-01

    In the dynamic cycling of oxic and anoxic aqueous alluvial aquifer environments, varying Arsenic (As) concentrations are controlled by both abiotic and biotic factors. Studies have shown a significant form of toxic As (III) being released through the reductive dissolution of iron-oxy/hydroxide minerals and microbial reduction mechanisms, which leads to a serious health concern. The present study was performed in order to assess the abiotic and biotic factors influencing As release into the alluvial aquifer groundwater in Brahmaputra floodplain, India. The groundwater chemistry, characterization of the sediments, isolation, identification and characterization of prominent As releasing indigenous bacterium were conducted. The measured solid and liquid phases of total As concentration were ranged between 0.02 and 17.2 mg kg-1 and 8 to 353 μg L-1, respectively. The morphology and mineralogy showed the presence of detrital and authigenic mineral assemblages whereas primary and secondary As bearing Realgar and Claudetite minerals were identified, respectively. Furthermore, significant non-labile As fraction was found associated with the amorphous oxides of Fe, Mn and Al. The observed groundwater chemistry and sediment color, deduced a sub-oxic reducing aquifer conditions in As-contaminated regions. In addition, 16S rDNA sequencing results of the isolated bacterium showed the prominent Pseudomonas aeruginosa responsible for the mobilization of As, reducing condition, biomineralization and causing grey color to the sediments at the shallower and deeper aquifers in the study area. These findings suggest that microbial metabolic activities are equally responsible in iron-oxy/hydroxide reductive dissolution, controlling As mobilization in dynamic fluvial flood plains.

  12. Silencing of dehydrin CaDHN1 diminishes tolerance to multiple abiotic stresses in Capsicum annuum L.

    Science.gov (United States)

    Chen, Ru-gang; Jing, Hua; Guo, Wei-li; Wang, Shu-Bin; Ma, Fang; Pan, Bao-Gui; Gong, Zhen-Hui

    2015-12-01

    We cloned a dehydrins gene CaDHN1 from pepper and the expression of CaDHN1 was markedly upregulated by cold, salt, osmotic stresses and salicylic acid (SA) treatment. Dehydrins (DHNs) are a subfamily of group 2 late embryogenesis-abundant (LEA) proteins that are thought to play an important role in enhancing abiotic stress tolerance in plants. In this study, a DHN EST (Expressed Sequence Tag) was obtained from 6 to 8 true leaves seedlings of pepper cv P70 (Capsicum annuum L.) by our laboratory. However, the DHN gene in pepper was not well characterized. According to this EST sequence, we isolated a DHN gene, designated as CaDHN1, and investigated the response and expression of this gene under various stresses. Our results indicated that CaDHN1 has the DHN-specific and conserved K- and S- domain and encodes 219 amino acids. Phylogenetic analysis showed that CaDHN1 belonged to the SKn subgroup. Tissue expression profile analysis revealed that CaDH N1 was expressed predominantly in fruits and flowers. The expression of CaDHN1 was markedly upregulated in response to cold, salt, osmotic stresses and salicylic acid (SA) treatment, but no significant change by abscisic acid (ABA) and heavy metals treatment. Loss of function of CaDHN1 using the virus-induced gene silencing (VIGS) technique led to decreased tolerance to cold-, salt- and osmotic-induced stresses. Overall, these results suggest that CaDHN1 plays an important role in regulating the abiotic stress resistance in pepper plants.

  13. Generation of RNA in abiotic conditions.

    Science.gov (United States)

    di Mauro, Ernesto

    Generation of RNA in abiotic conditions. Ernesto Di Mauro Dipartimento di Genetica Bi-ologia Molecolare, Universit` "Sapienza" Roma, Italy. a At least four conditions must be satisfied for the spontaneous generation of (pre)-genetic poly-mers: 1) availability of precursors that are activated enough to spontaneously polymerize. Preliminary studies showed that (a) nucleic bases and acyclonucleosides can be synthesized from formamide H2NCOH by simply heating with prebiotically available mineral catalysts [last reviewed in (1)], and that b) nucleic bases can be phosphorylated in every possible posi-tion [2'; 3'; 5'; cyclic 2',3'; cyclic 3',5' (2)]. The higher stability of the cyclic forms allows their accumulation. 2) A polymerization mechanism. A reaction showing the formation of RNA polymers starting from prebiotically plausible precursors (3',5' cyclic GMP and 3', 5'cyclic AMP) was recently reported (3). Polymerization in these conditions is thermodynamically up-hill and an equilibrium is attained that limits the maximum length of the polymer produced to about 40 nucleotides for polyG and 100 nucleotides for polyA. 3) Ligation of the synthesized oligomers. If this type of reaction could occur according to a terminal-joining mechanism and could generate canonical 3',5' phosphodiester bonds, exponential growth would be obtained of the generated oligomers. This type of reaction has been reported (4) , limited to homogeneous polyA sequences and leading to the production of polyA dimers and tetramers. What is still missing are: 4) mechanisms that provide the proof of principle for the generation of sequence complexity. We will show evidence for two mechanisms providing this proof of principle for simple complementary sequences. Namely: abiotic sequence complementary-driven terminal ligation and sequence-complementary terminal growth. In conclusion: all the steps leading to the generation of RNA in abiotic conditions are satisfied. (1) R Saladino, C Crestini, F

  14. At limits of life: multidisciplinary insights reveal environmental constraints on biotic diversity in continental Antarctica.

    Directory of Open Access Journals (Sweden)

    Catarina Magalhães

    Full Text Available Multitrophic communities that maintain the functionality of the extreme Antarctic terrestrial ecosystems, while the simplest of any natural community, are still challenging our knowledge about the limits to life on earth. In this study, we describe and interpret the linkage between the diversity of different trophic level communities to the geological morphology and soil geochemistry in the remote Transantarctic Mountains (Darwin Mountains, 80°S. We examined the distribution and diversity of biota (bacteria, cyanobacteria, lichens, algae, invertebrates with respect to elevation, age of glacial drift sheets, and soil physicochemistry. Results showed an abiotic spatial gradient with respect to the diversity of the organisms across different trophic levels. More complex communities, in terms of trophic level diversity, were related to the weakly developed younger drifts (Hatherton and Britannia with higher soil C/N ratio and lower total soluble salts content (thus lower conductivity. Our results indicate that an increase of ion concentration from younger to older drift regions drives a succession of complex to more simple communities, in terms of number of trophic levels and diversity within each group of organisms analysed. This study revealed that integrating diversity across multi-trophic levels of biotic communities with abiotic spatial heterogeneity and geological history is fundamental to understand environmental constraints influencing biological distribution in Antarctic soil ecosystems.

  15. AsHSP17, a creeping bentgrass small heat shock protein modulates plant photosynthesis and ABA-dependent and independent signalling to attenuate plant response to abiotic stress.

    Science.gov (United States)

    Sun, Xinbo; Sun, Chunyu; Li, Zhigang; Hu, Qian; Han, Liebao; Luo, Hong

    2016-06-01

    Heat shock proteins (HSPs) are molecular chaperones that accumulate in response to heat and other abiotic stressors. Small HSPs (sHSPs) belong to the most ubiquitous HSP subgroup with molecular weights ranging from 12 to 42 kDa. We have cloned a new sHSP gene, AsHSP17 from creeping bentgrass (Agrostis stolonifera) and studied its role in plant response to environmental stress. AsHSP17 encodes a protein of 17 kDa. Its expression was strongly induced by heat in both leaf and root tissues, and by salt and abscisic acid (ABA) in roots. Transgenic Arabidopsis plants constitutively expressing AsHSP17 exhibited enhanced sensitivity to heat and salt stress accompanied by reduced leaf chlorophyll content and decreased photosynthesis under both normal and stressed conditions compared to wild type. Overexpression of AsHSP17 also led to hypersensitivity to exogenous ABA and salinity during germination and post-germinative growth. Gene expression analysis indicated that AsHSP17 modulates expression of photosynthesis-related genes and regulates ABA biosynthesis, metabolism and ABA signalling as well as ABA-independent stress signalling. Our results suggest that AsHSP17 may function as a protein chaperone to negatively regulate plant responses to adverse environmental stresses through modulating photosynthesis and ABA-dependent and independent signalling pathways. © 2015 John Wiley & Sons Ltd.

  16. AtchitIV gene expression is stimulated under abiotic stresses and is spatially and temporally regulated during embryo development

    Directory of Open Access Journals (Sweden)

    Liliane B. de A. Gerhardt

    2004-01-01

    Full Text Available The expression of AtchitIV gene was analysed in Arabidopsis plants submitted to abiotic stresses. Transcript accumulation was detected in leaves in response to UV light exposure, exogenous salicylic acid administration and wounding. Transgenic Arabidopsis plants carrying AtchitIV promoter::gus fusion also showed differential expression of the reporter gene in response to these treatments. The AtchitIV expression was also analysed during Arabidopsis embryo development. GUS assay demonstrated AtchitIV promoter activation in zygotic embryos from torpedo stage up to full maturation. Promoter deletion analysis indicated that all the 5' cis-acting elements responsible for the specific tissue expression are located in a region of 1083 bp, adjacent to the start of transcription. A negative regulatory region located between portions -1083 and -600 was also observed.

  17. ROS-mediated abiotic stress-induced programmed cell death in plants

    NARCIS (Netherlands)

    Petrov, Veselin; Hille, Jacob; Mueller-Rober, Bernd; Gechev, Tsanko S.

    2015-01-01

    During the course of their ontogenesis plants are continuously exposed to a large variety of abiotic stress factors which can damage tissues and jeopardize the survival of the organism unless properly countered. While animals can simply escape and thus evade stressors, plants as sessile organisms

  18. Characterization of Arabidopsis thaliana FLAVONOL SYNTHASE 1 (FLS1) -overexpression plants in response to abiotic stress.

    Science.gov (United States)

    Nguyen, Nguyen Hoai; Kim, Jun Hyeok; Kwon, Jaeyoung; Jeong, Chan Young; Lee, Wonje; Lee, Dongho; Hong, Suk-Whan; Lee, Hojoung

    2016-06-01

    Flavonoids are an important group of secondary metabolites that are involved in plant growth and contribute to human health. Many studies have focused on the biosynthesis pathway, biochemical characters, and biological functions of flavonoids. In this report, we showed that overexpression of FLS1 (FLS1-OX) not only altered seed coat color (resulting in a light brown color), but also affected flavonoid accumulation. Whereas fls1-3 mutants accumulated higher anthocyanin levels, FLS1-OX seedlings had lower levels than those of the wild-type. Besides, shoot tissues of FLS1-OX plants exhibited lower flavonol levels than those of the wild-type. However, growth performance and abiotic stress tolerance of FLS1-OX, fls1-3, and wild-type plants were not significantly different. Taken together, FLS1 can be manipulated (i.e., silenced or overexpressed) to redirect the flavonoid biosynthetic pathway toward anthocyanin production without negative effects on plant growth and development. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  19. Effect of plant growth hormones and abiotic stresses on germination ...

    African Journals Online (AJOL)

    Phosphatases are widely found in plants having intracellular and extracellular activities. Phosphatases are believed to be important for phosphorous scavenging and remobilization in plants, but its role in adaptation to abiotic stresses and growth hormones at germination level has not been critically evaluated. To address ...

  20. SiASR4, the Target Gene of SiARDP from Setaria italica, Improves Abiotic Stress Adaption in Plants.

    Science.gov (United States)

    Li, Jianrui; Dong, Yang; Li, Cong; Pan, Yanlin; Yu, Jingjuan

    2016-01-01

    Drought and other types of abiotic stresses negatively affect plant growth and crop yields. The abscisic acid-, stress-, and ripening-induced (ASR) proteins play important roles in the protection of plants against abiotic stress. However, the regulatory pathway of the gene encoding this protein remains to be elucidated. In this study, the foxtail millet ( Setaria italica ) ASR gene, SiASR4 , was cloned and characterized. SiASR4 localized to the cell nucleus, cytoplasm and cytomembrane, and the protein contained 102 amino acids, including an ABA/WDS (abscisic acid/water-deficit stress) domain, with a molecular mass of 11.5 kDa. The abundance of SiASR4 transcripts increased after treatment with ABA, NaCl, and PEG in foxtail millet seedlings. It has been reported that the S. italica ABA-responsive DRE-binding protein (SiARDP) binds to a DNA sequence with a CCGAC core and that there are five dehydration-responsive element (DRE) motifs within the SiASR4 promoter. Our analyses demonstrated that the SiARDP protein could bind to the SiASR4 promoter in vitro and in vivo . The expression of SiASR4 increased in SiARDP -overexpressing plants. SiASR4 -transgenic Arabidopsis and SiASR4 -overexpressing foxtail millet exhibited enhanced tolerance to drought and salt stress. Furthermore, the transcription of stress-responsive and reactive oxygen species (ROS) scavenger-associated genes was activated in SiASR4 transgenic plants. Together, these findings show that SiASR4 functions in the adaption to drought and salt stress and is regulated by SiARDP via an ABA-dependent pathway.

  1. Progress and challenges for abiotic stress proteomics of crop plants.

    Science.gov (United States)

    Barkla, Bronwyn J; Vera-Estrella, Rosario; Pantoja, Omar

    2013-06-01

    Plants are continually challenged to recognize and respond to adverse changes in their environment to avoid detrimental effects on growth and development. Understanding the mechanisms that crop plants employ to resist and tolerate abiotic stress is of considerable interest for designing agriculture breeding strategies to ensure sustainable productivity. The application of proteomics technologies to advance our knowledge in crop plant abiotic stress tolerance has increased dramatically in the past few years as evidenced by the large amount of publications in this area. This is attributed to advances in various technology platforms associated with MS-based techniques as well as the accessibility of proteomics units to a wider plant research community. This review summarizes the work which has been reported for major crop plants and evaluates the findings in context of the approaches that are widely employed with the aim to encourage broadening the strategies used to increase coverage of the proteome. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Biotic and a-biotic Mn and Fe cycling in deep sediments across a gradient of sulfate reduction rates along the California margin

    Science.gov (United States)

    Schneider-Mor, A.; Steefel, C.; Maher, K.

    2011-12-01

    The coupling between the biological and a-biotic processes controlling trace metals in deep marine sediments are not well understood, although the fluxes of elements and trace metals across the sediment-water interface can be a major contribution to ocean water. Four marine sediment profiles (ODP leg 167 sites 1011, 1017, 1018 and 1020)were examined to evaluate and quantify the biotic and abiotic reaction networks and fluxes that occur in deep marine sediments. We compared biogeochemical processes across a gradient of sulfate reduction (SR) rates with the objective of studying the processes that control these rates and how they affect major elements as well as trace metal redistribution. The rates of sulfate reduction, methanogenesis and anaerobic methane oxidation (AMO) were constrained using a multicomponent reactive transport model (CrunchFlow). Constraints for the model include: sediment and pore water concentrations, as well as %CaCO3, %biogenic silica, wt% carbon and δ13C of total organic carbon (TOC), particulate organic matter (POC) and mineral associated carbon (MAC). The sites are distinguished by the depth of AMO: a shallow zone is observed at sites 1018 (9 to 19 meters composite depth (mcd)) and 1017 (19 to 30 mcd), while deeper zones occur at sites 1011 (56 to 76 mcd) and 1020 (101 to 116 mcd). Sulfate reduction rates at the shallow AMO sites are on the order 1x10-16 mol/L/yr, much faster than rates in the deeper zone sulfate reduction (1-3x10-17 mol/L/yr), as expected. The dissolved metal ion concentrations varied between the sites, with Fe (0.01-7 μM) and Mn (0.01-57 μM) concentrations highest at Site 1020 and lowest at site 1017. The highest Fe and Mn concentrations occurred at various depths, and were not directly correlated with the rates of sulfate reduction and the maximum alkalinity values. The main processes that control cycling of Fe are the production of sulfide from sulfate reduction and the distribution of Fe-oxides. The Mn distribution

  3. A nonspecific Setaria italica lipid transfer protein gene plays a critical role under abiotic stress

    Directory of Open Access Journals (Sweden)

    Yanlin Pan

    2016-11-01

    Full Text Available Lipid transfer proteins (LTPs are a class of cysteine-rich soluble proteins having small molecular weights. LTPs participate in flower and seed development, cuticular wax deposition, also play important roles in pathogen and abiotic stress responses. A nonspecific LTP gene (SiLTP was isolated from a foxtail millet (Setaria italica suppression subtractive hybridization (SSH library enriched for differentially expressed genes after abiotic stress treatments. A semi-quantitative reverse transcriptase PCR analysis showed that SiLTP was expressed in all foxtail millet tissues. Additionally, the SiLTP promoter drove GUS expression in root tips, stems, leaves, flowers and siliques of transgenic Arabidopsis. Quantitative real-time PCR indicated that the SiLTP expression was induced by NaCl, polyethylene glycol and abscisic acid. SiLTP was localized in the cytoplasm of tobacco leaf epidermal cells and maize protoplasts. The ectopic expression of SiLTP in tobacco resulted in higher levels of salt and drought tolerance than in the wild type (WT. To further assess the function of SiLTP, SiLTP overexpression (OE and RNA interference (RNAi-based transgenic foxtail millet were obtained. SiLTP-OE lines performed better under salt and drought stresses compared with WT plants. In contrast, the RNAi lines were much more sensitive to salt and drought compared than WT. Electrophoretic mobility shift assays and yeast one-hybrids indicated that the transcription factor (TF ABA-responsive DRE-binding protein (SiARDP could bind to the dehydration-responsive element of SiLTP promoter in vitro and in vivo, respectively. Moreover, the SiLTP expression levels were higher in SiARDP-OE plants compared than the WT. These results confirmed that SiLTP plays important roles in improving salt and drought stress tolerance of foxtail millet, and may partly be up-regulated by SiARDP. SiLTP may provide an effective genetic resource for molecular breeding in crops to enhance salt and

  4. Improved tolerance to various abiotic stresses in transgenic sweet potato (Ipomoea batatas expressing spinach betaine aldehyde dehydrogenase.

    Directory of Open Access Journals (Sweden)

    Weijuan Fan

    Full Text Available Abiotic stresses are critical delimiters for the increased productivity and cultivation expansion of sweet potato (Ipomoea batatas, a root crop with worldwide importance. The increased production of glycine betaine (GB improves plant tolerance to various abiotic stresses without strong phenotypic changes, providing a feasible approach to improve stable yield production under unfavorable conditions. The gene encoding betaine aldehyde dehydrogenase (BADH is involved in the biosynthesis of GB in plants, and the accumulation of GB by the heterologous overexpression of BADH improves abiotic stress tolerance in plants. This study is to improve sweet potato, a GB accumulator, resistant to multiple abiotic stresses by promoted GB biosynthesis. A chloroplastic BADH gene from Spinacia oleracea (SoBADH was introduced into the sweet potato cultivar Sushu-2 via Agrobacterium-mediated transformation. The overexpression of SoBADH in the transgenic sweet potato improved tolerance to various abiotic stresses, including salt, oxidative stress, and low temperature. The increased BADH activity and GB accumulation in the transgenic plant lines under normal and multiple environmental stresses resulted in increased protection against cell damage through the maintenance of cell membrane integrity, stronger photosynthetic activity, reduced reactive oxygen species (ROS production, and induction or activation of ROS scavenging by the increased activity of free radical-scavenging enzymes. The increased proline accumulation and systemic upregulation of many ROS-scavenging genes in stress-treated transgenic plants also indicated that GB accumulation might stimulate the ROS-scavenging system and proline biosynthesis via an integrative mechanism. This study demonstrates that the enhancement of GB biosynthesis in sweet potato is an effective and feasible approach to improve its tolerance to multiple abiotic stresses without causing phenotypic defects. This strategy for trait

  5. Responses of grafted tomato (Solanum lycopersiocon L. to abiotic stresses in Saudi Arabia

    Directory of Open Access Journals (Sweden)

    Abdulaziz Al-Harbi

    2017-09-01

    Full Text Available Quantity and quality of irrigation water are considered the most imperative limiting factors for plant production in arid environment. Adoptions of strategies can minimize crop water consumption while nonexistent yield reduction is considered challenge for scholars especially in arid environment. Grafting is regarded as a promising tool to avoid or reduce yield loss caused by abiotic stresses. Tomato (Solanum lycopersium Mill., commercial cultivar Faridah was grafted on Unifort rootstock and grown under regulated deficit irrigation (RDI (100%, 80% and 60% ETc, using two types of irrigation water, fresh (EC = 0.86 dS/m and brackish (EC = 3.52 dS/m. The effects of grafting and RDI on water use efficiency, vegetative growth, yield, fruit quality were investigated. Plant vegetative growth was reduced under water and salinity stresses. Grafting the plant significantly improves the vegetative growth under both conditions. The results showed that crop yield, Ca+2 and K+ were considerably increased in grafted tomato compared to non-grafted plants under water and salinity stresses. Grafted tomato plants accumulated less Na+ and Cl−, especially under high levels of salinity compared to non-grafted plants. Grafting tomato plants showed a slight decrease on the fruit quality traits such as vitamin C, titratable acidity (TA and total soluble solids (TSS. This study confirmed that grafted tomato plants can mitigate undesirable impact of salt stress on growth and fruit quality.

  6. Managing phenol contents in crop plants by phytochemical farming and breeding-visions and constraints.

    Science.gov (United States)

    Treutter, Dieter

    2010-03-02

    Two main fields of interest form the background of actual demand for optimized levels of phenolic compounds in crop plants. These are human health and plant resistance to pathogens and to biotic and abiotic stress factors. A survey of agricultural technologies influencing the biosynthesis and accumulation of phenolic compounds in crop plants is presented, including observations on the effects of light, temperature, mineral nutrition, water management, grafting, elevated atmospheric CO(2), growth and differentiation of the plant and application of elicitors, stimulating agents and plant activators. The underlying mechanisms are discussed with respect to carbohydrate availability, trade-offs to competing demands as well as to regulatory elements. Outlines are given for genetic engineering and plant breeding. Constraints and possible physiological feedbacks are considered for successful and sustainable application of agricultural techniques with respect to management of plant phenol profiles and concentrations.

  7. Genome-Scale, Constraint-Based Modeling of Nitrogen Oxide Fluxes during Coculture of Nitrosomonas europaea and Nitrobacter winogradskyi

    Science.gov (United States)

    Giguere, Andrew T.; Murthy, Ganti S.; Bottomley, Peter J.; Sayavedra-Soto, Luis A.

    2018-01-01

    ABSTRACT Nitrification, the aerobic oxidation of ammonia to nitrate via nitrite, emits nitrogen (N) oxide gases (NO, NO2, and N2O), which are potentially hazardous compounds that contribute to global warming. To better understand the dynamics of nitrification-derived N oxide production, we conducted culturing experiments and used an integrative genome-scale, constraint-based approach to model N oxide gas sources and sinks during complete nitrification in an aerobic coculture of two model nitrifying bacteria, the ammonia-oxidizing bacterium Nitrosomonas europaea and the nitrite-oxidizing bacterium Nitrobacter winogradskyi. The model includes biotic genome-scale metabolic models (iFC578 and iFC579) for each nitrifier and abiotic N oxide reactions. Modeling suggested both biotic and abiotic reactions are important sources and sinks of N oxides, particularly under microaerobic conditions predicted to occur in coculture. In particular, integrative modeling suggested that previous models might have underestimated gross NO production during nitrification due to not taking into account its rapid oxidation in both aqueous and gas phases. The integrative model may be found at https://github.com/chaplenf/microBiome-v2.1. IMPORTANCE Modern agriculture is sustained by application of inorganic nitrogen (N) fertilizer in the form of ammonium (NH4+). Up to 60% of NH4+-based fertilizer can be lost through leaching of nitrifier-derived nitrate (NO3−), and through the emission of N oxide gases (i.e., nitric oxide [NO], N dioxide [NO2], and nitrous oxide [N2O] gases), the latter being a potent greenhouse gas. Our approach to modeling of nitrification suggests that both biotic and abiotic mechanisms function as important sources and sinks of N oxides during microaerobic conditions and that previous models might have underestimated gross NO production during nitrification. PMID:29577088

  8. Genome-Scale, Constraint-Based Modeling of Nitrogen Oxide Fluxes during Coculture of Nitrosomonas europaea and Nitrobacter winogradskyi.

    Science.gov (United States)

    Mellbye, Brett L; Giguere, Andrew T; Murthy, Ganti S; Bottomley, Peter J; Sayavedra-Soto, Luis A; Chaplen, Frank W R

    2018-01-01

    Nitrification, the aerobic oxidation of ammonia to nitrate via nitrite, emits nitrogen (N) oxide gases (NO, NO 2 , and N 2 O), which are potentially hazardous compounds that contribute to global warming. To better understand the dynamics of nitrification-derived N oxide production, we conducted culturing experiments and used an integrative genome-scale, constraint-based approach to model N oxide gas sources and sinks during complete nitrification in an aerobic coculture of two model nitrifying bacteria, the ammonia-oxidizing bacterium Nitrosomonas europaea and the nitrite-oxidizing bacterium Nitrobacter winogradskyi . The model includes biotic genome-scale metabolic models (iFC578 and iFC579) for each nitrifier and abiotic N oxide reactions. Modeling suggested both biotic and abiotic reactions are important sources and sinks of N oxides, particularly under microaerobic conditions predicted to occur in coculture. In particular, integrative modeling suggested that previous models might have underestimated gross NO production during nitrification due to not taking into account its rapid oxidation in both aqueous and gas phases. The integrative model may be found at https://github.com/chaplenf/microBiome-v2.1. IMPORTANCE Modern agriculture is sustained by application of inorganic nitrogen (N) fertilizer in the form of ammonium (NH 4 + ). Up to 60% of NH 4 + -based fertilizer can be lost through leaching of nitrifier-derived nitrate (NO 3 - ), and through the emission of N oxide gases (i.e., nitric oxide [NO], N dioxide [NO 2 ], and nitrous oxide [N 2 O] gases), the latter being a potent greenhouse gas. Our approach to modeling of nitrification suggests that both biotic and abiotic mechanisms function as important sources and sinks of N oxides during microaerobic conditions and that previous models might have underestimated gross NO production during nitrification.

  9. Comparative functional analysis of wheat (Triticum aestivum) zinc finger-containing glycine-rich RNA-binding proteins in response to abiotic stresses.

    Science.gov (United States)

    Xu, Tao; Gu, Lili; Choi, Min Ji; Kim, Ryeo Jin; Suh, Mi Chung; Kang, Hunseung

    2014-01-01

    Although the functional roles of zinc finger-containing glycine-rich RNA-binding proteins (RZs) have been characterized in several plant species, including Arabidopsis thaliana and rice (Oryza sativa), the physiological functions of RZs in wheat (Triticum aestivum) remain largely unknown. Here, the functional roles of the three wheat RZ family members, named TaRZ1, TaRZ2, and TaRZ3, were investigated using transgenic Arabidopsis plants under various abiotic stress conditions. Expression of TaRZs was markedly regulated by salt, dehydration, or cold stress. The TaRZ1 and TaRZ3 proteins were localized to the nucleus, whereas the TaRZ2 protein was localized to the nucleus, endoplasmic reticulum, and cytoplasm. Germination of all three TaRZ-expressing transgenic Arabidopsis seeds was retarded compared with that of wild-type seeds under salt stress conditions, whereas germination of TaRZ2- or TaRZ3-expressing transgenic Arabidopsis seeds was retarded under dehydration stress conditions. Seedling growth of TaRZ1-expressing transgenic plants was severely inhibited under cold or salt stress conditions, and seedling growth of TaRZ2-expressing plants was inhibited under salt stress conditions. By contrast, expression of TaRZ3 did not affect seedling growth of transgenic plants under any of the stress conditions. In addition, expression of TaRZ2 conferred freeze tolerance in Arabidopsis. Taken together, these results suggest that different TaRZ family members play various roles in seed germination, seedling growth, and freeze tolerance in plants under abiotic stress.

  10. Induced Systemic Tolerance to Multiple Stresses Including Biotic and Abiotic Factors by Rhizobacteria

    Directory of Open Access Journals (Sweden)

    Sung-Je Yoo

    2017-06-01

    Full Text Available Recently, global warming and drastic climate change are the greatest threat to the world. The climate change can affect plant productivity by reducing plant adaptation to diverse environments including frequent high temperature; worsen drought condition and increased pathogen transmission and infection. Plants have to survive in this condition with a variety of biotic (pathogen/pest attack and abiotic stress (salt, high/low temperature, drought. Plants can interact with beneficial microbes including plant growth-promoting rhizobacteria, which help plant mitigate biotic and abiotic stress. This overview presents that rhizobacteria plays an important role in induced systemic resistance (ISR to biotic stress or induced systemic tolerance (IST to abiotic stress condition; bacterial determinants related to ISR and/or IST. In addition, we describe effects of rhizobacteria on defense/tolerance related signal pathway in plants. We also review recent information including plant resistance or tolerance against multiple stresses (bioticabiotic. We desire that this review contribute to expand understanding and knowledge on the microbial application in a constantly varying agroecosystem, and suggest beneficial microbes as one of alternative environment-friendly application to alleviate multiple stresses.

  11. Analysis of residential, industrial and commercial sector responses to potential electricity supply constraints in the 1990s

    Energy Technology Data Exchange (ETDEWEB)

    Fisher, Z.J.; Fang, J.M.; Lyke, A.J.; Krudener, J.R.

    1986-09-01

    There is considerable debate over the ability of electric generation capacity to meet the growing needs of the US economy in the 1990s. This study provides new perspective on that debate and examines the possibility of power outages resulting from electricity supply constraints. Previous studies have focused on electricity supply growth, demand growth, and on the linkages between electricity and economic growth. This study assumes the occurrence of electricity supply shortfalls in the 1990s and examines the steps that homeowners, businesses, manufacturers, and other electricity users might take in response to electricity outages.

  12. Modifier constraint in alkali borophosphate glasses using topological constraint theory

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xiang [Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237 (China); Zeng, Huidan, E-mail: hdzeng@ecust.edu.cn [Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237 (China); Jiang, Qi [Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237 (China); Zhao, Donghui [Unifrax Corporation, Niagara Falls, NY 14305 (United States); Chen, Guorong [Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237 (China); Wang, Zhaofeng; Sun, Luyi [Department of Chemical & Biomolecular Engineering and Polymer Program, Institute of Materials Science, University of Connecticut, Storrs, CT 06269 (United States); Chen, Jianding [Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237 (China)

    2016-12-01

    In recent years, composition-dependent properties of glasses have been successfully predicted using the topological constraint theory. The constraints of the glass network are derived from two main parts: network formers and network modifiers. The constraints of the network formers can be calculated on the basis of the topological structure of the glass. However, the latter cannot be accurately calculated in this way, because of the existing of ionic bonds. In this paper, the constraints of the modifier ions in phosphate glasses were thoroughly investigated using the topological constraint theory. The results show that the constraints of the modifier ions are gradually increased with the addition of alkali oxides. Furthermore, an improved topological constraint theory for borophosphate glasses is proposed by taking the composition-dependent constraints of the network modifiers into consideration. The proposed theory is subsequently evaluated by analyzing the composition dependence of the glass transition temperature in alkali borophosphate glasses. This method is supposed to be extended to other similar glass systems containing alkali ions.

  13. A significant abiotic pathway for the formation of unknown nitrogen in nature

    Science.gov (United States)

    Jokic, A.; Schulten, H.-R.; Cutler, J. N.; Schnitzer, M.; Huang, P. M.

    2004-03-01

    The global nitrogen cycle is of prime importance in natural ecosystems. However, the origin and nature of up to one-half of total soil N remains obscure despite all attempts at elucidation. Our data provide, for the first time, unequivocal evidence that the promoting action of Mn (IV) oxide on the Maillard reaction (sugar-amino acid condensation) under ambient conditions results in the abiotic formation of heterocyclic N compounds, which are often referred to as unknown nitrogen, and of amides which are apparently the dominant N moieties in nature. The information presented is of fundamental significance in understanding the role of mineral colloids in abiotic transformations of organic N moieties, the incorporation of N in the organic matrix of fossil fuels, and the global N cycle.

  14. Constraint and loneliness in agoraphobia: an empirical investigation.

    Science.gov (United States)

    Pehlivanidis, A; Koulis, S; Papakostas, Y

    2014-01-01

    While progress in the aetiopathology and treatment of panic disorder is indisputable, research regarding agoraphobia lacks behind. One significant-yet untested- theory by Guidano and Liotti, suggests the existence of inner representations of fear of "constraint" and fear of "loneliness" as two major schemata, important in the pathogenesis and manifestation of agoraphobia. Activation of these schemata may occur in situations in which the patient: (a) feels as in an inescapable trap (constraint) or (b) alone, unprotected and helpless (loneliness). Upon activation, the "constraint" schema elicits such symptoms as asphyxiation, chest pain, difficult breathing, motor agitation and muscular tension, while the "loneliness" schema elicits such symptoms as sensation of tachycardia, weakness of limbs, trembling or fainting. Activation of these schemata by content-compatible stimuli is expected to trigger various, yet distinct, response patterns, both of which are indiscriminately described within the term "agoraphobia". In order to investigate this hypothesis and its possible clinical applications, several mental and physical probes were applied to 20 patients suffering primarily from agoraphobia, and their responses and performance were recorded. Subjects also completed the "10-item Agoraphobia Questionnaire" prepared by our team aiming at assessing cognitions related to Guidano and Liotti's notion of "loneliness" and "constraint". Breath holding (BH) and Hyperventilation (HV) were selected as physical probes. BH was selected as an easily administered hypercapnea - induced clinical procedure, because of its apparent resemblance to the concept of "constraint". Subjects were instructed to hold their breath for as long as they could and stop at will. Similarly, it was hypothesized that HV might represent a physical "loneliness" probe, since it can elicit such symptoms as dizziness, paraesthesias, stiff muscles, cold hands or feet and trembling, reminiscent of a "collapsing

  15. Review of Abiotic Degradation of Chlorinated Solvents by Reactive Iron Minerals

    Science.gov (United States)

    Abiotic degradation of chlorinated solvents by reactive iron minerals such as iron sulfides, magnetite, green rust, and other Fe(II)-containing minerals has been observed in both laboratory and field conditions. These reactive iron minerals typically form under iron and sulfate ...

  16. Impact of optimal load response to real-time electricity price on power system constraints in Denmark

    DEFF Research Database (Denmark)

    Hu, Weihao; Chen, Zhe; Bak-Jensen, Birgitte

    2010-01-01

    Since the hourly spot market price is available one day ahead in Denmark, the price could be transferred to the consumers and they may shift their loads from high price periods to the low price periods in order to save their energy costs. The optimal load response to a real-time electricity price...... and may represent the future of electricity markets in some ways, is chosen as the studied power system in this paper. A distribution system where wind power capacity is 126% of maximum loads is chosen as the study case. This paper presents a nonlinear load optimization method to real-time power price...... for demand side management in order to save the energy costs as much as possible. Simulation results show that the optimal load response to a real-time electricity price has some good impacts on power system constraints in a distribution system with high wind power penetrations....

  17. Cytokinin Cross-talking During Biotic and Abiotic Stress Responses

    Directory of Open Access Journals (Sweden)

    Jose Antonio O'Brien

    2013-11-01

    Full Text Available As sessile organisms, plants have to be able to adapt to a continuously changing environment. Plants that perceive some of these changes as stress signals activate signaling pathways to modulate their development and to enable them to survive. The complex responses to environmental cues are to a large extent mediated by plant hormones that together orchestrate the final plant response. The phytohormone cytokinin is involved in many plant developmental processes. Recently, it has been established that cytokinin plays an important role in stress responses, but does not act alone. Indeed, the hormonal control of plant development and stress adaptation is the outcome of a complex network of multiple synergistic and antagonistic interactions between various hormones. Here, we review the recent findings on the cytokinin function as part of this hormonal network. We focus on the importance of the crosstalk between cytokinin and other hormones, such as abscisic acid, jasmonate, salicylic acid, ethylene, and auxin in the modulation of plant development and stress adaptation. Finally, the impact of the current research in the biotechnological industry will be discussed.

  18. Identification of Abiotic Stress Protein Biomarkers by Proteomic Screening of Crop Cultivar Diversity.

    Science.gov (United States)

    Barkla, Bronwyn J

    2016-09-08

    Modern day agriculture practice is narrowing the genetic diversity in our food supply. This may compromise the ability to obtain high yield under extreme climactic conditions, threatening food security for a rapidly growing world population. To identify genetic diversity, tolerance mechanisms of cultivars, landraces and wild relatives of major crops can be identified and ultimately exploited for yield improvement. Quantitative proteomics allows for the identification of proteins that may contribute to tolerance mechanisms by directly comparing protein abundance under stress conditions between genotypes differing in their stress responses. In this review, a summary is provided of the data accumulated from quantitative proteomic comparisons of crop genotypes/cultivars which present different stress tolerance responses when exposed to various abiotic stress conditions, including drought, salinity, high/low temperature, nutrient deficiency and UV-B irradiation. This field of research aims to identify molecular features that can be developed as biomarkers for crop improvement, however without accurate phenotyping, careful experimental design, statistical robustness and appropriate biomarker validation and verification it will be challenging to deliver what is promised.

  19. Identification of Abiotic Stress Protein Biomarkers by Proteomic Screening of Crop Cultivar Diversity

    Directory of Open Access Journals (Sweden)

    Bronwyn J. Barkla

    2016-09-01

    Full Text Available Modern day agriculture practice is narrowing the genetic diversity in our food supply. This may compromise the ability to obtain high yield under extreme climactic conditions, threatening food security for a rapidly growing world population. To identify genetic diversity, tolerance mechanisms of cultivars, landraces and wild relatives of major crops can be identified and ultimately exploited for yield improvement. Quantitative proteomics allows for the identification of proteins that may contribute to tolerance mechanisms by directly comparing protein abundance under stress conditions between genotypes differing in their stress responses. In this review, a summary is provided of the data accumulated from quantitative proteomic comparisons of crop genotypes/cultivars which present different stress tolerance responses when exposed to various abiotic stress conditions, including drought, salinity, high/low temperature, nutrient deficiency and UV-B irradiation. This field of research aims to identify molecular features that can be developed as biomarkers for crop improvement, however without accurate phenotyping, careful experimental design, statistical robustness and appropriate biomarker validation and verification it will be challenging to deliver what is promised.

  20. A Selfish Constraint Satisfaction Genetic Algorithms for Planning a Long-Distance Transportation Network

    Science.gov (United States)

    Onoyama, Takashi; Maekawa, Takuya; Kubota, Sen; Tsuruta, Setuso; Komoda, Norihisa

    To build a cooperative logistics network covering multiple enterprises, a planning method that can build a long-distance transportation network is required. Many strict constraints are imposed on this type of problem. To solve these strict-constraint problems, a selfish constraint satisfaction genetic algorithm (GA) is proposed. In this GA, each gene of an individual satisfies only its constraint selfishly, disregarding the constraints of other genes in the same individuals. Moreover, a constraint pre-checking method is also applied to improve the GA convergence speed. The experimental result shows the proposed method can obtain an accurate solution in a practical response time.

  1. Hydrologic, abiotic and biotic interactions: plant density, windspeed, leaf size and groundwater all affect oak water use efficiency

    Science.gov (United States)

    Darin J. Law; Deborah M. Finch

    2011-01-01

    Plant water use in drylands can be complex due to variation in hydrologic, abiotic and biotic factors, particularly near ephemeral or intermittent streams. Plant use of groundwater may be important but is usually uncertain. Disturbances like fire contribute to complex spatiotemporal heterogeneity. Improved understanding of how such hydrologic, abiotic, and biotic...

  2. Genome-wide analysis of carotenoid cleavage oxygenase genes and their responses to various phytohormones and abiotic stresses in apple (Malus domestica).

    Science.gov (United States)

    Chen, Hongfei; Zuo, Xiya; Shao, Hongxia; Fan, Sheng; Ma, Juanjuan; Zhang, Dong; Zhao, Caiping; Yan, Xiangyan; Liu, Xiaojie; Han, Mingyu

    2018-02-01

    Carotenoid cleavage oxygenases (CCOs) are able to cleave carotenoids to produce apocarotenoids and their derivatives, which are important for plant growth and development. In this study, 21 apple CCO genes were identified and divided into six groups based on their phylogenetic relationships. We further characterized the apple CCO genes in terms of chromosomal distribution, structure and the presence of cis-elements in the promoter. We also predicted the cellular localization of the encoded proteins. An analysis of the synteny within the apple genome revealed that tandem, segmental, and whole-genome duplication events likely contributed to the expansion of the apple carotenoid oxygenase gene family. An additional integrated synteny analysis identified orthologous carotenoid oxygenase genes between apple and Arabidopsis thaliana, which served as references for the functional analysis of the apple CCO genes. The net photosynthetic rate, transpiration rate, and stomatal conductance of leaves decreased, while leaf stomatal density increased under drought and saline conditions. Tissue-specific gene expression analyses revealed diverse spatiotemporal expression patterns. Finally, hormone and abiotic stress treatments indicated that many apple CCO genes are responsive to various phytohormones as well as drought and salinity stresses. The genome-wide identification of apple CCO genes and the analyses of their expression patterns described herein may provide a solid foundation for future studies examining the regulation and functions of this gene family. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  3. Graphical constraints: a graphical user interface for constraint problems

    OpenAIRE

    Vieira, Nelson Manuel Marques

    2015-01-01

    A constraint satisfaction problem is a classical artificial intelligence paradigm characterized by a set of variables (each variable with an associated domain of possible values), and a set of constraints that specify relations among subsets of these variables. Solutions are assignments of values to all variables that satisfy all the constraints. Many real world problems may be modelled by means of constraints. The range of problems that can use this representation is very diverse and embrace...

  4. ATP Supply May Contribute to Light-Enhanced Calcification in Corals More Than Abiotic Mechanisms

    Directory of Open Access Journals (Sweden)

    Giovanni Galli

    2018-03-01

    Full Text Available Zooxanthellate corals are known to increase calcification rates when exposed to light, a phenomenon called light-enhanced calcification that is believed to be mediated by symbionts' photosynthetic activity. There is controversy over the mechanism behind this phenomenon, with hypotheses coarsely divided between abiotic and biologically-mediated mechanisms. At the same time, accumulating evidence shows that calcification in corals relies on active ion transport to deliver the skeleton building blocks into the calcifying medium, making it is an energetically costly activity. Here we build on generally accepted conceptual models of the coral calcification machinery and conceptual models of the energetics of coral-zooxanthellae symbiosis to develop a model that can be used to isolate the biologically-mediated and abiotic effects of photosynthesis, respiration, temperature, and seawater chemistry on coral calcification rates and related metabolic costs. We tested this model on data from the Mediterranean scleractinian Cladocora caespitosa, an acidification resistant species. We concluded that most of the variation in calcification rates due to photosynthesis, respiration and temperature can be attributed to biologically-mediated mechanisms, in particular to the ATP supplied to the active ion transports. Abiotic effects are also present but are of smaller magnitude. Instead, the decrease in calcification rates caused by acidification, albeit small, is sustained by both abiotic and biologically-mediated mechanisms. However, there is a substantial extra cost of calcification under acidified conditions. Based on these findings and on a literature review we suggest that the energy aspect of coral calcification might have been so far underappreciated.

  5. Abiotic and Biotic Formation of Amino Acids in the Enceladus Ocean.

    Science.gov (United States)

    Steel, Elliot L; Davila, Alfonso; McKay, Christopher P

    2017-09-01

    The active plume at Enceladus' south pole makes the indirect sampling of its global ocean possible. The partially resolved chemistry of the plume, which points to conditions that are seemingly compatible with life, has made orbital sampling missions a priority. We present a conceptual model of energy flux, hydrothermal H 2 production, and both abiotic and biotic production of amino acids. Based on the energy flux observed at the south pole and the inferred internal hydrothermal activity, we estimate an H 2 production of 0.6-34 mol/s from serpentinization, sufficient to sustain abiotic and biotic amino acid synthesis of 1.6-87 and 1-44 g/s, respectively. Two-dimensional (2D) numerical simulations of the hydrothermal vent suggest that the vent fluids could reach the ice-water boundary in less than 11-55 days for a 50 km deep ocean diluted by ambient ocean water 10 to 1. Concentrations of glycine, alanine, α-amino isobutyric acid, and glutamic acid in the plume and in the ambient ocean could all be above 0.01 μM just due to abiotic production. Biological synthesis, if occurring, could produce a maximum of 90 μM concentrations of amino acids based on a methanogenic ecosystem consuming H 2 and CO 2 . Racemization timescales in the ocean are short compared with production timescales. Thus, no enantiomeric excess is expected in the ambient ocean, and if biology is present, enantiomeric excess at the vent fluids is expected to be less than 10% in the plume. From vent H 2 concentrations of 7.8 mM (e.g., Lost City) and assuming complete H 2 use and conversion to chemical energy by methanogens, cell production is estimated. Annual biomass production in the methanogenic-based biology model is 4 × 10 4 -2 × 10 6 kg/year. This corresponds to cell concentrations ∼10 9 cells/cm 3 in the vents and ∼10 8 cells/cm 3 in the plume, and when diluted into the ambient ocean, we predict cell concentrations of 80-4250 cells/cm 3 . Key Words: Abiotic organic

  6. Higher Plants in Space: Microgravity Perception, Response, and Adaptation

    Science.gov (United States)

    Zheng, Hui Qiong; Han, Fei; Le, Jie

    2015-11-01

    Microgravity is a major abiotic stress in space. Its effects on plants may depend on the duration of exposure. We focused on two different phases of microgravity responses in space. When higher plants are exposed to short-term (seconds to hours) microgravity, such as on board parabolic flights and sounding rockets, their cells usually exhibit abiotic stress responses. For example, Ca 2+-, lipid-, and pH-signaling are rapidly enhanced, then the production of reactive oxygen species and other radicals increase dramatically along with changes in metabolism and auxin signaling. Under long-term (days to months) microgravity exposure, plants acclimatize to the stress by changing their metabolism and oxidative response and by enhancing other tropic responses. We conclude by suggesting that a systematic analysis of regulatory networks at the molecular level of higher plants is needed to understand the molecular signals in the distinct phases of the microgravity response and adaptation.

  7. Genome-Wide Identification and Expression Analyses of Aquaporin Gene Family during Development and Abiotic Stress in Banana

    Science.gov (United States)

    Hu, Wei; Hou, Xiaowan; Huang, Chao; Yan, Yan; Tie, Weiwei; Ding, Zehong; Wei, Yunxie; Liu, Juhua; Miao, Hongxia; Lu, Zhiwei; Li, Meiying; Xu, Biyu; Jin, Zhiqiang

    2015-01-01

    Aquaporins (AQPs) function to selectively control the flow of water and other small molecules through biological membranes, playing crucial roles in various biological processes. However, little information is available on the AQP gene family in bananas. In this study, we identified 47 banana AQP genes based on the banana genome sequence. Evolutionary analysis of AQPs from banana, Arabidopsis, poplar, and rice indicated that banana AQPs (MaAQPs) were clustered into four subfamilies. Conserved motif analysis showed that all banana AQPs contained the typical AQP-like or major intrinsic protein (MIP) domain. Gene structure analysis suggested the majority of MaAQPs had two to four introns with a highly specific number and length for each subfamily. Expression analysis of MaAQP genes during fruit development and postharvest ripening showed that some MaAQP genes exhibited high expression levels during these stages, indicating the involvement of MaAQP genes in banana fruit development and ripening. Additionally, some MaAQP genes showed strong induction after stress treatment and therefore, may represent potential candidates for improving banana resistance to abiotic stress. Taken together, this study identified some excellent tissue-specific, fruit development- and ripening-dependent, and abiotic stress-responsive candidate MaAQP genes, which could lay a solid foundation for genetic improvement of banana cultivars. PMID:26307965

  8. Microarray meta-analysis to explore abiotic stress-specific gene expression patterns in Arabidopsis.

    Science.gov (United States)

    Shen, Po-Chih; Hour, Ai-Ling; Liu, Li-Yu Daisy

    2017-12-01

    Abiotic stresses are the major limiting factors that affect plant growth, development, yield and final quality. Deciphering the underlying mechanisms of plants' adaptations to stresses using few datasets might overlook the different aspects of stress tolerance in plants, which might be simultaneously and consequently operated in the system. Fortunately, the accumulated microarray expression data offer an opportunity to infer abiotic stress-specific gene expression patterns through meta-analysis. In this study, we propose to combine microarray gene expression data under control, cold, drought, heat, and salt conditions and determined modules (gene sets) of genes highly associated with each other according to the observed expression data. By analyzing the expression variations of the Eigen genes from different conditions, we had identified two, three, and five gene modules as cold-, heat-, and salt-specific modules, respectively. Most of the cold- or heat-specific modules were differentially expressed to a particular degree in shoot samples, while most of the salt-specific modules were differentially expressed to a particular degree in root samples. A gene ontology (GO) analysis on the stress-specific modules suggested that the gene modules exclusively enriched stress-related GO terms and that different genes under the same GO terms may be alternatively disturbed in different conditions. The gene regulatory events for two genes, DREB1A and DEAR1, in the cold-specific gene module had also been validated, as evidenced through the literature search. Our protocols study the specificity of the gene modules that were specifically activated under a particular type of abiotic stress. The biplot can also assist to visualize the stress-specific gene modules. In conclusion, our approach has the potential to further elucidate mechanisms in plants and beneficial for future experiments design under different abiotic stresses.

  9. Developing Tighter Constraints on Exoplanet Biosignatures by Modeling Atmospheric Haze

    Science.gov (United States)

    Felton, Ryan; Neveu, Marc; Domagal-Goldman, Shawn David; Desch, Steven; Arney, Giada

    2018-01-01

    As we increase our capacity to resolve the atmospheric composition of exoplanets, we must continue to refine our ability to distinguish true biosignatures from false positives in order to ultimately distinguish a life-bearing from a lifeless planet. Of the possible true and false biosignatures, methane (CH4) and carbon dioxide (CO2) are of interest, because on Earth geological and biological processes can produce them on large scales. To identify a biotic, Earth-like exoplanet, we must understand how these biosignatures shape their atmospheres. High atmospheric abundances of CH4 produce photochemical organic haze, which dramatically alters the photochemistry, climate, and spectrum of a planet. Arney et al. (2017) have suggested that haze-bearing atmospheres rich in CO2 may be a type of biosignature because the CH4 flux required to produce the haze is similar to the amount of biogenic CH4 on modern Earth. Atmospheric CH4 and CO2 both affect haze-formation photochemistry, and the potential for hazes to form in Earth-like atmospheres at abiotic concentrations of these gases has not been well studied. We will explore a wide range of parameter space of abiotic concentration levels of these gases to determine what spectral signatures are possible from abiotic environments and look for measurable differences between abiotic and biotic atmospheres. We use a 1D photochemical model with an upgraded haze production mechanism to compare Archean and modern Earth atmospheres to abiotic versions while varying atmospheric CH4 and CO2 levels and atmospheric pressure. We will vary CO2 from a trace gas to an amount such that it dominates atmospheric chemistry. For CH4, there is uncertainty regarding the amount of abiotic CH4 that comes from serpentinizing systems. To address this uncertainty, we will model three cases: 1) assume all CH4 comes from photochemistry; 2) use estimates of modern-day serpentinizing fluxes, assuming they are purely abiotic; and 3) assume serpentinizing

  10. A seed preferential heat shock transcription factor from wheat provides abiotic stress tolerance and yield enhancement in transgenic Arabidopsis under heat stress environment.

    Directory of Open Access Journals (Sweden)

    Harsh Chauhan

    Full Text Available Reduction in crop yield and quality due to various abiotic stresses is a worldwide phenomenon. In the present investigation, a heat shock factor (HSF gene expressing preferentially in developing seed tissues of wheat grown under high temperatures was cloned. This newly identified heat shock factor possesses the characteristic domains of class A type plant HSFs and shows high similarity to rice OsHsfA2d, hence named as TaHsfA2d. The transcription factor activity of TaHsfA2d was confirmed through transactivation assay in yeast. Transgenic Arabidopsis plants overexpressing TaHsfA2d not only possess higher tolerance towards high temperature but also showed considerable tolerance to salinity and drought stresses, they also showed higher yield and biomass accumulation under constant heat stress conditions. Analysis of putative target genes of AtHSFA2 through quantitative RT-PCR showed higher and constitutive expression of several abiotic stress responsive genes in transgenic Arabidopsis plants over-expressing TaHsfA2d. Under stress conditions, TaHsfA2d can also functionally complement the T-DNA insertion mutants of AtHsfA2, although partially. These observations suggest that TaHsfA2d may be useful in molecular breeding of crop plants, especially wheat, to improve yield under abiotic stress conditions.

  11. Stable carbon isotope analysis to distinguish biotic and abiotic degradation of 1,1,1-trichloroethane in groundwater sediments

    DEFF Research Database (Denmark)

    Broholm, Mette Martina; Hunkeler, Daniel; Tuxen, Nina

    2014-01-01

    not appear to be reductive dechlorination via 1,1-DCA. In the biotic microcosms, the degradation of 1,1,1-TCA occurred under iron and sulfate reducing conditions. Biotic reduction of iron and sulfate likely resulted in formation of FeS, which can abiotically degrade 1,1,1-TCA. Hence, abiotic degradation of 1...

  12. Assessment of derelict soil quality: Abiotic, biotic and functional approaches.

    Science.gov (United States)

    Vincent, Quentin; Auclerc, Apolline; Beguiristain, Thierry; Leyval, Corinne

    2018-02-01

    The intensification and subsequent closing down of industrial activities during the last century has left behind large surfaces of derelict lands. Derelict soils have low fertility, can be contaminated, and many of them remain unused. However, with the increasing demand of soil surfaces, they might be considered as a resource, for example for non-food biomass production. The study of their physico-chemical properties and of their biodiversity and biological activity may provide indications for their potential re-use. The objective of our study was to investigate the quality of six derelict soils, considering abiotic, biotic, and functional parameters. We studied (i) the soil bacteria, fungi, meso- and macro-fauna and plant communities of six different derelict soils (two from coking plants, one from a settling pond, two constructed ones made from different substrates and remediated soil, and an inert waste storage one), and (ii) their decomposition function based on the decomposer trophic network, enzyme activities, mineralization activity, and organic pollutant degradation. Biodiversity levels in these soils were high, but all biotic parameters, except the mycorrhizal colonization level, discriminated them. Multivariate analysis showed that biotic parameters co-varied more with fertility proxies than with soil contamination parameters. Similarly, functional parameters significantly co-varied with abiotic parameters. Among functional parameters, macro-decomposer proportion, enzyme activity, average mineralization capacity, and microbial polycyclic aromatic hydrocarbon degraders were useful to discriminate the soils. We assessed their quality by combining abiotic, biotic, and functional parameters: the compost-amended constructed soil displayed the highest quality, while the settling pond soil and the contaminated constructed soil displayed the lowest. Although differences among the soils were highlighted, this study shows that derelict soils may provide a

  13. The PIN gene family in cotton (Gossypium hirsutum): genome-wide identification and gene expression analyses during root development and abiotic stress responses.

    Science.gov (United States)

    He, Peng; Zhao, Peng; Wang, Limin; Zhang, Yuzhou; Wang, Xiaosi; Xiao, Hui; Yu, Jianing; Xiao, Guanghui

    2017-07-03

    Cell elongation and expansion are significant contributors to plant growth and morphogenesis, and are often regulated by environmental cues and endogenous hormones. Auxin is one of the most important phytohormones involved in the regulation of plant growth and development and plays key roles in plant cell expansion and elongation. Cotton fiber cells are a model system for studying cell elongation due to their large size. Cotton is also the world's most utilized crop for the production of natural fibers for textile and garment industries, and targeted expression of the IAA biosynthetic gene iaaM increased cotton fiber initiation. Polar auxin transport, mediated by PIN and AUX/LAX proteins, plays a central role in the control of auxin distribution. However, very limited information about PIN-FORMED (PIN) efflux carriers in cotton is known. In this study, 17 PIN-FORMED (PIN) efflux carrier family members were identified in the Gossypium hirsutum (G. hirsutum) genome. We found that PIN1-3 and PIN2 genes originated from the At subgenome were highly expressed in roots. Additionally, evaluation of gene expression patterns indicated that PIN genes are differentially induced by various abiotic stresses. Furthermore, we found that the majority of cotton PIN genes contained auxin (AuxREs) and salicylic acid (SA) responsive elements in their promoter regions were significantly up-regulated by exogenous hormone treatment. Our results provide a comprehensive analysis of the PIN gene family in G. hirsutum, including phylogenetic relationships, chromosomal locations, and gene expression and gene duplication analyses. This study sheds light on the precise roles of PIN genes in cotton root development and in adaption to stress responses.

  14. A Non-specific Setaria italica Lipid Transfer Protein Gene Plays a Critical Role under Abiotic Stress.

    Science.gov (United States)

    Pan, Yanlin; Li, Jianrui; Jiao, Licong; Li, Cong; Zhu, Dengyun; Yu, Jingjuan

    2016-01-01

    Lipid transfer proteins (LTPs) are a class of cysteine-rich soluble proteins having small molecular weights. LTPs participate in flower and seed development, cuticular wax deposition, also play important roles in pathogen and abiotic stress responses. A non-specific LTP gene ( SiLTP ) was isolated from a foxtail millet ( Setaria italica ) suppression subtractive hybridization library enriched for differentially expressed genes after abiotic stress treatments. A semi-quantitative reverse transcriptase PCR analysis showed that SiLTP was expressed in all foxtail millet tissues. Additionally, the SiLTP promoter drove GUS expression in root tips, stems, leaves, flowers, and siliques of transgenic Arabidopsis . Quantitative real-time PCR indicated that the SiLTP expression was induced by NaCl, polyethylene glycol, and abscisic acid (ABA). SiLTP was localized in the cytoplasm of tobacco leaf epidermal cells and maize protoplasts. The ectopic expression of SiLTP in tobacco resulted in higher levels of salt and drought tolerance than in the wild type (WT). To further assess the function of SiLTP, SiLTP overexpression (OE) and RNA interference (RNAi)-based transgenic foxtail millet were obtained. SiLTP -OE lines performed better under salt and drought stresses compared with WT plants. In contrast, the RNAi lines were much more sensitive to salt and drought compared than WT. Electrophoretic mobility shift assays and yeast one-hybrids indicated that the transcription factor ABA-responsive DRE-binding protein (SiARDP) could bind to the dehydration-responsive element of SiLTP promoter in vitro and in vivo , respectively. Moreover, the SiLTP expression levels were higher in SiARDP -OE plants compared than the WT. These results confirmed that SiLTP plays important roles in improving salt and drought stress tolerance of foxtail millet, and may partly be upregulated by SiARDP. SiLTP may provide an effective genetic resource for molecular breeding in crops to enhance salt and drought

  15. Constraint-Referenced Analytics of Algebra Learning

    Science.gov (United States)

    Sutherland, Scot M.; White, Tobin F.

    2016-01-01

    The development of the constraint-referenced analytics tool for monitoring algebra learning activities presented here came from the desire to firstly, take a more quantitative look at student responses in collaborative algebra activities, and secondly, to situate those activities in a more traditional introductory algebra setting focusing on…

  16. Tissue-specific gene-expression patterns of genes associated with thymol/carvacrol biosynthesis in thyme (Thymus vulgaris L.) and their differential changes upon treatment with abiotic elicitors

    DEFF Research Database (Denmark)

    Majdi, Mohammad; Malekzadeh-Mashhady, Atefe; Maroufi, Asad

    2017-01-01

    of the regulation of monoterpene biosynthesis in thyme, the expression of genes related to thymol and carvacrol biosynthesis in different tissues and in response to abiotic elicitors was analyzed. Methyl jasmonate (MeJA), salicylic acid (SA), trans-cinnamic acid (tCA) and UV-C irradiation were applied to T. vulgare...

  17. Managing Phenol Contents in Crop Plants by Phytochemical Farming and Breeding—Visions and Constraints

    Directory of Open Access Journals (Sweden)

    Dieter Treutter

    2010-03-01

    Full Text Available Two main fields of interest form the background of actual demand for optimized levels of phenolic compounds in crop plants. These are human health and plant resistance to pathogens and to biotic and abiotic stress factors. A survey of agricultural technologies influencing the biosynthesis and accumulation of phenolic compounds in crop plants is presented, including observations on the effects of light, temperature, mineral nutrition, water management, grafting, elevated atmospheric CO2, growth and differentiation of the plant and application of elicitors, stimulating agents and plant activators. The underlying mechanisms are discussed with respect to carbohydrate availability, trade-offs to competing demands as well as to regulatory elements. Outlines are given for genetic engineering and plant breeding. Constraints and possible physiological feedbacks are considered for successful and sustainable application of agricultural techniques with respect to management of plant phenol profiles and concentrations.

  18. Phytoplankton and some abiotic features of El-Bardawil Lake, Sinai ...

    African Journals Online (AJOL)

    Phytoplankton and some abiotic features of El-Bardawil Lake, Sinai, Egypt. H Touliabah, HM Safik, MM Gab-Allah, WD Taylor. Abstract. El-Bardawil Lake is a large coastal lagoon on the Mediterranean coast of Sinai, Egypt. Although it is shallow and oligotrophic, it is one of the most important lakes in Egypt as a source of ...

  19. Influence of abiotic stresses on the winter wheat sprouting plants

    Czech Academy of Sciences Publication Activity Database

    Bláha, L.; Hnilička, F.; Kadlec, P.; Smrčková-Jankovská, P.; Macháčková, Ivana; Sychrová, E.; Kohout, Ladislav

    2008-01-01

    Roč. 3, č. 3 (2008), s. 389-390 ISSN 1125-4718. [Congress of the European Society for Agronomy /10./. 15.09.2008-19.09.2008, Bologna] R&D Projects: GA MZe QF3056 Institutional research plan: CEZ:AV0Z50380511; CEZ:AV0Z40550506 Keywords : brassinosteroids * abiotic stress * emergency Subject RIV: CC - Organic Chemistry

  20. Abiotic and biotic drivers of biomass change in a Neotropical forest

    NARCIS (Netherlands)

    Sande, van der M.T.; Pena Claros, M.; Ascarrunz, Nataly; Arets, E.J.M.M.; Licona, J.C.; Toledo, Marisol; Poorter, L.

    2017-01-01

    Summary
    1. Tropical fores ts play an important role in the global carbon cycle, but the drivers of net forest biomass change (i.e. net carbon sequestration) are poorly understood. Here, we evaluate how abiotic factors (soil co nditions and disturbance) and biotic factors (forest structure,

  1. Loosening Psychometric Constraints on Educational Assessments

    Science.gov (United States)

    Kane, Michael T.

    2017-01-01

    In response to an argument by Baird, Andrich, Hopfenbeck and Stobart (2017), Michael Kane states that there needs to be a better fit between educational assessment and learning theory. In line with this goal, Kane will examine how psychometric constraints might be loosened by relaxing some psychometric "rules" in some assessment…

  2. Differentiating biotic from abiotic methane genesis in hydrothermally active planetary surfaces.

    Science.gov (United States)

    Oze, Christopher; Jones, L Camille; Goldsmith, Jonas I; Rosenbauer, Robert J

    2012-06-19

    Molecular hydrogen (H(2)) is derived from the hydrothermal alteration of olivine-rich planetary crust. Abiotic and biotic processes consume H(2) to produce methane (CH(4)); however, the extent of either process is unknown. Here, we assess the temporal dependence and limit of abiotic CH(4) related to the presence and formation of mineral catalysts during olivine hydrolysis (i.e., serpentinization) at 200 °C and 0.03 gigapascal. Results indicate that the rate of CH(4) production increases to a maximum value related to magnetite catalyzation. By identifying the dynamics of CH(4) production, we kinetically model how the H(2) to CH(4) ratio may be used to assess the origin of CH(4) in deep subsurface serpentinization systems on Earth and Mars. Based on our model and available field data, low H(2)/CH(4) ratios (less than approximately 40) indicate that life is likely present and active.

  3. Optimal residential smart appliances scheduling considering distribution network constraints

    Directory of Open Access Journals (Sweden)

    Yu-Ree Kim

    2016-01-01

    Full Text Available As smart appliances (SAs are more widely adopted within distribution networks, residential consumers can contribute to electricity market operations with demand response resources and reduce their electricity bill. However, if the schedules of demand response resources are determined only by the economic electricity rate signal, the schedule can be unfeasible due to the distribution network constraints. Furthermore, it is impossible for consumers to understand the complex physical characteristics and reflect them in their everyday behaviors. This paper introduces the concept of load coordinating retailer (LCR that deals with demand responsive appliances to reduce electrical consumption for the given distribution network constraints. The LCR can play the role of both conventional retailer and aggregated demand response provider for residential customers. It determines the optimal schedules for the aggregated neighboring SAs according to their types within each distribution feeder. The optimization algorithms are developed using Mixed Integer Linear Programming, and the distribution network is solved by the Newton–Raphson AC power flow.

  4. In search of genetic constraints limiting the evolution of egg size: direct and correlated responses to artificial selection on a prenatal maternal effector.

    Science.gov (United States)

    Pick, J L; Hutter, P; Tschirren, B

    2016-06-01

    Maternal effects are an important force in nature, but the evolutionary dynamics of the traits that cause them are not well understood. Egg size is known to be a key mediator of prenatal maternal effects with an established genetic basis. In contrast to theoretical expectations for fitness-related traits, there is a large amount of additive genetic variation in egg size observed in natural populations. One possible mechanism for the maintenance of this variation is through genetic constraints caused by a shared genetic basis among traits. Here we created replicated, divergent selection lines for maternal egg investment in Japanese quail (Coturnix japonica) to quantify the role of genetic constraints in the evolution of egg size. We found that egg size responds rapidly to selection, accompanied by a strong response in all egg components. Initially, we observed a correlated response in body size, but this response declined over time, showing that egg size and body size can evolve independently. Furthermore, no correlated response in fecundity (measured as the proportion of days on which a female laid an egg) was observed. However, the response to selection was asymmetrical, with egg size plateauing after one generation of selection in the high but not the low investment lines. We attribute this pattern to the presence of genetic asymmetries, caused by directional dominance or unequal allele frequencies. Such asymmetries may contribute to the evolutionary stasis in egg size observed in natural populations, despite a positive association between egg size and fitness.

  5. Primordial soup was edible: abiotically produced Miller-Urey mixture supports bacterial growth.

    Science.gov (United States)

    Xie, Xueshu; Backman, Daniel; Lebedev, Albert T; Artaev, Viatcheslav B; Jiang, Liying; Ilag, Leopold L; Zubarev, Roman A

    2015-09-28

    Sixty years after the seminal Miller-Urey experiment that abiotically produced a mixture of racemized amino acids, we provide a definite proof that this primordial soup, when properly cooked, was edible for primitive organisms. Direct admixture of even small amounts of Miller-Urey mixture strongly inhibits E. coli bacteria growth due to the toxicity of abundant components, such as cyanides. However, these toxic compounds are both volatile and extremely reactive, while bacteria are highly capable of adaptation. Consequently, after bacterial adaptation to a mixture of the two most abundant abiotic amino acids, glycine and racemized alanine, dried and reconstituted MU soup was found to support bacterial growth and even accelerate it compared to a simple mixture of the two amino acids. Therefore, primordial Miller-Urey soup was perfectly suitable as a growth media for early life forms.

  6. A comparison between acoustic properties and heat effects in biogenic (magnetosomes) and abiotic magnetite nanoparticle suspensions

    International Nuclear Information System (INIS)

    Józefczak, A.; Leszczyński, B.; Skumiel, A.; Hornowski, T.

    2016-01-01

    Magnetic nanoparticles show unique properties and find many applications because of the possibility to control their properties using magnetic field. Magnetic nanoparticles are usually synthesized chemically and modification of the particle surface is necessary. Another source of magnetic nanoparticles are various magnetotactic bacteria. These biogenic nanoparticles (magnetosomes) represent an attractive alternative to chemically synthesized iron oxide particles because of their unique characteristics and a high potential for biotechnological and biomedical applications. This work presents a comparison between acoustic properties of biogenic and abiotic magnetite nanoparticle suspensions. Experimental studies have shown the influence of a biological membrane on the ultrasound properties of magnetosomes suspension. Finally the heat effect in synthetic and biogenic magnetite nanoparticles is also discussed. The experimental study shows that magnetosomes present good heating efficiency. - Highlights: • A biogenic and abiotic magnetite nanoparticle suspensions are investigated. • A comparison between ultrasonic properties and heat effects is presented. • Magnetosomes and abiotic magnetite nanoparticles exhibit good heating efficiency.

  7. Biotic and abiotic stress tolerance in transgenic tomatoes by constitutive expression of S-adenosylmethionine decarboxylase gene.

    Science.gov (United States)

    Hazarika, Pranjal; Rajam, Manchikatla Venkat

    2011-04-01

    Recent findings have implicated the role of polyamines (putrescine, spermidine and spermine) in stress tolerance. Therefore, the present work was carried out with the goal of generating transgenic tomato plants with human S-adenosylmethionine decarboxylase (samdc) gene, a key gene involved in biosynthesis of polyamines, viz. spermidine and spermine and evaluating the transgenic plants for tolerance to both biotic and abiotic stresses. Several putative transgenic tomato plants with normal phenotype were obtained, and the transgene integration and expression was validated by PCR, Southern blot analysis and RT-PCR analysis, respectively. The transgenic plants exhibited high levels of polyamines as compared to the untransformed control plants. They also showed increased resistance against two important fungal pathogens of tomato, the wilt causing Fusarium oxysporum and the early blight causing Alternaria solani and tolerance to multiple abiotic stresses such as salinity, drought, cold and high temperature. These results suggest that engineering polyamine accumulation can confer tolerance to both biotic and abiotic stresses in plants.

  8. Arbuscular mycorrhizal fungi alleviate abiotic stresses in potato plants caused by low phosphorus and deficit irrigation/partial root-zone drying

    DEFF Research Database (Denmark)

    Liu, Caixia; Ravnskov, Sabine; Lui, Fulai

    2018-01-01

    Deficit irrigation (DI) improves water use efficiency (WUE), but the reduced water input often limits plant growth and nutrient uptake. The current study examined whether arbuscular mycorrhizal fungi (AMF) could alleviate abiotic stress caused by low phosphorus (P) fertilization and DI...... or improved plant growth and P/nitrogen (N) uptake when subjected to DI/PRD and P0. However, the positive responses to AMF varied with P level and irrigation regime. Functional differences were found in ability of AMF species alleviating plant stress. The largest positive plant biomass response to M1+ and M2......+ was found under FI, both at P1 and P0 (25% increase), while plant biomass response to M1+ and M2+ under DI/PRD (14% increase) was significantly smaller. The large growth response to AMF inoculation, particularly under FI, may relate to greater photosynthetic capacity and leaf area, probably caused...

  9. Titania may produce abiotic oxygen atmospheres on habitable exoplanets

    OpenAIRE

    Norio Narita; Takafumi Enomoto; Shigeyuki Masaoka; Nobuhiko Kusakabe

    2015-01-01

    The search for habitable exoplanets in the Universe is actively ongoing in the field of astronomy. The biggest future milestone is to determine whether life exists on such habitable exoplanets. In that context, oxygen in the atmosphere has been considered strong evidence for the presence of photosynthetic organisms. In this paper, we show that a previously unconsidered photochemical mechanism by titanium (IV) oxide (titania) can produce abiotic oxygen from liquid water under near ultraviolet ...

  10. Using biotechnology and genomics to improve biotic and abiotic stress in apple

    Science.gov (United States)

    Genomic sequencing, molecular biology, and transformation technologies are providing valuable tools to better understand the complexity of how plants develop, function, and respond to biotic and abiotic stress. These approaches should complement but not replace a solid understanding of whole plant ...

  11. Compositions and methods for providing plants with tolerance to abiotic stress conditions

    KAUST Repository

    Hirt, Heribert; De Zelicourt, Axel; Saad, Maged

    2017-01-01

    It has been discovered that the desert endophytic bacterium SA187 SA187 can provide resistance or tolerance to abiotic stress conditions to seeds or plants. Compositions containing SA187 can be used to enhance plant development and yield under

  12. Genetics and regulation of combined abiotic and biotic stress tolerance in tomato

    NARCIS (Netherlands)

    Kissoudis, C.

    2016-01-01

    Projections on the impact of climate change on agricultural productivity foresee prolonged and/or increased stress intensities and enlargement of a significant number of pathogens habitats. This significantly raises the occurrence probability of (new) abiotic and biotic stress combinations. With

  13. Expression Patterns of ERF Genes Underlying Abiotic Stresses in Di-Haploid Populus simonii × P. nigra

    Directory of Open Access Journals (Sweden)

    Shengji Wang

    2014-01-01

    Full Text Available 176 ERF genes from Populus were identified by bioinformatics analysis, 13 of these in di-haploid Populus simonii × P. nigra were investigate by real-time RT-PCR, the results demonstrated that 13 ERF genes were highly responsive to salt stress, drought stress and ABA treatment, and all were expressed in root, stem, and leaf tissues, whereas their expression levels were markedly different in the various tissues. In roots, PthERF99, 110, 119, and 168 were primarily downregulated under drought and ABA treatment but were specifically upregulated under high salt condition. Interestingly, in poplar stems, all ERF genes showed the similar trends in expression in response to NaCl stress, drought stress, and ABA treatment, indicating that they may not play either specific or unique roles in stems in abiotic stress responses. In poplar leaves, PthERF168 was highly induced by ABA treatment, but was suppressed by high salinity and drought stresses, implying that PthERF168 participated in the ABA signaling pathway. The results of this study indicated that ERF genes could play essential but distinct roles in various plant tissues in response to different environment cues and hormonal treatment.

  14. Activation of violaxanthin cycle in darkness is a common response to different abiotic stresses: a case study in Pelvetia canaliculata

    Directory of Open Access Journals (Sweden)

    Fernández-Marín Beatriz

    2011-12-01

    Full Text Available Abstract Background In the violaxanthin (V cycle, V is de-epoxidized to zeaxanthin (Z when strong light or light combined with other stressors lead to an overexcitation of photosystems. However, plants can also suffer stress in darkness and recent reports have shown that dehydration triggers V-de-epoxidation in the absence of light. In this study, we used the highly stress-tolerant brown alga Pelvetia canaliculata as a model organism, due to its lack of lutein and its non-photochemical quenching independent of the transthylakoidal-ΔpH, to study the triggering of the V-cycle in darkness induced by abiotic stressors. Results We have shown that besides desiccation, other factors such as immersion, anoxia and high temperature also induced V-de-epoxidation in darkness. This process was reversible once the treatments had ceased (with the exception of heat, which caused lethal damage. Irrespective of the stressor applied, the resulting de-epoxidised xanthophylls correlated with a decrease in Fv/Fm, suggesting a common function in the down-regulation of photosynthetical efficiency. The implication of the redox-state of the plastoquinone-pool and of the differential activity of V-cycle enzymes on V-de-epoxidation in darkness was also examined. Current results suggest that both violaxanthin de-epoxidase (VDE and zeaxanthin-epoxidase (ZE have a basal constitutive activity even in darkness, being ZE inhibited under stress. This inhibition leads to Z accumulation. Conclusion This study demonstrates that V-cycle activity is triggered by several abiotic stressors even when they occur in an absolute absence of light, leading to a decrease in Fv/Fm. This finding provides new insights into an understanding of the regulation mechanism of the V-cycle and of its ecophysiological roles.

  15. From physical dose constraints to equivalent uniform dose constraints in inverse radiotherapy planning

    International Nuclear Information System (INIS)

    Thieke, Christian; Bortfeld, Thomas; Niemierko, Andrzej; Nill, Simeon

    2003-01-01

    Optimization algorithms in inverse radiotherapy planning need information about the desired dose distribution. Usually the planner defines physical dose constraints for each structure of the treatment plan, either in form of minimum and maximum doses or as dose-volume constraints. The concept of equivalent uniform dose (EUD) was designed to describe dose distributions with a higher clinical relevance. In this paper, we present a method to consider the EUD as an optimization constraint by using the method of projections onto convex sets (POCS). In each iteration of the optimization loop, for the actual dose distribution of an organ that violates an EUD constraint a new dose distribution is calculated that satisfies the EUD constraint, leading to voxel-based physical dose constraints. The new dose distribution is found by projecting the current one onto the convex set of all dose distributions fulfilling the EUD constraint. The algorithm is easy to integrate into existing inverse planning systems, and it allows the planner to choose between physical and EUD constraints separately for each structure. A clinical case of a head and neck tumor is optimized using three different sets of constraints: physical constraints for all structures, physical constraints for the target and EUD constraints for the organs at risk, and EUD constraints for all structures. The results show that the POCS method converges stable and given EUD constraints are reached closely

  16. Molecular analysis of Hsp70 mechanisms in plants and their function in response to stress.

    Science.gov (United States)

    Usman, Magaji G; Rafii, Mohd Y; Martini, Mohammad Y; Yusuff, Oladosu A; Ismail, Mohd R; Miah, Gous

    2017-04-01

    Studying the strategies of improving abiotic stress tolerance is quite imperative and research under this field will increase our understanding of response mechanisms to abiotic stress such as heat. The Hsp70 is an essential regulator of protein having the tendency to maintain internal cell stability like proper folding protein and breakdown of unfolded proteins. Hsp70 holds together protein substrates to help in movement, regulation, and prevent aggregation under physical and or chemical pressure. However, this review reports the molecular mechanism of heat shock protein 70 kDa (Hsp70) action and its structural and functional analysis, research progress on the interaction of Hsp70 with other proteins and their interaction mechanisms as well as the involvement of Hsp70 in abiotic stress responses as an adaptive defense mechanism.

  17. Cytosine methylation alteration in natural populations of Leymus chinensis induced by multiple abiotic stresses.

    Directory of Open Access Journals (Sweden)

    Yingjie Yu

    Full Text Available BACKGROUND: Human activity has a profound effect on the global environment and caused frequent occurrence of climatic fluctuations. To survive, plants need to adapt to the changing environmental conditions through altering their morphological and physiological traits. One known mechanism for phenotypic innovation to be achieved is environment-induced rapid yet inheritable epigenetic changes. Therefore, the use of molecular techniques to address the epigenetic mechanisms underpinning stress adaptation in plants is an important and challenging topic in biological research. In this study, we investigated the impact of warming, nitrogen (N addition, and warming+nitrogen (N addition stresses on the cytosine methylation status of Leymus chinensis Tzvel. at the population level by using the amplified fragment length polymorphism (AFLP, methylation-sensitive amplified polymorphism (MSAP and retrotransposon based sequence-specific amplification polymorphism (SSAP techniques. METHODOLOGY/PRINCIPAL FINDINGS: Our results showed that, although the percentages of cytosine methylation changes in SSAP are significantly higher than those in MSAP, all the treatment groups showed similar alteration patterns of hypermethylation and hypomethylation. It meant that the abiotic stresses have induced the alterations in cytosine methylation patterns, and the levels of cytosine methylation changes around the transposable element are higher than the other genomic regions. In addition, the identification and analysis of differentially methylated loci (DML indicated that the abiotic stresses have also caused targeted methylation changes at specific loci and these DML might have contributed to the capability of plants in adaptation to the abiotic stresses. CONCLUSIONS/SIGNIFICANCE: Our results demonstrated that abiotic stresses related to global warming and nitrogen deposition readily evoke alterations of cytosine methylation, and which may provide a molecular basis for rapid

  18. Cytosine Methylation Alteration in Natural Populations of Leymus chinensis Induced by Multiple Abiotic Stresses

    Science.gov (United States)

    Yu, Yingjie; Yang, Xuejiao; Wang, Huaying; Shi, Fengxue; Liu, Ying; Liu, Jushan; Li, Linfeng; Wang, Deli; Liu, Bao

    2013-01-01

    Background Human activity has a profound effect on the global environment and caused frequent occurrence of climatic fluctuations. To survive, plants need to adapt to the changing environmental conditions through altering their morphological and physiological traits. One known mechanism for phenotypic innovation to be achieved is environment-induced rapid yet inheritable epigenetic changes. Therefore, the use of molecular techniques to address the epigenetic mechanisms underpinning stress adaptation in plants is an important and challenging topic in biological research. In this study, we investigated the impact of warming, nitrogen (N) addition, and warming+nitrogen (N) addition stresses on the cytosine methylation status of Leymus chinensis Tzvel. at the population level by using the amplified fragment length polymorphism (AFLP), methylation-sensitive amplified polymorphism (MSAP) and retrotransposon based sequence-specific amplification polymorphism (SSAP) techniques. Methodology/Principal Findings Our results showed that, although the percentages of cytosine methylation changes in SSAP are significantly higher than those in MSAP, all the treatment groups showed similar alteration patterns of hypermethylation and hypomethylation. It meant that the abiotic stresses have induced the alterations in cytosine methylation patterns, and the levels of cytosine methylation changes around the transposable element are higher than the other genomic regions. In addition, the identification and analysis of differentially methylated loci (DML) indicated that the abiotic stresses have also caused targeted methylation changes at specific loci and these DML might have contributed to the capability of plants in adaptation to the abiotic stresses. Conclusions/Significance Our results demonstrated that abiotic stresses related to global warming and nitrogen deposition readily evoke alterations of cytosine methylation, and which may provide a molecular basis for rapid adaptation by

  19. Compositions and methods for providing plants with tolerance to abiotic stress conditions

    KAUST Repository

    Hirt, Heribert

    2017-07-27

    It has been discovered that the desert endophytic bacterium SA187 SA187 can provide resistance or tolerance to abiotic stress conditions to seeds or plants. Compositions containing SA187 can be used to enhance plant development and yield under environmental stress conditions.

  20. Constraint-based reachability

    Directory of Open Access Journals (Sweden)

    Arnaud Gotlieb

    2013-02-01

    Full Text Available Iterative imperative programs can be considered as infinite-state systems computing over possibly unbounded domains. Studying reachability in these systems is challenging as it requires to deal with an infinite number of states with standard backward or forward exploration strategies. An approach that we call Constraint-based reachability, is proposed to address reachability problems by exploring program states using a constraint model of the whole program. The keypoint of the approach is to interpret imperative constructions such as conditionals, loops, array and memory manipulations with the fundamental notion of constraint over a computational domain. By combining constraint filtering and abstraction techniques, Constraint-based reachability is able to solve reachability problems which are usually outside the scope of backward or forward exploration strategies. This paper proposes an interpretation of classical filtering consistencies used in Constraint Programming as abstract domain computations, and shows how this approach can be used to produce a constraint solver that efficiently generates solutions for reachability problems that are unsolvable by other approaches.

  1. Constraint-Muse: A Soft-Constraint Based System for Music Therapy

    Science.gov (United States)

    Hölzl, Matthias; Denker, Grit; Meier, Max; Wirsing, Martin

    Monoidal soft constraints are a versatile formalism for specifying and solving multi-criteria optimization problems with dynamically changing user preferences. We have developed a prototype tool for interactive music creation, called Constraint Muse, that uses monoidal soft constraints to ensure that a dynamically generated melody harmonizes with input from other sources. Constraint Muse provides an easy to use interface based on Nintendo Wii controllers and is intended to be used in music therapy for people with Parkinson’s disease and for children with high-functioning autism or Asperger’s syndrome.

  2. Variations in abiotic conditions of water quality of River Osun, Osun ...

    African Journals Online (AJOL)

    Otoigiakih

    Full Length Research Paper. Variations in abiotic conditions of water quality of River. Osun, Osun State, Nigeria. Farombi, A. G.1*, Adebayo, O. R.2, Olagunju E. O.1 and Oyekanmi A. M.2. 1Science Laboratory Technology Department, Faculty of Science, Osun State Polytechnic, Iree, Osun State, Nigeria. 2Applied Science ...

  3. SEASONALITY OF THE LEAF MINER, LEVEL OF PREDATION AND TEMPORAL OCCURRENCE OF RUST CORRELATED TO ABIOTIC FACTORS

    OpenAIRE

    B. M. R. Melo; F. B. S. Botelho; J. S. M. Silva; D. F. F. Lima; E. R. Moreira

    2018-01-01

    The coffee leaf miner and a rust are considered as major diseases that are able to reduce productivity in coffee plantations. These agents are influenced by abiotic factors, and their occurrence may suffer oscillation over the years. The objective of this study was to evaluate the seasonal fluctuation of the coffee leaf miner, incidence of coffee prediction and rust, correlated with abiotic factors. The study was performed IFSULDEMINAS-Campus Inconfidentes, in a coffee crop of the cultivar Ru...

  4. Abiotic environmental conditions for germination and development of gametophytes of Cyathea phalerata Mart. (Cyatheaceae

    Directory of Open Access Journals (Sweden)

    Catiuscia Marcon

    Full Text Available ABSTRACT In order to successfully establish themselves in their natural environment, ferns need habitats with abiotic conditions that are suitable for spore germination and gametophyte development. The objective of this study was to assess the influence of abiotic factors on the initial development of Cyathea phalerata cultivated in vitro. Spore germination and gametophyte development were assessed under varying conditions of surface sterilization, pH, temperature and photoperiod. Exogenous contamination was eliminated by sterilizing spores with 2.5 % NaClO for 15 min and sowing them into a culture medium supplemented with nystatin. Spores germinated at all pHs tested. Gametophytic development was faster in acidic pHs. Cultures at 25 °C exhibited the highest percentages of germination and laminar gametophytes. The species produced its highest percentages of gametophytes in cultures with photoperiods between 6 and 18 h. The optimal abiotic conditions found here for in vitro development of C. phalerata are similar to those found in its natural habitat. The southern limit of this species to north of the 30th parallel in Rio Grande do Sul, Brazil, may be because further south spores do not encounter the ideal combined conditions of temperature, pH and photoperiod determined in the laboratory.

  5. The Arabidopsis PLAT domain protein1 is critically involved in abiotic stress tolerance

    DEFF Research Database (Denmark)

    Hyun, Tae Kyung; van der Graaff, Eric; Albacete, Alfonso

    2014-01-01

    . Abiotic stress treatments induced PLAT1 expression and caused expansion of its expression domain. The ABF/ABRE transcription factors, which are positive mediators of abscisic acid signalling, activate PLAT1 promoter activity in transactivation assays and directly bind to the ABRE elements located...... in this promoter in electrophoretic mobility shift assays. This suggests that PLAT1 represents a novel downstream target of the abscisic acid signalling pathway. Thus, we showed that PLAT1 critically functions as positive regulator of abiotic stress tolerance, but also is involved in regulating plant growth...

  6. Evaluating physiological responses of plants to salinity stress

    KAUST Repository

    Negrão, Sónia

    2016-10-06

    Background Because soil salinity is a major abiotic constraint affecting crop yield, much research has been conducted to develop plants with improved salinity tolerance. Salinity stress impacts many aspects of a plant’s physiology, making it difficult to study in toto. Instead, it is more tractable to dissect the plant’s response into traits that are hypothesized to be involved in the overall tolerance of the plant to salinity. Scope and conclusions We discuss how to quantify the impact of salinity on different traits, such as relative growth rate, water relations, transpiration, transpiration use efficiency, ionic relations, photosynthesis, senescence, yield and yield components. We also suggest some guidelines to assist with the selection of appropriate experimental systems, imposition of salinity stress, and obtaining and analysing relevant physiological data using appropriate indices. We illustrate how these indices can be used to identify relationships amongst the proposed traits to identify which traits are the most important contributors to salinity tolerance. Salinity tolerance is complex and involves many genes, but progress has been made in studying the mechanisms underlying a plant’s response to salinity. Nevertheless, several previous studies on salinity tolerance could have benefited from improved experimental design. We hope that this paper will provide pertinent information to researchers on performing proficient assays and interpreting results from salinity tolerance experiments.

  7. Optimal Scheduling of Distributed Energy Resources and Responsive Loads in Islanded Microgrids Considering Voltage and Frequency Security Constraints

    DEFF Research Database (Denmark)

    Vahedipour-Dahraie, Mostafa; Najafi, Hamid Reza; Anvari-Moghaddam, Amjad

    2018-01-01

    in islanded MGs with regard to voltage and frequency security constraints. Based on the proposed model, scheduling of the controllable units in both supply and demand sides is done in a way not only to maximize the expected profit of MG operator (MGO), but also to minimize the energy payments of customers...... on the system’s performance in terms of voltage and frequency stability. Moreover, optimal coordination of DERs and responsive loads can increase the expected profit of MGO significantly. The effectiveness of the proposed scheduling approach is verified on an islanded MG test system over a 24-h period....

  8. Correlation between macrobenthic structure (biotic) and water-sediment characteristics (abiotic) adjacent aquaculture areas at Tembelas Island, indonesia

    Science.gov (United States)

    Sharani, Jeanny; Hidayat, Jafron W.; Putro, Sapto P.

    2018-05-01

    Macrobenthic community play important role in sedimentary habitats as a part of food chain. Their structure may be influenced by environmental characteristic spatially and temporally. The purpose of this study is to access the correlation between macrobenthic structure (biotic) and water-sediment characteristics (abiotic) adjacent aquaculture areas at Tembelas Island, Indonesia. Water and sediments samples were taken twice, where the first and second sampling time were taken in June and October 2016, respectively. Samples were taken in the area of fish farming at coastal area of policulture/IMTA (as Location I), site of 1 km away from fish farming area as a reference site (as Location II), and monoculture sites (as Location III), with three stations for each location. Data of abiotic parameters included the composition of sediment substrate and DO, pH, salinity, temperature, and. Sediment samples were taken using Ekman grab. The organisms were 1 mm -size sieved and fixed using 10% formalin for further analysis, i.e. sorting, preserving, enumerating, identifying, and grouping. The relationship between biotics (macrobentos) and abiotics (physical-chemical factors) was assessed using a non-parametric multivariate procedure (BIOENV). This study found 61 species consisting of 46 families and 5 classes of macrobenthos. The most common classes were member of Mollusca and Polychaeta. Total nitrogen, silt, and clay were the abiotic factors most influencing macrobenthic structure (BIO-ENV; r = 0.46; R2 = 21.16%).

  9. The impact of a sustainability constraint on the mean-tracking error efficient frontier

    NARCIS (Netherlands)

    Boudt, K.M.R.; Cornelissen, J.; Croux, C.

    2013-01-01

    Most socially responsible investment funds combine a sustainability objective with a tracking error constraint. We characterize the impact of a sustainability constraint on the mean-tracking error efficient frontier and illustrate this on a universe of US stocks for the period 2003-2010. © 2013

  10. Arabidopsis AtbHLH112 regulates the expression of genes involved in abiotic stress tolerance by binding to their E-box and GCG-box motifs.

    Science.gov (United States)

    Liu, Yujia; Ji, Xiaoyu; Nie, Xianguang; Qu, Min; Zheng, Lei; Tan, Zilong; Zhao, Huimin; Huo, Lin; Liu, Shengnan; Zhang, Bing; Wang, Yucheng

    2015-08-01

    Plant basic helix-loop-helix (bHLH) transcription factors play essential roles in abiotic stress tolerance. However, most bHLHs have not been functionally characterized. Here, we characterized the functional role of a bHLH transcription factor from Arabidopsis, AtbHLH112, in response to abiotic stress. AtbHLH112 is a nuclear-localized protein, and its nuclear localization is induced by salt, drought and abscisic acid (ABA). In addition, AtbHLH112 serves as a transcriptional activator, with the activation domain located at its N-terminus. In addition to binding to the E-box motifs of stress-responsive genes, AtbHLH112 binds to a novel motif with the sequence 'GG[GT]CC[GT][GA][TA]C' (GCG-box). Gain- and loss-of-function analyses showed that the transcript level of AtbHLH112 is positively correlated with salt and drought tolerance. AtbHLH112 mediates stress tolerance by increasing the expression of P5CS genes and reducing the expression of P5CDH and ProDH genes to increase proline levels. AtbHLH112 also increases the expression of POD and SOD genes to improve reactive oxygen species (ROS) scavenging ability. We present a model suggesting that AtbHLH112 is a transcriptional activator that regulates the expression of genes via binding to their GCG- or E-boxes to mediate physiological responses, including proline biosynthesis and ROS scavenging pathways, to enhance stress tolerance. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  11. Asymmetric biotic interactions and abiotic niche differences revealed by a dynamic joint species distribution model.

    Science.gov (United States)

    Lany, Nina K; Zarnetske, Phoebe L; Schliep, Erin M; Schaeffer, Robert N; Orians, Colin M; Orwig, David A; Preisser, Evan L

    2018-05-01

    A species' distribution and abundance are determined by abiotic conditions and biotic interactions with other species in the community. Most species distribution models correlate the occurrence of a single species with environmental variables only, and leave out biotic interactions. To test the importance of biotic interactions on occurrence and abundance, we compared a multivariate spatiotemporal model of the joint abundance of two invasive insects that share a host plant, hemlock woolly adelgid (HWA; Adelges tsugae) and elongate hemlock scale (EHS; Fiorina externa), to independent models that do not account for dependence among co-occurring species. The joint model revealed that HWA responded more strongly to abiotic conditions than EHS. Additionally, HWA appeared to predispose stands to subsequent increase of EHS, but HWA abundance was not strongly dependent on EHS abundance. This study demonstrates how incorporating spatial and temporal dependence into a species distribution model can reveal the dependence of a species' abundance on other species in the community. Accounting for dependence among co-occurring species with a joint distribution model can also improve estimation of the abiotic niche for species affected by interspecific interactions. © 2018 by the Ecological Society of America.

  12. Role of Biotic and Abiotic Processes on Soil CO2 Dynamics in the McMurdo Dry Valleys, Antarctica

    Science.gov (United States)

    Risk, D. A.; Macintyre, C. M.; Lee, C.; Cary, C.; Shanhun, F.; Almond, P. C.

    2016-12-01

    In the harsh conditions of the Antarctic Dry Valleys, microbial activity has been recorded via measurements of soil carbon dioxide (CO2) concentration and surface efflux. However, high temporal resolution studies in the Dry Valleys have also shown that abiotic solubility-driven processes can strongly influence (and perhaps even dominate) the CO2 dynamics in these low flux environments and suggests that biological activity may be lower than previously thought. In this study, we aim to improve our understanding of CO2 dynamics (biotic and abiotic) in Antarctic Dry Valley soils using long-term automated measurements of soil CO2 surface flux and soil profile concentration at several sites, often at sub-diel frequency. We hypothesize that soil CO2 variations are driven primarily by environmental factors affecting CO2 solubility in soil solution, mainly temperature, and that these processes may even overprint biologic production in representative Dry Valley soils. Monitoring of all sites revealed only one likely biotic CO2 production event, lasting three weeks during the Austral summer and reaching fluxes of 0.4 µmol/m2/s. Under more typical low flux conditions (sampling campaigns. Subsurface CO2 monitoring and a lab-controlled Antarctic soil simulation experiment confirmed that abiotic processes are capable of dominating soil CO2 variability. Diel temperature cycles crossing the freezing boundary revealed a dual abiotic cycle of solubility cycling and gas exclusion from ice formation observed only by high temporal frequency measurements (30 min). This work demonstrates a need for a numerical model to partition the dynamic abiotic processes underlying any biotic CO2 production in order to understand potential climate-change induced increases in microbial productivity in terrestrial Antarctica.

  13. Day and night heat stress trigger different transcriptomic responses in green and ripening grapevine (vitis vinifera) fruit.

    Science.gov (United States)

    Rienth, Markus; Torregrosa, Laurent; Luchaire, Nathalie; Chatbanyong, Ratthaphon; Lecourieux, David; Kelly, Mary T; Romieu, Charles

    2014-04-28

    Global climate change will noticeably affect plant vegetative and reproductive development. The recent increase in temperatures has already impacted yields and composition of berries in many grapevine-growing regions. Physiological processes underlying temperature response and tolerance of the grapevine fruit have not been extensively investigated. To date, all studies investigating the molecular regulation of fleshly fruit response to abiotic stress were only conducted during the day, overlooking possible critical night-specific variations. The present study explores the night and day transcriptomic response of grapevine fruit to heat stress at several developmental stages. Short heat stresses (2 h) were applied at day and night to vines bearing clusters sequentially ordered according to the developmental stages along their vertical axes. The recently proposed microvine model (DRCF-Dwarf Rapid Cycling and Continuous Flowering) was grown in climatic chambers in order to circumvent common constraints and biases inevitable in field experiments with perennial macrovines. Post-véraison berry heterogeneity within clusters was avoided by constituting homogenous batches following organic acids and sugars measurements of individual berries. A whole genome transcriptomic approach was subsequently conducted using NimbleGen 090818 Vitis 12X (30 K) microarrays. Present work reveals significant differences in heat stress responsive pathways according to day or night treatment, in particular regarding genes associated with acidity and phenylpropanoid metabolism. Precise distinction of ripening stages led to stage-specific detection of malic acid and anthocyanin-related transcripts modulated by heat stress. Important changes in cell wall modification related processes as well as indications for heat-induced delay of ripening and sugar accumulation were observed at véraison, an effect that was reversed at later stages. This first day - night study on heat stress adaption of the

  14. Neonicotinoid insecticides induce salicylate-associated plant defense responses

    Science.gov (United States)

    Ford, Kevin A.; Casida, John E.; Chandran, Divya; Gulevich, Alexander G.; Okrent, Rachel A.; Durkin, Kathleen A.; Sarpong, Richmond; Bunnelle, Eric M.; Wildermuth, Mary C.

    2010-01-01

    Neonicotinoid insecticides control crop pests based on their action as agonists at the insect nicotinic acetylcholine receptor, which accepts chloropyridinyl- and chlorothiazolyl-analogs almost equally well. In some cases, these compounds have also been reported to enhance plant vigor and (a)biotic stress tolerance, independent of their insecticidal function. However, this mode of action has not been defined. Using Arabidopsis thaliana, we show that the neonicotinoid compounds, imidacloprid (IMI) and clothianidin (CLO), via their 6-chloropyridinyl-3-carboxylic acid and 2-chlorothiazolyl-5-carboxylic acid metabolites, respectively, induce salicylic acid (SA)-associated plant responses. SA is a phytohormone best known for its role in plant defense against pathogens and as an inducer of systemic acquired resistance; however, it can also modulate abiotic stress responses. These neonicotinoids effect a similar global transcriptional response to that of SA, including genes involved in (a)biotic stress response. Furthermore, similar to SA, IMI and CLO induce systemic acquired resistance, resulting in reduced growth of a powdery mildew pathogen. The action of CLO induces the endogenous synthesis of SA via the SA biosynthetic enzyme ICS1, with ICS1 required for CLO-induced accumulation of SA, expression of the SA marker PR1, and fully enhanced resistance to powdery mildew. In contrast, the action of IMI does not induce endogenous synthesis of SA. Instead, IMI is further bioactivated to 6-chloro-2-hydroxypyridinyl-3-carboxylic acid, which is shown here to be a potent inducer of PR1 and inhibitor of SA-sensitive enzymes. Thus, via different mechanisms, these chloropyridinyl- and chlorothiazolyl-neonicotinoids induce SA responses associated with enhanced stress tolerance. PMID:20876120

  15. Abiotic and biotic transformations of 1,1,1-trichloroethane under methanogenic conditions

    International Nuclear Information System (INIS)

    Vogel, T.M.; McCarty, P.L.

    1987-01-01

    A common industrial solvent, 1,1,1-trichloroethane (TCA), is one of the most frequently found contaminants in ground water. The fate of TCA in ground water is complicated by the different possible abiotic and biotic transformations that it may undergo. Abiotic transformation of TCA can result in a mixture of 1,1-dichloro-ethylene (1,1-DCE) and acetic acid, as shown by others. This study confirms that TCA can be biotransformed by reductive dehalogenation to 1,1-dichloroethane (1,1-DCA) and chloroethane (CA) under methanogenic conditions. Also, reductive dehalogenation of 1,1-DCE to vinyl chloride (VC) is confirmed. This study demonstrates that these transformations can occur stoichiometrically. In addition, [ 14 C]TCA, [ 14 C]-1,1-DCA, [ 14 C]-1,1-DCE, [ 14 C]CA, and [ 14 C]VC were at least partially mineralized to 14 CO 2 under similar methanogenic conditions.23 references, 3 figures, 4 tables

  16. DISTINGUISHING A HYPOTHETICAL ABIOTIC PLANET–MOON SYSTEM FROM A SINGLE INHABITED PLANET

    International Nuclear Information System (INIS)

    Li, Tong; Tian, Feng; Wei, Wanjing; Huang, Xiaomeng; Wang, Yuwei

    2016-01-01

    It has recently been suggested that an exomoon with a CH 4 atmosphere, orbiting an abiotic Earth-mass planet with an O 2 -rich atmosphere, can produce a false positive biosignature at a low–moderate spectral resolution (R = λ/Δλ ≤ 2000). If this were true, inferring the presence of life on exoplanets will be beyond our reach in the next several decades. Here we use a line-by-line radiative transfer model to compute the relevant reflection spectrum between 1 and 3.3 μm. We show that it is possible to separate the combined spectra of such planet–moon systems from an inhabited planet by multiple-band NIR observations. We suggest that future observations near the 2.3 μm CH 4 absorption band at a resolution of 100 and an SNR of 10 or more may be a good way to distinguish an abiotic planet–moon system from a inhabited single planet

  17. Growth, viability and architecture of biofilms of Listeria monocytogenes formed on abiotic surfaces

    Directory of Open Access Journals (Sweden)

    Fernanda Barbosa dos Reis-Teixeira

    Full Text Available Abstract The pathogenic bacterium Listeria monocytogenes can persist in food processing plants for many years, even when appropriate hygienic measures are in place, with potential for contaminating ready-to-eat products and, its ability to form biofilms on abiotic surfaces certainly contributes for the environmental persistence. In this research, L. monocytogenes was grown in biofilms up 8 days attached to stainless steel and glass surfaces, contributing for advancing the knowledge on architecture of mature biofilms, since many literature studies carried out on this topic considered only early stages of cell adhesion. In this study, biofilm populations of two strains of L. monocytogenes (serotypes 1/2a and 4b on stainless steel coupons and glass were examined using regular fluorescence microscopy, confocal laser scanning microscopy and classic culture method. The biofilms formed were not very dense and microscopic observations revealed uneven biofilm structures, with presence of exopolymeric matrix surrounding single cells, small aggregates and microcolonies, in a honeycomb-like arrangement. Moreover, planktonic population of L. monocytogenes (present in broth media covering the abiotic surface remained stable throughout the incubation time, which indicates an efficient dispersal mechanism, since the culture medium was replaced daily. In conclusion, even if these strains of L. monocytogenes were not able to form thick multilayer biofilms, it was noticeable their high persistence on abiotic surfaces, reinforcing the need to focus on measures to avoid biofilm formation, instead of trying to eradicate mature biofilms.

  18. Growth, viability and architecture of biofilms of Listeria monocytogenes formed on abiotic surfaces.

    Science.gov (United States)

    Reis-Teixeira, Fernanda Barbosa Dos; Alves, Virgínia Farias; de Martinis, Elaine Cristina Pereira

    The pathogenic bacterium Listeria monocytogenes can persist in food processing plants for many years, even when appropriate hygienic measures are in place, with potential for contaminating ready-to-eat products and, its ability to form biofilms on abiotic surfaces certainly contributes for the environmental persistence. In this research, L. monocytogenes was grown in biofilms up 8 days attached to stainless steel and glass surfaces, contributing for advancing the knowledge on architecture of mature biofilms, since many literature studies carried out on this topic considered only early stages of cell adhesion. In this study, biofilm populations of two strains of L. monocytogenes (serotypes 1/2a and 4b) on stainless steel coupons and glass were examined using regular fluorescence microscopy, confocal laser scanning microscopy and classic culture method. The biofilms formed were not very dense and microscopic observations revealed uneven biofilm structures, with presence of exopolymeric matrix surrounding single cells, small aggregates and microcolonies, in a honeycomb-like arrangement. Moreover, planktonic population of L. monocytogenes (present in broth media covering the abiotic surface) remained stable throughout the incubation time, which indicates an efficient dispersal mechanism, since the culture medium was replaced daily. In conclusion, even if these strains of L. monocytogenes were not able to form thick multilayer biofilms, it was noticeable their high persistence on abiotic surfaces, reinforcing the need to focus on measures to avoid biofilm formation, instead of trying to eradicate mature biofilms. Copyright © 2017. Published by Elsevier Editora Ltda.

  19. Reduction of Constraints: Applicability of the Homogeneity Constraint for Macrobatch 3

    International Nuclear Information System (INIS)

    Peeler, D.K.

    2001-01-01

    The Product Composition Control System (PCCS) is used to determine the acceptability of each batch of Defense Waste Processing Facility (DWPF) melter feed in the Slurry Mix Evaporator (SME). This control system imposes several constraints on the composition of the contents of the SME to define acceptability. These constraints relate process or product properties to composition via prediction models. A SME batch is deemed acceptable if its sample composition measurements lead to acceptable property predictions after accounting for modeling, measurement and analytic uncertainties. The baseline document guiding the use of these data and models is ''SME Acceptability Determination for DWPF Process Control (U)'' by Brown and Postles [1996]. A minimum of three PCCS constraints support the prediction of the glass durability from a given SME batch. The Savannah River Technology Center (SRTC) is reviewing all of the PCCS constraints associated with durability. The purpose of this review is to revisit these constraints in light of the additional knowledge gained since the beginning of radioactive operations at DWPF and to identify any supplemental studies needed to amplify this knowledge so that redundant or overly conservative constraints can be eliminated or replaced by more appropriate constraints

  20. Chromatin changes in response to drought, salinity, heat, and cold stresses in plants

    Directory of Open Access Journals (Sweden)

    Jong-Myong eKim

    2015-03-01

    Full Text Available Chromatin regulation is essential to regulate genes and genome activities. In plants, the alteration of histone modification and DNA methylation are coordinated with changes in the expression of stress-responsive genes to adapt to environmental changes. Several chromatin regulators have been shown to be involved in the regulation of stress-responsive gene networks under abiotic stress conditions. Specific histone modification sites and the histone modifiers that regulate key stress-responsive genes have been identified by genetic and biochemical approaches, revealing the importance of chromatin regulation in plant stress responses. Recent studies have also suggested that histone modification plays an important role in plant stress memory. In this review, we summarize recent progress on the regulation and alteration of histone modification (acetylation, methylation, phosphorylation, and SUMOylation in response to the abiotic stresses, drought, high-salinity, heat, and cold in plants.

  1. The inner Danish waters as suitable seaweed cultivation area- evaluation of abiotic factors

    DEFF Research Database (Denmark)

    Grandorf Bak, Urd; Holdt, Susan Løvstad

    conditions showed, that light conditions are sufficient to meet the light saturation level of both algae, but large seasonal and a site specific variations in light attenuation determine optimal cultivation depth. Water temperatures were found to exceed the tolerance level for P. palmata in July, August......Increased production of macroalgae may contribute to solving e.g. the demand for food globally. Palmaria palmata and Saccharina latissima are at present demanded and cultivated in European waters, and can potentially be cultivated at even larger scale. The present study investigated suitable...... cultivation areas in Danish waters for these two algal species in regard to a variation in the abiotic conditions: light, temperature, and the unusual salinity gradient through the inner Danish waters towards the Baltic Sea. Published tolerance levels of the abiotic conditions of the species were reviewed...

  2. Maternal, social and abiotic environmental effects on growth vary across life stages in a cooperative mammal.

    Science.gov (United States)

    English, Sinead; Bateman, Andrew W; Mares, Rafael; Ozgul, Arpat; Clutton-Brock, Tim H

    2014-03-01

    Resource availability plays a key role in driving variation in somatic growth and body condition, and the factors determining access to resources vary considerably across life stages. Parents and carers may exert important influences in early life, when individuals are nutritionally dependent, with abiotic environmental effects having stronger influences later in development as individuals forage independently. Most studies have measured specific factors influencing growth across development or have compared relative influences of different factors within specific life stages. Such studies may not capture whether early-life factors continue to have delayed effects at later stages, or whether social factors change when individuals become nutritionally independent and adults become competitors for, rather than providers of, food. Here, we examined variation in the influence of the abiotic, social and maternal environment on growth across life stages in a wild population of cooperatively breeding meerkats. Cooperatively breeding vertebrates are ideal for investigating environmental influences on growth. In addition to experiencing highly variable abiotic conditions, cooperative breeders are typified by heterogeneity both among breeders, with mothers varying in age and social status, and in the number of carers present. Recent rainfall had a consistently marked effect on growth across life stages, yet other seasonal terms only influenced growth during stages when individuals were growing fastest. Group size and maternal dominance status had positive effects on growth during the period of nutritional dependence on carers, but did not influence mass at emergence (at 1 month) or growth at independent stages (>4 months). Pups born to older mothers were lighter at 1 month of age and subsequently grew faster as subadults. Males grew faster than females during the juvenile and subadult stage only. Our findings demonstrate the complex ways in which the external environment

  3. Review of microbial responses to abiotic environmental factors in the context of the proposed Yucca Mountain repository

    Energy Technology Data Exchange (ETDEWEB)

    Meike, A [Lawrence Livermore National Lab., Livermore, CA (United States); Stroes-Gascoyne, S

    2000-10-01

    A workshop on Microbial Activities at Yucca Mountain (May 1995, Lafayette, CA) was held with the intention to compile information on all pertinent aspects of microbial activity for application to a potential repository at Yucca Mountain. The findings of this workshop set off a number of efforts intended to eventually incorporate the impacts of microbial behaviour into performance assessment models. One effort was to expand an existing modelling approach to include the distinctive characteristics of a repository at Yucca Mountain (e.g., unsaturated conditions and a significant thermal load). At the same time, a number of experimental studies were initiated as well as a compilation of relevant literature to more thoroughly study the physical, chemical and biological parameters that would affect microbial activity under Yucca Mountain-like conditions. This literature search (completed in 1996) is the subject of the present document. The collected literature can be divided into four categories, 1) abiotic factors, 2) community dynamics and in-situ considerations, 3) nutrient considerations and 4) transport of radionuclides. The complete bibliography (included in Appendix A) represents a considerable resource, but is too large to be discussed in one document. Therefore, the present report focuses on the first category, abiotic factors, and a discussion of these factors in order to facilitate the development of a model for Yucca Mountain. The first part of the report (Chapters 1-3) is a review of general microbial states, phases and requirements for growth, conditions for 'normal growth' and other types of growth, survival strategies and cell death. It contains primarily well-established ideas in microbiology. Microbial capabilities for survival and adaptation to environmental changes are examined because a repository placed at Yucca Mountain would have two effects. First, the natural environment would be perturbed by the excavation and construction of the repository and

  4. Review of microbial responses to abiotic environmental factors in the context of the proposed Yucca Mountain repository

    Energy Technology Data Exchange (ETDEWEB)

    Meike, A. [Lawrence Livermore National Lab., Livermore, CA (United States); Stroes-Gascoyne, S

    2000-10-01

    A workshop on Microbial Activities at Yucca Mountain (May 1995, Lafayette, CA) was held with the intention to compile information on all pertinent aspects of microbial activity for application to a potential repository at Yucca Mountain. The findings of this workshop set off a number of efforts intended to eventually incorporate the impacts of microbial behaviour into performance assessment models. One effort was to expand an existing modelling approach to include the distinctive characteristics of a repository at Yucca Mountain (e.g., unsaturated conditions and a significant thermal load). At the same time, a number of experimental studies were initiated as well as a compilation of relevant literature to more thoroughly study the physical, chemical and biological parameters that would affect microbial activity under Yucca Mountain-like conditions. This literature search (completed in 1996) is the subject of the present document. The collected literature can be divided into four categories, 1) abiotic factors, 2) community dynamics and in-situ considerations, 3) nutrient considerations and 4) transport of radionuclides. The complete bibliography (included in Appendix A) represents a considerable resource, but is too large to be discussed in one document. Therefore, the present report focuses on the first category, abiotic factors, and a discussion of these factors in order to facilitate the development of a model for Yucca Mountain. The first part of the report (Chapters 1-3) is a review of general microbial states, phases and requirements for growth, conditions for 'normal growth' and other types of growth, survival strategies and cell death. It contains primarily well-established ideas in microbiology. Microbial capabilities for survival and adaptation to environmental changes are examined because a repository placed at Yucca Mountain would have two effects. First, the natural environment would be perturbed by the excavation and construction of the

  5. Momentum constraint relaxation

    International Nuclear Information System (INIS)

    Marronetti, Pedro

    2006-01-01

    Full relativistic simulations in three dimensions invariably develop runaway modes that grow exponentially and are accompanied by violations of the Hamiltonian and momentum constraints. Recently, we introduced a numerical method (Hamiltonian relaxation) that greatly reduces the Hamiltonian constraint violation and helps improve the quality of the numerical model. We present here a method that controls the violation of the momentum constraint. The method is based on the addition of a longitudinal component to the traceless extrinsic curvature A ij -tilde, generated by a vector potential w i , as outlined by York. The components of w i are relaxed to solve approximately the momentum constraint equations, slowly pushing the evolution towards the space of solutions of the constraint equations. We test this method with simulations of binary neutron stars in circular orbits and show that it effectively controls the growth of the aforementioned violations. We also show that a full numerical enforcement of the constraints, as opposed to the gentle correction of the momentum relaxation scheme, results in the development of instabilities that stop the runs shortly

  6. Conceptual Design Optimization of an Augmented Stability Aircraft Incorporating Dynamic Response and Actuator Constraints

    Science.gov (United States)

    Welstead, Jason; Crouse, Gilbert L., Jr.

    2014-01-01

    Empirical sizing guidelines such as tail volume coefficients have long been used in the early aircraft design phases for sizing stabilizers, resulting in conservatively stable aircraft. While successful, this results in increased empty weight, reduced performance, and greater procurement and operational cost relative to an aircraft with optimally sized surfaces. Including flight dynamics in the conceptual design process allows the design to move away from empirical methods while implementing modern control techniques. A challenge of flight dynamics and control is the numerous design variables, which are changing fluidly throughout the conceptual design process, required to evaluate the system response to some disturbance. This research focuses on addressing that challenge not by implementing higher order tools, such as computational fluid dynamics, but instead by linking the lower order tools typically used within the conceptual design process so each discipline feeds into the other. In thisresearch, flight dynamics and control was incorporated into the conceptual design process along with the traditional disciplines of vehicle sizing, weight estimation, aerodynamics, and performance. For the controller, a linear quadratic regulator structure with constant gains has been specified to reduce the user input. Coupling all the disciplines in the conceptual design phase allows the aircraft designer to explore larger design spaces where stabilizers are sized according to dynamic response constraints rather than historical static margin and volume coefficient guidelines.

  7. Hydroxylated PCBs in abiotic environmental matrices. Precipitation and surface waters

    Energy Technology Data Exchange (ETDEWEB)

    Darling, C.; Alaee, M.; Campbell, L.; Pacepavicius, G.; Ueno, D.; Muir, D. [National Water Research Institute, Burlington, ON (Canada)

    2004-09-15

    Hydroxylated PCBs (OH-PCBs) are of great interest environmentally because of their potential thyroidogenic effects. OH-PCBs can compete with thyroxine for binding sites on transthyretin, one of the three main thyroid hormone transport proteins in mammals1. The chemical structures of some OH-PCBs with a para OH group and adjacent chlorine atoms, particularly 4-OH-CB109, 4- OH-CB146, and 4-OH-CB187, share a similar structure to the thyroid hormones (T3 and T4), which have a para OH with adjacent iodine atoms. A number of OH-PCBs have been identified in the blood of humans and biota during the last 5 to 10 years, however, reports on the identity, presence and levels of OH-PCBs are limited. This presentation describes preliminary studies on the presence of OH-PCBs in abiotic samples and comparisons of congener patterns with biological samples. We have previously shown that OHPCBs were present in lake trout from the Great Lakes and nearby large lakes as well as in nearshore environments. We hypothesized that some of the OH-PCB present in fish might be from abiotic formation in water or the atmosphere, or from microbial oxidation of PCBs and/or deconjugation of PCB metabolites in waste treatment plants.

  8. Monitoring expression profiles of rice (Oryza sativa L.) genes under abiotic stresses using cDNA Microarray Analysis (abstract)

    International Nuclear Information System (INIS)

    Rabbani, M.A.

    2005-01-01

    Transcript regulation in response to cold, drought, high salinity and ABA application was investigated in rice (Oryza sativa L., Nipponbare) with microarray analysis including approx. 1700 independent DNA elements derived from three cDNA libraries constructed from 15-day old rice seedlings stressed with drought, cold and high salinity. A total of 141 non-redundant genes were identified, whose expression ratios were more than three-fold compared with the control genes for at least one of stress treatments in microarray analysis. However, after RNA gel blot analysis, a total of 73 genes were identified, among them the transcripts of 36, 62, 57 and 43 genes were found increased after cold, drought, high salinity and ABA application, respectively. Sixteen of these identified genes have been reported previously to be stress inducible in rice, while 57 of which are novel that have not been reported earlier as stress responsive in rice. We observed a strong association in the expression patterns of stress responsive genes and found 15 stress inducible genes that responded to all four treatments. Based on Venn diagram analysis, 56 genes were induced by both drought and high salinity, whereas 22 genes were upregulated by both cold and high salinity stress. Similarly 43 genes were induced by both drought stress and ABA application, while only 17 genes were identified as cold and ABA inducible genes. These results indicated the existence of greater cross talk between drought, ABA and high salinity stress signaling processes than those between cold and ABA, and cold and high salinity stress signaling pathways. The cold, drought, high salinity and ABA inducible genes were classified into four gene groups from their expression profiles. Analysis of data enabled us to identify a number of promoters and possible cis-acting DNA elements of several genes induced by a variety of abiotic stresses by combining expression data with genomic sequence data of rice. Comparative analysis of

  9. ISOLATION OF MESOPHYLL PROTOPLASTS FROM MEDITERRANEAN WOODY PLANTS FOR THE STUDY OF DNA INTEGRITY UNDER ABIOTIC STRESS

    Directory of Open Access Journals (Sweden)

    Elena Kuzminsky

    2016-08-01

    Full Text Available Abiotic stresses have considerable negative impact on Mediterranean plant ecosystems and better comprehension of the genetic control of response and adaptation of trees to global changes is urgently needed. The Single Cell Gel Electrophoresis assay could be considered a good estimator of DNA damage in an individual eukaryotic cell. This method has been mainly employed in animal tissues, because the plant cell wall represents an obstacle for the extraction of nuclei; moreover, in Mediterranean woody species, especially in the sclerophyll plants, this procedure can be quite difficult because of the presence of sclerenchyma and hardened cells. On the other hand, these plants represent an interesting material to be studied because of the ability of these plants to tolerate abiotic stress. For instance, holm oak (Quercus ilex L. has been selected as the model plant to identify critical levels of O3 for Southern European forests. Consequently, a quantitative method for the evaluation of cell injury of leaf tissues of this species is required. Optimal conditions for high-yield nuclei isolation were obtained by using protoplast technology and a detailed description of the method is provided and discussed. White poplar (Populus alba L. was used as an internal control for protoplast isolation. Such a method has not been previously reported in newly fully developed leaves of holm oak. This method combined with Single Cell Gel Electrophoresis assay represents a new tool for testing the DNA integrity of leaf tissues in higher plants under stress conditions.

  10. Constraints on the nuclear matter equation of state from pulsar glitches

    International Nuclear Information System (INIS)

    Link, B.; Epstein, R.I.; Van Riper, K.A.

    1992-01-01

    We study the post-glitch response of four pulsars to obtain lower limits on the total moment of inertia of the inner crust superfluid. In contrast to previous work, our constraints are independent of the form of the crust-superfluid coupling. We conclude that the superfluid must comprise approx-gt 0.8% of the total moment of inertia of the star. This constraint rules out the softest equations of state

  11. Comprehensive expression profiling of rice tetraspanin genes reveals diverse roles during development and abiotic stress

    Directory of Open Access Journals (Sweden)

    Balaji eM

    2015-12-01

    Full Text Available Tetraspanin family is comprised of evolutionarily conserved integral membrane proteins. The incredible ability of tetraspanins to form ‘micro domain complexes’ and their preferential targeting to membranes emphasizes their active association with signal recognition and communication with neighboring cells, thus acting as key modulators of signaling cascades. In animals, tetraspanins are associated with multitude of cellular processes. Unlike animals, the biological relevance of tetraspanins in plants has not been well investigated. In Arabidopsis tetraspanins are known to contribute in important plant development processes such as leaf morphogenesis, root and floral organ formation. In the present study we investigated the genomic organization, chromosomal distribution, phylogeny and domain structure of 15 rice tetraspanin proteins (OsTETs. OsTET proteins had similar domain structure and signature ‘GCCK/R’ motif as reported in Arabidopsis. Comprehensive expression profiling of OsTET genes suggested their possible involvement during rice development. While OsTET9 and 10 accumulated predominantly in flowers, OsTET5, 8 and 12 were preferentially expressed in root tissues. Noticeably, seven OsTETs exhibited more than 2-fold up regulation at early stages of flag leaf senescence in rice. Furthermore, several OsTETs were differentially regulated in rice seedlings exposed to abiotic stresses, exogenous treatment of hormones and nutrient deprivation. Transient subcellular localization studies of eight OsTET proteins in tobacco epidermal cells showed that these proteins localized in plasma membrane. The present study provides valuable insights into the possible roles of tetraspanins in regulating development and defining response to abiotic stresses in rice. Targeted proteomic studies would be useful in identification of their interacting partners under different conditions and ultimately their biological function in plants

  12. Consumers, food and convenience: The long way from resource constraints to actual consumption patterns

    DEFF Research Database (Denmark)

    Scholderer, Joachim; Grunert, Klaus G.

    2005-01-01

    that the influence of resource constraints on actual convenience behaviours is doubly mediated, first by perceptions of resource constraints, and then by convenience orientations. In Study 1, the model is calibrated based on a sample of 1000 French respondents with main responsibility for food shopping and meal...

  13. Genome-wide identification and expression profiling of tomato Hsp20 gene family in response to biotic and abiotic stresses

    Directory of Open Access Journals (Sweden)

    jiahong yu

    2016-08-01

    levels of SlHsp20 genes could be induced profusely by abiotic and biotic stresses such as heat, drought, salt, Botrytis cinerea and Tomato Spotted Wilt Virus, indicating their potential roles in mediating the response of tomato plants to environment stresses. In conclusion, these results provide valuable information for elucidating the evolutionary relationship of Hsp20 gene family and functional characterization of the SlHsp20 gene family in the future.

  14. Genome-Wide Identification and Expression Profiling of Tomato Hsp20 Gene Family in Response to Biotic and Abiotic Stresses.

    Science.gov (United States)

    Yu, Jiahong; Cheng, Yuan; Feng, Kun; Ruan, Meiying; Ye, Qingjing; Wang, Rongqing; Li, Zhimiao; Zhou, Guozhi; Yao, Zhuping; Yang, Yuejian; Wan, Hongjian

    2016-01-01

    genes could be induced profusely by abiotic and biotic stresses such as heat, drought, salt, Botrytis cinerea, and Tomato Spotted Wilt Virus (TSWV), indicating their potential roles in mediating the response of tomato plants to environment stresses. In conclusion, these results provide valuable information for elucidating the evolutionary relationship of Hsp20 gene family and functional characterization of the SlHsp20 gene family in the future.

  15. The SULTR gene family in maize (Zea mays L.): Gene cloning and expression analyses under sulfate starvation and abiotic stress.

    Science.gov (United States)

    Huang, Qin; Wang, Meiping; Xia, Zongliang

    2018-01-01

    Sulfur is an essential macronutrient required for plant growth, development and stress responses. The family of sulfate transporters (SULTRs) mediates the uptake and translocation of sulfate in higher plants. However, basic knowledge of the SULTR gene family in maize (Zea mays L.) is scarce. In this study, a genome-wide bioinformatic analysis of SULTR genes in maize was conducted, and the developmental expression patterns of the genes and their responses to sulfate starvation and abiotic stress were further investigated. The ZmSULTR family includes eight putative members in the maize genome and is clustered into four groups in the phylogenetic tree. These genes displayed differential expression patterns in various organs of maize. For example, expression of ZmSULTR1;1 and ZmSULTR4;1 was high in roots, and transcript levels of ZmSULTR3;1 and ZmSULTR3;3 were high in shoots. Expression of ZmSULTR1;2, ZmSULTR2;1, ZmSULTR3;3, and ZmSULTR4;1 was high in flowers. Also, these eight genes showed differential responses to sulfate deprivation in roots and shoots of maize seedlings. Transcript levels of ZmSULTR1;1, ZmSULTR1;2, and ZmSULTR3;4 were significantly increased in roots during 12-day-sulfate starvation stress, while ZmSULTR3;3 and ZmSULTR3;5 only showed an early response pattern in shoots. In addition, dynamic transcriptional changes determined via qPCR revealed differential expression profiles of these eight ZmSULTR genes in response to environmental stresses such as salt, drought, and heat stresses. Notably, all the genes, except for ZmSULTR3;3, were induced by drought and heat stresses. However, a few genes were induced by salt stress. Physiological determination showed that two important thiol-containing compounds, cysteine and glutathione, increased significantly under these abiotic stresses. The results suggest that members of the SULTR family might function in adaptations to sulfur deficiency stress and adverse growing environments. This study will lay a

  16. Abiotic mechanism for the formation of atmospheric nitrous oxide from ammonium nitrate.

    Science.gov (United States)

    Rubasinghege, Gayan; Spak, Scott N; Stanier, Charles O; Carmichael, Gregory R; Grassian, Vicki H

    2011-04-01

    Nitrous oxide (N2O) is an important greenhouse gas and a primary cause of stratospheric ozone destruction. Despite its importance, there remain missing sources in the N2O budget. Here we report the formation of atmospheric nitrous oxide from the decomposition of ammonium nitrate via an abiotic mechanism that is favorable in the presence of light, relative humidity and a surface. This source of N2O is not currently accounted for in the global N2O budget. Annual production of N2O from atmospheric aerosols and surface fertilizer application over the continental United States from this abiotic pathway is estimated from results of an annual chemical transport simulation with the Community Multiscale Air Quality model (CMAQ). This pathway is projected to produce 9.3(+0.7/-5.3) Gg N2O annually over North America. N2O production by this mechanism is expected globally from both megacities and agricultural areas and may become more important under future projected changes in anthropogenic emissions.

  17. Herboxidiene triggers splicing repression and abiotic stress responses in plants

    KAUST Repository

    Alshareef, Sahar; Ling, Yu; Butt, Haroon; Mariappan, Kiruthiga G.; Benhamed, Moussa; Mahfouz, Magdy M.

    2017-01-01

    Constitutive and alternative splicing of pre-mRNAs from multiexonic genes controls the diversity of the proteome; these precisely regulated processes also fine-tune responses to cues related to growth, development, and stresses. Small

  18. Observational Constraints on Cloud Feedbacks: The Role of Active Satellite Sensors

    Science.gov (United States)

    Winker, David; Chepfer, Helene; Noel, Vincent; Cai, Xia

    2017-11-01

    Cloud profiling from active lidar and radar in the A-train satellite constellation has significantly advanced our understanding of clouds and their role in the climate system. Nevertheless, the response of clouds to a warming climate remains one of the largest uncertainties in predicting climate change and for the development of adaptions to change. Both observation of long-term changes and observational constraints on the processes responsible for those changes are necessary. We review recent progress in our understanding of the cloud feedback problem. Capabilities and advantages of active sensors for observing clouds are discussed, along with the importance of active sensors for deriving constraints on cloud feedbacks as an essential component of a global climate observing system.

  19. Abiotic Protein Fragmentation by Manganese Oxide: Implications for a Mechanism to Supply Soil Biota with Oligopeptides.

    Science.gov (United States)

    Reardon, Patrick N; Chacon, Stephany S; Walter, Eric D; Bowden, Mark E; Washton, Nancy M; Kleber, Markus

    2016-04-05

    The ability of plants and microorganisms to take up organic nitrogen in the form of free amino acids and oligopeptides has received increasing attention over the last two decades, yet the mechanisms for the formation of such compounds in soil environments remain poorly understood. We used Nuclear Magnetic Resonance (NMR) and Electron Paramagnetic Resonance (EPR) spectroscopies to distinguish the reaction of a model protein with a pedogenic oxide (Birnessite, MnO2) from its response to a phyllosilicate (Kaolinite). Our data demonstrate that birnessite fragments the model protein while kaolinite does not, resulting in soluble peptides that would be available to soil biota and confirming the existence of an abiotic pathway for the formation of organic nitrogen compounds for direct uptake by plants and microorganisms. The absence of reduced Mn(II) in the solution suggests that birnessite acts as a catalyst rather than an oxidant in this reaction. NMR and EPR spectroscopies are shown to be valuable tools to observe these reactions and capture the extent of protein transformation together with the extent of mineral response.

  20. Abiotic and biotic responses to Milankovitch-forced megamonsoon and glacial cycles recorded in South China at the end of the Late Paleozoic Ice Age

    Science.gov (United States)

    Fang, Qiang; Wu, Huaichun; Hinnov, Linda A.; Tian, Wenqian; Wang, Xunlian; Yang, Tianshui; Li, Haiyan; Zhang, Shihong

    2018-04-01

    At the end of the Late Paleozoic Ice Age (LPIA) from late Early Permian to early Late Permian, the global climate was impacted by a prevailing megamonsoon and Gondwanan deglaciation. To better understand the abiotic and biotic responses to Milankovitch-forced climate changes during this time period, multi-element X-ray fluorescence (XRF) geochemistry analyses were conducted on 948 samples from the late Early-late Middle Permian Maokou Formation at Shangsi, South China. The Fe/Ti, S/Ti, Ba/Ti and Ca time series, which were calibrated with an existing "floating" astronomical time scale (ATS), show the entire suite of Milankovitch rhythms including 405 kyr long eccentricity, 128 and 95 kyr short eccentricity, 33 kyr obliquity and 20 kyr precession. Spectral coherency and cross-phase analysis reveals that chemical weathering (monitored by Fe/Ti) and upwelling (captured by S/Ti and Ba/Ti) are nearly antiphase in the precession band, which suggests a contrast between summer and winter monsoon intensities. Strong obliquity signal in the Ba/Ti series is proposed to derive from changes in thermohaline circulation intensity from glaciation dynamics in southern Gondwana. The abundance of foraminifer, brachiopod and ostracod faunas within the Maokou Formation were mainly controlled by the 1.1 Myr obliquity modulation cycle. The obliquity-forced high-nutrient and oxygen-depleted conditions generally produced a benthic foraminifer bloom, but threatened the brachiopod and ostracod faunas.

  1. Foxtail millet NF-Y families: genome-wide survey and evolution analyses identified two functional genes important in abiotic stresses

    Directory of Open Access Journals (Sweden)

    Zhi-Juan eFeng

    2015-12-01

    Full Text Available It was reported that Nuclear Factor Y (NF-Y genes were involved in abiotic stress in plants. Foxtail millet (Setaria italica, an elite stress tolerant crop, provided an impetus for the investigation of the NF-Y families in abiotic responses. In the present study, a total of 39 NF-Y genes were identified in foxtail millet. Synteny analyses suggested that foxtail millet NF-Y genes had experienced rapid expansion and strong purifying selection during the process of plant evolution. De novo transcriptome assembly of foxtail millet revealed 11 drought up-regulated NF-Y genes. SiNF-YA1 and SiNF-YB8 were highly activated in leaves and/or roots by drought and salt stresses. Abscisic acid (ABA and H2O2 played positive roles in the induction of SiNF-YA1 and SiNF-YB8 under stress treatments. Transient luciferase (LUC expression assays revealed that SiNF-YA1 and SiNF-YB8 could activate the LUC gene driven by the tobacco (Nicotiana tobacam NtERD10, NtLEA5, NtCAT, NtSOD or NtPOD promoter under normal or stress conditions. Overexpression of SiNF-YA1 enhanced drought and salt tolerance by activating stress-related genes NtERD10 and NtCAT1 and by maintaining relatively stable relative water content (RWC and contents of chlorophyll, superoxide dismutase (SOD, peroxidase (POD, catalase (CAT and malondialdehyde (MDA in transgenic lines under stresses. SiNF-YB8 regulated expression of NtSOD, NtPOD, NtLEA5 and NtERD10 and conferred relatively high RWC and chlorophyll contents and low MDA content, resulting in drought and osmotic tolerance in transgenic lines under stresses. Therefore, SiNF-YA1 and SiNF-YB8 could activate stress-related genes and improve physiological traits, resulting in tolerance to abiotic stresses in plants. All these results will facilitate functional characterization of foxtail millet NF-Ys in future studies.

  2. The Arabidopsis PLAT domain protein1 promotes abiotic stress tolerance and growth in tobacco

    Czech Academy of Sciences Publication Activity Database

    Hyun, T.K.; Albacete, A.; van der Graaff, E.; Eom, S. H.; Großkinsky, D.K.; Böhm, H.; Janschek, U.; Rim, Y.; Ali, W.; Kim, S.Y.; Roitsch, Thomas

    2015-01-01

    Roč. 24, č. 4 (2015), s. 651-663 ISSN 0962-8819 Institutional support: RVO:67179843 Keywords : Abiotic stress * Biotic stress * Plant growth * AtPLAT1 gene * Tobacco Subject RIV: EH - Ecology, Behaviour Impact factor: 2.054, year: 2015

  3. Searching for genomic constraints

    Energy Technology Data Exchange (ETDEWEB)

    Lio` , P [Cambridge, Univ. (United Kingdom). Genetics Dept.; Ruffo, S [Florence, Univ. (Italy). Fac. di Ingegneria. Dipt. di Energetica ` S. Stecco`

    1998-01-01

    The authors have analyzed general properties of very long DNA sequences belonging to simple and complex organisms, by using different correlation methods. They have distinguished those base compositional rules that concern the entire genome which they call `genomic constraints` from the rules that depend on the `external natural selection` acting on single genes, i. e. protein-centered constraints. They show that G + C content, purine / pyrimidine distributions and biological complexity of the organism are the most important factors which determine base compositional rules and genome complexity. Three main facts are here reported: bacteria with high G + C content have more restrictions on base composition than those with low G + C content; at constant G + C content more complex organisms, ranging from prokaryotes to higher eukaryotes (e.g. human) display an increase of repeats 10-20 nucleotides long, which are also partly responsible for long-range correlations; work selection of length 3 to 10 is stronger in human and in bacteria for two distinct reasons. With respect to previous studies, they have also compared the genomic sequence of the archeon Methanococcus jannaschii with those of bacteria and eukaryotes: it shows sometimes an intermediate statistical behaviour.

  4. Searching for genomic constraints

    International Nuclear Information System (INIS)

    Lio', P.; Ruffo, S.

    1998-01-01

    The authors have analyzed general properties of very long DNA sequences belonging to simple and complex organisms, by using different correlation methods. They have distinguished those base compositional rules that concern the entire genome which they call 'genomic constraints' from the rules that depend on the 'external natural selection' acting on single genes, i. e. protein-centered constraints. They show that G + C content, purine / pyrimidine distributions and biological complexity of the organism are the most important factors which determine base compositional rules and genome complexity. Three main facts are here reported: bacteria with high G + C content have more restrictions on base composition than those with low G + C content; at constant G + C content more complex organisms, ranging from prokaryotes to higher eukaryotes (e.g. human) display an increase of repeats 10-20 nucleotides long, which are also partly responsible for long-range correlations; work selection of length 3 to 10 is stronger in human and in bacteria for two distinct reasons. With respect to previous studies, they have also compared the genomic sequence of the archeon Methanococcus jannaschii with those of bacteria and eukaryotes: it shows sometimes an intermediate statistical behaviour

  5. Biophysical constraints on leaf expansion in a tall conifer.

    Science.gov (United States)

    Fredrick C. Meinzer; Barbara J. Bond; Jennifer A. Karanian

    2008-01-01

    The physiological mechanisms responsible for reduced extension growth as trees increase in height remain elusive. We evaluated biophysical constraints on leaf expansion in old-growth Douglas-fir (Psuedotsuga menziesii (Mirb.) Franco) trees. Needle elongation rates, plastic and elastic extensibility, bulk leaf water, (L...

  6. Mud, Macrofauna and Microbes: An ode to benthic organism-abiotic interactions at varying scales

    Science.gov (United States)

    Benthic environments are dynamic habitats, subject to variable sources and rates of sediment delivery, reworking from the abiotic and biotic processes, and complex biogeochemistry. These activities do not occur in a vacuum, and interact synergistically to influence food webs, bi...

  7. Molecular characterization of the sweet potato peroxidase SWPA4 promoter which responds to abiotic stresses and pathogen infection.

    Science.gov (United States)

    Ryu, Sun-Hwa; Kim, Yun-Hee; Kim, Cha Young; Park, Soo-Young; Kwon, Suk-Yoon; Lee, Haeng-Soon; Kwak, Sang-Soo

    2009-04-01

    Previously, the swpa4 peroxidase gene has been shown to be inducible by a variety of abiotic stresses and pathogenic infections in sweet potato (Ipomoea batatas). To elucidate its regulatory mechanism at the transcriptional level under various stress conditions, we isolated and characterized the promoter region (2374 bp) of swpa4 (referred to as SWPA4). We performed a transient expression assay in tobacco protoplasts with deletions from the 5'-end of SWPA4 promoter fused to the beta-glucuronidase (GUS) reporter gene. The -1408 and -374 bp deletions relative to the transcription start site (+1) showed 8 and 4.5 times higher GUS expression than the cauliflower mosaic virus 35S promoter, respectively. In addition, transgenic tobacco plants expressing GUS under the control of -2374, -1408 or -374 bp region of SWPA4 promoter were generated and studied in various tissues under abiotic stresses and pathogen infection. Gel mobility shift assays revealed that nuclear proteins from sweet potato cultured cells specifically interacted with 60-bp fragment (-178/-118) in -374 bp promoter region. In silico analysis indicated that four kinds of cis-acting regulatory sequences, reactive oxygen species-related element activator protein 1 (AP1), CCAAT/enhancer-binding protein alpha element, ethylene-responsive element (ERE) and heat-shock element, are present in the -60 bp region (-178/-118), suggesting that the -60 bp region might be associated with stress inducibility of the SWPA4 promoter.

  8. The molecular mechanisms of plant plasma membrane intrinsic proteins trafficking and stress response.

    Science.gov (United States)

    Wang, Xing; Zhang, Ji-long; Feng, Xiu-xiu; Li, Hong-jie; Zhang, Gen-fa

    2017-04-20

    Plasma membrane intrinsic proteins (PIPs) are plant channel proteins located on the plasma membrane. PIPs transfer water, CO 2 and small uncharged solutes through the plasma membrane. PIPs have high selectivity to substrates, suggestive of a central role in maintaining cellular water balance. The expression, activity and localization of PIPs are regulated at the transcriptional and post-translational levels, and also affected by environmental factors. Numerous studies indicate that the expression patterns and localizations of PIPs can change in response to abiotic stresses. In this review, we summarize the mechanisms of PIP trafficking, transcriptional and post-translational regulations, and abiotic stress responses. Moreover, we also discuss the current research trends and future directions on PIPs.

  9. Spatially dependent biotic and abiotic factors drive survivorship and physical structure of green roof vegetation.

    Science.gov (United States)

    Aloisio, Jason M; Palmer, Matthew I; Giampieri, Mario A; Tuininga, Amy R; Lewis, James D

    2017-01-01

    Plant survivorship depends on biotic and abiotic factors that vary at local and regional scales. This survivorship, in turn, has cascading effects on community composition and the physical structure of vegetation. Survivorship of native plant species is variable among populations planted in environmentally stressful habitats like urban roofs, but the degree to which factors at different spatial scales affect survivorship in urban systems is not well understood. We evaluated the effects of biotic and abiotic factors on survivorship, composition, and physical structure of two native perennial species assemblages, one characterized by a mixture of C 4 grasses and forbs (Hempstead Plains, HP) and one characterized by a mixture of C 3 grasses and forbs (Rocky Summit, RS), that were initially sown at equal ratios of growth forms (5:1:4; grass, N-fixing forb and non-N-fixing forb) in replicate 2-m 2 plots planted on 10 roofs in New York City (New York, USA). Of 24 000 installed plants, 40% survived 23 months after planting. Within-roof factors explained 71% of variation in survivorship, with biotic (species identity and assemblage) factors accounting for 54% of the overall variation, and abiotic (growing medium depth and plot location) factors explaining 17% of the variation. Among-roof factors explained 29% of variation in survivorship and increased solar radiation correlated with decreased survivorship. While growing medium properties (pH, nutrients, metals) differed among roofs there was no correlation with survivorship. Percent cover and sward height increased with increasing survivorship. At low survivorship, cover of the HP assemblage was greater compared to the RS assemblage. Sward height of the HP assemblage was about two times greater compared to the RS assemblage. These results highlight the effects of local biotic and regional abiotic drivers on community composition and physical structure of green roof vegetation. As a result, initial green roof plant

  10. Coordinated Actions of Glyoxalase and Antioxidant Defense Systems in Conferring Abiotic Stress Tolerance in Plants

    Directory of Open Access Journals (Sweden)

    Mirza Hasanuzzaman

    2017-01-01

    Full Text Available Being sessile organisms, plants are frequently exposed to various environmental stresses that cause several physiological disorders and even death. Oxidative stress is one of the common consequences of abiotic stress in plants, which is caused by excess generation of reactive oxygen species (ROS. Sometimes ROS production exceeds the capacity of antioxidant defense systems, which leads to oxidative stress. In line with ROS, plants also produce a high amount of methylglyoxal (MG, which is an α-oxoaldehyde compound, highly reactive, cytotoxic, and produced via different enzymatic and non-enzymatic reactions. This MG can impair cells or cell components and can even destroy DNA or cause mutation. Under stress conditions, MG concentration in plants can be increased 2- to 6-fold compared with normal conditions depending on the plant species. However, plants have a system developed to detoxify this MG consisting of two major enzymes: glyoxalase I (Gly I and glyoxalase II (Gly II, and hence known as the glyoxalase system. Recently, a novel glyoxalase enzyme, named glyoxalase III (Gly III, has been detected in plants, providing a shorter pathway for MG detoxification, which is also a signpost in the research of abiotic stress tolerance. Glutathione (GSH acts as a co-factor for this system. Therefore, this system not only detoxifies MG but also plays a role in maintaining GSH homeostasis and subsequent ROS detoxification. Upregulation of both Gly I and Gly II as well as their overexpression in plant species showed enhanced tolerance to various abiotic stresses including salinity, drought, metal toxicity, and extreme temperature. In the past few decades, a considerable amount of reports have indicated that both antioxidant defense and glyoxalase systems have strong interactions in conferring abiotic stress tolerance in plants through the detoxification of ROS and MG. In this review, we will focus on the mechanisms of these interactions and the coordinated

  11. Coordinated Actions of Glyoxalase and Antioxidant Defense Systems in Conferring Abiotic Stress Tolerance in Plants

    Science.gov (United States)

    Hasanuzzaman, Mirza; Nahar, Kamrun; Hossain, Md. Shahadat; Mahmud, Jubayer Al; Rahman, Anisur; Inafuku, Masashi; Oku, Hirosuke; Fujita, Masayuki

    2017-01-01

    Being sessile organisms, plants are frequently exposed to various environmental stresses that cause several physiological disorders and even death. Oxidative stress is one of the common consequences of abiotic stress in plants, which is caused by excess generation of reactive oxygen species (ROS). Sometimes ROS production exceeds the capacity of antioxidant defense systems, which leads to oxidative stress. In line with ROS, plants also produce a high amount of methylglyoxal (MG), which is an α-oxoaldehyde compound, highly reactive, cytotoxic, and produced via different enzymatic and non-enzymatic reactions. This MG can impair cells or cell components and can even destroy DNA or cause mutation. Under stress conditions, MG concentration in plants can be increased 2- to 6-fold compared with normal conditions depending on the plant species. However, plants have a system developed to detoxify this MG consisting of two major enzymes: glyoxalase I (Gly I) and glyoxalase II (Gly II), and hence known as the glyoxalase system. Recently, a novel glyoxalase enzyme, named glyoxalase III (Gly III), has been detected in plants, providing a shorter pathway for MG detoxification, which is also a signpost in the research of abiotic stress tolerance. Glutathione (GSH) acts as a co-factor for this system. Therefore, this system not only detoxifies MG but also plays a role in maintaining GSH homeostasis and subsequent ROS detoxification. Upregulation of both Gly I and Gly II as well as their overexpression in plant species showed enhanced tolerance to various abiotic stresses including salinity, drought, metal toxicity, and extreme temperature. In the past few decades, a considerable amount of reports have indicated that both antioxidant defense and glyoxalase systems have strong interactions in conferring abiotic stress tolerance in plants through the detoxification of ROS and MG. In this review, we will focus on the mechanisms of these interactions and the coordinated action of

  12. Towards the Identification of New Genes Involved in ABA-Dependent Abiotic Stresses Using Arabidopsis Suppressor Mutants of abh1 Hypersensitivity to ABA during Seed Germination

    Directory of Open Access Journals (Sweden)

    Iwona Szarejko

    2013-06-01

    Full Text Available Abscisic acid plays a pivotal role in the abiotic stress response in plants. Although great progress has been achieved explaining the complexity of the stress and ABA signaling cascade, there are still many questions to answer. Mutants are a valuable tool in the identification of new genes or new alleles of already known genes and in elucidating their role in signaling pathways. We applied a suppressor mutation approach in order to find new components of ABA and abiotic stress signaling in Arabidopsis. Using the abh1 (ABA hypersensitive 1 insertional mutant as a parental line for EMS mutagenesis, we selected several mutants with suppressed hypersensitivity to ABA during seed germination. Here, we present the response to ABA and a wide range of abiotic stresses during the seed germination and young seedling development of two suppressor mutants—soa2 (suppressor of abh1 hypersensitivity to ABA 2 and soa3 (suppressor of abh1 hypersensitivity to ABA 3. Generally, both mutants displayed a suppression of the hypersensitivity of abh1 to ABA, NaCl and mannitol during germination. Both mutants showed a higher level of tolerance than Columbia-0 (Col-0—the parental line of abh1 in high concentrations of glucose. Additionally, soa2 exhibited better root growth than Col-0 in the presence of high ABA concentrations. soa2 and soa3 were drought tolerant and both had about 50% fewer stomata per mm2 than the wild-type but the same number as their parental line—abh1. Taking into account that suppressor mutants had the same genetic background as their parental line—abh1, it was necessary to backcross abh1 with Landsberg erecta four times for the map-based cloning approach. Mapping populations, derived from the cross of abh1 in the Landsberg erecta background with each suppressor mutant, were created. Map based cloning in order to identify the suppressor genes is in progress.

  13. Prominent Constraints Faced by Government Managers.

    Science.gov (United States)

    1983-06-01

    organizations have varied cultures and missions. 8 There has been little researc -h on the identification of these constraints and the effective...Additionally, in the current environment they4 15 are responsible to set the rate schedule for various services provided to NAVAIR, and to market ...NAVAIR. They are paid on the basis of work to be performed. This allows a better cost accounting system, but results in some marketing behavior by the

  14. The Multiple Functions of the Nucleolus in Plant Development, Disease and Stress Responses

    Directory of Open Access Journals (Sweden)

    Natalia O. Kalinina

    2018-02-01

    Full Text Available The nucleolus is the most conspicuous domain in the eukaryotic cell nucleus, whose main function is ribosomal RNA (rRNA synthesis and ribosome biogenesis. However, there is growing evidence that the nucleolus is also implicated in many other aspects of cell biology, such as regulation of cell cycle, growth and development, senescence, telomerase activity, gene silencing, responses to biotic and abiotic stresses. In the first part of the review, we briefly assess the traditional roles of the plant nucleolus in rRNA synthesis and ribosome biogenesis as well as possible functions in other RNA regulatory pathways such as splicing, nonsense-mediated mRNA decay and RNA silencing. In the second part of the review we summarize recent progress and discuss already known and new hypothetical roles of the nucleolus in plant growth and development. In addition, this part will highlight studies showing new nucleolar functions involved in responses to pathogen attack and abiotic stress. Cross-talk between the nucleolus and Cajal bodies is also discussed in the context of their association with poly(ADP ribosepolymerase (PARP, which is known to play a crucial role in various physiological processes including growth, development and responses to biotic and abiotic stresses.

  15. The Multiple Functions of the Nucleolus in Plant Development, Disease and Stress Responses

    Science.gov (United States)

    Kalinina, Natalia O.; Makarova, Svetlana; Makhotenko, Antonida; Love, Andrew J.; Taliansky, Michael

    2018-01-01

    The nucleolus is the most conspicuous domain in the eukaryotic cell nucleus, whose main function is ribosomal RNA (rRNA) synthesis and ribosome biogenesis. However, there is growing evidence that the nucleolus is also implicated in many other aspects of cell biology, such as regulation of cell cycle, growth and development, senescence, telomerase activity, gene silencing, responses to biotic and abiotic stresses. In the first part of the review, we briefly assess the traditional roles of the plant nucleolus in rRNA synthesis and ribosome biogenesis as well as possible functions in other RNA regulatory pathways such as splicing, nonsense-mediated mRNA decay and RNA silencing. In the second part of the review we summarize recent progress and discuss already known and new hypothetical roles of the nucleolus in plant growth and development. In addition, this part will highlight studies showing new nucleolar functions involved in responses to pathogen attack and abiotic stress. Cross-talk between the nucleolus and Cajal bodies is also discussed in the context of their association with poly(ADP ribose)polymerase (PARP), which is known to play a crucial role in various physiological processes including growth, development and responses to biotic and abiotic stresses. PMID:29479362

  16. Abiotic Formation of Methyl Halides in the Terrestrial Environment

    Science.gov (United States)

    Keppler, F.

    2011-12-01

    Methyl chloride and methyl bromide are the most abundant chlorine and bromine containing organic compounds in the atmosphere. Since both compounds have relatively long tropospheric lifetimes they can effectively transport halogen atoms from the Earth's surface, where they are released, to the stratosphere and following photolytic oxidation form reactive halogen gases that lead to the chemical destruction of ozone. Methyl chloride and methyl bromide account for more than 20% of the ozone-depleting halogens delivered to the stratosphere and are predicted to grow in importance as the chlorine contribution to the stratosphere from anthropogenic CFCs decline. Today methyl chloride and methyl bromide originate mainly from natural sources with only a minor fraction considered to be of anthropogenic origin. However, until as recently as 2000 most of the methyl chloride and methyl bromide input to the atmosphere was considered to originate from the oceans, but investigations in recent years have clearly demonstrated that terrestrial sources such as biomass burning, wood-rotting fungi, coastal salt marshes, tropical vegetation and organic matter degradation must dominate the atmospheric budgets of these trace gases. However, many uncertainties still exist regarding strengths of both sources and sinks, as well as the mechanisms of formation of these naturally occurring halogenated gases. A better understanding of the atmospheric budget of both methyl chloride and methyl bromide is therefore required for reliable prediction of future ozone depletion. Biotic and abiotic methylation processes of chloride and bromide ion are considered to be the dominant pathways of formation of these methyl halides in nature. In this presentation I will focus on abiotic formation processes in the terrestrial environment and the potential parameters that control their emissions. Recent advances in our understanding of the abiotic formation pathway of methyl halides will be discussed. This will

  17. Abiotic degradation of plastic films

    Science.gov (United States)

    Ángeles-López, Y. G.; Gutiérrez-Mayen, A. M.; Velasco-Pérez, M.; Beltrán-Villavicencio, M.; Vázquez-Morillas, A.; Cano-Blanco, M.

    2017-01-01

    Degradable plastics have been promoted as an option to mitigate the environmental impacts of plastic waste. However, there is no certainty about its degradability under different environmental conditions. The effect of accelerated weathering (AW), natural weathering (NW) and thermal oxidation (TO) on different plastics (high density polyethylene, HDPE; oxodegradable high density polyethylene, HDPE-oxo; compostable plastic, Ecovio ® metalized polypropylene, PP; and oxodegradable metalized polypropylene, PP-oxo) was studied. Plastics films were exposed to AW per 110 hours; to NW per 90 days; and to TO per 30 days. Plastic films exposed to AW and NW showed a general loss on mechanical properties. The highest reduction in elongation at break on AW occurred to HDPE-oxo (from 400.4% to 20.9%) and was higher than 90% for HDPE, HDPE-oxo, Ecovio ® and PP-oxo in NW. No substantial evidence of degradation was found on plastics exposed to TO. Oxo-plastics showed higher degradation rates than their conventional counterparts, and the compostable plastic was resistant to degradation in the studied abiotic conditions. This study shows that degradation of plastics in real life conditions will vary depending in both, their composition and the environment.

  18. SERDP ER-1376 Enhancement of In Situ Bioremediation of Energetic Compounds by Coupled Abiotic/Biotic Processes:Final Report for 2004 - 2006

    Energy Technology Data Exchange (ETDEWEB)

    Szecsody, James E.; Comfort, Steve; Fredrickson, Herbert L.; Boparai, Hardiljeet K.; Devary, Brooks J.; Thompson, Karen T.; Phillips, Jerry L.; Crocker, Fiona H.; Girvin, Donald C.; Resch, Charles T.; Shea, Patrick; Fischer, Ashley E.; Durkin, Lisa M.

    2007-08-07

    This project was initiated by SERDP to quantify processes and determine the effectiveness of abiotic/biotic mineralization of energetics (RDX, HMX, TNT) in aquifer sediments by combinations of biostimulation (carbon, trace nutrient additions) and chemical reduction of sediment to create a reducing environment. Initially it was hypothesized that a balance of chemical reduction of sediment and biostimulation would increase the RDX, HMX, and TNT mineralization rate significantly (by a combination of abiotic and biotic processes) so that this abiotic/biotic treatment may be a more efficient for remediation than biotic treatment alone in some cases. Because both abiotic and biotic processes are involved in energetic mineralization in sediments, it was further hypothesized that consideration for both abiotic reduction and microbial growth was need to optimize the sediment system for the most rapid mineralization rate. Results show that there are separate optimal abiotic/biostimulation aquifer sediment treatments for RDX/HMX and for TNT. Optimal sediment treatment for RDX and HMX (which have chemical similarities and similar degradation pathways) is mainly chemical reduction of sediment, which increased the RDX/HMX mineralization rate 100 to150 times (relative to untreated sediment), with additional carbon or trace nutrient addition, which increased the RDX/HMX mineralization rate an additional 3 to 4 times. In contrast, the optimal aquifer sediment treatment for TNT involves mainly biostimulation (glucose addition), which stimulates a TNT/glucose cometabolic degradation pathway (6.8 times more rapid than untreated sediment), degrading TNT to amino-intermediates that irreversibly sorb (i.e., end product is not CO2). The TNT mass migration risk is minimized by these transformation reactions, as the triaminotoluene and 2,4- and 2,6-diaminonitrotoluene products that irreversibly sorb are no longer mobile in the subsurface environment. These transformation rates are increased

  19. Crack-tip constraint analyses and constraint-dependent LBB curves for circumferential through-wall cracked pipes

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Y.L.; Wang, G.Z., E-mail: gzwang@ecust.edu.cn; Xuan, F.Z.; Tu, S.T.

    2015-04-15

    Highlights: • Solution of constraint parameter τ* for through-wall cracked pipes has been obtained. • Constraint increases with increasing crack length and radius–thickness ratio of pipes. • Constraint-dependent LBB curve for through-wall cracked pipes has been constructed. • For increasing accuracy of LBB assessments, constraint effect should be considered. - Abstract: The leak-before-break (LBB) concept has been widely applied in the structural integrity assessments of pressured pipes in nuclear power plants. However, the crack-tip constraint effects in LBB analyses and designs cannot be incorporated. In this paper, by using three-dimensional finite element calculations, the modified load-independent T-stress constraint parameter τ* for circumferential through-wall cracked pipes with different geometries and crack sizes has been analyzed under different loading conditions, and the solutions of the crack-tip constraint parameter τ* have been obtained. Based on the τ* solutions and constraint-dependent J–R curves of a steel, the constraint-dependent LBB (leak-before-break) curves have been constructed. The results show that the constraint τ* increases with increasing crack length θ, mean radius R{sub m} and radius–thickness ratio R{sub m}/t of the pipes. In LBB analyses, the critical crack length calculated by the J–R curve of the standard high constraint specimen for pipes with shorter cracks is over-conservative, and the degree of conservatism increases with decreasing crack length θ, R{sub m} and R{sub m}/t. Therefore, the constraint-dependent LBB curves should be constructed to modify the over-conservatism and increase accuracy of LBB assessments.

  20. Induction of Shiga Toxin-Encoding Prophage by Abiotic Environmental Stress in Food.

    Science.gov (United States)

    Fang, Yuan; Mercer, Ryan G; McMullen, Lynn M; Gänzle, Michael G

    2017-10-01

    The prophage-encoded Shiga toxin is a major virulence factor in Stx-producing Escherichia coli (STEC). Toxin production and phage production are linked and occur after induction of the RecA-dependent SOS response. However, food-related stress and Stx-prophage induction have not been studied at the single-cell level. This study investigated the effects of abiotic environmental stress on stx expression by single-cell quantification of gene expression in STEC O104:H4 Δ stx2 :: gfp :: amp r In addition, the effect of stress on production of phage particles was determined. The lethality of stressors, including heat, HCl, lactic acid, hydrogen peroxide, and high hydrostatic pressure, was selected to reduce cell counts by 1 to 2 log CFU/ml. The integrity of the bacterial membrane after exposure to stress was measured by propidium iodide (PI). The fluorescent signals of green fluorescent protein (GFP) and PI were quantified by flow cytometry. The mechanism of prophage induction by stress was evaluated by relative gene expression of recA and cell morphology. Acid (pH stress were additionally assessed. H 2 O 2 and mitomycin C induced expression of the prophage and activated a SOS response. In contrast, HCl and lactic acid induced the Stx-prophage but not the SOS response. The lifestyle of STEC exposes the organism to intestinal and extraintestinal environments that impose oxidative and acid stress. A more thorough understanding of the influence of food processing-related stressors on Stx-prophage expression thus facilitates control of STEC in food systems by minimizing prophage induction during food production and storage. Copyright © 2017 American Society for Microbiology.

  1. Abiotic Stress-Related Expressed Sequence Tags from the Diploid Strawberry Fragaria vesca f. semperflorens

    Directory of Open Access Journals (Sweden)

    Maximo. Rivarola

    2011-03-01

    Full Text Available Strawberry ( spp. is a eudicotyledonous plant that belongs to the Rosaceae family, which includes other agronomically important plants such as raspberry ( L. and several tree-fruit species. Despite the vital role played by cultivated strawberry in agriculture, few stress-related gene expression characterizations of this crop are available. To increase the diversity of available transcriptome sequence, we produced 41,430 L. expressed sequence tags (ESTs from plants growing under water-, temperature-, and osmotic-stress conditions as well as a combination of heat and osmotic stresses that is often found in irrigated fields. Clustering and assembling of the ESTs resulted in a total of 11,836 contigs and singletons that were annotated using Gene Ontology (GO terms. Furthermore, over 1200 sequences with no match to available Rosaceae ESTs were found, including six that were assigned the “response to stress” GO category. Analysis of EST frequency provided an estimate of steady state transcript levels, with 91 sequences exhibiting at least a 20-fold difference between treatments. This EST collection represents a useful resource to advance our understanding of the abiotic stress-response mechanisms in strawberry. The sequence information may be translated to valuable tree crops in the Rosaceae family, where whole-plant treatments are not as simple or practical.

  2. Effects of solar radiation on the abiotic and bacterially mediated carbon flux in aquatic ecosystems

    Energy Technology Data Exchange (ETDEWEB)

    Anesio, A.M.

    2000-05-01

    In this thesis, I studied some of the current aspects of organic matter photochemistry. I analyzed abiotic photo transformations of several types of dissolved (DOM) and particulate organic matter (POM). I also evaluated the effects of photo transformation of several types of DOM on bacteria. Finally, in a field experiment, I analyzed net effects of solar radiation on organic matter decomposition. DOM undergoes several transformations due to solar irradiation. One such transformation is photooxidation of organic matter into inorganic carbon. Results of this Thesis show that photooxidation is ubiquitous to all kinds of organic matter in both dissolved and particulate forms. The intensity of this process depends on several factors, including DOM composition, radiation type and time of exposure. Besides mineralization to inorganic carbon, DOM undergoes other chemical transformations due to UV radiation, with profound consequences to DOM availability for bacteria. Bioavailability was tested by measuring bacterial growth and respiration on irradiated and nonirradiated DOM from several types of humic matter and plant leachates. Irradiation of freshly-leached DOM often produced negative effects on bacteria, whereas irradiation of humic material was followed by stimulation of bacterial growth. The degree of stimulation seems to be related to the initial bioavailability of the DOM and to the capability of the DOM to produce hydrogen peroxide upon irradiation. Other factors also accounted for differences in bacterial response to photochemical modification of DOM, including length and type of irradiation exposure. The effects of solar radiation on litter decomposition were also evaluated using experiments that more closely mimic natural conditions. I could not observe differences between dry weight loss of leaves and culms exposed to solar radiation or kept in darkness, which may be explained by the fact that abiotic decomposition under solar radiation is counterbalanced by

  3. Misconceptions and constraints

    International Nuclear Information System (INIS)

    Whitten, M.; Mahon, R.

    2005-01-01

    In theory, the sterile insect technique (SIT) is applicable to a wide variety of invertebrate pests. However, in practice, the approach has been successfully applied to only a few major pests. Chapters in this volume address possible reasons for this discrepancy, e.g. Klassen, Lance and McInnis, and Robinson and Hendrichs. The shortfall between theory and practice is partly due to the persistence of some common misconceptions, but it is mainly due to one constraint, or a combination of constraints, that are biological, financial, social or political in nature. This chapter's goal is to dispel some major misconceptions, and view the constraints as challenges to overcome, seeing them as opportunities to exploit. Some of the common misconceptions include: (1) released insects retain residual radiation, (2) females must be monogamous, (3) released males must be fully sterile, (4) eradication is the only goal, (5) the SIT is too sophisticated for developing countries, and (6) the SIT is not a component of an area-wide integrated pest management (AW-IPM) strategy. The more obvious constraints are the perceived high costs of the SIT, and the low competitiveness of released sterile males. The perceived high up-front costs of the SIT, their visibility, and the lack of private investment (compared with alternative suppression measures) emerge as serious constraints. Failure to appreciate the true nature of genetic approaches, such as the SIT, may pose a significant constraint to the wider adoption of the SIT and other genetically-based tactics, e.g. transgenic genetically modified organisms (GMOs). Lack of support for the necessary underpinning strategic research also appears to be an important constraint. Hence the case for extensive strategic research in ecology, population dynamics, genetics, and insect behaviour and nutrition is a compelling one. Raising the competitiveness of released sterile males remains the major research objective of the SIT. (author)

  4. The role of spatial variations of abiotic factors in mediating intratumour phenotypic heterogeneity

    KAUST Repository

    Lorenzi, Tommaso

    2018-05-08

    We present here a space- and phenotype-structured model of selection dynamics between cancer cells within a solid tumour. In the framework of this model, we combine formal analyses with numerical simulations to investigate in silico the role played by the spatial distribution of abiotic components of the tumour microenvironment in mediating phenotypic selection of cancer cells. Numerical simulations are performed both on the 3D geometry of an in silico multicellular tumour spheroid and on the 3D geometry of an in vivo human hepatic tumour, which was imaged using computerised tomography. The results obtained show that inhomogeneities in the spatial distribution of oxygen, currently observed in solid tumours, can promote the creation of distinct local niches and lead to the selection of different phenotypic variants within the same tumour. This process fosters the emergence of stable phenotypic heterogeneity and supports the presence of hypoxic cells resistant to cytotoxic therapy prior to treatment. Our theoretical results demonstrate the importance of integrating spatial data with ecological principles when evaluating the therapeutic response of solid tumours to cytotoxic therapy.

  5. The role of spatial variations of abiotic factors in mediating intratumour phenotypic heterogeneity

    KAUST Repository

    Lorenzi, Tommaso; Venkataraman, Chandrasekhar; Lorz, Alexander; Chaplain, Mark A.J.

    2018-01-01

    We present here a space- and phenotype-structured model of selection dynamics between cancer cells within a solid tumour. In the framework of this model, we combine formal analyses with numerical simulations to investigate in silico the role played by the spatial distribution of abiotic components of the tumour microenvironment in mediating phenotypic selection of cancer cells. Numerical simulations are performed both on the 3D geometry of an in silico multicellular tumour spheroid and on the 3D geometry of an in vivo human hepatic tumour, which was imaged using computerised tomography. The results obtained show that inhomogeneities in the spatial distribution of oxygen, currently observed in solid tumours, can promote the creation of distinct local niches and lead to the selection of different phenotypic variants within the same tumour. This process fosters the emergence of stable phenotypic heterogeneity and supports the presence of hypoxic cells resistant to cytotoxic therapy prior to treatment. Our theoretical results demonstrate the importance of integrating spatial data with ecological principles when evaluating the therapeutic response of solid tumours to cytotoxic therapy.

  6. Maximum in the middle: nonlinear response of microbial plankton to ultraviolet radiation and phosphorus.

    Directory of Open Access Journals (Sweden)

    Juan Manuel Medina-Sánchez

    Full Text Available The responses of heterotrophic microbial food webs (HMFW to the joint action of abiotic stressors related to global change have been studied in an oligotrophic high-mountain lake. A 2×5 factorial design field experiment performed with large mesocosms for >2 months was used to quantify the dynamics of the entire HMFW (bacteria, heterotrophic nanoflagellates, ciliates, and viruses after an experimental P-enrichment gradient which approximated or surpassed current atmospheric P pulses in the presence vs. absence of ultraviolet radiation. HMFW underwent a mid-term (<20 days acute development following a noticeable unimodal response to P enrichment, which peaked at intermediate P-enrichment levels and, unexpectedly, was more accentuated under ultraviolet radiation. However, after depletion of dissolved inorganic P, the HMFW collapsed and was outcompeted by a low-diversity autotrophic compartment, which constrained the development of HMFW and caused a significant loss of functional biodiversity. The dynamics and relationships among variables, and the response patterns found, suggest the importance of biotic interactions (predation/parasitism and competition in restricting HMFW development, in contrast to the role of abiotic factors as main drivers of autotrophic compartment. The response of HMFW may contribute to ecosystem resilience by favoring the maintenance of the peculiar paths of energy and nutrient-mobilization in these pristine ecosystems, which are vulnerable to threats by the joint action of abiotic stressors related to global change.

  7. The role of water tracks in altering biotic and abiotic soil properties and processes in a polar desert in Antarctica

    Science.gov (United States)

    Ball, Becky A.; Levy, Joseph

    2015-02-01

    Groundwater discharge via water tracks is a largely unexplored passageway routing salts and moisture from high elevations to valley floors in the McMurdo Dry Valleys (MDV) of Antarctica. Given the influence that water tracks have on the distribution of liquid water in seasonally thawed Antarctic soils, it is surprising how little is known about their role in structuring biotic and abiotic processes this cold desert ecosystem. Particularly, it is unclear how soil biota will respond to the activation of new water tracks resulting from enhanced active layer thickening or enhanced regional snowmelt. In the MDV, water tracks are both wetter and more saline than the surrounding soils, constituting a change in soil habitat suitability for soil biology and therefore the ecological processes they carry out. To investigate the net impact that water tracks have on Dry Valley soil biology, and therefore the ecosystem processes for which they are responsible, we analyzed microbial biomass and activity in soils inside and outside of three water tracks and relate this to the physical soil characteristics. Overall, our results suggest that water tracks can significantly influence soil properties, which can further impact biological biovolume and both biotic and abiotic fluxes of CO2. However, the nature of its impact differs with water track, further suggesting that not all water tracks can be regarded the same.

  8. Early transcriptional response of soybean contrasting accessions to root dehydration.

    Directory of Open Access Journals (Sweden)

    José Ribamar Costa Ferreira Neto

    Full Text Available Drought is a significant constraint to yield increase in soybean. The early perception of water deprivation is critical for recruitment of genes that promote plant tolerance. DeepSuperSAGE libraries, including one control and a bulk of six stress times imposed (from 25 to 150 min of root dehydration for drought-tolerant and sensitive soybean accessions, allowed to identify new molecular targets for drought tolerance. The survey uncovered 120,770 unique transcripts expressed by the contrasting accessions. Of these, 57,610 aligned with known cDNA sequences, allowing the annotation of 32,373 unitags. A total of 1,127 unitags were up-regulated only in the tolerant accession, whereas 1,557 were up-regulated in both as compared to their controls. An expression profile concerning the most representative Gene Ontology (GO categories for the tolerant accession revealed the expression "protein binding" as the most represented for "Molecular Function", whereas CDPK and CBL were the most up-regulated protein families in this category. Furthermore, particular genes expressed different isoforms according to the accession, showing the potential to operate in the distinction of physiological behaviors. Besides, heat maps comprising GO categories related to abiotic stress response and the unitags regulation observed in the expression contrasts covering tolerant and sensitive accessions, revealed the unitags potential for plant breeding. Candidate genes related to "hormone response" (LOX, ERF1b, XET, "water response" (PUB, BMY, "salt stress response" (WRKY, MYB and "oxidative stress response" (PER figured among the most promising molecular targets. Additionally, nine transcripts (HMGR, XET, WRKY20, RAP2-4, EREBP, NAC3, PER, GPX5 and BMY validated by RT-qPCR (four different time points confirmed their differential expression and pointed that already after 25 minutes a transcriptional reorganization started in response to the new condition, with important

  9. Examination of Abiotic Drivers and Their Influence on Spartina alterniflora Biomass over a Twenty-Eight Year Period Using Landsat 5 TM Satellite Imagery of the Central Georgia Coast

    Directory of Open Access Journals (Sweden)

    John P. R. O’Donnell

    2016-06-01

    Full Text Available We examined the influence of abiotic drivers on inter-annual and phenological patterns of aboveground biomass for Marsh Cordgrass, Spartina alterniflora, on the Central Georgia Coast. The linkages between drivers and plant response via soil edaphic factors are captured in our graphical conceptual model. We used geospatial techniques to scale up in situ measurements of aboveground S. alterniflora biomass to landscape level estimates using 294 Landsat 5 TM scenes acquired between 1984 and 2011. For each scene we extracted data from the same 63 sampling polygons, containing 1222 pixels covering about 1.1 million m2. Using univariate and multiple regression tests, we compared Landsat derived biomass estimates for three S. alterniflora size classes against a suite of abiotic drivers. River discharge, total precipitation, minimum temperature, and mean sea level had positive relationships with and best explained biomass for all dates. Additional results, using seasonally binned data, indicated biomass was responsive to changing combinations of variables across the seasons. Our 28-year analysis revealed aboveground biomass declines of 33%, 35%, and 39% for S. alterniflora tall, medium, and short size classes, respectively. This decline correlated with drought frequency and severity trends and coincided with marsh die-backs events and increased snail herbivory in the second half of the study period.

  10. Arabidopsis YAK1 regulates abscisic acid response and drought resistance

    KAUST Repository

    Kim, Dongjin; Ntui, Valentine Otang; Xiong, Liming

    2016-01-01

    Abscisic acid (ABA) is an important phytohormone that controls several plant processes such as seed germination, seedling growth, and abiotic stress response. Here, we report that AtYak1 plays an important role in ABA signaling and postgermination

  11. Common and distinct organ and stress responsive transcriptomic patterns in Oryza sativa and Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Castleden Ian

    2010-11-01

    Full Text Available Abstract Background Arabidopsis thaliana is clearly established as the model plant species. Given the ever-growing demand for food, there is a need to translate the knowledge learned in Arabidopsis to agronomically important species, such as rice (Oryza sativa. To gain a comparative insight into the similarities and differences into how organs are built and how plants respond to stress, the transcriptomes of Arabidopsis and rice were compared at the level of gene orthology and functional categorisation. Results Organ specific transcripts in rice and Arabidopsis display less overlap in terms of gene orthology compared to the orthology observed between both genomes. Although greater overlap in terms of functional classification was observed between root specific transcripts in rice and Arabidopsis, this did not extend to flower, leaf or seed specific transcripts. In contrast, the overall abiotic stress response transcriptome displayed a significantly greater overlap in terms of gene orthology compared to the orthology observed between both genomes. However, ~50% or less of these orthologues responded in a similar manner in both species. In fact, under cold and heat treatments as many or more orthologous genes responded in an opposite manner or were unchanged in one species compared to the other. Examples of transcripts that responded oppositely include several genes encoding proteins involved in stress and redox responses and non-symbiotic hemoglobins that play central roles in stress signalling pathways. The differences observed in the abiotic transcriptomes were mirrored in the presence of cis-acting regulatory elements in the promoter regions of stress responsive genes and the transcription factors that potentially bind these regulatory elements. Thus, both the abiotic transcriptome and its regulation differ between rice and Arabidopsis. Conclusions These results reveal significant divergence between Arabidopsis and rice, in terms of the

  12. Constraints and Creativity in NPD - Testing the Impact of 'Late Constraints'

    DEFF Research Database (Denmark)

    Onarheim, Balder; Valgeirsdóttir, Dagný

    experiment was conducted, involving 12 teams of industrial designers from three different countries, each team working on two 30 minutes design tasks. In one condition all constraints were given at the start, and in the other one new radical constraint was added after 12 minutes. The output from all 24 tasks......The aim of the presented work is to investigate how the timing of project constraints can influence the creativity of the output in New Product Development (NPD) projects. When seeking to produce a creative output, is it beneficial to know all constraints when initiating a project...... was assessed for creativity using the Consensual Assessment Technique (CAT), and a comparative within-subjects analysis found no significant different between the two conditions. Controlling for task and assessor a small but non-significant effect was found, in favor of the ‘late constraint’ condition. Thus...

  13. Enforcement of entailment constraints in distributed service-based business processes.

    Science.gov (United States)

    Hummer, Waldemar; Gaubatz, Patrick; Strembeck, Mark; Zdun, Uwe; Dustdar, Schahram

    2013-11-01

    A distributed business process is executed in a distributed computing environment. The service-oriented architecture (SOA) paradigm is a popular option for the integration of software services and execution of distributed business processes. Entailment constraints, such as mutual exclusion and binding constraints, are important means to control process execution. Mutually exclusive tasks result from the division of powerful rights and responsibilities to prevent fraud and abuse. In contrast, binding constraints define that a subject who performed one task must also perform the corresponding bound task(s). We aim to provide a model-driven approach for the specification and enforcement of task-based entailment constraints in distributed service-based business processes. Based on a generic metamodel, we define a domain-specific language (DSL) that maps the different modeling-level artifacts to the implementation-level. The DSL integrates elements from role-based access control (RBAC) with the tasks that are performed in a business process. Process definitions are annotated using the DSL, and our software platform uses automated model transformations to produce executable WS-BPEL specifications which enforce the entailment constraints. We evaluate the impact of constraint enforcement on runtime performance for five selected service-based processes from existing literature. Our evaluation demonstrates that the approach correctly enforces task-based entailment constraints at runtime. The performance experiments illustrate that the runtime enforcement operates with an overhead that scales well up to the order of several ten thousand logged invocations. Using our DSL annotations, the user-defined process definition remains declarative and clean of security enforcement code. Our approach decouples the concerns of (non-technical) domain experts from technical details of entailment constraint enforcement. The developed framework integrates seamlessly with WS-BPEL and the Web

  14. Maximum in the middle: nonlinear response of microbial plankton to ultraviolet radiation and phosphorus.

    Science.gov (United States)

    Medina-Sánchez, Juan Manuel; Delgado-Molina, José Antonio; Bratbak, Gunnar; Bullejos, Francisco José; Villar-Argaiz, Manuel; Carrillo, Presentación

    2013-01-01

    The responses of heterotrophic microbial food webs (HMFW) to the joint action of abiotic stressors related to global change have been studied in an oligotrophic high-mountain lake. A 2×5 factorial design field experiment performed with large mesocosms for >2 months was used to quantify the dynamics of the entire HMFW (bacteria, heterotrophic nanoflagellates, ciliates, and viruses) after an experimental P-enrichment gradient which approximated or surpassed current atmospheric P pulses in the presence vs. absence of ultraviolet radiation. HMFW underwent a mid-term (ultraviolet radiation. However, after depletion of dissolved inorganic P, the HMFW collapsed and was outcompeted by a low-diversity autotrophic compartment, which constrained the development of HMFW and caused a significant loss of functional biodiversity. The dynamics and relationships among variables, and the response patterns found, suggest the importance of biotic interactions (predation/parasitism and competition) in restricting HMFW development, in contrast to the role of abiotic factors as main drivers of autotrophic compartment. The response of HMFW may contribute to ecosystem resilience by favoring the maintenance of the peculiar paths of energy and nutrient-mobilization in these pristine ecosystems, which are vulnerable to threats by the joint action of abiotic stressors related to global change.

  15. Potato crop growth as influenced by potato cyst nematodes (Globodera pallida) and abiotic factors

    NARCIS (Netherlands)

    Ruijter, de F.

    1998-01-01

    The objective of the research described in this thesis was to determine the major mechanisms by which potato cyst nematodes reduce potato crop growth and to explain interactions known to occur with cultivar and abiotic factors. Understanding of these interactions may lead to strategies that

  16. Column study of enhanced Cr(VI) removal and longevity by coupled abiotic and biotic processes using Fe0 and mixed anaerobic culture

    DEFF Research Database (Denmark)

    Zhong, Jiawei; Yin, Weizhao; Li, Yongtao

    2017-01-01

    In this study, Fe(0) and mixed anaerobic culture were integrated in one column to investigate the coupled abiotic and biotic effects on hexa-valent chromium (Cr(VI)) removal and column longevity with an abiotic Fe(0) column in the control experiments. According to the breakthrough study, a slower...

  17. Physiological changes of pepper accessions in response to salinity and water stress

    Energy Technology Data Exchange (ETDEWEB)

    López-Serrano, L.; Penella, C.; San Bautista, A.; López-Galarza, S.; Calatayud, A.

    2017-07-01

    New sources of water stress and salinity tolerances are needed for crops grown in marginal lands. Pepper is considered one of the most important crops in the world. Many varieties belong to the genus Capsicum spp., and display wide variability in tolerance/sensitivity terms in response to drought and salinity stress. The objective was to screen seven salt/drought-tolerant pepper accessions to breed new cultivars that could overcome abiotic stresses, or be used as new crops in land with water and salinity stress. Fast and effective physiological traits were measured to achieve the objective. The present study showed wide variability of the seven pepper accessions in response to both stresses. Photosynthesis, stomatal conductance and transpiration reduced mainly under salinity due to stomatal and non-stomatal (Na+ accumulation) constraints and, to a lesser extent, in the accessions grown under water stress. A positive relationship between CO2 fixation and fresh weight generation was observed for both stresses. Decreases in Ys and YW and increased proline were observed only when accessions were grown under salinity. However, these factors were not enough to alleviate salt effects and an inverse relation was noted between plant salt tolerance and proline accumulation. Under water stress, A31 was the least affected and A34 showed the best tolerance to salinity in terms of photosynthesis and biomass.

  18. Physiological changes of pepper accessions in response to salinity and water stress

    International Nuclear Information System (INIS)

    López-Serrano, L.; Penella, C.; San Bautista, A.; López-Galarza, S.; Calatayud, A.

    2017-01-01

    New sources of water stress and salinity tolerances are needed for crops grown in marginal lands. Pepper is considered one of the most important crops in the world. Many varieties belong to the genus Capsicum spp., and display wide variability in tolerance/sensitivity terms in response to drought and salinity stress. The objective was to screen seven salt/drought-tolerant pepper accessions to breed new cultivars that could overcome abiotic stresses, or be used as new crops in land with water and salinity stress. Fast and effective physiological traits were measured to achieve the objective. The present study showed wide variability of the seven pepper accessions in response to both stresses. Photosynthesis, stomatal conductance and transpiration reduced mainly under salinity due to stomatal and non-stomatal (Na+ accumulation) constraints and, to a lesser extent, in the accessions grown under water stress. A positive relationship between CO2 fixation and fresh weight generation was observed for both stresses. Decreases in Ys and YW and increased proline were observed only when accessions were grown under salinity. However, these factors were not enough to alleviate salt effects and an inverse relation was noted between plant salt tolerance and proline accumulation. Under water stress, A31 was the least affected and A34 showed the best tolerance to salinity in terms of photosynthesis and biomass.

  19. Abiotic Hydrolysis of Fluorotelomer-Based Polymers as a Source of Perfluorocarboxylates at the Global Scale

    Science.gov (United States)

    Fluorotelomer-based polymers (FTPs) are the main product of the fluorotelomer industry. For nearly 10 years, whether FTPs degrade to form perfluorooctanoate (PFOA) and perfluorocarboxylate (PFCA) homologues has been vigorously contested. Here we show that circum-neutral abiotic h...

  20. Review of Signal Crosstalk in Plant Stress Responses

    Science.gov (United States)

    This book was prepared to summarize the current understanding of the dynamics of plant response to biotic and abiotic stresses. The preface of the book sets the stage for the contents of the different chapters by outlining that plants defend themselves from various environmental stresses through a v...

  1. Salt lakes of Western Australia - Natural abiotic formation of volatile organic compounds

    Science.gov (United States)

    Krause, T.; Studenroth, S.; Mulder, I.; Tubbesing, C.; Kotte, K.; Ofner, J.; Junkermann, W.; Schöler, H. F.

    2012-04-01

    Western Australia is a semi-/arid region that is heavily influenced by global climate change and agricultural land use. The area is known for its many ephemeral saline and hypersaline lakes with a wide range of hydrogeochemical parameters that have gradually changed over the last fifty years. Historically, the region was covered by eucalyptus trees and shrubs, but was cleared mainly within 10 years after WWII to make room for wheat and live stock. After the clearance of the deep rooted native plants the groundwater started to rise, bringing increased amounts of dissolved salts and minerals to the surface and discharging them into streams and lakes. Thus most of Western Australia is influenced by secondary salinisation (soil salting) [1]. Another problem is that the discharged minerals affect the pH of ground and surface water, which ranges from acidic to slightly basic. During the 2011 campaign surface water was measured with a pH between 2.5 and 7.1. Another phenomenon in Western Australia is the decrease of rainfall over the last decades assumed to be linked to the secondary salinisation. The rising saline and mineral rich groundwater increases the biotical and abiotical activity of the salt lakes. Halogenated and non-halogenated volatile organic compounds emitted from those lakes undergo fast oxidation and chemical reactions to form small particles modifying cloud microphysics and thus suppressing rain events [2]. Our objective is to gain a better understanding of this extreme environment with its hypersaline acidic lakes with regard to the potential abiotic formation of volatile organic compounds and its impact on the local climate. In spring 2011 fifty-three sediment samples from ten salt lakes in the Lake King region where taken, freeze-dried and ground. In order to simulate the abiotic formation of volatile organic compounds the soil samples were resuspended with water in gas-tight headspace vials. The headspace was measured using a purge and trap GC

  2. EXPRESSION OF CALCIUM-DEPENDENT PROTEIN KINASE (CDPK GENES IN VITIS AMURENSIS UNDER ABIOTIC STRESS CONDITIONS

    Directory of Open Access Journals (Sweden)

    Dubrovina A.S.

    2012-08-01

    Full Text Available Abiotic stresses, such as extreme temperatures, soil salinity, or water deficit, are one of the major limiting factors of crop productivity worldwide. Examination of molecular and genetic mechanisms of abiotic stress tolerance in plants is of great interest to plant biologists. Calcium-dependent protein kinases (CDPKs, which are the most important Ca2+ sensors in plants, are known to play one of the key roles in plant adaptation to abiotic stress. CDPK is a multigene family of enzymes. Analysis of CDPK gene expression under various abiotic stress conditions would help identify those CDPKs that might play important roles in plant adaptation to abiotic stress. We focused on studying CDPK gene expression under osmotic, water deficit, and temperature stress conditions in a wild-growing grapevine Vitis amurensis Rurp., which is native to the Russian Far East and is known to possess high adaptive potential and high level of resistance against adverse environmental conditions. Healthy V. amurensis cuttings (excised young stems with one healthy leaf were used for the treatments. For the non-stress treatment, we placed the cuttings in distilled water for 12 h at room temperature. For the water-deficit stress, detached cuttings were laid on a paper towel for 12 h at room temperature. For osmotic stress treatments, the cuttings were placed in 0.4 М NaCl and 0.4 М mannitol solutions for 12 h at room temperature. To examine temperature stress tolerance, the V. amurensis cuttings were placed in a growth chamber at +10oC and +37oC for 12 h. The total expression of VaCDPK genes was examined by semiquantitative RT-PCR with degenerate primers designed to the CDPK kinase domain. The total level of CDPK gene expression increased under salt and decreased under low temperature stress conditions. We sequenced 300 clones of the amplified part of different CDPK transcripts obtained from the analyzed cDNA probes. Analysis of the cDNA sequences identified 8 different

  3. Abscisic Acid Signaling and Abiotic Stress Tolerance in Plants: A Review on Current Knowledge and Future Prospects

    Science.gov (United States)

    Vishwakarma, Kanchan; Upadhyay, Neha; Kumar, Nitin; Yadav, Gaurav; Singh, Jaspreet; Mishra, Rohit K.; Kumar, Vivek; Verma, Rishi; Upadhyay, R. G.; Pandey, Mayank; Sharma, Shivesh

    2017-01-01

    Abiotic stress is one of the severe stresses of environment that lowers the growth and yield of any crop even on irrigated land throughout the world. A major phytohormone abscisic acid (ABA) plays an essential part in acting toward varied range of stresses like heavy metal stress, drought, thermal or heat stress, high level of salinity, low temperature, and radiation stress. Its role is also elaborated in various developmental processes including seed germination, seed dormancy, and closure of stomata. ABA acts by modifying the expression level of gene and subsequent analysis of cis- and trans-acting regulatory elements of responsive promoters. It also interacts with the signaling molecules of processes involved in stress response and development of seeds. On the whole, the stress to a plant can be susceptible or tolerant by taking into account the coordinated activities of various stress-responsive genes. Numbers of transcription factor are involved in regulating the expression of ABA responsive genes by acting together with their respective cis-acting elements. Hence, for improvement in stress-tolerance capacity of plants, it is necessary to understand the mechanism behind it. On this ground, this article enlightens the importance and role of ABA signaling with regard to various stresses as well as regulation of ABA biosynthetic pathway along with the transcription factors for stress tolerance. PMID:28265276

  4. The net effect of abiotic conditions and biotic interactions in a semi-arid ecosystem NE Spain: implications for the management and restoration.

    Science.gov (United States)

    Pueyo, Yolanda; Arroyo, Antonio I.; Saiz, Hugo; Alados, Concepción L.

    2014-05-01

    Degradation in arid and semiarid lands can be irreversible without human intervention, due to a positive plant-soil feedback where the loss of vegetation cover leads to soil degradation, which in turn hampers plant establishment. Human intervention in restoration actions usually involves the amendment of the degraded abiotic conditions, revegetation of bare areas, or both. However, abiotic amelioration is often expensive and too intrusive, and revegetation is not successful in many cases. Biotic interactions between plants, and more specifically facilitation by a "nurse" plant, have been proposed as a new via to take profit of improved abiotic conditions without intervention, and to increase the success rate of revegetation actions. But "nurse" plants can also interfere with others (i.e. by competition for resources or the release of allelopathic compounds), and the net balance between facilitation and interference could depend on plant types involved. We present recent observational and experimental studies performed in the semiarid ecosystems of the Middle Ebro Valley (NE Spain) about the role of abiotic conditions and biotic interactions in the productivity, dynamics and diversity of plant communities under different stress conditions (aridity and grazing). We found that all plant types studied (shrubs and perennial grasses) improved abiotic conditions (soil temperature and water availability for plants) with respect to open areas. However, only some shrubs (mainly Salsola vermiculata) had a positive net balance in the biotic interactions between plants, while other shrubs (Artemisia herba-alba) and perennial grasses (Lygeum spartum) showed interference with other plants. Moreover, the net balance between facilitation and interference among plants in the community shifted from competitive to neutral or from neutral to facilitative with increasing aridity. Grazing status did not strongly change the net biotic interactions between plants. Our results suggest that

  5. Predicting macropores in space and time by earthworms and abiotic controls

    Science.gov (United States)

    Hohenbrink, Tobias Ludwig; Schneider, Anne-Kathrin; Zangerlé, Anne; Reck, Arne; Schröder, Boris; van Schaik, Loes

    2017-04-01

    Macropore flow increases infiltration and solute leaching. The macropore density and connectivity, and thereby the hydrological effectiveness, vary in space and time due to earthworms' burrowing activity and their ability to refill their burrows in order to survive drought periods. The aim of our study was to predict the spatiotemporal variability of macropore distributions by a set of potentially controlling abiotic variables and abundances of different earthworm species. We measured earthworm abundances and effective macropore distributions using tracer rainfall infiltration experiments in six measurement campaigns during one year at six field sites in Luxembourg. Hydrologically effective macropores were counted in three soil depths (3, 10, 30 cm) and distinguished into three diameter classes (6 mm). Earthworms were sampled and determined to species-level. In a generalized linear modelling framework, we related macropores to potential spatial and temporal controlling factors. Earthworm species such as Lumbricus terrestris and Aporrectodea longa, local abiotic site conditions (land use, TWI, slope), temporally varying weather conditions (temperature, humidity, precipitation) and soil moisture affected the number of effective macropores. Main controlling factors and explanatory power of the models (uncertainty and model performance) varied depending on the depth and diameter class of macropores. We present spatiotemporal predictions of macropore density by daily-resolved, one year time series of macropore numbers and maps of macropore distributions at specific dates in a small-scale catchment with 5 m resolution.

  6. Stream pH as an abiotic gradient influencing distributions of trout in Pennsylvania streams

    Science.gov (United States)

    Kocovsky, P.M.; Carline, R.F.

    2005-01-01

    Elevation and stream slope are abiotic gradients that limit upstream distributions of brook trout Salvelinus fontinalis and brown trout Salmo trutta in streams. We sought to determine whether another abiotic gradient, base-flow pH, may also affect distributions of these two species in eastern North America streams. We used historical data from the Pennsylvania Fish and Boat Commission's fisheries management database to explore the effects of reach elevation, slope, and base-flow pH on distributional limits to brook trout and brown trout in Pennsylvania streams in the Appalachian Plateaus and Ridge and Valley physiographic provinces. Discriminant function analysis (DFA) was used to calculate a canonical axis that separated allopatric brook trout populations from allopatric brown trout populations and allowed us to assess which of the three independent variables were important gradients along which communities graded from allopatric brook trout to allopatric brown trout. Canonical structure coefficients from DFA indicated that in both physiographic provinces, stream base-flow pH and slope were important factors in distributional limits; elevation was also an important factor in the Ridge and Valley Province but not the Appalachian Plateaus Province. Graphs of each variable against the proportion of brook trout in a community also identified apparent zones of allopatry for both species on the basis of pH and stream slope. We hypothesize that pH-mediated interspecific competition that favors brook trout in competition with brown trout at lower pH is the most plausible mechanism for segregation of these two species along pH gradients. Our discovery that trout distributions in Pennsylvania are related to stream base-flow pH has important implications for brook trout conservation in acidified regions. Carefully designed laboratory and field studies will be required to test our hypothesis and elucidate the mechanisms responsible for the partitioning of brook trout and

  7. Polyamines control of cation transport across plant membranes: implications for ion homeostasis and abiotic stress signaling.

    Science.gov (United States)

    Pottosin, Igor; Shabala, Sergey

    2014-01-01

    Polyamines are unique polycationic metabolites, controlling a variety of vital functions in plants, including growth and stress responses. Over the last two decades a bulk of data was accumulated providing explicit evidence that polyamines play an essential role in regulating plant membrane transport. The most straightforward example is a blockage of the two major vacuolar cation channels, namely slow (SV) and fast (FV) activating ones, by the micromolar concentrations of polyamines. This effect is direct and fully reversible, with a potency descending in a sequence Spm(4+) > Spd(3+) > Put(2+). On the contrary, effects of polyamines on the plasma membrane (PM) cation and K(+)-selective channels are hardly dependent on polyamine species, display a relatively low affinity, and are likely to be indirect. Polyamines also affect vacuolar and PM H(+) pumps and Ca(2+) pump of the PM. On the other hand, catabolization of polyamines generates H2O2 and other reactive oxygen species (ROS), including hydroxyl radicals. Export of polyamines to the apoplast and their oxidation there by available amine oxidases results in the induction of a novel ion conductance and confers Ca(2+) influx across the PM. This mechanism, initially established for plant responses to pathogen attack (including a hypersensitive response), has been recently shown to mediate plant responses to a variety of abiotic stresses. In this review we summarize the effects of polyamines and their catabolites on cation transport in plants and discuss the implications of these effects for ion homeostasis, signaling, and plant adaptive responses to environment.

  8. Constraint algebra in Smolin's G →0 limit of 4D Euclidean gravity

    Science.gov (United States)

    Varadarajan, Madhavan

    2018-05-01

    Smolin's generally covariant GNewton→0 limit of 4d Euclidean gravity is a useful toy model for the study of the constraint algebra in loop quantum gravity (LQG). In particular, the commutator between its Hamiltonian constraints has a metric dependent structure function. While a prior LQG-like construction of nontrivial anomaly free constraint commutators for the model exists, that work suffers from two defects. First, Smolin's remarks on the inability of the quantum dynamics to generate propagation effects apply. Second, the construction only yields the action of a single Hamiltonian constraint together with the action of its commutator through a continuum limit of corresponding discrete approximants; the continuum limit of a product of two or more constraints does not exist. Here, we incorporate changes in the quantum dynamics through structural modifications in the choice of discrete approximants to the quantum Hamiltonian constraint. The new structure is motivated by that responsible for propagation in an LQG-like quantization of paramatrized field theory and significantly alters the space of physical states. We study the off shell constraint algebra of the model in the context of these structural changes and show that the continuum limit action of multiple products of Hamiltonian constraints is (a) supported on an appropriate domain of states, (b) yields anomaly free commutators between pairs of Hamiltonian constraints, and (c) is diffeomorphism covariant. Many of our considerations seem robust enough to be applied to the setting of 4d Euclidean gravity.

  9. Financing Constraints and Entrepreneurship

    OpenAIRE

    William R. Kerr; Ramana Nanda

    2009-01-01

    Financing constraints are one of the biggest concerns impacting potential entrepreneurs around the world. Given the important role that entrepreneurship is believed to play in the process of economic growth, alleviating financing constraints for would-be entrepreneurs is also an important goal for policymakers worldwide. We review two major streams of research examining the relevance of financing constraints for entrepreneurship. We then introduce a framework that provides a unified perspecti...

  10. Creativity from Constraints in Engineering Design

    DEFF Research Database (Denmark)

    Onarheim, Balder

    2012-01-01

    This paper investigates the role of constraints in limiting and enhancing creativity in engineering design. Based on a review of literature relating constraints to creativity, the paper presents a longitudinal participatory study from Coloplast A/S, a major international producer of disposable...... and ownership of formal constraints played a crucial role in defining their influence on creativity – along with the tacit constraints held by the designers. The designers were found to be highly constraint focused, and four main creative strategies for constraint manipulation were observed: blackboxing...

  11. Abiotic synthesis of porphyrins and other oligopyrroles on the early Earth and Earth-like planets

    Science.gov (United States)

    Fox, S.; Strasdeit, H.

    2013-09-01

    It is generally accepted that abiotically formed amino acids existed on Earth in the late Hadean and early Archean (four billion years ago). They were mainly dissolved in a salty primordial ocean. At that time, volcanic islands were much more abundant than today. It is therefore reasonable to assume that, at hot volcanic coasts, amino acids could have been thermally transformed into other organic molecules. Based on this scenario, we conducted laboratory experiments that simulated the interaction between amino acid-containing sea water and hot lava. In these experiments, a large number of different volatile products were formed, among them pyrroles. It was also possible to obtain porphyrins and other oligopyrroles from pyrroles under simulated conditions of primordial volcanic islands. All experiments were conducted under plausible prebiotic conditions. Our results reveal an abiotic pathway to possible precursors of oligopyrrole-type biomolecules, such as heme and chlorophylls.

  12. Exchange of adsorbed serum proteins during adhesion of Staphylococcus aureus to an abiotic surface and Candida albicans hyphae--an AFM study.

    Science.gov (United States)

    Ovchinnikova, Ekaterina S; van der Mei, Henny C; Krom, Bastiaan P; Busscher, Henk J

    2013-10-01

    Staphylococcus aureus and Candida albicans are the second and third most commonly isolated microorganisms in hospital-related-infections, that are often multi-species in nature causing high morbidity and mortality. Here, adhesion forces between a S. aureus strain and abiotic (tissue-culture-polystyrene, TCPS) or partly biotic (TCPS with adhering hyphae of C. albicans) surfaces were investigated in presence of fetal-bovine-serum or individual serum proteins and related with staphylococcal adhesion. Atomic-force-microscopy was used to measure adhesion forces between S. aureus and the abiotic and biotic surfaces. Adsorption of individual serum proteins like albumin and apo-transferrin to abiotic TCPS surfaces during 60min, impeded development of strong adhesion forces as compared to fibronectin, while 60min adsorption of proteins from fetal-bovine-serum yielded a decrease in adhesion force from -5.7nN in phosphate-buffered-saline to -0.6nN. Adsorption of albumin and apo-transferrin also decreased staphylococcal adhesion forces to hyphae as compared with fibronectin. During 60min exposure to fetal-bovine-serum however, initial (5min protein adsorption) staphylococcal adhesion forces were low (-1.6nN), but strong adhesion forces of around -5.5nN were restored within 60min. This suggests for the first time that in whole fetal-bovine-serum exchange of non-adhesive proteins by fibronectin occurs on biotic C. albicans hyphal surfaces. No evidence was found for such protein exchange on abiotic TCPS surfaces. Staphylococcal adhesion of abiotic and biotic surfaces varied in line with the adhesion forces and was low on TCPS in presence of fetal-bovine-serum. On partly biotic TCPS, staphylococci aggregated in presence of fetal-bovine-serum around adhering C. albicans hyphae. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Transgenic banana plants overexpressing a native plasma membrane aquaporin MusaPIP1;2 display high tolerance levels to different abiotic stresses.

    Science.gov (United States)

    Sreedharan, Shareena; Shekhawat, Upendra K S; Ganapathi, Thumballi R

    2013-10-01

    Water transport across cellular membranes is regulated by a family of water channel proteins known as aquaporins (AQPs). As most abiotic stresses like suboptimal temperatures, drought or salinity result in cellular dehydration, it is imperative to study the cause-effect relationship between AQPs and the cellular consequences of abiotic stress stimuli. Although plant cells have a high isoform diversity of AQPs, the individual and integrated roles of individual AQPs in optimal and suboptimal physiological conditions remain unclear. Herein, we have identified a plasma membrane intrinsic protein gene (MusaPIP1;2) from banana and characterized it by overexpression in transgenic banana plants. Cellular localization assay performed using MusaPIP1;2::GFP fusion protein indicated that MusaPIP1;2 translocated to plasma membrane in transformed banana cells. Transgenic banana plants overexpressing MusaPIP1;2 constitutively displayed better abiotic stress survival characteristics. The transgenic lines had lower malondialdehyde levels, elevated proline and relative water content and higher photosynthetic efficiency as compared to equivalent controls under different abiotic stress conditions. Greenhouse-maintained hardened transgenic plants showed faster recovery towards normal growth and development after cessation of abiotic stress stimuli, thereby underlining the importance of these plants in actual environmental conditions wherein the stress stimuli is often transient but severe. Further, transgenic plants where the overexpression of MusaPIP1;2 was made conditional by tagging it with a stress-inducible native dehydrin promoter also showed similar stress tolerance characteristics in in vitro and in vivo assays. Plants developed in this study could potentially enable banana cultivation in areas where adverse environmental conditions hitherto preclude commercial banana cultivation. © 2013 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons

  14. A role for SR proteins in plant stress responses.

    Science.gov (United States)

    Duque, Paula

    2011-01-01

    Members of the SR (serine/arginine-rich) protein gene family are key players in the regulation of alternative splicing, an important means of generating proteome diversity and regulating gene expression. In plants, marked changes in alternative splicing are induced by a wide variety of abiotic stresses, suggesting a role for this highly versatile gene regulation mechanism in the response to environmental cues. In support of this notion, the expression of plant SR proteins is stress-regulated at multiple levels, with environmental signals controlling their own alternative splicing patterns, phosphorylation status and subcellular distribution. Most importantly, functional links between these RNA-binding proteins and plant stress tolerance are beginning to emerge, including a role in the regulation of abscisic acid (ABA) signaling. Future identification of the physiological mRNA targets of plant SR proteins holds much promise for the elucidation of the molecular mechanisms underlying their role in the response to abiotic stress.

  15. Effects of constraints to acquisition of information resources in ...

    African Journals Online (AJOL)

    The study was on the Effects of Constraints to Acquisition of Information Resources in Academic Libraries in Southwest Nigeria: a study of UNILAG and KDL main libraries. Library acquisition is defined as the department of a library responsible for the selection and pur chase of materials or resources for the library. Survey ...

  16. Isolation and Abiotic Stress Resistance Analyses of a Catalase Gene from Ipomoea batatas (L.) Lam.

    Science.gov (United States)

    Yong, Bin; Wang, Xiaoyan; Xu, Pan; Zheng, Haiyan; Fei, Xueting; Hong, Zixi; Ma, Qinqin; Miao, Yuzhi; Yuan, Xianghua; Jiang, Yusong; Shao, Huanhuan

    2017-01-01

    As an indicator of the antioxidant capability of plants, catalase can detoxify reactive oxygen species (ROS) generated by environmental stresses. Sweet potato is one of the top six most important crops in the world. However, its catalases remain largely unknown. In this study, a catalase encoding gene, IbCAT2 (accession number: KY615708), was identified and cloned from sweet potato cv. Xushu 18. It contained a 1479 nucleotides' open reading frame (ORF). S-R-L, Q-K-L, and a putative calmodulin binding domain were located at the C-terminus of IbCAT2, which suggests that IbCAT2 could be a peroxisomal catalase. Next-generation sequencing (NGS) based quantitative analyses showed that IbCAT2 was mainly expressed in young leaves and expanding tuberous roots under normal conditions. When exposed to 10% PEG6000 or 200 mmol/L NaCl solutions, IbCAT2 was upregulated rapidly in the first 11 days and then downregulated, although different tissues showed different degree of change. Overexpression of IbCAT2 conferred salt and drought tolerance in Escherichia coli and Saccharomyces cerevisiae . The positive response of IbCAT2 to abiotic stresses suggested that IbCAT2 might play an important role in stress responses.

  17. Transcriptomic profiling of linolenic acid-responsive genes in ROS signalling from RNA-seq data in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Capilla eMata-Pérez

    2015-03-01

    Full Text Available Linolenic acid (Ln released from chloroplast membrane galactolipids is a precursor of the phytohormone jasmonic acid (JA. The involvement of this hormone in different plant biological processes, such as responses to biotic stress conditions, has been extensively studied. However, the role of Ln in the regulation of gene expression during abiotic stress situations mediated by cellular redox changes and/or by oxidative stress processes remains poorly understood. An RNA-seq approach has increased our knowledge of the interplay among Ln, oxidative stress and ROS signalling that mediates abiotic stress conditions. Transcriptome analysis with the aid of RNA-seq in the absence of oxidative stress revealed that the incubation of Arabidopsis thaliana cell suspension cultures (ACSC with Ln resulted in the modulation of 7525 genes, of which 3034 genes had a 2 fold-change, being 533 up- and 2501 down-regulated genes, respectively. Thus, RNA-seq data analysis showed that an important set of these genes were associated with the jasmonic acid biosynthetic pathway including lypoxygenases (LOXs and Allene oxide cyclases (AOCs. In addition, several transcription factor families involved in the response to biotic stress conditions (pathogen attacks or herbivore feeding, such as WRKY, JAZ, MYC and LRR were also modified in response to Ln. However, this study also shows that Ln has the capacity to modulate the expression of genes involved in the response to abiotic stress conditions, particularly those mediated by ROS signalling. In this regard, we were able to identify new targets such as galactinol synthase 1 (GOLS1, methionine sulfoxide reductase (MSR and alkenal reductase in ACSC. It is therefore possible to suggest that, in the absence of any oxidative stress, Ln is capable of modulating new sets of genes involved in the signalling mechanism mediated by additional abiotic stresses (salinity, UV and high light intensity and especially in stresses mediated by ROS.

  18. Deepening Contractions and Collateral Constraints

    DEFF Research Database (Denmark)

    Jensen, Henrik; Ravn, Søren Hove; Santoro, Emiliano

    and occasionally non-binding credit constraints. Easier credit access increases the likelihood that constraints become slack in the face of expansionary shocks, while contractionary shocks are further amplified due to tighter constraints. As a result, busts gradually become deeper than booms. Based...

  19. Global SUMO proteome responses guide gene regulation, mRNA biogenesis, and plant stress responses

    Directory of Open Access Journals (Sweden)

    Magdalena eMazur

    2012-09-01

    Full Text Available Small-ubiquitin-like MOdifier (SUMO is a key regulator of abiotic stress, disease resistance and development in plants. The identification of >350 plant SUMO targets has revealed many processes modulated by SUMO and potential consequences of SUMO on its targets. Importantly, highly related proteins are SUMO-modified in plants, yeast, and metazoans. Overlapping SUMO targets include heat-shock proteins, transcription regulators, histones, histone-modifying enzymes, proteins involved in DNA damage repair, but also proteins involved in mRNA biogenesis and nucleo-cytoplasmic transport. Proteomics studies indicate key roles for SUMO in gene repression by controlling histone (deacetylation activity at genomic loci. The responsible heavily sumoylated transcriptional repressor complexes are recruited by EAR (Ethylene-responsive element binding factor [ERF]-associated Amphiphilic Repression-motif containing transcription factors in plants. These transcription factors are not necessarily themselves a SUMO target. Conversely, SUMO acetylation prevents binding of downstream partners by preventing binding of SIMs (SUMO-interaction peptide motifs presents in these partners, while SUMO acetylation has emerged as mechanism to recruit specifically bromodomains; bromodomain are generally linked with gene activation. These findings strengthen the idea of a bidirectional sumo-/acetylation switch in gene regulation. Quantitative proteomics has highlighted that global sumoylation provides a dynamic response to protein damage involving SUMO chain-mediated protein degradation, but also SUMO E3 ligase-dependent transcription of HSP (Heat-shock protein genes. With these insights in SUMO function and novel technical advancements, we can now study SUMO dynamics in responses to (abiotic stress in plants.

  20. Occupational dose constraint

    International Nuclear Information System (INIS)

    Heilbron Filho, Paulo Fernando Lavalle; Xavier, Ana Maria

    2005-01-01

    The revision process of the international radiological protection regulations has resulted in the adoption of new concepts, such as practice, intervention, avoidable and restriction of dose (dose constraint). The latter deserving of special mention since it may involve reducing a priori of the dose limits established both for the public and to individuals occupationally exposed, values that can be further reduced, depending on the application of the principle of optimization. This article aims to present, with clarity, from the criteria adopted to define dose constraint values to the public, a methodology to establish the dose constraint values for occupationally exposed individuals, as well as an example of the application of this methodology to the practice of industrial radiography

  1. Wind constraints on the thermoregulation of high mountain lizards

    Science.gov (United States)

    Ortega, Zaida; Mencía, Abraham; Pérez-Mellado, Valentín

    2017-03-01

    Thermal biology of lizards affects their overall physiological performance. Thus, it is crucial to study how abiotic constraints influence thermoregulation. We studied the effect of wind speed on thermoregulation in an endangered mountain lizard ( Iberolacerta aurelioi). We compared two populations of lizards: one living in a sheltered rocky area and the other living in a mountain ridge, exposed to strong winds. The preferred temperature range of I. aurelioi, which reflects thermal physiology, was similar in both areas, and it was typical of a cold specialist. Although the thermal physiology of lizards and the structure of the habitat were similar, the higher wind speed in the exposed population was correlated with a significant decrease in the effectiveness thermoregulation, dropping from 0.83 to 0.74. Our results suggest that wind reduces body temperatures in two ways: via direct convective cooling of the animal and via convective cooling of the substrate, which causes conductive cooling of the animal. The detrimental effect of wind on thermoregulatory effectiveness is surprising, since lizards are expected to thermoregulate more effectively in more challenging habitats. However, wind speed would affect the costs and benefits of thermoregulation in more complex ways than just the cooling of animals and their habitats. For example, it may reduce the daily activity, increase desiccation, or complicate the hunting of prey. Finally, our results imply that wind should also be considered when developing conservation strategies for threatened ectotherms.

  2. Plant abiotic stress tolerance analysis in cauliflower using a curd micropropagation system

    OpenAIRE

    Rihan, HZ; Al-Issawi, M; Al-Shamari, M; Elmahrouk, M; Fuller, MP

    2015-01-01

    © 2015 ISHS. An effective protocol for cauliflower micropropagation was optimised and developed which enabled the production of tens of thousands of cauliflower microshoots from one cauliflower curd. The large number of microshoots that can be produced per culture unit facilitates the use of this protocol to analyse both the physiological and molecular components of abiotic stress tolerance. The protocol was used for cauliflower cold tolerance analysis and it was demonstrated that low tempera...

  3. Assessing and Exploiting Functional Diversity in Germplasm Pools to Enhance Abiotic Stress Adaptation and Yield in Cereals and Food Legumes

    Science.gov (United States)

    Dwivedi, Sangam L.; Scheben, Armin; Edwards, David; Spillane, Charles; Ortiz, Rodomiro

    2017-01-01

    There is a need to accelerate crop improvement by introducing alleles conferring host plant resistance, abiotic stress adaptation, and high yield potential. Elite cultivars, landraces and wild relatives harbor useful genetic variation that needs to be more easily utilized in plant breeding. We review genome-wide approaches for assessing and identifying alleles associated with desirable agronomic traits in diverse germplasm pools of cereals and legumes. Major quantitative trait loci and single nucleotide polymorphisms (SNPs) associated with desirable agronomic traits have been deployed to enhance crop productivity and resilience. These include alleles associated with variation conferring enhanced photoperiod and flowering traits. Genetic variants in the florigen pathway can provide both environmental flexibility and improved yields. SNPs associated with length of growing season and tolerance to abiotic stresses (precipitation, high temperature) are valuable resources for accelerating breeding for drought-prone environments. Both genomic selection and genome editing can also harness allelic diversity and increase productivity by improving multiple traits, including phenology, plant architecture, yield potential and adaptation to abiotic stresses. Discovering rare alleles and useful haplotypes also provides opportunities to enhance abiotic stress adaptation, while epigenetic variation has potential to enhance abiotic stress adaptation and productivity in crops. By reviewing current knowledge on specific traits and their genetic basis, we highlight recent developments in the understanding of crop functional diversity and identify potential candidate genes for future use. The storage and integration of genetic, genomic and phenotypic information will play an important role in ensuring broad and rapid application of novel genetic discoveries by the plant breeding community. Exploiting alleles for yield-related traits would allow improvement of selection efficiency and

  4. Assessing and Exploiting Functional Diversity in Germplasm Pools to Enhance Abiotic Stress Adaptation and Yield in Cereals and Food Legumes

    Directory of Open Access Journals (Sweden)

    Sangam L. Dwivedi

    2017-08-01

    Full Text Available There is a need to accelerate crop improvement by introducing alleles conferring host plant resistance, abiotic stress adaptation, and high yield potential. Elite cultivars, landraces and wild relatives harbor useful genetic variation that needs to be more easily utilized in plant breeding. We review genome-wide approaches for assessing and identifying alleles associated with desirable agronomic traits in diverse germplasm pools of cereals and legumes. Major quantitative trait loci and single nucleotide polymorphisms (SNPs associated with desirable agronomic traits have been deployed to enhance crop productivity and resilience. These include alleles associated with variation conferring enhanced photoperiod and flowering traits. Genetic variants in the florigen pathway can provide both environmental flexibility and improved yields. SNPs associated with length of growing season and tolerance to abiotic stresses (precipitation, high temperature are valuable resources for accelerating breeding for drought-prone environments. Both genomic selection and genome editing can also harness allelic diversity and increase productivity by improving multiple traits, including phenology, plant architecture, yield potential and adaptation to abiotic stresses. Discovering rare alleles and useful haplotypes also provides opportunities to enhance abiotic stress adaptation, while epigenetic variation has potential to enhance abiotic stress adaptation and productivity in crops. By reviewing current knowledge on specific traits and their genetic basis, we highlight recent developments in the understanding of crop functional diversity and identify potential candidate genes for future use. The storage and integration of genetic, genomic and phenotypic information will play an important role in ensuring broad and rapid application of novel genetic discoveries by the plant breeding community. Exploiting alleles for yield-related traits would allow improvement of selection

  5. Micro-compression testing: A critical discussion of experimental constraints

    International Nuclear Information System (INIS)

    Kiener, D.; Motz, C.; Dehm, G.

    2009-01-01

    Micro-compression testing is a promising technique for determining mechanical properties at small length scales since it has several benefits over nanoindentation. However, as for all new techniques, experimental constraints influencing the results of such a micro-mechanical test must be considered. Here we investigate constraints imposed by the sample geometry, the pile-up of dislocations at the sample top and base, and the lateral stiffness of the testing setup. Using a focused ion beam milling setup, single crystal Cu specimens with different geometries and crystal orientations were fabricated. Tapered samples served to investigate the influence of strain gradients, while stiff sample top coatings and undeformable substrates depict the influence of dislocation pile-ups at these interfaces. The lateral system stiffness was reduced by placing specimens on top of needles. Samples were loaded using an in situ indenter in a scanning electron microscope in load controlled or displacement controlled mode. The observed differences in the mechanical response with respect to the experimental imposed constraints are discussed and lead to the conclusion that controlling the lateral system stiffness is the most important point

  6. Solar constraints

    International Nuclear Information System (INIS)

    Provost, J.

    1984-01-01

    Accurate tests of the theory of stellar structure and evolution are available from the Sun's observations. The solar constraints are reviewed, with a special attention to the recent progress in observing global solar oscillations. Each constraint is sensitive to a given region of the Sun. The present solar models (standard, low Z, mixed) are discussed with respect to neutrino flux, low and high degree five-minute oscillations and low degree internal gravity modes. It appears that actually there do not exist solar models able to fully account for all the observed quantities. (Auth.)

  7. Bad-good constraints on a polarity correspondence account for the spatial-numerical association of response codes (SNARC) and markedness association of response codes (MARC) effects.

    Science.gov (United States)

    Leth-Steensen, Craig; Citta, Richie

    2016-01-01

    constraint on the presumed generality of the polarity correspondence account. On the other hand, the presence of robust MARC effects for "bad" and "good" but not "left" and "right" vocal responses is consistent with the view that such effects are due to conceptual associations between semantic codes for odd-even and bad-good (but not necessarily left-right).

  8. Temporal Concurrent Constraint Programming

    DEFF Research Database (Denmark)

    Nielsen, Mogens; Valencia Posso, Frank Dan

    2002-01-01

    The ntcc calculus is a model of non-deterministic temporal concurrent constraint programming. In this paper we study behavioral notions for this calculus. In the underlying computational model, concurrent constraint processes are executed in discrete time intervals. The behavioral notions studied...... reflect the reactive interactions between concurrent constraint processes and their environment, as well as internal interactions between individual processes. Relationships between the suggested notions are studied, and they are all proved to be decidable for a substantial fragment of the calculus...

  9. Redox Evolution via Gravitational Differentiation on Low-mass Planets: Implications for Abiotic Oxygen, Water Loss, and Habitability

    Science.gov (United States)

    Wordsworth, R. D.; Schaefer, L. K.; Fischer, R. A.

    2018-05-01

    The oxidation of rocky planet surfaces and atmospheres, which arises from the twin forces of stellar nucleosynthesis and gravitational differentiation, is a universal process of key importance to habitability and exoplanet biosignature detection. Here we take a generalized approach to this phenomenon. Using a single parameter to describe the redox state, we model the evolution of terrestrial planets around nearby M stars and the Sun. Our model includes atmospheric photochemistry, diffusion and escape, line-by-line climate calculations, and interior thermodynamics and chemistry. In most cases, we find abiotic atmospheric {{{O}}}2 buildup around M stars during the pre-main-sequence phase to be much less than calculated previously, because the planet’s magma ocean absorbs most oxygen liberated from {{{H}}}2{{O}} photolysis. However, loss of noncondensing atmospheric gases after the mantle solidifies remains a significant potential route to abiotic atmospheric {{{O}}}2 subsequently. In all cases, we predict that exoplanets that receive lower stellar fluxes, such as LHS1140b and TRAPPIST-1f and g, have the lowest probability of abiotic {{{O}}}2 buildup and hence may be the most interesting targets for future searches for biogenic {{{O}}}2. Key remaining uncertainties can be minimized in future by comparing our predictions for the atmospheres of hot, sterile exoplanets such as GJ1132b and TRAPPIST-1b and c with observations.

  10. Functional dissection of drought-responsive gene expression patterns in Cynodon dactylon L.

    Science.gov (United States)

    Kim, Changsoo; Lemke, Cornelia; Paterson, Andrew H

    2009-05-01

    Water deficit is one of the main abiotic factors that affect plant productivity in subtropical regions. To identify genes induced during the water stress response in Bermudagrass (Cynodon dactylon), cDNA macroarrays were used. The macroarray analysis identified 189 drought-responsive candidate genes from C. dactylon, of which 120 were up-regulated and 69 were down-regulated. The candidate genes were classified into seven groups by cluster analysis of expression levels across two intensities and three durations of imposed stress. Annotation using BLASTX suggested that up-regulated genes may be involved in proline biosynthesis, signal transduction pathways, protein repair systems, and removal of toxins, while down-regulated genes were mostly related to basic plant metabolism such as photosynthesis and glycolysis. The functional classification of gene ontology (GO) was consistent with the BLASTX results, also suggesting some crosstalk between abiotic and biotic stress. Comparative analysis of cis-regulatory elements from the candidate genes implicated specific elements in drought response in Bermudagrass. Although only a subset of genes was studied, Bermudagrass shared many drought-responsive genes and cis-regulatory elements with other botanical models, supporting a strategy of cross-taxon application of drought-responsive genes, regulatory cues, and physiological-genetic information.

  11. Meta-analysis of the effect of overexpression of CBF/DREB family genes on drought stress response

    Science.gov (United States)

    Transcription factors C-repeat/dehydration-responsive element binding proteins (CBF/DREB) play an important role in plant response to abiotic stresses. Over-expression of various CBF/DREB genes in diverse plants have been reported, but inconsistency of gene donor, recipient genus, parameters used i...

  12. Intra-Specific Latitudinal Clines in Leaf Carbon, Nitrogen, and Phosphorus and their Underlying Abiotic Correlates in Ruellia Nudiflora.

    Science.gov (United States)

    Abdala-Roberts, Luis; Covelo, Felisa; Parra-Tabla, Víctor; Terán, Jorge C Berny Mier Y; Mooney, Kailen A; Moreira, Xoaquín

    2018-01-12

    While plant intra-specific variation in the stoichiometry of nutrients and carbon is well documented, clines for such traits have been less studied, despite their potential to reveal the mechanisms underlying such variation. Here we analyze latitudinal variation in the concentration of leaf nitrogen (N), phosphorus (P), carbon (C) and their ratios across 30 populations of the perennial herb Ruellia nudiflora. In addition, we further determined whether climatic and soil variables underlie any such latitudinal clines in leaf traits. The sampled transect spanned 5° latitude (ca. 900 km) and exhibited a four-fold precipitation gradient and 2 °C variation in mean annual temperature. We found that leaf P concentration increased with precipitation towards lower latitudes, whereas N and C did not exhibit latitudinal clines. In addition, N:P and C:P decreased towards lower latitudes and latitudinal variation in the former was weakly associated with soil conditions (clay content and cation exchange capacity); C:N did not exhibit a latitudinal gradient. Overall, these results emphasize the importance of addressing and disentangling the simultaneous effects of abiotic factors associated with intra-specific clines in plant stoichiometric traits, and highlight the previously underappreciated influence of abiotic factors on plant nutrients operating under sharp abiotic gradients over smaller spatial scales.

  13. Quantitative Phosphoproteomic Analysis Provides Insight into the Response to Short-Term Drought Stress in Ammopiptanthus mongolicus Roots

    Directory of Open Access Journals (Sweden)

    Huigai Sun

    2017-10-01

    Full Text Available Drought is one of the major abiotic stresses that negatively affects plant growth and development. Ammopiptanthus mongolicus is an ecologically important shrub in the mid-Asia desert region and used as a model for abiotic tolerance research in trees. Protein phosphorylation participates in the regulation of various biological processes, however, phosphorylation events associated with drought stress signaling and response in plants is still limited. Here, we conducted a quantitative phosphoproteomic analysis of the response of A. mongolicus roots to short-term drought stress. Data are available via the iProx database with project ID IPX0000971000. In total, 7841 phosphorylation sites were found from the 2019 identified phosphopeptides, corresponding to 1060 phosphoproteins. Drought stress results in significant changes in the abundance of 103 phosphopeptides, corresponding to 90 differentially-phosphorylated phosphoproteins (DPPs. Motif-x analysis identified two motifs, including [pSP] and [RXXpS], from these DPPs. Functional enrichment and protein-protein interaction analysis showed that the DPPs were mainly involved in signal transduction and transcriptional regulation, osmotic adjustment, stress response and defense, RNA splicing and transport, protein synthesis, folding and degradation, and epigenetic regulation. These drought-corresponsive phosphoproteins, and the related signaling and metabolic pathways probably play important roles in drought stress signaling and response in A. mongolicus roots. Our results provide new information for understanding the molecular mechanism of the abiotic stress response in plants at the posttranslational level.

  14. Strategies for Distinguishing Abiotic Chemistry from Martian Biochemistry in Samples Returned from Mars

    Science.gov (United States)

    Glavin, D. P.; Burton, A. S.; Callahan, M. P.; Elsila, J. E.; Stern, J. C.; Dworkin, J. P.

    2012-01-01

    A key goal in the search for evidence of extinct or extant life on Mars will be the identification of chemical biosignatures including complex organic molecules common to all life on Earth. These include amino acids, the monomer building blocks of proteins and enzymes, and nucleobases, which serve as the structural basis of information storage in DNA and RNA. However, many of these organic compounds can also be formed abiotically as demonstrated by their prevalence in carbonaceous meteorites [1]. Therefore, an important challenge in the search for evidence of life on Mars will be distinguishing between abiotic chemistry of either meteoritic or martian origin from any chemical biosignatures from an extinct or extant martian biota. Although current robotic missions to Mars, including the 2011 Mars Science Laboratory (MSL) and the planned 2018 ExoMars rovers, will have the analytical capability needed to identify these key classes of organic molecules if present [2,3], return of a diverse suite of martian samples to Earth would allow for much more intensive laboratory studies using a broad array of extraction protocols and state-of-theart analytical techniques for bulk and spatially resolved characterization, molecular detection, and isotopic and enantiomeric compositions that may be required for unambiguous confirmation of martian life. Here we will describe current state-of-the-art laboratory analytical techniques that have been used to characterize the abundance and distribution of amino acids and nucleobases in meteorites, Apollo samples, and comet- exposed materials returned by the Stardust mission with an emphasis on their molecular characteristics that can be used to distinguish abiotic chemistry from biochemistry as we know it. The study of organic compounds in carbonaceous meteorites is highly relevant to Mars sample return analysis, since exogenous organic matter should have accumulated in the martian regolith over the last several billion years and the

  15. Proteomic analysis of cold stress responses in tobacco seedlings ...

    African Journals Online (AJOL)

    Cold stress is one of the major abiotic stresses limiting the productivity and the geographical distribution of many important crops. To gain a better understanding of cold stress responses in tobacco (Nicotiana tabacum), we carried out a comparative proteomic analysis. Five-week-old tobacco seedlings were treated at 4°C ...

  16. Theory of Constraints (TOC)

    DEFF Research Database (Denmark)

    Michelsen, Aage U.

    2004-01-01

    Tankegangen bag Theory of Constraints samt planlægningsprincippet Drum-Buffer-Rope. Endvidere skitse af The Thinking Process.......Tankegangen bag Theory of Constraints samt planlægningsprincippet Drum-Buffer-Rope. Endvidere skitse af The Thinking Process....

  17. Understanding the Interaction of Peptides and Proteins with Abiotic Surfaces: Towards Water-Free Biologics

    Science.gov (United States)

    2018-02-03

    engineering , materials, spectroscopy, laser techniques, chemical biology, computational chemistry, and nanoscience and nanotechnology . We have regular bi...water-free biologics” based on engineered abiotic/biotic interfaces. Using knowledge gained from studies in Aim 1, we aim to a) engineer peptides...universities. The research is highly interdisciplinary, covering many research areas in biology, chemistry, engineering , and physics. The

  18. Abiotic versus biotic iron mineral transformation studied by a miniaturized backscattering Mössbauer spectrometer (MIMOS II), X-ray diffraction and Raman spectroscopy

    Science.gov (United States)

    Markovski, C.; Byrne, J. M.; Lalla, E.; Lozano-Gorrín, A. D.; Klingelhöfer, G.; Rull, F.; Kappler, A.; Hoffmann, T.; Schröder, C.

    2017-11-01

    Searching for biomarkers or signatures of microbial transformations of minerals is a critical aspect for determining how life evolved on Earth, and whether or not life may have existed in other planets, including Mars. In order to solve such questions, several missions to Mars have sought to determine the geochemistry and mineralogy on the Martian surface. This research includes the two miniaturized Mössbauer spectrometers (MIMOS II) on board the Mars Exploration Rovers Spirit and Opportunity, which have detected a variety of iron minerals on Mars, including magnetite (Fe2+Fe3+2O4) and goethite (α-FeO(OH)). On Earth, both minerals can derive from microbiological activity (e.g. through dissimilatory iron reduction of ferrihydrite by Fe(III)-reducing bacteria). Here we used a lab based MIMOS II to characterize the mineral products of biogenic transformations of ferrihydrite to magnetite by the Fe(III)-reducing bacteria Geobacter sulfurreducens. In combination with Raman spectroscopy and X-ray diffraction (XRD), we observed the formation of magnetite, goethite and siderite. We compared the material produced by biogenic transformations to abiotic samples in order to distinguish abiotic and biotic iron minerals by techniques that are or will be available onboard Martian based laboratories. The results showed the possibility to distinguish the abiotic and biotic origin of the minerals. Mossbauer was able to distinguish the biotic/abiotic magnetite with the interpretation of the geological context (Fe content mineral assemblages and accompanying minerals) and the estimation of the particle size in a non-destructive way. The Raman was able to confirm the biotic/abiotic principal peaks of the magnetite, as well as the organic principal vibration bands attributed to the bacteria. Finally, the XRD confirmed the particle size and mineralogy.

  19. Constraint Embedding for Multibody System Dynamics

    Science.gov (United States)

    Jain, Abhinandan

    2009-01-01

    This paper describes a constraint embedding approach for the handling of local closure constraints in multibody system dynamics. The approach uses spatial operator techniques to eliminate local-loop constraints from the system and effectively convert the system into tree-topology systems. This approach allows the direct derivation of recursive O(N) techniques for solving the system dynamics and avoiding the expensive steps that would otherwise be required for handling the closedchain dynamics. The approach is very