WorldWideScience

Sample records for abilify aripiprazole metabolic

  1. Possible Oxcarbazepine Inductive Effects on Aripiprazole Metabolism: A Case Report.

    Science.gov (United States)

    McGrane, Ian R; Loveland, Joshua G; de Leon, Jose

    2017-01-01

    Oxcarbazepine is a cytochrome P450 (CYP) 3A4 inducer, which is structurally similar to carbamazepine. Although lacking Food and Drug Administration approval, oxcarbazepine is sometimes prescribed to treat aggressive behavior in youth with autism spectrum disorder (ASD). These youths may also be taking second-generation antipsychotics, some of which are substrates of the CYP3A4 metabolic pathway. The combination of these medications may result in decreased serum antipsychotic concentrations, potentially reducing effectiveness. A limited number of reports are available which discuss reduced atypical antipsychotic concentrations secondary to oxcarbazepine CYP3A4 induction. We report a young boy taking oxcarbazepine (1200 mg/d) who presented with an unexpectedly low serum aripiprazole concentration. Utilizing therapeutic drug monitoring, pharmacogenetic testing, and a tool to evaluate drug-drug interactions, we estimate that oxcarbazepine possibly reduced his serum aripiprazole concentration by 68%. Our report is important, as it is the first to describe a drug-drug interaction between oxcarbazepine and aripiprazole. This report should encourage the completion of in vitro and clinical studies and the publication of case reports describing the possible inductive effects of oxcarbazepine on atypical antipsychotics (including cariprazine, lurasidone, quetiapine, aripiprazole, brexpiprazole, iloperidone, and risperidone) mediated by induction of the CYP3A4 metabolic pathway.

  2. Metabolic syndrome and drug discontinuation in schizophrenia: a randomized trial comparing aripiprazole olanzapine and haloperidol.

    Science.gov (United States)

    Parabiaghi, A; Tettamanti, M; D'Avanzo, B; Barbato, A

    2016-01-01

    To determine whether the prescription of aripiprazole, compared with olanzapine and haloperidol, was associated with a lower frequency of metabolic syndrome (MS) and treatment discontinuation at 1 year. Patients were randomly assigned to be treated open-label and according to usual clinical practice with either aripiprazole, olanzapine, or haloperidol and followed up for 1 year. Three hundred out-patients with persistent schizophrenia were recruited in 35 mental health services. The intention-to-treat (ITT) analysis found no significant differences in the rate of MS between aripiprazole (37%), olanzapine (47%), and haloperidol (42%). Treatment discontinuation for any cause was higher for aripiprazole (52%) than for olanzapine (33%; OR, 0.41; P = 0.004), or haloperidol (37%; OR, 0.51; P = 0.030). No significant difference was found between olanzapine and haloperidol. Time to discontinuation for any cause was longer for olanzapine than for aripiprazole (HR, 0.55; P haloperidol and aripiprazole, or between olanzapine and haloperidol. The prescription of aripiprazole did not significantly reduce the rates of MS, but its treatment retention was worse. Aripiprazole cannot be considered the safest and most effective drug for maintenance treatment of schizophrenia in routine care, although it may have a place in antipsychotic therapy. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  3. Psychosocial functioning in patients with schizophrenia treated with aripiprazole - an office-based real-world setting. Results from the German post-marketing surveillance study.

    Science.gov (United States)

    Bergmann, F; Zacher, A; Nass, A; Urban, R; Werner, C; Spevakné-Göröcs, T; Kungel, M; Ebrecht, M; Modell, S

    2009-05-01

    Aripiprazole (ABILIFY) is an effective antipsychotic used in a dose range from 10 to 30 mg, administered once daily. Soon after its approval in Germany for treatment of schizophrenia, a 12-month post-marketing surveillance study was initiated that included 1 096 patients cared for by 408 office-based psychiatrists and/or neurologists in private practice. The aim was to gain further insights into safety and efficacy of aripiprazole in an outpatient real-life setting focusing on general health, well-being and psychosocial functioning. Efficacy was rated by using standard CGI, SF-12 and SIWM-PsySo instruments for severity of disease, physical and mental health outcomes and psychosocial state, respectively. Safety was evaluated according to the reports of adverse events. Mean total daily dose of aripiprazole increased from 15.4 mg at the visit after 1 month to 17.6 mg at the visits after 6 to 12 months, the most frequently administered maintenance dose being 15 mg. Within the observation period significant improvements of CGI, SF-12 and SIWM-PsySo scores over time versus baseline values were observed (pmuch" or "very much" improved. Aripiprazole was overall well tolerated; 19.9% of patients discontinued treatment after 12 months. Adverse effects in general were moderate to mild and corresponded to the known tolerability profile of aripiprazole. Psychotic side effects reported were probably due to a recurrence of the underlying schizophrenic disorder. The results indicate that aripiprazole may be an efficacious and safe treatment option for pre-treated patients with schizophrenia also in a naturalistic psychiatrist/neurologist practice setting with effects on health and psychosocial functioning and a comparably low dropout rate.

  4. Aripiprazole in schizophrenia and schizoaffective disorder: A review.

    Science.gov (United States)

    Stip, Emmanuel; Tourjman, Valérie

    2010-01-01

    , insomnia, and agitation. These effects were usually transient. The evidence suggests that aripiprazole is unlikely to be associated with clinically significant weight gain or dyslipidemia, increased prolactin levels, or prolongation of the QTc interval. Compared with placebo, aripiprazole has been reported to have a relatively low potential for inducing metabolic syndrome. Based on the evidence reviewed, aripiprazole monotherapy appears to be effective and well tolerated in treating the positive, negative, and cognitive symptoms of schizophrenia and schizoaffective disorder. It was associated with a low risk for the common adverse effects of antipsychotic therapy, including metabolic and endocrine alterations. 2010 Excerpta Medica Inc. All rights reserved.

  5. Effects of switching from olanzapine to aripiprazole on the metabolic profiles of patients with schizophrenia and metabolic syndrome: a double-blind, randomized, open-label study [Corrigendum

    Directory of Open Access Journals (Sweden)

    Wani RA

    2015-03-01

    Full Text Available Wani RA, Dar MA, Chandel RK, et al Title of paper should have been “Effects of switching from olanzapine to aripiprazole on the metabolic profiles of patients with schizophrenia and metabolic syndrome: a randomized, open-label study”.  Read the original paper 

  6. Aripiprazole, A Drug that Displays Partial Agonism and Functional Selectivity.

    Science.gov (United States)

    Tuplin, Erin W; Holahan, Matthew R

    2017-11-14

    The treatment of schizophrenia is challenging due to the wide range of symptoms (positive, negative, cognitive) associated with the disease. Typical antipsychotics that antagonize D2 receptors are effective in treating positive symptoms, but extrapyramidal side-effects (EPS) are a common occurrence. Atypical antipsychotics targeting 5-HT2A and D2 receptors are more effective at treating cognitive and negative symptoms compared to typical antipsychotics, but these drugs also result in side-effects such as metabolic syndromes. To identify evidence in the literature that elucidates the pharmacological profile of aripiprazole.s. We searched PubMed for peer reviewed articles on aripiprazole and its clinical efficacy, side-effects, pharmacology, and effects in animal models of schizophrenia symptoms. Aripiprazole is a newer atypical antipsychotic that displays a unique pharmacological profile, including partial D2 agonism and functionally selective properties. Aripiprazole is effective at treating the positive symptoms of schizophrenia and has the potential to treat negative and cognitive symptoms at least as well as other atypical antipsychotics. The drug has a favorable side-effect profile and has a low propensity to result in EPS or metabolic syndromes. Animal models of schizophrenia have been used to determine the efficacy of aripiprazole in symptom management. In these instances, aripiprazole resulted in the reversal of deficits in extinction, pre-pulse inhibition, and social withdrawal. Because aripiprazole requires a greater than 90% occupancy rate at D2 receptors to be clinically active and does not produce EPS, this suggests a functionally selective effect on intracellular signaling pathways. A combination of factors such as dopamine system stabilization via partial agonism, functional selectivity at D2 receptors, and serotonin-dopamine system interaction may contribute to the ability of aripiprazole to successfully manage schizophrenia symptoms. This review

  7. Prolonged QRS Widening After Aripiprazole Overdose.

    Science.gov (United States)

    Mazer-Amirshahi, Maryann; Porter, Robert; Dewey, Kayla

    2018-05-05

    Aripiprazole is an atypical antipsychotic with a long half-life. Overdose can result in protracted somnolence and cardiac disturbances, particularly QT interval prolongation. This is a single case report of a 14-year-old boy who took an overdose of aripiprazole and developed QRS widening. A 14-year-old boy intentionally ingested 20 tablets of aripiprazole (5 mg). He was brought to the emergency department when his ingestion was discovered. The patient's vital signs were as follows: temperature, 37.7°C; heart rate, 108 beats/min; blood pressure, 138/98 mm Hg; and respirations, 16 breaths/min. Activated charcoal was administered within 90 minutes of ingestion. Initial electrocardiogram (EKG) showed sinus tachycardia, with a QRS of 138 ms and QT interval of 444 ms. QRS duration was 90 ms on an EKG performed 3 months earlier. A bolus of sodium bicarbonate was administered, and the patient was transferred to the pediatric intensive care unit. Repeat EKG demonstrated a QRS of 156 ms, and a sodium bicarbonate infusion was initiated. The patient continued to have QRS prolongation for the next 8 days, reaching a peak of 172 ms 3 days postingestion. Despite aggressive treatment with sodium bicarbonate, there was persistent QRS prolongation; however, the patient did not have any dysrhythmias and remained hemodynamically stable. The patient was discharged 9 days postingestion when the QRS duration normalized to 82 ms. Genetic testing revealed that the patient was a CYP2D6 poor metabolizer. This case suggests that aripiprazole toxicity may possibly be associated with QRS prolongation without associated dysrhythmias or cardiovascular compromise. In addition, toxicity may be prolonged in patients who are CYP2D6 poor metabolizers.

  8. Aripiprazole versus other atypical antipsychotics for schizophrenia

    Science.gov (United States)

    Komossa, Katja; Rummel-Kluge, Christine; Schmid, Franziska; Hunger, Heike; Schwarz, Sandra; El-Sayeh, Hany George G; Kissling, Werner; Leucht, Stefan

    2014-01-01

    -effects such as cholesterol increase, weight gain, sedation and prolactin associated side-effects. Compared with risperidone there was no difference in efficacy (PANSS total score: n=372, 2 RCTs, MD 1.50 CI −2.96 to 5.96). Dystonia, QTc abnormalities, prolactin and cholesterol increase were less frequent in the aripiprazole group, while tremor was more frequent in the aripiprazole group compared with those allocated risperidone. Authors’ conclusions Aripiprazole may be somewhat less effective than olanzapine, but more tolerable in terms of metabolic effects and sedation. There is no evidence for a difference in efficacy compared to risperidone, but for better tolerability in terms of dystonias, cholesterol prolactin increase and QTc prolongation. Randomised evidence comparing aripiprazole with other second generation antipsychotic drugs is currently not available. PMID:19821375

  9. Antipsychotic treatments for the elderly: efficacy and safety of aripiprazole

    Directory of Open Access Journals (Sweden)

    Izchak Kohen

    2010-03-01

    Full Text Available Izchak Kohen1, Paula E Lester2, Sum Lam31Division of Geriatric Psychiatry, Zucker-Hillside Hospital, Glen Oaks, NY, USA; 2Division of Geriatric Medicine, Winthrop University Hospital, Mineola, NY, USA; 3Division of Pharmacy and Geriatrics, St. John’s University College of Pharmacy and Allied Health Professions, Queens, NY, USAAbstract: Delusions, hallucinations and other psychotic symptoms can accompany a number of conditions in late life. As such, elderly patients are commonly prescribed antipsychotic medications for the treatment of psychosis in both acute and chronic conditions. Those conditions include schizophrenia, bipolar disorder, depression and dementia. Elderly patients are at an increased risk of adverse events from antipsychotic medications because of age-related pharmacodynamic and pharmacokinetic changes as well as polypharmacy. Drug selection should be individualized to the patient’s previous history of antipsychotic use, current medical conditions, potential drug interactions, and potential side effects of the antipsychotic. Specifically, metabolic side effects should be closely monitored in this population. This paper provides a review of aripiprazole, a newer second generation antipsychotic agent, for its use in a variety of psychiatric disorders in the elderly including schizophrenia, bipolar disorder, dementia, Parkinson’s disease and depression. We will review the pharmacokinetics and pharmacodynamics of aripiprazole as well as dosing, diagnostic indications, efficacy studies, and tolerability including its metabolic profile. We will also detail patient focused perspectives including quality of life, patient satisfaction and adherence.Keywords: aripiprazole, antipsychotics, elderly, adverse drug reaction

  10. Therapeutic effect of aripiprazole in chronic schizophrenia is accompanied by anti-inflammatory activity.

    Science.gov (United States)

    Sobiś, Jarosław; Rykaczewska-Czerwińska, Monika; Świętochowska, Elżbieta; Gorczyca, Piotr

    2015-04-01

    Weight gain and metabolic abnormalities occur in chronic schizophrenia patients treated with atypical antipsychotics. The purpose of the study was to evaluate changes in serum levels of C-reactive protein (CRP), insulin and cytokines (IL-6, TNF-α, IL-1β, IFN-γ, sTNF-R1, IL-12, IL-23, IL-1Ra, TGF-β1, IL-4, and IL-10) after switching to aripiprazole. Cytokine, hsCRP and insulin measurements were performed in patients (n=17) on day 0 and day 28 of the study using standard ELISA assays. The psychopathological status was assessed using PANSS. WC and BMI were measured and calculated, respectively. We observed high clinical efficacy in aripiprazole linked to a 2.7% weight loss. There were statistically significant reductions in PANSS scores and body parameters (p<0.001). After 28 days we detected a significant reduction in hsCRP (p<0.001), insulin (p<0.001), IL-1β, IL-6, TNF-α, sTNF-R1, IL-12, IL-23, IL-1Ra, TGF-β1, IL-4 (p<0.001), IFN-γ (p<0.05) and a significant elevation of IL-10 (p<0.001). There was a significant negative correlation between IL-10 levels and PANSS positive, negative and total scores after the study (p=0.022, p=0.003, p=0.008, respectively). Aripiprazole limits inflammatory processes by enhancing anti-inflammatory signaling. Aripiprazole also reduces the risk of metabolic abnormalities. Copyright © 2014 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  11. [Aripiprazole, gambling disorder and compulsive sexuality].

    Science.gov (United States)

    Mété, D; Dafreville, C; Paitel, V; Wind, P

    2016-06-01

    Aripiprazole, an atypical or second-generation antipsychotic, is usually well tolerated. It is an approved treatment for schizophrenia and mania in bipolar disorder type 1. Unlike the other antipsychotics, it has high affinity agonist properties for dopamine D2 and D3 receptors. It has also 5-HT1A partial agonist and 5-HT2A antagonist properties. Aripiprazole is a first or second line treatment frequently used because it has reduced side effects such as weight gain, sleepiness, dyslipidemia, insulin resistance, hyperprolactinemia and extrapyramidal symptoms. We report the case of a 28-year-old male patient diagnosed with schizoid personality disorder. He was a moderate smoker with occasional social gambling habits. After several psychotic episodes, he was first treated with risperidone, but he experienced excessive sedation, decreased libido, erectile dysfunction and was switched to 15 mg aripiprazole. He developed an addiction habit for gambling at casino slot machines. Due to large gambling debts, he requested placement on a voluntary self-exclusion list. Thereafter, he turned his attention towards scratch card gambling. The patient described his experience of gambling as a "hypnotic state". He got several personal loans to obtain money to continue gambling. He was then referred to an addiction unit. Before being treated with aripiprazole, he was an exclusive heterosexual with a poor sexual activity. Under treatment, he switched to a homosexual behavior with hypersexuality, unprotected sex and sadomasochistic practices. The craving for gambling and compulsive sexual behavior ceased two weeks after aripiprazole was discontinued and he was switched to amisulpride. Thereafter, he reported a return to a heterosexual orientation. Compulsive behaviors such as gambling, hypersexuality and new sexual orientation are common in patients with Parkinson's disease treated with dopaminergic agonists. These behaviors involve the reward system, with an enhanced dopaminergic

  12. Aripiprazole treatment of irritability associated with autistic disorder and the relationship between prior antipsychotic exposure, adverse events, and weight change.

    Science.gov (United States)

    Mankoski, Raymond; Stockton, Gwen; Manos, George; Marler, Sabrina; McQuade, Robert; Forbes, Robert A; Marcus, Ronald

    2013-10-01

    The purpose of this study was to evaluate the impact of prior antipsychotic exposure (PAE) on safety and tolerability outcomes in pediatric subjects receiving aripiprazole treatment. This study was a post-hoc analysis of pooled data from two 8-week, double-blind, randomized, placebo-controlled studies evaluating aripiprazole for the treatment of irritability in pediatric subjects with autistic disorder, aged 6-17 years. Subjects were stratified by PAE; adverse events (AEs), and changes in weight, and metabolic measures were evaluated. For subjects receiving aripiprazole, regardless of PAE, baseline weight, age, gender, and symptom severity were evaluated in a regression model predicting body weight change. Of 316 randomized subjects, 259 (82.0%) were antipsychotic naïve (AN) and 57 (18.0%) had a PAE. Aripiprazole-treated AN subjects were more likely than PAE subjects to report somnolence (11.9% vs. 2.8%), sedation (22.7% vs. 11.1%), or fatigue (17.0% vs. 13.9%). Rates of extrapyramidal disorder and drooling, but not akathisia or tremor, were marginally higher in AN subjects. Overall, 10.8% of aripiprazole-treated AN subjects had at least one AE leading to discontinuation compared with 8.3% of aripiprazole-treated PAE subjects. AN subjects receiving aripiprazole had a larger change in weight from baseline to endpoint compared with those receiving placebo (1.9 vs. 0.7 kg; treatment difference 1.2 kg, 95% CI: 0.5, 1.9) than PAE subjects receiving aripiprazole compared with subjects receiving placebo (0.4 vs. -0.4 kg; treatment difference 0.9 kg, 95% CI: -0.6, 2.4). Regression analysis identified that younger subjects with higher baseline weight z-score were at highest risk for weight gain. There were no significant changes in metabolic measures compared with placebo in either group. Weight gain was more pronounced in AN subjects and more likely to occur in younger subjects with a higher baseline weight z-score. AN subjects were more likely to experience AEs related

  13. Low-dose aripiprazole for refractory burning mouth syndrome.

    Science.gov (United States)

    Umezaki, Yojiro; Takenoshita, Miho; Toyofuku, Akira

    2016-01-01

    We report a case of refractory burning mouth syndrome (BMS) ameliorated with low dose of aripiprazole. The patient was a 66-year-old female who had suffered from chronic burning pain in her tongue for 13 months. No abnormality associated with the burning sensation was detected in the laboratory tests and the oral findings. Considering the clinical feature and the history together, we diagnosed the burning sensation as BMS. The BMS pain was decreased by aripiprazole (powder) 1.0 mg/d, though no other antidepressants had satisfying pain relief. It could be supposed that the efficacy of aripiprazole is caused by dopamine stabilization in this case, and BMS might have a subtype that is reactive to aripiprazole. Further studies are needed to confirm the efficacy of aripiprazole for BMS.

  14. Emerging role of aripiprazole for treatment of irritability associated with autistic disorder in children and adolescents.

    Science.gov (United States)

    Stachnik, Joan; Gabay, Michael

    2010-01-01

    Autistic disorder is a largely misunderstood and difficult to treat neurodevelopmental disorder. Three core domains of functioning are affected by autistic disorder, ie, socialization, communication, and behavior. Signs of autistic disorder may be present early, but are frequently overlooked, resulting in a delay in its diagnosis and a subsequent delay in treatment. No one definitive therapy is available, and treatment consists of early educational and behavioral interventions, as well as drug therapy. Atypical antipsychotics have often been used in the treatment of autistic disorder to target irritability, aggression, and self-injurious behavior, all of which can interfere with other aspects of treatment. One atypical antipsychotic, aripiprazole, has recently been approved for treatment of irritability associated with autistic disorder. Based on the results from two randomized, controlled trials, with efficacy data from nearly 300 patients, treatment with aripiprazole was associated with reductions in irritability, global improvements in behavior, and improvements in quality of life from both the patient and caregiver perspectives. Dosage of aripiprazole ranged from 5 mg to 15 mg per day. Aripiprazole was well tolerated during clinical trials, with most adverse events considered mild or moderate. Clinically relevant weight gain occurred in about 30% of patients given aripiprazole, although when compared with other atypical antipsychotics, aripiprazole appears to have fewer metabolic effects and a lower risk of weight gain. However, pediatric patients taking any atypical antipsychotic should be carefully monitored for potential adverse events, because the long-term effects of antipsychotic therapy in this population are not well known. When used appropriately, aripiprazole has the potential to be an effective treatment for children with autistic disorder to improve irritability and aggressive behavior and improve quality of life.

  15. Low-dose aripiprazole for refractory burning mouth syndrome

    Directory of Open Access Journals (Sweden)

    Umezaki Y

    2016-05-01

    Full Text Available Yojiro Umezaki,1 Miho Takenoshita,2 Akira Toyofuku2 1Psychosomatic Dentistry Clinic, Dental Hospital, 2Psychosomatic Dentistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan Abstract: We report a case of refractory burning mouth syndrome (BMS ameliorated with low dose of aripiprazole. The patient was a 66-year-old female who had suffered from chronic burning pain in her tongue for 13 months. No abnormality associated with the burning sensation was detected in the laboratory tests and the oral findings. Considering the clinical feature and the history together, we diagnosed the burning sensation as BMS. The BMS pain was decreased by aripiprazole (powder 1.0 mg/d, though no other antidepressants had satisfying pain relief. It could be supposed that the efficacy of aripiprazole is caused by dopamine stabilization in this case, and BMS might have a subtype that is reactive to aripiprazole. Further studies are needed to confirm the efficacy of aripiprazole for BMS. Keywords: burning mouth syndrome, low-dose aripiprazole, chronic pain

  16. [Acute Dystonia due to Aripiprazole Use in Two Children with Autism Spectrum Disorder in the First Five Years of Life].

    Science.gov (United States)

    Küçükköse, Mustafa; Kabukçu Başay, Bürge

    2017-01-01

    Autism spectrum disorders (ASD) are neuropsychiatric disorders characterized by impairment in social interactions, in verbal and non-verbal communication, and restricted and stereotyped patterns of interest and behavior within the first 3 years of life. Pharmacologic interventions may be needed for the treatment of temper tantrums, aggression, hyperactivity, and stereotypes in children with ASD. The approval of aripiprazole by the United States Food and Drug Administration (USFDA) for the treatment of temper tantrums in children and adolescents with ASD has gained increased interest for the use in these patients. Aripiprazole is a partial agonist for the dopamine D2, serotonin 5-HT1A receptors, and an antagonist for 5HT2A receptors. Because aripiprazole is a partial agonist, it has been is speculated that aripiprazole has a protective effect for extrapyramidal side effects, movement disorders, and metabolic problems. But the increased use in children and adolescents is associated with an increase in the number of case reports related with such problems. Nevertheless, our review of the literature uncovered limited data regarding the association between acute dystonia and aripiprazole use in ASD children under five years of age is. In this paper, we present two cases of autistic spectrum disorder children with ages under 5 years that developed acute dystonia taking aripiprazole.

  17. Aripiprazole-induced adverse metabolic alterations in polyl:C neurodevelopmental model of schizophrenia in rats

    Czech Academy of Sciences Publication Activity Database

    Horská, K.; Rudá-Kučerová, J.; Dražanová, Eva; Karpíšek, M.; Demlová, R.; Kašpárek, T.; Kotolová, H.

    2017-01-01

    Roč. 123, SEP (2017), s. 148-158 ISSN 0028-3908 Institutional support: RVO:68081731 Keywords : adipokine * aripiprazole * leptin * polyl:C * schizophrenia * wistar rats Subject RIV: FH - Neurology OBOR OECD: 1.7 Other natural sciences Impact factor: 5.012, year: 2016

  18. Aripiprazole for autism spectrum disorders (ASD).

    Science.gov (United States)

    Hirsch, Lauren E; Pringsheim, Tamara

    2016-06-26

    Autism spectrum disorders (ASD) include autistic disorder, Asperger's disorder and pervasive developmental disorder - not otherwise specified (PDD-NOS). Antipsychotics have been used as a medication intervention for irritability related to ASD. Aripiprazole, a third-generation, atypical antipsychotic, is a relatively new drug that has a unique mechanism of action different from that of other antipsychotics. This review updates a previous Cochrane review on the safety and efficacy of aripiprazole for individuals with ASD, published in 2011 (Ching 2011). To assess the safety and efficacy of aripiprazole as medication treatment for individuals with ASD. In October 2015, we searched the Cochrane Central Register of Controlled Trials (CENTRAL), Ovid MEDLINE, Embase, the Cumulative Index to Nursing and Allied Health Literature (CINAHL) and seven other databases as well as two trial registers. We searched for records published in 1990 or later, as this was the year aripiprazole became available. Randomised controlled trials (RCTs) of aripiprazole (administered orally and at any dosage) versus placebo for treatment of individuals with a diagnosis of ASD. Two review authors independently collected, evaluated and analysed data. We performed meta-analysis for primary and secondary outcomes, when possible. We used the GRADE (Grades of Recommendation, Assessment, Development and Evaluation) approach to rate the overall quality of the evidence. We included three trials in this review. Two were included in the previous published review, and the results of one, placebo-controlled discontinuation study were added to this review. Although we searched for studies across age groups, we found only studies conducted in children and youth. Included trials had low risk of bias across most domains. High risk of bias was seen in only one trial with incomplete outcome data. We judged the overall quality of the evidence for most outcomes to be moderate.Two RCTs with similar methods evaluated

  19. [Application of HPLC-UV method for aripiprazole determination in serum].

    Science.gov (United States)

    Synowiec, Anna; Gomółka, Ewa; Zyss, Tomasz; Zieba, Andrzej; Florek, Ewa; Piekoszewski, Wojciech

    2012-01-01

    Aripiprazole is a new drug applied in schizophrenia treatment. There are not strict indications for aripiprazole therapeutic drug monitoring. Despite, serum aripiprazole measuring would help control the drug doses effectiveness. The drug monitoring can eliminate overdosing, adverse effects and let control proper drug ingestion. The aim of the paper was to develop a simple method for aripiprazole determination in serum for therapeutic drug monitoring. High performance liquid chromatography with spectrophotometric detection (HPLC-UV) was used. Resolution was performed on LC-8 column; moving phase was solution 0,025M trimethylammonium buffer: acetonitrile (62:38). Isocratic flow was 1,2 ml/min; internal standard (IS) was promazine; monitored wavelength was lambda=214 nm. The validation parameters were: limits of linearity (LOL) 100-800 ng/ml, limit of detection (LOD) 10 ng/ml, limit of quantity (LOQ) 100 ng/ml. Coefficient of variation (CV) describing accuracy and precision didn't cross 10%. The method was useful for therapeutic drug monitoring in serum of patients treated with aripiprazole.

  20. Aripiprazole-induced sleep-related eating disorder: a case report.

    Science.gov (United States)

    Kobayashi, Nobuyuki; Takano, Masahiro

    2018-04-05

    Sleep-related eating disorder is characterized by parasomnia with recurrent episodes of nocturnal eating or drinking during the main sleep period. Several drugs, including atypical antipsychotics, induce sleep-related eating disorder. However, aripiprazole has not previously been associated with sleep-related eating disorder. A 41-year-old Japanese man visited our clinic complaining of depression. The patient was treated with sertraline, which was titrated up to 100 mg for 4 weeks. A sleep inducer and an anxiolytic were coadministered. His depressive mood slightly improved, but it continued for an additional 4 months. Subsequently, aripiprazole (3 mg) was added as an adjunctive therapy. After 3 weeks, the patient's mother found that the patient woke up and ate food at night. The next morning, the patient was amnesic for this event, felt full, and wondered why the bags of food were empty. This episode lasted for 2 days. The patient gained 5 kg during these 3 weeks. After the aripiprazole dose was reduced to 1.5 mg, the patient's nocturnal eating episodes rapidly and completely disappeared. To the best of our knowledge, this is first report of sleep-related eating disorder induced by aripiprazole, and it indicates that this disorder should be considered a possible side effect of aripiprazole. Although aripiprazole is used mainly in patients with schizophrenia, its recently documented use as an adjunctive therapy in patients with depression might induce hitherto unknown side effects.

  1. Development of Parkinsonism following exposure to aripiprazole: two case reports

    Directory of Open Access Journals (Sweden)

    Lua Lannah L

    2009-03-01

    Full Text Available Abstract Introduction Aripiprazole is a novel atypical neuroleptic used in the treatment of psychosis. A few recent studies have demonstrated an association between the use of aripiprazole and an exacerbation of Parkinsonism, although this relationship is poorly defined. To our knowledge, this is the first case series describing an onset of Parkinsonism in patients without prior history of Parkinson's disease following aripiprazole treatment. Case presentation We describe two patients, ages 69 and 58, who developed cardinal features of Parkinson's disease shortly after receiving aripiprazole. Both patients were male veterans with a history of bipolar disorder treated with aripiprazole. They initially presented with asymmetric arm tremor, and subsequently developed rigidity, bradykinesia, and postural instability. On examination, they were found to be at a Hoehn and Yahr stage of 2.5 for their Parkinsonism. Conclusions While aripiprazole has been associated with infrequent extrapyramidal side effects, these cases raise concerns that its chronic exposure may lead to D2 receptor hypersensitivity and/or dysfunction and subsequent development of a syndrome mimicking idiopathic Parkinson's disease. With the available atypical neuroleptics becoming widely used in treating psychotic symptoms associated with a broad range of disorders, we advise closer monitoring due to their potential for inducing Parkinsonism.

  2. Aripiprazole for treating irritability in children & adolescents with autism: A systematic review.

    Science.gov (United States)

    Ghanizadeh, Ahmad; Tordjman, Sylvie; Jaafari, Nematollah

    2015-09-01

    No clear therapeutic benefits of antipsychotics have been reported for the treatment of behavioural symptoms in autism. This systematic review provides an assessment of evidence for treating irritability in autism by aripiprazole. The databases of MEDLINE/PubMed and Google Scholar were searched for relevant articles about the effect of aripiprazole in children with autism. The articles were searched according to the inclusion and exclusion criteria specifed for this review. All the double-blind, controlled, randomized, clinical trials examining the efficacy of aripiprazole for treating children and adolescents with autism were included. From the 93 titles identified, 26 were irrelevant and 58 were evaluated for more details. Only five articles met the inclusive criteria. The evidence from precise randomized double blind clinical trials of aripiprazole for the treatment of autism in children and adolescents was convincing enough to recommend aripiprazole. Adverse effects were not very common and were usually mild. Current evidence suggests that aripiprazole is as effective and safe as risperidone for treating irritability in autism. However, further studies with larger sample size and longer duration are required.

  3. Aripiprazole in the treatment of irritability in children and adolescents with autistic disorder.

    Science.gov (United States)

    Owen, Randall; Sikich, Linmarie; Marcus, Ronald N; Corey-Lisle, Patricia; Manos, George; McQuade, Robert D; Carson, William H; Findling, Robert L

    2009-12-01

    The objective of this study was to evaluate short-term efficacy and safety of aripiprazole in the treatment of irritability in children and adolescents with autistic disorder who were manifesting behaviors such as tantrums, aggression, self-injurious behavior, or a combination of these. This 8-week, double-blind, randomized, placebo-controlled, parallel-group study was conducted of children and adolescents (aged 6-17 years) with autistic disorder. Patients were randomly assigned (1:1) to flexibly dosed aripiprazole (target dosage: 5, 10, or 15 mg/day) or placebo. Efficacy outcome measures included the Aberrant Behavior Checklist irritability subscale and the Clinical Global Impression-Improvement score (CGI-I). Safety and tolerability were also assessed. Ninety-eight patients were randomly assigned to receive placebo (n = 51) or aripiprazole (n = 47). Mean improvement in Aberrant Behavior Checklist irritability subscale score was significantly greater with aripiprazole than with placebo from week 1 through week 8. Aripiprazole demonstrated significantly greater global improvements than placebo, as assessed by the mean CGI-I score from week 1 through week 8; however, clinically significant residual symptoms may still persist for some patients. Discontinuation rates as a result of adverse events (AEs) were 10.6% for aripiprazole and 5.9% for placebo. Extrapyramidal symptom-related AE rates were 14.9% for aripiprazole and 8.0% for placebo. No serious AEs were reported. Mean weight gain was 2.0 kg on aripiprazole and 0.8 kg on placebo at week 8. Aripiprazole was efficacious in children and adolescents with irritability associated with autistic disorder and was generally safe and well tolerated.

  4. Aripiprazole-associated tic in a schizophrenia patient

    Directory of Open Access Journals (Sweden)

    Guo X

    2015-03-01

    Full Text Available Xieli Guo,1,2,* Dali Lu,3,* Yugang Jiang1 1Department of Neurosurgery, Second Xiangya Hospital of Central South University, Changsha, Hunan, People’s Republic of China; 2Department of Neurosurgery, Jinjiang Hospital of Quanzhou Medical College, Jinjiang, Fujian, People’s Republic of China; 3Department of Psychiatry, Xiamen Xianyue Hospital, Xiamen, Fujian, People’s Republic of China *These authors contributed equally to this work Abstract: Tic disorder, characterized by the presence of both motor and vocal tics is common in adolescents and adults. Antipsychotics including typical antipsychotics and atypical antipsychotics are generally recognized by experts as the most effective pharmacological treatment for tics. However, previous studies suggest that tic-like symptoms might manifest during treatment with atypical antipsychotics such as clo­zapine, quetiapine, but not aripiprazole. We present the first case, to our knowledge, of an adult schizophrenia patient who developed tics during treatment with aripiprazole. Keywords: aripiprazole, antipsychotics, tic, schizophrenia, side effect

  5. Myxedema coma associated with combination aripiprazole and sertraline therapy.

    Science.gov (United States)

    Church, Chelsea O; Callen, Erin C

    2009-12-01

    To describe a case of myxedema coma (MC) associated with combination aripiprazole and sertraline therapy. A 41-year-old male presented to the emergency department with confusion, right-sided numbness and tingling, slurred speech, dizziness, and facial edema. His blood pressure was 160/113 mm Hg, with a pulse of 56 beats/min and temperature of 35.4 degrees C. Initial abnormal laboratory values included creatine kinase (CK) 439 U/L; serum creatinine 1.6 mg/dL; aspartate aminotransferase 85 U/L; and alanine aminotransferase 35 U/L. Repeat cardiac markers revealed an elevated CK level of 3573 U/L with a CK-MB of 24 ng/mL. Thyroid function tests showed thyroid-stimulating hormone 126.4 microIU/mL and free thyroxine 0.29 ng/dL. Home medications of unknown duration were sertraline 200 mg and aripiprazole 20 mg daily. He was admitted to the intensive care unit and initially treated with intravenous levothyroxine and dexamethasone. By hospital day 4, the patient was clinically stable and discharged to home. Myxedema coma, the most significant form of hypothyroidism (HT), is a rare but potentially fatal condition. The known precipitating causes of MC were ruled out in this patient, which left his home medications as the likely cause. Cases of HT caused by certain atypical antipsychotics and antidepressants are found in the literature, but none was reported with aripiprazole therapy. There are also no reported cases of sertraline or aripiprazole inducing MC. Use of the Naranjo probability scale indicates that the combination of aripiprazole and sertraline was a probable inducer of MC in this patient. Due to the widespread use of psychotropic medications, clinicians should be reminded of the rare, yet life-threatening, occurrence of MC when treating patients, especially with combination therapies such as sertraline and aripiprazole.

  6. Aripiprazole for treating irritability in children & adolescents with autism: A systematic review

    Directory of Open Access Journals (Sweden)

    Ahmad Ghanizadeh

    2015-01-01

    Full Text Available Background & objectives: No clear therapeutic benefits of antipsychotics have been reported for the treatment of behavioural symptoms in autism. This systematic review provides an assessment of evidence for treating irritability in autism by aripiprazole. Methods: The databases of MEDLINE/PubMed and Google Scholar were searched for relevant articles about the effect of aripiprazole in children with autism. The articles were searched according to the inclusion and exclusion criteria specifed for this review. All the double-blind, controlled, randomized, clinical trials examining the efficacy of aripiprazole for treating children and adolescents with autism were included. Results: From the 93 titles identified, 26 were irrelevant and 58 were evaluated for more details. Only five articles met the inclusive criteria. The evidence from precise randomized double blind clinical trials of aripiprazole for the treatment of autism in children and adolescents was convincing enough to recommend aripiprazole. Adverse effects were not very common and were usually mild. Interpretation & conclusions: Current evidence suggests that aripiprazole is as effective and safe as risperidone for treating irritability in autism. However, further studies with larger sample size and longer duration are required.

  7. Adjunctive treatment with aripiprazole for risperidone-induced hyperprolactinemia

    Directory of Open Access Journals (Sweden)

    Ranjbar F

    2015-03-01

    Full Text Available Fatemeh Ranjbar,1 Homayoun Sadeghi-Bazargani,2,3 Parisa Niari Khams,1 Asghar Arfaie,1 Azim Salari,4 Mostafa Farahbakhsh1 1Clinical Psychiatry Research Center, Tabriz University of Medical Sciences, Tabriz, East Azerbaijan, Iran; 2Road Traffic Injury Research Center, Department of Statistics & Epidemiology, Tabriz University of Medical Sciences, Tabriz, Iran; 3World Health Organization Collaborating Center on Community Safety Promotion, Karolinska Institute, Stockholm, Sweden; 4Emam Khomeini Hospital, Naghadeh, West Azerbaijan, Iran Background: Antipsychotics have been used for more than 50 years in the treatment of schizophrenia and many other psychiatric disorders. Prolactin levels usually increase in patients treated with risperidone. Aripiprazole, which has a unique effect as an antipsychotic, is a D2 receptor partial agonist. It is an atypical antipsychotic with limited extrapyramidal symptoms. Since it acts as an antagonist in hyperdopaminergic conditions and as an agonist in hypodopaminergic conditions, it does not have adverse effects on serum prolactin levels. The present study aimed to investigate the effect of aripiprazole on risperidone-induced hyperprolactinemia. Methods: This before-and-after clinical trial was performed in 30 patients. Baseline prolactin levels were measured in all patients who were candidates for treatment with risperidone. In subjects with elevated serum prolactin, aripiprazole was added to their treatment. Serum prolactin levels were measured during the first week, second week, and monthly thereafter for at least 3 months or until prolactin levels became normal. The data were analyzed using Stata version 11 software. Survival analysis and McNemar’s test were also performed. Results: The mean age of the participants was 30.8 years. Prolactin levels normalized in 23 (77% participants during the study, and menstrual disturbances normalized in 25 (83.3%. Prolactin levels normalized in most patients between days 50

  8. Neurological, Metabolic, and Psychiatric Adverse Events in Children and Adolescents Treated With Aripiprazole

    DEFF Research Database (Denmark)

    Jakobsen, Klaus Damgaard; Bruhn, Christina Hedegaard; Pagsberg, Anne-Katrine

    2016-01-01

    Aripiprazole is a partial dopamine agonist with only minor neurological and psychiatric adverse effects, making it a potential first-line drug for the treatment of psychiatric disorders. However, the evidence of its use in children and adolescents is rather sparse. The aim of this case study...... with schizophrenia and psychoses, not otherwise specified; and the non-PS group consisted of fourteen cases including autism spectrum disorders, attention deficit and hyperactivity disorder, obsessive-compulsive disorder, and Tourette syndrome. The main reported adverse effects in the non-PS group were chronic...

  9. Aripiprazole for late-life schizophrenia

    Directory of Open Access Journals (Sweden)

    Jeffrey Rado

    2010-08-01

    Full Text Available Jeffrey Rado, Philip G JanicakPsychiatric Clinical Research Center, Rush University Medical Center, Chicago, IL, USAAbstract: Antipsychotics are frequently used in elderly patients to treat a variety of conditions, including schizophrenia. While extensively studied for their impact in younger ­populations, there is comparatively limited evidence about the effectiveness of these agents in older patients. Further complicating this situation are the high co-morbidity rates (both psychiatric and ­medical in the elderly; age-related changes in pharmacokinetics leading to a heightened proclivity for adverse effects; and the potential for multiple, clinically relevant drug interactions. With this background in mind, we review diagnostic and treatment-related issues specific to elderly patients suffering from schizophrenia and other psychotic conditions, focusing on the potential role of aripiprazole.Keywords: aripiprazole, schizophrenia, elderly, dopamine partial antagonist

  10. Safety and tolerability of aripiprazole for irritability in pediatric patients with autistic disorder: a 52-week, open-label, multicenter study.

    Science.gov (United States)

    Marcus, Ronald N; Owen, Randall; Manos, George; Mankoski, Raymond; Kamen, Lisa; McQuade, Robert D; Carson, William H; Findling, Robert L

    2011-09-01

    Evaluate the long-term safety and tolerability of aripiprazole in the treatment of irritability in pediatric subjects (6-17 years) with autistic disorder. A 52-week, open-label, flexibly dosed (2-15 mg/d) study of the safety and tolerability of aripiprazole in outpatients with a DSM-IV-TR diagnosis of autistic disorder who either had completed 1 of 2 antecedent, 8-week randomized trials or were enrolled de novo (ie, not treated in the randomized trials). Safety and tolerability measures included incidences of adverse events, extrapyramidal symptoms, weight, metabolic measures, vital signs, and other clinical assessments. Subjects were enrolled between September 2006 and June 2009. Three hundred thirty subjects entered the treatment phase: 86 de novo, 174 prior aripiprazole, and 70 prior placebo. A total of 199 (60.3%) subjects completed 52 weeks of treatment. Adverse events were experienced by 286/330 subjects (86.7%). Common adverse events included weight increase, vomiting, nasopharyngitis, increased appetite, pyrexia, upper respiratory tract infection, and insomnia. Discontinuations due to adverse events occurred in 35/330 randomized subjects (10.6%)-most commonly aggression and weight increase. One patient discontinued from the study due to a laboratory-related adverse event (moderately increased alanine transaminase and aspartate transaminase). Nine subjects experienced serious adverse events-most frequently aggression. Extrapyramidal symptoms-related adverse events occurred in 48/330 subjects (14.5%)-most commonly tremor (3.0%), psychomotor hyperactivity (2.7%), akathisia (2.4%), and dyskinesia (not tardive, 2.4%). At > 9 months' aripiprazole exposure (n = 220), mean change in body weight z score was 0.33 and body mass index z score was 0.31. The percentages of subjects with clinically significant fasting metabolic abnormalities at > 9 months were 2% for glucose, 5% for total cholesterol, 7% for low-density lipoprotein cholesterol, 30% for high

  11. Intramuscular aripiprazole in the acute management of psychomotor agitation.

    Science.gov (United States)

    De Filippis, Sergio; Cuomo, Ilaria; Lionetto, Luana; Janiri, Delfina; Simmaco, Maurizio; Caloro, Matteo; De Persis, Simone; Piazzi, Gioia; Simonetti, Alessio; Telesforo, C Ludovica; Sciarretta, Antonio; Caccia, Federica; Gentile, Giovanna; Kotzalidis, Georgios D; Girardi, Paolo

    2013-06-01

    To assess acute efficacy and safety of 9.75 mg of intramuscular (IM) injections of the atypical antipsychiatric aripiprazole in patients with schizophrenia or bipolar disorder and acute agitation. Open-label trial of IM injections of aripiprazole and 24-hour monitoring of clinical response in patients with major psychoses and acute agitation. Partial analysis of blood levels of the administered drug to correlate with clinical response. Acute psychiatric care wards in a single university hospital. A total of 201 acutely agitated patients (79 with schizophrenia and 122 with bipolar disorder I). Aripiprazole 9.75 mg IM injection. We evaluated clinical response using the Excitatory Component of the Positive and Negative Syndrome Scale (PANSS-EC), the Agitation/Calmness Evaluation Scale (ACES), and the Clinical Global Impressions scale (CGI). Assessments were conducted 30, 60, 90, and 120 minutes and 24 hours after the first injection for PANSS-EC and ACES, and 2, 4, 6, and 24 hours for CGI. Response was at least a 40% decrease in PANSS-EC scores. We measured serum aripiprazole and dehydroaripiprazole levels in a subsample. IM aripiprazole significantly improved clinical measures. PANSS-EC improved progressively, starting after 30 minutes. ACES improved after 90 minutes and continued thereafter. Effects were sustained, with steadily decreasing CGI scores, until the 24th hour. Response rate was 83.6% after 2 hours, but with repeat injections, it rose to over 90% with no differences among diagnostic groups. Although there were gender differences in the response to individual PANSS-EC items, the responses were similar overall. Neither clinical monitoring nor patient reporting revealed any side effects. No therapeutic window was identified, and levels did not correlate with any clinical measure. Aripiprazole was effective and safe in reducing acute agitation in patients with bipolar disorder or schizophrenia. Our results compare favorably to double-blind trials, probably

  12. Aripiprazole in pediatric psychosis and bipolar disorder: a clinical review.

    Science.gov (United States)

    Doey, Tamison

    2012-01-01

    Aripiprazole is an atypical antipsychotic with unique pharmacological properties, used for a variety of indications, including psychotic and mood disorders in youth. Existing literature was reviewed to summarize experience with this agent in that population. A review of relevant literature using the key words aripiprazole, children, pediatric, all child, schizophrenia, bipolar disorder, and atypical antipsychotics was conducted. A total of 140 articles and book chapters were identified, of which 7 reported double-blind controlled trials with aripiprazole, 5 were meta-analyses of pooled data, 11 were open label trials, 10 were chart reviews, and 17 were case reports or case series. Although every effort was made to locate all available data, some information from posters or researchers was not available. Publication bias tends to report positive outcomes with a treatment, while negative studies are less likely to be reported. Most trials are of short duration. Treatment with aripiprazole is associated with significant reduction of the Positive and Negative Symptom Scale (PANSS) scores in youth with schizophrenia, and reductions in items in the negative symptom scores at higher doses (30 mg/day). Significant reductions in the Young Mania Rating Scale (YMRS) have been demonstrated in youth with bipolar disorder. In mixed populations, reductions in the Clinical Global Impressions Scale (CGI-S) have also been demonstrated when compared with treatment with placebo. Head-to-head comparisons are fewer in number, and overall aripiprazole compares favorably with other atypical antipsychotics (ATAs) in the populations studied. Treatment with aripiprazole is reported to have a lower incidence of weight gain, and less elevation of prolactin. At higher doses, it appears more likely to result in extrapyramidal symptoms (EPS) and tremor. Copyright © 2012. Published by Elsevier B.V.

  13. Aripiprazole for acute mania in an elderly person

    Directory of Open Access Journals (Sweden)

    Balaji Bharadwaj

    2011-01-01

    Full Text Available New-onset bipolar disorder is rare in the elderly. Symptom profile is similar to that in young adults but the elderly are more likely to have neurological co-morbidities. There are no case reports of elderly mania being treated with aripiprazole, an atypical antipsychotic. A 78-year-old gentleman presented to us with symptoms suggestive of mania of 1 month′s duration. He had similar history 3 years ago and a family history of postpartum psychosis in his mother. There were no neurological signs on examination and work-up for an organic etiology was negative except for age-related cerebral atrophy. He improved with aripiprazole and tolerated the medications well. The use of psychotropic medications in the elderly is associated with side-effects of sedation, increased cardiovascular risk, and greater risk of extra-pyramidal side-effects. The use of partial dopaminergic antagonists like aripiprazole may be useful in the balancing of effects and side-effects.

  14. Effect of aripiprazole on mismatch negativity (MMN in schizophrenia.

    Directory of Open Access Journals (Sweden)

    Zhenhe Zhou

    Full Text Available BACKGROUND: Cognitive deficits are considered core symptoms of the schizophrenia. Cognitive function has been found to be a better predictor of functional outcome than symptom levels. Changed mismatch negativity (MMN reflects abnormalities of early auditory processing in schizophrenia. Up to now, no studies for the effects of aripiprazole on MMN in schizophrenia have been reported. METHODOLOGY/PRINCIPAL FINDINGS: Subjects included 26 patients with schizophrenia, and 26 controls. Psychopathology was rated in patients with the Positive and Negative Syndrome Scale (PANSS at baseline, after 4- and 8-week treatments with aripiprazole. Auditory stimuli for ERP consisted of 100 millisecond/1000 Hz standards, intermixed with 100 millisecond/1500 Hz frequency deviants and 250 millisecond/1000 Hz duration deviants. EEG was recorded at Fz. BESA 5.1.8 was used to perform data analysis. MMN waveforms were obtained by subtracting waveforms elicited by standards from waveforms elicited by frequency- or duration-deviant stimuli. Aripiprazole decreased all PANSS. Patients showed smaller mean amplitudes of frequency and duration MMN at baseline than did controls. A repeated measure ANOVA with sessions (i.e., baseline, 4- and 8-week treatments and MMN type (frequency vs. duration as within-subject factors revealed no significant MMN type or MMN type × session main effect for MMN amplitudes. Session main effect was significant. LSD tests demonstrated significant differences between MMN amplitudes at 8 weeks and those at both baseline and 4 weeks. There was significant negative correlation between changes in amplitudes of frequency and duration MMN and changes in PANSS total scores at baseline and follow-up periods. CONCLUSIONS: Aripiprazole improved the amplitudes of MMN. MMN offers objective evidence that treatment with the aripiprazole may ameliorate preattentive deficits in schizophrenia.

  15. Aripiprazole treatment of children and adolescents with Tourette disorder or chronic tic disorder.

    Science.gov (United States)

    Seo, Wan Seok; Sung, Hyung-Mo; Sea, Hyun Seok; Bai, Dai Seg

    2008-04-01

    This study was conducted to evaluate the effectiveness of aripiprazole to reduce the severity and frequency of tic symptoms and to evaluate the additional effects of aripiprazole on weight changes in children and adolescents with Tourette disorder (TD) or chronic tic disorders. A 12-week, open-label trial with flexible dosing strategy of aripiprazole was performed with 15 participants, aged 7-19 years. The Yale Global Tic Severity Scale was applied and the baseline, week 3, 5, 9, and end point scores were compared. The mean body mass index (BMI) at baseline and end point were also compared. Significant decreases in the scores of motor and phonic tics, global impairment, and global severity were demonstrated between baseline and week 3, and the scores continued to improve thereafter. No difference was observed between the baseline and end point BMI. This study demonstrates that a relatively low dose of aripiprazole can be used to control tic symptoms effectively in children and adolescents with TD and chronic tic disorders without causing significant weight gain. Additional double-blind studies are needed to establish the definitive efficacy of aripiprazole in treating children and adolescents with chronic tic symptoms.

  16. Aripiprazole versus risperidone for treating children and adolescents with tic disorder: a randomized double blind clinical trial.

    Science.gov (United States)

    Ghanizadeh, Ahmad; Haghighi, Alireza

    2014-10-01

    There are some uncontrolled studies about the efficacy and safety of both aripiprazole and risperidone for treating tic disorder. Moreover, the efficacy of these medications has never been compared. This is the first double blind randomized clinical trial comparing the safety and efficacy of aripiprazole and risperidone for treating patients with tic disorder. Sixty children and adolescents with tic disorder were randomly allocated into one of the two groups to receive either aripiprazole or risperidone for 2 months. The primary outcome measure was the score of Yale Global Tic Severity Scale. In addition, health related quality of life and adverse events were assessed. Both aripiprazole and risperidone decreased the Yale Global Tic Severity Scale score during this trial. Moreover, both medications increased the health related quality of life score. Both aripiprazole and risperidone were tolerated well. Aripiprazole [3.22 (1.9) mg/day] decreased tic score as much as risperidone [0.6 (0.2) mg/day]. Their adverse effects and their effects on health related quality of life were comparable. However, risperidone increased the patients' social functioning more than aripiprazole in short term.

  17. A 12-month follow-up study of treating overweight schizophrenic patients with aripiprazole

    NARCIS (Netherlands)

    Schorr, S. G.; Slooff, C. J.; Postema, R.; Van Oven, W.; Schilthuis, M.; Bruggeman, R.; Taxis, K.

    Objective: To investigate the feasibility of switching overweight schizophrenic patients to aripiprazole and to assess the impact of 12 months of aripiprazole treatment on weight in routine practice. Method: This was a non-controlled cohort study in overweight schizophrenic patients. Data were

  18. Aripiprazole for relapse prevention and craving in alcohol use disorder: current evidence and future perspectives.

    Science.gov (United States)

    Martinotti, Giovanni; Orsolini, Laura; Fornaro, Michele; Vecchiotti, Roberta; De Berardis, Domenico; Iasevoli, Felice; Torrens, Marta; Di Giannantonio, Massimo

    2016-06-01

    Among other approaches, the modulation of the dopaminergic pathway has been advocated in the therapeutic management of Alcohol Use Disorders (AUD). A potential avenue toward the modulation of the dopaminergic pathway across varying substance disorders seems to be provided by aripiprazole, a second-generation antipsychotic characterized by a peculiar pharmacodynamics signature. In this review, the authors provided a qualitative synthesis and a critical perspective on the efficacy of aripiprazole in relapse prevention and craving in AUD. A systematic search was carried out through MEDLINE/Embase/PsycINFO/Cochrane Library from inception until September 2015, combining free terms and MESH headings for the topics of AUD and aripiprazole as following: (((Alcohol use Disorder) OR (Alcohol use)) AND aripiprazole). Based both on a qualitative synthesis and a critical interpretation of the evidence, the authors submit that aripiprazole would promote alcohol abstinence and reduce the alcohol seeking behaviour possibly via dopaminergic and serotoninergic modulations at the fronto-subcortical circuits underpinning alcohol reward and craving, impulsive behaviour as well as reduce alcohol-related anxiety/low mood and anhedonia. However, due to the lack of published studies, a conclusive statement about any direct effect of aripiprazole in the prevention of craving and/or alcohol consumption is not possible.

  19. A retrospective study of predictive factors for effective aripiprazole augmentation of antidepressant therapy in treatment-resistant depression

    Directory of Open Access Journals (Sweden)

    Sugawara H

    2016-05-01

    Full Text Available Hiroko Sugawara,1,2 Kaoru Sakamoto,1 Tsuyoto Harada,3 Satoru Shimizu,4 Jun Ishigooka1 1Department of Psychiatry, Tokyo Women’s Medical University, 2Support Center for Women Health Care Professionals and Researchers, Tokyo Women’s Medical University, Shinjuku-ku, 3Department of Psychiatry, Tokyo Women’s Medical University Medical Center East, Arakawa-ku, 4Department of Research, Medical Research Institute, Tokyo Women’s Medical University, Shinjuku-ku, Tokyo, Japan Background: Several studies have evaluated the efficacy and tolerability of aripiprazole for augmentation of antidepressant therapy for treatment-resistant depression (TRD. Here, we investigated the efficacy of aripiprazole augmentation for TRD including both major depressive disorder and bipolar disorder and the clinical predictors of treatment efficacy in a Japanese population.  Methods: Eighty-five depressed Japanese patients who underwent aripiprazole augmentation therapy after failing to respond satisfactorily to antidepressant monotherapy were included in the study. Treatment responses were evaluated based on Clinical Global Impression Improvement scores assessed 8 weeks after initiation of aripiprazole administration. We compared demographic and diagnostic variables, psychiatric medication variables, and clinical variables between remission and nonremission groups.  Results: The aripiprazole augmentation remission rate was 36.5%. Multiple logistic regression analysis indicated that aripiprazole augmentation was significantly more effective for bipolar depression than for major depressive disorder, and both absence of comorbid anxiety disorders and current episode duration >3 months were significantly associated with the efficacy of aripiprazole augmentation.  Conclusion: Polarity of depression, comorbidity of anxiety disorders, and current episode duration may predict the efficacy of aripiprazole augmentation for TRD including both major depressive disorder and

  20. Aripiprazole for the Treatment of Tourette's Disorder

    OpenAIRE

    Padala, Prasad R.; Qadri, S. Faiz; Madaan, Vishal

    2005-01-01

    Objective: Tourette's disorder is a neuropsychiatric syndrome that manifests with motor and vocal tics, including coprolalia. This article presents a report of successful treatment of these tics with aripiprazole in 2 consecutive patients with Tourette's disorder.

  1. Association of ADRA2A and MTHFR gene polymorphisms with weight loss following antipsychotic switching to aripiprazole or ziprasidone.

    Science.gov (United States)

    Roffeei, Siti Norsyuhada; Reynolds, Gavin P; Zainal, Nor Zuraida; Said, Mas Ayu; Hatim, Ahmad; Aida, Syarinaz Ahmad; Mohamed, Zahurin

    2014-01-01

    Various genetic polymorphisms have been reported to be associated with antipsychotic-induced weight gain. In this study, we aimed to determine whether risk polymorphisms in 12 candidate genes are associated with reduction in body mass index (BMI) of patients following switching of antipsychotics to aripiprazole or ziprasidone. We recruited 115 schizophrenia patients with metabolic abnormalities and who have been on at least 1 year treatment with other antipsychotics; they were then switched to either aripiprazole or ziprasidone. They were genotyped, and their BMI monitored for 6 months. Significant associations with reduction in BMI at 6 months following switching were found in two of these genes: with rs1800544 of the ADRA2A gene (CC + CG [-0.32 ± 1.41 kg/m²] vs GG [-1.04 ± 1.63 kg/m²], p = 0.013) and with rs1801131 of the MTHFR gene (AA [-0.36 ± 1.53] vs AC + CC [-1.07 ± 1.53], p = 0.015). The study data indicated that carriage of the ADRA2A rs1800544 GG genotype and the MTHFR rs1801131 C allele are associated with BMI reduction in this population following switching of antipsychotics to aripiprazole and ziprasidone. Copyright © 2013 John Wiley & Sons, Ltd.

  2. Aripiprazole and Haloperidol Activate GSK3β-Dependent Signalling Pathway Differentially in Various Brain Regions of Rats.

    Science.gov (United States)

    Pan, Bo; Huang, Xu-Feng; Deng, Chao

    2016-03-28

    Aripiprazole, a dopamine D₂ receptor (D₂R) partial agonist, possesses a unique clinical profile. Glycogen synthase kinase 3β (GSK3β)-dependent signalling pathways have been implicated in the pathophysiology of schizophrenia and antipsychotic drug actions. The present study examined whether aripiprazole differentially affects the GSK3β-dependent signalling pathways in the prefrontal cortex (PFC), nucleus accumbens (NAc), and caudate putamen (CPu), in comparison with haloperidol (a D₂R antagonist) and bifeprunox (a D₂R partial agonist). Rats were orally administrated aripiprazole (0.75 mg/kg), bifeprunox (0.8 mg/kg), haloperidol (0.1 mg/kg) or vehicle three times per day for one week. The levels of protein kinase B (Akt), p-Akt, GSK3β, p-GSK3β, dishevelled (Dvl)-3, and β-catenin were measured by Western Blots. Aripiprazole increased GSK3β phosphorylation in the PFC and NAc, respectively, while haloperidol elevated it in the NAc only. However, Akt activity was not changed by any of these drugs. Additionally, both aripiprazole and haloperidol, but not bifeprunox, increased the expression of Dvl-3 and β-catenin in the NAc. The present study suggests that activation of GSK3β phosphorylation in the PFC and NAc may be involved in the clinical profile of aripiprazole; additionally, aripiprazole can increase GSK3β phosphorylation via the Dvl-GSK3β-β-catenin signalling pathway in the NAc, probably due to its relatively low intrinsic activity at D₂Rs.

  3. Effects of adjunctive treatment with aripiprazole on body weight and clinical efficacy in schizophrenia patients treated with clozapine: a randomized, double-blind, placebo-controlled trial.

    Science.gov (United States)

    Fleischhacker, W Wolfgang; Heikkinen, Martti E; Olié, Jean-Pierre; Landsberg, Wally; Dewaele, Patricia; McQuade, Robert D; Loze, Jean-Yves; Hennicken, Delphine; Kerselaers, Wendy

    2010-09-01

    Clozapine is associated with significant weight gain and metabolic disturbances. This multicentre, randomized study comprised a double-blind, placebo-controlled treatment phase of 16 wk, and an open-label extension phase of 12 wk. Outpatients who met DSM-IV-TR criteria for schizophrenia, who were not optimally controlled while on stable dosage of clozapine for > or =3 months and had experienced weight gain of > or =2.5 kg while taking clozapine, were randomized (n=207) to aripiprazole at 5-15 mg/d or placebo, in addition to a stable dose of clozapine. The primary endpoint was mean change from baseline in body weight at week 16 (last observation carried forward). Secondary endpoints included clinical efficacy, body mass index (BMI) and waist circumference. A statistically significant difference in weight loss was reported for aripiprazole vs. placebo (-2.53 kg vs. -0.38 kg, respectively, difference=-2.15 kg, pweight, BMI and fasting cholesterol benefits to patients suboptimally treated with clozapine. Improvements may reduce metabolic risk factors associated with clozapine treatment.

  4. No difference in frontal cortical activity during an executive functioning task after acute doses of aripiprazole and haloperidol

    Directory of Open Access Journals (Sweden)

    Ingeborg eBolstad

    2015-05-01

    Full Text Available Background: Aripiprazole is an atypical antipsychotic drug that is characterized by partial dopamine D2 receptor agonism. Its pharmacodynamic profile is proposed to be beneficial in the treatment of cognitive impairment, which is prevalent in psychotic disorders. This study compared brain activation characteristics produced by aripiprazole with that of haloperidol, a typical D2 receptor antagonist, during a task targeting executive functioning.Methods: Healthy participants received an acute oral dose of haloperidol, aripiprazole or placebo before performing an executive functioning task while blood-oxygen-level-dependent (BOLD functional magnetic resonance imaging (fMRI was carried out. Results: There was a tendency towards reduced performance in the aripiprazole group compared to the two other groups. The image analysis yielded a strong task-related BOLD-fMRI response within each group. An uncorrected between-group analysis showed that aripiprazole challenge resulted in stronger activation in the frontal and temporal gyri and the putamen compared with haloperidol challenge, but after correcting for multiple testing there was no significant group difference. Conclusion: No significant group differences between aripiprazole and haloperidol in frontal cortical activation were obtained when corrected for multiple comparisons.This study is registered in ClinicalTrials.gov (identifier: 2009-016222-14; https://clinicaltrials.gov/.

  5. Profile of aripiprazole in the treatment of bipolar disorder in children and adolescents

    Directory of Open Access Journals (Sweden)

    Kirino E

    2014-11-01

    Full Text Available Eiji Kirino1–3 1Department of Psychiatry, Juntendo University School of Medicine, 2Department of Psychiatry, Juntendo University Shizuoka Hospital, 3Juntendo Institute of Mental Health, Shizuoka, Japan Abstract: Bipolar disorder is a pernicious illness. Compared with the later-onset form, early onset bipolar disorder is associated with worse psychosocial outcomes, and is characterized by rapid cycling and increased risks of substance abuse and suicide attempts. Controlling mood episodes and preventing relapse in this group of pediatric patients requires careful treatment. Here, we review the effectiveness of aripiprazole for bipolar disorder in children and adolescents, with discussion of this drug's unique pharmacological profile and various clinical study outcomes. Aripiprazole acts as a serotonin 5-HT2A receptor antagonist, as well as a partial agonist of the serotonin 5-HT1A and dopamine D2 receptors. It can be safely used in children and adolescents, as it is highly tolerated and shows lower rates of the side effects typically observed with other antipsychotic drugs, including sedation, weight gain, hyperprolactinemia, and extrapyramidal syndrome. The presently reviewed randomized controlled trials (RCTs and non-RCTs generally reported aripiprazole to be effective and well-tolerated in children and adolescents with bipolar disorder. However, due to the limited number of RCTs, the present conclusions must be evaluated cautiously. Furthermore, aripiprazole cannot yet be considered a preferred treatment for children and adolescents with bipolar disorder, as there is not yet evidence that aripiprazole shows greater efficacy compared to other second-generation antipsychotics. Additional data are needed from future head-to-head comparison studies. Keywords: child, mania, mixed state

  6. The efficacy and safety of aripiprazole for tic disorders in children and adolescents: A systematic review and meta-analysis.

    Science.gov (United States)

    Wang, Shuai; Wei, Yan-Zhao; Yang, Jian-Hong; Zhou, Yu-Ming; Cheng, Yu-Hang; Yang, Chao; Zheng, Yi

    2017-08-01

    The aims are to evaluate the efficacy and safety of aripiprazole for tic disorders (TDs) in children and adolescents. We searched PubMed, Embase, PsychINFO, Cochrane database as well as Chinese databases of CNKI, VIP, CBM and Wanfang from the database inception to October 2016, and 17 full-text studies (N=1305) were included in our article. The meta-analysis of 10 studies (N=817) showed that there was no significant difference in the reduction of total YGTSS score between aripiprazole and other drugs, and meta-analysis of 7 studies (n=324) which used tic symptom control ≧30% as outcome measure showed that there was no significant difference between aripiprazole and other treatments. The most common AEs of aripiprazole were the drowsiness, nausea/vomiting and increased appetite, and meta analysis which used the TESS scale as the outcome measurement showed that there was a significant difference between aripiprazole and haloperidol. In conclusion, these data provide moderate quality evidence that aripiprazole could be an effective and safe treatment option for TDs, and results from further trials are urgently needed to extend this evidence base. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.

  7. Effects of haloperidol and aripiprazole on the human mesolimbic motivational system: A pharmacological fMRI study.

    Science.gov (United States)

    Bolstad, Ingeborg; Andreassen, Ole A; Groote, Inge; Server, Andres; Sjaastad, Ivar; Kapur, Shitij; Jensen, Jimmy

    2015-12-01

    The atypical antipsychotic drug aripiprazole is a partial dopamine (DA) D2 receptor agonist, which differentiates it from most other antipsychotics. This study compares the brain activation characteristic produced by aripiprazole with that of haloperidol, a typical D2 receptor antagonist. Healthy participants received an acute oral dose of haloperidol, aripiprazole or placebo, and then performed an active aversive conditioning task with aversive and neutral events presented as sounds, while blood-oxygen-level-dependent (BOLD) functional magnetic resonance imaging (fMRI) was carried out. The fMRI task, targeting the mesolimbic motivational system that is thought to be disturbed in psychosis, was based on the conditioned avoidance response (CAR) animal model - a widely used test of therapeutic potential of antipsychotic drugs. In line with the CAR animal model, the present results show that subjects given haloperidol were not able to avoid more aversive than neutral task trials, even though the response times were shorter during aversive events. In the aripiprazole and placebo groups more aversive than neutral events were avoided. Accordingly, the task-related BOLD-fMRI response in the mesolimbic motivational system was diminished in the haloperidol group compared to the placebo group, particularly in the ventral striatum, whereas the aripiprazole group showed task-related activations intermediate of the placebo and haloperidol groups. The current results show differential effects on brain function by aripiprazole and haloperidol, probably related to altered DA transmission. This supports the use of pharmacological fMRI to study antipsychotic properties in humans. Copyright © 2015 Elsevier B.V. and ECNP. All rights reserved.

  8. Use of Aripiprazole Long Acting Injection in Negative Symptoms of Schizophrenia

    Directory of Open Access Journals (Sweden)

    Suneeta James

    2016-01-01

    Full Text Available Background. Evidence for the efficacious use of second-generation antipsychotics for the treatment of negative symptoms in schizophrenia is scant. Case Presentation. We report the case of a 34-year-old female of Afro-Caribbean origin, who presented with prominent negative symptoms of schizophrenia and was successfully treated with aripiprazole long acting injection. Within a period of six to nine months, the patient returned to her premorbid level of functioning. Conclusion. Aripiprazole long acting injection promises benefits in the treatment of negative symptoms of schizophrenia. Further research needs to be conducted on the use of this drug.

  9. Aripiprazole improves associated comorbid Conditions in addition to Tics in adult Patients with Gilles de la Tourette Syndrome

    Directory of Open Access Journals (Sweden)

    Sarah Gerasch

    2016-09-01

    Full Text Available Gilles de la Tourette Syndrome (GTS is characterized by motor and vocal tics, as well as associated comorbid conditions including obsessive-compulsive disorder (OCD, attention deficit/hyperactivity disorder (ADHD, depression, and anxiety which are present in a substantial number of patients. Although randomized controlled trials including a large number of patients are still missing, aripiprazole is currently considered as a first choice drug for the treatment of tics. The aim of this study was to further investigate efficacy and safety of aripiprazole in a group of drug-free, adult patients. Specifically, we investigated the influence of aripiprazole on tic severity, comorbidities, premonitory urge (PU, and quality of life (QoL. Moreover we were interested in the factors that influence a patient’s decision in electing for-or against- pharmacological treatment. In this prospective uncontrolled open-label study, we included 44 patients and used a number of rating scales to assess tic severity, PU, comorbidities, and QoL at baseline and during treatment with aripiprazole. 18 out of 44 patients decided for undergoing treatment for their tics with aripiprazole and completed follow-up assessments after 4-6 weeks. Our major findings were (1 aripiprazole resulted in significant reduction of tics, but did not affect PU; (2 aripiprazole significantly improved OCD and showed a trend towards improvement of other comorbidities including depression, anxiety and ADHD; (3 neither severity of tics, nor PU or QoL influenced patients’ decisions for or against treatment of tics with aripiprazole; instead patients with comorbid OCD tended to decide in favor of, while patients with comorbid ADHD tended to decide against tic treatment; (4 most frequently reported adverse effects were sleeping problems; (5 patients’ QoL was mostly impaired by comorbid depression. Our results suggest that aripiprazole may improve associated comorbid conditions in addition to tics

  10. Low dosage of aripiprazole induced neuroleptic malignant syndrome after interaction with other neuroleptic drugs

    Directory of Open Access Journals (Sweden)

    Albino Petrone

    2013-09-01

    Full Text Available Aripiprazole is a 2nd generation antipsychotic medication, atypical neuroleptic used for treatment of schizophrenia improving symptoms such as hallucinations, delusions, and disorganized thinking. A potentially fatal symptom complex sometimes referred to as neuroleptic malignant syndrome (NMS has been reported in association with administration of antipsychotic drugs, including aripiprazole. Rare cases of NMS occurred during aripiprazole treatment in the worldwide clinical database. The disease is characterized by a distinctive clinical syndrome of mental status change, rigidity, fever, and dysautonomia. We report on a 63-year old woman with depression syndrome who developed neuroleptic malignant syndrome after twelve days of aripripazole 5 mg per day. Our case is added to the small number already described and suggests the need for caution when aripripazole is added to increase the effect of other antipsychotics.

  11. Aripiprazole plus topiramate in opioid-dependent patients with schizoaffective disorder: an 8-week, open-label, uncontrolled, preliminary study.

    Science.gov (United States)

    Bruno, Antonio; Romeo, Vincenzo M; Pandolfo, Gianluca; Scimeca, Giuseppe; Zoccali, Rocco A; Muscatello, Maria Rosaria A

    2014-01-01

    The aims of this study were to evaluate a combination of aripiprazole and topiramate in the treatment of opioid-dependent patients with schizoaffective disorder undergoing methadone maintenance therapy (MMT) and, further, to taper off patients from methadone treatment. Twenty patients who met DSM-IV (Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition) criteria for opioid dependence and schizoaffective disorder receiving MMT (80 mg/day) were given aripiprazole (10 mg/day) plus topiramate (up to 200 mg/day) for 8 weeks. A methadone dose reduction of 3 mg/day until suspension at week 4 was established. Aripiprazole plus topiramate was effective in reducing clinical symptoms, and a rapid tapering off of MMT was achieved. Combining aripiprazole and topiramate may be effective in patients with a dual diagnosis of opioid dependency and schizoaffective disorder.

  12. Efficacy, acceptability, and safety of adjunctive aripiprazole in treatment-resistant depression: a meta-analysis of randomized controlled trials

    Directory of Open Access Journals (Sweden)

    Luan SX

    2018-02-01

    Full Text Available Shuxin Luan,1,2 Hongquan Wan,2 Lei Zhang,3 Hua Zhao1,4 1Department of Physiology, College of Basic Medical Sciences, Jilin University, Changchun, China; 2Department of Mental Health, The First Hospital of Jilin University, Changchun, China; 3Department of Radiology, The First Hospital of Jilin University, Changchun, China; 4Neuroscience Research Center, The First Hospital of Jilin University, Changchun, China Background: Treatment-resistant depression (TRD is common and potentially life-threatening in adults, and the benefits and risks of adjunctive aripiprazole in these patients remain controversial. Therefore, we conducted a meta-analysis of randomized controlled trials (RCTs to assess the efficacy, acceptability, safety, and quality of life of adjunctive aripiprazole in patients with TRD.Methods: RCTs published in PubMed, Web of Science, and Embase were systematically reviewed to evaluate the efficacy and safety profiles of TRD patients who were treated with adjunctive aripiprazole. The main outcome measures included response rate, remission rate, changes from baseline in Montgomery–Asberg Depression Rating Scale (MADRS, Clinical Global Impression-severity (CGI-S, Clinical Global Impression-improvement (CGI-I, 17-Item Hamilton Rating Scale for Depression (HAM-D17, Sheehan Disability scale (SDS, and Inventory of Depressive Symptomatology Self-Report Scale (IDS-SR, discontinuation due to adverse events, and adverse events. Risk ratio (RR or weight mean difference with 95% confidence intervals (CIs were pooled using a fixed-effects or random-effects model according to the heterogeneity among studies.Results: A total of 8 RCTs involving 2,260 patients were included in this meta-analysis. Adjunctive aripiprazole was associated with a significantly higher remission rate (RR =1.64, 95% CI: 1.42 to 1.89; P<0.001 and response rate (RR =1.45, 95% CI: 1.13 to 1.87; P=0.004 than other treatments. Moreover, adjunctive aripiprazole had greater changes in

  13. Pomaglumetad Methionil (LY2140023 Monohydrate and Aripiprazole in Patients with Schizophrenia: A Phase 3, Multicenter, Double-Blind Comparison

    Directory of Open Access Journals (Sweden)

    David H. Adams

    2014-01-01

    Full Text Available We tested the hypothesis that long-term treatment with pomaglumetad methionil would demonstrate significantly less weight gain than aripiprazole in patients with schizophrenia. In this 24-week, multicenter, randomized, double-blind, Phase 3 study, 678 schizophrenia patients were randomized to either pomaglumetad methionil (n=516 or aripiprazole (n=162. Treatment groups were also compared on efficacy and various safety measures, including serious adverse events (SAEs, discontinuation due to adverse events (AEs, treatment-emergent adverse events (TEAEs, extrapyramidal symptoms (EPS, and suicide-related thoughts and behaviors. The pomaglumetad methionil group showed significantly greater weight loss at Week 24 (Visit 12 compared with the aripiprazole group (−2.8 ± 0.4 versus 0.4 ± 0.6; P<0.001. However, change in Positive and Negative Syndrome Scale (PANSS total scores for aripiprazole was significantly greater than for pomaglumetad methionil (−15.58 ± 1.58 versus −12.03 ± 0.99; P=0.045. The incidences of SAEs (8.2% versus 3.1%; P=0.032 and discontinuation due to AEs (16.2% versus 8.7%; P=0.020 were significantly higher for pomaglumetad methionil compared with aripiprazole. No statistically significant differences in the incidence of TEAEs, EPS, or suicidal ideation or behavior were noted between treatment groups. In conclusion, long-term treatment with pomaglumetad methionil resulted in significantly less weight gain than aripiprazole. This trial is registered with ClinicalTrials.gov NCT01328093.

  14. Dilemma of prescribing aripiprazole under the Taiwan health insurance program: a descriptive study

    Directory of Open Access Journals (Sweden)

    Hsu YC

    2015-01-01

    Full Text Available Yi-Chien Hsu,1,2 Yu-Ching Chou,3 Hsin-An Chang,1,2,4 Yu-Chen Kao,1,2,5 San-Yuan Huang,1,2 Nian-Sheng Tzeng1,2,4 1Department of Psychiatry, Tri-Service General Hospital, Taipei, Taiwan; 2School of Medicine, 3School of Public Health, 4Student Counseling Center, National Defense Medical Center, Taipei, Taiwan; 5Department of Psychiatry, Tri-Service General Hospital, Song-Shan Branch, Taipei, Taiwan Objectives: Refractory major depressive disorder (MDD is a serious problem leading to a heavy economic burden. Antipsychotic augmentation treatment with aripiprazole and quetiapine is approved for MDD patients and can achieve a high remission rate. This study aimed to examine how psychiatrists in Taiwan choose medications and how that choice is influenced by health insurance payments and administrative policy.Design: Descriptive study.Outcome measures: Eight questions about the choice of treatment strategy and atypical antipsychotics, and the reason to choose aripiprazole.Intervention: We designed an augmentation strategy questionnaire for psychiatrists whose patients had a poor response to antidepressants, and handed it out during the annual meeting of the Taiwanese Society of Psychiatry in October 2012. It included eight questions addressing the choice of treatment strategy and atypical antipsychotics, and the reason whether or not to choose aripiprazole as the augmentation antipsychotic.Results: Choosing antipsychotic augmentation therapy or switching to other antidepressant strategies for MDD patients with an inadequate response to antidepressants was common with a similar probability (76.1% vs 76.4%. The most frequently used antipsychotics were aripiprazole and quetiapine, however a substantial number of psychiatrists chose olanzapine, risperidone, and sulpiride. The major reason for not choosing aripiprazole was cost (52.1%, followed by insurance official policy audit and deletion in the claims review system (30.1%.Conclusion: The prescribing

  15. Variations of Aripiprazole-Induced Dyskinesia Existing with Concurrent Use of Amantadine and an Anticholinergic Agent in an Elderly Patient

    Directory of Open Access Journals (Sweden)

    I-Wen Sun

    2012-06-01

    Full Text Available Elderly patients are vulnerable to the adverse neurological effects of antipsychotics, particularly Parkinsonian symptoms and tardive dyskinesia. This vulnerability in the elderly becomes complex and unpredictable when aripiprazole is prescribed to replace other second-generation or first-generation antipsychotics. This report describes a 69-year-old female schizophrenic patient, who received aripiprazole after using a few antipsychotics, including the first- and second-generation ones. The tardive dyskinesia developed 6 weeks after switching to aripiprazole but subsided 4 weeks later when stopping the concurrent amantadine and decreasing the dosage of trihexyphenidyl. However, Parkinsonian symptoms developed insidiously thereafter, which remitted after the dosage of trihexyphenidyl was increased again. The possible mechanisms of the alternated adverse neurological events after a switch to aripiprazole in the chronic elderly psychosis are discussed.

  16. Twice-weekly aripiprazole for treating children and adolescents with tic disorder, a randomized controlled clinical trial.

    Science.gov (United States)

    Ghanizadeh, Ahmad

    2016-01-01

    Treating tic disorder is challenging. No trial has ever examined whether twice weekly aripiprazole is effective for treating tic disorders. Participants of this 8-week randomized controlled parallel-group clinical trial were a clinical sample of 36 children and adolescents with tic disorder. Yale global tic severity scale was used to assess the outcome. Both groups received daily dosage of aripiprazole for the first 14 days. Then, one group received daily dose of aripiprazole while the other group received twice weekly dosage of aripiprazole for the next 46 days. The patients were assessed at baseline, week 2, 4, and 8. Tic scores decreased in both group significantly 22.8 (18.5) versus 22.0 (11.6). Moreover, there was no between group difference. The final mean (SD) score of motor and vocal tics in the group treated with daily treatment was not significantly different from the twice weekly group (Cohen's d = 0.36). The odds ratios for sedation and increased appetite were 3.05 and 3, respectively. For the first time, current findings support that twice weekly aripiprazole efficacy was not different from that of daily treatment. The rate of drowsiness in the twice weekly treatment group was less than that of the daily treatment group. This trial was registered at http://www.irct.ir. The registration number of this trial was: IRCT201312263930N32. http://www.irct.ir/searchresult.php?id=3930&number=32.

  17. Aripiprazole Improves Depressive Symptoms and Immunological Response to Antiretroviral Therapy in an HIV-Infected Subject with Resistant Depression

    Directory of Open Access Journals (Sweden)

    Chiara Cecchelli

    2010-01-01

    Full Text Available Aripiprazole is the first medication approved by the FDA as an add-on treatment for MDD. The impact of aripiprazole on the response to HIV is unknown. The patient we report on was diagnosed HIV-positive in 1997 and has been treated with antiretroviral therapy since then. In 2008, we diagnosed resistant major depression, hypochondria, and panic disorder. On that occasion, blood tests showed a significantly reduced CD4 count and a positive viral load. We treated this patient with aripiprazole and citalopram. Mood, somatic symptoms, and occupational functioning progressively improved. The last blood examination showed an increase in the CD4 count and a negative viral load. On the basis of the present case study and the review of the literature concerning the effects of psychotropic agents on viral replication, we suggest that the use of aripiprazole in HIV-infected subjects warrants further research.

  18. Clinical Effectiveness of Aripiprazole in Short-term Treatment of Tic Disorder in Children and Adolescents: A Naturalistic Study

    Directory of Open Access Journals (Sweden)

    Che-Sheng Ho

    2014-02-01

    Conclusion: Aripiprazole is effective for short-term treatment of TD, especially vocal tics, in children and adolescents with mild adverse effects. However, further double-blind trials against placebo or other medications are needed to verify the efficacy of aripiprazole in the pharmacotherapy of TD.

  19. Neuroprotection by aripiprazole against β-amyloid-induced toxicity by P-CK2α activation via inhibition of GSK-3β

    OpenAIRE

    Park, So Youn; Shin, Hwa Kyoung; Lee, Won Suk; Bae, Sun Sik; Kim, Koanhoi; Hong, Ki Whan; Kim, Chi Dae

    2017-01-01

    Psychosis is reported over 30% of patients with Alzheimer's disease (AD) in clinics. Aripiprazole is an atypical antipsychotic drug with partial agonist activity at the D2 dopamine and 5-HT1A receptors with low side-effect profile. We identified aripiprazole is able to overcome the amyloid-β (Aβ)-evoked neurotoxicity and then increase the cell viability. This study elucidated the mechanism(s) by which aripiprazole ameliorates Aβ1-42-induced decreased neurite outgrowth and viability in neurona...

  20. An open-label trial of aripiprazole in the treatment of aggression in male adolescents diagnosed with conduct disorder.

    Science.gov (United States)

    Kuperman, Samuel; Calarge, Chadi; Kolar, Anne; Holman, Timothy; Barnett, Mitchell; Perry, Paul

    2011-11-01

    The adverse effect profiles of typical and atypical antipsychotics are problematic because of their extrapyramidal and endocrine adverse effects, respectively. Ten adolescent male patients diagnosed with conduct disorder received aripiprazole in doses of ≤20 mg/d in an open-label, intent-to-treat design to establish and characterize the efficacy of the drug in reducing aggressive behavior. Based on clinician and parent observations, aripiprazole was effective in reducing aggressive behavior in adolescent boys. The change in clinician-observed aggression ratings appears to have been driven by a decrease in physical aggression, whereas the change in parent-observed aggression ratings appears to have been driven by a decrease in verbal aggression and aggression against objects and animals. Aripiprazole was an effective and relatively well-tolerated treatment for overall aggression in adolescent males with conduct disorder, in the view of both clinicians and parents. Depending on the observer, aripiprazole improved aggression categorized as physical aggression, verbal aggression, and aggression against objects and animals.

  1. Aripiprazole-induced priapism

    Directory of Open Access Journals (Sweden)

    Satya K Trivedi

    2016-01-01

    Full Text Available Priapism is a urologic emergency representing a true disorder of penile erection that persists beyond or is unrelated to sexual interest or stimulation. A variety of psychotropic drugs are known to produce priapism, albeit rarely, through their antagonistic action on alpha-1 adrenergic receptors. We report such a case of priapism induced by a single oral dose of 10 mg aripiprazole, a drug with the least affinity to adrenergic receptors among all atypical antipsychotics. Polymorphism of alpha-2A adrenergic receptor gene in schizophrenia patients is known to be associated with sialorrhea while on clozapine treatment. Probably, similar polymorphism of alpha-1 adrenergic receptor gene could contribute to its altered sensitivity and resultant priapism. In future, pharmacogenomics-based approach may help in personalizing the treatment and effectively prevent the emergence of such side effects.

  2. Switching antipsychotics to aripiprazole or blonanserin and plasma monoamine metabolites levels in patients with schizophrenia.

    Science.gov (United States)

    Miura, Itaru; Shiga, Tetsuya; Katsumi, Akihiko; Kanno-Nozaki, Keiko; Mashiko, Hirobumi; Niwa, Shin-Ichi; Yabe, Hirooki

    2014-03-01

    Blonanserin is a novel atypical antipsychotic drug that has efficacy equal to risperidone. We investigated the effects of aripiprazole and blonanserin on clinical symptoms and plasma levels of homovanillic acid (pHVA) and 3-methoxy-4hydroxyphenylglycol in the switching strategy of schizophrenia. Twenty two Japanese patients with schizophrenia were enrolled into this open study. The antipsychotics of all patients were switched to aripiprazole or blonanserin for the improvement of clinical symptoms or side effects. Plasma monoamine metabolites levels were analyzed with high-performance liquid chromatography. There were no significant effects for time (p = 0.346) or time × group interaction (p = 0.27) on the changes of positive and negative syndrome scale (PANSS) total score, although blonanserin decreased PANSS scores. We observed negative correlation between pHVA at baseline and the change in PANSS total score (rs = -0.450, p = 0.046). We also found positive correlation between the changes in pHVA and the changes in PANSS total (rs = 0.536, p = 0.015) and positive (rs = 0.572, p = 0.008) scores. There were no differences between blonanserin and aripiprazole in the improvement of clinical symptoms. Our results suggest that pHVA may be useful indicator for the switching strategy to aripiprazole or blonanserin in schizophrenia. Copyright © 2014 John Wiley & Sons, Ltd.

  3. Optimizing the Use of Aripiprazole Augmentation in the Treatment of Major Depressive Disorder: From Clinical Trials to Clinical Practice

    Science.gov (United States)

    Han, Changsu; Wang, Sheng-Min; Lee, Soo-Jung; Jun, Tae-Youn

    2015-01-01

    Major depressive disorder (MDD) is a recurrent, chronic, and devastating disorder leading to serious impairment in functional capacity as well as increasing public health care costs. In the previous decade, switching therapy and dose adjustment of ongoing antidepressants was the most frequently chosen subsequent treatment option for MDD. However, such recommendations were not based on firmly proven efficacy data from well-designed, placebo-controlled, randomized clinical trials (RCTs) but on practical grounds and clinical reasoning. Aripiprazole augmentation has been dramatically increasing in clinical practice owing to its unique action mechanisms as well as proven efficacy and safety from adequately powered and well-controlled RCTs. Despite the increased use of aripiprazole in depression, limited clinical information and knowledge interfere with proper and efficient use of aripiprazole augmentation for MDD. The objective of the present review was to enhance clinicians' current understanding of aripiprazole augmentation and how to optimize the use of this therapy in the treatment of MDD. PMID:26306301

  4. Enhancement of encapsulation efficiency of nanoemulsion-containing aripiprazole for the treatment of schizophrenia using mixture experimental design.

    Science.gov (United States)

    Masoumi, Hamid Reza Fard; Basri, Mahiran; Samiun, Wan Sarah; Izadiyan, Zahra; Lim, Chaw Jiang

    2015-01-01

    Aripiprazole is considered as a third-generation antipsychotic drug with excellent therapeutic efficacy in controlling schizophrenia symptoms and was the first atypical anti-psychotic agent to be approved by the US Food and Drug Administration. Formulation of nanoemulsion-containing aripiprazole was carried out using high shear and high pressure homogenizers. Mixture experimental design was selected to optimize the composition of nanoemulsion. A very small droplet size of emulsion can provide an effective encapsulation for delivery system in the body. The effects of palm kernel oil ester (3-6 wt%), lecithin (2-3 wt%), Tween 80 (0.5-1 wt%), glycerol (1.5-3 wt%), and water (87-93 wt%) on the droplet size of aripiprazole nanoemulsions were investigated. The mathematical model showed that the optimum formulation for preparation of aripiprazole nanoemulsion having the desirable criteria was 3.00% of palm kernel oil ester, 2.00% of lecithin, 1.00% of Tween 80, 2.25% of glycerol, and 91.75% of water. Under optimum formulation, the corresponding predicted response value for droplet size was 64.24 nm, which showed an excellent agreement with the actual value (62.23 nm) with residual standard error <3.2%.

  5. Aripiprazole augmentation in poor insight obsessive-compulsive disorder: a case report

    Directory of Open Access Journals (Sweden)

    Vinciguerra Valentina

    2008-12-01

    Full Text Available Abstract Background Obsessive-compulsive disorder is associated with a relevant impairment in social and interpersonal functioning and severe disability. This seems to be particularly true for the poor insight subtype, characterised by a lack of consciousness of illness and, consequently, compliance with treatment. Poor responsiveness to serotonergic drugs in poor insight obsessive-compulsive patients may also require an augmentation therapy with atypical antipsychotics. Methods We reviewed a case in which a patient with a long history of poor insight obsessive-compulsive disorder was treated with a high dosage of serotonin reuptake inhibitors. Results The treatment resulted in a poor outcome. This patient was therefore augmentated with aripiprazole. Conclusion Doctors should consider aripiprazole as a possible augmentation strategy for serotonergic poor responder obsessive-compulsive patients, but further research on these subjects is needed.

  6. Postmortem Femoral Blood Reference Concentrations of Aripiprazole, Chlorprothixene, and Quetiapine

    DEFF Research Database (Denmark)

    Skov, Louise; Johansen, Sys Stybe; Linnet, Kristian

    2015-01-01

    no or only limited postmortem redistribution for aripiprazole, chlorprothixene with metabolite, and quetiapine in these cases. One fatality caused by chlorprothixene with a blood level of 0.90 mg/kg was recorded, and in six cases chlorprothixene was judged to be contributing to death with concentrations 0...

  7. Determining Whether a Definitive Causal Relationship Exists Between Aripiprazole and Tardive Dyskinesia and/or Dystonia in Patients With Major Depressive Disorder, Part 3: Clinical Trial Data.

    Science.gov (United States)

    Preskorn, Sheldon H; Macaluso, Matthew

    2016-03-01

    This series of columns has 3 main goals: (1) to explain class warnings as used by the United States Food and Drug Administration, (2) to increase awareness of movement disorders that may occur in patients treated with antipsychotic medications, and (3) to understand why clinicians should refrain from immediately assuming a diagnosis of tardive dyskinesia/dystonia (TD) in patients who develop abnormal movements during treatment with antipsychotics. The first column in the series presented a patient who developed abnormal movements while being treated with aripiprazole as an augmentation strategy for major depressive disorder (MDD) and reviewed data concerning the historical background, incidence, prevalence, and risk factors for tardive and spontaneous dyskinesias, the clinical presentations of which closely resemble each other. The second column in the series reviewed the unique mechanism of action of aripiprazole and preclinical studies and an early-phase human translational study that suggest a low, if not absent, risk of TD with aripiprazole. This column reviews clinical trial data to assess whether those data support the conclusion that aripiprazole has a low to absent risk of causing TD when used as an augmentation strategy to treat MDD. To date, no randomized, placebo-controlled trials have established a definitive link between exposure to aripiprazole and TD in patients with MDD. One long-term, open-label, safety trial examined aripiprazole as an augmentation strategy in individuals with MDD and found a rare occurrence (4/987, 0.4%, the confidence interval of which overlaps with zero) of an adverse event termed TD. In all 4 cases, the observed movements resolved within weeks of aripiprazole discontinuation, suggesting that they were either amenable to treatment or represented an acute syndrome rather than TD. No cases of TD were reported in the registration trials for the MDD indication for aripiprazole. These data were presented in a pooled analysis of

  8. Fluvoxamine for aripiprazole-associated akathisia in patients with schizophrenia: a potential role of sigma-1 receptors

    Directory of Open Access Journals (Sweden)

    Hashimoto Kenji

    2010-03-01

    Full Text Available Abstract Background Second-generation antipsychotic drugs have been reported to cause fewer incidences of extrapyramidal side effects (EPSs than typical antipsychotic drugs, but adverse events such as akathisia have been observed even with atypical antipsychotic drugs. Although understanding of the pathophysiology of akathisia remains limited, it seems that a complex interplay of several neurotransmitter systems might play a role in its pathophysiology. The endoplasmic reticulum protein sigma-1 receptors are shown to regulate a number of neurotransmitter systems in the brain. Methods We report on two cases in which monotherapy of the selective serotonin reuptake inhibitor and sigma-1 receptor agonist fluvoxamine was effective in ameliorating the akathisia of patients with schizophrenia treated with the antipsychotic drug aripiprazole. Results The global score on the Barnes Akathisia Scale in the two patients with schizophrenia treated with aripiprazole decreased after fluvoxamine monotherapy. Conclusion Doctors may wish to consider fluvoxamine as an alternative approach in treating akathisia associated with antipsychotic drugs such as aripiprazole.

  9. Hiccup Due to Aripiprazole Plus Methylphenidate Treatment in an Adolescent with Attention Deficit and Hyperactivity Disorder and Conduct Disorder: A Case Report.

    Science.gov (United States)

    Kutuk, Meryem Ozlem; Guler, Gulen; Tufan, Ali Evren; Kutuk, Ozgur

    2017-11-30

    Our case had hiccups arising in an adolescent with the attention deficit and hyperactivity disorder (ADHD) and conduct disorder (CD) after adding aripiprazole treatment to extended-release methylphenidate. Actually, antipsychotics are also used in the treatment of hiccups, but studies suggest that they can cause hiccups as well. Within 12 hours of taking 2.5 mg aripiprazole added to extended-release methylphenidate at a dose of 54 mg/day, 16-year-old boy began having hiccups in the morning, which lasted after 3-4 hours. As a result, aripiprazole was discontinued and methylphenidate was continued alone because we could not convince the patient to use another additional drug due to this side effect. Subsequently, when his behavior got worsened day by day, his mother administered aripiprazole alone again at the dose of 2.5 mg/day at the weekend and continued treatment because hiccup did not occur again. But when it was administered with methylphenidate on Monday, hiccup started again next morning and lasted one hour at this time. In conclusion, we concluded that concurrent use of methylphenidate and aripiprazole in this adolescent led to hiccups.

  10. Behandling af Tourettes syndrom med aripiprazol

    DEFF Research Database (Denmark)

    Stenstrøm, Anne Dorte; Sindø, Ingrid

    2008-01-01

    Tourette's syndrome (TS) is a motoric disorder characterised by multiple motor and vocal tics. The treatment for patients with moderate to severe TS includes antipsychotic medication. A case report is described in which a 20 year-old male had taken antipsychotic medication since the age of five......, due to TS. The initial treatment consisted of pimozide and risperidone, both of which had an unsatisfactorily efficacy on tics and side effects in the form of weight gain and sedation. The patient is now treated with aripiprazole and there is a marked reduction of tics and no side effects...

  11. Safety and efficacy of aripiprazole for the treatment of pediatric Tourette syndrome and other chronic tic disorders.

    Science.gov (United States)

    Cox, Joanna H; Seri, Stefano; Cavanna, Andrea E

    2016-01-01

    Tourette syndrome is a childhood-onset chronic tic disorder characterized by multiple motor and vocal tics and often accompanied by specific behavioral symptoms ranging from obsessionality to impulsivity. A considerable proportion of patients report significant impairment in health-related quality of life caused by the severity of their tics and behavioral symptoms and require medical intervention. The most commonly used medications are antidopaminergic agents, which have been consistently shown to be effective for tic control, but are also associated with poor tolerability because of their adverse effects. The newer antipsychotic medication aripiprazole is characterized by a unique mechanism of action (D2 partial agonism), and over the last decade has increasingly been used for the treatment of tics. We conducted a systematic literature review to assess the available evidence on the efficacy and safety of aripiprazole in pediatric patients with Tourette syndrome and other chronic tic disorders (age range: 4-18 years). Our search identified two randomized controlled trials (involving 60 and 61 participants) and ten open-label studies (involving between six and 81 participants). The majority of these studies used two validated clinician-rated instruments (Yale Global Tic Severity Scale and Clinical Global Impression scale) as primary outcome measures. The combined results from randomized controlled trials and open-label studies showed that aripiprazole is an effective, safe, and well-tolerated medication for the treatment of tics. Aripiprazole-related adverse effects (nausea, sedation, and weight gain) were less frequent compared to other antidopaminergic medications used for tic management and, when present, were mostly transient and mild. The reviewed studies were conducted on small samples and had relatively short follow-up periods, thus highlighting a need for further trials to assess the long-term use of aripiprazole in pediatric patients with Tourette syndrome

  12. Aripiprazole for Irritability in Asian Children and Adolescents with Autistic Disorder: A 12-Week, Multinational, Multicenter, Prospective Open-Label Study.

    Science.gov (United States)

    Kim, Hyo-Won; Park, Eun-Jin; Kim, Ji-Hoon; Boon-Yasidhi, Vitharon; Tarugsa, Jariya; Reyes, Alexis; Manalo, Stella; Joung, Yoo-Sook

    2018-04-24

    We investigated the effectiveness and tolerability of aripiprazole in the treatment of irritability in Asian children and adolescents (6-17 years) with autistic disorder in a 12-week, multinational, multicenter, open-label study. Sixty-seven subjects (10.0 ± 3.1 years old, 52 boys) were enrolled and treated with flexibly dosed aripiprazole for 12 weeks (mean dose, 5.1 ± 2.5 mg; range 2-15 mg). Aripiprazole significantly reduced the mean caregiver-rated scores for the Irritability, Lethargy/Social Withdrawal, Stereotypy, Hyperactivity, and Inappropriate Speech subscales of the Aberrant Behavior Checklist from baseline to week 12 (p autistic disorder. Further studies with larger sample sizes and longer treatment durations are required.

  13. Effects of aripiprazole versus risperidone on brain activation during planning and social-emotional evaluation in schizophrenia: A single-blind randomized exploratory study.

    Science.gov (United States)

    Liemburg, Edith J; van Es, Frank; Knegtering, Henderikus; Aleman, André

    2017-10-03

    Impaired function of prefrontal brain networks may be the source of both negative symptoms and neurocognitive problems in psychotic disorders. Whereas most antipsychotics may decrease prefrontal activation, the partial dopamine D2-receptor agonist aripiprazole is hypothesized to improve prefrontal function. This study investigated whether patients with a psychotic disorder would show stronger activation of prefrontal areas and associated regions after treatment with aripiprazole compared to risperidone treatment. In this exploratory pharmacological neuroimaging study, 24 patients were randomly assigned to either aripiprazole or risperidone. At baseline and after nine weeks treatment they underwent an interview and MRI session. Here we report on brain activation (measured with arterial spin labeling) during performance of two tasks, the Tower of London and the Wall of Faces. Aripiprazole treatment decreased activation of the middle frontal, superior frontal and occipital gyrus (ToL) and medial temporal and inferior frontal gyrus, putamen and cuneus (WoF), while activation increased after risperidone. Activation increased in the ventral anterior cingulate and posterior insula (ToL), and superior frontal, superior temporal and precentral gyrus (WoF) after aripiprazole treatment and decreased after risperidone. Both treatment groups had increased ventral insula activation (ToL) and middle temporal gyrus (WoF), and decreased occipital cortex, precuneus and caudate head activation (ToL) activation. In conclusion, patients treated with aripiprazole may need less frontal resources for planning performance and may show increased frontotemporal and frontostriatal reactivity to emotional stimuli. More research is needed to corroborate and extend these preliminary findings. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. [Aripiprazole - a medical treatment alternative for Tourette Syndrome in childhood and adolescence].

    Science.gov (United States)

    Frölich, Jan; Starck, Martina; Banaschewski, Tobias; Lehmkuhl, Gerd

    2010-07-01

    We report a case-series of seven patients with a medical history of at least two years of tic disorder treated with the partial dopamine agonist aripiprazole to illustrate its efficacy as a treatment alternative for motor and vocal tics in children and adolescents. A case series of five patients with Tourette Syndrome (TS) and two with chronic motor tic disorder (age range 8; 7-18; 1 year), the majority of whom had been refractory to treatment with other neuroleptics or had ceased treatment due to intolerable side effects, were treated for eight weeks with aripiprazole. Before and after treatment, parents rated the severity of motor and vocal tic symptoms on the Yale Tourette Syndrome Checklist. Within eight weeks mean motor tic symptoms decreased by 66% and mean vocal tic symptoms decreased by 26%. Mean effective dosage was 14.3 mg/day (min. 5 mg, max. 30 mg). Symptoms of comorbid ADHD or Obsessive Compulsive Disorder were not significantly influenced. During medication only mild side effects were observed, e.g., abdominal pain, fatigue and increased emotional sensitivity. No patient dropped out of treatment due to side effects. Aripiprazole may be an effective pharmacologic treatment alternative for individuals with chronic motor tic disorder and TS. It induces quick, significant and sustained effects with few generally mild and transient side effects, if anything. Its effectiveness, especially relative to comorbidities, should be verified in double-blind, placebo-controlled studies.

  15. Aripiprazole in the treatment of irritability in pediatric patients (aged 6-17 years) with autistic disorder: results from a 52-week, open-label study.

    Science.gov (United States)

    Marcus, Ronald N; Owen, Randall; Manos, George; Mankoski, Raymond; Kamen, Lisa; McQuade, Robert D; Carson, William H; Corey-Lisle, Patricia K; Aman, Michael G

    2011-06-01

    To report the long-term efficacy of aripiprazole in the treatment of irritability in children and adolescents (ages 6-17 years) with autistic disorder. This was a 52-week, open-label, flexible-dose (2-15 mg/day) study of aripiprazole for the treatment of children and adolescents with irritability associated with autistic disorder. Eligible subjects were enrolled from two 8-week randomized trials or were enrolled as de novo subjects. "Prior aripiprazole" subjects had received treatment with aripiprazole for 8 weeks before entering this study. Evaluation of efficacy, a secondary objective after evaluation of safety and tolerability in this study, was conducted using the caregiver-rated Aberrant Behavior Checklist-Irritability subscale and the clinician-rated Clinical Global Impression-Improvement score. Three hundred thirty subjects received treatment (de novo, n = 86; prior aripiprazole, n = 174; prior placebo, n = 70) and 199 subjects (60.3%) completed 52 weeks of treatment. At their last study visit, 38.2% of subjects were receiving concomitant central nervous system medications (commonly antidepressants, 13.4%; psychostimulants, 11.5%; antiepileptics, 5.9%). At week 52 (observed cases data set), the mean change from baseline in Aberrant Behavior Checklist Irritability subscale scores was -8.0 in de novo subjects and -6.1 in prior placebo subjects; prior aripiprazole subjects maintained symptom improvement that was achieved with treatment in the prior study. At endpoint, the majority of subjects had a Clinical Global Impressions-Improvement score of 2 (much improved) or 1 (very much improved). Aripiprazole reduced symptoms of irritability associated with autistic disorder in pediatric subjects ages 6-17 years who were studied for up to 1 year.

  16. Intramuscular olanzapine versus intramuscular aripiprazole for the treatment of agitation in patients with schizophrenia: A pragmatic double-blind randomized trial.

    Science.gov (United States)

    Kittipeerachon, Mantana; Chaichan, Warawat

    2016-10-01

    To evaluate and compare the effectiveness and adverse effects of intramuscular (IM) olanzapine and IM aripiprazole for the treatment of agitated patients with schizophrenia in clinical practice. A 24-hour randomized double-blind study carried out at a psychiatric hospital in Thailand enrolled adult patients (18-65years old) with schizophrenia experiencing agitation. Patients received one dose of IM olanzapine or IM aripiprazole followed by routine oral psychotropic medications. Efficacy was primarily measured using the Excited Component of the Positive and Negative Syndrome Scale (PANSS-EC). A total of 80 patients with a PANSS-EC score range of 22-35 entered the study, of whom 13% had a medical comorbidity and 40% a history of active substance abuse. The 40 patients receiving IM olanzapine showed greater improvement than the 40 patients receiving IM aripiprazole in PANSS-EC scores at 2h after the injection (p=0.002) but not at 24h. The two treatments were well tolerated. Patients receiving IM olanzapine experienced greater somnolence than those receiving IM aripiprazole. There were no clinically relevant changes in vital signs in either group. The results indicate that IM olanzapine and aripiprazole are similarly effective and well tolerated in the real-world treatment of agitation associated with schizophrenia over the first 24h. However, in the early hours, IM olanzapine may produce more sedation and reductions in agitation. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Serotonin Syndrome in the Setting of Lamotrigine, Aripiprazole, and Cocaine Use

    Directory of Open Access Journals (Sweden)

    Anupam Kotwal

    2015-01-01

    Full Text Available Serotonin syndrome is a potentially life-threatening condition associated with increased serotonergic activity in the central nervous system. It is classically associated with the simultaneous administration of two serotonergic agents, but it can occur after initiation of a single serotonergic drug or increasing the dose of a serotonergic drug in individuals who are particularly sensitive to serotonin. We describe a case of serotonin syndrome that occurred after ingestion of higher than prescribed doses of lamotrigine and aripiprazole, in addition to cocaine abuse. The diagnosis was established based on Hunter toxicity criteria and severity was classified as mild. The features of this syndrome resolved shortly after discontinuation of the offending agents. Serotonin syndrome is characterized by mental status changes, autonomic hyperactivity, and neuromuscular abnormalities along a spectrum ranging from mild to severe. Serotonin syndrome in our patient was most likely caused by the pharmacokinetic and pharmacodynamic interactions between lamotrigine, aripiprazole, and cocaine leading to increased CNS serotonergic activity.

  18. Switching to Aripiprazole as a Strategy for Weight Reduction: A Meta-Analysis in Patients Suffering from Schizophrenia

    Directory of Open Access Journals (Sweden)

    Yoram Barak

    2011-01-01

    Full Text Available Weight gain is one of the major drawbacks associated with the pharmacological treatment of schizophrenia. Existing strategies for the prevention and treatment of obesity amongst these patients are disappointing. Switching the current antipsychotic to another that may favorably affect weight is not yet fully established in the psychiatric literature. This meta-analysis focused on switching to aripiprazole as it has a pharmacological and clinical profile that may result in an improved weight control. Nine publications from seven countries worldwide were analyzed. These encompassed 784 schizophrenia and schizoaffective patients, 473 (60% men and 311 (40% women, mean age 39.4±7.0 years. The major significant finding was a mean weight reduction by −2.55±1.5 kgs following the switch to aripiprazole (<.001. Switching to an antipsychotic with a lower propensity to induce weight gain needs be explored as a strategy. Our analysis suggests aripiprazole as a candidate for such a treatment strategy.

  19. Haloperidol, risperidone, olanzapine and aripiprazole in the management of delirium: A comparison of efficacy, safety, and side effects.

    Science.gov (United States)

    Boettger, Soenke; Jenewein, Josef; Breitbart, William

    2015-08-01

    The aim of this study was to compare the efficacy and side-effect profile of the typical antipsychotic haloperidol with that of the atypical antipsychotics risperidone, olanzapine, and aripiprazole in the management of delirium. The Memorial Delirium Assessment Scale (MDAS), the Karnofsky Performance Status (KPS) scale, and a side-effect rating were recorded at baseline (T1), after 2-3 days (T2), and after 4-7 days (T3). Some 21 cases were case-matched by age, preexisting dementia, and baseline MDAS scores, and subsequently analyzed. The baseline characteristics of the medication groups were not different: The mean age of the patients ranged from 64.0 to 69.6 years, dementia was present in between 23.8 and 28.6%, and baseline MDAS scores were 19.9 (haloperidol), 18.6 (risperidone), 19.4 (olanzapine), and 18.0 (aripiprazole). The doses of medication at T3 were 5.5 mg haloperidol, 1.3 mg risperidone, 7.1 mg olanzapine, and 18.3 mg aripiprazole. Over one week, the decline in MDAS scores between medications was equal, and no differences between individual MDAS scores existed at T2 or T3. After one week, the MDAS scores were 6.8 (haloperidol), 7.1 (risperidone), 11.7 (olanzapine), and 8.3 (aripiprazole). At T2, delirium resolution occurred in 42.9-52.4% of cases and at T3 in 61.9-85.7%; no differences in assessments between medications existed. Recorded side effects were extrapyramidal symptoms (EPSs) in haloperidol- and risperidone-managed patients (19 and 4.8%, respectively) and sedation with olanzapine (28.6%). Haloperidol, risperidone, aripiprazole, and olanzapine were equally effective in the management of delirium; however, they differed in terms of their side-effect profile. Extrapyramidal symptoms were most frequently recorded with haloperidol, and sedation occurred most frequently with olanzapine.

  20. Aripiprazole augmentation in managing comorbid obsessive–compulsive disorder and bipolar disorder: a case with suicidal attempts

    Directory of Open Access Journals (Sweden)

    Lai J

    2016-12-01

    Full Text Available Jianbo Lai,1,2 Qiaoqiao Lu,1 Peng Zhang,2,3 Tingting Xu,2,3 Yi Xu,1,2 Shaohua Hu1,2 1Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, 2The Key Laboratory of Mental Disorder’s Management in Zhejiang Province, 3Department of Psychiatry, Mental Health Centre, Xiaoshan Hospital of Zhejiang Province, Hangzhou, Zhejiang, People’s Republic of China Abstract: Comorbid obsessive–compulsive disorder (OCD and bipolar disorder (BD have long been an intractable problem in clinical practice. The increased risk of manic/hypomanic switch hinders the use of antidepressants for managing coexisting OCD symptoms in BD patients. We herein present a case of a patient with BD–OCD comorbidity, who was successfully treated with mood stabilizers and aripiprazole augmentation. The young female patient reported recurrent depressive episodes and aggravating compulsive behaviors before hospitalization. Of note, the patient repetitively attempted suicide and reported dangerous driving because of intolerable mental sufferings. The preexisting depressive episode and OCD symptoms prompted the use of paroxetine, which consequently triggered the manic switching. Her diagnosis was revised into bipolar I disorder. Minimal response with mood stabilizers prompted the addition of aripiprazole (a daily dose of 10 mg, which helped to achieve significant remission in emotional and obsessive–compulsive symptoms. This case highlights the appealing efficacy of a small dose of aripiprazole augmentation for treating BD–OCD comorbidity. Well-designed clinical trials are warranted to verify the current findings. Keywords: aripiprazole, bipolar disorder, obsessive–compulsive disorder, suicide

  1. Adsorptive stripping voltammetric methods for determination of aripiprazole

    Directory of Open Access Journals (Sweden)

    Derya Aşangil

    2012-06-01

    Full Text Available Anodic behavior of aripiprazole (ARP was studied using electrochemical methods. Charge transfer, diffusion and surface coverage coefficients of adsorbed molecules and the number of electrons transferred in electrode mechanisms were calculated for quasi-reversible and adsorption-controlled electrochemical oxidation of ARP at 1.15 V versus Ag/AgCl at pH 4.0 in Britton–Robinson buffer (BR on glassy carbon electrode. Voltammetric methods for direct determination of ARP in pharmaceutical dosage forms and biological samples were developed. Linearity range is found as from 11.4 μM (5.11 mg/L to 157 μM (70.41 mg/L without stripping mode and it is found as from 0.221 μM (0.10 mg/L to 13.6 μM (6.10 mg/L with stripping mode. Limit of detection (LOD was found to be 0.11 μM (0.05 mg/L in stripping voltammetry. Methods were successfully applied to assay the drug in tablets, human serum and human urine with good recoveries between 95.0% and 104.6% with relative standard deviation less than 10%. Keywords: Adsorptive stripping voltammetry, Aripiprazole, Electrochemical behavior, Human serum and urine, Pharmaceuticals

  2. Safety and efficacy of aripiprazole for the treatment of pediatric Tourette syndrome and other chronic tic disorders

    Directory of Open Access Journals (Sweden)

    Cox JH

    2016-06-01

    Full Text Available Joanna H Cox,1 Stefano Seri,2,3 Andrea E Cavanna,2,4,5 1Heart of England NHS Foundation Trust, 2School of Life and Health Sciences, Aston Brain Centre, Aston University, 3Children’s Epilepsy Surgery Programme, The Birmingham Children’s Hospital NHS Foundation Trust, 4Department of Neuropsychiatry, Birmingham and Solihull Mental Health NHS Foundation Trust, Birmingham, 5Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology and UCL, London, UK Abstract: Tourette syndrome is a childhood-onset chronic tic disorder characterized by multiple motor and vocal tics and often accompanied by specific behavioral symptoms ranging from obsessionality to impulsivity. A considerable proportion of patients report significant impairment in health-related quality of life caused by the severity of their tics and behavioral symptoms and require medical intervention. The most commonly used medications are antidopaminergic agents, which have been consistently shown to be effective for tic control, but are also associated with poor tolerability because of their adverse effects. The newer antipsychotic medication aripiprazole is characterized by a unique mechanism of action (D2 partial agonism, and over the last decade has increasingly been used for the treatment of tics. We conducted a systematic literature review to assess the available evidence on the efficacy and safety of aripiprazole in pediatric patients with Tourette syndrome and other chronic tic disorders (age range: 4–18 years. Our search identified two randomized controlled trials (involving 60 and 61 participants and ten open-label studies (involving between six and 81 participants. The majority of these studies used two validated clinician-rated instruments (Yale Global Tic Severity Scale and Clinical Global Impression scale as primary outcome measures. The combined results from randomized controlled trials and open-label studies showed that aripiprazole is an

  3. A placebo-controlled, fixed-dose study of aripiprazole in children and adolescents with irritability associated with autistic disorder.

    Science.gov (United States)

    Marcus, Ronald N; Owen, Randall; Kamen, Lisa; Manos, George; McQuade, Robert D; Carson, William H; Aman, Michael G

    2009-11-01

    To evaluate the short-term efficacy and safety of aripiprazole in the treatment of irritability in children and adolescents with autistic disorder. Two hundred eighteen children and adolescents (aged 6-17 years) with a diagnosis of autistic disorder, and with behaviors such as tantrums, aggression, self-injurious behavior, or a combination of these symptoms, were randomized 1:1:1:1 to aripiprazole (5, 10, or 15 mg/day) or placebo in this 8-week double-blind, randomized, placebo-controlled, parallel-group study. Efficacy was evaluated using the caregiver-rated Aberrant Behavior Checklist Irritability subscale (primary efficacy measure) and the clinician-rated Clinical Global Impressions-Improvement score. Safety and tolerability were also assessed. At week 8, all aripiprazole doses produced significantly greater improvement than placebo in mean Aberrant Behavior Checklist Irritability subscale scores (5 mg/day, -12.4; 10 mg/day, -13.2; 15 mg/day, -14.4; versus placebo, -8.4; all p autistic disorder.

  4. Changes in values of cholesterol and tryglicerides after weight loss during treatment with aripiprazole in a patient with schizophrenia - Case report.

    Science.gov (United States)

    Uzun, Suzana; Kozumplik, Oliver; Sedić, Biserka

    2010-06-01

    Metabolic syndrome can contribute to significant morbidity and premature mortality and should be accounted for in the treatment of mental disorders. Patients with schizophrenia are at risk of undetected somatic comorbidity. Patients with schizophrenia have metabolically unfavorable body composition, comprising abdominal obesity, high fat percentage and low muscle mass, leading to increased risk of metabolic and cardiovascular diseases. Smoking, poor diet, reduced physical activity and alcohol or drug abuse are prevalent in people with schizophrenia and contribute to the overall cardiovascular disease risk. Side effects of antipsychotics may cause diagnostic problems in deciding regarding the origin of particular symptoms (somatic illness vs. side effects) during treatment of psychotic disorders. Bearing in mind frequent comorbidity between of psychotic and somatic disorders, early recognition of such comorbidity is important, as well as the selection of antipsychotics. The aim of this article is to report a case of changes in values of cholesterol and tryglicerides after weight loss, during treatment with aripiprazole in a patient with schizophrenia. This case report emphasizes the importance of regular monitoring of values of cholesterol and tryglicerides during treatment with antipsychotics.

  5. Blood Biomarkers Predict the Cognitive Effects of Aripiprazole in Patients with Acute Schizophrenia

    Directory of Open Access Journals (Sweden)

    Hikaru Hori

    2017-03-01

    Full Text Available Aripiprazole has been reported to exert variable effects on cognitive function in patients with schizophrenia. Therefore, in the present study, we evaluated biological markers, clinical data, and psychiatric symptoms in order to identify factors that influence cognitive function in patients with schizophrenia undergoing aripiprazole treatment. We evaluated cognitive function in 51 patients with schizophrenia using Brief Assessment of Cognition in Schizophrenia (BACS, as well as background information, psychiatric symptoms, plasma catecholamine metabolites—homovanillic acid (HVA, 3-methoxy-4-hydroxyphenylglycol (MHPG—, and serum brain-derived neurotrophic factor (BDNF. Multivariate analyses were performed in order to identify factors independently associated with cognitive function. Brain-derived neurotrophic factor levels, number of hospitalizations, and MHPG levels were associated with verbal memory and learning. Total hospitalization period and MHPG levels were associated with working memory. Age at first hospitalization and education were associated with motor speed. The number of hospital admissions, Positive and Negative Syndrome Scale negative subscale scores (PANSS-N, MHPG levels, BDNF levels, and Drug-Induced Extrapyramidal Symptoms Scale (DIEPSS scores were associated with verbal fluency. Homovanillic acid and MHPG levels, duration of illness, and PANSS-N scores were associated with attention and processing speed. Brain-derived neurotrophic factor and MHPG levels were associated with executive function. These results suggest that treatment of psychiatric symptoms and cognitive dysfunction may be improved in patients treated with aripiprazole by controlling for these contributing factors.

  6. A randomized controlled trial investigating the safety and efficacy of aripiprazole in the long-term maintenance treatment of pediatric patients with irritability associated with autistic disorder.

    Science.gov (United States)

    Findling, Robert L; Mankoski, Raymond; Timko, Karen; Lears, Katherine; McCartney, Theresa; McQuade, Robert D; Eudicone, James M; Amatniek, Joan; Marcus, Ronald N; Sheehan, John J

    2014-01-01

    To evaluate the efficacy and safety of aripiprazole versus placebo in preventing relapse of irritability symptoms associated with autistic disorder in pediatric patients. This multicenter, double-blind, randomized, placebo-controlled, relapse-prevention trial enrolled patients (6-17 years) who met the current Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition, Text Revision (DMS-IV-TR) criteria for autistic disorder and who also had serious behavioral problems (ie, tantrums, aggression, self-injurious behavior, or a combination of these behavioral problems) between March 2011 and June 2012. In phase 1, single-blind aripiprazole was flexibly dosed (2-15 mg/d) for 13-26 weeks. Patients with a stable response (≥ 25% decrease in Aberrant Behavior Checklist-irritability subscale score and a rating of "much improved" or "very much improved" on the Clinical Global Impressions-Improvement scale) for 12 consecutive weeks were randomized into phase 2 to continue aripiprazole or switch to placebo. Treatment was continued until relapse or up to 16 weeks. The primary end point was time from randomization to relapse. Eighty-five patients were randomized in phase 2. The difference in time to relapse between aripiprazole and placebo was not statistically significant (P = .097). Kaplan-Meier relapse rates at week 16 were 35% for aripiprazole and 52% for placebo (hazard ratio [HR] = 0.57; number needed to treat [NNT] = 6). The most common adverse events during phase 1 were weight increase (25.2%), somnolence (14.8%), and vomiting (14.2%); and, during phase 2 (aripiprazole vs placebo), they were upper respiratory tract infection (10.3% vs 2.3%), constipation (5.1% vs 0%), and movement disorder (5.1% vs 0%). In this study, there was no statistically significant difference between aripiprazole and placebo in time to relapse during maintenance therapy. However, the HR and NNT suggest some patients will benefit from maintenance treatment. Patients receiving

  7. Neural correlates of delusional infestation responding to aripiprazole monotherapy: a case report

    Directory of Open Access Journals (Sweden)

    Ponson L

    2015-02-01

    Full Text Available Laura Ponson,1,2 Frédéric Andersson,1 Wissam El-Hage1,2 1Université François-Rabelais de Tours, Inserm, Imagerie et Cerveau UMR U930, Tours, France, 2CHRU de Tours, Clinique Psychiatrique Universitaire, Tours, France Background: The pathophysiology and appropriate pharmacological interventions for delusional infestation remain unknown.Case presentation: Here, we report a case of primary delusional infestation successfully treated with aripiprazole. We performed functional magnetic resonance imaging (fMRI to investigate brain structures and functional modifications. Before antipsychotic treatment, pre- versus post-treatment fMRI images revealed a marked increase in brain activation in the supplementary motor area (SMA.Conclusion: Our results highlight the efficacy and safety of aripiprazole in the treatment of delusional infestation and the possible role of SMA dysfunction in delusional infestation. Indeed, our results suggest that psychiatric improvement of delusional infestation is associated with normalization of brain activity, particularly in the SMA. Keywords: supplementary motor area, antipsychotics, fMRI

  8. The effect of antipsychotic medication on sexual function and serum prolactin levels in community-treated schizophrenic patients: results from the Schizophrenia Trial of Aripiprazole (STAR study (NCT00237913

    Directory of Open Access Journals (Sweden)

    Pans Miranda

    2008-12-01

    Full Text Available Abstract Background The aim of this paper is to evaluate the effect of antipsychotics for the treatment of schizophrenia in a community based study on sexual function and prolactin levels comparing the use of aripiprazole and standard of care (SOC, which was a limited choice of three widely used and available antipsychotics (olanzapine, quetiapine or risperidone (The Schizophrenia Trial of Aripiprazole [STAR] study [NCT00237913]. Method This open-label, 26-week, multi-centre, randomised study compared aripiprazole to SOC (olanzapine, quetiapine or risperidone in patients with schizophrenia (DSM-IV-TR criteria. The primary effectiveness variable was the mean total score of the Investigator Assessment Questionnaire (IAQ at Week 26. The outcome research variables included the Arizona Sexual Experience scale (ASEX. This along with the data collected on serum prolactin levels at week 4, 8, 12, 18 and 26 will be the focus of this paper. Results A total of 555 patients were randomised to receive aripiprazole (n = 284 or SOC (n = 271. Both treatment groups experienced improvements in sexual function from baseline ASEX assessments. However at 8 weeks the aripiprazole treatment group reported significantly greater improvement compared with the SOC group (p = 0.007; OC. Although baseline mean serum prolactin levels were similar in the two treatment groups (43.4 mg/dL in the aripiprazole group and 42.3 mg/dL in the SOC group, p = NS at Week 26 OC, mean decreases in serum prolactin were 34.2 mg/dL in the aripiprazole group, compared with 13.3 mg/dL in the SOC group (p Conclusion The study findings suggest that aripiprazole has the potential to reduce sexual dysfunction, which in turn might improve patient compliance.

  9. Enhancement of encapsulation efficiency of nanoemulsion-containing aripiprazole for the treatment of schizophrenia using mixture experimental design

    Directory of Open Access Journals (Sweden)

    Fard Masoumi HR

    2015-10-01

    Full Text Available Hamid Reza Fard Masoumi, Mahiran Basri, Wan Sarah Samiun, Zahra Izadiyan, Chaw Jiang Lim Nanodelivery Group, Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, Serdang, Selangor, Malaysia Abstract: Aripiprazole is considered as a third-generation antipsychotic drug with excellent therapeutic efficacy in controlling schizophrenia symptoms and was the first atypical anti­psychotic agent to be approved by the US Food and Drug Administration. Formulation of nanoemulsion-containing aripiprazole was carried out using high shear and high pressure homo­genizers. Mixture experimental design was selected to optimize the composition of nanoemulsion. A very small droplet size of emulsion can provide an effective encapsulation for delivery system in the body. The effects of palm kernel oil ester (3–6 wt%, lecithin (2–3 wt%, Tween 80 (0.5–1 wt%, glycerol (1.5–3 wt%, and water (87–93 wt% on the droplet size of aripiprazole nanoemulsions were investigated. The mathematical model showed that the optimum formulation for preparation of aripiprazole nanoemulsion having the desirable criteria was 3.00% of palm kernel oil ester, 2.00% of lecithin, 1.00% of Tween 80, 2.25% of glycerol, and 91.75% of water. Under optimum formulation, the corresponding predicted response value for droplet size was 64.24 nm, which showed an excellent agreement with the actual value (62.23 nm with residual standard error <3.2%. Keywords: schizoaffective disorder, antipsychotic drug, bipolar I disorder, D-optimal mixture design, optimization formulation

  10. Superior effects of quetiapine compared with aripiprazole and iloperidone on MK-801-induced olfactory memory impairment in female mice.

    Science.gov (United States)

    Mutlu, Ahmet; Mutlu, Oguz; Ulak, Guner; Akar, Furuzan; Kaya, Havva; Erden, Faruk; Tanyeri, Pelin

    2017-05-01

    Cognitive dysfunction is commonly observed in schizophrenic patients and the administration of antipsychotic treatments results in different outcomes. Although the typical antipsychotic treatments, such as haloperidol, appear to be unable to improve cognition dysfunction, the atypical antipsychotic drugs (quetiapine, aripiprazole and iloperidone) exert a beneficial effect. The purpose of the current study was to investigate the effects of atypical antipsychotics on olfactory memory in mice, utilizing the social transmission of food preference (STFP) tests to evaluate the effects of drugs on MK-801-induced cognitive dysfunction. Female BALB/c mice were treated with quetiapine (5 and 10 mg/kg), aripiprazole (3 and 6 mg/kg), iloperidone (0.5 and 1 mg/kg) or MK-801 (0.1 mg/kg) alone or concurrently prior to retention sessions of STFP tests. In the STFP tests, quetiapine (10 mg/kg; P<0.05), aripiprazole (3 and 6 mg/kg; P<0.01 and P<0.001, respectively), iloperidone (0.5 and 1 mg/kg; P<0.01 and P<0.001, respectively) and MK-801 (P<0.001) significantly decreased cued/total food eaten (%). Quetiapine (5 mg/kg; P<0.05) significantly increased MK-801-induced decreases in cued/total food eaten (%), while aripiprazole and iloperidone demonstrated no significant effects. The results revealed that all of the drugs disturbed olfactory memory in the naive mice; however, only quetiapine reversed MK-801-induced memory impairment in the STFP test.

  11. Line-item analysis of the Aberrant Behavior Checklist: results from two studies of aripiprazole in the treatment of irritability associated with autistic disorder.

    Science.gov (United States)

    Aman, Michael G; Kasper, William; Manos, George; Mathew, Suja; Marcus, Ronald; Owen, Randall; Mankoski, Raymond

    2010-10-01

    The aim of this study was to evaluate the efficacy of aripiprazole in the treatment of discrete symptoms of irritability associated with autistic disorder, as well as other symptoms captured on the Aberrant Behavior Checklist (ABC). This was a post hoc analysis of data from two 8-week, randomized, double-blind, multicenter trials to evaluate the efficacy of aripiprazole dosed flexibly (2-15 mg/day, n=47) or fixed (5, 10, or 15 mg/day, n = 166) versus placebo (flexibly dosed, n = 51; fixed dose, n = 52). The effects of treatment on the 58 ABC items were evaluated. Statistically significantly greater improvement was seen with aripiprazole versus placebo (p autistic disorder, particularly with respect to symptoms associated with tantrum behavior.

  12. Successful treatment of a prolactinoma with the antipsychotic drug aripiprazole

    Directory of Open Access Journals (Sweden)

    Ilse C A Bakker

    2016-06-01

    Full Text Available In this report, we describe a female patient with both prolactinoma and psychotic disorder who was successfully treated with aripiprazole, a partial dopamine 2 receptor agonist. During the follow-up of more than 10 years, her psychotic symptoms improved considerably, prolactin levels normalised and the size of the prolactinoma decreased. This observation may be of clinical relevance in similar patients who often are difficult to treat with the regular dopaminergic drugs.

  13. Clinical effectiveness of aripiprazole in short-term treatment of tic disorder in children and adolescents: a naturalistic study.

    Science.gov (United States)

    Ho, Che-Sheng; Chiu, Nan-Chang; Tseng, Chih-Fan; Huang, Yuan-Ling

    2014-02-01

    The purpose of this study was to evaluate the effectiveness and tolerability of aripiprazole in short-term treatment of children and adolescents with tic disorder (TD). This was a 14-week, prospective, open-label flexible dose trial of aripiprazole. We enrolled patients with TD aged between 4 years and 18 years. They received aripiprazole (dose: 2.5 mg/day) initially, which was then adjusted according to clinical response. The severity was assessed by the Yale Global Tic Severity Score (YGTSS) at 0, 2, 6, 10, and 14 weeks. The linear mixed models were used for evaluation of the YGTSSs at each follow-up, which were compared with baseline scores. Eighty-one patients were enrolled in this study. Nine patients withdrew from the study with complaints of adverse side effects. Of the remaining 72 patients, 15 patients discontinued medications prematurely due to being free of symptoms for over 2 weeks. Two patients discontinued medications due to no significant improvement. The mean scores had significantly decreased since the 2nd week (p tic scores, 67.1% in the vocal tic scores, and 70.0% in the total YGTSSs. The common adverse effects were sedation (32.1%) and increased appetite (22.2%). A slight increase in average body weight was noted, from 32.7 to 33.7 kg (+1.0 kg, p tics, in children and adolescents with mild adverse effects. However, further double-blind trials against placebo or other medications are needed to verify the efficacy of aripiprazole in the pharmacotherapy of TD. Copyright © 2013. Published by Elsevier B.V.

  14. [Clinical potentialities and perspectives for the use of aripiprazole in other disorders than its classical indications. A critical analysis of the recent literature].

    Science.gov (United States)

    Crocq, M-A; Camus, V; Millet, B; Gliskman, J; Azorin, J-M; Krebs, M-O; Limosin, F; Costentin, J; Daléry, J

    2008-04-01

    Aripiprazole is indicated for the treatment of schizophrenia in Europe and the United States, and for bipolar disorders in the latter. Nevertheless, a review of recent literature has shown that aripiprazole has been studied in many other disorders, notably resistant depression, anxiety, obsessive-compulsive disorder, borderline personality, Tourette syndrome, addiction, psychotic symptoms in children and adolescents, and neurological and psychiatric disorders in the elderly (late onset delusional disorders, Alzheimer, Parkinson, and delirium). The study of aripiprazole in these numerous indications is motivated by its excellent tolerance and original pharmacological effect (partial agonistic effect on the D2 and 5-HT1A receptors, and antagonistic effect on the 5-HT2A receptors). This paper reviews the recent literature, with particular attention paid to the level of proof provided by these various studies.

  15. Aripiprazole blocks acute self-administration of cocaine and is not self-administered in mice

    DEFF Research Database (Denmark)

    Sørensen, Gunnar; Sager, Thomas N; Petersen, Jørgen H

    2008-01-01

    RATIONALE: The novel antipsychotic aripiprazole in use for treatment of schizophrenia is a partial agonist at dopamine D(2) receptors with actions at a variety of other receptors as well. Cocaine is believed to exert an important part of its rewarding effect by increasing extracellular levels...

  16. Antipsychotic switching for people with schizophrenia who have neuroleptic-induced weight or metabolic problems.

    Science.gov (United States)

    Mukundan, Anitha; Faulkner, Guy; Cohn, Tony; Remington, Gary

    2010-12-08

    Weight gain is common for people with schizophrenia and this has serious implications for a patient's health and well being. Switching strategies have been recommended as a management option. To determine the effects of antipsychotic medication switching as a strategy for reducing or preventing weight gain and metabolic problems in people with schizophrenia. We searched key databases and the Cochrane Schizophrenia Group's trials register (January 2005 and June 2007), reference sections within relevant papers and contacted the first author of each relevant study and other experts to collect further information. All clinical randomised controlled trials comparing switching of antipsychotic medication as an intervention for antipsychotic induced weight gain and metabolic problems with continuation of medication and/or other weight loss treatments (pharmacological and non pharmacological) in people with schizophrenia or schizophrenia-like illnesses. Studies were reliably selected, quality assessed and data extracted. For dichotomous data we calculated risk ratio (RR) and their 95% confidence intervals (CI) on an intention-to-treat basis, based on a fixed-effect model. The primary outcome measures were weight loss, metabolic syndrome, relapse and general mental state. We included four studies for the review with a total of 636 participants. All except one study had a duration of 26 weeks or less. There was a mean weight loss of 1.94 kg (2 RCT, n = 287, CI -3.9 to 0.08) when switched to aripiprazole or quetiapine from olanzapine. BMI also decreased when switched to quetiapine (1 RCT, n = 129, MD -0.52 CI -1.26 to 0.22) and aripiprazole (1 RCT, n = 173, RR 0.28 CI 0.13 to 0.57) from olanzapine.Fasting blood glucose showed a significant decrease when switched to aripiprazole or quetiapine from olanzapine. (2 RCT, MD -2.53 n = 280 CI -2.94 to -2.11). One RCT also showed a favourable lipid profile when switched to aripiprazole but these measures were reported as percentage

  17. The partial dopamine D2 receptor agonist aripiprazole is associated with weight gain in adolescent anorexia nervosa.

    Science.gov (United States)

    Frank, Guido K W; Shott, Megan E; Hagman, Jennifer O; Schiel, Marissa A; DeGuzman, Marisa C; Rossi, Brogan

    2017-04-01

    Finding medication to support treatment of anorexia nervosa has been difficult. Neuroscience-based approaches may help in this effort. Recent brain imaging studies in adults and adolescents with anorexia nervosa suggest that dopamine-related reward circuits are hypersensitive and could provide a treatment target. Here, we present a retrospective chart review of 106 adolescents with anorexia nervosa some of whom were treated with the dopamine D2 receptor partial agonist aripiprazole during treatment in a specialized eating disorder program. The results show that aripiprazole treatment was associated with greater increase in body mass index (BMI) during treatment. The use of dopamine receptor agonists may support treatment success in anorexia nervosa and should be further investigated. © 2017 Wiley Periodicals, Inc.

  18. MK-801-induced deficits in social recognition in rats: reversal by aripiprazole, but not olanzapine, risperidone, or cannabidiol.

    Science.gov (United States)

    Deiana, Serena; Watanabe, Akihito; Yamasaki, Yuki; Amada, Naoki; Kikuchi, Tetsuro; Stott, Colin; Riedel, Gernot

    2015-12-01

    Deficiencies in social activities are hallmarks of numerous brain disorders. With respect to schizophrenia, social withdrawal belongs to the category of negative symptoms and is associated with deficits in the cognitive domain. Here, we used the N-methyl-D-aspartate receptor antagonist dizocilpine (MK-801) for induction of social withdrawal in rats and assessed the efficacy of several atypical antipsychotics with different pharmacological profiles as putative treatment. In addition, we reasoned that the marijuana constituent cannabidiol (CBD) may provide benefit or could be proposed as an adjunct treatment in combination with antipsychotics. Hooded Lister rats were tested in the three-chamber version for social interaction, with an initial novelty phase, followed after 3 min by a short-term recognition memory phase. No drug treatment affected sociability. However, distinct effects on social recognition were revealed. MK-801 reduced social recognition memory at all doses (>0.03 mg/kg). Predosing with aripiprazole dose-dependently (2 or 10 mg/kg) prevented the memory decline, but doses of 0.1 mg/kg risperidone or 1 mg/kg olanzapine did not. Intriguingly, CBD impaired social recognition memory (12 and 30 mg/kg) but did not rescue the MK-801-induced deficits. When CBD was combined with protective doses of aripiprazole (CBD-aripiprazole at 12 :  or 5 : 2 mg/kg) the benefit of the antipsychotic was lost. At the same time, activity-related changes in behaviour were excluded as underlying reasons for these pharmacological effects. Collectively, the combined activity of aripiprazole on dopamine D2 and serotonin 5HT1A receptors appears to provide a significant advantage over risperidone and olanzapine with respect to the rescue of cognitive deficits reminiscent of schizophrenia. The differential pharmacological properties of CBD, which are seemingly beneficial in human patients, did not back-translate and rescue the MK-801-induced social memory deficit.

  19. An open-label extension long-term study of the safety and efficacy of aripiprazole for irritability in children and adolescents with autistic disorder in Japan.

    Science.gov (United States)

    Ichikawa, Hironobu; Hiratani, Michio; Yasuhara, Akihiro; Tsujii, Noa; Oshimo, Takashi; Ono, Hiroaki; Tadori, Yoshihiro

    2018-02-01

    The purpose of this study was to evaluate the long-term safety and efficacy of aripiprazole in treating irritability in pediatric patients (6-17 years) with autistic disorder (AD) in Japan. In this open-label extension study, patients who had completed a previous randomized, double-blind, placebo-controlled 8-week study were enrolled and were flexibly dosed with aripiprazole (1-15 mg/day) until the new indication of irritability in pediatric autism spectrum disorder was approved in Japan. Seventy (81%) out of 86 enrolled patients completed week-48 assessments. The mean duration of treatment was 694.9 days. The mean daily dose of aripiprazole over the treatment period was 7.2 mg and the mean of the final dose was 8.5 mg. The most common treatment-emergent adverse events (TEAE; ≥20%) included nasopharyngitis, somnolence, influenza, and increased weight. The majority of these TEAE were mild or moderate in severity, and there were no deaths, and no clinically relevant findings in laboratory values except prolactin decrease, vital signs, height, or ECG parameters. At week 48 (observed case), the mean change from baseline in the Irritability subscale score for the Aberrant Behavior Checklist Japanese Version was -6.3 in prior placebo patients and -2.6 in prior aripiprazole patients. Aripiprazole was generally safe, well tolerated, and effective in the long-term treatment of irritability associated with AD in Japanese pediatric patients. © 2017 The Authors. Psychiatry and Clinical Neurosciences published by John Wiley & Sons Australia, Ltd on behalf of Japanese Society of Psychiatry and Neurology.

  20. Switching to aripiprazole in outpatients with schizophrenia experiencing insufficient efficacy and/or safety/tolerability issues with risperidone: a randomized, multicentre, open-label study.

    Science.gov (United States)

    Ryckmans, V; Kahn, J P; Modell, S; Werner, C; McQuade, R D; Kerselaers, W; Lissens, J; Sanchez, R

    2009-05-01

    This study evaluated the safety/tolerability and effectiveness of aripiprazole titrated-dose versus fixed-dose switching strategies from risperidone in patients with schizophrenia experiencing insufficient efficacy and/or safety/tolerability issues. Patients were randomized to an aripiprazole titrated-dose (starting dose 5 mg/day) or fixed-dose (dose 15 mg/day) switching strategy with risperidone down-tapering. Primary endpoint was rate of discontinuation due to adverse events (AEs) during the 12-week study. Secondary endpoints included positive and negative syndrome scale (PANSS), clinical global impressions - improvement of illness scale (CGI-I), preference of medication (POM), subjective well-being under neuroleptics (SWN-K) and GEOPTE (Grupo Español para la Optimización del Tratamiento de la Esquizofrenia) scales. Rates of discontinuations due to AEs were similar between titrated-dose and fixed-dose strategies (3.5% vs. 5.0%; p=0.448). Improvements in mean PANSS total scores were similar between aripiprazole titrated-dose and fixed-dose strategies (-14.8 vs. -17.2; LOCF), as were mean CGI-I scores (2.9 vs. 2.8; p=0.425; LOCF) and SWN-K scores (+8.6 vs.+10.3; OC,+7.8 vs.+9.8; LOCF). Switching can be effectively and safely achieved through a titrated-dose or fixed-dose switching strategy for aripiprazole, with down-titration of risperidone.

  1. Aripiprazole Selectively Reduces Motor Tics in a Young Animal Model for Tourette’s Syndrome and Comorbid Attention Deficit and Hyperactivity Disorder

    Directory of Open Access Journals (Sweden)

    Francesca Rizzo

    2018-02-01

    Full Text Available Tourette’s syndrome (TS is a neurodevelopmental disorder characterized primarily by motor and vocal tics. Comorbidities such as attention deficit and hyperactivity disorder (ADHD are observed in over 50% of TS patients. We applied aripiprazole in a juvenile rat model that displays motor tics and hyperactivity. We additionally assessed the amount of ultrasonic vocalizations (USVs as an indicator for the presence of vocal tics and evaluated the changes in the striatal neurometabolism using in vivo proton magnetic resonance spectroscopy (1H-MRS at 11.7T. Thirty-one juvenile spontaneously hypertensive rats (SHRs underwent bicuculline striatal microinjection and treatment with either aripiprazole or vehicle. Control groups were sham operated and sham injected. Behavior, USVs, and striatal neurochemical profile were analyzed at early, middle, and late adolescence (postnatal days 35 to 50. Bicuculline microinjections in the dorsolateral striatum induced motor tics in SHR juvenile rats. Acute aripiprazole administration selectively reduced both tic frequency and latency, whereas stereotypies, USVs, and hyperactivity remained unaltered. The striatal neurochemical profile was only moderately altered after tic-induction and was not affected by systemic drug treatment. When applied to a young rat model that provides high degrees of construct, face, and predictive validity for TS and comorbid ADHD, aripiprazole selectively reduces motor tics, revealing that tics and stereotypies are distinct phenomena in line with clinical treatment of patients. Finally, our 1H-MRS results suggest a critical revision of the striatal role in the hypothesized cortico-striatal dysregulation in TS pathophysiology.

  2. Aripiprazole in the treatment of posttraumatic stress disorder: an open-label trial Aripiprazol no tratamento do transtorno de estresse pós-traumático: um ensaio clínico aberto

    Directory of Open Access Journals (Sweden)

    Marcelo Feijo Mello

    2008-12-01

    Full Text Available OBJECTIVE: Post traumatic stress disorder is frequent in the general population (7.8%-lifetime-USA. The selective serotonin reuptake inhibitors are the first choice of treatment but result in low remission rates. This study aims to evaluate the effect of aripiprazole monotherapy for the treatment of post traumatic stress disorder. METHOD: Thirty-two patients diagnosed with post traumatic stress disorder were included in a 16-week open label trial of aripiprazole. They were evaluated at baseline, week 8, and 16 with the Clinician-Administered PTSD Scale, Beck Depression Inventory, Beck Anxiety Inventory, Medical Outcome Study Short Form 36, and Social Adjustment Scale. Statistical analysis were performed with an intention-to-treat approach and last observation carried forward. A general linear model for repeated measures comparing the factor with 3 continuous measures from baseline, 8 and 16 weeks was used. A between-subject factor was included RESULTS: Nine patients discontinued the treatment. The mean aripiprazole dose was 9.6 (± 4.3 mg/day. The mean scores at baseline and endpoint for all measures were: Clinician-Administered PTSD Scale - 82.7 (± 23.1 and 51.4 (± 31.4 (F = 11.247, p = 0.001; Beck Anxiety Inventory - 31.7 (± 13.4 and 25.4 (± 18.2 (F = 8.931, p = 0.011; Social Adjustment Scale - 2.4 (± 0.45 and 2.27 (± 0.57 (F = 8.633, p = 0.012; Medical Outcome Study Short Form 36 - 76.6 (± 14.11 and 94.01 (± 25.06 (F = 10.127 p = 0.007; and Beck Depression Inventory - 26.06 (± 11.6 and 21.35 (± 12.6 (F = 1.580, p = 0.042. In all measurements, the differences were statistically significant. CONCLUSIONS: Patients achieved a good response to treatment with aripiprazole, but placebo-controlled studies are needed for more accurate results.OBJETIVO: O transtorno de estresse pós-traumático é um quadro prevalente (7,8%-lifetime-EUA que provoca grande prejuízo aos pacientes. Os inibidores seletivos de recaptação de serotonina, medica

  3. Effects of acute and chronic aripiprazole treatment on choice between cocaine self-administration and food under a concurrent schedule of reinforcement in rats

    DEFF Research Database (Denmark)

    Thomsen, Morgane; Fink-Jensen, Anders; Woldbye, David

    2008-01-01

    the hypothesis that aripiprazole, both as acute and as chronic treatment, would preferentially decrease cocaine self-administration while sparing behavior maintained by a natural reinforcer, resulting in a shift in the allocation of behavior from cocaine-taking towards the alternative reinforcer. MATERIALS......-administration or cocaine choice, despite a dose-dependent decrease in overall response rates and food-maintained behavior. CONCLUSIONS: Our results confirm and extend earlier findings and indicate that acute administration of aripiprazole can decrease cocaine self-administration. However, based on the present data...

  4. Aripiprazole Increases the PKA Signalling and Expression of the GABAA Receptor and CREB1 in the Nucleus Accumbens of Rats.

    Science.gov (United States)

    Pan, Bo; Lian, Jiamei; Huang, Xu-Feng; Deng, Chao

    2016-05-01

    The GABAA receptor is implicated in the pathophysiology of schizophrenia and regulated by PKA signalling. Current antipsychotics bind with D2-like receptors, but not the GABAA receptor. The cAMP-responsive element-binding protein 1 (CREB1) is also associated with PKA signalling and may be related to the positive symptoms of schizophrenia. This study investigated the effects of antipsychotics in modulating D2-mediated PKA signalling and its downstream GABAA receptors and CREB1. Rats were treated orally with aripiprazole (0.75 mg/kg, ter in die (t.i.d.)), bifeprunox (0.8 mg/kg, t.i.d.), haloperidol (0.1 mg/kg, t.i.d.) or vehicle for 1 week. The levels of PKA-Cα and p-PKA in the prefrontal cortex (PFC), nucleus accumbens (NAc) and caudate putamen (CPu) were detected by Western blots. The mRNA levels of Gabrb1, Gabrb2, Gabrb3 and Creb1, and their protein expression were measured by qRT-PCR and Western blots, respectively. Aripiprazole elevated the levels of p-PKA and the ratio of p-PKA/PKA in the NAc, but not the PFC and CPu. Correlated with this elevated PKA signalling, aripiprazole elevated the mRNA and protein expression of the GABAA (β-1) receptor and CREB1 in the NAc. While haloperidol elevated the levels of p-PKA and the ratio of p-PKA/PKA in both NAc and CPu, it only tended to increase the expression of the GABAA (β-1) receptor and CREB1 in the NAc, but not the CPu. Bifeprunox had no effects on PKA signalling in these brain regions. These results suggest that aripiprazole has selective effects on upregulating the GABAA (β-1) receptor and CREB1 in the NAc, probably via activating PKA signalling.

  5. A 64-week, multicenter, open-label study of aripiprazole effectiveness in the management of patients with schizophrenia or schizoaffective disorder in a general psychiatric outpatient setting

    Directory of Open Access Journals (Sweden)

    Chiu Nan-Ying

    2010-09-01

    Full Text Available Abstract Objective To evaluate the overall long-term effectiveness of aripiprazole in patients with schizophrenia in a general psychiatric practice setting in Taiwan. Methods This was a prospective, open-label, multicenter, post-market surveillance study in Taiwanese patients with a Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition (DSM-IV diagnosis of schizophrenia or schizoaffective disorder requiring a switch in antipsychotic medication because current medication was not well tolerated and/or clinical symptoms were not well controlled. Eligible patients were titrated to aripiprazole (5-30 mg/day over a 12-week switching phase, during which their previous medication was discontinued. Patients could then enter a 52-week, long-term treatment phase. Aripiprazole was flexibly dosed (5-30 mg/day at the discretion of the treating physicians. Efficacy was assessed using the Clinical Global Impression scale Improvement (CGI-I score, the Clinical Global Impression scale Severity (CGI-S score, The Brief Psychiatry Rating Scale (BPRS, and the Quality of Life (QOL scale, as well as Preference of Medicine (POM ratings by patients and caregivers. Safety and tolerability were also assessed. Results A total of 245 patients were enrolled and switched from their prior antipsychotic medications, and 153 patients entered the 52-week extension phase. In all, 79 patients (32.2% completed the study. At week 64, the mean CGI-I score was 3.10 and 64.6% of patients who showed response. Compared to baseline, scores of CGI-S, QOL, and BPRS after 64 weeks of treatment also showed significant improvements. At week 12, 65.4% of subjects and 58.9% of caregivers rated aripiprazole as better than the prestudy medication on the POM. The most frequently reported adverse events (AEs were headache, auditory hallucinations and insomnia. A total of 13 patients (5.3% discontinued treatment due to AEs. No statistically significant changes were noted with respect to

  6. Pregnancy exposure to olanzapine, quetiapine, risperidone, aripiprazole and risk of congenital malformations. A systematic review

    DEFF Research Database (Denmark)

    Ennis, Zandra Nymand; Damkier, Per

    2015-01-01

    /22 (5.1%) and 100/5 (5.0%), respectively. Relative risk estimates and 95% confidence intervals were 1.0 (0.7-1.4) (olanzapine), 1.0 (0.6-1.7) (quetiapine), 1.5 (0.9-2.2) (risperidone) and 1.4 (0.5-3.1) (aripiprazole). First-trimester exposure to olanzapine is not associated with an increased risk...

  7. Effect of switching to risperidone after unsuccessful treatment with aripiprazole on plasma monoamine metabolites level in the treatment of acute schizophrenia.

    Science.gov (United States)

    Miura, Itaru; Takeuchi, Satoshi; Katsumi, Akihiko; Kanno, Keiko; Watanabe, Kenya; Mashiko, Hirobumi; Niwa, Shin-Ichi

    2012-09-01

    In the treatment of acute schizophrenia, risperidone and aripiprazole are both placed the first line antipsychotics. These two antipsychotics have different pharmacological effects. We investigated the effects of risperidone on plasma levels of homovanillic acid (HVA) and 3-methoxy-4hydroxyphenylglycol after unsuccessful aripiprazole treatment in acute schizophrenia. Ten Japanese patients with acute schizophrenia were enrolled to this study. Plasma levels of monoamine metabolites were analyzed with high-performance liquid chromatography with electrochemical detection. Risperidone improved the symptoms and 4 of 10 patients were responders. Risperidone showed a tendency to decrease plasma HVA (pHVA) levels in responders (p = 0.068), but not in non-responders (p = 1.0). At baseline, pHVA levels of responders were significantly higher than that of non-responders (p = 0.033). A trend for negative correlation was found between pHVA at baseline and the changes in Positive and Negative Syndrome Scale-Total (p = 0.061, r = -0.61). Our results suggest that high pHVA level before switching may predict good response to the second line antipsychotics after unsuccessful first antipsychotic treatment. If aripiprazole is not effective in acute schizophrenia, switching to risperidone may be effective and reasonable strategy for improving symptoms. Copyright © 2012 John Wiley & Sons, Ltd.

  8. Effects of aripiprazole and haloperidol on neural activation during the n-back in healthy individuals: A functional MRI study.

    Science.gov (United States)

    Goozee, Rhianna; Reinders, Antje A T S; Handley, Rowena; Marques, Tiago; Taylor, Heather; O'Daly, Owen; McQueen, Grant; Hubbard, Kathryn; Mondelli, Valeria; Pariante, Carmine; Dazzan, Paola

    2016-06-01

    Antipsychotic drugs target neurotransmitter systems that play key roles in working memory. Therefore, they may be expected to modulate this cognitive function via their actions at receptors for these neurotransmitters. However, the precise effects of antipsychotic drugs on working memory function remain unclear. Most studies have been carried out in clinical populations, making it difficult to disentangle pharmacological effects from pathology-related brain activation. In this study, we aim to investigate the effects of two antipsychotic compounds on brain activation during working memory in healthy individuals. This would allow elucidation of the effects of current antipsychotic treatments on brain function, independently of either previous antipsychotic use or disease-related pathology. We carried out a fully counterbalanced, randomised within-subject, double-blinded and placebo-controlled, cross-over study of the effects of two antipsychotic drugs on working memory function in 17 healthy individuals, using the n-back task. Participants completed the functional MRI task on three separate occasions (in randomised order): following placebo, haloperidol, and aripiprazole. For each condition, working memory ability was investigated, and maps of neural activation were entered into a random effects general linear regression model to investigate main working memory function and linear load. Voxel-wise and region of interest analyses were conducted to attain regions of altered brain activation for each intervention. Aripiprazole did not lead to any changes in neural activation compared with placebo. However, reaction time to a correct response was significantly increased following aripiprazole compared to both placebo (p=0.046) and haloperidol (p=0.02). In contrast, compared to placebo, haloperidol dampened activation in parietal (BA 7/40; left: FWE-corr. p=0.005; FWE-corr. right: p=0.007) and frontal (including prefrontal; BA 9/44/46; left: FWE-corr. p=0.009; right: FWE

  9. Successful Treatment Response with Aripiprazole Augmentation of SSRIs in Refractory Obsessive-Compulsive Disorder in Childhood.

    Science.gov (United States)

    Akyol Ardic, Ulku; Ercan, Eyup Sabri; Kutlu, Ayse; Yuce, Deniz; Ipci, Melis; Inci, Sevim Berrin

    2017-10-01

    The aim of this study is to evaluate the aripiprazole augmentation of selective seratonine reuptake inhibitors (SSRIs) in children and adolescents with treatment-resistant OCD. Forty-eight children and adolescents (14 girls, 34 boys), who are non-responders to treatment with at least two types of SSRIs and CBT, were administered a 12-week of augmentation. Children's Yale-Brown Obsessive Compulsive Scale (CY-BOCS), and Clinical Global Impression-Severity and Improvement (CGI-S and CGI-I) sub-scales were used for evaluation of the treatment outcomes. The results showed that total CY-BOCS scores were decreased from 33.3 ± 7.5 to 11.7 ± 9.3 (p augmentation have also revealed that improvement effect was still significant, and CY-BOCS scores were improved from 34.2 ± 7.9 to 13 ± 10.3, CGI-S improved from 6.4 ± 1.0 to 3.0 ± 1.7, and CGI-I improved from 4.4 ± 1.0 to 2.3 ± 1.1 (p augmentation. Aripiprazole augmentation of SSRIs is a promising strategy in the management of treatment-refractory OCD children and adolescents.

  10. Quetiapine extended release versus aripiprazole in children and adolescents with first-episode psychosis

    DEFF Research Database (Denmark)

    Pagsberg, Anne Katrine; Jeppesen, Pia; Klauber, Dea Gowers

    2017-01-01

    of quetiapine-extended release (quetiapine-ER) versus aripiprazole in children and adolescents with first-episode psychosis, to determine whether differences between the two treatments were sufficient to guide clinicians in their choice of one drug over the other. METHODS: In this multicentre, double-blind...... (47 [92%] vs 39 [71%]), orthostatic dizziness (42 [78%] vs 46 [81%]), depression (43 [80%] vs 44 [77%]), tension/inner unrest (37 [69%] vs 50 [88%]), failing memory (41 [76%] vs 44 [77%]), and weight gain (46 [87%] vs 38 [68%]). INTERPRETATION: This first head-to-head comparison of quetiapine...

  11. Effect of aripiprazole 2 to 15 mg/d on health-related quality of life in the treatment of irritability associated with autistic disorder in children: a post hoc analysis of two controlled trials.

    Science.gov (United States)

    Varni, James W; Handen, Benjamin L; Corey-Lisle, Patricia K; Guo, Zhenchao; Manos, George; Ammerman, Diane K; Marcus, Ronald N; Owen, Randall; McQuade, Robert D; Carson, William H; Mathew, Suja; Mankoski, Raymond

    2012-04-01

    There are limited published data on the impact of treatment on the health-related quality of life (HRQOL) in individuals with autistic disorder. The aim of this study was to evaluate the impact of aripiprazole on HRQOL in the treatment of irritability in pediatric patients (aged 6-17 years) with autistic disorder. This post hoc analysis assessed data from two 8-week, double-blind, randomized, placebo-controlled studies that compared the efficacy of aripiprazole (fixed-dose study, 5, 10, and 15 mg/d; flexible-dose study, 2-15 mg/d) with placebo in the treatment of irritability associated with autistic disorder. HRQOL was assessed at baseline and week 8 using 3 Pediatric Quality of Life Inventory (PedsQL™) scales. Clinically relevant improvement in HRQOL was determined using an accepted distribution-based criterion-1 standard error of measurement. In total, 316 patients were randomly assigned to receive treatment with aripiprazole (fixed-dose study, 166; flexible-dose study, 47) or placebo (fixed-dose study, 52; flexible-dose study, 51). Aripiprazole was associated with significantly greater improvement than placebo in PedsQL combined-scales total score (difference, 7.8; 95% CI, 3.8-11.8; P autistic disorder. Copyright © 2012 Elsevier HS Journals, Inc. All rights reserved.

  12. Clinical Usefulness of Aripiprazole and Lamotrigine in Schizoaffective Presentation of Tuberous Sclerosis.

    Science.gov (United States)

    Lee, Seung-Yup; Min, Jung-Ah; Lee, In Goo; Kim, Jung Jin

    2016-08-31

    Tuberous sclerosis is not as rare as once thought and has high psychiatric comorbidities. However, bipolar or psychotic features associated with tuberous sclerosis have been rarely reported. This report first presents a tuberous sclerosis patient, resembling a schizoaffective disorder of bipolar type. A patient with known tuberous sclerosis displayed mood fluctuation and psychotic features. Her symptoms did not remit along with several psychiatric medications. After hospitalization, the patient responded well with lamotrigine and aripiprazole without exacerbation. As demonstrated in this case, tuberous sclerosis may also encompass bipolar affective or psychotic features. We would like to point out the necessity to consider bipolarity in evaluating and treating tuberous sclerosis.

  13. Risk of Gambling Disorder and Impulse Control Disorder With Aripiprazole, Pramipexole, and Ropinirole: A Pharmacoepidemiologic Study.

    Science.gov (United States)

    Etminan, Mahyar; Sodhi, Mohit; Samii, Ali; Procyshyn, Ric M; Guo, Michael; Carleton, Bruce C

    2017-02-01

    Recently, the US Food and Drug Administration issued a warning regarding the potential risk of gambling disorder, but large epidemiologic studies are lacking. We used a large health claims database from the United States and conducted a nested case-control study. Cases were defined as subjects newly diagnosed with gambling disorder or impulse control disorder. For each case, 10 controls were selected and matched to cases by age and follow-up time and calendar time. Adjusted rate ratios were computed with conditional logistic regression. There are 355 cases of gambling disorder and 3550 controls along with 4341 cases of impulse control disorder and 43,410 corresponding controls. After adjusting for confounders, users of aripiprazole demonstrated an increased risk of pathologic gambling (rate ratio [RR], 5.23; 95% confidence interval [CI], 1.78-15.38) and impulse control disorder (RR, 7.71; 95% CI, 5.81-10.34). The risk was also elevated for pramipexole or ropinirole for both gambling disorder and impulse control disorder (RR, 7.61; 95% CI, 2.75-21.07; RR, 3.28; 95% CI, 2.31-4.66, respectively). Our study confirms an association between aripiprazole, pramipexole, or ropinirole and impulse control disorder and gambling disorder.

  14. Effects of aripiprazole and haloperidol on neural activation during a simple motor task in healthy individuals: A functional MRI study.

    Science.gov (United States)

    Goozee, Rhianna; O'Daly, Owen; Handley, Rowena; Reis Marques, Tiago; Taylor, Heather; McQueen, Grant; Hubbard, Kathryn; Pariante, Carmine; Mondelli, Valeria; Reinders, Antje A T S; Dazzan, Paola

    2017-04-01

    The dopaminergic system plays a key role in motor function and motor abnormalities have been shown to be a specific feature of psychosis. Due to their dopaminergic action, antipsychotic drugs may be expected to modulate motor function, but the precise effects of these drugs on motor function remain unclear. We carried out a within-subject, double-blind, randomized study of the effects of aripiprazole, haloperidol and placebo on motor function in 20 healthy men. For each condition, motor performance on an auditory-paced task was investigated. We entered maps of neural activation into a random effects general linear regression model to investigate motor function main effects. Whole-brain imaging revealed a significant treatment effect in a distributed network encompassing posterior orbitofrontal/anterior insula cortices, and the inferior temporal and postcentral gyri. Post-hoc comparison of treatments showed neural activation after aripiprazole did not differ significantly from placebo in either voxel-wise or region of interest analyses, with the results above driven primarily by haloperidol. We also observed a simple main effect of haloperidol compared with placebo, with increased task-related recruitment of posterior cingulate and precentral gyri. Furthermore, region of interest analyses revealed greater activation following haloperidol compared with placebo in the precentral and post-central gyri, and the putamen. These diverse modifications in cortical motor activation may relate to the different pharmacological profiles of haloperidol and aripiprazole, although the specific mechanisms underlying these differences remain unclear. Evaluating healthy individuals can allow investigation of the effects of different antipsychotics on cortical activation, independently of either disease-related pathology or previous treatment. Hum Brain Mapp 38:1833-1845, 2017. © 2017 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  15. Improvement of Aripiprazole Solubility by Complexation with (2-Hydroxy)propyl-β-cyclodextrin Using Spray Drying Technique

    OpenAIRE

    Mihajlovic, Tijana; Kachrimanis, Kyriakos; Graovac, Adrijana; Djuric, Zorica; Ibric, Svetlana

    2012-01-01

    Due to the fact that the number of new poorly soluble active pharmaceutical ingredients is increasing, it is important to investigate the possibilities of improvement of their solubility in order to obtain a final pharmaceutical formulation with enhanced bioavailability. One of the strategies to increase drug solubility is the inclusion of the APIs in cyclodextrins. The aim of this study was to investigate the possibility of aripiprazole solubility improvement by inclusion in (2-hydroxy)propy...

  16. Effects of aripiprazole versus risperidone on brain activation during planning and social-emotional evaluation in schizophrenia : A single-blind randomized exploratory study

    NARCIS (Netherlands)

    Liemburg, Edith J.; van Es, Frank; Knegtering, Henderikus; Aleman, Andre

    2017-01-01

    Impaired function of prefrontal brain networks may be the source of both negative symptoms and neurocognitive problems in psychotic disorders. Whereas most antipsychotics may decrease prefrontal activation, the partial dopamine D2-receptor agonist aripiprazole is hypothesized to improve prefrontal

  17. Effects of aripiprazole and the Taq1A polymorphism in the dopamine D2 receptor gene on the clinical response and plasma monoamine metabolites level during the acute phase of schizophrenia.

    Science.gov (United States)

    Miura, Itaru; Takeuchi, Satoshi; Katsumi, Akihiko; Mori, Azuma; Kanno, Keiko; Yang, Qiaohui; Mashiko, Hirobumi; Numata, Yoshihiko; Niwa, Shin-Ichi

    2012-02-01

    The Taq1A polymorphism in the dopamine D2 receptor (DRD2) gene could be related to the response to antipsychotics. We examined the effects of the Taq1A polymorphism on the plasma monoamine metabolites during the treatment of schizophrenia with aripiprazole, a DRD2 partial agonist. Thirty Japanese patients with schizophrenia were treated with aripiprazole for 6 weeks. We measured plasma levels of homovanillic acid (pHVA) and 3-methoxy-4hydroxyphenylglycol (pMHPG) before and after treatment. The Taq1A polymorphism was genotyped with polymerase chain reaction. Aripiprazole improved the acute symptoms of schizophrenia and decreased pHVA in responders (P = 0.023) but not in nonresponders (P = 0.28). Although A1 allele carriers showed a tendency to respond to aripiprazole (61.5%) compared to A1 allele noncarriers (29.4%) (P = 0.078), there was not statistically significant difference in the response between the 2 genotype groups. There were significant effect for response (P = 0.013) and genotype × response interaction (P = 0.043) on the change of pHVA. The changes of pHVA differ between responders and nonresponders in A1 allele carriers but not in A1 allele noncarriers. There were no genotype or response effects or genotype × response interaction on the changes of the plasma levels of 3-methoxy-4hydroxyphenylglycol. Our preliminary results suggest that Taq1A polymorphism may be partly associated with changes in pHVA during acute schizophrenia.

  18. Change and dispersion of QT interval during treatment with quetiapine extended release versus aripiprazole in children and adolescents with first-episode psychosis

    DEFF Research Database (Denmark)

    Jensen, Karsten Gjessing; Gärtner, Stefan; Correll, Christoph U.

    2018-01-01

    was correlated to higher QTcH change in the quetiapine ER group. The HR increased significantly with quetiapine ER (+ 11.0 ± 14.2 bpm, p bpm, p = 0.643). QTd did not significantly change with quetiapine ER or aripiprazole. Conclusion: QTcH and HR increased...

  19. Methodological challenges in indirect treatment comparisons: spotlight on a recent comparison of long-acting injectable aripiprazole versus paliperidone palmitate in the treatment of schizophrenia.

    Science.gov (United States)

    Singh, Arun; Gopal, Srihari; Kim, Edward; Mathews, Maju; Kern-Sliwa, Jennifer; Turkoz, Ibrahim; Wooller, Annette; Berlin, Jesse

    2018-03-01

    In a recent study, an indirect treatment comparison was performed to examine the relative efficacy and tolerability of aripiprazole once monthly and paliperidone palmitate once monthly. The authors concluded that the results may suggest relative advantages for aripiprazole once monthly over paliperidone palmitate once monthly in the short-term treatment of schizophrenia. However, the validity of the study is compromised as an indirect treatment comparison using extant data may violate important assumptions. Other methodological issues identified further highlight the challenges of performing indirect treatment comparisons.This is an open-access article distributed under the terms of the Creative Commons Attribution-Non Commercial-No Derivatives License 4.0 (CCBY-NC-ND), where it is permissible to download and share the work provided it is properly cited. The work cannot be changed in any way or used commercially without permission from the journal. http://creativecommons.org/licenses/by-nc-nd/4.0/.

  20. Is Metabolic Syndrome On the Radar? Improving Real-Time Detection of Metabolic Syndrome and Physician Response by Computerized Scan of the Electronic Medical Record

    Science.gov (United States)

    Lui, Kingwai; Randhawa, Gagandeep; Totten, Vicken; Smith, Adam E.; Raese, Joachim

    2016-01-01

    Objective: Metabolic syndrome is a common underdiagnosed condition among psychiatric patients exacerbated by second-generation antipsychotics, with the exception of aripiprazole and ziprasidone. This study evaluated the prescribing and treating behavior with regard to antipsychotics and metabolic syndrome of psychiatrists before and after implementation of a mandatory admission order set and electronic notification of results. Method: Baseline data from 9,100 consecutive psychiatric admissions to a mental health hospital (July 2013–July 2014) were compared to postintervention data (July 2014–January 2015), which included 1,499 consecutive patient records. The intervention initiated standardized admission testing with electronic notification to psychiatrists when patients met metabolic syndrome criteria (according to Axis III of the DSM-IV). Charts were examined for inclusion of this diagnosis at discharge and for treatment changes. Results: At baseline, only 2.4% of patients (n = 214) were evaluated for metabolic syndrome. Of these, 34.5% (0.8% of the total sample) met metabolic syndrome criteria. Only 15 patients (0.16%) were comprehensively treated. No chart listed metabolic syndrome under Axis III of the DSM-IV. After the intervention, the diagnosis of patients meeting the criteria for metabolic syndrome increased from 0% to 29.3%. Less than 3% of patients were switched to drugs with a more benign metabolic profile. All patients who continued on second-generation antipsychotics had metabolic retesting. Thirty-eight experienced a significant and rapid increase in triglyceride levels after only 3 to 17 days. Conclusions: Mandatory intake testing increases the number of patients evaluated for metabolic syndrome. Electronic alerts increase the inclusion of metabolic syndrome among discharge diagnoses but rarely affect prescribing practices. PMID:27247842

  1. Comparison of risperidone and aripiprazole in the treatment of preschool children with disruptive behavior disorder and attention deficit-hyperactivity disorder: A randomized clinical trial

    Directory of Open Access Journals (Sweden)

    Parvin Safavi

    2016-01-01

    Full Text Available Although pharmacotherapy with atypical antipsychotics is common in child psychiatry, there has been little research on this issue. To compare the efficacy and safety of risperidone and aripiprazole in the treatment of preschool children with disruptive behavior disorders comorbid with attention deficit-hyperactivity disorder (ADHD. Randomized clinical trial conducted in a university-affiliated child psychiatry clinic in southwest Iran. Forty 3-6-year-old children, diagnosed with oppositional defiant disorder comorbid with ADHD, were randomized to an 8-week trial of treatment with risperidone or aripiprazole (20 patients in each group. Assessment was performed by Conners′ rating scale-revised and clinical global impressions scale, before treatment, and at weeks 2, 4, and 8 of treatment. The data were analyzed by SPSS version 16. Mean scores between the two groups were compared by analysis of variance and independent and paired t-test. Mean scores of Conners rating scales were not different between two groups in any steps of evaluation. Both groups had significantly reduced scores in week 2 of treatment (P = 0.00, with no significant change in subsequent measurements. Rates of improvement, mean increase in weight (P = 0.894, and mean change in fasting blood sugar (P = 0.671 were not significantly different between two groups. Mean serum prolactin showed a significant increase in risperidone group (P = 0.00. Both risperidone and aripiprazole were equally effective in reducing symptoms of ADHD and oppositional defiant disorder, and relatively safe, but high rates of side effects suggest the cautious use of these drugs in children.

  2. Influence of Aripiprazole, Risperidone, and Amisulpride on Sensory and Sensorimotor Gating in Healthy ‘Low and High Gating' Humans and Relation to Psychometry

    Science.gov (United States)

    Csomor, Philipp A; Preller, Katrin H; Geyer, Mark A; Studerus, Erich; Huber, Theodor; Vollenweider, Franz X

    2014-01-01

    Despite advances in the treatment of schizophrenia spectrum disorders with atypical antipsychotics (AAPs), there is still need for compounds with improved efficacy/side-effect ratios. Evidence from challenge studies suggests that the assessment of gating functions in humans and rodents with naturally low-gating levels might be a useful model to screen for novel compounds with antipsychotic properties. To further evaluate and extend this translational approach, three AAPs were examined. Compounds without antipsychotic properties served as negative control treatments. In a placebo-controlled, within-subject design, healthy males received either single doses of aripiprazole and risperidone (n=28), amisulpride and lorazepam (n=30), or modafinil and valproate (n=30), and placebo. Prepulse inhibiton (PPI) and P50 suppression were assessed. Clinically associated symptoms were evaluated using the SCL-90-R. Aripiprazole, risperidone, and amisulpride increased P50 suppression in low P50 gaters. Lorazepam, modafinil, and valproate did not influence P50 suppression in low gaters. Furthermore, low P50 gaters scored significantly higher on the SCL-90-R than high P50 gaters. Aripiprazole increased PPI in low PPI gaters, whereas modafinil and lorazepam attenuated PPI in both groups. Risperidone, amisulpride, and valproate did not influence PPI. P50 suppression in low gaters appears to be an antipsychotic-sensitive neurophysiologic marker. This conclusion is supported by the association of low P50 suppression and higher clinically associated scores. Furthermore, PPI might be sensitive for atypical mechanisms of antipsychotic medication. The translational model investigating differential effects of AAPs on gating in healthy subjects with naturally low gating can be beneficial for phase II/III development plans by providing additional information for critical decision making. PMID:24801767

  3. Medication adherence and utilization in patients with schizophrenia or bipolar disorder receiving aripiprazole, quetiapine, or ziprasidone at hospital discharge: A retrospective cohort study

    Directory of Open Access Journals (Sweden)

    Berger Ariel

    2012-08-01

    Full Text Available Abstract Background Schizophrenia and bipolar disorder are chronic debilitating disorders that are often treated with second-generation antipsychotic agents, such as aripiprazole, quetiapine, and ziprasidone. While patients who are hospitalized for schizophrenia and bipolar disorder often receive these agents at discharge, comparatively little information exists on subsequent patterns of pharmacotherapy. Methods Using a database linking hospital admission records to health insurance claims, we identified all patients hospitalized for schizophrenia (ICD-9-CM diagnosis code 295.XX or bipolar disorder (296.0, 296.1, 296.4-296.89 between January 1, 2001 and September 30, 2008 who received aripiprazole, quetiapine, or ziprasidone at discharge. Patients not continuously enrolled for 6 months before and after hospitalization (“pre-admission” and “follow-up”, respectively were excluded. We examined patterns of use of these agents during follow-up, including adherence with treatment (using medication possession ratios [MPRs] and cumulative medication gaps [CMGs] and therapy switching. Analyses were undertaken separately for patients with schizophrenia and bipolar disorder, respectively. Results We identified a total of 43 patients with schizophrenia, and 84 patients with bipolar disorder. During the 6-month period following hospitalization, patients with schizophrenia received an average of 101 therapy-days with the second-generation antipsychotic agent prescribed at discharge; for patients with bipolar disorder, the corresponding value was 68 therapy-days. Mean MPR at 6 months was 55.1% for schizophrenia patients, and 37.3% for those with bipolar disorder; approximately one-quarter of patients switched to another agent over this period. Conclusions Medication compliance is poor in patients with schizophrenia or bipolar disorder who initiate treatment with aripiprazole, quetiapine, or ziprasidone at hospital discharge.

  4. Poly(I:C) model of schizophrenia in rats induces sex-dependent functional brain changes detected by MRI that are not reversed by aripiprazole treatment

    Czech Academy of Sciences Publication Activity Database

    Dražanová, Eva; Rudá-Kučerová, J.; Krátká, Lucie; Horská, K.; Demlová, R.; Starčuk jr., Zenon; Kašpárek, T.

    2018-01-01

    Roč. 137, MAR (2018), s. 146-155 ISSN 0361-9230 R&D Projects: GA MŠk(CZ) LM2015062; GA MŠk(CZ) LO1212 Institutional support: RVO:68081731 Keywords : aripiprazole * arterial spin labelling * wistar rats * schizophrenia * sex * MRI Impact factor: 3.033, year: 2016

  5. A multicenter, open-label, pilot study evaluating the functionality of an integrated call center for a digital medicine system to optimize monitoring of adherence to oral aripiprazole in adult patients with serious mental illness

    Directory of Open Access Journals (Sweden)

    Kopelowicz A

    2017-10-01

    Full Text Available Alex Kopelowicz,1 Ross A Baker,2 Cathy Zhao,2 Claudette Brewer,3 Erica Lawson,3 Timothy Peters-Strickland2 1David Geffen School of Medicine, University of California, Los Angeles, CA, 2Otsuka Pharmaceutical Development and Commercialization Inc., Princeton, NJ, 3Otsuka Pharmaceutical Development and Commercialization Inc., Rockville, MD, USA Background: Medication nonadherence is common in the treatment of serious mental illness (SMI and leads to poor outcomes. The digital medicine system (DMS objectively measures adherence with oral aripiprazole in near-real time, allowing recognition of adherence issues. This pilot study evaluated the functionality of an integrated call center in optimizing the use of the DMS. Materials and methods: An 8-week, open-label, single-arm trial at four US sites enrolled adults with bipolar I disorder, major depressive disorder, and schizophrenia on stable oral aripiprazole doses and willing to use the DMS (oral aripiprazole + ingestible event marker [IEM], IEM-detecting skin patch, and software application. Integrated call-center functionality was assessed based on numbers and types of calls. Ingestion adherence with prescribed treatment (aripiprazole + IEM during good patch wear and proportion of time with good patch wear (days with ≥80% patch data or detected IEM were also assessed. Results: All enrolled patients (n=49 used the DMS and were included in analyses; disease duration overall approached 10 years. For a duration of 8 weeks, 136 calls were made by patients, and a comparable 160 calls were made to patients, demonstrating interactive communication. The mean (SD number of calls made by patients was 2.8 (3.5. Approximately half of the inbound calls made by patients occurred during the first 2 weeks and were software application- or patch-related. Mean ingestion adherence was 88.6%, and corresponding good patch wear occurred on 80.1% of study days. Conclusion: In this pilot study, the integrated call center

  6. Efficacy, tolerability, and safety of aripiprazole once-monthly versus other long-acting injectable antipsychotic therapies in the maintenance treatment of schizophrenia: a mixed treatment comparison of double-blind randomized clinical trials.

    Science.gov (United States)

    Majer, Istvan M; Gaughran, Fiona; Sapin, Christophe; Beillat, Maud; Treur, Maarten

    2015-01-01

    Treatment with long-acting injectable (LAI) antipsychotic medication is an important element of relapse prevention in schizophrenia. Recently, the intramuscular once-monthly formulation of aripiprazole received marketing approval in Europe and the United States for schizophrenia. This study aimed to compare aripiprazole once-monthly with other LAI antipsychotics in terms of efficacy, tolerability, and safety. A systematic literature review was conducted to identify relevant double-blind randomized clinical trials of LAIs conducted in the maintenance treatment of schizophrenia. MEDLINE, MEDLINE In-Process, Embase, the Cochrane Library, PsycINFO, conference proceedings, clinical trial registries, and the reference lists of key review articles were searched. The literature search covered studies dating from January 2002 to May 2013. Studies were required to have ≥24 weeks of follow-up. Patients had to be stable at randomization. Studies were not eligible for inclusion if efficacy of acute and maintenance phase treatment was not reported separately. Six trials were identified (0.5% of initially identified studies), allowing comparisons of aripiprazole once-monthly, risperidone LAI, paliperidone palmitate, olanzapine pamoate, haloperidol depot, and placebo. Data extracted included study details, study duration, the total number of patients in each treatment arm, efficacy, tolerability, and safety outcomes. The efficacy outcome contained the number of patients that experienced a relapse, tolerability outcomes included the number of patients that discontinued treatment due to treatment-related adverse events (AEs), and that discontinued treatment due to reasons other than AEs (e.g., loss to follow-up). Safety outcomes included the incidence of clinically relevant weight gain and extrapyramidal symptoms. Data were analyzed by applying a mixed treatment comparison competing risks model (efficacy) and using binary models (safety). There was no statistically significant

  7. Dried Blood Spots Combined With Ultra-High-Performance Liquid Chromatography-Mass Spectrometry for the Quantification of the Antipsychotics Risperidone, Aripiprazole, Pipamperone, and Their Major Metabolites.

    Science.gov (United States)

    Tron, Camille; Kloosterboer, Sanne M; van der Nagel, Bart C H; Wijma, Rixt A; Dierckx, Bram; Dieleman, Gwen C; van Gelder, Teun; Koch, Birgit C P

    2017-08-01

    Risperidone, aripiprazole, and pipamperone are antipsychotic drugs frequently prescribed for the treatment of comorbid behavioral problems in children with autism spectrum disorders. Therapeutic drug monitoring (TDM) could be useful to decrease side effects and to improve patient outcome. Dried blood spot (DBS) sample collection seems to be an attractive technique to develop TDM of these drugs in a pediatric population. The aim of this work was to develop and validate a DBS assay suitable for TDM and home sampling. Risperidone, 9-OH risperidone, aripiprazole, dehydroaripiprazole, and pipamperone were extracted from DBS and analyzed by ultra-high-performance liquid chromatography-tandem mass spectrometry using a C18 reversed-phase column with a mobile phase consisting of ammonium acetate/formic acid in water or methanol. The suitability of DBS for TDM was assessed by studying the influence of specific parameters: extraction solution, EDTA carryover, hematocrit, punching location, spot volume, and hemolysis. The assay was validated with respect to conventional guidelines for bioanalytical methods. The method was linear, specific without any critical matrix effect, and with a mean recovery around 90%. Accuracy and imprecision were within the acceptance criteria in samples with hematocrit values from 30% to 45%. EDTA or hemolysis did not skew the results, and no punching carryover was observed. No significant influence of the spot volume or the punch location was observed. The antipsychotics were all stable in DBS stored 10 days at room temperature and 1 month at 4 or -80°C. The method was successfully applied to quantify the 3 antipsychotics and their metabolites in patient samples. A UHPLC-MS/MS method has been successfully validated for the simultaneous quantification of risperidone, 9-OH risperidone, aripiprazole, dehydroaripiprazole, and pipamperone in DBS. The assay provided good analytical performances for TDM and clinical research applications.

  8. Aripiprazol: od wyjątkowego mechanizmu działania do szerokich zastosowań

    Directory of Open Access Journals (Sweden)

    Tomasz Sobów

    2016-09-01

    Full Text Available Efektywne, nastawione na możliwie kompletną poprawę objawową i funkcjonalną leczenie schizofrenii i choroby afektywnej dwubiegunowej pozostaje w dzisiejszym stanie wiedzy zadaniem trudnym. Uważa się, że kluczowe jest kompleksowe podejście do problemów pacjenta, a zastosowanie odpowiedniego leku przeciwpsychotycznego ma ten proces skutecznie wspomagać. Powszechnie obecnie stosowane nowoczesne leki przeciwpsychotyczne są podobnie skuteczne w zwalczaniu pozytywnych objawów psychozy schizofrenicznej oraz manii, natomiast znacznie różnią się w zakresie wpływu na pozostałe objawy, jak również pod względem tolerancji, akceptacji leczenia i szeroko rozumianej współpracy lekarz – pacjent. Aripiprazol wyróżnia się unikalnym mechanizmem działania – inaczej niż pozostałe leki przeciwpsychotyczne, jest częściowym antagonistą D2/D3 (oraz niektórych receptorów serotoninowych. Taki profil farmakologiczny pozwala na uzyskanie nie tylko znacznej, porównywalnej do innych leków przeciwpsychotycznych II generacji, skuteczności w leczeniu ostrej psychozy, ale także korzystnego wpływu na objawy afektywne, poznawcze i negatywne schizofrenii. Dodatkowymi korzyściami wynikającymi z profilu farmakologicznego leku są niskie ryzyko wywoływania parkinsonizmu, korzystny profil w zakresie wpływu na stan metaboliczny (praktycznie brak wpływu na masę ciała oraz niewywoływanie hiperprolaktynemii. Te korzystne cechy farmakologiczne powodują, że aripiprazol może być stosowany nie tylko w preferowanej monoterapii, ale także jako leczenie dodane, w tym w celu poprawy tolerancji innych leków. Nowsze badania wskazują na możliwości poszerzenia panelu wskazań, między innymi o depresję oporną na standardową farmakoterapię oraz zaburzenia zachowania u chorych z otępieniem.

  9. Cotard's Syndrome after breast surgery successfully treated with aripiprazole augmentation of escitalopram: a case report.

    Science.gov (United States)

    De Berardis, Domenico; Brucchi, Maurizio; Serroni, Nicola; Rapini, Gabriella; Campanella, Daniela; Vellante, Federica; Valchera, Alessandro; Fornaro, Michele; Iasevoli, Felice; Mazza, Monica; Lucidi, Giuliana; Martinotti, Giovanni; di Giannantonio, Massimo

    2015-01-01

    In 1880 the French neurologist Jules Cotard described a condition characterized by delusion of negation (nihilistic delusion) in a melancholia context. Recently, there has been a resurgence of interest in Cotard's syndrome (CS), but the nosographical figure of CS remains unclear. It isn't determined if it pertains to the delusional themes area or if it is related to the sense of immanent ruin in some depressive episodes. For these reasons CS has recently been supposed to be an intermediate form. Furthermore, since even less is known about secondary CS in subjects who had never suffered of psychiatric disorders, in the present case we report the development of a secondary CS in a female patient who underwent a lumpectomy for the removal of a benign fibroadenoma. The patient responded well to aripiprazole augmentation of escitalopram and totally remitted.

  10. The Effect of Compaction Force on the Transition to Hydrate of Anhydrous Aripiprazole.

    Science.gov (United States)

    Togo, Taichiro; Taniguchi, Toshiya; Nakata, Yoshitaka

    2018-01-01

    Aripiprazole (APZ) is used to treat schizophrenia and is administered as a tablet containing the anhydrous form of APZ. In this study, the effect of compaction force on the crystal form transition was investigated. The crystalline state was observed by X-ray diffraction (XRD). APZ Anhydrous Form II was compacted into tablets. The XRD intensity of anhydrous APZ became lower with higher compressive force. The degree of crystallinity decreased with the compaction force. The powder and the compacted tablets of anhydrous APZ were stored for one week under 60°C and 75% relative humidity. The powder showed no crystal form transition after storage. For the tablets, however, XRD peaks of APZ hydrate were observed after storage. The tablets compacted with higher force showed the higher XRD diffraction intensity of hydrate form. We concluded that the crystallinity reduction of APZ Anhydrous Form II by compaction caused and accelerated the transition to hydrate under high temperature and humidity conditions. In order to manufacture crystallographically stable tablets containing anhydrous APZ, it is important to prevent this crystallinity reduction during compaction.

  11. A comparative study of aripiprazole orally disintegrating tablets and Haloperidol treatment for tic disorders%阿立哌唑口腔崩解片与氟哌啶醇治疗抽动障碍的对比研究

    Institute of Scientific and Technical Information of China (English)

    郑庆梅; 李耀东; 邓良华; 谭助英

    2015-01-01

    Objective To evaluate the efficacy and tolerability of Aripiprazole orally disintegrating tablets and Haloperidol treatment in children with tic disorders. Method 61 Tourette patients were randomly divided into two groups,treatment with Aripiprazole orally disintegra-ting tablets and Haloperidol for 8 weeks. Before treatment and in the second,fourth and eighth weekend,YGTSSS and TESS were used to eval-uate efficacy and side effects. Results In the 2nd,4th and 8th weekend vocal tic,total damage and total scores of YGTSS both in Aripiprazole group and Haloperidol group significantly decreased. But in the second weekend motor tics score worse than haloperidol. In terms of safety,side effects and tolerance of Aripiprazole orally disintegrating tablets was better. Conclusion Aripiprazole orally disintegrating tabletsis effective for treatment of tic disorder,and high safety.%目的:比较阿立哌唑口腔崩解片和氟哌啶醇治疗抽动障碍的临床疗效和安全性。方法:将符合抽动障碍的61例儿童随机分为两组,分别接受氟哌啶醇和阿立哌唑口腔崩解片治疗,并在治疗2周、4周及8周末分别进行耶鲁综合抽动严重程度量表(Yale Global Tic Severity Scale,YGTSS)、不良反应量表(treatment emergent symptomscale,TESS)评估其疗效和安全性。结果:阿立哌唑口腔崩解片与氟哌啶醇组在治疗的2、4、8周末在YGTSS量表发声抽动、整体损害和YGTSS总分疗效评分上均无明显差异,在2周末运动抽动疗效评分上较氟哌啶醇差;在安全性方面,阿立哌唑口腔崩解片不良反应更小,耐受性更好。结论:阿立哌唑口腔崩解片在治疗抽动障碍上有显著的疗效,和更好地安全性。

  12. Eficacia y seguridad del aripiprazol en trastornos del espectro autista en población infanto-juvenil: revisión sistemática de la literatura

    OpenAIRE

    Parra Osorio, María del Pilar; Hoyos López, Violeta

    2015-01-01

    Aunque han pasado cinco años desde su aprobación en Estados Unidos para el manejo de los Trastornos del Espectro Autista (TEA), en Colombia el uso de aripiprazol para esta indicación continúa siendo off-label. En este contexto, se ha propuesto la ejecución de una revisión sistemática de la literatura con el fin de conocer la eficacia y seguridad de esta estrategia terapéutica a la luz de la evidencia disponible en el manejo de niños y adolescentes con TEA

  13. A comparative study of aripiprazole and Haloperidol treatment for tic disorders in children.%阿立哌唑与氟哌啶醇治疗儿童抽动障碍的对照研究

    Institute of Scientific and Technical Information of China (English)

    任志斌; 金卫东; 王鹤秋

    2012-01-01

    Objective To evaluate the efficacy and tolerability of Aripiprazole and Haloperidol treatment in children with tic disorders. Methods Sixty-eight children of 5 - 16 years old with tic disorder were randomly assigned to Aripiprazole group (5 ~ 20 mg/d) and Haloperidol group (2-8 mg/d). Treatment efficacy and tolerability was measured using the Yale Global Tic Severity Scale (YGTSS) and the Treatment Emergent Symptom Scale (TESS) at the baseline, week 2 and 4, and 8, respectively. Results Total tic scores as measured by the YGTSS decreased over time in the both groups. The overall rates of effectiveness after 8 weeks treatment were 79% and 73% at week 8 in Aripiprazole group (5 ~ 20 mg/d) and Haloperidol group (2-8 mg/d) , respectively (χ2 = 0.354, P> 0.05). TESS scores [(2.53 ± 2.95) vs. (12.26 ± 10.58), (1.95 ± 2.06) vs. (7.58 ± 5.26), (1.36 ± 1.85) vs. (4.68 ± 2.06) ] were significantly lower in in the Aripiprazole group than in the haloperidol group at week 2 4 and 8 after treatment. Conclusions Aripiprazole may be a promising drug in the treatment among children with tic disorders because of its high efficacy and less tolerability.%目的 比较阿立哌唑与氟哌啶醇治疗儿童抽动障碍的疗效和安全性.方法 将68 例5 ~ 16 岁抽动障碍患儿随机分为两组,每组34 例,分别给予阿立哌唑(5 ~ 20 mg / d)与氟哌啶醇(2 ~ 8 mg / d)治疗,采用耶鲁综合抽动严重程度量表(Yale Global Tic Severity Scale,YGTSS)、副反应量表(treatment emergent symptomscale,TESS)于治疗前、治疗第2、4、8 周末评估疗效和安全性.结果 从治疗第2 周末起阿立哌唑组和氟哌啶醇组YGTSS 总分均下降,减分率无明显差异,治疗8 周后,阿立哌唑组和氟哌啶醇组治疗总体有效率分别为79%和73%,差异无统计学意义.而在2,4,8 周阿立哌唑组TESS 分[(2.53 ± 2.95) vs.(12.26 ± 10.58),(1.95 ± 2.06) vs.(7.58 ± 5.26),(1.36 ± 1.85) vs.(4.68 ± 2.06)]

  14. Endocrine and Metabolic Adverse Effects of Psychotropic Drugs in Children and Adolescents

    Directory of Open Access Journals (Sweden)

    Evrim Aktepe

    2011-12-01

    Full Text Available ABSTRACT Much as an increase in the use of psychotropic drugs is observed in children and adolescents over the last decade, the endocrine and metabolic side effects of these drugs can limit their use. Atypical antipsychotics can cause many side effects, which are not suitable for the developmental periods of children and adolescents, such as those related with thyroid, blood sugar, level of sex hormones, growth rate and bone metabolism. Children are under a more serious risk regarding the weight increasing effects of atypical antipsychotics and weight gain that is not proportionate with age is especially important due to the association between glucose or lipid abnormalities and cardiovascular mortality. Aripiprazole and ziprasidone are the least risky antipsychotic drugs when it comes to metabolic side affects. The antipsychotic drug that is associated with weight increase and diabetes in children and adolescents most is olanzapine. Even though there are no comparative long-term data concerning children, it is suggested by the currently available information that metabolic side effects including dyslipidemia and impaired glucose tolerance are at an alarming level when it comes to long-term treatment with antipsychotics. The most risky agents in terms of hyperglycemia and glucosuria development are olanzapine and clozapine. Use of risperidone and haloperidol should be undertaken with caution since it may bring about the risk of hyperprolactinemia. Among the antidepressants associated with weight loss and suppression of appetite are selective serotonin reuptake inhibitors, bupropion and venlafaxine. Thyroid functions can be affected by lithium, carbamazepine and valproate treatments. It is reported that the side effect most frequently associated with valproate is weight increase. The relationship between valproate treatment and the development of hyperandrogenism and polycystic ovary syndrome in young women should also be kept in mind. [TAF Prev

  15. [Conference report: Belgian consensus on metabolic problems associated with atypical antipsychotics].

    Science.gov (United States)

    De Nayer, A; De Hert, M; Scheen, A; Van Gaal, L; Peuskens, J

    2007-01-01

    The current literature supports that schizophrenia (and bipolar disorders) appear to be associated with a higher prevalence of type 2 diabetes. Because of the silent nature of diabetes mellitus, and the fact that schizophrenic patients are not screened comprehensively for the disease, the true prevalence of hyperglycemia and diabetes may be substantially underestimated. Notably, it has been suggested that schizophrenia as such carries an increased risk, as certain characteristics of schizophrenic patients such as unhealthy life style promote the diabetes risk. This risk may be increased by antipsychotic drug treatment, as was already suggested for first-generation antipsychotics (FGA). The amount of literature on the association of SGA and metabolic disorders is much larger however, although well-controlled prospective data are sparse. Reports comprise abnormal glucose regulation, exacerbation of existing type 1 and 2 diabetes, new-onset pseudo-type 1 or type 2 diabetes, diabetic ketoacidosis, coma and death. In large-scale studies (mostly retrospective), reviews and meta-analyses, the association was not found for all drugs. According to recent reviews, the risk of developing diabetes was highest for clozapine and olanzapine, followed by quetiapine and risperidone. The hierarchy of liability of weight gain, or differential effects on insulin resistance was also in the described order. Apart from disturbances in glucose metabolism, further frequent metabolic abnormalities in schizophrenic patients on SGA include features of the metabolic syndrome. Antipsychotics such as clozapine and olanzapine have also been associated with hypertriglyceridemia, while agents such as haloperidol, risperidone and ziprasidone were associated with reductions in plasma triglycerides. Amisulpride, aripiprazole and ziprasidone seem to carry the lowest risk for weight gain, diabetes and effects on insulin resistance. As a consequence, there is a shift in attention toward physical health

  16. Usability of a novel digital medicine system in adults with schizophrenia treated with sensor-embedded tablets of aripiprazole

    Directory of Open Access Journals (Sweden)

    Peters-Strickland T

    2016-10-01

    Full Text Available Timothy Peters-Strickland,1 Linda Pestreich,1 Ainslie Hatch,2 Shashank Rohatagi,1 Ross A Baker,1 John P Docherty,2 Lada Markovtsova,1 Praveen Raja,3 Peter J Weiden,4 David P Walling5 1Otsuka Pharmaceutical Development & Commercialization, Inc., 2ODH, Inc., Princeton, NJ, 3Proteus Digital Health, Inc., Redwood City, CA, 4Department of Psychiatry, University of Illinois, Chicago, IL, 5CNS Network, LLC, Long Beach, CA, USA Objective: Digital medicine system (DMS is a novel drug–device combination that objectively measures and reports medication ingestion. The DMS consists of medication embedded with an ingestible sensor (digital medicine, a wearable sensor, and software applications. This study evaluated usability of the DMS in adults with schizophrenia rated by both patients and their health care providers (HCPs during 8-week treatment with prescribed doses of digital aripiprazole.Methods: Six US sites enrolled outpatients into this Phase IIa, open-label study (NCT02219009. The study comprised a screening phase, a training phase (three weekly site visits, and a 5-week independent phase. Patients and HCPs independently rated usability of and satisfaction with the DMS.Results: Sixty-seven patients were enrolled, and 49 (73.1% patients completed the study. The mean age (SD of the patients was 46.6 years (9.7 years; the majority of them were male (74.6%, black (76.1%, and rated mildly ill on the Clinical Global Impression – Severity scale (70.1%. By the end of week 8 or early termination, 82.1% (55/67 of patients had replaced the wearable sensor independently or with minimal assistance, based on HCP rating. The patients used the wearable sensor for a mean (SD of 70.7% (24.7% and a median of 77.8% of their time in the trial. The patients contacted a call center most frequently at week 1. At the last visit, 78% (47/60 of patients were somewhat satisfied/satisfied/extremely satisfied with the DMS.Conclusion: A high proportion of patients with

  17. Clinical studies of aripiprazole in child and adolescent tic dis-order%阿立哌唑治疗儿童青少年抽动障碍临床研究

    Institute of Scientific and Technical Information of China (English)

    高蓉; 周渊东; 黄自勇; 金婷婷

    2014-01-01

    目的:探讨阿立哌唑治疗儿童青少年抽动障碍患者的临床疗效和安全性。方法对25例应用其他药物治疗效果不佳或耐受性较差的儿童青少年抽动障碍患者换用阿立哌唑治疗,观察10周。于治疗前后采用耶鲁抽动量表评定临床疗效,副反应量表评定不良反应。结果本组患者治疗10周末耶鲁抽动量表总分及运动抽动、发声抽动、功能损害评分均较基线显著下降(P<0.01);不良反应较轻微,主要表现为失眠、激越、头痛等。结论阿立哌唑治疗儿童青少年抽动障碍疗效显著,安全性高,依从性好。%Objective To explore the efficacy and safety of aripiprazole in child and adolescent tic disorder . Methods Twenty-five tic disorder children and adolescents who had poor treatment effectiveness or toler-ance with other drugs were treated with aripiprazole for 10 weeks .Efficacies with assessed with the Yale Global Tic Severity Scale (YGTSS) before and after treatment and adverse reactions with the Treatment Emergent Symptom Scale (TESS) .Results At the end of the 10th week total ,motor tic ,vocal tic and functional lesion score of the YGTSS lowered more significantly compared with pretreatment (P<0 .01);adverse reactions were mild and mainly insomnia ,agitation ,headache and so on .Conclusion Aripiprazole has an evident effect ,higher safety and better compliance in child and adolescent tic disorder .

  18. The influence of aripiprazole and olanzapine on neurotransmitters level in frontal cortex of prenatally stressed rats.

    Science.gov (United States)

    Ratajczak, P; Kus, K; Gołembiowska, K; Noworyta-Sokołowska, K; Woźniak, A; Zaprutko, T; Nowakowska, E

    2016-09-01

    The study aims to verify whether alterations in the level of neurotransmitters have occurred in prenatally stressed rats (animal model of schizophrenia), and whether aripiprazole (ARI) and olanzapine (OLA) modify this level. The effects of ARI (1.5mg/kg) and OLA (0.5mg/kg) were studied by means of microdialysis in freely moving rats (observation time 120min). The level of neurotransmitters (DA, 5-HT, NA) and their metabolites (DOPAC, HVA, 5-HIAA) was analyzed by HPLC with coulochemical detection. Obtained results indicate that after a single administration of ARI and OLA in the prenatally stressed rats the increase of DA, DOPAC, and 5-HT was observed. In turn ARI administration increase the level of HVA and 5-HIAA and also decrease the level of NA. After OLA administration the level of NA and HVA increased and no significant change in 5-HIAA was observed. Alterations observed as a result of ARI and OLA administration may be pivotal in identifying animal models of mental disorders and in the analysis of neuroleptics effectiveness. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Spotlight on once-monthly long-acting injectable aripiprazole and its potential as maintenance treatment for bipolar I disorder in adult patients

    Directory of Open Access Journals (Sweden)

    Torres-Llenza V

    2018-01-01

    Full Text Available Vanessa Torres-Llenza, Pooja Lakshmin, Daniel Z Lieberman Department of Psychiatry and Behavioral Sciences, George Washington University School of Medicine and Health Sciences, Washington, DC, USA Abstract: The lack of long-term medication adherence is a challenge in the treatment of bipolar disorder, particularly during the maintenance phase when symptoms are less prominent. The rate of nonadherence is ~20%–60% depending on how strict a definition is used. Nonadherence worsens the course of bipolar disorder and can add hundreds of thousands of dollars to the lifetime cost of treating the illness. Long-acting injectable (LAI medication is an attractive alternative to daily dosing of oral medication, especially among patients who are ambivalent about treatment. The purpose of this paper is to review the evidence for the safety and efficacy of LAI aripiprazole, which was recently approved for the treatment of bipolar disorder. The approval was based on a single double-blind, placebo-controlled, multisite trial that recruited participants from 103 sites in 7 countries. A total of 731 participants with bipolar disorder were enrolled in the study. Out of that total, 266 were successfully stabilized on LAI aripiprazole and entered the randomization phase. Treatment-emergent adverse events were, for the most part, mild to moderate. Akathisia was the most common adverse event, which, combined with restlessness, was experienced by 23% of the sample. At the end of the 52-week study period, nearly twice as many LAI-treated participants remained stable compared to those treated with placebo. Stability during the maintenance phase is arguably the most important goal of treatment. It is during this period of relative freedom from symptoms that patients are able to build a meaningful and satisfying life. The availability of a new treatment agent, particularly one that has the potential to enhance long-term adherence, is a welcome development. Keywords

  20. Aripiprazole loaded poly(caprolactone) nanoparticles: Optimization and in vivo pharmacokinetics

    Energy Technology Data Exchange (ETDEWEB)

    Sawant, Krutika; Pandey, Abhijeet; Patel, Sneha

    2016-09-01

    In the present investigation, a Quality by Design strategy was applied for formulation and optimization of aripiprazole (APZ) loaded PCL nanoparticles (APNPs) using nanoprecipitation method keeping entrapment efficiency (%EE) and particle size (PS) as critical quality attributes. Establishment of design space was done followed by analysis of its robustness and sensitivity. Characterization of optimized APNPs was done using DSC, FT-IR, PXRD and TEM studies and was evaluated for drug release, hemocompatibility and nasal toxicity. PS, zeta potential and %EE of optimized APNPs were found to be 199.2 ± 5.65 nm, − 21.4 ± 4.6 mV and 69.2 ± 2.34% respectively. In vitro release study showed 90 ± 2.69% drug release after 8 h. Nasal toxicity study indicated safety of developed formulation for intranasal administration. APNPs administered via intranasal route facilitated the brain distribution of APZ incorporated with the AUC{sub 0→8} in rat brain approximately 2 times higher than that of APNPs administered via intravenous route. Increase in C{sub max} was observed which might help in dose reduction along with reduction in dose related side effects. The results of the study indicate that intranasally administered APZ loaded PCL NPs can potentially transport APZ via nose to brain and can serve as a non-invasive alternative for the delivery of APZ to brain. - Highlights: • It explores intra-nasal route for treatment of schizophrenia. • Quality by Design strategy has been used for optimization and assessesment of design space robustness. • PCL nanoparticles enhance penetration of drug into brain leading to increased C{sub max} and decrease in T{sub max}. • It can act as potential platform for treatment of schizophrenia with decreased dose related toxicities.

  1. Severe Hypernatremic Dehydration and Lower Limb Gangrene in an Infant Exposed to Lamotrigine, Aripiprazole, and Sertraline in Breast Milk.

    Science.gov (United States)

    Morin, Caroline; Chevalier, Isabelle

    Hypernatremic dehydration is well described in exclusively breastfed neonates, although life-threatening complications are rarely reported. The present article describes a case of severe hypernatremic dehydration in a previously healthy term neonate. Other published cases of severe complications of hypernatremic dehydration are discussed. The exclusively breastfed neonate described had severe hypernatremic dehydration because of inadequate milk intake, with disseminated intravascular coagulation and right lower limb gangrene that required amputation of all five toes and surgical debridement of the metatarsals. The usual etiology of hypernatremic dehydration in this age group is insufficient breast milk intake. Here, the infant's mother was treated for bipolar disorder with lamotrigine 250 mg orally once daily, aripiprazole 15 mg orally once daily, and sertraline 100 mg orally once daily. Awareness of these complications should prompt close follow-up of the infant with poor weight gain. The role of maternal medication as a risk factor for hypernatremic dehydration among exclusively breastfed infants needs to be further explored.

  2. Quetiapine versus aripiprazole in children and adolescents with psychosis - protocol for the randomised, blinded clinical Tolerability and Efficacy of Antipsychotics (TEA) trial

    DEFF Research Database (Denmark)

    Pagsberg, Anne Katrine; Jeppesen, Pia; Klauber, Dea Gowers

    2014-01-01

    BACKGROUND: The evidence for choices between antipsychotics for children and adolescents with schizophrenia and other psychotic disorders is limited. The main objective of the Tolerability and Efficacy of Antipsychotics (TEA) trial is to compare the benefits and harms of quetiapine versus...... aripiprazole in children and adolescents with psychosis in order to inform rational, effective and safe treatment selections. METHODS/DESIGN: The TEA trial is a Danish investigator-initiated, independently funded, multi-centre, randomised, blinded clinical trial. Based on sample size estimation, 112 patients...... about head-to-head differences in efficacy and tolerability of antipsychotics are scarce in children and adolescents. The TEA trial aims at expanding the evidence base for the use of antipsychotics in early onset psychosis in order to inform more rational treatment decisions in this vulnerable...

  3. Antidepressant Effects of Aripiprazole Augmentation for Cilostazol-Treated Mice Exposed to Chronic Mild Stress after Ischemic Stroke

    Directory of Open Access Journals (Sweden)

    Yu Ri Kim

    2017-02-01

    Full Text Available The aim of this study was to determine the effects and underlying mechanism of aripiprazole (APZ augmentation for cilostazol (CLS-treated post-ischemic stroke mice that were exposed to chronic mild stress (CMS. Compared to treatment with either APZ or CLS alone, the combined treatment resulted in a greater reduction in depressive behaviors, including anhedonia, despair-like behaviors, and memory impairments. This treatment also significantly reduced atrophic changes in the striatum, cortex, and midbrain of CMS-treated ischemic mice, and inhibited neuronal cell apoptosis, particularly in the striatum and the dentate gyrus of the hippocampus. Greater proliferation of neuronal progenitor cells was also observed in the ipsilateral striatum of the mice receiving combined treatment compared to mice receiving either drug alone. Phosphorylation of the cyclic adenosine monophosphate response element binding protein (CREB was increased in the striatum, hippocampus, and midbrain of mice receiving combined treatment compared to treatment with either drug alone, particularly in the neurons of the striatum and hippocampus, and dopaminergic neurons of the midbrain. Our results suggest that APZ may augment the antidepressant effects of CLS via co-regulation of the CREB signaling pathway, resulting in the synergistic enhancement of their neuroprotective effects.

  4. Diabetic control and atypical antipsychotics: a case report

    Directory of Open Access Journals (Sweden)

    Gaston Romina

    2008-05-01

    Full Text Available Abstract Introduction People with schizophrenia are at increased risk of developing metabolic disturbances. This risk may be further exacerbated by the use of antipsychotic agents. Research is still ongoing to determine the metabolic impact of antipsychotics on glucose regulation. In this case report we review some of the possible mechanisms of action of antipsychotic medication on glucose regulation. Case presentation We present the case of a 50-year-old man diagnosed with paranoid schizophrenia who developed type 2 diabetes mellitus whilst on treatment with second generation antipsychotics (SGA. His diabetes was controlled by a combination of antidiabetic drugs that were associated with his psychotropic treatment. Due to deterioration in his mental state, the patient was admitted on two occasions to a psychiatric unit during which his prescribed medication (olanzapine and risperidone was discontinued and changed to aripiprazole. On both occasions, the patient suffered hypoglycaemic episodes and his antidiabetic treatment had to be adjusted accordingly. The patient did not require any antidiabetic treatment whilst on aripiprazole during the follow up period. Conclusion Clinicians face regular dilemmas in trying to find the right balance between achieving control over a patient's mental illness and reducing any adverse effects associated with the prescribed medication. In patients receiving concomitant antidiabetic therapy, caution should be exercised when changing from one SGA to another. Whilst more longitudinal data are required, a trial of alternative SGAs, including aripiprazole in those developing type 2 diabetes and impaired glucose tolerance may be a worthwhile therapeutic option.

  5. Predictive factors of overall functioning improvement in patients with chronic schizophrenia and schizoaffective disorder treated with paliperidone palmitate and aripiprazole monohydrate.

    Science.gov (United States)

    Girardi, Paolo; Del Casale, Antonio; Rapinesi, Chiara; Kotzalidis, Georgios D; Splendori, Francesca; Verzura, Claudio; Trovini, Giada; Sorice, Serena; Carrus, Dario; Mancinelli, Iginia; Comparelli, Anna; De Filippis, Sergio; Francomano, Antonio; Ballerini, Andrea; Marcellusi, Andrea; Mennini, Francesco S; Ducci, Giuseppe; Sani, Gabriele; Pompili, Maurizio; Brugnoli, Roberto

    2018-05-01

    Long-acting injectable (LAI) antipsychotics can improve medication adherence and reduce hospitalisation rates compared with oral treatments. Paliperidone palmitate (PAL) and aripiprazole monohydrate (ARI) LAI treatments were associated with improvements in global functioning in patients with schizophrenia. The objective of this study was to assess the predictive factors of better overall functioning in patients with chronic schizophrenia and schizoaffective disorder treated with PAL and ARI. Enrolled were 143 (97 males, 46 females, mean age 38.24 years, SD = 12.65) patients with a diagnosis of schizophrenia or schizoaffective disorder, whom we allocated in two groups (PAL and ARI treatments). We assessed global functioning, amount of oral medications, adherence to oral treatment, and number of hospitalisations before LAI introduction and at assessment time point. Longer treatment time with LAIs (p schizoaffective disorder. Better improvement in functioning could be achieved with ARI in young individuals with recent illness onset and PAL in patients at risk for recurrent hospitalisations. Copyright © 2018 John Wiley & Sons, Ltd.

  6. Improvement of a patient's circadian rhythm sleep disorders by aripiprazole was associated with stabilization of his bipolar illness.

    Science.gov (United States)

    Tashiro, Tetsuo

    2017-04-01

    Splitting of the behavioural activity phase has been found in nocturnal rodents with suprachiasmatic nucleus (SCN) coupling disorder. A similar phenomenon was observed in the sleep phase in the diurnal human discussed here, suggesting that there are so-called evening and morning oscillators in the SCN of humans. The present case suffered from bipolar disorder refractory to various treatments, and various circadian rhythm sleep disorders, such as delayed sleep phase, polyphasic sleep, separation of the sleep bout resembling splitting and circabidian rhythm (48 h), were found during prolonged depressive episodes with hypersomnia. Separation of sleep into evening and morning components and delayed sleep-offset (24.69-h cycle) developed when lowering and stopping the dose of aripiprazole (APZ). However, resumption of APZ improved these symptoms in 2 weeks, accompanied by improvement in the patient's depressive state. Administration of APZ may improve various circadian rhythm sleep disorders, as well as improve and prevent manic-depressive episodes, via augmentation of coupling in the SCN network. © 2017 The Authors. Journal of Sleep Research published by John Wiley & Sons Ltd on behalf of European Sleep Research Society.

  7. Efeitos adversos metabólicos de antipsicóticos e estabilizadores de humor Metabolic side effects of antipsychotics and mood stabilizers

    Directory of Open Access Journals (Sweden)

    Paulo José Ribeiro Teixeira

    2006-08-01

    use of lithium and valproic acid once again directed the attention to their metabolic effects. This study aims to review the medical literature with regard to metabolic side effects associated with the use of antipsychotics and mood stabilizers. METHOD: Research was carried out at MEDLINE and LILACS through October 2005. CONCLUSION: Metabolic side effects remain a major concern for psychopharmacology. Clinically relevant weight gain occurs frequently in patients taking antipsychotics and mood stabilizers, particularly clozapine, olanzapine, lithium, and valproic acid. Clozapine and olanzapine are also associated with higher incidence of diabetes mellitus and dyslipidemias, either due to weight gain or because of a direct deleterious action on glucose metabolism. Incidence of obesity and other metabolic disorders is lower with risperidone when compared to olanzapine or clozapine. Carbamazepine is associated with lower weight gain when compared to lithium or valproic acid. Drugs such as haloperidol, ziprasidone, aripiprazole and lamotrigine are not associated with significant weight gain or with higher incidence of diabetes mellitus. They are alternatives for patients more likely to develop these adverse effects.

  8. The clinical efficacy and safety of aripiprazole in the treatment of tic disorder%阿立哌唑治疗抽动障碍的临床疗效和安全性

    Institute of Scientific and Technical Information of China (English)

    孙莹; 王惠萍; 段丽芬

    2014-01-01

    目的:探究对抽动障碍患者采用阿立哌唑进行治疗的治疗效果,并分析其安全性。方法选取我院2010年5月~2013年5月接收治疗的87例抽动障碍患儿作为临床研究对象,将其随机分为45例治疗组和42例对照组,对照组患儿采用氟哌啶醇治疗,治疗组患儿采用阿立哌唑治疗。结果治疗组患者的治疗总有效率显著高于对照组(P <0.05);治疗2周、4周以及8周后,两组患儿的 YGTSS 评分对比,差异具有统计学意义(P <0.01);治疗组患儿的不良反应率显著低于对照组(P <0.05)。结论对抽动障碍患儿采用阿立哌唑进行治疗,能够降低患儿的抽动评分,降低不良反应率,具有较好的有效性和安全性,可将其作为治疗抽动障碍患儿的有效治疗方法。%Objective To explore the effect and security of aripiprazole in the treatment of tic disorder. Methods 87 cases of children with tic disorder,who were in our hospital during from May 2010 to May 2013,were selected as clinical object of study.They were randomly divided into treatment group(45cases) and control group(42cases).The control group was treated with haloperidol,and the treatment group was treated by aripiprazole. Results The total efficacious rate of treatment group was significantly higher than that of the control group(P < 0.05).After treatment 2 weeks,4 weeks,and 8 weeks,YGTSS scores of two groups were comparative differences(P < 0.01).The adverse reaction of the treatment group wassignificantly lower than that of the control group(P < 0.05). Conclusion Aripiprazole can reduce children's tic score and the rate of adverse reactions for children with tic disorder. It is effective and safe,can be used as the effective way for the therapy of children with tic disorder.

  9. Atypical antipsychotics induce both proinflammatory and adipogenic gene expression in human adipocytes in vitro.

    Science.gov (United States)

    Sárvári, Anitta K; Veréb, Zoltán; Uray, Iván P; Fésüs, László; Balajthy, Zoltán

    2014-08-08

    Schizophrenia requires lifelong treatment, potentially causing systemic changes in metabolic homeostasis. In the clinical setting, antipsychotic treatment may differentially lead to weight gain among individual patients, although the molecular determinants of such adverse effects are currently unknown. In this study, we investigated changes in the expression levels of critical regulatory genes of adipogenesis, lipid metabolism and proinflammatory genes during the differentiation of primary human adipose-derived stem cells (ADSCs). These cells were isolated from patients with body mass indices <25 and treated with the second-generation antipsychotics olanzapine, ziprasidone, clozapine, quetiapine, aripiprazole and risperidone and the first-generation antipsychotic haloperidol. We found that antipsychotics exhibited a marked effect on key genes involved in the regulation of cell cycle, signal transduction, transcription factors, nuclear receptors, differentiation markers and metabolic enzymes. In particular, we observed an induction of the transcription factor NF-KB1 and NF-KB1 target genes in adipocytes in response to these drugs, including the proinflammatory cytokines TNF-α, IL-1β, IL-8 and MCP-1. In addition, enhanced secretion of both IL8 and MCP-1 was observed in the supernatant of these cell cultures. In addition to their remarkable stimulatory effects on proinflammatory gene transcription, three of the most frequently prescribed antipsychotic drugs, clozapine, quetiapine and aripiprazole, also induced the expression of essential adipocyte differentiation genes and the adipocyte hormones leptin and adiponectin, suggesting that both glucose and fat metabolism may be affected by these drugs. These data further suggest that antipsychotic treatments in patients alter the gene expression patterns in adipocytes in a coordinated fashion and priming them for a low-level inflammatory state. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Evaluation of the antidepressant, anxiolytic and memory-improving efficacy of aripiprazole and fluoxetine in ethanol-treated rats.

    Science.gov (United States)

    Burda-Malarz, Kinga; Kus, Krzysztof; Ratajczak, Piotr; Czubak, Anna; Hardyk, Szymon; Nowakowska, Elżbieta

    2014-07-01

    Some study results indicate a positive effect of aripiprazole (ARI) on impaired cognitive functions caused by brain damage resulting from chronic EtOH abuse. However, other research shows that to manifest itself, an ARI antidepressant effect requires a combined therapy with another selective serotonin reuptake inhibitor antidepressant, namely, fluoxetine (FLX). The aim of this article was to assess antidepressant and anxiolytic effects of ARI as well as its effect on spatial memory in ethanol-treated (alcoholized) rats. On the basis of alcohol consumption pattern, groups of (1) ethanol-preferring rats, with mean ethanol intake above 50%, and (2) ethanol-nonpreferring rats (EtNPRs), with mean ethanol intake below 50% of total daily fluid intake, were formed. The group of EtNPRs was used for this study, subdivided further into three groups administered ARI, FLX and a combination of both, respectively. Behavioral tests such as Porsolt's forced swimming test, the Morris water maze test and the two-compartment exploratory test were employed. Behavioral test results demonstrated (1) no antidepressant effect of ARI in EtNPRs in subchronic treatment and (2) no procognitive effect of ARI and FLX in EtNPRs in combined single administration. Combined administration of both drugs led to an anxiogenic effect and spatial memory deterioration in study animals. ARI had no antidepressant effect and failed to improve spatial memory in rats. However, potential antidepressant, anxiolytic and procognitive properties of the drug resulting from its mechanism of action encourage further research aimed at developing a dose of both ARI and FLX that will prove such effects in alcoholized EtNPRs.

  11. Context-dependent efficacy of a counter-conditioning strategy with atypical neuroleptic drugs in mice previously sensitized to cocaine.

    Science.gov (United States)

    Oliveira-Lima, A J; Marinho, Eav; Santos-Baldaia, R; Hollais, A W; Baldaia, M A; Talhati, F; Ribeiro, L T; Wuo-Silva, R; Berro, L F; Frussa-Filho, R

    2017-02-06

    We have previously demonstrated that treatment with ziprasidone and aripiprazole selectively inhibit the development of behavioral sensitization to cocaine in mice. We now investigate their effects on a counter-conditioning strategy in mice and the importance of the treatment environment for this phenomenon. Evaluate the context-specificity of ziprasidone and aripiprazole on conditioned locomotion to cocaine and cocaine-induced hyperlocomotion and behavioral sensitization in a counter-conditioning strategy in mice. Animals were sensitized with saline or cocaine injections in the open-field apparatus in a 15-day intermittent treatment and subsequently treated with vehicle, 5mg/kg ziprasidone or 0.1mg/kg aripiprazole paired to the open-field or the home-cage for 4 alternate days. Mice were then challenged with saline and cocaine in the open-field apparatus on subsequent days. While treatment with ziprasidone decreased spontaneous locomotion and conditioned locomotion alike, treatment with aripiprazole specifically attenuated the expression of conditioned hyperlocomotion to cocaine. Ziprasidone and aripiprazole had no effects on cocaine-induced conditioned hyperlocomotion observed during saline challenge after drug withdrawal. Treatment with either ziprasidone or aripiprazole when previously given in the cocaine-paired environment attenuated the subsequent expression of behavioral sensitization to cocaine. Animals treated with aripiprazole in the open-field, but not in the home-cage, showed a blunted response to cocaine when receiving a cocaine challenge for the first time. Both neuroleptic drugs showed a context-dependent effectiveness in attenuating long-term expression of cocaine-induced behavioral sensitization when administered in the cocaine-associated environment, with aripiprazole also showing effectiveness in blocking the expression of acute cocaine effects. Copyright © 2016. Published by Elsevier Inc.

  12. Usability of a novel digital medicine system in adults with schizophrenia treated with sensor-embedded tablets of aripiprazole.

    Science.gov (United States)

    Peters-Strickland, Timothy; Pestreich, Linda; Hatch, Ainslie; Rohatagi, Shashank; Baker, Ross A; Docherty, John P; Markovtsova, Lada; Raja, Praveen; Weiden, Peter J; Walling, David P

    2016-01-01

    Digital medicine system (DMS) is a novel drug-device combination that objectively measures and reports medication ingestion. The DMS consists of medication embedded with an ingestible sensor (digital medicine), a wearable sensor, and software applications. This study evaluated usability of the DMS in adults with schizophrenia rated by both patients and their health care providers (HCPs) during 8-week treatment with prescribed doses of digital aripiprazole. Six US sites enrolled outpatients into this Phase IIa, open-label study (NCT02219009). The study comprised a screening phase, a training phase (three weekly site visits), and a 5-week independent phase. Patients and HCPs independently rated usability of and satisfaction with the DMS. Sixty-seven patients were enrolled, and 49 (73.1%) patients completed the study. The mean age (SD) of the patients was 46.6 years (9.7 years); the majority of them were male (74.6%), black (76.1%), and rated mildly ill on the Clinical Global Impression - Severity scale (70.1%). By the end of week 8 or early termination, 82.1% (55/67) of patients had replaced the wearable sensor independently or with minimal assistance, based on HCP rating. The patients used the wearable sensor for a mean (SD) of 70.7% (24.7%) and a median of 77.8% of their time in the trial. The patients contacted a call center most frequently at week 1. At the last visit, 78% (47/60) of patients were somewhat satisfied/satisfied/extremely satisfied with the DMS. A high proportion of patients with schizophrenia were able to use the DMS and reported satisfaction with the DMS. These data support the potential utility of the DMS in clinical practice.

  13. Atypical antipsychotic drugs and diabetes mellitus in the US Food and Drug Administration Adverse Event database: a systematic Bayesian signal detection analysis.

    Science.gov (United States)

    Baker, Ross A; Pikalov, Andrei; Tran, Quynh-Van; Kremenets, Tatyana; Arani, Ramin B; Doraiswamy, P Murali

    2009-01-01

    Prior literature suggests that the risk of diabetes-related adverse events (DRAEs) differs between atypical antipsychotics. The present study evaluated the potential association between atypical antipsychotics or haloperidol and diabetes using data from the FDA AERS database. Analysis of AERS data was conducted for clozapine, risperidone, olanzapine, quetiapine, ziprasidone, aripiprazole or haloperidol with 24 DRAEs from the Medical Dictionary for Regulatory Activities using a Multi-item Gamma Poisson Shrinker (MGPS) data-mining algorithm. Using MGPS, adjusted reporting ratios (Empiric Bayes Geometric Mean or EBGM) and 90% confidence intervals (CIs; EB05-EB95) were calculated to estimate the degree of drug-event association relative to all drugs and events. Logistic regression odds ratios and 90% CIs (LR05-LR95) were calculated for diabetes mellitus events. All six atypicals had an EB05 >/= 2 for at least one DRAE. The most common event was diabetes mellitus (2,784 cases). Adjusted reporting ratios (CIs) for diabetes mellitus were: olanzapine 9.6 (9.2-10.0; 1306 cases); risperidone 3.8 (3.5-4.1; 447 cases); quetiapine 3.5 (3.2-3.9; 283 cases); clozapine 3.1 (2.9-3.3; 464 cases); ziprasidone 2.4 (2.0-2.9; 74 cases); aripiprazole 2.4 (1.9-2.9; 71 cases); haloperidol 2.0 (1.7-2.3; 139 cases). Logistic regression odds ratios agreed with adjusted reporting ratios. In the AERS database, lower associations with DRAEs were seen for haloperidol, aripiprazole and ziprasidone, and higher associations were seen for olanzapine, risperidone, clozapine and quetiapine. Our findings support differential risk of diabetes across atypical antipsychotics, reinforcing the need for metabolic monitoring of patients taking antipsychotics.

  14. Atypical antipsychotics induce both proinflammatory and adipogenic gene expression in human adipocytes in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Sárvári, Anitta K., E-mail: anittasarvari@med.unideb.hu [Department of Biochemistry and Molecular Biology, Medical and Health Science Center, University of Debrecen, Debrecen (Hungary); Veréb, Zoltán, E-mail: jzvereb@gmail.com [Department of Biochemistry and Molecular Biology, Medical and Health Science Center, University of Debrecen, Debrecen (Hungary); Uray, Iván P., E-mail: ipuray@mdanderson.org [Clinical Cancer Prevention Department, The University of Texas, MD Anderson Cancer Center, Houston, TX (United States); Fésüs, László, E-mail: fesus@med.unideb.hu [Department of Biochemistry and Molecular Biology, Medical and Health Science Center, University of Debrecen, Debrecen (Hungary); MTA DE Apoptosis, Genomics and Stem Cell Research Group of the Hungarian Academy of Sciences (Hungary); Balajthy, Zoltán, E-mail: balajthy@med.unideb.hu [Department of Biochemistry and Molecular Biology, Medical and Health Science Center, University of Debrecen, Debrecen (Hungary)

    2014-08-08

    Highlights: • Antipsychotics modulate the expression of adipogenic genes in human adipocytes. • Secretion of proinflammatory cytokine IL8 and MCP-1 is induced by antipsychotics. • Adipocyte-dependent inflammatory abnormality could develop during chronic treatment. • Infiltrated macrophages would further enhance proinflammatory cytokine production. - Abstract: Schizophrenia requires lifelong treatment, potentially causing systemic changes in metabolic homeostasis. In the clinical setting, antipsychotic treatment may differentially lead to weight gain among individual patients, although the molecular determinants of such adverse effects are currently unknown. In this study, we investigated changes in the expression levels of critical regulatory genes of adipogenesis, lipid metabolism and proinflammatory genes during the differentiation of primary human adipose-derived stem cells (ADSCs). These cells were isolated from patients with body mass indices <25 and treated with the second-generation antipsychotics olanzapine, ziprasidone, clozapine, quetiapine, aripiprazole and risperidone and the first-generation antipsychotic haloperidol. We found that antipsychotics exhibited a marked effect on key genes involved in the regulation of cell cycle, signal transduction, transcription factors, nuclear receptors, differentiation markers and metabolic enzymes. In particular, we observed an induction of the transcription factor NF-KB1 and NF-KB1 target genes in adipocytes in response to these drugs, including the proinflammatory cytokines TNF-α, IL-1β, IL-8 and MCP-1. In addition, enhanced secretion of both IL8 and MCP-1 was observed in the supernatant of these cell cultures. In addition to their remarkable stimulatory effects on proinflammatory gene transcription, three of the most frequently prescribed antipsychotic drugs, clozapine, quetiapine and aripiprazole, also induced the expression of essential adipocyte differentiation genes and the adipocyte hormones leptin

  15. Atypical antipsychotics induce both proinflammatory and adipogenic gene expression in human adipocytes in vitro

    International Nuclear Information System (INIS)

    Sárvári, Anitta K.; Veréb, Zoltán; Uray, Iván P.; Fésüs, László; Balajthy, Zoltán

    2014-01-01

    Highlights: • Antipsychotics modulate the expression of adipogenic genes in human adipocytes. • Secretion of proinflammatory cytokine IL8 and MCP-1 is induced by antipsychotics. • Adipocyte-dependent inflammatory abnormality could develop during chronic treatment. • Infiltrated macrophages would further enhance proinflammatory cytokine production. - Abstract: Schizophrenia requires lifelong treatment, potentially causing systemic changes in metabolic homeostasis. In the clinical setting, antipsychotic treatment may differentially lead to weight gain among individual patients, although the molecular determinants of such adverse effects are currently unknown. In this study, we investigated changes in the expression levels of critical regulatory genes of adipogenesis, lipid metabolism and proinflammatory genes during the differentiation of primary human adipose-derived stem cells (ADSCs). These cells were isolated from patients with body mass indices <25 and treated with the second-generation antipsychotics olanzapine, ziprasidone, clozapine, quetiapine, aripiprazole and risperidone and the first-generation antipsychotic haloperidol. We found that antipsychotics exhibited a marked effect on key genes involved in the regulation of cell cycle, signal transduction, transcription factors, nuclear receptors, differentiation markers and metabolic enzymes. In particular, we observed an induction of the transcription factor NF-KB1 and NF-KB1 target genes in adipocytes in response to these drugs, including the proinflammatory cytokines TNF-α, IL-1β, IL-8 and MCP-1. In addition, enhanced secretion of both IL8 and MCP-1 was observed in the supernatant of these cell cultures. In addition to their remarkable stimulatory effects on proinflammatory gene transcription, three of the most frequently prescribed antipsychotic drugs, clozapine, quetiapine and aripiprazole, also induced the expression of essential adipocyte differentiation genes and the adipocyte hormones leptin

  16. COMT基因多态性与精神分裂症发病风险及阿立哌唑治疗效应的相关性研究%Association of COMT Gene Polymorphism with Risk of Schizophrenia and Efficacy of Aripiprazole

    Institute of Scientific and Technical Information of China (English)

    李广学; 高树贵; 成佳; 姚文鸣; 郑孝荣; 徐永明

    2014-01-01

    Objective To investigate the association between catechol-O-methyltransferase ( COMT) gene polymorphism and onset risk of schizophrenia , efficacy of aripiprazole.Methods A total of 78 Chinese Han schizophrenic patients and 65 healthy subjects were recruited in this stud-y.All the patients were diagnosed based on the Diagnostic and Statistical Manual of Mental Disorders ( DSM-Ⅳ) .The Positive and Negative Syndrome Scale ( PANSS ) and Clinical Global Impression (CGI) were used to evaluate the clinical efficacy of aripiprazole.Polymerase chain reaction (PCR) and restriction fragment length polymorphism ( RFLP ) were employed to detect COMT geno-types.Results The COMT Val158 Met genotype and allele distributions in schizophrenia patients were significantly different from those in health subjects ( P0.05 ) .Conclusions The polymorphism of COMT gene Val 158/Met is correlated with the onset of schizophrenia , but has no effect on the clinical efficacy of aripiprazole.%目的:探讨儿茶酚氧位甲基转移酶(the catechol-O-methyltransferase, COMT)基因多态性与精神分裂症发病风险及阿立哌唑治疗效应之间的相关性。方法采用病例-对照研究设计,在中国汉族人群中收集78例符合美国精神障碍诊断与统计手册第4版( DSM-Ⅳ)精神分裂症诊断标准的首发精神分裂症患者,并与65例健康志愿者进行对照。用阳性与阴性症状评定量表( PANSS )、临床大体评定量表( CGI )评定阿立哌唑治疗的疗效。运用聚合酶链式反应-限制性片段长度多态分析( PCR-RFLP)方法进行基因分型。结果患者组与正常对照组基因型和等位基因频率分布存在显著性差异( P均<0.05); COMT基因多态性也与精神分裂症患者年龄、病程相关联。经阿立哌唑治疗后,患者精神症状及临床疗效总评分均有明显改善,但其改善程度在3种基因型间比较无明显差异。结论 COMT基因Val158/108 Met多态性与精神分裂症的发病存在关联,但对阿立哌唑的临床疗效可能没有明显影响。

  17. Interruzione del trattamento nei pazienti con schizofrenia che ricevono olanzapina o aripiprazolo: metanalisi degli studi clinici controllati

    Directory of Open Access Journals (Sweden)

    Benedetta Santarlasci

    2005-03-01

    Full Text Available BACKGROUND: In schizophrenia the drop-out rate can be used as proxy of effectiveness. The drop-out evaluation is also important considering the relevant economic impact for NHS of an antipsychotic therapy discontinuation in terms of patient hospitalization and other related healthcare resources consumption. OBJECTIVE: To analyze the differences in the rates of drop-out from clinical trials between olanzapine and aripiprazole. METHODS: Literature search was based on MEDLINE, on Iowa-IDIS and Drugdex databases (1966-Dec 2004. Analysis included 12 randomized controlled trials (3.778 patients, 8 for olanzapine (2.559 patients and 4 for aripiprazole (1.219 patients. RCT inclusion criteria were: a Patients affected by schizophrenia; b Randomized assignment to olanzapine or aripiprazole treatment group; c Number of patients included in the treatment group higher than 100; d Drop-out frequency evaluation between 4th and 26th weeks of follow-up. RESULTS: The rate of treatment discontinuation was greater for aripiprazole than for olanzapine (42,2% vs. 31,6% respectively. The comparison between drop-out percentages is statistically significant (p<0,001. CONCLUSIONS: The incidence of drop-outs was better controlled in the olanzapine group of studies than in the aripiprazole group of studies.

  18. Comparative study of treatment continuation using second-generation antipsychotics in patients with schizophrenia or schizoaffective disorder

    Directory of Open Access Journals (Sweden)

    Azekawa T

    2011-11-01

    Full Text Available Takaharu Azekawa, Shizuko Ohashi, Akira ItamiShioiri Mental Clinic, Yokosuka-shi, Kanagawa-ken, JapanBackground: Effectiveness of a drug is a key concept dependent on efficacy, safety, and tolerability. Time to discontinuation of treatment is also representative of effectiveness. We investigated differences in treatment discontinuation among newly started second-generation antipsychotics in the clinical setting.Methods: Using a retrospective cohort study design, we screened all outpatients (n = 7936 who visited the Shioiri Mental Clinic between July 1, 2008 and June 30, 2010. We identified a cohort of patients (n = 703 diagnosed with schizophrenia or schizoaffective disorder and calculated the time to discontinuation of each second-generation antipsychotic.Results: Of the 703 patients, 149 were newly treated with aripiprazole, 67 with blonanserin, 95 with olanzapine, 36 with quetiapine, 74 with perospirone, and 120 with risperidone. The time to discontinuation for all causes was significantly longer for aripiprazole than for blonanserin, olanzapine, and risperidone. In addition, aripiprazole tended to be continued for longer than quetiapine and perospirone, but these differences were not significant.Conclusion: Aripiprazole may be considered the best available option for long-term treatment of patients with schizophrenia or schizoaffective disorder.Keywords: retrospective study, second-generation antipsychotics, effectiveness, treatment continuation, schizophrenia, aripiprazole

  19. Aripiprazole

    Science.gov (United States)

    ... your family has or has ever had bipolar disorder (mood that changes from depressed to abnormally excited) or mania or has thought about or attempted suicide. Talk to your doctor about your condition, symptoms, ...

  20. Plant metabolic modeling: achieving new insight into metabolism and metabolic engineering.

    Science.gov (United States)

    Baghalian, Kambiz; Hajirezaei, Mohammad-Reza; Schreiber, Falk

    2014-10-01

    Models are used to represent aspects of the real world for specific purposes, and mathematical models have opened up new approaches in studying the behavior and complexity of biological systems. However, modeling is often time-consuming and requires significant computational resources for data development, data analysis, and simulation. Computational modeling has been successfully applied as an aid for metabolic engineering in microorganisms. But such model-based approaches have only recently been extended to plant metabolic engineering, mainly due to greater pathway complexity in plants and their highly compartmentalized cellular structure. Recent progress in plant systems biology and bioinformatics has begun to disentangle this complexity and facilitate the creation of efficient plant metabolic models. This review highlights several aspects of plant metabolic modeling in the context of understanding, predicting and modifying complex plant metabolism. We discuss opportunities for engineering photosynthetic carbon metabolism, sucrose synthesis, and the tricarboxylic acid cycle in leaves and oil synthesis in seeds and the application of metabolic modeling to the study of plant acclimation to the environment. The aim of the review is to offer a current perspective for plant biologists without requiring specialized knowledge of bioinformatics or systems biology. © 2014 American Society of Plant Biologists. All rights reserved.

  1. Cost effectiveness of long-acting risperidone injection versus alternative antipsychotic agents in patients with schizophrenia in the USA.

    Science.gov (United States)

    Edwards, Natalie C; Locklear, Julie C; Rupnow, Marcia F T; Diamond, Ronald J

    2005-01-01

    The availability of long-acting risperidone injection may increase adherence and lead to improved clinical and economic outcomes for individuals with schizophrenia. The objective of this study was to assess the cost effectiveness of long-acting risperidone, oral risperidone, olanzapine, quetiapine, ziprasidone, aripiprazole, and haloperidol depot in patients with schizophrenia over 1 year from a healthcare system perspective. Published medical literature, unpublished data from clinical trials and a consumer health database, and a clinical expert panel were utilized to populate a decision analytical model comparing the seven treatment alternatives. The model captured rates of patient compliance, the rates, frequency and duration of relapse, incidence of adverse events, and healthcare resource utilization and associated costs. Primary outcomes were expressed in terms of percentage of patients relapsing per year, number of relapse days per year (number and duration of relapses per patient per year), and total direct 2003 medical cost per patient per year. On the basis of model projections, the proportions of patients experiencing a relapse requiring hospitalization in 1 year were 66% for haloperidol depot, 41% for oral risperidone, olanzapine, quetiapine, ziprasidone, and aripiprazole, and 26% for long-acting risperidone, whereas the proportions of patients with an exacerbation not requiring hospitalization were 60% for haloperidol depot, 37% for oral risperidone, olanzapine, quetiapine, ziprasidone, and aripiprazole, and 24% for long-acting risperidone. The mean number of days of relapse requiring hospitalization per patient per year were 28 for haloperidol depot, 18 for oral risperidone, olanzapine, quetiapine, ziprasidone, and aripiprazole, and 11 for long-acting risperidone, whereas the mean number of days of exacerbation not requiring hospitalization were eight for haloperidol depot, five for oral risperidone, olanzapine, quetiapine, ziprasidone, and aripiprazole

  2. Inpatient resource use and costs associated with switching from oral antipsychotics to aripiprazole once-monthly for the treatment of schizophrenia

    Directory of Open Access Journals (Sweden)

    Michele Wilson

    2016-03-01

    Full Text Available Background: Schizophrenia is associated with high direct healthcare costs due to progression of disease and frequent occurrence of relapses. Aripiprazole once-monthly (AOM has been shown to reduce total psychiatric hospitalizations among patients who switched from oral standard of care (SOC therapy to AOM in a multicenter, open-label, mirror-image study of patients with schizophrenia. Because of the increasing need to improve patient outcomes while containing costs, it is important to understand the impact of AOM treatment initiation on medical costs associated with psychiatric hospitalizations and antipsychotic pharmacy costs. Methods: In the current study, an economic model was developed using data from the AOM mirror-image study to evaluate the psychiatric hospitalization-related medical costs and antipsychotic pharmacy costs during a 6-month period before (retrospective period and after (prospective period the AOM treatment initiation. The economic model evaluated cost-saving potential of AOM among all patients (n=433 as well as a subset of patients with ≥1 prior hospitalization (n=165 who switched from oral SOC to AOM. Unit cost data were obtained from publicly available sources. Results: Both hospitalizations and hospital days were reduced following a switch from oral SOC to AOM. As a result, psychiatric hospitalization-related costs were lower during the prospective period when compared with the retrospective period. Furthermore, the increase in antipsychotic pharmacy costs due to switching from oral SOC to AOM was offset by a reduction in psychiatric hospitalization-related medical costs. Per-patient costs were reduced by $1,046 (USD in the overall population and by $20,353 in a subset of patients who had at least 1 psychiatric hospitalization during the retrospective period. Results were most sensitive to changes in hospitalization costs. Conclusions: AOM is associated with reducing the risk of relapse among patients with

  3. 利培酮与阿立哌唑治疗儿童抽动障碍的随机对照研究%A randomized controlled study of risperidone and aripiprazole in treatment of children with tic disorder

    Institute of Scientific and Technical Information of China (English)

    张红; 黄海忠; 林国栋

    2015-01-01

    ABSTRACT:Objective To compare the clinical effects between risperidone and aripiprazole in the treatment of children with tic disorder.Methods A total of 80 cases of children with tic disorder were randomly divided into A group (40 cases)and B group (40 cases).Children with tic disorder in group A were treated by risperidone and children with tic disorder in group B were treated by aripiprazole.After 12 weeks of treatment,the efficacy of the YGTSS score table (Yale comprehensive tic severity scale)was assessed and compared,and the adverse reactions of both groups were observed and recorded.Results The effective rate and significant effective rate in group A were 90%(36/40)and 75% (30/40 ),respectively;the effective rate and significant effective rate were 92.5% (37/40 )and 82.5% (33/40)in group B;there were no significant difference between two groups (u =1.776,0.672,P >0.05). There were no significant difference in YGTSS score reduction fraction,motor tic score reduction rate,sound of tic score reduction rate and total lesion score reduction rate between two groups after 2 and 6 weeks'treatment (P >0.05).At 12 weeks of treatment,the indicators of YGTSS score reduction fraction,motor tic score reduction rate, sound of tic score reduction rate and total lesion score reduction rate were significantly better than at 2 weeks of treatment (P 0.05)。两组患者用药2周和6周后 YGTSS 评分减分率、运动性抽动评分减少率、发声性抽动评分减少率及全部损害率评分减少率比较差异无统计学意义(P >0.05)。用药12周时阿立哌唑组患者的上述指标改善优于用药2周时(P <0.05)。两组均未出现严重的不良反应,血常规及肝肾功能检查均正常。结论阿立哌唑治疗儿童抽动障碍疗效与利培酮相同,安全性高,值得临床推广。

  4. Atypical antipsychotics as add-on treatment in late-life depression

    Directory of Open Access Journals (Sweden)

    Cakir S

    2016-09-01

    Full Text Available Sibel Cakir,1 Zeynep Senkal2 1Department of Psychiatry, Mood Disorders, Geriatric Psychiatry Unit, Istanbul Medical School, Istanbul University, 2Department of Psychiatry, Marmara University, Istanbul, Turkey Background: Second-generation antipsychotics (SGAs have been used in the augmentation of treatment-resistant depression. However, little is known about their effectiveness, tolerability, and adverse events in the treatment of late-life depression, which were the aim of this study.Methods: The retrospective data of patients aged >65 years who had a major depressive episode with inadequate response to antidepressant treatment and had adjuvant SGA treatment were analyzed. The outcome measures were the number of the patients who continued to use SGAs in the fourth and twelfth weeks, adverse events, and changes in symptoms of depression. Results: Thirty-five patients were screened: 21 (60% had quetiapine, twelve (34.28% had aripiprazole, and two (5.71% had olanzapine adjuvant treatment. The mean age was 72.17±5.02 years, and 65.7% of the patients were women. The mean daily dose was 85.71±47.80 mg for quetiapine, 3.33±1.23 mg for aripiprazole, and 3.75±1.76 mg for olanzapine. The Geriatric Depression Scale scores of all patients were significantly decreased in the fourth week and were significant in the aripiprazole group (P=0.02. Of the 35 patients, 23 (65.7% patients discontinued the study within 12 weeks. The frequency of adverse events was similar in all SGAs, and the most common were sedation, dizziness, constipation, and orthostatic hypotension with quetiapine, and akathisia and headache because of aripiprazole. Conclusion: This study indicates that dropout ratio of patients with SGAs is high, and a subgroup of patients with late-life depression may benefit from SGAs. Effectiveness is significant in aripiprazole, and adverse events of SGAs were not serious but common in elderly patients. Keywords: treatment resistance, aripiprazole

  5. Metabolic cartography: experimental quantification of metabolic fluxes from isotopic labelling studies.

    Science.gov (United States)

    O'Grady, John; Schwender, Jörg; Shachar-Hill, Yair; Morgan, John A

    2012-03-01

    For the past decade, flux maps have provided researchers with an in-depth perspective on plant metabolism. As a rapidly developing field, significant headway has been made recently in computation, experimentation, and overall understanding of metabolic flux analysis. These advances are particularly applicable to the study of plant metabolism. New dynamic computational methods such as non-stationary metabolic flux analysis are finding their place in the toolbox of metabolic engineering, allowing more organisms to be studied and decreasing the time necessary for experimentation, thereby opening new avenues by which to explore the vast diversity of plant metabolism. Also, improved methods of metabolite detection and measurement have been developed, enabling increasingly greater resolution of flux measurements and the analysis of a greater number of the multitude of plant metabolic pathways. Methods to deconvolute organelle-specific metabolism are employed with increasing effectiveness, elucidating the compartmental specificity inherent in plant metabolism. Advances in metabolite measurements have also enabled new types of experiments, such as the calculation of metabolic fluxes based on (13)CO(2) dynamic labelling data, and will continue to direct plant metabolic engineering. Newly calculated metabolic flux maps reveal surprising and useful information about plant metabolism, guiding future genetic engineering of crops to higher yields. Due to the significant level of complexity in plants, these methods in combination with other systems biology measurements are necessary to guide plant metabolic engineering in the future.

  6. CHANGES IN VALUES OF CHOLESTEROL AND TRYGLICERIDES AFTER WEIGHT LOSS DURING TREATMENT WITH ARIPIPRAZOLE IN A PATIENT WITH SCHIZOPHRENIA - Case report

    OpenAIRE

    Uzun, Suzana; Kozumplik, Oliver; Sedić, Biserka

    2010-01-01

    Metabolic syndrome can contribute to significant morbidity and premature mortality and should be accounted for in the treatment of mental disorders. Patients with schizophrenia are at risk of undetected somatic comorbidity. Patients with schizophrenia have metabolically unfavorable body composition, comprising abdominal obesity, high fat percentage and low muscle mass, leading to increased risk of metabolic and cardiovascular diseases. Smoking, poor diet, reduced physical activity and a...

  7. What is Metabolic Syndrome?

    Science.gov (United States)

    ... Intramural Research Home / Metabolic Syndrome Metabolic Syndrome Also known as What Is Metabolic syndrome ... metabolic risk factors to be diagnosed with metabolic syndrome. Metabolic Risk Factors A Large Waistline Having a large ...

  8. Aripiprazole Injection

    Science.gov (United States)

    ... for them, such as increased sexual urges or behaviors, excessive shopping, and binge eating. Call your doctor if you have intense urges to shop, eat, have sex, or gamble, or if you are unable to control your behavior. Tell your family members about this risk so ...

  9. One-year risk of psychiatric hospitalization and associated treatment costs in bipolar disorder treated with atypical antipsychotics: a retrospective claims database analysis

    Directory of Open Access Journals (Sweden)

    Pikalov Andrei

    2011-01-01

    Full Text Available Abstract Background This study compared 1-year risk of psychiatric hospitalization and treatment costs in commercially insured patients with bipolar disorder, treated with aripiprazole, ziprasidone, olanzapine, quetiapine or risperidone. Methods This was a retrospective propensity score-matched cohort study using the Ingenix Lab/Rx integrated insurance claims dataset. Patients with bipolar disorder and 180 days of pre-index enrollment without antipsychotic exposure who received atypical antipsychotic agents were followed for up to 12 months following the initial antipsychotic prescription. The primary analysis used Cox proportional hazards regression to evaluate time-dependent risk of hospitalization, adjusting for age, sex and pre-index hospitalization. Generalized gamma regression compared post-index costs between treatment groups. Results Compared to aripiprazole, ziprasidone, olanzapine and quetiapine had higher risks for hospitalization (hazard ratio 1.96, 1.55 and 1.56, respectively; p Conclusions In commercially insured adults with bipolar disorder followed for 1 year after initiation of atypical antipsychotics, treatment with aripiprazole was associated with a lower risk of psychiatric hospitalization than ziprasidone, quetiapine, olanzapine and risperidone, although this did not reach significance with the latter. Aripiprazole was also associated with significantly lower total healthcare costs than quetiapine, but not the other comparators.

  10. Metabolism

    Science.gov (United States)

    ... Are More Common in People With Type 1 Diabetes Metabolic Syndrome Your Child's Weight Healthy Eating Endocrine System Blood Test: Basic Metabolic Panel (BMP) Activity: Endocrine System Growth Disorders Diabetes Center Thyroid Disorders Your Endocrine System Movie: Endocrine ...

  11. Modeling of Zymomonas mobilis central metabolism for novel metabolic engineering strategies.

    Science.gov (United States)

    Kalnenieks, Uldis; Pentjuss, Agris; Rutkis, Reinis; Stalidzans, Egils; Fell, David A

    2014-01-01

    Mathematical modeling of metabolism is essential for rational metabolic engineering. The present work focuses on several types of modeling approach to quantitative understanding of central metabolic network and energetics in the bioethanol-producing bacterium Zymomonas mobilis. Combined use of Flux Balance, Elementary Flux Mode, and thermodynamic analysis of its central metabolism, together with dynamic modeling of the core catabolic pathways, can help to design novel substrate and product pathways by systematically analyzing the solution space for metabolic engineering, and yields insights into the function of metabolic network, hardly achievable without applying modeling tools.

  12. Metabolism

    Science.gov (United States)

    ... lin), which signals cells to increase their anabolic activities. Metabolism is a complicated chemical process, so it's not ... how those enzymes or hormones work. When the metabolism of body chemicals is ... Hyperthyroidism (pronounced: hi-per-THIGH-roy-dih-zum). Hyperthyroidism ...

  13. Uncovering transcriptional regulation of metabolism by using metabolic network topology

    DEFF Research Database (Denmark)

    Patil, Kiran Raosaheb; Nielsen, Jens

    2005-01-01

    in the metabolic network that follow a common transcriptional response. Thus, the algorithm enables identification of so-called reporter metabolites (metabolites around which the most significant transcriptional changes occur) and a set of connected genes with significant and coordinated response to genetic......Cellular response to genetic and environmental perturbations is often reflected and/or mediated through changes in the metabolism, because the latter plays a key role in providing Gibbs free energy and precursors for biosynthesis. Such metabolic changes are often exerted through transcriptional...... therefore developed an algorithm that is based on hypothesis-driven data analysis to uncover the transcriptional regulatory architecture of metabolic networks. By using information on the metabolic network topology from genome-scale metabolic reconstruction, we show that it is possible to reveal patterns...

  14. [Metabolic acidosis].

    Science.gov (United States)

    Regolisti, Giuseppe; Fani, Filippo; Antoniotti, Riccardo; Castellano, Giuseppe; Cremaschi, Elena; Greco, Paolo; Parenti, Elisabetta; Morabito, Santo; Sabatino, Alice; Fiaccadori, Enrico

    2016-01-01

    Metabolic acidosis is frequently observed in clinical practice, especially among critically ill patients and/or in the course of renal failure. Complex mechanisms are involved, in most cases identifiable by medical history, pathophysiology-based diagnostic reasoning and measure of some key acid-base parameters that are easily available or calculable. On this basis the bedside differential diagnosis of metabolic acidosis should be started from the identification of the two main subtypes of metabolic acidosis: the high anion gap metabolic acidosis and the normal anion gap (or hyperchloremic) metabolic acidosis. Metabolic acidosis, especially in its acute forms with elevated anion gap such as is the case of lactic acidosis, diabetic and acute intoxications, may significantly affect metabolic body homeostasis and patients hemodynamic status, setting the stage for true medical emergencies. The therapeutic approach should be first aimed at early correction of concurrent clinical problems (e.g. fluids and hemodynamic optimization in case of shock, mechanical ventilation in case of concomitant respiratory failure, hemodialysis for acute intoxications etc.), in parallel to the formulation of a diagnosis. In case of severe acidosis, the administration of alkalizing agents should be carefully evaluated, taking into account the risk of side effects, as well as the potential need of renal replacement therapy.

  15. Pulmonary metabolism of foreign compounds: Its role in metabolic activation

    International Nuclear Information System (INIS)

    Cohen, G.M.

    1990-01-01

    The lung has the potential of metabolizing many foreign chemicals to a vast array of metabolites with different pharmacological and toxicological properties. Because many chemicals require metabolic activation in order to exert their toxicity, the cellular distribution of the drug-metabolizing enzymes in a heterogeneous tissue, such as the lung, and the balance of metabolic activation and deactivation pathways in any particular cell are key factors in determining the cellular specificity of many pulmonary toxins. Environmental factors such as air pollution, cigarette smoking, and diet markedly affect the pulmonary metabolism of some chemicals and, thereby, possibly affect their toxicity

  16. Global Metabolic Reconstruction and Metabolic Gene Evolution in the Cattle Genome

    Science.gov (United States)

    Kim, Woonsu; Park, Hyesun; Seo, Seongwon

    2016-01-01

    The sequence of cattle genome provided a valuable opportunity to systematically link genetic and metabolic traits of cattle. The objectives of this study were 1) to reconstruct genome-scale cattle-specific metabolic pathways based on the most recent and updated cattle genome build and 2) to identify duplicated metabolic genes in the cattle genome for better understanding of metabolic adaptations in cattle. A bioinformatic pipeline of an organism for amalgamating genomic annotations from multiple sources was updated. Using this, an amalgamated cattle genome database based on UMD_3.1, was created. The amalgamated cattle genome database is composed of a total of 33,292 genes: 19,123 consensus genes between NCBI and Ensembl databases, 8,410 and 5,493 genes only found in NCBI or Ensembl, respectively, and 266 genes from NCBI scaffolds. A metabolic reconstruction of the cattle genome and cattle pathway genome database (PGDB) was also developed using Pathway Tools, followed by an intensive manual curation. The manual curation filled or revised 68 pathway holes, deleted 36 metabolic pathways, and added 23 metabolic pathways. Consequently, the curated cattle PGDB contains 304 metabolic pathways, 2,460 reactions including 2,371 enzymatic reactions, and 4,012 enzymes. Furthermore, this study identified eight duplicated genes in 12 metabolic pathways in the cattle genome compared to human and mouse. Some of these duplicated genes are related with specific hormone biosynthesis and detoxifications. The updated genome-scale metabolic reconstruction is a useful tool for understanding biology and metabolic characteristics in cattle. There has been significant improvements in the quality of cattle genome annotations and the MetaCyc database. The duplicated metabolic genes in the cattle genome compared to human and mouse implies evolutionary changes in the cattle genome and provides a useful information for further research on understanding metabolic adaptations of cattle. PMID

  17. Precision metabolic engineering: The design of responsive, selective, and controllable metabolic systems.

    Science.gov (United States)

    McNerney, Monica P; Watstein, Daniel M; Styczynski, Mark P

    2015-09-01

    Metabolic engineering is generally focused on static optimization of cells to maximize production of a desired product, though recently dynamic metabolic engineering has explored how metabolic programs can be varied over time to improve titer. However, these are not the only types of applications where metabolic engineering could make a significant impact. Here, we discuss a new conceptual framework, termed "precision metabolic engineering," involving the design and engineering of systems that make different products in response to different signals. Rather than focusing on maximizing titer, these types of applications typically have three hallmarks: sensing signals that determine the desired metabolic target, completely directing metabolic flux in response to those signals, and producing sharp responses at specific signal thresholds. In this review, we will first discuss and provide examples of precision metabolic engineering. We will then discuss each of these hallmarks and identify which existing metabolic engineering methods can be applied to accomplish those tasks, as well as some of their shortcomings. Ultimately, precise control of metabolic systems has the potential to enable a host of new metabolic engineering and synthetic biology applications for any problem where flexibility of response to an external signal could be useful. Copyright © 2015 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  18. Metabolic learning and memory formation by the brain influence systemic metabolic homeostasis

    Science.gov (United States)

    Zhang, Yumin; Liu, Gang; Yan, Jingqi; Zhang, Yalin; Li, Bo; Cai, Dongsheng

    2015-01-01

    Metabolic homeostasis is regulated by the brain, whether this regulation involves learning and memory of metabolic information remains unexplored. Here we use a calorie-based, taste-independent learning/memory paradigm to show that Drosophila form metabolic memories that help balancing food choice with caloric intake; however, this metabolic learning or memory is lost under chronic high-calorie feeding. We show that loss of individual learning/memory-regulating genes causes a metabolic learning defect, leading to elevated trehalose and lipids levels. Importantly, this function of metabolic learning requires not only the mushroom body but the hypothalamus-like pars intercerebralis, while NF-κB activation in the pars intercerebralis mimics chronic overnutrition in that it causes metabolic learning impairment and disorders. Finally, we evaluate this concept of metabolic learning/memory in mice, suggesting the hypothalamus is involved in a form of nutritional learning and memory, which is critical for determining resistance or susceptibility to obesity. In conclusion, our data indicate the brain, and potentially the hypothalamus, direct metabolic learning and the formation of memories, which contribute to the control of systemic metabolic homeostasis. PMID:25848677

  19. Engineering Cellular Metabolism

    DEFF Research Database (Denmark)

    Nielsen, Jens; Keasling, Jay

    2016-01-01

    Metabolic engineering is the science of rewiring the metabolism of cells to enhance production of native metabolites or to endow cells with the ability to produce new products. The potential applications of such efforts are wide ranging, including the generation of fuels, chemicals, foods, feeds...... of metabolic engineering and will discuss how new technologies can enable metabolic engineering to be scaled up to the industrial level, either by cutting off the lines of control for endogenous metabolism or by infiltrating the system with disruptive, heterologous pathways that overcome cellular regulation....

  20. Actionable Metabolic Pathways in Heart Failure and Cancer—Lessons From Cancer Cell Metabolism

    Directory of Open Access Journals (Sweden)

    Anja Karlstaedt

    2018-06-01

    Full Text Available Recent advances in cancer cell metabolism provide unprecedented opportunities for a new understanding of heart metabolism and may offer new approaches for the treatment of heart failure. Key questions driving the cancer field to understand how tumor cells reprogram metabolism and to benefit tumorigenesis are also applicable to the heart. Recent experimental and conceptual advances in cancer cell metabolism provide the cardiovascular field with the unique opportunity to target metabolism. This review compares cancer cell metabolism and cardiac metabolism with an emphasis on strategies of cellular adaptation, and how to exploit metabolic changes for therapeutic benefit.

  1. Carbohydrate Metabolism Disorders

    Science.gov (United States)

    ... metabolic disorder, something goes wrong with this process. Carbohydrate metabolism disorders are a group of metabolic disorders. Normally your enzymes break carbohydrates down into glucose (a type of sugar). If ...

  2. Metabolic learning and memory formation by the brain influence systemic metabolic homeostasis.

    Science.gov (United States)

    Zhang, Yumin; Liu, Gang; Yan, Jingqi; Zhang, Yalin; Li, Bo; Cai, Dongsheng

    2015-04-07

    Metabolic homeostasis is regulated by the brain, but whether this regulation involves learning and memory of metabolic information remains unexplored. Here we use a calorie-based, taste-independent learning/memory paradigm to show that Drosophila form metabolic memories that help in balancing food choice with caloric intake; however, this metabolic learning or memory is lost under chronic high-calorie feeding. We show that loss of individual learning/memory-regulating genes causes a metabolic learning defect, leading to elevated trehalose and lipid levels. Importantly, this function of metabolic learning requires not only the mushroom body but also the hypothalamus-like pars intercerebralis, while NF-κB activation in the pars intercerebralis mimics chronic overnutrition in that it causes metabolic learning impairment and disorders. Finally, we evaluate this concept of metabolic learning/memory in mice, suggesting that the hypothalamus is involved in a form of nutritional learning and memory, which is critical for determining resistance or susceptibility to obesity. In conclusion, our data indicate that the brain, and potentially the hypothalamus, direct metabolic learning and the formation of memories, which contribute to the control of systemic metabolic homeostasis.

  3. Animal metabolism

    International Nuclear Information System (INIS)

    Walburg, H.E.

    1977-01-01

    Studies on placental transport included the following: clearance of tritiated water as a baseline measurement for transport of materials across perfused placentas; transport of organic and inorganic mercury across the perfused placenta of the guinea pig in late gestation; and transport of cadmium across the perfused placenta of the guinea pig in late gestation. Studies on cadmium absorption and metabolism included the following: intestinal absorption and retention of cadmium in neonatal rats; uptake and distribution of an oral dose of cadmium in postweanling male and female, iron-deficient and normal rats; postnatal viability and growth in rat pups after oral cadmium administration during gestation; and the effect of calcium and phosphorus on the absorption and toxicity of cadmium. Studies on gastrointestinal absorption and mineral metabolism included: uptake and distribution of orally administered plutonium complex compounds in male mice; gastrointestinal absorption of 144 Ce in the newborn mouse, rat, and pig; and gastrointestinal absorption of 95 Nb by rats of different ages. Studies on iodine metabolism included the following: influence of thyroid status and thiocyanate on iodine metabolism in the bovine; effects of simulated fallout radiation on iodine metabolism in dairy cattle; and effects of feeding iodine binding agents on iodine metabolism in the calf

  4. Metabolic Myopathies.

    Science.gov (United States)

    Tarnopolsky, Mark A

    2016-12-01

    Metabolic myopathies are genetic disorders that impair intermediary metabolism in skeletal muscle. Impairments in glycolysis/glycogenolysis (glycogen-storage disease), fatty acid transport and oxidation (fatty acid oxidation defects), and the mitochondrial respiratory chain (mitochondrial myopathies) represent the majority of known defects. The purpose of this review is to develop a diagnostic and treatment algorithm for the metabolic myopathies. The metabolic myopathies can present in the neonatal and infant period as part of more systemic involvement with hypotonia, hypoglycemia, and encephalopathy; however, most cases present in childhood or in adulthood with exercise intolerance (often with rhabdomyolysis) and weakness. The glycogen-storage diseases present during brief bouts of high-intensity exercise, whereas fatty acid oxidation defects and mitochondrial myopathies present during a long-duration/low-intensity endurance-type activity or during fasting or another metabolically stressful event (eg, surgery, fever). The clinical examination is often normal between acute events, and evaluation involves exercise testing, blood testing (creatine kinase, acylcarnitine profile, lactate, amino acids), urine organic acids (ketones, dicarboxylic acids, 3-methylglutaconic acid), muscle biopsy (histology, ultrastructure, enzyme testing), MRI/spectroscopy, and targeted or untargeted genetic testing. Accurate and early identification of metabolic myopathies can lead to therapeutic interventions with lifestyle and nutritional modification, cofactor treatment, and rapid treatment of rhabdomyolysis.

  5. Microalgal Metabolic Network Model Refinement through High-Throughput Functional Metabolic Profiling

    International Nuclear Information System (INIS)

    Chaiboonchoe, Amphun; Dohai, Bushra Saeed; Cai, Hong; Nelson, David R.; Jijakli, Kenan; Salehi-Ashtiani, Kourosh

    2014-01-01

    Metabolic modeling provides the means to define metabolic processes at a systems level; however, genome-scale metabolic models often remain incomplete in their description of metabolic networks and may include reactions that are experimentally unverified. This shortcoming is exacerbated in reconstructed models of newly isolated algal species, as there may be little to no biochemical evidence available for the metabolism of such isolates. The phenotype microarray (PM) technology (Biolog, Hayward, CA, USA) provides an efficient, high-throughput method to functionally define cellular metabolic activities in response to a large array of entry metabolites. The platform can experimentally verify many of the unverified reactions in a network model as well as identify missing or new reactions in the reconstructed metabolic model. The PM technology has been used for metabolic phenotyping of non-photosynthetic bacteria and fungi, but it has not been reported for the phenotyping of microalgae. Here, we introduce the use of PM assays in a systematic way to the study of microalgae, applying it specifically to the green microalgal model species Chlamydomonas reinhardtii. The results obtained in this study validate a number of existing annotated metabolic reactions and identify a number of novel and unexpected metabolites. The obtained information was used to expand and refine the existing COBRA-based C. reinhardtii metabolic network model iRC1080. Over 254 reactions were added to the network, and the effects of these additions on flux distribution within the network are described. The novel reactions include the support of metabolism by a number of d-amino acids, l-dipeptides, and l-tripeptides as nitrogen sources, as well as support of cellular respiration by cysteamine-S-phosphate as a phosphorus source. The protocol developed here can be used as a foundation to functionally profile other microalgae such as known microalgae mutants and novel isolates.

  6. Microalgal Metabolic Network Model Refinement through High-Throughput Functional Metabolic Profiling

    Energy Technology Data Exchange (ETDEWEB)

    Chaiboonchoe, Amphun; Dohai, Bushra Saeed; Cai, Hong; Nelson, David R. [Division of Science and Math, New York University Abu Dhabi, Abu Dhabi (United Arab Emirates); Center for Genomics and Systems Biology (CGSB), New York University Abu Dhabi Institute, Abu Dhabi (United Arab Emirates); Jijakli, Kenan [Division of Science and Math, New York University Abu Dhabi, Abu Dhabi (United Arab Emirates); Center for Genomics and Systems Biology (CGSB), New York University Abu Dhabi Institute, Abu Dhabi (United Arab Emirates); Engineering Division, Biofinery, Manhattan, KS (United States); Salehi-Ashtiani, Kourosh, E-mail: ksa3@nyu.edu [Division of Science and Math, New York University Abu Dhabi, Abu Dhabi (United Arab Emirates); Center for Genomics and Systems Biology (CGSB), New York University Abu Dhabi Institute, Abu Dhabi (United Arab Emirates)

    2014-12-10

    Metabolic modeling provides the means to define metabolic processes at a systems level; however, genome-scale metabolic models often remain incomplete in their description of metabolic networks and may include reactions that are experimentally unverified. This shortcoming is exacerbated in reconstructed models of newly isolated algal species, as there may be little to no biochemical evidence available for the metabolism of such isolates. The phenotype microarray (PM) technology (Biolog, Hayward, CA, USA) provides an efficient, high-throughput method to functionally define cellular metabolic activities in response to a large array of entry metabolites. The platform can experimentally verify many of the unverified reactions in a network model as well as identify missing or new reactions in the reconstructed metabolic model. The PM technology has been used for metabolic phenotyping of non-photosynthetic bacteria and fungi, but it has not been reported for the phenotyping of microalgae. Here, we introduce the use of PM assays in a systematic way to the study of microalgae, applying it specifically to the green microalgal model species Chlamydomonas reinhardtii. The results obtained in this study validate a number of existing annotated metabolic reactions and identify a number of novel and unexpected metabolites. The obtained information was used to expand and refine the existing COBRA-based C. reinhardtii metabolic network model iRC1080. Over 254 reactions were added to the network, and the effects of these additions on flux distribution within the network are described. The novel reactions include the support of metabolism by a number of d-amino acids, l-dipeptides, and l-tripeptides as nitrogen sources, as well as support of cellular respiration by cysteamine-S-phosphate as a phosphorus source. The protocol developed here can be used as a foundation to functionally profile other microalgae such as known microalgae mutants and novel isolates.

  7. Relationship between response to aripiprazole once-monthly and paliperidone palmitate on work readiness and functioning in schizophrenia: A post-hoc analysis of the QUALIFY study.

    Directory of Open Access Journals (Sweden)

    Steven G Potkin

    Full Text Available Schizophrenia is a chronic disease with negative impact on patients' employment status and quality of life. This post-hoc analysis uses data from the QUALIFY study to elucidate the relationship between work readiness and health-related quality of life and functioning. QUALIFY was a 28-week, randomized study (NCT01795547 comparing the treatment effectiveness of aripiprazole once-monthly 400 mg and paliperidone palmitate once-monthly using the Heinrichs-Carpenter Quality-of-Life Scale as the primary endpoint. Also, patients' capacity to work and work readiness (Yes/No was assessed with the Work Readiness Questionnaire. We categorized patients, irrespective of treatment, by work readiness at baseline and week 28: No to Yes (n = 41, Yes to Yes (n = 49, or No at week 28 (n = 118. Quality-of-Life Scale total, domains, and item scores were assessed with a mixed model of repeated measures. Patients who shifted from No to Yes in work readiness showed robust improvements on Quality-of-Life Scale total scores, significantly greater than patients not ready to work at week 28 (least squares mean difference: 11.6±2.6, p<0.0001. Scores on Quality-of-Life Scale instrumental role domain and items therein-occupational role, work functioning, work levels, work satisfaction-significantly improved in patients shifting from No to Yes in work readiness (vs patients No at Week 28. Quality-of-Life Scale total scores also significantly predicted work readiness at week 28. Overall, these results highlight a strong association between improvements in health-related quality of life and work readiness, and suggest that increasing patients' capacity to work is an achievable and meaningful goal in the treatment of impaired functioning in schizophrenia.

  8. Two-Scale 13C Metabolic Flux Analysis for Metabolic Engineering.

    Science.gov (United States)

    Ando, David; Garcia Martin, Hector

    2018-01-01

    Accelerating the Design-Build-Test-Learn (DBTL) cycle in synthetic biology is critical to achieving rapid and facile bioengineering of organisms for the production of, e.g., biofuels and other chemicals. The Learn phase involves using data obtained from the Test phase to inform the next Design phase. As part of the Learn phase, mathematical models of metabolic fluxes give a mechanistic level of comprehension to cellular metabolism, isolating the principle drivers of metabolic behavior from the peripheral ones, and directing future experimental designs and engineering methodologies. Furthermore, the measurement of intracellular metabolic fluxes is specifically noteworthy as providing a rapid and easy-to-understand picture of how carbon and energy flow throughout the cell. Here, we present a detailed guide to performing metabolic flux analysis in the Learn phase of the DBTL cycle, where we show how one can take the isotope labeling data from a 13 C labeling experiment and immediately turn it into a determination of cellular fluxes that points in the direction of genetic engineering strategies that will advance the metabolic engineering process.For our modeling purposes we use the Joint BioEnergy Institute (JBEI) Quantitative Metabolic Modeling (jQMM) library, which provides an open-source, python-based framework for modeling internal metabolic fluxes and making actionable predictions on how to modify cellular metabolism for specific bioengineering goals. It presents a complete toolbox for performing different types of flux analysis such as Flux Balance Analysis, 13 C Metabolic Flux Analysis, and it introduces the capability to use 13 C labeling experimental data to constrain comprehensive genome-scale models through a technique called two-scale 13 C Metabolic Flux Analysis (2S- 13 C MFA) [1]. In addition to several other capabilities, the jQMM is also able to predict the effects of knockouts using the MoMA and ROOM methodologies. The use of the jQMM library is

  9. Comprehensive metabolic panel

    Science.gov (United States)

    Metabolic panel - comprehensive; Chem-20; SMA20; Sequential multi-channel analysis with computer-20; SMAC20; Metabolic panel 20 ... Chernecky CC, Berger BJ. Comprehensive metabolic panel (CMP) - blood. In: ... Tests and Diagnostic Procedures . 6th ed. St Louis, MO: ...

  10. Fluoroacetylcarnitine: metabolism and metabolic effects in mitochondria

    Energy Technology Data Exchange (ETDEWEB)

    Bremer, J; Davis, E J

    1973-01-01

    The metabolism and metabolic effects of fluoroacetylcarnitine have been investigated. Carnitineacetyltransferase transfers the fluoro-acetyl group of fluoroacetylcarnitine nearly as rapidly to CoA as the acetyl group of acetylcarnitine. Fluorocitrate is then formed by citrate synthase, but this second reaction is relatively slow. The fluorocitrate formed intramitochondrially inhibits the metabolism of citrate. In heart and skeletal muscle mitochondria the accumulated citrate inhibits citrate synthesis and the ..beta..-oxidation of fatty acids. Free acetate is formed, presumably because accumulated acetyl-CoA is hydrolyzed. In liver mitochondria the accumulation of citrate leads to a relatively increased rate of ketogenesis. Increased ketogenesis is obtained also upon the addition of citrate to the reaction mixture.

  11. Partial agonist therapy in schizophrenia: relevance to diminished criminal responsibility.

    Science.gov (United States)

    Gavaudan, Gilles; Magalon, David; Cohen, Julien; Lançon, Christophe; Léonetti, Georges; Pélissier-Alicot, Anne-Laure

    2010-11-01

    Pathological gambling (PG), classified in the DSM-IV among impulse control disorders, is defined as inappropriate, persistent gaming for money with serious personal, family, and social consequences. Offenses are frequently committed to obtain money for gambling. Pathological gambling, a planned and structured behavioral disorder, has often been described as a complication of dopamine agonist treatment in patients with Parkinson's disease. It has never been described in patients with schizophrenia receiving dopamine agonists. We present two patients with schizophrenia, previously treated with antipsychotic drugs without any suggestion of PG, who a short time after starting aripiprazole, a dopamine partial agonist, developed PG and criminal behavior, which totally resolved when aripiprazole was discontinued. Based on recent advances in research on PG and adverse drug reactions to dopamine agonists in Parkinson's disease, we postulate a link between aripiprazole and PG in both our patients with schizophrenia and raise the question of criminal responsibility. © 2010 American Academy of Forensic Sciences.

  12. Drug discovery strategies in the field of tumor energy metabolism: Limitations by metabolic flexibility and metabolic resistance to chemotherapy.

    Science.gov (United States)

    Amoedo, N D; Obre, E; Rossignol, R

    2017-08-01

    The search for new drugs capable of blocking the metabolic vulnerabilities of human tumors has now entered the clinical evaluation stage, but several projects already failed in phase I or phase II. In particular, very promising in vitro studies could not be translated in vivo at preclinical stage and beyond. This was the case for most glycolysis inhibitors that demonstrated systemic toxicity. A more recent example is the inhibition of glutamine catabolism in lung adenocarcinoma that failed in vivo despite a strong addiction of several cancer cell lines to glutamine in vitro. Such contradictory findings raised several questions concerning the optimization of drug discovery strategies in the field of cancer metabolism. For instance, the cell culture models in 2D or 3D might already show strong limitations to mimic the tumor micro- and macro-environment. The microenvironment of tumors is composed of cancer cells of variegated metabolic profiles, supporting local metabolic exchanges and symbiosis, but also of immune cells and stroma that further interact with and reshape cancer cell metabolism. The macroenvironment includes the different tissues of the organism, capable of exchanging signals and fueling the tumor 'a distance'. Moreover, most metabolic targets were identified from their increased expression in tumor transcriptomic studies, or from targeted analyses looking at the metabolic impact of particular oncogenes or tumor suppressors on selected metabolic pathways. Still, very few targets were identified from in vivo analyses of tumor metabolism in patients because such studies are difficult and adequate imaging methods are only currently being developed for that purpose. For instance, perfusion of patients with [ 13 C]-glucose allows deciphering the metabolomics of tumors and opens a new area in the search for effective targets. Metabolic imaging with positron emission tomography and other techniques that do not involve [ 13 C] can also be used to evaluate tumor

  13. Transcriptional and metabolic effects of glucose on Streptococcus pneumoniae sugar metabolism

    Directory of Open Access Journals (Sweden)

    Laura ePaixão

    2015-10-01

    Full Text Available Streptococcus pneumoniae is a strictly fermentative human pathogen that relies on carbohydrate metabolism to generate energy for growth. The nasopharynx colonised by the bacterium is poor in free sugars, but mucosa lining glycans can provide a source of sugar. In blood and inflamed tissues glucose is the prevailing sugar. As a result during progression from colonisation to disease S. pneumoniae has to cope with a pronounced shift in carbohydrate nature and availability. Thus, we set out to assess the pneumococcal response to sugars found in glycans and the influence of glucose (Glc on this response at the transcriptional, physiological and metabolic levels. Galactose (Gal, N-acetylglucosamine (GlcNAc and mannose (Man affected the expression of 8 to 14% of the genes covering cellular functions including central carbon metabolism and virulence. The pattern of end-products as monitored by in vivo 13C-NMR is in good agreement with the fermentation profiles during growth, while the pools of phosphorylated metabolites are consistent with the type of fermentation observed (homolactic vs. mixed and regulation at the metabolic level. Furthermore, the accumulation of α-Gal6P and Man6P indicate metabolic bottlenecks in the metabolism of Gal and Man, respectively. Glc added to cells actively metabolizing other sugar(s was readily consumed and elicited a metabolic shift towards a homolactic profile. The transcriptional response to Glc was large (over 5% of the genome. In central carbon metabolism (most represented category, Glc exerted mostly negative regulation. The smallest response to Glc was observed on a sugar mix, suggesting that exposure to varied sugars improves the fitness of S. pneumoniae. The expression of virulence factors was negatively controlled by Glc in a sugar-dependent manner. Overall, our results shed new light on the link between carbohydrate metabolism, adaptation to host niches and virulence.

  14. Transcriptional and metabolic effects of glucose on Streptococcus pneumoniae sugar metabolism.

    Science.gov (United States)

    Paixão, Laura; Caldas, José; Kloosterman, Tomas G; Kuipers, Oscar P; Vinga, Susana; Neves, Ana R

    2015-01-01

    Streptococcus pneumoniae is a strictly fermentative human pathogen that relies on carbohydrate metabolism to generate energy for growth. The nasopharynx colonized by the bacterium is poor in free sugars, but mucosa lining glycans can provide a source of sugar. In blood and inflamed tissues glucose is the prevailing sugar. As a result during progression from colonization to disease S. pneumoniae has to cope with a pronounced shift in carbohydrate nature and availability. Thus, we set out to assess the pneumococcal response to sugars found in glycans and the influence of glucose (Glc) on this response at the transcriptional, physiological, and metabolic levels. Galactose (Gal), N-acetylglucosamine (GlcNAc), and mannose (Man) affected the expression of 8 to 14% of the genes covering cellular functions including central carbon metabolism and virulence. The pattern of end-products as monitored by in vivo (13)C-NMR is in good agreement with the fermentation profiles during growth, while the pools of phosphorylated metabolites are consistent with the type of fermentation observed (homolactic vs. mixed) and regulation at the metabolic level. Furthermore, the accumulation of α-Gal6P and Man6P indicate metabolic bottlenecks in the metabolism of Gal and Man, respectively. Glc added to cells actively metabolizing other sugar(s) was readily consumed and elicited a metabolic shift toward a homolactic profile. The transcriptional response to Glc was large (over 5% of the genome). In central carbon metabolism (most represented category), Glc exerted mostly negative regulation. The smallest response to Glc was observed on a sugar mix, suggesting that exposure to varied sugars improves the fitness of S. pneumoniae. The expression of virulence factors was negatively controlled by Glc in a sugar-dependent manner. Overall, our results shed new light on the link between carbohydrate metabolism, adaptation to host niches and virulence.

  15. Metabolic Syndrome

    Science.gov (United States)

    Metabolic syndrome is a group of conditions that put you at risk for heart disease and diabetes. These conditions ... agree on the definition or cause of metabolic syndrome. The cause might be insulin resistance. Insulin is ...

  16. Metabolic syndrome and menopause

    Directory of Open Access Journals (Sweden)

    Jouyandeh Zahra

    2013-01-01

    Full Text Available Abstract Background The metabolic syndrome is defined as an assemblage of risk factors for cardiovascular diseases, and menopause is associated with an increase in metabolic syndrome prevalence. The aim of this study was to assess the prevalence of metabolic syndrome and its components among postmenopausal women in Tehran, Iran. Methods In this cross-sectional study in menopause clinic in Tehran, 118 postmenopausal women were investigated. We used the adult treatment panel 3 (ATP3 criteria to classify subjects as having metabolic syndrome. Results Total prevalence of metabolic syndrome among our subjects was 30.1%. Waist circumference, HDL-cholesterol, fasting blood glucose, diastolic blood pressure ,Systolic blood pressure, and triglyceride were significantly higher among women with metabolic syndrome (P-value Conclusions Our study shows that postmenopausal status is associated with an increased risk of metabolic syndrome. Therefore, to prevent cardiovascular disease there is a need to evaluate metabolic syndrome and its components from the time of the menopause.

  17. Enantiomeric metabolic interactions and stereoselective human methadone metabolism.

    Science.gov (United States)

    Totah, Rheem A; Allen, Kyle E; Sheffels, Pamela; Whittington, Dale; Kharasch, Evan D

    2007-04-01

    Methadone is administered as a racemate, although opioid activity resides in the R-enantiomer. Methadone disposition is stereoselective, with considerable unexplained variability in clearance and plasma R/S ratios. N-Demethylation of methadone in vitro is predominantly mediated by cytochrome P450 CYP3A4 and CYP2B6 and somewhat by CYP2C19. This investigation evaluated stereoselectivity, models, and kinetic parameters for methadone N-demethylation by recombinant CYP2B6, CYP3A4, and CYP2C19, and the potential for interactions between enantiomers during racemate metabolism. CYP2B6 metabolism was stereoselective. CYP2C19 was less active, and stereoselectivity was opposite that for CYP2B6. CYP3A4 was not stereoselective. With all three isoforms, enantiomer N-dealkylation rates in the racemate were lower than those of (R)-(6-dimethyamino-4,4-diphenyl-heptan-3-one) hydrochloride (R-methadone) or (S)-(6-dimethyamino-4,4-diphenyl-heptan-3-one) hydrochloride (S-methadone) alone, suggesting an enantiomeric interaction and mutual metabolic inhibition. For CYP2B6, the interaction between enantiomers was stereoselective, with S-methadone as a more potent inhibitor of R-methadone N-demethylation than R-of S-methadone. In contrast, enantiomer interactions were not stereoselective with CYP2C19 or CYP3A4. For all three cytochromes P450, methadone N-demethylation was best described by two-site enzyme models with competitive inhibition. There were minor model differences between cytochromes P450 to account for stereoselectivity of metabolism and enantiomeric interactions. Changes in plasma R/S methadone ratios observed after rifampin or troleandomycin pretreatment in humans in vivo were successfully predicted by CYP2B6- but not CYP3A4-catalyzed methadone N-demethylation. CYP2B6 is a predominant catalyst of stereoselective methadone metabolism in vitro. In vivo, CYP2B6 may be a major determinant of methadone metabolism and disposition, and CYP2B6 activity and stereoselective metabolic

  18. Metabolic regulation of inflammation.

    Science.gov (United States)

    Gaber, Timo; Strehl, Cindy; Buttgereit, Frank

    2017-05-01

    Immune cells constantly patrol the body via the bloodstream and migrate into multiple tissues where they face variable and sometimes demanding environmental conditions. Nutrient and oxygen availability can vary during homeostasis, and especially during the course of an immune response, creating a demand for immune cells that are highly metabolically dynamic. As an evolutionary response, immune cells have developed different metabolic programmes to supply them with cellular energy and biomolecules, enabling them to cope with changing and challenging metabolic conditions. In the past 5 years, it has become clear that cellular metabolism affects immune cell function and differentiation, and that disease-specific metabolic configurations might provide an explanation for the dysfunctional immune responses seen in rheumatic diseases. This Review outlines the metabolic challenges faced by immune cells in states of homeostasis and inflammation, as well as the variety of metabolic configurations utilized by immune cells during differentiation and activation. Changes in cellular metabolism that contribute towards the dysfunctional immune responses seen in rheumatic diseases are also briefly discussed.

  19. Metabolic Diet App Suite for inborn errors of amino acid metabolism.

    Science.gov (United States)

    Ho, Gloria; Ueda, Keiko; Houben, Roderick F A; Joa, Jeff; Giezen, Alette; Cheng, Barbara; van Karnebeek, Clara D M

    2016-03-01

    An increasing number of rare inborn errors of metabolism (IEMs) are amenable to targeted metabolic nutrition therapy. Daily adherence is important to attain metabolic control and prevent organ damage. This is challenging however, given the lack of information of disorder specific nutrient content of foods, the limited availability and cost of specialty products as well as difficulties in reliable calculation and tracking of dietary intake and targets. To develop apps for all inborn errors of amino acid metabolism for which the mainstay of treatment is a medical diet, and obtain patient and family feedback throughout the process to incorporate this into subsequent versions. The Metabolic Diet App Suite was created with input from health care professionals as a free, user-friendly, online tool for both mobile devices and desktop computers (http://www.metabolicdietapp.org) for 15 different IEMs. General information is provided for each IEM with links to useful online resources. Nutrient information is based on the MetabolicPro™, a North American food database compiled by the Genetic Metabolic Dietitians International (GMDI) Technology committee. After user registration, a personalized dashboard and management plan including specific nutrient goals are created. Each Diet App has a user-friendly interface and the functions include: nutrient intake counts, adding your own foods and homemade recipes and, managing a daily food diary. Patient and family feedback was overall positive and specific suggestions were used to further improve the App Suite. The Metabolic Diet App Suite aids individuals affected by IEMs to track and plan their meals. Future research should evaluate its impact on patient adherence, metabolic control, quality of life and health-related outcomes. The Suite will be updated and expanded to Apps for other categories of IEMs. Finally, this Suite is a support tool only, and does not replace medical/metabolic nutrition professional advice. Copyright

  20. Metabolic Control of Redox and Redox Control of Metabolism in Plants

    Science.gov (United States)

    Fernie, Alisdair R.

    2014-01-01

    Abstract Significance: Reduction-oxidation (Redox) status operates as a major integrator of subcellular and extracellular metabolism and is simultaneously itself regulated by metabolic processes. Redox status not only dominates cellular metabolism due to the prominence of NAD(H) and NADP(H) couples in myriad metabolic reactions but also acts as an effective signal that informs the cell of the prevailing environmental conditions. After relay of this information, the cell is able to appropriately respond via a range of mechanisms, including directly affecting cellular functioning and reprogramming nuclear gene expression. Recent Advances: The facile accession of Arabidopsis knockout mutants alongside the adoption of broad-scale post-genomic approaches, which are able to provide transcriptomic-, proteomic-, and metabolomic-level information alongside traditional biochemical and emerging cell biological techniques, has dramatically advanced our understanding of redox status control. This review summarizes redox status control of metabolism and the metabolic control of redox status at both cellular and subcellular levels. Critical Issues: It is becoming apparent that plastid, mitochondria, and peroxisome functions influence a wide range of processes outside of the organelles themselves. While knowledge of the network of metabolic pathways and their intraorganellar redox status regulation has increased in the last years, little is known about the interorganellar redox signals coordinating these networks. A current challenge is, therefore, synthesizing our knowledge and planning experiments that tackle redox status regulation at both inter- and intracellular levels. Future Directions: Emerging tools are enabling ever-increasing spatiotemporal resolution of metabolism and imaging of redox status components. Broader application of these tools will likely greatly enhance our understanding of the interplay of redox status and metabolism as well as elucidating and

  1. METHODS ELABORATION ON DETECTION OF SOME ATYPICAL NEUROLYTIC AGENTS FOR CHEMICAL AND TOXICOLOGICAL ANALYSIS

    Directory of Open Access Journals (Sweden)

    I. P. Remezova

    2014-01-01

    Full Text Available It is necessary to elaborate methods of atypical neuroleptic agents detection as individual substances and in different combinations as well for diagnosis of poisoning by some of them: clozapine, risperidone, sertindole, olanzapine, aripiprazole. The purpose of this work is methods elaboration of detection of clozapine, risperidone, sertindole, olanzapine, aripiprazole, haloperidol, oxazepam, carbamazapine using TLC, HPLC and UV spectrophotometry methods. During this work we used tablet forms of clozapine, risperidone, sertindole, olanzapine, aripiprazole. It is possible to use solution systems like ethanol-water-25% ammonia solution (8:1:1, toluolacetone-ethanol-25% ammonia solution (45:45:7.5:2.5, dioxan-chloroform-acetone-25% ammonia solution (47.5:45:5:2.5 for preliminary examination of atypical neuroleptic agents under study in combination with typical neuroleptics and tranquilizers with undirected analysis (general screening. System of solvents ethyl-acetate-chloroform-25% ammonia solution (85:10:5 is recommended to use for individual screening of risperidone, sertindole, olanzapine, haloperidol, benzol-ethanol-25% ammonia solution (50:10:0.5 system to use for clozapine, sertindole, olanzapine. Ethanol-25% ammonia solution (100:1.5 system is reasonable to use for chromatographic clearance of extracts from biological substances under study. We recommend using HPLC method and UV spectrophotometry for carrying out of a principal examination of clozapine, risperidone, sertindole, olanzapine and aripiprazole in case one of the substances under study is determined in the object.

  2. Dysfunction of serotoninergic and dopaminergic neuronal systems in the antidepressant-resistant impairment of social behaviors induced by social defeat stress exposure as juveniles.

    Science.gov (United States)

    Hasegawa, Sho; Miyake, Yuriko; Yoshimi, Akira; Mouri, Akihiro; Hida, Hirotake; Yamada, Kiyofumi; Ozaki, Norio; Nabeshima, Toshitaka; Noda, Yukihiro

    2018-03-29

    Extensive studies have been performed on the role of monoaminergic neuronal systems in rodents exposed to social defeat stress as adults. In the present study, we investigated the role of monoaminergic neuronal systems in the impairment of social behaviors induced by social defeat stress exposure as juveniles. Juvenile, male C57BL/6J mice were exposed to social defeat stress for 10 consecutive days. From 1 day after the last stress exposure, desipramine, sertraline, and aripiprazole, were administered for 15 days. Social behaviors were assessed at 1 and 15 days after the last stress exposure. Monoamine turnover was determined in specific regions of the brain in the mice exposed to the stress. Stress exposure as juveniles induced the impairment of social behaviors in adolescent mice. In mice that showed the impairment of social behaviors, turnover of the serotonin and dopamine, but not noradrenaline was decreased in specific brain regions. Acute and repeated administration of desipramine, sertraline, and aripiprazole failed to attenuate the impairment of social behaviors, whereas repeated administration of a combination of sertraline and aripiprazole showed additive attenuating effects. These findings suggest that social defeat stress exposure as juveniles induces the treatment-resistant impairment of social behaviors in adolescents through dysfunction in the serotoninergic and dopaminergic neuronal systems. The combination of sertraline and aripiprazole may be used as a new treatment strategy for treatment-resistant stress-related psychiatric disorders in adolescents with adverse juvenile experiences.

  3. Efficacy and Tolerability of Pharmacotherapy Options for the Treatment of Irritability in Autistic Children

    Directory of Open Access Journals (Sweden)

    Eiji Kirino

    2014-01-01

    Full Text Available Children with autism have a high rate of irritability and aggressive symptoms. Irritability or self-injurious behavior can result in significant harm to those affected, as well as to marked distress for their families. This paper provides a literature review regarding the efficacy and tolerability of pharmacotherapy for the treatment of irritability in autistic children. Although antipsychotics have not yet been approved for the treatment of autistic children by many countries, they are often used to reduce symptoms of behavioral problems, including irritability, aggression, hyperactivity, and panic. However, among antipsychotics, the Food and Drug Administration has approved only risperidone and aripiprazole to treat irritability in autism. Among atypical antipsychotics, olanzapine and quetiapine are limited in their use for autism spectrum disorders in children because of high incidences of weight gain and sedation. In comparison, aripiprazole and ziprasidone cause less weight gain and sedation. However, potential QTc interval prolongation with ziprasidone has been reported. Contrary to ziprasidone, no changes were evident in the QT interval in any of the trials for aripiprazole. However, head-to-head comparison studies are needed to support that aripiprazole may be a promising drug that can be used to treat irritability in autistic children. On the other hand, risperidone has the greatest amount of evidence supporting it, including randomized controlled trials; thus, its efficacy and tolerability has been established in comparison with other agents. Further studies with risperidone as a control drug are needed.

  4. Altered metabolism in cancer

    Directory of Open Access Journals (Sweden)

    Locasale Jason W

    2010-06-01

    Full Text Available Abstract Cancer cells have different metabolic requirements from their normal counterparts. Understanding the consequences of this differential metabolism requires a detailed understanding of glucose metabolism and its relation to energy production in cancer cells. A recent study in BMC Systems Biology by Vasquez et al. developed a mathematical model to assess some features of this altered metabolism. Here, we take a broader look at the regulation of energy metabolism in cancer cells, considering their anabolic as well as catabolic needs. See research article: http://www.biomedcentral.com/1752-0509/4/58/

  5. Mycobacterium tuberculosis Metabolism

    Science.gov (United States)

    Warner, Digby F.

    2015-01-01

    Metabolism underpins the physiology and pathogenesis of Mycobacterium tuberculosis. However, although experimental mycobacteriology has provided key insights into the metabolic pathways that are essential for survival and pathogenesis, determining the metabolic status of bacilli during different stages of infection and in different cellular compartments remains challenging. Recent advances—in particular, the development of systems biology tools such as metabolomics—have enabled key insights into the biochemical state of M. tuberculosis in experimental models of infection. In addition, their use to elucidate mechanisms of action of new and existing antituberculosis drugs is critical for the development of improved interventions to counter tuberculosis. This review provides a broad summary of mycobacterial metabolism, highlighting the adaptation of M. tuberculosis as specialist human pathogen, and discusses recent insights into the strategies used by the host and infecting bacillus to influence the outcomes of the host–pathogen interaction through modulation of metabolic functions. PMID:25502746

  6. Dysregulated metabolism contributes to oncogenesis

    Science.gov (United States)

    Hirschey, Matthew D.; DeBerardinis, Ralph J.; Diehl, Anna Mae E.; Drew, Janice E.; Frezza, Christian; Green, Michelle F.; Jones, Lee W.; Ko, Young H.; Le, Anne; Lea, Michael A.; Locasale, Jason W.; Longo, Valter D.; Lyssiotis, Costas A.; McDonnell, Eoin; Mehrmohamadi, Mahya; Michelotti, Gregory; Muralidhar, Vinayak; Murphy, Michael P.; Pedersen, Peter L.; Poore, Brad; Raffaghello, Lizzia; Rathmell, Jeffrey C.; Sivanand, Sharanya; Vander Heiden, Matthew G.; Wellen, Kathryn E.

    2015-01-01

    Cancer is a disease characterized by unrestrained cellular proliferation. In order to sustain growth, cancer cells undergo a complex metabolic rearrangement characterized by changes in metabolic pathways involved in energy production and biosynthetic processes. The relevance of the metabolic transformation of cancer cells has been recently included in the updated version of the review “Hallmarks of Cancer”, where the dysregulation of cellular metabolism was included as an emerging hallmark. While several lines of evidence suggest that metabolic rewiring is orchestrated by the concerted action of oncogenes and tumor suppressor genes, in some circumstances altered metabolism can play a primary role in oncogenesis. Recently, mutations of cytosolic and mitochondrial enzymes involved in key metabolic pathways have been associated with hereditary and sporadic forms of cancer. Together, these results suggest that aberrant metabolism, once seen just as an epiphenomenon of oncogenic reprogramming, plays a key role in oncogenesis with the power to control both genetic and epigenetic events in cells. In this review, we discuss the relationship between metabolism and cancer, as part of a larger effort to identify a broad-spectrum of therapeutic approaches. We focus on major alterations in nutrient metabolism and the emerging link between metabolism and epigenetics. Finally, we discuss potential strategies to manipulate metabolism in cancer and tradeoffs that should be considered. More research on the suite of metabolic alterations in cancer holds the potential to discover novel approaches to treat it. PMID:26454069

  7. MetaFluxNet: the management of metabolic reaction information and quantitative metabolic flux analysis.

    Science.gov (United States)

    Lee, Dong-Yup; Yun, Hongsoek; Park, Sunwon; Lee, Sang Yup

    2003-11-01

    MetaFluxNet is a program package for managing information on the metabolic reaction network and for quantitatively analyzing metabolic fluxes in an interactive and customized way. It allows users to interpret and examine metabolic behavior in response to genetic and/or environmental modifications. As a result, quantitative in silico simulations of metabolic pathways can be carried out to understand the metabolic status and to design the metabolic engineering strategies. The main features of the program include a well-developed model construction environment, user-friendly interface for metabolic flux analysis (MFA), comparative MFA of strains having different genotypes under various environmental conditions, and automated pathway layout creation. http://mbel.kaist.ac.kr/ A manual for MetaFluxNet is available as PDF file.

  8. Perspectives in metabolic engineering: understanding cellular regulation towards the control of metabolic routes.

    Science.gov (United States)

    Zadran, Sohila; Levine, Raphael D

    2013-01-01

    Metabolic engineering seeks to redirect metabolic pathways through the modification of specific biochemical reactions or the introduction of new ones with the use of recombinant technology. Many of the chemicals synthesized via introduction of product-specific enzymes or the reconstruction of entire metabolic pathways into engineered hosts that can sustain production and can synthesize high yields of the desired product as yields of natural product-derived compounds are frequently low, and chemical processes can be both energy and material expensive; current endeavors have focused on using biologically derived processes as alternatives to chemical synthesis. Such economically favorable manufacturing processes pursue goals related to sustainable development and "green chemistry". Metabolic engineering is a multidisciplinary approach, involving chemical engineering, molecular biology, biochemistry, and analytical chemistry. Recent advances in molecular biology, genome-scale models, theoretical understanding, and kinetic modeling has increased interest in using metabolic engineering to redirect metabolic fluxes for industrial and therapeutic purposes. The use of metabolic engineering has increased the productivity of industrially pertinent small molecules, alcohol-based biofuels, and biodiesel. Here, we highlight developments in the practical and theoretical strategies and technologies available for the metabolic engineering of simple systems and address current limitations.

  9. Altered drug metabolism during pregnancy: hormonal regulation of drug-metabolizing enzymes.

    Science.gov (United States)

    Jeong, Hyunyoung

    2010-06-01

    Medication use during pregnancy is prevalent, but pharmacokinetic information of most drugs used during pregnancy is lacking in spite of known effects of pregnancy on drug disposition. Accurate pharmacokinetic information is essential for optimal drug therapy in mother and fetus. Thus, understanding how pregnancy influences drug disposition is important for better prediction of pharmacokinetic changes of drugs in pregnant women. Pregnancy is known to affect hepatic drug metabolism, but the underlying mechanisms remain unknown. Physiological changes accompanying pregnancy are probably responsible for the reported alteration in drug metabolism during pregnancy. These include elevated concentrations of various hormones such as estrogen, progesterone, placental growth hormones and prolactin. This review covers how these hormones influence expression of drug-metabolizing enzymes (DMEs), thus potentially responsible for altered drug metabolism during pregnancy. The reader will gain a greater understanding of the altered drug metabolism in pregnant women and the regulatory effects of pregnancy hormones on expression of DMEs. In-depth studies in hormonal regulatory mechanisms as well as confirmatory studies in pregnant women are warranted for systematic understanding and prediction of the changes in hepatic drug metabolism during pregnancy.

  10. Genome scale metabolic modeling of cancer

    DEFF Research Database (Denmark)

    Nilsson, Avlant; Nielsen, Jens

    2017-01-01

    of metabolism which allows simulation and hypotheses testing of metabolic strategies. It has successfully been applied to many microorganisms and is now used to study cancer metabolism. Generic models of human metabolism have been reconstructed based on the existence of metabolic genes in the human genome......Cancer cells reprogram metabolism to support rapid proliferation and survival. Energy metabolism is particularly important for growth and genes encoding enzymes involved in energy metabolism are frequently altered in cancer cells. A genome scale metabolic model (GEM) is a mathematical formalization...

  11. [Menopause and metabolic syndrome].

    Science.gov (United States)

    Meirelles, Ricardo M R

    2014-03-01

    The incidence of cardiovascular disease increases considerably after the menopause. One reason for the increased cardiovascular risk seems to be determined by metabolic syndrome, in which all components (visceral obesity, dyslipidemia, hypertension, and glucose metabolism disorder) are associated with higher incidence of coronary artery disease. After menopause, metabolic syndrome is more prevalent than in premenopausal women, and may plays an important role in the occurrence of myocardial infarction and other atherosclerotic and cardiovascular morbidities. Obesity, an essential component of the metabolic syndrome, is also associated with increased incidence of breast, endometrial, bowel, esophagus, and kidney cancer. The treatment of metabolic syndrome is based on the change in lifestyle and, when necessary, the use of medication directed to its components. In the presence of symptoms of the climacteric syndrome, hormonal therapy, when indicated, will also contribute to the improvement of the metabolic syndrome.

  12. Relationships among personality traits, metabolic syndrome, and metabolic syndrome scores: The Kakegawa cohort study.

    Science.gov (United States)

    Ohseto, Hisashi; Ishikuro, Mami; Kikuya, Masahiro; Obara, Taku; Igarashi, Yuko; Takahashi, Satomi; Kikuchi, Daisuke; Shigihara, Michiko; Yamanaka, Chizuru; Miyashita, Masako; Mizuno, Satoshi; Nagai, Masato; Matsubara, Hiroko; Sato, Yuki; Metoki, Hirohito; Tachibana, Hirofumi; Maeda-Yamamoto, Mari; Kuriyama, Shinichi

    2018-04-01

    Metabolic syndrome and the presence of metabolic syndrome components are risk factors for cardiovascular disease (CVD). However, the association between personality traits and metabolic syndrome remains controversial, and few studies have been conducted in East Asian populations. We measured personality traits using the Japanese version of the Eysenck Personality Questionnaire (Revised Short Form) and five metabolic syndrome components-elevated waist circumference, elevated triglycerides, reduced high-density lipoprotein cholesterol, elevated blood pressure, and elevated fasting glucose-in 1322 participants aged 51.1±12.7years old from Kakegawa city, Japan. Metabolic syndrome score (MS score) was defined as the number of metabolic syndrome components present, and metabolic syndrome as having the MS score of 3 or higher. We performed multiple logistic regression analyses to examine the relationship between personality traits and metabolic syndrome components and multiple regression analyses to examine the relationship between personality traits and MS scores adjusted for age, sex, education, income, smoking status, alcohol use, and family history of CVD and diabetes mellitus. We also examine the relationship between personality traits and metabolic syndrome presence by multiple logistic regression analyses. "Extraversion" scores were higher in those with metabolic syndrome components (elevated waist circumference: P=0.001; elevated triglycerides: P=0.01; elevated blood pressure: P=0.004; elevated fasting glucose: P=0.002). "Extraversion" was associated with the MS score (coefficient=0.12, P=0.0003). No personality trait was significantly associated with the presence of metabolic syndrome. Higher "extraversion" scores were related to higher MS scores, but no personality trait was significantly associated with the presence of metabolic syndrome. Copyright © 2018 Elsevier Inc. All rights reserved.

  13. Metabolic Syndrome in Children: Clinical Picture, Features of Lipid and Carbohydrate Metabolism

    Directory of Open Access Journals (Sweden)

    O.S. Bobrykovych

    2013-09-01

    Full Text Available The study included 225 children aged from 14 to 18 years with various manifestations of the metabolic syndrome in neighborhoods, different by iodine provision. The physical development (height, weight, body mass index, waist and hip circumferences has been examined. Biochemical investigations are focused on the study of lipid and carbohydrate metabolism in children. It is found that children who live in mountains have more severe obesity. In parallel with the increase of the degree of obesity, disorders of lipid and carbohydrate metabolism aggravate in children with sings of metabolic syndrome.

  14. Sleep and Metabolism: An Overview

    Directory of Open Access Journals (Sweden)

    Sunil Sharma

    2010-01-01

    Full Text Available Sleep and its disorders are increasingly becoming important in our sleep deprived society. Sleep is intricately connected to various hormonal and metabolic processes in the body and is important in maintaining metabolic homeostasis. Research shows that sleep deprivation and sleep disorders may have profound metabolic and cardiovascular implications. Sleep deprivation, sleep disordered breathing, and circadian misalignment are believed to cause metabolic dysregulation through myriad pathways involving sympathetic overstimulation, hormonal imbalance, and subclinical inflammation. This paper reviews sleep and metabolism, and how sleep deprivation and sleep disorders may be altering human metabolism.

  15. Metabolically healthy obesity and risk of mortality: does the definition of metabolic health matter?

    Science.gov (United States)

    Hinnouho, Guy-Marino; Czernichow, Sébastien; Dugravot, Aline; Batty, G David; Kivimaki, Mika; Singh-Manoux, Archana

    2013-08-01

    To assess the association of a "metabolically healthy obese" phenotype with mortality using five definitions of metabolic health. Adults (n = 5,269; 71.7% men) aged 39-62 years in 1991 through 1993 provided data on BMI and metabolic health, defined using data from the Adult Treatment Panel-III (ATP-III); criteria from two studies; and the Matsuda and homeostasis model assessment (HOMA) indices. Cross-classification of BMI categories and metabolic status (healthy/unhealthy) created six groups. Cox proportional hazards regression models were used to analyze associations with all-cause and cardiovascular disease (CVD) mortality during a median follow-up of 17.7 years. A total of 638 individuals (12.1% of the cohort) were obese, of whom 9-41% were metabolically healthy, depending on the definition. Regardless of the definition, compared with metabolically healthy, normal-weight individuals, both the metabolically healthy obese (hazard ratios [HRs] ranged from 1.81 [95% CI 1.16-2.84] for ATP-III to 2.30 [1.13-4.70] for the Matsuda index) and the metabolically abnormal obese (HRs ranged from 1.57 [1.08-2.28] for the Matsuda index to 2.05 [1.44-2.92] for criteria defined in a separate study) had an increased risk of mortality. The only exception was the lack of excess risk using the HOMA criterion for the metabolically healthy obese (1.08; 0.67-1.74). Among the obese, the risk of mortality did not vary as a function of metabolic health apart from when using the HOMA criterion (1.93; 1.15-3.22). Similar results were obtained for cardiovascular mortality. For most definitions of metabolic health, both metabolically healthy and unhealthy obese patients carry an elevated risk of mortality.

  16. Clinical update on metabolic syndrome

    Directory of Open Access Journals (Sweden)

    Juan Diego Hernández-Camacho

    2017-12-01

    Full Text Available Metabolic syndrome has been defined as a global issue since it affects a lot of people. Numerous factors are involved in metabolic syndrome development. It has been described that metabolic syndrome has negative consequences on health. Consequently, a lot of treatments have been proposed to palliate it such as drugs, surgery or life style changes where nutritional habits have shown to be an important point in its management. The current study reviews the literature existing about the actual epidemiology of metabolic syndrome, the components involucrate in its appearance and progression, the clinical consequences of metabolic syndrome and the nutritional strategies reported in its remission. A bibliographic search in PubMed and Medline was performed to identify eligible studies. Authors obtained that metabolic syndrome is present in population from developed and undeveloped areas in a huge scale. Environmental and genetic elements are involucrate in metabolic syndrome development. Metabolic syndrome exponentially increased risk of cardiovascular disease, some types of cancers, diabetes mellitus type 2, sleep disturbances, etc. Nutritional treatments play a crucial role in metabolic syndrome prevention, treatment and recovery.

  17. Metabolism and disease

    National Research Council Canada - National Science Library

    Grodzicker, Terri; Stewart, David J; Stillman, Bruce

    2011-01-01

    ...), cellular, organ system (cardiovascular, bone), and organismal (timing and life span) scales. Diseases impacted by metabolic imbalance or dysregulation that were covered in detail included diabetes, obesity, metabolic syndrome, and cancer...

  18. The association between the metabolic syndrome and metabolic syndrome score and pulmonary function in non-smoking adults.

    Science.gov (United States)

    Yoon, Hyun; Gi, Mi Young; Cha, Ju Ae; Yoo, Chan Uk; Park, Sang Muk

    2018-03-01

    This study assessed the association of metabolic syndrome and metabolic syndrome score with the predicted forced vital capacity and predicted forced expiratory volume in 1 s (predicted forced expiratory volume in 1 s) values in Korean non-smoking adults. We analysed data obtained from 6684 adults during the 2013-2015 Korean National Health and Nutrition Examination Survey. After adjustment for related variables, metabolic syndrome ( p metabolic syndrome score ( p metabolic syndrome score with metabolic syndrome score 0 as a reference group showed no significance for metabolic syndrome score 1 [1.061 (95% confidence interval, 0.755-1.490)] and metabolic syndrome score 2 [1.247 (95% confidence interval, 0.890-1.747)], but showed significant for metabolic syndrome score 3 [1.433 (95% confidence interval, 1.010-2.033)] and metabolic syndrome score ⩾ 4 [1.760 (95% confidence interval, 1.216-2.550)]. In addition, the odds ratio of restrictive pulmonary disease of the metabolic syndrome [1.360 (95% confidence interval, 1.118-1.655)] was significantly higher than those of non-metabolic syndrome. Metabolic syndrome and metabolic syndrome score were inversely associated with the predicted forced vital capacity and forced expiratory volume in 1 s values in Korean non-smoking adults. In addition, metabolic syndrome and metabolic syndrome score were positively associated with the restrictive pulmonary disease.

  19. Metabolic interrelationships software application: Interactive learning tool for intermediary metabolism

    NARCIS (Netherlands)

    A.J.M. Verhoeven (Adrie); M. Doets (Mathijs); J.M.J. Lamers (Jos); J.F. Koster (Johan)

    2005-01-01

    textabstractWe developed and implemented the software application titled Metabolic Interrelationships as a self-learning and -teaching tool for intermediary metabolism. It is used by undergraduate medical students in an integrated organ systems-based and disease-oriented core curriculum, which

  20. Metabolic control of feed intake: implications for metabolic disease of fresh cows.

    Science.gov (United States)

    Allen, Michael S; Piantoni, Paola

    2013-07-01

    The objective of this article is to discuss metabolic control of feed intake in the peripartum period and its implications for metabolic disease of fresh cows. Understanding how feed intake is controlled during the transition from gestation to lactation is critical to both reduce risk and successfully treat many metabolic diseases. Copyright © 2013. Published by Elsevier Inc.

  1. [Metabolic myopathies].

    Science.gov (United States)

    Papazian, Óscar; Rivas-Chacón, Rafael

    2013-09-06

    To review the metabolic myopathies manifested only by crisis of myalgias, cramps and rigidity of the muscles with decreased voluntary contractions and normal inter crisis neurologic examination in children and adolescents. These metabolic myopathies are autosomic recessive inherited enzymatic deficiencies of the carbohydrates and lipids metabolisms. The end result is a reduction of intra muscle adenosine triphosphate, mainly through mitochondrial oxidative phosphorylation, with decrease of available energy for muscle contraction. The one secondary to carbohydrates intra muscle metabolism disorders are triggered by high intensity brief (fatty acids metabolism disorders are triggered by low intensity prolonged (> 10 min) exercises. The conditions in the first group in order of decreasing frequency are the deficiencies of myophosforilase (GSD V), muscle phosphofructokinase (GSD VII), phosphoglycerate mutase 1 (GSD X) and beta enolase (GSD XIII). The conditions in the second group in order of decreasing frequency are the deficiencies of carnitine palmitoyl transferase II and very long chain acyl CoA dehydrogenase. The differential characteristics of patients in each group and within each group will allow to make the initial presumptive clinical diagnosis in the majority and then to order only the necessary tests to achieve the final diagnosis. Treatment during the crisis includes hydration, glucose and alkalinization of urine if myoglobin in blood and urine are elevated. Prevention includes avoiding exercise which may induce the crisis and fasting. The prognosis is good with the exception of rare cases of acute renal failure due to hipermyoglobinemia because of severe rabdomyolisis.

  2. Fatty acid metabolism: target for metabolic syndrome

    OpenAIRE

    Wakil, Salih J.; Abu-Elheiga, Lutfi A.

    2009-01-01

    Fatty acids are a major energy source and important constituents of membrane lipids, and they serve as cellular signaling molecules that play an important role in the etiology of the metabolic syndrome. Acetyl-CoA carboxylases 1 and 2 (ACC1 and ACC2) catalyze the synthesis of malonyl-CoA, the substrate for fatty acid synthesis and the regulator of fatty acid oxidation. They are highly regulated and play important roles in the energy metabolism of fatty acids in animals, including humans. They...

  3. Drug Discovery Targeting Serotonin G Protein-Coupled Receptors in the Treatment of Neuropsychiatric Disorders

    Science.gov (United States)

    Felsing, Daniel E.

    Clinical data show that activation of 5-HT2C G protein-coupled receptors (GPCRs) can treat obesity (lorcaserin/BelviqRTM) and psychotic disorders (aripiprazole/Abilify.), including schizophrenia. 5-HT2C GPCRs are members of the 5-HT2 sub-family of 5-HT GPCRs, which include 5-HT2A, 5-HT2B, and 5-HT 2C GPCRs. 5-HT2C is structurally similar to 5-HT2A and 5-HT2B GPCRs, but activation of 5-HT2A and/or 5-HT 2B causes deleterious effects, including hallucinations and cardiac valvulopathy. Thus, there is a challenge to develop drugs that selectively activate only 5-HT2C. Prolonged activation of GPCRs by agonists reduces their function via a regulatory process called desensitization. This has clinical relevance, as 45% of drugs approved by the FDA target GPCRs, and agonist drugs (e.g., morphine) typically lose efficacy over time due to desensitization, which invites tolerance. Agonists that cause less desensitization may show extended clinical efficacy as well as a more acceptable clinical dose range. We hypothesized that structurally distinct agonists of the 5-HT2C receptor may cause varying degrees of desensitization by stabilizing unique 5-HT2C receptor conformations. Discovery of 5-HT2C agonists that exhibit minimal desensitization is therapeutically relevant for the pharmacotherapeutic treatment of chronic diseases such as obesity and psychotic disorders. The 5-HT7 receptor has recently been discovered as a druggable target, and selective activation of the 5-HT7 receptor has been shown to alleviate locomotor deficits in mouse models of Rett Syndrome. Additionally, buspirone has been shown to display therapeutically relevant affinity at 5-HT 1A and is currently in phase II clinical trials to treat stereotypy in children with autism. The 5-PAT chemical scaffold shows high affinity towards the 5-HT7 and 5-HT1A receptors. Modulations around the 5-phenyl moiety were able to improve selectivity in binding towards the 5-HT 7 receptor, whereas modulations of the alkyl chains

  4. Intranasal Insulin Restores Metabolic Parameters and Insulin Sensitivity in Rats with Metabolic Syndrome.

    Science.gov (United States)

    Derkach, K V; Ivantsov, A O; Chistyakova, O V; Sukhov, I B; Buzanakov, D M; Kulikova, A A; Shpakov, A O

    2017-06-01

    We studied the effect of 10-week treatment with intranasal insulin (0.5 IU/day) on glucose tolerance, glucose utilization, lipid metabolism, functions of pancreatic β cells, and insulin system in the liver of rats with cafeteria diet-induced metabolic syndrome. The therapy reduced body weight and blood levels of insulin, triglycerides, and atherogenic cholesterol that are typically increased in metabolic syndrome, normalized glucose tolerance and its utilization, and increased activity of insulin signaling system in the liver, thus reducing insulin resistance. The therapy did not affect the number of pancreatic islets and β cells. The study demonstrates prospects of using intranasal insulin for correction of metabolic parameters and reduction of insulin resistance in metabolic syndrome.

  5. Schizophrenia: multi-attribute utility theory approach to selection of atypical antipsychotics.

    Science.gov (United States)

    Bettinger, Tawny L; Shuler, Garyn; Jones, Donnamaria R; Wilson, James P

    2007-02-01

    Current guidelines/algorithms recommend atypical antipsychotics as first-line agents for the treatment of schizophrenia. Because there are extensive healthcare costs associated with the treatment of schizophrenia, many institutions and health systems are faced with making restrictive formulary decisions regarding the use of atypical antipsychotics. Often, medication acquisition costs are the driving force behind formulary decisions, while other treatment factors are not considered. To apply a multi-attribute utility theory (MAUT) analysis to aid in the selection of a preferred agent among the atypical antipsychotics for the treatment of schizophrenia. Five atypical antipsychotics (risperidone, olanzapine, quetiapine, ziprasidone, aripiprazole) were selected as the alternative agents to be included in the MAUT analysis. The attributes identified for inclusion in the analysis were efficacy, adverse effects, cost, and adherence, with relative weights of 35%, 35%, 20%, and 10%, respectively. For each agent, attribute scores were calculated, weighted, and then summed to generate a total utility score. The agent with the highest total utility score was considered the preferred agent. Aripiprazole, with a total utility score of 75.8, was the alternative agent with the highest total utility score in this model. This was followed by ziprasidone, risperidone, and quetiapine, with total utility scores of 71.8, 69.0, and 65.9, respectively. Olanzapine received the lowest total utility score. A sensitivity analysis was performed and failed to displace aripiprazole as the agent with the highest total utility score. This model suggests that aripiprazole should be considered a preferred agent for the treatment of schizophrenia unless found to be otherwise inappropriate.

  6. Atypical antipsychotics as augmentation therapy in anorexia nervosa.

    Directory of Open Access Journals (Sweden)

    Enrica Marzola

    Full Text Available Anorexia nervosa (AN is a life-threatening and difficult to treat mental illness with the highest mortality rates of any psychiatric disorder. We aimed to garner preliminary data on the real-world use of olanzapine and aripiprazole as augmentation agents of Selective Serotonin Reuptake Inhibitors (SSRIs in adult inpatients affected by AN. We retrospectively evaluated the clinical charts of patients who were hospitalized between 2012 and 2014. Patients were evaluated upon admission and discharge. We investigated eating symptomatology, and both general and eating psychopathology using: Hamilton Rating Scale for Anxiety, Hamilton Rating Scale for Depression, and Yale-Brown-Cornell Eating Disorders Scale. The charts of 75 patients were included in this study. The sample resulted equally distributed among those receiving SSRIs and either aripiprazole or olanzapine in addition to SSRIs. Notwithstanding a few baseline clinical differences, upon discharge all groups were significantly improved on all measures. Interestingly, aripiprazole showed the greatest effectiveness in reducing eating-related preoccupations and rituals with a large effect size. The body of evidence on medication management in AN is in dismal condition. Augmentation therapy is a well-established approach to a variety of mental disorders and it is often used in every-day clinical practice with patients affected by AN as well. Nevertheless, to date very little data is available on this topic. Results from our sample yielded promising results on the effectiveness of aripiprazole augmentation in reducing eating-related obsessions and compulsions. Randomized controlled trials are warranted to confirm these encouraging findings.

  7. Drug metabolism in birds

    Science.gov (United States)

    Pan, Huo Ping; Fouts, James R.

    1979-01-01

    Papers published over 100 years since the beginning of the scientific study of drug metabolism in birds were reviewed. Birds were found to be able to accomplish more than 20 general biotransformation reactions in both functionalization and conjugation. Chickens were the primary subject of study but over 30 species of birds were used. Large species differences in drug metabolism exist between birds and mammals as well as between various birds, these differences were mostly quantitative. Qualitative differences were rare. On the whole, drug metabolism studies in birds have been neglected as compared with similar studies on insects and mammals. The uniqueness of birds and the advantages of using birds in drug metabolism studies are discussed. Possible future studies of drug metabolism in birds are recommended.

  8. Metabolic Mechanisms in Obesity and Type 2 Diabetes: Insights from Bariatric/Metabolic Surgery

    Directory of Open Access Journals (Sweden)

    Adriana Florinela Cătoi

    2015-11-01

    Full Text Available Obesity and the related diabetes epidemics represent a real concern worldwide. Bariatric/metabolic surgery emerged in last years as a valuable therapeutic option for obesity and related diseases, including type 2 diabetes mellitus (T2DM. The complicated network of mechanisms involved in obesity and T2DM have not completely defined yet. There is still a debate on which would be the first metabolic defect leading to metabolic deterioration: insulin resistance or hyperinsulinemia? Insight into the metabolic effects of bariatric/metabolic surgery has revealed that, beyond weight loss and food restriction, other mechanisms can be activated by the rearrangements of the gastrointestinal tract, such as the incretinic/anti-incretinic system, changes in bile acid composition and flow, and modifications of gut microbiota; all of them possibly involved in the remission of T2DM. The complete elucidation of these mechanisms will lead to a better understanding of the pathogenesis of this disease. Our aim was to review some of the metabolic mechanisms involved in the development of T2DM in obese patients as well as in the remission of this condition in patients submitted to bariatric/metabolic surgery.

  9. NAD(+) metabolism: A therapeutic target for age-related metabolic disease

    NARCIS (Netherlands)

    Mouchiroud, Laurent; Houtkooper, Riekelt H.; Auwerx, Johan

    2013-01-01

    Abstract Nicotinamide adenine dinucleotide (NAD) is a central metabolic cofactor by virtue of its redox capacity, and as such regulates a wealth of metabolic transformations. However, the identification of the longevity protein silent regulator 2 (Sir2), the founding member of the sirtuin protein

  10. Tumor Metabolism of Malignant Gliomas

    Energy Technology Data Exchange (ETDEWEB)

    Ru, Peng; Williams, Terence M.; Chakravarti, Arnab; Guo, Deliang, E-mail: deliang.guo@osumc.edu [Department of Radiation Oncology, Ohio State University Comprehensive Cancer Center & Arthur G James Cancer Hospital, Columbus, OH 43012 (United States)

    2013-11-08

    Constitutively activated oncogenic signaling via genetic mutations such as in the EGFR/PI3K/Akt and Ras/RAF/MEK pathways has been recognized as a major driver for tumorigenesis in most cancers. Recent insights into tumor metabolism have further revealed that oncogenic signaling pathways directly promote metabolic reprogramming to upregulate biosynthesis of lipids, carbohydrates, protein, DNA and RNA, leading to enhanced growth of human tumors. Therefore, targeting cell metabolism has become a novel direction for drug development in oncology. In malignant gliomas, metabolism pathways of glucose, glutamine and lipid are significantly reprogrammed. Moreover, molecular mechanisms causing these metabolic changes are just starting to be unraveled. In this review, we will summarize recent studies revealing critical gene alterations that lead to metabolic changes in malignant gliomas, and also discuss promising therapeutic strategies via targeting the key players in metabolic regulation.

  11. Tumor Metabolism of Malignant Gliomas

    International Nuclear Information System (INIS)

    Ru, Peng; Williams, Terence M.; Chakravarti, Arnab; Guo, Deliang

    2013-01-01

    Constitutively activated oncogenic signaling via genetic mutations such as in the EGFR/PI3K/Akt and Ras/RAF/MEK pathways has been recognized as a major driver for tumorigenesis in most cancers. Recent insights into tumor metabolism have further revealed that oncogenic signaling pathways directly promote metabolic reprogramming to upregulate biosynthesis of lipids, carbohydrates, protein, DNA and RNA, leading to enhanced growth of human tumors. Therefore, targeting cell metabolism has become a novel direction for drug development in oncology. In malignant gliomas, metabolism pathways of glucose, glutamine and lipid are significantly reprogrammed. Moreover, molecular mechanisms causing these metabolic changes are just starting to be unraveled. In this review, we will summarize recent studies revealing critical gene alterations that lead to metabolic changes in malignant gliomas, and also discuss promising therapeutic strategies via targeting the key players in metabolic regulation

  12. Can a digital medicine system improve adherence to antipsychotic treatment?

    Science.gov (United States)

    Papola, D; Gastaldon, C; Ostuzzi, G

    2018-06-01

    A substantial proportion of people with mental health conditions do not adhere to prescribed pharmacological treatments. Poor adherence is probably one of the most critical elements contributing to relapse in people with schizophrenia and other severe mental disorders. In order to tackle this global issue, in November 2017 the Food and Drug Administration approved a tablet formulation of the atypical antipsychotic aripiprazole embedded with a novel digital adherence-assessment device. In this commentary, we critically appraised the potential beneficial and harmful consequences of this new digital formulation of aripiprazole, and we highlighted expected implications for clinical practice.

  13. Metabolic Adaptation to Muscle Ischemia

    Science.gov (United States)

    Cabrera, Marco E.; Coon, Jennifer E.; Kalhan, Satish C.; Radhakrishnan, Krishnan; Saidel, Gerald M.; Stanley, William C.

    2000-01-01

    Although all tissues in the body can adapt to varying physiological/pathological conditions, muscle is the most adaptable. To understand the significance of cellular events and their role in controlling metabolic adaptations in complex physiological systems, it is necessary to link cellular and system levels by means of mechanistic computational models. The main objective of this work is to improve understanding of the regulation of energy metabolism during skeletal/cardiac muscle ischemia by combining in vivo experiments and quantitative models of metabolism. Our main focus is to investigate factors affecting lactate metabolism (e.g., NADH/NAD) and the inter-regulation between carbohydrate and fatty acid metabolism during a reduction in regional blood flow. A mechanistic mathematical model of energy metabolism has been developed to link cellular metabolic processes and their control mechanisms to tissue (skeletal muscle) and organ (heart) physiological responses. We applied this model to simulate the relationship between tissue oxygenation, redox state, and lactate metabolism in skeletal muscle. The model was validated using human data from published occlusion studies. Currently, we are investigating the difference in the responses to sudden vs. gradual onset ischemia in swine by combining in vivo experimental studies with computational models of myocardial energy metabolism during normal and ischemic conditions.

  14. [Metabolic functions and sport].

    Science.gov (United States)

    Riviere, Daniel

    2004-01-01

    Current epidemiological studies emphasize the increased of metabolic diseases of the adults, such as obesity, type-2 diabetes and metabolic syndromes. Even more worrying is the rising prevalence of obesity in children. It is due more to sedentariness, caused more by inactivity (television, video, games, etc.) than by overeating. Many studies have shown that regular physical activities benefit various bodily functions including metabolism. After dealing with the major benefits of physical exercise on some adult metabolic disorders, we focus on the prime role played by physical activity in combating the public health problem of childhood obesity.

  15. Metabolic disorders in menopause

    Directory of Open Access Journals (Sweden)

    Grzegorz Stachowiak

    2015-04-01

    Full Text Available Metabolic disorders occurring in menopause, including dyslipidemia, disorders of carbohydrate metabolism (impaired glucose tolerance – IGT, type 2 diabetes mellitus – T2DM or components of metabolic syndrome, constitute risk factors for cardiovascular disease in women. A key role could be played here by hyperinsulinemia, insulin resistance and visceral obesity, all contributing to dyslipidemia, oxidative stress, inflammation, alter coagulation and atherosclerosis observed during the menopausal period. Undiagnosed and untreated, metabolic disorders may adversely affect the length and quality of women’s life. Prevention and treatment preceded by early diagnosis should be the main goal for the physicians involved in menopausal care. This article represents a short review of the current knowledge concerning metabolic disorders (e.g. obesity, polycystic ovary syndrome or thyroid diseases in menopause, including the role of a tailored menopausal hormone therapy (HT. According to current data, HT is not recommend as a preventive strategy for metabolic disorders in menopause. Nevertheless, as part of a comprehensive strategy to prevent chronic diseases after menopause, menopausal hormone therapy, particularly estrogen therapy may be considered (after balancing benefits/risks and excluding women with absolute contraindications to this therapy. Life-style modifications, with moderate physical activity and healthy diet at the forefront, should be still the first choice recommendation for all patients with menopausal metabolic abnormalities.

  16. Metabolic Dysfunction in Parkinson's Disease: Bioenergetics, Redox Homeostasis and Central Carbon Metabolism.

    Science.gov (United States)

    Anandhan, Annadurai; Jacome, Maria S; Lei, Shulei; Hernandez-Franco, Pablo; Pappa, Aglaia; Panayiotidis, Mihalis I; Powers, Robert; Franco, Rodrigo

    2017-07-01

    The loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc) and the accumulation of protein inclusions (Lewy bodies) are the pathological hallmarks of Parkinson's disease (PD). PD is triggered by genetic alterations, environmental/occupational exposures and aging. However, the exact molecular mechanisms linking these PD risk factors to neuronal dysfunction are still unclear. Alterations in redox homeostasis and bioenergetics (energy failure) are thought to be central components of neurodegeneration that contribute to the impairment of important homeostatic processes in dopaminergic cells such as protein quality control mechanisms, neurotransmitter release/metabolism, axonal transport of vesicles and cell survival. Importantly, both bioenergetics and redox homeostasis are coupled to neuro-glial central carbon metabolism. We and others have recently established a link between the alterations in central carbon metabolism induced by PD risk factors, redox homeostasis and bioenergetics and their contribution to the survival/death of dopaminergic cells. In this review, we focus on the link between metabolic dysfunction, energy failure and redox imbalance in PD, making an emphasis in the contribution of central carbon (glucose) metabolism. The evidence summarized here strongly supports the consideration of PD as a disorder of cell metabolism. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Metabolic Engineering X Conference

    Energy Technology Data Exchange (ETDEWEB)

    Flach, Evan [American Institute of Chemical Engineers

    2015-05-07

    The International Metabolic Engineering Society (IMES) and the Society for Biological Engineering (SBE), both technological communities of the American Institute of Chemical Engineers (AIChE), hosted the Metabolic Engineering X Conference (ME-X) on June 15-19, 2014 at the Westin Bayshore in Vancouver, British Columbia. It attracted 395 metabolic engineers from academia, industry and government from around the globe.

  18. Pyruvate Kinase Triggers a Metabolic Feedback Loop that Controls Redox Metabolism in Respiring Cells

    NARCIS (Netherlands)

    Grüning, N.M.; Rinnerthaler, M.; Bluemlein, K.; Mulleder, M.; Wamelink, M.M.C.; Lehrach, H.; Jakobs, C.A.J.M.; Breitenbach, M.; Ralser, M.

    2011-01-01

    In proliferating cells, a transition from aerobic to anaerobic metabolism is known as the Warburg effect, whose reversal inhibits cancer cell proliferation. Studying its regulator pyruvate kinase (PYK) in yeast, we discovered that central metabolism is self-adapting to synchronize redox metabolism

  19. Fatty liver as a risk factor for progression from metabolically healthy to metabolically abnormal in non-overweight individuals.

    Science.gov (United States)

    Hashimoto, Yoshitaka; Hamaguchi, Masahide; Fukuda, Takuya; Ohbora, Akihiro; Kojima, Takao; Fukui, Michiaki

    2017-07-01

    Recent studies identified that metabolically abnormal non-obese phenotype is a risk factor for cardiovascular diseases. However, little is known about risk factor for progression from metabolically healthy non-overweight to metabolically abnormal phenotype. We hypothesized that fatty liver had a clinical impact on progression from metabolically healthy non-overweight to metabolically abnormal phenotype. In this retrospective cohort study, 14,093 Japanese (7557 men and 6736 women), who received the health-checkup program from 2004 to 2012, were enrolled. Overweight and obesity were defined as body mass index 23.0-25.0 and ≥25.0 kg/m 2 . Four metabolic factors (impaired fasting glucose, hypertension, hypertriglyceridemia and low high density lipoprotein-cholesterol concentration) were used for definition of metabolically healthy (less than two factors) or metabolically abnormal (two or more). We divided the participants into three groups: metabolically healthy non-overweight (9755 individuals, men/women = 4290/5465), metabolically healthy overweight (2547 individuals, 1800/747) and metabolically healthy obesity (1791 individuals, 1267/524). Fatty liver was diagnosed by ultrasonography. Over the median follow-up period of 5.3 years, 873 metabolically healthy non-overweight, 512 metabolically healthy overweight and 536 metabolically healthy obesity individuals progressed to metabolically abnormal. The adjusted hazard risks of fatty liver on progression were 1.49 (95% confidence interval 1.20-1.83, p = 0.005) in metabolically healthy non-overweight, 1.37 (1.12-1.66, p = 0.002) in metabolically healthy overweight and 1.38 (1.15-1.66, p overweight individuals.

  20. Aspects of astrocyte energy metabolism, amino acid neurotransmitter homoeostasis and metabolic compartmentation

    DEFF Research Database (Denmark)

    Kreft, Marko; Bak, Lasse Kristoffer; Waagepetersen, Helle S

    2012-01-01

    Astrocytes are key players in brain function; they are intimately involved in neuronal signalling processes and their metabolism is tightly coupled to that of neurons. In the present review, we will be concerned with a discussion of aspects of astrocyte metabolism, including energy......-generating pathways and amino acid homoeostasis. A discussion of the impact that uptake of neurotransmitter glutamate may have on these pathways is included along with a section on metabolic compartmentation....

  1. Sleep and Metabolism: An Overview

    OpenAIRE

    Sharma, Sunil; Kavuru, Mani

    2010-01-01

    Sleep and its disorders are increasingly becoming important in our sleep deprived society. Sleep is intricately connected to various hormonal and metabolic processes in the body and is important in maintaining metabolic homeostasis. Research shows that sleep deprivation and sleep disorders may have profound metabolic and cardiovascular implications. Sleep deprivation, sleep disordered breathing, and circadian misalignment are believed to cause metabolic dysregulation through myriad pathways i...

  2. Metabolic imaging using PET

    International Nuclear Information System (INIS)

    Kudo, Takashi

    2007-01-01

    There is growing evidence that myocardial metabolism plays a key role not only in ischaemic heart disease but also in a variety of diseases which involve myocardium globally, such as heart failure and diabetes mellitus. Understanding myocardial metabolism in such diseases helps to elucidate the pathophysiology and assists in making therapeutic decisions. As well as providing information on regional changes, PET can deliver quantitative information about both regional and global changes in metabolism. This capability of quantitative measurement is one of the major advantages of PET along with physiological positron tracers, especially relevant in evaluating diseases which involve the whole myocardium. This review discusses major PET tracers for metabolic imaging and their clinical applications and contributions to research regarding ischaemic heart disease and other diseases such as heart failure and diabetic heart disease. Future applications of positron metabolic tracers for the detection of vulnerable plaque are also highlighted briefly. (orig.)

  3. Metabolic Engineering VII Conference

    Energy Technology Data Exchange (ETDEWEB)

    Kevin Korpics

    2012-12-04

    The aims of this Metabolic Engineering conference are to provide a forum for academic and industrial researchers in the field; to bring together the different scientific disciplines that contribute to the design, analysis and optimization of metabolic pathways; and to explore the role of Metabolic Engineering in the areas of health and sustainability. Presentations, both written and oral, panel discussions, and workshops will focus on both applications and techniques used for pathway engineering. Various applications including bioenergy, industrial chemicals and materials, drug targets, health, agriculture, and nutrition will be discussed. Workshops focused on technology development for mathematical and experimental techniques important for metabolic engineering applications will be held for more in depth discussion. This 2008 meeting will celebrate our conference tradition of high quality and relevance to both industrial and academic participants, with topics ranging from the frontiers of fundamental science to the practical aspects of metabolic engineering.

  4. Astrocytes and energy metabolism.

    Science.gov (United States)

    Prebil, Mateja; Jensen, Jørgen; Zorec, Robert; Kreft, Marko

    2011-05-01

    Astrocytes are glial cells, which play a significant role in a number of processes, including the brain energy metabolism. Their anatomical position between blood vessels and neurons make them an interface for effective glucose uptake from blood. After entering astrocytes, glucose can be involved in different metabolic pathways, e.g. in glycogen production. Glycogen in the brain is localized mainly in astrocytes and is an important energy source in hypoxic conditions and normal brain functioning. The portion of glucose metabolized into glycogen molecules in astrocytes is as high as 40%. It is thought that the release of gliotransmitters (such as glutamate, neuroactive peptides and ATP) into the extracellular space by regulated exocytosis supports a significant part of communication between astrocytes and neurons. On the other hand, neurotransmitter action on astrocytes has a significant role in brain energy metabolism. Therefore, understanding the astrocytes energy metabolism may help understanding neuron-astrocyte interactions.

  5. Genetic and environmental relationships of metabolic and weight phenotypes to metabolic syndrome and diabetes: the healthy twin study.

    Science.gov (United States)

    Song, Yun-Mi; Sung, Joohon; Lee, Kayoung

    2015-02-01

    We aimed to examine the relationships, including genetic and environmental correlations, between metabolic and weight phenotypes and factors related to diabetes and metabolic syndrome. Participants of the Healthy Twin Study without diabetes (n=2687; 895 monozygotic and 204 dizygotic twins, and 1588 nontwin family members; mean age, 42.5±13.1 years) were stratified according to body mass index (BMI) (metabolic syndrome categories at baseline. The metabolic traits, namely diabetes and metabolic syndrome, metabolic syndrome components, glycated hemoglobin (HbA1c) level, and homeostasis model assessment of insulin resistance (HOMA-IR), were assessed after 2.5±2.1 years. In a multivariate-adjusted model, those who had metabolic syndrome or overweight phenotypes at baseline were more likely to have higher HbA1C and HOMA-IR levels and abnormal metabolic syndrome components at follow-up as compared to the metabolically healthy normal weight subgroup. The incidence of diabetes was 4.4-fold higher in the metabolically unhealthy but normal weight individuals and 3.3-fold higher in the metabolically unhealthy and overweight individuals as compared with the metabolically healthy normal weight individuals. The heritability of the metabolic syndrome/weight phenotypes was 0.40±0.03. Significant genetic and environmental correlations were observed between the metabolic syndrome/weight phenotypes at baseline and the metabolic traits at follow-up, except for incident diabetes, which only had a significant common genetic sharing with the baseline phenotypes. The genetic and environmental relationships between the metabolic and weight phenotypes at baseline and the metabolic traits at follow-up suggest pleiotropic genetic mechanisms and the crucial role of lifestyle and behavioral factors.

  6. Metabolic routes along digestive system of licorice: multicomponent sequential metabolism method in rat.

    Science.gov (United States)

    Zhang, Lei; Zhao, Haiyu; Liu, Yang; Dong, Honghuan; Lv, Beiran; Fang, Min; Zhao, Huihui

    2016-06-01

    This study was conducted to establish the multicomponent sequential metabolism (MSM) method based on comparative analysis along the digestive system following oral administration of licorice (Glycyrrhiza uralensis Fisch., leguminosae), a traditional Chinese medicine widely used for harmonizing other ingredients in a formulae. The licorice water extract (LWE) dissolved in Krebs-Ringer buffer solution (1 g/mL) was used to carry out the experiments and the comparative analysis was performed using HPLC and LC-MS/MS methods. In vitro incubation, in situ closed-loop and in vivo blood sampling were used to measure the LWE metabolic profile along the digestive system. The incubation experiment showed that the LWE was basically stable in digestive juice. A comparative analysis presented the metabolic profile of each prototype and its corresponding metabolites then. Liver was the major metabolic organ for LWE, and the metabolism by the intestinal flora and gut wall was also an important part of the process. The MSM method was practical and could be a potential method to describe the metabolic routes of multiple components before absorption into the systemic blood stream. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  7. Metabolic syndrome, diet and exercise.

    Science.gov (United States)

    De Sousa, Sunita M C; Norman, Robert J

    2016-11-01

    Polycystic ovary syndrome (PCOS) is associated with a range of metabolic complications including insulin resistance (IR), obesity, dyslipidaemia, hypertension, obstructive sleep apnoea (OSA) and non-alcoholic fatty liver disease. These compound risks result in a high prevalence of metabolic syndrome and possibly increased cardiovascular (CV) disease. As the cardiometabolic risk of PCOS is shared amongst the different diagnostic systems, all women with PCOS should undergo metabolic surveillance though the precise approach differs between guidelines. Lifestyle interventions consisting of increased physical activity and caloric restriction have been shown to improve both metabolic and reproductive outcomes. Pharmacotherapy and bariatric surgery may be considered in resistant metabolic disease. Issues requiring further research include the natural history of PCOS-associated metabolic disease, absolute CV risk and comparative efficacy of lifestyle interventions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Metabolic Reprogramming in Thyroid Carcinoma

    Directory of Open Access Journals (Sweden)

    Raquel Guimaraes Coelho

    2018-03-01

    Full Text Available Among all the adaptations of cancer cells, their ability to change metabolism from the oxidative to the glycolytic phenotype is a hallmark called the Warburg effect. Studies on tumor metabolism show that improved glycolysis and glutaminolysis are necessary to maintain rapid cell proliferation, tumor progression, and resistance to cell death. Thyroid neoplasms are common endocrine tumors that are more prevalent in women and elderly individuals. The incidence of thyroid cancer has increased in the Past decades, and recent findings describing the metabolic profiles of thyroid tumors have emerged. Currently, several drugs are in development or clinical trials that target the altered metabolic pathways of tumors are undergoing. We present a review of the metabolic reprogramming in cancerous thyroid tissues with a focus on the factors that promote enhanced glycolysis and the possible identification of promising metabolic targets in thyroid cancer.

  9. Metabolic Reprogramming in Thyroid Carcinoma

    Science.gov (United States)

    Coelho, Raquel Guimaraes; Fortunato, Rodrigo S.; Carvalho, Denise P.

    2018-01-01

    Among all the adaptations of cancer cells, their ability to change metabolism from the oxidative to the glycolytic phenotype is a hallmark called the Warburg effect. Studies on tumor metabolism show that improved glycolysis and glutaminolysis are necessary to maintain rapid cell proliferation, tumor progression, and resistance to cell death. Thyroid neoplasms are common endocrine tumors that are more prevalent in women and elderly individuals. The incidence of thyroid cancer has increased in the Past decades, and recent findings describing the metabolic profiles of thyroid tumors have emerged. Currently, several drugs are in development or clinical trials that target the altered metabolic pathways of tumors are undergoing. We present a review of the metabolic reprogramming in cancerous thyroid tissues with a focus on the factors that promote enhanced glycolysis and the possible identification of promising metabolic targets in thyroid cancer. PMID:29629339

  10. Fat and Sugar Metabolism During Exercise in Patients With Metabolic Myopathy

    Science.gov (United States)

    2017-08-31

    Metabolism, Inborn Errors; Lipid Metabolism, Inborn Errors; Carbohydrate Metabolism, Inborn Errors; Long-Chain 3-Hydroxyacyl-CoA Dehydrogenase Deficiency; Glycogenin-1 Deficiency (Glycogen Storage Disease Type XV); Carnitine Palmitoyl Transferase 2 Deficiency; VLCAD Deficiency; Medium-chain Acyl-CoA Dehydrogenase Deficiency; Multiple Acyl-CoA Dehydrogenase Deficiency; Carnitine Transporter Deficiency; Neutral Lipid Storage Disease; Glycogen Storage Disease Type II; Glycogen Storage Disease Type III; Glycogen Storage Disease Type IV; Glycogen Storage Disease Type V; Muscle Phosphofructokinase Deficiency; Phosphoglucomutase 1 Deficiency; Phosphoglycerate Mutase Deficiency; Phosphoglycerate Kinase Deficiency; Phosphorylase Kinase Deficiency; Beta Enolase Deficiency; Lactate Dehydrogenase Deficiency; Glycogen Synthase Deficiency

  11. Imaging metabolic heterogeneity in cancer.

    Science.gov (United States)

    Sengupta, Debanti; Pratx, Guillem

    2016-01-06

    As our knowledge of cancer metabolism has increased, it has become apparent that cancer metabolic processes are extremely heterogeneous. The reasons behind this heterogeneity include genetic diversity, the existence of multiple and redundant metabolic pathways, altered microenvironmental conditions, and so on. As a result, methods in the clinic and beyond have been developed in order to image and study tumor metabolism in the in vivo and in vitro regimes. Both regimes provide unique advantages and challenges, and may be used to provide a picture of tumor metabolic heterogeneity that is spatially and temporally comprehensive. Taken together, these methods may hold the key to appropriate cancer diagnoses and treatments in the future.

  12. Maternal cardiac metabolism in pregnancy

    Science.gov (United States)

    Liu, Laura X.; Arany, Zolt

    2014-01-01

    Pregnancy causes dramatic physiological changes in the expectant mother. The placenta, mostly foetal in origin, invades maternal uterine tissue early in pregnancy and unleashes a barrage of hormones and other factors. This foetal ‘invasion’ profoundly reprogrammes maternal physiology, affecting nearly every organ, including the heart and its metabolism. We briefly review here maternal systemic metabolic changes during pregnancy and cardiac metabolism in general. We then discuss changes in cardiac haemodynamic during pregnancy and review what is known about maternal cardiac metabolism during pregnancy. Lastly, we discuss cardiac diseases during pregnancy, including peripartum cardiomyopathy, and the potential contribution of aberrant cardiac metabolism to disease aetiology. PMID:24448314

  13. Understanding specificity in metabolic pathways-Structural biology of human nucleotide metabolism

    International Nuclear Information System (INIS)

    Welin, Martin; Nordlund, Paer

    2010-01-01

    Interactions are the foundation of life at the molecular level. In the plethora of activities in the cell, the evolution of enzyme specificity requires the balancing of appropriate substrate affinity with a negative selection, in order to minimize interactions with other potential substrates in the cell. To understand the structural basis for enzyme specificity, the comparison of structural and biochemical data between enzymes within pathways using similar substrates and effectors is valuable. Nucleotide metabolism is one of the largest metabolic pathways in the human cell and is of outstanding therapeutic importance since it activates and catabolises nucleoside based anti-proliferative drugs and serves as a direct target for anti-proliferative drugs. In recent years the structural coverage of the enzymes involved in human nucleotide metabolism has been dramatically improved and is approaching completion. An important factor has been the contribution from the Structural Genomics Consortium (SGC) at Karolinska Institutet, which recently has solved 33 novel structures of enzymes and enzyme domains in human nucleotide metabolism pathways and homologs thereof. In this review we will discuss some of the principles for substrate specificity of enzymes in human nucleotide metabolism illustrated by a selected set of enzyme families where a detailed understanding of the structural determinants for specificity is now emerging.

  14. Metabolic imaging using SPECT

    International Nuclear Information System (INIS)

    Taki, Junichi; Matsunari, Ichiro

    2007-01-01

    In normal condition, the heart obtains more than two-thirds of its energy from the oxidative metabolism of long chain fatty acids, although a wide variety of substrates such as glucose, lactate, ketone bodies and amino acids are also utilised. In ischaemic myocardium, on the other hand, oxidative metabolism of free fatty acid is suppressed and anaerobic glucose metabolism plays a major role in residual oxidative metabolism. Therefore, metabolic imaging can be an important technique for the assessment of various cardiac diseases and conditions. In SPECT, several iodinated fatty acid traces have been introduced and studied. Of these, 123 I-labelled 15-(p-iodophenyl)3-R, S-methylpentadecanoic acid (BMIPP) has been the most commonly used tracer in clinical studies, especially in some of the European countries and Japan. In this review article, several fatty acid tracers for SPECT are characterised, and the mechanism of uptake and clinical utility of BMIPP are discussed in detail. (orig.)

  15. Metabolic surgery: quo vadis?

    Science.gov (United States)

    Ramos-Leví, Ana M; Rubio Herrera, Miguel A

    2014-01-01

    The impact of bariatric surgery beyond its effect on weight loss has entailed a change in the way of regarding it. The term metabolic surgery has become more popular to designate those interventions that aim at resolving diseases that have been traditionally considered as of exclusive medical management, such as type 2 diabetes mellitus (T2D). Recommendations for metabolic surgery have been largely addressed and discussed in worldwide meetings, but no definitive consensus has been reached yet. Rates of diabetes remission after metabolic surgery have been one of the most debated hot topics, with heterogeneity being a current concern. This review aims to identify and clarify controversies regarding metabolic surgery, by focusing on a critical analysis of T2D remission rates achieved with different bariatric procedures, and using different criteria for its definition. Indications for metabolic surgery for patients with T2D who are not morbidly obese are also discussed. Copyright © 2013 SEEN. Published by Elsevier Espana. All rights reserved.

  16. Energy Metabolism in the Liver

    OpenAIRE

    Rui, Liangyou

    2014-01-01

    The liver is an essential metabolic organ, and its metabolic activity is tightly controlled by insulin and other metabolic hormones. Glucose is metabolized into pyruvate through glycolysis in the cytoplasm, and pyruvate is completely oxidized to generate ATP through the TCA cycle and oxidative phosphorylation in the mitochondria. In the fed state, glycolytic products are used to synthesize fatty acids through de novo lipogenesis. Long-chain fatty acids are incorporated into triacylglycerol, p...

  17. Symptoms and Diagnosis of Metabolic Syndrome

    Science.gov (United States)

    ... Thromboembolism Aortic Aneurysm More Symptoms and Diagnosis of Metabolic Syndrome Updated:Apr 13,2017 What are the symptoms ... Syndrome? This content was last reviewed August 2016. Metabolic Syndrome • Home • About Metabolic Syndrome • Why Metabolic Syndrome Matters • ...

  18. DNA Damage, Repair, and Cancer Metabolism

    Science.gov (United States)

    Turgeon, Marc-Olivier; Perry, Nicholas J. S.; Poulogiannis, George

    2018-01-01

    Although there has been a renewed interest in the field of cancer metabolism in the last decade, the link between metabolism and DNA damage/DNA repair in cancer has yet to be appreciably explored. In this review, we examine the evidence connecting DNA damage and repair mechanisms with cell metabolism through three principal links. (1) Regulation of methyl- and acetyl-group donors through different metabolic pathways can impact DNA folding and remodeling, an essential part of accurate double strand break repair. (2) Glutamine, aspartate, and other nutrients are essential for de novo nucleotide synthesis, which dictates the availability of the nucleotide pool, and thereby influences DNA repair and replication. (3) Reactive oxygen species, which can increase oxidative DNA damage and hence the load of the DNA-repair machinery, are regulated through different metabolic pathways. Interestingly, while metabolism affects DNA repair, DNA damage can also induce metabolic rewiring. Activation of the DNA damage response (DDR) triggers an increase in nucleotide synthesis and anabolic glucose metabolism, while also reducing glutamine anaplerosis. Furthermore, mutations in genes involved in the DDR and DNA repair also lead to metabolic rewiring. Links between cancer metabolism and DNA damage/DNA repair are increasingly apparent, yielding opportunities to investigate the mechanistic basis behind potential metabolic vulnerabilities of a substantial fraction of tumors. PMID:29459886

  19. What is Nutrition & Metabolism?

    Directory of Open Access Journals (Sweden)

    Feinman Richard D

    2004-08-01

    Full Text Available Abstract A new Open Access journal, Nutrition & Metabolism (N&M will publish articles that integrate nutrition with biochemistry and molecular biology. The open access process is chosen to provide rapid and accessible dissemination of new results and perspectives in a field that is of great current interest. Manuscripts in all areas of nutritional biochemistry will be considered but three areas of particular interest are lipoprotein metabolism, amino acids as metabolic signals, and the effect of macronutrient composition of diet on health. The need for the journal is identified in the epidemic of obesity, diabetes, dyslipidemias and related diseases, and a sudden increase in popular diets, as well as renewed interest in intermediary metabolism.

  20. Mathematical modelling of metabolism

    DEFF Research Database (Denmark)

    Gombert, Andreas Karoly; Nielsen, Jens

    2000-01-01

    Mathematical models of the cellular metabolism have a special interest within biotechnology. Many different kinds of commercially important products are derived from the cell factory, and metabolic engineering can be applied to improve existing production processes, as well as to make new processes...... availability of genomic information and powerful analytical techniques, mathematical models also serve as a tool for understanding the cellular metabolism and physiology....... available. Both stoichiometric and kinetic models have been used to investigate the metabolism, which has resulted in defining the optimal fermentation conditions, as well as in directing the genetic changes to be introduced in order to obtain a good producer strain or cell line. With the increasing...

  1. Pharmacotherapy of bipolar disorder in children and adolescents: an update

    Directory of Open Access Journals (Sweden)

    Tatiana Lauxen Peruzzolo

    2013-12-01

    Full Text Available Objective: To review the options for acute and maintenance pharmacological treatment of bipolar disorder in children and adolescents, including the treatment of bipolar depression and comorbid attention deficit/hyperactivity disorder (ADHD. Methods: Narrative review of randomized clinical trials and open-label studies published from 2000 to 2012. The PubMed and PsycINFO websites were queried. Case series were included when a higher level of evidence was not available. Results: Published data from randomized controlled trials (RCTs in acute mania/hypomania with significant responses are available for lithium, topiramate, risperidone, olanzapine, and aripiprazole. Open trials of lithium and lamotrigine show that these drugs may be effective in the treatment of depressive episodes. No trials of selective serotonin reuptake inhibitors (SSRIs have been conducted. In the treatment of comorbid ADHD, there are encouraging findings with mixed amphetamine salts and atomoxetine; conflicting results are observed with methylphenidate. Conclusions: Published RCTs of traditional mood stabilizers are scarce, but the best available evidence (results from meta-analytic regression suggests that second-generation antipsychotics (SGAs as a group are more effective in reducing manic symptoms. Risperidone was the only one included in head-to-head comparisons (vs. lithium and divalproex, showing superiority in terms of efficacy, but with more metabolic side effects, which were also more common in most of the SGAs. There are few studies addressing the treatment of ADHD and depression. Brazilian guidelines for the treatment of pediatric bipolar disorder should also include some SGAs (especially risperidone and aripiprazole as first-line treatment, and these drugs should be provided by the public health services.

  2. microRNAs and lipid metabolism

    Science.gov (United States)

    Aryal, Binod; Singh, Abhishek K.; Rotllan, Noemi; Price, Nathan; Fernández-Hernando, Carlos

    2017-01-01

    Purpose of review Work over the last decade has identified the important role of microRNAs (miRNAS) in regulating lipoprotein metabolism and associated disorders including metabolic syndrome, obesity and atherosclerosis. This review summarizes the most recent findings in the field, highlighting the contribution of miRNAs in controlling low-density lipoprotein (LDL) and high-density lipoprotein (HDL) metabolism. Recent findings A number of miRNAs have emerged as important regulators of lipid metabolism, including miR-122 and miR-33. Work over the last two years has identified additional functions of miR-33 including the regulation of macrophage activation and mitochondrial metabolism. Moreover, it has recently been shown that miR-33 regulates vascular homeostasis and cardiac adaptation in response to pressure overload. In addition to miR-33 and miR-122, recent GWAS have identified single nucleotide polymorphisms (SNP) in the proximity of miRNAs genes associated with abnormal levels of circulating lipids in humans. Several of these miRNA, such as miR-148a and miR-128-1, target important proteins that regulate cellular cholesterol metabolism, including the low-density lipoprotein receptor (LDLR) and the ATP-binding cassette A1 (ABCA1). Summary microRNAs have emerged as critical regulators of cholesterol metabolism and promising therapeutic targets for treating cardiometabolic disorders including atherosclerosis. Here, we discuss the recent findings in the field highlighting the novel mechanisms by which miR-33 controls lipid metabolism and atherogenesis and the identification of novel miRNAs that regulate LDL metabolism. Finally, we summarize the recent findings that identified miR-33 as an important non-coding RNA that controls cardiovascular homeostasis independent of its role in regulating lipid metabolism. PMID:28333713

  3. Quantification of patterns of regional cardiac metabolism

    International Nuclear Information System (INIS)

    Lear, J.L.; Ackermann, R.F.

    1990-01-01

    To quantitatively map and compare patterns of regional cardiac metabolism with greater spatial resolution than is possible with positron emission tomography (PET), the authors developed autoradiographic techniques for use with combinations of radiolabeled fluorodeoxyglucose (FDG), glucose (GLU), and acetate (ACE) and applied the techniques to normal rats. Kinetic models were developed to compare GLU-based oxidative glucose metabolism with FDG-based total glucose metabolism (oxidative plus anaerobic) and to compare ACE-based overall oxidative metabolism with FDG-based total glucose metabolism. GLU-based metabolism generally paralleled FDG-based metabolism, but divergence occurred in certain structures such as the papillary muscles, where FDG-based metabolism was much greater. ACE-based metabolism also generally paralleled FDG-based metabolism, but again, the papillary muscles had relatively greater FDG-based metabolism. These discrepancies between FDG-based metabolism and GLU- or ACE-based metabolism suggest the presence of high levels of anaerobic glycolysis. Thus, the study indicates that anaerobic glycolysis, in addition to occurring in ischemic or stunned myocardium (as has been shown in recent PET studies), occurs normally in specific cardiac regions, despite the presence of abundant oxygen

  4. Energy Metabolism in the Liver

    Science.gov (United States)

    Rui, Liangyou

    2014-01-01

    The liver is an essential metabolic organ, and its metabolic activity is tightly controlled by insulin and other metabolic hormones. Glucose is metabolized into pyruvate through glycolysis in the cytoplasm, and pyruvate is completely oxidized to generate ATP through the TCA cycle and oxidative phosphorylation in the mitochondria. In the fed state, glycolytic products are used to synthesize fatty acids through de novo lipogenesis. Long-chain fatty acids are incorporated into triacylglycerol, phospholipids, and cholesterol esters in hepatocytes, and these complex lipids are stored in lipid droplets and membrane structures, or secreted into the circulation as VLDL particles. In the fasted state, the liver secretes glucose through both breakdown of glycogen (glycogenolysis) and de novo glucose synthesis (gluconeogenesis). During pronged fasting, hepatic gluconeogenesis is the primary source of endogenous glucose production. Fasting also promotes lipolysis in adipose tissue to release nonesterified fatty acids which are converted into ketone bodies in the liver though mitochondrial β oxidation and ketogenesis. Ketone bodies provide a metabolic fuel for extrahepatic tissues. Liver metabolic processes are tightly regulated by neuronal and hormonal systems. The sympathetic system stimulates, whereas the parasympathetic system suppresses, hepatic gluconeogenesis. Insulin stimulates glycolysis and lipogenesis, but suppresses gluconeogenesis; glucagon counteracts insulin action. Numerous transcription factors and coactivators, including CREB, FOXO1, ChREBP, SREBP, PGC-1α, and CRTC2, control the expression of the enzymes which catalyze the rate-limiting steps of liver metabolic processes, thus controlling liver energy metabolism. Aberrant energy metabolism in the liver promotes insulin resistance, diabetes, and nonalcoholic fatty liver diseases (NAFLD). PMID:24692138

  5. Metabolic Regulation of a Bacterial Cell System with Emphasis on Escherichia coli Metabolism

    Science.gov (United States)

    Shimizu, Kazuyuki

    2013-01-01

    It is quite important to understand the overall metabolic regulation mechanism of bacterial cells such as Escherichia coli from both science (such as biochemistry) and engineering (such as metabolic engineering) points of view. Here, an attempt was made to clarify the overall metabolic regulation mechanism by focusing on the roles of global regulators which detect the culture or growth condition and manipulate a set of metabolic pathways by modulating the related gene expressions. For this, it was considered how the cell responds to a variety of culture environments such as carbon (catabolite regulation), nitrogen, and phosphate limitations, as well as the effects of oxygen level, pH (acid shock), temperature (heat shock), and nutrient starvation. PMID:25937963

  6. Noise effect in metabolic networks

    International Nuclear Information System (INIS)

    Zheng-Yan, Li; Zheng-Wei, Xie; Tong, Chen; Qi, Ouyang

    2009-01-01

    Constraint-based models such as flux balance analysis (FBA) are a powerful tool to study biological metabolic networks. Under the hypothesis that cells operate at an optimal growth rate as the result of evolution and natural selection, this model successfully predicts most cellular behaviours in growth rate. However, the model ignores the fact that cells can change their cellular metabolic states during evolution, leaving optimal metabolic states unstable. Here, we consider all the cellular processes that change metabolic states into a single term 'noise', and assume that cells change metabolic states by randomly walking in feasible solution space. By simulating a state of a cell randomly walking in the constrained solution space of metabolic networks, we found that in a noisy environment cells in optimal states tend to travel away from these points. On considering the competition between the noise effect and the growth effect in cell evolution, we found that there exists a trade-off between these two effects. As a result, the population of the cells contains different cellular metabolic states, and the population growth rate is at suboptimal states. (cross-disciplinary physics and related areas of science and technology)

  7. Xenobiotic Metabolism and Gut Microbiomes.

    Directory of Open Access Journals (Sweden)

    Anubhav Das

    Full Text Available Humans are exposed to numerous xenobiotics, a majority of which are in the form of pharmaceuticals. Apart from human enzymes, recent studies have indicated the role of the gut bacterial community (microbiome in metabolizing xenobiotics. However, little is known about the contribution of the plethora of gut microbiome in xenobiotic metabolism. The present study reports the results of analyses on xenobiotic metabolizing enzymes in various human gut microbiomes. A total of 397 available gut metagenomes from individuals of varying age groups from 8 nationalities were analyzed. Based on the diversities and abundances of the xenobiotic metabolizing enzymes, various bacterial taxa were classified into three groups, namely, least versatile, intermediately versatile and highly versatile xenobiotic metabolizers. Most interestingly, specific relationships were observed between the overall drug consumption profile and the abundance and diversity of the xenobiotic metabolizing repertoire in various geographies. The obtained differential abundance patterns of xenobiotic metabolizing enzymes and bacterial genera harboring them, suggest their links to pharmacokinetic variations among individuals. Additional analyses of a few well studied classes of drug modifying enzymes (DMEs also indicate geographic as well as age specific trends.

  8. Exercise-induced hypertension in men with metabolic syndrome: anthropometric, metabolic, and hemodynamic features.

    Science.gov (United States)

    Gaudreault, Valérie; Després, Jean-Pierre; Rhéaume, Caroline; Alméras, Natalie; Bergeron, Jean; Tremblay, Angelo; Poirier, Paul

    2013-02-01

    Metabolic syndrome is associated with increased cardiac morbidity. The aim of this study was to evaluate exercise-induced hypertension (EIH) in men with metabolic syndrome and to explore potential associations with anthropometric and metabolic variables. A total of 179 normotensive men with metabolic syndrome underwent a maximal symptom-limited treadmill test. Blood pressure was measured at 5-min rest prior to exercise testing (anticipatory blood pressure), at every 3 min during the exercise, and during the recovery period. EIH was defined as maximum systolic blood pressure (SBP) ≥220 mmHg and/or maximum diastolic blood pressure (DBP) ≥100 mmHg. Of the 179 men, 87 (47%) presented EIH. Resting blood pressure values at baseline were 127±10/83±6 mmHg in EIH and 119±9/80±6 mmHg (P=0.01 for both) in normal blood pressure responders to exercise. Anticipatory SBP and DPS were higher in the group with EIH (P=0.001). Subjects with EIH presented higher waist circumference (WC) (Pmetabolic syndrome showed EIH. These men are characterized by a worsened metabolic profile. Our data suggest that a treadmill exercise test may be helpful to identify a potentially higher risk metabolic syndrome subset of subjects.

  9. Metabolic syndrome presenting as abdominal pain

    Directory of Open Access Journals (Sweden)

    Mohammed Y Al-Dossary

    2017-01-01

    Full Text Available Metabolic syndrome represents a sum of risk factors that lead to the occurrence of cardiovascular and cerebrovascular events. The early detection of metabolic syndrome is extremely important in adults who are at risk. Although the physiopathological mechanisms of the metabolic syndrome are not yet clear, insulin resistance plays a key role that could explain the development of type 2 diabetes mellitus in untreated metabolic syndrome patients. Here, we present the case of a 26-year-old male who was diagnosed with metabolic syndrome and severe hypertriglyceridemia after presenting with abdominal pain. Although hypertriglyceridemia and hyperglycemia are the most common predictors of metabolic syndrome, clinicians need to be vigilant for unexpected presentations in patients at risk for metabolic syndrome. This case sheds light on the importance of early detection.

  10. Genome-scale modeling for metabolic engineering.

    Science.gov (United States)

    Simeonidis, Evangelos; Price, Nathan D

    2015-03-01

    We focus on the application of constraint-based methodologies and, more specifically, flux balance analysis in the field of metabolic engineering, and enumerate recent developments and successes of the field. We also review computational frameworks that have been developed with the express purpose of automatically selecting optimal gene deletions for achieving improved production of a chemical of interest. The application of flux balance analysis methods in rational metabolic engineering requires a metabolic network reconstruction and a corresponding in silico metabolic model for the microorganism in question. For this reason, we additionally present a brief overview of automated reconstruction techniques. Finally, we emphasize the importance of integrating metabolic networks with regulatory information-an area which we expect will become increasingly important for metabolic engineering-and present recent developments in the field of metabolic and regulatory integration.

  11. LakeMetabolizer: An R package for estimating lake metabolism from free-water oxygen using diverse statistical models

    Science.gov (United States)

    Winslow, Luke; Zwart, Jacob A.; Batt, Ryan D.; Dugan, Hilary; Woolway, R. Iestyn; Corman, Jessica; Hanson, Paul C.; Read, Jordan S.

    2016-01-01

    Metabolism is a fundamental process in ecosystems that crosses multiple scales of organization from individual organisms to whole ecosystems. To improve sharing and reuse of published metabolism models, we developed LakeMetabolizer, an R package for estimating lake metabolism from in situ time series of dissolved oxygen, water temperature, and, optionally, additional environmental variables. LakeMetabolizer implements 5 different metabolism models with diverse statistical underpinnings: bookkeeping, ordinary least squares, maximum likelihood, Kalman filter, and Bayesian. Each of these 5 metabolism models can be combined with 1 of 7 models for computing the coefficient of gas exchange across the air–water interface (k). LakeMetabolizer also features a variety of supporting functions that compute conversions and implement calculations commonly applied to raw data prior to estimating metabolism (e.g., oxygen saturation and optical conversion models). These tools have been organized into an R package that contains example data, example use-cases, and function documentation. The release package version is available on the Comprehensive R Archive Network (CRAN), and the full open-source GPL-licensed code is freely available for examination and extension online. With this unified, open-source, and freely available package, we hope to improve access and facilitate the application of metabolism in studies and management of lentic ecosystems.

  12. Cerebral Metabolic Changes Related to Oxidative Metabolism in a Model of Bacterial Meningitis Induced by Lipopolysaccharide

    DEFF Research Database (Denmark)

    Munk, Michael; Rom Poulsen, Frantz; Larsen, Lykke

    2018-01-01

    BACKGROUND: Cerebral mitochondrial dysfunction is prominent in the pathophysiology of severe bacterial meningitis. In the present study, we hypothesize that the metabolic changes seen after intracisternal lipopolysaccharide (LPS) injection in a piglet model of meningitis is compatible...... with mitochondrial dysfunction and resembles the metabolic patterns seen in patients with bacterial meningitis. METHODS: Eight pigs received LPS injection in cisterna magna, and four pigs received NaCl in cisterna magna as a control. Biochemical variables related to energy metabolism were monitored by intracerebral...... dysfunction with increasing cerebral LPR due to increased lactate and normal pyruvate, PbtO2, and ICP. The metabolic pattern resembles the one observed in patients with bacterial meningitis. Metabolic monitoring in these patients is feasible to monitor for cerebral metabolic derangements otherwise missed...

  13. Nitrile Metabolizing Yeasts

    Science.gov (United States)

    Bhalla, Tek Chand; Sharma, Monica; Sharma, Nitya Nand

    Nitriles and amides are widely distributed in the biotic and abiotic components of our ecosystem. Nitrile form an important group of organic compounds which find their applications in the synthesis of a large number of compounds used as/in pharmaceutical, cosmetics, plastics, dyes, etc>. Nitriles are mainly hydro-lyzed to corresponding amide/acid in organic chemistry. Industrial and agricultural activities have also lead to release of nitriles and amides into the environment and some of them pose threat to human health. Biocatalysis and biotransformations are increasingly replacing chemical routes of synthesis in organic chemistry as a part of ‘green chemistry’. Nitrile metabolizing organisms or enzymes thus has assumed greater significance in all these years to convert nitriles to amides/ acids. The nitrile metabolizing enzymes are widely present in bacteria, fungi and yeasts. Yeasts metabolize nitriles through nitrilase and/or nitrile hydratase and amidase enzymes. Only few yeasts have been reported to possess aldoxime dehydratase. More than sixty nitrile metabolizing yeast strains have been hither to isolated from cyanide treatment bioreactor, fermented foods and soil. Most of the yeasts contain nitrile hydratase-amidase system for metabolizing nitriles. Transformations of nitriles to amides/acids have been carried out with free and immobilized yeast cells. The nitrilases of Torulopsis candida>and Exophiala oligosperma>R1 are enantioselec-tive and regiospecific respectively. Geotrichum>sp. JR1 grows in the presence of 2M acetonitrile and may have potential for application in bioremediation of nitrile contaminated soil/water. The nitrilase of E. oligosperma>R1 being active at low pH (3-6) has shown promise for the hydroxy acids. Immobilized yeast cells hydrolyze some additional nitriles in comparison to free cells. It is expected that more focus in future will be on purification, characterization, cloning, expression and immobilization of nitrile metabolizing

  14. Metabolic syndrome and menopause

    OpenAIRE

    Jouyandeh, Zahra; Nayebzadeh, Farnaz; Qorbani, Mostafa; Asadi, Mojgan

    2013-01-01

    Abstract Background The metabolic syndrome is defined as an assemblage of risk factors for cardiovascular diseases, and menopause is associated with an increase in metabolic syndrome prevalence. The aim of this study was to assess the prevalence of metabolic syndrome and its components among postmenopausal women in Tehran, Iran. Methods In this cross-sectional study in menopause clinic in Tehran, 118 postmenopausal women were investigated. We used the adult treatment panel 3 (ATP3) criteria t...

  15. Vertigo and metabolic disorders.

    Science.gov (United States)

    Santos, Maruska D' Aparecida; Bittar, Roseli Saraiva Moreira

    2012-01-01

    Metabolic disorders are accepted by many authors as being responsible for balance disorders. Because of the importance of metabolic disorders in the field of labyrinthine dysfunction, we decided to assess the prevalence of carbohydrates, lipids and thyroid hormones disorders in our patients with vestibular diseases. The study evaluates the metabolic profile of 325 patients with vertigo who sought the Otolaryngology Department of the University of São Paulo in the Hospital das Clínicas da Universidade de São Paulo. The laboratory tests ordered according to the classical research protocol were: low-density lipoprotein cholesterol fraction, TSH, T3, T4 and fasting blood sugar level. The metabolic disorders found and the ones that were observed in the general population were compared. The high level of low-density lipoprotein cholesterol, the altered levels of thyroid hormones, the higher prevalence of diabetes mellitus were the most significant changes found in the group of study. The higher amount of metabolic disorders in patients with vertigo disease reinforces the hypothesis of its influence on the etiopathogenesis of cochleovestibular symptoms.

  16. Constraint based modeling of metabolism allows finding metabolic cancer hallmarks and identifying personalized therapeutic windows.

    Science.gov (United States)

    Bordel, Sergio

    2018-04-13

    In order to choose optimal personalized anticancer treatments, transcriptomic data should be analyzed within the frame of biological networks. The best known human biological network (in terms of the interactions between its different components) is metabolism. Cancer cells have been known to have specific metabolic features for a long time and currently there is a growing interest in characterizing new cancer specific metabolic hallmarks. In this article it is presented a method to find personalized therapeutic windows using RNA-seq data and Genome Scale Metabolic Models. This method is implemented in the python library, pyTARG. Our predictions showed that the most anticancer selective (affecting 27 out of 34 considered cancer cell lines and only 1 out of 6 healthy mesenchymal stem cell lines) single metabolic reactions are those involved in cholesterol biosynthesis. Excluding cholesterol biosynthesis, all the considered cell lines can be selectively affected by targeting different combinations (from 1 to 5 reactions) of only 18 metabolic reactions, which suggests that a small subset of drugs or siRNAs combined in patient specific manners could be at the core of metabolism based personalized treatments.

  17. Ca-48 metabolism studies

    International Nuclear Information System (INIS)

    Van der Merwe, D.G.

    1987-03-01

    Calcium metabolism has been studied in depth physiologically and is a relatively well-understood element in biochemistry and medicine. There is still only restricted knowledge of the metabolic fate of calcium in normal and abnormal paediatric subjects. The latter is partially owing to inadequate techniques for tracing and modelling calcium pathways in children. The advent of radioactive tracers has unquestionably enhanced medical research and improved the quality of many metabolic studies. The present study was aimed at the development, promotion and justification of a new tracer technique using the stable isotope, calcium-48. The obvious advantages of such a technique are its harmlessness tothe subject, its applicability to both short- and long-term studies as well as its usefulness to the study for which it was originally motivated, viz research defining the actual relationship between a calcium-deficient diet and the occurrence of rickets in rural Black children in South Africa. Exploratory instrumental analyses were performed specifically with serum samples. This proved successful enough to develop a less specific pre-concentration technique which improved the sensitivity and reduces the cost of doing calcium-48 metabolism studies. The results of a simple metabolic study are presented whereby the scope of the technique is demonstrated in a real situation. The possibilities and limitations of double-isotope metabolic studies are discussed, particularly with regard to strontium as the second tracer

  18. The Factor Inhibiting HIF Asparaginyl Hydroxylase Regulates Oxidative Metabolism and Accelerates Metabolic Adaptation to Hypoxia.

    Science.gov (United States)

    Sim, Jingwei; Cowburn, Andrew S; Palazon, Asis; Madhu, Basetti; Tyrakis, Petros A; Macías, David; Bargiela, David M; Pietsch, Sandra; Gralla, Michael; Evans, Colin E; Kittipassorn, Thaksaon; Chey, Yu C J; Branco, Cristina M; Rundqvist, Helene; Peet, Daniel J; Johnson, Randall S

    2018-04-03

    Animals require an immediate response to oxygen availability to allow rapid shifts between oxidative and glycolytic metabolism. These metabolic shifts are highly regulated by the HIF transcription factor. The factor inhibiting HIF (FIH) is an asparaginyl hydroxylase that controls HIF transcriptional activity in an oxygen-dependent manner. We show here that FIH loss increases oxidative metabolism, while also increasing glycolytic capacity, and that this gives rise to an increase in oxygen consumption. We further show that the loss of FIH acts to accelerate the cellular metabolic response to hypoxia. Skeletal muscle expresses 50-fold higher levels of FIH than other tissues: we analyzed skeletal muscle FIH mutants and found a decreased metabolic efficiency, correlated with an increased oxidative rate and an increased rate of hypoxic response. We find that FIH, through its regulation of oxidation, acts in concert with the PHD/vHL pathway to accelerate HIF-mediated metabolic responses to hypoxia. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  19. HPLC-MS-Based Metabonomics Reveals Disordered Lipid Metabolism in Patients with Metabolic Syndrome

    Directory of Open Access Journals (Sweden)

    Xinjie Zhao

    2011-12-01

    Full Text Available Ultra-high performance liquid chromatography/ quadrupole time of flight mass spectrometry-based metabonomics platform was employed to profile the plasma metabolites of patients with metabolic syndrome and the healthy controls. Data analysis revealed lots of differential metabolites between the two groups, and most of them were identified as lipids. Several fatty acids and lysophosphatidylcholines were of higher plasma levels in the patient group, indicating the occurrence of insulin resistance and inflammation. The identified ether phospholipids were decreased in the patient group, reflecting the oxidative stress and some metabolic disorders. These identified metabolites can also be used to aid diagnosis of patients with metabolic syndrome. These results showed that metabonomics was a promising and powerful method to study metabolic syndrome.

  20. Interdependence of nutrient metabolism and the circadian clock system: Importance for metabolic health

    Science.gov (United States)

    Ribas-Latre, Aleix; Eckel-Mahan, Kristin

    2016-01-01

    Background While additional research is needed, a number of large epidemiological studies show an association between circadian disruption and metabolic disorders. Specifically, obesity, insulin resistance, cardiovascular disease, and other signs of metabolic syndrome all have been linked to circadian disruption in humans. Studies in other species support this association and generally reveal that feeding that is not in phase with the external light/dark cycle, as often occurs with night or rotating shift workers, is disadvantageous in terms of energy balance. As food is a strong driver of circadian rhythms in the periphery, understanding how nutrient metabolism drives clocks across the body is important for dissecting out why circadian misalignment may produce such metabolic effects. A number of circadian clock proteins as well as their accessory proteins (such as nuclear receptors) are highly sensitive to nutrient metabolism. Macronutrients and micronutrients can function as zeitgebers for the clock in a tissue-specific way and can thus impair synchrony between clocks across the body, or potentially restore synchrony in the case of circadian misalignment. Circadian nuclear receptors are particularly sensitive to nutrient metabolism and can alter tissue-specific rhythms in response to changes in the diet. Finally, SNPs in human clock genes appear to be correlated with diet-specific responses and along with chronotype eventually may provide valuable information from a clinical perspective on how to use diet and nutrition to treat metabolic disorders. Scope of review This article presents a background of the circadian clock components and their interrelated metabolic and transcriptional feedback loops, followed by a review of some recent studies in humans and rodents that address the effects of nutrient metabolism on the circadian clock and vice versa. We focus on studies in which results suggest that nutrients provide an opportunity to restore or, alternatively

  1. Metabolic reprogramming during neuronal differentiation.

    Science.gov (United States)

    Agostini, M; Romeo, F; Inoue, S; Niklison-Chirou, M V; Elia, A J; Dinsdale, D; Morone, N; Knight, R A; Mak, T W; Melino, G

    2016-09-01

    Newly generated neurons pass through a series of well-defined developmental stages, which allow them to integrate into existing neuronal circuits. After exit from the cell cycle, postmitotic neurons undergo neuronal migration, axonal elongation, axon pruning, dendrite morphogenesis and synaptic maturation and plasticity. Lack of a global metabolic analysis during early cortical neuronal development led us to explore the role of cellular metabolism and mitochondrial biology during ex vivo differentiation of primary cortical neurons. Unexpectedly, we observed a huge increase in mitochondrial biogenesis. Changes in mitochondrial mass, morphology and function were correlated with the upregulation of the master regulators of mitochondrial biogenesis, TFAM and PGC-1α. Concomitant with mitochondrial biogenesis, we observed an increase in glucose metabolism during neuronal differentiation, which was linked to an increase in glucose uptake and enhanced GLUT3 mRNA expression and platelet isoform of phosphofructokinase 1 (PFKp) protein expression. In addition, glutamate-glutamine metabolism was also increased during the differentiation of cortical neurons. We identified PI3K-Akt-mTOR signalling as a critical regulator role of energy metabolism in neurons. Selective pharmacological inhibition of these metabolic pathways indicate existence of metabolic checkpoint that need to be satisfied in order to allow neuronal differentiation.

  2. Nutrigenetics of the lipoprotein metabolism.

    Science.gov (United States)

    Garcia-Rios, Antonio; Perez-Martinez, Pablo; Delgado-Lista, Javier; Lopez-Miranda, Jose; Perez-Jimenez, Francisco

    2012-01-01

    It is well known that lipid metabolism is a cornerstone in the development of the commonest important chronic diseases worldwide, such as obesity, cardiovascular disease, or metabolic syndrome. In this regard, the area of lipid and lipoprotein metabolism is one of the areas in which the understanding of the development and progression of those metabolic disorders has been studied in greater depth. Thus, growing evidence has demonstrated that while universal recommendations might be appropriate for the general population, in this area there is great variability among individuals, related to a combination of environmental and genetic factors. Moreover, the interaction between genetic and dietary components has helped in understanding this variability. Therefore, with further study into the interaction between the most important genetic markers or single-nucleotide polymorphisms (SNPs) and diet, it may be possible to understand the variability in lipid metabolism, which could lead to an increase in the use of personalized nutrition as the best support to combat metabolic disorders. This review discusses some of the evidence in which candidate SNPs can affect the key players of lipid metabolism and how their phenotypic manifestations can be modified by dietary intake. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Urban metabolism: A review of research methodologies

    International Nuclear Information System (INIS)

    Zhang, Yan

    2013-01-01

    Urban metabolism analysis has become an important tool for the study of urban ecosystems. The problems of large metabolic throughput, low metabolic efficiency, and disordered metabolic processes are a major cause of unhealthy urban systems. In this paper, I summarize the international research on urban metabolism, and describe the progress that has been made in terms of research methodologies. I also review the methods used in accounting for and evaluating material and energy flows in urban metabolic processes, simulation of these flows using a network model, and practical applications of these methods. Based on this review of the literature, I propose directions for future research, and particularly the need to study the urban carbon metabolism because of the modern context of global climate change. Moreover, I recommend more research on the optimal regulation of urban metabolic systems. Highlights: •Urban metabolic processes can be analyzed by regarding cities as superorganisms. •Urban metabolism methods include accounting, assessment, modeling, and regulation. •Research methodologies have improved greatly since this field began in 1965. •Future research should focus on carbon metabolism and optimal regulation. -- The author reviews research progress in the field of urban metabolism, and based on her literature review, proposes directions for future research

  4. Human drug metabolism: an introduction

    National Research Council Canada - National Science Library

    Coleman, Michael D

    2010-01-01

    ..., both under drug pressure and during inhibition. Factors affecting drug metabolism, such as genetic polymorphisms, age and diet are discussed and how metabolism can lead to toxicity is explained. The book concludes with the role of drug metabolism in the commercial development of therapeutic agents as well as the pharmacology of some illicit drugs.

  5. METABOLIC WAR: A VARIATION FOR METABOLIC BIOCHEMISTRY LEARNING OF A WORLDLY KNOWN BOARD GAME

    Directory of Open Access Journals (Sweden)

    C. M. Anjos

    2008-05-01

    Full Text Available Biomedical careers are highly wished by young students in Brazil. Although future jobs,  academic knowledge and higher earnings  are tempting reasons for this life choice, few of them are aware  of  the difficult path through the  basic classes. Advanced and specific disciplines  are easier to associate with the professional career itself, but few students can identify the importance  of the basic knowledge for their future work. Biochemistry is one of the most difficult  disciplines  for Brazilian students, probably due to the level of abstraction needed to fully learn and understand the topics. Some recent experimental tools, such as bioinformatics, are now helping students with the learning process, providing visual data for understanding biomolecule structure.  In addition to this, biochemical reactions  could be even tougher because of the many variables involved.  To facilitate the learning process for metabolic biochemistry, we created a game based on the board game WAR®,  using Photoshop software. Named Metabolic War, it keeps the same basic rules of WAR®, but with some minor changes. The continents are metabolic pathways (citric acid cycle, glycolysis, beta-oxidation, etc and the countries are metabolic intermediates. Similarly to the original game, players must conquer an objective (one or more metabolic pathways by dominating intermediates. But the desired intermediate must be a possible product from an intermediate the player already owns. This  and other  games were produced by Biomedicine  undergraduate  students  in Metabolic Biochemistry classes. It was presented to other students, who tested and acknowledged it as a great help in understanding metabolic biochemistry,  giving a great understanding of integrative metabolism. Keywords: game; Biochemistry; Metabolic Biochemistry learning; science learning; playful learning.

  6. Machine Learning Methods for Analysis of Metabolic Data and Metabolic Pathway Modeling.

    Science.gov (United States)

    Cuperlovic-Culf, Miroslava

    2018-01-11

    Machine learning uses experimental data to optimize clustering or classification of samples or features, or to develop, augment or verify models that can be used to predict behavior or properties of systems. It is expected that machine learning will help provide actionable knowledge from a variety of big data including metabolomics data, as well as results of metabolism models. A variety of machine learning methods has been applied in bioinformatics and metabolism analyses including self-organizing maps, support vector machines, the kernel machine, Bayesian networks or fuzzy logic. To a lesser extent, machine learning has also been utilized to take advantage of the increasing availability of genomics and metabolomics data for the optimization of metabolic network models and their analysis. In this context, machine learning has aided the development of metabolic networks, the calculation of parameters for stoichiometric and kinetic models, as well as the analysis of major features in the model for the optimal application of bioreactors. Examples of this very interesting, albeit highly complex, application of machine learning for metabolism modeling will be the primary focus of this review presenting several different types of applications for model optimization, parameter determination or system analysis using models, as well as the utilization of several different types of machine learning technologies.

  7. Machine Learning Methods for Analysis of Metabolic Data and Metabolic Pathway Modeling

    Science.gov (United States)

    Cuperlovic-Culf, Miroslava

    2018-01-01

    Machine learning uses experimental data to optimize clustering or classification of samples or features, or to develop, augment or verify models that can be used to predict behavior or properties of systems. It is expected that machine learning will help provide actionable knowledge from a variety of big data including metabolomics data, as well as results of metabolism models. A variety of machine learning methods has been applied in bioinformatics and metabolism analyses including self-organizing maps, support vector machines, the kernel machine, Bayesian networks or fuzzy logic. To a lesser extent, machine learning has also been utilized to take advantage of the increasing availability of genomics and metabolomics data for the optimization of metabolic network models and their analysis. In this context, machine learning has aided the development of metabolic networks, the calculation of parameters for stoichiometric and kinetic models, as well as the analysis of major features in the model for the optimal application of bioreactors. Examples of this very interesting, albeit highly complex, application of machine learning for metabolism modeling will be the primary focus of this review presenting several different types of applications for model optimization, parameter determination or system analysis using models, as well as the utilization of several different types of machine learning technologies. PMID:29324649

  8. Human Body Exergy Metabolism

    OpenAIRE

    Mady, Carlos Eduardo Keutenedjian

    2013-01-01

    The exergy analysis of the human body is a tool that can provide indicators of health and life quality. To perform the exergy balance it is necessary to calculate the metabolism on an exergy basis, or metabolic exergy, although there is not yet consensus in its calculation procedure. Hence, the aim of this work is to provide a general method to evaluate this physical quantity for human body based on indirect calorimetry data. To calculate the metabolism on an exergy basis it is necessary to d...

  9. Drug treatment of metabolic syndrome.

    Science.gov (United States)

    Altabas, Velimir

    2013-08-01

    The metabolic syndrome is a constellation of risk factors for cardiovascular diseases including: abdominal obesity, a decreased ability to metabolize glucose (increased blood glucose levels and/or presence of insulin resistance), dyslipidemia, and hypertension. Patients who have developed this syndrome have been shown to be at an increased risk of developing cardiovascular disease and/or type 2 diabetes. Genetic factors and the environment both are important in the development of the metabolic syndrome, influencing all single components of this syndrome. The goals of therapy are to treat the underlying cause of the syndrome, to reduce morbidity, and to prevent complications, including premature death. Lifestyle modification is the preferred first-step treatment of the metabolic syndrome. There is no single effective drug treatment affecting all components of the syndrome equally known yet. However, each component of metabolic syndrome has independent goals to be achieved, so miscellaneous types of drugs are used in the treatment of this syndrome, including weight losing drugs, antidiabetics, antihypertensives, antilipemic and anticlothing drugs etc. This article provides a brief insight into contemporary drug treatment of components the metabolic syndrome.

  10. Effects of introducing heterologous pathways on microbial metabolism with respect to metabolic optimality

    DEFF Research Database (Denmark)

    Kim, Hyun Uk; Kim, Byoungjin; Seung, Do Young

    2014-01-01

    reactions are more frequently introduced into various microbial hosts. The genome-scale metabolic simulations of Escherichia coli strains engineered to produce 1,4-butanediol, 1,3-propanediol, and amorphadiene suggest that microbial metabolism shows much different responses to the introduced heterologous...... reactions in a strain-specific manner than typical gene knockouts in terms of the energetic status (e.g., ATP and biomass generation) and chemical production capacity. The 1,4-butanediol and 1,3-propanediol producers showed greater metabolic optimality than the wild-type strains and gene knockout mutants...... for the energetic status, while the amorphadiene producer was metabolically less optimal. For the optimal chemical production capacity, additional gene knockouts were most effective for the strain producing 1,3-propanediol, but not for the one producing 1,4-butanediol. These observations suggest that strains having...

  11. Energy metabolism in the liver.

    Science.gov (United States)

    Rui, Liangyou

    2014-01-01

    The liver is an essential metabolic organ, and its metabolic function is controlled by insulin and other metabolic hormones. Glucose is converted into pyruvate through glycolysis in the cytoplasm, and pyruvate is subsequently oxidized in the mitochondria to generate ATP through the TCA cycle and oxidative phosphorylation. In the fed state, glycolytic products are used to synthesize fatty acids through de novo lipogenesis. Long-chain fatty acids are incorporated into triacylglycerol, phospholipids, and/or cholesterol esters in hepatocytes. These complex lipids are stored in lipid droplets and membrane structures, or secreted into the circulation as very low-density lipoprotein particles. In the fasted state, the liver secretes glucose through both glycogenolysis and gluconeogenesis. During pronged fasting, hepatic gluconeogenesis is the primary source for endogenous glucose production. Fasting also promotes lipolysis in adipose tissue, resulting in release of nonesterified fatty acids which are converted into ketone bodies in hepatic mitochondria though β-oxidation and ketogenesis. Ketone bodies provide a metabolic fuel for extrahepatic tissues. Liver energy metabolism is tightly regulated by neuronal and hormonal signals. The sympathetic system stimulates, whereas the parasympathetic system suppresses, hepatic gluconeogenesis. Insulin stimulates glycolysis and lipogenesis but suppresses gluconeogenesis, and glucagon counteracts insulin action. Numerous transcription factors and coactivators, including CREB, FOXO1, ChREBP, SREBP, PGC-1α, and CRTC2, control the expression of the enzymes which catalyze key steps of metabolic pathways, thus controlling liver energy metabolism. Aberrant energy metabolism in the liver promotes insulin resistance, diabetes, and nonalcoholic fatty liver diseases. © 2014 American Physiological Society.

  12. Glutaminolysis: A Hallmark of Cancer Metabolism.

    Science.gov (United States)

    Yang, Lifeng; Venneti, Sriram; Nagrath, Deepak

    2017-06-21

    Glutamine is the most abundant circulating amino acid in blood and muscle and is critical for many fundamental cell functions in cancer cells, including synthesis of metabolites that maintain mitochondrial metabolism; generation of antioxidants to remove reactive oxygen species; synthesis of nonessential amino acids (NEAAs), purines, pyrimidines, and fatty acids for cellular replication; and activation of cell signaling. In light of the pleiotropic role of glutamine in cancer cells, a comprehensive understanding of glutamine metabolism is essential for the development of metabolic therapeutic strategies for targeting cancer cells. In this article, we review oncogene-, tumor suppressor-, and tumor microenvironment-mediated regulation of glutamine metabolism in cancer cells. We describe the mechanism of glutamine's regulation of tumor proliferation, metastasis, and global methylation. Furthermore, we highlight the therapeutic potential of glutamine metabolism and emphasize that clinical application of in vivo assessment of glutamine metabolism is critical for identifying new ways to treat patients through glutamine-based metabolic therapy.

  13. Epigenetics and Cellular Metabolism

    Directory of Open Access Journals (Sweden)

    Wenyi Xu

    2016-01-01

    Full Text Available Living eukaryotic systems evolve delicate cellular mechanisms for responding to various environmental signals. Among them, epigenetic machinery (DNA methylation, histone modifications, microRNAs, etc. is the hub in transducing external stimuli into transcriptional response. Emerging evidence reveals the concept that epigenetic signatures are essential for the proper maintenance of cellular metabolism. On the other hand, the metabolite, a main environmental input, can also influence the processing of epigenetic memory. Here, we summarize the recent research progress in the epigenetic regulation of cellular metabolism and discuss how the dysfunction of epigenetic machineries influences the development of metabolic disorders such as diabetes and obesity; then, we focus on discussing the notion that manipulating metabolites, the fuel of cell metabolism, can function as a strategy for interfering epigenetic machinery and its related disease progression as well.

  14. The logics of metabolic regulation in bacteria challenges biosensor-based metabolic engineering

    Directory of Open Access Journals (Sweden)

    Matthieu Jules

    2017-12-01

    Full Text Available Synthetic Biology (SB aims at the rational design and engineering of novel biological functions and systems. By facilitating the engineering of living organisms, SB promises to facilitate the development of many new applications for health, biomanufacturing, and the environment. Over the last decade, SB promoted the construction of libraries of components enabling the fine-tuning of genetic circuits expression and the development of novel genome engineering methodologies for many organisms of interest. SB thus opened new perspectives in the field of metabolic engineering, which was until then mainly limited to (overproducing naturally synthesized metabolic compounds. To engineer efficient cell factories, it is key to precisely reroute cellular resources from the central carbon metabolism (CCM to the synthetic circuitry. This task is however difficult as there is still significant lack of knowledge regarding both the function of several metabolic components and the regulation of the CCM fluxes for many industrially important bacteria. Pyruvate is a pivotal metabolite at the heart of the CCM and a key precursor for the synthesis of several commodity compounds and fine chemicals. Numerous bacterial species can also use it as a carbon source when present in the environment but bacterial, pyruvate-specific uptake systems were to be discovered. This is an issue for metabolic engineering as one can imagine to make use of pyruvate transport systems to replenish synthetic metabolic pathways towards the synthesis of chemicals of interest. Here we describe a recent study (MBio 8(5: e00976-17, which identified and characterized a pyruvate transport system in the Gram-positive (G+ve bacterium Bacillus subtilis, a well-established biotechnological workhorse for the production of enzymes, fine chemicals and antibiotics. This study also revealed that the activity of the two-component system (TCS responsible for its induction is retro-inhibited by the level of

  15. Neuron-glia metabolic coupling and plasticity.

    Science.gov (United States)

    Magistretti, Pierre J

    2011-04-01

    The focus of the current research projects in my laboratory revolves around the question of metabolic plasticity of neuron-glia coupling. Our hypothesis is that behavioural conditions, such as for example learning or the sleep-wake cycle, in which synaptic plasticity is well documented, or during specific pathological conditions, are accompanied by changes in the regulation of energy metabolism of astrocytes. We have indeed observed that the 'metabolic profile' of astrocytes is modified during the sleep-wake cycle and during conditions mimicking neuroinflammation in the presence or absence of amyloid-β. The effect of amyloid-β on energy metabolism is dependent on its state of aggregation and on internalization of the peptide by astrocytes. Distinct patterns of metabolic activity could be observed during the learning and recall phases in a spatial learning task. Gene expression analysis in activated areas, notably hippocampous and retrosplenial cortex, demonstrated that the expression levels of several genes implicated in astrocyte-neuron metabolic coupling are enhanced by learning. Regarding metabolic plasticity during the sleep-wake cycle, we have observed that the level of expression of a panel of selected genes, which we know are key for neuron-glia metabolic coupling, is modulated by sleep deprivation.

  16. [Hypovitaminosis D and metabolic syndrome].

    Science.gov (United States)

    Miñambres, Inka; de Leiva, Alberto; Pérez, Antonio

    2014-12-23

    Metabolic syndrome and hypovitaminosis D are 2 diseases with high prevalence that share several risk factors, while epidemiological evidence shows they are associated. Although the mechanisms involved in this association are not well established, hypovitaminosis D is associated with insulin resistance, decreased insulin secretion and activation of the renin-angiotensin system, mechanisms involved in the pathophysiology of metabolic syndrome. However, the apparent ineffectiveness of vitamin D supplementation on metabolic syndrome components, as well as the limited information about the effect of improving metabolic syndrome components on vitamin D concentrations, does not clarify the direction and the mechanisms involved in the causal relationship between these 2 pathologies. Overall, because of the high prevalence and the epidemiological association between both diseases, hypovitaminosis D could be considered a component of the metabolic syndrome. Copyright © 2013 Elsevier España, S.L.U. All rights reserved.

  17. Metabolic phenotyping of various tea (Camellia sinensis L.) cultivars and understanding of their intrinsic metabolism.

    Science.gov (United States)

    Ji, Hyang-Gi; Lee, Yeong-Ran; Lee, Min-Seuk; Hwang, Kyeong Hwan; Kim, Eun-Hee; Park, Jun Seong; Hong, Young-Shick

    2017-10-15

    Recently, we selected three tea (Camellia sinensis) cultivars that are rich in taste, epigallocatechin-3-O-gallate (EGCG) and epigallocatechin-3-O-(3-O-methyl)-gallate (EGCG3″Me) and then cultivated them through asexual propagation by cutting in the same region. In the present study, proton nuclear magnetic resonance ( 1 H NMR)-based metabolomics was applied to characterize the metabotype and to understand the metabolic mechanism of these tea cultivars including wild type tea. Of the tea leaf metabolite variations, reverse associations of amino acid metabolism with catechin compound metabolism were found in the rich-taste, and EGCG- and EGCG3″Me-rich tea cultivars. Indeed, the metabolism of individual catechin compounds in the EGCG3″Me-rich cultivar differed from those of other tea cultivars. The current study highlights the distinct metabolism of various tea cultivars newly selected for cultivation and the important role of metabolomics in understanding the metabolic mechanism. Thus, comprehensive metabotyping is a useful method to assess and then develop a new plant cultivar. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Bile Acid Metabolism in Liver Pathobiology

    Science.gov (United States)

    Chiang, John Y. L.; Ferrell, Jessica M.

    2018-01-01

    Bile acids facilitate intestinal nutrient absorption and biliary cholesterol secretion to maintain bile acid homeostasis, which is essential for protecting liver and other tissues and cells from cholesterol and bile acid toxicity. Bile acid metabolism is tightly regulated by bile acid synthesis in the liver and bile acid biotransformation in the intestine. Bile acids are endogenous ligands that activate a complex network of nuclear receptor farnesoid X receptor and membrane G protein-coupled bile acid receptor-1 to regulate hepatic lipid and glucose metabolic homeostasis and energy metabolism. The gut-to-liver axis plays a critical role in the regulation of enterohepatic circulation of bile acids, bile acid pool size, and bile acid composition. Bile acids control gut bacteria overgrowth, and gut bacteria metabolize bile acids to regulate host metabolism. Alteration of bile acid metabolism by high-fat diets, sleep disruption, alcohol, and drugs reshapes gut microbiome and causes dysbiosis, obesity, and metabolic disorders. Gender differences in bile acid metabolism, FXR signaling, and gut microbiota have been linked to higher prevalence of fatty liver disease and hepatocellular carcinoma in males. Alteration of bile acid homeostasis contributes to cholestatic liver diseases, inflammatory diseases in the digestive system, obesity, and diabetes. Bile acid-activated receptors are potential therapeutic targets for developing drugs to treat metabolic disorders. PMID:29325602

  19. Temporal expression-based analysis of metabolism.

    Directory of Open Access Journals (Sweden)

    Sara B Collins

    Full Text Available Metabolic flux is frequently rerouted through cellular metabolism in response to dynamic changes in the intra- and extra-cellular environment. Capturing the mechanisms underlying these metabolic transitions in quantitative and predictive models is a prominent challenge in systems biology. Progress in this regard has been made by integrating high-throughput gene expression data into genome-scale stoichiometric models of metabolism. Here, we extend previous approaches to perform a Temporal Expression-based Analysis of Metabolism (TEAM. We apply TEAM to understanding the complex metabolic dynamics of the respiratorily versatile bacterium Shewanella oneidensis grown under aerobic, lactate-limited conditions. TEAM predicts temporal metabolic flux distributions using time-series gene expression data. Increased predictive power is achieved by supplementing these data with a large reference compendium of gene expression, which allows us to take into account the unique character of the distribution of expression of each individual gene. We further propose a straightforward method for studying the sensitivity of TEAM to changes in its fundamental free threshold parameter θ, and reveal that discrete zones of distinct metabolic behavior arise as this parameter is changed. By comparing the qualitative characteristics of these zones to additional experimental data, we are able to constrain the range of θ to a small, well-defined interval. In parallel, the sensitivity analysis reveals the inherently difficult nature of dynamic metabolic flux modeling: small errors early in the simulation propagate to relatively large changes later in the simulation. We expect that handling such "history-dependent" sensitivities will be a major challenge in the future development of dynamic metabolic-modeling techniques.

  20. Inherited metabolic disorders in Thailand.

    Science.gov (United States)

    Wasant, Pornswan; Svasti, Jisnuson; Srisomsap, Chantragan; Liammongkolkul, Somporn

    2002-08-01

    The study of inborn errors of metabolism (IEM) in Thailand is in its infancy. The majority are clinically diagnosed since there are only a handful of clinicians and scientists with expertise in inherited metabolic disorders, shortage of well-equipped laboratory facilities and lack of governmental financial support. Genetic metabolic disorders are usually not considered a priority due to prevalence of infectious diseases and congenital infections. From a retrospective study at the Medical Genetics Unit, Department of Pediatrics, Siriraj Hospital; estimated pediatrics patients with suspected IEM were approximately 2-3 per cent of the total pediatric admissions of over 5,000 annually. After more than 10 years of research and accumulated clinical experiences, a genetic metabolic center is being established in collaboration with expert laboratories both in Bangkok (Chulabhorn Research Institute) and abroad (Japan and the United States). Numerous inherited metabolic disorders were identified--carbohydrate, amino acids, organic acids, mitochondrial fatty acid oxidation, peroxisomal, mucopolysaccharidoses etc. This report includes the establishment of genetic metabolic center in Thailand, research and pilot studies in newborn screening in Thailand and a multicenter study from 5 institutions (Children's National Center, King Chulalongkorn Memorial Hospital, Pramongkutklao Hospital, Ramathibodi and Siriraj Hospitals). Inherited metabolic disorders reported are fructose-1,6-bisphosphatase deficiency, phenylketonuria, homocystinuria, nonketotic hyperglycinemia, urea cycle defect (arginino succinate lyase deficiency, argininosuccinate synthetase deficiency), Menkes disease, propionic acidemia and mucopolysaccharidoses (Hurler, Hurler-Scheie).

  1. Skeletal muscle metabolism in hypokinetic rats

    Science.gov (United States)

    Tischler, Marc E.

    1993-01-01

    This grant focused on the mechanisms of metabolic changes associated with unweighting atrophy and reduced growth of hind limb muscles of juvenile rats. Metabolic studies included a number of different areas. Amino acid metabolic studies placed particular emphasis on glutamine and branched-chain amino acid metabolism. These studies were an outgrowth of understanding stress effects and the role of glucocorticoids in these animals. Investigations on protein metabolism were largely concerned with selective loss of myofibrillar proteins and the role of muscle proteolysis. These investigations lead to finding important differences from denervation and atrophy and to define the roles of cytosolic versus lysosomal proteolysis in these atrophy models. A major outgrowth of these studies was demonstrating an ability to prevent atrophy of the unweighted muscle for at least 24 hours. A large amount of work concentrated on carbohydrate metabolism and its regulation by insulin and catecholamines. Measurements focused on glucose transport, glycogen metabolism, and glucose oxidation. The grant was used to develop an important new in situ approach for studying protein metabolism, glucose transport, and hormonal effects which involves intramuscular injection of various agents for up to 24 hours. Another important consequence of this project was the development and flight of Physiological-Anatomical Rodent Experiment-1 (PARE-1), which was launched aboard Space Shuttle Discovery in September 1991. Detailed descriptions of these studies can be found in the 30 peer-reviewed publications, 15 non-reviewed publications, 4 reviews and 33 abstracts (total 82 publications) which were or are scheduled to be published as a result of this project. A listing of these publications grouped by area (i.e. amino acid metabolism, protein metabolism, carbohydrate metabolism, and space flight studies) are included.

  2. Metabolic Flux Analysis of Shewanella spp. Reveals Evolutionary Robustness in Central Carbon Metabolism

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Yinjie J.; Martin, Hector Garcia; Dehal, Paramvir S.; Deutschbauer, Adam; Llora, Xavier; Meadows, Adam; Arkin, Adam; Keasling, Jay D.

    2009-08-19

    Shewanella spp. are a group of facultative anaerobic bacteria widely distributed in marine and fresh-water environments. In this study, we profiled the central metabolic fluxes of eight recently sequenced Shewanella species grown under the same condition in minimal med-ium with [3-13C] lactate. Although the tested Shewanella species had slightly different growth rates (0.23-0.29 h31) and produced different amounts of acetate and pyruvate during early exponential growth (pseudo-steady state), the relative intracellular metabolic flux distributions were remarkably similar. This result indicates that Shewanella species share similar regulation in regard to central carbon metabolic fluxes under steady growth conditions: the maintenance of metabolic robustness is not only evident in a single species under genetic perturbations (Fischer and Sauer, 2005; Nat Genet 37(6):636-640), but also observed through evolutionary related microbial species. This remarkable conservation of relative flux profiles through phylogenetic differences prompts us to introduce the concept of metabotype as an alternative scheme to classify microbial fluxomics. On the other hand, Shewanella spp. display flexibility in the relative flux profiles when switching their metabolism from consuming lactate to consuming pyruvate and acetate.

  3. Metabolism of phencyclidine

    International Nuclear Information System (INIS)

    Hoag, M.K.P.

    1987-01-01

    Phencyclidine (PCP) is a drug of abuse which may produce, in some users, a persistent schizophreniform psychosis. The possibility that long term effects of PCP are mediated by metabolic activation of the parent compound to reactive species is consistent with the demonstration of metabolism-dependent covalent binding of radiolabeled PCP in vivo and in vitro to macromolecules in rodent lung, liver, and kidney. Formation of the electrophilic iminium ion metabolite of PCP is believed to be critical for covalent binding since binding was inhibited by cyanide ion at concentrations which did not inhibit metabolism of PCP but did trap the iminium ion to form the corresponding alpha-aminonitrile. The present studies were designed to characterize further the biological fate of PCP by identifying possible macromolecular targets of the reactive metabolite(s)

  4. Hypothyroidism in metabolic syndrome

    Directory of Open Access Journals (Sweden)

    Sunil Kumar Kota

    2012-01-01

    Full Text Available Aim: Metabolic syndrome (MetS and hypothyroidism are well established forerunners of atherogenic cardiovascular disease. Considerable overlap occurs in the pathogenic mechanisms of atherosclerotic cardiovascular disease by metabolic syndrome and hypothyroidism. Insulin resistance has been studied as the basic pathogenic mechanism in metabolic syndrome. [1] This cross sectional study intended to assess thyroid function in patients with metabolic syndrome and to investigate the association between hypothyroidism and metabolic syndrome. Materials and Methods: One hundred patients with metabolic syndrome who fulfilled the National Cholesterol Education Program- Adult Treatment Panel (NCEP-ATP III criteria [ 3 out of 5 criteria positive namely blood pressure ≥ 130/85 mm hg or on antihypertensive medications, fasting plasma glucose > 100 mg/dl or on anti-diabetic medications, fasting triglycerides > 150 mg/dl, high density lipoprotein cholesterol (HDL-C 102 cms in men and 88 cms in women] were included in the study group. [2] Fifty patients who had no features of metabolic syndrome (0 out of 5 criteria for metabolic syndrome were included in the control group. Patients with liver disorders, renal disorders, congestive cardiac failure, pregnant women, patients on oral contraceptive pills, statins and other medications that alter thyroid functions and lipid levels and those who are under treatment for any thyroid related disorder were excluded from the study. Acutely ill patients were excluded taking into account sick euthyroid syndrome. Patients were subjected to anthropometry, evaluation of vital parameters, lipid and thyroid profile along with other routine laboratory parameters. Students t-test, Chi square test and linear regression, multiple logistic regression models were used for statistical analysis. P value < 0.05 was considered significant. Results: Of the 100 patients in study group, 55 were females (55% and 45 were males (45%. Of the 50

  5. Is the rate of metabolic ageing and survival determined by Basal metabolic rate in the zebra finch?

    Directory of Open Access Journals (Sweden)

    Bernt Rønning

    Full Text Available The relationship between energy metabolism and ageing is of great interest because aerobic metabolism is the primary source of reactive oxygen species which is believed to be of major importance in the ageing process. We conducted a longitudinal study on captive zebra finches where we tested the effect of age on basal metabolic rate (BMR, as well as the effect of BMR on the rate of metabolic ageing (decline in BMR with age and survival. Basal metabolic rate declined with age in both sexes after controlling for the effect of body mass, indicating a loss of functionality with age. This loss of functionality could be due to accumulated oxidative damage, believed to increase with increasing metabolic rate, c.f. the free radical theory of ageing. If so, we would expect the rate of metabolic ageing to increase and survival to decrease with increasing BMR. However, we found no effect of BMR on the rate of metabolic ageing. Furthermore, survival was not affected by BMR in the males. In female zebra finches there was a tendency for survival to decrease with increasing BMR, but the effect did not reach significance (P<0.1. Thus, the effect of BMR on the rate of functional deterioration with age, if any, was not strong enough to influence neither the rate of metabolic ageing nor survival in the zebra finches.

  6. Is the rate of metabolic ageing and survival determined by Basal metabolic rate in the zebra finch?

    Science.gov (United States)

    Rønning, Bernt; Moe, Børge; Berntsen, Henrik H; Noreen, Elin; Bech, Claus

    2014-01-01

    The relationship between energy metabolism and ageing is of great interest because aerobic metabolism is the primary source of reactive oxygen species which is believed to be of major importance in the ageing process. We conducted a longitudinal study on captive zebra finches where we tested the effect of age on basal metabolic rate (BMR), as well as the effect of BMR on the rate of metabolic ageing (decline in BMR with age) and survival. Basal metabolic rate declined with age in both sexes after controlling for the effect of body mass, indicating a loss of functionality with age. This loss of functionality could be due to accumulated oxidative damage, believed to increase with increasing metabolic rate, c.f. the free radical theory of ageing. If so, we would expect the rate of metabolic ageing to increase and survival to decrease with increasing BMR. However, we found no effect of BMR on the rate of metabolic ageing. Furthermore, survival was not affected by BMR in the males. In female zebra finches there was a tendency for survival to decrease with increasing BMR, but the effect did not reach significance (PBMR on the rate of functional deterioration with age, if any, was not strong enough to influence neither the rate of metabolic ageing nor survival in the zebra finches.

  7. Observability of plant metabolic networks is reflected in the correlation of metabolic profiles

    DEFF Research Database (Denmark)

    Schwahn, Kevin; Küken, Anika; Kliebenstein, Daniel James

    2016-01-01

    to obtain information about the entire system. Yet, the extent to which the data profiles reflect the role of components in the observability of the system remains unexplored. Here we first identify the sensor metabolites in the model plant Arabidopsis (Arabidopsis thaliana) by employing state...... with in silico generated metabolic profiles from a medium-size kinetic model of plant central carbon metabolism. Altogether, due to the small number of identified sensors, our study implies that targeted metabolite analyses may provide the vast majority of relevant information about plant metabolic systems....

  8. The metabolic switch of cancer

    Directory of Open Access Journals (Sweden)

    Yuting Ma

    2017-03-01

    Full Text Available Although remarkable progress has been made in oncology research, cancer is still a leading cause of death worldwide. It is well recognized that cancer is a genetic disease, yet metabolic alterations or reprogramming are the major phenotypes associated with the (epi-genetic modifications of cancer cells. Thus, understanding the metabolic changes of tumor cells will facilitate the diagnosis of cancer, alleviate drug resistance and provide novel druggable targets that can lead to cures for cancer. The first Sino-US Symposium on Cancer Metabolism was held in Chongqing on October 10th and 11th, with the theme of “cancer metabolism and precision cancer therapy”. The symposium brought about a dozen keynote speakers each from the US and mainland China, as well as one hundred delegates with an interest in cancer metabolism. This short article will briefly summarize the advances reported during this meeting.

  9. Elucidating the Metabolic Plasticity of Cancer: Mitochondrial Reprogramming and Hybrid Metabolic States

    Directory of Open Access Journals (Sweden)

    Dongya Jia

    2018-03-01

    Full Text Available Aerobic glycolysis, also referred to as the Warburg effect, has been regarded as the dominant metabolic phenotype in cancer cells for a long time. More recently, it has been shown that mitochondria in most tumors are not defective in their ability to carry out oxidative phosphorylation (OXPHOS. Instead, in highly aggressive cancer cells, mitochondrial energy pathways are reprogrammed to meet the challenges of high energy demand, better utilization of available fuels and macromolecular synthesis for rapid cell division and migration. Mitochondrial energy reprogramming is also involved in the regulation of oncogenic pathways via mitochondria-to-nucleus retrograde signaling and post-translational modification of oncoproteins. In addition, neoplastic mitochondria can engage in crosstalk with the tumor microenvironment. For example, signals from cancer-associated fibroblasts can drive tumor mitochondria to utilize OXPHOS, a process known as the reverse Warburg effect. Emerging evidence shows that cancer cells can acquire a hybrid glycolysis/OXPHOS phenotype in which both glycolysis and OXPHOS can be utilized for energy production and biomass synthesis. The hybrid glycolysis/OXPHOS phenotype facilitates metabolic plasticity of cancer cells and may be specifically associated with metastasis and therapy-resistance. Moreover, cancer cells can switch their metabolism phenotypes in response to external stimuli for better survival. Taking into account the metabolic heterogeneity and plasticity of cancer cells, therapies targeting cancer metabolic dependency in principle can be made more effective.

  10. Gut Microbiota and Metabolic Disorders

    Directory of Open Access Journals (Sweden)

    Kyu Yeon Hur

    2015-06-01

    Full Text Available Gut microbiota plays critical physiological roles in the energy extraction and in the control of local or systemic immunity. Gut microbiota and its disturbance also appear to be involved in the pathogenesis of diverse diseases including metabolic disorders, gastrointestinal diseases, cancer, etc. In the metabolic point of view, gut microbiota can modulate lipid accumulation, lipopolysaccharide content and the production of short-chain fatty acids that affect food intake, inflammatory tone, or insulin signaling. Several strategies have been developed to change gut microbiota such as prebiotics, probiotics, certain antidiabetic drugs or fecal microbiota transplantation, which have diverse effects on body metabolism and on the development of metabolic disorders.

  11. Urea metabolism in plants.

    Science.gov (United States)

    Witte, Claus-Peter

    2011-03-01

    Urea is a plant metabolite derived either from root uptake or from catabolism of arginine by arginase. In agriculture, urea is intensively used as a nitrogen fertilizer. Urea nitrogen enters the plant either directly, or in the form of ammonium or nitrate after urea degradation by soil microbes. In recent years various molecular players of plant urea metabolism have been investigated: active and passive urea transporters, the nickel metalloenzyme urease catalyzing the hydrolysis of urea, and three urease accessory proteins involved in the complex activation of urease. The degradation of ureides derived from purine breakdown has long been discussed as a possible additional metabolic source for urea, but an enzymatic route for the complete hydrolysis of ureides without a urea intermediate has recently been described for Arabidopsis thaliana. This review focuses on the proteins involved in plant urea metabolism and the metabolic sources of urea but also addresses open questions regarding plant urea metabolism in a physiological and agricultural context. The contribution of plant urea uptake and metabolism to fertilizer urea usage in crop production is still not investigated although globally more than half of all nitrogen fertilizer is applied to crops in the form of urea. Nitrogen use efficiency in crop production is generally well below 50% resulting in economical losses and creating ecological problems like groundwater pollution and emission of nitric oxides that can damage the ozone layer and function as greenhouse gasses. Biotechnological approaches to improve fertilizer urea usage bear the potential to increase crop nitrogen use efficiency. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  12. Polycystic ovary syndrome and metabolic syndrome.

    Science.gov (United States)

    Ali, Aus Tariq

    2015-08-01

    Polycystic ovary syndrome (PCOS) is a heterogeneous disorder, where the main clinical features include menstrual irregularities, sub-fertility, hyperandrogenism, and hirsutism. The prevalence of PCOS depends on ethnicity, environmental and genetic factors, as well as the criteria used to define it. On the other hand, metabolic syndrome is a constellation of metabolic disorders which include mainly abdominal obesity, insulin resistance, impaired glucose metabolism, hypertension and dyslipidaemia. These associated disorders directly increase the risk of Type 2 diabetes mellitus (DMT2), coronary heart disease (CHD), cardiovascular diseases (CVD) and endometrial cancer. Many patients with PCOS have features of metabolic syndrome such as visceral obesity, hyperinsulinaemia and insulin resistance. These place patients with PCOS under high risk of developing cardiovascular disease (CVD), Type 2 diabetes (DMT2) and gynecological cancer, in particular, endometrial cancer. Metabolic syndrome is also increased in infertile women with PCOS. The aim of this review is to provide clear and up to date information about PCOS and its relationship with metabolic syndrome, and the possible interaction between different metabolic disorders.

  13. It must be my metabolism: Metabolic control of mind

    Directory of Open Access Journals (Sweden)

    Dana M Small

    2014-07-01

    relationship between the reinforcing potency of sugared solutions and the metabolic effects that follow their consumption (16, also see the abstract of I. de Araujo. We therefore hypothesized that metabolic response provides the critical signal necessary to condition preference. To test this prediction in humans we designed a flavor nutrient conditioning study in which participants first rated their liking for novel flavored beverages and then, over a three week-long conditioning protocol, alternately ingested one of the flavored beverages with 112.5 kcal from maltodextrin, a tasteless and odorless polysaccharide that breaks down into glucose, and another flavored beverage with no calories added. Plasma glucose was measured before and after each of the drinks’ consumption as a proxy measure of metabolic response, assuming that glucose oxidation depends upon the level of circulating glucose. For each participant flavor-calorie pairings were held constant but the identity of the conditioned flavors were counterbalanced across participants. Following the exposure phase, participants’ liking of, and brain responses to, non-caloric versions of the flavors were assessed. We predicted that change in plasma glucose produced by beverage consumption during the exposure sessions would be associated with neural responses in dopamine source and target regions to the calorie predictive flavor. As predicted, response in the ventral striatum and hypothalamus to the calorie-predictive flavor (CS+ vs. non the noncaloric-predictive flavor (CS- was strongly associated with the changes in plasma glucose levels produced by ingestion of these same beverages when consumed previously either with (CS+ or without (CS- calories (17. Specifically, the greater the increase in circulating glucose occurring post ingestion of the beverage containing 112.5 kcal from maltodextrin versus the noncaloric drink, the stronger was the brain response to the CS+ compared to the CS- flavor. Importantly, because each

  14. Investigation of metabolic encephalopathy

    African Journals Online (AJOL)

    cycle defects is the X-linked recessive disorder, ornithine ... life, or if the child is fed the compounds that they are unable .... as learning difficulties, drowsiness and avoidance of ... Table 2. Laboratory investigation of suspected metabolic encephalopathy. Laboratory .... Clinical approach to treatable inborn metabolic diseases:.

  15. VRML metabolic network visualizer.

    Science.gov (United States)

    Rojdestvenski, Igor

    2003-03-01

    A successful date collection visualization should satisfy a set of many requirements: unification of diverse data formats, support for serendipity research, support of hierarchical structures, algorithmizability, vast information density, Internet-readiness, and other. Recently, virtual reality has made significant progress in engineering, architectural design, entertainment and communication. We experiment with the possibility of using the immersive abstract three-dimensional visualizations of the metabolic networks. We present the trial Metabolic Network Visualizer software, which produces graphical representation of a metabolic network as a VRML world from a formal description written in a simple SGML-type scripting language.

  16. Cancer cell metabolism: one hallmark, many faces.

    Science.gov (United States)

    Cantor, Jason R; Sabatini, David M

    2012-10-01

    Cancer cells must rewire cellular metabolism to satisfy the demands of growth and proliferation. Although many of the metabolic alterations are largely similar to those in normal proliferating cells, they are aberrantly driven in cancer by a combination of genetic lesions and nongenetic factors such as the tumor microenvironment. However, a single model of altered tumor metabolism does not describe the sum of metabolic changes that can support cell growth. Instead, the diversity of such changes within the metabolic program of a cancer cell can dictate by what means proliferative rewiring is driven, and can also impart heterogeneity in the metabolic dependencies of the cell. A better understanding of this heterogeneity may enable the development and optimization of therapeutic strategies that target tumor metabolism.

  17. Bringing metabolic networks to life: integration of kinetic, metabolic, and proteomic data

    Directory of Open Access Journals (Sweden)

    Klipp Edda

    2006-12-01

    Full Text Available Abstract Background Translating a known metabolic network into a dynamic model requires reasonable guesses of all enzyme parameters. In Bayesian parameter estimation, model parameters are described by a posterior probability distribution, which scores the potential parameter sets, showing how well each of them agrees with the data and with the prior assumptions made. Results We compute posterior distributions of kinetic parameters within a Bayesian framework, based on integration of kinetic, thermodynamic, metabolic, and proteomic data. The structure of the metabolic system (i.e., stoichiometries and enzyme regulation needs to be known, and the reactions are modelled by convenience kinetics with thermodynamically independent parameters. The parameter posterior is computed in two separate steps: a first posterior summarises the available data on enzyme kinetic parameters; an improved second posterior is obtained by integrating metabolic fluxes, concentrations, and enzyme concentrations for one or more steady states. The data can be heterogenous, incomplete, and uncertain, and the posterior is approximated by a multivariate log-normal distribution. We apply the method to a model of the threonine synthesis pathway: the integration of metabolic data has little effect on the marginal posterior distributions of individual model parameters. Nevertheless, it leads to strong correlations between the parameters in the joint posterior distribution, which greatly improve the model predictions by the following Monte-Carlo simulations. Conclusion We present a standardised method to translate metabolic networks into dynamic models. To determine the model parameters, evidence from various experimental data is combined and weighted using Bayesian parameter estimation. The resulting posterior parameter distribution describes a statistical ensemble of parameter sets; the parameter variances and correlations can account for missing knowledge, measurement

  18. A community-based exercise intervention transitions metabolically abnormal obese adults to a metabolically healthy obese phenotype

    Science.gov (United States)

    Dalleck, Lance C; Van Guilder, Gary P; Richardson, Tara B; Bredle, Donald L; Janot, Jeffrey M

    2014-01-01

    Background Lower habitual physical activity and poor cardiorespiratory fitness are common features of the metabolically abnormal obese (MAO) phenotype that contribute to increased cardiovascular disease risk. The aims of the present study were to determine 1) whether community-based exercise training transitions MAO adults to metabolically healthy, and 2) whether the odds of transition to metabolically healthy were larger for obese individuals who performed higher volumes of exercise and/or experienced greater increases in fitness. Methods and results Metabolic syndrome components were measured in 332 adults (190 women, 142 men) before and after a supervised 14-week community-based exercise program designed to reduce cardiometabolic risk factors. Obese (body mass index ≥30 kg · m2) adults with two to four metabolic syndrome components were classified as MAO, whereas those with no or one component were classified as metabolically healthy but obese (MHO). After community exercise, 27/68 (40%) MAO individuals (Pmetabolically healthy, increasing the total number of MHO persons by 73% (from 37 to 64). Compared with the lowest quartiles of relative energy expenditure and change in fitness, participants in the highest quartiles were 11.6 (95% confidence interval: 2.1–65.4; Pexercise transitions MAO adults to metabolically healthy. MAO adults who engaged in higher volumes of exercise and experienced the greatest increase in fitness were significantly more likely to become metabolically healthy. Community exercise may be an effective model for primary prevention of cardiovascular disease. PMID:25120373

  19. Vitamin A Metabolism: An Update

    Directory of Open Access Journals (Sweden)

    William S. Blaner

    2011-01-01

    Full Text Available Retinoids are required for maintaining many essential physiological processes in the body, including normal growth and development, normal vision, a healthy immune system, normal reproduction, and healthy skin and barrier functions. In excess of 500 genes are thought to be regulated by retinoic acid. 11-cis-retinal serves as the visual chromophore in vision. The body must acquire retinoid from the diet in order to maintain these essential physiological processes. Retinoid metabolism is complex and involves many different retinoid forms, including retinyl esters, retinol, retinal, retinoic acid and oxidized and conjugated metabolites of both retinol and retinoic acid. In addition, retinoid metabolism involves many carrier proteins and enzymes that are specific to retinoid metabolism, as well as other proteins which may be involved in mediating also triglyceride and/or cholesterol metabolism. This review will focus on recent advances for understanding retinoid metabolism that have taken place in the last ten to fifteen years.

  20. Gut microbiota and metabolic syndrome.

    Science.gov (United States)

    Festi, Davide; Schiumerini, Ramona; Eusebi, Leonardo Henry; Marasco, Giovanni; Taddia, Martina; Colecchia, Antonio

    2014-11-21

    Gut microbiota exerts a significant role in the pathogenesis of the metabolic syndrome, as confirmed by studies conducted both on humans and animal models. Gut microbial composition and functions are strongly influenced by diet. This complex intestinal "superorganism" seems to affect host metabolic balance modulating energy absorption, gut motility, appetite, glucose and lipid metabolism, as well as hepatic fatty storage. An impairment of the fine balance between gut microbes and host's immune system could culminate in the intestinal translocation of bacterial fragments and the development of "metabolic endotoxemia", leading to systemic inflammation and insulin resistance. Diet induced weight-loss and bariatric surgery promote significant changes of gut microbial composition, that seem to affect the success, or the inefficacy, of treatment strategies. Manipulation of gut microbiota through the administration of prebiotics or probiotics could reduce intestinal low grade inflammation and improve gut barrier integrity, thus, ameliorating metabolic balance and promoting weight loss. However, further evidence is needed to better understand their clinical impact and therapeutic use.

  1. Constraining Genome-Scale Models to Represent the Bow Tie Structure of Metabolism for 13C Metabolic Flux Analysis

    Directory of Open Access Journals (Sweden)

    Tyler W. H. Backman

    2018-01-01

    Full Text Available Determination of internal metabolic fluxes is crucial for fundamental and applied biology because they map how carbon and electrons flow through metabolism to enable cell function. 13 C Metabolic Flux Analysis ( 13 C MFA and Two-Scale 13 C Metabolic Flux Analysis (2S- 13 C MFA are two techniques used to determine such fluxes. Both operate on the simplifying approximation that metabolic flux from peripheral metabolism into central “core” carbon metabolism is minimal, and can be omitted when modeling isotopic labeling in core metabolism. The validity of this “two-scale” or “bow tie” approximation is supported both by the ability to accurately model experimental isotopic labeling data, and by experimentally verified metabolic engineering predictions using these methods. However, the boundaries of core metabolism that satisfy this approximation can vary across species, and across cell culture conditions. Here, we present a set of algorithms that (1 systematically calculate flux bounds for any specified “core” of a genome-scale model so as to satisfy the bow tie approximation and (2 automatically identify an updated set of core reactions that can satisfy this approximation more efficiently. First, we leverage linear programming to simultaneously identify the lowest fluxes from peripheral metabolism into core metabolism compatible with the observed growth rate and extracellular metabolite exchange fluxes. Second, we use Simulated Annealing to identify an updated set of core reactions that allow for a minimum of fluxes into core metabolism to satisfy these experimental constraints. Together, these methods accelerate and automate the identification of a biologically reasonable set of core reactions for use with 13 C MFA or 2S- 13 C MFA, as well as provide for a substantially lower set of flux bounds for fluxes into the core as compared with previous methods. We provide an open source Python implementation of these algorithms at https://github.com/JBEI/limitfluxtocore.

  2. Evolution of metabolic network organization

    Directory of Open Access Journals (Sweden)

    Bonchev Danail

    2010-05-01

    Full Text Available Abstract Background Comparison of metabolic networks across species is a key to understanding how evolutionary pressures shape these networks. By selecting taxa representative of different lineages or lifestyles and using a comprehensive set of descriptors of the structure and complexity of their metabolic networks, one can highlight both qualitative and quantitative differences in the metabolic organization of species subject to distinct evolutionary paths or environmental constraints. Results We used a novel representation of metabolic networks, termed network of interacting pathways or NIP, to focus on the modular, high-level organization of the metabolic capabilities of the cell. Using machine learning techniques we identified the most relevant aspects of cellular organization that change under evolutionary pressures. We considered the transitions from prokarya to eukarya (with a focus on the transitions among the archaea, bacteria and eukarya, from unicellular to multicellular eukarya, from free living to host-associated bacteria, from anaerobic to aerobic, as well as the acquisition of cell motility or growth in an environment of various levels of salinity or temperature. Intuitively, we expect organisms with more complex lifestyles to have more complex and robust metabolic networks. Here we demonstrate for the first time that such organisms are not only characterized by larger, denser networks of metabolic pathways but also have more efficiently organized cross communications, as revealed by subtle changes in network topology. These changes are unevenly distributed among metabolic pathways, with specific categories of pathways being promoted to more central locations as an answer to environmental constraints. Conclusions Combining methods from graph theory and machine learning, we have shown here that evolutionary pressures not only affects gene and protein sequences, but also specific details of the complex wiring of functional modules

  3. Individuals with Metabolically Healthy Overweight/Obesity Have Higher Fat Utilization than Metabolically Unhealthy Individuals

    Directory of Open Access Journals (Sweden)

    Arturo Pujia

    2016-01-01

    Full Text Available The mechanisms underlying the change in phenotype from metabolically healthy to metabolically unhealthy obesity are still unclear. The aim of this study is to investigate whether a difference in fasting fat utilization exists between overweight/obese individuals with a favorable cardiovascular risk profile and those with Metabolic Syndrome and Type 2 diabetes. Furthermore, we sought to explore whether there is an association between fasting fat utilization and insulin resistance. In this cross-sectional study, 172 overweight/obese individuals underwent a nutritional assessment. Those with fasting glucose ≥126 mg/dL or antidiabetic treatment were considered to be diabetics. If at least three of the NCEP criteria were present, they had Metabolic Syndrome, while those with less criteria were considered to be healthy overweight/obese. An indirect calorimetry was performed to estimate Respiratory Quotient, an index of nutrient utilization. A lower Respiratory Quotient (i.e., higher fat utilization was found in healthy overweight/obese individuals than in those with Metabolic Syndrome and Type 2 diabetes (0.85 ± 0.05; 0.87 ± 0.06; 0.88 ± 0.05 respectively, p = 0.04. The univariate and multivariable analysis showed a positive association between the Respiratory Quotient and HOMA-IR (slope in statistic (B = 0.004; β = 0.42; p = 0.005; 95% Confidence interval = 0.001–0.006. In this study, we find, for the first time, that the fasting Respiratory Quotient is significantly lower (fat utilization is higher in individuals who are metabolically healthy overweight/obese than in those with metabolically unhealthy obesity. In addition, we demonstrated the association between fat utilization and HOMA-IR, an insulin resistance index.

  4. Association of sleep quality components and wake time with metabolic syndrome: The Qazvin Metabolic Diseases Study (QMDS), Iran.

    Science.gov (United States)

    Zohal, Mohammadali; Ghorbani, Azam; Esmailzadehha, Neda; Ziaee, Amir; Mohammadi, Zahrasadat

    2017-11-01

    The aim of this study was to determine the association of sleep quality and sleep quantity with metabolic syndrome in Qazvin, Iran. this cross sectional study was conducted in 1079 residents of Qazvin selected by multistage cluster random sampling method in 2011. Metabolic syndrome was defined according to the criteria proposed by the national cholesterol education program third Adult treatment panel. Sleep was assessed using the Pittsburgh sleep quality index (PSQI). A logistic regression analysis was used to examine the association of sleep status and metabolic syndrome. Mean age was 40.08±10.33years. Of 1079, 578 (52.2%) were female, and 30.6% had metabolic syndrome. The total global PSQI score in the subjects with metabolic syndrome was significantly higher than subjects without metabolic syndrome (6.30±3.20 vs. 5.83±2.76, P=0.013). In logistic regression analysis, sleep disturbances was associated with 1.388 fold increased risk of metabolic syndrome after adjustment for age, gender, and body mass index. Sleep disturbances component was a predictor of metabolic syndrome in the present study. More longitudinal studies are necessary to understand the association of sleep quality and its components with metabolic syndrome. Copyright © 2017 Diabetes India. Published by Elsevier Ltd. All rights reserved.

  5. The metabolic syndrome among Danish seafarers

    DEFF Research Database (Denmark)

    Jepsen, Jørgen Riis; Rasmussen, Hanna Barbara

    2016-01-01

    Background: The metabolic syndrome (MS) represents a cluster of risk factors related to insulin resistance. Metabolic syndrome is a strong risk factor for chronic metabolic and cardiovascular diseases and is related to nutritional factors, sleep patterns, work-related stress, fatigue, and physical...

  6. Targeting Lipid Metabolic Reprogramming as Anticancer Therapeutics

    OpenAIRE

    Cha, Ji-Young; Lee, Ho-Jae

    2016-01-01

    Cancer cells rewire their metabolism to satisfy the demands of growth and survival, and this metabolic reprogramming has been recognized as an emerging hallmark of cancer. Lipid metabolism is pivotal in cellular process that converts nutrients into energy, building blocks for membrane biogenesis and the generation of signaling molecules. Accumulating evidence suggests that cancer cells show alterations in different aspects of lipid metabolism. The changes in lipid metabolism of cancer cells c...

  7. Intermediary metabolism in protists: a sequence-based view of facultative anaerobic metabolism in evolutionarily diverse eukaryotes.

    Science.gov (United States)

    Ginger, Michael L; Fritz-Laylin, Lillian K; Fulton, Chandler; Cande, W Zacheus; Dawson, Scott C

    2010-12-01

    Protists account for the bulk of eukaryotic diversity. Through studies of gene and especially genome sequences the molecular basis for this diversity can be determined. Evident from genome sequencing are examples of versatile metabolism that go far beyond the canonical pathways described for eukaryotes in textbooks. In the last 2-3 years, genome sequencing and transcript profiling has unveiled several examples of heterotrophic and phototrophic protists that are unexpectedly well-equipped for ATP production using a facultative anaerobic metabolism, including some protists that can (Chlamydomonas reinhardtii) or are predicted (Naegleria gruberi, Acanthamoeba castellanii, Amoebidium parasiticum) to produce H(2) in their metabolism. It is possible that some enzymes of anaerobic metabolism were acquired and distributed among eukaryotes by lateral transfer, but it is also likely that the common ancestor of eukaryotes already had far more metabolic versatility than was widely thought a few years ago. The discussion of core energy metabolism in unicellular eukaryotes is the subject of this review. Since genomic sequencing has so far only touched the surface of protist diversity, it is anticipated that sequences of additional protists may reveal an even wider range of metabolic capabilities, while simultaneously enriching our understanding of the early evolution of eukaryotes. Copyright © 2010 Elsevier GmbH. All rights reserved.

  8. Metabolic syndrome in fixed-shift workers.

    Science.gov (United States)

    Canuto, Raquel; Pattussi, Marcos Pascoal; Macagnan, Jamile Block Araldi; Henn, Ruth Liane; Olinto, Maria Teresa Anselmo

    2015-01-01

    OBJECTIVE To analyze if metabolic syndrome and its altered components are associated with demographic, socioeconomic and behavioral factors in fixed-shift workers. METHODS A cross-sectional study was conducted on a sample of 902 shift workers of both sexes in a poultry processing plant in Southern Brazil in 2010. The diagnosis of metabolic syndrome was determined according to the recommendations from Harmonizing the Metabolic Syndrome. Its frequency was evaluated according to the demographic (sex, skin color, age and marital status), socioeconomic (educational level, income and work shift), and behavioral characteristics (smoking, alcohol intake, leisure time physical activity, number of meals and sleep duration) of the sample. The multivariate analysis followed a theoretical framework for identifying metabolic syndrome in fixed-shift workers. RESULTS The prevalence of metabolic syndrome in the sample was 9.3% (95%CI 7.4;11.2). The most frequently altered component was waist circumference (PR 48.4%; 95%CI 45.5;51.2), followed by high-density lipoprotein. Work shift was not associated with metabolic syndrome and its altered components. After adjustment, the prevalence of metabolic syndrome was positively associated with women (PR 2.16; 95%CI 1.28;3.64), workers aged over 40 years (PR 3.90; 95%CI 1.78;8.93) and those who reported sleeping five hours or less per day (PR 1.70; 95%CI 1.09;2.24). On the other hand, metabolic syndrome was inversely associated with educational level and having more than three meals per day (PR 0.43; 95%CI 0.26;0.73). CONCLUSIONS Being female, older and deprived of sleep are probable risk factors for metabolic syndrome, whereas higher educational level and higher number of meals per day are protective factors for metabolic syndrome in fixed-shift workers.

  9. Metabolic syndrome in fixed-shift workers

    Directory of Open Access Journals (Sweden)

    Raquel Canuto

    2015-01-01

    Full Text Available OBJECTIVE To analyze if metabolic syndrome and its altered components are associated with demographic, socioeconomic and behavioral factors in fixed-shift workers. METHODS A cross-sectional study was conducted on a sample of 902 shift workers of both sexes in a poultry processing plant in Southern Brazil in 2010. The diagnosis of metabolic syndrome was determined according to the recommendations from Harmonizing the Metabolic Syndrome. Its frequency was evaluated according to the demographic (sex, skin color, age and marital status, socioeconomic (educational level, income and work shift, and behavioral characteristics (smoking, alcohol intake, leisure time physical activity, number of meals and sleep duration of the sample. The multivariate analysis followed a theoretical framework for identifying metabolic syndrome in fixed-shift workers. RESULTS The prevalence of metabolic syndrome in the sample was 9.3% (95%CI 7.4;11.2. The most frequently altered component was waist circumference (PR 48.4%; 95%CI 45.5;51.2, followed by high-density lipoprotein. Work shift was not associated with metabolic syndrome and its altered components. After adjustment, the prevalence of metabolic syndrome was positively associated with women (PR 2.16; 95%CI 1.28;3.64, workers aged over 40 years (PR 3.90; 95%CI 1.78;8.93 and those who reported sleeping five hours or less per day (PR 1.70; 95%CI 1.09;2.24. On the other hand, metabolic syndrome was inversely associated with educational level and having more than three meals per day (PR 0.43; 95%CI 0.26;0.73. CONCLUSIONS Being female, older and deprived of sleep are probable risk factors for metabolic syndrome, whereas higher educational level and higher number of meals per day are protective factors for metabolic syndrome in fixed-shift workers.

  10. A metabolic switch in brain: glucose and lactate metabolism modulation by ascorbic acid.

    Science.gov (United States)

    Castro, Maite A; Beltrán, Felipe A; Brauchi, Sebastián; Concha, Ilona I

    2009-07-01

    In this review, we discuss a novel function of ascorbic acid in brain energetics. It has been proposed that during glutamatergic synaptic activity neurons preferably consume lactate released from glia. The key to this energetic coupling is the metabolic activation that occurs in astrocytes by glutamate and an increase in extracellular [K(+)]. Neurons are cells well equipped to consume glucose because they express glucose transporters and glycolytic and tricarboxylic acid cycle enzymes. Moreover, neuronal cells express monocarboxylate transporters and lactate dehydrogenase isoenzyme 1, which is inhibited by pyruvate. As glycolysis produces an increase in pyruvate concentration and a decrease in NAD(+)/NADH, lactate and glucose consumption are not viable at the same time. In this context, we discuss ascorbic acid participation as a metabolic switch modulating neuronal metabolism between rest and activation periods. Ascorbic acid is highly concentrated in CNS. Glutamate stimulates ascorbic acid release from astrocytes. Ascorbic acid entry into neurons and within the cell can inhibit glucose consumption and stimulate lactate transport. For this switch to occur, an ascorbic acid flow is necessary between astrocytes and neurons, which is driven by neural activity and is part of vitamin C recycling. Here, we review the role of glucose and lactate as metabolic substrates and the modulation of neuronal metabolism by ascorbic acid.

  11. Intestinal metabolism of sulfur amino acids

    Science.gov (United States)

    The gastrointestinal tract (GIT) is a metabolically significant site of sulfur amino acid (SAA) metabolism in the body and metabolizes approx. 20% of the dietary methionine intake that is mainly transmethylated to homocysteine and transsulfurated to cysteine. The GIT accounts for approx. 25% of the ...

  12. Metabolic changes in malnutrition.

    Science.gov (United States)

    Emery, P W

    2005-10-01

    This paper is concerned with malnutrition caused by inadequate intake of all the major nutrients rather than deficiency diseases relating to a single micronutrient. Three common situations are recognised: young children in third world countries with protein-energy malnutrition; adults in the same countries who are chronically adapted to subsisting on marginally inadequate diets; and patients who become malnourished as a result of chronic diseases. In all these situations infectious diseases are often also present, and this complicates the interpretation of biochemical and physiological observations. The metabolic response to starvation is primarily concerned with maintaining a supply of water-soluble substrates to supply energy to the brain. Thus there is an initial rise in metabolic rate, reflecting gluconeogenic activity. As fasting progresses, gluconeogenesis is suppressed to minimise muscle protein breakdown and ketones become the main fuel for the brain. With chronic underfeeding the basal metabolic rate per cell appears to fall, but the mechanistic basis for this is not clear. The main adaptation to chronic energy deficiency is slow growth and low adult body size, although the reduction in energy requirement achieved by this is partially offset by the preservation of the more metabolically active organs at the expense of muscle, which has a lower metabolic rate. The interaction between malnutrition and the metabolic response to trauma has been studied using an animal model. The rise in energy expenditure and urinary nitrogen excretion following surgery were significantly attenuated in malnourished rats, suggesting that malnutrition impairs the ability of the body to mobilise substrates to support inflammatory and reparative processes. However, the healing process in wounded muscle remained unimpaired in malnutrition, suggesting that this process has a high biological priority.

  13. Scaling of Metabolic Scaling within Physical Limits

    Directory of Open Access Journals (Sweden)

    Douglas S. Glazier

    2014-10-01

    Full Text Available Both the slope and elevation of scaling relationships between log metabolic rate and log body size vary taxonomically and in relation to physiological or developmental state, ecological lifestyle and environmental conditions. Here I discuss how the recently proposed metabolic-level boundaries hypothesis (MLBH provides a useful conceptual framework for explaining and predicting much, but not all of this variation. This hypothesis is based on three major assumptions: (1 various processes related to body volume and surface area exert state-dependent effects on the scaling slope for metabolic rate in relation to body mass; (2 the elevation and slope of metabolic scaling relationships are linked; and (3 both intrinsic (anatomical, biochemical and physiological and extrinsic (ecological factors can affect metabolic scaling. According to the MLBH, the diversity of metabolic scaling relationships occurs within physical boundary limits related to body volume and surface area. Within these limits, specific metabolic scaling slopes can be predicted from the metabolic level (or scaling elevation of a species or group of species. In essence, metabolic scaling itself scales with metabolic level, which is in turn contingent on various intrinsic and extrinsic conditions operating in physiological or evolutionary time. The MLBH represents a “meta-mechanism” or collection of multiple, specific mechanisms that have contingent, state-dependent effects. As such, the MLBH is Darwinian in approach (the theory of natural selection is also meta-mechanistic, in contrast to currently influential metabolic scaling theory that is Newtonian in approach (i.e., based on unitary deterministic laws. Furthermore, the MLBH can be viewed as part of a more general theory that includes other mechanisms that may also affect metabolic scaling.

  14. Hearing Loss, Dizziness, and Carbohydrate Metabolism.

    Science.gov (United States)

    Albernaz, Pedro L Mangabeira

    2016-07-01

    Metabolic activity of the inner ear is very intense, and makes it sensitive to changes in the body homeostasis. This study involves a group of patients with inner ear disorders related to carbohydrate metabolism disturbances, including hearing loss, tinnitus, dizziness, and episodes of vertigo. To describe the symptoms of metabolic inner ear disorders and the examinations required to establish diagnoses. These symptoms are often the first to allow for an early diagnosis of metabolic disorders and diabetes. Retrospective study of 376 patients with inner ear symptoms suggestive of disturbances of carbohydrate metabolism. The authors present patientś clinical symptoms and clinical evaluations, with emphasis on the glucose and insulin essays. Authors based their conclusions on otolaryngological findings, diagnostic procedures and treatment principles. They found that auditory and vestibular symptoms usually occur prior to other manifestations of metabolic changes, leading to an early diagnosis of hyperinsulinemia, intestinal sugar malabsorption or diabetes. Previously undiagnosed diabetes mellitus type II was found in 39 patients. The identification of carbohydrate metabolism disturbances is important not only to minimize the patients' clinical symptoms, but also to help maintain their general health.

  15. Hearing Loss, Dizziness, and Carbohydrate Metabolism

    Directory of Open Access Journals (Sweden)

    Albernaz, Pedro L. Mangabeira

    2015-07-01

    Full Text Available Introduction Metabolic activity of the inner ear is very intense, and makes it sensitive to changes in the body homeostasis. This study involves a group of patients with inner ear disorders related to carbohydrate metabolism disturbances, including hearing loss, tinnitus, dizziness, and episodes of vertigo. Objectives To describe the symptoms of metabolic inner ear disorders and the examinations required to establish diagnoses. These symptoms are often the first to allow for an early diagnosis of metabolic disorders and diabetes. Methods Retrospective study of 376 patients with inner ear symptoms suggestive of disturbances of carbohydrate metabolism. The authors present patientś clinical symptoms and clinical evaluations, with emphasis on the glucose and insulin essays. Results Authors based their conclusions on otolaryngological findings, diagnostic procedures and treatment principles. They found that auditory and vestibular symptoms usually occur prior to other manifestations of metabolic changes, leading to an early diagnosis of hyperinsulinemia, intestinal sugar malabsorption or diabetes. Previously undiagnosed diabetes mellitus type II was found in 39 patients. Conclusions The identification of carbohydrate metabolism disturbances is important not only to minimize the patients' clinical symptoms, but also to help maintain their general health.

  16. Coordinated balancing of muscle oxidative metabolism through PGC-1{alpha} increases metabolic flexibility and preserves insulin sensitivity

    Energy Technology Data Exchange (ETDEWEB)

    Summermatter, Serge [Biozentrum, Division of Pharmacology/Neurobiology, University of Basel, Klingelbergstrasse 50-70, CH-4056 Basel (Switzerland); Troxler, Heinz [Division of Clinical Chemistry and Biochemistry, Department of Pediatrics, University Children' s Hospital, University of Zurich, Steinwiesstrasse 75, CH-8032 Zurich (Switzerland); Santos, Gesa [Biozentrum, Division of Pharmacology/Neurobiology, University of Basel, Klingelbergstrasse 50-70, CH-4056 Basel (Switzerland); Handschin, Christoph, E-mail: christoph.handschin@unibas.ch [Biozentrum, Division of Pharmacology/Neurobiology, University of Basel, Klingelbergstrasse 50-70, CH-4056 Basel (Switzerland)

    2011-04-29

    Highlights: {yields} PGC-1{alpha} enhances muscle oxidative capacity. {yields} PGC-1{alpha} promotes concomitantly positive and negative regulators of lipid oxidation. {yields} Regulator abundance enhances metabolic flexibility and balances oxidative metabolism. {yields} Balanced oxidation prevents detrimental acylcarnitine and ROS generation. {yields} Absence of detrimental metabolites preserves insulin sensitivity -- Abstract: The peroxisome proliferator-activated receptor {gamma} coactivator 1{alpha} (PGC-1{alpha}) enhances oxidative metabolism in skeletal muscle. Excessive lipid oxidation and electron transport chain activity can, however, lead to the accumulation of harmful metabolites and impair glucose homeostasis. Here, we investigated the effect of over-expression of PGC-1{alpha} on metabolic control and generation of insulin desensitizing agents in extensor digitorum longus (EDL), a muscle that exhibits low levels of PGC-1{alpha} in the untrained state and minimally relies on oxidative metabolism. We demonstrate that PGC-1{alpha} induces a strictly balanced substrate oxidation in EDL by concomitantly promoting the transcription of activators and inhibitors of lipid oxidation. Moreover, we show that PGC-1{alpha} enhances the potential to uncouple oxidative phosphorylation. Thereby, PGC-1{alpha} boosts elevated, yet tightly regulated oxidative metabolism devoid of side products that are detrimental for glucose homeostasis. Accordingly, PI3K activity, an early phase marker for insulin resistance, is preserved in EDL muscle. Our findings suggest that PGC-1{alpha} coordinately coactivates the simultaneous transcription of gene clusters implicated in the positive and negative regulation of oxidative metabolism and thereby increases metabolic flexibility. Thus, in mice fed a normal chow diet, over-expression of PGC-1{alpha} does not alter insulin sensitivity and the metabolic adaptations elicited by PGC-1{alpha} mimic the beneficial effects of endurance training

  17. Coordinated balancing of muscle oxidative metabolism through PGC-1α increases metabolic flexibility and preserves insulin sensitivity

    International Nuclear Information System (INIS)

    Summermatter, Serge; Troxler, Heinz; Santos, Gesa; Handschin, Christoph

    2011-01-01

    Highlights: → PGC-1α enhances muscle oxidative capacity. → PGC-1α promotes concomitantly positive and negative regulators of lipid oxidation. → Regulator abundance enhances metabolic flexibility and balances oxidative metabolism. → Balanced oxidation prevents detrimental acylcarnitine and ROS generation. → Absence of detrimental metabolites preserves insulin sensitivity -- Abstract: The peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) enhances oxidative metabolism in skeletal muscle. Excessive lipid oxidation and electron transport chain activity can, however, lead to the accumulation of harmful metabolites and impair glucose homeostasis. Here, we investigated the effect of over-expression of PGC-1α on metabolic control and generation of insulin desensitizing agents in extensor digitorum longus (EDL), a muscle that exhibits low levels of PGC-1α in the untrained state and minimally relies on oxidative metabolism. We demonstrate that PGC-1α induces a strictly balanced substrate oxidation in EDL by concomitantly promoting the transcription of activators and inhibitors of lipid oxidation. Moreover, we show that PGC-1α enhances the potential to uncouple oxidative phosphorylation. Thereby, PGC-1α boosts elevated, yet tightly regulated oxidative metabolism devoid of side products that are detrimental for glucose homeostasis. Accordingly, PI3K activity, an early phase marker for insulin resistance, is preserved in EDL muscle. Our findings suggest that PGC-1α coordinately coactivates the simultaneous transcription of gene clusters implicated in the positive and negative regulation of oxidative metabolism and thereby increases metabolic flexibility. Thus, in mice fed a normal chow diet, over-expression of PGC-1α does not alter insulin sensitivity and the metabolic adaptations elicited by PGC-1α mimic the beneficial effects of endurance training on muscle metabolism in this context.

  18. Making metabolism accessible and meaningful: is the definition of a central metabolic dogma within reach?

    Science.gov (United States)

    LaRossa, Robert A

    2015-04-01

    Intermediary metabolism, a dominant research area before the emergence of molecular biology, is attracting renewed interest for fundamental and applied reasons as documented here. Nonetheless, the field may appear to be a thicket precluding entry to all but the most determined. Here we present a metabolic overview that makes this important and fascinating area accessible to a broad range of the molecular biological and biotechnological communities that are being attracted to biological problems crying out for metabolic solutions. This is accomplished by identifying seven key concepts, a so-called metabolic central dogma, that provide a core understanding analogous to the "Central Dogma of Molecular Biology" which focused upon maintenance and flow of genetic information.

  19. Metabolic Syndrome and Breast Cancer Risk.

    Science.gov (United States)

    Wani, Burhan; Aziz, Shiekh Aejaz; Ganaie, Mohammad Ashraf; Mir, Mohammad Hussain

    2017-01-01

    The study was meant to estimate the prevalence of metabolic syndrome in patients with breast cancer and to establish its role as an independent risk factor on occurrence of breast cancer. Fifty women aged between 40 and 80 years with breast cancer and fifty controls of similar age were assessed for metabolic syndrome prevalence and breast cancer risk factors, including age at menarche, reproductive status, live births, breastfeeding, and family history of breast cancer, age at diagnosis of breast cancer, body mass index, and metabolic syndrome parameters. Metabolic syndrome prevalence was found in 40.0% of breast cancer patients, and 18.0% of those in control group ( P = 0.02). An independent and positive association was seen between metabolic syndrome and breast cancer risk (odds ratio = 3.037; 95% confidence interval 1.214-7.597). Metabolic syndrome is more prevalent in breast cancer patients and is an independent risk factor for breast cancer.

  20. Construction of a Genome-Scale Metabolic Model of Arthrospira platensis NIES-39 and Metabolic Design for Cyanobacterial Bioproduction.

    Directory of Open Access Journals (Sweden)

    Katsunori Yoshikawa

    Full Text Available Arthrospira (Spirulina platensis is a promising feedstock and host strain for bioproduction because of its high accumulation of glycogen and superior characteristics for industrial production. Metabolic simulation using a genome-scale metabolic model and flux balance analysis is a powerful method that can be used to design metabolic engineering strategies for the improvement of target molecule production. In this study, we constructed a genome-scale metabolic model of A. platensis NIES-39 including 746 metabolic reactions and 673 metabolites, and developed novel strategies to improve the production of valuable metabolites, such as glycogen and ethanol. The simulation results obtained using the metabolic model showed high consistency with experimental results for growth rates under several trophic conditions and growth capabilities on various organic substrates. The metabolic model was further applied to design a metabolic network to improve the autotrophic production of glycogen and ethanol. Decreased flux of reactions related to the TCA cycle and phosphoenolpyruvate reaction were found to improve glycogen production. Furthermore, in silico knockout simulation indicated that deletion of genes related to the respiratory chain, such as NAD(PH dehydrogenase and cytochrome-c oxidase, could enhance ethanol production by using ammonium as a nitrogen source.

  1. From 20th century metabolic wall charts to 21st century systems biology: database of mammalian metabolic enzymes.

    Science.gov (United States)

    Corcoran, Callan C; Grady, Cameron R; Pisitkun, Trairak; Parulekar, Jaya; Knepper, Mark A

    2017-03-01

    The organization of the mammalian genome into gene subsets corresponding to specific functional classes has provided key tools for systems biology research. Here, we have created a web-accessible resource called the Mammalian Metabolic Enzyme Database ( https://hpcwebapps.cit.nih.gov/ESBL/Database/MetabolicEnzymes/MetabolicEnzymeDatabase.html) keyed to the biochemical reactions represented on iconic metabolic pathway wall charts created in the previous century. Overall, we have mapped 1,647 genes to these pathways, representing ~7 percent of the protein-coding genome. To illustrate the use of the database, we apply it to the area of kidney physiology. In so doing, we have created an additional database ( Database of Metabolic Enzymes in Kidney Tubule Segments: https://hpcwebapps.cit.nih.gov/ESBL/Database/MetabolicEnzymes/), mapping mRNA abundance measurements (mined from RNA-Seq studies) for all metabolic enzymes to each of 14 renal tubule segments. We carry out bioinformatics analysis of the enzyme expression pattern among renal tubule segments and mine various data sources to identify vasopressin-regulated metabolic enzymes in the renal collecting duct. Copyright © 2017 the American Physiological Society.

  2. Integration of Genome Scale Metabolic Networks and Gene Regulation of Metabolic Enzymes With Physiologically Based Pharmacokinetics.

    Science.gov (United States)

    Maldonado, Elaina M; Leoncikas, Vytautas; Fisher, Ciarán P; Moore, J Bernadette; Plant, Nick J; Kierzek, Andrzej M

    2017-11-01

    The scope of physiologically based pharmacokinetic (PBPK) modeling can be expanded by assimilation of the mechanistic models of intracellular processes from systems biology field. The genome scale metabolic networks (GSMNs) represent a whole set of metabolic enzymes expressed in human tissues. Dynamic models of the gene regulation of key drug metabolism enzymes are available. Here, we introduce GSMNs and review ongoing work on integration of PBPK, GSMNs, and metabolic gene regulation. We demonstrate example models. © 2017 The Authors CPT: Pharmacometrics & Systems Pharmacology published by Wiley Periodicals, Inc. on behalf of American Society for Clinical Pharmacology and Therapeutics.

  3. Cancer metabolism meets systems biology: Pyruvate kinase isoform PKM2 is a metabolic master regulator

    OpenAIRE

    Fabian V Filipp

    2013-01-01

    Pyruvate kinase activity is controlled by a tightly woven regulatory network. The oncofetal isoform of pyruvate kinase (PKM2) is a master regulator of cancer metabolism. PKM2 engages in parallel, feed-forward, positive and negative feedback control contributing to cancer progression. Besides its metabolic role, non-metabolic functions of PKM2 as protein kinase and transcriptional coactivator for c-MYC and hypoxia-inducible factor 1-alpha are essential for epidermal growth factor receptor acti...

  4. Metabolism of femoxetine

    International Nuclear Information System (INIS)

    Larsson, H.; Lund, J.

    1981-01-01

    The metabolism of femoxetine, a serotonin uptake inhibitor, has been investigated in rats, dogs, monkeys, and human subjects using two 14 C-femoxetine compounds with labelling in different positions. The metabolic pathways were oxidations (and glucuronidation) and demethylation, both reactions most probably taking place in the liver. Nearly all femoxetine was metabolised, and the same metabolites were found in urine from all four species. Only a small percentage of the radioactivity excreted in the urine was not identified. Rat and dog excreted more N-oxide than monkey and man, while most of the radioactivity (60-100%) in these two species was excreted as two hydroxy metabolites. The metabolic pattern in monkey and man was very similar. About 50% was excreted in these two species as one metabolite, formed by demethylation of a methoxy group. A demethylation of a N-CH 3 group formed an active metabolite, norfemoxetine. The excretion of this metabolite in urine from man varied from 0 to 18% of the dose between individuals. Most of the radioactivity was excreted with the faeces in rat and dog, while monkey and man excreted most of the radioactivity in urine. This difference in excretion route might be explained by the difference in the metabolic pattern. No dose dependency was observed in any of the three animal species investigated. (author)

  5. Human drug metabolism: an introduction

    National Research Council Canada - National Science Library

    Coleman, Michael D

    2010-01-01

    ... metabolism and its impact on patient welfare. After underlining the relationship between efficacy, toxicity and drug concentration, the book then considers how metabolizing systems operate and how they impact upon drug concentration...

  6. Epilepsy and astrocyte energy metabolism.

    Science.gov (United States)

    Boison, Detlev; Steinhäuser, Christian

    2018-06-01

    Epilepsy is a complex neurological syndrome characterized by neuronal hyperexcitability and sudden, synchronized electrical discharges that can manifest as seizures. It is now increasingly recognized that impaired astrocyte function and energy homeostasis play key roles in the pathogenesis of epilepsy. Excessive neuronal discharges can only happen, if adequate energy sources are made available to neurons. Conversely, energy depletion during seizures is an endogenous mechanism of seizure termination. Astrocytes control neuronal energy homeostasis through neurometabolic coupling. In this review, we will discuss how astrocyte dysfunction in epilepsy leads to distortion of key metabolic and biochemical mechanisms. Dysfunctional glutamate metabolism in astrocytes can directly contribute to neuronal hyperexcitability. Closure of astrocyte intercellular gap junction coupling as observed early during epileptogenesis limits activity-dependent trafficking of energy metabolites, but also impairs clearance of the extracellular space from accumulation of K + and glutamate. Dysfunctional astrocytes also increase the metabolism of adenosine, a metabolic product of ATP degradation that broadly inhibits energy-consuming processes as an evolutionary adaptation to conserve energy. Due to the critical role of astroglial energy homeostasis in the control of neuronal excitability, metabolic therapeutic approaches that prevent the utilization of glucose might represent a potent antiepileptic strategy. In particular, high fat low carbohydrate "ketogenic diets" as well as inhibitors of glycolysis and lactate metabolism are of growing interest for the therapy of epilepsy. © 2017 Wiley Periodicals, Inc.

  7. Modelling central metabolic fluxes by constraint-based optimization reveals metabolic reprogramming of developing Solanum lycopersicum (tomato) fruit.

    Science.gov (United States)

    Colombié, Sophie; Nazaret, Christine; Bénard, Camille; Biais, Benoît; Mengin, Virginie; Solé, Marion; Fouillen, Laëtitia; Dieuaide-Noubhani, Martine; Mazat, Jean-Pierre; Beauvoit, Bertrand; Gibon, Yves

    2015-01-01

    Modelling of metabolic networks is a powerful tool to analyse the behaviour of developing plant organs, including fruits. Guided by our current understanding of heterotrophic metabolism of plant cells, a medium-scale stoichiometric model, including the balance of co-factors and energy, was constructed in order to describe metabolic shifts that occur through the nine sequential stages of Solanum lycopersicum (tomato) fruit development. The measured concentrations of the main biomass components and the accumulated metabolites in the pericarp, determined at each stage, were fitted in order to calculate, by derivation, the corresponding external fluxes. They were used as constraints to solve the model by minimizing the internal fluxes. The distribution of the calculated fluxes of central metabolism were then analysed and compared with known metabolic behaviours. For instance, the partition of the main metabolic pathways (glycolysis, pentose phosphate pathway, etc.) was relevant throughout fruit development. We also predicted a valid import of carbon and nitrogen by the fruit, as well as a consistent CO2 release. Interestingly, the energetic balance indicates that excess ATP is dissipated just before the onset of ripening, supporting the concept of the climacteric crisis. Finally, the apparent contradiction between calculated fluxes with low values compared with measured enzyme capacities suggest a complex reprogramming of the metabolic machinery during fruit development. With a powerful set of experimental data and an accurate definition of the metabolic system, this work provides important insight into the metabolic and physiological requirements of the developing tomato fruits. © 2014 The Authors The Plant Journal published by Society for Experimental Biology and John Wiley & Sons Ltd.

  8. A diagnostic algorithm for metabolic myopathies.

    Science.gov (United States)

    Berardo, Andres; DiMauro, Salvatore; Hirano, Michio

    2010-03-01

    Metabolic myopathies comprise a clinically and etiologically diverse group of disorders caused by defects in cellular energy metabolism, including the breakdown of carbohydrates and fatty acids to generate adenosine triphosphate, predominantly through mitochondrial oxidative phosphorylation. Accordingly, the three main categories of metabolic myopathies are glycogen storage diseases, fatty acid oxidation defects, and mitochondrial disorders due to respiratory chain impairment. The wide clinical spectrum of metabolic myopathies ranges from severe infantile-onset multisystemic diseases to adult-onset isolated myopathies with exertional cramps. Diagnosing these diverse disorders often is challenging because clinical features such as recurrent myoglobinuria and exercise intolerance are common to all three types of metabolic myopathy. Nevertheless, distinct clinical manifestations are important to recognize as they can guide diagnostic testing and lead to the correct diagnosis. This article briefly reviews general clinical aspects of metabolic myopathies and highlights approaches to diagnosing the relatively more frequent subtypes (Fig. 1). Fig. 1 Clinical algorithm for patients with exercise intolerance in whom a metabolic myopathy is suspected. CK-creatine kinase; COX-cytochrome c oxidase; CPT-carnitine palmitoyl transferase; cyt b-cytochrome b; mtDNA-mitochondrial DNA; nDNA-nuclear DNA; PFK-phosphofructokinase; PGAM-phosphoglycerate mutase; PGK-phosphoglycerate kinase; PPL-myophosphorylase; RRF-ragged red fibers; TFP-trifunctional protein deficiency; VLCAD-very long-chain acyl-coenzyme A dehydrogenase.

  9. Prokaryote metabolism activity

    OpenAIRE

    Biederman, Lori

    2017-01-01

    I wrote this activity to emphasize that prokaryotic organisms can carry out 6 different types of metabolisms (as presented in Freeman’s Biological Science textbook) and this contrasts to eukaryotes, which can only use 2 metabolism pathways (photoautotroph and heterotroph).    For in class materials I remove the  red box (upper right corner) and print slides 3-10, place them back-to-back and laminate them.  The students get a key (slide 2) and a two-sided organism sheet...

  10. Dietary patterns in men and women are simultaneously determinants of altered glucose metabolism and bone metabolism.

    Science.gov (United States)

    Langsetmo, Lisa; Barr, Susan I; Dasgupta, Kaberi; Berger, Claudie; Kovacs, Christopher S; Josse, Robert G; Adachi, Jonathan D; Hanley, David A; Prior, Jerilynn C; Brown, Jacques P; Morin, Suzanne N; Davison, Kenneth S; Goltzman, David; Kreiger, Nancy

    2016-04-01

    We hypothesized that diet would have direct effects on glucose metabolism with direct and indirect effects on bone metabolism in a cohort of Canadian adults. We assessed dietary patterns (Prudent [fruit, vegetables, whole grains, fish, and legumes] and Western [soft drinks, potato chips, French fries, meats, and desserts]) from a semiquantitative food frequency questionnaire. We used fasting blood samples to measure glucose, insulin, homeostatic model assessment insulin resistance (HOMA-IR), 25-hydroxyvitamin D (25OHD), parathyroid hormone, bone-specific alkaline phosphatase (a bone formation marker), and serum C-terminal telopeptide (CTX; a bone resorption marker). We used multivariate regression models adjusted for confounders and including/excluding body mass index. In a secondary analysis, we examined relationships through structural equations models. The Prudent diet was associated with favorable effects on glucose metabolism (lower insulin and HOMA-IR) and bone metabolism (lower CTX in women; higher 25OHD and lower parathyroid hormone in men). The Western diet was associated with deleterious effects on glucose metabolism (higher glucose, insulin, and HOMA-IR) and bone metabolism (higher bone-specific alkaline phosphatase and lower 25OHD in women; higher CTX in men). Body mass index adjustment moved point estimates toward the null, indicating partial mediation. The structural equation model confirmed the hypothesized linkage with strong effects of Prudent and Western diet on metabolic risk, and both direct and indirect effects of a Prudent diet on bone turnover. In summary, a Prudent diet was associated with lower metabolic risk with both primary and mediated effects on bone turnover, suggesting that it is a potential target for reducing fracture risk. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Mathematical modeling of cancer metabolism.

    Science.gov (United States)

    Medina, Miguel Ángel

    2018-04-01

    Systemic approaches are needed and useful for the study of the very complex issue of cancer. Modeling has a central position in these systemic approaches. Metabolic reprogramming is nowadays acknowledged as an essential hallmark of cancer. Mathematical modeling could contribute to a better understanding of cancer metabolic reprogramming and to identify new potential ways of therapeutic intervention. Herein, I review several alternative approaches to metabolic modeling and their current and future impact in oncology. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Can you boost your metabolism?

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/patientinstructions/000893.htm Can you boost your metabolism? To use the sharing ... boosting metabolism than tactics that work. Some myths can backfire. If you think you are burning more ...

  13. Cardiorenal metabolic syndrome in the African diaspora: rationale for including chronic kidney disease in the metabolic syndrome definition.

    Science.gov (United States)

    Lea, Janice P; Greene, Eddie L; Nicholas, Susanne B; Agodoa, Lawrence; Norris, Keith C

    2009-01-01

    Chronic kidney disease (CKD) is more likely to progress to end-stage renal disease (ESRD) in African Americans while the reasons for this are unclear. The metabolic syndrome is a risk factor for the development of diabetes, cardiovascular disease, and has been recently linked to incident CKD. Historically, fewer African Americans meet criteria for the definition of metabolic syndrome, despite having higher rates of cardiovascular mortality than Caucasians. The presence of microalbuminuria portends increased cardiovascular risks and has been shown to cluster with the metabolic syndrome. We recently reported that proteinuria is a predictor of CKD progression in African American hypertensives with metabolic syndrome. In this review we explore the potential value of including CKD markers--microalbuminuria/proteinuria or low glomerular filtration rate (GFR)-in refining the cluster of factors defined as metabolic syndrome, ie, "cardiorenal metabolic syndrome."

  14. Metabolic Resistance in Bed Bugs

    Directory of Open Access Journals (Sweden)

    Omprakash Mittapalli

    2011-03-01

    Full Text Available Blood-feeding insects have evolved resistance to various insecticides (organochlorines, pyrethroids, carbamates, etc. through gene mutations and increased metabolism. Bed bugs (Cimex lectularius are hematophagous ectoparasites that are poised to become one of the major pests in households throughout the United States. Currently, C. lectularius has attained a high global impact status due to its sudden and rampant resurgence. Resistance to pesticides is one factor implicated in this phenomenon. Although much emphasis has been placed on target sensitivity, little to no knowledge is available on the role of key metabolic players (e.g., cytochrome P450s and glutathione S-transferases towards pesticide resistance in C. lectularius. In this review, we discuss different modes of resistance (target sensitivity, penetration resistance, behavioral resistance, and metabolic resistance with more emphasis on metabolic resistance.

  15. Role of metabolic overload and metabolic inflammation in the development of Nonalcoholic Steatohepatitis (NASH)

    NARCIS (Netherlands)

    Liang, W.

    2015-01-01

    Overload of nutrients can lead to diet-induced inflammation, also called metabolic inflammation, which is thought to play an important role in many metabolic diseases, including the development of nonalcoholic fatty liver disease (NAFLD). NAFLD encompasses a spectrum of pathologies that range from

  16. Design and Performance of a Xenobiotic Metabolism Database Manager for Building Metabolic Pathway Databases

    Science.gov (United States)

    A major challenge for scientists and regulators is accounting for the metabolic activation of chemicals that may lead to increased toxicity. Reliable forecasting of chemical metabolism is a critical factor in estimating a chemical’s toxic potential. Research is underway to develo...

  17. Constraining genome-scale models to represent the bow tie structure of metabolism for 13C metabolic flux analysis

    DEFF Research Database (Denmark)

    Backman, Tyler W.H.; Ando, David; Singh, Jahnavi

    2018-01-01

    for a minimum of fluxes into core metabolism to satisfy these experimental constraints. Together, these methods accelerate and automate the identification of a biologically reasonable set of core reactions for use with 13C MFA or 2S- 13C MFA, as well as provide for a substantially lower set of flux bounds......Determination of internal metabolic fluxes is crucial for fundamental and applied biology because they map how carbon and electrons flow through metabolism to enable cell function. 13C Metabolic Flux Analysis (13C MFA) and Two-Scale 13C Metabolic Flux Analysis (2S-13C MFA) are two techniques used...

  18. Metabolic engineering tools in model cyanobacteria.

    Science.gov (United States)

    Carroll, Austin L; Case, Anna E; Zhang, Angela; Atsumi, Shota

    2018-03-26

    Developing sustainable routes for producing chemicals and fuels is one of the most important challenges in metabolic engineering. Photoautotrophic hosts are particularly attractive because of their potential to utilize light as an energy source and CO 2 as a carbon substrate through photosynthesis. Cyanobacteria are unicellular organisms capable of photosynthesis and CO 2 fixation. While engineering in heterotrophs, such as Escherichia coli, has result in a plethora of tools for strain development and hosts capable of producing valuable chemicals efficiently, these techniques are not always directly transferable to cyanobacteria. However, recent efforts have led to an increase in the scope and scale of chemicals that cyanobacteria can produce. Adaptations of important metabolic engineering tools have also been optimized to function in photoautotrophic hosts, which include Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-Cas9, 13 C Metabolic Flux Analysis (MFA), and Genome-Scale Modeling (GSM). This review explores innovations in cyanobacterial metabolic engineering, and highlights how photoautotrophic metabolism has shaped their development. Copyright © 2018 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  19. A workflow for mathematical modeling of subcellular metabolic pathways in leaf metabolism of Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Thomas eNägele

    2013-12-01

    Full Text Available During the last decade genome sequencing has experienced a rapid technological development resulting in numerous sequencing projects and applications in life science. In plant molecular biology, the availability of sequence data on whole genomes has enabled the reconstruction of metabolic networks. Enzymatic reactions are predicted by the sequence information. Pathways arise due to the participation of chemical compounds as substrates and products in these reactions. Although several of these comprehensive networks have been reconstructed for the genetic model plant Arabidopsis thaliana, the integration of experimental data is still challenging. Particularly the analysis of subcellular organization of plant cells limits the understanding of regulatory instances in these metabolic networks in vivo. In this study, we develop an approach for the functional integration of experimental high-throughput data into such large-scale networks. We present a subcellular metabolic network model comprising 524 metabolic intermediates and 548 metabolic interactions derived from a total of 2769 reactions. We demonstrate how to link the metabolite covariance matrix of different Arabidopsis thaliana accessions with the subcellular metabolic network model for the inverse calculation of the biochemical Jacobian, finally resulting in the calculation of a matrix which satisfies a Lyaponov equation involving a covariance matrix. In this way, differential strategies of metabolite compartmentation and involved reactions were identified in the accessions when exposed to low temperature.

  20. Metabolic and inflammatory profiles of biomarkers in obesity, metabolic syndrome, and diabetes in a Mediterranean population. DARIOS Inflammatory study.

    Science.gov (United States)

    Fernández-Bergés, Daniel; Consuegra-Sánchez, Luciano; Peñafiel, Judith; Cabrera de León, Antonio; Vila, Joan; Félix-Redondo, Francisco Javier; Segura-Fragoso, Antonio; Lapetra, José; Guembe, María Jesús; Vega, Tomás; Fitó, Montse; Elosua, Roberto; Díaz, Oscar; Marrugat, Jaume

    2014-08-01

    There is a paucity of data regarding the differences in the biomarker profiles of patients with obesity, metabolic syndrome, and diabetes mellitus as compared to a healthy, normal weight population. We aimed to study the biomarker profile of the metabolic risk continuum defined by the transition from normal weight to obesity, metabolic syndrome, and diabetes mellitus. We performed a pooled analysis of data from 7 cross-sectional Spanish population-based surveys. An extensive panel comprising 20 biomarkers related to carbohydrate metabolism, lipids, inflammation, coagulation, oxidation, hemodynamics, and myocardial damage was analyzed. We employed age- and sex-adjusted multinomial logistic regression models for the identification of those biomarkers associated with the metabolic risk continuum phenotypes: obesity, metabolic syndrome, and diabetes mellitus. A total of 2851 subjects were included for analyses. The mean age was 57.4 (8.8) years, 1269 were men (44.5%), and 464 participants were obese, 443 had metabolic syndrome, 473 had diabetes mellitus, and 1471 had a normal weight (healthy individuals). High-sensitivity C-reactive protein, apolipoprotein B100, leptin, and insulin were positively associated with at least one of the phenotypes of interest. Apolipoprotein A1 and adiponectin were negatively associated. There are differences between the population with normal weight and that having metabolic syndrome or diabetes with respect to certain biomarkers related to the metabolic, inflammatory, and lipid profiles. The results of this study support the relevance of these mechanisms in the metabolic risk continuum. When metabolic syndrome and diabetes mellitus are compared, these differences are less marked. Copyright © 2013 Sociedad Española de Cardiología. Published by Elsevier Espana. All rights reserved.

  1. Metabolic syndrome and cardiovascular risk among adults

    Directory of Open Access Journals (Sweden)

    Reem Hunain

    2018-03-01

    Full Text Available Background: Mortality and morbidity due cardiovascular diseases in India is on the rise. Metabolic Syndrome which is a collection of risk factors of metabolic origin, can greatly contribute to its rising burden. Aims & Objectives: The present study was conducted with the objective of estimating the prevalence of metabolic syndrome and 10-year cardiovascular risk among adults. Material & Methods: This hospital-based study included 260 adults aged 20-60 years. Metabolic Syndrome was defined using National Cholesterol Education Program –Adult Treatment Panel -3 criteria. The 10 year cardiovascular risk was estimated using Framingham risk scoring. Results: The overall prevalence of metabolic syndrome among the study participants was 38.8%. Age (41-60yrs, male gender and daily consumption of high salt items were positively associated with metabolic syndrome whereas consumption of occasional high sugar items showed an inverse association with metabolic syndrome. According to Framingham Risk Scoring, 14.3% of the participants belonged to intermediate/high risk category. Conclusion: With a high prevalence of metabolic syndrome and a considerable proportion of individuals with intermediate to high 10 yr CVD risk, there is a need to design strategies to prevent future cardiovascular events.

  2. Gender differences in metabolic syndrome components among the Korean 66-year-old population with metabolic syndrome.

    Science.gov (United States)

    Lee, Sangjin; Ko, Young; Kwak, Chanyeong; Yim, Eun-Shil

    2016-01-23

    Gender is thought to be an important factor in metabolic syndrome and its outcomes. Despite a number of studies that have demonstrated differences in metabolism and its components that are dependent on gender, limited information about gender differences on the characteristics of metabolic syndrome and its components is available regarding the Korean old adult population. This study aimed to identify gender differences in characteristics of the metabolic syndrome and other risk factors for cardiovascular disease. Secondary analysis of data from a nationwide cross-sectional survey for health examination at the time of transitioning from midlife to old age was performed. Multiple logistic regression models were used to estimate adjusted odds ratios and 95% confidence intervals for gender differences among the Korean 66-year-old population with metabolic syndrome. Gender differences in metabolic syndrome components that contributed to the diagnosis of metabolic syndrome were identified. In males, the most common component was high blood sugar levels (87.5%), followed by elevated triglyceride levels (83.5%) and high blood pressure (83.1%). In females, the most commonly identified component was elevated triglyceride levels (79.0%), followed by high blood sugar levels (78.6%) and high blood pressure (78.5%). Gender differences for other risk factors for cardiovascular disease, including family history, health habits, and body mass index were observed. Gender-specific public health policies and management strategies to prevent cardiovascular disease among the older adult population should be developed for Koreans undergoing the physiological transition to old age.

  3. Signaling Pathways Regulating Redox Balance in Cancer Metabolism.

    Science.gov (United States)

    De Santis, Maria Chiara; Porporato, Paolo Ettore; Martini, Miriam; Morandi, Andrea

    2018-01-01

    The interplay between rewiring tumor metabolism and oncogenic driver mutations is only beginning to be appreciated. Metabolic deregulation has been described for decades as a bystander effect of genomic aberrations. However, for the biology of malignant cells, metabolic reprogramming is essential to tackle a harsh environment, including nutrient deprivation, reactive oxygen species production, and oxygen withdrawal. Besides the well-investigated glycolytic metabolism, it is emerging that several other metabolic fluxes are relevant for tumorigenesis in supporting redox balance, most notably pentose phosphate pathway, folate, and mitochondrial metabolism. The relationship between metabolic rewiring and mutant genes is still unclear and, therefore, we will discuss how metabolic needs and oncogene mutations influence each other to satisfy cancer cells' demands. Mutations in oncogenes, i.e., PI3K/AKT/mTOR, RAS pathway, and MYC, and tumor suppressors, i.e., p53 and liver kinase B1, result in metabolic flexibility and may influence response to therapy. Since metabolic rewiring is shaped by oncogenic driver mutations, understanding how specific alterations in signaling pathways affect different metabolic fluxes will be instrumental for the development of novel targeted therapies. In the era of personalized medicine, the combination of driver mutations, metabolite levels, and tissue of origins will pave the way to innovative therapeutic interventions.

  4. RESISTANT HYPERTENSION IN A PATIENT WITH METABOLIC SYNDROME

    OpenAIRE

    O. M. Drapkina; J. S. Sibgatullina

    2016-01-01

    Clinical case of resistant hypertension in a patient with metabolic syndrome is presented. Features of hypertension in metabolic syndrome and features of metabolic syndrome in women of pre- and postmenopausal age are also considered. Understanding the features of metabolic syndrome in women, as well as features of hypertension and metabolic syndrome will improve the results of treatment in patients with resistant hypertension.

  5. Oral cancer cells may rewire alternative metabolic pathways to survive from siRNA silencing of metabolic enzymes

    International Nuclear Information System (INIS)

    Zhang, Min; Chai, Yang D; Brumbaugh, Jeffrey; Liu, Xiaojun; Rabii, Ramin; Feng, Sizhe; Misuno, Kaori; Messadi, Diana; Hu, Shen

    2014-01-01

    Cancer cells may undergo metabolic adaptations that support their growth as well as drug resistance properties. The purpose of this study is to test if oral cancer cells can overcome the metabolic defects introduced by using small interfering RNA (siRNA) to knock down their expression of important metabolic enzymes. UM1 and UM2 oral cancer cells were transfected with siRNA to transketolase (TKT) or siRNA to adenylate kinase (AK2), and Western blotting was used to confirm the knockdown. Cellular uptake of glucose and glutamine and production of lactate were compared between the cancer cells with either TKT or AK2 knockdown and those transfected with control siRNA. Statistical analysis was performed with student T-test. Despite the defect in the pentose phosphate pathway caused by siRNA knockdown of TKT, the survived UM1 or UM2 cells utilized more glucose and glutamine and secreted a significantly higher amount of lactate than the cells transferred with control siRNA. We also demonstrated that siRNA knockdown of AK2 constrained the proliferation of UM1 and UM2 cells but similarly led to an increased uptake of glucose/glutamine and production of lactate by the UM1 or UM2 cells survived from siRNA silencing of AK2. Our results indicate that the metabolic defects introduced by siRNA silencing of metabolic enzymes TKT or AK2 may be compensated by alternative feedback metabolic mechanisms, suggesting that cancer cells may overcome single defective pathways through secondary metabolic network adaptations. The highly robust nature of oral cancer cell metabolism implies that a systematic medical approach targeting multiple metabolic pathways may be needed to accomplish the continued improvement of cancer treatment

  6. Nutritional regulation of bile acid metabolism is associated with improved pathological characteristics of the metabolic syndrome

    DEFF Research Database (Denmark)

    Liaset, Bjørn; Hao, Qin; Jørgensen, Henry Johs. Høgh

    2011-01-01

    Bile acids (BAs) are powerful regulators of metabolism, and mice treated orally with cholic acid are protected from diet-induced obesity, hepatic lipid accumulation, and increased plasma triacylglycerol (TAG) and glucose levels. Here, we show that plasma BA concentration in rats was elevated by e...... metabolism can be modulated by diet and that such modulation may prevent/ameliorate the characteristic features of the metabolic syndrome.......Bile acids (BAs) are powerful regulators of metabolism, and mice treated orally with cholic acid are protected from diet-induced obesity, hepatic lipid accumulation, and increased plasma triacylglycerol (TAG) and glucose levels. Here, we show that plasma BA concentration in rats was elevated...... with induction of genes involved in energy metabolism and uncoupling, Dio2, Pgc-1a, and Ucp1, in interscapular brown adipose tissue. Interestingly, the same transcriptional pattern was found in white adipose tissue depots of both abdominal and subcutaneous origin. Accordingly, rats fed SPH-based diet exhibited...

  7. The association of incident hypertension with metabolic health and obesity status: definition of metabolic health does not matter.

    Science.gov (United States)

    Kang, Yu Mi; Jung, Chang Hee; Jang, Jung Eun; Hwang, Jenie Yoonoo; Kim, Eun Hee; Park, Joong-Yeol; Kim, Hong-Kyu; Lee, Woo Je

    2016-08-01

    Metabolically healthy obese (MHO) phenotype refers to obese individuals with a favourable metabolic profile. Its prognostic value remains controversial and may partly depend on differences in how the phenotype is defined. We aimed to investigate whether the MHO phenotype is associated with future development of incident hypertension in a Korean population according to various definitions of metabolic health. The study population comprised 31 033 Koreans without hypertension. Participants were stratified into metabolically healthy nonobese (MHNO), metabolically unhealthy nonobese (MUNO), metabolically healthy obese (MHO) and metabolically unhealthy obese (MUO) by body mass index (cut-off value, 25·0 kg/m(2) ) and metabolic health state, using four different definitions: Adult Treatment Panel (ATP)-III, Wildman, Karelis and the homoeostasis model assessment (HOMA) criteria. Over the median follow-up period of 35·0 months (range, 4·5-81·4 months), 4589 of the 31 033 individuals (14·8%) developed incident hypertension. Compared with the MHNO group, the MHO group showed increased association with incident hypertension with multivariate-adjusted odds ratios of 1·56 (95% confidence interval [CI], 1·41-1·72), 1·58 (95% CI 1·42-1·75), 1·52 (95% CI 1·35-1·71) and 1·46 (95% CI 1·33-1·61), when defined by ATP-III, Wildman, Karelis and HOMA criteria, respectively. MUO individuals showed the highest association with the incident hypertension (adjusted odds ratios up to 2·00). MHO subjects showed an approximately 1·5-fold higher association with incident hypertension than their nonobese counterpart regardless of the definition of metabolic health used. Thus, considering both metabolic health and obesity is important for the assessment of potential cardiovascular outcomes. © 2016 John Wiley & Sons Ltd.

  8. Metabolically Healthy Obesity and Ischemic Heart Disease

    DEFF Research Database (Denmark)

    Hansen, Louise; Netterstrom, Marie K.; Johansen, Nanna B.

    2017-01-01

    Context: Recent studies have suggested that a subgroup of obese individuals is not at increased risk of obesity-related complications. This subgroup has been referred to as metabolically healthy obese. Objective: To investigate whether obesity is a risk factor for development of ischemic heart...... risk factors (low high-density lipoprotein cholesterol, elevated blood pressure, triglycerides, and fasting plasma glucose). Metabolically healthy individuals were defined as having no metabolic risk factors, and metabolically unhealthy individuals were defined as having a minimum of one. Main Outcome...... Measures: IHD. Results: During follow-up, 323 participants developed IHD. Metabolically healthy obese men had increased risk of IHD compared with metabolically healthy normal-weight men [hazard ratio (HR), 3.1; 95% confidence interval (CI), 1.1 to 8.2)]. The corresponding results for women were less...

  9. Metabolic syndrome and cardiovascular risk

    Directory of Open Access Journals (Sweden)

    Abdullah M Alshehri

    2010-01-01

    Full Text Available The constellation of dyslipidemia (hypertriglyceridemia and low levels of high-density lipoprotein cholesterol, elevated blood pressure, impaired glucose tolerance, and central obesity is now classified as metabolic syndrome, also called syndrome X. In the past few years, several expert groups have attempted to set forth simple diagnostic criteria for use in clinical practice to identify patients who manifest the multiple components of the metabolic syndrome. These criteria have varied somewhat in specific elements, but in general, they include a combination of multiple and metabolic risk factors. The most widely recognized of the metabolic risk factors are atherogenic dyslipidemia, elevated blood pressure, and elevated plasma glucose. Individuals with these characteristics, commonly manifest a prothrombotic state as well as and a proinflammatory state. Atherogenic dyslipidemia consists of an aggregation of lipoprotein abnormalities including elevated serum triglyceride and apolipoprotein B (apoB, increased small LDL particles, and a reduced level of HDL cholesterol (HDL-C. The metabolic syndrome is often referred to as if it were a discrete entity with a single cause. Available data suggest that it truly is a syndrome, ie, a grouping of atherosclerotic cardiovascular disease (ASCVD risk factors, that probably has more than one cause. Regardless of cause, the syndrome identifies individuals at an elevated risk for ASCVD. The magnitude of the increased risk can vary according to the components of the syndrome present as well as the other, non-metabolic syndrome risk factors in a particular person.

  10. Metabolic syndrome and cardiovascular risk

    Directory of Open Access Journals (Sweden)

    Abdullah M Alshehri

    2010-11-01

    Full Text Available The constellation of dyslipidemia (hypertriglyceridemia and low levels of high-density lipoprotein cholesterol, elevated blood pressure, impaired glucose tolerance, and central obesity is now classified as metabolic syndrome, also called syndrome X. In the past few years, several expert groups have attempted to set forth simple diagnostic criteria for use in clinical practice to identify patients who manifest the multiple components of the metabolic syndrome. These criteria have varied somewhat in specific elements, but in general, they include a combination of multiple and metabolic risk factors. The most widely recognized of the metabolic risk factors are atherogenic dyslipidemia, elevated blood pressure, and elevated plasma glucose. Individuals with these characteristics, commonly manifest a prothrombotic state as well as and a proinflammatory state. Atherogenic dyslipidemia consists of an aggregation of lipoprotein abnormalities including elevated serum triglyceride and apolipoprotein B (apoB, increased small LDL particles, and a reduced level of HDL cholesterol (HDL-C. The metabolic syndrome is often referred to as if it were a discrete entity with a single cause. Available data suggest that it truly is a syndrome, ie, a grouping of atherosclerotic cardiovascular disease (ASCVD risk factors, that probably has more than one cause. Regardless of cause, the syndrome identifies individuals at an elevated risk for ASCVD. The magnitude of the increased risk can vary according to the components of the syndrome present as well as the other, non-metabolic syndrome risk factors in a particular person.

  11. Metabolic Profiles of Brain Metastases

    Directory of Open Access Journals (Sweden)

    Tone F. Bathen

    2013-01-01

    Full Text Available Metastasis to the brain is a feared complication of systemic cancer, associated with significant morbidity and poor prognosis. A better understanding of the tumor metabolism might help us meet the challenges in controlling brain metastases. The study aims to characterize the metabolic profile of brain metastases of different origin using high resolution magic angle spinning (HR-MAS magnetic resonance spectroscopy (MRS to correlate the metabolic profiles to clinical and pathological information. Biopsy samples of human brain metastases (n = 49 were investigated. A significant correlation between lipid signals and necrosis in brain metastases was observed (p < 0.01, irrespective of their primary origin. The principal component analysis (PCA showed that brain metastases from malignant melanomas cluster together, while lung carcinomas were metabolically heterogeneous and overlap with other subtypes. Metastatic melanomas have higher amounts of glycerophosphocholine than other brain metastases. A significant correlation between microscopically visible lipid droplets estimated by Nile Red staining and MR visible lipid signals was observed in metastatic lung carcinomas (p = 0.01, indicating that the proton MR visible lipid signals arise from cytoplasmic lipid droplets. MRS-based metabolomic profiling is a useful tool for exploring the metabolic profiles of metastatic brain tumors.

  12. The Relation Between Metabolic Syndrome and Testosterone Level

    Directory of Open Access Journals (Sweden)

    Goel Prashant

    2018-03-01

    Full Text Available Metabolic syndrome is a group of conditions that increases the risk of developing diabetes and cardiovascular diseases. The most important pathogenic factors for metabolic syndrome are insulin resistance and obesity. The clinical presentation of this syndrome results from its influence on glucose and fat metabolism. Testosterone deficiency has a prevalence of up to 50% in men with metabolic syndrome and type 2 diabetes mellitus. A low level of testosterone is a factor for cardiovascular diseases and predictor of metabolic syndrome and, on the other hand, the components of metabolic syndrome can lead to low testosterone. This article reveals the bidirectional link between low testosterone level or hypogonadism and metabolic syndrome.

  13. Metabolic pancreatitis: Etiopathogenesis and management

    Directory of Open Access Journals (Sweden)

    Sunil Kumar Kota

    2013-01-01

    Full Text Available Acute pancreatitis is a medical emergency. Alcohol and gallstones are the most common etiologies accounting for 60%-75% cases. Other important causes include postendoscopic retrograde cholangiopancreatography procedure, abdominal trauma, drug toxicity, various infections, autoimmune, ischemia, and hereditary causes. In about 15% of cases the cause remains unknown (idiopathic pancreatitis. Metabolic conditions giving rise to pancreatitis are less common, accounting for 5%-10% cases. The causes include hypertriglyceridemia, hypercalcemia, diabetes mellitus, porphyria, and Wilson′s disease. The episodes of pancreatitis tend to be more severe. In cases of metabolic pancreatitis, over and above the standard routine management of pancreatitis, careful management of the underlying metabolic abnormalities is of paramount importance. If not treated properly, it leads to recurrent life-threatening bouts of acute pancreatitis. We hereby review the pathogenesis and management of various causes of metabolic pancreatitis.

  14. Exercise training in metabolic myopathies

    DEFF Research Database (Denmark)

    Vissing, J

    2016-01-01

    metabolic adaptations, such as increased dependence on glycogen use and a reduced capacity for fatty acid oxidation, which is detrimental in GSDs. Training has not been studied systematically in any FAODs and in just a few GSDs. However, studies on single bouts of exercise in most metabolic myopathies show......Metabolic myopathies encompass muscle glycogenoses (GSD) and disorders of muscle fat oxidation (FAOD). FAODs and GSDs can be divided into two main clinical phenotypes; those with static symptoms related to fixed muscle weakness and atrophy, and those with dynamic, exercise-related symptoms...... that are brought about by a deficient supply of ATP. Together with mitochondrial myopathies, metabolic myopathies are unique among muscle diseases, as the limitation in exercise performance is not solely caused by structural damage of muscle, but also or exclusively related to energy deficiency. ATP consumption...

  15. Dynamic optimal metabolic control theory: a cybernetic approach for modelling of the central nitrogen metabolism of S. cerevisiae

    NARCIS (Netherlands)

    Riel, van N.A.W.; Giuseppin, M.L.F.; Verrips, C.T.

    2000-01-01

    The theory of dynamic optimal metabolic control (DOMC), as developed by Giuseppin and Van Riel (Metab. Eng., 2000), is applied to model the central nitrogen metabolism (CNM) in Saccharomyces cerevisiae. The CNM represents a typical system encountered in advanced metabolic engineering. The CNM is the

  16. The SMARTCyp cytochrome P450 metabolism prediction server

    DEFF Research Database (Denmark)

    Rydberg, Patrik; Gloriam, David Erik Immanuel; Olsen, Lars

    2010-01-01

    The SMARTCyp server is the first web application for site of metabolism prediction of cytochrome P450-mediated drug metabolism.......The SMARTCyp server is the first web application for site of metabolism prediction of cytochrome P450-mediated drug metabolism....

  17. Coordinated and interactive expression of genes of lipid metabolism and inflammation in adipose tissue and liver during metabolic overload.

    Directory of Open Access Journals (Sweden)

    Wen Liang

    Full Text Available BACKGROUND: Chronic metabolic overload results in lipid accumulation and subsequent inflammation in white adipose tissue (WAT, often accompanied by non-alcoholic fatty liver disease (NAFLD. In response to metabolic overload, the expression of genes involved in lipid metabolism and inflammatory processes is adapted. However, it still remains unknown how these adaptations in gene expression in expanding WAT and liver are orchestrated and whether they are interrelated. METHODOLOGY/PRINCIPAL FINDINGS: ApoE*3Leiden mice were fed HFD or chow for different periods up to 12 weeks. Gene expression in WAT and liver over time was evaluated by micro-array analysis. WAT hypertrophy and inflammation were analyzed histologically. Bayesian hierarchical cluster analysis of dynamic WAT gene expression identified groups of genes ('clusters' with comparable expression patterns over time. HFD evoked an immediate response of five clusters of 'lipid metabolism' genes in WAT, which did not further change thereafter. At a later time point (>6 weeks, inflammatory clusters were induced. Promoter analysis of clustered genes resulted in specific key regulators which may orchestrate the metabolic and inflammatory responses in WAT. Some master regulators played a dual role in control of metabolism and inflammation. When WAT inflammation developed (>6 weeks, genes of lipid metabolism and inflammation were also affected in corresponding livers. These hepatic gene expression changes and the underlying transcriptional responses in particular, were remarkably similar to those detected in WAT. CONCLUSION: In WAT, metabolic overload induced an immediate, stable response on clusters of lipid metabolism genes and induced inflammatory genes later in time. Both processes may be controlled and interlinked by specific transcriptional regulators. When WAT inflammation began, the hepatic response to HFD resembled that in WAT. In all, WAT and liver respond to metabolic overload by

  18. Unique attributes of cyanobacterial metabolism revealed by improved genome-scale metabolic modeling and essential gene analysis

    Science.gov (United States)

    Broddrick, Jared T.; Rubin, Benjamin E.; Welkie, David G.; Du, Niu; Mih, Nathan; Diamond, Spencer; Lee, Jenny J.; Golden, Susan S.; Palsson, Bernhard O.

    2016-01-01

    The model cyanobacterium, Synechococcus elongatus PCC 7942, is a genetically tractable obligate phototroph that is being developed for the bioproduction of high-value chemicals. Genome-scale models (GEMs) have been successfully used to assess and engineer cellular metabolism; however, GEMs of phototrophic metabolism have been limited by the lack of experimental datasets for model validation and the challenges of incorporating photon uptake. Here, we develop a GEM of metabolism in S. elongatus using random barcode transposon site sequencing (RB-TnSeq) essential gene and physiological data specific to photoautotrophic metabolism. The model explicitly describes photon absorption and accounts for shading, resulting in the characteristic linear growth curve of photoautotrophs. GEM predictions of gene essentiality were compared with data obtained from recent dense-transposon mutagenesis experiments. This dataset allowed major improvements to the accuracy of the model. Furthermore, discrepancies between GEM predictions and the in vivo dataset revealed biological characteristics, such as the importance of a truncated, linear TCA pathway, low flux toward amino acid synthesis from photorespiration, and knowledge gaps within nucleotide metabolism. Coupling of strong experimental support and photoautotrophic modeling methods thus resulted in a highly accurate model of S. elongatus metabolism that highlights previously unknown areas of S. elongatus biology. PMID:27911809

  19. Antidopaminergic medication in healthy subjects provokes subjective and objective mental impairments tightly correlated with perturbation of biogenic monoamine metabolism and prolactin secretion

    Directory of Open Access Journals (Sweden)

    Veselinović T

    2018-04-01

    Full Text Available Tanja Veselinović,1,2 Ingo Vernaleken,1,2 Paul Cumming,3,4 Uwe Henning,5 Lina Winkler,1,2 Peter Kaleta,1,2 Michael Paulzen,1,2 Christian Luckhaus,6 Gerhard Gründer1,2,7 1Department of Psychiatry, Psychotherapy, and Psychosomatics, Faculty of Medicine, RWTH Aachen University, Aachen, 2Translational Brain Medicine, Jülich Aachen Research Alliance (JARA, Jülich, Germany; 3IHBI, School of Psychology and Counselling, Queensland University of Technology, 4QIMR Berghofer Institute, Brisbane, Australia; 5Neurobiochemical Research Unit, Department of Psychiatry, Heinrich Heine University, Düsseldorf, 6LWL University Hospital Bochum, Department of Psychiatry, Division of Cognitive Neuropsychiatry and Psychiatric Preventive Medicine, Ruhr University Bochum, Bochum, 7Department of Molecular Neuroimaging, Central Institute of Mental Health, Mannheim, Germany Objectives: Off-label prescription of antipsychotics to patients without psychotic symptoms has become a routine matter for many psychiatrists and also some general practitioners. Nonetheless, little is known about the possibly detrimental effects of antidopaminergic medications on general psychopathology, subjective mental state, or a possible association with physiological parameters in nonpsychotic individuals.Methods: In this randomized, single-blinded study, groups of healthy volunteers (n=18 received low doses of reserpine, aripiprazole, haloperidol, or placebo on 7 successive days. Relevant physiological parameters (plasma prolactin, concentrations of catecholamine metabolites in plasma, and 24-hour urine and each subject’s mental state (Positive and Negative Syndrome Scale, Hamilton Rating Scale for Depression, visual analogue scale, Beck Depression Inventory II were assessed at the start and end of the trial.Results: Of the three active treatments, only reserpine caused a significant increase in some plasma- and urine-catecholamine metabolites, but all three medications evoked objective

  20. Metabolic alterations in dialysis patients

    NARCIS (Netherlands)

    Drechsler, Christiane

    2010-01-01

    Assessing metabolic risk in dialysis patients, three main aspects are important: a) the pathophysiologic effects of metabolic disturbances as known from the general population are unlikely to completely reverse once patients reach dialysis. b) Specific additional problems related to chronic kidney

  1. Regulation of Metabolic Activity by p53

    Directory of Open Access Journals (Sweden)

    Jessica Flöter

    2017-05-01

    Full Text Available Metabolic reprogramming in cancer cells is controlled by the activation of multiple oncogenic signalling pathways in order to promote macromolecule biosynthesis during rapid proliferation. Cancer cells also need to adapt their metabolism to survive and multiply under the metabolically compromised conditions provided by the tumour microenvironment. The tumour suppressor p53 interacts with the metabolic network at multiple nodes, mostly to reduce anabolic metabolism and promote preservation of cellular energy under conditions of nutrient restriction. Inactivation of this tumour suppressor by deletion or mutation is a frequent event in human cancer. While loss of p53 function lifts an important barrier to cancer development by deleting cell cycle and apoptosis checkpoints, it also removes a crucial regulatory mechanism and can render cancer cells highly sensitive to metabolic perturbation. In this review, we will summarise the major concepts of metabolic regulation by p53 and explore how this knowledge can be used to selectively target p53 deficient cancer cells in the context of the tumour microenvironment.

  2. Psychosocial risk factors for the metabolic syndrome

    DEFF Research Database (Denmark)

    Pedersen, Jolene Masters; Lund, Rikke; Andersen, Ingelise

    2016-01-01

    Background/Objectives: Metabolic deregulations and development of metabolic syndrome may be an important pathway underlying the relationship between stress and cardiovascular disease. We aim to estimate the effect of a comprehensive range of psychosocial factors on the risk of developing metabolic.......11) to be risk factors for developing the metabolic syndrome in women, while vital exhaustion (OR 2.09, 95% CI 0.95 to 4.59) and intake of sleep medications (OR 2.54, 95% CI 0.92 to 5.96) may play a more important role in men. Conclusions: Experiencing major life events in work and adult life and....../or dysfunctional social networks is a risk factor for metabolic syndrome in women, and stress reactions such as vital exhaustion and intake of sleep medications may play a more important role in the development of metabolic syndrome men....

  3. Accessing Autonomic Function Can Early Screen Metabolic Syndrome

    Science.gov (United States)

    Dai, Meng; Li, Mian; Yang, Zhi; Xu, Min; Xu, Yu; Lu, Jieli; Chen, Yuhong; Liu, Jianmin; Ning, Guang; Bi, Yufang

    2012-01-01

    Background Clinical diagnosis of the metabolic syndrome is time-consuming and invasive. Convenient instruments that do not require laboratory or physical investigation would be useful in early screening individuals at high risk of metabolic syndrome. Examination of the autonomic function can be taken as a directly reference and screening indicator for predicting metabolic syndrome. Methodology and Principal Findings The EZSCAN test, as an efficient and noninvasive technology, can access autonomic function through measuring electrochemical skin conductance. In this study, we used EZSCAN value to evaluate autonomic function and to detect metabolic syndrome in 5,887 participants aged 40 years or older. The EZSCAN test diagnostic accuracy was analyzed by receiver operating characteristic curves. Among the 5,815 participants in the final analysis, 2,541 were diagnosed as metabolic syndrome and the overall prevalence was 43.7%. Prevalence of the metabolic syndrome increased with the elevated EZSCAN risk level (p for trend metabolic syndrome components (p for trend metabolic syndrome after the multiple adjustments. The area under the curve of the EZSCAN test was 0.62 (95% confidence interval [CI], 0.61–0.64) for predicting metabolic syndrome. The optimal operating point for the EZSCAN value to detect a high risk of prevalent metabolic syndrome was 30 in this study, while the sensitivity and specificity were 71.2% and 46.7%, respectively. Conclusions and Significance In conclusion, although less sensitive and accurate when compared with the clinical definition of metabolic syndrome, we found that the EZSCAN test is a good and simple screening technique for early predicting metabolic syndrome. PMID:22916265

  4. A Metabolic Race

    Directory of Open Access Journals (Sweden)

    A.M.S. Costa et al.

    2017-07-01

    Full Text Available Metabolic Syndrome describes a set of metabolic risk factors that manifest in an individual and some aspects contribute to its appearance: genetic, overweight and the absence of physical activity. So, a board game was created to simulate the environment and routine experienced by UFF students that could contribute  to the development of Metabolic Syndrome. Players move along a simplified map of Niterói city, where places as Antônio Pedro Hospital (HUAP are pointed out. OBJECTIVES: This project aimed to develop an educational game to consolidate Metabolic Syndrome biochemical events. MATERIAL E METHODS: Each group receives a board, pins, dice, question, challenge and diagnostics cards. One student performs the family doctor function, responsable for delivering cards, reading activities and providing diagnosis to players when game is over.The scoring system is based on 3 criteria for Metabolic Syndrome diagnosis: glycemia, abdominal obesity and HDL cholesterol. At the end of game, it is possible to calculate the rates of each player and provide proportional diagnosis. The winner is the healthiest that first arrives at HUAP. RESULTS AND DISCUSSION: The game was applied to 50 students and only 10% classified the subject-matter as difficult. This finding highlight the need to establish new methods to enhance the teaching and learning process and decrease the students’ dificulties. Students evaluated the game as an important educational support and 85% of them agreed it complements  and consolidate the content discussed in classroom. Finally, the game was very highly rated by students according to their perception about their own performance while playing.  In addition, 95 % students pointed they would play again and 98% said they think games are able to optimize learning. CONCLUSIONS: It was possible not only to approximate biochemical phenomena to the students’ daily life, but also to solidify the theoretical concepts in a dynamic and fun

  5. Metabolic, endocrine, and related bone diseases

    International Nuclear Information System (INIS)

    Rogers, L.F.

    1987-01-01

    Bone is living tissue, and old bone is constantly removed and replaced with new bone. Normally this exchange is in balance, and the mineral content remains relatively constant. This balance may be disturbed as a result of certain metabolic and endocrinologic disorders. The term dystrophy, referring to a disturbance of nutrition, is applied to metabolic and endocrine bone diseases and should be distinguished from the term dysplasia, referring to a disturbance of bone growth. The two terms are easily confused but are not interchangeable. Metabolic bone disease is caused by endocrine imbalance, vitamin deficiency or excess, and other disturbances in bone metabolism leading to osteoporosis and osteomalacia

  6. Modelling of the metabolism of Zymomonas mobilis

    Energy Technology Data Exchange (ETDEWEB)

    Posten, C; Thoma, M

    1986-01-01

    In order to optimize fermentations with respect to media, reactor configuration, and control a structured model of the metabolism of Zymononas mobilis has been developed. The model is based on structure of metabolism, rate limiting steps, energy balance and metabolic elemental balances. A three-fold effect of ethanol has been observed concerning substrate-turnover, ammonia uptake and energy consumption. In addition to the metabolic view a structured cell-membrane-model should be considered.

  7. Artificial Promoters for Metabolic Optimization

    DEFF Research Database (Denmark)

    Jensen, Peter Ruhdal; Hammer, Karin

    1998-01-01

    In this article, we review some of the expression systems that are available for Metabolic Control Analysis and Metabolic Engineering, and examine their advantages and disadvantages in different contexts. In a recent approach, artificial promoters for modulating gene expression in micro-organisms...

  8. B-12 vitamin metabolism disorders

    International Nuclear Information System (INIS)

    Fabriciova, K.; Bzduch, V.; Behulova, D.; Skodova, J.; Holesova, D.; Ostrozlikova, M.; Schmidtova, K.; Kozich, V.

    2012-01-01

    Vitamin B-12 – cobalamin (Cbl) is a water soluble vitamin, which is synthesized by lower organisms. It cannot be synthesized by plants and higher organisms. Problem in the metabolic pathway of Cbl can be caused by its deficiency or by the deficiency of its last metabolites – adenosylcobalamin and methylcobalamin. Both reasons are presented by errors in the homocysteine and methylmalonyl-coenzyme A metabolism. Clinical symptoms of the Cbl metabolism disorders are: different neurological disorders, changes in haematological status (megaloblastic anemia, pancytopenia), symptoms of gastrointestinal tract (glossitis, loss of appetite, diarrhea) and changes in the immune system. In the article the authors describe the causes of Cbl metabolism disorders, its different diagnosis and treatment. They introduce the group of patients with these disorders, who were taken care of in the I st Paediatric Department of University Children Hospital for the last 5 years. (author)

  9. Metabolic profiling reveals ethylene mediated metabolic changes and a coordinated adaptive mechanism of 'Jonagold' apple to low oxygen stress.

    Science.gov (United States)

    Bekele, Elias A; Beshir, Wasiye F; Hertog, Maarten L A T M; Nicolai, Bart M; Geeraerd, Annemie H

    2015-11-01

    Apples are predominantly stored in controlled atmosphere (CA) storage to delay ripening and prolong their storage life. Profiling the dynamics of metabolic changes during ripening and CA storage is vital for understanding the governing molecular mechanism. In this study, the dynamics of the primary metabolism of 'Jonagold' apples during ripening in regular air (RA) storage and initiation of CA storage was profiled. 1-Methylcyclopropene (1-MCP) was exploited to block ethylene receptors and to get insight into ethylene mediated metabolic changes during ripening of the fruit and in response to hypoxic stress. Metabolic changes were quantified in glycolysis, the tricarboxylic acid (TCA) cycle, the Yang cycle and synthesis of the main amino acids branching from these metabolic pathways. Partial least square discriminant analysis of the metabolic profiles of 1-MCP treated and control apples revealed a metabolic divergence in ethylene, organic acid, sugar and amino acid metabolism. During RA storage at 18°C, most amino acids were higher in 1-MCP treated apples, whereas 1-aminocyclopropane-1-carboxylic acid (ACC) was higher in the control apples. The initial response of the fruit to CA initiation was accompanied by an increase of alanine, succinate and glutamate, but a decline in aspartate. Furthermore, alanine and succinate accumulated to higher levels in control apples than 1-MCP treated apples. The observed metabolic changes in these interlinked metabolites may indicate a coordinated adaptive strategy to maximize energy production. © 2015 Scandinavian Plant Physiology Society.

  10. Genomic and metabolic disposition of non-obese type 2 diabetic rats to increased myocardial fatty acid metabolism.

    Directory of Open Access Journals (Sweden)

    Sriram Devanathan

    Full Text Available Lipotoxicity of the heart has been implicated as a leading cause of morbidity in Type 2 Diabetes Mellitus (T2DM. While numerous reports have demonstrated increased myocardial fatty acid (FA utilization in obese T2DM animal models, this diabetic phenotype has yet to be demonstrated in non-obese animal models of T2DM. Therefore, the present study investigates functional, metabolic, and genomic differences in myocardial FA metabolism in non-obese type 2 diabetic rats. The study utilized Goto-Kakizaki (GK rats at the age of 24 weeks. Each rat was imaged with small animal positron emission tomography (PET to estimate myocardial blood flow (MBF and myocardial FA metabolism. Echocardiograms (ECHOs were performed to assess cardiac function. Levels of triglycerides (TG and non-esterified fatty acids (NEFA were measured in both plasma and cardiac tissues. Finally, expression profiles for 168 genes that have been implicated in diabetes and FA metabolism were measured using quantitative PCR (qPCR arrays. GK rats exhibited increased NEFA and TG in both plasma and cardiac tissue. Quantitative PET imaging suggests that GK rats have increased FA metabolism. ECHO data indicates that GK rats have a significant increase in left ventricle mass index (LVMI and decrease in peak early diastolic mitral annular velocity (E' compared to Wistar rats, suggesting structural remodeling and impaired diastolic function. Of the 84 genes in each the diabetes and FA metabolism arrays, 17 genes in the diabetes array and 41 genes in the FA metabolism array were significantly up-regulated in GK rats. Our data suggest that GK rats' exhibit increased genomic disposition to FA and TG metabolism independent of obesity.

  11. Metabolism and virulence in Neisseria meningitidis

    Directory of Open Access Journals (Sweden)

    Christoph eSchoen

    2014-08-01

    Full Text Available A longstanding question in infection biology addresses the genetic basis for invasive behaviour in commensal pathogens. A prime example for such a pathogen is Neisseria meningitidis. On the one hand it is a harmless commensal bacterium exquisitely adapted to humans, and on the other hand it sometimes behaves like a ferocious pathogen causing potentially lethal disease such as sepsis and acute bacterial meningitis. Despite the lack of a classical repertoire of virulence genes in N. meningitidis separating commensal from invasive strains, molecular epidemiology suggests that carriage and invasive strains belong to genetically distinct populations. In recent years, it has become increasingly clear that metabolic adaptation enables meningococci to exploit host resources, supporting the concept of nutritional virulence as a crucial determinant of invasive capability. Here, we discuss the contribution of core metabolic pathways in the context of colonization and invasion with special emphasis on results from genome-wide surveys. The metabolism of lactate, the oxidative stress response, and, in particular, glutathione metabolism as well as the denitrification pathway provide examples of how meningococcal metabolism is intimately linked to pathogenesis. We further discuss evidence from genome-wide approaches regarding potential metabolic differences between strains from hyperinvasive and carriage lineages and present new data assessing in vitro growth differences of strains from these two populations. We hypothesize that strains from carriage and hyperinvasive lineages differ in the expression of regulatory genes involved particularly in stress responses and amino acid metabolism under infection conditions.

  12. Impact of Hypoglycemia on Brain Metabolism During Diabetes.

    Science.gov (United States)

    Rehni, Ashish K; Dave, Kunjan R

    2018-04-10

    Diabetes is a metabolic disease afflicting millions of people worldwide. A substantial fraction of world's total healthcare expenditure is spent on treating diabetes. Hypoglycemia is a serious consequence of anti-diabetic drug therapy, because it induces metabolic alterations in the brain. Metabolic alterations are one of the central mechanisms mediating hypoglycemia-related functional changes in the brain. Acute, chronic, and/or recurrent hypoglycemia modulate multiple metabolic pathways, and exposure to hypoglycemia increases consumption of alternate respiratory substrates such as ketone bodies, glycogen, and monocarboxylates in the brain. The aim of this review is to discuss hypoglycemia-induced metabolic alterations in the brain in glucose counterregulation, uptake, utilization and metabolism, cellular respiration, amino acid and lipid metabolism, and the significance of other sources of energy. The present review summarizes information on hypoglycemia-induced metabolic changes in the brain of diabetic and non-diabetic subjects and the manner in which they may affect brain function.

  13. Metabolic effects of dark chocolate consumption on energy, gut microbiota, and stress-related metabolism in free-living subjects.

    Science.gov (United States)

    Martin, Francois-Pierre J; Rezzi, Serge; Peré-Trepat, Emma; Kamlage, Beate; Collino, Sebastiano; Leibold, Edgar; Kastler, Jürgen; Rein, Dietrich; Fay, Laurent B; Kochhar, Sunil

    2009-12-01

    Dietary preferences influence basal human metabolism and gut microbiome activity that in turn may have long-term health consequences. The present study reports the metabolic responses of free living subjects to a daily consumption of 40 g of dark chocolate for up to 14 days. A clinical trial was performed on a population of 30 human subjects, who were classified in low and high anxiety traits using validated psychological questionnaires. Biological fluids (urine and blood plasma) were collected during 3 test days at the beginning, midtime and at the end of a 2 week study. NMR and MS-based metabonomics were employed to study global changes in metabolism due to the chocolate consumption. Human subjects with higher anxiety trait showed a distinct metabolic profile indicative of a different energy homeostasis (lactate, citrate, succinate, trans-aconitate, urea, proline), hormonal metabolism (adrenaline, DOPA, 3-methoxy-tyrosine) and gut microbial activity (methylamines, p-cresol sulfate, hippurate). Dark chocolate reduced the urinary excretion of the stress hormone cortisol and catecholamines and partially normalized stress-related differences in energy metabolism (glycine, citrate, trans-aconitate, proline, beta-alanine) and gut microbial activities (hippurate and p-cresol sulfate). The study provides strong evidence that a daily consumption of 40 g of dark chocolate during a period of 2 weeks is sufficient to modify the metabolism of free living and healthy human subjects, as per variation of both host and gut microbial metabolism.

  14. Understanding Regulation of Metabolism through Feasibility Analysis

    NARCIS (Netherlands)

    Nikerel, I.E.; Berkhout, J.; Hu, F.; Teusink, B.; Reinders, M.J.T.; De Ridder, D.

    2012-01-01

    Understanding cellular regulation of metabolism is a major challenge in systems biology. Thus far, the main assumption was that enzyme levels are key regulators in metabolic networks. However, regulation analysis recently showed that metabolism is rarely controlled via enzyme levels only, but

  15. Cancer Cell Metabolism: One Hallmark, Many Faces

    OpenAIRE

    Cantor, Jason R.; Sabatini, David M.

    2012-01-01

    Cancer cells must rewire cellular metabolism to satisfy the demands of growth and proliferation. Although many of the metabolic alterations are largely similar to those in normal proliferating cells, they are aberrantly driven in cancer by a combination of genetic lesions and nongenetic factors such as the tumor microenvironment. However, a single model of altered tumor metabolism does not describe the sum of metabolic changes that can support cell growth. Instead, the diversity of such chang...

  16. Preventing Allograft Rejection by Targeting Immune Metabolism

    Directory of Open Access Journals (Sweden)

    Chen-Fang Lee

    2015-10-01

    Full Text Available Upon antigen recognition and co-stimulation, T lymphocytes upregulate the metabolic machinery necessary to proliferate and sustain effector function. This metabolic reprogramming in T cells regulates T cell activation and differentiation but is not just a consequence of antigen recognition. Although such metabolic reprogramming promotes the differentiation and function of T effector cells, the differentiation of regulatory T cells employs different metabolic reprogramming. Therefore, we hypothesized that inhibition of glycolysis and glutamine metabolism might prevent graft rejection by inhibiting effector generation and function and promoting regulatory T cell generation. We devised an anti-rejection regimen involving the glycolytic inhibitor 2-deoxyglucose (2-DG, the anti-type II diabetes drug metformin, and the inhibitor of glutamine metabolism 6-diazo-5-oxo-L-norleucine (DON. Using this triple-drug regimen, we were able to prevent or delay graft rejection in fully mismatched skin and heart allograft transplantation models.

  17. Gait Dynamics and Locomotor Metabolism

    Science.gov (United States)

    2014-12-01

    26 47. Taylor CR, Heglund NC, Maloiy GMO . Energetics and mechanics of terrestrial locomotion. I. Metabolic energy consumption as a function of...San Diego, CA: Academic Press, 1994. 110 47. Taylor CR, Heglund NC, Maloiy GMO . Energetics and mechanics of terrestrial locomotion. I. Metabolic

  18. In vivo dynamics of galactose metabolism in Saccharomyces cerevisiae: Metabolic fluxes and metabolite levels

    DEFF Research Database (Denmark)

    Østergaard, Simon; Olsson, Lisbeth; Nielsen, Jens

    2001-01-01

    The dynamics of galactose metabolism in Saccharomyces cerevisiae was studied by analyzing the metabolic response of the CEN.PK 113-7D wild-type strain when exposed to a galactose pulse during aerobic growth in a galactose-limited steady-state cultivation at a dilution rate of 0.097 h(-1). A fast...

  19. Fibroblast Growth Factor Signaling in Metabolic Regulation.

    Science.gov (United States)

    Nies, Vera J M; Sancar, Gencer; Liu, Weilin; van Zutphen, Tim; Struik, Dicky; Yu, Ruth T; Atkins, Annette R; Evans, Ronald M; Jonker, Johan W; Downes, Michael Robert

    2015-01-01

    The prevalence of obesity is a growing health problem. Obesity is strongly associated with several comorbidities, such as non-alcoholic fatty liver disease, certain cancers, insulin resistance, and type 2 diabetes, which all reduce life expectancy and life quality. Several drugs have been put forward in order to treat these diseases, but many of them have detrimental side effects. The unexpected role of the family of fibroblast growth factors in the regulation of energy metabolism provides new approaches to the treatment of metabolic diseases and offers a valuable tool to gain more insight into metabolic regulation. The known beneficial effects of FGF19 and FGF21 on metabolism, together with recently discovered similar effects of FGF1 suggest that FGFs and their derivatives carry great potential as novel therapeutics to treat metabolic conditions. To facilitate the development of new therapies with improved targeting and minimal side effects, a better understanding of the molecular mechanism of action of FGFs is needed. In this review, we will discuss what is currently known about the physiological roles of FGF signaling in tissues important for metabolic homeostasis. In addition, we will discuss current concepts regarding their pharmacological properties and effector tissues in the context of metabolic disease. Also, the recent progress in the development of FGF variants will be reviewed. Our goal is to provide a comprehensive overview of the current concepts and consensuses regarding FGF signaling in metabolic health and disease and to provide starting points for the development of FGF-based therapies against metabolic conditions.

  20. Fibroblast growth factor signaling in metabolic regulation

    Directory of Open Access Journals (Sweden)

    Vera eNies

    2016-01-01

    Full Text Available The prevalence of obesity is a growing health problem. Obesity is strongly associated with several comorbidities, such as non-alcoholic fatty liver disease, certain cancers, insulin resistance and type 2 diabetes, which all reduce life expectancy and life quality. Several drugs have been put forward in order to treat these diseases, but many of them have detrimental side effects. The unexpected role of the family of fibroblast growth factors in the regulation of energy metabolism provides new approaches to the treatment of metabolic diseases, and offers a valuable tool to gain more insight into metabolic regulation. The known beneficial effects of FGF19 and FGF21 on metabolism, together with recently discovered similar effects of FGF1 suggest that FGFs and their derivatives carry great potential as novel therapeutics to treat metabolic conditions. To facilitate the development of new therapies with improved targeting and minimal side effects, a better understanding of the molecular mechanism of action of FGFs is needed.In this review we will discuss what is currently known about the physiological roles of FGF signaling in tissues important for metabolic homeostasis. In addition, we will discuss current concepts regarding their pharmacological properties and effector tissues in the context of metabolic disease. Also the recent progress in the development of FGF variants will be reviewed. Our goal is to provide a comprehensive overview of the current concepts and consensuses regarding FGF signaling in metabolic health and disease, and to provide starting points for the development of FGF-based therapies against metabolic conditions.

  1. Gout and Metabolic Syndrome: a Tangled Web.

    Science.gov (United States)

    Thottam, Gabrielle E; Krasnokutsky, Svetlana; Pillinger, Michael H

    2017-08-26

    The complexity of gout continues to unravel with each new investigation. Gout sits at the intersection of multiple intrinsically complex processes, and its prevalence, impact on healthcare costs, and association with important co-morbidities make it increasingly relevant. The association between gout and type 2 diabetes, hypertension, hyperlipidemia, cardiovascular disease, renal disease, and obesity suggest that either gout, or its necessary precursor hyperuricemia, may play an important role in the manifestations of the metabolic syndrome. In this review, we analyze the complex interconnections between gout and metabolic syndrome, by reviewing gout's physiologic and epidemiologic relationships with its major co-morbidities. Increasing evidence supports gout's association with metabolic syndrome. More specifically, both human studies and animal models suggest that hyperuricemia may play a role in promoting inflammation, hypertension and cardiovascular disease, adipogenesis and lipogenesis, insulin and glucose dysregulation, and liver disease. Fructose ingestion is associated with increased rates of hypertension, weight gain, impaired glucose tolerance, and dyslipidemia and is a key driver of urate biosynthesis. AMP kinase (AMPK) is a central regulator of processes that tend to mitigate against the metabolic syndrome. Within hepatocytes, leukocytes, and other cells, a fructose/urate metabolic loop drives key inhibitors of AMPK, including AMP deaminase and fructokinase, that may tilt the balance toward metabolic syndrome progression. Preliminary evidence suggests that agents that block the intracellular synthesis of urate may restore AMPK activity and help maintain metabolic homeostasis. Gout is both an inflammatory and a metabolic disease. With further investigation of urate's role, the possibility of proper gout management additionally mitigating metabolic syndrome is an evolving and important question.

  2. Energy Metabolism Impairment in Migraine.

    Science.gov (United States)

    Cevoli, Sabina; Favoni, Valentina; Cortelli, Pietro

    2018-06-22

    Migraine is a common disabling neurological disorder which is characterised by recurring headache associated with a variety of sensory and autonomic symptoms. The pathophysiology of migraine remains not entirely understood, although many mechanisms involving the central and peripheral nervous system are now becoming clear. In particular, it is widely accepted that migraine is associated with energy metabolic impairment of the brain. The purpose of this review is to present an update overview of the energy metabolism involvement in the migraine pathophysiology. Several biochemical, morphological and magnetic resonance spectroscopy studies have confirmed the presence of energy production deficiency together with an increment of energy consumption in migraine patients. An increment of energy demand over a certain threshold create metabolic and biochemical preconditions for the onset of the migraine attack. The defect of oxidative energy metabolism in migraine is generalized. It remains to be determined if the mitochondrial deficit in migraine is primary or secondary. Riboflavin and Co-Enzyme Q10, both physiologically implicated in mitochondrial respiratory chain functioning, are effective in migraine prophylaxis, supporting the hypothesis that improving brain energy metabolism may reduce the susceptibility to migraine. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  3. Autophagic pathways and metabolic stress.

    Science.gov (United States)

    Kaushik, S; Singh, R; Cuervo, A M

    2010-10-01

    Autophagy is an essential intracellular process that mediates degradation of intracellular proteins and organelles in lysosomes. Autophagy was initially identified for its role as alternative source of energy when nutrients are scarce but, in recent years, a previously unknown role for this degradative pathway in the cellular response to stress has gained considerable attention. In this review, we focus on the novel findings linking autophagic function with metabolic stress resulting either from proteins or lipids. Proper autophagic activity is required in the cellular defense against proteotoxicity arising in the cytosol and also in the endoplasmic reticulum, where a vast amount of proteins are synthesized and folded. In addition, autophagy contributes to mobilization of intracellular lipid stores and may be central to lipid metabolism in certain cellular conditions. In this review, we focus on the interrelation between autophagy and different types of metabolic stress, specifically the stress resulting from the presence of misbehaving proteins within the cytosol or in the endoplasmic reticulum and the stress following a lipogenic challenge. We also comment on the consequences that chronic exposure to these metabolic stressors could have on autophagic function and on how this effect may underlie the basis of some common metabolic disorders. © 2010 Blackwell Publishing Ltd.

  4. Gastroesophageal Reflux Disease and Metabolic Syndrome

    OpenAIRE

    Olinichenko, A. V.

    2014-01-01

    Purpose of the research is to study the features of gastroesophageal reflux disease, combined with the metabolic syndrome. Materials and methods. The study involved 490 patients (250 have got gastroesophageal reflux disease, combined with the metabolic syndrome and 240 have got gastroesophageal reflux disease without the metabolic syndrome). The patients besides general clinical examination were carried out video-fibro-gastro-duodeno-skopy, pH-monitoring in the esophagus, anthropometry, deter...

  5. Fifteen years experience: Egyptian metabolic lab

    Directory of Open Access Journals (Sweden)

    Ekram M. Fateen

    2014-10-01

    Conclusion: This study illustrates the experience of the reference metabolic lab in Egypt over 15 years. The lab began metabolic disorder screening by using simple diagnostic techniques like thin layer chromatography and colored tests in urine which by time updated and upgraded the methods to diagnose a wide range of disorders. This study shows the most common diagnosed inherited inborn errors of metabolism among the Egyptian population.

  6. Metabolic changes in cancer: beyond the Warburg effect

    Institute of Scientific and Technical Information of China (English)

    Weihua Wu; Shimin Zhao

    2013-01-01

    Altered metabolism is one of the hallmarks of cancer cells.The best-known metabolic abnormality in cancer cells is the Warburg effect,which demonstrates an increased glycolysis even in the presence of oxygen.However,tumor-related metabolic abnormalities are not limited to altered balance between glucose fermentation and oxidative phosphorylation.Key tumor genes such as p53 and c-myc are found to be master regulators of metabolism.Metabolic enzymes such as succinate dehydrogenase,fumarate hydratase,pyruvate kinase,and isocitrate dehydrogenase mutations or expressing level alterations are all linked to tumorigenesis.In this review,we introduce some of the cancer-associated metabolic disorders and current understanding of their molecular tumorigenic mechanisms.

  7. Extreme metabolic alkalosis in intensive care.

    Science.gov (United States)

    Tripathy, Swagata

    2009-10-01

    Metabolic alkalosis is a commonly seen imbalance in the intensive care unit (ICU). Extreme metabolic alkalemia, however, is less common. A pH greater than 7.65 may carry a high risk of mortality (up to 80%). We discuss the entity of life threatening metabolic alkalemia by means of two illustrative cases - both with a pH greater than 7.65 on presentation. The cause, modalities of managing and complications of this condition is discussed from the point of view of both the traditional method of Henderson and Hasselbalch and the mathematical model based on physiochemical model described by Stewart. Special mention to the pitfalls in managing patients of metabolic alkalosis with concomitant renal compromise is made.

  8. Oxidative metabolism in muscle.

    OpenAIRE

    Ferrari, M; Binzoni, T; Quaresima, V

    1997-01-01

    Oxidative metabolism is the dominant source of energy for skeletal muscle. Near-infrared spectroscopy allows the non-invasive measurement of local oxygenation, blood flow and oxygen consumption. Although several muscle studies have been made using various near-infrared optical techniques, it is still difficult to interpret the local muscle metabolism properly. The main findings of near-infrared spectroscopy muscle studies in human physiology and clinical medicine are summarized. The advantage...

  9. Interaction of pathogens with host cholesterol metabolism.

    Science.gov (United States)

    Sviridov, Dmitri; Bukrinsky, Michael

    2014-10-01

    Pathogens of different taxa, from prions to protozoa, target cellular cholesterol metabolism to advance their own development and to impair host immune responses, but also causing metabolic complications, for example, atherosclerosis. This review describes recent findings of how pathogens do it. A common theme in interaction between pathogens and host cholesterol metabolism is pathogens targeting lipid rafts of the host plasma membrane. Many intracellular pathogens use rafts as an entry gate, taking advantage of the endocytic machinery and high abundance of outward-looking molecules that can be used as receptors. At the same time, disruption of the rafts' functional capacity, achieved by the pathogens through a number of various means, impairs the ability of the host to generate immune response, thus helping pathogen to thrive. Pathogens cannot synthesize cholesterol, and salvaging host cholesterol helps pathogens build advanced cholesterol-containing membranes and assembly platforms. Impact on cholesterol metabolism is not limited to the infected cells; proteins and microRNAs secreted by infected cells affect lipid metabolism systemically. Given an essential role that host cholesterol metabolism plays in pathogen development, targeting this interaction may be a viable strategy to fight infections, as well as metabolic complications of the infections.

  10. The risk of metabolic syndrome and nutrition

    Directory of Open Access Journals (Sweden)

    Aleksandr Konstantinovich Kuntsevich

    2015-02-01

    Full Text Available In the present literature review modern epidemiological studies the role of nutrition in the prevalence of the metabolic syndrome. Were analyzed mainly work on the association of certain types of dietary intake of the population to the risk of metabolic syndrome in several Western and Asian countries. The purpose of these studies was to determine deemed "good" type and the "bad" type of food, risk assessment and exchange of metabolic disorders to determine the optimal dietary recommendations.  Application of factor and cluster analysis allowed in a number of studies to identify groups of products associated with a decrease in the prevalence of metabolic syndrome and to estimate the odds ratios of metabolic syndrome when compared with the "bad" diet.  A number of papers were obtained confirm the effectiveness of the Mediterranean diet in the prevention of metabolic disorders. Commitment to the traditional Western diet is associated with deterioration in health, compared with the recommended "healthy" diet.  Data from epidemiological studies nutrition and metabolic disorders associated with a number of diseases, may be useful in determining how the recommendations on the best type of feeding the population, so to identify ways to further research.

  11. Selected Metabolic Responses to Skateboarding

    Science.gov (United States)

    Hetzler, Ronald K.; Hunt, Ian; Stickley, Christopher D.; Kimura, Iris F.

    2011-01-01

    Despite the popularity of skateboarding worldwide, the authors believe that no previous studies have investigated the metabolic demands associated with recreational participation in the sport. Although metabolic equivalents (METs) for skateboarding were published in textbooks, the source of these values is unclear. Therefore, the rise in…

  12. Metabolic Surgery

    DEFF Research Database (Denmark)

    Pareek, Manan; Schauer, Philip R; Kaplan, Lee M

    2018-01-01

    The alarming rise in the worldwide prevalence of obesity is paralleled by an increasing burden of type 2 diabetes mellitus. Metabolic surgery is the most effective means of obtaining substantial and durable weight loss in individuals with obesity. Randomized trials have recently shown...... the superiority of surgery over medical treatment alone in achieving improved glycemic control, as well as a reduction in cardiovascular risk factors. The mechanisms seem to extend beyond the magnitude of weight loss alone and include improvements in incretin profiles, insulin secretion, and insulin sensitivity....... Moreover, observational data suggest that the reduction in cardiovascular risk factors translates to better patient outcomes. This review describes commonly used metabolic surgical procedures and their current indications and summarizes the evidence related to weight loss and glycemic outcomes. It further...

  13. Deepening, and repairing, the metabolic rift.

    Science.gov (United States)

    Schneider, Mindi; McMichael, Philip

    2010-01-01

    This paper critically assesses the metabolic rift as a social, ecological, and historical concept describing the disruption of natural cycles and processes and ruptures in material human-nature relations under capitalism. As a social concept, the metabolic rift presumes that metabolism is understood in relation to the labour process. This conception, however, privileges the organisation of labour to the exclusion of the practice of labour, which we argue challenges its utility for analysing contemporary socio-environmental crises. As an ecological concept, the metabolic rift is based on outmoded understandings of (agro) ecosystems and inadequately describes relations and interactions between labour and ecological processes. Historically, the metabolic rift is integral to debates about the definitions and relations of capitalism, industrialism, and modernity as historical concepts. At the same time, it gives rise to an epistemic rift, insofar as the separation of the natural and social worlds comes to be expressed in social thought and critical theory, which have one-sidedly focused on the social. We argue that a reunification of the social and the ecological, in historical practice and in historical thought, is the key to repairing the metabolic rift, both conceptually and practically. The food sovereignty movement in this respect is exemplary.

  14. Topological analysis of metabolic control.

    Science.gov (United States)

    Sen, A K

    1990-12-01

    A topological approach is presented for the analysis of control and regulation in metabolic pathways. In this approach, the control structure of a metabolic pathway is represented by a weighted directed graph. From an inspection of the topology of the graph, the control coefficients of the enzymes are evaluated in a heuristic manner in terms of the enzyme elasticities. The major advantage of the topological approach is that it provides a visual framework for (1) calculating the control coefficients of the enzymes, (2) analyzing the cause-effect relationships of the individual enzymes, (3) assessing the relative importance of the enzymes in metabolic regulation, and (4) simplifying the structure of a given pathway, from a regulatory viewpoint. Results are obtained for (a) an unbranched pathway in the absence of feedback the feedforward regulation and (b) an unbranched pathway with feedback inhibition. Our formulation is based on the metabolic control theory of Kacser and Burns (1973) and Heinrich and Rapoport (1974).

  15. Neuroinflammatory basis of metabolic syndrome.

    Science.gov (United States)

    Purkayastha, Sudarshana; Cai, Dongsheng

    2013-10-05

    Inflammatory reaction is a fundamental defense mechanism against threat towards normal integrity and physiology. On the other hand, chronic diseases such as obesity, type 2 diabetes, hypertension and atherosclerosis, have been causally linked to chronic, low-grade inflammation in various metabolic tissues. Recent cross-disciplinary research has led to identification of hypothalamic inflammatory changes that are triggered by overnutrition, orchestrated by hypothalamic immune system, and sustained through metabolic syndrome-associated pathophysiology. While continuing research is actively trying to underpin the identity and mechanisms of these inflammatory stimuli and actions involved in metabolic syndrome disorders and related diseases, proinflammatory IκB kinase-β (IKKβ), the downstream nuclear transcription factor NF-κB and some related molecules in the hypothalamus were discovered to be pathogenically significant. This article is to summarize recent progresses in the field of neuroendocrine research addressing the central integrative role of neuroinflammation in metabolic syndrome components ranging from obesity, glucose intolerance to cardiovascular dysfunctions.

  16. SIRT1 and metabolic syndrome

    Directory of Open Access Journals (Sweden)

    Katarzyna Mac-Marcjanek

    2011-04-01

    Full Text Available Both obesity and type 2 diabetes mellitus, two major components of metabolic syndrome, become healthepidemics in the world. Over the past decade, advances in understanding the role of some regulators participatingin lipid and carbohydrate homeostasis have been made.Of them, SIRT1, the mammalian orthologue of the yeast Sir2 protein has been identified. SIRT1 is a nuclearNAD+-dependent deacetylase that targets many transcriptional modulators, including PPAR-α and -γ (peroxisomeproliferator-activated receptors α and γ, PGC-1α (PPAR-γ coactivator-1α, FOXO (forkhead box O proteins,and nuclear factor κB (NF-κB, thereby this enzyme mediates a wide range of physiological processes like apoptosis,fat metabolism, glucose homeostasis, and neurodegeneration.In this article, we discuss how SIRT1 regulates lipid and carbohydrate metabolism, and insulin secretion indifferent metabolic organs/tissue, including liver, muscle, pancreas, and fat. Additionally, the role of this enzymein reduction of inflammatory signalling is highlighted.

  17. The impact of metabolic syndrome on metabolic, pro-inflammatory and prothrombotic markers according to the presence of high blood pressure criterion.

    Science.gov (United States)

    Gil, Juliana S; Drager, Luciano F; Guerra-Riccio, Grazia M; Mostarda, Cristiano; Irigoyen, Maria C; Costa-Hong, Valeria; Bortolotto, Luiz A; Egan, Brent M; Lopes, Heno F

    2013-12-01

    We explored whether high blood pressure is associated with metabolic, inflammatory and prothrombotic dysregulation in patients with metabolic syndrome. We evaluated 135 consecutive overweight/obese patients. From this group, we selected 75 patients who were not under the regular use of medications for metabolic syndrome as defined by the current Expert Panel on Detection, Evaluation and Treatment of High Blood Cholesterol in Adults criteria. The patients were divided into metabolic syndrome with and without high blood pressure criteria (≥130/≥85 mmHg). Compared to the 45 metabolic syndrome patients without high blood pressure, the 30 patients with metabolic syndrome and high blood pressure had significantly higher glucose, insulin, homeostasis model assessment insulin resistance index, total cholesterol, low-density lipoprotein-cholesterol, triglycerides, uric acid and creatinine values; in contrast, these patients had significantly lower high-density lipoprotein-cholesterol values. Metabolic syndrome patients with high blood pressure also had significantly higher levels of retinol-binding protein 4, plasminogen activator inhibitor 1, interleukin 6 and monocyte chemoattractant protein 1 and lower levels of adiponectin. Moreover, patients with metabolic syndrome and high blood pressure had increased surrogate markers of sympathetic activity and decreased baroreflex sensitivity. Logistic regression analysis showed that high-density lipoprotein, retinol-binding protein 4 and plasminogen activator inhibitor-1 levels were independently associated with metabolic syndrome patients with high blood pressure. There is a strong trend for an independent association between metabolic syndrome patients with high blood pressure and glucose levels. High blood pressure, which may be related to the autonomic dysfunction, is associated with metabolic, inflammatory and prothrombotic dysregulation in patients with metabolic syndrome.

  18. The impact of metabolic syndrome on metabolic, pro-inflammatory and prothrombotic markers according to the presence of high blood pressure criterion

    Directory of Open Access Journals (Sweden)

    Juliana S. Gil

    2013-12-01

    Full Text Available OBJECTIVES: We explored whether high blood pressure is associated with metabolic, inflammatory and prothrombotic dysregulation in patients with metabolic syndrome. METHODS: We evaluated 135 consecutive overweight/obese patients. From this group, we selected 75 patients who were not under the regular use of medications for metabolic syndrome as defined by the current Expert Panel on Detection, Evaluation and Treatment of High Blood Cholesterol in Adults criteria. The patients were divided into metabolic syndrome with and without high blood pressure criteria (≥130/≥85 mmHg. RESULTS: Compared to the 45 metabolic syndrome patients without high blood pressure, the 30 patients with metabolic syndrome and high blood pressure had significantly higher glucose, insulin, homeostasis model assessment insulin resistance index, total cholesterol, low-density lipoprotein-cholesterol, triglycerides, uric acid and creatinine values; in contrast, these patients had significantly lower high-density lipoprotein-cholesterol values. Metabolic syndrome patients with high blood pressure also had significantly higher levels of retinol-binding protein 4, plasminogen activator inhibitor 1, interleukin 6 and monocyte chemoattractant protein 1 and lower levels of adiponectin. Moreover, patients with metabolic syndrome and high blood pressure had increased surrogate markers of sympathetic activity and decreased baroreflex sensitivity. Logistic regression analysis showed that high-density lipoprotein, retinol-binding protein 4 and plasminogen activator inhibitor-1 levels were independently associated with metabolic syndrome patients with high blood pressure. There is a strong trend for an independent association between metabolic syndrome patients with high blood pressure and glucose levels. CONCLUSIONS: High blood pressure, which may be related to the autonomic dysfunction, is associated with metabolic, inflammatory and prothrombotic dysregulation in patients with

  19. Hydrogen production and metabolic flux analysis of metabolically engineered Escherichia coli strains

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seohyoung; Seol, Eunhee; Park, Sunghoon [Department of Chemical and Biochemical Engineering, Pusan National University, Busan 609-735 (Korea); Oh, You-Kwan [Bioenergy Research Center, Korea Institute of Energy Research, Daejeon 305-543 (Korea); Wang, G.Y. [Department of Oceanography, University of Hawaii at Manoa Honolulu, HI 96822 (United States)

    2009-09-15

    Escherichia coli can produce H{sub 2} from glucose via formate hydrogen lyase (FHL). In order to improve the H{sub 2} production rate and yield, metabolically engineered E. coli strains, which included pathway alterations in their H{sub 2} production and central carbon metabolism, were developed and characterized by batch experiments and metabolic flux analysis. Deletion of hycA, a negative regulator for FHL, resulted in twofold increase of FHL activity. Deletion of two uptake hydrogenases (1 (hya) and hydrogenase 2 (hyb)) increased H{sub 2} production yield from 1.20 mol/mol glucose to 1.48 mol/mol glucose. Deletion of lactate dehydrogenase (ldhA) and fumarate reductase (frdAB) further improved the H{sub 2} yield; 1.80 mol/mol glucose under high H{sub 2} pressure or 2.11 mol/mol glucose under reduced H{sub 2} pressure. Several batch experiments at varying concentrations of glucose (2.5-10 g/L) and yeast extract (0.3 or 3.0 g/L) were conducted for the strain containing all these genetic alternations, and their carbon and energy balances were analyzed. The metabolic flux analysis revealed that deletion of ldhA and frdAB directed most of the carbons from glucose to the glycolytic pathway leading to H{sub 2} production by FHL, not to the pentose phosphate pathway. (author)

  20. Metabolic syndrome and metabolic risk profile according to polycystic ovary syndrome phenotype.

    Science.gov (United States)

    Bil, Enes; Dilbaz, Berna; Cirik, Derya Akdag; Ozelci, Runa; Ozkaya, Enis; Dilbaz, Serdar

    2016-07-01

    It is unknown which phenotype of polycystic ovary syndrome (PCOS) has a greater metabolic risk and how to detect this risk. The aim of this study was therefore to compare the incidence of metabolic syndrome (MetS) and metabolic risk profile (MRP) for different phenotypes. A total of 100 consecutive newly diagnosed PCOS women in a tertiary referral hospital were recruited. Patients were classified into four phenotypes according to the Rotterdam criteria, on the presence of at least two of the three criteria hyperandrogenism (H), oligo/anovulation (O) and PCO appearance (P): phenotype A, H + O + P; phenotype B, H + O; phenotype C, H + P; phenotype D, O + P. Prevalence of MetS and MRP were compared among the four groups. Based on Natural Cholesterol Education Program Adult Treatment Panel III diagnostic criteria, MetS prevalence was higher in phenotypes A and B (29.6% and 34.5%) compared with the other phenotypes (10.0% and 8.3%; P 3.8 was significantly higher in androgenic PCOS phenotypes. After logistic regression analysis, visceral adiposity index (VAI) was the only independent predictor of MetS in PCOS (P = 0.002). VAI was also significantly higher in phenotype B, when compared with the others (P risk of MetS among the four phenotypes, and VAI may be a predictor of metabolic risk in PCOS women. © 2016 Japan Society of Obstetrics and Gynecology.

  1. ER Stress and Lipid Metabolism in Adipocytes

    Directory of Open Access Journals (Sweden)

    Beth S. Zha

    2012-01-01

    Full Text Available The role of endoplasmic reticulum (ER stress is a rapidly emerging field of interest in the pathogenesis of metabolic diseases. Recent studies have shown that chronic activation of ER stress is closely linked to dysregulation of lipid metabolism in several metabolically important cells including hepatocytes, macrophages, β-cells, and adipocytes. Adipocytes are one of the major cell types involved in the pathogenesis of the metabolic syndrome. Recent advances in dissecting the cellular and molecular mechanisms involved in the regulation of adipogenesis and lipid metabolism indicate that activation of ER stress plays a central role in regulating adipocyte function. In this paper, we discuss the current understanding of the potential role of ER stress in lipid metabolism in adipocytes. In addition, we touch upon the interaction of ER stress and autophagy as well as inflammation. Inhibition of ER stress has the potential of decreasing the pathology in adipose tissue that is seen with energy overbalance.

  2. KUDESAN EFFICACY IN ADOLESCENTS WITH METABOLIC SYNDROME

    Directory of Open Access Journals (Sweden)

    M.B. Kolesnikova

    2011-01-01

    Full Text Available Metabolic abnormalities in metabolic syndrome affect the functioning of practically all organs and systems, and most seriously — cardio-vascular system. Cardio-vascular abnormalities in metabolic syndrome manifest as arterial hypertension, Riley-Day syndrome and endothelial dysfunction that can lead to decrease of adaptive and reserve capabilities. Co-enzyme Q10 possesses cardioprotective,  stress-protective and anti-ischaemic activity. Clinical study performed on 40 children aged 10 to 17 years with constitutive obesity, complicated metabolic syndrome, has proven validity of co-enzyme Q10 treatment in patients with metabolic syndrome. The use of co-enzyme Q10 15 mg/day during 30 days has lead to improvement of psycho-emotional condition, decrease in anxiety complaints, sleep improvement, decrease in asthenic syndrome symptoms, improvement in electrophysiological heart indices Key words: metabolic syndrome, co-enzyme Q10. (Voprosy sovremennoi pediatrii — Current Pediatrics. — 2011; 10 (5: 102–106.

  3. Drug Metabolism

    Indian Academy of Sciences (India)

    IAS Admin

    behind metabolic reactions, importance, and consequences with several ... required for drug action. ... lism, which is catalyzed by enzymes present in the above-men- ... catalyze the transfer of one atom of oxygen to a substrate produc-.

  4. Substrate metabolism in the metabolic response to injury

    NARCIS (Netherlands)

    Romijn, J. A.

    2000-01-01

    In healthy subjects the metabolic response to starvation invokes regulatory mechanisms aimed at conservation of protein mass. This response is characterized by a decrease in energy expenditure and a progressive decrease in urinary N excretion. Many non-endocrine diseases induce anorexia and a

  5. Metabolic syndrome in fixed-shift workers

    OpenAIRE

    Raquel Canuto; Marcos Pascoal Pattussi; Jamile Block Araldi Macagnan; Ruth Liane Henn; Maria Teresa Anselmo Olinto

    2015-01-01

    OBJECTIVE To analyze if metabolic syndrome and its altered components are associated with demographic, socioeconomic and behavioral factors in fixed-shift workers. METHODS A cross-sectional study was conducted on a sample of 902 shift workers of both sexes in a poultry processing plant in Southern Brazil in 2010. The diagnosis of metabolic syndrome was determined according to the recommendations from Harmonizing the Metabolic Syndrome. Its frequency was evaluated according to the demographic ...

  6. Metabolic syndrome in fixed-shift workers

    OpenAIRE

    Canuto, Raquel; Pattussi, Marcos Pascoal; Macagnan, Jamile Block Araldi; Henn, Ruth Liane; Olinto, Maria Teresa Anselmo

    2015-01-01

    OBJECTIVE To analyze if metabolic syndrome and its altered components are associated with demographic, socioeconomic and behavioral factors in fixed-shift workers.METHODS A cross-sectional study was conducted on a sample of 902 shift workers of both sexes in a poultry processing plant in Southern Brazil in 2010. The diagnosis of metabolic syndrome was determined according to the recommendations from Harmonizing the Metabolic Syndrome. Its frequency was evaluated according to the demographic (...

  7. Toxic metabolic syndrome associated with HAART

    DEFF Research Database (Denmark)

    Haugaard, Steen B

    2006-01-01

    (HAART) may encounter the HIV-associated lipodystrophy syndrome (HALS), which attenuates patient compliance to this treatment. HALS is characterised by impaired glucose and lipid metabolism and other risk factors for cardiovascular disease. This review depicts the metabolic abnormalities associated...... with HAART by describing the key cell and organ systems that are involved, emphasising the role of insulin resistance. An opinion on the remedies available to treat the metabolic abnormalities and phenotype of HALS is provided....

  8. Hearing Loss, Dizziness, and Carbohydrate Metabolism

    OpenAIRE

    Albernaz, Pedro L. Mangabeira

    2015-01-01

    Abstract Introduction Metabolic activity of the inner ear is very intense, and makes it sensitive to changes in the body homeostasis. This study involves a group of patients with inner ear disorders related to carbohydrate metabolism disturbances, including hearing loss, tinnitus, dizziness, and episodes of vertigo. Objectives To describe the symptoms of metabolic inner ear disorders and the examinations required to establish diagnoses. These symptoms are often the first to allow for an e...

  9. Neuron-glia metabolic coupling and plasticity

    OpenAIRE

    Magistretti PJ

    2011-01-01

    Abstract The focus of the current research projects in my laboratory revolves around the question of metabolic plasticity of neuron glia coupling. Our hypothesis is that behavioural conditions such as for example learning or the sleep wake cycle in which synaptic plasticity is well documented or during specific pathological conditions are accompanied by changes in the regulation of energy metabolism of astrocytes. We have indeed observed that the 'metabolic profile' of astrocytes is modified...

  10. Accessing autonomic function can early screen metabolic syndrome.

    Directory of Open Access Journals (Sweden)

    Kan Sun

    Full Text Available BACKGROUND: Clinical diagnosis of the metabolic syndrome is time-consuming and invasive. Convenient instruments that do not require laboratory or physical investigation would be useful in early screening individuals at high risk of metabolic syndrome. Examination of the autonomic function can be taken as a directly reference and screening indicator for predicting metabolic syndrome. METHODOLOGY AND PRINCIPAL FINDINGS: The EZSCAN test, as an efficient and noninvasive technology, can access autonomic function through measuring electrochemical skin conductance. In this study, we used EZSCAN value to evaluate autonomic function and to detect metabolic syndrome in 5,887 participants aged 40 years or older. The EZSCAN test diagnostic accuracy was analyzed by receiver operating characteristic curves. Among the 5,815 participants in the final analysis, 2,541 were diagnosed as metabolic syndrome and the overall prevalence was 43.7%. Prevalence of the metabolic syndrome increased with the elevated EZSCAN risk level (p for trend <0.0001. Moreover, EZSCAN value was associated with an increase in the number of metabolic syndrome components (p for trend <0.0001. Compared with the no risk group (EZSCAN value 0-24, participants at the high risk group (EZSCAN value: 50-100 had a 2.35 fold increased risk of prevalent metabolic syndrome after the multiple adjustments. The area under the curve of the EZSCAN test was 0.62 (95% confidence interval [CI], 0.61-0.64 for predicting metabolic syndrome. The optimal operating point for the EZSCAN value to detect a high risk of prevalent metabolic syndrome was 30 in this study, while the sensitivity and specificity were 71.2% and 46.7%, respectively. CONCLUSIONS AND SIGNIFICANCE: In conclusion, although less sensitive and accurate when compared with the clinical definition of metabolic syndrome, we found that the EZSCAN test is a good and simple screening technique for early predicting metabolic syndrome.

  11. Pharmacological treatment and therapeutic perspectives of metabolic syndrome.

    Science.gov (United States)

    Lim, Soo; Eckel, Robert H

    2014-12-01

    Metabolic syndrome is a disorder based on insulin resistance. Metabolic syndrome is diagnosed by a co-occurrence of three out of five of the following medical conditions: abdominal obesity, elevated blood pressures, elevated glucose, high triglycerides, and low high-density lipoprotein-cholesterol (HDL-C) levels. Clinical implication of metabolic syndrome is that it increases the risk of developing type 2 diabetes and cardiovascular diseases. Prevalence of the metabolic syndrome has increased globally, particularly in the last decade, to the point of being regarded as an epidemic. The prevalence of metabolic syndrome in the USA is estimated to be 34% of adult population. Moreover, increasing rate of metabolic syndrome in developing countries is dramatic. One can speculate that metabolic syndrome is going to induce huge impact on our lives. The metabolic syndrome cannot be treated with a single agent, since it is a multifaceted health problem. A healthy lifestyle including weight reduction is likely most effective in controlling metabolic syndrome. However, it is difficult to initiate and maintain healthy lifestyles, and in particular, with the recidivism of obesity in most patients who lose weight. Next, pharmacological agents that deal with obesity, diabetes, hypertension, and dyslipidemia can be used singly or in combination: anti-obesity drugs, thiazolidinediones, metformin, statins, fibrates, renin-angiotensin system blockers, glucagon like peptide-1 agonists, sodium glucose transporter-2 inhibitors, and some antiplatelet agents such as cilostazol. These drugs have not only their own pharmacologic targets on individual components of metabolic syndrome but some other properties may prove beneficial, i.e. anti-inflammatory and anti-oxidative. This review will describe pathophysiologic features of metabolic syndrome and pharmacologic agents for the treatment of metabolic syndrome, which are currently available.

  12. Tumor macroenvironment and metabolism.

    Science.gov (United States)

    Al-Zoughbi, Wael; Al-Zhoughbi, Wael; Huang, Jianfeng; Paramasivan, Ganapathy S; Till, Holger; Pichler, Martin; Guertl-Lackner, Barbara; Hoefler, Gerald

    2014-04-01

    In this review we introduce the concept of the tumor macroenvironment and explore it in the context of metabolism. Tumor cells interact with the tumor microenvironment including immune cells. Blood and lymph vessels are the critical components that deliver nutrients to the tumor and also connect the tumor to the macroenvironment. Several factors are then released from the tumor itself but potentially also from the tumor microenvironment, influencing the metabolism of distant tissues and organs. Amino acids, and distinct lipid and lipoprotein species can be essential for further tumor growth. The role of glucose in tumor metabolism has been studied extensively. Cancer-associated cachexia is the most important tumor-associated systemic syndrome and not only affects the quality of life of patients with various malignancies but is estimated to be the cause of death in 15%-20% of all cancer patients. On the other hand, systemic metabolic diseases such as obesity and diabetes are known to influence tumor development. Furthermore, the clinical implications of the tumor macroenvironment are explored in the context of the patient's outcome with special consideration for pediatric tumors. Finally, ways to target the tumor macroenvironment that will provide new approaches for therapeutic concepts are described. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Hepatic diseases related to triglyceride metabolism.

    Science.gov (United States)

    Aguilera-Méndez, Asdrubal; Álvarez-Delgado, Carolina; Hernández-Godinez, Daniel; Fernandez-Mejia, Cristina

    2013-10-01

    Triglycerides participate in key metabolic functions such as energy storage, thermal insulation and as deposit for essential and non-essential fatty acids that can be used as precursors for the synthesis of structural and functional phospholipids. The liver is a central organ in the regulation of triglyceride metabolism, and it participates in triglyceride synthesis, export, uptake and oxidation. The metabolic syndrome and associated diseases are among the main concerns of public health worldwide. One of the metabolic syndrome components is impaired triglyceride metabolism. Diseases associated with the metabolic syndrome promote the appearance of hepatic alterations e.g., non-alcoholic steatosis, steatohepatitis, fibrosis, cirrhosis and cancer. In this article, we review the molecular actions involved in impaired triglyceride metabolism and its association with hepatic diseases. We discuss mechanisms that reconcile the chronic inflammation and insulin resistance, and new concepts on the role of intestinal micro-flora permeability and proliferation in fatty liver etiology. We also describe the participation of oxidative stress in the progression of events leading from steatosis to steatohepatitis and fibrosis. Finally, we provide information regarding the mechanisms that link fatty acid accumulation during steatosis with changes in growth factors and cytokines that lead to the development of neoplastic cells. One of the main medical concerns vis-a-vis hepatic diseases is the lack of symptoms at the onset of the illness and, as result, its late diagnosis. The understandings of the molecular mechanisms that underlie hepatic diseases could help design strategies towards establishing markers for their accurate and timely diagnosis.

  14. Clinical neurogenetics: neurologic presentations of metabolic disorders.

    Science.gov (United States)

    Kwon, Jennifer M; D'Aco, Kristin E

    2013-11-01

    This article reviews aspects of the neurologic presentations of selected treatable inborn errors of metabolism within the category of small molecule disorders caused by defects in pathways of intermediary metabolism. Disorders that are particularly likely to be seen by neurologists include those associated with defects in amino acid metabolism (organic acidemias, aminoacidopathies, urea cycle defects). Other disorders of small molecule metabolism are discussed as additional examples in which early treatments have the potential for better outcomes. Copyright © 2013 Elsevier Inc. All rights reserved.

  15. Frequency of metabolic abnormalities in urinary stones patients.

    Science.gov (United States)

    Ahmad, Iftikhar; Pansota, Mudassar Saeed; Tariq, Muhammad; Tabassum, Shafqat Ali

    2013-11-01

    To determine the frequency of metabolic abnormalities in the serum and urine of patients with urinary stones disease. Two hundred patients with either multiple or recurrent urolithiasis diagnosed on ultrasonography and intravenous urography were included in this study. 24 hour urine sample were collected from each patient and sent for PH, specific gravity, Creatinine, uric acid, calcium, phosphate, oxalate, citrate and magnesium. In addition, blood sample of each patient was also sent for serum levels of urea, creatinine, uric acid, phosphate and calcium. Mean age of patients was 38 ± 7.75 years with male to female ratio of 2:1. The main presenting complaint was lumber pain and 82.5% patients were found to have calcium oxalate stones on chemical analysis. Metabolic abnormalities were found in 90.5% patients, whereas there were no metabolic abnormalities in 19 (9.5%) patients. Forty patients (21.5%) only had one metabolic abnormality and 157 (78.5%) patients had multiple metabolic abnormalities. Hyperoxaluria was the most commonly observed metabolic abnormality and was found in 64.5% patients. Other significant metabolic abnormalities were hypercalciuria, Hypercalcemia, hypocitraturia and hyperuricemia. This study concludes that frequency of metabolic abnormalities is very high in patients with urolithiasis and hyperoxaluria, hypercalciuria and hypocitraturia are the most important metabolic abnormalities observed in these patients.

  16. Metabolic Syndrome in Schizophrenia: A Non‑systematic Review

    Directory of Open Access Journals (Sweden)

    Marta Nascimento

    2012-12-01

    Full Text Available Background: The link between mental illness and metabolic disturbances has been recognized since the beginning of the last century. The debate concerning medical morbidity in schizophrenia intensified during the last twenty years, especially after the introduction of atypical antipsychotics. Aims: To highlight some features of the metabolic syndrome in this population, specifically epidemiological data, underlying mechanisms and antipsychotic therapy. Methods: Non‑systematic review of literature. Results and Conclusions: Despite the different criteria used for the definition of metabolic syndrome, it is clear today that the schizophrenic population has the highest rate of metabolic syndrome. Additionally, the prevalence of the metabolic syndrome in this population demonstrates a geographical distribution similar to the general population. Although it hasn’t been recognized for years, schizophrenic patients’ vulnerability to develop metabolic disturbances isn’t entirely related to antipsychotic therapy. Actually, it results from an interaction of multiple factors, including hereditary, genetic, biochemical and environmental ones (which include antipsychotic therapy. Moreover, they are not exclusively explained by weight gain. Metabolic disturbances are one of the main concerns related to general psychopharmacology. The differences between typical and atypical antipsychotics in terms of metabolic syndrome are not completely established. However, clozapine and olanzapine are recognized to have the worst metabolic profile, amongst all atypical antipsychotics.

  17. Metabolic Syndrome in Schizophrenia: A Non‑systematic Review

    Directory of Open Access Journals (Sweden)

    Marta Nascimento

    2013-11-01

    Full Text Available Background: The link between mental illness and metabolic disturbances has been recognized since the beginning of the last century. The debate concerning medical morbidity in schizophrenia intensified during the last twenty years, especially after the introduction of atypical antipsychotics. Aims: To highlight some features of the metabolic syndrome in this population, specifically epidemiological data, underlying mechanisms and antipsychotic therapy. Methods: Non‑systematic review of literature. Results and Conclusions: Despite the different criteria used for the definition of metabolic syndrome, it is clear today that the schizophrenic population has the highest rate of metabolic syndrome. Additionally, the prevalence of the metabolic syndrome in this population demonstrates a geographical distribution similar to the general population. Although it hasn’t been recognized for years, schizophrenic patients’ vulnerability to develop metabolic disturbances isn’t entirely related to antipsychotic therapy. Actually, it results from an interaction of multiple factors, including hereditary, genetic, biochemical and environmental ones (which include antipsychotic therapy. Moreover, they are not exclusively explained by weight gain. Metabolic disturbances are one of the main concerns related to general psychopharmacology. The differences between typical and atypical antipsychotics in terms of metabolic syndrome are not completely established. However, clozapine and olanzapine are recognized to have the worst metabolic profile, amongst all atypical antipsychotics.

  18. Tumor Macroenvironment and Metabolism

    OpenAIRE

    Al-Zhoughbi, Wael; Huang, Jianfeng; Paramasivan, Ganapathy S.; Till, Holger; Pichler, Martin; Guertl-Lackner, Barbara; Hoefler, Gerald

    2014-01-01

    In this review we introduce the concept of the tumor macroenvironment and explore it in the context of metabolism. Tumor cells interact with the tumor microenvironment including immune cells. Blood and lymph vessels are the critical components that deliver nutrients to the tumor and also connect the tumor to the macroenvironment. Several factors are then released from the tumor itself but potentially also from the tumor microenvironment, influencing the metabolism of distant tissues and organ...

  19. metabolicMine: an integrated genomics, genetics and proteomics data warehouse for common metabolic disease research.

    Science.gov (United States)

    Lyne, Mike; Smith, Richard N; Lyne, Rachel; Aleksic, Jelena; Hu, Fengyuan; Kalderimis, Alex; Stepan, Radek; Micklem, Gos

    2013-01-01

    Common metabolic and endocrine diseases such as diabetes affect millions of people worldwide and have a major health impact, frequently leading to complications and mortality. In a search for better prevention and treatment, there is ongoing research into the underlying molecular and genetic bases of these complex human diseases, as well as into the links with risk factors such as obesity. Although an increasing number of relevant genomic and proteomic data sets have become available, the quantity and diversity of the data make their efficient exploitation challenging. Here, we present metabolicMine, a data warehouse with a specific focus on the genomics, genetics and proteomics of common metabolic diseases. Developed in collaboration with leading UK metabolic disease groups, metabolicMine integrates data sets from a range of experiments and model organisms alongside tools for exploring them. The current version brings together information covering genes, proteins, orthologues, interactions, gene expression, pathways, ontologies, diseases, genome-wide association studies and single nucleotide polymorphisms. Although the emphasis is on human data, key data sets from mouse and rat are included. These are complemented by interoperation with the RatMine rat genomics database, with a corresponding mouse version under development by the Mouse Genome Informatics (MGI) group. The web interface contains a number of features including keyword search, a library of Search Forms, the QueryBuilder and list analysis tools. This provides researchers with many different ways to analyse, view and flexibly export data. Programming interfaces and automatic code generation in several languages are supported, and many of the features of the web interface are available through web services. The combination of diverse data sets integrated with analysis tools and a powerful query system makes metabolicMine a valuable research resource. The web interface makes it accessible to first

  20. Thyroid disorders and bone mineral metabolism

    Directory of Open Access Journals (Sweden)

    Dinesh Kumar Dhanwal

    2011-01-01

    Full Text Available Thyroid diseases have widespread systemic manifestations including their effect on bone metabolism. On one hand, the effects of thyrotoxicosis including subclinical disease have received wide attention from researchers over the last century as it an important cause of secondary osteoporosis. On the other hand, hypothyroidism has received lesser attention as its effect on bone mineral metabolism is minimal. Therefore, this review will primarily focus on thyrotoxicosis and its impact on bone mineral metabolism.

  1. DRUM: a new framework for metabolic modeling under non-balanced growth. Application to the carbon metabolism of unicellular microalgae.

    Science.gov (United States)

    Baroukh, Caroline; Muñoz-Tamayo, Rafael; Steyer, Jean-Philippe; Bernard, Olivier

    2014-01-01

    Metabolic modeling is a powerful tool to understand, predict and optimize bioprocesses, particularly when they imply intracellular molecules of interest. Unfortunately, the use of metabolic models for time varying metabolic fluxes is hampered by the lack of experimental data required to define and calibrate the kinetic reaction rates of the metabolic pathways. For this reason, metabolic models are often used under the balanced growth hypothesis. However, for some processes such as the photoautotrophic metabolism of microalgae, the balanced-growth assumption appears to be unreasonable because of the synchronization of their circadian cycle on the daily light. Yet, understanding microalgae metabolism is necessary to optimize the production yield of bioprocesses based on this microorganism, as for example production of third-generation biofuels. In this paper, we propose DRUM, a new dynamic metabolic modeling framework that handles the non-balanced growth condition and hence accumulation of intracellular metabolites. The first stage of the approach consists in splitting the metabolic network into sub-networks describing reactions which are spatially close, and which are assumed to satisfy balanced growth condition. The left metabolites interconnecting the sub-networks behave dynamically. Then, thanks to Elementary Flux Mode analysis, each sub-network is reduced to macroscopic reactions, for which simple kinetics are assumed. Finally, an Ordinary Differential Equation system is obtained to describe substrate consumption, biomass production, products excretion and accumulation of some internal metabolites. DRUM was applied to the accumulation of lipids and carbohydrates of the microalgae Tisochrysis lutea under day/night cycles. The resulting model describes accurately experimental data obtained in day/night conditions. It efficiently predicts the accumulation and consumption of lipids and carbohydrates.

  2. [THE INCONSISTENCIES OF REGULATION OF METABOLISM IN PHYLOGENESIS AT THREE LEVELS OF "RELATIVE BIOLOGICAL PERFECTION": ETIOLOGY OF METABOLIC PANDEMICS].

    Science.gov (United States)

    Titov, V N

    2015-11-01

    The regulation of metabolism in vivo can be comprehended by considering stages of becoming inphylogenesis of humoral, hormonal, vegetative regulators separately: at the level of cells; in paracrin-regulated cenosises of cells; organs and systems under open blood circulation and closed system of blood flow. The levels of regulations formed at different stages of phylogenesis. Their completion occurred at achievement of "relative biological perfection". Only this way need of cells in functional, structural interaction and forming of multicellular developed. The development of organs and systems of organs also completed at the level of "relative biological perfection". From the same level the third stage of becoming of regulation of metabolism at the level of organism started. When three conditions of "relative biological perfection" achieved consequently at level in vivo are considered in species Homo sapiens using system approach it is detected that "relative biological perfection" in vivo is accompanied by different inconsistencies of regulation of metabolism. They are etiologic factors of "metabolic pandemics ". The inconsistencies (etiological factors) are consider as exemplified by local (at the level of paracrin-regulated cenosises of cells) and system (at the level of organism) regulation of biological reaction metabolism-microcirculation that results in dysfunction of target organs and development of pathogenesis of essential metabolic arterial hypertension. The article describes phylogenetic difference between visceral fatty cells and adpocytes, regulation of metabolism by phylogenetically late insulin, reaction of albumin at increasing of content of unesterified fatty acids in blood plasma, difference of function of resident macrophage and monocytes-macrophages in pathogenesis of atherosclerosis, metabolic syndrome, insulin resistance, obesity, under diabetes mellitus and essential metabolic arterial hypertension.

  3. DRUM: a new framework for metabolic modeling under non-balanced growth. Application to the carbon metabolism of unicellular microalgae.

    Directory of Open Access Journals (Sweden)

    Caroline Baroukh

    Full Text Available Metabolic modeling is a powerful tool to understand, predict and optimize bioprocesses, particularly when they imply intracellular molecules of interest. Unfortunately, the use of metabolic models for time varying metabolic fluxes is hampered by the lack of experimental data required to define and calibrate the kinetic reaction rates of the metabolic pathways. For this reason, metabolic models are often used under the balanced growth hypothesis. However, for some processes such as the photoautotrophic metabolism of microalgae, the balanced-growth assumption appears to be unreasonable because of the synchronization of their circadian cycle on the daily light. Yet, understanding microalgae metabolism is necessary to optimize the production yield of bioprocesses based on this microorganism, as for example production of third-generation biofuels. In this paper, we propose DRUM, a new dynamic metabolic modeling framework that handles the non-balanced growth condition and hence accumulation of intracellular metabolites. The first stage of the approach consists in splitting the metabolic network into sub-networks describing reactions which are spatially close, and which are assumed to satisfy balanced growth condition. The left metabolites interconnecting the sub-networks behave dynamically. Then, thanks to Elementary Flux Mode analysis, each sub-network is reduced to macroscopic reactions, for which simple kinetics are assumed. Finally, an Ordinary Differential Equation system is obtained to describe substrate consumption, biomass production, products excretion and accumulation of some internal metabolites. DRUM was applied to the accumulation of lipids and carbohydrates of the microalgae Tisochrysis lutea under day/night cycles. The resulting model describes accurately experimental data obtained in day/night conditions. It efficiently predicts the accumulation and consumption of lipids and carbohydrates.

  4. The impact of music on metabolism.

    Science.gov (United States)

    Yamasaki, Alisa; Booker, Abigail; Kapur, Varun; Tilt, Alexandra; Niess, Hanno; Lillemoe, Keith D; Warshaw, Andrew L; Conrad, Claudius

    2012-01-01

    The study of music and medicine is a rapidly growing field that in the past, has been largely focused on the use of music as a complementary therapy. Increasing interest has been centered on understanding the physiologic mechanisms underlying the effects of music and, more recently, the suggested role of music in modulating metabolic responses. Research has established a role for music in the regulation of the hypothalamic-pituitary axis, the sympathetic nervous system, and the immune system, which have key functions in the regulation of metabolism and energy balance. More recent findings have shown a role for music in the metabolic recovery from stress, the regulation of gastric and intestinal motility, the moderation of cancer-related gastrointestinal symptoms, and the increase of lipid metabolism and lactic acid clearance during exercise and postexercise recovery. The purpose of this article is to summarize the most current understanding of the mechanisms by which music affects the metabolic responses in the context of potential applications. Copyright © 2012 Elsevier Inc. All rights reserved.

  5. Drug Metabolism

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 19; Issue 3. Drug Metabolism: A Fascinating Link Between Chemistry and Biology. Nikhil Taxak Prasad V Bharatam. General Article Volume 19 Issue 3 March 2014 pp 259-282 ...

  6. Metabolism of dinosaurs as determined from their growth

    Science.gov (United States)

    Lee, Scott A.

    2015-09-01

    A model based on cellular properties is used to analyze the mass growth curves of 20 dinosaurs. This analysis yields the first measurement of the average cellular metabolism of dinosaurs. The organismal metabolism is also determined. The cellular metabolism of dinosaurs is found to decrease with mass at a slower rate than is observed in extant animals. The organismal metabolism increases with the mass of the dinosaur. These results come from both the Saurischia and Ornithischia branches of Dinosauria, suggesting that the observed metabolic features were common to all dinosaurs. The results from dinosaurs are compared to data from extant placental and marsupial mammals, a monotreme, and altricial and precocial birds, reptiles, and fish. Dinosaurs had cellular and organismal metabolisms in the range observed in extant mesotherms.

  7. Metabolism of dinosaurs as determined from their growth.

    Science.gov (United States)

    Lee, Scott A

    2015-09-01

    A model based on cellular properties is used to analyze the mass growth curves of 20 dinosaurs. This analysis yields the first measurement of the average cellular metabolism of dinosaurs. The organismal metabolism is also determined. The cellular metabolism of dinosaurs is found to decrease with mass at a slower rate than is observed in extant animals. The organismal metabolism increases with the mass of the dinosaur. These results come from both the Saurischia and Ornithischia branches of Dinosauria, suggesting that the observed metabolic features were common to all dinosaurs. The results from dinosaurs are compared to data from extant placental and marsupial mammals, a monotreme, and altricial and precocial birds, reptiles, and fish. Dinosaurs had cellular and organismal metabolisms in the range observed in extant mesotherms.

  8. Nuclear receptors and metabolism: from feast to famine.

    Science.gov (United States)

    Hong, Suk-Hyun; Ahmadian, Maryam; Yu, Ruth T; Atkins, Annette R; Downes, Michael; Evans, Ronald M

    2014-05-01

    The ability to adapt to cycles of feast and famine is critical for survival. Communication between multiple metabolic organs must be integrated to properly metabolise nutrients. By controlling networks of genes in major metabolic organs, nuclear hormone receptors (NHRs) play central roles in regulating metabolism in a tissue-specific manner. NHRs also establish daily rhythmicity by controlling the expression of core clock genes both centrally and peripherally. Recent findings show that many of the metabolic effects of NHRs are mediated through certain members of the fibroblast growth factor (FGF) family. This review focuses on the roles of NHRs in critical metabolic organs, including adipose tissue, liver and muscle, during the fed and fasted states, as well as their roles in circadian metabolism and downstream regulation of FGFs.

  9. Structural changes in the liver in metabolic syndrome

    Directory of Open Access Journals (Sweden)

    D. V. Vasendin

    2015-01-01

    Full Text Available Scientifically proven close relationship of nonalcoholic fatty liver disease with development of metabolic syndrome and its individual components involves the conclusion that the target organ in metabolic symptom, even regardless of the severity of obesity, the liver occupies a dominant position, as the body undergoes the first characteristic of non-alcoholic fatty liver disease changes, involving violation of metabolism in the body. Dislipoproteinemia plays an important role in the formation of metabolic syndrome in obesity and other obesity-associated diseases. Altered liver function are the root cause of violations of processes of lipid metabolism and, consequently, abnormal functioning of the liver may be a separate, additional and independent risk factor for development of dyslipidemia and obesity as the main component of the metabolic syndrome.

  10. A CASE OF METABOLIC SYNDROME

    OpenAIRE

    Khoo Ee Ming; Rabia Khatoon

    2006-01-01

    This case report illustrates a 40-year-old woman who presented with chest discomfort that was subsequently diagnosed to have metabolic syndrome. Metabolic syndrome is a common condition associated with increased cardiovascular morbidity and mortality. As primary care providers, we should be detect this condition early, intervene and prevent appropriately before complications occur.

  11. New peptides players in metabolic disorders

    Directory of Open Access Journals (Sweden)

    Agata Mierzwicka

    2016-08-01

    Full Text Available Among new peptides responsible for the pathogenesis of metabolic disorders and carbohydrate metabolism, adipokines are of great importance. Adipokines are substances of hormonal character, secreted by adipose tissue. Apart from the well-known adipokines, adropin and preptin are relatively newly discovered, hence their function is not fully understood. They are peptides not secreted by adipose tissue but their role in the metabolic regulations seems to be significant. Preptin is a 34-amino acid peptide, a derivative of proinsulin growth factor II (pro-IGF-II, secreted by pancreatic β cells, considered to be a physiological enhancer of insulin secretion. Additionally, preptin has a stimulating effect on osteoblasts, inducing their proliferation, differentiation and survival. Adropin is a 76-amino acid peptide, encoded by the energy homeostasis associated gene (Enho, mainly in liver and brain, and its expression is dependent on a diet. Adropin is believed to play an important role in metabolic homeostasis, fatty acids metabolism control, insulin resistance prevention, dyslipidemia, and impaired glucose tolerance. The results of studies conducted so far show that the diseases resulting from metabolic syndrome, such as obesity, type 2 diabetes mellitus, polycystic ovary syndrome, non-alcoholic fatty liver disease, or cardiovascular disease are accompanied by significant changes in the concentration of these peptides. It is also important to note that preptin has an anabolic effect on bone tissue, which might be preventive in osteoporosis.

  12. Metabolic anatomy of paraneoplastic cerebellar degeneration

    International Nuclear Information System (INIS)

    Anderson, N.E.; Posner, J.B.; Sidtis, J.J.; Moeller, J.R.; Strother, S.C.; Dhawan, V.; Rottenberg, D.A.

    1988-01-01

    Eleven patients with acquired cerebellar degeneration (10 of whom had paraneoplastic cerebellar degeneration [PCD]) were evaluated using neuropsychological tests and 18 F-fluorodeoxyglucose/positron emission tomography to (1) quantify motor, cognitive, and metabolic abnormalities; (2) determine if characteristic alterations in the regional cerebral metabolic rate for glucose (rCMRGlc) are associated with PCD; and (3) correlate behavioral and metabolic measures of disease severity. Eighteen volunteer subjects served as normal controls. Although some PCD neuropsychological test scores were abnormal, these results could not, in general, be dissociated from the effects of dysarthria and ataxia. rCMRGlc was reduced in patients with PCD (versus normal control subjects) in all regions except the brainstem. Analysis of patient and control rCMRGlc data using a mathematical model of regional metabolic interactions revealed two metabolic pattern descriptors, SSF1 and SSF2, which distinguished patients with PCD from normal control subjects; SSF2, which described a metabolic coupling between cerebellum, cuneus, and posterior temporal, lateral frontal, and paracentral cortex, correlated with quantitative indices of cerebellar dysfunction. Our inability to document substantial intellectual impairment in 7 of 10 patients with PCD contrasts with the 50% incidence of dementia in PCD reported by previous investigators. Widespread reductions in PCD rCMRGlc may result from the loss of cerebellar efferents to thalamus and forebrain structures, a reverse cerebellar diaschisis

  13. Metabolic consequences of resistive-type exercise

    Science.gov (United States)

    Dudley, G. A.

    1988-01-01

    This brief review concerns acute and chronic metabolic responses to resistive-type exercise (RTE) (i.e., Olympic/power weight lifting and bodybuilding). Performance of RTE presents power output substantially greater (10-15-fold) than that evident with endurance-type exercise. Accordingly, RTE relies heavily on the anaerobic enzyme machinery of skeletal muscle for energy supply, with alterations in the rate of aerobic metabolism being modest. Hydrolysis of high energy phosphate compounds (PC, ATP), glycogenolysis, and glycolysis are evident during an acute bout of RTE as indicated by metabolic markers in mixed fiber type skeletal muscle samples. The type of RTE probably influences the magnitude of these responses since the increase in blood lactate is much greater during a typical "bodybuilding" than "power lifting" session. The influence of RTE training on acute metabolic responses to RTE has received little attention. An individual's inherent metabolic characteristics are apparently sufficient to meet the energy demands of RTE as training of this type does not increase VO2max or substantially alter the content of marker enzymes in mixed fiber type skeletal muscle. Analyses of pools of fast- vs slow-twitch fibers, however, indicate that RTE-induced changes may be fiber type specific. Future studies should better delineate the metabolic responses to RTE and determine whether these are related to the enhanced performance associated with such training.

  14. Disrupted Bone Metabolism in Long-Term Bedridden Patients.

    Science.gov (United States)

    Eimori, Keiko; Endo, Naoto; Uchiyama, Seiji; Takahashi, Yoshinori; Kawashima, Hiroyuki; Watanabe, Kei

    2016-01-01

    Bedridden patients are at risk of osteoporosis and fractures, although the long-term bone metabolic processes in these patients are poorly understood. Therefore, we aimed to determine how long-term bed confinement affects bone metabolism. This study included 36 patients who had been bedridden from birth due to severe immobility. Bone mineral density and bone metabolism markers were compared to the bedridden period in all study patients. Changes in the bone metabolism markers during a follow-up of 12 years were studied in 17 patients aged bedridden period. During the follow-up, osteocalcin and parathyroid hormone were decreased, and the 25(OH) vitamin D was increased. NTX at baseline was negatively associated with bone mineral density after 12 years. Unique bone metabolic abnormalities were found in patients who had been bedridden for long periods, and these metabolic abnormalities were altered by further bed confinement. Appropriate treatment based on the unique bone metabolic changes may be important in long-term bedridden patients.

  15. Exploration of Energy Metabolism in the Mouse Using Indirect Calorimetry: Measurement of Daily Energy Expenditure (DEE) and Basal Metabolic Rate (BMR).

    Science.gov (United States)

    Meyer, Carola W; Reitmeir, Peter; Tschöp, Matthias H

    2015-09-01

    Current comprehensive mouse metabolic phenotyping involves studying energy balance in cohorts of mice via indirect calorimetry, which determines heat release from changes in respiratory air composition. Here, we describe the measurement of daily energy expenditure (DEE) and basal metabolic rate (BMR) in mice. These well-defined metabolic descriptors serve as meaningful first-line read-outs for metabolic phenotyping and should be reported when exploring energy expenditure in mice. For further guidance, the issue of appropriate sample sizes and the frequency of sampling of metabolic measurements is also discussed. Copyright © 2015 John Wiley & Sons, Inc.

  16. Interventions on Metabolism: Making Antibiotic-Susceptible Bacteria

    Directory of Open Access Journals (Sweden)

    Fernando Baquero

    2017-11-01

    Full Text Available Antibiotics act on bacterial metabolism, and antibiotic resistance involves changes in this metabolism. Interventions on metabolism with drugs might therefore modify drug susceptibility and drug resistance. In their recent article, Martin Vestergaard et al. (mBio 8:e01114-17, 2017, https://doi.org/10.1128/mBio.01114-17 illustrate the possibility of converting intrinsically resistant bacteria into susceptible ones. They reported that inhibition of a central metabolic enzyme, ATP synthase, allows otherwise ineffective polymyxin antibiotics to act on Staphylococcus aureus. The study of the intrinsic resistome of bacterial pathogens has shown that several metabolic genes, including multigene transcriptional regulators, contribute to antibiotic resistance. In some cases, these genes only marginally increase antibiotic resistance, but reduced levels of susceptibility might be critical in the evolution or resistance under low antibiotic concentrations or in the clinical response of highly resistant bacteria. Drug interventions on bacterial metabolism might constitute a critical adjuvant therapy in combination with antibiotics to ensure susceptibility of pathogens with intrinsic or acquired antimicrobial resistance.

  17. Cerebral ketone body metabolism.

    Science.gov (United States)

    Morris, A A M

    2005-01-01

    Ketone bodies (KBs) are an important source of energy for the brain. During the neonatal period, they are also precursors for the synthesis of lipids (especially cholesterol) and amino acids. The rate of cerebral KB metabolism depends primarily on the concentration in blood; high concentrations occur during fasting and on a high-fat diet. Cerebral KB metabolism is also regulated by the permeability of the blood-brain barrier (BBB), which depends on the abundance of monocarboxylic acid transporters (MCT1). The BBB's permeability to KBs increases with fasting in humans. In rats, permeability increases during the suckling period, but human neonates have not been studied. Monocarboxylic acid transporters are also present in the plasma membranes of neurons and glia but their role in regulating KB metabolism is uncertain. Finally, the rate of cerebral KB metabolism depends on the activities of the relevant enzymes in brain. The activities vary with age in rats, but reliable results are not available for humans. Cerebral KB metabolism in humans differs from that in the rat in several respects. During fasting, for example, KBs supply more of the brain's energy in humans than in the rat. Conversely, KBs are probably used more extensively in the brain of suckling rats than in human neonates. These differences complicate the interpretation of rodent studies. Most patients with inborn errors of ketogenesis develop normally, suggesting that the only essential role for KBs is as an alternative fuel during illness or prolonged fasting. On the other hand, in HMG-CoA lyase deficiency, imaging generally shows asymptomatic white-matter abnormalities. The ability of KBs to act as an alternative fuel explains the effectiveness of the ketogenic diet in GLUT1 deficiency, but its effectiveness in epilepsy remains unexplained.

  18. Metabolic heterogeneity in clonal microbial populations.

    Science.gov (United States)

    Takhaveev, Vakil; Heinemann, Matthias

    2018-02-21

    In the past decades, numerous instances of phenotypic diversity were observed in clonal microbial populations, particularly, on the gene expression level. Much less is, however, known about phenotypic differences that occur on the level of metabolism. This is likely explained by the fact that experimental tools probing metabolism of single cells are still at an early stage of development. Here, we review recent exciting discoveries that point out different causes for metabolic heterogeneity within clonal microbial populations. These causes range from ecological factors and cell-inherent dynamics in constant environments to molecular noise in gene expression that propagates into metabolism. Furthermore, we provide an overview of current methods to quantify the levels of metabolites and biomass components in single cells. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  19. Metabolic engineering in methanotrophic bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Kalyuzhnaya, MG; Puri, AW; Lidstrom, ME

    2015-05-01

    Methane, as natural gas or biogas, is the least expensive source of carbon for (bio)chemical synthesis. Scalable biological upgrading of this simple alkane to chemicals and fuels can bring new sustainable solutions to a number of industries with large environmental footprints, such as natural gas/petroleum production, landfills, wastewater treatment, and livestock. Microbial biocatalysis with methane as a feedstock has been pursued off and on for almost a half century, with little enduring success. Today, biological engineering and systems biology provide new opportunities for metabolic system modulation and give new optimism to the concept of a methane-based bio-industry. Here we present an overview of the most recent advances pertaining to metabolic engineering of microbial methane utilization. Some ideas concerning metabolic improvements for production of acetyl-CoA and pyruvate, two main precursors for bioconversion, are presented. We also discuss main gaps in the current knowledge of aerobic methane utilization, which must be solved in order to release the full potential of methane-based biosystems. (C) 2015 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  20. Absorption and Metabolism of Xanthophylls

    Directory of Open Access Journals (Sweden)

    Eiichi Kotake-Nara

    2011-06-01

    Full Text Available Dietary carotenoids, especially xanthophylls, have attracted significant attention because of their characteristic biological activities, including anti-allergic, anti-cancer, and anti-obese actions. Although no less than forty carotenoids are ingested under usual dietary habits, only six carotenoids and their metabolites have been found in human tissues, suggesting selectivity in the intestinal absorption of carotenoids. Recently, facilitated diffusion in addition to simple diffusion has been reported to mediate the intestinal absorption of carotenoids in mammals. The selective absorption of carotenoids may be caused by uptake to the intestinal epithelia by the facilitated diffusion and an unknown excretion to intestinal lumen. It is well known that β-carotene can be metabolized to vitamin A after intestinal absorption of carotenoids, but little is known about the metabolic transformation of non provitamin A xanthophylls. The enzymatic oxidation of the secondary hydroxyl group leading to keto-carotenoids would occur as a common pathway of xanthophyll metabolism in mammals. This paper reviews the absorption and metabolism of xanthophylls by introducing recent advances in this field.

  1. Absorption and metabolism of xanthophylls.

    Science.gov (United States)

    Kotake-Nara, Eiichi; Nagao, Akihiko

    2011-01-01

    Dietary carotenoids, especially xanthophylls, have attracted significant attention because of their characteristic biological activities, including anti-allergic, anti-cancer, and anti-obese actions. Although no less than forty carotenoids are ingested under usual dietary habits, only six carotenoids and their metabolites have been found in human tissues, suggesting selectivity in the intestinal absorption of carotenoids. Recently, facilitated diffusion in addition to simple diffusion has been reported to mediate the intestinal absorption of carotenoids in mammals. The selective absorption of carotenoids may be caused by uptake to the intestinal epithelia by the facilitated diffusion and an unknown excretion to intestinal lumen. It is well known that β-carotene can be metabolized to vitamin A after intestinal absorption of carotenoids, but little is known about the metabolic transformation of non provitamin A xanthophylls. The enzymatic oxidation of the secondary hydroxyl group leading to keto-carotenoids would occur as a common pathway of xanthophyll metabolism in mammals. This paper reviews the absorption and metabolism of xanthophylls by introducing recent advances in this field.

  2. Synergy between 13C-metabolic flux analysis and flux balance analysis for understanding metabolic adaption to anaerobiosis in e. coli

    Science.gov (United States)

    Genome-based Flux Balance Analysis (FBA, constraints based flux analysis) and steady state isotopic-labeling-based Metabolic Flux Analysis (MFA) are complimentary approaches to predicting and measuring the operation and regulation of metabolic networks. Here a genome-derived model of E. coli metabol...

  3. Phosphoinositide metabolism and metabolism-contraction coupling in rabbit aorta

    International Nuclear Information System (INIS)

    Coburn, R.F.; Baron, C.; Papadopoulos, M.T.

    1988-01-01

    The authors tested a hypothesis that metabolism-contraction coupling in vascular smooth muscle is controlled by the rate of delivery of energy to ATP-dependent reactions in the inositol phospholipid transduction system that generate second messengers exerting control on smooth muscle force. Rabbit aorta was contracted by norepinephrine (NOR) under conditions of normoxia and hypoxia, and changes in inositol phospholipid pool sizes and metabolic flux rates (J F ) were determined. J F was determined by labeling free cytosolic myo-inositol by incubation of unstimulated muscle with myo-[ 3 H]inositol and then measuring rates of incorporation of this isotope into inositol phospholipids and inositol phosphates when the muscle was activated by NOR. J F measured during maintenance of NOR-induced force was markedly inhibited during hypoxia to 40-50% of that determined during normoxia; rates of increases in inositol phosphate radioactivities were similarly depressed during NOR activation under hypoxia. The hypoxia-induced decrease in J F was associated with four- to fivefold increase in phosphatidylinositol 4-phosphate (PIP) total pool size, suggesting PIP kinase was inhibited and rate limiting. These data suggest that activation of inositol phospholipid metabolism, which generates inositol 1,4,5-trisphosphate (IP 3 ) and diacylglycerol, is blunted under conditions where aerobic energy production is inhibited. Data are consistent with rate-limiting effects of decreased ATP delivery, or decreased phosphate potential, on PIP kinase and reactions that control resynthesis of phosphatidylinositol

  4. Modularization of genetic elements promotes synthetic metabolic engineering.

    Science.gov (United States)

    Qi, Hao; Li, Bing-Zhi; Zhang, Wen-Qian; Liu, Duo; Yuan, Ying-Jin

    2015-11-15

    In the context of emerging synthetic biology, metabolic engineering is moving to the next stage powered by new technologies. Systematical modularization of genetic elements makes it more convenient to engineer biological systems for chemical production or other desired purposes. In the past few years, progresses were made in engineering metabolic pathway using synthetic biology tools. Here, we spotlighted the topic of implementation of modularized genetic elements in metabolic engineering. First, we overviewed the principle developed for modularizing genetic elements and then discussed how the genetic modules advanced metabolic engineering studies. Next, we picked up some milestones of engineered metabolic pathway achieved in the past few years. Last, we discussed the rapid raised synthetic biology field of "building a genome" and the potential in metabolic engineering. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Kinetic modeling of cell metabolism for microbial production.

    Science.gov (United States)

    Costa, Rafael S; Hartmann, Andras; Vinga, Susana

    2016-02-10

    Kinetic models of cellular metabolism are important tools for the rational design of metabolic engineering strategies and to explain properties of complex biological systems. The recent developments in high-throughput experimental data are leading to new computational approaches for building kinetic models of metabolism. Herein, we briefly survey the available databases, standards and software tools that can be applied for kinetic models of metabolism. In addition, we give an overview about recently developed ordinary differential equations (ODE)-based kinetic models of metabolism and some of the main applications of such models are illustrated in guiding metabolic engineering design. Finally, we review the kinetic modeling approaches of large-scale networks that are emerging, discussing their main advantages, challenges and limitations. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Metabolism and dosimetry of tritium

    International Nuclear Information System (INIS)

    Hill, R.L.; Johnson, J.R.

    1993-01-01

    This document was prepared as a review of the current knowledge of tritium metabolism and dosimetry. The physical, chemical, and metabolic characteristics of various forms of tritium are presented as they pertain to performing dose assessments for occupational workers and for the general public. For occupational workers, the forms of tritium discussed include tritiated water, elemental tritium gas, skin absorption from elemental tritium gas-contaminated surfaces, organically bound tritium in pump oils, solvents and other organic compounds, metal tritides, and radioluminous paints. For the general public, age-dependent tritium metabolism is reviewed, as well as tritiated water, elemental tritium gas, organically bound tritium, organically bound tritium in food-stuffs, and tritiated methane. 106 refs

  7. DNA methylation in metabolic disorders

    DEFF Research Database (Denmark)

    Barres, Romain; Zierath, Juleen R

    2011-01-01

    DNA methylation is a major epigenetic modification that controls gene expression in physiologic and pathologic states. Metabolic diseases such as diabetes and obesity are associated with profound alterations in gene expression that are caused by genetic and environmental factors. Recent reports...... have provided evidence that environmental factors at all ages could modify DNA methylation in somatic tissues, which suggests that DNA methylation is a more dynamic process than previously appreciated. Because of the importance of lifestyle factors in metabolic disorders, DNA methylation provides...... a mechanism by which environmental factors, including diet and exercise, can modify genetic predisposition to disease. This article considers the current evidence that defines a role for DNA methylation in metabolic disorders....

  8. Sleep and metabolic function.

    Science.gov (United States)

    Morselli, Lisa L; Guyon, Aurore; Spiegel, Karine

    2012-01-01

    Evidence for the role of sleep on metabolic and endocrine function has been reported more than four decades ago. In the past 30 years, the prevalence of obesity and diabetes has greatly increased in industrialized countries, and self-imposed sleep curtailment, now very common, is starting to be recognized as a contributing factor, alongside with increased caloric intake and decreased physical activity. Furthermore, obstructive sleep apnea, a chronic condition characterized by recurrent upper airway obstruction leading to intermittent hypoxemia and sleep fragmentation, has also become highly prevalent as a consequence of the epidemic of obesity and has been shown to contribute, in a vicious circle, to the metabolic disturbances observed in obese patients. In this article, we summarize the current data supporting the role of sleep in the regulation of glucose homeostasis and the hormones involved in the regulation of appetite. We also review the results of the epidemiologic and laboratory studies that investigated the impact of sleep duration and quality on the risk of developing diabetes and obesity, as well as the mechanisms underlying this increased risk. Finally, we discuss how obstructive sleep apnea affects glucose metabolism and the beneficial impact of its treatment, the continuous positive airway pressure. In conclusion, the data available in the literature highlight the importance of getting enough good sleep for metabolic health.

  9. Effect of Mediterranean diet with and without weight loss on apolipoprotein B100 metabolism in men with metabolic syndrome

    Science.gov (United States)

    The objective of this study was to assess the effect of a Mediterranean diet (MedDiet) with and without weight loss (WL) on apolipoprotein B100 (apoB100) metabolism in men with metabolic syndrome. The diet of 19 men with metabolic syndrome (age, 24–62 years) was first standardized to a North America...

  10. Engineering strategy of yeast metabolism for higher alcohol production

    Directory of Open Access Journals (Sweden)

    Shimizu Hiroshi

    2011-09-01

    Full Text Available Abstract Background While Saccharomyces cerevisiae is a promising host for cost-effective biorefinary processes due to its tolerance to various stresses during fermentation, the metabolically engineered S. cerevisiae strains exhibited rather limited production of higher alcohols than that of Escherichia coli. Since the structure of the central metabolism of S. cerevisiae is distinct from that of E. coli, there might be a problem in the structure of the central metabolism of S. cerevisiae. In this study, the potential production of higher alcohols by S. cerevisiae is compared to that of E. coli by employing metabolic simulation techniques. Based on the simulation results, novel metabolic engineering strategies for improving higher alcohol production by S. cerevisiae were investigated by in silico modifications of the metabolic models of S. cerevisiae. Results The metabolic simulations confirmed that the high production of butanols and propanols by the metabolically engineered E. coli strains is derived from the flexible behavior of their central metabolism. Reducing this flexibility by gene deletion is an effective strategy to restrict the metabolic states for producing target alcohols. In contrast, the lower yield using S. cerevisiae originates from the structurally limited flexibility of its central metabolism in which gene deletions severely reduced cell growth. Conclusions The metabolic simulation demonstrated that the poor productivity of S. cerevisiae was improved by the introduction of E. coli genes to compensate the structural difference. This suggested that gene supplementation is a promising strategy for the metabolic engineering of S. cerevisiae to produce higher alcohols which should be the next challenge for the synthetic bioengineering of S. cerevisiae for the efficient production of higher alcohols.

  11. The compositional and evolutionary logic of metabolism

    International Nuclear Information System (INIS)

    Braakman, Rogier; Smith, Eric

    2013-01-01

    Metabolism is built on a foundation of organic chemistry, and employs structures and interactions at many scales. Despite these sources of complexity, metabolism also displays striking and robust regularities in the forms of modularity and hierarchy, which may be described compactly in terms of relatively few principles of composition. These regularities render metabolic architecture comprehensible as a system, and also suggests the order in which layers of that system came into existence. In addition metabolism also serves as a foundational layer in other hierarchies, up to at least the levels of cellular integration including bioenergetics and molecular replication, and trophic ecology. The recapitulation of patterns first seen in metabolism, in these higher levels, motivates us to interpret metabolism as a source of causation or constraint on many forms of organization in the biosphere. Many of the forms of modularity and hierarchy exhibited by metabolism are readily interpreted as stages in the emergence of catalytic control by living systems over organic chemistry, sometimes recapitulating or incorporating geochemical mechanisms. We identify as modules, either subsets of chemicals and reactions, or subsets of functions, that are re-used in many contexts with a conserved internal structure. At the small molecule substrate level, module boundaries are often associated with the most complex reaction mechanisms, catalyzed by highly conserved enzymes. Cofactors form a biosynthetically and functionally distinctive control layer over the small-molecule substrate. The most complex members among the cofactors are often associated with the reactions at module boundaries in the substrate networks, while simpler cofactors participate in widely generalized reactions. The highly tuned chemical structures of cofactors (sometimes exploiting distinctive properties of the elements of the periodic table) thereby act as ‘keys’ that incorporate classes of organic reactions

  12. SU-E-J-102: Separation of Metabolic Supply and Demand: From Power Grid Economics to Cancer Metabolism

    Energy Technology Data Exchange (ETDEWEB)

    Epstein, T; Xu, L; Gillies, R; Gatenby, R [Moffitt Cancer Center and Research Institute, Tampa, FL (United States)

    2014-06-01

    Purpose: To study a new model of glucose metabolism which is primarily governed by the timescale of the energetic demand and not by the oxygen level, and its implication on cancer metabolism (Warburg effect) Methods: 1) Metabolic profiling of membrane transporters activity in several cell lines, which represent the spectrum from normal breast epithelium to aggressive, metastatic cancer, using Seahorse XF reader.2) Spatial localization of oxidative and non-oxidative metabolic components using immunocytochemical imaging of the glycolytic ATP-producing enzyme, pyruvate kinase and mitochondria. 3) Finite element simulations of coupled partial differential equations using COMSOL and MATLAB. Results: Inhibition or activation of pumps on the cell membrane led to reduction or increase in aerobic glycolysis, respectively, while oxidative phosphorylation remained unchanged. These results were consistent with computational simulations of changes in short-timescale demand for energy by cell membrane processes. A specific model prediction was that the spatial distribution of ATP-producing enzymes in the glycolytic pathway must be primarily localized adjacent to the cell membrane, while mitochondria should be predominantly peri-nuclear. These predictions were confirmed experimentally. Conclusion: The results in this work support a new model for glucose metabolism in which glycolysis and oxidative phosphorylation supply different types of energy demand. Similar to power grid economics, optimal metabolic control requires the two pathways, even in normoxic conditions, to match two different types of energy demands. Cells use aerobic metabolism to meet baseline, steady energy demand and glycolytic metabolism to meet short-timescale energy demands, mainly from membrane transport activities, even in the presence of oxygen. This model provides a mechanism for the origin of the Warburg effect in cancer cells. Here, the Warburg effect emerges during carcinogenesis is a physiological

  13. SU-E-J-102: Separation of Metabolic Supply and Demand: From Power Grid Economics to Cancer Metabolism

    International Nuclear Information System (INIS)

    Epstein, T; Xu, L; Gillies, R; Gatenby, R

    2014-01-01

    Purpose: To study a new model of glucose metabolism which is primarily governed by the timescale of the energetic demand and not by the oxygen level, and its implication on cancer metabolism (Warburg effect) Methods: 1) Metabolic profiling of membrane transporters activity in several cell lines, which represent the spectrum from normal breast epithelium to aggressive, metastatic cancer, using Seahorse XF reader.2) Spatial localization of oxidative and non-oxidative metabolic components using immunocytochemical imaging of the glycolytic ATP-producing enzyme, pyruvate kinase and mitochondria. 3) Finite element simulations of coupled partial differential equations using COMSOL and MATLAB. Results: Inhibition or activation of pumps on the cell membrane led to reduction or increase in aerobic glycolysis, respectively, while oxidative phosphorylation remained unchanged. These results were consistent with computational simulations of changes in short-timescale demand for energy by cell membrane processes. A specific model prediction was that the spatial distribution of ATP-producing enzymes in the glycolytic pathway must be primarily localized adjacent to the cell membrane, while mitochondria should be predominantly peri-nuclear. These predictions were confirmed experimentally. Conclusion: The results in this work support a new model for glucose metabolism in which glycolysis and oxidative phosphorylation supply different types of energy demand. Similar to power grid economics, optimal metabolic control requires the two pathways, even in normoxic conditions, to match two different types of energy demands. Cells use aerobic metabolism to meet baseline, steady energy demand and glycolytic metabolism to meet short-timescale energy demands, mainly from membrane transport activities, even in the presence of oxygen. This model provides a mechanism for the origin of the Warburg effect in cancer cells. Here, the Warburg effect emerges during carcinogenesis is a physiological

  14. The Effects of Breakfast Consumption and Composition on Metabolic Wellness with a Focus on Carbohydrate Metabolism.

    Science.gov (United States)

    Maki, Kevin C; Phillips-Eakley, Alyssa K; Smith, Kristen N

    2016-05-01

    Findings from epidemiologic studies indicate that there are associations between breakfast consumption and a lower risk of type 2 diabetes mellitus (T2DM) and metabolic syndrome, prompting interest in the influence of breakfast on carbohydrate metabolism and indicators of T2DM risk. The objective of this review was to summarize the available evidence from randomized controlled trials assessing the impact of breakfast on variables related to carbohydrate metabolism and metabolic wellness. Consuming compared with skipping breakfast appeared to improve glucose and insulin responses throughout the day. Breakfast composition may also be important. Dietary patterns high in rapidly available carbohydrate were associated with elevated T2DM risk. Therefore, partial replacement of rapidly available carbohydrate with other dietary components, such as whole grains and cereal fibers, proteins, and unsaturated fatty acids (UFAs), at breakfast may be a useful strategy for producing favorable metabolic outcomes. Consumption of fermentable and viscous dietary fibers at breakfast lowers glycemia and insulinemia. Fermentable fibers likely act through enhancing insulin sensitivity later in the day, and viscous fibers have an acute effect to slow the rate of carbohydrate absorption. Partially substituting protein for rapidly available carbohydrate enhances satiety and diet-induced thermogenesis, and also favorably affects lipoprotein lipids and blood pressure. Partially substituting UFA for carbohydrate has been associated with improved insulin sensitivity, lipoprotein lipids, and blood pressure. Overall, the available evidence suggests that consuming breakfast foods high in whole grains and cereal fiber, while limiting rapidly available carbohydrate, is a promising strategy for metabolic health promotion. © 2016 American Society for Nutrition.

  15. Genetic networks of liver metabolism revealed by integration of metabolic and transcriptional profiling.

    Directory of Open Access Journals (Sweden)

    Christine T Ferrara

    2008-03-01

    Full Text Available Although numerous quantitative trait loci (QTL influencing disease-related phenotypes have been detected through gene mapping and positional cloning, identification of the individual gene(s and molecular pathways leading to those phenotypes is often elusive. One way to improve understanding of genetic architecture is to classify phenotypes in greater depth by including transcriptional and metabolic profiling. In the current study, we have generated and analyzed mRNA expression and metabolic profiles in liver samples obtained in an F2 intercross between the diabetes-resistant C57BL/6 leptin(ob/ob and the diabetes-susceptible BTBR leptin(ob/ob mouse strains. This cross, which segregates for genotype and physiological traits, was previously used to identify several diabetes-related QTL. Our current investigation includes microarray analysis of over 40,000 probe sets, plus quantitative mass spectrometry-based measurements of sixty-seven intermediary metabolites in three different classes (amino acids, organic acids, and acyl-carnitines. We show that liver metabolites map to distinct genetic regions, thereby indicating that tissue metabolites are heritable. We also demonstrate that genomic analysis can be integrated with liver mRNA expression and metabolite profiling data to construct causal networks for control of specific metabolic processes in liver. As a proof of principle of the practical significance of this integrative approach, we illustrate the construction of a specific causal network that links gene expression and metabolic changes in the context of glutamate metabolism, and demonstrate its validity by showing that genes in the network respond to changes in glutamine and glutamate availability. Thus, the methods described here have the potential to reveal regulatory networks that contribute to chronic, complex, and highly prevalent diseases and conditions such as obesity and diabetes.

  16. Effects of intermittent fasting on metabolism in men

    OpenAIRE

    Azevedo,Fernanda Reis de; Ikeoka,Dimas; Caramelli,Bruno

    2013-01-01

    This review analyzes the available literature on the impact of intermittent fasting (IF), a nutritional intervention, on different aspects of metabolism. The epidemic of metabolic disturbances, such as obesity, metabolic syndrome (MS), and diabetes mellitus type 2 has led to an increase in the prevalence of cardiovascular diseases, and affected patients might significantly benefit from modifications in nutritional habits. Recent experimental studies have elucidated some of the metabolic mecha...

  17. Recent advances in cancer metabolism: a technological perspective.

    Science.gov (United States)

    Kang, Yun Pyo; Ward, Nathan P; DeNicola, Gina M

    2018-04-16

    Cancer cells are highly dependent on metabolic pathways to sustain both their proliferation and adaption to harsh microenvironments. Thus, understanding the metabolic reprogramming that occurs in tumors can provide critical insights for the development of therapies targeting metabolism. In this review, we will discuss recent advancements in metabolomics and other multidisciplinary techniques that have led to the discovery of novel metabolic pathways and mechanisms in diverse cancer types.

  18. Association between Metabolic Syndrome and Job Rank.

    Science.gov (United States)

    Mehrdad, Ramin; Pouryaghoub, Gholamreza; Moradi, Mahboubeh

    2018-01-01

    The occupation of the people can influence the development of metabolic syndrome. To determine the association between metabolic syndrome and its determinants with the job rank in workers of a large car factory in Iran. 3989 male workers at a large car manufacturing company were invited to participate in this cross-sectional study. Demographic and anthropometric data of the participants, including age, height, weight, and abdominal circumference were measured. Blood samples were taken to measure lipid profile and blood glucose level. Metabolic syndrome was diagnosed in each participant based on ATPIII 2001 criteria. The workers were categorized based on their job rank into 3 groups of (1) office workers, (2) workers with physical exertion, and (3) workers with chemical exposure. The study characteristics, particularly the frequency of metabolic syndrome and its determinants were compared among the study groups. The prevalence of metabolic syndrome in our study was 7.7% (95% CI 6.9 to 8.5). HDL levels were significantly lower in those who had chemical exposure (p=0.045). Diastolic blood pressure was significantly higher in those who had mechanical exertion (p=0.026). The frequency of metabolic syndrome in the office workers, workers with physical exertion, and workers with chemical exposure was 7.3%, 7.9%, and 7.8%, respectively (p=0.836). Seemingly, there is no association between metabolic syndrome and job rank.

  19. Interactions between host metabolism, immune regulation, and the gut microbiota in diet-associated obesity and metabolic dysfunction

    DEFF Research Database (Denmark)

    Andersen, Daniel

    The increase in the prevalence of obesity and obesity-associated complications such as the metabolic syndrome is becoming a global challenge. Dietary habits and nutrient consumption modulates host homeostasis, which manifests in various diet-induced complications marked by changes in host...... metabolism and immune regulation, which are intricately linked. In addition, diet effectively shapes the gut microbiota composition and activity, which in turn interacts with the host to modulate host metabolism and immune regulation. In the three studies included in this PhD thesis, we have explored...... the impact of specific dietary components on host metabolic function, immune regulation and gut microbiota composition and activity. In the first study, we have characterized the effect of a combined high-fat and gliadin-rich diet, since dietary gliadin has been reported to be associated with intestinal...

  20. Drug: D10355 [KEGG MEDICUS

    Lifescience Database Archive (English)

    Full Text Available razine derivative Active form of prodrug: Aripiprazole [DR:D01164] Treatment of schizophrenia, bipolar disorder, and clinical depress...ion DRD2 [HSA:1813] [KO:K04145]; DRD3 [HSA:1814] [KO:K04

  1. Inborn Errors of Metabolism with Acidosis: Organic Acidemias and Defects of Pyruvate and Ketone Body Metabolism.

    Science.gov (United States)

    Schillaci, Lori-Anne P; DeBrosse, Suzanne D; McCandless, Shawn E

    2018-04-01

    When a child presents with high-anion gap metabolic acidosis, the pediatrician can proceed with confidence by recalling some basic principles. Defects of organic acid, pyruvate, and ketone body metabolism that present with acute acidosis are reviewed. Flowcharts for identifying the underlying cause and initiating life-saving therapy are provided. By evaluating electrolytes, blood sugar, lactate, ammonia, and urine ketones, the provider can determine the likelihood of an inborn error of metabolism. Freezing serum, plasma, and urine samples during the acute presentation for definitive diagnostic testing at the provider's convenience aids in the differential diagnosis. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Insights into Brain Glycogen Metabolism

    Science.gov (United States)

    Mathieu, Cécile; de la Sierra-Gallay, Ines Li; Duval, Romain; Xu, Ximing; Cocaign, Angélique; Léger, Thibaut; Woffendin, Gary; Camadro, Jean-Michel; Etchebest, Catherine; Haouz, Ahmed; Dupret, Jean-Marie; Rodrigues-Lima, Fernando

    2016-01-01

    Brain glycogen metabolism plays a critical role in major brain functions such as learning or memory consolidation. However, alteration of glycogen metabolism and glycogen accumulation in the brain contributes to neurodegeneration as observed in Lafora disease. Glycogen phosphorylase (GP), a key enzyme in glycogen metabolism, catalyzes the rate-limiting step of glycogen mobilization. Moreover, the allosteric regulation of the three GP isozymes (muscle, liver, and brain) by metabolites and phosphorylation, in response to hormonal signaling, fine-tunes glycogenolysis to fulfill energetic and metabolic requirements. Whereas the structures of muscle and liver GPs have been known for decades, the structure of brain GP (bGP) has remained elusive despite its critical role in brain glycogen metabolism. Here, we report the crystal structure of human bGP in complex with PEG 400 (2.5 Å) and in complex with its allosteric activator AMP (3.4 Å). These structures demonstrate that bGP has a closer structural relationship with muscle GP, which is also activated by AMP, contrary to liver GP, which is not. Importantly, despite the structural similarities between human bGP and the two other mammalian isozymes, the bGP structures reveal molecular features unique to the brain isozyme that provide a deeper understanding of the differences in the activation properties of these allosteric enzymes by the allosteric effector AMP. Overall, our study further supports that the distinct structural and regulatory properties of GP isozymes contribute to the different functions of muscle, liver, and brain glycogen. PMID:27402852

  3. Nucleotide Metabolism

    DEFF Research Database (Denmark)

    Martinussen, Jan; Willemoës, M.; Kilstrup, Mogens

    2011-01-01

    Metabolic pathways are connected through their utilization of nucleotides as supplier of energy, allosteric effectors, and their role in activation of intermediates. Therefore, any attempt to exploit a given living organism in a biotechnological process will have an impact on nucleotide metabolis...

  4. Fructose, insulin resistance, and metabolic dyslipidemia

    Directory of Open Access Journals (Sweden)

    Adeli Khosrow

    2005-02-01

    Full Text Available Abstract Obesity and type 2 diabetes are occurring at epidemic rates in the United States and many parts of the world. The "obesity epidemic" appears to have emerged largely from changes in our diet and reduced physical activity. An important but not well-appreciated dietary change has been the substantial increase in the amount of dietary fructose consumption from high intake of sucrose and high fructose corn syrup, a common sweetener used in the food industry. A high flux of fructose to the liver, the main organ capable of metabolizing this simple carbohydrate, perturbs glucose metabolism and glucose uptake pathways, and leads to a significantly enhanced rate of de novo lipogenesis and triglyceride (TG synthesis, driven by the high flux of glycerol and acyl portions of TG molecules from fructose catabolism. These metabolic disturbances appear to underlie the induction of insulin resistance commonly observed with high fructose feeding in both humans and animal models. Fructose-induced insulin resistant states are commonly characterized by a profound metabolic dyslipidemia, which appears to result from hepatic and intestinal overproduction of atherogenic lipoprotein particles. Thus, emerging evidence from recent epidemiological and biochemical studies clearly suggests that the high dietary intake of fructose has rapidly become an important causative factor in the development of the metabolic syndrome. There is an urgent need for increased public awareness of the risks associated with high fructose consumption and greater efforts should be made to curb the supplementation of packaged foods with high fructose additives. The present review will discuss the trends in fructose consumption, the metabolic consequences of increased fructose intake, and the molecular mechanisms leading to fructose-induced lipogenesis, insulin resistance and metabolic dyslipidemia.

  5. Basal metabolic rate and the mass of tissues differing in metabolic scope : Migration-related covariation between individual knots Calidris canutus

    NARCIS (Netherlands)

    Weber, TP; Piersma, T; Weber, Thomas P.

    To examine whether variability in the basal metabolic rate (BMR) of migrant shorebirds is a function of a variably sized metabolic machinery or of temporal changes in metabolic intensities at the tissue level, BMR, body composition and activity of cytochrome-c oxidase (CCO, a marker for maximum

  6. Circadian physiology of metabolism.

    Science.gov (United States)

    Panda, Satchidananda

    2016-11-25

    A majority of mammalian genes exhibit daily fluctuations in expression levels, making circadian expression rhythms the largest known regulatory network in normal physiology. Cell-autonomous circadian clocks interact with daily light-dark and feeding-fasting cycles to generate approximately 24-hour oscillations in the function of thousands of genes. Circadian expression of secreted molecules and signaling components transmits timing information between cells and tissues. Such intra- and intercellular daily rhythms optimize physiology both by managing energy use and by temporally segregating incompatible processes. Experimental animal models and epidemiological data indicate that chronic circadian rhythm disruption increases the risk of metabolic diseases. Conversely, time-restricted feeding, which imposes daily cycles of feeding and fasting without caloric reduction, sustains robust diurnal rhythms and can alleviate metabolic diseases. These findings highlight an integrative role of circadian rhythms in physiology and offer a new perspective for treating chronic diseases in which metabolic disruption is a hallmark. Copyright © 2016, American Association for the Advancement of Science.

  7. The pharmacological management of metabolic syndrome.

    Science.gov (United States)

    Rask Larsen, Julie; Dima, Lorena; Correll, Christoph U; Manu, Peter

    2018-04-01

    The metabolic syndrome includes a constellation of several well-established risk factors, which need to be aggressively treated in order to prevent overt type 2 diabetes and cardiovascular disease. While recent guidelines for the treatment of individual components of the metabolic syndrome focus on cardiovascular benefits as resulted from clinical trials, specific recent recommendations on the pharmacological management of metabolic syndrome are lacking. The objective of present paper was to review the therapeutic options for metabolic syndrome and its components, the available evidence related to their cardiovascular benefits, and to evaluate the extent to which they should influence the guidelines for clinical practice. Areas covered: A Medline literature search was performed to identify clinical trials and meta-analyses related to the therapy of dyslipidemia, arterial hypertension, glucose metabolism and obesity published in the past decade. Expert commentary: Our recommendation for first-line pharmacological are statins for dyslipidemia, renin-angiotensin-aldosteron system inhibitors for arterial hypertension, metformin or sodium/glucose cotransporter 2 inhibitors or glucagon-like peptide 1 receptor agonists (GLP-1RAs) for glucose intolerance, and the GLP-1RA liraglutide for achieving body weight and waist circumference reduction.

  8. Screening for Inborn Errors of Metabolism

    Directory of Open Access Journals (Sweden)

    F.A. Elshaari

    2013-09-01

    Full Text Available Inborn errors of metabolism (IEM are a heterogeneous group of monogenic diseases that affect the metabolic pathways. The detection of IEM relies on a high index of clinical suspicion and co-ordinated access to specialized laboratory services. Biochemical analysis forms the basis of the final confirmed diagnosis in several of these disorders. The investigations fall into four main categories1.General metabolic screening tests2.Specific metabolite assays3.Enzyme studies4.DNA analysis The first approach to the diagnosis is by a multi-component analysis of body fluids in clinically selected patients, referred to as metabolic screening tests. These include simple chemical tests in the urine, blood glucose, acid-base profile, lactate, ammonia and liver function tests. The results of these tests can help to suggest known groups of metabolic disorders so that specific metabolites such as amino acids, organic acids, etc. can be estimated. However, not all IEM needs the approach of general screening. Lysosomal, peroxisomal, thyroid and adrenal disorders are suspected mainly on clinical grounds and pertinent diagnostic tests can be performed. The final diagnosis relies on the demonstration of the specific enzyme defect, which can be further confirmed by DNA studies.

  9. A strong response to selection on mass-independent maximal metabolic rate without a correlated response in basal metabolic rate

    DEFF Research Database (Denmark)

    Wone, B W M; Madsen, Per; Donovan, E R

    2015-01-01

    Metabolic rates are correlated with many aspects of ecology, but how selection on different aspects of metabolic rates affects their mutual evolution is poorly understood. Using laboratory mice, we artificially selected for high maximal mass-independent metabolic rate (MMR) without direct selection...... on mass-independent basal metabolic rate (BMR). Then we tested for responses to selection in MMR and correlated responses to selection in BMR. In other lines, we antagonistically selected for mice with a combination of high mass-independent MMR and low mass-independent BMR. All selection protocols...... and data analyses included body mass as a covariate, so effects of selection on the metabolic rates are mass adjusted (that is, independent of effects of body mass). The selection lasted eight generations. Compared with controls, MMR was significantly higher (11.2%) in lines selected for increased MMR...

  10. Metabolic cytometry: capillary electrophoresis with two-color fluorescence detection for the simultaneous study of two glycosphingolipid metabolic pathways in single primary neurons.

    Science.gov (United States)

    Essaka, David C; Prendergast, Jillian; Keithley, Richard B; Palcic, Monica M; Hindsgaul, Ole; Schnaar, Ronald L; Dovichi, Norman J

    2012-03-20

    Metabolic cytometry is a form of chemical cytometry wherein metabolic cascades are monitored in single cells. We report the first example of metabolic cytometry where two different metabolic pathways are simultaneously monitored. Glycolipid catabolism in primary rat cerebella neurons was probed by incubation with tetramethylrhodamine-labeled GM1 (GM1-TMR). Simultaneously, both catabolism and anabolism were probed by coincubation with BODIPY-FL labeled LacCer (LacCer-BODIPY-FL). In a metabolic cytometry experiment, single cells were incubated with substrate, washed, aspirated into a capillary, and lysed. The components were separated by capillary electrophoresis equipped with a two-spectral channel laser-induced fluorescence detector. One channel monitored fluorescence generated by the metabolic products produced from GM1-TMR and the other monitored the metabolic products produced from LacCer-BODIPY-FL. The metabolic products were identified by comparison with the mobility of a set of standards. The detection system produced at least 6 orders of magnitude dynamic range in each spectral channel with negligible spectral crosstalk. Detection limits were 1 zmol for BODIPY-FL and 500 ymol for tetramethylrhodamine standard solutions.

  11. In vitro phase I metabolism of gamabufotalin and arenobufagin: Reveal the effect of substituent group on metabolic stability.

    Science.gov (United States)

    Feng, Yujie; Wang, Chao; Tian, Xiangge; Huo, Xiaokui; Feng, Lei; Sun, Chengpeng; Ge, Guangbo; Yang, Ling; Ning, Jing; Ma, Xiaochi

    2017-09-01

    Bufadienolides are a major class of bioactive compounds derived from amphibian skin secretion. Gamabufotalin (GB) and arenobufagin (AB) are among the top of the intensively investigated natural bufadienolides for their outstanding biological activities. This study aimed to characterize the phase I metabolism of GB and AB with respect to the metabolic profiles, enzymes involved, and catalytic efficacy, thereafter tried to reveal substituent effects on metabolism. Two mono-hydroxylated products of GB and AB were detected in the incubation mixtures, and they were accurately identified as 1- and 5-hydroxylated bufadienolides by NMR and HPLC-MS techniques. Reaction phenotyping studies demonstrated that CYP3A mediated the metabolism of the two bufadienolides with a high specific selectivity. Further kinetic evaluation demonstrated that the metabolism stability of GB and AB were better than other reported bufadienolides. Additionally, the CYP3A5 preference for hydroxylation of AB was observed, which was different to the selectivity of CYP3As for bufadienolides suggested by our previous report. This study can provide important data for elucidating the phase I metabolism of GB and AB and can lead to a better understanding of the bufadienolide-CYP3A interaction which is helpful for preclinical development and rational use of bufadienolides. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Invited review: Opportunities for genetic improvement of metabolic diseases.

    Science.gov (United States)

    Pryce, J E; Parker Gaddis, K L; Koeck, A; Bastin, C; Abdelsayed, M; Gengler, N; Miglior, F; Heringstad, B; Egger-Danner, C; Stock, K F; Bradley, A J; Cole, J B

    2016-09-01

    Metabolic disorders are disturbances to one or more of the metabolic processes in dairy cattle. Dysfunction of any of these processes is associated with the manifestation of metabolic diseases or disorders. In this review, data recording, incidences, genetic parameters, predictors, and status of genetic evaluations were examined for (1) ketosis, (2) displaced abomasum, (3) milk fever, and (4) tetany, as these are the most prevalent metabolic diseases where published genetic parameters are available. The reported incidences of clinical cases of metabolic disorders are generally low (less than 10% of cows are recorded as having a metabolic disease per herd per year or parity/lactation). Heritability estimates are also low and are typically less than 5%. Genetic correlations between metabolic traits are mainly positive, indicating that selection to improve one of these diseases is likely to have a positive effect on the others. Furthermore, there may also be opportunities to select for general disease resistance in terms of metabolic stability. Although there is inconsistency in published genetic correlation estimates between milk yield and metabolic traits, selection for milk yield may be expected to lead to a deterioration in metabolic disorders. Under-recording and difficulty in diagnosing subclinical cases are among the reasons why interest is growing in using easily measurable predictors of metabolic diseases, either recorded on-farm by using sensors and milk tests or off-farm using data collected from routine milk recording. Some countries have already initiated genetic evaluations of metabolic disease traits and currently most of these use clinical observations of disease. However, there are opportunities to use clinical diseases in addition to predictor traits and genomic information to strengthen genetic evaluations for metabolic health in the future. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  13. The metabolism of malate by cultured rat brain astrocytes

    Energy Technology Data Exchange (ETDEWEB)

    McKenna, M.C.; Tildon, J.T.; Couto, R.; Stevenson, J.H.; Caprio, F.J. (Department of Pediatrics, University of Maryland School of Medicine, Baltimore (USA))

    1990-12-01

    Since malate is known to play an important role in a variety of functions in the brain including energy metabolism, the transfer of reducing equivalents and possibly metabolic trafficking between different cell types; a series of biochemical determinations were initiated to evaluate the rate of 14CO2 production from L-(U-14C)malate in rat brain astrocytes. The 14CO2 production from labeled malate was almost totally suppressed by the metabolic inhibitors rotenone and antimycin A suggesting that most of malate metabolism was coupled to the electron transport system. A double reciprocal plot of the 14CO2 production from the metabolism of labeled malate revealed biphasic kinetics with two apparent Km and Vmax values suggesting the presence of more than one mechanism of malate metabolism in these cells. Subsequent experiments were carried out using 0.01 mM and 0.5 mM malate to determine whether the addition of effectors would differentially alter the metabolism of high and low concentrations of malate. Effectors studied included compounds which could be endogenous regulators of malate metabolism and metabolic inhibitors which would provide information regarding the mechanisms regulating malate metabolism. Both lactate and aspartate decreased 14CO2 production from malate equally. However, a number of effectors were identified which selectively altered the metabolism of 0.01 mM malate including aminooxyacetate, furosemide, N-acetylaspartate, oxaloacetate, pyruvate and glucose, but had little or no effect on the metabolism of 0.5 mM malate. In addition, alpha-ketoglutarate and succinate decreased 14CO2 production from 0.01 mM malate much more than from 0.5 mM malate. In contrast, a number of effectors altered the metabolism of 0.5 mM malate more than 0.01 mM. These included methionine sulfoximine, glutamate, malonate, alpha-cyano-4-hydroxycinnamate and ouabain.

  14. Forearm metabolism during infusion of adrenaline

    DEFF Research Database (Denmark)

    Simonsen, L; Stefl, B; Bülow, J

    2000-01-01

    Human skeletal muscle metabolism is often investigated by measurements of substrate fluxes across the forearm. To evaluate whether the two forearms give the same metabolic information, nine healthy subjects were studied in the fasted state and during infusion of adrenaline. Both arms were...... catheterized in a cubital vein in the retrograde direction. A femoral artery was catheterized for blood sampling, and a femoral vein for infusion of adrenaline. Forearm blood flow was measured by venous occlusion strain-gauge plethysmography. Forearm subcutaneous adipose tissue blood flow was measured...... by the local 133Xe washout method. Metabolic fluxes were calculated as the product of forearm blood flow and a-v differences of metabolite concentrations. After baseline measurements, adrenaline was infused at a rate of 0.3 nmol kg-1 min-1. No difference in the metabolic information obtained in the fasting...

  15. Pathophysiological aspect of metabolic acid-base disorders

    Directory of Open Access Journals (Sweden)

    Nešović-Ostojić Jelena

    2016-01-01

    Full Text Available Maintaing the arterial pH values (in normal range of 7,35-7,45 is one of the main principles of homeostasis. Regulatory responses, including chemical buffering (extracellular, intracellular, sceletal, the regulation of pCO2 by the respiratory system, and the regulation of [HCO3-] by the kidneys, act in concert to maintain normal arterial pH value. The main extracellular chemical buffer is bicarbonate-carbonic acid buffer system. The kidneys contribute to the regulation of hydrogen (and bicarbonate in body fluids in two ways. Proximal tubules are important in bicarbonate reabsorption and distal tubules excrete hydrogen ion (as ammonium ion or titratable acid. There are four simple acid-base disorders: metabolic acidosis and metabolic alkalosis; respiratory acidosis and respiratory alkalosis. Metabolic acidosis can occur because of an increase in endogenous acid production (such as lactate and ketoacids, loss of bicarbonate (as in diarrhea, or accumulation of endogenous acids (as in renal failure. Metabolic acidosis can also be with high and normal (hyperchloremic metabolic acidosis anion gap. Renal tubular acidosis (RTA is a form of hyperchloremic metabolic acidosis which occurs when the renal damage primarily affects tubular function. The main problem in distal RTA is reduced H+ excretion in distal tubule. Type 2 RTA is also called proximal RTA because the main problem is greatly impaired reabsorption of bicarbonate in proximal tubule. Impaired cation exchange in distal tubule is the main problem in RTA type 4. Metabolic alkalosis occurs as a result of net gain of [HCO3-] or loss of nonvolatile acid from extracellular fluids. Metabolic alkalosis can be associated with reduced or increased extracellular volume.

  16. An optimization model for metabolic pathways.

    Science.gov (United States)

    Planes, F J; Beasley, J E

    2009-10-15

    Different mathematical methods have emerged in the post-genomic era to determine metabolic pathways. These methods can be divided into stoichiometric methods and path finding methods. In this paper we detail a novel optimization model, based upon integer linear programming, to determine metabolic pathways. Our model links reaction stoichiometry with path finding in a single approach. We test the ability of our model to determine 40 annotated Escherichia coli metabolic pathways. We show that our model is able to determine 36 of these 40 pathways in a computationally effective manner.

  17. [In vitro metabolism of fenbendazole prodrug].

    Science.gov (United States)

    Wen, Ai-Dan; Duan, Li-Ping; Liu, Cong-Shan; Tao, Yi; Xue, Jian; Wu, Ning-Bo; Jiang, Bin; Zhang, Hao-Bing

    2013-02-01

    Synthesized fenbendazole prodrug N-methoxycarbonyl-N'-(2-nitro-4-phenylthiophenyl) thiourea (MPT) was analyzed in vitro in artificial gastric juice, intestinal juice and mouse liver homogenate model by using HPLC method, and metabolic curve was then generated. MPT was tested against Echinococcus granulosus protoscolices in vitro. The result showed that MPT could be metabolized in the three biological media, and to the active compound fenbendazole in liver homogenate, with a metabolic rate of 7.92%. Besides, the prodrug showed a weak activity against E. granulosus protoscolices with a mortality of 45.9%.

  18. Albumin metabolism in health and disease

    International Nuclear Information System (INIS)

    Kirsch, R.E.; Saunders, S.J.; Brock, J.F.

    1979-01-01

    Studies performed at the University of Cape Town on the metabolism of albumin have been reviewed. The control of albumin metabolism in protein energy malnutrition, in acute exposure to alcohol and after partial hepatectomy in the rat is discussed

  19. Albumin metabolism in health and disease

    Energy Technology Data Exchange (ETDEWEB)

    Kirsch, R E; Saunders, S J; Brock, J F [Cape Town Univ. (South Africa). Dept. of Medicine

    1979-11-24

    Studies performed at the University of Cape Town on the metabolism of albumin have been reviewed. The control of albumin metabolism in protein energy malnutrition, in acute exposure to alcohol and after partial hepatectomy in the rat is discussed.

  20. Fifteen years experience: Egyptian metabolic lab

    African Journals Online (AJOL)

    Ekram M. Fateen

    2014-08-20

    Aug 20, 2014 ... defective enzymes or transport proteins which results in a block of the metabolic pathway and accumulation ... The detection of metabolic disorder is done ..... [42] Wood TC, Harvey K, Beck M, Burin MG, Chien YH, Church HJ,.