WorldWideScience

Sample records for abietic acid inhibits

  1. Study of abietic acid glycerol derivatives as microencapsulating materials.

    Science.gov (United States)

    Puranik, P K; Dorle, A K

    1991-01-01

    Abietic acid (85 per cent pure) was extracted from rosin N Grade and further standardized. Abietic acid derivatives were prepared by heating abietic acid with glycerol and intermediate reaction products with different acid values were collected. Salicylic acid granules were encapsulated using a 10 per cent solution of abietic acid and its derivatives by standard spray pan technique. The coated microcapsules were evaluated for moisture absorption, dissolution and flow properties. The result showed that abietic acid glycerol derivatives, AaG-54 and AaG-20 had better moisture protection properties. Dissolution studies indicate that these derivatives could be used for delayed release of drugs.

  2. Thermal Decomposition Kinetics of Abietic Acid in Static Air

    Institute of Scientific and Technical Information of China (English)

    NONG Weijian; CHEN Xiaopeng; WANG Linlin; LIANG Jiezhen; ZHONG Lingping; TONG Zhangfa

    2013-01-01

    The thermal decomposition of abietic acid in air was investigated under non-isothermal condition using thermograv,imetric analysis-differential thermal analysis (TGA-DTA) technique with heating rates of 5,10,15 and 25 K·min 1.The non-isothermal kinetic parameters were obtained via the analysis of the therrnogravimetric and differential thermogravimetric (TG-DTG) curves by using Flynn-Wall-Ozawa method and Kissinger method.The thermal decomposition mechanism of abietic acid was studied with four integral methods (Satava-Sesták,MacCallum-Tanner,ordinary integral and Agrawal).The results show that the thermal decomposition mechanism is nucleation and growth,and the mechanism function is Avrami-Erofeev equation with n equates 1/2.The activation energy and the pre-exponential factor are 64.04 kJ·mol-and 5.89×10 s-1,respectively.

  3. The conifer biomarkers dehydroabietic and abietic acids are widespread in Cyanobacteria

    Science.gov (United States)

    Costa, Maria Sofia; Rego, Adriana; Ramos, Vitor; Afonso, Tiago B.; Freitas, Sara; Preto, Marco; Lopes, Viviana; Vasconcelos, Vitor; Magalhães, Catarina; Leão, Pedro N.

    2016-03-01

    Terpenes, a large family of natural products with important applications, are commonly associated with plants and fungi. The diterpenoids dehydroabietic and abietic acids are defense metabolites abundant in resin, and are used as biomarkers for conifer plants. We report here for the first time that the two diterpenoid acids are produced by members of several genera of cyanobacteria. Dehydroabietic acid was isolated from two cyanobacterial strains and its identity was confirmed spectroscopically. One or both of the diterpenoids were detected in the cells of phylogenetically diverse cyanobacteria belonging to four cyanobacterial ‘botanical orders’, from marine, estuarine and inland environments. Dehydroabietic acid was additionally found in culture supernatants. We investigated the natural role of the two resin acids in cyanobacteria using ecologically-relevant bioassays and found that the compounds inhibited the growth of a small coccoid cyanobacterium. The unexpected discovery of dehydroabietic and abietic acids in a wide range of cyanobacteria has implications for their use as plant biomarkers.

  4. The conifer biomarkers dehydroabietic and abietic acids are widespread in Cyanobacteria

    Science.gov (United States)

    Costa, Maria Sofia; Rego, Adriana; Ramos, Vitor; Afonso, Tiago B.; Freitas, Sara; Preto, Marco; Lopes, Viviana; Vasconcelos, Vitor; Magalhães, Catarina; Leão, Pedro N.

    2016-01-01

    Terpenes, a large family of natural products with important applications, are commonly associated with plants and fungi. The diterpenoids dehydroabietic and abietic acids are defense metabolites abundant in resin, and are used as biomarkers for conifer plants. We report here for the first time that the two diterpenoid acids are produced by members of several genera of cyanobacteria. Dehydroabietic acid was isolated from two cyanobacterial strains and its identity was confirmed spectroscopically. One or both of the diterpenoids were detected in the cells of phylogenetically diverse cyanobacteria belonging to four cyanobacterial ‘botanical orders’, from marine, estuarine and inland environments. Dehydroabietic acid was additionally found in culture supernatants. We investigated the natural role of the two resin acids in cyanobacteria using ecologically-relevant bioassays and found that the compounds inhibited the growth of a small coccoid cyanobacterium. The unexpected discovery of dehydroabietic and abietic acids in a wide range of cyanobacteria has implications for their use as plant biomarkers. PMID:26996104

  5. Preparation and evaluation of abietic acid microcapsules by a solvent evaporation technique.

    Science.gov (United States)

    Puranik, P K; Manekar, N C; Dorle, A K

    1992-01-01

    Abietic acid was isolated from rosin N Grade (ISI) by a simple process and the product was further standardized. Sulphadiazine microcapsules were prepared by the solvent evaporation technique, using abietic acid as a wall-forming material. Discrete, spherical and free-flowing microcapsules were obtained by phase separation induced by solvent evaporation using bentonite as a solid emulsifier. The prepared microcapsules were evaluated for drug content, wall thickness, flow properties, size distribution, density and in vitro dissolution studies in gastric fluid. The effect of various process variables such as agitation speed, coat-core ratio, etc., on the micromeritic and release characteristics has been described.

  6. Hepatoprotective and cytotoxic activities of abietic acid from Isodon wightii (bentham H. hara

    Directory of Open Access Journals (Sweden)

    Madhusudhanan Gogul Ramnath

    2016-01-01

    Abbreviation Used: ABA: Abietic acid; LPS: Lipopolysacharride; PBS: Phosphate buffer saline; PI: Propidium iodide; NMR: Nuclear magnetic resonance; COSY: Correlation spectroscopy; HSQC: Heteronuclear single quantum correlation; HMBC: Heteronuclear multi - bond correlation; MTT: 3-(4,5-dimethylthiazol-2yl-2,5-diphenyltetrazolium bromide

  7. Synthesis of a novel acrylated abietic acid-g-bacterial cellulose hydrogel by gamma irradiation.

    Science.gov (United States)

    Abeer, Muhammad Mustafa; Amin, Mohd Cairul Iqbal Mohd; Lazim, Azwan Mat; Pandey, Manisha; Martin, Claire

    2014-09-22

    Acrylated abietic acid (acrylated AbA) and acrylated abietic acid-grafted bacterial cellulose pH sensitive hydrogel (acrylated AbA-g-BC) were prepared by a one-pot synthesis. The successful dimerization of acrylic acid (AA) and abietic acid (AbA) and grafting of the dimer onto bacterial cellulose (BC) was confirmed by 13C solid state NMR as well as FT-IR. X-ray diffraction analysis showed characteristic peaks for AbA and BC; further, there was no effect of increasing amorphous AA content on the overall crystallinity of the hydrogel. Differential scanning calorimetry revealed a glass transition temperature of 80°C. Gel fraction and swelling studies gave insight into the features of the hydrogel, suggesting that it was suitable for future applications such as drug delivery. Scanning electron microscopy observations showed an interesting interpenetrating network within the walls of hydrogel samples with the lowest levels of AA and gamma radiation doses. Cell viability test revealed that the synthesized hydrogel is safe for future use in biomedical applications.

  8. A new abietic acid-type diterpene glucoside from the needles of Pinus densiflora.

    Science.gov (United States)

    Jung, Mee Jung; Jung, Hyun Ah; Kang, Sam Sik; Hwang, Geum-Sook; Choi, Jae Sue

    2009-12-01

    From the ethyl acetate fraction of the methanol extract of the needles of Pinus densiflora (Pinaceae), a new diterpenoid glucoside [9alpha,13alpha-epoxy-8beta,14beta-dihydroxy-abietic acid-18-O-beta-D: -glucopyranoside] (1), two flavonoid glucosides [kaempferol 3-O-beta-D: -glucoside (2) and 6-C-methyl kaempferol 3-O-beta-D: -glucoside (3)], and two monoterpenoid glucosides [bornyl 6-O-alpha-Larabinofuranosyl (1-->6)-beta-D: -glucopyranoside (4) and bornyl 6-O-beta-D: -apiofuranosyl (1-->6)-beta-D: -glucopyranoside (5)] were isolated and characterized on the basis of spectral analysis. Of all the compounds, 2 and 3 showed peroxynitrite scavenging activity.

  9. Determination of Several Thermodynamics Properties of Abietic Acid%枞酸若干热力学性质的测定

    Institute of Scientific and Technical Information of China (English)

    农韦健; 陈小鹏; 王琳琳; 梁杰珍; 童张法

    2012-01-01

    Abietic acid, a major component of rosin, was isolated by means of reaction-crystallization strengthened with ultrasonic waves, and then it was characterized by ultraviolet visible spectra (UV), gas chromatography-mass spectra (GC-MS), and lH nuclear magnetic resonance spectra ^H-NMR), respectively. The constant-volume combustion heat of abietic acid was determined to be -11441.46 kJmol"1 by GR-3500B2-type oxygen bomb calorimeter, and based on the thermodynamic principle, the standard molar combustion enthalpy and molar enthalpy of formation of abietic acid were calculated to be -11457.57 kJ^mol"1 and -699.43 kJ-mol"1. The specific optical rotation of the abietic acid was determined to be -105.4?by using a 341LC polarimeter. The melting point and the molar fusion enthalpy of abietic acid were determined to be 450.89 K and 19.44 kJ-moP1 via differential scanning calorimetry (DSC), and the molar fusion entropy of abietic acid was calculated to be 43.11 Jmor'-K"1 according to thermodynamic principle.%采用超声波强化反应-结晶耦合的方法单离松香主要成分枞酸,测定了枞酸的恒容燃烧热、熔点和比旋光度,通过UV、GC-MS、NMR对枞酸进行分析鉴定.结果表明,用GR-3500B2氧弹式量热计测定枞酸的恒容燃烧热为-11441.46 kJ·mol-1,计算出枞酸的标准摩尔燃烧焓和标准摩尔生成焓分别为-11457.57 kJ·mol-1和-699.43 kJ·mol-1;用341LC plus微量旋光仪测定枞酸的比旋光度为-105.4°;用DSC 6200差示扫描量热仪测得枞酸的熔点和熔化焓分别为450.89 K和19.44 kJ·mol-1,计算出枞酸的熔化熵为43.11J·mol-1·K-1.

  10. Development of ultrasonic-assisted closed in-syringe extraction and derivatization for the determination of labile abietic acid and dehydroabietic acid in cosmetics.

    Science.gov (United States)

    Liu, Jianjun; Liu, Mengge; Li, Xiu; Lu, Xiaomin; Chen, Guang; Sun, Zhiwei; Li, Guoliang; Zhao, Xianen; Zhang, Shijuan; Song, Cuihua; Wang, Hua; Suo, Yourui; You, Jinmao

    2014-12-01

    Two resin acids, abietic acid (AA) and dehydroabietic acid (DHAA), in cosmetics may cause allergy or toxicoderma, but remain inaccurately investigated due to their lability. In this work, an accurate, sensitive, efficient and convenient method, utilizing the ultrasonic-assisted closed in-syringe extraction and derivatization (UCSED) prior to high performance liquid chromatography (HPLC) coupled with fluorescence detection (FLD) and on-line tandem mass spectra (MS/MS), has been developed. Analytes are extracted by acetonitrile (10/1, v/m) in a sealed syringe under safe condition (60°C; 15 min; nitrogen atmosphere) and then in-syringe derivatized by 2-(2-(anthracen-10-yl)-1H-naphtho[2,3-d]imidazol-1-yl) ethyl-p-toluenesulfonate (ANITS) (8-fold, 93°C, 30 min, DMF as co-solvent, K2CO3 as catalyst). In UCSED, derivatization contributes to increase both analytical sensitivity and stability of analytes. Excellent linearity (r2≥0.9991) is achieved in wide range (75-3000 ng/mL (AA); 150-4500 ng/mL (DHAA)). Quite low detection limits (AA: 8.2-10.8 ng/mL; DHAA: 19.4-24.3 ng/mL) and limits of analyte concentration (LOAC) (AA: 30.0-44.5 ng/mL; DHAA: 70.9-86.7 ng/mL) ensure the trace analysis. This method is applied to the analysis of cosmetic samples, including depilatory wax strip, liquid foundation, mascara, eyeliner, eyebrow pencil and lip balm. No additional purification is required and no matrix effect is observed, demonstrating obvious advantages over conventional pretreatment such as solid phase extraction (SPE). Accuracy (RE: -3.2% to 2.51%), precision (RSD: 1.29-2.84%), recovery (95.20-103.63%; 95.51-104.22%) and repeatability (<0.23%; <2.87%) are significantly improved. Furthermore, this work plays a guiding role in developing a reasonable method for labile analytes.

  11. Determination of dehydroabietic acid and abietic acid in aqueous alkali extract of Liquidambaris Resina by HPLC%HPLC测定枫香脂碱提物中脱氢松香酸和松香酸的含量

    Institute of Scientific and Technical Information of China (English)

    王英锋; 魏小燕

    2013-01-01

    目的:建立用于测定枫香脂碱提物中脱氢松香酸和松香酸含量的HPLC方法.方法:采用C18柱;流动相乙腈-0.1%乙酸溶液(70∶30),流速1.0 mL·min-1,检测波长210,240 nm.结果:脱氢松香酸在0.4~3.4 μg,松香酸在0.6 ~4.8μg具有良好的线性;平均加样回收率分别为99.53%,101.9%.结论:所建立的方法简便、准确,可用于枫香脂的质量评价.%Objective:To develop an HPLC method for content determination of dehydroabietic acid and abietic acid in aqueous alkali extract of Liquidambaris Resina.Method:The determination was carried out on a DIONEX C1s column (4.6 mm × 250 mm,5 μm) eluted with acetonitrile and water containing 0.1% acetic acid.The flow rate was 1 mL · min-1,and the detected wavelength was set at 210,240 nm.Result:The peak areas and the sample quantity of the two components had good linear relationship in the range of 0.4-3.4 μg for dehydroabietic acid,and 0.6-4.8 μg for abietic acid.The average recoveries were 99.53%,101.9%,respectively.Conclusion:The method was proved to be simple,accurate and used for the quality evaluation of Liquidambaris Resina.

  12. Boric acid and boronic acids inhibition of pigeonpea urease.

    Science.gov (United States)

    Reddy, K Ravi Charan; Kayastha, Arvind M

    2006-08-01

    Urease from the seeds of pigeonpea was competitively inhibited by boric acid, butylboronic acid, phenylboronic acid, and 4-bromophenylboronic acid; 4-bromophenylboronic acid being the strongest inhibitor, followed by boric acid > butylboronic acid > phenylboronic acid, respectively. Urease inhibition by boric acid is maximal at acidic pH (5.0) and minimal at alkaline pH (10.0), i.e., the trigonal planar B(OH)3 form is a more effective inhibitor than the tetrahedral B(OH)4 -anionic form. Similarly, the anionic form of phenylboronic acid was least inhibiting in nature.

  13. Nickel inhibits mitochondrial fatty acid oxidation.

    Science.gov (United States)

    Uppala, Radha; McKinney, Richard W; Brant, Kelly A; Fabisiak, James P; Goetzman, Eric S

    2015-08-07

    Nickel exposure is associated with changes in cellular energy metabolism which may contribute to its carcinogenic properties. Here, we demonstrate that nickel strongly represses mitochondrial fatty acid oxidation-the pathway by which fatty acids are catabolized for energy-in both primary human lung fibroblasts and mouse embryonic fibroblasts. At the concentrations used, nickel suppresses fatty acid oxidation without globally suppressing mitochondrial function as evidenced by increased glucose oxidation to CO2. Pre-treatment with l-carnitine, previously shown to prevent nickel-induced mitochondrial dysfunction in neuroblastoma cells, did not prevent the inhibition of fatty acid oxidation. The effect of nickel on fatty acid oxidation occurred only with prolonged exposure (>5 h), suggesting that direct inhibition of the active sites of metabolic enzymes is not the mechanism of action. Nickel is a known hypoxia-mimetic that activates hypoxia inducible factor-1α (HIF1α). Nickel-induced inhibition of fatty acid oxidation was blunted in HIF1α knockout fibroblasts, implicating HIF1α as one contributor to the mechanism. Additionally, nickel down-regulated the protein levels of the key fatty acid oxidation enzyme very long-chain acyl-CoA dehydrogenase (VLCAD) in a dose-dependent fashion. In conclusion, inhibition of fatty acid oxidation by nickel, concurrent with increased glucose metabolism, represents a form of metabolic reprogramming that may contribute to nickel-induced carcinogenesis.

  14. Phytic Acid Inhibits Lipid Peroxidation In Vitro

    OpenAIRE

    Alicja Zajdel; Adam Wilczok; Ludmiła Węglarz; Zofia Dzierżewicz

    2013-01-01

    Phytic acid (PA) has been recognized as a potent antioxidant and inhibitor of iron-catalyzed hydroxyl radical formation under in vitro and in vivo conditions. Therefore, the aim of the present study was to investigate, with the use of HPLC/MS/MS, whether PA is capable of inhibiting linoleic acid autoxidation and Fe(II)/ascorbate-induced peroxidation, as well as Fe(II)/ascorbate-induced lipid peroxidation in human colonic epithelial cells. PA at 100 μM and 500 μM effectively inhibited the deca...

  15. Phytic Acid Inhibits Lipid Peroxidation In Vitro

    Directory of Open Access Journals (Sweden)

    Alicja Zajdel

    2013-01-01

    Full Text Available Phytic acid (PA has been recognized as a potent antioxidant and inhibitor of iron-catalyzed hydroxyl radical formation under in vitro and in vivo conditions. Therefore, the aim of the present study was to investigate, with the use of HPLC/MS/MS, whether PA is capable of inhibiting linoleic acid autoxidation and Fe(II/ascorbate-induced peroxidation, as well as Fe(II/ascorbate-induced lipid peroxidation in human colonic epithelial cells. PA at 100 μM and 500 μM effectively inhibited the decay of linoleic acid, both in the absence and presence of Fe(II/ascorbate. The observed inhibitory effect of PA on Fe(II/ascorbate-induced lipid peroxidation was lower (10–20% compared to that of autoxidation. PA did not change linoleic acid hydroperoxides concentration levels after 24 hours of Fe(II/ascorbate-induced peroxidation. In the absence of Fe(II/ascorbate, PA at 100 μM and 500 μM significantly suppressed decomposition of linoleic acid hydroperoxides. Moreover, PA at the tested nontoxic concentrations (100 μM and 500 μM significantly decreased 4-hydroxyalkenal levels in Caco-2 cells which structurally and functionally resemble the small intestinal epithelium. It is concluded that PA inhibits linoleic acid oxidation and reduces the formation of 4-hydroxyalkenals. Acting as an antioxidant it may help to prevent intestinal diseases induced by oxygen radicals and lipid peroxidation products.

  16. Phytic acid inhibits lipid peroxidation in vitro.

    Science.gov (United States)

    Zajdel, Alicja; Wilczok, Adam; Węglarz, Ludmiła; Dzierżewicz, Zofia

    2013-01-01

    Phytic acid (PA) has been recognized as a potent antioxidant and inhibitor of iron-catalyzed hydroxyl radical formation under in vitro and in vivo conditions. Therefore, the aim of the present study was to investigate, with the use of HPLC/MS/MS, whether PA is capable of inhibiting linoleic acid autoxidation and Fe(II)/ascorbate-induced peroxidation, as well as Fe(II)/ascorbate-induced lipid peroxidation in human colonic epithelial cells. PA at 100 μM and 500 μM effectively inhibited the decay of linoleic acid, both in the absence and presence of Fe(II)/ascorbate. The observed inhibitory effect of PA on Fe(II)/ascorbate-induced lipid peroxidation was lower (10-20%) compared to that of autoxidation. PA did not change linoleic acid hydroperoxides concentration levels after 24 hours of Fe(II)/ascorbate-induced peroxidation. In the absence of Fe(II)/ascorbate, PA at 100 μM and 500 μM significantly suppressed decomposition of linoleic acid hydroperoxides. Moreover, PA at the tested nontoxic concentrations (100 μM and 500 μM) significantly decreased 4-hydroxyalkenal levels in Caco-2 cells which structurally and functionally resemble the small intestinal epithelium. It is concluded that PA inhibits linoleic acid oxidation and reduces the formation of 4-hydroxyalkenals. Acting as an antioxidant it may help to prevent intestinal diseases induced by oxygen radicals and lipid peroxidation products.

  17. Understanding biocatalyst inhibition by carboxylic acids.

    Science.gov (United States)

    Jarboe, Laura R; Royce, Liam A; Liu, Ping

    2013-09-03

    Carboxylic acids are an attractive biorenewable chemical in terms of their flexibility and usage as precursors for a variety of industrial chemicals. It has been demonstrated that such carboxylic acids can be fermentatively produced using engineered microbes, such as Escherichia coli and Saccharomyces cerevisiae. However, like many other attractive biorenewable fuels and chemicals, carboxylic acids become inhibitory to these microbes at concentrations below the desired yield and titer. In fact, their potency as microbial inhibitors is highlighted by the fact that many of these carboxylic acids are routinely used as food preservatives. This review highlights the current knowledge regarding the impact that saturated, straight-chain carboxylic acids, such as hexanoic, octanoic, decanoic, and lauric acids can have on E. coli and S. cerevisiae, with the goal of identifying metabolic engineering strategies to increase robustness. Key effects of these carboxylic acids include damage to the cell membrane and a decrease of the microbial internal pH. Certain changes in cell membrane properties, such as composition, fluidity, integrity, and hydrophobicity, and intracellular pH are often associated with increased tolerance. The availability of appropriate exporters, such as Pdr12, can also increase tolerance. The effect on metabolic processes, such as maintaining appropriate respiratory function, regulation of Lrp activity and inhibition of production of key metabolites such as methionine, are also considered. Understanding the mechanisms of biocatalyst inhibition by these desirable products can aid in the engineering of robust strains with improved industrial performance.

  18. Understanding biocatalyst inhibition by carboxylic acids

    Directory of Open Access Journals (Sweden)

    Laura R Jarboe

    2013-09-01

    Full Text Available Carboxylic acids are an attractive biorenewable chemical in terms of their flexibility and usage as precursors for a variety of industrial chemicals. It has been demonstrated that such carboxylic acids can be fermentatively produced using engineered microbes, such as Escherichia coli and Saccharomyces cerevisiae. However, like many other attractive biorenewable fuels and chemicals, carboxylic acids become inhibitory to these microbes at concentrations below the desired yield and titer. In fact, their potency as microbial inhibitors is highlighted by the fact that many of these carboxylic acids are routinely used as food preservatives. This review highlights the current knowledge regarding the impact that saturated, straight-chain carboxylic acids, such as hexanoic, octanoic, decanoic and lauric acids can have on E. coli and S. cerevisiae, with the goal of identifying metabolic engineering strategies to increase robustness. Key effects of these carboxylic acids include damage to the cell membrane and a decrease of the microbial internal pH. Certain changes in cell membrane properties, such as composition, fluidity, integrity and hydrophobicity, and intracellular pH are often associated with increased tolerance. The availability of appropriate exporters, such as Pdr12, can also increase tolerance. The effect on metabolic processes, such as maintaining appropriate respiratory function, regulation of Lrp activity and inhibition of production of key metabolites such as methionine, are also considered. Understanding the mechanisms of biocatalyst inhibition by these desirable products can aid in the engineering of robust strains with improved industrial performance.

  19. Corrosion Inhibition of Aluminium by Capparis deciduas in Acidic Media

    Directory of Open Access Journals (Sweden)

    P. Arora

    2007-01-01

    Full Text Available The inhibition efficiency of ethanolic extract of different parts of Capparis deciduas (Ker in acidic medium has been evaluated by mass loss and thermometric methods. Values of inhibition efficiency obtained from the two methods are in good agreement and are dependent upon the concentration of inhibitor and acid.

  20. [Inhibition of growth of microscopic fungi with organic acids].

    Science.gov (United States)

    Conková, E; Para, L; Kocisová, A

    1993-01-01

    Fungicidal effects of five selected organic acids (lactic, acetic, formic, oxalic, and propionic) in concentrations 3, 5, 10, 20 and 50 ml/l on nine selected species of moulds were tested. Lactic and oxalic acids did not prove the satisfactory fungicidal activity in any of the chosen concentrations. The antifungal effect of the other three acids, manifested by the growth inhibition of the tested moulds is shown in Tab. I and it can be expressed by sequence: propionic acid, formic acid, and acetic acid. These acids also had effects only in concentrations 20 ml/l and 50 ml/l. Propionic acid in concentration 20 ml/l inhibited the growth of five moulds (Penicillium glabrum, Aspergillus niger, Fusarium moniliforme, Aspergillus fumigatus, Cladosporium sphaerospermum). In testing of concentration 50 ml/l, the lower fungicidal ability was ascertained only in growth suppression of Aspergillus flavus. The fungicidal activity of formic acid was registered in concentration 20 ml/l in two cases and in concentration 50 ml/l in six cases. Acetic acid inhibited the growth in concentration 50 ml/l only in two cases. Tab. II shows the percentual evaluation of propionic acid and formic acid with regard to their inhibition abilities. The fungicidal efficiency of propionic acid resulting from the experiment is 88.9%.

  1. Inhibition of in vitro cholesterol synthesis by fatty acids.

    Science.gov (United States)

    Kuroda, M; Endo, A

    1976-01-18

    Inhibitory effect of 44 species of fatty acids on cholesterol synthesis has been examined with a rat liver enzyme system. In the case of saturated fatty acids, the inhibitory activity increased with chain length to a maximum at 11 to 14 carbons, after which activity decreased rapidly. The inhibition increased with the degree of unsaturation of fatty acids. Introduction of a hydroxy group at the alpha-position of fatty acids abolished the inhibition, while the inhibition was enhanced by the presence of a hydroxy group located in an intermediate position of the chain. Branched chain fatty acids having a methyl group at the terminal showed much higher activity than the corresponding saturated straight chain fatty acids with the same number of carbons. With respect to the mechanism for inhibition, tridecanoate was found to inhibit acetoacetyl-CoA thiolase specifically without affecting the other reaction steps in the cholesterol synthetic pathway. The highly unsaturated fatty acids, arachidonate and linoleate, were specific inhibitors of 3-hydroxy-3-methyl-glutaryl-CoA synthase. On the other hand, ricinoleate (hydroxy acid) and phytanate (branched-chain acid) diminished the conversion of mevalonate to sterols by inhibiting a step or steps between squalene and lanosterol.

  2. Novel Bioactivity of Ellagic Acid in Inhibiting Human Platelet Activation

    Directory of Open Access Journals (Sweden)

    Yi Chang

    2013-01-01

    Full Text Available Pomegranates are widely consumed either as fresh fruit or in beverage form as juice and wine. Ellagic acid possesses potent antioxidative properties; it is known to be an effective phytotherapeutic agent with antimutagenic and anticarcinogenic qualities. Ellagic acid (20 to 80 μM exhibited a potent activity in inhibiting platelet aggregation stimulated by collagen; however, it did not inhibit platelet aggregation stimulated by thrombin, arachidonic acid, or U46619. Treatment with ellagic acid (50 and 80 μM significantly inhibited platelet activation stimulated by collagen; this alteration was accompanied by the inhibition of relative [Ca2+]i mobilization, and the phosphorylation of phospholipase C (PLCγ2, protein kinase C (PKC, mitogen-activated protein kinases (MAPKs, and Akt, as well as hydroxyl radical (OH● formation. In addition, ellagic acid also inhibited p38 MAPK and Akt phosphorylation stimulated by hydrogen peroxide. By contrast, ellagic acid did not significantly affect PKC activation and platelet aggregation stimulated by PDBu. This study is the first to show that, in addition to being considered a possible agent for preventing tumor growth, ellagic acid possesses potent antiplatelet properties. It appears to initially inhibit the PLCγ2-PKC cascade and/or hydroxyl radical formation, followed by decreased phosphorylation of MAPKs and Akt, ultimately inhibiting platelet aggregation.

  3. R-lipoic acid inhibits mammalian pyruvate dehydrogenase kinase.

    Science.gov (United States)

    Korotchkina, Lioubov G; Sidhu, Sukhdeep; Patel, Mulchand S

    2004-10-01

    The four pyruvate dehydrogenase kinase (PDK) and two pyruvate dehydrogenase phosphatase (PDP) isoenzymes that are present in mammalian tissues regulate activity of the pyruvate dehydrogenase complex (PDC) by phosphorylation/dephosphorylation of its pyruvate dehydrogenase (E1) component. The effect of lipoic acids on the activity of PDKs and PDPs was investigated in purified proteins system. R-lipoic acid, S-lipoic acid and R-dihydrolipoic acid did not significantly affect activities of PDPs and at the same time inhibited PDKs to different extents (PDK1>PDK4 approximately PDK2>PDK3 for R-LA). Since lipoic acids inhibited PDKs activity both when reconstituted in PDC and in the presence of E1 alone, dissociation of PDK from the lipoyl domains of dihydrolipoamide acetyltransferase in the presence of lipoic acids is not a likely explanation for inhibition. The activity of PDK1 towards phosphorylation sites 1, 2 and 3 of E1 was decreased to the same extent in the presence of R-lipoic acid, thus excluding protection of the E1 active site by lipoic acid from phosphorylation. R-lipoic acid inhibited autophosphorylation of PDK2 indicating that it exerted its effect on PDKs directly. Inhibition of PDK1 by R-lipoic acid was not altered by ADP but was decreased in the presence of pyruvate which itself inhibits PDKs. An inhibitory effect of lipoic acid on PDKs would result in less phosphorylation of E1 and hence increased PDC activity. This finding provides a possible mechanism for a glucose (and lactate) lowering effect of R-lipoic acid in diabetic subjects.

  4. Calcite crystal growth rate inhibition by polycarboxylic acids

    Science.gov (United States)

    Reddy, M.M.; Hoch, A.R.

    2001-01-01

    Calcite crystal growth rates measured in the presence of several polycarboxyclic acids show that tetrahydrofurantetracarboxylic acid (THFTCA) and cyclopentanetetracarboxylic acid (CPTCA) are effective growth rate inhibitors at low solution concentrations (0.01 to 1 mg/L). In contrast, linear polycarbocylic acids (citric acid and tricarballylic acid) had no inhibiting effect on calcite growth rates at concentrations up to 10 mg/L. Calcite crystal growth rate inhibition by cyclic polycarboxyclic acids appears to involve blockage of crystal growth sites on the mineral surface by several carboxylate groups. Growth morphology varied for growth in the absence and in the presence of both THFTCA and CPTCA. More effective growth rate reduction by CPTCA relative to THFTCA suggests that inhibitor carboxylate stereochemical orientation controls calcite surface interaction with carboxylate inhibitors. ?? 20O1 Academic Press.

  5. Potent Inhibition of Acid Ceramidase by Novel B-13 Analogues

    Directory of Open Access Journals (Sweden)

    Denny Proksch

    2011-01-01

    Full Text Available The lipid-signalling molecule ceramide is known to induce apoptosis in a variety of cell types. Inhibition of the lysosomal acid ceramidase can increase cellular ceramide levels and thus induce apoptosis. Indeed, inhibitors of acid ceramidase have been reported to induce cell death and to display potentiating effects to classical radio- or chemo therapy in a number of in vitro and in vivo cancer models. The most potent in vitro inhibitor of acid ceramidase, B-13, recently revealed to be virtually inactive towards lysosomal acid ceramidase in living cells. In contrast, a number of weakly basic B-13 analogues have been shown to accumulate in the acidic compartments of living cells and to efficiently inhibit lysosomal acid ceramidase. However, introduction of weakly basic groups at the ω-position of the fatty acid moiety of B-13 led to a significant reduction of potency towards acid ceramidase from cellular extracts. Herein, we report a novel B-13-derived scaffold for more effective inhibitors of acid ceramidase. Furthermore, we provide hints for an introduction of basic functional groups at an alternative site of the B-13 scaffold that do not interfere with acid ceramidase inhibition in vitro.

  6. Thyroid peroxidase activity is inhibited by amino acids

    Directory of Open Access Journals (Sweden)

    D.P. Carvalho

    2000-03-01

    Full Text Available Normal in vitro thyroid peroxidase (TPO iodide oxidation activity was completely inhibited by a hydrolyzed TPO preparation (0.15 mg/ml or hydrolyzed bovine serum albumin (BSA, 0.2 mg/ml. A pancreatic hydrolysate of casein (trypticase peptone, 0.1 mg/ml and some amino acids (cysteine, tryptophan and methionine, 50 µM each also inhibited the TPO iodide oxidation reaction completely, whereas casamino acids (0.1 mg/ml, and tyrosine, phenylalanine and histidine (50 µM each inhibited the TPO reaction by 54% or less. A pancreatic digest of gelatin (0.1 mg/ml or any other amino acid (50 µM tested did not significantly decrease TPO activity. The amino acids that impair iodide oxidation also inhibit the TPO albumin iodination activity. The inhibitory amino acids contain side chains with either sulfur atoms (cysteine and methionine or aromatic rings (tyrosine, tryptophan, histidine and phenylalanine. Among the amino acids tested, only cysteine affected the TPO guaiacol oxidation reaction, producing a transient inhibition at 25 or 50 µM. The iodide oxidation inhibitory activity of cysteine, methionine and tryptophan was reversed by increasing iodide concentrations from 12 to 18 mM, while no such effect was observed when the cofactor (H2O2 concentration was increased. The inhibitory substances might interfere with the enzyme activity by competing with its normal substrates for their binding sites, binding to the free substrates or reducing their oxidized form.

  7. Corrosion Inhibition by – Phthalic Acid - Zn2+ System

    Directory of Open Access Journals (Sweden)

    R. Mohan

    2014-05-01

    Full Text Available The inhibition effect of Phthalic acid(PA – Zn2+ system controls the corrosion of carbon steel has been studied by weight – loss method. The weight – loss study reveals that the formulation consisting of 60 ppm of Zn2+, 50 ppm of phthalic acid has 82 % inhibition efficiency. Synergistic effect exists between phthalic acid- Zn2+ system. The influence of N-cetyl- N, N, N-trimethylammonium bromide(CTAB on the PA- Zn2+ system control the microbial corrosion. The value of the separation factor, RL indicated the phthalic acid- Zn2+ system was favorable adsorption. The Adsorption equilibrium exhibited better fit to Langmuir isotherm than Freundlich isotherm. The protective film consists of Fe2+ - Phthalic acid and Zn(OH2 by FTIR spectroscopy.

  8. Theobromine Inhibits Uric Acid Crystallization. A Potential Application in the Treatment of Uric Acid Nephrolithiasis

    OpenAIRE

    Felix Grases; Adrian Rodriguez; Antonia Costa-Bauza

    2014-01-01

    Purpose To assess the capacity of methylxanthines (caffeine, theophylline, theobromine and paraxanthine) to inhibit uric acid crystallization, and to evaluate their potential application in the treatment of uric acid nephrolithiasis. Materials and Methods The ability of methylxathines to inhibit uric acid nucleation was assayed turbidimetrically. Crystal morphology and its modification due to the effect of theobromine were evaluated by scanning electron microscopy (SEM). The ability of theobr...

  9. 电位滴定法测定乙醇/水混合体系中松香酸的离解常数%The Determination of the Dissociation Constants of Abietic Acidin Ethanol/Water Mixed Solvent by Potentiometric Titration

    Institute of Scientific and Technical Information of China (English)

    南丹; 蒋丽丹; 王良贵

    2012-01-01

    采用电位滴定法,在乙醇/水混合溶剂体系(I=0.10mol/L,Kcl)测定了松香酸在不同乙醇含量(Ⅳ%)时的离解常数。结果表明,在试验范围内pK同乙醇含量的体积分数有良好线性关系,通过外推求得在试验条件下松香酸水溶液中的离解常数pK为4·937。%The dissociation constants of abietic acid in water- ethanol mixed solvent (I =0.10 mol/L, KC1) were determinded by potentiometric titration. The results showed that the pKa was a good linear function of the volume fraction of ethanol in the concentration range. The dissociation constants of abietic acid in water were determinded by extrapolation to be 4. 937 under the experimental conditions.

  10. Eskimo plasma constituents, dihomo-gamma-linolenic acid, eicosapentaenoic acid and docosahexaenoic acid inhibit the release of atherogenic mitogens.

    Science.gov (United States)

    Smith, D L; Willis, A L; Nguyen, N; Conner, D; Zahedi, S; Fulks, J

    1989-01-01

    Studies in man and laboratory animals suggest that omega 3 polyunsaturated fatty acid constituents of fish oils have antiatherosclerotic properties. We have studied the effects of several such polyunsaturated fatty acids for ability to modify the in vitro release of mitogens from human platelets. Such mitogens may produce the fibro-proliferative component of atherosclerotic plaques. Both 5,8,11,14,17-eicosapentaenoic acid (20:5 omega 3) and 4,7,10,13,16,19-docosahexaenoic acid (22:6 omega 3), major constituents of fish oils, inhibited adenosine diphosphate-induced aggregation of platelets and the accompanying release of mitogens. These effects are dose dependent. Linolenic acid (18:3 omega 3), the biosynthetic precursor of eicosapentaenoic acid, also inhibited platelet aggregation and mitogen release. Eicosapentaenoic acid also inhibited mitogen release from human monocyte-derived macrophages, which, in vivo, are an additional source of mitogens during atherogenesis. Potent inhibition of human platelet aggregation and mitogen release was also seen with dihomo-gamma-linolenic acid (8,11,14-eicosatrienoic acid 20:3 omega 6), whose levels are reportedly elevated in Eskimos subsisting on marine diets. We conclude that diets that elevate plasma and/or tissue levels of eicosapentaenoic acid, docosahexaenoic acid and dihomo-gamma-linolenic acid precursor gamma-linolenic acid (18:3 omega 6) may exert antiatherosclerotic effects by inhibiting the release of mitogens from platelets and other cells.

  11. Mechanism of acid corrosion inhibition using magnetic nanofluid

    Science.gov (United States)

    Parekh, Kinnari; Jauhari, Smita; Upadhyay, R. V.

    2016-12-01

    The inhibition effect of magnetic nanofluid on carbon steel in acid solutions was investigated using gravimetric, potentiodynamic and SEM measurement. The inhibition efficiency increases up to 95% and 75% for 51.7 mM concentration, respectively, in 1 M HCl and 1 M H2SO4 medium. The adsorption of nanoparticles to the steel surface forms a barrier between the metal and the aggressive environment, which is responsible for observed inhibition action. The adsorption of nanoparticles on steel surface is supported by the Langmuir and Freundlich adsorption isotherm and surface morphology scanned through SEM.

  12. Glycation inhibits trichloroacetic acid (TCA)-induced whey protein precipitation

    Science.gov (United States)

    Four different WPI saccharide conjugates were successfully prepared to test whether glycation could inhibit WPI precipitation induced by trichloroacetic acid (TCA). Conjugates molecular weights after glycation were analyzed with SDS-PAGE. No significant secondary structure change due to glycation wa...

  13. Relieving Mipafox Inhibition in Organophosphorus Acid Anhydrolase by Rational Design

    Science.gov (United States)

    2013-03-01

    variant proteins. For each, an Escherichia coli DH5 culture containing one of the plasmids was grown at 37C in 1L of Luria -Bertani (LB) broth...inhibition constant LB Luria -Bertani (broth) OPPA organophosphorus acid anhydrolase SDS-PAGE sodium dodecylsulfate-polyacrylamide gel electrophoresis

  14. Inhibition mechanism of aspartic acid on crystal growth of hydroxyapatite

    Institute of Scientific and Technical Information of China (English)

    HUANG Su-ping; ZHOU Ke-chao; LI Zhi-you

    2007-01-01

    The effects of aspartic acid on the crystal growth, morphology of hydroxyapatite(HAP) crystal were investigated, and the inhibition mechanism of aspartic acid on the crystal growth of hydroxyapatite was studied. The results show that the crystal growth rate of HAP decreases with the increase of the aspartic acid concentration, and the HAP crystal is thinner significantly compared with that without amino acid, which is mainly due to the (10(-)10) surface of HAP crystal being inhibited by the aspartic acids. The calculation analysis indicates that the crystal growth mechanism of HAP, following surface diffusion controlled mechanism, is not changed due to the presence of aspartic acid. AFM result shows that the front of terrace on vicinal growth hillocks is pinned, which suggests that the aspartic acid is adsorbed onto the (10(-)10) surface of HAP and interacts with the Ca2+ ions of HAP surface, so as to block the growth active sites and result in retarding of the growth of HAP crystal.

  15. Corrosion Inhibition of a Green Scale Inhibitor Polyepoxysuccinic Acid

    Institute of Scientific and Technical Information of China (English)

    Rong Chun XIONG; Qing ZHOU; Gang WEI

    2003-01-01

    The corrosion inhibition of a green scale inhibitor, polyepoxysuccinic acid (PESA) wasstudied based on dynamic tests. It is found that when PESA is used alone, it had good corrosioninhibition. So, PESA should be included in the category of corrosion inhibitors. It is not only akind of green scale inhibitor, but also a green corrosion inhibitor. The synergistic effect betweenPESA and Zn2+ or sodium gluconate is poor. However, the synergistic effect among PESA, Zn2+and sodium gluconate is excellent, and the corrosion inhibition efficiency for carbon steel is higherthan 99%. Further study of corrosion inhibition mechanism reveals that corrosion inhibition ofPESA is not affected by carboxyl group, but by the oxygen atom inserted The existence ofoxygen atom in PESA molecular structure makes it easy to form stable chelate with pentacyclicstructure.

  16. Macrokinetics of magnesium sulfite oxidation inhibited by ascorbic acid

    Energy Technology Data Exchange (ETDEWEB)

    Lidong, Wang, E-mail: wld@tsinghua.edu.cn [School of Environmental Science and Engineering, North China Electric Power University, Baoding 071003 (China); Department of Environmental Science and Engineering, Tsinghua University, Beijing 100054 (China); Yongliang, Ma, E-mail: liang@tsinghua.edu.cn [Department of Environmental Science and Engineering, Tsinghua University, Beijing 100054 (China); Wendi, Zhang; Qiangwei, Li; Yi, Zhao [School of Environmental Science and Engineering, North China Electric Power University, Baoding 071003 (China); Zhanchao, Zhang [Jinan Environmental Monitoring Center, Jinan 250014 (China)

    2013-08-15

    Graphical abstract: Ascorbic acid is used as an inhibitor to retard the oxidation rate of magnesium sulfite. It shows that the oxidation rate would decrease greatly with the rise of initial ascorbic acid concentration, which provides a useful reference for sulfite recovery in magnesia desulfurization. -- Highlights: • We studied the kinetics of magnesium sulfite oxidation inhibited by ascorbic acid. • The oxidation process was simulated by a three-phase model and proved by HPLC–MS. • We calculated the kinetic parameters of intrinsic oxidation of magnesium sulfite. -- Abstract: Magnesia flue gas desulfurization is a promising process for small to medium scale industrial coal-fired boilers in order to reduce sulfur dioxide emissions, in which oxidation control of magnesium sulfite is of great importance for the recycling of products. Effects of four inhibitors were compared by kinetic experiments indicating that ascorbic acid is the best additive, which retards the oxidation process of magnesium sulfite in trace presence. The macrokinetics of magnesium sulfite oxidation inhibited by ascorbic acid were studied. Effects of the factors, including ascorbic acid concentration, magnesium sulfite concentration, oxygen partial pressure, pH, and temperature, were investigated in a stirred reactor with bubbling. The results show that the reaction rate is −0.55 order in ascorbic acid, 0.77 in oxygen partial pressure, and zero in magnesium sulfite concentration, respectively. The apparent activation energy is 88.0 kJ mol{sup −1}. Integrated with the kinetic model, it is concluded that the oxidation rate of magnesium sulfite inhibited by ascorbic acid is controlled by the intrinsic chemical reaction. The result provides a useful reference for sulfite recovery in magnesia desulfurization.

  17. Theobromine inhibits uric acid crystallization. A potential application in the treatment of uric acid nephrolithiasis.

    Directory of Open Access Journals (Sweden)

    Felix Grases

    Full Text Available To assess the capacity of methylxanthines (caffeine, theophylline, theobromine and paraxanthine to inhibit uric acid crystallization, and to evaluate their potential application in the treatment of uric acid nephrolithiasis.The ability of methylxathines to inhibit uric acid nucleation was assayed turbidimetrically. Crystal morphology and its modification due to the effect of theobromine were evaluated by scanning electron microscopy (SEM. The ability of theobromine to inhibit uric acid crystal growth on calculi fragments resulting from extracorporeal shock wave lithotripsy (ESWL was evaluated using a flow system.The turbidimetric assay showed that among the studied methylxanthines, theobromine could markedly inhibit uric acid nucleation. SEM images showed that the presence of theobromine resulted in thinner uric acid crystals. Furthermore, in a flow system theobromine blocked the regrowth of post-ESWL uric acid calculi fragments.Theobromine, a natural dimethylxanthine present in high amounts in cocoa, acts as an inhibitor of nucleation and crystal growth of uric acid. Therefore, theobromine may be clinically useful in the treatment of uric acid nephrolithiasis.

  18. Inhibition of fatty acid metabolism reduces human myeloma cells proliferation.

    Directory of Open Access Journals (Sweden)

    José Manuel Tirado-Vélez

    Full Text Available Multiple myeloma is a haematological malignancy characterized by the clonal proliferation of plasma cells. It has been proposed that targeting cancer cell metabolism would provide a new selective anticancer therapeutic strategy. In this work, we tested the hypothesis that inhibition of β-oxidation and de novo fatty acid synthesis would reduce cell proliferation in human myeloma cells. We evaluated the effect of etomoxir and orlistat on fatty acid metabolism, glucose metabolism, cell cycle distribution, proliferation, cell death and expression of G1/S phase regulatory proteins in myeloma cells. Etomoxir and orlistat inhibited β-oxidation and de novo fatty acid synthesis respectively in myeloma cells, without altering significantly glucose metabolism. These effects were associated with reduced cell viability and cell cycle arrest in G0/G1. Specifically, etomoxir and orlistat reduced by 40-70% myeloma cells proliferation. The combination of etomoxir and orlistat resulted in an additive inhibitory effect on cell proliferation. Orlistat induced apoptosis and sensitized RPMI-8226 cells to apoptosis induction by bortezomib, whereas apoptosis was not altered by etomoxir. Finally, the inhibitory effect of both drugs on cell proliferation was associated with reduced p21 protein levels and phosphorylation levels of retinoblastoma protein. In conclusion, inhibition of fatty acid metabolism represents a potential therapeutic approach to treat human multiple myeloma.

  19. Muricholic acids inhibit Clostridium difficile spore germination and growth.

    Directory of Open Access Journals (Sweden)

    Michael B Francis

    Full Text Available Infections caused by Clostridium difficile have increased steadily over the past several years. While studies on C. difficile virulence and physiology have been hindered, in the past, by lack of genetic approaches and suitable animal models, newly developed technologies and animal models allow these processes to be studied in detail. One such advance is the generation of a mouse-model of C. difficile infection. The development of this system is a major step forward in analyzing the genetic requirements for colonization and infection. While important, it is equally as important in understanding what differences exist between mice and humans. One of these differences is the natural bile acid composition. Bile acid-mediated spore germination is an important step in C. difficile colonization. Mice produce several different bile acids that are not found in humans. These muricholic acids have the potential to impact C. difficile spore germination. Here we find that the three muricholic acids (α-muricholic acid, β-muricholic acid and ω-muricholic acid inhibit C. difficile spore germination and can impact the growth of vegetative cells. These results highlight an important difference between humans and mice and may have an impact on C. difficile virulence in the mouse-model of C. difficile infection.

  20. Bioluminescence inhibition of bacterial luciferase by aliphatic alcohol, amine and carboxylic acid: inhibition potency and mechanism.

    Science.gov (United States)

    Yamasaki, Shinya; Yamada, Shuto; Takehara, Kô

    2013-01-01

    The inhibitory effects of hydrophobic molecules on the bacterial luciferase, BL, luminescence reaction were analyzed using an electrochemically-controlled BL luminescence system. The inhibition potency of alkyl amines, C(n)NH(2), and fatty acids, C(m)COOH (m = n - 1), on the BL reaction increased with an increase in the alkyl chain-length of these aliphatic compounds. C(m)COOH showed lower inhibition potency than C(n)NH(2) and alkyl alcohols, C(n)OH, data for which have been previously reported. To make clear the inhibition mechanisms of the aliphatic compounds on the BL reaction, the initial rate of the BL reaction was measured and analyzed using the Dixon plot and Cornish-Bowden plot. The C(12)OH inhibited the BL reaction in competition with the substrate C(11)CHO, while C(12)NH(2) and C(11)COOH inhibited in an uncompetitive manner with the C(11)CHO. These results suggest that the alkyl chain-length and the terminal unit of the aliphatic compound determine the inhibition potency and the inhibition mechanism, respectively.

  1. Inhibition studies of soybean (Glycine max) urease with heavy metals, sodium salts of mineral acids, boric acid, and boronic acids.

    Science.gov (United States)

    Kumar, Sandeep; Kayastha, Arvind M

    2010-10-01

    Various inhibitors were tested for their inhibitory effects on soybean urease. The K(i) values for boric acid, 4-bromophenylboronic acid, butylboronic acid, and phenylboronic acid were 0.20 +/- 0.05 mM, 0.22 +/- 0.04 mM, 1.50 +/- 0.10 mM, and 2.00 +/- 0.11 mM, respectively. The inhibition was competitive type with boric acid and boronic acids. Heavy metal ions including Ag(+), Hg(2+), and Cu(2+) showed strong inhibition on soybean urease, with the silver ion being a potent inhibitor (IC(50) = 2.3 x 10(-8) mM). Time-dependent inhibition studies exhibited biphasic kinetics with all heavy metal ions. Furthermore, inhibition studies with sodium salts of mineral acids (NaF, NaCl, NaNO(3), and Na(2)SO(4)) showed that only F(-) inhibited soybean urease significantly (IC(50) = 2.9 mM). Competitive type of inhibition was observed for this anion with a K(i) value of 1.30 mM.

  2. Cinnamic acid increases lignin production and inhibits soybean root growth.

    Directory of Open Access Journals (Sweden)

    Victor Hugo Salvador

    Full Text Available Cinnamic acid is a known allelochemical that affects seed germination and plant root growth and therefore influences several metabolic processes. In the present work, we evaluated its effects on growth, indole-3-acetic acid (IAA oxidase and cinnamate 4-hydroxylase (C4H activities and lignin monomer composition in soybean (Glycine max roots. The results revealed that exogenously applied cinnamic acid inhibited root growth and increased IAA oxidase and C4H activities. The allelochemical increased the total lignin content, thus altering the sum and ratios of the p-hydroxyphenyl (H, guaiacyl (G, and syringyl (S lignin monomers. When applied alone or with cinnamic acid, piperonylic acid (PIP, a quasi-irreversible inhibitor of C4H reduced C4H activity, lignin and the H, G, S monomer content compared to the cinnamic acid treatment. Taken together, these results indicate that exogenously applied cinnamic acid can be channeled into the phenylpropanoid pathway via the C4H reaction, resulting in an increase in H lignin. In conjunction with enhanced IAA oxidase activity, these metabolic responses lead to the stiffening of the cell wall and are followed by a reduction in soybean root growth.

  3. Suaveolic Acid: A Potent Phytotoxic Substance of Hyptis suaveolens

    Directory of Open Access Journals (Sweden)

    A. K. M. Mominul Islam

    2014-01-01

    Full Text Available Hyptis suaveolens (Lamiaceae is an exotic invasive plant in many countries. Earlier studies reported that the aqueous, methanol, and aqueous methanol extract of H. suaveolens and its residues have phytotoxic properties. However, to date, the phytotoxic substances of this plant have not been reported. Therefore, the objectives of this study were isolation and identification of phytotoxic substances of H. suaveolens. Aqueous methanol extract of this plant was purified by several chromatographic runs through bioassay guided fractionation using garden cress (Lepidium sativum as a test plant. Final purification of a phytotoxic substance was achieved by reverse phase HPLC and characterized as 14α-hydroxy-13β-abiet-8-en-18-oic acid (suaveolic acid by high-resolution ESI-MS, 1H-,13C-NMR, CD, and specific rotation. Suaveolic acid inhibited the shoot growth of garden cress, lettuce (Lactuca sativa, Italian ryegrass (Lolium multiflorum, and barnyard grass (Echinochloa crus-galli at concentrations greater than 30 µM. Root growth of all but lettuce was also inhibited at concentrations greater than 30 µM. The inhibitory activities were concentration dependent. Concentrations required for 50% growth inhibition of suaveolic acid for those test plant species were ranged from 76 to 1155 µM. Therefore, suaveolic acid is phytotoxic and may be responsible for the phytotoxicity of H. suaveolens plant extracts.

  4. Transcutaneous delivery of levodopa: enhancement by fatty acid synthesis inhibition.

    Science.gov (United States)

    Babita, Kumar; Tiwary, Ashok K

    2005-01-01

    The present investigation aimed at evaluating the role of fatty acid synthesis inhibition in enhancing transcutaneous delivery of levodopa (LD). Rat epidermis was treated with ethanol and various doses of cerulenin (an inhibitor of fatty acid synthase enzyme system) for reducing the normal level of fatty acids. Calcium chloride (0.1 mM) and/or verapamil (1 microM) were coapplied to cerulenin treated skin in order to modulate duration of epidermal perturbation. These treated skin portions were used for estimation of altered triglyceride content (an indicator of fatty acid synthesis), differential scanning calorimetry (DSC) analysis, and in vitro permeation of LD. Plasma concentration of LD was monitored in rats following topical application of various transdermal formulations. Application of cerulenin (0.1 or 0.15 mM/7 cm(2)) to viable rat skin inhibited approximately 60% triglyceride synthesis with respect to control at 2 h. Coapplication of calcium chloride (0.1 mM) significantly increased this inhibition, whereas verapamil application reduced this effect. The decrease in triglyceride content reduced the enthalpy of the lipid endothermic transition. The in vitro permeation of LD was enhanced 3-fold across skin excised after treatment with cerulenin. LD did not permeate across normal skin. The effective plasma concentration (C(eff)) of LD was achieved within 3 h and maintained till 10 h by a single topical application of a carbidopa-levodopa combination (1:4) to ethanol-perturbed cerulenin-treated skin. Coapplication of calcium chloride reduced the time lag to achieve C(eff) to 2 h and maintained it till 24 h. A single transdermal LD (64 mg) patch formulated with calcium chloride (0.1 mM) and cerulenin (0.1 mM) dissolved in a propylene glycol:ethanol (7:3) mixture seems to offer a noninvasive approach for transcutaneous delivery of levodopa.

  5. Effect of fatty acids on arenavirus replication: inhibition of virus production by lauric acid.

    Science.gov (United States)

    Bartolotta, S; García, C C; Candurra, N A; Damonte, E B

    2001-01-01

    To study the functional involvement of cellular membrane properties on arenavirus infection, saturated fatty acids of variable chain length (C10-C18) were evaluated for their inhibitory activity against the multiplication of Junin virus (JUNV). The most active inhibitor was lauric acid (C12), which reduced virus yields of several attenuated and pathogenic strains of JUNV in a dose dependent manner, without affecting cell viability. Fatty acids with shorter or longer chain length had a reduced or negligible anti-JUNV activity. Lauric acid did not inactivate virion infectivity neither interacted with the cell to induce a state refractory to virus infection. From mechanistic studies, it can be concluded that lauric acid inhibited a late maturation stage in the replicative cycle of JUNV. Viral protein synthesis was not affected by the compound, but the expression of glycoproteins in the plasma membrane was diminished. A direct correlation between the inhibition of JUNV production and the stimulation of triacylglycerol cell content was demonstrated, and both lauric-acid induced effects were dependent on the continued presence of the fatty acid. Thus, the decreased insertion of viral glycoproteins into the plasma membrane, apparently due to the increased incorporation of triacylglycerols, seems to cause an inhibition of JUNV maturation and release.

  6. Combination of aspartic acid and glutamic acid inhibits tumor cell proliferation.

    Science.gov (United States)

    Yamaguchi, Yoshie; Yamamoto, Katsunori; Sato, Yoshinori; Inoue, Shinjiro; Morinaga, Tetsuo; Hirano, Eiichi

    2016-01-01

    Placental extract contains several biologically active compounds, and pharmacological induction of placental extract has therapeutic effects, such as improving liver function in patients with hepatitis or cirrhosis. Here, we searched for novel molecules with an anti-tumor activity in placental extracts. Active molecules were separated by chromatographic analysis, and their antiproliferative activities were determined by a colorimetric assay. We identified aspartic acid and glutamic acid to possess the antiproliferative activity against human hepatoma cells. Furthermore, we showed that the combination of aspartic acid and glutamic acid exhibited enhanced antiproliferative activity, and inhibited Akt phosphorylation. We also examined in vivo tumor inhibition activity using the rabbit VX2 liver tumor model. The treatment mixture (emulsion of the amino acids with Lipiodol) administered by hepatic artery injection inhibited tumor cell growth of the rabbit VX2 liver. These results suggest that the combination of aspartic acid and glutamic acid may be useful for induction of tumor cell death, and has the potential for clinical use as a cancer therapeutic agent.

  7. Fatty acid amide hydrolase inhibition by neurotoxic organophosphorus pesticides.

    Science.gov (United States)

    Quistad, G B; Sparks, S E; Casida, J E

    2001-05-15

    Organophosphorus (OP) compound-induced inhibition of acetylcholinesterase (AChE) and neuropathy target esterase explains the rapid onset and delayed neurotoxic effects, respectively, for OP insecticides and related compounds but apparently not a third or intermediate syndrome with delayed onset and reduced limb mobility. This investigation tests the hypothesis that fatty acid amide hydrolase (FAAH), a modulator of endogenous signaling compounds affecting sleep (oleamide) and analgesia (anandamide), is a sensitive target for OP pesticides with possible secondary neurotoxicity. Chlorpyrifos oxon inhibits 50% of the FAAH activity (IC50 at 15 min, 25 degrees C, pH 9.0) in vitro at 40--56 nM for mouse brain and liver, whereas methyl arachidonyl phosphonofluoridate, ethyl octylphosphonofluoridate (EOPF), oleyl-4H-1,3,2-benzodioxaphosphorin 2-oxide (oleyl-BDPO), and dodecyl-BDPO give IC50s of 0.08--1.1 nM. These BDPOs and EOPF inhibit mouse brain FAAH in vitro with > or =200-fold higher potency than for AChE. Five OP pesticides inhibit 50% of the brain FAAH activity (ED50) at diazinon, and methamidophos occurs near acutely toxic levels, profenofos and tribufos are effective at asymptomatic doses. Two BDPOs (dodecyl and phenyl) and EOPF are potent inhibitors of FAAH in vivo (ED50 0.5--6 mg/kg). FAAH inhibition of > or =76% in brain depresses movement of mice administered anandamide at 30 mg/kg ip, often leading to limb recumbency. Thus, OP pesticides and related inhibitors of FAAH potentiate the cannabinoid activity of anandamide in mice. More generally, OP compound-induced FAAH inhibition and the associated anandamide accumulation may lead to reduced limb mobility as a secondary neurotoxic effect.

  8. Gymnemic acids inhibit hyphal growth and virulence in Candida albicans.

    Directory of Open Access Journals (Sweden)

    Govindsamy Vediyappan

    Full Text Available Candida albicans is an opportunistic and polymorphic fungal pathogen that causes mucosal, disseminated and invasive infections in humans. Transition from the yeast form to the hyphal form is one of the key virulence factors in C. albicans contributing to macrophage evasion, tissue invasion and biofilm formation. Nontoxic small molecules that inhibit C. albicans yeast-to-hypha conversion and hyphal growth could represent a valuable source for understanding pathogenic fungal morphogenesis, identifying drug targets and serving as templates for the development of novel antifungal agents. Here, we have identified the triterpenoid saponin family of gymnemic acids (GAs as inhibitor of C. albicans morphogenesis. GAs were isolated and purified from Gymnema sylvestre leaves, the Ayurvedic traditional medicinal plant used to treat diabetes. Purified GAs had no effect on the growth and viability of C. albicans yeast cells but inhibited its yeast-to-hypha conversion under several hypha-inducing conditions, including the presence of serum. Moreover, GAs promoted the conversion of C. albicans hyphae into yeast cells under hypha inducing conditions. They also inhibited conidial germination and hyphal growth of Aspergillus sp. Finally, GAs inhibited the formation of invasive hyphae from C. albicans-infected Caenorhabditis elegans worms and rescued them from killing by C. albicans. Hence, GAs could be useful for various antifungal applications due to their traditional use in herbal medicine.

  9. Inhibition of histone deacetylase activity by valproic acid blocks adipogenesis.

    Science.gov (United States)

    Lagace, Diane C; Nachtigal, Mark W

    2004-04-30

    Adipogenesis is dependent on the sequential activation of transcription factors including the CCAAT/enhancer-binding proteins (C/EBP), peroxisome proliferator-activated receptor gamma (PPARgamma), and steroid regulatory element-binding protein (SREBP). We show that the mood stabilizing drug valproic acid (VPA; 0.5-2 mm) inhibits mouse 3T3 L1 and human preadipocyte differentiation, likely through its histone deacetylase (HDAC) inhibitory properties. The HDAC inhibitor trichostatin A (TSA) also inhibited adipogenesis, whereas the VPA analog valpromide, which does not possess HDAC inhibitory effects, did not prevent adipogenesis. Acute or chronic VPA treatment inhibited differentiation yet did not affect mitotic clonal expansion. VPA (1 mm) inhibited PPARgamma induced differentiation but does not activate a PPARgamma reporter gene, suggesting that it is not a PPARgamma ligand. VPA or TSA treatment reduced mRNA and protein levels of PPARgamma and SREBP1a. TSA reduced C/EBPalpha mRNA and protein levels, whereas VPA only produced a decrease in C/EBPalpha protein expression. Overall our results highlight a role for HDAC activity in adipogenesis that can be blocked by treatment with VPA.

  10. Inhibition of Listeria monocytogenes by fatty acids and monoglycerides.

    Science.gov (United States)

    Wang, L L; Johnson, E A

    1992-02-01

    Fatty acids and monoglycerides were evaluated in brain heart infusion broth and in milk for antimicrobial activity against the Scott A strain of Listeria monocytogenes. C12:0, C18:3, and glyceryl monolaurate (monolaurin) had the strongest activity in brain heart infusion broth and were bactericidal at 10 to 20 micrograms/ml, whereas potassium (K)-conjugated linoleic acids and C18:2 were bactericidal at 50 to 200 micrograms/ml. C14:0, C16:0, C18:0, C18:1, glyceryl monomyristate, and glyceryl monopalmitate were not inhibitory at 200 micrograms/ml. The bactericidal activity in brain heart infusion broth was higher at pH 5 than at pH 6. In whole milk and skim milk, K-conjugated linoleic acid was bacteriostatic and prolonged the lag phase especially at 4 degrees C. Monolaurin inactivated L. monocytogenes in skim milk at 4 degrees C, but was less inhibitory at 23 degrees C. Monolaurin did not inhibit L. monocytogenes in whole milk because of the higher fat content. Other fatty acids tested were not effective in whole or skim milk. Our results suggest that K-conjugated linoleic acids or monolaurin could be used as an inhibitory agent against L. monocytogenes in dairy foods.

  11. Inhibition of acidic corrosion of aluminum by triazoline derivatives

    Energy Technology Data Exchange (ETDEWEB)

    Khamis, E. (Alexandria Univ., Ibrahimia (Egypt). Dept. of Chemistry); Atea, M. (Alexandria Univ., Ibrahimia (Egypt). Dept. of Materials Science)

    1994-02-01

    Inhibition of the corrosion of aluminum (Al) in hydrochloric acid (HCl) by some triazoline derivatives was studied in relation to the concentration of the inhibitors using gasometry, the weight-loss method, and the potentiodynamic technique. All compounds investigated were found to be inhibitors of the mixed type. The inhibitory character of the additives depended upon the +R (resonance) and +I (inductive) powers of alkyl or aryl groups of the triazoline derivatives. Inhibition was ascribed to the adsorption of the inhibitor onto the metal oxide surface following the Flory-Huggins isotherm. The compounds were adsorbed on the metal surface. Each molecule of the inhibitors occupied an average of 3.8 active sites on the metal surface. The values of activation free energies varied between [minus]30 kJ/mol and [minus]45 kJ/mol.

  12. Proteolytic Pathways Induced by Herbicides That Inhibit Amino Acid Biosynthesis

    Science.gov (United States)

    Zulet, Amaia; Gil-Monreal, Miriam; Villamor, Joji Grace; Zabalza, Ana; van der Hoorn, Renier A. L.; Royuela, Mercedes

    2013-01-01

    Background The herbicides glyphosate (Gly) and imazamox (Imx) inhibit the biosynthesis of aromatic and branched-chain amino acids, respectively. Although these herbicides inhibit different pathways, they have been reported to show several common physiological effects in their modes of action, such as increasing free amino acid contents and decreasing soluble protein contents. To investigate proteolytic activities upon treatment with Gly and Imx, pea plants grown in hydroponic culture were treated with Imx or Gly, and the proteolytic profile of the roots was evaluated through fluorogenic kinetic assays and activity-based protein profiling. Results Several common changes in proteolytic activity were detected following Gly and Imx treatment. Both herbicides induced the ubiquitin-26 S proteasome system and papain-like cysteine proteases. In contrast, the activities of vacuolar processing enzymes, cysteine proteases and metacaspase 9 were reduced following treatment with both herbicides. Moreover, the activities of several putative serine protease were similarly increased or decreased following treatment with both herbicides. In contrast, an increase in YVADase activity was observed under Imx treatment versus a decrease under Gly treatment. Conclusion These results suggest that several proteolytic pathways are responsible for protein degradation upon herbicide treatment, although the specific role of each proteolytic activity remains to be determined. PMID:24040092

  13. Unusal pattern of product inhibition: batch acetic acid fermentation

    Energy Technology Data Exchange (ETDEWEB)

    Bar, R.; Gainer, J.L.; Kirwan, D.J.

    1987-04-20

    The limited tolerance of microorganisms to their metabolic products results in inhibited growth and product formation. The relationship between the specific growth rate, micro, and the concentration of an inhibitory product has been described by a number of mathematical models. In most cases, micro was found to be inversely proportional to the product concentration and invariably the rate of substrate utilization followed the same pattern. In this communication, the authors report a rather unusual case in which the formation rate of a product, acetic acid, increased with a decreasing growth rate of the microorganism, Acetobacter aceti. Apparently, a similar behavior was mentioned in a review report with respect to Clostridium thermocellum in a batch culture but was not published in the freely circulating literature. The fermentation of ethanol to acetic acid, C/sub 2/H/sub 5/OH + O/sub 2/ = CH/sub 3/COOH + H/sub 2/O is clearly one of the oldest known fermentations. Because of its association with the commercial production of vinegar it has been a subject of extensive but rather technically oriented studies. Suprisingly, the uncommon uncoupling between the inhibited microbial growth and the product formation appears to have been unnoticed. 13 references.

  14. Inhibition of acid sphingomyelinase by tricyclic antidepressants and analogons.

    Science.gov (United States)

    Beckmann, Nadine; Sharma, Deepa; Gulbins, Erich; Becker, Katrin Anne; Edelmann, Bärbel

    2014-01-01

    Amitriptyline, a tricyclic antidepressant, has been used in the clinic to treat a number of disorders, in particular major depression and neuropathic pain. In the 1970s the ability of tricyclic antidepressants to inhibit acid sphingomyelinase (ASM) was discovered. The enzyme ASM catalyzes the hydrolysis of sphingomyelin to ceramide. ASM and ceramide were shown to play a crucial role in a wide range of diseases, including cancer, cystic fibrosis, diabetes, Alzheimer's disease, and major depression, as well as viral (e.g., measles virus) and bacterial (e.g., Staphylococcus aureus, Pseudomonas aeruginosa) infections. Ceramide molecules may act in these diseases by the alteration of membrane biophysics, the self-association of ceramide molecules within the cell membrane and the ultimate formation of larger ceramide-enriched membrane domains/platforms. These domains were shown to serve the clustering of certain receptors such as CD95 and may also act in the above named diseases. The potential to block the generation of ceramide by inhibiting the ASM has opened up new therapeutic approaches for the treatment of these conditions. Since amitriptyline is one of the longest used clinical drugs and side effects are well studied, it could potentially become a cheap and easily accessible medication for patients suffering from these diseases. In this review, we aim to provide an overview of current in vitro and in vivo studies and clinical trials utilizing amitriptyline to inhibit ASM and contemplate possible future applications of the drug.

  15. Synthesis and cholinesterase inhibition of cativic acid derivatives.

    Science.gov (United States)

    Alza, Natalia P; Richmond, Victoria; Baier, Carlos J; Freire, Eleonora; Baggio, Ricardo; Murray, Ana Paula

    2014-08-01

    Alzheimer's disease (AD) is a neurodegenerative disorder associated with memory impairment and cognitive deficit. Most of the drugs currently available for the treatment of AD are acetylcholinesterase (AChE) inhibitors. In a preliminary study, significant AChE inhibition was observed for the ethanolic extract of Grindelia ventanensis (IC₅₀=0.79 mg/mL). This result prompted us to isolate the active constituent, a normal labdane diterpenoid identified as 17-hydroxycativic acid (1), through a bioassay guided fractionation. Taking into account that 1 showed moderate inhibition of AChE (IC₅₀=21.1 μM), selectivity over butyrylcholinesterase (BChE) (IC₅₀=171.1 μM) and that it was easily obtained from the plant extract in a very good yield (0.15% w/w), we decided to prepare semisynthetic derivatives of this natural diterpenoid through simple structural modifications. A set of twenty new cativic acid derivatives (3-6) was prepared from 1 through transformations on the carboxylic group at C-15, introducing a C2-C6 linker and a tertiary amine group. They were tested for their inhibitory activity against AChE and BChE and some structure-activity relationships were outlined. The most active derivative was compound 3c, with an IC₅₀ value of 3.2 μM for AChE. Enzyme kinetic studies and docking modeling revealed that this inhibitor targeted both the catalytic active site and the peripheral anionic site of this enzyme. Furthermore, 3c showed significant inhibition of AChE activity in SH-SY5Y human neuroblastoma cells, and was non-cytotoxic.

  16. The weak acid preservative sorbic acid inhibits conidial germination and mycelial growth of Aspergillus niger through intracellular acidification

    NARCIS (Netherlands)

    Plumridge, A.; Hesse, S.J.A.; Watson, A.J.; Lowe, K.C.; Stratford, M.; Archer, D.B.

    2004-01-01

    The growth of the filamentous fungus Aspergillus niger, a common food spoilage organism, is inhibited by the weak acid preservative sorbic acid (trans-trans-2,4-hexadienoic acid). Conidia inoculated at 105/ml of medium showed a sorbic acid MIC of 4.5 mM at pH 4.0, whereas the MIC for the amount of m

  17. Monomethylarsonous acid inhibited endogenous cholesterol biosynthesis in human skin fibroblasts

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Lei [Environmental Toxicology Graduate Program, University of California, Riverside, CA 92521-0403 (United States); Xiao, Yongsheng [Department of Chemistry, University of California, Riverside, CA 92521-0403 (United States); Wang, Yinsheng, E-mail: yinsheng.wang@ucr.edu [Environmental Toxicology Graduate Program, University of California, Riverside, CA 92521-0403 (United States); Department of Chemistry, University of California, Riverside, CA 92521-0403 (United States)

    2014-05-15

    Human exposure to arsenic in drinking water is a widespread public health concern, and such exposure is known to be associated with many human diseases. The detailed molecular mechanisms about how arsenic species contribute to the adverse human health effects, however, remain incompletely understood. Monomethylarsonous acid [MMA(III)] is a highly toxic and stable metabolite of inorganic arsenic. To exploit the mechanisms through which MMA(III) exerts its cytotoxic effect, we adopted a quantitative proteomic approach, by coupling stable isotope labeling by amino acids in cell culture (SILAC) with LC-MS/MS analysis, to examine the variation in the entire proteome of GM00637 human skin fibroblasts following acute MMA(III) exposure. Among the ∼ 6500 unique proteins quantified, ∼ 300 displayed significant changes in expression after exposure with 2 μM MMA(III) for 24 h. Subsequent analysis revealed the perturbation of de novo cholesterol biosynthesis, selenoprotein synthesis and Nrf2 pathways evoked by MMA(III) exposure. Particularly, MMA(III) treatment resulted in considerable down-regulation of several enzymes involved in cholesterol biosynthesis. In addition, real-time PCR analysis showed reduced mRNA levels of select genes in this pathway. Furthermore, MMA(III) exposure contributed to a distinct decline in cellular cholesterol content and significant growth inhibition of multiple cell lines, both of which could be restored by supplementation of cholesterol to the culture media. Collectively, the present study demonstrated that the cytotoxicity of MMA(III) may arise, at least in part, from the down-regulation of cholesterol biosynthesis enzymes and the resultant decrease of cellular cholesterol content. - Highlights: • MMA(III)-induced perturbation of the entire proteome of GM00637 cells is studied. • Quantitative proteomic approach revealed alterations of multiple cellular pathways. • MMA(III) inhibits de novo cholesterol biosynthesis. • MMA

  18. Salvianolic acid B inhibits autophagy and protects starving cardiac myocytes

    Science.gov (United States)

    Han, Xiao; Liu, Jian-xun; Li, Xin-zhi

    2011-01-01

    Aim: To investigate the protective or lethal role of autophagy and the effects of Salvianolic acid B (Sal B) on autophagy in starving myocytes. Methods: Cardiac myocytes were incubated under starvation conditions (GD) for 0, 1, 2, 3, and 6 h. Autophagic flux in starving cells was measured via chloroquine (3 μmol/L). After myocytes were treated with Sal B (50 μmol/L) in the presence or absence of chloroquine (3 μmol/L) under GD 3 h, the amount of LC3-II, the abundance of LC3-positive fluorescent dots in cells, cell viability and cellular ATP levels were determined using immunoblotting, immunofluorescence microscopy, MTT assay and luminometer, respectively. Moreover, electron microscopy (EM) and immunofluorescent duel labeling of LC3 and Caspase-8 were used to examine the characteristics of autophagy and apoptosis. Results: Immunoblot analysis showed that the amount of LC3-II in starving cells increased in a time-dependent manner accompanied by increased LC3-positive fluorescence and decreased cell viability and ATP content. Sal B (50 μmol/L) inhibited the increase in LC3-II, reduced the abundance of LC3 immunofluorescence and intensity of Caspase-8 fluorescence, and enhanced cellular viability and ATP levels in myocytes under GD 3 h, regardless of whether chloroquine was present. Conclusion: Autophagy induced by starvation for 3 h led to cell injury. Sal B protected starving cells by blocking the early stage of autophagic flux and inhibiting apoptosis that occurred during autophagy. PMID:21113177

  19. 18β-glycyrrhetinic acid inhibits rotavirus replication in culture

    Directory of Open Access Journals (Sweden)

    Hardy Michele E

    2012-05-01

    Full Text Available Abstract Background Glycyrrhizin (GA and primary metabolite 18β-glycyrrhetinic acid (GRA are pharmacologically active components of the medicinal licorice root, and both have been shown to have antiviral and immunomodulatory properties. Although these properties are well established, the mechanisms of action are not completely understood. In this study, GA and GRA were tested for the ability to inhibit rotavirus replication in cell culture, toward a long term goal of discovering natural compounds that may complement existing vaccines. Methods Epithelial cells were treated with GA or GRA various times pre- or post-infection and virus yields were measured by immunofluorescent focus assay. Levels of viral proteins VP2, VP6, and NSP2 in GRA treated cells were measured by immunoblot to determine if there was an effect of GRA treatment on the accumulation of viral protein. Results GRA treatment reduced rotavirus yields by 99% when added to infected cultures post-- virus adsorption, whereas virus yields in GA treated cultures were similar to mock treated controls. Time of addition experiments indicated that GRA-mediated replication inhibition likely occurs at a step or steps subsequent to virus entry. The amounts of VP2, VP6 and NSP2 were substantially reduced when GRA was added to cultures up to two hours post-entry. Conclusions GRA, but not GA, has significant antiviral activity against rotavirus replication in vitro, and studies to determine whether GRA attenuates rotavirus replication in vivo are underway.

  20. Salicylic acid antagonizes abscisic acid inhibition of shoot growth and cell cycle progression in rice

    Science.gov (United States)

    Meguro, Ayano; Sato, Yutaka

    2014-04-01

    We analysed effects of abscisic acid (ABA, a negative regulatory hormone), alone and in combination with positive or neutral hormones, including salicylic acid (SA), on rice growth and expression of cell cycle-related genes. ABA significantly inhibited shoot growth and induced expression of OsKRP4, OsKRP5, and OsKRP6. A yeast two-hybrid assay showed that OsKRP4, OsKRP5, and OsKRP6 interacted with OsCDKA;1 and/or OsCDKA;2. When SA was simultaneously supplied with ABA, the antagonistic effect of SA completely blocked ABA inhibition. SA also blocked ABA inhibition of DNA replication and thymidine incorporation in the shoot apical meristem. These results suggest that ABA arrests cell cycle progression by inducing expression of OsKRP4, OsKRP5, and OsKRP6, which inhibit the G1/S transition, and that SA antagonizes ABA by blocking expression of OsKRP genes.

  1. Amino acids inhibit kynurenic acid formation via suppression of kynurenine uptake or kynurenic acid synthesis in rat brain in vitro.

    Science.gov (United States)

    Sekine, Airi; Okamoto, Misaki; Kanatani, Yuka; Sano, Mitsue; Shibata, Katsumi; Fukuwatari, Tsutomu

    2015-01-01

    The tryptophan metabolite, kynurenic acid (KYNA), is a preferential antagonist of the α7 nicotinic acetylcholine receptor at endogenous brain concentrations. Recent studies have suggested that increase of brain KYNA levels is involved in psychiatric disorders such as schizophrenia and depression. KYNA-producing enzymes have broad substrate specificity for amino acids, and brain uptake of kynurenine (KYN), the immediate precursor of KYNA, is via large neutral amino acid transporters (LAT). In the present study, to find out amino acids with the potential to suppress KYNA production, we comprehensively investigated the effects of proteinogenic amino acids on KYNA formation and KYN uptake in rat brain in vitro. Cortical slices of rat brain were incubated for 2 h in Krebs-Ringer buffer containing a physiological concentration of KYN with individual amino acids. Ten out of 19 amino acids (specifically, leucine, isoleucine, phenylalanine, methionine, tyrosine, alanine, cysteine, glutamine, glutamate, and aspartate) significantly reduced KYNA formation at 1 mmol/L. These amino acids showed inhibitory effects in a dose-dependent manner, and partially inhibited KYNA production at physiological concentrations. Leucine, isoleucine, methionine, phenylalanine, and tyrosine, all LAT substrates, also reduced tissue KYN concentrations in a dose-dependent manner, with their inhibitory rates for KYN uptake significantly correlated with KYNA formation. These results suggest that five LAT substrates inhibit KYNA formation via blockade of KYN transport, while the other amino acids act via blockade of the KYNA synthesis reaction in brain. Amino acids can be a good tool to modulate brain function by manipulation of KYNA formation in the brain. This approach may be useful in the treatment and prevention of neurological and psychiatric diseases associated with increased KYNA levels.

  2. Gastric acid inhibition in the treatment of peptic ulcer hemorrhage.

    Science.gov (United States)

    Ghassemi, Kevin A; Kovacs, Thomas O G; Jensen, Dennis M

    2009-12-01

    Upper gastrointestinal bleeding from peptic ulcer disease is a common clinical event, resulting in considerable patient morbidity and significant health care costs. Inhibiting gastric acid secretion is a key component in improving clinical outcomes, including reducing rebleeding, transfusion requirements, and surgery. Raising intragastric pH promotes clot stability and reduces the influences of gastric acid and pepsin. Patients with high-risk stigmata for ulcer bleeding (arterial bleeding, nonbleeding visible vessels, and adherent clots) benefit significantly from and should receive high-dose intravenous proton pump inhibitors (PPIs) after successful endoscopic hemostasis. For patients with low-risk stigmata (flat spots or clean ulcer base), oral PPI therapy alone is sufficient. For oozing bleeding (an intermediate risk finding), successful endoscopic hemostasis and oral PPI are recommended. Using intravenous PPIs before endoscopy appears to reduce the frequency of finding high-risk stigmata on later endoscopy, but has not been shown to improve clinical outcomes. High-dose oral PPIs may be as effective as intravenous infusion in achieving positive clinical outcomes, but this has not been documented by randomized studies and its cost-effectiveness is unclear.

  3. Salvianolic acid B inhibits autophagy and protects starving cardiac myocytes

    Institute of Scientific and Technical Information of China (English)

    Xiao HAN; Jian-xun LIU; Xin-zhi LI

    2011-01-01

    Aim: To investigate the protective or lethal role of autophagy and the effects of Salvianolic acid B (Sal B) on autophagy in starving myocytes.Methods: Cardiac myocytes were incubated under starvation conditions (GD) for O, 1, 2, 3, and 6 h. Autophagic flux in starving cells was measured via chloroquine (3 μmol/L). After myocytes were treated with Sat B (50 μmol/L) in the presence or absence of chloro-quine (3 μmol/L) under GD 3 h, the amount of LC3-11, the abundance of LC3-positive fluorescent dots in cells, cell viability and cellular ATP levels were determined using immunoblotting, immunofluorescence microscopy, MTT assay and luminometer, respectively. More-over, electron microscopy (EM) and immunofluorescent duel labeling of LC3 and Caspase-8 were used to examine the characteristics of autophagy and apoptosis.Results: Immunoblot analysis showed that the amount of LC3-11 in starving cells increased in a time-dependent manner accompanied by increased LC3-positive fluorescence and decreased cell viability and ATP content. Sal B (50 μmol/L) inhibited the increase in LC3-11, reduced the abundance of LC3 immunofluorescence and intensity of Caspase-8 fluorescence, and enhanced cellular viability and ATP levels in myocytes under GD 3 h, regardless of whether chloroquine was present.Conclusion: Autophagy induced by starvation for 3 h led to cell injury. Sal B protected starving cells by blocking the early stage of autophagic flux and inhibiting apoptosis that occurred during autophagy.

  4. Inhibition of lettuce seed germination and seedling growth by antimetabolites of nucleic acids, and reversal by nucleic acid precursors and gibberellic acid.

    Science.gov (United States)

    Khan, A A

    1966-03-01

    Germination of White Paris lettuce seeds is inhibited by 2-thiouracil up to 24 hours. This inhibition is reversed by RNA precursors only. Seedling growth of lettuce is inhibited by 2-thiouracil and 5-fluorouracil; and white the effect of 2-thiouracil is counteracted by RNA precursors, inhibition due to 5-fluorouracil is not reversed significantly by any nucleic acid precursors. Possibly 2-thiouracil controls germination and seedling growth by interfering with RNA synthesis, while the effect of 5-fluorouracil is non-specific.In the presence of gibberellic acid, 5-fluorouracil and 2-thiouracil are relatively ineffective in causing inhibition of hypocotyl growth. Mechanism of gibberellic acid action remains obscure.

  5. Salicylic acid induces mitochondrial injury by inhibiting ferrochelatase heme biosynthesis activity.

    Science.gov (United States)

    Gupta, Vipul; Liu, Shujie; Ando, Hideki; Ishii, Ryohei; Tateno, Shumpei; Kaneko, Yuki; Yugami, Masato; Sakamoto, Satoshi; Yamaguchi, Yuki; Nureki, Osamu; Handa, Hiroshi

    2013-12-01

    Salicylic acid is a classic nonsteroidal anti-inflammatory drug. Although salicylic acid also induces mitochondrial injury, the mechanism of its antimitochondrial activity is not well understood. In this study, by using a one-step affinity purification scheme with salicylic acid-immobilized beads, ferrochelatase (FECH), a homodimeric enzyme involved in heme biosynthesis in mitochondria, was identified as a new molecular target of salicylic acid. Moreover, the cocrystal structure of the FECH-salicylic acid complex was determined. Structural and biochemical studies showed that salicylic acid binds to the dimer interface of FECH in two possible orientations and inhibits its enzymatic activity. Mutational analysis confirmed that Trp301 and Leu311, hydrophobic amino acid residues located at the dimer interface, are directly involved in salicylic acid binding. On a gel filtration column, salicylic acid caused a shift in the elution profile of FECH, indicating that its conformational change is induced by salicylic acid binding. In cultured human cells, salicylic acid treatment or FECH knockdown inhibited heme synthesis, whereas salicylic acid did not exert its inhibitory effect in FECH knockdown cells. Concordantly, salicylic acid treatment or FECH knockdown inhibited heme synthesis in zebrafish embryos. Strikingly, the salicylic acid-induced effect in zebrafish was partially rescued by FECH overexpression. Taken together, these findings illustrate that FECH is responsible for salicylic acid-induced inhibition of heme synthesis, which may contribute to its antimitochondrial and anti-inflammatory function. This study establishes a novel aspect of the complex pharmacological effects of salicylic acid.

  6. CYCLOSPORINE-A BLOCKS BILE-ACID SYNTHESIS IN CULTURED-HEPATOCYTES BY SPECIFIC-INHIBITION OF CHENODEOXYCHOLIC ACID SYNTHESIS

    NARCIS (Netherlands)

    PRINCEN, HMG; WOLTHERS, BG; VONK, RJ; KUIPERS, F

    1991-01-01

    Bile acid synthesis, determined by conversion of [4-C-14]cholesterol into bile acids in rat and human hepatocytes and by measurement of mass production of bile acids in rat hepatocytes, was dose-dependently decreased by cyclosporin A, with 52% (rat) and 45% (human) inhibition at 10-mu-M. The decreas

  7. Ellagic acid inhibits iron-mediated free radical formation

    Science.gov (United States)

    Dalvi, Luana T.; Moreira, Daniel C.; Andrade, Roberto; Ginani, Janini; Alonso, Antonio; Hermes-Lima, Marcelo

    2017-02-01

    Polyphenols are reported to have some health benefits, which are link to their antioxidant properties. In the case of ellagic acid (EA), there is evidence that it has free radical scavenger properties and that it is able to form complexes with metal ions. However, information on a possible link between the formation of iron-EA complexes and their interference in Haber-Weiss/Fenton reactions was not yet determined. Thus, the present study investigated the in vitro antioxidant mechanism of EA in a system containing ascorbate, Fe(III) and different iron ligands (EDTA, citrate and NTA). Iron-mediated oxidative degradation of 2-deoxyribose was poorly inhibited (by 12%) in the presence of EA (50 μM) and EDTA. When citrate or NTA - which form weak iron complexes - were used, the 2-deoxyribose protection increased to 89-97% and 45%, respectively. EA also presented equivalent inhibitory effects on iron-mediated oxygen uptake and ascorbyl radical formation. Spectral analyses of iron-EA complexes show that EA removes Fe(III) from EDTA within hours, and from citrate within 1 min. This difference in the rate of iron-EA complex formation may explain the antioxidant effects of EA. Furthermore, the EA antioxidant effectiveness was inversely proportional to the Fe(III) concentration, suggesting a competition with EDTA. In conclusion, the results indicate that EA may prevent in vitro free radical formation when it forms a complex with iron ions.

  8. Direct inhibition of retinoic acid catabolism by fluoxetine.

    Science.gov (United States)

    Hellmann-Regen, Julian; Uhlemann, Ria; Regen, Francesca; Heuser, Isabella; Otte, Christian; Endres, Matthias; Gertz, Karen; Kronenberg, Golo

    2015-09-01

    Recent evidence from animal and human studies suggests neuroprotective effects of the SSRI fluoxetine, e.g., in the aftermath of stroke. The underlying molecular mechanisms remain to be fully defined. Because of its effects on the cytochrome P450 system (CYP450), we hypothesized that neuroprotection by fluoxetine is related to altered metabolism of retinoic acid (RA), whose CYP450-mediated degradation in brain tissue constitutes an important step in the regulation of its site-specific auto- and paracrine actions. Using traditional pharmacological in vitro assays, the effects of fluoxetine on RA degradation were probed in crude synaptosomes from rat brain and human-derived SH-SY5Y cells, and in cultures of neuron-like SH-SY5Y cells. Furthermore, retinoid-dependent effects of fluoxetine on neuronal survival following glutamate exposure were investigated in rat primary neurons cells using specific retinoid receptor antagonists. Experiments revealed dose-dependent inhibition of synaptosomal RA degradation by fluoxetine along with dose-dependent increases in RA levels in cell cultures. Furthermore, fluoxetine's neuroprotective effects against glutamate excitotoxicity in rat primary neurons were demonstrated to partially depend on RA signaling. Taken together, these findings demonstrate for the first time that the potent, pleiotropic antidepressant fluoxetine directly interacts with RA homeostasis in brain tissue, thereby exerting its neuroprotective effects.

  9. Liver acid sphingomyelinase inhibits growth of metastatic colon cancer.

    Science.gov (United States)

    Osawa, Yosuke; Suetsugu, Atsushi; Matsushima-Nishiwaki, Rie; Yasuda, Ichiro; Saibara, Toshiji; Moriwaki, Hisataka; Seishima, Mitsuru; Kozawa, Osamu

    2013-02-01

    Acid sphingomyelinase (ASM) regulates the homeostasis of sphingolipids, including ceramides and sphingosine-1-phosphate (S1P). These sphingolipids regulate carcinogenesis and proliferation, survival, and apoptosis of cancer cells. However, the role of ASM in host defense against liver metastasis remains unclear. In this study, the involvement of ASM in liver metastasis of colon cancer was examined using Asm-/- and Asm+/+ mice that were inoculated with SL4 colon cancer cells to produce metastatic liver tumors. Asm-/- mice demonstrated enhanced tumor growth and reduced macrophage accumulation in the tumor, accompanied by decreased numbers of hepatic myofibroblasts (hMFs), which express tissue inhibitor of metalloproteinase 1 (TIMP1), around the tumor margin. Tumor growth was increased by macrophage depletion or by Timp1 deficiency, but was decreased by hepatocyte-specific ASM overexpression, which was associated with increased S1P production. S1P stimulated macrophage migration and TIMP1 expression in hMFs in vitro. These findings indicate that ASM in the liver inhibits tumor growth through cytotoxic macrophage accumulation and TIMP1 production by hMFs in response to S1P. Targeting ASM may represent a new therapeutic strategy for treating liver metastasis of colon cancer.

  10. Inhibition of carbon steel corrosion by 11-aminoundecanoic acid

    Directory of Open Access Journals (Sweden)

    Saad Ghareba

    2015-12-01

    Full Text Available The current study reports results on the investigation of the possibility of using 11-aminoundecanoic acid (AA as an inhibitor of general corrosion of carbon steel (CS in HCl under a range of experimental conditions: inhibitor concentration, exposure time, electrolyte temperature and pH and CS surface roughness. It was found that AA acts as a mixed-type inhibitor, yielding maximum inhibition efficiency of 97 %. The adsorption of AA onto the CS surface was described by the Langmuir adsorption isotherm. The corresponding apparent Gibbs free energy of AA adsorption on CS at 295 K was calculated to be −30.2 kJ mol–1. The adsorption process was found to be driven by a positive change in entropy of the system. PM-IRRAS measurements revealed that the adsorbed AA layer is amorphous, which can be attributed to the repulsion between the neighboring positively charged amine groups and a high heterogeneity of the CS surface. It was also found that the AA provides very good corrosion protection of CS of various surface roughness, and over a prolonged time.

  11. Inhibition of oxidative metabolism by propionic acid and its reversal by carnitine in isolated rat hepatocytes.

    Science.gov (United States)

    Brass, E P; Fennessey, P V; Miller, L V

    1986-01-01

    The present study was designed to study the interaction of propionic acid and carnitine on oxidative metabolism by isolated rat hepatocytes. Propionic acid (10 mM) inhibited hepatocyte oxidation of [1-14C]-pyruvate (10 mM) by 60%. This inhibition was not the result of substrate competition, as butyric acid had minimal effects on pyruvate oxidation. Carnitine had a small inhibitory effect on pyruvate oxidation in the hepatocyte system (210 +/- 19 and 184 +/- 18 nmol of pyruvate/60 min per mg of protein in the absence and presence of 10 mM-carnitine respectively; means +/- S.E.M., n = 10). However, in the presence of propionic acid (10 mM), carnitine (10 mM) increased the rate of pyruvate oxidation by 19%. Under conditions where carnitine partially reversed the inhibitory effect of propionic acid on pyruvate oxidation, formation of propionylcarnitine was documented by using fast-atom-bombardment mass spectroscopy. Propionic acid also inhibited oxidation of [1-14C]palmitic acid (0.8 mM) by hepatocytes isolated from fed rats. The degree of inhibition caused by propionic acid was decreased in the presence of 10 mM-carnitine (41% inhibition in the absence of carnitine, 22% inhibition in the presence of carnitine). Propionic acid did not inhibit [1-14C]palmitic acid oxidation by hepatocytes isolated from 48 h-starved rats. These results demonstrate that propionic acid interferes with oxidative metabolism in intact hepatocytes. Carnitine partially reverses the inhibition of pyruvate and palmitic acid oxidation by propionic acid, and this reversal is associated with increased propionylcarnitine formation. The present study provides a metabolic basis for the efficacy of carnitine in patients with abnormal organic acid accumulation, and the observation that such patients appear to have increased carnitine requirements ('carnitine insufficiency'). PMID:3790065

  12. The non-steroidal anti-inflammatory drug niflumic acid inhibits Candida albicans growth.

    Science.gov (United States)

    Baker, Andrew; Northrop, Frederick D; Miedema, Hendrik; Devine, Gary R; Davies, Julia M

    2002-01-01

    The non-steroidal anti-inflammatory drug niflumic acid was found to inhibit growth of the yeast form of Candida albicans. Niflumic acid inhibited respiratory oxygen uptake and it is hypothesised that this was achieved by cytosolic acidification and block of glycolysis. Inhibitory concentrations are compatible with current practice of topical application.

  13. Tetracycline Inhibits Propagation of Deoxyribonucleic Acid Replication and Alters Membrane Properties

    Science.gov (United States)

    Pato, Martin L.

    1977-01-01

    Tetracycline, at concentrations greater than required for inhibition of protein synthesis, rapidly and completely inhibits replication of deoxyribonucleic acid (DNA) in Escherichia coli and Bacillus subtilis. At these concentrations of tetracycline, synthesis of ribonucleic acid is not appreciably altered. In addition to inhibiting DNA replication, tetracycline causes alterations of the cytoplasmic membrane resulting in leakage of intracellular pools of nucleotides, amino acids, and the non-metabolizable sugar analogue, thiomethylgalactoside. As DNA is synthesized at a site on the membrane, alterations of membrane structure by tetracycline may be responsible for the observed inhibition of DNA replication. PMID:403855

  14. Influence of Benzotriazole on Corrosion Inhibition of Mild Steel in Citric Acid Medium

    OpenAIRE

    P. Matheswaran; A. K. Ramasamy

    2010-01-01

    Benzotriazole an organic compounds has been studied as corrosion inhibition for mild steel in 1 N citric acid by weight loss method. The result showed that the corrosion inhibition efficiency of the compound was found to be varying with the temperature and acid concentration. Also it was found that the corrosion inhibition behaviour of benzotriazole is better when the concentration of inhibitor is increased. The kinetic treatment of the results shows first order kinetics.

  15. Gene quantification by the NanoGene assay is resistant to inhibition by humic acids.

    Science.gov (United States)

    Kim, Gha-Young; Wang, Xiaofang; Ahn, Hosang; Son, Ahjeong

    2011-10-15

    NanoGene assay is a magnetic bead and quantum dot nanoparticles based gene quantification assay. It relies on a set of probe and signaling probe DNAs to capture the target DNA via hybridization. We have demonstrated the inhibition resistance of the NanoGene assay using humic acids laden genomic DNA (gDNA). At 1 μg of humic acid per mL, quantitiative PCR (qPCR) was inhibited to 0% of its quantification capability whereas NanoGene assay was able to maintain more than 60% of its quantification capability. To further increase the inhibition resistance of NanoGene assay at high concentration of humic acids, we have identified the specific mechanisms that are responsible for the inhibition. We examined five potential mechanisms with which the humic acids can partially inhibit our NanoGene assay. The mechanisms examined were (1) adsorption of humic acids on the particle surface; (2) particle aggregation induced by humic acids; (3) fluorescence quenching of quantum dots by humic acids during hybridization; (4) humic acids mimicking of target DNA; and (5) nonspecific binding between humic acids and target gDNA. The investigation showed that no adsorption of humic acids onto the particles' surface was observed for the humic acids' concentration. Particle aggregation and fluorescence quenching were also negligible. Humic acids also did not mimic the target gDNA except 1000 μg of humic acids per mL and hence should not contribute to the partial inhibition. Four of the above mechanisms were not related to the inhibition effect of humic acids particularly at the environmentally relevant concentrations (captured by the probe and signaling DNA.

  16. Inhibition of N-acetylneuraminate lyase by N-acetyl-4-oxo-D-neuraminic acid.

    Science.gov (United States)

    Gross, H J; Brossmer, R

    1988-05-09

    We show that the 4-oxo analogue of N-acetyl-D-neuraminic acid strongly inhibits N-acetylneuraminate lyase (NeuAc aldolase, EC 4.1.3.3) from Clostridum perfringens (Ki = 0.025 mM) and Escherichia coli (Ki = 0.15 mM). In each case the inhibition was competitive. N-Acetyl-D-neuraminic acid; N-Acetylneuraminate lyase; N-Acetyl-D-neuraminic acid analog; 5-Acetamido-3,5-dideoxy-beta-D-manno-non-2,4-diulosonic acid; 2-Deoxy-2,3-didehydro-N-acetyl-4-oxo-neuraminic acid; Competitive inhibitor.

  17. Corrosion inhibition of steel in concrete by carboxylic acids

    Energy Technology Data Exchange (ETDEWEB)

    Sagoe-Crentsil, K.K.; Glasser, F.P. (Univ. of Aberdeen, Old Aberdeen (United Kingdom). Dept. of Chemistry); Yilmaz, V.T. (Ondokuz Mayis Univ., Samsun (Turkey))

    1993-11-01

    Water soluble carboxylic acids have been used as corrosion inhibitors. They remain largely soluble after curing in cement for up to 90d. Corrosion current measurements are presented showing malonic acid, a dicarboxylic acid, to be a very effective corrosion inhibitor even in the presence of 2.5 wt % chloride. Unfortunately, it has an initial retarding effect on the set of Portland cement. The investigation suggests that corrosion inhibitors based on carboxylic acids remain a fruitful field of investigation.

  18. Humic Acid-Like and Fulvic Acid-Like Inhibition on the Hydrolysis of Cellulose and Tributyrin

    NARCIS (Netherlands)

    Fernandes, T.V.; Lier, van J.B.; Zeeman, Grietje

    2015-01-01

    Enzymatic hydrolysis of complex wastes is a critical step for efficient biogas production in anaerobic digesters. Inhibition of this hydrolytic step was studied by addition of humic acid-like (HAL) and fulvic acid-like (FAL) substances, extracted from maize silage and fresh cow manure, to batch

  19. Humic Acid-Like and Fulvic Acid-Like Inhibition on the Hydrolysis of Cellulose and Tributyrin

    NARCIS (Netherlands)

    Fernandes, Tania V.; van Lier, Jules B.; Zeeman, Grietje

    2015-01-01

    Enzymatic hydrolysis of complex wastes is a critical step for efficient biogas production in anaerobic digesters. Inhibition of this hydrolytic step was studied by addition of humic acid-like (HAL) and fulvic acid-like (FAL) substances, extracted from maize silage and fresh cow manure, to batch

  20. Inhibition of Mild Steel Corrosion in Acidic Medium by Aqueous Extract of Tridax procumbens L.

    Directory of Open Access Journals (Sweden)

    G. Ilayaraja

    2011-01-01

    Full Text Available The inhibition efficiency (IE of an aqueous extract of Tridax procumbens L. in controlling corrosion of mild steel has been investigated by weight loss method in the absence and presence of corrosion inhibitor at different time interval at room temperature. The result showed that the corrosion inhibition efficiency of these compounds was found to vary with different time interval and different acid concentration. Also, it was found that the corrosion inhibition behavior of Tridax procumbens L. is greater in sulphuric acid than hydrochloric acid medium. So Tridax procumbens L. can be used as a good inhibitor for preventing mild steel material.

  1. Kinetic study of oxalic acid inhibition on enzymatic browning.

    Science.gov (United States)

    Son, S M; Moon, K D; Lee, C Y

    2000-06-01

    Oxalic acid has a strong antibrowning activity. The inhibitory pattern on catechol-PPO model system appeared to be competitive, with a K(i) value of 2.0 mM. When the PPO was incubated with oxalic acid, the activity was not recovered via dialysis, but the inactivated enzyme partially recovered its activity when cupric ion was added. Comparing the relative antibrowning effectiveness of oxalic acid with other common antibrowning agents, oxalic acid with I(50) value of 1.1 mM is as effective as kojic acid and more potent than cysteine and glutathione.

  2. Development of poly(aspartic acid-co-malic acid) composites for calcium carbonate and sulphate scale inhibition.

    Science.gov (United States)

    Mithil Kumar, N; Gupta, Sanjay Kumar; Jagadeesh, Dani; Kanny, K; Bux, F

    2015-01-01

    Polyaspartic acid (PSI) is suitable for the inhibition of inorganic scale deposition. To enhance its scale inhibition efficiency, PSI was modified by reacting aspartic acid with malic acid (MA) using thermal polycondensation polymerization. This reaction resulted in poly(aspartic acid-co-malic acid) (PSI-co-MA) dual polymer. The structural, chemical and thermal properties of the dual polymers were analysed by using scanning electron microscopy, Fourier transform infrared spectroscopy, X-ray diffraction, differential scanning calorimetry and gel permeation chromatography. The effectiveness of six different molar ratios of PSI-co-MA dual polymer for calcium carbonate and calcium sulphate scale inhibition at laboratory scale batch experiments was evaluated with synthetic brine solution at selected doses of polymer at 65-70°C by the static scale test method. The performance of PSI-co-MA dual polymer for the inhibition of calcium carbonate and calcium sulphate precipitation was compared with that of a PSI single polymer. The PSI-co-MA exhibited excellent ability to control inorganic minerals, with approximately 85.36% calcium carbonate inhibition and 100% calcium sulphate inhibition at a level of 10 mg/L PSI-co-MA, respectively. Therefore, it may be reasonably concluded that PSI-co-MA is a highly effective scale inhibitor for cooling water treatment applications.

  3. A Comparative Study on Corrosion Inhibition of Mild Steel Using Piper Nigrum L. in Different Acid Medium

    OpenAIRE

    Anand, B.; Balasubramanian, V

    2010-01-01

    The inhibition of corrosion of mild steel using Piper nigrum L in different acid medium by weight loss method was investigated. The corrosion inhibition was studied in hydrochloric acid and sulphuric acid by weight loss method at different time interval at room temperature. The result showed that the corrosion inhibition efficiency of this compound was found to vary with different time interval and different acid concentration. Also, it was found that the corrosion inhibition behavior of Pipe...

  4. Research Advances in the Inhibition of Long Chain Fatty Acid to Methanogenic Activity in Anaeroic Digestion System

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    This article reviewed the inhibition mechanism of long chain fatty acid on the formation of anaerobic system, then thoroughly analyzed the inhibition factors of long chain fatty acid, and summarized the remission method to its inhibition, finally proposed some suggestions to further study on the influence of long chain fatty acid on anaerobic digestion system.

  5. Methanogenic Inhibition by Roxarsone (4-Hydroxy-3-nitrophenylarsonic acid) and Related Aromatic Arsenic Compounds

    OpenAIRE

    2009-01-01

    Roxarsone (4-hydroxy-3-nitro-phenylarsonic acid) and p-arsanilic acid (4-aminophenylarsonic acid) are feed additives widely used in the broiler and swine industry. This study evaluated the inhibitory effect of roxarsone, p-arsanilic, and other phenylarsonic compounds on the activity of acetate- and H2-utilizing methanogenic microorganisms. Roxarsone, p-arsanilic, and 4-hydroxy-3-aminophenylarsonic acid (HAPA) inhibited acetoclastic and hydrogenotrophic methanogens when supplemented at concent...

  6. Corrosion Behaviour of Nickel in Chloroacetic Acids and its Inhibition

    Institute of Scientific and Technical Information of China (English)

    S.M. Rashwan; A.Emam; S.M. Abd El-Wahab; M.M. Mohamed

    2004-01-01

    Anodic dissolution behaviour of Ni in mono-, di- and trichloroacetic acids has been investigated by measuring current densities of Ni electrode (versus SCE) at different potentials. Effects of acid concentration, pH, scan rate and additive inhibitor on the potential were studied and they revealed that there is a considerable shift of potential.Potentiodynamic polarization measurements show that the corrosion rate of Ni in chloroacetic acid solutions increases by increasing the previous factors. However, by adding inhibitor, it decreases.

  7. Synthesis of sildenafil analogues from anacardic acid and their phosphodiesterase-5 inhibition.

    Science.gov (United States)

    Paramashivappa, R; Phani Kumar, P; Subba Rao, P V; Srinivasa Rao, A

    2002-12-18

    Anacardic acid (6-pentadecylsalicylic acid), a major component of cashew nut shell liquid, consists of a heterogeneous mixture of monoenes, dienes, and trienes. The enes mixture of anacardic acid was hydrogenated to a saturated compound. Using saturated anacardic acid as a starting material, analogues of sildenafil [a potent phosphodiesterase-5 (PDE(5)) inhibitor and an orally active drug for the treatment of erectile dysfunction] were synthesized, to observe the effect of the pentadecyl side chain on PDE(5) inhibition. The synthesized compounds were characterized by spectral studies and tested for PDE(5) inhibition, and the results were compared with those obtained with sildenafil.

  8. Corrosion and Inhibition Effects of Mild Steel in Hydrochloric Acid Solutions Containing Organophosphonic Acid

    Directory of Open Access Journals (Sweden)

    Manish Gupta

    2013-01-01

    Full Text Available A study has been made on the mechanism of corrosion of mild steel and the effect of nitrilo trimethylene phosphonic (NTMP acid as a corrosion inhibitor in acidic medium, that is, 10% HC1 using the weight loss method and electrochemical techniques, that is, potentiodynamic and galvanostatic polarization measurements. Although corrosion is a long-time process, but it takes place at a faster rate in the beginning which goes on decreasing with due course of time. The above-mentioned methods of corrosion rate determination furnish an average value for a long-time interval. Looking at the versatility and minimum detection limit of the voltammetric method, the authors have developed a new voltammetric method for the determination of corrosion rate at short-time intervals. The results of corrosion of mild steel in 10% HC1 solution with and without NTMP inhibitor at short-time intervals have been reported. The corrosion inhibition efficiency of NTMP is 93% after 24 h.

  9. Inhibition of DNA methylation by caffeic acid and chlorogenic acid, two common catechol-containing coffee polyphenols.

    Science.gov (United States)

    Lee, Won Jun; Zhu, Bao Ting

    2006-02-01

    We studied the modulating effects of caffeic acid and chlorogenic acid (two common coffee polyphenols) on the in vitro methylation of synthetic DNA substrates and also on the methylation status of the promoter region of a representative gene in two human cancer cells lines. Under conditions that were suitable for the in vitro enzymatic methylation of DNA and dietary catechols, we found that the presence of caffeic acid or chlorogenic acid inhibited in a concentration-dependent manner the DNA methylation catalyzed by prokaryotic M.SssI DNA methyltransferase (DNMT) and human DNMT1. The IC50 values of caffeic acid and chlorogenic acid were 3.0 and 0.75 microM, respectively, for the inhibition of M.SssI DNMT-mediated DNA methylation, and were 2.3 and 0.9 microM, respectively, for the inhibition of human DNMT1-mediated DNA methylation. The maximal in vitro inhibition of DNA methylation was approximately 80% when the highest concentration (20 microM) of caffeic acid or chlorogenic acid was tested. Kinetic analyses showed that DNA methylation catalyzed by M.SssI DNMT or human DNMT1 followed the Michaelis-Menten curve patterns. The presence of caffeic acid or chlorogenic acid inhibited DNA methylation predominantly through a non-competitive mechanism, and this inhibition was largely due to the increased formation of S-adenosyl-L-homocysteine (SAH, a potent inhibitor of DNA methylation), resulting from the catechol-O-methyltransferase (COMT)-mediated O-methylation of these dietary catechols. Using cultured MCF-7 and MAD-MB-231 human breast cancer cells, we also demonstrated that treatment of these cells with caffeic acid or chlorogenic acid partially inhibited the methylation of the promoter region of the RARbeta gene. The findings of our present study provide a general mechanistic basis for the notion that a variety of dietary catechols can function as inhibitors of DNA methylation through increased formation of SAH during the COMT-mediated O-methylation of these dietary

  10. Substrate-selective Inhibition of Cyclooxygeanse-2 by Fenamic Acid Derivatives Is Dependent on Peroxide Tone.

    Science.gov (United States)

    Orlando, Benjamin J; Malkowski, Michael G

    2016-07-15

    Cyclooxygenase-2 (COX-2) catalyzes the oxygenation of arachidonic acid (AA) and endocannabinoid substrates, placing the enzyme at a unique junction between the eicosanoid and endocannabinoid signaling pathways. COX-2 is a sequence homodimer, but the enzyme displays half-of-site reactivity, such that only one monomer of the dimer is active at a given time. Certain rapid reversible, competitive nonsteroidal anti-inflammatory drugs (NSAIDs) have been shown to inhibit COX-2 in a substrate-selective manner, with the binding of inhibitor to a single monomer sufficient to inhibit the oxygenation of endocannabinoids but not arachidonic acid. The underlying mechanism responsible for substrate-selective inhibition has remained elusive. We utilized structural and biophysical methods to evaluate flufenamic acid, meclofenamic acid, mefenamic acid, and tolfenamic acid for their ability to act as substrate-selective inhibitors. Crystal structures of each drug in complex with human COX-2 revealed that the inhibitor binds within the cyclooxygenase channel in an inverted orientation, with the carboxylate group interacting with Tyr-385 and Ser-530 at the top of the channel. Tryptophan fluorescence quenching, continuous-wave electron spin resonance, and UV-visible spectroscopy demonstrate that flufenamic acid, mefenamic acid, and tolfenamic acid are substrate-selective inhibitors that bind rapidly to COX-2, quench tyrosyl radicals, and reduce higher oxidation states of the heme moiety. Substrate-selective inhibition was attenuated by the addition of the lipid peroxide 15-hydroperoxyeicosatertaenoic acid. Collectively, these studies implicate peroxide tone as an important mechanistic component of substrate-selective inhibition by flufenamic acid, mefenamic acid, and tolfenamic acid.

  11. Gastric exocrine and endocrine cell morphology under prolonged acid inhibition therapy

    DEFF Research Database (Denmark)

    Fiocca, R; Mastracci, L; Attwood, S E;

    2012-01-01

    Sustained acid inhibition with PPI stimulates gastrin secretion, exerting a proliferative drive on enterochromaffin-like cells (ECL cells) of the oxyntic mucosa. It may also accelerate development of gastric gland atrophy in Helicobacter pylori-infected individuals.......Sustained acid inhibition with PPI stimulates gastrin secretion, exerting a proliferative drive on enterochromaffin-like cells (ECL cells) of the oxyntic mucosa. It may also accelerate development of gastric gland atrophy in Helicobacter pylori-infected individuals....

  12. Influence of Formazan Derivatives on Corrosion Inhibition of Mild Steel in Hydrochloric Acid Medium

    OpenAIRE

    Venkatesan, P.; Anand, B.; P. Matheswaran

    2009-01-01

    Formazan of benzaldehyde (FB) and formazan of p-dimethyl amino benzaldehyde (FD) were synthesized. These compounds were studied as corrosion inhibitor for mild steel in 1.11 N hydrochloric acid by weight loss method. The result showed that the corrosion inhibition efficiency of these compounds was found to vary with the temperature and acid concentration. Also, it was found that the corrosion inhibition behaviour of FD is greater than that of FB. The kinetic treatment of the results gave firs...

  13. Inhibition of Mild Steel Corrosion in Acidic Medium by Aqueous Extract of Tridax procumbens L.

    OpenAIRE

    Ilayaraja, G.; Sasieekhumar, A. R.; Dhanakodi, P.

    2011-01-01

    The inhibition efficiency (IE) of an aqueous extract of Tridax procumbens L. in controlling corrosion of mild steel has been investigated by weight loss method in the absence and presence of corrosion inhibitor at different time interval at room temperature. The result showed that the corrosion inhibition efficiency of these compounds was found to vary with different time interval and different acid concentration. Also, it was found that the corrosion inhibition behavior of Tridax procumbens ...

  14. Inhibition of Fatty Acid Synthase in Prostate Cancer by Olristat, a Novel Therapeutic

    Science.gov (United States)

    2006-11-01

    inhibition of tumour growth (Gabrielson et al, 2001; Pizer et al, 2001). Subcutaneous xenografts of MCF7 breast cancer cells in nude mice treated with...malonyl-CoA, which leads to inhibition of carnitine palmitoyltransferase-1 and, indirectly, the fatty acid oxidation pathway (Thupari et al, 2001

  15. Inhibition of Aspergillus spp. and Penicillium spp. by fatty acids and their monoglycerides.

    Science.gov (United States)

    Altieri, Clelia; Cardillo, Daniela; Bevilacqua, Antonio; Sinigaglia, Milena

    2007-05-01

    The antifungal activity of three fatty acids (lauric, myristic, and palmitic acids) and their monoglycerides (monolaurin, monomyristic acid, and palmitin, respectively) against Aspergillus and Penicillium species in a model system was investigated. Data were modeled through a reparameterized Gompertz equation. The maximum colony diameter attained within the experimental time (30 days), the maximal radial growth rate, the lag time (i.e., the number of days before the beginning of radial fungal growth), and the minimum detection time (MDT; the number of days needed to attain 1 cm colony diameter) were evaluated. Fatty acids and their monoglycerides inhibited mold growth by increasing MDT and lag times. The effectiveness of the active compounds seemed to be strain and genus dependent. Palmitic acid was the most effective chemical against aspergilli, whereas penicilli were strongly inhibited by myristic acid. Aspergilli also were more susceptible to fatty acids than were penicilli, as indicated by the longer MDT.

  16. Growth inhibition of Cronobacter spp. strains in reconstituted powdered infant formula acidified with organic acids supported by natural stomach acidity.

    Science.gov (United States)

    Zhu, S; Schnell, S; Fischer, M

    2013-09-01

    Cronobacter is associated with outbreaks of rare, but life-threatening cases of meningitis, necrotizing enterocolitis, and sepsis in newborns. This study was conducted to determine the effect of organic acids on growth of Cronobacter in laboratory medium and reconstituted powdered infant formula (PIF) as well as the bacteriostatic effect of slightly acidified infant formula when combined with neonatal gastric acidity. Inhibitory effect of seven organic acids on four acid sensitive Cronobacter strains was determined in laboratory medium with broth dilution method at pH 5.0, 5.5 and 6.0. Acetic, butyric and propionic acids were most inhibitive against Cronobacter in the laboratory medium. The killing effect of these three acids was partially buffered in reconstituted PIF. Under neonatal gastric acid condition of pH 5.0, the slightly acidified formula which did not exert inhibition effect solely reduced significantly the Cronobacter populations. A synergistic effect of formula moderately acidified with organic acid combined with the physiological infant gastric acid was visible in preventing the rapid growth of Cronobacter in neonatal stomach. The study contributed to a better understanding of the inhibitory effect of organic acids on Cronobacter growth in different matrixes and provided new ideas in terms of controlling bacteria colonization and translocation by acidified formula.

  17. Inhibition of Aluminium Corrosion in Hydrochloric Acid Using Nizoral and the Effect of Iodide Ion Addition

    Directory of Open Access Journals (Sweden)

    I. B. Obot

    2010-01-01

    Full Text Available The effect of nizoral (NZR on the corrosion inhibition of aluminium alloy AA 1060 in 2 M HCl solution was investigated using the mylius thermometric technique. Results of the study revealed that nizoral acts as corrosion inhibitor for aluminium in the acidic medium. In general, at constant acid concentration, the inhibition efficiency increases with increase in the inhibitor concentration. The addition of KI to the inhibitor enhanced the inhibition efficiency to a considerable extent. The adsorption of nizoral onto the aluminium surface was found to obey the Fruendlich adsorption isotherm. The value of the free energy for the adsorption process shows that the process is spontaneous.

  18. Influence of Formazan Derivatives on Corrosion Inhibition of Mild Steel in Hydrochloric Acid Medium

    Directory of Open Access Journals (Sweden)

    P. Venkatesan

    2009-01-01

    Full Text Available Formazan of benzaldehyde (FB and formazan of p-dimethyl amino benzaldehyde (FD were synthesized. These compounds were studied as corrosion inhibitor for mild steel in 1.11 N hydrochloric acid by weight loss method. The result showed that the corrosion inhibition efficiency of these compounds was found to vary with the temperature and acid concentration. Also, it was found that the corrosion inhibition behaviour of FD is greater than that of FB. The kinetic treatment of the results gave first order kinetics. The relative corrosion inhibition efficiency of these compounds has been explained on the basis of structure dependent - electron donor properties of the inhibitors.

  19. A Comparative Study on Corrosion Inhibition of Mild Steel Using Piper Nigrum L. in Different Acid Medium

    Directory of Open Access Journals (Sweden)

    B. Anand

    2010-01-01

    Full Text Available The inhibition of corrosion of mild steel using Piper nigrum L in different acid medium by weight loss method was investigated. The corrosion inhibition was studied in hydrochloric acid and sulphuric acid by weight loss method at different time interval at room temperature. The result showed that the corrosion inhibition efficiency of this compound was found to vary with different time interval and different acid concentration. Also, it was found that the corrosion inhibition behavior of Piper nigrum L is greater in sulphuric acid than hydrochloric acid. So, Piper nigrum L can be used as a good inhibitor for preventing mild steel material.

  20. Inhibition of the β-class carbonic anhydrases from Mycobacterium tuberculosis with carboxylic acids.

    Science.gov (United States)

    Maresca, Alfonso; Vullo, Daniela; Scozzafava, Andrea; Manole, Gheorghe; Supuran, Claudiu T

    2013-04-01

    The growth of Mycobacterium tuberculosis is strongly inhibited by weak acids although the mechanism by which these compounds act is not completely understood. A series of substituted benzoic acids, nipecotic acid, ortho- and para-coumaric acid, caffeic acid and ferulic acid were investigated as inhibitors of three β-class carbonic anhydrases (CAs, EC 4.2.1.1) from this pathogen, mtCA 1 (Rv1284), mtCA 2 (Rv3588c) and mtCA 3 (Rv3273). All three enzymes were inhibited with efficacies between the submicromolar to the micromolar one, depending on the scaffold present in the carboxylic acid. mtCA 3 was the isoform mostly inhibited by these compounds (K(I)s in the range of 0.11-0.97 µM); followed by mtCA 2 (K(I)s in the range of 0.59-8.10 µM), whereas against mtCA 1, these carboxylic acids showed inhibition constants in the range of 2.25-7.13 µM. This class of relatively underexplored β-CA inhibitors warrant further in vivo studies, as they may have the potential for developing antimycobacterial agents with a diverse mechanism of action compared to the clinically used drugs for which many strains exhibit multi-drug or extensive multi-drug resistance.

  1. Vanadate inhibition of fungal phyA and bacterial appA2 histidine acid phosphatases

    Science.gov (United States)

    The fungal PhyA protein, which was first identified as an acid optimum phosphomonoesterase (EC 3.1.3.8), could also serve as a vanadate haloperoxidase (EC 1.11.1.10) provided the acid phosphatase activity is shutdown by vanadate. To understand how vanadate inhibits both phytate and pNPP degrading ac...

  2. Quantitative analysis of the modes of growth inhibition by weak organic acids in Saccharomyces cerevisiae

    NARCIS (Netherlands)

    Ullah, A.; Orij, R.; Brul, S.; Smits, G.J.

    2012-01-01

    Weak organic acids are naturally occurring compounds that are commercially used as preservatives in the food and beverage industries. They extend the shelf life of food products by inhibiting microbial growth. There are a number of theories that explain the antifungal properties of these weak acids,

  3. Ursodeoxycholic acid but not tauroursodeoxycholic acid inhibits proliferation and differentiation of human subcutaneous adipocytes.

    Directory of Open Access Journals (Sweden)

    Lucia Mališová

    Full Text Available Stress of endoplasmic reticulum (ERS is one of the molecular triggers of adipocyte dysfunction and chronic low inflammation accompanying obesity. ERS can be alleviated by chemical chaperones from the family of bile acids (BAs. Thus, two BAs currently used to treat cholestasis, ursodeoxycholic and tauroursodeoxycholic acid (UDCA and TUDCA, could potentially lessen adverse metabolic effects of obesity. Nevertheless, BAs effects on human adipose cells are mostly unknown. They could regulate gene expression through pathways different from their chaperone function, namely through activation of farnesoid X receptor (FXR and TGR5, G-coupled receptor. Therefore, this study aimed to analyze effects of UDCA and TUDCA on human preadipocytes and differentiated adipocytes derived from paired samples of two distinct subcutaneous adipose tissue depots, abdominal and gluteal. While TUDCA did not alter proliferation of cells from either depot, UDCA exerted strong anti-proliferative effect. In differentiated adipocytes, acute exposition to neither TUDCA nor UDCA was able to reduce effect of ERS stressor tunicamycin. However, exposure of cells to UDCA during whole differentiation process decreased expression of ERS markers. At the same time however, UDCA profoundly inhibited adipogenic conversion of cells. UDCA abolished expression of PPARγ and lipogenic enzymes already in the early phases of adipogenesis. This anti-adipogenic effect of UDCA was not dependent on FXR or TGR5 activation, but could be related to ability of UDCA to sustain the activation of ERK1/2 previously linked with PPARγ inactivation. Finally, neither BAs did lower expression of chemokines inducible by TLR4 pathway, when UDCA enhanced their expression in gluteal adipocytes. Therefore while TUDCA has neutral effect on human preadipocytes and adipocytes, the therapeutic use of UDCA different from treating cholestatic diseases should be considered with caution because UDCA alters functions of

  4. Growth inhibition of Erwinia amylovora and related Erwinia species by neutralized short‑chain fatty acids.

    Science.gov (United States)

    Konecki, Katrin; Gernold, Marina; Wensing, Annette; Geider, Klaus

    2013-11-01

    Short-chain fatty acids (SCFAs) are used to preserve food and could be a tool for control of fire blight caused by Erwinia amylovora on apple, pear and related rosaceous plants. Neutralized acids were added to buffered growth media at 0.5–75 mM and tested at pHs ranging from 6.8 to 5.5. Particularly at low pH, SCFAs with a chain length exceeding that of acetic acid such as propionic acid were effective growth inhibitors of E. amylovora possibly due to uptake of free acid and its intracellular accumulation. We also observed high inhibition with monochloroacetic acid. An E. billingiae strain was as sensitive to the acids as E. amylovora or E. tasmaniensis. Fire blight symptoms on pear slices were reduced when the slices were pretreated with neutralized propionic acid. Propionic acid is well water soluble and could be applied in orchards as a control agent for fire blight.

  5. Salicylic acid inhibits enzymatic browning of fresh-cut Chinese chestnut (Castanea mollissima) by competitively inhibiting polyphenol oxidase.

    Science.gov (United States)

    Zhou, Dan; Li, Lin; Wu, Yanwen; Fan, Junfeng; Ouyang, Jie

    2015-03-15

    The inhibitory effect and associated mechanisms of salicylic acid (SA) on the browning of fresh-cut Chinese chestnut were investigated. Shelled and sliced chestnuts were immersed in different concentrations of an SA solution, and the browning of the chestnut surface and interior were inhibited. The activities of polyphenol oxidase (PPO) and peroxidase (POD) extracted from chestnuts were measured in the presence and absence of SA. SA at concentrations higher than 0.3g/L delayed chestnut browning by significantly inhibiting the PPO activity (P0.05). The binding and inhibition modes of SA with PPO and POD, determined by AUTODOCK 4.2 and Lineweaver-Burk plots, respectively, established SA as a competitive inhibitor of PPO.

  6. Gallic acid is the major component of grape seed extract that inhibits amyloid fibril formation.

    Science.gov (United States)

    Liu, Yanqin; Pukala, Tara L; Musgrave, Ian F; Williams, Danielle M; Dehle, Francis C; Carver, John A

    2013-12-01

    Many protein misfolding diseases, for example, Alzheimer's, Parkinson's and Huntington's, are characterised by the accumulation of protein aggregates in an amyloid fibrillar form. Natural products which inhibit fibril formation are a promising avenue to explore as therapeutics for the treatment of these diseases. In this study we have shown, using in vitro thioflavin T assays and transmission electron microscopy, that grape seed extract inhibits fibril formation of kappa-casein (κ-CN), a milk protein which forms amyloid fibrils spontaneously under physiological conditions. Among the components of grape seed extract, gallic acid was the most active component at inhibiting κ-CN fibril formation, by stabilizing κ-CN to prevent its aggregation. Concomitantly, gallic acid significantly reduced the toxicity of κ-CN to pheochromocytoma12 cells. Furthermore, gallic acid effectively inhibited fibril formation by the amyloid-beta peptide, the putative causative agent in Alzheimer's disease. It is concluded that the gallate moiety has the fibril-inhibitory activity.

  7. Citric acid inhibits development of cataracts, proteinuria and ketosis in streptozotocin (type1) diabetic rats

    Science.gov (United States)

    Nagai, Ryoji; Nagai, Mime; Shimasaki, Satoko; Baynes, John W.; Fujiwara, Yukio

    2010-01-01

    Although many fruits such as lemon and orange contain citric acid, little is known about beneficial effects of citric acid on health. Here we measured the effect of citric acid on the pathogenesis of diabetic complications in streptozotocin-induced diabetic rats. Although oral administration of citric acid to diabetic rats did not affect blood glucose concentration, it delayed the development of cataracts, inhibited accumulation of advanced glycation end products (AGEs) such as Nε-(carboxyethyl)lysine (CEL) and Nε-(carboxymethyl)lysine (CML) in lens proteins, and protected against albuminuria and ketosis . We also show that incubation of protein with acetol, a metabolite formed from acetone by acetone monooxygenase, generate CEL, suggesting that inhibition of ketosis by citric acid may lead to the decrease in CEL in lens proteins. These results demonstrate that the oral administration of citric acid ameliorates ketosis and protects against the development of diabetic complications in an animal model of type 1 diabetes. PMID:20117096

  8. Corrosion inhibition of mild steel in 1 M HCl solution by henna extract: A comparative study of the inhibition by henna and its constituents (Lawsone, Gallic acid, {alpha}-D-Glucose and Tannic acid)

    Energy Technology Data Exchange (ETDEWEB)

    Ostovari, A. [Technical Inspection Engineering Department, Petroleum University of Technology, Abadan (Iran, Islamic Republic of)], E-mail: A.Ostovari@gmail.com; Hoseinieh, S.M.; Peikari, M. [Technical Inspection Engineering Department, Petroleum University of Technology, Abadan (Iran, Islamic Republic of); Shadizadeh, S.R. [Petroleum Engineering Department, Petroleum University of Technology, Abadan (Iran, Islamic Republic of); Hashemi, S.J. [Technical Inspection Engineering Department, Petroleum University of Technology, Abadan (Iran, Islamic Republic of)

    2009-09-15

    The inhibitive action of henna extract (Lawsonia inermis) and its main constituents (lawsone, gallic acid, {alpha}-D-Glucose and tannic acid) on corrosion of mild steel in 1 M HCl solution was investigated through electrochemical techniques and surface analysis (SEM/EDS). Polarization measurements indicate that all the examined compounds act as a mixed inhibitor and inhibition efficiency increases with inhibitor concentration. Maximum inhibition efficiency (92.06%) is obtained at 1.2 g/l henna extract. Inhibition efficiency increases in the order: lawsone > henna extract > gallic acid > {alpha}-D-Glucose > tannic acid. Also, inhibition mechanism and thermodynamic parameters are discussed.

  9. Inhibition of Listeria monocytogenes by fatty acids and monoglycerides.

    OpenAIRE

    Wang, L. L.; Johnson, E. A.

    1992-01-01

    Fatty acids and monoglycerides were evaluated in brain heart infusion broth and in milk for antimicrobial activity against the Scott A strain of Listeria monocytogenes. C12:0, C18:3, and glyceryl monolaurate (monolaurin) had the strongest activity in brain heart infusion broth and were bactericidal at 10 to 20 micrograms/ml, whereas potassium (K)-conjugated linoleic acids and C18:2 were bactericidal at 50 to 200 micrograms/ml. C14:0, C16:0, C18:0, C18:1, glyceryl monomyristate, and glyceryl m...

  10. Triterpenic Acids Present in Hawthorn Lower Plasma Cholesterol by Inhibiting Intestinal ACAT Activity in Hamsters

    OpenAIRE

    Yuguang Lin; Vermeer, Mario A.; Trautwein, Elke A.

    2011-01-01

    Hawthorn (Crataegus pinnatifida) is an edible fruit used in traditional Chinese medicine to lower plasma lipids. This study explored lipid-lowering compounds and underlying mechanisms of action of hawthorn. Hawthorn powder extracts inhibited acylCoA:cholesterol acyltransferase (ACAT) activity in Caco-2 cells. The inhibitory activity was positively associated with triterpenic acid (i.e., oleanolic acid (OA) and ursolic acid (UA)) contents in the extracts. Cholesterol lowering effects of hawtho...

  11. Sphingoid bases inhibit acid-induced demineralization of hydroxyapatite

    NARCIS (Netherlands)

    Valentijn-Benz, M.; van 't Hof, W.; Bikker, F.J.; Nazmi, K.; Brand, H.S.; Sotres, J.; Lindh, L.; Arnebrant, T.; Veerman, E.C.I.

    2015-01-01

    Calcium hydroxyapatite (HAp), the main constituent of dental enamel, is inherently susceptible to the etching and dissolving action of acids, resulting in tooth decay such as dental caries and dental erosion. Since the prevalence of erosive wear is gradually increasing, there is urgent need for agen

  12. Sphingoid bases inhibit acid-induced demineralization of hydroxyapatite

    NARCIS (Netherlands)

    Valentijn-Benz, M.; van 't Hof, W.; Bikker, F.J.; Nazmi, K.; Brand, H.S.; Sotres, J.; Lindh, L.; Arnebrant, T.; Veerman, E.C.I.

    2015-01-01

    Calcium hydroxyapatite (HAp), the main constituent of dental enamel, is inherently susceptible to the etching and dissolving action of acids, resulting in tooth decay such as dental caries and dental erosion. Since the prevalence of erosive wear is gradually increasing, there is urgent need for

  13. Sugar fatty acid esters inhibit biofilm formation by food-borne pathogenic bacteria

    Science.gov (United States)

    Furukawa, Soichi; Akiyoshi, Yuko; O’Toole, George A.; Ogihara, Hirokazu; Morinaga, Yasushi

    2010-01-01

    Effects of food additives on biofilm formation by food-borne pathogenic bacteria were investigated. Thirty-three potential food additives and 3 related compounds were added to the culture medium at concentrations from 0.001 to 0.1% (w/w), followed by inoculation and cultivation of five biofilm-forming bacterial strains for the evaluation of biofilm formation. Among the tested food additives, 21 showed inhibitory effects of biofilm formation by Staphylococcus aureus and Escherichia coli, and in particular, sugar fatty acid esters showed significant anti-biofilm activity. Sugar fatty acid esters with long chain fatty acid residues (C14-16) exerted their inhibitory effect at the concentration of 0.001%(w/w), but bacterial growth was not affected at this low concentration. Activities of the sugar fatty acid esters positively correlated with the increase of the chain length of the fatty acid residues. Sugar fatty acid esters inhibited the initial attachment of the Staphylococcus aureus cells to the abiotic surface. Sugar fatty acid esters with long chain fatty acid residues (C14-16) also inhibited biofilm formation by Streptococcus mutans and Listeria monocytogenes at 0.01%(w/w), while the inhibition of biofilm formation by Pseudomonas aeruginosa required the addition of a far higher concentration (0.1%(w/w)) of the sugar fatty acid esters. PMID:20089325

  14. Clavulanic acid inhibits MPP+-induced ROS generation and subsequent loss of dopaminergic cells☆

    Science.gov (United States)

    Kost, Gina Chun; Selvaraj, Senthil; Lee, Young Bok; Kim, Deog Joong; Ahn, Chang-Ho; Singh, Brij B.

    2013-01-01

    Clavulanic acid is a psychoactive compound that has been shown to modulate central nervous system activity. Importantly, in neurotoxin-induced animal models, clavulanic acid has been shown to improve motor function (Huh et al., 2010) suggesting that it can be neuroprotective; however, the mechanism as how clavulanic acid can induce neuroprotection is not known. We demonstrate here that clavulanic acid abrogates the effects of the neurotoxin 1-methyl-4-phenylpyridinium (MPP+) which mimics Parkinson’s disease (PD) by inducing neurodegeneration. To further establish the mechanism we identified that clavulanic acid inhibits neurotoxin-induced loss of mitochondrial membrane potential and ROS production. Consistent with these results, neurotoxin-induced increase in Bax levels was also decreased in clavulanic acid treated cells. Importantly, neurotoxin-induced release of cytochrome c levels as well as caspase activation was also inhibited in clavulanic acid treated cells. In addition, Bcl-xl levels were also restored and the Bcl-xl/Bax ratio that is critical for inducing apoptosis was increased in clavulanic acid treated cells. Overall, these results suggest that clavulanic acid is intimately involved in inhibiting neurotoxin-induced loss of mitochondrial function and induction of apoptosis that contributes towards neuronal survival. PMID:22750587

  15. Clavulanic acid inhibits MPP⁺-induced ROS generation and subsequent loss of dopaminergic cells.

    Science.gov (United States)

    Kost, Gina Chun; Selvaraj, Senthil; Lee, Young Bok; Kim, Deog Joong; Ahn, Chang-Ho; Singh, Brij B

    2012-08-21

    Clavulanic acid is a psychoactive compound that has been shown to modulate central nervous system activity. Importantly, in neurotoxin-induced animal models, clavulanic acid has been shown to improve motor function (Huh et al., 2010) suggesting that it can be neuroprotective; however, the mechanism as how clavulanic acid can induce neuroprotection is not known. We demonstrate here that clavulanic acid abrogates the effects of the neurotoxin 1-methyl-4-phenylpyridinium (MPP(+)) which mimics Parkinson's disease (PD) by inducing neurodegeneration. To further establish the mechanism we identified that clavulanic acid inhibits neurotoxin-induced loss of mitochondrial membrane potential and ROS production. Consistent with these results, neurotoxin-induced increase in Bax levels was also decreased in clavulanic acid treated cells. Importantly, neurotoxin-induced release of cytochrome c levels as well as caspase activation was also inhibited in clavulanic acid treated cells. In addition, Bcl-xl levels were also restored and the Bcl-xl/Bax ratio that is critical for inducing apoptosis was increased in clavulanic acid treated cells. Overall, these results suggest that clavulanic acid is intimately involved in inhibiting neurotoxin-induced loss of mitochondrial function and induction of apoptosis that contributes towards neuronal survival.

  16. Sugar fatty acid esters inhibit biofilm formation by food-borne pathogenic bacteria.

    Science.gov (United States)

    Furukawa, Soichi; Akiyoshi, Yuko; O'Toole, George A; Ogihara, Hirokazu; Morinaga, Yasushi

    2010-03-31

    Effects of food additives on biofilm formation by food-borne pathogenic bacteria were investigated. Thirty-three potential food additives and 3 related compounds were added to the culture medium at concentrations from 0.001 to 0.1% (w/w), followed by inoculation and cultivation of five biofilm-forming bacterial strains for the evaluation of biofilm formation. Among the tested food additives, 21 showed inhibitory effects of biofilm formation by Staphylococcus aureus and Escherichia coli, and in particular, sugar fatty acid esters showed significant anti-biofilm activity. Sugar fatty acid esters with long chain fatty acid residues (C14-16) exerted their inhibitory effect at the concentration of 0.001% (w/w), but bacterial growth was not affected at this low concentration. Activities of the sugar fatty acid esters positively correlated with the increase of the chain length of the fatty acid residues. Sugar fatty acid esters inhibited the initial attachment of the S. aureus cells to the abiotic surface. Sugar fatty acid esters with long chain fatty acid residues (C14-16) also inhibited biofilm formation by Streptococcus mutans and Listeria monocytogenes at 0.01% (w/w), while the inhibition of biofilm formation by Pseudomonas aeruginosa required the addition of a far higher concentration (0.1% (w/w)) of the sugar fatty acid esters.

  17. alpha-Linolenic acid protects renal cells against palmitic acid lipotoxicity via inhibition of endoplasmic reticulum stress.

    Science.gov (United States)

    Katsoulieris, Elias; Mabley, Jon G; Samai, Mohamed; Green, Irene C; Chatterjee, Prabal K

    2009-11-25

    Unsaturated fatty acids may counteract the lipotoxicity associated with saturated fatty acids. Palmitic acid induced endoplasmic reticulum (ER) stress and caused apoptotic and necrotic cell death in the renal proximal tubular cell line, NRK-52E. We investigated whether alpha-linolenic acid, an unsaturated fatty acid, protected against ER stress and cell death induced by palmitic acid or by other non-nutrient ER stress generators. Incubation of NRK-52E cells for 24h with palmitic acid produced a significant increase in apoptosis and necrosis. Palmitic acid also increased levels of three indicators of ER stress - the phosphorylated form of the eukaryotic initiation factor 2alpha (eIF2alpha), C/EBP homologous protein (CHOP), and glucose regulated protein 78 (GRP78). alpha-Linolenic acid dramatically reduced cell death and levels of all three indicators of ER stress brought about by palmitic acid. Tunicamycin, which induces ER stress by glycosylation of proteins, produced similar effects to those obtained using palmitic acid; its effects were partially reversed by alpha-linolenic acid. Salubrinal (a phosphatase inhibitor) causes increased levels of the phosphorylated form of eIF2alpha - this effect was partially reversed by alpha-linolenic acid. Palmitoleate, a monosaturated fatty acid, had similar effects to those of alpha-linolenic acid. These results suggest that part of the mechanism of protection of the kidney by unsaturated fatty acids is through inhibition of ER stress, eIF2alpha phosphorylation and consequential reduction of CHOP protein expression and apoptotic renal cell death.

  18. Inhibition of aldo-keto reductase family 1 member B10 by unsaturated fatty acids.

    Science.gov (United States)

    Hara, Akira; Endo, Satoshi; Matsunaga, Toshiyuki; Soda, Midori; El-Kabbani, Ossama; Yashiro, Koji

    2016-11-01

    A human member of the aldo-keto reductase (AKR) superfamily, AKR1B10, is a cytosolic NADPH-dependent reductase toward various carbonyl compounds including reactive aldehydes, and is normally expressed in intestines. The enzyme is overexpressed in several extraintestinal cancers, and suggested as a potential target for cancer treatment. We found that saturated and cis-unsaturated fatty acids inhibit AKR1B10. Among the saturated fatty acids, myristic acid was the most potent, showing the IC50 value of 4.2 μM cis-Unsaturated fatty acids inhibited AKR1B10 more potently, and linoleic, arachidonic, and docosahexaenoic acids showed the lowest IC50 values of 1.1 μM. The inhibition by these fatty acids was reversible and kinetically competitive with respect to the substrate, showing the Ki values of 0.24-1.1 μM. These fatty acids, except for α-linoleic acid, were much less inhibitory to structurally similar aldose reductase. Site-directed mutagenesis study suggested that the fatty acids interact with several active site residues of AKR1B10, of which Gln114, Val301 and Gln303 are responsible for the inhibitory selectivity. Linoleic and arachidonic acids also effectively inhibited AKR1B10-mediated 4-oxo-2-nonenal metabolism in HCT-15 cells. Thus, the cis-unsaturated fatty acids may be used as an adjuvant therapy for treatment of cancers that up-regulate AKR1B10. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Histone Deacetylase Inhibition and Dietary Short-Chain Fatty Acids

    OpenAIRE

    Licciardi, Paul V.; Ververis, Katherine; Karagiannis, Tom C.

    2011-01-01

    Changes in diet can also have dramatic effects on the composition of gut microbiota. Commensal bacteria of the gastrointestinal tract are critical regulators of health and disease by protecting against pathogen encounter whilst also maintaining immune tolerance to certain allergens. Moreover, consumption of fibre and vegetables typical of a non-Western diet generates substantial quantities of short-chain fatty acids (SCFAs) which have potent anti-inflammatory properties. Dietary interventions...

  20. Inhibition of tubulin polymerization by hypochlorous acid and chloramines.

    Science.gov (United States)

    Landino, Lisa M; Hagedorn, Tara D; Kim, Shannon B; Hogan, Katherine M

    2011-04-15

    Protein thiol oxidation and modification by nitric oxide and glutathione are emerging as common mechanisms to regulate protein function and to modify protein structure. Also, thiol oxidation is a probable outcome of cellular oxidative stress and is linked to degenerative disease progression. We assessed the effect of the oxidants hypochlorous acid and chloramines on the cytoskeletal protein tubulin. Total cysteine oxidation by the oxidants was monitored by labeling tubulin with the thiol-selective reagent 5-iodoacetamidofluorescein; by reaction with Ellman's reagent, 5,5'-dithiobis(2-nitrobenzoic acid); and by detecting interchain tubulin disulfides by Western blot under nonreducing conditions. Whereas HOCl induced both cysteine and methionine oxidation of tubulin, chloramines were predominantly cysteine oxidants. Cysteine oxidation of tubulin, rather than methionine oxidation, was associated with loss of microtubule polymerization activity, and treatment of oxidized tubulin with disulfide reducing agents restored a considerable portion of the polymerization activity that was lost after oxidation. By comparing the reactivity of hypochlorous acid and chloramines with the previously characterized oxidants, peroxynitrite and the nitroxyl donor Angeli's salt, we have identified tubulin thiol oxidation, not methionine oxidation or tyrosine nitration, as a common outcome responsible for decreased polymerization activity. Copyright © 2011 Elsevier Inc. All rights reserved.

  1. Sulfate- and sialic acid-containing glycolipids inhibit DNA polymerase alpha activity.

    Science.gov (United States)

    Simbulan, C M; Taki, T; Tamiya-Koizumi, K; Suzuki, M; Savoysky, E; Shoji, M; Yoshida, S

    1994-03-16

    The effects of various glycolipids on the activity of immunoaffinity-purified calf thymus DNA polymerase alpha were studied in vitro. Preincubation with sialic acid-containing glycolipids, such as sialosylparagloboside (SPG), GM3, GM1, and GD1a, and sulfatide (cerebroside sulfate ester, CSE) dose-dependently inhibited the activity of DNA polymerase alpha, while other glycolipids, as well as free sphingosine and ceramide did not. About 50% inhibition was achieved by preincubating the enzyme with 2.5 microM of CSE, 50 microM of SPG or GM3, and 80 microM of GM1. Inhibition was noncompetitive with both the DNA template and the substrate dTTP, as well as with the other dNTPs. Since the inhibition was largely reversed by the addition of 0.05% Nonidet P40, these glycolipids may interact with the hydrophobic region of the enzyme protein. Apparently, the sulfate moiety in CSE and the sialic acid moiety in gangliosides were essential for the inhibition since neither neutral glycolipids (i.e., glucosylceramide, galactosylceramide, lactosylceramide) nor asialo-gangliosides (GA1 and GA2) showed any inhibitory effect. Furthermore, the ceramide backbone was also found to be necessary for maximal inhibition since the inhibition was largely abolished by substituting the lipid backbone with cholesterol. Increasing the number of sialic acid moieties per molecule further enhanced the inhibition, while elongating the sugar chain diminished it. It was clearly shown that the N-acetyl residue of the sialic acid moiety is particularly essential for inhibition by both SPG and GM3 because the loss of this residue or substitution with a glycolyl residue completely negated their inhibitory effect on DNA polymerase alpha activity.

  2. Punicic acid a conjugated linolenic acid inhibits TNFalpha-induced neutrophil hyperactivation and protects from experimental colon inflammation in rats.

    Directory of Open Access Journals (Sweden)

    Tarek Boussetta

    Full Text Available BACKGROUND: Neutrophils play a major role in inflammation by releasing large amounts of ROS produced by NADPH-oxidase and myeloperoxidase (MPO. The proinflammatory cytokine TNFalpha primes ROS production through phosphorylation of the NADPH-oxidase subunit p47phox on Ser345. Conventional anti-inflammatory therapies remain partially successful and may have side effects. Therefore, regulation of neutrophil activation by natural dietary components represents an alternative therapeutic strategy in inflammatory diseases such as inflammatory bowel diseases. The aim of this study was to assess the effect of punicic acid, a conjugated linolenic fatty acid from pomegranate seed oil on TNFalpha-induced neutrophil hyperactivation in vitro and on colon inflammation in vivo. METHODOLOGY AND PRINCIPAL FINDINGS: We analyzed the effect of punicic acid on TNFalpha-induced neutrophil upregulation of ROS production in vitro and on TNBS-induced rat colon inflammation. Results show that punicic acid inhibited TNFalpha-induced priming of ROS production in vitro while preserving formyl-methionyl-leucyl-phenylalanine (fMLP-induced response. This effect was mediated by the inhibition of Ser345-p47phox phosphorylation and upstream kinase p38MAPK. Punicic acid also inhibited fMLP- and TNFalpha+fMLP-induced MPO extracellular release from neutrophils. In vivo experiments showed that punicic acid and pomegranate seed oil intake decreased neutrophil-activation and ROS/MPO-mediated tissue damage as measured by F2-isoprostane release and protected rats from TNBS-induced colon inflammation. CONCLUSIONS/SIGNIFICANCE: These data show that punicic acid exerts a potent anti-inflammatory effect through inhibition of TNFalpha-induced priming of NADPH oxidase by targeting the p38MAPKinase/Ser345-p47phox-axis and MPO release. This natural dietary compound may provide a novel alternative therapeutic strategy in inflammatory diseases such as inflammatory bowel diseases.

  3. The role of acid inhibition in Helicobacter pylori eradication [version 1; referees: 3 approved

    Directory of Open Access Journals (Sweden)

    David R. Scott

    2016-07-01

    Full Text Available Infection of the stomach by the gastric pathogen Helicobacter pylori results in chronic active gastritis and leads to the development of gastric and duodenal ulcer disease and gastric adenocarcinoma. Eradication of H. pylori infection improves or resolves the associated pathology. Current treatments of H. pylori infection rely on acid suppression in combination with at least two antibiotics. The role of acid suppression in eradication therapy has been variously attributed to antibacterial activity of proton pump inhibitors directly or through inhibition of urease activity or increased stability and activity of antibiotics. Here we discuss the effect of acid suppression on enhanced replicative capacity of H. pylori to permit the bactericidal activity of growth-dependent antibiotics. The future of eradication therapy will rely on improvement of acid inhibition along with current antibiotics or the development of novel compounds targeting the organism’s ability to survive in acid.

  4. Inhibition of the gravitropic bending response of flowering shoots by salicylic acid.

    Science.gov (United States)

    Friedman, Haya; Meir, Shimon; Halevy, Abraham H; Philosoph-Hadas, Sonia

    2003-10-01

    The upward gravitropic bending of cut snapdragon, lupinus and anemone flowering shoots was inhibited by salicylic acid (SA) applied at 0.5 mM and above. This effect was probably not due to acidification of the cytoplasm, since other weak acids did not inhibit bending of snapdragon shoots. In order to study its mode of inhibitory action, we have examined in cut snapdragon shoots the effect of SA on three processes of the gravity-signaling pathway, including: amyloplast sedimentation, formation of ethylene gradient across the stem, and differential growth response. The results show that 1 mM SA inhibited differential ethylene production rates across the horizontal stem and the gravity-induced growth, without significantly inhibiting vertical growth or amyloplast sedimentation following horizontal placement. However, 5 mM SA inhibited all three gravity-induced processes, as well as the growth of vertical shoots, while increasing flower wilting. It may, therefore, be concluded that SA inhibits bending of various cut flowering shoots in a concentration-dependent manner. Thus, at a low concentration SA exerts its effect in snapdragon shoots by inhibiting processes operating downstream to stimulus sensing exerted by amyloplast sedimentation. At a higher concentration SA inhibits bending probably by exerting general negative effects on various cellular processes.

  5. Retinoic acid amide inhibits JAK/STAT pathway in lung cancer which leads to apoptosis.

    Science.gov (United States)

    Li, Hong-Xing; Zhao, Wei; Shi, Yan; Li, Ya-Na; Zhang, Lian-Shuang; Zhang, Hong-Qin; Wang, Dong

    2015-11-01

    Small cell lung cancer (SCLC) accounts for 12 to 16% of lung neoplasms and has a high rate of metastasis. The present study demonstrates the antiproliferative effect of retinoic acid amide in vitro and in vivo against human lung cancer cells. The results from MTT assay showed a significant growth inhibition of six tested lung cancer cell lines and inhibition of clonogenic growth at 30 μM. Retinoic acid amide also leads to G2/M-phase cell cycle arrest and apoptosis of lung cancer cells. It caused inhibition of JAK2, STAT3, and STAT5, increased the level of p21WAF1, and decreased cyclin A, cyclin B1, and Bcl-XL expression. Retinoic acid amide exhibited a synergistic effect on antiproliferative effects of methotrexate in lung cancer cells. In lung tumor xenografts, the tumor volume was decreased by 82.4% compared to controls. The retinoic acid amide-treated tumors showed inhibition of JAK2/STAT3 activation and Bcl-XL expression. There was also increase in expression of caspase-3 and caspase-9 in tumors on treatment with retinoic acid amide. Thus, retinoic acid amide exhibits promising antiproliferative effects against human lung cancer cells in vitro and in vivo and enhances the antiproliferative effect of methotrexate.

  6. AMP-activated kinase restricts Rift Valley fever virus infection by inhibiting fatty acid synthesis.

    Directory of Open Access Journals (Sweden)

    Theresa S Moser

    Full Text Available The cell intrinsic innate immune responses provide a first line of defense against viral infection, and often function by targeting cellular pathways usurped by the virus during infection. In particular, many viruses manipulate cellular lipids to form complex structures required for viral replication, many of which are dependent on de novo fatty acid synthesis. We found that the energy regulator AMPK, which potently inhibits fatty acid synthesis, restricts infection of the Bunyavirus, Rift Valley Fever Virus (RVFV, an important re-emerging arthropod-borne human pathogen for which there are no effective vaccines or therapeutics. We show restriction of RVFV both by AMPK and its upstream activator LKB1, indicating an antiviral role for this signaling pathway. Furthermore, we found that AMPK is activated during RVFV infection, leading to the phosphorylation and inhibition of acetyl-CoA carboxylase, the first rate-limiting enzyme in fatty acid synthesis. Activating AMPK pharmacologically both restricted infection and reduced lipid levels. This restriction could be bypassed by treatment with the fatty acid palmitate, demonstrating that AMPK restricts RVFV infection through its inhibition of fatty acid biosynthesis. Lastly, we found that this pathway plays a broad role in antiviral defense since additional viruses from disparate families were also restricted by AMPK and LKB1. Therefore, AMPK is an important component of the cell intrinsic immune response that restricts infection through a novel mechanism involving the inhibition of fatty acid metabolism.

  7. Eicosopentaneoic Acid and Other Free Fatty Acid Receptor Agonists Inhibit Lysophosphatidic Acid- and Epidermal Growth Factor-Induced Proliferation of Human Breast Cancer Cells

    Directory of Open Access Journals (Sweden)

    Mandi M. Hopkins

    2016-01-01

    Full Text Available Many key actions of ω-3 (n-3 fatty acids have recently been shown to be mediated by two G protein-coupled receptors (GPCRs in the free fatty acid receptor (FFAR family, FFA1 (GPR40 and FFA4 (GPR120. n-3 Fatty acids inhibit proliferation of human breast cancer cells in culture and in animals. In the current study, the roles of FFA1 and FFA4 were investigated. In addition, the role of cross-talk between GPCRs activated by lysophosphatidic acid (LPA, and the tyrosine kinase receptor activated by epidermal growth factor (EGF, was examined. In MCF-7 and MDA-MB-231 human breast cancer cell lines, both LPA and EGF stimulated proliferation, Erk activation, Akt activation, and CCN1 induction. LPA antagonists blocked effects of LPA and EGF on proliferation in MCF-7 and MDA-MB-231, and on cell migration in MCF-7. The n-3 fatty acid eicosopentaneoic acid inhibited LPA- and EGF-induced proliferation in both cell lines. Two synthetic FFAR agonists, GW9508 and TUG-891, likewise inhibited LPA- and EGF-induced proliferation. The data suggest a major role for FFA1, which was expressed by both cell lines. The results indicate that n-3 fatty acids inhibit breast cancer cell proliferation via FFARs, and suggest a mechanism involving negative cross-talk between FFARS, LPA receptors, and EGF receptor.

  8. Ellagic acid induces apoptosis through inhibition of nuclear factor in pancreatic cancer cells

    Institute of Scientific and Technical Information of China (English)

    Mouad Edderkaoui; Irina Odinokova; Izumi Ohno; Ilya Gukovsky; Vay Liang W Go; Stephen J Pandol; Anna S Gukovskaya

    2008-01-01

    AIM: To determine the effect of ellagic acid on apoptosis and proliferation in pancreatic cancer cells and to determine the mechanism of the pro-survival effects of ellagic acid.METHODS: The effect of ellagic acid on apoptosis was assessed by measuring Phosphatidylserine externalization, caspase activity, mitochondrial membrane potential and DNA fragmentation; and proliferation by measuring DNA thymidine incorporation. Mitochondrial membrane potential was measured in permeabilized cells, and in isolated mitochondria. Nuclear factor kB (NF-kB) activity was measured by electromobility shift assay (EMSA).RESULTS: We show that ellagic acid, a polyphenolic compound in fruits and berries, at concentrations 10 to 50 mmol/L stimulates apoptosis in human pancreatic adenocarcinoma cells. Further, ellagic acid decreases proliferation by up to 20-fold at 50 mmol/L Ellagic acid stimulates the mitochondrial pathway of apoptosis associated with mitochondrial depolarization, cytochrome C release, and the downstream caspase activation. Ellagic acid does not directly affect mitochondria. Ellagic acid dose-dependently decreased NF-kB binding activity. Furthermore, inhibition of NF-kB activity using IkB wild type plasmid prevented the effect of ellagic acid on apoptosis.CONCLUSION: Our data indicate that ellagic acid stimulates apoptosis through inhibition of the prosurvival transcription factor NF-kB.

  9. Salvianolic acid B inhibits autophagy and protects starving cardiac myocytes

    OpenAIRE

    Han, Xiao; Liu, Jian-Xun; Xin-zhi LI

    2010-01-01

    Aim: To investigate the protective or lethal role of autophagy and the effects of Salvianolic acid B (Sal B) on autophagy in starving myocytes. Methods: Cardiac myocytes were incubated under starvation conditions (GD) for 0, 1, 2, 3, and 6 h. Autophagic flux in starving cells was measured via chloroquine (3 μmol/L). After myocytes were treated with Sal B (50 μmol/L) in the presence or absence of chloroquine (3 μmol/L) under GD 3 h, the amount of LC3-II, the abundance of LC3-positive fluoresce...

  10. The role of acid anion on the inhibition of the acidic corrosion of steel by lupine extract

    Energy Technology Data Exchange (ETDEWEB)

    Abdel-Gaber, A.M. [Chemistry Department, Faculty of Science, Alexandria University, Ibrahimia, P.O. Box 426, Alexandria 21321 (Egypt)], E-mail: ashrafmoustafa@yahoo.com; Abd-El-Nabey, B.A.; Saadawy, M. [Chemistry Department, Faculty of Science, Alexandria University, Ibrahimia, P.O. Box 426, Alexandria 21321 (Egypt)

    2009-05-15

    The inhibitive effect of lupine (Lupinous albus L.) extract on the corrosion of steel in aqueous solution of 1 M sulphuric and 2 M hydrochloric acids was investigated by potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) techniques. Potentiodynamic polarization curves indicated that the lupine extract acts as a mixed-type inhibitor. EIS measurements showed that the dissolution process is under activation control. The inhibition efficiency of the extract obtained from impedance and polarization measurements was in a good agreement and was found to increase with increasing concentration of the extract. The obtained results showed that, the lupine extract could serve as an effective inhibitor for the corrosion of steel in acid media and the extract was more effective in case of hydrochloric acid. Theoretical fitting of the corrosion data to the kinetic-thermodynamic model was tested to show the nature of adsorption.

  11. Experimental and quantum chemical studies on corrosion inhibition performance of fluconazole in hydrochloric acid solution

    Indian Academy of Sciences (India)

    P Malekmohammadi Nouri; M M Attar

    2015-04-01

    The corrosion inhibition effect of fluconazole (FLU) was investigated on steel in 1 M hydrochloric acid solution. Weight loss measurements and atomic force microscope analysis were utilized to investigate the corrosion inhibition properties and film formation behaviour of FLU. Quantum chemical approach was also used to calculate some electronic properties of the molecule in neutral and protonated form in order to find any correlation between the inhibition effect and molecular structure of FLU molecule. The results showed that FLU can act as a good corrosion inhibitor for steel in hydrochloric acid solution at different temperatures and it can inhibit steel corrosion up to 95%. The adsorption followed the Langmuir isotherm and the thermodynamic parameters were also determined and discussed. Quantum chemical studies showed that in adsorption process of FLU molecules, nitrogen and oxygen atoms and benzene ring act as active centres.

  12. Extracts of Edible Plants Inhibit Pancreatic Lipase, Cholesterol Esterase and Cholesterol Micellization, and Bind Bile Acids

    Directory of Open Access Journals (Sweden)

    Julnaryn Intrawangso

    2012-01-01

    Full Text Available The application of edible plants with more effective ability to inhibit fat digestion and absorption has recently been explored for possible treatment of hyperlipidaemia. The aim of the present study is to investigate the effect of nine edible plants on the inhibition of pancreatic lipase and pancreatic cholesterol esterase activities, as well as the inhibition of cholesterol micelle formation, and bile acid binding. Our findings have shown strong pancreatic lipase inhibitory activity and the inhibition of cholesterol micellization by mulberry leaf extract. Safflower extract was the most potent inhibitor of pancreatic cholesterol esterase. In addition, cat’s whiskers and safflower extracts had a potent bile acid binding activity. It is suggested that a daily intake of these edible plants may delay postprandial hypertriacylglycerolaemia and hypercholesterolaemia, and therefore may be applied for the prevention and treatment of hyperlipidaemia.

  13. Sphingoid bases inhibit acid-induced demineralization of hydroxyapatite.

    Science.gov (United States)

    Valentijn-Benz, Marianne; van 't Hof, Wim; Bikker, Floris J; Nazmi, Kamran; Brand, Henk S; Sotres, Javier; Lindh, Liselott; Arnebrant, Thomas; Veerman, Enno C I

    2015-01-01

    Calcium hydroxyapatite (HAp), the main constituent of dental enamel, is inherently susceptible to the etching and dissolving action of acids, resulting in tooth decay such as dental caries and dental erosion. Since the prevalence of erosive wear is gradually increasing, there is urgent need for agents that protect the enamel against erosive attacks. In the present study we studied in vitro the anti-erosive effects of a number of sphingolipids and sphingoid bases, which form the backbone of sphingolipids. Pretreatment of HAp discs with sphingosine, phytosphingosine (PHS), PHS phosphate and sphinganine significantly protected these against acid-induced demineralization by 80 ± 17%, 78 ± 17%, 78 ± 7% and 81 ± 8%, respectively (p measurement revealed that HAp discs treated with PHS were almost completely and homogeneously covered by patches of PHS. This suggests that PHS and other sphingoid bases form layers on the surface of HAp, which act as diffusion barriers against H(+) ions. In principle, these anti-erosive properties make PHS and related sphingosines promising and attractive candidates as ingredients in oral care products.

  14. Corrosion inhibition of α,β-unsaturated carbonyl compounds on steel in acid medium

    Institute of Scientific and Technical Information of China (English)

    Gao Jiancun; Weng Yongji; Salitanate; Feng Li; Yue Hong

    2009-01-01

    Corrosion inhibition of three α,β-unsaturated carbonyl compounds on N80 steel at high temperature and in concentrated acid medium was evaluated, and the inhibition mechanism was investigated.The results proved that both cinnamaidehyde and benzalacetone had an evident anticorrosion effect and could reduce the corrosion of steel effectively in acid medium, α,β-unsaturated carbonyl compounds with a benzene ring structure had good adsorption on steel surface.The experiments proved that polymerization of α,β-unsaturated carbonyl compounds on the steel surface at a high temperature and in concentrated acid medium resulted in a good corrosion inhibiting effect, which was attributed to the structures of α,β-unsaturated carbonyl compounds.

  15. Corrosion Inhibition of Mild Steel in Citric Acid by Aqueous Extract of Piper Nigrum L.

    Directory of Open Access Journals (Sweden)

    P. Matheswaran

    2012-01-01

    Full Text Available The inhibition efficiency (IE of an aqueous extract of Piper Nigrum L. in controlling corrosion of mild steel at pH 12 has been evaluated by weight loss method in the absence and presence of inhibitor in citric acid medium at different concentration. The result showed that the corrosion inhibition efficiency of these compounds was found to vary with the different concentration at two hour time interval at room temperature. Also, it was found that the corrosion inhibition behaviour of Piper Nigrum L. is greater in 2 N Citric acid than 1 N Citric acid medium. So Piper Nigrum L. can be used has a good inhibitor for preventing mild steel material which is used in many construction purpose.

  16. Inhibition of Mild Steel Corrosion in Hydrochloric Acid Solution by Ciprofloxacin Drug

    OpenAIRE

    2013-01-01

    The inhibition of mild steel corrosion in hydrochloric acid solution by ciprofloxacin drug as an eco-friendly and commercially available inhibitor was studied at room temperature by weight loss technique. It was found that the test drug has a promising inhibitory action against corrosion of mild steel in the medium investigated. The inhibition efficiency was found to increase with a corresponding increase in the concentration of the inhibitor. It was also found that the adsorption as well as ...

  17. Corrosion Inhibition Synergism between Lanthanum(Ⅲ) Ion and 8-Hydroxyquinoline for Zinc in Hydrochloric Acid

    Institute of Scientific and Technical Information of China (English)

    木冠南; 唐丽斌; 李学铭

    2002-01-01

    The effects of La3+ ion and chelate reagent 8-hydroxyquinoline on the corrosion rate of zinc in hydrochloric acid were investigated by using weight loss method and electrochemical method. It is found that in a specific concentration range of La3+ ion and 8-hydroxyquinoline, the obvious corrosion inhibition synergism is obtained. The mechanism of corrosion inhibition synergism was discussed on basis of adsorption theory.

  18. Inhibition of the Epstein-Barr virus lytic cycle by moronic acid.

    Science.gov (United States)

    Chang, Fang-Rong; Hsieh, Yi-Chung; Chang, Yung-Fu; Lee, Kuo-Hsiung; Wu, Yang-Chang; Chang, Li-Kwan

    2010-03-01

    Epstein-Barr virus (EBV) expresses two transcription factors, Rta and Zta, during the immediate-early stage of the lytic cycle to activate the transcription of viral lytic genes. Our immunoblotting and flow cytometry analyses find that moronic acid, found in galls of Rhus chinensis and Brazilian propolis, at 10microM inhibits the expression of Rta, Zta, and an EBV early protein, EA-D, after lytic induction with sodium butyrate. This study also finds that moronic acids inhibits the capacity of Rta to activate a promoter that contains an Rta-response element, indicating that moronic acid interferes with the function of Rta. On the other hand, moronic acid does not appear to influence with the transactivation function of Zta. Therefore, the lack of expression of Zta and EA-D after moronic acid treatment is attributable to the inhibition of the transactivation functions of Rta. Because the expression of Zta, EA-D and many EBV lytic genes depends on Rta, the treatment of P3HR1 cells with moronic acid substantially reduces the numbers of EBV particles produced by the cells after lytic induction. This study suggests that moronic acid is a new structural lead for anti-EBV drug development.

  19. Effects of Solution Hydrodynamics on Corrosion Inhibition of Steel by Citric Acid in Cooling Water

    Science.gov (United States)

    Ashassi-Sorkhabi, H.; Asghari, E.; Mohammadi, M.

    2014-08-01

    Corrosion is a major problem in cooling water systems, which is often controlled using corrosion inhibitors. Solution hydrodynamics is one of the factors affecting corrosion inhibition of metals in these systems. The present work focuses on the study of the combined effects of citric acid concentration (as a green corrosion inhibitor) and fluid flow on corrosion of steel in simulated cooling water. Electrochemical techniques including Tafel polarization and electrochemical impedance spectroscopy were used for corrosion studies. Laminar flow was simulated using a rotating disk electrode. The effects of solution hydrodynamics on inhibition performance of citric acid were discussed. The citric acid showed low inhibition performance in quiescent solution; however, when the electrode rotated at 200 rpm, inhibition efficiency increased remarkably. It was attributed mainly to the acceleration of inhibitor mass transport toward metal surface. The efficiencies were then decreased at higher rotation speeds due to enhanced wall shear stresses on metal surface and separation of adsorbed inhibitor molecules. This article is first part of authors' attempts in designing green inhibitor formulations for industrial cooling water. Citric acid showed acceptable corrosion inhibition in low rotation rates; thus, it can be used as a green additive to the corrosion inhibitor formulations.

  20. [Inhibition of Candida mycelia growth by a medium chain fatty acids, capric acid in vitro and its therapeutic efficacy in murine oral candidiasis].

    Science.gov (United States)

    Takahashi, Miki; Inoue, Shigeharu; Hayama, Kazumi; Ninomiya, Kentaro; Abe, Shigeru

    2012-01-01

    We assessed anti-C. albicans activities of the 4 fatty acids : caproic acid, caprylic acid, capric acid and lauric acid in vitro. All four inhibited not only the mycelial but also the yeast-form growth of Candida albicans. In particular, capric acid and caprylic acid inhibited Candida mycelia growth at very low concentrations. The effects of treatment of these two fatty acids on oral candidiasis were examined using a murine model. When 50 µl of capric acid (more than 48.8 µM) was administered three times into the oral cavity of Candida-infected mice, symptom scores of tongues of the mice were significantly improved. Histological studies of the capric acid-treated animals indicated that the fatty acid suppressed mycelial growth of the fungus on the tongue surface. These results suggest that all four fatty acids, and especially capric acid, have potential as substances supporting anti-Candida treatment.

  1. Method of Peptide Nucleic Acid (PNA)-Mediated Antisense Inhibition of Gene Expression in Campylobacter jejuni.

    Science.gov (United States)

    Oh, Euna; Jeon, Byeonghwa

    2017-01-01

    Peptide nucleic acid (PNA) is an oligonucleotide mimic that recognizes and binds to nucleic acids. The strong binding affinity of PNA to mRNA coupled with its high sequence specificity enable antisense PNA to selectively inhibit (i.e., knockdown) the protein synthesis of a target gene. This novel technology provides a powerful tool for Campylobacter studies because molecular techniques have been relatively less well-developed for this bacterium as compared to other pathogens, such as Escherichia coli and Salmonella. This chapter describes a protocol for PNA-mediated antisense inhibition of gene expression in Campylobacter jejuni.

  2. A theoretical study on the inhibition efficiencies of some amino acids as corrosion inhibitors of nickel

    Energy Technology Data Exchange (ETDEWEB)

    Gece, Goekhan, E-mail: gokhangc@gmail.co [Department of Physical Chemistry, Faculty of Science, Ankara University, Besevler, 06100 Ankara (Turkey); Bilgic, Semra [Department of Physical Chemistry, Faculty of Science, Ankara University, Besevler, 06100 Ankara (Turkey)

    2010-10-15

    To clarify the inhibition efficiencies of a total of 12 amino acids for the corrosion of nickel in acidic medium, a density functional theory (DFT) study was carried out using the B3LYP/LANL2DZ method. Quantum chemical descriptors such as the energy of highest occupied molecular orbital (E{sub HOMO}), energy of lowest unoccupied molecular orbital (E{sub LUMO}), and the energy gap ({Delta}E) were calculated. Equations were proposed using linear regression analysis to determine the most effective parameter on inhibition efficiency. The theoretically obtained results were found to be consistent with the experimental data reported.

  3. Oleic acid and linoleic acid from Tenebrio molitor larvae inhibit BACE1 activity in vitro: molecular docking studies.

    Science.gov (United States)

    Youn, Kumju; Yun, Eun-Young; Lee, Jinhyuk; Kim, Ji-Young; Hwang, Jae-Sam; Jeong, Woo-Sik; Jun, Mira

    2014-02-01

    In our ongoing research to find therapeutic compounds for Alzheimer's disease (AD) from natural resources, the inhibitory activity of the BACE1 enzyme by Tenebrio molitor larvae and its major compounds were evaluated. The T. molitor larvae extract and its fractions exhibited strong BACE1 suppression. The major components of hexane fraction possessing both high yield and strong BACE1 inhibition were determined by thin layer chromatography, gas chromatography, and nuclear magnetic resonance analysis. A remarkable composition of unsaturated long chain fatty acids, including oleic acid and linoleic acid, were identified. Oleic acid, in particular, noncompetitively attenuated BACE1 activity with a half-maximal inhibitory concentration (IC₅₀) value of 61.31 μM and Ki value of 34.3 μM. Furthermore, the fatty acids were stably interacted with BACE1 at different allosteric sites of the enzyme bound with the OH of CYS319 and the NH₃ of TYR320 for oleic acid and with the C=O group of GLN304 for linoleic acid. Here, we first revealed novel pharmacophore features of oleic acids and linoleic acid to BACE1 by in silico docking studies. The present findings would clearly suggest potential guidelines for designing novel BACE1 selective inhibitors.

  4. Corrosion Inhibition and Adsorption Properties of Ethanolic Extract of Calotropis for Corrosion of Aluminium in Acidic Media

    OpenAIRE

    Sudesh Kumar; Suraj Prakash Mathur

    2013-01-01

    The corrosion inhibition of aluminium in sulfuric acid solution in the presence of different plant parts, namely, leaves, latex, and fruit was studied using weight loss method and thermometric method. The ethanolic extracts of Calotropis procera and Calotropis gigantea act as an inhibitor in the acid environment. The inhibition efficiency increases with increase in inhibitor concentration. The plant parts inhibit aluminium, and inhibition is attributed, due to the adsorption of the plant part...

  5. Inhibition of cold insolubility of an IgA cryoglobulin by decanedicarboxylic acid and related compounds.

    Science.gov (United States)

    Lalezari, P; Kumar, M; Kumar, K M; Lawrence, C

    1983-11-01

    Cold insolubility of a serum IgA cryoimmunoglobulin was found to be inhibited by the addition of 1.5 mM sodium decanedicarboxylate in vitro. The patient with the cryoglobulin had advanced multiple myeloma complicated by severe hyperviscosity that caused lethargy and episodic loss of consciousness. Decanedicarboxylic acid administered orally resulted in transient relief of symptoms and the loss of cryoprecipitability of the paraprotein. Further in vitro studies revealed that sodium salts of long-chain monocarboxylic acids with a minimum of eight carbons, and dicarboxylic acids with a minimum of 12 carbons inhibited cryoprecipitation. Salts of short-chain carboxylic acids, by contrast, enhanced cryoprecipitation. Sodium phenolate and sodium salts of benzoic acid, 2,4-DNP, phenylpropionic acid, and salicylic acid were also inhibitory. These latter compounds, which have a ring structure, did not cause precipitation at any concentration. It was demonstrated that the presence of a free carboxylic group was required for these activities; conversion of carboxylic acid to amide resulted in the loss of both the inhibitory and cryoprecipitation-enhancing effects. Normal plasma, or plasma from five other patients who had IgG, IgM, or mixed-type cryoglobulinemia, were not affected by any of these compounds. It is suggested that in selected cases of hyperviscosity syndrome associated with cryoglobulinemia, some of these compounds, especially monocarboxylic acids with appropriate chain lengths, or those with a ring structure, may have therapeutic applications.

  6. Inhibition of Mild Steel Corrosion in Hydrochloric Acid Solution by Ciprofloxacin Drug

    Directory of Open Access Journals (Sweden)

    Inemesit A. Akpan

    2013-01-01

    Full Text Available The inhibition of mild steel corrosion in hydrochloric acid solution by ciprofloxacin drug as an eco-friendly and commercially available inhibitor was studied at room temperature by weight loss technique. It was found that the test drug has a promising inhibitory action against corrosion of mild steel in the medium investigated. The inhibition efficiency was found to increase with a corresponding increase in the concentration of the inhibitor. It was also found that the adsorption as well as the inhibition process followed a first-order kinetics and obeyed Langmuir’s adsorption isotherm.

  7. Non-specific SIRT inhibition as a mechanism for the cytotoxicity of ginkgolic acids and urushiols.

    Science.gov (United States)

    Ryckewaert, Lucie; Sacconnay, Lionel; Carrupt, Pierre-Alain; Nurisso, Alessandra; Simões-Pires, Claudia

    2014-09-02

    Ginkgolic acids and urushiols are natural alkylphenols known for their mutagenic, carcinogenic and genotoxic potential. However, the mechanism of toxicity of these compounds has not been thoroughly elucidated so far. Considering that the SIRT inhibitory potential of anacardic acids has been hypothesized by in silico techniques, we herein demonstrated through both in vitro and computational methods that structurally related compounds such as ginkgolic acids and urushiols are able to modulate SIRT activity. Moreover, their SIRT inhibitory profile and cytotoxicity were comparable to sirtinol, a non-specific SIRT inhibitor (SIRT1 and SIRT2), and different from EX-527, a SIRT1 specific inhibitor. This is the first report on the SIRT inhibition of ginkgolic acids and urushiols. The results reported here are in line with previously observed effects on the induction of apoptosis by this class of compounds, and the non-specific SIRT inhibition is suggested as a new mechanism for their in vitro cytotoxicity.

  8. Identification of self-growth-inhibiting compounds lauric acid and 7-(Z)-tetradecenoic acid from Helicobacter pylori.

    Science.gov (United States)

    Yamashita, Shinpei; Igarashi, Masayuki; Hayashi, Chigusa; Shitara, Tetsuo; Nomoto, Akio; Mizote, Tomoko; Shibasaki, Masakatsu

    2015-06-01

    Helicobacter pylori growth medium is usually supplemented with horse serum (HS) or FCS. However, cyclodextrin derivatives or activated charcoal can replace serum. In this study, we purified self-growth-inhibiting (SGI) compounds from H. pylori growth medium. The compounds were recovered from porous resin, Diaion HP-20, which was added to the H. pylori growth medium instead of known supplements. These SGI compounds were also identified from 2,6-di-O-methyl-β-cyclodextrin, which was supplemented in a pleuropneumonia-like organisms broth. The growth-inhibiting compounds were identified as lauric acid (LA) and 7-(Z)-tetradecenoic acid [7-(Z)-TDA]. Although several fatty acids had been identified in H. pylori, these specific compounds were not previously found in this species. However, we confirmed that these fatty acids were universally present in the cultivation medium of the H. pylori strains examined in this study. A live/dead assay carried out without HS indicated that these compounds were bacteriostatic; however, no significant growth-inhibiting effect was observed against other tested bacterial species that constituted the indigenous bacterial flora. These findings suggested that LA and 7-(Z)-TDA might play important roles in the survival of H. pylori in human stomach epithelial cells.

  9. Caffeic Acid Inhibits NFkappaB Activation of Osteoclastogenesis Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Ferry Sandra

    2011-12-01

    Full Text Available BACKGROUND: Caffeic acid (3,4-dihydroxycinnamic acids is involved in various green plants. Based on our previous report, a major component of sweet potato extracts, possibly caffeic acid, was shown as a promising inhibitor of osteoclastogenesis. However, the effect of caffeic acid in inhibiting osteoclastogenesis needs to be confirmed. The underlying mechanism needs to be disclosed as well. METHODS: Caffeic acid in various concentrations was added to in vitro osteoclastogenesis of receptor activator nuclear factor kB ligand (RANKL-tumor necrosis factor alpha (TNF-α-macrophage colony stimulating factor (M-CSF-induced bone marrow-derived monocyte/macrophage precursor cells (BMMs and RANKL-TNF-α-induced RAW264 cells D-Clone (RAW-D cells. Tartrate resistant acid phosphatase (TRAP staining was performed and TRAP-positive polynucleated cells (PNCs were counted. For apoptosis analysis, caffeic acid-treated BMMs, RAW-D cells and osteoclast-like PNCs were subjected to Sub-G1 Apoptosis and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL assays. To measure NFkB activity, RAW-D cells were transfected with pNFkB-TA-Luc and subjected to Dual Luciferase Reporter Assay System. RESULTS: Caffeic acid inhibited osteoclastogenesis of RANKL-TNF-α-M-CSF-induced BMMs as well as RANKL-TNF-α-induced RAW-D cells in a dose dependent manner. Caffeic acid did not induce apoptosis in BMMs, RAW-D cells and osteoclast-like PNCs. RANKL-TNF-α-induced NFkB activity in RAW-D was diminished by caffeic acid in a dose dependent manner. Significant NFkB activity inhibtion was observed starting from 1µg/mL caffeic acid. CONCLUSIONS: Caffeic acid could be a potent osteoclastogenesis inhibitor through inhibition of NFkB activity. Our present study should be further followed up to disclose caffeic acid's possible overlying signaling pathways in inhibiting osteoclastogenesis. KEYWORDS: caffeic acid, osteoclastogenesis, NFkB, RANKL, TNF-α.

  10. Anacardic acid inhibits the catalytic activity of matrix metalloproteinase-2 and matrix metalloproteinase-9.

    Science.gov (United States)

    Omanakuttan, Athira; Nambiar, Jyotsna; Harris, Rodney M; Bose, Chinchu; Pandurangan, Nanjan; Varghese, Rebu K; Kumar, Geetha B; Tainer, John A; Banerji, Asoke; Perry, J Jefferson P; Nair, Bipin G

    2012-10-01

    Cashew nut shell liquid (CNSL) has been used in traditional medicine for the treatment of a wide variety of pathophysiological conditions. To further define the mechanism of CNSL action, we investigated the effect of cashew nut shell extract (CNSE) on two matrix metalloproteinases, MMP-2/gelatinase A and MMP-9/gelatinase B, which are known to have critical roles in several disease states. We observed that the major constituent of CNSE, anacardic acid, markedly inhibited the gelatinase activity of 3T3-L1 cells. Our gelatin zymography studies on these two secreted gelatinases, present in the conditioned media from 3T3-L1 cells, established that anacardic acid directly inhibited the catalytic activities of both MMP-2 and MMP-9. Our docking studies suggested that anacardic acid binds into the MMP-2/9 active site, with the carboxylate group of anacardic acid chelating the catalytic zinc ion and forming a hydrogen bond to a key catalytic glutamate side chain and the C15 aliphatic group being accommodated within the relatively large S1' pocket of these gelatinases. In agreement with the docking results, our fluorescence-based studies on the recombinant MMP-2 catalytic core domain demonstrated that anacardic acid directly inhibits substrate peptide cleavage in a dose-dependent manner, with an IC₅₀ of 11.11 μM. In addition, our gelatinase zymography and fluorescence data confirmed that the cardol-cardanol mixture, salicylic acid, and aspirin, all of which lack key functional groups present in anacardic acid, are much weaker MMP-2/MMP-9 inhibitors. Our results provide the first evidence for inhibition of gelatinase catalytic activity by anacardic acid, providing a novel template for drug discovery and a molecular mechanism potentially involved in CNSL therapeutic action.

  11. Afferent signalling from the acid-challenged rat stomach is inhibited and gastric acid elimination is enhanced by lafutidine

    Directory of Open Access Journals (Sweden)

    Holzer Peter

    2009-06-01

    Full Text Available Abstract Background Lafutidine is a histamine H2 receptor antagonist, the gastroprotective effect of which is related to its antisecretory activity and its ability to activate a sensory neuron-dependent mechanism of defence. The present study investigated whether intragastric administration of lafutidine (10 and 30 mg/kg modifies vagal afferent signalling, mucosal injury, intragastric acidity and gastric emptying after gastric acid challenge. Methods Adult rats were treated with vehicle, lafutidine (10 – 30 mg/kg or cimetidine (10 mg/kg, and 30 min later their stomachs were exposed to exogenous HCl (0.25 M. During the period of 2 h post-HCl, intragastric pH, gastric volume, gastric acidity and extent of macroscopic gastric mucosal injury were determined and the activation of neurons in the brainstem was visualized by c-Fos immunocytochemistry. Results Gastric acid challenge enhanced the expression of c-Fos in the nucleus tractus solitarii but caused only minimal damage to the gastric mucosa. Lafutidine reduced the HCl-evoked expression of c-Fos in the NTS and elevated the intragastric pH following intragastric administration of excess HCl. Further analysis showed that the gastroprotective effect of lafutidine against excess acid was delayed and went in parallel with facilitation of gastric emptying, measured indirectly via gastric volume changes, and a reduction of gastric acidity. The H2 receptor antagonist cimetidine had similar but weaker effects. Conclusion These observations indicate that lafutidine inhibits the vagal afferent signalling of a gastric acid insult, which may reflect an inhibitory action on acid-induced gastric pain. The ability of lafutidine to decrease intragastric acidity following exposure to excess HCl cannot be explained by its antisecretory activity but appears to reflect dilution and/or emptying of the acid load into the duodenum. This profile of actions emphasizes the notion that H2 receptor antagonists can protect

  12. Autoxidated linolenic acid inhibits aflatoxin biosynthesis in Aspergillus flavus via oxylipin species.

    Science.gov (United States)

    Yan, Shijuan; Liang, Yating; Zhang, Jindan; Chen, Zhuang; Liu, Chun-Ming

    2015-08-01

    Aflatoxins produced by Aspergillus species are among the most toxic and carcinogenic compounds in nature. Although it has been known for a long time that seeds with high oil content are more susceptible to aflatoxin contamination, the role of fatty acids in aflatoxin biosynthesis remains controversial. Here we demonstrate in A. flavus that both the saturated stearic acid (C18:0) and the polyunsaturated linolenic acid (C18:3) promoted aflatoxin production, while C18:3, but not C18:0, inhibited aflatoxin biosynthesis after exposure to air for several hours. Further experiments showed that autoxidated C18:3 promoted mycelial growth, sporulation, and kojic acid production, but inhibited the expression of genes in the AF biosynthetic gene cluster. Mass spectrometry analyses of autoxidated C18:3 fractions that were able to inhibit aflatoxin biosynthesis led to the identification of multiple oxylipin species. These results may help to clarify the role of fatty acids in aflatoxin biosynthesis, and may explain why controversial results have been obtained for fatty acids in the past. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Mitigation of Humic Acid Inhibition in Anaerobic Digestion of Cellulose by Addition of Various Salts

    Directory of Open Access Journals (Sweden)

    Samet Azman

    2015-03-01

    Full Text Available Humic compounds are inhibitory to the anaerobic hydrolysis of cellulosic biomass. In this study, the impact of salt addition to mitigate the inhibitory effects of humic compounds was investigated. The experiment was conducted using batch tests to monitor the anaerobic hydrolysis of cellulose in the presence of humic acid. Sodium, potassium, calcium, magnesium and iron salts were tested separately for their efficiency to mitigate humic acid inhibition. All experiments were done under mesophilic conditions (30 °C and at pH 7. Methane production was monitored online, using the Automatic Methane Potential Test System. Methane production, soluble chemical oxygen demand and volatile fatty acid content of the samples were measured to calculate the hydrolysis efficiencies. Addition of magnesium, calcium and iron salts clearly mitigated the inhibitory effects of humic acid and hydrolysis efficiencies reached up to 75%, 65% and 72%, respectively, which were similar to control experiments. Conversely, potassium and sodium salts addition did not mitigate the inhibition and hydrolysis efficiencies were found to be less than 40%. Mitigation of humic acid inhibition via salt addition was also validated by inductively coupled plasma atomic emission spectroscopy analyses, which showed the binding capacity of different cations to humic acid.

  14. Calcite crystal growth inhibition by humic substances with emphasis on hydrophobic acids from the Florida Everglades

    Science.gov (United States)

    Hoch, A.R.; Reddy, M.M.; Aiken, G.R.

    2000-01-01

    The crystallization of calcium carbonate minerals plays an integral role in the water chemistry of terrestrial ecosystems. Humic substances, which are ubiquitous in natural waters, have been shown to reduce or inhibit calcite crystal growth in experiments. The purpose of this study is to quantify and understand the kinetic effects of hydrophobic organic acids isolated from the Florida Everglades and a fulvic acid from Lake Fryxell, Antarctica, on the crystal growth of calcite (CaCO3). Highly reproducible calcite growth experiments were performed in a sealed reactor at constant pH, temperature, supersaturation (?? = 4.5), P(CO2) (10-3.5atm), and ionic strength (0.1 M) with various concentrations of organic acids. Higher plant-derived aquatic hydrophobic acids from the Everglades were more effective growth inhibitors than microbially derived fulvic acid from Lake Fryxell. Organic acid aromaticity correlated strongly with growth inhibition. Molecular weight and heteroatom content correlated well with growth inhibition, whereas carboxyl content and aliphatic nature did not. Copyright (C) 1999 Elsevier Science Ltd.

  15. Corrosion inhibition of iron in hydrochloric acid by polyacrylamide

    Directory of Open Access Journals (Sweden)

    DRAGICA CHAMOVSKA

    2007-07-01

    Full Text Available The corrosion protection and/or adsorption of polyacrylamide (PAA of number average molecular weight, , between 15,000 – 1,350,000 g mol-1 on mild steel and iron (99.99 % Fe in 3 M HCl at room temperature was studied using spectrophotometry (the phenanthroline method, the weight loss method and EIS (Electrochemical Impedance Spectroscopy. It was found that the corrosion protect­tion efficiency of the PAA – adsorbed layers strongly depends on both the molar concentration of PAA in the solution and its molecular weight, reaching limiting values between 85 and 96 %. Simultaneously, it was also concluded that a relatively high surface coverage could be obtained with very low PAA concentrations (0.5 – 2 ppm, indicating the good adsorption characteristics of PAA on mild steel and iron in hydrochloride acid. The experimentally obtained results follow a Lan­gmuir adsorption isotherm. According to the best fitting parameters, the adsorption coef­f­i­cient B ranged between 2×107 and 4×108 mol-1 and depended strongly on the mole­cular weight of the PAA: B = k (for a ≈ 0.67 and k = 2.95×104 or the size of the polymer coil. As was found by EIS, the thickness of the adsorbed PAA layer was approx. 1.1 nm (for er = 15 and corresponded only to the polymer segments attached to the metal surface. On the other hand, as was found by ellipsometry, the limiting layer of the adsorbed PAA molecules was highly voluminous and relatively thick (100 – 200 nm, containing entangled polymer coils.

  16. Valproic acid inhibits TTX-resistant sodium currents in prefrontal cortex pyramidal neurons.

    Science.gov (United States)

    Szulczyk, Bartlomiej; Nurowska, Ewa

    2017-09-16

    Valproic acid is frequently prescribed and used to treat epilepsy, bipolar disorder and other conditions. However, the mechanism of action of valproic acid has not been fully elucidated. The aim of this study was to assess the influence of valproic acid (200 μM) on TTX-resistant sodium currents in mPFC pyramidal neurons. Valproic acid inhibited the maximal amplitude and did not change the activation parameters of TTX-resistant sodium currents. Moreover, valproic acid (2 μM and 200 μM) shifted the TTX-resistant sodium channel inactivation curve towards hyperpolarisation. In the presence of valproic acid, TTX-resistant sodium currents recovered from inactivation more slowly. Valproic acid did not influence the use-dependent blockade of TTX-resistant sodium currents. This study suggests that a potential new mechanism of the antiepileptic action of valproic acid is, among others, inhibition of TTX-resistant sodium currents. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Fatty acid synthesis is inhibited by inefficient utilization of unusual fatty acids for glycerolipid assembly.

    Science.gov (United States)

    Bates, Philip D; Johnson, Sean R; Cao, Xia; Li, Jia; Nam, Jeong-Won; Jaworski, Jan G; Ohlrogge, John B; Browse, John

    2014-01-21

    Degradation of unusual fatty acids through β-oxidation within transgenic plants has long been hypothesized as a major factor limiting the production of industrially useful unusual fatty acids in seed oils. Arabidopsis seeds expressing the castor fatty acid hydroxylase accumulate hydroxylated fatty acids up to 17% of total fatty acids in seed triacylglycerols; however, total seed oil is also reduced up to 50%. Investigations into the cause of the reduced oil phenotype through in vivo [(14)C]acetate and [(3)H]2O metabolic labeling of developing seeds surprisingly revealed that the rate of de novo fatty acid synthesis within the transgenic seeds was approximately half that of control seeds. RNAseq analysis indicated no changes in expression of fatty acid synthesis genes in hydroxylase-expressing plants. However, differential [(14)C]acetate and [(14)C]malonate metabolic labeling of hydroxylase-expressing seeds indicated the in vivo acetyl-CoA carboxylase activity was reduced to approximately half that of control seeds. Therefore, the reduction of oil content in the transgenic seeds is consistent with reduced de novo fatty acid synthesis in the plastid rather than fatty acid degradation. Intriguingly, the coexpression of triacylglycerol synthesis isozymes from castor along with the fatty acid hydroxylase alleviated the reduced acetyl-CoA carboxylase activity, restored the rate of fatty acid synthesis, and the accumulation of seed oil was substantially recovered. Together these results suggest a previously unidentified mechanism that detects inefficient utilization of unusual fatty acids within the endoplasmic reticulum and activates an endogenous pathway for posttranslational reduction of fatty acid synthesis within the plastid.

  18. Inhibiting Properties of Morpholine as Corrosion Inhibitor for Mild Steel in 2N Sulphuric Acid and Phosphoric Acid Medium

    Directory of Open Access Journals (Sweden)

    K. Jayanthi

    2012-01-01

    Full Text Available The inhibition effect of morpholine on the corrosion of mild steel in 2N sulphuric acid and phosphoric acid has been studied by mass loss and polarization techniques between 302K and 333K. The inhibition efficiency increased with increase in concentration. The corrosion rate increased with increase in temperature and decreased with increase in concentration of inhibitor compared to blank. The adsorption of inhibitor on the mild steel surface has been found to obey Temkin's adsorption isotherm. Potentiostatic polarization results reveal that morpholine act as mixed type inhibitor. The values of activation energy (Ea, free energy of adsorption (∆Gads, enthalpy of adsorption (∆H, and entropy of adsorption (∆S were also calculated.

  19. Inhibition of aconitase in citrus fruit callus results in a metabolic shift towards amino acid biosynthesis

    NARCIS (Netherlands)

    Degu, A.; Hatew, B.; Nunes-Nesi, A.; Shlizerman, L.; Zur, N.; Fernie, A.R.; Blumwald, E.; Sadka, A.

    2011-01-01

    Citrate, a major determinant of citrus fruit quality, accumulates early in fruit development and declines towards maturation. The isomerization of citrate to isocitrate, catalyzed by aconitase is a key step in acid metabolism. Inhibition of mitochondrial aconitase activity early in fruit development

  20. Strategies for recovering inhibition caused by long chain fatty acids on anaerobic thermophilic biogas reactors

    DEFF Research Database (Denmark)

    Palatsi, J.; Laureni, M.; Andres, M.V.

    2009-01-01

    Long chain fatty acids (LCFA) concentrations over 1.0 g L1 were inhibiting manure thermophilic digestion, in batch and semi-continuous experiments, resulting in a temporary cease of the biogas production. The aim of the work was to test and evaluate several recovery actions, such as reactor feedi...

  1. Inhibition of Enzymatic Browning of Chlorogenic Acid by Sulfur-Containing Compounds

    NARCIS (Netherlands)

    Kuijpers, T.F.M.; Narvaez Cuenca, C.E.; Vincken, J.P.; Verloop, J.W.; Berkel, van W.J.H.; Gruppen, H.

    2012-01-01

    The antibrowning activity of sodium hydrogen sulfite (NaHSO3) was compared to that of other sulfur-containing compounds. Inhibition of enzymatic browning was investigated using a model browning system consisting of mushroom tyrosinase and chlorogenic acid (5-CQA). Development of brown color (spectra

  2. Sequence-specific inhibition of duck hepatitis B virus reverse transcription by peptide nucleic acids (PNA)

    DEFF Research Database (Denmark)

    Robaczewska, Magdalena; Narayan, Ramamurthy; Seigneres, Beatrice

    2005-01-01

    BACKGROUND/AIMS: Peptide nucleic acids (PNAs) appear as promising new antisense agents, that have not yet been examined as hepatitis B virus (HBV) inhibitors. Our aim was to study the ability of PNAs targeting the duck HBV (DHBV) encapsidation signal epsilon to inhibit reverse transcription (RT...

  3. Ellagic acid and its methyl-derivatives inhibit a newly found nitratase activity.

    Science.gov (United States)

    Léger, Claude L; Torres-Rasgado, Enrique; Fouret, Gilles; Lauret, Céline; Carbonneau, Marie-Annette

    2010-02-01

    We have recently shown that low density lipoprotein (LDL) was able to denitrate albumin-bound 3-NO(2)-Tyr residues and to concomitantly release NO(3)(-) through a Ca(2+)-dependent process that has been ascribed to a specific protein structure. A lipophilic food component (gamma-tocopherol), which is easily loaded into LDL has been found to totally inhibit denitrating activity. We presently found that ellagic acid (EA) and its methylated derivatives, 4,4'O-methyl- and 3,3'O-methyl-ellagic acids (MeEA1 and MeEA2, respectively), amphipathic phenolic components of certain fruits and beverages, were also able to inhibit this activity, with a total inhibition for EA and a 60% inhibition for MeEA1 and MeEA2. EA exhibited the highest affinity for protein plasma, whereas a higher affinity of MeEA1 and MeEA2 (with MeEA1 > MeEA2) than EA was found for lipoprotein fractions, suggesting that the inhibition-driving property is protein affinity. As a result of this nitratase-inhibition property EA and its natural metabolite MeEA2 may have a beneficial role in special physiopathological conditions.

  4. Effect of Morinda Tinctoria Leaves Extract on the Corrosion Inhibition of Mild Steel in Acid Medium

    Institute of Scientific and Technical Information of China (English)

    K.Krishnaveni; J.Ravichandran; A.Selvaraj

    2013-01-01

    The Morinda tinctoria (MT) plant leaves extract was prepared in aqueous and hydrochloric acid media and was used as corrosion inhibitor for mild steel in hydrochloric acid medium.MT is found to be an efficient inhibitor at room temperature and the efficiency decreases with increase in temperature.Results from colorimetric studies predict the amount of iron present in the test solution and the percentage inhibition efficiency values calculated from this data fit well with the weight loss experiments.The AC impedance studies reveal that the mild steel surface is positively charged and the process of inhibition is through charge transfer.Polarisation studies indicate the mixed nature of the inhibitor.Thermodynamic parameters obtained predict that the process of inhibition is a spontaneous one.

  5. Adsorption and corrosion inhibition of mild steel in acidic media by expired pharmaceutical drug

    Directory of Open Access Journals (Sweden)

    P. Geethamani

    2015-12-01

    Full Text Available The inhibitive action of an examined expired Ambroxol drug on the corrosion of mild steel in 1 M HCl and 1 M H2SO4 acid medium has been studied by weight loss and electrochemical techniques. The weight loss techniques result was discussed. The inhibition efficiency increases with increasing the concentration of the inhibitor. Electrochemical studies data support that examined expired drug is an efficient inhibitor for mild steel corrosion. The adsorption of the examined drug obeys Langmuir’s adsorption isotherm. Polarization studies indicate that this inhibitor acts as a mixed type inhibition. The various thermodynamic parameters were calculated and discussed. The protective film formed on the surface was confirmed by SEM. The data collected from the studied techniques are in good agreement to confirm the ability of using expired Ambroxol drug as corrosion inhibitor for mild steel in both acid media.

  6. Corrosion Inhibition Property of Some 1, 3, 4- Thiadiazolines on Mild Steel in Acidic Medium

    Directory of Open Access Journals (Sweden)

    A. Shamitha Begum

    2010-01-01

    Full Text Available The present work deals with the corrosion behavior of mild steel in acidic medium. The inhibitive effect of substituted 1, 3, 4-Thiadiazol-2-amines on the corrosion of mild steel in 1 M H2SO4 has been studied by weight loss and electrochemical methods. The electrochemical parameters for mild steel in acidic solution with and without inhibitor were calculated. The effect of temperature on the corrosion rate, activation energy and free energy of adsorption were also calculated. The synergistic effect has been studied by weight loss and electrochemical methods. The electrochemical parameters for mild steel in acidic solution were also calculated.

  7. Inhibition of ileal bile acid transporter: An emerging therapeutic strategy for chronic idiopathic constipation.

    Science.gov (United States)

    Mosińska, Paula; Fichna, Jakub; Storr, Martin

    2015-06-28

    Chronic idiopathic constipation is a common disorder of the gastrointestinal tract that encompasses a wide profile of symptoms. Current treatment options for chronic idiopathic constipation are of limited value; therefore, a novel strategy is necessary with an increased effectiveness and safety. Recently, the inhibition of the ileal bile acid transporter has become a promising target for constipation-associated diseases. Enhanced delivery of bile acids into the colon achieves an accelerated colonic transit, increased stool frequency, and relief of constipation-related symptoms. This article provides insight into the mechanism of action of ileal bile acid transporter inhibitors and discusses their potential clinical use for pharmacotherapy of constipation in chronic idiopathic constipation.

  8. Sialic acid is required for neuronal inhibition by soluble MAG but not for membrane bound MAG

    Directory of Open Access Journals (Sweden)

    Najat eAl-Bashir

    2016-04-01

    Full Text Available Myelin-Associated Glycoprotein (MAG, a major inhibitor of axonal growth, is a member of the immunoglobulin (Ig super-family. Importantly, MAG (also known as Siglec-4 is a member of the Siglec family of proteins (sialic acid-binding, immunoglobulin-like lectins, MAG binds to complex gangliosides, specifically GD1a and/or GT1b. Therefore, it has been proposed as neuronal receptors for MAG inhibitory effect of axonal growth. Previously, we showed that MAG binds sialic acid through domain 1 at Arg118 and is able to inhibit axonal growth through domain 5.We developed a neurite outgrowth assay (NOG, in which both wild type MAG and mutated MAG (MAG Arg118 are expressed on cells. In addition we also developed a soluble form NOG in which we utilized soluble MAG-Fc and mutated MAG (Arg118-Fc. Only MAG-Fc is able to inhibit neurite outgrowth, but not mutated MAG (Arg118-Fc that has been mutated at its sialic acid binding site. However, both forms of membrane bound MAG- and MAG (Arg118- expressing cells still inhibit neurite outgrowth. Here, we review various results from different groups regarding MAG’s inhibition of axonal growth. Also, we propose a model in which the sialic acid binding is not necessary for the inhibition induced by the membrane form of MAG, but it is necessary for the soluble form of MAG. This finding highlights the importance of understanding the different mechanisms by which MAG inhibits neurite outgrowth in both the soluble fragmented form and the membrane-bound form in myelin debris following CNS damage

  9. Comparison of inhibition effects of some benzoic acid derivatives on sheep heart carbonic anhydrase

    Science.gov (United States)

    Kiliç, Deryanur; Yildiz, Melike; Şentürk, Murat; Erdoǧan, Orhan; Küfrevioǧlu, Ömer Irfan

    2016-04-01

    Carbonic anhydrase (CA) is a family of metalloenzymes that requires Zn as a cofactor and catalyze the quick conversion of CO2 to HCO3- and H+. Inhibitors of the carbonic anhydrases (CAs) have medical usage of significant diseases such as glaucoma, epilepsy, gastroduodenal ulcers, acid-base disequilibria and neurological disorders. In the present study, inhibition of CA with some benzoic derivatives (1-6) were investigated. Sheep heart CA (shCA) enzyme was isolated by means of designed affinity chromatography gel (cellulose-benzyl-sulfanylamide) 42.45-fold in a yield of 44 % with 564.65 EU/mg. Purified shCA enzyme was used in vitro studies. In the studies, IC50 values were calculated for 3-aminobenzoic acid (1), 4-aminobenzoic acid (2), 2-hydroxybenzoic acid (3), 2-benzoylbenzoic acid (4), 2,3-dimethoxybenzoic acid (5), and 3,4,5-trimethoxybenzoic acid (6), showing the inhibition effects on the purified enzyme. Such molecules can be used as pioneer for discovery of novel effective CA inhibitors for medicinal chemistry applications.

  10. Effect of pseudolaric acid B on gastric cancer cells: Inhibition of proliferation and induction of apoptosis

    Institute of Scientific and Technical Information of China (English)

    Ke-Shen Li; Xue-Feng Gu; Ping Li; Yong Zhang; Ya-Shuang Zhao; Zhen-Jiang Yao; Nai-Qiang Qu; Bin-You Wang

    2005-01-01

    AIM: To examine the effect of pseudolaric acid B on the growth of human gastric cancer cell line, AGS, and its possible mechanism of action.METHODS: Growth inhibition by pseudolaric acid B was analyzed using MTT assay. Apoptotic cells were detected using Hoechst 33258 staining, and confirmed by DNA fragmentation analysis. Western blot was used to detect the expression of apoptosis-regulated gene Bcl-2, caspase 3, and cleavage of poly (ADP-ribose)polymerase-1 (PARP-1).RESULTS: Pseudolaric acid B inhibited the growth of AGS cells in a time- and dose-dependent manner by arresting the cells at G2/M phase, which was accompanied with a decrease in the levels of cdc2.AGS cells treated with pseudolaric acid B showed typical characteristics of apoptosis including chromatin condensation and DNA fragmentation. Moreover,treatment of AGS cells with pseudolaric acid B was also associated with decreased levels of the anti-apoptotic protein Bcl-2, activation of caspase-3, and proteolytic cleavage of PARP-1.CONCLUSION: Pseudolaric acid B can dramatically suppress the AGS cell growth by inducing apoptosis after G2/M phase arrest. These findings are consistent with the possibility that G2/M phase arrest is mediated by the down-regulation of cdc2 levels. The data also suggest that pseudolaric acid B can trigger apoptosis by decreasing Bcl-2 levels and activating caspase-3 protease.

  11. Carnosic acid and fisetin combination therapy enhances inhibition of lung cancer through apoptosis induction.

    Science.gov (United States)

    Shi, Bin; Wang, Li-Fang; Meng, Wen-Shu; Chen, Liang; Meng, Zi-Li

    2017-06-01

    Carnosic acid is a phenolic diterpene with anti-inflammation, anticancer, anti-bacterial, anti-diabetic, as well as neuroprotective properties, which is generated by many species from Lamiaceae family. Fisetin (3,3',4',7-tetrahydroxyflavone), a naturally flavonoid is abundantly produced in different vegetables and fruits. Fisetin has been reported to have various positive biological effects, including anti-proliferative, anticancer, anti-oxidative and neuroprotective effects. Lung cancer is reported as the most common neoplasm in human world-wide. In the present study, the possible benefits of carnosic acid combined with fisetin on lung cancer in vitro and in vivo was explored. Carnosic acid and fisetin combination led to apoptosis in lung cancer cells. Caspase-3 signaling pathway was promoted in carnosic acid and fisetin co-treatment, which was accompanied by anti-apoptotic proteins of Bcl-2 and Bcl-xl decreasing and pro-apoptotic signals of Bax and Bad increasing. The death receptor (DR) of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) was enhanced in carnosic acid and fisetin combined treatment. Furthermore, the mouse xenograft model in vivo suggested that carnosic acid and fisetin combined treatment inhibited lung cancer growth in comparison to the carnosic acid or fisetin monotherapy. This study supplies a novel therapy to induce apoptosis to inhibit lung cancer through caspase-3 activation.

  12. Neuraminidase inhibition of Dietary chlorogenic acids and derivatives - potential antivirals from dietary sources.

    Science.gov (United States)

    Gamaleldin Elsadig Karar, Mohamed; Matei, Marius-Febi; Jaiswal, Rakesh; Illenberger, Susanne; Kuhnert, Nikolai

    2016-04-01

    Plants rich in chlorogenic acids (CGAs), caffeic acids and their derivatives have been found to exert antiviral effects against influenza virus neuroaminidase. In this study several dietary naturally occurring chlorogenic acids, phenolic acids and derivatives were screened for their inhibitory activity against neuroaminidases (NAs) from C. perfringens, H5N1 and recombinant H5N1 (N-His)-Tag using a fluorometric assay. There was no significant difference in inhibition between the different NA enzymes. The enzyme inhibition results indicated that chlorogenic acids and selected derivatives, exhibited high activities against NAs. It seems that the catechol group from caffeic acid was important for the activity. Dietary CGA therefore show promise as potential antiviral agents. However, caffeoyl quinic acids show low bioavailibility and are intensly metabolized by the gut micro flora, only low nM concentrations are observed in plasma and urine, therefore a systemic antiviral effect of these compounds is unlikely. Nevertheless, gut floral metabolites with a catechol moiety or structurally related dietary phenolics with a catechol moiety might serve as interesting compounds for future investigations.

  13. Methanogenic inhibition by roxarsone (4-hydroxy-3-nitrophenylarsonic acid) and related aromatic arsenic compounds.

    Science.gov (United States)

    Sierra-Alvarez, Reyes; Cortinas, Irail; Field, Jim A

    2010-03-15

    Roxarsone (4-hydroxy-3-nitro-phenylarsonic acid) and p-arsanilic acid (4-aminophenylarsonic acid) are feed additives widely used in the broiler and swine industry. This study evaluated the inhibitory effect of roxarsone, p-arsanilic, and other phenylarsonic compounds on the activity of acetate- and H(2)-utilizing methanogenic microorganisms. Roxarsone, p-arsanilic, and 4-hydroxy-3-aminophenylarsonic acid (HAPA) inhibited acetoclastic and hydrogenotrophic methanogens when supplemented at concentrations of 1mM, and their inhibitory effect increased sharply with incubation time. Phenylarsonic acid (1mM) inhibited acetoclastic but not H(2)-utilizing methanogens. HAPA, a metabolite from the anaerobic biodegradation of roxarsone, was found to be sensitive to autooxidation by oxygen. The compound (2.6mM) caused low methanogenic inhibition (only 14.2%) in short-term assays of 12h when autooxidation was prevented by supplementing HAPA solutions with ascorbate. However, ascorbate-free HAPA solutions underwent spontaneous autooxidation in the presence of oxygen, leading to the formation of highly inhibitory compounds. These results confirm the microbial toxicity of organoarsenic compounds, and they indicate that biotic as well as abiotic transformations can potentially impact the fate and microbial toxicity of these contaminants in the environment.

  14. Use of jasmonic acid and salicylic acid to inhibit growth of sugarbeet storage rot pathogens

    Science.gov (United States)

    Jasmonic acid (JA) and salicylic acid (SA) are endogenous plant hormones that induce native plant defense responses and provide protection against a wide range of diseases. Previously, JA, applied after harvest, was shown to protect sugarbeet roots against the storage pathogens, Botrytis cinerea, P...

  15. Hydroxy-oleic acid, but not oleic acid, inhibits pharmacologic vascular responsiveness in isolated aortic tissue

    Science.gov (United States)

    Oleic acid (OA) and other fatty acids can become abundant in the systemic circulation after air pollution exposure as endogenously released lipolysis byproducts or by entering the body as a component of air pollution. Vascular damage has been observed with OA infusion, but it is ...

  16. Corrosion Inhibition Studies of Mild Steel in Acid Medium Using Musa Acuminata Fruit Peel Extract

    Directory of Open Access Journals (Sweden)

    N. Gunavathy

    2012-01-01

    Full Text Available The inhibition effect of unripe fruit peel extract of Musa acuminata (Cultivar variety – Nendran (MNP on corrosion of mild steel in 1 N HCl has been investigated by weight loss and electrochemical impedance spectroscopy (EIS with various concentrations of the extract. The effect of temperature on the corrosion inhibition of mild steel in the temperature range of 30°C – 80°C was carried out. The results indicate that MNP extract act as an effective inhibitor in the acid environment and is of mixed type inhibitor having efficiency as high as 96% at 2% inhibitor concentration. The inhibition efficiency of MNP extract increases with the increase of concentration but decreases with the increase in temperature. The inhibitor achieves its inhibition by physical adsorption of nutrients of the peel extract on the surface of the mild steel. The experimental data revealed that the adsorption occurred according to the Langmuir and Temkin adsorption isotherm.

  17. INHIBITION OF CORROSION OF ZINC IN (HNO3 + HCl ACID MIXTURE BY ANILINE

    Directory of Open Access Journals (Sweden)

    R.T. Vashi

    2015-05-01

    Full Text Available Corrosion of Zinc metal in (HNO3 + HCl binary acid mixture and inhibition efficiency of aniline has been studied by weight loss method and polarization technique. Corrosion rate increases with the concentration of acid mixture and the temperature. Inhibition efficiency (I.E. of aniline increases with the concentration of inhibitor while decreases with the increase in concentration of acid. As temperature increases corrosion rate increases while percentage of I.E. decreases. A plot of log (θ/1-θ versus log C results in a straight line suggest that the inhibitor cover both the anodic and cathodic regions through general adsorption following Longmuir isotherm. Galvenostatic polarization curves show polarization of both anodes as well as cathodes.

  18. Interfacial (o/w) properties of naphthetic acids and metal naphthenates, naphtenic acid characterization and metal naphthenate inhibition

    Energy Technology Data Exchange (ETDEWEB)

    Brandal, Oeystein

    2005-07-01

    Deposition of metal naphthenates in process facilities is becoming a huge problem for petroleum companies producing highly acidic crudes. In this thesis, the main focus has been towards the oil-water (o/w) interfacial properties of naphthenic acids and their ability to react with different divalent cations across the interface to form metal naphthenates. The pendant drop technique was utilized to determine dynamic interfacial tensions (IFT) between model oil containing naphthenic acid, synthetic as well as indigenous acid mixtures, and pH adjusted water upon addition of different divalent cations. Changes in IFT caused by the divalent cations were correlated to reaction mechanisms by considering two reaction steps with subsequent binding of acid monomers to the divalent cation. The results were discussed in light of degree of cation hydration and naphthenic acid conformation, which affect the interfacial conditions and thus the rate of formation of 2:1 complexes of acid and cations. Moreover, addition of non-ionic oil-soluble surfactants used as basis compounds in naphthenate inhibitors was found to hinder a completion of the reaction through interfacial dilution of the acid monomers. Formation and stability of metal naphthenate films at o/w interfaces were studied by means of Langmuir technique with a trough designed for liquid-liquid systems. The effects of different naphthenic acids, divalent cations, and pH of the subphase were investigated. The results were correlated to acid structure, cation hydration, and degree of dissociation, which all affect the film stability against compression. Naphthenic acids acquired from a metal naphthenate deposit were characterized by different spectroscopic techniques. The sample was found to consist of a narrow family of 4-protic naphthenic acids with molecular weights around 1230 g/mol. These acids were found to be very o/w interfacially active compared to normal crude acids, and to form Langmuir monolayers with stability

  19. Diuresis by intravenous administration of xanthurenic acid in rats, and inhibition by probenecid.

    Science.gov (United States)

    Uwai, Yuichi; Nakashima, Yuta; Honjo, Emi; Kawasaki, Tatsuya; Nabekura, Tomohiro

    2014-01-01

    The conjugates with sulfate and glucoside of xanthurenic acid, a tryptophan metabolite, were reported to show natriuresis. Sulfotransferase for xanthurenic acid works in the renal proximal tubule to produce the sulfate of xanthurenic acid as well as the liver, and we recently found that xanthurenic acid is a substrate of renal organic anion transporter OAT1. The purpose of this study was to examine relationship between the transport by OAT1 and diuresis related with xanthurenic acid. Drug transport experiment using Xenopus laevis oocytes represented that probenecid inhibited xanthurenic acid uptake by rat OAT1 (rOAT1). Although no diuresis was recognized by the intravenous injection of xanthurenic acid as a bolus in rats, the addition of its infusion exhibited natriuresis. Simultaneous administration of probenecid significantly decreased the urine volume and excreted amounts of sodium into urine. These findings showed the diuresis by the xanthurenic acid administration, and it was probenecid-sensitive. The rOAT1-mediated transport of xanthurenic acid might, at least in part, contribute to its diuretic effect.

  20. Oleanolic acid and ursolic acid inhibit peptidoglycan biosynthesis in Streptococcus mutans UA159

    Directory of Open Access Journals (Sweden)

    Soon-Nang Park

    2015-06-01

    Full Text Available In this study, we revealed that OA and UA significantly inhibited the expression of most genes related to peptidoglycan biosynthesis in S. mutans UA159. To the best of our knowledge, this is the first report to introduce the antimicrobial mechanism of OA and UA against S. mutans.

  1. Enhancement of taxol-induced apoptosis by inhibition of NF-κB with ursorlic acid

    Science.gov (United States)

    Li, Yunlong; Xing, Da

    2007-05-01

    Taxol is known to inhibit cell growth and triggers significant apoptosis in various cancer cells, and activation of proliferation factor NF-κB during Taxol-induced apoptosis is regarded as a main reason resulting in tumor cells resistance to Taxol. It has been found that ursorlic acid can inhibit the activation of NF-κB. In order to study whether ursorlic acid can enhance the Taxol-induced apoptosis, we use fluorescence resonance energy transfer (FRET) technique and probe SCAT3 to compare the difference of caspase-3 activation between Taxol alone and Taxol combined ursorlic acid. With laser scanning confocal microscopy, we find that ursorlic acid, a nontoxic food component, sensitizes ASTC-a-1 cells more efficiently to Taxol-induced apoptosis by advanced activation of caspase 3. The result also suggests that there would be a synergistic effect between Taxol and ursorlic acid, and the more detailed mechanism of synergistic effect needs to be clarified further, such as the correlations among NF-κB, Akt, caspase 8, which leads to the advanced activation of caspase 3 during combined treatment of Taxol and ursorlic acid. Moreover, this may be a new way to improve Taxol-dependent tumor therapy.

  2. Triterpene acids from apple peel inhibit lepidopteran larval midgut lipases and larval growth.

    Science.gov (United States)

    Christeller, John T; McGhie, Tony K; Poulton, Joanne; Markwick, Ngaire P

    2014-07-01

    Fruit extracts from apple, kiwifruit, feijoa, boysenberry, and blueberry were screened for the presence of lipase inhibitory compounds against lepidopteran larval midgut crude extracts. From 120 extracts, six showed significant inhibition with an extract from the peel of Malus × domestica cv. "Big Red" showing highest levels of inhibition. Because this sample was the only apple peel sample in the initial screen, a survey of peels from seven apple cultivars was undertaken and showed that, despite considerable variation, all had inhibitory activity. Successive solvent fractionation and LC-MS of cv. "Big Red" apple peel extract identified triterpene acids as the most important inhibitory compounds, of which ursolic acid and oleanolic acid were the major components and oxo- and hydroxyl-triterpene acids were minor components. When ursolic acid was incorporated into artificial diet and fed to Epiphyas postvittana Walker (Tortricidae: Lepidoptera) larvae at 0.16% w/v, a significant decrease in larval weight was observed after 21 days. This concentration of ursolic acid is less than half the concentration reported in the skin of some apple cultivars. © 2014 Wiley Periodicals, Inc.

  3. Correlation between arachidonic acid oxygenation and luminol-induced chemiluminescence in neutrophils: inhibition by diethyldithiocarbamate.

    Science.gov (United States)

    Chabannes, B; Perraut, C; El Habib, R; Moliere, P; Pacheco, Y; Lagarde, M

    1997-04-01

    Neutrophils from allergic subjects were hypersensitive to stimulation by low calcium ionophore concentration (0.15 microM), resulting in an increased formation of leukotriene B4 (LTB4), 5S-hydroxy-6,8,11,14-(E,Z,Z,Z)-eicosatetraenoic acid (5-HETE), and other arachidonic acid metabolites through the 5-lipoxygenase pathway. In parallel, luminol-dependent chemiluminescence was also higher in neutrophils from allergic patients at the basal state and after stimulation by calcium ionophore, revealing an enhancement of radical oxygen species and peroxide production. The activity of glutathione peroxidase, the main enzyme responsible for hydroperoxide reduction, was lowered in these cells. Diethyl-dithiocarbamate (DTC) induced a concentration-dependent decrease in chemiluminescence and arachidonic acid metabolism after neutrophil stimulation. These data show that the elevation of arachidonic acid metabolism in neutrophils from allergic patients is strongly correlated with oxidative status. This elevation may be the consequence of an increased cellular hydroperoxide known to activate 5-lipoxygenase (5-LOX) activity and/or an increased arachidonic acid availability, due either to phospholipase A2 (PLA2) activation or inhibition of arachidonate reesterification into phospholipids. Lowering this oxidative status was associated with a concomitant decrease of this metabolism. Our results suggest that the effect of DTC may be the consequence of an inhibition of peroxyl radical and cellular lipid hydroperoxide production. Thus, DTC may modulate arachidonic acid metabolism in neutrophils by modulating the cellular hydroperoxide level.

  4. Cinnamic acid amides from Tribulus terrestris displaying uncompetitive α-glucosidase inhibition.

    Science.gov (United States)

    Song, Yeong Hun; Kim, Dae Wook; Curtis-Long, Marcus J; Park, Chanin; Son, Minky; Kim, Jeong Yoon; Yuk, Heung Joo; Lee, Keun Woo; Park, Ki Hun

    2016-05-23

    The α-glucosidase inhibitory potential of Tribulus terrestris extracts has been reported but as yet the active ingredients are unknown. This study attempted to isolate the responsible metabolites and elucidate their inhibition mechanism of α-glucosidase. By fractionating T. terristris extracts, three cinnamic acid amide derivatives (1-3) were ascertained to be active components against α-glucosidase. The lead structure, N-trans-coumaroyltyramine 1, showed significant inhibition of α-glucosidase (IC50 = 0.42 μM). Moreover, all active compounds displayed uncompetitive inhibition mechanisms that have rarely been reported for α-glucosidase inhibitors. This kinetic behavior was fully demonstrated by showing a decrease of both Km and Vmax, and Kik/Kiv ratio ranging between 1.029 and 1.053. We progressed to study how chemical modifications to the lead structure 1 may impact inhibition. An α, β-unsaturation carbonyl group and hydroxyl group in A-ring of cinnamic acid amide emerged to be critical functionalities for α-glucosidase inhibition. The molecular modeling study revealed that the inhibitory activities are tightly related to π-π interaction as well as hydrogen bond interaction between enzyme and inhibitors.

  5. Adsorption and corrosion inhibiting effect of riboflavin on Q235 mild steel corrosion in acidic environments

    Energy Technology Data Exchange (ETDEWEB)

    Chidiebere, Maduabuchi A. [Institute of Metal Research, Chinese Academy of Sciences, 62 Wencui Rd, Shenyang 110016 (China); Electrochemistry and Materials Science Research Laboratory, Department of Chemistry, Federal University of Technology Owerri, PMB 1526 Owerri (Nigeria); Oguzie, Emeka E. [Electrochemistry and Materials Science Research Laboratory, Department of Chemistry, Federal University of Technology Owerri, PMB 1526 Owerri (Nigeria); Liu, Li [Institute of Metal Research, Chinese Academy of Sciences, 62 Wencui Rd, Shenyang 110016 (China); Li, Ying, E-mail: liying@imr.ac.cn [Institute of Metal Research, Chinese Academy of Sciences, 62 Wencui Rd, Shenyang 110016 (China); Wang, Fuhui [Institute of Metal Research, Chinese Academy of Sciences, 62 Wencui Rd, Shenyang 110016 (China)

    2015-04-15

    The inhibiting effect of Riboflavin (RF) on Q235 mild steel corrosion in 1 M HCl and 0.5 M H{sub 2}SO{sub 4} at 30 °C temperature was investigated using electrochemical techniques (electrochemical impedance spectroscopy and potentiodynamic polarization). The obtained results revealed that RF inhibited the corrosion reaction in both acidic solutions. Maximum inhibition efficiency values in 1 M HCl and 0.5 M H{sub 2}SO{sub 4} were 83.9% and 71.4%, respectively, obtained for 0.0012 M RF. Polarization data showed RF to be a mixed-type inhibitor, while EIS results revealed that the RF species adsorbed on the metal surface. The adsorption of RF followed Langmuir adsorption isotherm. Atomic force microscopy (AFM), Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM) studies confirmed the formation of a protective layer adsorbed on the steel surface. Quantum chemical calculations were used to correlate the inhibition ability of RF with its electronic structural parameters. - Highlights: • The inhibitory mechanism was influenced by the nature of acid anions. • RF has reasonable inhibition effect especially in 1 M HCl solution. • Polarization studies showed that RF functioned as a mixed type inhibitor. • Improved surface morphology was observed in the presence of RF.

  6. Carnosol and carnosic acids from Salvia officinalis inhibit microsomal prostaglandin E2 synthase-1.

    Science.gov (United States)

    Bauer, Julia; Kuehnl, Susanne; Rollinger, Judith M; Scherer, Olga; Northoff, Hinnak; Stuppner, Hermann; Werz, Oliver; Koeberle, Andreas

    2012-07-01

    Prostaglandin E(2) (PGE(2)), the most relevant eicosanoid promoting inflammation and tumorigenesis, is formed by cyclooxygenases (COXs) and PGE(2) synthases from free arachidonic acid. Preparations of the leaves of Salvia officinalis are commonly used in folk medicine as an effective antiseptic and anti-inflammatory remedy and possess anticancer activity. Here, we demonstrate that a standard ethyl acetate extract of S. officinalis efficiently suppresses the formation of PGE(2) in a cell-free assay by direct interference with microsomal PGE(2) synthase (mPGES)-1. Bioactivity-guided fractionation of the extract yielded closely related fractions that potently suppressed mPGES-1 with IC(50) values between 1.9 and 3.5 μg/ml. Component analysis of these fractions revealed the diterpenes carnosol and carnosic acid as potential bioactive principles inhibiting mPGES-1 activity with IC(50) values of 5.0 μM. Using a human whole-blood assay as a robust cell-based model, carnosic acid, but not carnosol, blocked PGE(2) generation upon stimulation with lipopolysaccharide (IC(50) = 9.3 μM). Carnosic acid neither inhibited the concomitant biosynthesis of other prostanoids [6-keto PGF(1α), 12(S)-hydroxy-5-cis-8,10-trans-heptadecatrienoic acid, and thromboxane B(2)] in human whole blood nor affected the activities of COX-1/2 in a cell-free assay. Together, S. officinalis extracts and its ingredients carnosol and carnosic acid inhibit PGE(2) formation by selectively targeting mPGES-1. We conclude that the inhibitory effect of carnosic acid on PGE(2) formation, observed in the physiologically relevant whole-blood model, may critically contribute to the anti-inflammatory and anticarcinogenic properties of S. officinalis.

  7. Cannabinoids inhibit acid-sensing ion channel currents in rat dorsal root ganglion neurons.

    Directory of Open Access Journals (Sweden)

    Yu-Qiang Liu

    Full Text Available Local acidosis has been found in various pain-generating conditions such as inflammation and tissue injury. Cannabinoids exert a powerful inhibitory control over pain initiation via peripheral cognate receptors. However, the peripheral molecular targets responsible for the antinociceptive effects of cannabinoids are still poorly understood. Here, we have found that WIN55,212-2, a cannabinoid receptor agonist, inhibits the activity of native acid-sensing ion channels (ASICs in rat dorsal root ganglion (DRG neurons. WIN55,212-2 dose-dependently inhibited proton-gated currents mediated by ASICs. WIN55,212-2 shifted the proton concentration-response curve downwards, with an decrease of 48.6±3.7% in the maximum current response but with no significant change in the EC(50 value. The inhibition of proton-gated current induced by WIN55,212-2 was almost completely blocked by the selective CB1 receptor antagonist AM 281, but not by the CB2 receptor antagonist AM630. Pretreatment of forskolin, an AC activator, and the addition of cAMP also reversed the inhibition of WIN55,212-2. Moreover, WIN55,212-2 altered acid-evoked excitability of rat DRG neurons and decreased the number of action potentials induced by acid stimuli. Finally, WIN55,212-2 attenuated nociceptive responses to injection of acetic acid in rats. These results suggest that WIN55,212-2 inhibits the activity of ASICs via CB1 receptor and cAMP dependent pathway in rat primary sensory neurons. Thus, cannabinoids can exert their analgesic action by interaction with ASICs in the primary afferent neurons, which was novel analgesic mechanism of cannabinoids.

  8. Ethacrynic acid inhibition of histamine release from rat mast cells: effect on cellular ATP levels and thiol groups

    DEFF Research Database (Denmark)

    Johansen, Torben

    1983-01-01

    The experiments concerned the effect of ethacrynic acid (0.5 mM) on the adenosine triphosphate (ATP) content of rat mast cells and the effect on histamine release induced by the ionophore A23187 (10 microM). Ethacrynic acid decreased the ATP level of the cells in presence of antimycin A and glucose...... as well as in presence of 2-deoxyglucose. A23187-induced histamine release was inhibited by ethacrynic acid, and this inhibition was completely reversed by dithiothreitol. These observations may indicate that ethacrynic acid inhibits glycolytic and respiratory energy production in rat mast cells...

  9. Inhibition of fungal spore adhesion by zosteric Acid as the basis for a novel, nontoxic crop protection technology.

    Science.gov (United States)

    Stanley, Michele S; Callow, Maureen E; Perry, Ruth; Alberte, Randall S; Smith, Robert; Callow, James A

    2002-04-01

    ABSTRACT To explore the potential for nontoxic crop protection technologies based on the inhibition of fungal spore adhesion, we have tested the effect of synthetic zosteric acid (p-(sulfo-oxy) cinnamic acid), a naturally occurring phenolic acid in eelgrass (Zostera marina L.) plants, on spore adhesion and infection in two pathosystems: rice blast caused by Magnaporthe grisea and bean anthracnose caused by Colletotrichum lindemuthianum. We have shown that zosteric acid inhibits spore adhesion to model and host leaf surfaces and that any attached spores fail to develop appressoria, and consequently do not infect leaf cells. Low concentrations of zosteric acid that are effective in inhibiting adhesion are not toxic to either fungus or to the host. The inhibition of spore adhesion in the rice blast pathogen is fully reversible. On plants, zosteric acid reduced (rice) or delayed (bean) lesion development. These results suggest that there is potential for novel and environmentally benign crop protection technologies based on manipulating adhesion.

  10. Dipeptidyl peptidase IV inhibition potentiates amino acid- and bile acid-induced bicarbonate secretion in rat duodenum.

    Science.gov (United States)

    Inoue, Takuya; Wang, Joon-Ho; Higashiyama, Masaaki; Rudenkyy, Sergiy; Higuchi, Kazuhide; Guth, Paul H; Engel, Eli; Kaunitz, Jonathan D; Akiba, Yasutada

    2012-10-01

    Intestinal endocrine cells release gut hormones, including glucagon-like peptides (GLPs), in response to luminal nutrients. Luminal L-glutamate (L-Glu) and 5'-inosine monophosphate (IMP) synergistically increases duodenal HCO3- secretion via GLP-2 release. Since L cells express the bile acid receptor TGR5 and dipeptidyl peptidase (DPP) IV rapidly degrades GLPs, we hypothesized that luminal amino acids or bile acids stimulate duodenal HCO3- secretion via GLP-2 release, which is enhanced by DPPIV inhibition. We measured HCO3- secretion with pH and CO2 electrodes using a perfused rat duodenal loop under isoflurane anesthesia. L-Glu (10 mM) and IMP (0.1 mM) were luminally coperfused with or without luminal perfusion (0.1 mM) or intravenous (iv) injection (3 μmol/kg) of the DPPIV inhibitor NVP728. The loop was also perfused with a selective TGR5 agonist betulinic acid (BTA, 10 μM) or the non-bile acid type TGR5 agonist 3-(2-chlorophenyl)-N-(4-chlorophenyl)-N,5-dimethylisoxazole-4-carboxamide (CCDC; 10 μM). DPPIV activity visualized by use of the fluorogenic substrate was present on the duodenal brush border and submucosal layer, both abolished by the incubation with NVP728 (0.1 mM). An iv injection of NVP728 enhanced L-Glu/IMP-induced HCO3- secretion, whereas luminal perfusion of NVP728 had no effect. BTA or CCDC had little effect on HCO3- secretion, whereas NVP728 iv markedly enhanced BTA- or CCDC-induced HCO3- secretion, the effects inhibited by a GLP-2 receptor antagonist. Coperfusion of the TGR5 agonist enhanced L-Glu/IMP-induced HCO3- secretion with the enhanced GLP-2 release, suggesting that TGR5 activation amplifies nutrient sensing signals. DPPIV inhibition potentiated luminal L-Glu/IMP-induced and TGR5 agonist-induced HCO3- secretion via a GLP-2 pathway, suggesting that the modulation of the local concentration of the endogenous secretagogue GLP-2 by luminal compounds and DPPIV inhibition helps regulate protective duodenal HCO3- secretion.

  11. Cinnamic Acid and Its Derivatives Inhibit Fructose-Mediated Protein Glycation

    Directory of Open Access Journals (Sweden)

    Sirintorn Yibchok-anun

    2012-02-01

    Full Text Available Cinnamic acid and its derivatives have shown a variety of pharmacologic properties. However, little is known about the antiglycation properties of cinnamic acid and its derivatives. The present study sought to characterize the protein glycation inhibitory activity of cinnamic acid and its derivatives in a bovine serum albumin (BSA/fructose system. The results demonstrated that cinnamic acid and its derivatives significantly inhibited the formation of advanced glycation end products (AGEs by approximately 11.96–63.36% at a concentration of 1 mM. The strongest inhibitory activity against the formation of AGEs was shown by cinnamic acid. Furthermore, cinnamic acid and its derivatives reduced the level of fructosamine, the formation of Nε-(carboxymethyl lysine (CML, and the level of amyloid cross β-structure. Cinnamic acid and its derivatives also prevented oxidative protein damages, including effects on protein carbonyl formation and thiol oxidation of BSA. Our findings may lead to the possibility of using cinnamic acid and its derivatives for preventing AGE-mediated diabetic complications.

  12. Specific amino acids inhibit food intake via the area postrema or vagal afferents.

    Science.gov (United States)

    Jordi, Josua; Herzog, Brigitte; Camargo, Simone M R; Boyle, Christina N; Lutz, Thomas A; Verrey, François

    2013-11-15

    To maintain nutrient homeostasis the central nervous system integrates signals that promote or inhibit eating. The supply of vital amino acids is tuned by adjusting food intake according to its dietary protein content. We hypothesized that this effect is based on the sensing of individual amino acids as a signal to control food intake. Here, we show that food intake was most potently reduced by oral L-arginine (Arg), L-lysine (Lys) and L-glutamic acid (Glu) compared to all other 17 proteogenic amino acids in rats. These three amino acids induced neuronal activity in the area postrema and the nucleus of the solitary tract. Surgical lesion of the area postrema abolished the anorectic response to Arg and Glu, whereas vagal afferent lesion prevented the response to Lys. These three amino acids also provoked gastric distension by differentially altering gastric secretion and/or emptying. Importantly, these peripheral mechanical vagal stimuli were dissociated from the amino acids' effect on food intake. Thus, Arg, Lys and Glu had a selective impact on food processing and intake suggesting them as direct sensory input to assess dietary protein content and quality in vivo. Overall, this study reveals novel amino acid-specific mechanisms for the control of food intake and of gastrointestinal function.

  13. Inhibition of de novo Palmitate Synthesis by Fatty Acid Synthase Induces Apoptosis in Tumor Cells by Remodeling Cell Membranes, Inhibiting Signaling Pathways, and Reprogramming Gene Expression

    Directory of Open Access Journals (Sweden)

    Richard Ventura

    2015-08-01

    Research in context: Fatty acid synthase (FASN is a vital enzyme in tumor cell biology; the over-expression of FASN is associated with diminished patient prognosis and resistance to many cancer therapies. Our data demonstrate that selective and potent FASN inhibition with TVB-3166 leads to selective death of tumor cells, without significant effect on normal cells, and inhibits in vivo xenograft tumor growth at well-tolerated doses. Candidate biomarkers for selecting tumors highly sensitive to FASN inhibition are identified. These preclinical data provide mechanistic and pharmacologic evidence that FASN inhibition presents a promising therapeutic strategy for treating a variety of cancers.

  14. Inhibitive Effect of Hydrofluoric Acid Doped Poly Aniline (HFPANI on Corrosion of Iron in 1N Phosphoric Acid Solution

    Directory of Open Access Journals (Sweden)

    G.Maheswari

    2015-03-01

    Full Text Available The inhibition effect of Hydrofluoric acid doped poly aniline HF-PANI on mild steel corrosion in 1N phosphoric acid has been studied by mass loss and polarization techniques and AC impedance measurements methods between 303 K and 333K.The inhibition efficiency increased with increase in concentration of HF PANI. The corrosion rate increased with increase in temperature and decreased with increase in concentration of inhibitor compared to blank. Potentiostatic polarization results revealed that HF-PANI act as mixed type inhibitor. The inhibitor of HF-PANI was chemically adsorbed and spontaneous adsorption on the mild steel surface .The values of activation energy (Ea, free energy of adsorption (ΔGads, heat of adsorption (Qads, enthalpy of adsorption (ΔH and entropy of adsorption (ΔS were calculated. The adsorption of inhibitor on mild steel surface has been found to obey Temkin’s adsorption isotherm. SEM analysis was agreed to establish the mechanism of corrosion inhibitor on mild steel corrosion in phosphoric acid medium.

  15. Inhibition by all-trans retinoic acid of collagen degradation mediated by corneal fibroblasts.

    Science.gov (United States)

    Kimura, Kazuhiro; Zhou, Hongyan; Orita, Tomoko; Kobayashi, Shinya; Wada, Tomoyuki; Nakamura, Yoshikuni; Nishida, Teruo; Sonoda, Koh-Hei

    2016-08-01

    We examined the effect of all-trans retinoic acid on collagen degradation mediated by corneal fibroblasts. Rabbit corneal fibroblasts were cultured with or without all-trans retinoic acid in a three-dimensional collagen gel, and the extent of collagen degradation was determined by measurement of hydroxyproline in acid hydrolysates of culture supernatants. Matrix metalloproteinase expression was examined by immunoblot analysis and gelatin zymography. The abundance and phosphorylation state of the endogenous nuclear factor-kappaB inhibitor IκB-α were examined by immunoblot analysis. Corneal ulceration was induced by injection of lipopolysaccharide into the central corneal stroma of rabbits and was assessed by observation with a slitlamp microscope. All-trans retinoic acid inhibited interleukin-1β-induced collagen degradation by corneal fibroblasts in a concentration- and time-dependent manner. It also attenuated the release and activation of matrix metalloproteinases as well as the phosphorylation and degradation of IκB-α induced by interleukin-1β in these cells. Topical application of all-trans retinoic acid suppressed corneal ulceration induced by injection of lipopolysaccharide into the corneal stroma. All-trans retinoic acid inhibited collagen degradation mediated by corneal fibroblasts exposed to interleukin-1β, with this effect being accompanied by suppression of nuclear factor-kappaB signalling as well as of matrix metalloproteinase release and activation in these cells. All-trans retinoic acid also attenuated lipopolysaccharide-induced corneal ulceration in vivo. Our results therefore suggest that all-trans retinoic acid might prove effective for the treatment of patients with corneal ulceration. © 2016 Royal Australian and New Zealand College of Ophthalmologists.

  16. Fulvic acid inhibits aggregation and promotes disassembly of tau fibrils associated with Alzheimer's disease.

    Science.gov (United States)

    Cornejo, Alberto; Jiménez, José M; Caballero, Leonardo; Melo, Francisco; Maccioni, Ricardo B

    2011-01-01

    Alzheimer's disease is a neurodegenerative disorder involving extracellular plaques (amyloid-β) and intracellular tangles of tau protein. Recently, tangle formation has been identified as a major event involved in the neurodegenerative process, due to the conversion of either soluble peptides or oligomers into insoluble filaments. At present, the current therapeutic strategies are aimed at natural phytocomplexes and polyphenolics compounds able to either inhibit the formation of tau filaments or disaggregate them. However, only a few polyphenolic molecules have emerged to prevent tau aggregation, and natural drugs targeting tau have not been approved yet. Fulvic acid, a humic substance, has several nutraceutical properties with potential activity to protect cognitive impairment. In this work we provide evidence to show that the aggregation process of tau protein, forming paired helical filaments (PHFs) in vitro, is inhibited by fulvic acid affecting the length of fibrils and their morphology. In addition, we investigated whether fulvic acid is capable of disassembling preformed PHFs. We show that the fulvic acid is an active compound against preformed fibrils affecting the whole structure by diminishing length of PHFs and probably acting at the hydrophobic level, as we observed by atomic force techniques. Thus, fulvic acid is likely to provide new insights in the development of potential treatments for Alzheimer's disease using natural products.

  17. Theoretical study of inhibition efficiencies of some amino acids on corrosion of carbon steel in acidic media: green corrosion inhibitors.

    Science.gov (United States)

    Dehdab, Maryam; Shahraki, Mehdi; Habibi-Khorassani, Sayyed Mostafa

    2016-01-01

    Inhibition efficiencies of three amino acids [tryptophan (B), tyrosine (c), and serine (A)] have been studied as green corrosion inhibitors on corrosion of carbon steel using density functional theory (DFT) method in gas and aqueous phases. Quantum chemical parameters such as EH OMO (highest occupied molecular orbital energy), E LUMO (lowest unoccupied molecular orbital energy), hardness (η), polarizability ([Formula: see text]), total negative charges on atoms (TNC), molecular volume (MV) and total energy (TE) have been calculated at the B3LYP level of theory with 6-311++G** basis set. Consistent with experimental data, theoretical results showed that the order of inhibition efficiency is tryptophan (B) > tyrosine (C) > serine (A). In order to determine the possible sites of nucleophilic and electrophilic attacks, local reactivity has been evaluated through Fukui indices.

  18. Green Approach to Corrosion Inhibition of Mild Steel by Lignin Sulfonate in Acidic Media

    Institute of Scientific and Technical Information of China (English)

    Muna A.ABU-DALO; Nathir A.F.AL-RAWASHDEH; Ahmed A.MUTLAQ

    2016-01-01

    The inhibition effect of lignin sulfonate against corrosion for mild steel in acidic solution has been examined by means of FTIR (fourier transform infrared spectroscopy),FAA (flame atomic absorption)spectroscopy,SEM (scanning electron microscope),EDS (energy dispersive X-ray spectroscopy),and mass loss techniques.The results revealed that lignin is a beneficial inhibitor for mild steel corrosion in acidic medium.It has been further found that Langmuir adsorption isotherm is obeyed by the tested lignin′s adsorption over the surface of mild steel.The range of inhibition efficiency (IE)in 2 mol·L-1 HCl was found to be 75·88%-87·88% for Reax 88A,40·72%-60·32%for Reax 88B,and 54·32%-63·03% for Reax 100M,after immersed at 298 K for 24 h time.

  19. Inhibition of Listeria monocytogenes in Fresh Cheese Using Chitosan-Grafted Lactic Acid Packaging.

    Science.gov (United States)

    Sandoval, Laura N; López, Monserrat; Montes-Díaz, Elizabeth; Espadín, Andres; Tecante, Alberto; Gimeno, Miquel; Shirai, Keiko

    2016-01-01

    A chitosan from biologically obtained chitin was successfully grafted with d,l-lactic acid (LA) in aqueous media using p-toluenesulfonic acid as catalyst to obtain a non-toxic, biodegradable packaging material that was characterized using scanning electron microscopy, water vapor permeability, and relative humidity (RH) losses. Additionally, the grafting in chitosan with LA produced films with improved mechanical properties. This material successfully extended the shelf life of fresh cheese and inhibited the growth of Listeria monocytogenes during 14 days at 4 °C and 22% RH, whereby inoculated samples with chitosan-g-LA packaging presented full bacterial inhibition. The results were compared to control samples and commercial low-density polyethylene packaging.

  20. Inhibition of Listeria monocytogenes in Fresh Cheese Using Chitosan-Grafted Lactic Acid Packaging

    Directory of Open Access Journals (Sweden)

    Laura N. Sandoval

    2016-04-01

    Full Text Available A chitosan from biologically obtained chitin was successfully grafted with d,l-lactic acid (LA in aqueous media using p-toluenesulfonic acid as catalyst to obtain a non-toxic, biodegradable packaging material that was characterized using scanning electron microscopy, water vapor permeability, and relative humidity (RH losses. Additionally, the grafting in chitosan with LA produced films with improved mechanical properties. This material successfully extended the shelf life of fresh cheese and inhibited the growth of Listeria monocytogenes during 14 days at 4 °C and 22% RH, whereby inoculated samples with chitosan-g-LA packaging presented full bacterial inhibition. The results were compared to control samples and commercial low-density polyethylene packaging.

  1. Complete inhibition of food-stimulated gastric acid secretion by combined application of pirenzepine and ranitidine.

    Science.gov (United States)

    Londong, W; Londong, V; Ruthe, C; Weizert, P

    1981-01-01

    In a double-blind, placebo controlled and randomised secretory study the effectiveness of pirenzepine, ranitidine, and their combination was compared intraindividually in eight healthy subjects receiving intravenous bolus injections. Pirenzepine (0.15 mg/kg) plus ranitidine (0.6 mg/kg) suppressed peptone-stimulated gastric acid secretion from 69 +/- 11 to 2 +/- 0.4 mmol H+/3 h; the mean percentage inhibition was 97%. Postprandial gastrin was unaffected. There were only minor side-effects in a few experiments (reduction of salivation, brief blurring of vision), but no prolactin stimulation after ranitidine or ranitidine plus pirenzepine. The combined application of ranitidine and pirenzepine inhibited meal-stimulated acid secretion more effectively and produced fewer side-effects than the combination of cimetidine plus pirenzepine studied previously. PMID:6114900

  2. Inhibition of aberrant complement activation by a dimer of acetylsalicylic acid.

    Science.gov (United States)

    Lee, Moonhee; Wathier, Matthew; Love, Jennifer A; McGeer, Edith; McGeer, Patrick L

    2015-10-01

    We here report synthesis for the first time of the acetyl salicylic acid dimer 5,5'-methylenebis(2-acetoxybenzoic acid) (DAS). DAS inhibits aberrant complement activation by selectively blocking factor D of the alternative complement pathway and C9 of the membrane attack complex. We have previously identified aurin tricarboxylic and its oligomers as promising agents in this regard. DAS is much more potent, inhibiting erythrocyte hemolysis by complement-activated serum with an IC50 in the 100-170 nanomolar range. There are numerous conditions where self-damage from the complement system has been implicated in the pathology, including such chronic degenerative diseases of aging as Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, and age-related macular degeneration. Consequently, there is a high priority for the discovery and development of agents that can successfully treat such conditions. DAS holds considerable promise for being such an agent.

  3. Corrosion Inhibition of Carbon Steel In Sulfuric Acid by Sodium Caprylate

    Directory of Open Access Journals (Sweden)

    Saad Ghareba

    2016-01-01

    Full Text Available The interaction of a sodium salt of octanoic acid, sodium caprylate (SC, with a carbon steel (CS surface was investigated, using range of experimental techniques. It was shown that SC acts as a good CS general corrosion inhibitor, yielding a maximum corrosion inhibition efficiency of 77%. This high inhibition efficiency is maintained even at higher temperatures. It was determined that SC inhibits both partial corrosion reactions, and can thus be considered to be a mixed-type inhibitor. The adsorption of SC on the CS surface was described by the Langmuir adsorption isotherm. It was found that this process is spontaneous, irreversible and driven by the entropy gain. The CS surface morphology was studied by SEM and it was demonstrated that SC is a very effective general corrosion inhibitor of CS. This also was confirmed by contact angle measurements which showed that the CS surface became more hydrophobic when the SC was added to the solution.

  4. Resistance to herbicides inhibiting the biosynthesis of very-long-chain fatty acids.

    Science.gov (United States)

    Busi, Roberto

    2014-09-01

    Herbicides that act by inhibiting the biosynthesis of very-long-chain fatty acids (VLCFAs) have been used to control grass weeds in major crops throughout the world for the past 60 years. VLCFA-inhibiting herbicides are generally highly selective in crops, induce similar symptoms in susceptible grasses and can be found within the herbicide groups classified by the HRAC as K3 and N. Even after many years of continuous use, only 12 grass weed species have evolved resistance to VLCFA-inhibiting herbicides. Here, the cases of resistance that have evolved in major grass weed species belonging to the Avena, Echinochloa and Lolium genera in three different agricultural systems are reviewed. In particular we explore the possible reasons why VLCFA herbicides have been slow to select resistant weeds, outline the herbicide mode of action and discuss the resistance mechanisms that are most likely to have been selected.

  5. Anti-Cancer Effect of Lambertianic Acid by Inhibiting the AR in LNCaP Cells

    Directory of Open Access Journals (Sweden)

    Myoung-Sun Lee

    2016-07-01

    Full Text Available Lambertianic acid (LA is known to have anti-allergic and antibacterial effects. However, the anticancer activities and mechanism of action of LA have not been investigated. Therefore, the anticancer effects and mechanism of LA are investigated in this study. LA decreased not only AR protein levels, but also cellular and secretory levels of PSA. Furthermore, LA inhibited nuclear translocation of the AR induced by mibolerone. LA suppressed cell proliferation by inducing G1 arrest, downregulating CDK4/6 and cyclin D1 and activating p53 and its downstream molecules, p21 and p27. LA induced apoptosis and the expression of related proteins, including cleaved caspase-9 and -3, c-PARP and BAX, and inhibited BCl-2. The role of AR in LA-induced apoptosis was assessed by using siRNA. Collectively, these findings suggest that LA exerts the anticancer effect by inhibiting AR and is a valuable therapeutic agent in prostate cancer treatment.

  6. The inhibition of anti-DNA binding to DNA by nucleic acid binding polymers.

    Directory of Open Access Journals (Sweden)

    Nancy A Stearns

    Full Text Available Antibodies to DNA (anti-DNA are the serological hallmark of systemic lupus erythematosus (SLE and can mediate disease pathogenesis by the formation of immune complexes. Since blocking immune complex formation can attenuate disease manifestations, the effects of nucleic acid binding polymers (NABPs on anti-DNA binding in vitro were investigated. The compounds tested included polyamidoamine dendrimer, 1,4-diaminobutane core, generation 3.0 (PAMAM-G3, hexadimethrine bromide, and a β-cylodextrin-containing polycation. As shown with plasma from patients with SLE, NABPs can inhibit anti-DNA antibody binding in ELISA assays. The inhibition was specific since the NABPs did not affect binding to tetanus toxoid or the Sm protein, another lupus autoantigen. Furthermore, the polymers could displace antibody from preformed complexes. Together, these results indicate that NABPs can inhibit the formation of immune complexes and may represent a new approach to treatment.

  7. Effect of heat treatment on the inhibition of the acidic corrosion aluminium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Khamis, E. (Alexandria Univ. (Egypt). Dept. of Chemistry); El-Gamal, M. (Alexandria Univ. (Egypt). Dept. of Material Science); El-Toukhy, A. (Alexandria Univ. (Egypt). Dept. of Material Science); Atea, M. (Alexandria Univ. (Egypt). Dept. of Material Science)

    1994-12-01

    The effect of heat treatment on the inhibition of acid corrosion of duralumin has been studied using gasometry, mass loss measurements and potentiodynamic technique. All the data reveal that the duralumin generally developed good corrosion resistance after heat treatment and the corrosion rate ranked as follows: Non treated > Naturally aged > quenched. This improvement in the corrosion resistance was attributed to the structural homogeneity of the heat-treated alloys. The presence of some selected aryl and alkyl triazoline derivatives at the threshold concentration of 5 x 10[sup -3] M indicate that these compounds retard the corrosion rate of duralumin and the extent of inhibition depends on the molecular structure of the inhibitors. Polarization curves show that the triazoline compounds act as mixed-type inhibitors affecting both the cathodic and anodic processes. Moreover, there is no noticeable difference in the degree by which the triazoline derivatives inhibit the corrosion of pure aluminium and heat treated duralumin alloy. (orig.)

  8. Docosahexaenoic acid synthesis from alpha-linolenic acid is inhibited by diets high in polyunsaturated fatty acids.

    Science.gov (United States)

    Gibson, R A; Neumann, M A; Lien, E L; Boyd, K A; Tu, W C

    2013-01-01

    The conversion of the plant-derived omega-3 (n-3) α-linolenic acid (ALA, 18:3n-3) to the long-chain eicosapentaenoic acid (EPA, 20:5n-3) and docosahexaenoic acid (DHA, 22:6n-3) can be increased by ALA sufficient diets compared to ALA deficient diets. Diets containing ALA above an optimal level result in no further increase in DHA levels in animals and humans. The present study evaluates means of maximizing plasma DHA accumulation by systematically varying both linoleic acid (LA, 18:2n-6) and ALA dietary level. Weanling rats were fed one of 54 diets for three weeks. The diets varied in the percentage of energy (en%) of LA (0.07-17.1 en%) and ALA (0.02-12.1 en%) by manipulating both the fat content and the balance of vegetable oils. The peak of plasma phospholipid DHA (>8% total fatty acids) was attained as a result of feeding a narrow dietary range of 1-3 en% ALA and 1-2 en% LA but was suppressed to basal levels (∼2% total fatty acids) at dietary intakes of total polyunsaturated fatty acids (PUFA) above 3 en%. We conclude it is possible to enhance the DHA status of rats fed diets containing ALA as the only source of n-3 fatty acids but only when the level of dietary PUFA is low (<3 en%).

  9. Inhibition of the Corrosion of Mild Steel in Acid Media by Naturally Occurring Acacia Senegal

    Directory of Open Access Journals (Sweden)

    Urvija Garg

    2010-01-01

    Full Text Available The inhibition of corrosion of mild steel in HCl solution by naturally occurring Acacia Senegal has been studied in relation to the concentration of inhibitor and concentration of corrosive medium. It has been observed that the Acacia Senegal alcoholic extract acts as a good corrosion inhibitor in hydrochloric acid solution and the adsorption of the extract provides a good protection against mild steel corrosion.

  10. Experimental study on scale inhibition performance of a green scale inhibitor polyaspartic acid

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Static and dynamic experiments were carried out to validate scale inhibition performance of a green scale inhibitor-polyaspartic acid (PASP). From the static experiment, it was shown that below 60℃, polyaspartic acid is very effective in scale inhibition, with the scale inhibition ratio exceeding 90% with only 3 mg/L PASP for the 600 mg/L hardness solution. For a higher hardness solution of 800 mg/L, the scale inhibition ratio can also reach 90% with 6 and 12 mg/L PASP at 30 and 60℃respectively. The SEM photographs of CaCO3 crystals indicate that the crystal structure transforms from a compact stick-shape to a loose shape so that the scale can be washed away easily instead of being deposited on the heat transfer surface. The dynamic experimental results show that almost no scales formed on the heat trans- fer surface and the fouling thermal resistance decreases extraordinarily if PASP is added in the solution.

  11. Experimental study on scale inhibition performance of a green scale inhibitor polyaspartic acid

    Institute of Scientific and Technical Information of China (English)

    QUAN ZhenHua; CHEN YongChang; WANG XiuRong; SHI Cheng; LIU YunJie; MA ChongFang

    2008-01-01

    Static and dynamic experiments were carried out to validate scale inhibition performance of a green scale inhibitor-polyaspartic acid (PASP). From the static experiment, it was shown that below 60℃, polyaspartic acid is very effective in scale inhibition, with the scale inhibition ratio exceeding 90% with only 3 mg/L PASP for the 600 mg/L hardness solution. For a higher hardness solution of 800 mg/L, the scale inhibition ratio can also reach 90% with 6 and 12 mg/L PASP at 30 and 60℃ respectively. The SEM photographs of CaCO3 crystals indicate that the crystal structure transforms from a compact stick-shape to a loose shape so that the scale can be washed away easily instead of being deposited on the heat transfer surface. The dynamic experimental results show that almost no scales formed on the heat trans-fer surface and the fouling thermal resistance decreases extraordinarily if PASP is added in the solution.

  12. Inhibition of fatty acid binding proteins elevates brain anandamide levels and produces analgesia.

    Directory of Open Access Journals (Sweden)

    Martin Kaczocha

    Full Text Available The endocannabinoid anandamide (AEA is an antinociceptive lipid that is inactivated through cellular uptake and subsequent catabolism by fatty acid amide hydrolase (FAAH. Fatty acid binding proteins (FABPs are intracellular carriers that deliver AEA and related N-acylethanolamines (NAEs to FAAH for hydrolysis. The mammalian brain expresses three FABP subtypes: FABP3, FABP5, and FABP7. Recent work from our group has revealed that pharmacological inhibition of FABPs reduces inflammatory pain in mice. The goal of the current work was to explore the effects of FABP inhibition upon nociception in diverse models of pain. We developed inhibitors with differential affinities for FABPs to elucidate the subtype(s that contributes to the antinociceptive effects of FABP inhibitors. Inhibition of FABPs reduced nociception associated with inflammatory, visceral, and neuropathic pain. The antinociceptive effects of FABP inhibitors mirrored their affinities for FABP5, while binding to FABP3 and FABP7 was not a predictor of in vivo efficacy. The antinociceptive effects of FABP inhibitors were mediated by cannabinoid receptor 1 (CB1 and peroxisome proliferator-activated receptor alpha (PPARα and FABP inhibition elevated brain levels of AEA, providing the first direct evidence that FABPs regulate brain endocannabinoid tone. These results highlight FABPs as novel targets for the development of analgesic and anti-inflammatory therapeutics.

  13. In vitro inhibition of human neutrophil elastase by oleic acid albumin formulations from derivatized cotton wound dressings.

    Science.gov (United States)

    Edwards, J Vincent; Howley, Phyllis; Cohen, I Kelman

    2004-10-13

    Human neutrophil elastase (HNE) is elevated in chronic wounds. Oleic acid albumin formulations that inhibit HNE may be applicable to treatment modalities for chronic wounds. Oleic acid/albumin formulations with mole ratios of 100:1, 50:1, and 25:1 (oleic acid to albumin) were prepared and found to have dose response inhibition properties against HNE. The IC50 values for inhibition of HNE with oleic acid/albumin formulations were 0.029-0.049 microM. Oleic acid/albumin (BSA) formulations were bound to positively and negatively charged cotton wound dressings and assessed for elastase inhibition using a fiber bound formulation in an assay designed to mimic HNE inhibition in the wound. Cotton derivatized with both carboxylate and amine functional groups were combined with oleic acid/albumin formulations at a maximum loading of 0.030 mg oleic acid + 0.14 mg BSA/mg fiber. The IC50 values for inhibition of HNE with oleic acid/albumin formulations bound to derivatized cotton were 0.26-0.42 microM. Release of the oleic acid/albumin formulation from the fiber was measured by measuring oleic acid levels with quantitative GC analysis. Approximately, 35-50% of the fiber bound formulation was released into solution within the first 15 min of incubation. Albumin was found to enhance the rate of elastase hydrolysis of the substrate within a concentration range of 0.3-50 g/L. The acceleration of HNE substrate hydrolysis by albumin required increased concentration of inhibitor in the formulation to obtain complete inhibition of HNE. Oleic acid formulations prepared with albumin enable transport, solubility and promote dose response inhibition of HNE from derivatized cotton fibers under aqueous conditions mimicking the chronic wound.

  14. Synergistic effects of sodium lauroyl sarcosinate and glutamic acid in inhibition assembly against copper corrosion in acidic solution

    Science.gov (United States)

    Yu, Yinzhe; Zhang, Daquan; Zeng, Huijing; Xie, Bin; Gao, Lixin; Lin, Tong

    2015-11-01

    A self-assembled multilayer (SAM) from sodium lauroyl sarcosinate (SLS) and glutamic acid (GLU) is formed on copper surface. Its inhibition ability against copper corrosion is examined by electrochemical analysis and weight loss test. In comparison to SAM formed by just SLS or GLU, a synergistic effect is observed when the coexistence of SLS and GLU in SAM. The SLS/GLU SAM has an acicular multilayer structure, and SAM prepared under the condition of 5 mM SLS and 1 mM GLU shows the best protection efficiency. PM6 calculation reveals that the synergistic effect stems from interactions between SLS, GLU and cupric ions.

  15. Immobilization of Tyrosinase from Avocado Crude Extract in Polypyrrole Films for Inhibitive Detection of Benzoic Acid

    Directory of Open Access Journals (Sweden)

    André Brisolari

    2014-07-01

    Full Text Available Inhibition-based biosensors were developed by immobilizing tyrosinase (Tyr, polyphenol oxidase from the crude extract of avocado fruit on electrochemically prepared polypyrrole (PPy films. The biosensors were prepared during the electropolymerization of pyrrole in a solution containing a fixed volume of the crude extract of avocado. The dependence of the biosensor responses on the volume used from the crude extract, values of pH and temperature was studied, and a substrate, catechol, at different concentrations, was amperometrically detected by these biosensors. Benzoic acid, a competitive inhibitor of Try, was added to the catechol solutions at specific concentrations aimed at obtaining the inhibition constant, K’m, which ranged from 1.7 to 4.6 mmol∙L−1 for 0.0 and 60 µmol∙L−1 of benzoic acid, respectively. Studies on the inhibition caused by benzoic acid by using PPy/Try films, and catechol as a substrate, allowed us propose how to develop, under optimized conditions, simple and low-cost biosensors based on the use of avocado fruit.

  16. 15-lipoxygenase metabolites of docosahexaenoic acid inhibit prostate cancer cell proliferation and survival.

    Directory of Open Access Journals (Sweden)

    Joseph T O'Flaherty

    Full Text Available A 15-LOX, it is proposed, suppresses the growth of prostate cancer in part by converting arachidonic, eicosatrienoic, and/or eicosapentaenoic acids to n-6 hydroxy metabolites. These metabolites inhibit the proliferation of PC3, LNCaP, and DU145 prostate cancer cells but only at ≥1-10 µM. We show here that the 15-LOX metabolites of docosahexaenoic acid (DHA, 17-hydroperoxy-, 17-hydroxy-, 10,17-dihydroxy-, and 7,17-dihydroxy-DHA inhibit the proliferation of these cells at ≥0.001, 0.01, 1, and 1 µM, respectively. By comparison, the corresponding 15-hydroperoxy, 15-hydroxy, 8,15-dihydroxy, and 5,15-dihydroxy metabolites of arachidonic acid as well as DHA itself require ≥10-100 µM to do this. Like DHA, the DHA metabolites a induce PC3 cells to activate a peroxisome proliferator-activated receptor-γ (PPARγ reporter, express syndecan-1, and become apoptotic and b are blocked from slowing cell proliferation by pharmacological inhibition or knockdown of PPARγ or syndecan-1. The DHA metabolites thus slow prostate cancer cell proliferation by engaging the PPARγ/syndecan-1 pathway of apoptosis and thereby may contribute to the prostate cancer-suppressing effects of not only 15-LOX but also dietary DHA.

  17. Inhibition of enzymatic browning of chlorogenic acid by sulfur-containing compounds.

    Science.gov (United States)

    Kuijpers, Tomas F M; Narváez-Cuenca, Carlos-Eduardo; Vincken, Jean-Paul; Verloop, Annewieke J W; van Berkel, Willem J H; Gruppen, Harry

    2012-04-01

    The antibrowning activity of sodium hydrogen sulfite (NaHSO(3)) was compared to that of other sulfur-containing compounds. Inhibition of enzymatic browning was investigated using a model browning system consisting of mushroom tyrosinase and chlorogenic acid (5-CQA). Development of brown color (spectral analysis), oxygen consumption, and reaction product formation (RP-UHPLC-PDA-MS) were monitored in time. It was found that the compounds showing antibrowning activity either prevented browning by forming colorless addition products with o-quinones of 5-CQA (NaHSO(3), cysteine, and glutathione) or inhibiting the enzymatic activity of tyrosinase (NaHSO(3) and dithiothreitol). NaHSO(3) was different from the other sulfur-containing compounds investigated, because it showed a dual inhibitory effect on browning. Initial browning was prevented by trapping the o-quinones formed in colorless addition products (sulfochlorogenic acid), while at the same time, tyrosinase activity was inhibited in a time-dependent way, as shown by pre-incubation experiments of tyrosinase with NaHSO(3). Furthermore, it was demonstrated that sulfochlorogenic and cysteinylchlorogenic acids were not inhibitors of mushroom tyrosinase.

  18. Inhibition of hydrogen fermentation of organic wastes by lactic acid bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Noike, Tatsuya; Takabatake, Hiroo [Tohoku Univ., Sendai (Japan). Dept. of Civil Engineering; Japan Science and Technology Corporation, Saitama (Japan). CREST; Mizuno, Osama [Ataka Construction and Engineering Co., Osaka (Japan); Ohba, Mika [Japan Science and Technology Corporation, Saitama (Japan). CREST

    2002-12-01

    The effects of lactic acid bacteria (LAB) on hydrogen fermentation of organic waste were investigated. For this three hydrogen producing strains of Clostridium were cultured with two lactic acid bacteria, i.e. Lactobacillus paracasei and Enterococcus durans, which were isolated from the wastes generated in the bean curd manufacturing. The decrease or cessation of hydrogen production by Clostridium was caused by the addition of LAB. The supernatants of L. paracasei and E. durans suspensions also inhibited hydrogen production by Clostridium. This inhibition was partially destroyed in the presence of trypsin, which is a protease inactivating a bacteriocin. These results suggest that the inhibitory effect of lactic acid bacteria on hydrogen production was caused by bacteriocins excreted from LAB which have a deleterious effect on other bacteria. To suppress any effect by LAB, heat treatment of this waste was investigated as a possible pretreatment step. The inhibition of hydrogen production was reduced by heat treatment for 30 min at temperatures ranging from 50{sup o}C to 90{sup o}C. This means that a temperature of 50{sup o}C is already adequate to prevent growth of LAB. (Author)

  19. Inhibition Behaviour of Some Isonicotinic Acid Hydrazides on the Corrosion of Mild Steel in Hydrochloric Acid Solution

    Directory of Open Access Journals (Sweden)

    M. P. Chakravarthy

    2013-01-01

    Full Text Available New corrosion inhibitors, namely, isonicotinic acid (1H-indol-3-yl-methylenehydrazide (INIMH and isonicotinic acid (1H-pyrrol-2-yl-methylenehydrazide (INPMH, have been synthesized, and their inhibitive characteristics for the corrosion of mild steel in 0.5 M HCl were investigated by mass loss and electrochemical techniques. The structures of the synthesized compounds were confirmed using spectral studies. Potentiodynamic polarization studies revealed that the investigated inhibitors are of mixed type. Various thermodynamic parameters were evaluated. Langmuir adsorption isotherm was found to be the best description for both inhibitors. FTIR spectra, energy dispersive X-ray spectroscopy (EDX, and scanning electron microscopy (SEM were performed to characterize the passive film on the metal surface.

  20. D-Amino acids inhibit biofilm formation in Staphylococcus epidermidis strains from ocular infections.

    Science.gov (United States)

    Ramón-Peréz, Miriam L; Diaz-Cedillo, Francisco; Ibarra, J Antonio; Torales-Cardeña, Azael; Rodríguez-Martínez, Sandra; Jan-Roblero, Janet; Cancino-Diaz, Mario E; Cancino-Diaz, Juan C

    2014-10-01

    Biofilm formation on medical and surgical devices is a major virulence determinant for Staphylococcus epidermidis. The bacterium S. epidermidis is able to produce biofilms on biotic and abiotic surfaces and is the cause of ocular infection (OI). Recent studies have shown that d-amino acids inhibit and disrupt biofilm formation in the prototype strains Bacillus subtilis NCBI3610 and Staphylococcus aureus SCO1. The effect of d-amino acids on S. epidermidis biofilm formation has yet to be tested for clinical or commensal isolates. S. epidermidis strains isolated from healthy skin (n = 3), conjunctiva (n = 9) and OI (n = 19) were treated with d-Leu, d-Tyr, d-Pro, d-Phe, d-Met or d-Ala and tested for biofilm formation. The presence of d-amino acids during biofilm formation resulted in a variety of patterns. Some strains were sensitive to all amino acids tested, while others were sensitive to one or more, and one strain was resistant to all of them when added individually; in this way d-Met inhibited most of the strains (26/31), followed by d-Phe (21/31). Additionally, the use of d-Met inhibited biofilm formation on a contact lens. The use of l-isomers caused no defect in biofilm formation in all strains tested. In contrast, when biofilms were already formed d-Met, d-Phe and d-Pro were able to disrupt it. In summary, here we demonstrated the inhibitory effect of d-amino acids on biofilm formation in S. epidermidis. Moreover, we showed, for the first time, that S. epidermidis clinical strains have a different sensitivity to these compounds during biofilm formation.

  1. Okadaic acid inhibits cell growth and photosynthetic electron transport in the alga Dunaliella tertiolecta

    Energy Technology Data Exchange (ETDEWEB)

    Perreault, Francois; Matias, Marcelo Seleme; Oukarroum, Abdallah [Department of Chemistry, Universite du Quebec a Montreal, 2101, Rue Jeanne Mance, Montreal, QC, Canada H2X 2J6 (Canada); Matias, William Gerson [Department of Chemistry, Universite du Quebec a Montreal, 2101, Rue Jeanne Mance, Montreal, QC, Canada H2X 2J6 (Canada); Laboratorio de Toxicologia Ambiental, LABTOX, Depto. de Engenharia Sanitaria e Ambiental, Universidade Federal de Santa Catarina, Campus Universitario, CEP: 88040-970, Florianopolis, SC (Brazil); Popovic, Radovan, E-mail: popovic.radovan@uqam.ca [Department of Chemistry, Universite du Quebec a Montreal, 2101, Rue Jeanne Mance, Montreal, QC, Canada H2X 2J6 (Canada)

    2012-01-01

    Okadaic acid (OA), which is produced by several dinoflagellate species, is a phycotoxin known to induce a decrease of biomass production in phytoplankton. However, the mechanisms of OA cytotoxicity are still unknown in microalgae. In this study, we exposed the green microalga Dunaliella tertiolecta to OA concentrations of 0.05 to 0.5 {mu}M in order to evaluate its effects on cell division, reactive oxygen species production and photosynthetic electron transport. After 72 h of treatment under continuous illumination, OA concentrations higher than 0.10 {mu}M decreased culture cell density, induced oxidative stress and inhibited photosystem II electron transport capacity. OA effect in D. tertiolecta was strongly light dependent since no oxidative stress was observed when D. tertiolecta was exposed to OA in the dark. In the absence of light, the effect of OA on culture cell density and photosystem II activity was also significantly reduced. Therefore, light appears to have a significant role in the toxicity of OA in microalgae. Our results indicate that the site of OA interaction on photosynthetic electron transport is likely to be at the level of the plastoquinone pool, which can lead to photo-oxidative stress when light absorbed by the light-harvesting complex of photosystem II cannot be dissipated via photochemical pathways. These findings allowed for a better understanding of the mechanisms of OA toxicity in microalgae. - Highlights: Black-Right-Pointing-Pointer Exposition of Dunaliella tertiolecta to okadaic acid in light conditions results in reactive oxygen species formation. Black-Right-Pointing-Pointer Inhibition of photosystem II is dependent on oxidative stress and effects of okadaic acid on the plastoquinone pool. Black-Right-Pointing-Pointer Oxidative stress and inhibition of photosynthesis increase okadaic acid effect on cell density in light conditions. Black-Right-Pointing-Pointer Okadaic acid induces toxicity in algae via both light-dependent and light

  2. Thiacetazone, an antitubercular drug that inhibits cyclopropanation of cell wall mycolic acids in mycobacteria.

    Directory of Open Access Journals (Sweden)

    Anuradha Alahari

    Full Text Available BACKGROUND: Mycolic acids are a complex mixture of branched, long-chain fatty acids, representing key components of the highly hydrophobic mycobacterial cell wall. Pathogenic mycobacteria carry mycolic acid sub-types that contain cyclopropane rings. Double bonds at specific sites on mycolic acid precursors are modified by the action of cyclopropane mycolic acid synthases (CMASs. The latter belong to a family of S-adenosyl-methionine-dependent methyl transferases, of which several have been well studied in Mycobacterium tuberculosis, namely, MmaA1 through A4, PcaA and CmaA2. Cyclopropanated mycolic acids are key factors participating in cell envelope permeability, host immunomodulation and persistence of M. tuberculosis. While several antitubercular agents inhibit mycolic acid synthesis, to date, the CMASs have not been shown to be drug targets. METHODOLOGY/PRINCIPLE FINDINGS: We have employed various complementary approaches to show that the antitubercular drug, thiacetazone (TAC, and its chemical analogues, inhibit mycolic acid cyclopropanation. Dramatic changes in the content and ratio of mycolic acids in the vaccine strain Mycobacterium bovis BCG, as well as in the related pathogenic species Mycobacterium marinum were observed after treatment with the drugs. Combination of thin layer chromatography, mass spectrometry and Nuclear Magnetic Resonance (NMR analyses of mycolic acids purified from drug-treated mycobacteria showed a significant loss of cyclopropanation in both the alpha- and oxygenated mycolate sub-types. Additionally, High-Resolution Magic Angle Spinning (HR-MAS NMR analyses on whole cells was used to detect cell wall-associated mycolates and to quantify the cyclopropanation status of the cell envelope. Further, overexpression of cmaA2, mmaA2 or pcaA in mycobacteria partially reversed the effects of TAC and its analogue on mycolic acid cyclopropanation, suggesting that the drugs act directly on CMASs. CONCLUSIONS/SIGNIFICANCE: This

  3. Alpha-lipoic acid protects cardiomyocytes against hypoxia/reoxygenation injury by inhibiting autophagy

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Xueming; Chen, Aihua, E-mail: aihuachen2012@sina.com; Yang, Pingzhen; Song, Xudong; Liu, Yingfeng; Li, Zhiliang; Wang, Xianbao; Wang, Lizi; Li, Yunpeng

    2013-11-29

    Highlights: •We observed the cell viability and death subjected to H/R in H9c2 cardiomyocytes. •We observed the degree of autophagy subjected to H/R in H9c2 cardiomyocytes. •LA inhibited the degree of autophagy in parallel to the enhanced cell survival. •LA inhibited the autophagy in parallel to the decreased total cell death. •We concluded that LA protected cardiomyocytes against H/R by inhibiting autophagy. -- Abstract: Hypoxia/reoxygenation (H/R) is an important in vitro model for exploring the molecular mechanisms and functions of autophagy during myocardial ischemia/reperfusion (I/R). Alpha-lipoic acid (LA) plays an important role in the etiology of cardiovascular disease. Autophagy is widely implicated in myocardial I/R injury. We assessed the degree of autophagy by pretreatment with LA exposed to H/R in H9c2 cell based on the expression levels of Beclin-1, LC3II/LC3I, and green fluorescent protein-labeled LC3 fusion proteins. Autophagic vacuoles were confirmed in H9c2 cells exposed to H/R using transmission electron microscopy. Our findings indicated that pretreatment with LA inhibited the degree of autophagy in parallel to the enhanced cell survival and decreased total cell death in H9c2 cells exposed to H/R. We conclude that LA protects cardiomyocytes against H/R injury by inhibiting autophagy.

  4. Carnosic Acid Inhibits the Epithelial-Mesenchymal Transition in B16F10 Melanoma Cells: A Possible Mechanism for the Inhibition of Cell Migration

    Directory of Open Access Journals (Sweden)

    So Young Park

    2014-07-01

    Full Text Available Carnosic acid is a natural benzenediol abietane diterpene found in rosemary and exhibits anti-inflammatory, antioxidant, and anti-carcinogenic activities. In this study, we evaluated the effects of carnosic acid on the metastatic characteristics of B16F10 melanoma cells. When B16F10 cells were cultured in an in vitro Transwell system, carnosic acid inhibited cell migration in a dose-dependent manner. Carnosic acid suppressed the adhesion of B16F10 cells, as well as the secretion of matrix metalloproteinase (MMP-9, tissue inhibitor of metalloproteinase (TIMP-1, urokinase plasminogen activator (uPA, and vascular cell adhesion molecule (VCAM-1. Interestingly, secretion of TIMP-2 increased significantly in B16F10 cells treated with 10 μmol/L carnosic acid. Additionally, carnosic acid suppressed the mesenchymal markers snail, slug, vimentin, and N-cadherin and induced epithelial marker E-cadherin. Furthermore, carnosic acid suppressed phosphorylation of Src, FAK, and AKT. These results indicate that inhibition of the epithelial-mesenchymal transition may be important for the carnosic acid-induced inhibition of B16F10 cell migration.

  5. Structural basis of the inhibition of class C acid phosphatases by adenosine 5;#8242;-phosphorothioate

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Harkewal; Reilly, Thomas J.; Tanner, John J. (UMC)

    2012-01-20

    The inhibition of phosphatases by adenosine 5'-phosphorothioate (AMPS) was first reported in the late 1960s; however, the structural basis for the inhibition has remained unknown. Here, it is shown that AMPS is a submicromolar inhibitor of class C acid phosphatases, a group of bacterial outer membrane enzymes belonging to the haloacid dehalogenase structural superfamily. Furthermore, the 1.35-{angstrom} resolution crystal structure of the inhibited recombinant Haemophilus influenzae class C acid phosphatase was determined; this is the first structure of a phosphatase complexed with AMPS. The conformation of AMPS is identical to that of the substrate 5'-AMP, except that steric factors force a rotation of the thiophosphoryl out of the normal phosphoryl-binding pocket. This conformation is catalytically nonproductive, because the P atom is not positioned optimally for nucleophilic attack by Asp64, and the O atom of the scissile O-P bond is too far from the Asp (Asp66) that protonates the leaving group. The structure of 5'-AMP complexed with the Asp64 {yields} Asn mutant enzyme was also determined at 1.35-{angstrom} resolution. This mutation induces the substrate to adopt the same nonproductive binding mode that is observed in the AMPS complex. In this case, electrostatic considerations, rather than steric factors, underlie the movement of the phosphoryl. The structures not only provide an explanation for the inhibition by AMPS, but also highlight the precise steric and electrostatic requirements of phosphoryl recognition by class C acid phosphatases. Moreover, the structure of the Asp64 {yields} Asn mutant illustrates how a seemingly innocuous mutation can cause an unexpected structural change.

  6. Suberization: inhibition by washing and stimulation by abscisic Acid in potato disks and tissue culture.

    Science.gov (United States)

    Soliday, C L; Dean, B B; Kolattukudy, P E

    1978-02-01

    Wounding of potato (Solanum tuberosum L.) tubers results in suberization, apparently triggered by the release of some chemical factor(s) at the cut surface. Suberization, as measured by diffusion resistance of the tissue surface to water vapor, was inhibited by mm concentrations of indoleacetic acid, unaffected by mm concentrations of traumatic acid, severely inhibited at mum concentrations of cytokinin, but stimulated by abscisic acid (ABA) at 10(-4)m. Thorough washing of potato disks up to 3 to 4 days after cutting resulted in severe inhibition of suberization as measured both by diffusion resistance and by the amount of the octadecene diol generated by hydrogenolysis (LiAlH(4)) of the tissue. Disks washed after 4 days did not show any inhibition of suberization. High performance liquid chromatographic analysis of the wash from fresh potato disks showed that about 14 ng of ABA was released into the wash per g of tissue. The amount of ABA released increased with time up to 4 to 6 hours of washing. The maximal amount of ABA was washed out after aging for 24 hours and after 2 days of aging ABA could no longer be found in the surface wash of the disks. Addition of ABA to the media of potato tissue cultures resulted in suberin formation whereas control cultures contained little suberin. The effect of ABA on suberization in the tissue cultures was shown to be linearly concentration-dependent up to 10(-4)m and a linear increase in suberin formation was seen up to about 8 days of culture growth on the media containing 10(-4)m ABA. From these results it is proposed that during the early phase of wound-healing ABA plays a role in triggering a chain of biochemical processes which eventually (in about 3 to 4 days) result in the formation of a suberization-inducing factor, responsible for the induction of the enzymes involved in suberin biosynthesis.

  7. Inhibition of microbial xylitol production by acetic acid and its relation with fermentative parameters.

    Science.gov (United States)

    Morita, T A; Silva, S S

    2000-01-01

    Precipitated sugarcane bagasse hemicellulosic hydrolysate containing acetic acid was fermented by Candida guilliermondii FTI20037 under different operational conditions (pH 4.0 and 7.0, three aeration rates). At pH 7.0 and kLa of 10 (0.75 vvm) and 22.5/h (3.0 vvm) the acetic acid had not been consumed until the end of the fermentations, whereas at the same pH and kLa of 35/h (4.5 vvm) the acid was rapidly consumed and acetic acid inhibition was not important. On the other hand, fermentations at an initial pH of 4.0 and kLa of 22.5 and 35/h required less time for the acid uptake than fermentations at kLa of 10/h. The acetic acid assimilation by the yeast indicates the ability of this strain to ferment in partially detoxified medium, making possible the utilization of the sugarcane bagasse hydrolysate in this bio-process. The effects on xylitol yield and production are reported.

  8. Capric acid secreted by S. boulardii inhibits C. albicans filamentous growth, adhesion and biofilm formation.

    Directory of Open Access Journals (Sweden)

    Anna Murzyn

    Full Text Available Candidiasis are life-threatening systemic fungal diseases, especially of gastro intestinal track, skin and mucous membranes lining various body cavities like the nostrils, the mouth, the lips, the eyelids, the ears or the genital area. Due to increasing resistance of candidiasis to existing drugs, it is very important to look for new strategies helping the treatment of such fungal diseases. One promising strategy is the use of the probiotic microorganisms, which when administered in adequate amounts confer a health benefit. Such a probiotic microorganism is yeast Saccharomyces boulardii, a close relative of baker yeast. Saccharomyces boulardii cells and their extract affect the virulence factors of the important human fungal pathogen C. albicans, its hyphae formation, adhesion and biofilm development. Extract prepared from S. boulardii culture filtrate was fractionated and GC-MS analysis showed that the active fraction contained, apart from 2-phenylethanol, caproic, caprylic and capric acid whose presence was confirmed by ESI-MS analysis. Biological activity was tested on C. albicans using extract and pure identified compounds. Our study demonstrated that this probiotic yeast secretes into the medium active compounds reducing candidal virulence factors. The chief compound inhibiting filamentous C. albicans growth comparably to S. boulardii extract was capric acid, which is thus responsible for inhibition of hyphae formation. It also reduced candidal adhesion and biofilm formation, though three times less than the extract, which thus contains other factors suppressing C. albicans adherence. The expression profile of selected genes associated with C. albicans virulence by real-time PCR showed a reduced expression of HWP1, INO1 and CSH1 genes in C. albicans cells treated with capric acid and S. boulardii extract. Hence capric acid secreted by S. boulardii is responsible for inhibition of C. albicans filamentation and partially also adhesion and

  9. Controlling enzyme inhibition using an expanded set of genetically encoded amino acids.

    Science.gov (United States)

    Zheng, Shun; Kwon, Inchan

    2013-09-01

    Enzyme inhibition plays an important role in drug development, metabolic pathway regulation, and biocatalysis with product inhibition. When an inhibitor has high structural similarities to the substrate of an enzyme, controlling inhibitor binding without affecting enzyme substrate binding is often challenging and requires fine-tuning of the active site. We hypothesize that an extended set of genetically encoded amino acids can be used to design an enzyme active site that reduces enzyme inhibitor binding without compromising substrate binding. As a model case, we chose murine dihydrofolate reductase (mDHFR), substrate dihydrofolate, and inhibitor methotrexate. Structural models of mDHFR variants containing non-natural amino acids complexed with each ligand were constructed to identify a key residue for inhibitor binding and non-natural amino acids to replace the key residue. Then, we discovered that replacing the key phenylalanine residue with two phenylalanine analogs (p-bromophenylalanine (pBrF) and L-2-naphthylalanine (2Nal)) enhances binding affinity toward the substrate dihydrofolate over the inhibitor by 4.0 and 5.8-fold, respectively. Such an enhanced selectivity is mainly due to a reduced inhibitor binding affinity by 2.1 and 4.3-fold, respectively. The catalytic efficiency of the mDHFR variant containing pBrF is comparable to that of wild-type mDHFR, whereas the mDHFR variant containing 2Nal exhibits a moderate decrease in the catalytic efficiency. The work described here clearly demonstrates the feasibility of selectively controlling enzyme inhibition using an expanded set of genetically encoded amino acids.

  10. Potential Application of Ascorbic Acid, Citric Acid and Oxalic Acid for Browning Inhibition in Fresh-Cut Fruits and Vegetables

    Directory of Open Access Journals (Sweden)

    Weerayuth SUTTIRAK

    2010-01-01

    Full Text Available The market for fresh-cut fruits and vegetables has grown rapidly in recent decades as a result of their freshness, convenience, and human health benefits. However, fresh fruits and vegetables deteriorate very rapidly after processing, especially cut-surface browning resulting from wound-induced physiological and biochemical changes. The application of antibrowning agents is one of the most effective methods for controlling the enzymatic browning reaction in fresh-cut fruits and vegetables. This article reviews the use of nature identical antibrowning agents, which are generally recognized as safe (GRAS including ascorbic acid, citric acid and oxalic acid for preventing browning in fresh-cut fruits and vegetables. Factors affecting inhibitory efficiency of the antibrowning agents and synergistic effects of the mixtures in various fresh-cut fruits and vegetables are presented.

  11. Do pH and flavonoids influence hypochlorous acid-induced catalase inhibition and heme modification?

    Science.gov (United States)

    Krych-Madej, Justyna; Gebicka, Lidia

    2015-09-01

    Hypochlorous acid (HOCl), highly reactive oxidizing and chlorinating species, is formed in the immune response to invading pathogens by the reaction of hydrogen peroxide with chloride catalyzed by the enzyme myeloperoxidase. Catalase, an important antioxidant enzyme, catalyzing decomposition of hydrogen peroxide to water and molecular oxygen, hampers in vitro HOCl formation, but is also one of the main targets for HOCl. In this work we have investigated HOCl-induced catalase inhibition at different pH, and the influence of flavonoids (catechin, epigallocatechin gallate and quercetin) on this process. It has been shown that HOCl-induced catalase inhibition is independent on pH in the range 6.0-7.4. Preincubation of catalase with epigallocatechin gallate and quercetin before HOCl treatment enhances the degree of catalase inhibition, whereas catechin does not affect this process. Our rapid kinetic measurements of absorption changes around the heme group have revealed that heme modification by HOCl is mainly due to secondary, intramolecular processes. The presence of flavonoids, which reduce active catalase intermediate, Compound I to inactive Compound II have not influenced the kinetics of HOCl-induced heme modification. Possible mechanisms of the reaction of hypochlorous acid with catalase are proposed and the biological consequences are discussed.

  12. Inhibition effects of dilute-acid prehydrolysate of corn stover on enzymatic hydrolysis of Solka Floc.

    Science.gov (United States)

    Kothari, Urvi D; Lee, Yoon Y

    2011-11-01

    Dilute-acid pretreatment liquor (PL) produced at NREL through a continuous screw-driven reactor was analyzed for sugars and other potential inhibitory components. Their inhibitory effects on enzymatic hydrolysis of Solka Floc were investigated. When the PL was mixed into the enzymatic hydrolysis reactor at 1:1 volume ratio, the glucan and xylan digestibility decreased by 63% and 90%, respectively. The tolerance level of the enzyme for each inhibitor was determined. Of the identified degradation components, acetic acid was found to be the strongest inhibitor for cellulase activity, as it decreased the glucan yield by 10% at 1 g/L. Among the sugars, cellobiose and glucose were found to be strong inhibitors to glucan hydrolysis, whereas xylose is a strong inhibitor to xylan hydrolysis. Xylo-oligomers inhibit xylan digestibility more strongly than the glucan digestibility. Inhibition by the PL was higher than that of the simulated mixture of the identifiable components. This indicates that some of the unidentified degradation components, originated mostly from lignin, are potent inhibitors to the cellulase enzyme. When the PL was added to a simultaneous saccharification and co-fermentation using Escherichia coli KO11, the bioprocess was severely inhibited showing no ethanol formation or cell growth.

  13. Inhibitive action of some plant extracts on the corrosion of steel in acidic media

    Energy Technology Data Exchange (ETDEWEB)

    Abdel-Gaber, A.M. [Department of Chemistry, Faculty of Science, Alexandria University, Ibrahimia, P.O. Box 426, Alexandria 21321 (Egypt)]. E-mail: ashrafmoustafa@yahoo.com; Abd-El-Nabey, B.A. [Department of Chemistry, Faculty of Science, Alexandria University, Ibrahimia, P.O. Box 426, Alexandria 21321 (Egypt); Sidahmed, I.M. [Department of Chemistry, Faculty of Science, Alexandria University, Ibrahimia, P.O. Box 426, Alexandria 21321 (Egypt); El-Zayady, A.M. [Department of Chemistry, Faculty of Science, Alexandria University, Ibrahimia, P.O. Box 426, Alexandria 21321 (Egypt); Saadawy, M. [Department of Chemistry, Faculty of Science, Alexandria University, Ibrahimia, P.O. Box 426, Alexandria 21321 (Egypt)

    2006-09-15

    The effect of extracts of Chamomile (Chamaemelum mixtum L.), Halfabar (Cymbopogon proximus), Black cumin (Nigella sativa L.), and Kidney bean (Phaseolus vulgaris L.) plants on the corrosion of steel in aqueous 1 M sulphuric acid were investigated by electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization techniques. EIS measurements showed that the dissolution process of steel occurs under activation control. Potentiodynamic polarization curves indicated that the plant extracts behave as mixed-type inhibitors. The corrosion rates of steel and the inhibition efficiencies of the extracts were calculated. The results obtained show that the extract solution of the plant could serve as an effective inhibitor for the corrosion of steel in sulphuric acid media. Inhibition was found to increase with increasing concentration of the plant extract up to a critical concentration. The inhibitive actions of plant extracts are discussed on the basis of adsorption of stable complex at the steel surface. Theoretical fitting of different isotherms, Langmuir, Flory-Huggins, and the kinetic-thermodynamic model, were tested to clarify the nature of adsorption.

  14. Inhibition of DNA restrictive endonucleases and Taq DNA polymerase by trimalonic acid C60

    Institute of Scientific and Technical Information of China (English)

    YANG XinLin; CHEN Zhe; MENG XianMei; LI Bo; TAN Xin

    2007-01-01

    Activities of trimalonic acid fullerene (TMA C60) on DNA restrictive enzymatic reaction were investigated by using two restrictive endonucleases Hind III and EcoR I and plasmid pEGFP-N1 with single restrictive site for both enzymes. Meanwhile,TMA C60 was also tested to clarify its effects on polymerase chain reaction (PCR) with the catalyst of Taq DNA polymerase and the template of plasmid pEGFP-N1. The products from restrictive reactions or PCR were detected by agarose gel electrophoresis. It was found that the product amounts from restrictive reactions or PCR decreased significantly with addition of TMA C60. The inhibition by TMA C60 was dose-dependent and IC50 values for reactions of Hind III,EcoR I and PCR were 16.3,6.0 and 6.0 μmol/L,respectively. Addition of two scavengers of reactive oxygen species (ROS),L-ascorbic acid-2-phosphate ester magnesium and sodium azide at the concentrations of 2―10 mmol/L did not antagonize the activities of TMA C60 against PCR and two restrictive reactions. However,increase of Taq DNA polymerase amounts in PCR system antagonized the activities of TMA C60. These data implied that TMA C60 was able to inhibit the activities of the three above-mentioned enzymes involved in DNA metabolism,and that this inhibition probably did not correlate to ROS.

  15. Inhibition of food-stimulated acid secretion (intragastric titration) by roxatidine acetate. Dose-response study.

    Science.gov (United States)

    Bonfils, S; Chen, W W; Vatier, J

    1988-01-01

    In 10 healthy male volunteers a dose-response study was carried out with roxatidine acetate, 75, 150, 300, and 600 mg, and placebo on food-stimulated gastric acid secretion (intragastric titration (IGT]. The design of the study, with drug intake 150 min before starting IGT, enabled stable inhibition over the 90-min observation period of the test. Cumulative secretory results showed a dose-related acid secretion inhibition (67% for 75 mg; 87.6% for 150 mg; 98.8% for 300 mg; 99.6% for 600 mg). The results were statistically significantly different from placebo and from each other, except for 300 mg versus 600 mg. With a Lineweaver-Burk plot, the ED50 was 41 mg and r = 0.98. Peak concentrations of roxatidine were observed either at T 150 or T 180. Significant correlation (r = 0.7; p less than 0.001) was obtained for the percentage inhibition with 75 mg and 150 mg together versus peak concentrations. Antisecretory potency with the IGT model applied to normal subjects appears to be of the same order for roxatidine acetate and for ranitidine.

  16. Inhibition of acid corrosion of steel by some S-alkylisothiouronium iodides

    Energy Technology Data Exchange (ETDEWEB)

    Arab, S.T.; Noor, E.A. (Girl' s Coll. of Education, Jeddah (Saudi Arabia))

    1993-02-01

    Five selected S-alkylisothisothiouronium iodides have been studied as acid corrosion inhibitors at 30 C for steel in 0.5 M H[sub 2]SO[sub 4] using gasometry, mass loss, and direct current (DC) polarization techniques. All of the data reveal that the compounds act as inhibitors in the acid environments; furthermore, polarization curves show that the compounds act as mixed-type inhibitors. It was found that the inhibition efficiency increases with the increase of the length of the additive alkyl chain. Langmuir's adsorption isotherms fit the experimental data for the studied compounds. Thermodynamic parameter were obtained from experimental data of the temperature studies of the inhibition process at five temperatures ranging from 30 to 70 C. It was observed that the activation energy is slightly increased with the increase of the additive alkyl chain. On the other hand, the sudden large increase of the inhibition behavior of S-hexylisothiouronium iodide was attributed to a different adsorption process.

  17. K-channels inhibited by hydrogen peroxide mediate abscisic acid signaling in Vicia guard cells

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A number of studies show that environmental stress conditions increase abscisic acid (ABA) and hydrogen peroxide (H2O2) levels in plant cells. Despite this central role of ABA in altering stomatal aperture by regulating guard cell ion transport, little is known concerning the relationship between ABA and H2O2 in signal transduction leading to stomatal movement. Epidermal strip bioassay illustrated that ABA-inhibited stomatal opening and ABA-induced stomatal closure were abolished partly by externally added catalase (CAT) or diphenylene iodonium (DPI), which are a H2O2 scavenger and a NADPH oxidase inhibitor respectively. In contrast, internally added CAT or DPI nearly completely or partly reversed ABA-induced closure in half-stoma. Consistent with these results, whole-cell patch-clamp analysis showed that intracellular application of CAT or DPI partly abolished ABA-inhibited inward K+ current across the plasma membrane of guard cells. H2O2 mimicked ABA to inhibit inward K+ current, an effect which was reversed by the addition of ascorbic acid (Vc) in patch clamping micropipettes. These results suggested that H2O2 mediated ABA-induced stomatal movement by targeting inward K+ channels at plasma membrane.

  18. Potentiation of vasoconstrictor response and inhibition of endothelium-dependent vasorelaxation by gallic acid in rat aorta.

    Science.gov (United States)

    Sanae, Fujiko; Miyaichi, Yukinori; Hayashi, Hisao

    2002-08-01

    In the isolated rat thoracic aorta, gallic acid potentiated the vasoconstrictor response to phenylephrine. The potentiation produced by gallic acid was absent in endothelium-denuded arteries. The potentiation was abolished by N(G)-nitro-L-arginine methyl ester, an inhibitor of nitric oxide synthesis, and slightly attenuated by an addition of L-arginine, while indomethacin or BQ610 had no effect. The potentiation of response to phenylephrine was not found for structural modifications of gallic acid, except for caffeic acid. Gallic acid also inhibited vasorelaxation induced by acetylcholine, sodium nitroprusside or prostacyclin, especially that by acetylcholine. The effect on vasorelaxation induced by acetylcholine was decreased by esterification of the carboxy group of gallic acid, and in the absence or by the methylation of the o-dihydroxy group. Caffeic acid inhibited the vasorelaxation, though the effect was smaller than that of gallic acid. These findings indicate that gallic acid produces a potentiation of contractile response and inhibition of vasorelaxant responses, probably through inactivation of nitric oxide (NO), in which endothelially produced NO is principally involved, and that the modification of functional groups of the gallic acid molecule abolishes the potentiation of contractile response and attenuates the inhibition of vasorelaxant responses.

  19. NOVEL HYDROXAMIC ACIDS HAVING HISTONE DEACETYLASE INHIBITING ACTIVITY AND ANTI-CANCER COMPOSITION COMPRISING THE SAME AS AN ACTIVE INGREDIENT

    DEFF Research Database (Denmark)

    2013-01-01

    The present invention relates to a pharmaceutical composition for anticancer including novel hydroxamic acid with histone deacetylase inhibiting activity as an active ingredient. Hydroxamic acid compound of the present invention has inhibitory activity of histone deacetylase (HDAC) and shows cyto...... cytotoxicity to a variety of cancer cells, being useful in strong anti-cancer drug.......The present invention relates to a pharmaceutical composition for anticancer including novel hydroxamic acid with histone deacetylase inhibiting activity as an active ingredient. Hydroxamic acid compound of the present invention has inhibitory activity of histone deacetylase (HDAC) and shows...

  20. 2-octynoic acid inhibits hepatitis C virus infection through activation of AMP-activated protein kinase.

    Directory of Open Access Journals (Sweden)

    Darong Yang

    Full Text Available Many chronic hepatitis C virus (HCV-infected patients with current therapy do not clear the virus. It is necessary to find novel treatments. The effect of 2-octynoic acid (2-OA on HCV infection in human hepatocytes was examined. The mechanism of 2-OA antiviral activity was explored. Our data showed that 2-OA abrogated lipid accumulation in HCV replicon cells and virus-infected hepatocytes. It suppressed HCV RNA replication and infectious virus production with no cytotoxicity to the host cells. 2-OA did not affect hepatitis B virus replication in HepG2.2.15 cells derived from HepG2 cells transfected with full genome of HBV. Further study demonstrated that 2-OA activated AMP-activated protein kinase (AMPK and inhibited acetyl-CoA carboxylase in viral-infected cells. Compound C, a specific inhibitor of AMPK, inhibited AMPK activity and reversed the reduction of intracellular lipid accumulation and the antiviral effect of 2-OA. Knockdown of AMPK expression by RNA interference abolished the activation of AMPK by 2-OA and blocked 2-OA antiviral activity. Interestingly, 2-OA induced interferon-stimulated genes (ISGs and inhibited microRNA-122 (miR-122 expression in virus-infected hepatocytes. MiR-122 overexpression reversed the antiviral effect of 2-OA. Furthermore, knockdown of AMPK expression reversed both the induction of ISGs and suppression of miR-122 by 2-OA, implying that activated AMPK induces the intracellular innate response through the induction of ISGs and inhibiting miR-122 expression. 2-OA inhibits HCV infection through regulation of innate immune response by activated AMPK. These findings reveal a novel mechanism by which active AMPK inhibits HCV infection. 2-OA and its derivatives hold promise for novel drug development for chronic hepatitis C.

  1. Rosmarinic acid inhibits poly(I:C)-induced inflammatory reaction of epidermal keratinocytes.

    Science.gov (United States)

    Zhou, Ming-Wei; Jiang, Ri-Hua; Kim, Ki-Duck; Lee, Jin-Hyup; Kim, Chang-Deok; Yin, Wei-Tian; Lee, Jeung-Hoon

    2016-06-15

    Keratinocytes are the predominant cells in the epidermis, exerting their primary role of physical barrier through sophisticated differentiation process. In addition, keratinocytes contribute to the activation of innate immunity, providing the surveillant role against external pathogens. It has been known that chronic skin inflammatory disease such as psoriasis can be provoked by viral pathogens including double-stranded RNA. In this study, we demonstrated that rosmarinic acid (RA) has an inhibitory potential on inflammatory reaction induced by double-stranded RNA mimic poly(I:C) in epidermal keratinocytes. We cultured human epidermal keratinocytes and induced inflammatory reaction by poly(I:C) treatment. The effect of RA on inflammatory reaction of keratinocytes was determined by RT-PCR and Western blot. RA significantly inhibited poly(I:C)-induced expression of inflammatory cytokines including IL-1β, IL-6, IL-8, CCL20, and TNF-α, and downregulated NF-κB signaling pathway in human keratinocytes. In addition, RA significantly inhibited poly(I:C)-induced inflammasome activation, in terms of secretion of active form of IL-1β and caspase-1. Furthermore, RA markedly inhibited poly(I:C)-induced NLRP3 and ASC expression. These results indicate that RA can inhibit poly(I:C)-induced inflammatory reaction of keratinocytes, and suggest that it may be a potential candidate for the treatment of psoriasis. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Salvianolic Acid B Attenuates Experimental Pulmonary Fibrosis through Inhibition of the TGF-β Signaling Pathway.

    Science.gov (United States)

    Liu, Qingmei; Chu, Haiyan; Ma, Yanyun; Wu, Ting; Qian, Feng; Ren, Xian; Tu, Wenzhen; Zhou, Xiaodong; Jin, Li; Wu, Wenyu; Wang, Jiucun

    2016-06-09

    Pulmonary fibrosis is a progressive and fatal disorder. In our previous study, we found that the Yiqihuoxue formula (YQHX), a prescription of Traditional Chinese Medicine, had a curative effect on scleroderma, a typical fibrotic disease. The aim of this study was to determine the key ingredient mediating the therapeutic effects of YQHX and to examine its effect on pulmonary fibrosis, including its mechanism. Luciferase reporter assays showed that the most important anti-fibrotic component of the YQHX was Salviae miltiorrhiza (SM). Experiments performed using a bleomycin-instilled mouse model of pulmonary fibrosis showed that Salvianolic acid B (SAB), the major ingredient of SM, had strong anti-inflammatory and anti-fibrotic effects through its inhibition of inflammatory cell infiltration, alveolar structure disruption, and collagen deposition. Furthermore, SAB suppressed TGF-β-induced myofibroblastic differentiation of MRC-5 fibroblasts and TGF-β-mediated epithelial-to-mesenchymal transition of A549 cells by inhibiting both Smad-dependent signaling and the Smad-independent MAPK pathway. Taken together, our results suggest that SM is the key anti-fibrotic component of the YQHX and that SAB, the major ingredient of SM, alleviates experimental pulmonary fibrosis both in vivo and in vitro by inhibiting the TGF-β signaling pathway. Together, these results suggest that SAB potently inhibits pulmonary fibrosis.

  3. Inhibition of creatine kinase activity from rat cerebral cortex by D-2-hydroxyglutaric acid in vitro.

    Science.gov (United States)

    da Silva, Cleide G; Bueno, Ana Rúbia F; Schuck, Patrícia F; Leipnitz, Guilhian; Ribeiro, César A J; Rosa, Rafael B; Dutra Filho, Carlos S; Wyse, Angela T S; Wannmacher, Clóvis M D; Wajner, Moacir

    2004-01-01

    D-2-Hydroxyglutaric acid (DGA) is the biochemical hallmark of patients affected by the neurometabolic disorder known as D-2-hydroxyglutaric aciduria (DHGA). Although this disease is predominantly characterized by severe neurological findings, the underlying mechanisms of brain injury are virtually unknown. In the present study, we investigated the effect of DGA on total, cytosolic, and mitochondrial creatine kinase (CK) activities from cerebral cortex of 30-day-old Wistar rats. Total CK activity (tCK) was measured in whole cell homogenates, whereas cytosolic and mitochondrial activities were measured in the cytosolic and mitochondrial preparations from cerebral cortex. We verified that CK activities were significantly inhibited by DGA (11-34% inhibition) at concentrations as low as 0.25 mM, being the mitochondrial fraction the most affected activity. Kinetic studies revealed that the inhibitory effect of DGA was non-competitive in relation to phosphocreatine. We also observed that this inhibition was fully prevented by pre-incubation of the homogenates with reduced glutathione, suggesting that the inhibitory effect of DGA on tCK activity is possibly mediated by oxidation of essential thiol groups of the enzyme. Considering the importance of CK activity for brain metabolism homeostasis, our results suggest that inhibition of this enzyme by increased levels of DGA may be related to the neurodegeneration of patients affected by DHGA.

  4. Acid Corrosion Inhibition and Adsorption Behaviour of Ethyl Hydroxyethyl Cellulose on Mild Steel Corrosion

    Directory of Open Access Journals (Sweden)

    I. O. Arukalam

    2014-01-01

    Full Text Available The corrosion inhibition of mild steel in 1.0 M H2SO4 solution by ethyl hydroxyethyl cellulose has been studied in relation to the concentration of the additive using weight loss measurement, EIS, polarization, and quantum chemical calculation techniques. The results indicate that EHEC inhibited corrosion reaction in the acid medium and inhibition efficiency increased with EHEC concentration. Further increase in inhibition efficiency is observed in the presence of iodide ions, due to synergistic effect. Impedance results reveal that EHEC is adsorbed on the corroding metal surface. Adsorption followed a modified Langmuir isotherm, with very high negative values of the free energy of adsorption (ΔGads. The polarization data indicate that the inhibitor was of mixed type, with predominant effect on the cathodic partial reaction. The frontier molecular orbitals, HOMO (the highest occupied molecular orbital and LUMO (the lowest unoccupied molecular orbital as well as local reactivity of the EHEC molecule, were analyzed theoretically using the density functional theory to explain the adsorption characteristics at a molecular level. The theoretical predictions showed good agreement with experimental results.

  5. Studies on the inhibition of mild steel corrosion in hydrochloric acid solution by atenolol drug

    Directory of Open Access Journals (Sweden)

    G. Karthik

    2016-06-01

    Full Text Available The inhibition performance of atenolol on mild steel in 1 M hydrochloric acid solution was studied by weight loss and electrochemical methods. The results show the inhibition efficiency was found to increase with increasing the concentration of the inhibitor from 50 to 300 ppm. The maximum inhibition efficiency 93.8% was observed in the presence of 300 ppm inhibitor (in case of potentiodynamic polarization. The inhibition action of atenolol was explained in terms of adsorption on the mild steel surface. The adsorption process follows Langmuir isotherm via physical adsorption. Electrochemical Impedance spectroscopic technique (EIS exhibits one capacitive loop indicating that, the corrosion reaction is controlled by charge transfer process. Polarization measurements showed that the inhibitor is of a mixed type. The results obtained from the different methods are in good agreement. The surface morphologies of mild steel were examined by Fourier-transform infrared (FT-IR spectroscopy, scanning electron microscope (SEM. Further, the computational calculations are performed to find a relation between their electronic and structural properties.

  6. Inhibition of fatty acid synthase by amentoflavone reduces coxsackievirus B3 replication.

    Science.gov (United States)

    Wilsky, Steffi; Sobotta, Katharina; Wiesener, Nadine; Pilas, Johanna; Althof, Nadine; Munder, Thomas; Wutzler, Peter; Henke, Andreas

    2012-02-01

    Coxsackievirus B3 (CVB3) is a human pathogen that causes acute and chronic infections, but an antiviral drug to treat these diseases has not yet been developed for clinical use. Several intracellular pathways are altered to assist viral transcription, RNA replication, and progeny release. Among these, fatty acid synthase (FAS) expression is increased. In order to test the potential of FAS inhibition as an anti-CVB3 strategy, several experiments were performed, including studies on the correlation of CVB3 replication and FAS expression in human Raji cells and an analysis of the time and dose dependence of the antiviral effect of FAS inhibition due to treatment with amentoflavone. The results demonstrate that CVB3 infection induces an up-regulation of FAS expression already at 1 h postinfection (p.i.). Incubation with increasing concentrations of amentoflavone inhibited CVB3 replication significantly up to 8 h p.i. In addition, suppression of p38 MAP kinase activity by treatment with SB239063 decreased FAS expression as well as viral replication. These data provide evidence that FAS inhibition via amentoflavone administration might present a target for anti-CVB3 therapy.

  7. Dual effects of acetylsalicylic acid on ERK signaling and Mitf transcription lead to inhibition of melanogenesis.

    Science.gov (United States)

    Nishio, Takashi; Usami, Mai; Awaji, Mizuki; Shinohara, Sumire; Sato, Kazuomi

    2016-01-01

    Acetylsalicylic acid (ASA) is widely used as an analgesic/antipyretic drug. It exhibits a wide range of biological effects, including preventative effects against heart attack and stroke, and the induction of apoptosis in various cancer cells. We previously found that ASA inhibits melanogenesis in B16 melanoma cells. However, the mechanisms of how ASA down-regulates melanin synthesis remain unclear. Here, we investigated the effect of ASA on melanogenic pathways, such as extracellular signal-regulated kinase (ERK) and microphthalmia-associated transcription factor (Mitf) transcription. ASA significantly inhibited melanin synthesis in a dose-dependent manner without oxidative stress and cell death. Semi-quantitative reverse transcription-polymerase chain reaction analysis showed that the inhibitory effect of ASA might be due to the inhibition of Mitf gene transcription. Interestingly, ASA also induced ERK phosphorylation. Additionally, treatment with PD98059, a specific ERK phosphorylation inhibitor, abolished the anti-melanogenic effect of ASA. These results suggest that the depigmenting effect of ASA results from down-regulation of Mitf, which is induced by both the induction of ERK phosphorylation and the inhibition of Mitf transcription.

  8. Zinc acexamate inhibits gastric acid and pepsinogen secretion in the rat.

    Science.gov (United States)

    Bulbena, O; Esplugues, J V; Escolar, G; Gil, L; Navarro, C; Esplugues, J

    1990-04-01

    Pretreatment with zinc acexamate (25-100 mg kg-1 i.p.) inhibited acid and pepsinogen secretion in the pylorus-ligated rat. Zinc acexamate (5-50 mg kg-1 p.o.) also inhibited the increases in acid secretion induced by carbachol (10 micrograms kg-1) and 2-deoxy-D-glucose (200 mg kg-1) in the perfused stomach of the anaesthetized rat. A delayed antisecretory effect was observed with this drug on histamine induced responses. High concentrations of zinc acexamate (10(-5) - 10(-2) M) did not modify the in-vitro activity of pepsin. Administration of zinc acexamate resulted in an increase in the presence of pepsinogen at the mucosal level. A morphological examination of the gastric mucosa confirmed an accumulation of zymogen-containing granules in the gastric chief cells of zinc acexamate-treated rats (50 mg kg-1 p.o.). These results indicate that zinc acexamate decreases acid and pepsinogen secretion in-vivo, and this may explain its antiulcer activity.

  9. Triterpenic Acids Present in Hawthorn Lower Plasma Cholesterol by Inhibiting Intestinal ACAT Activity in Hamsters

    Directory of Open Access Journals (Sweden)

    Yuguang Lin

    2011-01-01

    Full Text Available Hawthorn (Crataegus pinnatifida is an edible fruit used in traditional Chinese medicine to lower plasma lipids. This study explored lipid-lowering compounds and underlying mechanisms of action of hawthorn. Hawthorn powder extracts inhibited acylCoA:cholesterol acyltransferase (ACAT activity in Caco-2 cells. The inhibitory activity was positively associated with triterpenic acid (i.e., oleanolic acid (OA and ursolic acid (UA contents in the extracts. Cholesterol lowering effects of hawthorn and its potential additive effect in combination with plant sterol esters (PSE were further studied in hamsters. Animals were fed a semi-synthetic diet containing 0.08% (w/w cholesterol (control or the same diet supplemented with (i 0.37% hawthorn dichloromethane extract, (ii 0.24% PSE, (iii hawthorn dichloromethane extract (0.37% plus PSE (0.24% or (iv OA/UA mixture (0.01% for 4 weeks. Compared to the control diet, hawthorn, PSE, hawthorn plus PSE and OA/UA significantly lowered plasma non-HDL (VLDL + LDL cholesterol concentrations by 8%, 9%, 21% and 6% and decreased hepatic cholesterol ester content by 9%, 23%, 46% and 22%, respectively. The cholesterol lowering effects of these ingredients were conversely associated with their capacities in increasing fecal neutral sterol excretion. In conclusion, OA and UA are responsible for the cholesterol lowering effect of hawthorn by inhibiting intestinal ACAT activity. In addition, hawthorn and particularly its bioactive compounds (OA and UA enhanced the cholesterol lowering effect of plant sterols.

  10. 8,9-Epoxyeicosatrienoic acid inhibits antibody production of B lymphocytes in mice.

    Directory of Open Access Journals (Sweden)

    Yanxiang Gao

    Full Text Available Epoxyeicosatrienoic acids (EETs, synthesized from arachidonic acid by cytochrome P450 epoxygenases, are converted to dihydroxyeicosatrienoic acids by soluble epoxide hydrolase. EETs exert anti-inflammatory effects. However, the effect of EETs on humoral immunity is poorly understood. The present study is to investigate the potential role of EETs on B cell function and mechanisms. We examined the role of EETs on antibody production of splenic B cells from C57BL/6 and apolipoprotein E-deficient (ApoE-/- mice by means of ELISA. Of the 4 EET regioisomers, 8,9-EET decreased basal and activation-induced B cell antibody secretion. As well, 8,9-EET significantly inhibited B-cell proliferation and survival, plasma cell differentiation and class-switch recombination. Western blot analysis revealed that lipopolysaccharide-induced nuclear translocation of NF-κB could be attenuated by 8,9-EET. Furthermore, germinal center formation was impaired by 8,9-EET in mice in vivo. 8,9-EET may inhibit B-cell function in vitro and in vivo, which suggests a new therapeutic strategy for diseases with excess B cell activation.

  11. INHIBITION OF FATTY ACID DESATURASES IN Drosophila melanogaster LARVAE BLOCKS FEEDING AND DEVELOPMENTAL PROGRESSION.

    Science.gov (United States)

    Wang, Yiwen; da Cruz, Tina Correia; Pulfemuller, Alicia; Grégoire, Stéphane; Ferveur, Jean-François; Moussian, Bernard

    2016-05-01

    Fatty acid desaturases are metabolic setscrews. To study their systemic impact on growth in Drosophila melanogaster, we inhibited fatty acid desaturases using the inhibitor CAY10566. As expected, the amount of desaturated lipids is reduced in larvae fed with CAY10566. These animals cease feeding soon after hatching, and their growth is strongly attenuated. A starvation program is not launched, but the expression of distinct metabolic genes is activated, possibly to mobilize storage material. Without attaining the normal size, inhibitor-fed larvae molt to the next stage indicating that the steroid hormone ecdysone triggers molting correctly. Nevertheless, after molting, expression of ecdysone-dependent regulators is not induced. While control larvae molt a second time, these larvae fail to do so and die after few days of straying. These effects are similar to those observed in experiments using larvae deficient for the fatty acid desaturase1 gene. Based on these data, we propose that the ratio of saturated to unsaturated fatty acids adjusts a sensor system that directs feeding behavior. We also hypothesize that loss of fatty acid desaturase activity leads to a block of the genetic program of development progression indirectly by switching on a metabolic compensation program. © 2016 Wiley Periodicals, Inc.

  12. The amino acid sensor GCN2 controls gut inflammation by inhibiting inflammasome activation.

    Science.gov (United States)

    Ravindran, Rajesh; Loebbermann, Jens; Nakaya, Helder I; Khan, Nooruddin; Ma, Hualing; Gama, Leonardo; Machiah, Deepa K; Lawson, Benton; Hakimpour, Paul; Wang, Yi-chong; Li, Shuzhao; Sharma, Prachi; Kaufman, Randal J; Martinez, Jennifer; Pulendran, Bali

    2016-03-24

    The integrated stress response (ISR) is a homeostatic mechanism by which eukaryotic cells sense and respond to stress-inducing signals, such as amino acid starvation. General controlled non-repressed (GCN2) kinase is a key orchestrator of the ISR, and modulates protein synthesis in response to amino acid starvation. Here we demonstrate in mice that GCN2 controls intestinal inflammation by suppressing inflammasome activation. Enhanced activation of ISR was observed in intestinal antigen presenting cells (APCs) and epithelial cells during amino acid starvation, or intestinal inflammation. Genetic deletion of Gcn2 (also known as Eif2ka4) in CD11c(+) APCs or intestinal epithelial cells resulted in enhanced intestinal inflammation and T helper 17 cell (TH17) responses, owing to enhanced inflammasome activation and interleukin (IL)-1β production. This was caused by reduced autophagy in Gcn2(-/-) intestinal APCs and epithelial cells, leading to increased reactive oxygen species (ROS), a potent activator of inflammasomes. Thus, conditional ablation of Atg5 or Atg7 in intestinal APCs resulted in enhanced ROS and TH17 responses. Furthermore, in vivo blockade of ROS and IL-1β resulted in inhibition of TH17 responses and reduced inflammation in Gcn2(-/-) mice. Importantly, acute amino acid starvation suppressed intestinal inflammation via a mechanism dependent on GCN2. These results reveal a mechanism that couples amino acid sensing with control of intestinal inflammation via GCN2.

  13. Boric acid inhibits germination and colonization of Saprolegnia spores in vitro and in vivo.

    Science.gov (United States)

    Ali, Shimaa E; Thoen, Even; Evensen, Øystein; Skaar, Ida

    2014-01-01

    Saprolegnia infections cause severe economic losses among freshwater fish and their eggs. The banning of malachite green increased the demand for finding effective alternative treatments to control the disease. In the present study, we investigated the ability of boric acid to control saprolegniosis in salmon eggs and yolk sac fry. Under in vitro conditions, boric acid was able to decrease Saprolegnia spore activity and mycelial growth in all tested concentrations above 0.2 g/L, while complete inhibition of germination and growth was observed at a concentration of 0.8 g/L. In in vivo experiments using Atlantic salmon eyed eggs, saprolegniosis was controlled by boric acid at concentrations ranging from 0.2-1.4 g/L during continuous exposure, and at 1.0-4.0 g/L during intermittent exposure. The same effect was observed on salmon yolk sac fry exposed continuously to 0.5 g/L boric acid during the natural outbreak of saprolegniosis. During the experiments no negative impact with regard to hatchability and viability was observed in either eggs or fry, which indicate safety of use at all tested concentrations. The high hatchability and survival rates recorded following the in vivo testing suggest that boric acid is a candidate for prophylaxis and control of saprolegniosis.

  14. Inhibition of melanogenesis and oxidation by protocatechuic acid from Origanum vulgare (oregano).

    Science.gov (United States)

    Chou, Tzung-Han; Ding, Hsiou-Yu; Lin, Rong-Jyh; Liang, Jing-Yao; Liang, Chia-Hua

    2010-11-29

    Antioxidant and antimelanogenesis activities of protocatechuic acid (1) from Origanum vulgare (oregano) were investigated. The antioxidative capacity of 1 was confirmed from its free-radical-scavenging activities, inhibition of lipid peroxidation, and suppression of reactive oxygen species in H(2)O(2)-induced BNLCL2 cells. The inhibition by 1 of tyrosinase and DOPA oxidase activity and melanin production was possibly related to the down-regulation of melanocortin-1 receptor, microphthalmia-associated transcription factor, tyrosinase, tyrosinase-related proteins-2, and tyrosinase-related proteins-1 expression in α-melanocyte-stimulating hormone-induced B16 cells. After a gel containing 1 was applied to mice, the values of L* slightly increased, and a* and erythema-melanin levels of skin were reduced by comparing the values of untreated control groups, indicating 1 can reduce melanin production. These results suggest that 1 may act as an effective quencher of oxidative attackers with antimelanogenesis properties.

  15. The kinetics of process dependent ammonia inhibition of methanogenesis from acetic acid.

    Science.gov (United States)

    Wilson, Christopher Allen; Novak, John; Takacs, Imre; Wett, Bernhard; Murthy, Sudhir

    2012-12-01

    Advanced anaerobic digestion processes aimed at improving the methanization of sewage sludge may be potentially impaired by the production of inhibitory compounds (e.g. free ammonia). The result of methanogenic inhibition is relatively high effluent concentrations of acetic acid and other soluble organics, as well as reduced methane yields. An extreme example of such an advanced process is the thermal hydrolytic pretreatment of sludge prior to high solids digestion (THD). Compared to a conventional mesophilic anaerobic digestion process (MAD), THD operates in a state of constant inhibition driven by high free ammonia concentrations, and elevated pH values. As such, previous investigations of the kinetics of methanogenesis from acetic acid under uninhibited conditions do not necessarily apply well to the modeling of extreme processes such as THD. By conducting batch ammonia toxicity assays using biomass from THD and MAD reactors, we compared the response of these communities over a broad range of ammonia inhibition. For both processes, increased inhibitor concentrations resulted in a reduction of biomass growth rate (r(max) = μ(max)∙X) and a resulting decrease in the substrate half saturation coefficient (K(S)). These two parameters exhibited a high degree of correlation, suggesting that for a constant transport limited system, the K(S) was mostly a linear function of the growth rate. After correcting for reactor pH and temperature, we found that the THD and MAD biomass were both able to perform methanogenesis from acetate at high free ammonia concentrations (equivalent to 3-5 g/L total ammonia nitrogen), albeit at less than 30% of their respective maximum rates. The reduction in methane production was slightly less pronounced for the THD biomass than for MAD, suggesting that the long term exposure to ammonia had selected for a methanogenic pathway less dependent on those organisms most sensitive to ammonia inhibition (i.e. aceticlastic methanogens).

  16. Inhibition of Listeria monocytogenes and Salmonella by combinations of oriental mustard, malic acid, and EDTA.

    Science.gov (United States)

    Olaimat, Amin N; Holley, Richard A

    2014-04-01

    The antimicrobial activities of oriental mustard extract alone or combined with malic acid and EDTA were investigated against Salmonella spp. or Listeria monocytogenes at different temperatures. Five strain Salmonella or L. monocytogenes cocktails were separately inoculated in Brain Heart Infusion broth containing 0.5% (w/v) aqueous oriental mustard extract and incubated at 4 °C to 21 °C for 21 d. For inhibitor combination tests, Salmonella Typhimurium 02:8423 and L. monocytogenes 2-243 were individually inoculated in Mueller Hinton broth containing the mustard extract with either or both 0.2% (w/v) malic acid and 0.2% (w/v) EDTA and incubated at 10 °C or 21 °C for 10 to 14 d. Mustard extract inhibited growth of the L. monocytogenes cocktail at 4 °C up to 21 d (2.3 log10 CFU/mL inhibition) or at 10 °C for 7 d (2.4 log10 CFU/mL inhibition). Salmonella spp. viability was slightly, but significantly reduced by mustard extract at 4 °C by 21 d. Although hydrolysis of sinigrin in mustard extract by both pathogens was 2 to 6 times higher at 21 °C than at 4 °C to 10 °C, mustard was not inhibitory at 21 °C, perhaps because of the instability of its hydrolysis product (allyl isothiocyanate). At 21 °C, additive inhibitory effects of mustard extract with EDTA or malic acid led to undetectable levels of S. Typhimurium and L. monocytogenes by 7 d and 10 d, respectively. At 10 °C, S. Typhimurium was similarly susceptible, but combinations of antimicrobials were not more inhibitory to L. monocytogenes than the individual agents.

  17. Corrosion Inhibition and Adsorption Behavior of Clove Oil on Iron in Acidic Medium

    Directory of Open Access Journals (Sweden)

    Archana Saxena

    2012-01-01

    Full Text Available Corrosion behavior of iron in hydrochloric acid solution was studied using weight loss as well Scanning electron microscopy study without and with clove oil. The percentage inhibition efficiency increases with increasing clove oil concentration. All the data revel that the oil acts as an excellent inhibitor for the corrosion of iron in HCl solution. Thermodynamic, kinetic parameters and equilibrium constant for adsorption process were calculated from the experimental data. The adsorption of clove oil on experimental metals was found to follow the Langmuir adsorption isotherm at all the concentration studies. Scanning electron microscope (SEM, investigations also indicate that clove oil greatly lowers the dissolution currents.

  18. Niflumic Acid Inhibits Goblet Cell Degranulation in a Guinea Pig Asthma Model

    OpenAIRE

    Mitsuko Kondo; Junko Nakata; Naoki Arai; Takehiro Izumo; Etsuko Tagaya; Kiyoshi Takeyama; Jun Tamaoki; Atsushi Nagai

    2012-01-01

    Background: Human Ca2+-activated Cl ion channel 1 (hCLCAl) is expressed in goblet cell hyperplasia in the airway of asthmatics, and murine CLCA3 is associated with antigen-sensitized and IL-13-induced goblet cell metaplasia in mice. However, the role of CLCA in goblet cell degranulation is not fully investigated. Niflumic acid (NFA), a relatively specific CLCA inhibitor, inhibits goblet cell metaplasia, but the effect of NFA on goblet cell degranulation has not been determined in an asthma mo...

  19. Inhibition of Interjacent Ribonucleic Acid (26S) Synthesis in Cells Infected by Sindbis Virus

    Science.gov (United States)

    Scheele, Christina M.; Pfefferkorn, E. R.

    1969-01-01

    The interrelationship of viral ribonucleic acid (RNA) and protein synthesis in cells infected by Sindbis virus was investigated. When cultures were treated with puromycin early in the course of infection, the synthesis of interjacent RNA (26S) was preferentially inhibited. A similar result was obtained by shifting cells infected by one temperature-sensitive mutant defective in RNA synthesis from the permissive (29 C) to the nonpermissive (41.5 C) temperature. Under both conditions, the viral RNA produced appeared to be fully active biologically. Once underway, the synthesis of viral RNA in wild-type Sindbis infections did not require concomitant protein synthesis. PMID:5817400

  20. Inhibiting Effects of Rabeprazole Sulfide on the Corrosion of Mild Steel in Acidic Chloride Solution

    Directory of Open Access Journals (Sweden)

    M. K. Pavithra

    2013-01-01

    Full Text Available The corrosion inhibition effect of Rabeprazole sulfide (RS on mild steel in 1 M hydrochloric acid (HCl was investigated using weight loss, potentiodynamic polarization, electrochemical impedance spectroscopy (EIS, and chronoamperometric measurements. Protection efficiency of RS increases with the concentration and decreases with the rise in temperature. Adsorption of RS on mild steel surface in 1 M HCl follows Langmuir adsorption isotherm. The kinetic and thermodynamic parameters governing the adsorption process were calculated and discussed. The polarization results suggest that RS performed as an excellent mixed-type inhibitor for mild steel corrosion in 1 M HCl.

  1. Corrosion Inhibition of Leucaena Leucocephala Pod on Mild Steel in Sulphuric Acid Solution

    Institute of Scientific and Technical Information of China (English)

    P.Muthukrishnan; B.Jeyaprabha; P.Prakash

    2013-01-01

    The corrosion of the mild steel in 1 mol/L H2SO4 was investigated using Leucaena leucocephala pod extract (LLPE) as corrosion inhibitor by weight loss and electrochemical techniques.Inhibition efficiency of 95% was achieved with 500×10-6 of LLPE at 308 K.The polarization studies showed that LLPE acted as mixed type inhibitor.The adsorption of the studied inhibitor on mild steel obeyed Langmuir adsorption isotherm.Protective film formation against acid attack was confirmed by FT-IR,XRD and SEM techniques.

  2. Influence of poly(aminoquinone) on corrosion inhibition of iron in acid media

    Science.gov (United States)

    Jeyaprabha, C.; Sathiyanarayanan, S.; Phani, K. L. N.; Venkatachari, G.

    2005-11-01

    The inhibitor performance of chemically synthesized water soluble poly(aminoquinone) (PAQ) on iron corrosion in 0.5 M sulphuric acid was studied in relation to inhibitor concentration using potentiodynamic polarization and electrochemical impedance spectroscopy measurements. On comparing the inhibition performance of PAQ with that of the monomer o-phenylenediamine (OPD), the OPD gave an efficiency of 80% for 1000 ppm while it was 90% for 100 ppm of PAQ. PAQ was found to be a mixed inhibitor. Besides, PAQ was able to improve the passivation tendency of iron in 0.5 M H 2SO 4 markedly.

  3. Effects of inhibition gastric acid secretion on arterial acid-base status during digestion in the toad Bufo marinus.

    Science.gov (United States)

    Andersen, Johnnie B; Andrade, Denis V; Wang, Tobias

    2003-07-01

    Digestion affects acid-base status, because the net transfer of HCl from the blood to the stomach lumen leads to an increase in HCO3(-) levels in both extra- and intracellular compartments. The increase in plasma [HCO3(-)], the alkaline tide, is particularly pronounced in amphibians and reptiles, but is not associated with an increased arterial pH, because of a concomitant rise in arterial PCO2 caused by a relative hypoventilation. In this study, we investigate whether the postprandial increase in PaCO2 of the toad Bufo marinus represents a compensatory response to the increased plasma [HCO3(-)] or a state-dependent change in the control of pulmonary ventilation. To this end, we successfully prevented the alkaline tide, by inhibiting gastric acid secretion with omeprazole, and compared the response to that of untreated toads determined in our laboratory during the same period. In addition, we used vascular infusions of bicarbonate to mimic the alkaline tide in fasting animals. Omeprazole did not affect blood gases, acid-base and haematological parameters in fasting toads, but abolished the postprandial increase in plasma [HCO3(-)] and the rise in arterial PCO2 that normally peaks 48 h into the digestive period. Vascular infusion of HCO3(-), that mimicked the postprandial rise in plasma [HCO3(-)], led to a progressive respiratory compensation of arterial pH through increased arterial PCO2. Thus, irrespective of whether the metabolic alkalosis is caused by gastric acid secretion in response to a meal or experimental infusion of bicarbonate, arterial pH is being maintained by an increased arterial PCO2. It seems, therefore, that the elevated PCO2, occuring during the postprandial period, constitutes of a regulated response to maintain pH rather than a state-dependent change in ventilatory control.

  4. Messenger Ribonucleic Acid Synthesis and Degradation in Escherichia coli During Inhibition of Translation

    Science.gov (United States)

    Pato, Martin L.; Bennett, Peter M.; Von Meyenburg, Kaspar

    1973-01-01

    Various aspects of the coupling between the movement of ribosomes along messenger ribonucleic acids (mRNA) and the synthesis and degradation of mRNA have been investigated. Decreasing the rate of movement of ribosomes along an mRNA does not affect the rate of movement of some, and possibly most, of the RNA polymerases transcribing the gene coding for that mRNA. Inhibiting translation with antibiotics such as chloramphenicol, tetracycline, or fusidic acid protects extant mRNA from degradation, presumably by immobilizing ribosomes, whereas puromycin exposes mRNA to more rapid degradation than normal. The promoter distal (3′) portion of mRNA, synthesized after ribosomes have been immobilized by chloramphenicol on the promoter proximal (5′) portion of the mRNA, is subsequently degraded. PMID:4583248

  5. Inhibition of the hyperpolarization-activated current (if) of rabbit SA node myocytes by niflumic acid.

    Science.gov (United States)

    Accili, E A; DiFrancesco, D

    1996-03-01

    The effects of the amphiphilic substance niflumic acid (NFA) were examined in myocytes isolated from the sino-atrial node of the rabbit heart. NFA (50 and 500 microM), for 30-60 s, produced a reversible negative chronotropic effect by reducing the rate of diastolic depolarization, suggesting an inhibitory effect on the hyperpolarization-activated pacemaker current (if). NFA (from 0.05 to 500 microM) inhibited if by modifying the current kinetics, without alteration of the conductance. This was shown by evidence indicating that: (1) NFA inhibited if during hyperpolarizing pulses to the mid-point of if activation but not at fully activating voltages; (2) the slope and reversal potential of the fully activated current/voltage (I/V) relation were not altered by NFA, indicating no change in slope conductance or ion selectivity; and (3) hyperpolarizing ramp protocols confirmed the lack of action of 50 microM NFA on the fully activated current and a shift of approximately -8 mV. Although similar to inhibition by acetylcholine (ACh), inhibition by NFA was only partly additive with the action of ACh and was not altered by atropine or pertussis toxin, both of which eliminated the action of ACh. The effect of NFA was present after stimulation of adenylate cyclase by forskolin and after inhibition of phosphodiesterase by isobutylmethylxanthine (IBMX). In cell-attached patch measurements, NFA applied externally did not affect if measured in the patch. Finally, application of NFA to the cytoplasmic side of excised patches did not alter the current in the absence or presence of adenosine 3',5'-cyclic monophosphate (cAMP). These results suggest an external, membrane-delimited action of NFA on if.

  6. Trypanocidal Effect of Isotretinoin through the Inhibition of Polyamine and Amino Acid Transporters in Trypanosoma cruzi

    Science.gov (United States)

    Reigada, Chantal; Valera-Vera, Edward A.; Sayé, Melisa; Errasti, Andrea E.; Avila, Carla C.; Miranda, Mariana R.; Pereira, Claudio A.

    2017-01-01

    Polyamines are essential compounds to all living organisms and in the specific case of Trypanosoma cruzi, the causative agent of Chagas disease, they are exclusively obtained through transport processes since this parasite is auxotrophic for polyamines. Previous works reported that retinol acetate inhibits Leishmania growth and decreases its intracellular polyamine concentration. The present work describes a combined strategy of drug repositioning by virtual screening followed by in vitro assays to find drugs able to inhibit TcPAT12, the only polyamine transporter described in T. cruzi. After a screening of 3000 FDA-approved drugs, 7 retinoids with medical use were retrieved and used for molecular docking assays with TcPAT12. From the docked molecules, isotretinoin, a well-known drug used for acne treatment, showed the best interaction score with TcPAT12 and was selected for further in vitro studies. Isotretinoin inhibited the polyamine transport, as well as other amino acid transporters from the same protein family (TcAAAP), with calculated IC50 values in the range of 4.6–10.3 μM. It also showed a strong inhibition of trypomastigote burst from infected cells, with calculated IC50 of 130 nM (SI = 920) being significantly less effective on the epimastigote stage (IC50 = 30.6 μM). The effect of isotretinoin on the parasites plasma membrane permeability and on mammalian cell viability was tested, and no change was observed. Autophagosomes and apoptotic bodies were detected as part of the mechanisms of isotretinoin-induced death indicating that the inhibition of transporters by isotretinoin causes nutrient starvation that triggers autophagic and apoptotic processes. In conclusion, isotretinoin is a promising trypanocidal drug since it is a multi-target inhibitor of essential metabolites transporters, in addition to being an FDA-approved drug largely used in humans, which could reduce significantly the requirements for its possible application in the treatment of

  7. The 5-lipoxygenase inhibitor, zileuton, suppresses prostaglandin biosynthesis by inhibition of arachidonic acid release in macrophages

    Science.gov (United States)

    Rossi, A; Pergola, C; Koeberle, A; Hoffmann, M; Dehm, F; Bramanti, P; Cuzzocrea, S; Werz, O; Sautebin, L

    2010-01-01

    BACKGROUND AND PURPOSE Zileuton is the only 5-lipoxygenase (5-LOX) inhibitor marketed as a treatment for asthma, and is often utilized as a selective tool to evaluate the role of 5-LOX and leukotrienes. The aim of this study was to investigate the effect of zileuton on prostaglandin (PG) production in vitro and in vivo. EXPERIMENTAL APPROACH Peritoneal macrophages activated with lipopolysaccharide (LPS)/interferon γ (LPS/IFNγ), J774 macrophages and human whole blood stimulated with LPS were used as in vitro models and rat carrageenan-induced pleurisy as an in vivo model. KEY RESULTS Zileuton suppressed PG biosynthesis by interference with arachidonic acid (AA) release in macrophages. We found that zileuton significantly reduced PGE2 and 6-keto prostaglandin F1α (PGF1α) levels in activated mouse peritoneal macrophages and in J774 macrophages. This effect was not related to 5-LOX inhibition, because it was also observed in macrophages from 5-LOX knockout mice. Notably, zileuton inhibited PGE2 production in LPS-stimulated human whole blood and suppressed PGE2 and 6-keto PGF1α pleural levels in rat carrageenan-induced pleurisy. Interestingly, zileuton failed to inhibit the activity of microsomal PGE2 synthase1 and of cyclooxygenase (COX)-2 and did not affect COX-2 expression. However, zileuton significantly decreased AA release in macrophages accompanied by inhibition of phospholipase A2 translocation to cellular membranes. CONCLUSIONS AND IMPLICATION Zileuton inhibited PG production by interfering at the level of AA release. Its mechanism of action, as well as its use as a pharmacological tool, in experimental models of inflammation should be reassessed. PMID:20880396

  8. Investigation of adsorption and inhibitive effect of acid red GRE (183 dye on the corrosion of carbon steel in hydrochloric acid media

    Directory of Open Access Journals (Sweden)

    M. Abd El-raouf

    2015-09-01

    Full Text Available The adsorption and corrosion inhibitive effect of acid red GRE (183 dye on carbon steel alloy in 1 M HCl solutions was studied using various techniques. Results of weight loss, Tafel polarization measurements and electrochemical impedance spectroscopy (EIS techniques show that this compound has fairly good inhibiting properties for steel corrosion in acidic bath; with efficiency around 96% at a concentration of 50 ppm. The inhibition is of a mixed anodic–cathodic nature. Factors affecting the corrosion process have been calculated and discussed. Acid red GRE (183 dye was shown to be an inhibitor in the acidic corrosion. Inhibition efficiency increased with acid red GRE (183 dye concentration but decreased with rise in temperature, corrosion inhibition is attributed to the adsorption of acid red GRE (183 dye on the carbon steel surface via a physical adsorption mechanism. Langmuir isotherm is found to provide an accurate description of the adsorption behavior of the investigated azo compound. The nature of the protective film was investigated using SEM and EDX techniques.

  9. Kinetics of Synthesis (-)Abietic acid Based on Rosin%松香合成(-)枞酸的异构反应动力学研究

    Institute of Scientific and Technical Information of China (English)

    刘红军; 周永红; 冯国东; 郭晓昕

    2009-01-01

    天然(-)枞酸的含量占中国脂松香的40%左右,通过绿色制备工艺得到的(-)枞酸产物纯度达到99%以上,其得率在80%以上.使用GC-MS测定了松香树脂酸在大孔强酸性阳离子交换树脂催化下,异构重排反应生成(-)枞酸的反应动力学,结果符合一级反应方程,动力学方程:长叶松酸为Inca=-1.657×10-2t+3.352,反应速率常数1.657×10-2t-1;新枞酸为Inca=-1.385×10-2t+2.793,反应速率常数1.385×10->t-1.

  10. A MNDO study on abietic-type resin acids in rosin%松香中枞酸型树脂酸的MNDO研究

    Institute of Scientific and Technical Information of China (English)

    段文贵; 谢小光

    2003-01-01

    应用半经验MNDO量子化学计算方法确定了松香中4种枞酸型树脂酸的优化几何构型及相对能量,据此对该类树脂酸分子的构象及相对稳定性作了分析与预测,并与已知的实验结果作了对比.

  11. Inhibition of ice crystallisation in highly viscous aqueous organic acid droplets

    Directory of Open Access Journals (Sweden)

    B. J. Murray

    2008-09-01

    Full Text Available Homogeneous nucleation of ice within aqueous solution droplets and their subsequent crystallisation is thought to play a significant role in upper tropospheric ice cloud formation. It is normally assumed that homogeneous nucleation will take place at a threshold supersaturation, irrespective of the identity of the solute, and that rapid growth of ice particles will follow immediately after nucleation. However, it is shown here through laboratory experiments that droplets may not readily freeze in the very cold tropical tropopause layer (TTL, typical temperatures of 186–200 K. In these experiments ice crystal growth in citric acid solution droplets did not occur when ice nucleated below 197±6 K. Citric acid, 2-hydroxypropane-1,2,3-tricarboxyllic acid, is a molecule with similar functionality to oxygenated organic compounds which are ubiquitous in atmospheric aerosol. It is therefore thought to be a sensible proxy for atmospheric organic material. Evidence is presented that suggests citric acid solution droplets become ultra-viscous and form glassy solids under atmospherically relevant conditions. Diffusion of liquid water molecules to ice nuclei is expected to be very slow in ultra-viscous solution droplets and nucleation is negligible in glassy droplets; this most likely provides an explanation for the experimentally observed inhibition of ice crystallisation. The implications of ultra-viscous and glassy solution droplets for ice cloud formation and supersaturations in the TTL are discussed.

  12. Inhibition of ice crystallisation in highly viscous aqueous organic acid droplets

    Directory of Open Access Journals (Sweden)

    B. J. Murray

    2008-05-01

    Full Text Available Homogeneous nucleation of ice within aqueous solution droplets and their subsequent crystallisation is thought to play a significant role in upper tropospheric ice cloud formation. It is normally assumed that homogeneous nucleation will take place at a threshold supersaturation, irrespective of the identity of the solute, and that rapid growth of ice particles will follow immediately after nucleation. However, it is shown here through laboratory experiments that droplets may not readily freeze in the very cold tropical tropopause layer (TTL, typical temperatures of 186–200 K. In these experiments ice crystal growth in citric acid solution droplets did not occur when ice nucleated below 197±6 K. Citric acid, 2-hydroxypropane-1,2,3-tricarboxyllic acid, is a molecule with similar functionality to oxygenated organic compounds which are ubiquitous to atmospheric aerosol and is therefore thought to be a sensible proxy for atmospheric organic material. Evidence is presented that suggest citric acid solution droplets become ultra-viscous or perhaps even glassy under atmospherically relevant conditions. Diffusion of liquid water molecules to ice nuclei is expected to be very slow in ultra-viscous solution droplets and this most likely provides an explanation for the experimentally observed inhibition of ice crystallisation. The implications of ultra-viscous solution droplets for ice cloud formation and supersaturations in the TTL are discussed.

  13. Evaluation of human D-amino acid oxidase inhibition by anti-psychotic drugs in vitro.

    Science.gov (United States)

    Shishikura, Miho; Hakariya, Hitomi; Iwasa, Sumiko; Yoshio, Takashi; Ichiba, Hideaki; Yorita, Kazuko; Fukui, Kiyoshi; Fukushima, Takeshi

    2014-06-01

    It is of importance to determine whether antipsychotic drugs currently prescribed for schizophrenia exert D-amino acid oxidase (DAO)-inhibitory effects. We first investigated whether human (h)DAO can metabolize D-kynurenine (D-KYN) to produce the fluorescent compound kynurenic acid (KYNA) by using high-performance liquid chromatography with mass spectrometry, and fluorescence spectrometry. After confirmation of KYNA production from D-KYN by hDAO, 8 first- and second-generation antipsychotic drugs, and 6 drugs often prescribed concomitantly, were assayed for hDAO-inhibitory effects by using in vitro fluorometric methods with D-KYN as the substrate. DAO inhibitors 3-methylpyrazole-5-carboxylic acid and 4H-thieno[3,2-b]pyrrole-5-carboxylic acid inhibited KYNA production in a dose-dependent manner. Similarly, the second-generation antipsychotics blonanserin and risperidone were found to possess relatively strong hDAO-inhibitory effects in vitro (5.29 ± 0.47 μM and 4.70 ± 0.17 μM, respectively). With regard to blonanserin and risperidone, DAO-inhibitory effects should be taken into consideration in the context of their in vivo pharmacotherapeutic efficacy.

  14. Inhibition profile of a series of phenolic acids on bovine lactoperoxidase enzyme.

    Science.gov (United States)

    Sarikaya, S Beyza Ozturk; Sisecioglu, Melda; Cankaya, Murat; Gulcin, İlhami; Ozdemir, Hasan

    2015-06-01

    Lactoperoxidase (LPO) catalyzes the oxidation of numerous of organic and inorganic substrates by hydrogen peroxide. It has very vital activity in the innate immune system by decreasing or stopping the activation of the bacteria in milk and mucosal secretions. This study's purpose was to investigate in vitro effect of some phenolic acids (ellagic, gallic, ferulic, caffeic, quercetin, p-coumaric, syringic, catechol and epicatechin) on the purified LPO. This enzyme was purified from milk by using different methods such as Amberlite CG-50 resin, CM-Sephadex C-50 ion-exchange and Sephadex G-100 gel filtration chromatography. LPO was purified 28.7-fold with a yield of 20.03%. We found phenolic acids have inhibition effects on bovine LPO enzyme to different concentrations. Our study showed lower concentrations of caffeic acid, ferulic acid and quercetin exhibited much higher inhibitory effect on enzyme, so these three of them were clearly a more potent inhibitor than the others were. All of compounds were non-competitive inhibitors.

  15. Changes in composition and enamel demineralization inhibition activities of gallic acid at different pH values

    NARCIS (Netherlands)

    Zhang, J.; Huang, X.; Huang, S.; Deng, M.; Xie, X.; Liu, M.; Liu, H.; Zhou, X.; Li, J.; ten Cate, J.M.

    2015-01-01

    Background. Gallic acid (GA) has been shown to inhibit demineralization and enhance remineralization of enamel; however, GA solution is highly acidic. This study was to investigate the stability of GA solutions at various pH and to examine the resultant effects on enamel demineralization. Methods. T

  16. The pattern recognition molecule deleted in malignant brain tumors 1 (DMBT1) and synthetic mimics inhibit liposomal nucleic acid delivery

    DEFF Research Database (Denmark)

    Lund Hansen, Pernille; Blaich, Stephanie; End, Caroline;

    2011-01-01

    Liposomal nucleic acid delivery is a preferred option for therapeutic settings. The cellular pattern recognition molecule DMBT1, secreted at high levels in various diseases, and synthetic mimics efficiently inhibit liposomal nucleic acid delivery to human cells. These findings may have relevance...

  17. Antibacterial activity of lichen secondary metabolite usnic acid is primarily caused by inhibition of RNA and DNA synthesis.

    Science.gov (United States)

    Maciąg-Dorszyńska, Monika; Węgrzyn, Grzegorz; Guzow-Krzemińska, Beata

    2014-04-01

    Usnic acid, a compound produced by various lichen species, has been demonstrated previously to inhibit growth of different bacteria and fungi; however, mechanism of its antimicrobial activity remained unknown. In this report, we demonstrate that usnic acid causes rapid and strong inhibition of RNA and DNA synthesis in Gram-positive bacteria, represented by Bacillus subtilis and Staphylococcus aureus, while it does not inhibit production of macromolecules (DNA, RNA, and proteins) in Escherichia coli, which is resistant to even high doses of this compound. However, we also observed slight inhibition of RNA synthesis in a Gram-negative bacterium, Vibrio harveyi. Inhibition of protein synthesis in B. subtilis and S. aureus was delayed, which suggest indirect action (possibly through impairment of transcription) of usnic acid on translation. Interestingly, DNA synthesis was halted rapidly in B. subtilis and S. aureus, suggesting interference of usnic acid with elongation of DNA replication. We propose that inhibition of RNA synthesis may be a general mechanism of antibacterial action of usnic acid, with additional direct mechanisms, such as impairment of DNA replication in B. subtilis and S. aureus.

  18. Corrosion inhibition of steel in sulfuric acidic solution by the Chenopodium Ambrosioides Extracts

    Directory of Open Access Journals (Sweden)

    L. Bammou

    2014-10-01

    Full Text Available The influence of natural occurring extract of Chenopodium Ambrosioides (CAE on the corrosion inhibition of carbon steel in sulfuric acid solution is studied by the weight loss method, potentiodynamic polarization and impedance spectroscopy (EIS measurements. The experimental results reveal that extract has a good inhibiting effect on the metal tested in 0.5 M H2SO4 solution. The protection efficiency increases with increasing inhibitor concentration to attain 94% at 4 g/l. Potentiodynamic polarization studies clearly reveal that it acts essentially as a cathodic inhibitor. EIS results show that the change in the impedance parameters (Rt and Cdl with concentration of extract of Chenopodium Ambrosioides is indicative of the adsorption of molecules leading to the formation of a protective layer on the surface of carbon steel. The efficiency decreases with temperature. The adsorption of Chenopodium Ambrosioides extract is found to obey the Langmuir adsorption isotherm. The activation energies and enthalpies of the corrosion process of carbon steel in acidic medium were determined.

  19. Quercetin induces HepG2 cell apoptosis by inhibiting fatty acid biosynthesis.

    Science.gov (United States)

    Zhao, Peng; Mao, Jun-Min; Zhang, Shu-Yun; Zhou, Ze-Quan; Tan, Yang; Zhang, Yu

    2014-08-01

    Quercetin can inhibit the growth of cancer cells with the ability to act as a 'chemopreventer'. Its cancer-preventive effect has been attributed to various mechanisms, including the induction of cell-cycle arrest and/or apoptosis, as well as its antioxidant functions. Quercetin can also reduce adipogenesis. Previous studies have shown that quercetin has potent inhibitory effects on animal fatty acid synthase (FASN). In the present study, activity of quercetin was evaluated in human liver cancer HepG2 cells. Intracellular FASN activity was calculated by measuring the absorption of NADPH via a spectrophotometer. MTT assay was used to test the cell viability, immunoblot analysis was performed to detect FASN expression levels and the apoptotic effect was detected by Hoechst 33258 staining. In the present study, it was found that quercetin could induce apoptosis in human liver cancer HepG2 cells with overexpression of FASN. This apoptosis was accompanied by the reduction of intracellular FASN activity and could be rescued by 25 or 50 μM exogenous palmitic acids, the final product of FASN-catalyzed synthesis. These results suggested that the apoptosis induced by quercetin was via the inhibition of FASN. These findings suggested that quercetin may be useful for preventing human liver cancer.

  20. Docosahexaenoic acid inhibits Helicobacter pylori growth in vitro and mice gastric mucosa colonization.

    Directory of Open Access Journals (Sweden)

    Marta Correia

    Full Text Available H. pylori drug-resistant strains and non-compliance to therapy are the major causes of H. pylori eradication failure. For some bacterial species it has been demonstrated that fatty acids have a growth inhibitory effect. Our main aim was to assess the ability of docosahexaenoic acid (DHA to inhibit H. pylori growth both in vitro and in a mouse model. The effectiveness of standard therapy (ST in combination with DHA on H. pylori eradication and recurrence prevention success was also investigated. The effects of DHA on H. pylori growth were analyzed in an in vitro dose-response study and n in vivo model. We analized the ability of H. pylori to colonize mice gastric mucosa following DHA, ST or a combination of both treatments. Our data demonstrate that DHA decreases H. pylori growth in vitro in a dose-dependent manner. Furthermore, DHA inhibits H. pylori gastric colonization in vivo as well as decreases mouse gastric mucosa inflammation. Addition of DHA to ST was also associated with lower H. pylori infection recurrence in the mouse model. In conclusion, DHA is an inhibitor of H. pylori growth and its ability to colonize mouse stomach. DHA treatment is also associated with a lower recurrence of H. pylori infection in combination with ST. These observations pave the way to consider DHA as an adjunct agent in H. pylori eradication treatment.

  1. Chlorogenic acid inhibits glioblastoma growth through repolarizating macrophage from M2 to M1 phenotype

    Science.gov (United States)

    Xue, Nina; Zhou, Qin; Ji, Ming; Jin, Jing; Lai, Fangfang; Chen, Ju; Zhang, Mengtian; Jia, Jing; Yang, Huarong; Zhang, Jie; Li, Wenbin; Jiang, Jiandong; Chen, Xiaoguang

    2017-01-01

    Glioblastoma is an aggressive tumor that is associated with distinctive infiltrating microglia/macrophages populations. Previous studies demonstrated that chlorogenic acid (5-caffeoylquinic acid, CHA), a phenolic compound with low molecular weight, has an anti-tumor effect in multiple malignant tumors. In the present study, we focused on the macrophage polarization to investigate the molecular mechanisms behind the anti-glioma response of CHA in vitro and in vivo. We found that CHA treatment increased the expression of M1 markers induced by LPS/IFNγ, including iNOS, MHC II (I-A/I-E subregions) and CD11c, and reduced the expression of M2 markers Arg and CD206 induced by IL-4, resulting in promoting the production of apoptotic-like cancer cells and inhibiting the growth of tumor cells by co-culture experiments. The activations of STAT1 and STAT6, which are two crucial signaling events in M1 and M2-polarization, were significantly promoted and suppressed by CHA in macrophages, respectively. Furthermore, In G422 xenograft mice, CHA increased the proportion of CD11c-positive M1 macrophages and decreased the distribution of CD206-positive M2 macrophages in tumor tissue, consistent with the reduction of tumor weight observed in CHA-treated mice. Overall these findings indicated CHA as a potential therapeutic approach to reduce glioma growth through promoting M1-polarized macrophage and inhibiting M2 phenotypic macrophage. PMID:28045028

  2. Fermentation and alternative oxidase contribute to the action of amino acid biosynthesis-inhibiting herbicides.

    Science.gov (United States)

    Zulet, Amaia; Gil-Monreal, Miriam; Zabalza, Ana; van Dongen, Joost T; Royuela, Mercedes

    2015-03-01

    Acetolactate synthase inhibitors (ALS-inhibitors) and glyphosate (GLP) are two classes of herbicide that act by the specific inhibition of an enzyme in the biosynthetic pathway of branched-chain or aromatic amino acids, respectively. The physiological effects that are detected after application of these two classes of herbicides are not fully understood in relation to the primary biochemical target inhibition, although they have been well documented. Interestingly, the two herbicides' toxicity includes some common physiological effects suggesting that they kill the treated plants by a similar pattern despite targeting different enzymes. The induction of aerobic ethanol fermentation and alternative oxidase (AOX) are two examples of these common effects. The objective of this work was to gain further insight into the role of fermentation and AOX induction in the toxic consequences of ALS-inhibitors and GLP. For this, Arabidopsis T-DNA knockout mutants of alcohol dehydrogenase (ADH) 1 and AOX1a were used. The results found in wild-type indicate that both GLP and ALS-inhibitors reduce ATP production by inducing fermentation and alternative respiration. The main physiological effects in the process of herbicide activity upon treated plants were accumulation of carbohydrates and total free amino acids. The effects of the herbicides on these parameters were less pronounced in mutants compared to wild-type plants. The role of fermentation and AOX regarding pyruvate availability is also discussed.

  3. Inhibition of Gallic Acid on the Growth and Biofilm Formation of Escherichia coli and Streptococcus mutans.

    Science.gov (United States)

    Shao, Dongyan; Li, Jing; Li, Ji; Tang, Ruihua; Liu, Liu; Shi, Junling; Huang, Qingsheng; Yang, Hui

    2015-06-01

    New strategies for biofilm inhibition are becoming highly necessary because of the concerns to synthetic additives. As gallic acid (GA) is a hydrolysated natural product of tannin in Chinese gall, this research studied the effects of GA on the growth and biofilm formation of bacteria (Escherichia coli [Gram-negative] and Streptococcus mutans [Gram-positive]) under different conditions, such as nutrient levels, temperatures (25 and 37 °C) and incubation times (24 and 48 h). The minimum antimicrobial concentration of GA against the two pathogenic organisms was determined as 8 mg/mL. GA significantly affected the growth curves of both test strains at 25 and 37 °C. The nutrient level, temperature, and treatment time influenced the inhibition activity of GA on both growth and biofim formation of tested pathogens. The inhibition effect of GA on biofilm could be due to other factors in addition to the antibacterial effect. Overall, GA was most effective against cultures incubated at 37 °C for 24 h and at 25 °C for 48 h in various concentrations of nutrients and in vegetable wash waters, which indicated the potential of GA as emergent sources of biofilm control products.

  4. Allosteric Inhibition of Phosphoenolpyruvate Carboxylases is Determined by a Single Amino Acid Residue in Cyanobacteria

    Science.gov (United States)

    Takeya, Masahiro; Hirai, Masami Yokota; Osanai, Takashi

    2017-01-01

    Phosphoenolpyruvate carboxylase (PEPC) is an important enzyme for CO2 fixation and primary metabolism in photosynthetic organisms including cyanobacteria. The kinetics and allosteric regulation of PEPCs have been studied in many organisms, but the biochemical properties of PEPC in the unicellular, non-nitrogen-fixing cyanobacterium Synechocystis sp. PCC 6803 have not been clarified. In this study, biochemical analysis revealed that the optimum pH and temperature of Synechocystis 6803 PEPC proteins were 7.3 and 30 °C, respectively. Synechocystis 6803 PEPC was found to be tolerant to allosteric inhibition by several metabolic effectors such as malate, aspartate, and fumarate compared with other cyanobacterial PEPCs. Comparative sequence and biochemical analysis showed that substitution of the glutamate residue at position 954 with lysine altered the enzyme so that it was inhibited by malate, aspartate, and fumarate. PEPC of the nitrogen-fixing cyanobacterium Anabaena sp. PCC 7120 was purified, and its activity was inhibited in the presence of malate. Substitution of the lysine at position 946 (equivalent to position 954 in Synechocystis 6803) with glutamate made Anabaena 7120 PEPC tolerant to malate. These results demonstrate that the allosteric regulation of PEPC in cyanobacteria is determined by a single amino acid residue, a characteristic that is conserved in different orders. PMID:28117365

  5. Corrosion Inhibition Study of Mild Steel in Acidic Medium by Antibiotic Drugs: A Comparative Study

    Directory of Open Access Journals (Sweden)

    Md. A. Aziz

    2014-04-01

    Full Text Available A comparison of the inhibiting efficiency of antibiotic drugs (ciprofloxacin, cloxacillin, and amoxicillin on the corrosion of mild steel in 1 mol·L−1 HCl were studied at room temperature using mass loss measurement. The main reason is probably be due to the formation of protective coverage by the inhibitor as other authors reported previously. Adsorption characteristics of the inhibitor has also been studied using simple equation and it was found that drugs inhibits the corrosion of mild steel by being adsorbed on the surface of mild steel by a physical adsorption mechanism. The adsorption of drugs on the mild steel surface was found to be spontaneous and obey the Langmuir adsorption isotherm model. It was observed that the test drug has a promising inhibitory action in acid medium against corrosion of mild steel. Moreover it was revealed that an inhibition efficiency of 80.1 % can be achieved with 3×10-3M ciprofloxacin drug treatment on mild steel.

  6. Potent inhibition of human immunodeficiency virus by MDL 101028, a novel sulphonic acid polymer.

    Science.gov (United States)

    Taylor, D L; Brennan, T M; Bridges, C G; Mullins, M J; Tyms, A S; Jackson, R; Cardin, A D

    1995-10-01

    MDL 101028, a novel biphenyl disulphonic acid urea co-polymer was designed and synthesised as a heparin mimetic. This low molecular weight polymer showed potent inhibition of human immunodeficiency virus type 1 (HIV-1) replication in a number of host-cell/virus systems, including primary clinical isolates of the virus cultured in human peripheral blood mononuclear cells (PBMCs). When compared with the heterogeneous polysulphated molecules, heparin and dextran sulphate, this chemically defined compound showed equivalent antiviral activity with 50% inhibitory concentrations (IC50s) in the range 0.27-3.0 micrograms/ml in the host-cell/virus systems tested. MDL 101028 also inhibited the replication of HIV type 2 and the simian immunodeficiency virus (SIV), as well as HIV-1 variants resistant to reverse transcriptase inhibitors. Virus growth was blocked when exposure of T-lymphocytes to MDL 101028 was restricted to the virus absorption stage, or even in whole blood conditions. MDL 101028 did not irreversibly inactivate virions, and in contrast to heparin, did not inhibit the attachment of radiolabelled HIV-1 to CD4+ T-cells. MDL 101028 blocked HIV-induced cell-to-cell fusion and this activity appears to explain the mechanism of its antiviral action. The antiviral evaluation of discrete oligomer molecules of MDL 101028 showed that a polymer chain length of six repeating units had optimal potency. The lack of anticoagulant properties and significant antiviral activity in whole blood may allow the development of MDL 101028 as a treatment of HIV infections.

  7. Stimulation of h efflux and inhibition of photosynthesis by esters of carboxylic acids.

    Science.gov (United States)

    Duhaime, D E; Bown, A W

    1983-11-01

    Suspensions of mechanically isolated Asparagus sprengeri Regel mesophyll cells were used to investigate the influence of various carboxyester compounds on rates of net H(+) efflux in the dark or light and photosynthetic O(2) production. Addition of 0.15 to 1.5 millimolar malathion, alpha-naphthyl acetate, phenyl acetate, or p-nitrophenyl acetate stimulated H(+) efflux and inhibited photosynthesis within 1 minute. In contrast, the more polar esters methyl acetoacetate or ethyl p-aminobenzoate had little or no effect on either of these two processes. A 0.15 millimolar concentration of alpha-naphthylacetate stimulated the normal rate of H(+) efflux, 0.77 nanomoles H(+) per 10(6) cells per minute by 750% and inhibited photosynthesis by 100%. The four active carboxyester compounds also stimulated H(+) efflux after the normal rate of H(+) efflux was eliminated with 0.01 milligrams per milliliter oligomycin or 100% N(2). Oligomycin reduced the ATP level by 70%. Incubation of cells with malathion, alpha-naphthyl acetate, or p-nitrophenyl acetate resulted in the generation of the respective hydrolysis products ethanol, alpha-naphthol, and p-nitrophenol. It is proposed that inhibition of photosynthesis and stimulation of H(+) efflux result when nonpolar carboxyester compounds enter the cell and generate acidic carboxyl groups when hydrolyzed by esterase enzymes.

  8. Betulinic acid, a bioactive pentacyclic triterpenoid, inhibits skeletal-related events induced by breast cancer bone metastases and treatment

    Energy Technology Data Exchange (ETDEWEB)

    Park, Se Young; Kim, Hyun-Jeong; Kim, Ki Rim; Lee, Sun Kyoung; Lee, Chang Ki; Park, Kwang-Kyun, E-mail: biochelab@yuhs.ac; Chung, Won-Yoon, E-mail: wychung@yuhs.ac

    2014-03-01

    Many breast cancer patients experience bone metastases and suffer skeletal complications. The present study provides evidence on the protective and therapeutic potential of betulinic acid on cancer-associated bone diseases. Betulinic acid is a naturally occurring triterpenoid with the beneficial activity to limit the progression and severity of cancer, diabetes, cardiovascular diseases, atherosclerosis, and obesity. We first investigated its effect on breast cancer cells, osteoblastic cells, and osteoclasts in the vicious cycle of osteolytic bone metastasis. Betulinic acid reduced cell viability and the production of parathyroid hormone-related protein (PTHrP), a major osteolytic factor, in MDA-MB-231 human metastatic breast cancer cells stimulated with or without tumor growth factor-β. Betulinic acid blocked an increase in the receptor activator of nuclear factor-kappa B ligand (RANKL)/osteoprotegerin ratio by downregulating RANKL protein expression in PTHrP-treated human osteoblastic cells. In addition, betulinic acid inhibited RANKL-induced osteoclastogenesis in murine bone marrow macrophages and decreased the production of resorbed area in plates with a bone biomimetic synthetic surface by suppressing the secretion of matrix metalloproteinase (MMP)-2, MMP-9, and cathepsin K in RANKL-induced osteoclasts. Furthermore, oral administration of betulinic acid inhibited bone loss in mice intra-tibially inoculated with breast cancer cells and in ovariectomized mice causing estrogen deprivation, as supported by the restored bone morphometric parameters and serum bone turnover markers. Taken together, these findings suggest that betulinic acid may have the potential to prevent bone loss in patients with bone metastases and cancer treatment-induced estrogen deficiency. - Highlights: • Betulinic acid reduced PTHrP production in human metastatic breast cancer cells. • Betulinic acid blocked RANKL/OPG ratio in PTHrP-stimulated human osteoblastic cells. • Betulinic

  9. Combination of intermittent calorie restriction and eicosapentaenoic acid for inhibition of mammary tumors.

    Science.gov (United States)

    Mizuno, Nancy K; Rogozina, Olga P; Seppanen, Christine M; Liao, D Joshua; Cleary, Margot P; Grossmann, Michael E

    2013-06-01

    There are a number of dietary interventions capable of inhibiting mammary tumorigenesis; however, the effectiveness of dietary combinations is largely unexplored. Here, we combined 2 interventions previously shown individually to inhibit mammary tumor development. The first was the use of the omega-3 fatty acid, eicosapentaenoic acid (EPA), and the second was the implementation of calorie restriction. MMTV-Her2/neu mice were used as a model for human breast cancers, which overexpress Her2/neu. Six groups of mice were enrolled. Half were fed a control (Con) diet with 10.1% fat calories from soy oil, whereas the other half consumed a diet with 72% fat calories from EPA. Within each diet, mice were further divided into ad libitum (AL), chronic calorie-restricted (CCR), or intermittent calorie-restricted (ICR) groups. Mammary tumor incidence was lowest in ICR-EPA (15%) and highest in AL-Con mice (87%), whereas AL-EPA, CCR-Con, CCR-EPA, and ICR-Con groups had mammary tumor incidence rates of 63%, 47%, 40%, and 59%, respectively. Survival was effected similarly by the interventions. Consumption of EPA dramatically reduced serum leptin (P < 0.02) and increased serum adiponectin in the AL-EPA mice compared with AL-Con mice (P < 0.001). Both CCR and ICR decreased serum leptin and insulin-like growth factor I (IGF-I) compared with AL mice but not compared with each other. These results illustrate that mammary tumor inhibition is significantly increased when ICR and EPA are combined as compared with either intervention alone. This response may be related to alterations in the balance of serum growth factors and adipokines.

  10. Synthetic resveratrol aliphatic acid inhibits TLR2-mediated apoptosis and an involvement of Akt/GSK3beta pathway.

    Science.gov (United States)

    Chen, Lin; Zhang, Yi; Sun, Xiuli; Li, Hui; LeSage, Gene; Javer, Avani; Zhang, Xiumei; Wei, Xinbing; Jiang, Yulin; Yin, Deling

    2009-07-01

    As resveratrol derivatives, resveratrol aliphatic acids were synthesized in our laboratory. Previously, we reported the improved pharmaceutical properties of the compounds compared to resveratrol, including better solubility in water and much tighter binding with human serum albumin. Here, we investigate the role of resveratrol aliphatic acids in Toll-like receptor 2 (TLR2)-mediated apoptosis. We showed that resveratrol aliphatic acid (R6A) significantly inhibits the expression of TLR2. In addition, overexpression of TLR2 in HEK293 cells caused a significant decrease in apoptosis after R6A treatment. Moreover, inhibition of TLR2 by R6A decreases serum deprivation-reduced the levels of phosphorylated Akt and phosphorylated glycogen synthase kinase 3beta (GSK3beta). Our study thus demonstrates that the resveratrol aliphatic acid inhibits cell apoptosis through TLR2 by the involvement of Akt/GSK3beta pathway.

  11. Uric acid inhibition of dipeptidyl peptidase IV in vitro is dependent on the intracellular formation of triuret.

    Science.gov (United States)

    Mohandas, Rajesh; Sautina, Laura; Beem, Elaine; Schuler, Anna; Chan, Wai-Yan; Domsic, John; McKenna, Robert; Johnson, Richard J; Segal, Mark S

    2014-08-01

    Uric acid affects endothelial and adipose cell function and has been linked to diseases such as hypertension, metabolic syndrome, and cardiovascular disease. Interestingly uric acid has been shown to increase endothelial progenitor cell (EPC) mobilization, a potential mechanism to repair endothelial injury. Since EPC mobilization is dependent on activity of the enzyme CD26/dipeptidyl peptidase (DPP)IV, we examined the effect uric acid will have on CD26/DPPIV activity. Uric acid inhibited the CD26/DPPIV associated with human umbilical vein endothelial cells but not human recombinant (hr) CD26/DPPIV. However, triuret, a product of uric acid and peroxynitrite, could inhibit cell associated and hrCD26/DPPIV. Increasing or decreasing intracellular peroxynitrite levels enhanced or decreased the ability of uric acid to inhibit cell associated CD26/DPPIV, respectively. Finally, protein modeling demonstrates how triuret can act as a small molecule inhibitor of CD26/DPPIV activity. This is the first time that uric acid or a uric acid reaction product has been shown to affect enzymatic activity and suggests a novel avenue of research in the role of uric acid in the development of clinically important diseases. Published by Elsevier Inc.

  12. Labdanolic acid methyl ester (LAME) exerts anti-inflammatory effects through inhibition of TAK-1 activation.

    Science.gov (United States)

    Cuadrado, Irene; Cidre, Florencia; Herranz, Sandra; Estevez-Braun, Ana; de las Heras, Beatriz; Hortelano, Sonsoles

    2012-01-01

    Labdane derivatives obtained from the diterpenoid labdanediol suppressed NO and PGE(2) production in LPS-stimulated RAW 264.7 macrophages. However, mechanisms involved in these inhibitory effects are not elucidated. In this study, we investigated the signaling pathways involved in the anti-inflammatory effects of labdanolic acid methyl ester (LAME) in peritoneal macrophages and examined its therapeutic effect in a mouse endotoxic shock model. LAME reduced the production of NO and PGE(2) in LPS-activated macrophages. This effect involved the inhibition of NOS-2 and COX-2 gene expression, acting at the transcription level. Examination of the effects of the diterpene on NF-κB signaling showed that LAME inhibits the phosphorylation of IκBα and IκBβ, preventing their degradation and the nuclear translocation of the NF-κB p65 subunit. Moreover, inhibition of MAPK signaling was also observed. A further experiment revealed that LAME inhibited the phosphorylation of transforming growth factor-β (TGF-β)-activated kinase 1 (TAK1), an upstream signaling molecule required for IKK and mitogen-activated protein kinases (MAPKs) activation. Inflammatory cytokines such as IL-6, TNF-α and IP-10 were downregulated in the presence of this compound after stimulation with LPS. Additionally, LAME also improved survival in a mouse model of endotoxemia and reduced the circulatory levels of cytokines (IL-6, TNF-α). In conclusion, these results indicate that labdane diterpene LAME significantly attenuates the pro-inflammatory response induced by LPS both in vivo and in vitro. Copyright © 2011 Elsevier Inc. All rights reserved.

  13. Effects of salvianolic acid B on in vitro growth inhibition and apoptosis induction of retinoblastoma cells

    Science.gov (United States)

    Liu, Xing-An

    2012-01-01

    AIM To observe the effects of salvianolic acid B (SalB) on in vitro growth inhibition and apoptosis induction of retinoblastoma HXO-RB44 cells. METHODS The effects of SalB on the HXO-RB44 cells proliferation in vitro were observed by MTT colorimetric method. The morphological changes of apoptosis before and after the treatment of SalB were observed by Hoechst 33258 fluorescent staining method. Apoptosis rate and cell cycle changes of HXO-RB44 cells were detected by flow cytometer at 48 hours after treated by SalB. The expression changes of Caspase-3 protein in HXO-RB44 cells were detected by Western Blot. RESULTS SalB significantly inhibited the growth of HXO-RB44 cells, while the inhibition was in a concentration-and time-dependent manner. The results of fluorescent staining method indicated that HXO-RB44 cells showed significant phenomenon of apoptosis including karyorrhexis, fragmentation and the formation of apoptotic bodies, etc. after 24, 48 and 72 hours co-culturing of SalB and HXO-RB44 cells. The results of flow cytometer showed that the apoptosis rate and the proportion of cells in S phase were gradually increased at 48 hours and 72 hours after treated by different concentrations of SalB. Western Blot strip showed that the expression of Caspase-3 protein in HXO-RB44 cells was gradually increased with the increase of the concentration of SalB. CONCLUSION SalB can significantly affect on HXO-RB44 cells growth inhibition and apoptosis induction which may be achieved through the up-regulation of Caspase-3 expression and the induction of cell cycle arrest. PMID:22773971

  14. Gut Microbiota Conversion of Dietary Ellagic Acid into Bioactive Phytoceutical Urolithin A Inhibits Heme Peroxidases.

    Directory of Open Access Journals (Sweden)

    Piu Saha

    Full Text Available Numerous studies signify that diets rich in phytochemicals offer many beneficial functions specifically during pathologic conditions, yet their effects are often not uniform due to inter-individual variation. The host indigenous gut microbiota and their modifications of dietary phytochemicals have emerged as factors that greatly influence the efficacy of phytoceutical-based intervention. Here, we investigated the biological activities of one such active microbial metabolite, Urolithin A (UA or 3,8-dihydroxybenzo[c]chromen-6-one, which is derived from the ellagic acid (EA. Our study demonstrates that UA potently inhibits heme peroxidases i.e. myeloperoxidase (MPO and lactoperoxidase (LPO when compared to the parent compound EA. In addition, chrome azurol S (CAS assay suggests that EA, but not UA, is capable of binding to Fe3+, due to its catechol-like structure, although its modest heme peroxidase inhibitory activity is abrogated upon Fe3+-binding. Interestingly, UA-mediated MPO and LPO inhibition can be prevented by innate immune protein human NGAL or its murine ortholog lipocalin 2 (Lcn2, implying the complex nature of host innate immunity-microbiota interactions. Spectral analysis indicates that UA inhibits heme peroxidase-catalyzed reaction by reverting the peroxidase back to its inactive native state. In support of these in vitro results, UA significantly reduced phorbol myristate acetate (PMA-induced superoxide generation in neutrophils, however, EA failed to block the superoxide generation. Treatment with UA significantly reduced PMA-induced mouse ear edema and MPO activity compared to EA treated mice. Collectively, our results demonstrate that microbiota-mediated conversion of EA to UA is advantageous to both host and microbiota i.e. UA-mediated inhibition of pro-oxidant enzymes reduce tissue inflammation, mitigate non-specific killing of gut bacteria, and abrogate iron-binding property of EA, thus providing a competitive edge to the

  15. Gut Microbiota Conversion of Dietary Ellagic Acid into Bioactive Phytoceutical Urolithin A Inhibits Heme Peroxidases.

    Science.gov (United States)

    Saha, Piu; Yeoh, Beng San; Singh, Rajbir; Chandrasekar, Bhargavi; Vemula, Praveen Kumar; Haribabu, Bodduluri; Vijay-Kumar, Matam; Jala, Venkatakrishna R

    2016-01-01

    Numerous studies signify that diets rich in phytochemicals offer many beneficial functions specifically during pathologic conditions, yet their effects are often not uniform due to inter-individual variation. The host indigenous gut microbiota and their modifications of dietary phytochemicals have emerged as factors that greatly influence the efficacy of phytoceutical-based intervention. Here, we investigated the biological activities of one such active microbial metabolite, Urolithin A (UA or 3,8-dihydroxybenzo[c]chromen-6-one), which is derived from the ellagic acid (EA). Our study demonstrates that UA potently inhibits heme peroxidases i.e. myeloperoxidase (MPO) and lactoperoxidase (LPO) when compared to the parent compound EA. In addition, chrome azurol S (CAS) assay suggests that EA, but not UA, is capable of binding to Fe3+, due to its catechol-like structure, although its modest heme peroxidase inhibitory activity is abrogated upon Fe3+-binding. Interestingly, UA-mediated MPO and LPO inhibition can be prevented by innate immune protein human NGAL or its murine ortholog lipocalin 2 (Lcn2), implying the complex nature of host innate immunity-microbiota interactions. Spectral analysis indicates that UA inhibits heme peroxidase-catalyzed reaction by reverting the peroxidase back to its inactive native state. In support of these in vitro results, UA significantly reduced phorbol myristate acetate (PMA)-induced superoxide generation in neutrophils, however, EA failed to block the superoxide generation. Treatment with UA significantly reduced PMA-induced mouse ear edema and MPO activity compared to EA treated mice. Collectively, our results demonstrate that microbiota-mediated conversion of EA to UA is advantageous to both host and microbiota i.e. UA-mediated inhibition of pro-oxidant enzymes reduce tissue inflammation, mitigate non-specific killing of gut bacteria, and abrogate iron-binding property of EA, thus providing a competitive edge to the microbiota in

  16. In vitro inhibition of human cytomegalovirus replication by calcium trinatrium diethylenetriaminepentaacetic acid.

    Science.gov (United States)

    Cinatl, J; Hoffmann, F; Cinatl, J; Weber, B; Scholz, M; Rabenau, H; Stieneker, F; Kabickova, H; Blasko, M; Doerr, H W

    1996-06-01

    Desferrioxamine (DFO) has been shown to inhibit human cytomegalovirus (CMV) replication in vitro. In the present study, we compared antiviral effects of DFO in human foreskin fibroblast (HFF) cells against several CMV strains with those of other chelators that interact with iron and other ions from different pools. DFO, a hydrophilic chelator, that may chelate both intracellular and extracellular ions inhibited production of CMV late antigen at 50% effective concentrations (EC50S) ranging from 6.2 to 8.9 microM. EC50S for calcium trinatrium diethylenetriaminepentaacetic acid (CaDTPA) ranged from 6.1 to 9.9 microM. EC50S for 2,2'-bipyridine (BPD), a hydrophobic chelator, which diffuses into cell membranes ranged from 65 to 72 microM. Concentrations which inhibited BrdU incorporation into cellular DNA by 50% (IC50S) ranged from 8.2 to 12.0 microM (DFO), from 65 to 89 microM (BPD), and from 139 to 249 microM (CaDTPA). CaDTPA was the only chelator which completely inhibited production of infectious virus in HFF and vascular endothelial cells at concentrations which had no significant effects on cellular DNA synthesis and growth. Addition of stoichiometric amounts of Fe3+ in the culture medium of HFF cells completely eliminated antiviral effects of DFO while antiviral effects of CaDTPA and BPD were only moderately affected. Fe2+ and Cu2+ were stronger inhibitors of CaDTPA than Fe3+; however, Mn2+ and Zn2+ completely suppressed antiviral effects of CaDTPA. The results show that CaDTPA is a novel nontoxic inhibitor of CMV replication. The antiviral activity of CaDTPA is suppressed by metal ions with a decreasing potency order of Mn2+/Zn2+ > Fe2+ > Cu2+ > Fe3+.

  17. Gut Microbiota Conversion of Dietary Ellagic Acid into Bioactive Phytoceutical Urolithin A Inhibits Heme Peroxidases

    Science.gov (United States)

    Saha, Piu; Yeoh, Beng San; Singh, Rajbir; Chandrasekar, Bhargavi; Vemula, Praveen Kumar; Haribabu, Bodduluri; Vijay-Kumar, Matam; Jala, Venkatakrishna R.

    2016-01-01

    Numerous studies signify that diets rich in phytochemicals offer many beneficial functions specifically during pathologic conditions, yet their effects are often not uniform due to inter-individual variation. The host indigenous gut microbiota and their modifications of dietary phytochemicals have emerged as factors that greatly influence the efficacy of phytoceutical-based intervention. Here, we investigated the biological activities of one such active microbial metabolite, Urolithin A (UA or 3,8-dihydroxybenzo[c]chromen-6-one), which is derived from the ellagic acid (EA). Our study demonstrates that UA potently inhibits heme peroxidases i.e. myeloperoxidase (MPO) and lactoperoxidase (LPO) when compared to the parent compound EA. In addition, chrome azurol S (CAS) assay suggests that EA, but not UA, is capable of binding to Fe3+, due to its catechol-like structure, although its modest heme peroxidase inhibitory activity is abrogated upon Fe3+-binding. Interestingly, UA-mediated MPO and LPO inhibition can be prevented by innate immune protein human NGAL or its murine ortholog lipocalin 2 (Lcn2), implying the complex nature of host innate immunity-microbiota interactions. Spectral analysis indicates that UA inhibits heme peroxidase-catalyzed reaction by reverting the peroxidase back to its inactive native state. In support of these in vitro results, UA significantly reduced phorbol myristate acetate (PMA)-induced superoxide generation in neutrophils, however, EA failed to block the superoxide generation. Treatment with UA significantly reduced PMA-induced mouse ear edema and MPO activity compared to EA treated mice. Collectively, our results demonstrate that microbiota-mediated conversion of EA to UA is advantageous to both host and microbiota i.e. UA-mediated inhibition of pro-oxidant enzymes reduce tissue inflammation, mitigate non-specific killing of gut bacteria, and abrogate iron-binding property of EA, thus providing a competitive edge to the microbiota in

  18. PGC-1β suppresses saturated fatty acid-induced macrophage inflammation by inhibiting TAK1 activation.

    Science.gov (United States)

    Chen, Hongen; Liu, Yan; Li, Di; Song, Jiayi; Xia, Min

    2016-02-01

    Inflammation of infiltrated macrophages in adipose tissue is a key contributor to the initiation of adipose insulin resistance. These macrophages are exposed to high local concentrations of free fatty acids (FFAs) and can be proinflammatory activated by saturated fatty acids (SFAs). However, the regulatory mechanisms on SFA-induced macrophage inflammation are still elusive. Peroxisome proliferator-activated receptor γ coactivator-1β (PGC-1β) is a member of the PGC-1 family of transcriptional coactivators and has been reported to play a key role in SFAs metabolism and in the regulation of inflammatory signaling. However, it remains unclear whether PGC-1β is involved in SFA-induced macrophage inflammation. In this study, we found that PGC-1β expression was significantly decreased in response to palmitic acid (PA) in macrophages in a dose dependent manner. PGC-1β inhibited PA induced TNFα, MCP-1, and IL-1β mRNA and protein expressions. Furthermore, PGC-1β significantly antagonized PA induced macrophage nuclear factor-κB (NF-κB) p65 and JUN N-terminal kinase activation. Mechanistically, we revealed that TGF-β-activated kinase 1 (TAK1) and its adaptor protein TAK1 binding protein 1 (TAB1) played a dominant role in the regulatory effects of PGC-1β. We confirmed that PGC-1β inhibited downstream inflammatory signals via binding with TAB1 and thus preventing TAB1/TAK1 binding and TAK1 activation. Finally, we showed that PGC-1β overexpression in PA treated macrophages improved adipocytes PI3K-Akt insulin signaling in a paracrine fashion. Collectively, our results uncovered a novel mechanism on how macrophage inflammation induced by SFAs was regulated and suggest a potential target in the treatment of obesity induced insulin resistance.

  19. Ursolic acid inhibits adipogenesis in 3T3-L1 adipocytes through LKB1/AMPK pathway.

    Directory of Open Access Journals (Sweden)

    Yonghan He

    Full Text Available BACKGROUND: Ursolic acid (UA is a triterpenoid compound with multiple biological functions. This compound has recently been reported to possess an anti-obesity effect; however, the mechanisms are less understood. OBJECTIVE: As adipogenesis plays a critical role in obesity, the present study was conducted to investigate the effect of UA on adipogenesis and mechanisms of action in 3T3-L1 preadipocytes. METHODS AND RESULTS: The 3T3-L1 preadipocytes were induced to differentiate in the presence or absence of UA for 6 days. The cells were determined for proliferation, differentiation, fat accumulation as well as the protein expressions of molecular targets that regulate or are involved in fatty acid synthesis and oxidation. The results demonstrated that ursolic acid at concentrations ranging from 2.5 µM to 10 µM dose-dependently attenuated adipogenesis, accompanied by reduced protein expression of CCAAT element binding protein β (C/EBPβ, peroxisome proliferator-activated receptor γ (PPARγ, CCAAT element binding protein α (C/EBPα and sterol regulatory element binding protein 1c (SREBP-1c, respectively. Ursolic acid increased the phosphorylation of acetyl-CoA carboxylase (ACC and protein expression of carnitine palmitoyltransferase 1 (CPT1, but decreased protein expression of fatty acid synthase (FAS and fatty acid-binding protein 4 (FABP4. Ursolic acid increased the phosphorylation of AMP-activated protein kinase (AMPK and protein expression of (silent mating type information regulation 2, homolog 1 (Sirt1. Further studies demonstrated that the anti-adipogenic effect of UA was reversed by the AMPK siRNA, but not by the Sirt1 inhibitor nicotinamide. Liver kinase B1 (LKB1, the upstream kinase of AMPK, was upregulated by UA. When LKB1 was silenced with siRNA or the inhibitor radicicol, the effect of UA on AMPK activation was diminished. CONCLUSIONS: Ursolic acid inhibited 3T3-L1 preadipocyte differentiation and adipogenesis through the LKB1/AMPK

  20. Labdanolic acid methyl ester (LAME) exerts anti-inflammatory effects through inhibition of TAK-1 activation

    Energy Technology Data Exchange (ETDEWEB)

    Cuadrado, Irene [Departamento de Farmacología, Facultad de Farmacia, Universidad Complutense, Plaza Ramón y Cajal s/n, 28040 Madrid (Spain); Cidre, Florencia; Herranz, Sandra [Unidad de Inflamación y Cáncer. Área de Biología Celular y Desarrollo. Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid (Spain); Estevez-Braun, Ana [Instituto Universitario de Bio-Orgánica “Antonio González”. Universidad de La Laguna. Avda. Astrofísico Fco. Sánchez 2. 38206. La Laguna, Tenerife (Spain); Instituto Canario de Investigaciones del Cáncer (ICIC) (Spain); Heras, Beatriz de las, E-mail: lasheras@farm.ucm.es [Departamento de Farmacología, Facultad de Farmacia, Universidad Complutense, Plaza Ramón y Cajal s/n, 28040 Madrid (Spain); Hortelano, Sonsoles, E-mail: shortelano@isciii.es [Unidad de Inflamación y Cáncer. Área de Biología Celular y Desarrollo. Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid (Spain)

    2012-01-01

    Labdane derivatives obtained from the diterpenoid labdanediol suppressed NO and PGE{sub 2} production in LPS-stimulated RAW 264.7 macrophages. However, mechanisms involved in these inhibitory effects are not elucidated. In this study, we investigated the signaling pathways involved in the anti-inflammatory effects of labdanolic acid methyl ester (LAME) in peritoneal macrophages and examined its therapeutic effect in a mouse endotoxic shock model. LAME reduced the production of NO and PGE{sub 2} in LPS-activated macrophages. This effect involved the inhibition of NOS-2 and COX-2 gene expression, acting at the transcription level. Examination of the effects of the diterpene on NF-κB signaling showed that LAME inhibits the phosphorylation of IκBα and IκBβ, preventing their degradation and the nuclear translocation of the NF-κB p65 subunit. Moreover, inhibition of MAPK signaling was also observed. A further experiment revealed that LAME inhibited the phosphorylation of transforming growth factor-β (TGF-β)-activated kinase 1 (TAK1), an upstream signaling molecule required for IKK and mitogen-activated protein kinases (MAPKs) activation. Inflammatory cytokines such as IL-6, TNF-α and IP-10 were downregulated in the presence of this compound after stimulation with LPS. Additionally, LAME also improved survival in a mouse model of endotoxemia and reduced the circulatory levels of cytokines (IL-6, TNF-α). In conclusion, these results indicate that labdane diterpene LAME significantly attenuates the pro-inflammatory response induced by LPS both in vivo and in vitro. Highlights: ► LAME reduced the production of NO and PGE{sub 2} in LPS-activated macrophages. ► IL-6, TNF-α and IP-10 were also inhibited by LAME. ► Inhibition of TAK-1 activation is the mechanism involved in this process. ► LAME improved survival in a mouse model of endotoxemia. ► LAME reduced the circulatory levels of cytokines (IL-6, TNF-α).

  1. Crude fatty acid extracts of Streptomyces sps inhibits the biofilm forming Streptococcus pyogenes ATCC 19615

    Directory of Open Access Journals (Sweden)

    Rajalakshm Manickam

    2014-01-01

    Full Text Available Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4 Crude fatty acid extract of soil Streptomyces sps on the biofilm formation by Streptococcus pyogenes ATCC 19615 was investigated. Totally, 25 Streptomyces sps were isolated identified from the soil samples collected from Nilgiris hill station. All the isolates were subjected to hydrogen peroxide assay, fatty acid extraction and antibiofilm assay. The fatty acid extracts of S8, S9, and S15 inhibited S. pyogenes at MIC 10 µg/ml. The BIC was observed as 84.6% , 96.41%, 80.5% at 50 µg/ml concentration. Streptolysin S assay showed that the crude lipid extracts have the capability of inhibiting the Streptolysin S activity. There were changes in extracellular protein of the pathogen exposed to the S8, S9 and S15 crude fatty acid extracts (50 µg/ml at the range of 100-120 kDa which elucidates that the fatty acid extracts have a significant role in altering the extracellular protein which might be responsible for virulence of the pathogen. /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;}

  2. Corrosion inhibition and adsorption behavior of methionine on mild steel in sulfuric acid and synergistic effect of iodide ion.

    Science.gov (United States)

    Oguzie, E E; Li, Y; Wang, F H

    2007-06-01

    The corrosion inhibition of mild steel in sulfuric acid by methionine (MTI) was investigated using electrochemical techniques. The effect of KI additives on corrosion inhibition efficiency was also studied. The results reveal that MTI inhibited the corrosion reaction by adsorption onto the metal/solution interface. Inhibition efficiency increased with MTI concentration and synergistically increased in the presence of KI, with an optimum [KI]/[MTI] ratio of 5/5, due to stabilization of adsorbed MTI cations as revealed by AFM surface morphological images. Potentiodynamic polarization data suggest that the compound functioned via a mixed-inhibition mechanism. This observation was further corroborated by the fit of the experimental adsorption data to the Temkin and Langmuir isotherms. The inhibition mechanism has been discussed vis-à-vis the presence of both nitrogen and sulfur atoms in the MTI molecule.

  3. Calcite growth-rate inhibition by fulvic acids isolated from Big Soda Lake, Nevada, USA, The Suwannee River, Georgia, USA and by polycarboxylic acids

    Science.gov (United States)

    Reddy, Michael M.; Leenheer, Jerry

    2011-01-01

    Calcite crystallization rates are characterized using a constant solution composition at 25°C, pH=8.5, and calcite supersaturation (Ω) of 4.5 in the absence and presence of fulvic acids isolated from Big Soda Lake, Nevada (BSLFA), and a fulvic acid from the Suwannee River, Georgia (SRFA). Rates are also measured in the presence and absence of low-molar mass, aliphatic-alicyclic polycarboxylic acids (PCA). BSLFA inhibits calcite crystal-growth rates with increasing BSLFA concentration, suggesting that BSLFA adsorbs at growth sites on the calcite crystal surface. Calcite growth morphology in the presence of BSLFA differed from growth in its absence, supporting an adsorption mechanism of calcite-growth inhibition by BSLFA. Calcite growth-rate inhibition by BSLFA is consistent with a model indicating that polycarboxylic acid molecules present in BSLFA adsorb at growth sites on the calcite crystal surface. In contrast to published results for an unfractionated SRFA, there is dramatic calcite growth inhibition (at a concentration of 1 mg/L) by a SRFA fraction eluted by pH 5 solution from XAD-8 resin, indicating that calcite growth-rate inhibition is related to specific SRFA component fractions. A cyclic PCA, 1, 2, 3, 4, 5, 6-cyclohexane hexacarboxylic acid (CHXHCA) is a strong calcite growth-rate inhibitor at concentrations less than 0.1 mg/L. Two other cyclic PCAs, 1, 1 cyclopentanedicarboxylic acid (CPDCA) and 1, 1 cyclobutanedicarboxylic acid (CBDCA) with the carboxylic acid groups attached to the same ring carbon atom, have no effect on calcite growth rates up to concentrations of 10 mg/L. Organic matter ad-sorbed from the air onto the seed crystals has no effect on the measured calcite crystal-growth rates.

  4. Inhibition of Pig Phosphoenolpyruvate Carboxykinase Isoenzymes by 3-Mercaptopicolinic Acid and Novel Inhibitors

    Science.gov (United States)

    Hidalgo, Jorge; Latorre, Pedro; Carrodeguas, José Alberto; Velázquez-Campoy, Adrián; Sancho, Javier; López-Buesa, Pascual

    2016-01-01

    There exist two isoforms of cytosolic phosphoenolpyruvate carboxykinase (PEPCK-C) in pig populations that differ in a single amino acid (Met139Leu). The isoenzymes have different kinetic properties, affecting more strongly the Km and Vmax of nucleotides. They are associated to different phenotypes modifying traits of considerable economic interest. In this work we use inhibitors of phosphoenolpyruvate carboxykinase activity to search for further differences between these isoenzymes. On the one hand we have used the well-known inhibitor 3-mercaptopicolinic acid. Its inhibition patterns were the same for both isoenzymes: a three-fold decrease of the Ki values for GTP in 139Met and 139Leu (273 and 873 μM, respectively). On the other hand, through screening of a chemical library we have found two novel compounds with inhibitory effects of a similar magnitude to that of 3-mercaptopicolinic acid but with less solubility and specificity. One of these novel compounds, (N'1-({5-[1-methyl-5-(trifluoromethyl)-1H-pyrazol-3-yl]-2-thienyl}methylidene)-2,4-dichlorobenzene-1-carbohydrazide), exhibited significantly different inhibitory effects on either isoenzyme: it enhanced threefold the apparent Km value for GTP in 139Met, whereas in 139Leu, it reduced it from 99 to 69 μM. The finding of those significant differences in the binding of GTP reinforces the hypothesis that the Met139Leu substitution affects strongly the nucleotide binding site of PEPCK-C. PMID:27391465

  5. Curcumin-attenuated trinitrobenzene sulphonic acid induces chronic colitis by inhibiting expression of cyclooxygenase-2

    Institute of Scientific and Technical Information of China (English)

    Hua Jiang; Chang-Sheng Deng; Ming Zhang; Jian Xia

    2006-01-01

    AIM: To explore the possible mechanisms of curcumin in rat colitis induced by trinitrobenzene sulfonic (TNBS) acid. METHODS: Rats with TNBS acid-induced colitis were treated with curcumin (30 mg/kg or 60 mg/kg per day ip). Changes of body weight and histological scores as well as survival rate were evaluated. Leukocyte infiltration was detected by myeloperoxidase (MPO)activity assay. The expression of cyclooxygenase-2(COX-2) was detected by RT-PCR and Western blot.Inflammation cytokines were determined by RT-PCR.Local concentration of prostaglandin E2 (PGE2) in colon mucosa was determined by ELISA.RESULTS: Curcumin improved survival rate and histological image, decreased the macroscopic scores and MPO activity. Also curcumin reduced the expression of COX-2 and inflammation cytokines. In addition,treatment with curcumin increased the PGE2 level.CONCLUSION: Curcumin has therapeutic effects on TNBS acid-induced colitis, the mechanisms seem to be related to COX-2 inhibition and PGE2 improvement.

  6. Boron Stress Activates the General Amino Acid Control Mechanism and Inhibits Protein Synthesis

    Science.gov (United States)

    Uluisik, Irem; Kaya, Alaattin; Fomenko, Dmitri E.; Karakaya, Huseyin C.; Carlson, Bradley A.; Gladyshev, Vadim N.; Koc, Ahmet

    2011-01-01

    Boron is an essential micronutrient for plants, and it is beneficial for animals. However, at high concentrations boron is toxic to cells although the mechanism of this toxicity is not known. Atr1 has recently been identified as a boron efflux pump whose expression is upregulated in response to boron treatment. Here, we found that the expression of ATR1 is associated with expression of genes involved in amino acid biosynthesis. These mechanisms are strictly controlled by the transcription factor Gcn4 in response to boron treatment. Further analyses have shown that boron impaired protein synthesis by promoting phosphorylation of eIF2α in a Gcn2 kinase dependent manner. The uncharged tRNA binding domain (HisRS) of Gcn2 is necessary for the phosphorylation of eIF2α in the presence of boron. We postulate that boron exerts its toxic effect through activation of the general amino acid control system and inhibition of protein synthesis. Since the general amino acid control pathway is conserved among eukaryotes, this mechanism of boron toxicity may be of general importance. PMID:22114689

  7. Evaluation of the inhibitive effect of benzotriazole on archeological bronze in acidic medium

    Science.gov (United States)

    Hassairi, Hèla; Bousselmi, Latifa; Khosrof, Slim; Triki, Ezzeddine

    2013-12-01

    An archaeological bronze artefact was a Punic coin excavated from the north east of Tunisia in 2001. The composition of the copper alloy revealed a content of 3.5 % of tin and 1.4 % of lead with the presence of some sulphur heterogeneity. The surface presents some roughnesses and cracks and is covered by a corrosion layer of 20-40 μm thickness. The use of benzotriazole (BTA) as an inhibitor has become a standard element for the preservation of cuprous-based metals. In order to investigate the behaviour of BTA in an acidic medium, an Electrochemical Impedance Spectroscopy (EIS) investigation was performed to characterize the electrochemical behaviour of the interface of the archaeological bronze sample/acidic medium without and with BTA addition. Impedance diagrams obtained at different immersion times show that the presence of the inhibitor prevents the diffusional process observed in the absence of BTA. The inhibition of the pre-polarized bronze surface revealed that the mechanism of action of the benzotriazole molecule in an acidic medium is governed by the chemisorption process.

  8. Milk fat conjugated linoleic acid (CLA) inhibits growth of human mammary MCF-7 cancer cells.

    Science.gov (United States)

    O'Shea, M; Devery, R; Lawless, F; Murphy, J; Stanton, C

    The relationship between growth and the antioxidant enzyme defence system in human MCF-7 (breast) cancer cells treated with bovine milk fat enriched with conjugated linoleic acid (CLA) was studied. Milk enriched in CLA was obtained from cows on pasture supplemented with full fat rapeseeds and full fat soyabeans (1). Cell number decreased up to 90% (p milk fat yielding CLA concentrations between 16.9 and 22.6 ppm. Growth suppression and prooxidant effects of milk fat CLA were independent of the variable composition of the milk fat samples, suggesting that CLA was the active ingredient in milk fat responsible for the cytotoxic effect. Mixtures containing isomers of CLA (c9, t11-, t10, c12-, c11, t13- and minor amounts of other isomers) and linoleic acid (LA) at similar concentrations to the milk fat samples were as effective at inhibiting growth and stimulating peroxidation of MCF-7 cells as the milk fatty acids. Incubation of the cells with the c9, t11 CLA isomer (20 ppm) or the mixture of CLA isomers (20 ppm) for 8 days resulted in a 60% decrease (p milk fat than the c9, t11 synthetic CLA isomer. Superoxide dismutase (SOD), catalase and glutathione peroxidase (GPx) activities were induced in MCF-7 cells exposed to milk fat (containing 16.9-22.6 ppm CLA) over 8 days. The data indicate that milk fat triglyceride-bound CLA, consisting primarily of the c9, t11 isomer, was cytotoxic towards MCF-7 cells.

  9. Boron stress activates the general amino acid control mechanism and inhibits protein synthesis.

    Directory of Open Access Journals (Sweden)

    Irem Uluisik

    Full Text Available Boron is an essential micronutrient for plants, and it is beneficial for animals. However, at high concentrations boron is toxic to cells although the mechanism of this toxicity is not known. Atr1 has recently been identified as a boron efflux pump whose expression is upregulated in response to boron treatment. Here, we found that the expression of ATR1 is associated with expression of genes involved in amino acid biosynthesis. These mechanisms are strictly controlled by the transcription factor Gcn4 in response to boron treatment. Further analyses have shown that boron impaired protein synthesis by promoting phosphorylation of eIF2α in a Gcn2 kinase dependent manner. The uncharged tRNA binding domain (HisRS of Gcn2 is necessary for the phosphorylation of eIF2α in the presence of boron. We postulate that boron exerts its toxic effect through activation of the general amino acid control system and inhibition of protein synthesis. Since the general amino acid control pathway is conserved among eukaryotes, this mechanism of boron toxicity may be of general importance.

  10. IR spectroscopic investigation of the inhibition of the glycation process by acetylsalicylic acid

    Science.gov (United States)

    Otero de Joshi, Virginia; Gil, Herminia; Contreras, Silvia; Velasquez, William; Joshi, Narahari V.

    2000-05-01

    An IR spectroscopic study was carried out at room temperature for Human Serum albumin (HSA) glycated with fructose and glucose and inhibited with acetylsalicylic acid. The glycation process was carried out in our laboratory by a conventional method to confirm earlier reported observation of the effect of glycation on the intensity variation of the IR spectra, particularly, in the range 1500 cm-1 to 1700 cm-1 and around 3300 cm-1. IR spectra reveal that the effects of glycation of HSA by fructose are more intense than with glucose, which is the expected. Bovine serum albumin was also glycated using Glucose-6-phosphate disodium salt, and gamma-globulin was glycate with glucose, As expected, the glycation process was more intense with glucose-t-phosphate disodium salt. Acetyl salicylic acid was also used and its inhibitor effects could be observed in both cases, with glucose and with glucose-6-phosphate disodium salt even though, to a smaller extent with the latter. This is consistent with the earlier data and is explained on the basis of the attachment of macromolecules to (epsilon) -NH2 groups of lysines. The experimental results confirm that acetylsalicylic acid, indeed, acts as an inhibitor by acetylation of the (epsilon) -NG2 group where the sugars are supposed to be attached.

  11. Ursolic acid sensitized colon cancer cells to chemotherapy under hypoxia by inhibiting MDR1 through HIF-1α*

    Science.gov (United States)

    Shan, Jian-zhen; Xuan, Yan-yan; Zhang, Qi; Huang, Jian-jin

    2016-01-01

    Objective: To explore the efficacy of ursolic acid in sensitizing colon cancer cells to chemotherapy under hypoxia and its underlying mechanisms. Methods: Three colon cancer cell lines (RKO, LoVo, and SW480) were used as in vitro models. 5-Fluorouracil (5-FU) and oxaliplatin were used as chemotherapeutic drugs. Cell viability and apoptosis were tested to evaluate the sensitivity of colon cancer cells to chemotherapy. The transcription and expression levels of hypoxia-inducible factor-1α (HIF-1α), multidrug resistance gene 1 (MDR1), and vascular endothelial growth factors (VEGF) were assessed by quantitative real-time polymerase chain reaction (qRT-PCR) and immunoblotting. Cycloheximide and MG132 were used to inhibit protein synthesis and degradation, respectively. In vitro tube formation assay was used to evaluate angiogenesis. Results: We demonstrated the chemosensitizing effects of ursolic acid with 5-FU and oxaliplatin in three colon cancer cell lines under hypoxia. This effect was correlated to its inhibition of MDR1 through HIF-1α. Moreover, ursolic acid was capable of inhibiting HIF-1α accumulation with little effects on its constitutional expression in normoxia. In addition, ursolic acid also down-regulated VEGF and inhibited tumor angiogenesis. Conclusions: Ursolic acid exerted chemosensitizing effects in colon cancer cells under hypoxia by inhibiting HIF-1α accumulation and the subsequent expression of the MDR1 and VEGF. PMID:27604859

  12. Phyllostachys edulis compounds inhibit palmitic acid-induced monocyte chemoattractant protein 1 (MCP-1 production.

    Directory of Open Access Journals (Sweden)

    Jason K Higa

    Full Text Available BACKGROUND: Phyllostachys edulis Carriere (Poaceae is a bamboo species that is part of the traditional Chinese medicine pharmacopoeia. Compounds and extracts from this species have shown potential applications towards several diseases. One of many complications found in obesity and diabetes is the link between elevated circulatory free fatty acids (FFAs and chronic inflammation. This study aims to present a possible application of P. edulis extract in relieving inflammation caused by FFAs. Monocyte chemoattractant protein 1 (MCP-1/CCL2 is a pro-inflammatory cytokine implicated in chronic inflammation. Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB and activator protein 1 (AP-1 are transcription factors activated in response to inflammatory stimuli, and upregulate pro-inflammatory cytokines such as MCP-1. This study examines the effect of P. edulis extract on cellular production of MCP-1 and on the NF-κB and AP-1 pathways in response to treatment with palmitic acid (PA, a FFA. METHODOLOGY/PRINCIPAL FINDINGS: MCP-1 protein was measured by cytometric bead assay. NF-κB and AP-1 nuclear localization was detected by colorimetric DNA-binding ELISA. Relative MCP-1 mRNA was measured by real-time quantitative PCR. Murine cells were treated with PA to induce inflammation. PA increased expression of MCP-1 mRNA and protein, and increased nuclear localization of NF-κB and AP-1. Adding bamboo extract (BEX inhibited the effects of PA, reduced MCP-1 production, and inhibited nuclear translocation of NF-κB and AP-1 subunits. Compounds isolated from BEX inhibited MCP-1 secretion with different potencies. CONCLUSIONS/SIGNIFICANCE: PA induced MCP-1 production in murine adipose, muscle, and liver cells. BEX ameliorated PA-induced production of MCP-1 by inhibiting nuclear translocation of NF-κB and AP-1. Two O-methylated flavones were isolated from BEX with functional effects on MCP-1 production. These results may represent a possible

  13. Effect of molecular structure of aniline-formaldehyde copolymers on corrosion inhibition of mild steel in hydrochloric acid solution.

    Science.gov (United States)

    Zhang, Yan; Nie, Mengyan; Wang, Xiutong; Zhu, Yukun; Shi, Fuhua; Yu, Jianqiang; Hou, Baorong

    2015-05-30

    Aniline-formaldehyde copolymers with different molecular structures have been prepared and investigated for the purpose of corrosion control of mild steel in hydrochloric acid. The copolymers were synthesized by a condensation polymerization process with different ratios of aniline to formaldehyde in acidic precursor solutions. The corrosion inhibition efficiency of as-synthesized copolymers for Q235 mild steel was investigated in 1.0 mol L(-1) hydrochloric acid solution by weight loss measurement, potentiodynamic polarization, and electrochemical impedance spectroscopy, respectively. All the results demonstrate that as-prepared aniline-formaldehyde copolymers are efficient mixed-type corrosion inhibitors for mild steels in hydrochloric acid. The corrosion inhibition mechanism is discussed in terms of the role of molecular structure on adsorption of the copolymers onto the steel surface in acid solution.

  14. Glycyrrhetic acid, but not glycyrrhizic acid, strengthened entecavir activity by promoting its subcellular distribution in the liver via efflux inhibition.

    Science.gov (United States)

    Chen, Qianying; Chen, Hongzhu; Wang, Wenjie; Liu, Jiali; Liu, Wenyue; Ni, Ping; Sang, Guowei; Wang, Guangji; Zhou, Fang; Zhang, Jingwei

    2017-08-30

    Entecavir (ETV) is a superior nucleoside analogue used to treat hepatitis B virus (HBV) infection. Although its advantages over other agents include low viral resistance and the elicitation of a sharp decrease in HBV DNA, adverse effects such as hepatic steatosis, hepatic damage and lactic acidosis have also been reported. Glycyrrhizin has long been used as hepato-protective medicine. The clinical combination of ETV plus glycyrrhizin in China displays better therapeutic effects and lower rates of liver damage. However, there is little evidence explaining the probable synergistic mechanism that exists between these two drugs from a pharmacokinetics view. Here, alterations in the plasma pharmacokinetics, tissue distribution, subcellular distribution, and in vitro and in vivo antiviral activity of ETV after combination with glycyrrhizic acid (GL) were analysed to determine the synergistic mechanisms of these two drugs. Specific efflux transporter membrane vesicles were also used to elucidate their interactions. The primary active GL metabolite, glycyrrhetic acid (GA), did not affect the plasma pharmacokinetics of ETV but promoted its accumulation in hepatocytes, increasing its distribution in the cytoplasm and nucleus and augmenting the antiviral efficiency of ETV. These synergistic actions were primarily due to the inhibitory effect of GA on MRP4 and BCRP, which transport ETV out of hepatocytes. In conclusion, GA interacted with ETV at cellular and subcellular levels in the liver through MRP4 and BCRP inhibition, which enhanced the antiviral activity of ETV. Our results partially explain the synergistic mechanism of ETV and GL from a pharmacokinetics view, providing more data to support the use of these compounds together in clinical HBV treatment. Copyright © 2017. Published by Elsevier B.V.

  15. Study of Temperature Effect on the Corrosion Inhibition of C38 Carbon Steel Using Amino-tris(Methylenephosphonic Acid in Hydrochloric Acid Solution

    Directory of Open Access Journals (Sweden)

    Najoua Labjar

    2011-01-01

    Full Text Available Tafel polarization method was used to assess the corrosion inhibitive and adsorption behaviours of amino-tris(methylenephosphonic acid (ATMP for C38 carbon steel in 1 M HCl solution in the temperature range from 30 to 60∘C. It was shown that the corrosion inhibition efficiency was found to increase with increase in ATMP concentration but decreased with temperature, which is suggestive of physical adsorption mechanism. The adsorption of the ATMP onto the C38 steel surface was found to follow Langmuir adsorption isotherm model. The corrosion inhibition mechanism was further corroborated by the values of kinetic and thermodynamic parameters obtained from the experimental data.

  16. Inhibiting effects of some oxadiazole derivatives on the corrosion of mild steel in perchloric acid solution

    Energy Technology Data Exchange (ETDEWEB)

    Lebrini, Mounim [Laboratoire de Cristallochimie et Physicochimie du Solide UMR 8012 ENSCL, BP. 108, F-59652 Villeneuve d' Ascq Cedex (France); Bentiss, Fouad [Laboratoire de Cristallochimie et Physicochimie du Solide UMR 8012 ENSCL, BP. 108, F-59652 Villeneuve d' Ascq Cedex (France); Laboratoire de Chimie de Coordination et d' Analytique, Universite Chouaib Doukkali, Faculte des Sciences, B.P. 20, El Jadida (Morocco); Vezin, Herve [Laboratoire de Chimie Organique et Macromoleculaire, CNRS UMR 8009, USTL Ba-hat t C4, F-59655 Villeneuve d' Ascq Cedex (France); Lagrenee, Michel [Laboratoire de Cristallochimie et Physicochimie du Solide UMR 8012 ENSCL, BP. 108, F-59652 Villeneuve d' Ascq Cedex (France)]. E-mail: michel.lagrenee@ensc-lille.fr

    2005-11-15

    The efficiency of 3,5-bis(n-pyridyl)-1,3,4-oxadiazole (n-POX, n = 1, 2, 3), as corrosion inhibitors for mild steel in 1 M perchloric acid (HClO{sub 4}) have been determined by weight loss measurements and electrochemical studies. The results show that these inhibitors revealed a good corrosion inhibition even at very low concentrations. Comparison of results among those obtained by the studied oxadiazoles shows that 3-POX was the best inhibitor. Polarisation curves indicate that n-pyridyl substituted-1,3,4-oxadiazoles are mixed type inhibitors in 1 M HClO{sub 4}. The adsorption of these inhibitors follows a Langmuir isotherm model. The electronic properties of n-POX, obtained using the AM1 semi-empirical quantum chemical approach, were correlated with their experimental efficiencies using the linear resistance model (LR)

  17. Inhibition of norsolorinic acid accumulation to Aspergillus parasiticus by marine actinomycetes

    Science.gov (United States)

    Yan, Peisheng; Shi, Cuijuan; Shen, Jihong; Wang, Kai; Gao, Xiujun; Li, Ping

    2014-11-01

    Thirty-six strains of marine actinomycetes were isolated from a sample of marine sediment collected from the Yellow Sea and evaluated in terms of their inhibitory activity on the growth of Aspergillus parasiticus and the production of norsolorinic acid using dual culture plate assay and agar diffusion methods. Among them, three strains showed strong antifungal activity and were subsequently identified as Streptomyces sp. by 16S rRNA gene sequencing analysis. The supernatant from the fermentation of the MA01 strain was extracted sequentially with chloroform and ethyl acetate, and the activities of the extracts were determined by tip culture assay. The assay results show that both extracts inhibited mycelium growth and toxin production, and the inhibitory activities of the extracts increased as their concentrations increased. The results of this study suggest that marine actinomycetes are biologically important for the control of mycotoxins, and that these bacteria could be used as novel biopesticides against mycotoxins.

  18. Retinoic acid and cAMP inhibit rat hepatocellular carcinoma cell proliferation and enhance cell differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Ionta, M. [Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, Alfenas MG (Brazil); Departamento de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo SP (Brazil); Rosa, M.C.; Almeida, R.B.; Freitas, V.M.; Rezende-Teixeira, P.; Machado-Santelli, G.M. [Departamento de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo SP (Brazil)

    2012-05-25

    Hepatocellular carcinoma (HCC) is the third highest cause of cancer death worldwide. In general, the disease is diagnosed at an advanced stage when potentially curative therapies are no longer feasible. For this reason, it is very important to develop new therapeutic approaches. Retinoic acid (RA) is a natural derivative of vitamin A that regulates important biological processes including cell proliferation and differentiation. In vitro studies have shown that RA is effective in inhibiting growth of HCC cells; however, responsiveness to treatment varies among different HCC cell lines. The objective of the present study was to determine if the combined use of RA (0.1 µM) and cAMP (1 mM), an important second messenger, improves the responsiveness of HCC cells to RA treatment. We evaluated the proliferative behavior of an HCC cell line (HTC) and the expression profile of genes related to cancer signaling pathway (ERK and GSK-3β) and liver differentiation [E-cadherin, connexin 26 (Cx26), and connexin 32 (Cx32)]. RA and cAMP were effective in inhibiting the proliferation of HTC cells independently of combined use. However, when a mixture of RA and cAMP was used, the signals concerning the degree of cell differentiation were increased. As demonstrated by Western blot, the treatment increased E-cadherin, Cx26, Cx32 and Ser9-GSK-3β (inactive form) expression while the expression of Cx43, Tyr216-GSK-3β (active form) and phosphorylated ERK decreased. Furthermore, telomerase activity was inhibited along treatment. Taken together, the results showed that the combined use of RA and cAMP is more effective in inducing differentiation of HTC cells.

  19. Lactic acid bacteria inhibit TH2 cytokine production by mononuclear cells from allergic patients.

    Science.gov (United States)

    Pochard, Pierre; Gosset, Philippe; Grangette, Corinne; Andre, Claude; Tonnel, André-Bernard; Pestel, Joël; Mercenier, Annick

    2002-10-01

    Among factors potentially involved in the increased prevalence of allergic diseases, modification of the intestinal bacteria flora or lack of bacterial stimulation during childhood has been proposed. Lactic acid bacteria (LAB) present in fermented foods or belonging to the natural intestinal microflora were shown to exert beneficial effects on human health. Recent reports have indicated their capacity to reduce allergic symptoms. The purpose of this investigation was to determine the effect of LAB on the production of type 2 cytokines, which characterize allergic diseases. PBMCs from patients allergic to house dust mite versus those from healthy donors were stimulated for 48 hours with the related Dermatophagoides pteronyssinus allergen or with a staphylococcal superantigen. The effect of LAB preincubation was assessed by measuring the type 2 cytokine production by means of specific ELISA. The tested gram-positive LAB were shown to inhibit the secretion of T(H)2 cytokines (IL-4 and IL-5). This effect was dose dependent and was observed irrespective of the LAB strain used. No significant inhibition was induced by the control, gram-negative Escherichia coli TG1. Interestingly, LAB reduced the T(H)2 cytokine production from allergic PBMCs specifically restimulated with the related allergen. The inhibition mechanism was shown to be dependent on antigen-presenting cells (ie, monocytes) and on the involvement of IL-12 and IFN-gamma. The tested LAB strains were demonstrated to exhibit an anti-T(H)2 activity, and thus different strains of this family might be useful in the prevention of allergic diseases.

  20. Inhibition of Listeria monocytogenes by propionic acid-based ingredients in cured deli-style Turkey.

    Science.gov (United States)

    Glass, Kathleen A; McDonnell, Lindsey M; Von Tayson, Roxanne; Wanless, Brandon; Badvela, Mani

    2013-12-01

    Listeria monocytogenes growth can be controlled on ready-to-eat meats through the incorporation of antimicrobial ingredients into the formulation or by postlethality kill steps. However, alternate approaches are needed to provide options that reduce sodium content but maintain protection against pathogen growth in meats after slicing. The objective of this study was to determine the inhibition of L. monocytogenes by propionic acid-based ingredients in high-moisture, cured turkey stored at 4 or 7°C. Six formulations of sliced, cured (120 ppm of NaNO2 ), deli-style turkey were tested, including control without antimicrobials, 3.2% lactate-diacetate blend (LD), 0.4% of a liquid propionate-benzoate-containing ingredient, or 0.3, 0.4, and 0.5% of a liquid propionate-containing ingredient. Products were inoculated with 5 log CFU L. monocytogenes per 100-g package (3 log CFU/ml rinsate), vacuum-sealed, and stored at 4 or 7°C for up to 12 weeks; and populations were enumerated by plating on modified Oxford agar. As expected, the control without antimicrobials supported rapid growth, with >2 log average per ml rinsate increase within 4 weeks of storage at 4°C, whereas growth was observed at 6 weeks for the LD treatment. For both replicate trials, all treatments that contained liquid propionate or propionate-benzoate limited L. monocytogenes growth to an increase of 1-log increase) was observed in individual samples for all propionate-containing treatments at weeks 10, 11, and 12. As expected, L. monocytogenes grew more rapidly when products were stored at 7°C, but trends in relative inhibition were similar to those observed at 4°C. These results verify that propionate-based ingredients inhibit growth of L. monocytogenes on sliced, high-moisture, cured turkey and can be considered as an alternative to reduce sodium-based salts while maintaining food safety.

  1. Valproic acid inhibits tumor angiogenesis in mice transplanted with Kasumi-1 leukemia cells

    Science.gov (United States)

    ZHANG, ZHI-HUA; HAO, CHANG-LAI; LIU, PENG; TIAN, XIA; WANG, LI-HONG; ZHAO, LEI; ZHU, CUI-MIN

    2014-01-01

    Histone deacetylase (HDAC) inhibitors have been reported to inhibit tumor angiogenesis via the downregulation of angiogenic factors. Our previous in vitro studies demonstrated that valproic acid (VPA) exerted antitumor effects on Kasumi-1 cells, which are human acute myeloid leukemia cells with an 8;21 chromosome translocation. In the present study, the effects of VPA on tumor angiogenesis were investigated in mice transplanted with Kasumi-1 cells. Semi-quantitative reverse transcription-polymerase chain reaction, western blotting and immunohistochemistry were used to detect the expression of vascular endothelial growth factor (VEGF), VEGF receptor (VEGFR2) and basic fibroblast growth factor (bFGF). The tumor microvessel density was measured following staining with an anti-CD34 antibody. Chromatin immunoprecipitation was used to study the effect of VPA-induced histone hyperacetylation on VEGF transcription. An intraperitoneal injection of VPA inhibited tumor growth and angiogenesis in mice transplanted with Kasumi-1 cells. The mRNA and protein expression of VEGF, VEGFR2 and bFGF were inhibited by VPA treatment. In addition, VPA downregulated HDAC, increased histone H3 acetylation and enhanced the accumulation of hyperacetylated histone H3 on the VEGF promoters. The findings of the present study indicate that VPA, an HDAC inhibitor, exerts an antileukemic effect through an anti-angiogenesis mechanism. In conclusion, the mechanism underlying VPA-induced anti-angiogenesis is associated with the suppression of angiogenic factors and their receptors. VPA may increase the accumulation of acetylated histones on the VEGF promoters, which possibly contributes to the regulation of angiogenic factors. PMID:24297248

  2. Inhibition of release of taurine and excitatory amino acids in ischemia and neuroprotection.

    Science.gov (United States)

    Kimelberg, Harold K; Nestor, Nestor B; Feustel, Paul J

    2004-01-01

    Volume regulated anion channels (VRAC) have been extensively studied in purified single cell systems like cell cultures where they can be activated by cell swelling. This provides a convenient way of analyzing mechanisms and will likely lead to the holy grails of the field, namely the nature or natures of the volume sensor and the nature or natures of VRACs. Important reasons for such an understanding are that these channels are ubiquitous and have important physiological functions which under pathological conditions convert to deleterious effects. Here we summarize data showing the involvement of VRACs in ischemia-induced release of excitatory amino acids (EAAs) in a rat model of global ischemia. Using microdialysis studies we found that reversal of the astrocytic glutamate transporter and VRACs contribute about equally to the large initial release of EAAs and together account for around 80% of the total release. We used the very potent VRAC blocker, tamoxifen, to see if such inhibition of EAA release via VRACs led to significant neuroprotection. Treatment in the focal rat MCA occlusion model led to around 80% reduction in infarct size with an effective post initiation of ischemia therapeutic window of three hours. However, the common problem of other effects for even the most potent inhibitors pertains here, as tamoxifen has other, potentially neuroprotective, effects. Thus it inhibits nitrotyrosine formation, likely due to its inhibition of nNOS and reduction of peroxynitrite formation. Although tamoxifen cannot therefore be used as a test of the "VRAC-excitotxicity" hypothesis it may prove successful for translation of basic stroke research to the clinic because of its multiple targets.

  3. Modulation of NMDA receptor function by inhibition of D-amino acid oxidase in rodent brain.

    Science.gov (United States)

    Strick, Christine A; Li, Cheryl; Scott, Liam; Harvey, Brian; Hajós, Mihály; Steyn, Stefanus J; Piotrowski, Mary A; James, Larry C; Downs, James T; Rago, Brian; Becker, Stacey L; El-Kattan, Ayman; Xu, Youfen; Ganong, Alan H; Tingley, F David; Ramirez, Andres D; Seymour, Patricia A; Guanowsky, Victor; Majchrzak, Mark J; Fox, Carol B; Schmidt, Christopher J; Duplantier, Allen J

    2011-01-01

    Observations that N-Methyl-D-Aspartate (NMDA) antagonists produce symptoms in humans that are similar to those seen in schizophrenia have led to the current hypothesis that schizophrenia might result from NMDA receptor hypofunction. Inhibition of D-amino acid oxidase (DAAO), the enzyme responsible for degradation of D-serine, should lead to increased levels of this co-agonist at the NMDA receptor, and thereby provide a therapeutic approach to schizophrenia. We have profiled some of the preclinical biochemical, electrophysiological, and behavioral consequences of administering potent and selective inhibitors of DAAO to rodents to begin to test this hypothesis. Inhibition of DAAO activity resulted in a significant dose and time dependent increase in D-serine only in the cerebellum, although a time delay was observed between peak plasma or brain drug concentration and cerebellum D-serine response. Pharmacokinetic/pharmacodynamic (PK/PD) modeling employing a mechanism-based indirect response model was used to characterize the correlation between free brain drug concentration and D-serine accumulation. DAAO inhibitors had little or no activity in rodent models considered predictive for antipsychotic activity. The inhibitors did, however, affect cortical activity in the Mescaline-Induced Scratching model, produced a modest but significant increase in NMDA receptor-mediated synaptic currents in primary neuronal cultures from rat hippocampus, and resulted in a significant increase in evoked hippocampal theta rhythm, an in vivo electrophysiological model of hippocampal activity. These findings demonstrate that although DAAO inhibition did not cause a measurable increase in D-serine in forebrain, it did affect hippocampal and cortical activity, possibly through augmentation of NMDA receptor-mediated currents. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. 9-Phenanthrol and flufenamic acid inhibit calcium oscillations in HL-1 mouse cardiomyocytes.

    Science.gov (United States)

    Burt, Rees; Graves, Bridget M; Gao, Ming; Li, Chaunfu; Williams, David L; Fregoso, Santiago P; Hoover, Donald B; Li, Ying; Wright, Gary L; Wondergem, Robert

    2013-09-01

    It is well established that intracellular calcium ([Ca2+]i) controls the inotropic state of the myocardium, and evidence mounts that a "Ca2+ clock" controls the chronotropic state of the heart. Recent findings describe a calcium-activated nonselective cation channel (NSCCa) in various cardiac preparations sharing hallmark characteristics of the transient receptor potential melastatin 4 (TRPM4). TRPM4 is functionally expressed throughout the heart and has been implicated as a NSCCa that mediates membrane depolarization. However, the functional significance of TRPM4 in regards to Ca2+ signaling and its effects on cellular excitability and pacemaker function remains inconclusive. Here, we show by Fura2 Ca-imaging that pharmacological inhibition of TRPM4 in HL-1 mouse cardiac myocytes by 9-phenanthrol (10 μM) and flufenamic acid (10 and 100 μM) decreases Ca2+ oscillations followed by an overall increase in [Ca2+]i. The latter occurs also in HL-1 cells in Ca(2+)-free solution and after depletion of sarcoplasmic reticulum Ca2+ with thapsigargin (10 μM). These pharmacologic agents also depolarize HL-1 cell mitochondrial membrane potential. Furthermore, by on-cell voltage clamp we show that 9-phenanthrol reversibly inhibits membrane current; by fluorescence immunohistochemistry we demonstrate that HL-1 cells display punctate surface labeling with TRPM4 antibody; and by immunoblotting using this antibody we show these cells express a 130-150 kDa protein, as expected for TRPM4. We conclude that 9-phenanthrol inhibits TRPM4 ion channels in HL-1 cells, which in turn decreases Ca2+ oscillations followed by a compensatory increase in [Ca2+]i from an intracellular store other than the sarcoplasmic reticulum. We speculate that the most likely source is the mitochondrion.

  5. Metabolism and metabolic inhibition of gamboglc acid in rat liver microsomes

    Institute of Scientific and Technical Information of China (English)

    Yi-tong LIU; Kun HAO; Xiao-quan LIU; Guang-Ji WANG

    2006-01-01

    Aim: To study the metabolism of gambogic acid (GA) and the effects of selective cytochrome P-450 (CYP450) inhibitors on the metabolism of GA in rat liver microsomes in vitro. Methods: Rat liver micrp,so,rn,e$ were used to perform metabolism studies. Various selective CYP450 inhibitors were used to investigate their effects on the metabolism of GA and the principal CYP450 isoform involved in the formation of major metabolite M1 in rat liver microsomes. Types of inhibition in an enzyme kinetics model were used to model the interaction. Results: GA was rapidly metabolized to two phase Ⅰ metabolites,, M1 and M2, in rat liver microsomes. M1 and M2 were tentatively presumed to be the hydration metabolite and epoxide metabolite of GA, respectively. α-Naphthoflavone uncompetitively inhibited the formation of M1 while ketoconazole, sulfophenazole, diethyl dithiocarbamate and quinidine had little or no inhibitory effects on the formation of M1. Conclusion: GA is rapidly metabolized in rat liver microsomes and M1 is crucial for the elimination of GA. Cytochrome P-450 1A2 is the major rat CYP involved in the metabolism of GA.

  6. Ellagic acid promotes A{beta}42 fibrillization and inhibits A{beta}42-induced neurotoxicity

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Ying [Department of Histology and Embryology, College of Basic Medical Science, China Medical University, Shenyang 110001 (China); Tsinghua University School of Medicine, Haidian District, Beijing 100084 (China); Yang, Shi-gao; Du, Xue-ting; Zhang, Xi; Sun, Xiao-xia; Zhao, Min [Tsinghua University School of Medicine, Haidian District, Beijing 100084 (China); Sun, Gui-yuan, E-mail: sungy2004@sohu.com [Department of Histology and Embryology, College of Basic Medical Science, China Medical University, Shenyang 110001 (China); Liu, Rui-tian, E-mail: rtliu@tsinghua.edu.cn [Tsinghua University School of Medicine, Haidian District, Beijing 100084 (China)

    2009-12-25

    Smaller, soluble oligomers of {beta}-amyloid (A{beta}) play a critical role in the pathogenesis of Alzheimer's disease (AD). Selective inhibition of A{beta} oligomer formation provides an optimum target for AD therapy. Some polyphenols have potent anti-amyloidogenic activities and protect against A{beta} neurotoxicity. Here, we tested the effects of ellagic acid (EA), a polyphenolic compound, on A{beta}42 aggregation and neurotoxicity in vitro. EA promoted A{beta} fibril formation and significant oligomer loss, contrary to previous results that polyphenols inhibited A{beta} aggregation. The results of transmission electron microscopy (TEM) and Western blot displayed more fibrils in A{beta}42 samples co-incubated with EA in earlier phases of aggregation. Consistent with the hypothesis that plaque formation may represent a protective mechanism in which the body sequesters toxic A{beta} aggregates to render them harmless, our MTT results showed that EA could significantly reduce A{beta}42-induced neurotoxicity toward SH-SY5Y cells. Taken together, our results suggest that EA, an active ingredient in many fruits and nuts, may have therapeutic potential in AD.

  7. Biochemical and mass spectrometric characterization of human N-acylethanolamine-hydrolyzing acid amidase inhibition.

    Directory of Open Access Journals (Sweden)

    Jay M West

    Full Text Available The mechanism of inactivation of human enzyme N-acylethanolamine-hydrolyzing acid amidase (hNAAA, with selected inhibitors identified in a novel fluorescent based assay developed for characterization of both reversible and irreversible inhibitors, was investigated kinetically and using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS. 1-Isothiocyanatopentadecane (AM9023 was found to be a potent, selective and reversible hNAAA inhibitor, while two others, 5-((biphenyl-4-ylmethyl-N,N-dimethyl-2H-tetrazole-2-carboxamide (AM6701 and N-Benzyloxycarbonyl-L-serine β-lactone (N-Cbz-serine β-lactone, inhibited hNAAA in a covalent and irreversible manner. MS analysis of the hNAAA/covalent inhibitor complexes identified modification only of the N-terminal cysteine (Cys126 of the β-subunit, confirming a suggested mechanism of hNAAA inactivation by the β-lactone containing inhibitors. These experiments provide direct evidence of the key role of Cys126 in hNAAA inactivation by different classes of covalent inhibitors, confirming the essential role of cysteine for catalysis and inhibition in this cysteine N-terminal nucleophile hydrolase enzyme. They also provide a methodology for the rapid screening and characterization of large libraries of compounds as potential inhibitors of NAAA, and subsequent characterization or their mechanism through MALDI-TOF MS based bottom up-proteomics.

  8. Inhibition of matrix metalloproteinases expression in human dental pulp cells by all-trans retinoic acid

    Institute of Scientific and Technical Information of China (English)

    Jin Man Kim; Sang Wook Kang; Su-Mi Shin; Duck Su Kim; Kyong-Kyu Choi; Eun-Cheol Kim; Sun-Young Kim

    2014-01-01

    All-trans retinoic acid (ATRA) inhibits matrix metalloproteinase (MMP)-2 and MMP-9 in synovial fibroblasts, skin fibroblasts, bronchoalveolar lavage cells and cancer cells, but activates MMP-9 in neuroblast and leukemia cells. Very little is known regarding whether ATRA can activate or inhibit MMPs in human dental pulp cells (HDPCs). The purpose of this study was to determine the effects of ATRA on the production and secretion of MMP-2 and-9 in HDPCs. The productions and messenger RNA (mRNA) expressions of MMP-2 and-9 were accessed by gelatin zymography and real-time polymerase chain reaction (PCR), respectively. ATRA was found to decrease MMP-2 level in a dose-dependent manner. Significant reduction in MMP-2 mRNA expression was also observed in HDPCs treated with 25 mmol?L21 ATRA. However, HDPCs treated with ATRA had no effect on the pattern of MMP-9 produced or secreted in either cell extracts or conditioned medium fractions. Taken together, ATRA had an inhibitory effect on MMP-2 expression in HDPCs, which suggests that ATRA could be a candidate as a medicament which could control the inflammation of pulp tissue in vital pulp therapy and regenerative endodontics.

  9. Inhibition of the corrosion of mild steel in hydrochloric acid by isatin and isatin glycine

    Directory of Open Access Journals (Sweden)

    B.I. Ita

    2006-12-01

    Full Text Available The inhibition of corrosion of mild steel in hydrochloric acid by isatin glycine (ING and isatin (IN at 30-60 oC and concentrations of 0.0001 M to 0.0005 M was studied via weight loss method. At the highest inhibitor concentration studied ING exhibited inhibition efficiency of 87% while IN exhibited 84% at 60 oC. A chemical adsorption mechanism was proposed on the basis of the temperature effect and obtained average activation energy values of 143.9 kJ/mol for ING and 118.5 kJ/mol for IN. The two inhibitors were confirmed to obey the Langmuir adsorption isotherm equation at the concentrations studied. Also a first-order type of mechanism was proposed from the kinetic treatment of the result. The difference in the inhibitory properties of the inhibitors was explained in terms of the difference in their molecular structures and solubility rather than difference in molecular weights alone.

  10. Inhibited growth of Pseudomonas aeruginosa by dextran- and polyacrylic acid-coated ceria nanoparticles

    Directory of Open Access Journals (Sweden)

    Wang Q

    2013-08-01

    Full Text Available Qi Wang,1 J Manuel Perez,2 Thomas J Webster1,3 1Bioengineering Program, College of Engineering, Northeastern University, Boston, MA, USA; 2Nanoscience Technology Center, University of Central Florida, Orlando, FL, USA; 3Department of Chemical Engineering, College of Engineering, Northeastern University, Boston, MA, USA Abstract: Ceria (CeO2 nanoparticles have been widely studied for numerous applications, but only a few recent studies have investigated their potential applications in medicine. Moreover, there have been almost no studies focusing on their possible antibacterial properties, despite the fact that such nanoparticles may reduce reactive oxygen species. In this study, we coated CeO2 nanoparticles with dextran or polyacrylic acid (PAA because of their enhanced biocompatibility properties, minimized toxicity, and reduced clearance by the immune system. For the first time, the coated CeO2 nanoparticles were tested in bacterial assays involving Pseudomonas aeruginosa, one of the most significant bacteria responsible for infecting numerous medical devices. The results showed that CeO2 nanoparticles with either coating significantly inhibited the growth of Pseudomonas aeruginosa, by up to 55.14%, after 24 hours compared with controls (no particles. The inhibition of bacterial growth was concentration dependent. In summary, this study revealed, for the first time, that the characterized dextran- and PAA-coated CeO2 nanoparticles could be potential novel materials for numerous antibacterial applications. Keywords: antibacterial, biomedical applications

  11. All-trans-retinoic acid inhibits tumour growth of malignant pleural mesothelioma in mice.

    Science.gov (United States)

    Tabata, C; Tabata, R; Hirayama, N; Yasumitsu, A; Yamada, S; Murakami, A; Iida, S; Tamura, K; Terada, T; Kuribayashi, K; Fukuoka, K; Nakano, T

    2009-11-01

    Malignant pleural mesothelioma (MPM) is an aggressive malignant tumour of mesothelial origin associated with asbestos exposure. Because MPM has limited response to conventional chemotherapy and radiotherapy, the prognosis is very poor. Several researchers have reported that cytokines such as interleukin (IL)-6 play an important role in the growth of MPM. Previously, it was reported that all-trans-retinoic acid (ATRA) inhibited the production and function of IL-6 and transforming growth factor (TGF)-beta1 in experiments using lung fibroblasts. We investigated whether ATRA had an inhibitory effect on the cell growth of MPM, the origin of which was mesenchymal cells similar to lung fibroblasts, using a subcutaneous xenograft mouse model. We estimated the tumour growth and performed quantitative measurements of IL-6, TGF-beta1 and platelet-derived growth factor (PDGF) receptor (PDGFR)-beta mRNA levels both of cultured MPM cells and cells grown in mice with or without the administration of ATRA. ATRA significantly inhibited MPM tumour growth. In vitro studies disclosed that the administration of ATRA reduced 1) mRNA levels of TGF-beta1, TGF-beta1 receptors and PDGFR-beta, and 2) TGF-beta1-dependent proliferation and PDGF-BB-dependent migration of MPM cells. These data may provide a rationale to explore the clinical use of ATRA for the treatment of MPM.

  12. Essential role for acid sphingomyelinase-inhibited autophagy in melanoma response to cisplatin.

    Science.gov (United States)

    Cervia, Davide; Assi, Emma; De Palma, Clara; Giovarelli, Matteo; Bizzozero, Laura; Pambianco, Sarah; Di Renzo, Ilaria; Zecchini, Silvia; Moscheni, Claudia; Vantaggiato, Chiara; Procacci, Patrizia; Clementi, Emilio; Perrotta, Cristiana

    2016-05-03

    The sphingolipid metabolising enzyme Acid Sphingomyelinase (A-SMase) has been recently shown to inhibit melanoma progression and correlate inversely to tumour grade. In this study we have investigated the role of A-SMase in the chemo-resistance to anticancer treatmentusing mice with melanoma allografts and melanoma cells differing in terms of expression/activity of A-SMase. Since autophagy is emerging as a key mechanism in tumour growth and chemo-resistance, we have also investigated whether an action of A-SMase in autophagy can explain its role. Melanoma sensitivity to chemotherapeutic agent cisplatin in terms of cell viability/apoptosis, tumour growth, and animal survival depended directly on the A-SMase levels in tumoural cells. A-SMase action was due to inhibition of autophagy through activation of Akt/mammalian target of rapamycin (mTOR) pathway. Treatment of melanoma-bearing mice with the autophagy inhibitor chloroquine restored sensitivity to cisplatin of tumours expressing low levels of A-SMase while no additive effects were observed in tumours characterised by sustained A-SMase levels. The fact that A-SMase in melanomas affects mTOR-regulated autophagy and plays a central role in cisplatin efficacy encourages pre-clinical testing on the modulation of A-SMase levels/activity as possible novel anti-neoplastic strategy.

  13. Electrochemical evaluation of inhibition efficiency of ciprofloxacin on the corrosion of copper in acid media

    Energy Technology Data Exchange (ETDEWEB)

    Thanapackiam, P. [Department of Chemistry, Coimbatore Institute of Technology, Coimbatore, Tamilnadu, 641 014 (India); Rameshkumar, Subramaniam [Department of Chemistry, Sri Vasavi College, Erode, Tamilnadu, 638 316 (India); Subramanian, S.S. [Department of Chemistry, PSG College of Technology, Coimbatore, Tamilnadu, 641 004 (India); Mallaiya, Kumaravel, E-mail: mkvteam.research@gmail.com [Department of Chemistry, PSG College of Technology, Coimbatore, Tamilnadu, 641 004 (India)

    2016-05-01

    The inhibition efficiency of ciprofloxacin on the corrosion of copper was studied in 1.0MHNO{sub 3} and 0.5MH{sub 2}SO{sub 4} solutions by electrochemical impedance spectroscopy and potentiodynamic polarization techniques. The corrosion inhibition action of ciprofloxacin was observed to be of mixed type in both the acid media, but with more of a cathodic nature. The experimental data were found to fit well with the Langmuir adsorption isotherm. The thermodynamic parameters such as adsorption equilibrium constant(K{sub ads}), free energy of adsorption(ΔG{sub ads}), activation energy(E{sub a}) and potential of zero charge(PZC) showed that the adsorption of ciprofloxacin onto copper surface involves both physisorption and chemisorption. - Highlights: • The inhibitor efficiency increases with increase in ciprofloxacin concentration. • Polarization measurements show that ciprofloxacin acts as a mixed type inhibitor. • The adsorption of the inhibitor on copper surface follows Langmuir adsorption isotherm. • The negative values of ΔG{sub ads} indicates that the adsorption is spontaneous and exothermic.

  14. Amino acid metabolism inhibits antibody-driven kidney injury by inducing autophagy.

    Science.gov (United States)

    Chaudhary, Kapil; Shinde, Rahul; Liu, Haiyun; Gnana-Prakasam, Jaya P; Veeranan-Karmegam, Rajalakshmi; Huang, Lei; Ravishankar, Buvana; Bradley, Jillian; Kvirkvelia, Nino; McMenamin, Malgorzata; Xiao, Wei; Kleven, Daniel; Mellor, Andrew L; Madaio, Michael P; McGaha, Tracy L

    2015-06-15

    Inflammatory kidney disease is a major clinical problem that can result in end-stage renal failure. In this article, we show that Ab-mediated inflammatory kidney injury and renal disease in a mouse nephrotoxic serum nephritis model was inhibited by amino acid metabolism and a protective autophagic response. The metabolic signal was driven by IFN-γ-mediated induction of indoleamine 2,3-dioxygenase 1 (IDO1) enzyme activity with subsequent activation of a stress response dependent on the eIF2α kinase general control nonderepressible 2 (GCN2). Activation of GCN2 suppressed proinflammatory cytokine production in glomeruli and reduced macrophage recruitment to the kidney during the incipient stage of Ab-induced glomerular inflammation. Further, inhibition of autophagy or genetic ablation of Ido1 or Gcn2 converted Ab-induced, self-limiting nephritis to fatal end-stage renal disease. Conversely, increasing kidney IDO1 activity or treating mice with a GCN2 agonist induced autophagy and protected mice from nephritic kidney damage. Finally, kidney tissue from patients with Ab-driven nephropathy showed increased IDO1 abundance and stress gene expression. Thus, these findings support the hypothesis that the IDO-GCN2 pathway in glomerular stromal cells is a critical negative feedback mechanism that limits inflammatory renal pathologic changes by inducing autophagy.

  15. Investigations of the inhibition of copper corrosion in nitric acid solutions by ketene dithioacetal derivatives

    Energy Technology Data Exchange (ETDEWEB)

    Fiala, A. [Laboratoire de chimie moleculaire du controle de l' environnement et des mesures physico-chimiques, faculte des sciences exactes, universite Mentouri-Constantine, route de Ain-El-Bey, Constantine (Algeria)], E-mail: abdelfiala@yahoo.fr; Chibani, A. [Laboratoire de chimie moleculaire du controle de l' environnement et des mesures physico-chimiques, faculte des sciences exactes, universite Mentouri-Constantine, route de Ain-El-Bey, Constantine (Algeria); Darchen, A. [Laboratoire d' electrochimie, ecole nationale superieure de chimie de Rennes, avenue du general-Leclerc, 35700 Rennes (France); Boulkamh, A.; Djebbar, K. [Laboratoire de chimie moleculaire du controle de l' environnement et des mesures physico-chimiques, faculte des sciences exactes, universite Mentouri-Constantine, route de Ain-El-Bey, Constantine (Algeria)

    2007-10-15

    Ketene dithioacetal derivatives, namely 3-[bis(methylthio)methylene] pentane-2,4-dione (1), 3-(1,3-dithian-2-ylidene) pentane-2,4-dione (2) and 3-(1,3-dithiolan-2-ylidene) pentane-2,4-dione (3) were synthesized and their respective capacity to inhibit copper corrosion in 3 M HNO{sub 3} was investigated by means of weight loss, potentiodynamic polarization, scanning electron microscopy (SEM) and energy dispersive X-ray fluorescence (XRF). The obtained results indicate that the addition of these compounds significantly decreases the corrosion rate. Potentiodynamic polarization studies clearly showed that the inhibition efficiency increases with increasing concentration of the investigated compounds at a fixed temperature, but decreases with increasing temperature. These results on the whole showed that the studied substances are good cathodic inhibitors for copper corrosion in nitric acid medium. SEM and energy dispersive X-ray (EDAX) examination of the copper surface revealed that these compounds prevented copper from corrosion by adsorption on its surface to form a protective film, which acts as a barrier to aggressive agents. The presence of these organic compounds adsorbed on the electrode surface was confirmed by XRF investigations.

  16. Mycophenolic acid inhibits migration and invasion of gastric cancer cells via multiple molecular pathways.

    Directory of Open Access Journals (Sweden)

    Boying Dun

    Full Text Available Mycophenolic acid (MPA is the metabolized product and active element of mycophenolate mofetil (MMF that has been widely used for the prevention of acute graft rejection. MPA potently inhibits inosine monophosphate dehydrogenase (IMPDH that is up-regulated in many tumors and MPA is known to inhibit cancer cell proliferation as well as fibroblast and endothelial cell migration. In this study, we demonstrated for the first time MPA's antimigratory and anti-invasion abilities of MPA-sensitive AGS (gastric cancer cells. Genome-wide expression analyses using Illumina whole genome microarrays identified 50 genes with ≥2 fold changes and 15 genes with > 4 fold alterations and multiple molecular pathways implicated in cell migration. Real-time RT-PCR analyses of selected genes also confirmed the expression differences. Furthermore, targeted proteomic analyses identified several proteins altered by MPA treatment. Our results indicate that MPA modulates gastric cancer cell migration through down-regulation of a large number of genes (PRKCA, DOCK1, INF2, HSPA5, LRP8 and PDGFRA and proteins (PRKCA, AKT, SRC, CD147 and MMP1 with promigratory functions as well as up-regulation of a number of genes with antimigratory functions (ATF3, SMAD3, CITED2 and CEAMCAM1. However, a few genes that may promote migration (CYR61 and NOS3 were up-regulated. Therefore, MPA's overall antimigratory role on cancer cells reflects a balance between promigratory and antimigratory signals influenced by MPA treatment.

  17. The inhibitive effect of bipyrazolic derivatives on the corrosion of steel in hydrochloric acid solution

    Energy Technology Data Exchange (ETDEWEB)

    Tebbji, K. [Laboratoire de Chimie des Eaux et Corrosion, Faculte des Sciences, B.P. 717, Oujda (Morocco); Hammouti, B. [Laboratoire de Chimie des Eaux et Corrosion, Faculte des Sciences, B.P. 717, Oujda (Morocco); Oudda, H. [Laboratoire des Procedes de Separation, Faculte des Sciences, Kenitra (Morocco); Ramdani, A. [Laboratoire de Chimie Organique-Physique, Faculte des Sciences, B.P. 717, Oujda (Morocco); Benkadour, M. [Laboratoire de Chimie des Eaux et Corrosion, Faculte des Sciences, B.P. 717, Oujda (Morocco)

    2005-12-15

    The effect of two pyrazole-type organic compounds, namely ethyl 5,5'-dimethyl-1'H-1,3'-bipyrazole-3 carboxylate (P1) and 3,5,5'-trimethyl-1'H-1,3'-bipyrazole (P2) on the corrosion behaviour of steel in 1 M hydrochloric acid (HCl) solution is investigated at 308 K by weight loss measurements, potentiodynamic polarisation and impedance spectroscopy (EIS) methods. The inhibition efficiencies obtained from cathodic Tafel plots, gravimetric and EIS methods are in good agreement. Results obtained show that the compound P2 is the best inhibitor and its efficiency reaches 84% at 10{sup -3} M. Potentiodynamic polarisation studies show that pyrazolic derivatives are cathodic-type inhibitors and these compounds act on the cathodic reaction without changing the mechanism of the hydrogen evolution reaction. The inhibition efficiency of P2 is temperature-dependent in the range from 308 to 353 K and the associated activation energy has been determined. P2 adsorbs on the steel surface according to Langmuir adsorption model. The calculation of the total partial charge of inhibitor atoms is computed.

  18. Diacylglycerol pyrophosphate inhibits the alpha-amylase secretion stimulated by gibberellic acid in barley aleurone.

    Science.gov (United States)

    Racagni, Graciela; Villasuso, Ana L; Pasquaré, Susana J; Giusto, Norma M; Machado, Estela

    2008-11-01

    ABA plays an important regulatory role in seed germination because it inhibits the response to GA in aleurone, a secretory tissue surrounding the endosperm. Phosphatidic acid (PA) is a well-known intermediary in ABA signaling, but the role of diacylglycerol pyrophosphate (DGPP) in germination processes is not clearly established. In this study, we show that PA produced by phospholipase D (E.C. 3.1.4.4) during the antagonist effect of ABA in GA signaling is rapidly phosphorylated by phosphatidate kinase (PAK) to DGPP. This is a crucial fact for aleurone function because exogenously added dioleoyl-DGPP inhibits secretion of alpha-amylase (E.C. 3.2.1.1). Aleurone treatment with ABA and 1-butanol results in normal secretory activity, and this effect is reversed by addition of dioleoyl-DGPP. We also found that ABA decreased the activity of an Mg2+-independent, N-ethylmaleimide-insensitive form of phosphatidate phosphohydrolase (PAP2) (E.C. 3.1.3.4), leading to reduction of PA dephosphorylation and increased PAK activity. Sequence analysis using Arabidopsis thaliana lipid phosphate phosphatase (LPP) sequences as queries identified two putative molecular homologues, termed HvLPP1 and HvLPP2, encoding putative Lpps with the presence of well-conserved structural Lpp domains. Our results are consistent with a role of DGPP as a regulator of ABA antagonist effect in GA signaling and provide evidence about regulation of PA level by a PAP2 during ABA response in aleurone.

  19. Environmentally safe corrosion inhibition of Mg-Al-Zn alloy in chloride free neutral solutions by amino acids

    Energy Technology Data Exchange (ETDEWEB)

    Helal, N.H. [Chemistry Department, Faculty of Science, Fayoum University, Fayoum (Egypt); Badawy, W.A., E-mail: wbadawy@cu.edu.eg [Chemistry Department, Faculty of Science, Cairo University, 12 613 Giza (Egypt)

    2011-07-30

    Highlights: > Phenyl alanine at a concentration of 2 x 10{sup -3} mol dm{sup -3} gives 93% corrosion inhibition efficiency for the corrosion of the Mg-Al-Zn alloy. > The corrosion inhibition process is based on the adsorption of the amino acid molecules on the active sites of the alloy surface by physical adsorption mechanism. > The adsorption free energy was 15.72 kJ mol{sup -1}. - Abstract: The corrosion inhibition of Mg-Al-Zn alloy was investigated in stagnant naturally aerated chloride free neutral solutions using amino acids as environmentally safe corrosion inhibitors. The corrosion rate was calculated in the absence and presence of the corrosion inhibitor using the polarization technique and electrochemical impedance spectroscopy. The experimental impedance data were fitted to theoretical data according to a proposed electronic circuit model to explain the behavior of the alloy/electrolyte interface under different conditions. The corrosion inhibition process was found to depend on the adsorption of the amino acid molecules on the metal surface. Phenyl alanine has shown remarkably high corrosion inhibition efficiency up to 93% at a concentration of 2 x 10{sup -3} mol dm{sup -3}. The corrosion inhibition efficiency was found to depend on the concentration of the amino acid and its structure. The mechanism of the corrosion inhibition process was discussed and different adsorption isotherms were investigated. The free energy of the adsorption process was calculated for the adsorption of different amino acids on the Mg-Al-Zn alloy and the obtained values reveal a physical adsorption of the inhibitor molecules on the alloy surface.

  20. Stathmin inhibition enhances okadaic acid-induced mitotic arrest: a potential role for stathmin in mitotic exit.

    Science.gov (United States)

    Mistry, S J; Atweh, G F

    2001-08-17

    Stathmin is a microtubule-destabilizing phosphoprotein that plays a critical role in the regulation of mitosis. The microtubule-depolymerizing activity of stathmin is lost upon phosphorylation in mitosis. Although the role of phosphorylation of stathmin by p34(cdc2) kinase in the assembly of the mitotic spindle is well established, the role of dephosphorylation of stathmin in mitosis is unknown. In this study, we tested the hypothesis that dephosphorylation of stathmin may be critically important for the depolymerization of the mitotic spindle and the exit from mitosis. We compared the effects of okadaic acid, a specific inhibitor of serine/threonine protein phosphatases, on different parameters of mitotic progression in the presence or absence of stathmin deficiency. Because okadaic acid prevents dephosphorylation of stathmin and results in accumulation of the inactive phosphorylated form, exposure to okadaic acid would be expected to have a more profound effect on mitosis in the presence of relative stathmin deficiency. We found that inhibition of stathmin expression results in increased sensitivity to the antimitotic effects of okadaic acid. This was reflected by increased growth inhibition associated with mitotic arrest. A vast majority of the stathmin-inhibited cells were found to be arrested in late metaphase/anaphase and had severe mitotic spindle abnormalities. Exposure to okadaic acid also resulted in a bigger ratio of polymerized/unpolymerized tubulin in stathmin-inhibited cells relative to control cells. Because the only difference between the control and the stathmin-inhibited cells is the deficiency of stathmin in the latter, the increased susceptibility of the stathmin-inhibited cells to okadaic acid-induced mitotic arrest implies a role for stathmin in the later stages of mitosis.

  1. In-situ inhibition of Staphylococcus aureus by lactic acid bacteria consortia from two traditional Slovenian raw milk cheeses

    Directory of Open Access Journals (Sweden)

    Aljoša Trmčić

    2010-09-01

    Full Text Available Bacteriocin(s producing lactic acid bacteria naturally present in traditional cheeses represent an inexhaustive pool of microbes with safeguarding potential. Some bacteriocins produced by cheese lactic acid bacteria were already described as successful anti-staphylococcal agents. The presence of genes for bacteriocins with potential anti-staphylococcal activity was also demonstrated in two Slovenian traditional raw milk cheeses, “Tolminc” and “Kraški ovčji sir”. Same bacteriocin genes were also detected in viable lactic acid bacteria consortia’s isolated from “bacteriocin positive cheeses” on Rogosa, M17 and CATC agar media. The aim of the research was to elucidate whether or not this particular cheese consortia, in which bacteriocin genes were detected, actually exhibit anti-staphylococcal activity in milk and/or cheese. For this purpose different cheese consortia were selected in relation to versatility of detected bacteriocin genes and used to perform challenge tests against Staphylococcus aureus in milk and cheese. In milk following the time/temperature regime of traditional cheese production all cheese consortia effectively inhibited growth of Staphylococcus aureus in the range of app. 2 to 3 log. In cheese the inhibition of staphylococci was less pronounced but still evident since inhibition of app. 1.5 log was detected. Sole inhibition by lactic acid production was ruled out whilelinking inhibition directly to bacteriocin production would take some additional work.

  2. Inhibition of cold rolled steel corrosion by Tween-20 in sulfuric acid: weight loss, electrochemical and AFM approaches.

    Science.gov (United States)

    Mu, Guannan; Li, Xianghong

    2005-09-01

    The inhibiting action of a nonionic surfactant of Tween-20 on the corrosion of cold rolled steel (CRS) in 0.5-7.0 M sulfuric acid (H(2)SO(4)) was studied by weight loss and potentiodynamic polarization methods. Atomic force microscope (AFM) provided the surface conditions. The results show that inhibition efficiency increases with the inhibitor concentration, while it decreases with the sulfuric acid concentration. The adsorption of inhibitor on the cold rolled steel surface obeys the Langmuir adsorption isotherm equation. Effect of immersion time was studied and discussed. The effect of temperature on the corrosion behavior of cold rolled steel was also studied at four temperatures ranging from 30 to 60 degrees C, the thermodynamic parameters such as adsorption heat, adsorption free energy, and adsorption entropy were calculated. The results revealed that the adsorption was physisorption mechanism. A kinetic study of cold rolled steel in uninhibited and inhibited acid was also discussed. The kinetic parameters such as apparent activation energy, pre-exponential factor, rate constant, and reaction constant were calculated for the reactions of corrosion. The inhibition effect is satisfactorily explained by both thermodynamic and kinetic models. Polarization curves show that Tween-20 is a cathodic-type inhibitor in sulfuric acid. The results obtained from weight loss and potentiodynamic polarization are in good agreement, and the Tween-20 inhibition action could also be evidenced by surface AFM images.

  3. In Vitro Gender-Dependent Inhibition of Porcine Cytochrome P450 Activity by Selected Flavonoids and Phenolic Acids

    Directory of Open Access Journals (Sweden)

    Bo Ekstrand

    2015-01-01

    Full Text Available We investigated gender-related differences in the ability of selected flavonoids and phenolic compounds to modify porcine hepatic CYP450-dependent activity. Using pools of microsomes from male and female pigs, the inhibition of the CYP families 1A, 2A, 2E1, and 3A was determined. The specific CYP activities were measured in the presence of the following selected compounds: rutin, myricetin, quercetin, isorhamnetin, p-coumaric acid, gallic acid, and caffeic acid. We determined that myricetin and isorhamnetin competitively inhibited porcine CYP1A activity in the microsomes from both male and female pigs but did not affect the CYP2A and CYP2E1. Additionally, isorhamnetin competitively inhibited CYP3A in both genders. Noncompetitive inhibition of CYP3A activity by myricetin was observed only in the microsomes from male pigs, whereas CYP3A in female pigs was not affected. Quercetin competitively inhibited CYP2E1 and CYP1A activity in the microsomes from male pigs and irreversibly CY3A in female pigs. No effect of quercetin on CYP2E1 was observed in the microsomes from female pigs. Neither phenolic acids nor rutin affected CYP450 activities. Taken together, our results suggest that the flavonoids myricetin, isorhamnetin, and quercetin may affect the activities of porcine CYP1A, CYP3A, and CYP2E1 in a gender-dependent manner.

  4. Ascorbic acid inhibits TPA-induced HL-60 cell differentiation by decreasing cellular H₂O₂ and ERK phosphorylation.

    Science.gov (United States)

    Yiang, Giou-Teng; Chen, Jen-Ni; Wu, Tsai-Kun; Wang, Hsueh-Fang; Hung, Yu-Ting; Chang, Wei-Jung; Chen, Chinshuh; Wei, Chyou-Wei; Yu, Yung-Luen

    2015-10-01

    Retinoic acid (RA), vitamin D and 12-O‑tetradecanoyl phorbol-13-acetate (TPA) can induce HL-60 cells to differentiate into granulocytes, monocytes and macrophages, respectively. Similar to RA and vitamin D, ascorbic acid also belongs to the vitamin family. High‑dose ascorbic acid (>100 µM) induces HL‑60 cell apoptosis and induces a small fraction of HL‑60 cells to express the granulocyte marker, CD66b. In addition, ascorbic acid exerts an anti‑oxidative stress function. Oxidative stress is required for HL‑60 cell differentiation following treatment with TPA, however, the effect of ascorbic acid on HL‑60 cell differentiation in combination with TPA treatment remains to be fully elucidated. The aim of the present study was to investigate the cellular effects of ascorbic acid treatment on TPA-differentiated HL-60 cells. TPA-differentiated HL-60 cells were used for this investigation, this study and the levels of cellular hydrogen peroxide (H2O2), caspase activity and ERK phosphorylation were determined following combined treatment with TPA and ascorbic acid. The results demonstrated that low‑dose ascorbic acid (5 µM) reduced the cellular levels of H2O2 and inhibited the differentiation of HL‑60 cells into macrophages following treatment with TPA. In addition, the results of the present study further demonstrated that low‑dose ascorbic acid inactivates the ERK phosphorylation pathway, which inhibited HL‑60 cell differentiation following treatment with TPA.

  5. Adsorption and corrosion-inhibiting effect of Dacryodis edulis extract on low-carbon-steel corrosion in acidic media.

    Science.gov (United States)

    Oguzie, E E; Enenebeaku, C K; Akalezi, C O; Okoro, S C; Ayuk, A A; Ejike, E N

    2010-09-01

    The inhibition of low-carbon-steel corrosion in 1M HCl and 0.5M H(2)SO(4) by extracts of Dacryodis edulis (DE) was investigated using gravimetric and electrochemical techniques. DE extract was found to inhibit the uniform and localized corrosion of carbon steel in the acidic media, affecting both the cathodic and anodic partial reactions. The corrosion process was inhibited by adsorption of the extracted organic matter onto the steel surface in a concentration-dependent manner and involved both protonated and molecular species. Molecular dynamics simulations were performed to illustrate the process of adsorption of some specific components of the extract.

  6. Ursolic acid inhibits the development of nonalcoholic fatty liver disease by attenuating endoplasmic reticulum stress.

    Science.gov (United States)

    Li, Jian-Shuang; Wang, Wen-Jun; Sun, Yu; Zhang, Yu-Hao; Zheng, Ling

    2015-05-01

    Ursolic acid (UA) is a natural pentacyclic triterpenoid compound, which is enriched with many herbs and plants, such as apple, cranberry and olive. UA performs multiple biological activities including anti-oxidation, anti-inflammation, anti-cancer and hepatoprotection. However, the exact mechanism underlying the hepatoprotective activity of UA remains unclear. In this study, the effects of UA on the development of nonalcoholic fatty liver disease (NAFLD) were investigated. In vivo, UA treatment (0.14%, w/w) significantly decreased the liver weight, serum levels of ALT/AST and hepatic steatosis in db/db mice (a type 2 diabetic mouse model). In vitro, UA treatment (10-30 μg ml(-1)) significantly decreased palmitic acid induced intracellular lipid accumulation in L02 cells. Our results suggested that the beneficial effects of UA on NAFLD may be due to its ability to increase lipid β-oxidation and to inhibit the hepatic endoplasmic reticulum (ER) stress. Together, UA may be further considered as a natural compound for NAFLD treatment.

  7. Kaempferol Isolated from Nelumbo nucifera Inhibits Lipid Accumulation and Increases Fatty Acid Oxidation Signaling in Adipocytes.

    Science.gov (United States)

    Lee, Bonggi; Kwon, Misung; Choi, Jae Sue; Jeong, Hyoung Oh; Chung, Hae Young; Kim, Hyeung-Rak

    2015-12-01

    Stamens of Nelumbo nucifera Gaertn have been used as a Chinese medicine due to its antioxidant, hypoglycemic, and antiatherogenic activity. However, the effects of kaempferol, a main component of N. nucifera, on obesity are not fully understood. We examined the effect of kaempferol on adipogenesis and fatty acid oxidation signaling pathways in 3T3-L1 adipocytes. Kaempferol reduced cytoplasmic triglyceride (TG) accumulation in dose and time-dependent manners during adipocyte differentiation. Accumulation of TG was rapidly reversed by retrieving kaempferol treatment. Kaempferol broadly decreased mRNA or protein levels of adipogenic transcription factors and their target genes related to lipid accumulation. Kaempferol also suppressed glucose uptake and glucose transporter GLUT4 mRNA expression in adipocytes. Furthermore, protein docking simulation suggests that Kaempferol can directly bind to and activate peroxisome proliferator-activated receptor (PPAR)-α by forming hydrophobic interactions with VAL324, THR279, and LEU321 residues of PPARα. The binding affinity was higher than a well-known PPARα agonist fenofibrate. Consistently, mRNA expression levels of PPARα target genes were increased. Our study indicates while kaempferol inhibits lipogenic transcription factors and lipid accumulation, it may bind to PPARα and stimulate fatty acid oxidation signaling in adipocytes.

  8. Induction of Epstein-Barr virus early antigens by corticosteroids: inhibition by TPA and retinoic acid.

    Science.gov (United States)

    Bauer, G

    1983-03-15

    Corticosteroids can induce the synthesis of EBV antigens in the Burkitt lymphoma line Daudi. As early as 12 h after application of the drug, an increase of EA-positive cells can be seen, the maximum induction being reached after 2 days. Nanogram amounts per ml of hormone are sufficient for measurable effects. Early antigen induction by corticosteroids does not require replication of viral DNA. Induction by corticosteroid differs from induction by other systems in two major respects: (1) it does not cooperate with other inducers, and (2) it is specifically inhibited by 12-O-tetradecanoyl-phorbol-13-acetate (TPA). Induction by corticosteroids, however, shares at least one retinoic acid-sensitive step with induction by chemicals such as TPA, 5-iodo-2-deoxyuridine (IdUrd), n-butyric acid (n-BA) or inducing serum factor. This study defines three qualitatively different effects of TPA in Daudi cells: an inhibitory effect on EBV induction by corticosteroids and two differential types of synergistic effects with serum factor or n-BA, respectively. In this particular cell line, TPA exhibits no inducing capacity when applied alone.

  9. Inhibition of leukemic cells by valproic acid, an HDAC inhibitor, in xenograft tumors

    Science.gov (United States)

    Zhang, Zhihua; Hao, Changlai; Wang, Lihong; Liu, Peng; Zhao, Lei; Zhu, Cuimin; Tian, Xia

    2013-01-01

    The chimeric fusion protein, AML1-ETO, generated by translocation of t(8;21), abnormally recruits histone deacetylase (HDAC) to the promoters of AML1 target genes, resulting in transcriptional repression of the target genes and development of t(8;21) acute myeloid leukemia. Abnormal expression of cyclin-dependent kinase inhibitors, especially p21, is considered a possible mechanism of the arrested maturation and differentiation seen in leukemia cells. A new generation of HDAC inhibitors is becoming an increasing focus of attention for their ability to induce differentiation and apoptosis in tumor cells and to block the cell cycle. Our previous research had demonstrated that valproic acid induces G0/G1 arrest of Kasumi-1 cells in t(8;21) acute myeloid leukemia. In this study, we further confirmed that valproic acid inhibits the growth of Kasumi-1 cells in a murine xenograft tumor model, and that this occurs via upregulation of histone acetylation in the p21 promoter region, enhancement of p21 expression, suppression of phosphorylation of retinoblastoma protein, blocking of transcription activated by E2F, and induction of G0/G1 arrest. PMID:23836985

  10. Synergistic inhibition of cancer cell proliferation with a combination of δ-tocotrienol and ferulic acid

    Energy Technology Data Exchange (ETDEWEB)

    Eitsuka, Takahiro, E-mail: eitsuka@nupals.ac.jp [Faculty of Applied Life Sciences, Niigata University of Pharmacy and Applied Life Sciences, Niigata 956-8603 (Japan); Tatewaki, Naoto; Nishida, Hiroshi; Kurata, Tadao [Faculty of Applied Life Sciences, Niigata University of Pharmacy and Applied Life Sciences, Niigata 956-8603 (Japan); Nakagawa, Kiyotaka; Miyazawa, Teruo [Food and Biodynamic Chemistry Laboratory, Graduate School of Agricultural Science, Tohoku University, Sendai 981-8555 (Japan)

    2014-10-24

    Highlights: • δ-Tocotrienol (δ-T3) and ferulic acid (FA) synergistically inhibit cancer cell growth. • The combination of δ-T3 and FA induces G1 arrest by up-regulating p21. • The synergy is attributed to an increase in the cellular concentration of δ-T3 by FA. - Abstract: Rice bran consists of many functional compounds and thus much attention has been focused on the health benefits of its components. Here, we investigated the synergistic inhibitory effects of its components, particularly δ-tocotrienol (δ-T3) and ferulic acid (FA), against the proliferation of an array of cancer cells, including DU-145 (prostate cancer), MCF-7 (breast cancer), and PANC-1 (pancreatic cancer) cells. The combination of δ-T3 and FA markedly reduced cell proliferation relative to δ-T3 alone, and FA had no effect when used alone. Although δ-T3 induced G1 arrest by up-regulating p21 in PANC-1 cells, more cells accumulated in G1 phase with the combination of δ-T3 and FA. This synergistic effect was attributed to an increase in the cellular concentration of δ-T3 by FA. Our results suggest that the combination of δ-T3 and FA may present a new strategy for cancer prevention and therapy.

  11. Apoptosis in barley aleurone during germination and its inhibition by abscisic acid.

    Science.gov (United States)

    Wang, M; Oppedijk, B J; Lu, X; Van Duijn, B; Schilperoort, R A

    1996-12-01

    During germination of barley grains, DNA fragmentation was observed in the aleurone. The appearance of DNA fragmentation in the aleurone layer, observed by TUNEL staining in aleurone sections, started near the embryo and extended to the aleurone cells far from the embryo in a time dependent manner. The same spatial temporal activities of hydrolytic enzymes such as alpha-amylase were observed in aleurone. DNA fragmentation could also be seen in vitro under osmotic stress, in isolated aleurone. During aleurone protoplast isolation, a very enhanced and strong DNA fragmentation occurred which was not seen in protoplast preparations of tobacco leaves. ABA was found to inhibit DNA fragmentation occurring in barley aleurone under osmotic stress condition and during protoplast isolation, while the plant growth regulator gibberellic acid counteracted the effect of ABA. Addition of auxin or cytokinin had no significant effect on DNA fragmentation in these cells. To study the role of phosphorylation in ABA signal transduction leading to control of DNA fragmentation (apoptosis), the effects of the phosphatase inhibitor okadaic acid and of phenylarisine oxide on apoptosis were studied. We hypothesize that the regulation of DNA fragmentation in aleurone plays a very important role in spatial and temporal control of aleurone activities during germination. The possible signal transduction pathway of ABA leading to the regulation of DNA fragmentation is discussed.

  12. Eicosapentaenoic acid inhibits tumour necrosis factor-α-induced lipolysis in murine cultured adipocytes.

    Science.gov (United States)

    Lorente-Cebrián, Silvia; Bustos, Matilde; Marti, Amelia; Fernández-Galilea, Marta; Martinez, J Alfredo; Moreno-Aliaga, Maria J

    2012-03-01

    Eicosapentaenoic acid (EPA) is an omega-3 polyunsaturated fatty acid with beneficial effects in obesity and insulin resistance. High levels of proinflammatory cytokine tumour necrosis factor-α (TNF-α) in obesity promote lipolysis in adipocytes, leading to the development of insulin resistance. Thus, the aims of the present study were to analyze the potential antilipolytic properties of EPA on cytokine-induced lipolysis and to investigate the possible mechanisms involved. The EPA effects on basal and TNF-α-induced lipolysis were determined in both primary rat and 3T3-L1 adipocytes. Treatment of primary rat adipocytes with EPA (100 and 200 μM) significantly decreased basal glycerol release (Plipolysis in a dose-dependent manner (Padipocytes. However, oral supplementation with EPA for 35 days was able to partially reverse the down-regulation of HSL and ATGL messenger RNA observed in retroperitoneal adipose tissue of high-fat-diet-fed rats. These findings suggest that EPA inhibits proinflammatory cytokine-induced lipolysis in adipocytes. This effect might contribute to explain the insulin-sensitizing properties of EPA. Copyright © 2012 Elsevier Inc. All rights reserved.

  13. Mechanisms for the activation of Toll-like receptor 2/4 by saturated fatty acids and inhibition by docosahexaenoic acid.

    Science.gov (United States)

    Hwang, Daniel H; Kim, Jeong-A; Lee, Joo Young

    2016-08-15

    Saturated fatty acids can activate Toll-like receptor 2 (TLR2) and TLR4 but polyunsaturated fatty acids, particularly docosahexaenoic acid (DHA) inhibit the activation. Lipopolysaccharides (LPS) and lipopetides, ligands for TLR4 and TLR2, respectively, are acylated by saturated fatty acids. Removal of these fatty acids results in loss of their ligand activity suggesting that the saturated fatty acyl moieties are required for the receptor activation. X-ray crystallographic studies revealed that these saturated fatty acyl groups of the ligands directly occupy hydrophobic lipid binding domains of the receptors (or co-receptor) and induce the dimerization which is prerequisite for the receptor activation. Saturated fatty acids also induce the dimerization and translocation of TLR4 and TLR2 into lipid rafts in plasma membrane and this process is inhibited by DHA. Whether saturated fatty acids induce the dimerization of the receptors by interacting with these lipid binding domains is not known. Many experimental results suggest that saturated fatty acids promote the formation of lipid rafts and recruitment of TLRs into lipid rafts leading to ligand independent dimerization of the receptors. Such a mode of ligand independent receptor activation defies the conventional concept of ligand induced receptor activation; however, this may enable diverse non-microbial molecules with endogenous and dietary origins to modulate TLR-mediated immune responses. Emerging experimental evidence reveals that TLRs play a key role in bridging diet-induced endocrine and metabolic changes to immune responses.

  14. Caffeic Acid Inhibits the Formation of 7-Carboxyheptyl Radicals from Oleic Acid under Flavin Mononucleotide Photosensitization by Scavenging Singlet Oxygen and Quenching the Excited State of Flavin Mononucleotide

    Directory of Open Access Journals (Sweden)

    Marie Asano

    2014-08-01

    Full Text Available We examined the effects of caffeic acid (CA and related compounds on 7-carboxyheptyl radical formation. This analysis was performed using a standard D2O reaction mixture containing 4.3 mM oleic acid, 25 μM flavin mononucleotide (FMN, 160 mM phosphate buffer (pH 7.4, 10 mM cholic acid, 100 mM α-(4-pyridyl-1-oxide-N-tert-butylnitrone, and 1 mM Fe(SO42(NH42 during irradiation with 7.8 J/cm2 at 436 nm. 7-Carboxyheptyl radical formation was inhibited by CA, catechol, gallic acid, chlorogenic acid, ferulic acid, noradrenalin, 2-hydroxybenzoic acid, 3-hydroxybenzoic acid, and 4-hydroxybenzoic acid. Quinic acid, benzoic acid, and p-anisic acid had no effect on radical formation. These results suggest that a phenol moiety is essential for these inhibitory effects. The fluorescence intensity of FMN decreased by 69% ± 2% after CA addition, suggesting that CA quenches the singlet excited state of FMN. When 1 mM CA was added to a standard reaction mixture containing 25 μM FMN, 140 mM phosphate buffer (pH 7.4, and 10 mM 4-oxo-2,2,6,6-tetramethylpiperidine, the electron spin resonance signal of 4-oxo-2,2,6,6-tetramethylpiperidinooxy disappeared. This finding suggests that singlet oxygen was scavenged completely by CA. Therefore, CA appears to inhibit 7-carboxyheptyl radical formation by scavenging singlet oxygen and quenching the excited state of FMN.

  15. Protease Inhibition by Oleic Acid Transfer From Chronic Wound Dressings to Albumin

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, J. V.; Howley, Phyllis; Davis, Rachel M.; Mashchak, Andrew D.; Goheen, Steven C.

    2007-08-01

    High elastase and cathepsin G activities have been observed in chronic wounds. These levels can inhibit healing through degradation of growth factors, cytokines, and extracellular matrix proteins. Oleic acid (18:1) is a non-toxic elastase inhibitor with some potential for redressing the imbalance of elastase activity found in chronic wounds. Cotton wound dressing material was characterized as a transfer carrier for affinity uptake of 18:1 by albumin under conditions mimicking chronic wounds. 18:1-treated cotton was examined for its ability to bind and release the fatty acid in the presence of albumin. The mechanism of 18:1 uptake from cotton and binding by albumin was examined with both intact dressings and cotton fiber-designed chromatography. Raman spectra of the albumin-18:1 complexes under liquid-liquid equilibrium conditions revealed fully saturated albumin-18:1 complexes with a 1:1 weight ratio of albumin:18:1. Cotton chromatography under liquid-solid equilibrium conditions revealed oleic acid transfer from cotton to albumin at 27 mole equivalents of 18:1 per mole albumin. Cotton was contrasted with hydrogel, and hydrocolloid wound dressing for its comparative ability to lower elastase activity. Each dressing material evaluated was found to release 18:1 in the presence of albumin with significant inhibition of elastase activity. The 18:1-formulated wound dressings lowered elastase activity in a dose dependent manner in the order cotton gauze > hydrogel > hydrocolloid. In contrast the cationic serine protease Cathepsin G was inihibited by 18:1 within a narrow range of 18:1-cotton formulations. Four per cent Albumin solutions were most effective in binding cotton bound-18:1. However, 2% albumin was sufficient to transfer quantities of 18:1 necessary to achieve a significant elastase-lowering effect. Formulations with 128 mg 18:1/g cotton gauze had equivalent elastase lowering with 1 - 4% albumin. 18:1 bound to cotton wound dressings may have promise in the

  16. Enhanced fatty acid accumulation in Isochrysis galbana by inhibition of the mitochondrial alternative oxidase pathway under nitrogen deprivation.

    Science.gov (United States)

    Zhang, Litao; Liu, Jianguo

    2016-07-01

    The purpose of this study was to clarify the interrelation between the mitochondrial alternative oxidase (AOX) pathway and fatty acid accumulation in marine microalga Isochrysis galbana. Under normal conditions, the activity of the AOX pathway was maintained at a low level in I. galbana. Compared with the normal condition, nitrogen deprivation significantly increased the AOX pathway activity and fatty acid accumulation. Under nitrogen deprivation, the inhibition of the AOX pathway by salicylhydroxamic acid caused the accumulation of reducing equivalents and the over-reduction of chloroplasts in I. galbana cells, leading to a decrease in the photosynthetic O2 evolution rate. The over-production of reducing equivalents due to the inhibition of the AOX pathway under nitrogen deprivation further enhanced the accumulation of fatty acids in I. galbana cells.

  17. Prolongation of bleeding time and inhibition of platelet aggregation by low-dose acetylsalicylic acid in patients with cerebrovascular disease

    DEFF Research Database (Denmark)

    Boysen, G; Boss, A H; Ødum, Niels

    1984-01-01

    Platelet aggregation and bleeding time was measured in 43 cerebrovascular patients participating in a controlled double-blind study of low-dose acetylsalicylic acid. In 19 patients with satisfactory inhibition of the platelet aggregation obtained by 50 to 70 mg acetylsalicylic acid per day...... the bleeding time averaged 11.2 minutes in contrast to 7.0 minutes in the placebo group, p less than 0.001. This study confirms our previous findings of platelet inhibition by low-dose acetylsalicylic acid in patients with cerebrovascular disease. The prolongation of the bleeding time demonstrates that we...... are dealing not merely with an in vitro phenomenon but with a significant in vivo effect. The study provides the rationale for clinical evaluations of low-dose acetylsalicylic acid in stroke prophylaxis....

  18. Lipopolysaccharide inhibits or accelerates biomedical titanium corrosion depending on environmental acidity.

    Science.gov (United States)

    Yu, Fei; Addison, Owen; Baker, Stephen J; Davenport, Alison J

    2015-09-14

    Titanium and its alloys are routinely used as biomedical implants and are usually considered to be corrosion resistant under physiological conditions. However, during inflammation, chemical modifications of the peri-implant environment including acidification occur. In addition certain biomolecules including lipopolysaccharide (LPS), a component of Gram-negative bacterial cell walls and driver of inflammation have been shown to interact strongly with Ti and modify its corrosion resistance. Gram-negative microbes are abundant in biofilms which form on dental implants. The objective was to investigate the influence of LPS on the corrosion properties of relevant biomedical Ti substrates as a function of environmental acidity. Inductively coupled plasma mass spectrometry was used to quantify Ti dissolution following immersion testing in physiological saline for three common biomedical grades of Ti (ASTM Grade 2, Grade 4 and Grade 5). Complementary electrochemical tests including anodic and cathodic polarisation experiments and potentiostatic measurements were also conducted. All three Ti alloys were observed to behave similarly and ion release was sensitive to pH of the immersion solution. However, LPS significantly inhibited Ti release under the most acidic conditions (pH 2), which may develop in localized corrosion sites, but promoted dissolution at pH 4-7, which would be more commonly encountered physiologically. The observed pattern of sensitivity to environmental acidity of the effect of LPS on Ti corrosion has not previously been reported. LPS is found extensively on the surfaces of skin and mucosal penetrating Ti implants and the findings are therefore relevant when considering the chemical stability of Ti implant surfaces in vivo.

  19. Zoledronic acid cooperates with a cyclooxygenase-2 inhibitor and gefitinib in inhibiting breast and prostate cancer.

    Science.gov (United States)

    Melisi, Davide; Caputo, Rosa; Damiano, Vincenzo; Bianco, Roberto; Veneziani, Bianca Maria; Bianco, A Raffaele; De Placido, Sabino; Ciardiello, Fortunato; Tortora, Giampaolo

    2005-12-01

    Biphosphonates (BPs) are widely used to inhibit osteoclastic activity in malignant diseases such as bone metastatic breast and prostate carcinoma. Recent studies reported that BPs could also cause a direct antitumor effect, probably due to their ability to interfere with several intracellular signalling molecules. The enzyme cyclooxygenase-2 (COX-2) and the epidermal growth factor receptor (EGFR) play an important role in the control of cancer cell growth and inhibitors of COX-2 and EGFR have shown antitumor activity in vitro and in vivo in several tumor types. We, and others, have previously shown that EGFR and COX-2 may be directly related to each other and that their selective inhibitors may have a cooperative effect. In the present study we have evaluated the combined effect of zoledronic acid, the most potent nitrogen-containing BP, with the COX-2 inhibitor SC-236 and the selective EGFR-tyrosine kinase inhibitor gefitinib, on breast and prostate cancer models in vitro and in xenografted nude mice. We show that combination of zoledronic acid with SC-236 and gefitinib causes a cooperative antitumor effect accompanied by induction of apoptosis and regulation of the expression of mitogenic factors, proangiogenic factors and cell cycle controllers both in vitro and in xenografted nude mice. The modulatory effect on protein expression and the inhibitory effect on tumor growth is much more potent when the three agents are used together. Since studies are ongoing to explore the antitumor effect of zoledronic acid, our results provide new insights into the mechanism of action of these agents and a novel rationale to translate this feasible combination treatment strategy into a clinical setting.

  20. Inhibition of leukemic cells by valproic acid, an HDAC inhibitor, in xenograft tumors

    Directory of Open Access Journals (Sweden)

    Zhang Z

    2013-06-01

    Full Text Available Zhihua Zhang,1 Changlai Hao,1 Lihong Wang,1 Peng Liu,2 Lei Zhao,1 Cuimin Zhu,1 Xia Tian31Hematology Department, Affiliated Hospital of Chengde Medical College, Chengde, Hebei Province, 2Department of Medical Oncology, Shijiazhuang Municipal No 1 Hospital, Hebei Province, 3Department of Medical Oncology, Rizhao Municipal People’s Hospital, Shandong Province, People's Republic of ChinaAbstract: The chimeric fusion protein, AML1-ETO, generated by translocation of t(8;21, abnormally recruits histone deacetylase (HDAC to the promoters of AML1 target genes, resulting in transcriptional repression of the target genes and development of t(8;21 acute myeloid leukemia. Abnormal expression of cyclin-dependent kinase inhibitors, especially p21, is considered a possible mechanism of the arrested maturation and differentiation seen in leukemia cells. A new generation of HDAC inhibitors is becoming an increasing focus of attention for their ability to induce differentiation and apoptosis in tumor cells and to block the cell cycle. Our previous research had demonstrated that valproic acid induces G0/G1 arrest of Kasumi-1 cells in t(8;21 acute myeloid leukemia. In this study, we further confirmed that valproic acid inhibits the growth of Kasumi-1 cells in a murine xenograft tumor model, and that this occurs via upregulation of histone acetylation in the p21 promoter region, enhancement of p21 expression, suppression of phosphorylation of retinoblastoma protein, blocking of transcription activated by E2F, and induction of G0/G1 arrest.Keywords: valproic acid, acute myeloid leukemia, AML1-ETO, p21, E2F

  1. Acute Copper and Ascorbic Acid Supplementation Inhibits Non-heme Iron Absorption in Humans.

    Science.gov (United States)

    Olivares, Manuel; Figueroa, Constanza; Pizarro, Fernando

    2016-08-01

    The objective of the study is to determine the effect of copper (Cu) plus the reducing agent ascorbic acid (AA) on the absorption of non-heme iron (Fe). Experimental study with block design in which each subject was his own control. After signing an informed consent, 14 adult women using an effective method of contraception and negative pregnancy test received 0.5 mg Fe, as ferrous sulfate, alone or with Cu, as copper sulfate, plus ascorbic acid (AA/Cu 2/1 molar ratio) at 4/1; 6/1 and 8/1 Cu/Fe molar ratios as an aqueous solution on days 1, 2, 14, and 15 of the study. Fe absorption was assessed by erythrocyte incorporation of iron radioisotopes (55)Fe and (59)Fe. Geometric mean (range ± SD) absorption of Fe at 4/1 and 6/1 Cu/Fe molar ratios (and AA/Cu 2/1 molar ratio) and Fe alone was 57.4 % (35.7-92.1 %), 64.2 % (45.8-89.9 %), and 38.8 % (20.4-73.8 %), respectively (ANOVA for repeated measures p absorption; however, Fe absorption at Cu/Fe 8/1 molar ratio was 47.3 % (27.7-80.8) (p = NS compared with Fe alone). It was expected that Fe absorption would have been equal or greater than at 4/1 and 6/1 molar ratios. Copper in the presence of ascorbic acid inhibits non-heme Fe absorption at Cu/Fe 8/1 molar ratio.

  2. Lipopolysaccharide inhibits or accelerates biomedical titanium corrosion depending on environmental acidity

    Institute of Scientific and Technical Information of China (English)

    Fei Yu; Owen Addison; Stephen J Baker; Alison J Davenport

    2015-01-01

    Titanium and its alloys are routinely used as biomedical implants and are usually considered to be corrosion resistant under physiological conditions. However, during inflammation, chemical modifications of the peri-implant environment including acidification occur. In addition certain biomolecules including lipopolysaccharide (LPS), a component of Gram-negative bacterial cell walls and driver of inflammation have been shown to interact strongly with Ti and modify its corrosion resistance. Gram-negative microbes are abundant in biofilms which form on dental implants. The objective was to investigate the influence of LPS on the corrosion properties of relevant biomedical Ti substrates as a function of environmental acidity. Inductively coupled plasma mass spectrometry was used to quantify Ti dissolution following immersion testing in physiological saline for three common biomedical grades of Ti (ASTM Grade 2, Grade 4 and Grade 5). Complementary electrochemical tests including anodic and cathodic polarisation experiments and potentiostatic measurements were also conducted. All three Ti alloys were observed to behave similarly and ion release was sensitive to pH of the immersion solution. However, LPS significantly inhibited Ti release under the most acidic conditions (pH 2), which may develop in localized corrosion sites, but promoted dissolution at pH 4–7, which would be more commonly encountered physiologically. The observed pattern of sensitivity to environmental acidity of the effect of LPS on Ti corrosion has not previously been reported. LPS is found extensively on the surfaces of skin and mucosal penetrating Ti implants and the findings are therefore relevant when considering the chemical stability of Ti implant surfaces in vivo.

  3. INHIBITION OF BILE ACID ACCUMULATION DECREASED THE EXCESSIVE HEPATOCYTE APOPTOSIS AND IMPROVED THE LIVER SECRETION FUNCTIONS ON OBSTRUCTIVE JAUNDICE PATIENTS

    Directory of Open Access Journals (Sweden)

    Akmal Taher

    2011-06-01

    Full Text Available Excessive hepatocyte apoptosis induced by bile acid accumulation occurred in severe obstructive jaundice, and impair the liver secretion function. The objective of this study is to determine whether the inhibition of bile acid accumulation through bile duct decompression affect the excessive hepatocyte apoptosis and caused improvement the liver secretion functions on human model. In this study we use a before and after study on severe obstructive jaundice patients due to extra hepatic bile duct tumor was decompressed. Bile duct decompression was performed as a model of the role of inhibition of bile acid accumulation inhibition bile acid accumulation and excessive hepatocyte apoptosis. Bile acid and marker of liver secretion functions were serially measured. Liver biopsy pre and post decompression was performed for Hepatocyte apoptosis pathologic examination by TUNEL fluorescing, which measured by 2 people in double blinded system. Total bile acid, and liver secretion functions were measured by automated chemistry analyzer. The result of this study shows that twenty one severe obstructive jaundice patients were included. After decompression the hepatocyte apoptosis index decreased from an average of 53.1 (SD 105 to 11.7 (SD 13.6 (p < 0.05. Average of bile acid serum decreased from 96.4 (SD 53.8 to 19.9 (SD 39.5 until 13.0 (SD 12.6 μmol/L (p < 0.05 Total ilirubin decreased from 20.0 (SD 8.9 to 13.3 (SD 5.0 until 6.2 (SD 4.0 mg/dL (p < 0.05, while the phosphates alkaline (ALP and γ-glutamil transpeptidase (γ-GT activities also decreased ignificantly. In conclusion, bile acids accumulation and excessive hepatocyte poptosis through bile duct decompression improve the liver secretion functions by inhibition mechanism.

  4. IgE binding to peanut allergens is inhibited by combined D-aspartic and D-glutamic acids

    Science.gov (United States)

    D-amino acids (D-aas) are reported to bind to IgE antibodies from people with allergy and asthma. The objectives of this study were to determine if D-aas bind or inhibit IgE binding to peanut allergens, and if they are more effective than L-amino acids (L-aas) in this respect. Several D-aa cocktails...

  5. Inhibition of Homo-coupling of Arylboronic Acids in Ligand Free Pd(Ⅱ)-Catalyzed Suzuki Reaction

    Institute of Scientific and Technical Information of China (English)

    TAO,Xiao-Chun; ZHANG,Yue-Ping; HE,Tian-Xiong; SHEN,Dong

    2007-01-01

    A series of solvents were examined for the ligand free Pd(Ⅱ)-catalyzed Suzuki reaction of 4-bromotoluene with phenylboronic acid. It was found that the PdCl2/i-PrOH system could efficiently inhibit the homo-coupling of phenylboronic acid and give a cross-coupling product in high yields. The substrates with a wide variety of functional groups were tolerated in the system. A possible mechanism for this system was proposed.

  6. CaCO3 supplementation alleviates the inhibition of formic acid on acetone/butanol/ethanol fermentation by Clostridium acetobutylicum.

    Science.gov (United States)

    Qi, Gaoxiang; Xiong, Lian; Lin, Xiaoqing; Huang, Chao; Li, Hailong; Chen, Xuefang; Chen, Xinde

    2017-01-01

    To investigate the inhibiting effect of formic acid on acetone/butanol/ethanol (ABE) fermentation and explain the mechanism of the alleviation in the inhibiting effect under CaCO3 supplementation condition. From the medium containing 50 g sugars l(-1) and 0.5 g formic acid l(-1), only 0.75 g ABE l(-1) was produced when pH was adjusted by KOH and fermentation ended prematurely before the transformation from acidogenesis to solventogenesis. In contrast, 11.4 g ABE l(-1) was produced when pH was adjusted by 4 g CaCO3 l(-1). The beneficial effect can be ascribed to the buffering capacity of CaCO3. Comparative analysis results showed that the undissociated formic acid concentration and acid production coupled with ATP and NADH was affected by the pH buffering capacity of CaCO3. Four millimole undissociated formic acid was the threshold at which the transformation to solventogenesis occurred. The inhibiting effect of formic acid on ABE fermentation can be alleviated by CaCO3 supplementation due to its buffering capacity.

  7. Pimaradienoic Acid Inhibits Carrageenan-Induced Inflammatory Leukocyte Recruitment and Edema in Mice: Inhibition of Oxidative Stress, Nitric Oxide and Cytokine Production.

    Directory of Open Access Journals (Sweden)

    Sandra S Mizokami

    Full Text Available Pimaradienoic acid (PA; ent-pimara-8(14,15-dien-19-oic acid is a pimarane diterpene found in plants such as Vigueira arenaria Baker (Asteraceae in the Brazilian savannas. Although there is evidence on the analgesic and in vitro inhibition of inflammatory signaling pathways, and paw edema by PA, its anti-inflammatory effect deserves further investigation. Thus, the objective of present study was to investigate the anti-inflammatory effect of PA in carrageenan-induced peritoneal and paw inflammation in mice. Firstly, we assessed the effect of PA in carrageenan-induced leukocyte recruitment in the peritoneal cavity and paw edema and myeloperoxidase activity. Next, we investigated the mechanisms involved in the anti-inflammatory effect of PA. The effect of PA on carrageenan-induced oxidative stress in the paw skin and peritoneal cavity was assessed. We also tested the effect of PA on nitric oxide, superoxide anion, and inflammatory cytokine production in the peritoneal cavity. PA inhibited carrageenan-induced recruitment of total leukocytes and neutrophils to the peritoneal cavity in a dose-dependent manner. PA also inhibited carrageenan-induced paw edema and myeloperoxidase activity in the paw skin. The anti-inflammatory mechanism of PA depended on maintaining paw skin antioxidant activity as observed by the levels of reduced glutathione, ability to scavenge the ABTS cation and reduce iron as well as by the inhibition of superoxide anion and nitric oxide production in the peritoneal cavity. Furthermore, PA inhibited carrageenan-induced peritoneal production of inflammatory cytokines TNF-α and IL-1β. PA presents prominent anti-inflammatory effect in carrageenan-induced inflammation by reducing oxidative stress, nitric oxide, and cytokine production. Therefore, it seems to be a promising anti-inflammatory molecule that merits further investigation.

  8. Inhibition of protein palmitoylation, raft localization, and T cell signaling by 2-bromopalmitate and polyunsaturated fatty acids.

    Science.gov (United States)

    Webb, Y; Hermida-Matsumoto, L; Resh, M D

    2000-01-07

    The ability of the Src family kinases Fyn and Lck to participate in signaling through the T cell receptor is critically dependent on their dual fatty acylation with myristate and palmitate. Here we identify a palmitate analog, 2-bromopalmitate, that effectively blocks Fyn fatty acylation in general and palmitoylation in particular. Treatment of COS-1 cells with 2-bromopalmitate blocked myristoylation and palmitoylation of Fyn and inhibited membrane binding and localization of Fyn to detergent-resistant membranes (DRMs). In Jurkat T cells, 2-bromopalmitate blocked localization of the endogenous palmitoylated proteins Fyn, Lck, and LAT to DRMs. This resulted in impaired signaling through the T cell receptor as evidenced by reductions in tyrosine phosphorylation, calcium release, and activation of mitogen-activated protein kinase. We also examined the ability of long chain polyunsaturated fatty acids (PUFAs) to inhibit protein fatty acylation. PUFAs have been reported to inhibit T cell signaling by excluding Src family kinases from DRMs. Here we show that the PUFAs arachidonic acid and eicosapentaenoic acid inhibit Fyn palmitoylation and consequently block Fyn localization to DRMs. We propose that inhibition of protein palmitoylation represents a novel mechanism by which PUFAs exert their immunosuppressive effects.

  9. Prevention of topical surfactant-induced itch-related responses by chlorogenic acid through the inhibition of increased histamine production in the epidermis.

    Science.gov (United States)

    Inami, Yoshihiro; Andoh, Tsugunobu; Kuraishi, Yasushi

    2013-01-01

    Effects of chlorogenic acid on surfactant-induced itching were studied in mice. Topical application of sodium laurate increased hind-paw scratching, an itch-related response, 2 h after application, which was inhibited by topical post-treatment with chlorogenic acid. Sodium laurate increased the histamine content and 53-kDa L-histidine decarboxylase in the epidermis, which were also inhibited by post-treatment with chlorogenic acid. These results suggest that topical chlorogenic acid is effective in the prevention of itching induced by anionic surfactants. The inhibitory activity of chlorogenic acid may be due to the inhibition of an increase in histamine in the epidermis.

  10. Inhibition of fatty acid biosynthesis prevents adipocyte lipotoxicity on human osteoblasts in vitro.

    Science.gov (United States)

    Elbaz, Alexandre; Wu, Xiying; Rivas, Daniel; Gimble, Jeffrey M; Duque, Gustavo

    2010-04-01

    Although increased bone marrow fat in age-related bone loss has been associated with lower trabecular mass, the underlying mechanism responsible remains unknown. We hypothesized that marrow adipocytes exert a lipotoxic effect on osteoblast function and survival through the reversible biosynthesis of fatty acids (FA) into the bone marrow microenvironment. We have used a two-chamber system to co-culture normal human osteoblasts (NHOst) with differentiating pre-adipocytes in the absence or presence of an inhibitor of FA synthase (cerulenin) and separated by an insert that allowed unidirectional trafficking of soluble factors only and prevented direct cell-cell contact. Supernatants were assayed for the presence of FA using mass spectophotometry. After 3 weeks in co-culture, NHOst showed significantly lower levels of differentiation and function based on lower mineralization and expression of alkaline phosphatase, osterix, osteocalcin and Runx2. In addition, NHOst survival was affected by the presence of adipocytes as determined by MTS-formazan and TUNEL assays as well as higher activation of caspases 3/7. These toxic effects were inhibited by addition of cerulenin. Furthermore, culture of NHOst with either adipocyte-conditioned media alone in the absence of adipocytes themselves or with the addition of the most predominant FA (stearate or palmitate) produced similar toxic results. Finally, Runx2 nuclear binding was affected by addition of either adipocyte conditioned media or FA into the osteogenic media. We conclude that the presence of FA within the marrow milieu can contribute to the age-related changes in bone mass and can be prevented by the inhibition of FA synthase.

  11. Acacetin inhibits glutamate release and prevents kainic acid-induced neurotoxicity in rats.

    Directory of Open Access Journals (Sweden)

    Tzu-Yu Lin

    Full Text Available An excessive release of glutamate is considered to be a molecular mechanism associated with several neurological diseases that causes neuronal damage. Therefore, searching for compounds that reduce glutamate neurotoxicity is necessary. In this study, the possibility that the natural flavone acacetin derived from the traditional Chinese medicine Clerodendrum inerme (L. Gaertn is a neuroprotective agent was investigated. The effect of acacetin on endogenous glutamate release in rat hippocampal nerve terminals (synaptosomes was also investigated. The results indicated that acacetin inhibited depolarization-evoked glutamate release and cytosolic free Ca(2+ concentration ([Ca(2+]C in the hippocampal nerve terminals. However, acacetin did not alter synaptosomal membrane potential. Furthermore, the inhibitory effect of acacetin on evoked glutamate release was prevented by the Cav2.2 (N-type and Cav2.1 (P/Q-type channel blocker known as ω-conotoxin MVIIC. In a kainic acid (KA rat model, an animal model used for excitotoxic neurodegeneration experiments, acacetin (10 or 50 mg/kg was administrated intraperitoneally to the rats 30 min before the KA (15 mg/kg intraperitoneal injection, and subsequently induced the attenuation of KA-induced neuronal cell death and microglia activation in the CA3 region of the hippocampus. The present study demonstrates that the natural compound, acacetin, inhibits glutamate release from hippocampal synaptosomes by attenuating voltage-dependent Ca(2+ entry and effectively prevents KA-induced in vivo excitotoxicity. Collectively, these data suggest that acacetin has the therapeutic potential for treating neurological diseases associated with excitotoxicity.

  12. Retinoic acid inhibits endometrial cancer cell growth via multiple genomic mechanisms.

    Science.gov (United States)

    Cheng, You-Hong; Utsunomiya, Hiroki; Pavone, Mary Ellen; Yin, Ping; Bulun, Serdar E

    2011-04-01

    Previous studies have indicated that retinoic acid (RA) may be therapeutic for endometrial cancer. However, the downstream target genes and pathways triggered by ligand-activated RA receptor α (RARα) in endometrial cancer cells are largely unknown. In this study, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, flow cytometry, and immunoblotting assays were used to assess the roles of RA and the RA agonist (AM580) in the growth of endometrial cancer cells. Illumina-based microarray expression profiling of endometrial Ishikawa cells incubated with and without AM580 for 1, 3, and 6 h was performed. We found that both RA and AM580 markedly inhibited endometrial cancer cell proliferation, while knockdown of RARα could block AM580 inhibition. Knockdown of RARα significantly increased proliferating cell nuclear antigen and BCL2 protein levels. Incubation of Ishikawa cells with or without AM580 followed by microarray expression profiling showed that 12 768 genes out of 47 296 gene probes were differentially expressed with significant P values. We found that 90 genes were the most regulated genes with the most significant P value (PAM580 highly regulated these genes, whereas chromatin immunoprecipitation-PCR assay demonstrated that ligand-activated RARα interacted with the promoter of these genes in intact endometrial cancer cells. AM580 also significantly altered 18 pathways including those related to cell growth, differentiation, and apoptosis. In conclusion, AM580 treatment of Ishikawa cells causes the differential expression of a number of RARα target genes and activation of signaling pathways. These pathways could, therefore, mediate the carcinogenesis of human endometrial cancer.

  13. Restoration of Brain Acid Soluble Protein 1 Inhibits Proliferation and Migration of Thyroid Cancer Cells

    Institute of Scientific and Technical Information of China (English)

    Run-Sheng Guo; Yue Yu; Jun Chen; Yue-Yu Chen; Na Shen; Ming Qiu

    2016-01-01

    Background:Brain acid soluble protein 1 (BASP1) is identified as a novel potential tumor suppressor in several cancers.However,its role in thyroid cancer has not been investigated yet.In the present study,the antitumor activities of BASP1 against the growth and migration of thyroid cancer cells were evaluated.Methods:BASP1 expression in thyroid cancer tissues and normal tissues were examined by immunohistochemical staining and the association between its expression and prognosis was analyzed,pcDNA-BASP 1 carrying full length ofBASP1 cDNA was constructed to restore the expression ofBASP 1 in thyroid cancer cell lines (BHT-101 and KMH-2).The cell proliferation in vitro and in vivo was evaluated by WST-1 assay and xenograft tumor models,respectively.Cell cycle distribution after transfection was analyzed using flow cytometry.Cell apoptosis after transfection was examined by annexin V/propidium iodide assay.The migration was examined using transwell assay.Results:BASP 1 expression was abundant in normal tissues while it is significantly decreased in cancer tissues (P =0.000).pcDNA-BASP1 restored the expression of BASP1 and significantly inhibited the growth of BHT-101 and KMH-2 cells as well as xenograft tumors in nude mice (P =0.000).pcDNA-BASP1 induced G1 arrest and apoptosis in BHT-101 and KMH-2 cells.In addition,pcDNA-BASP1 significantly inhibited the cell migration.Conclusions:Downregnlation of BASP1 expression may play a role in the tumorigenesis of thyroid cancer.Restoration of BASP1 expression exerted extensive antitumor activities against growth and migration of thyroid cancer cells,which suggested that BASP1 gene might act as a potential therapeutic agent for the treatment of thyroid cancer.

  14. Inhibition of retinoic acid synthesis disrupts spermatogenesis and fecundity in zebrafish.

    Science.gov (United States)

    Pradhan, Ajay; Olsson, Per-Erik

    2015-01-01

    Timing of germ cell entry into meiosis is sexually dimorphic in mammals. However it was recently shown that germ cells initiate meiosis at the same time in male and female zebrafish. Retinoic acid (RA) has been shown to be critical for mammalian spermatogenesis. Inhibition of RA synthesis by WIN 18,446 has been reported to inhibit spermatogenesis in a wide variety of animals including humans and was once used as a contraceptive in humans. In this study we explored the role of RA in zebrafish spermatogenesis. In silico analysis with Internal coordinate mechanics docking software showed that WIN 18,446 can bind to the rat, human and zebrafish Aldh1a2 catalytic domain with equivalent potency. RA exposure resulted in up-regulation of the RA metabolizing enzyme genes cyp26a1, cyp26b1 and cyp26c1 in vitro and in vivo. Exposure to WIN 18,446 resulted in down-regulation of Aldh1a2, cyp26a1 and cyp26b1 in vivo. WIN 18,446 was effective in disrupting spermatogenesis and fecundity in zebrafish but the reduction in sperm count and fecundity was only observed when zebrafish were maintained on a strict Artemia nauplii diet which is known to contain low levels of vitamin A. This study shows that RA is involved in spermatogenesis as well as oocyte development in zebrafish. As the zebrafish Aldh1a2 structure and function is similar to the mammalian counterpart, Aldh1a2 inhibitor screening using zebrafish as a model system may be beneficial in the discovery and development of new and safe contraceptives for humans.

  15. IgE binding to peanut allergens is inhibited by combined D-aspartic and D-glutamic acids.

    Science.gov (United States)

    Chung, Si-Yin; Reed, Shawndrika

    2015-01-01

    The objective of this study was to determine if D-amino acids (D-aas) bind and inhibit immunoglobulin E (IgE) binding to peanut allergens. D-aas such as D-Asp (aspartic acid), D-Glu (glutamic acid), combined D-[Asp/Glu] and others were each prepared in a cocktail of 9 other D-aas, along with L-amino acids (L-aas) and controls. Each sample was mixed with a pooled plasma from peanut-allergic donors, and tested by ELISA (enzyme-linked immunosorbent assay) and Western blots for IgE binding to peanut allergens. Results showed that D-[Asp/Glu] (4 mg/ml) inhibited IgE binding (75%) while D-Glu, D-Asp and other D-aas had no inhibitory effect. A higher inhibition was seen with D-[Asp/Glu] than with L-[Asp/Glu]. We concluded that IgE was specific for D-[Asp/Glu], not D-Asp or D-Glu, and that D-[Asp/Glu] was more reactive than was L-[Asp/Glu] in IgE inhibition. The finding indicates that D-[Asp/Glu] may have the potential for removing IgE or reducing IgE binding to peanut allergens in vitro.

  16. Accumulation of wound-inducible ACC synthase transcript in tomato fruit is inhibited by salicylic acid and polyamines.

    Science.gov (United States)

    Li, N; Parsons, B L; Liu, D R; Mattoo, A K

    1992-02-01

    Regulation of wound-inducible 1-aminocyclopropane-1-carboxylic acid (ACC) synthase expression was studied in tomato fruit (Lycopersicon esculentum cv. Pik-Red). A 70 base oligonucleotide probe homologous to published ACC synthase cDNA sequences was successfully used to identify and analyze regulation of a wound-inducible transcript. The 1.8 kb ACC synthase transcript increased upon wounding the fruit as well as during fruit ripening. Salicylic acid, an inhibitor of wound-responsive genes in tomato, inhibited the wound-induced accumulation of the ACC synthase transcript. Further, polyamines (putrescine, spermidine and spermine) that have anti-senescence properties and have been shown to inhibit the development of ACC synthase activity, inhibited the accumulation of the wound-inducible ACC synthase transcript. The inhibition by spermine was greater than that caused by putrescine or spermidine. The transcript level of a wound-repressible glycine-rich protein gene and that of the constitutively expressed rRNA were not affected as markedly by either salicylic acid or polyamines. These data suggest that salicylic acid and polyamines may specifically regulate ethylene biosynthesis at the level of ACC synthase transcript accumulation.

  17. Analysis of Growth Inhibition and Metabolism of Hydroxycinnamic Acids by Brewing and Spoilage Strains of Brettanomyces Yeast

    Science.gov (United States)

    Lentz, Michael; Harris, Chad

    2015-01-01

    Brettanomyces yeasts are well-known as spoilage organisms in both the wine and beer industries, but also contribute important desirable characters to certain beer styles. These properties are mediated in large part by Brettanomyces’ metabolism of hydroxycinnamic acids (HCAs) present in beverage raw materials. Here we compare growth inhibition by, and metabolism of, HCAs among commercial brewing strains and spoilage strains of B. bruxellensis and B. anomalus. These properties vary widely among the different strains tested and between the HCAs analyzed. Brewing strains showed more efficient metabolism of ferulic acid over p-coumaric acid, a trait not shared among the spoilage strains. PMID:28231223

  18. Analysis of Growth Inhibition and Metabolism of Hydroxycinnamic Acids by Brewing and Spoilage Strains of Brettanomyces Yeast

    Directory of Open Access Journals (Sweden)

    Michael Lentz

    2015-10-01

    Full Text Available Brettanomyces yeasts are well-known as spoilage organisms in both the wine and beer industries, but also contribute important desirable characters to certain beer styles. These properties are mediated in large part by Brettanomyces’ metabolism of hydroxycinnamic acids (HCAs present in beverage raw materials. Here we compare growth inhibition by, and metabolism of, HCAs among commercial brewing strains and spoilage strains of B. bruxellensis and B. anomalus. These properties vary widely among the different strains tested and between the HCAs analyzed. Brewing strains showed more efficient metabolism of ferulic acid over p-coumaric acid, a trait not shared among the spoilage strains.

  19. Analysis of Growth Inhibition and Metabolism of Hydroxycinnamic Acids by Brewing and Spoilage Strains of Brettanomyces Yeast.

    Science.gov (United States)

    Lentz, Michael; Harris, Chad

    2015-10-15

    Brettanomyces yeasts are well-known as spoilage organisms in both the wine and beer industries, but also contribute important desirable characters to certain beer styles. These properties are mediated in large part by Brettanomyces' metabolism of hydroxycinnamic acids (HCAs) present in beverage raw materials. Here we compare growth inhibition by, and metabolism of, HCAs among commercial brewing strains and spoilage strains of B. bruxellensis and B. anomalus. These properties vary widely among the different strains tested and between the HCAs analyzed. Brewing strains showed more efficient metabolism of ferulic acid over p-coumaric acid, a trait not shared among the spoilage strains.

  20. Salvianolic acid B inhibits platelets-mediated inflammatory response in vascular endothelial cells.

    Science.gov (United States)

    Xu, Shixin; Zhong, Aiqin; Bu, Xiaokun; Ma, Huining; Li, Wei; Xu, Xiaomin; Zhang, Junping

    2015-01-01

    Salvianolic acid B (SAB) is a hydrophilic component isolated from the Chinese herb Salviae miltiorrhizae, which has been used clinically for the treatment of ischemic cardiovascular and cerebrovascular diseases. Platelets-mediated vascular inflammatory response contributes to the initiation and progression of atherosclerosis. In this paper, we focus on the modulating effects of SAB on the inflammatory reaction of endothelial cells triggered by activated platelets. Human umbilical vein endothelial cells (EA.hy926) were pretreated with SAB followed by co-culture with ADP-activated platelets. Adhesion of platelets to endothelial cells was observed by amorphological method. The activation of nuclear factor-kappa B was evaluated by NF-κB p65 nuclear translocation and the protein phosphorylation. A determination of the pro-inflammatory mediators (ICAM-1, IL-1β, IL-6, IL-8, MCP-1) mRNA and protein were also conducted. In addition, the inhibitory effects of SAB on platelets activation were also evaluated using a platelet aggregation assay and assessing the release level of soluble P-selectin. The results showed that SAB dose-dependently inhibited ADP- or α-thrombin-induced human platelets aggregation in platelet rich plasma (PRP) samples, and significantly decreased soluble P-selectin release from both agonists stimulated washed platelets. It was also found that pre-treatment with SAB reduced adhesion of ADP-activated platelets to EA.hy926 cells and inhibited NF-κB activation. In addition, SAB significantly suppressed pro-inflammatory mediators mRNA and protein in EA.hy926 cells in a dose-dependent manner. These results indicated that, in addition to its inhibitory effects on platelets activation, SAB was able to attenuate platelets-mediated inflammatory responses in endothelial cells even if the platelets had already been activated. This anti-inflammatory effect was related to the inhibition of NF-κB activation. Our findings suggest that SAB may be a potential

  1. INHIBITION AND RADIATION SENSITIZING EFFECT OF INDOLEACETIC ACID COMBINED WITH HORSERADISH PEROXIDASE ON HELA CELLS

    Institute of Scientific and Technical Information of China (English)

    宋丽萍; 黄辰; 邱曙东; 王月英; 张健; 陈顺昌; 马军; 王全丽

    2004-01-01

    Objective To observe the inhibition and radiation-sensitizing effect of Indoleacetic acid (IAA) combined with horseradish peroxidase(HRP)on Hela cells. Methods Hela cells were cultured in vitro and classified into control group, drug group incubated with different doses of IAA(30, 60, 90μmol·L-1) plus 1.2μg·mL-1 HRP, radiation group (6MV-X, 4Gy ) and group of radiation plus IAA plus HRP(same dose as above). All the above were treated for 24-96 hours.The growth inhibition, radiation-sensitizing effect were observed with methyl thiazolyl tetrazolium (MTT) photocolorimetric assay and trypan blue dye assay. The-effect on cell proliferation cycle was determined by flow cytometry. Results The antiproliferation activities showed a significant time-effect and dose-effect relationship to some extent after Hela cells were treated with IAA combined with HRP. The group of radiation plus 60μmol·L-1 IAA plus 1.2μg·mL-1 HRP and radiation plus 90μmol·L-1 IAA plus 1.2μg·mL-1 HRP showed an obvious radiation sensitizing effect. After treatment with 90μmol·L-1 IAA plus 1.2μg·mL-1 HRP for 72 hours, the determination of cell cycle showed that the percentages of the cells on stages G2-M and S were all higher than those of the control group. For the group of radiation plus IAA combined with HRP, the percentages of the cells on stages G2-M were higher than those of the radiation group. Conclusion The above findings suggest that IAA combined with HRP has an inhibitive and killing effect on Hela cells. The effect was stronger during the cell cycles of G2-M and S. It also has a radiation sensitizing effect. Its mechanism might be that Hela cells were blocked on stages G2-M, and it presents a collaborative killing effect during miototic time.

  2. Analgesic effects of fatty acid amide hydrolase inhibition in a rat model of neuropathic pain.

    Science.gov (United States)

    Jhaveri, Maulik D; Richardson, Denise; Kendall, David A; Barrett, David A; Chapman, Victoria

    2006-12-20

    Cannabinoid-based medicines have therapeutic potential for the treatment of pain. Augmentation of levels of endocannabinoids with inhibitors of fatty acid amide hydrolase (FAAH) is analgesic in models of acute and inflammatory pain states. The aim of this study was to determine whether local inhibition of FAAH alters nociceptive responses of spinal neurons in the spinal nerve ligation model of neuropathic pain. Electrophysiological studies were performed 14-18 d after spinal nerve ligation or sham surgery, and the effects of the FAAH inhibitor cyclohexylcarbamic acid 3-carbamoyl biphenyl-3-yl ester (URB597) on mechanically evoked responses of spinal neurons and levels of endocannabinoids were determined. Intraplantar URB597 (25 microg in 50 microl) significantly (p < 0.01) attenuated mechanically evoked responses of spinal neurons in sham-operated rats. Effects of URB597 were blocked by the cannabinoid 1 receptor (CB1) antagonist AM251 [N-1-(2,4-dichlorophenyl)-5-(4-iodophenyl)-4-methyl-N-1-piperidinyl-1H-pyrazole-3-carboxamide] (30 microg in 50 microl) and the opioid receptor antagonist naloxone. URB597 treatment increased levels of anandamide, 2-arachidonyl glycerol, and oleoyl ethanolamide in the ipsilateral hindpaw of sham-operated rats. Intraplantar URB597 (25 microg in 50 microl) did not, however, alter mechanically evoked responses of spinal neurons in spinal nerve ligated (SNL) rats or hindpaw levels of endocannabinoids. Intraplantar injection of a higher dose of URB597 (100 microg in 50 microl) significantly (p < 0.05) attenuated evoked responses of spinal neurons in SNL rats but did not alter hindpaw levels of endocannabinoids. Spinal administration of URB597 attenuated evoked responses of spinal neurons and elevated levels of endocannabinoids in sham-operated and SNL rats. These data suggest that peripheral FAAH activity may be altered or that alternative pathways of metabolism have greater importance in SNL rats.

  3. Importance of position 170 in the inhibition of GES-type β-lactamases by clavulanic acid.

    Science.gov (United States)

    Frase, Hilary; Toth, Marta; Champion, Matthew M; Antunes, Nuno T; Vakulenko, Sergei B

    2011-04-01

    Bacterial resistance to β-lactam antibiotics (penicillins, cephalosporins, carbapenems, etc.) is commonly the result of the production of β-lactamases. The emergence of β-lactamases capable of turning over carbapenem antibiotics is of great concern, since these are often considered the last resort antibiotics in the treatment of life-threatening infections. β-Lactamases of the GES family are extended-spectrum enzymes that include members that have acquired carbapenemase activity through a single amino acid substitution at position 170. We investigated inhibition of the GES-1, -2, and -5 β-lactamases by the clinically important β-lactamase inhibitor clavulanic acid. While GES-1 and -5 are susceptible to inhibition by clavulanic acid, GES-2 shows the greatest susceptibility. This is the only variant to possess the canonical asparagine at position 170. The enzyme with asparagine, as opposed to glycine (GES-1) or serine (GES-5), then leads to a higher affinity for clavulanic acid (K(i) = 5 μM), a higher rate constant for inhibition, and a lower partition ratio (r ≈ 20). Asparagine at position 170 also results in the formation of stable complexes, such as a cross-linked species and a hydrated aldehyde. In contrast, serine at position 170 leads to formation of a long-lived trans-enamine species. These studies provide new insight into the importance of the residue at position 170 in determining the susceptibility of GES enzymes to clavulanic acid.

  4. Inhibition of methane and natural gas hydrate formation by altering the structure of water with amino acids.

    Science.gov (United States)

    Sa, Jeong-Hoon; Kwak, Gye-Hoon; Han, Kunwoo; Ahn, Docheon; Cho, Seong Jun; Lee, Ju Dong; Lee, Kun-Hong

    2016-08-16

    Natural gas hydrates are solid hydrogen-bonded water crystals containing small molecular gases. The amount of natural gas stored as hydrates in permafrost and ocean sediments is twice that of all other fossil fuels combined. However, hydrate blockages also hinder oil/gas pipeline transportation, and, despite their huge potential as energy sources, our insufficient understanding of hydrates has limited their extraction. Here, we report how the presence of amino acids in water induces changes in its structure and thus interrupts the formation of methane and natural gas hydrates. The perturbation of the structure of water by amino acids and the resulting selective inhibition of hydrate cage formation were observed directly. A strong correlation was found between the inhibition efficiencies of amino acids and their physicochemical properties, which demonstrates the importance of their direct interactions with water and the resulting dissolution environment. The inhibition of methane and natural gas hydrate formation by amino acids has the potential to be highly beneficial in practical applications such as hydrate exploitation, oil/gas transportation, and flow assurance. Further, the interactions between amino acids and water are essential to the equilibria and dynamics of many physical, chemical, biological, and environmental processes.

  5. Inhibition of methane and natural gas hydrate formation by altering the structure of water with amino acids

    Science.gov (United States)

    Sa, Jeong-Hoon; Kwak, Gye-Hoon; Han, Kunwoo; Ahn, Docheon; Cho, Seong Jun; Lee, Ju Dong; Lee, Kun-Hong

    2016-08-01

    Natural gas hydrates are solid hydrogen-bonded water crystals containing small molecular gases. The amount of natural gas stored as hydrates in permafrost and ocean sediments is twice that of all other fossil fuels combined. However, hydrate blockages also hinder oil/gas pipeline transportation, and, despite their huge potential as energy sources, our insufficient understanding of hydrates has limited their extraction. Here, we report how the presence of amino acids in water induces changes in its structure and thus interrupts the formation of methane and natural gas hydrates. The perturbation of the structure of water by amino acids and the resulting selective inhibition of hydrate cage formation were observed directly. A strong correlation was found between the inhibition efficiencies of amino acids and their physicochemical properties, which demonstrates the importance of their direct interactions with water and the resulting dissolution environment. The inhibition of methane and natural gas hydrate formation by amino acids has the potential to be highly beneficial in practical applications such as hydrate exploitation, oil/gas transportation, and flow assurance. Further, the interactions between amino acids and water are essential to the equilibria and dynamics of many physical, chemical, biological, and environmental processes.

  6. Efficient inhibition of heavy metal release from mine tailings against acid rain exposure by triethylenetetramine intercalated montmorillonite (TETA-Mt).

    Science.gov (United States)

    Gong, Beini; Wu, Pingxiao; Huang, Zhujian; Li, Yuanyuan; Yang, Shanshan; Dang, Zhi; Ruan, Bo; Kang, Chunxi

    2016-11-15

    The potential application of triethylenetetramine intercalated montmorillonite (TETA-Mt) in mine tailings treatment and AMD (acid mine drainage) remediation was investigated with batch experiments. The structural and morphological characteristics of TETA-Mt were analyzed with XRD, FTIR, DTG-TG and SEM. The inhibition efficiencies of TETA-Mt against heavy metal release from mine tailings when exposed to acid rain leaching was examined and compared with that of triethylenetetramine (TETA) and Mt. Results showed that the overall inhibition by TETA-Mt surpassed that by TETA or Mt for various heavy metal ions over an acid rain pH range of 3-5.6 and a temperature range of 25-40°C. When mine tailings were exposed to acid rain of pH 4.8 (the average rain pH of the mining site where the mine tailings were from), TETA-Mt achieved an inhibition efficiency of over 90% for Cu(2+), Zn(2+), Cd(2+) and Mn(2+) release, and 70% for Pb(2+) at 25°C. It was shown that TETA-Mt has a strong buffering capacity. Moreover, TETA-Mt was able to adsorb heavy metal ions and the adsorption process was fast, suggesting that coordination was mainly responsible. These results showed the potential of TETA-Mt in AMD mitigation, especially in acid rain affected mining area.

  7. Inhibition of acidic corrosion of carbon steel by some mono and bis azo dyes based on 1,5 dihydroxynaphihalene.

    Science.gov (United States)

    Abdallah, Metwally; Moustafa, Moustafa E

    2004-01-01

    Inhibition of the corrosion of carbon steel in hydrochloric acid solution by some mono- and bis-azo dyes based on 1,5-dihydroxynaphthalene was studied in relation to the concentration of inhibitors using weight loss and potentiostatic polarization techniques. The percentage inhibition efficiency calculated from two methods is in a good agreement with each other. The inhibition mechanism of the additives was ascribed to the formation of complex compound adsorbed on the metal surface. The adsorption process follows Freundlich adsorption isotherm. The formation of the complex compound was studied by conductometric and potentiometric titrations. The stability constants of the Fe-complexes were determined using the latter technique and related to the inhibition efficiency.

  8. Monohaloacetic acid drinking water disinfection by-products inhibit follicle growth and steroidogenesis in mouse ovarian antral follicles in vitro.

    Science.gov (United States)

    Jeong, Clara H; Gao, Liying; Dettro, Tyler; Wagner, Elizabeth D; Ricke, William A; Plewa, Michael J; Flaws, Jodi A

    2016-07-01

    Water disinfection greatly reduced the incidence of waterborne diseases, but the reaction between disinfectants and natural organic matter in water leads to the formation of drinking water disinfection by-products (DBPs). DBPs have been shown to be toxic, but their effects on the ovary are not well defined. This study tested the hypothesis that monohalogenated DBPs (chloroacetic acid, CAA; bromoacetic acid, BAA; iodoacetic acid, IAA) inhibit antral follicle growth and steroidogenesis in mouse ovarian follicles. Antral follicles were isolated and cultured with either vehicle or DBPs (0.25-1.00mM of CAA; 2-15μM of BAA or IAA) for 48 and 96h. Follicle growth was measured every 24h and the media were analyzed for estradiol levels at 96h. Exposure to DBPs significantly inhibited antral follicle growth and reduced estradiol levels compared to controls. These data demonstrate that DBP exposure caused ovarian toxicity in vitro.

  9. Acetic acid inhibits nutrient uptake in Saccharomyces cerevisiae: auxotrophy confounds the use of yeast deletion libraries for strain improvement.

    Science.gov (United States)

    Ding, Jun; Bierma, Jan; Smith, Mark R; Poliner, Eric; Wolfe, Carole; Hadduck, Alex N; Zara, Severino; Jirikovic, Mallori; van Zee, Kari; Penner, Michael H; Patton-Vogt, Jana; Bakalinsky, Alan T

    2013-08-01

    Acetic acid inhibition of yeast fermentation has a negative impact in several industrial processes. As an initial step in the construction of a Saccharomyces cerevisiae strain with increased tolerance for acetic acid, mutations conferring resistance were identified by screening a library of deletion mutants in a multiply auxotrophic genetic background. Of the 23 identified mutations, 11 were then introduced into a prototrophic laboratory strain for further evaluation. Because none of the 11 mutations was found to increase resistance in the prototrophic strain, potential interference by the auxotrophic mutations themselves was investigated. Mutants carrying single auxotrophic mutations were constructed and found to be more sensitive to growth inhibition by acetic acid than an otherwise isogenic prototrophic strain. At a concentration of 80 mM acetic acid at pH 4.8, the initial uptake of uracil, leucine, lysine, histidine, tryptophan, phosphate, and glucose was lower in the prototrophic strain than in a non-acetic acid-treated control. These findings are consistent with two mechanisms by which nutrient uptake may be inhibited. Intracellular adenosine triphosphate (ATP) levels were severely decreased upon acetic acid treatment, which likely slowed ATP-dependent proton symport, the major form of transport in yeast for nutrients other than glucose. In addition, the expression of genes encoding some nutrient transporters was repressed by acetic acid, including HXT1 and HXT3 that encode glucose transporters that operate by facilitated diffusion. These results illustrate how commonly used genetic markers in yeast deletion libraries complicate the effort to isolate strains with increased acetic acid resistance.

  10. Gallic acid inhibits vascular calcification through the blockade of BMP2-Smad1/5/8 signaling pathway.

    Science.gov (United States)

    Kee, Hae Jin; Cho, Soo-Na; Kim, Gwi Ran; Choi, Sin Young; Ryu, Yuhee; Kim, In Kyeom; Hong, Young Joon; Park, Hyung Wook; Ahn, Youngkeun; Cho, Jeong Gwan; Park, Jong Chun; Jeong, Myung Ho

    2014-11-01

    Vascular calcification is associated with increased risk of morbidity and mortality in patients with cardiovascular diseases, chronic kidney diseases, and diabetes. Gallic acid, a natural compound found in gallnut and green tea, is known to be antifungal, antioxidant, and anticancer. Here we investigated the effect of gallic acid on vascular smooth muscle cell (VSMC) calcification and the underlying mechanism. Gallic acid inhibited inorganic phosphate-induced osteoblast differentiation markers as well as calcification phenotypes (as determined by calcium deposition, Alizarin Red, and Von Kossa staining). Knockdown of BMP2 or Noggin blocked phosphate-induced calcification. Gallic acid suppressed phosphorylation of Smad1/5/8 protein induced by inorganic phosphate. Taken together, we suggest that gallic acid acts as a novel therapeutic agent of vascular calcification by mediating BMP2-Smad1/5/8 signaling pathway.

  11. Alleviation effects of Ce3+on inhibition of photochemical activity caused by linolenic acid in spinach chloroplast

    Institute of Scientific and Technical Information of China (English)

    LIU Xiaoqing; HUANG Hao; LIU Chao; MA Linglan; LIU Jie; YIN Sitao; HONG Fashui

    2008-01-01

    Linolenic acid has great effects on the structure and function of chloroplast. The function of Ce3+ on the improvement of chloro-plast photoreduction activity and oxygen evolution damaged by linolenic acid in spinach by in vitro investigation was studied. Results showed that adding Ce3+ to the linolenic acid treated chloroplast could greatly decrease the reduction linolenic acid exerted on the whole chain electron transport rate and the photoreduction activity of photosystem Ⅱ (PSⅡ) and photosystem Ⅰ (PSⅠ) as well as the oxygen evolution rate of chloroplast. It indicated that Ce3+ had the ability to relieve the inhibition of the photochemical reaction of chloroplast caused by lino-lenic acid to some extent.

  12. Corosolic acid ameliorates acute inflammation through inhibition of IRAK-1 phosphorylation in macrophages

    Science.gov (United States)

    Kim, Seung-Jae; Cha, Ji-Young; Kang, Hye Suk; Lee, Jae-Ho; Lee, Ji Yoon; Park, Jae-Hyung; Bae, Jae-Hoon; Song, Dae-Kyu; Im, Seung-Soon

    2016-01-01

    Corosolic acid (CA), a triterpenoid compound isolated from Lagerstroemia speciosa L. (Banaba) leaves, exerts anti-inflammatory effects by regulating phosphorylation of interleukin receptor- associated kinase (IRAK)-2 via the NF-κB cascade. However, the protective effect of CA against endotoxic shock has not been reported. LPS (200 ng/mL, 30 min) induced phosphorylation of IRAK-1 and treatment with CA (10 μM) significantly attenuated this effect. In addition, CA also reduced protein levels of NLRP3 and ASC which are the main components of the inflammasome in BMDMs. LPS-induced inflammasome assembly through activation of IRAK-1 was down-regulated by CA challenge. Treatment with Bay11-7082, an inhibitor of IκB-α, had no effect on CA-mediated inhibition of IRAK-1 activation, indicating that CA-mediated attenuation of IRAK-1 phosphorylation was independent of NF-κB signaling. These results demonstrate that CA ameliorates acute inflammation in mouse BMDMs and CA may be useful as a pharmacological agent to prevent acute inflammation. [BMB Reports 2016; 49(5): 276-281] PMID:26615974

  13. Growth inhibition of Aeromonas salmonicida and Yersinia ruckeri by disinfectants containing peracetic acid.

    Science.gov (United States)

    Meinelt, Thomas; Phan, Thy-My; Behrens, Sascha; Wienke, Andreas; Pedersen, Lars-Flemming; Liu, Dibo; Straus, David L

    2015-04-08

    Peracetic acid (PAA) is a therapeutic agent used for disinfection in aquaculture, but it must be investigated thoroughly in order to mitigate diseases without harming the fish. Successful disinfectants (like PAA) should not leave dangerous residues in the environment in order to successfully contribute to sustainable aquaculture. The aim of our study was to compare the effectiveness of 6 commercial PAA products with different molecular PAA:H2O2 ratios to reduce bacterial growth of Aeromonas salmonicida and Yersinia ruckeri and to determine effective concentrations and exposure times. All products reduced colony-forming units (CFUs) of A. salmonicida and Y. ruckeri. Products with higher molecular PAA:H2O2 ratios inhibited growth better than products with lower molecular PAA:H2O2 ratios at the same PAA concentration; this indicates that H2O2 is not the driving force in the reduction of A. salmonicida and Y. ruckeri growth by PAA in vitro. The practical application of the products with high molecular PAA:H2O2 ratios should be prioritized if these pathogens are diagnosed.

  14. Proanthocyanidins Inhibit Seed Germination by Maintaining a High Level of Abscisic Acid in Arabidopsis thaliana

    Institute of Scientific and Technical Information of China (English)

    Liguo Jia; Jianhua Zhang; Qiuyu Wu; Nenghui Ye; Rui Liu; Lu Shi; Weifeng Xu; Hui Zhi; A. N. M. Rubaiyath Bin Rahman; Yiji Xia

    2012-01-01

    Proanthocyanidins (PAs) are the main products of the flavonoid biosynthetic pathway in seeds,but their biological function during seed germination is still unclear.We observed that seed germination is delayed with the increase of exogenous PA concentration in Arabidopsis.A similar inhibitory effect occurred in peeled Brassica napus seeds,which was observed by measuring radicle elongation.Using abscisic acid (ABA),a biosynthetic and metabolic inhibitor,and gene expression analysis by real-time polymerase chain reaction,we found that the inhibitory effect of PAs on seed germination is due to their promotion of ABA via de novo biogenesis,rather than by any inhibition of its degradation.Consistent with the relationship between PA content and ABA accumulation in seeds,PA-deficient mutants maintain a lower level of ABA compared with wild-types during germination.Our data suggest that PA distribution in the seed coat can act as a doorkeeper to seed germination.PA regulation of seed germination is mediated by the ABA signaling pathway.

  15. Short communication: Lactic acid bacteria from the honeybee inhibit the in vitro growth of mastitis pathogens.

    Science.gov (United States)

    Piccart, K; Vásquez, A; Piepers, S; De Vliegher, S; Olofsson, T C

    2016-04-01

    Despite the increasing knowledge of prevention and control strategies, bovine mastitis remains one of the most challenging diseases in the dairy industry. This study investigated the antimicrobial activity of 13 species of lactic acid bacteria (LAB), previously isolated from the honey crop of the honeybee, on several mastitis pathogens. The viable LAB were first reintroduced into a sterilized heather honey matrix. More than 20 different bovine mastitis isolates were tested against the mixture of the 13 LAB species in the honey medium using a dual-culture overlay assay. The mastitis isolates were identified through bacteriological culturing, followed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Additionally, the mastitis isolates were subjected to antimicrobial susceptibility testing through disk diffusion. Growth of all tested mastitis pathogens, including the ones displaying antimicrobial resistance to one or more antimicrobial compounds, were inhibited to some extent by the honey and LAB combination. The antibacterial effect of these LAB opens up new perspectives on alternative treatment and prevention of bovine mastitis.

  16. Synergistic Effects of Linderanolide B Combined with Arbutin, PTU or Kojic Acid on Tyrosinase Inhibition.

    Science.gov (United States)

    Hseu, You-Cheng; Cheng, Kuo-Chen; Lin, Yi-Chieh; Chen, Chung-Yi; Chou, Hsin-Yu; Ma, Dik-Lung; Leung, Chung-Hang; Wen, Zhi-Hong; Wang, Hui-Min D

    2015-01-01

    Melanin uncontrollable accumulation is a serious social problem to not only women, but also men, and causes pigment over-expression disorders such as freckles, melasma or pigmented acne scars. The synergism is used widely in medication, and the effectiveness makes the drug applications more valuable. Within this experiment, three well-known compounds were chosen: kojic acid, 1-phenyl-2-thiourea (PTU) and arbutin, and they were combined individually with our substance linderanolide B, which is purified from Cinnamomum subavenium. Hence, deciphering the synergistic action of possible whitening agents was the goal of this study. The tyrosinase activity, melanin content, and the combination index (CI) values were observed in B16F10 cells, in addition, the consequences were detected by isobologram analysis. We discovered that certain melanin inhibitors showed synergistic properties when they were combined together to suppress tyrosinase activities. As a result, linderanolide B has a potential synergy on tyrosinase inhibition, and it can be used widely in cosmetic and medication industries.

  17. Cardio-Protection of Salvianolic Acid B through Inhibition of Apoptosis Network

    Science.gov (United States)

    Xu, Lingling; Deng, Yanping; Feng, Lixin; Li, Defang; Chen, Xiaoyan; Ma, Chao; Liu, Xuan; Yin, Jun; Yang, Min; Teng, Fukang; Wu, Wanying; Guan, Shuhong; Jiang, Baohong; Guo, Dean

    2011-01-01

    Targeting cellular function as a system rather than on the level of the single target significantly increases therapeutic potency. In the present study, we detect the target pathway of salvianolic acid B (SalB) in vivo. Acute myocardial infarction (AMI) was induced in rats followed by the treatment with 10 mg/kg SalB. Hemodynamic detection and pathological stain, 2-dimensional electrophoresis, MALDI-TOF MS/MS, Western blot, pathway identification, apoptosis assay and transmission electron microscope were used to elucidate the effects and mechanism of SalB on cardioprotection. Higher SalB concentration was found in ischemic area compared to no-ischemic area of heart, correlating with improved heart function and histological structure. Thirty-three proteins regulated by SalB in AMI rats were identified by biochemical analysis and were classified as the components of metabolism and apoptosis networks. SalB protected cardiomyocytes from apoptosis, inhibited poly (ADP-ribose) polymerase-1 pathway, and improved the integrity of mitochondrial and nucleus of heart tissue during AMI. Furthermore, the protective effects of SalB against apoptosis were verified in H9c2 cells. Our results provide evidence that SalB regulates multi-targets involved in the apoptosis pathway during AMI and therefore may be a candidate for novel therapeutics of heart diseases. PMID:21915278

  18. Cardio-protection of salvianolic acid B through inhibition of apoptosis network.

    Directory of Open Access Journals (Sweden)

    Lingling Xu

    Full Text Available Targeting cellular function as a system rather than on the level of the single target significantly increases therapeutic potency. In the present study, we detect the target pathway of salvianolic acid B (SalB in vivo. Acute myocardial infarction (AMI was induced in rats followed by the treatment with 10 mg/kg SalB. Hemodynamic detection and pathological stain, 2-dimensional electrophoresis, MALDI-TOF MS/MS, Western blot, pathway identification, apoptosis assay and transmission electron microscope were used to elucidate the effects and mechanism of SalB on cardioprotection. Higher SalB concentration was found in ischemic area compared to no-ischemic area of heart, correlating with improved heart function and histological structure. Thirty-three proteins regulated by SalB in AMI rats were identified by biochemical analysis and were classified as the components of metabolism and apoptosis networks. SalB protected cardiomyocytes from apoptosis, inhibited poly (ADP-ribose polymerase-1 pathway, and improved the integrity of mitochondrial and nucleus of heart tissue during AMI. Furthermore, the protective effects of SalB against apoptosis were verified in H9c2 cells. Our results provide evidence that SalB regulates multi-targets involved in the apoptosis pathway during AMI and therefore may be a candidate for novel therapeutics of heart diseases.

  19. Polyethylene oxide (PEO)-hyaluronic acid (HA) nanofibers with kanamycin inhibits the growth of Listeria monocytogenes.

    Science.gov (United States)

    Ahire, J J; Robertson, D D; van Reenen, A J; Dicks, L M T

    2017-02-01

    Listeria monocytogenes is well known to cause prosthetic joint infections in immunocompromised patients. In this study, polyethylene oxide (PEO) nanofibers, containing kanamycin and hyaluronic acid (HA), were prepared by electrospinning at a constant electric field of 10kV. PEO nanofibers spun with 0.2% (w/v) HA and 1% (w/v) kanamycin had a smooth, bead-free structure at 30-35% relative humidity. The average diameter of the nanofibers was 83±20nm. Attenuated total reflectance (ATR)-Fourier transform infrared (FTIR) spectroscopy indicated that kanamycin was successfully incorporated into PEO/HA matrix. The presence of kanamycin affects the thermal properties of PEO/HA nanofibers, as shown by differential scanning calorimetry (DSC) and thermogravimetric analyses (TGA). The kanamycin-PEO-HA nanofibers (1mg; 47±3μg kanamycin) inhibited the growth of L. monocytogenes EDGe by 62%, as compared with PEO-HA nanofibers, suggesting that it may be used to coat prosthetic implants to prevent secondary infections.

  20. Subunit-specific inhibition of acid sensing ion channels by stomatin-like protein 1

    Science.gov (United States)

    Kozlenkov, Alexey; Lapatsina, Liudmila; Lewin, Gary R; Smith, Ewan St John

    2014-01-01

    There are five mammalian stomatin-domain genes, all of which encode peripheral membrane proteins that can modulate ion channel function. Here we examined the ability of stomatin-like protein 1 (STOML1) to modulate the proton-sensitive members of the acid-sensing ion channel (ASIC) family. STOML1 profoundly inhibits ASIC1a, but has no effect on the splice variant ASIC1b. The inactivation time constant of ASIC3 is also accelerated by STOML1. We examined STOML1 null mutant mice with a β-galactosidase-neomycin cassette gene-trap reporter driven from the STOML1 gene locus, which indicated that STOML1 is expressed in at least 50% of dorsal root ganglion (DRG) neurones. Patch clamp recordings from mouse DRG neurones identified a trend for larger proton-gated currents in neurones lacking STOML1, which was due to a contribution of effects upon both transient and sustained currents, at different pH, a finding consistent with an endogenous inhibitory function for STOML1. PMID:24247984

  1. Dimethylarsenic acid damages cellular DNA and inhibits gap junctional intercellular communication between human skin fibroblast cells

    Institute of Scientific and Technical Information of China (English)

    GuoXB; DengFR

    2002-01-01

    Although arsenic is identified as a human carcinogen,there is currently no accepted mechanism for its action or an established animal model for evaluating the carcinogenic activity of arsenic.To elucidate the mechanism of arsenic arcinogenesis,we investigated the effect of dimethylarsenic acid(DMAA),the main metabolite of inorganic arsenic in humans,on the cellular DNA and gap junctional intercellular communication (GJIC) between human skin fibroblast cells.Single-cell gel electrophoresis (SCGE) assay was used to detect the DNA damage in human skin fibroblast cells exposed to DMAA,and the GJIC between cells was detected by the scrape loading/dye transfer assay.DMAA at concentrations of 0.01-1.0 mmol·L-1 induced DNA damage in a dose-dependent manner,and GJIC between human skin fibroblast cells was significantly inhibited by DMAA at 1.0 mmol·L-1.Our results suggest that both genotoxic and nongenotoxic mechanism are involved in the mechanism of DMAA-induced cellular toxicity.

  2. The therapeutic effect of Chlorogenic acid against Staphylococcus aureus infection through Sortase A inhibition

    Directory of Open Access Journals (Sweden)

    Lin eWang

    2015-10-01

    Full Text Available The emergence and wide spread of multi-drug resistant Staphylococcus aureus (S. aureus requires the development of new therapeutic agents with alternative modes of action. Anti-virulence strategies are hoped to meet that need. Sortase A (SrtA has attracted great interest as a potential drug target to treat infections caused by S. aureus, as many of the surface proteins displayed by SrtA function as virulence factors by mediating bacterial adhesion to specific organ tissues, invasion of host cells, and evasion of the host-immune responses. It has been suggested that inhibitors of SrtA might be promising candidates for the treatment and/or prevention of S. aureus infections. In this study, we report that Chlorogenic acid (CHA, a natural compound that lacks significant anti–S. aureus activity, inhibit the activity of SrtA in vitro (IC50=33.86±5.55μg/ml and the binding of S. aureus to fibrinogen (Fg. Using molecular dynamics simulations and mutagenesis assays, we further demonstrate that CHA binds to the binding sites of C184 and G192 in the SrtA. In vivo studies demonstrated that CHA prevent mice from S. aureus-induced renal abscess, resulting in a significant survival advantage. These findings indicate that CHA is a promising therapeutic compound against SrtA during S. aureus infections.

  3. Lipoteichoic acid synthesis inhibition in combination with antibiotics abrogates growth of multidrug-resistant Enterococcus faecium.

    Science.gov (United States)

    Paganelli, Fernanda L; van de Kamer, Tim; Brouwer, Ellen C; Leavis, Helen L; Woodford, Neil; Bonten, Marc J M; Willems, Rob J L; Hendrickx, Antoni P A

    2017-03-01

    Enterococcus faecium is a multidrug-resistant (MDR) nosocomial pathogen causing significant morbidity in debilitated patients. New antimicrobials are needed to treat antibiotic-resistant E. faecium infections in hospitalised patients. E. faecium incorporates lipoteichoic acid (LTA) (1,3-polyglycerol-phosphate linked to glycolipid) in its cell wall. The small-molecule inhibitor 1771 [2-oxo-2-(5-phenyl-1,3,4-oxadiazol-2-ylamino)ethyl 2-naphtho[2,1-b]furan-1-ylacetate] specifically blocks the activity of Staphylococcus aureus LtaS synthase, which polymerises 1,3-glycerolphosphate into LTA polymers. Here we characterised the effects of the small-molecule inhibitor 1771 on the growth of E. faecium isolates, alone (28 strains) or in combination with the antibiotics vancomycin, daptomycin, ampicillin, gentamicin or linezolid (15 strains), and on biofilm formation (16 strains). Inhibition of LTA synthesis at the surface of the cell by compound 1771 in combination with current antibiotic therapy abrogates enterococcal growth in vitro but does not affect mature E. faecium biofilms. Targeting LTA synthesis may provide new possibilities to treat MDR E. faecium infections.

  4. Diacylglycerol acyltransferase-1 inhibition enhances intestinal fatty acid oxidation and reduces energy intake in rats.

    Science.gov (United States)

    Schober, Gudrun; Arnold, Myrtha; Birtles, Susan; Buckett, Linda K; Pacheco-López, Gustavo; Turnbull, Andrew V; Langhans, Wolfgang; Mansouri, Abdelhak

    2013-05-01

    Acyl CoA:diacylglycerol acyltransferase-1 (DGAT-1) catalyzes the final step in triacylglycerol (TAG) synthesis and is highly expressed in the small intestine. Because DGAT-1 knockout mice are resistant to diet-induced obesity, we investigated the acute effects of intragastric (IG) infusion of a small molecule diacylglycerol acyltransferase-1 inhibitor (DGAT-1i) on eating, circulating fat metabolites, indirect calorimetry, and hepatic and intestinal expression of key fat catabolism enzymes in male rats adapted to an 8 h feeding-16 h deprivation schedule. Also, the DGAT-1i effect on fatty acid oxidation (FAO) was investigated in enterocyte cell culture models. IG DGAT-1i infusions reduced energy intake compared with vehicle in high-fat diet (HFD)-fed rats, but scarcely in chow-fed rats. IG DGAT-1i also blunted the postprandial increase in serum TAG and increased β-hydroxybutyrate levels only in HFD-fed rats, in which it lowered the respiratory quotient and increased intestinal, but not hepatic, protein levels of Complex III of the mitochondrial respiratory chain and of mitochondrial hydroxymethylglutaryl-CoA synthase. Finally, the DGAT-1i enhanced FAO in CaCo2 (EC50 = 0.3494) and HuTu80 (EC50 = 0.00762) cells. Thus, pharmacological DGAT-1 inhibition leads to an increase in intestinal FAO and ketogenesis when dietary fat is available. This may contribute to the observed eating-inhibitory effect.

  5. Inhibition Effect of Lactic Acid Bacteria against Food Born Pathogen, Listeria monocytogenes

    Directory of Open Access Journals (Sweden)

    Rouha Kasra-Kermanshahi

    2015-09-01

    Full Text Available Disease caused by consuming microbial contaminated food has increased significantly in recent years due to changes in the livelihoods and eating habits of the human populations. Listeria monocytogenes, Escherichia coli O157:H7 and Salmonella enterica are three of the most important foodborne bacterial pathogens and can lead to foodborne diseases. Increased use of antibiotics, has led to development of bacterial resistance to antibiotics. Therefore, there is growing interest in the development of new types of effective and nontoxic antimicrobial compounds. Nowadays, the most extensive research and commercial practices are based on probiotic bacteria. Probiotics, specifically lactic acid bacteria are widely used in the food industry for fermentation but have gained attention from health professionals because of their potential beneficial effects. Now probiotic therapy is thought to be an effective way to improve the gut health and an alternative to antibiotic treatments. They contribute to food safety by their ability to inhibit the growth of several other bacteria. LAB can be used as protective cultures to compete with potential pathogens and other undesired organisms, thereby increasing the safety of the food product.

  6. Inhibition of Receptor Interacting Protein Kinases Attenuates Cardiomyocyte Hypertrophy Induced by Palmitic Acid.

    Science.gov (United States)

    Zhao, Mingyue; Lu, Lihui; Lei, Song; Chai, Hua; Wu, Siyuan; Tang, Xiaoju; Bao, Qinxue; Chen, Li; Wu, Wenchao; Liu, Xiaojing

    2016-01-01

    Palmitic acid (PA) is known to cause cardiomyocyte dysfunction. Cardiac hypertrophy is one of the important pathological features of PA-induced lipotoxicity, but the mechanism by which PA induces cardiomyocyte hypertrophy is still unclear. Therefore, our study was to test whether necroptosis, a receptor interacting protein kinase 1 and 3 (RIPK1 and RIPK3-) dependent programmed necrosis, was involved in the PA-induced cardiomyocyte hypertrophy. We used the PA-treated primary neonatal rat cardiac myocytes (NCMs) or H9c2 cells to study lipotoxicity. Our results demonstrated that cardiomyocyte hypertrophy was induced by PA treatment, determined by upregulation of hypertrophic marker genes and cell surface area enlargement. Upon PA treatment, the expression of RIPK1 and RIPK3 was increased. Pretreatment with the RIPK1 inhibitor necrostatin-1 (Nec-1), the PA-induced cardiomyocyte hypertrophy, was attenuated. Knockdown of RIPK1 or RIPK3 by siRNA suppressed the PA-induced myocardial hypertrophy. Moreover, a crosstalk between necroptosis and endoplasmic reticulum (ER) stress was observed in PA-treated cardiomyocytes. Inhibition of RIPK1 with Nec-1, phosphorylation level of AKT (Ser473), and mTOR (Ser2481) was significantly reduced in PA-treated cardiomyocytes. In conclusion, RIPKs-dependent necroptosis might be crucial in PA-induced myocardial hypertrophy. Activation of mTOR may mediate the effect of necroptosis in cardiomyocyte hypertrophy induced by PA.

  7. Ilex paraguariensis and its main component chlorogenic acid inhibit fructose formation of advanced glycation endproducts with amino acids at conditions compatible with those in the digestive system.

    Science.gov (United States)

    Bains, Yasmin; Gugliucci, Alejandro

    2017-03-01

    We have previously shown that Ilex paraguariensis extracts have potent antiglycation actions. Associations of excess free fructose consumption with inflammatory diseases have been proposed to be mediated through in situ enteral formation of fructose AGEs, which, after being absorbed may contribute to inflammatory diseases via engagement of RAGE. In this proof of principle investigation we show fluorescent AGE formation between amino acids (Arg, Lys, Gly at 10-50mM) and fructose (10-50mM) under time, temperature, pH and concentrations compatible with the digestive system lumen and its inhibition by Ilex paraguariensis extracts. Incubation of amino acids with fructose (but not glucose) leads to a time dependent formation of AGE fluorescence, already apparent after just 1h incubation, a time frame well compatible with the digestive process. Ilex paraguariensis (mate tea) inhibited AGE formation by 83% at 50μl/ml (pacid and cholorogenic acid were as potent as aminoguanidine-a specific antiglycation agent: IC50 of 0.9mM (pacids at times and concentrations plausibly found in the intestines. The reaction is inhibited by mate tea and its individual phenolics (caffeic acid and chlorogenic acids). The study provides the first evidence for the proposed mechanism to explain epidemiological correlations between excess fructose consumption and inflammatory diseases. Enteral fructose-AGE formation would be inhibited by co-intake of Ilex paraguariensis, and potentially other beverages, fruits and vegetables that contain comparable concentrations of phenolics as in IP (mate tea). Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Inhibition of fatty acid synthesis in rat hepatocytes by exogenous polyunsaturated fatty acids is caused by lipid peroxidation

    DEFF Research Database (Denmark)

    Mikkelsen, L.; Hansen, Harald S.; Grunnet, N.

    1993-01-01

    by the peroxidized PUFA. Arachidonic acid and eicosapentaenoic acid showed a dose- and time-dependent cytotoxicity. Two other antioxidants: 50 µM a-tocopherol acid succinate and 1 µM N,N'-diphenyl-1,4-phenylenediamine, both proved more efficient than a-tocopherol phosphate. There was a significant correlation......Rat hepatocyte long-term cultures were utilized to investigate the impact of different polyunsaturated fatty acids (PUFA) on the insulin-induced de novo fatty acid synthesis in vitro. The addition of 0.5 mM albumin-complexed oleic, linoleic, columbinic, arachidonic, eicosapentaenoic...... or docosahexaenoic acid resulted in a marked suppression of fatty acid synthesis. By evaluation of cell viability (determined as the leakage of lactate dehydrogenase (LDH)) it turned our, that the antioxidant used (50 µM a-tocopherol phosphate) had a low antioxidant activity, resulting in cytotoxic effects...

  9. Ethacrynic acid inhibits pancreatic exocrine secretion%依他尼酸抑制胰腺外分泌

    Institute of Scientific and Technical Information of China (English)

    YU Hong-Gang; KLONOWSKI-STUMPE Hanne

    2001-01-01

    AIM: The effect of ethacrynic acid on pancreatic exocrine secretion function and potential mechanisms of interference with the secretory process in pancreatic acinar cells were investigated. METHODS: After incubation with ethacrynic acid for 30 min, caerulein-stimulated amylase release and cholecystokinin (CCK) receptor binding characteristics were assessed in isolated rat pancreatic acini. The level of thiol groups (glutathione and protein thiols ) and cytosolic free calcium were measured in pancreatic acinar cells. RESULTS:Ethacrynic acid decreased caerulein (0. 1 nmol/L )-stimulated amylase release and the level of pancreatic acinar glutathione in a concentration-dependent fashion without a marked increase in cell damage. Ethacrynic acid also inhibited the caerulein (1 nmol/L)-induced Ca2+ mobilization in pancreatic acinar cells. But neither protein thiol nor CCK-receptor binding characteristics was altered by ethacrynic acid. CONCLUSION: Ethacrynic acid inhibit pancreatic exocrine secretion by depletion of glutathione and down-regulation of caerulein-induced Ca2+ mobilization. Glutathione might play a potential role in the secretory process in pancreatic acinar cells and in the secretory blockade observed in acute pancreatitis.

  10. Mechanism of poly(acrylic acid) acceleration of antithrombin inhibition of thrombin: implications for the design of novel heparin mimics.

    Science.gov (United States)

    Monien, Bernhard H; Cheang, Kai I; Desai, Umesh R

    2005-08-11

    The bridging mechanism of antithrombin inhibition of thrombin is a dominant mechanism contributing a massive approximately 2500-fold acceleration in the reaction rate and is also a key reason for the clinical usage of heparin. Our recent study of the antithrombin-activating properties of a carboxylic acid-based polymer, poly(acrylic acid) (PAA), demonstrated a surprisingly high acceleration in thrombin inhibition (Monien, B. H.; Desai, U. R. J. Med. Chem. 2005, 48, 1269). To better understand this interesting phenomenon, we have studied the mechanism of PAA-dependent acceleration in antithrombin inhibition of thrombin. Competitive binding studies with low-affinity heparin and a heparin tetrasaccharide suggest that PAA binds antithrombin in both the pentasaccharide- and the extended heparin-binding sites, and these results are corroborated by molecular modeling. The salt-dependence of the K(D) of the PAA-antithrombin interaction shows the formation of five ionic interactions. In contrast, the contribution of nonionic forces is miniscule, resulting in an interaction that is significantly weaker than that observed for heparins. A bell-shaped profile of the observed rate constant for antithrombin inhibition of thrombin as a function of PAA concentration was observed, suggesting that inhibition proceeds through the "bridging" mechanism. The knowledge gained in this mechanistic study highlights important rules for the rational design of orally available heparin mimics.

  11. Corrosion inhibition of C38 steel in 1 M hydrochloric acid medium by alkaloids extract from Oxandra asbeckii plant

    Energy Technology Data Exchange (ETDEWEB)

    Lebrini, M. [Laboratoire Materiaux et Molecules en Milieu Amazonien, CNRS 8172-UMR ECOFOG, Campus Trou Biran, Cayenne 97337, French Guiana (France); Robert, F.; Lecante, A. [Laboratoire Materiaux et Molecules en Milieu Amazonien, UAG-UMR ECOFOG, Campus Trou Biran, Cayenne 97337, French Guiana (France); Roos, C., E-mail: christophe.roos@guyane.univ-ag.f [Laboratoire Materiaux et Molecules en Milieu Amazonien, UAG-UMR ECOFOG, Campus Trou Biran, Cayenne 97337, French Guiana (France)

    2011-02-15

    Research highlights: The inhibition effect of alkaloid extract of Oxandra asbeckii plant on the corrosion of C38 steel in 1 M hydrochloric acid solution has been investigated by potentiodynamic polarization and electrochemical impedance spectroscopy (EIS). Oxandra asbeckii extract examined acted as an efficient corrosion inhibitor in 1 M HCl. Polarization studies showed that Oxandra asbeckii extract was a mixed-type inhibitor and its inhibition efficiency increased with the inhibitor concentration. - Abstract: The inhibition effect of alkaloids extract from Oxandra asbeckii plant (OAPE) on the corrosion of C38 steel in 1 M hydrochloric acid solution has been investigated by potentiodynamic polarization and electrochemical impedance spectroscopy (EIS). The corrosion inhibition efficiency increases on increasing plant extracts concentration. Cathodic and anodic polarization curves show that OAPE is a mixed-type inhibitor. The effect of temperature on the corrosion behavior of C38 steel in 1 M HCl with and without addition of plant extract was studied in the temperature range 25-55 {sup o}C. The thermodynamic functions of dissolution and adsorption processes were calculated from experimental polarization data and the interpretation of the results are given. The adsorption of this plant extract on the C38 steel surface obeys the Langmuir adsorption isotherm. Surface analysis (Raman) was also carried out to establish the corrosion inhibitive property of this plant extract in HCl solution.

  12. Caffeic acid phenethyl ester downregulates phospholipase D1 via direct binding and inhibition of NFκB transactivation

    Energy Technology Data Exchange (ETDEWEB)

    Park, Mi Hee; Kang, Dong Woo [Department of Molecular Biology, Pusan National University, Busan 609-735 (Korea, Republic of); Jung, Yunjin [College of Pharmacy, Pusan National University, Busan 609-735 (Korea, Republic of); Choi, Kang-Yell [Translational Research Center for Protein Function Control, Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul (Korea, Republic of); Min, Do Sik, E-mail: minds@pusan.ac.kr [Department of Molecular Biology, Pusan National University, Busan 609-735 (Korea, Republic of)

    2013-12-06

    Highlights: •We found CAFÉ, a natural product that suppresses expression and activity of PLD1. •CAPE decreased PLD1 expression by inhibiting NFκB transactivation. •CAPE rapidly inhibited PLD activity via its binding to a Cys837 of PLD1. •PLD1 downregulation by CAPE inhibited invasion and proliferation of glioma cells. -- Abstract: Upregulation of phospholipase D (PLD) is functionally linked with oncogenic signals and tumorigenesis. Caffeic acid phenethyl ester (CAPE) is an active compound of propolis extract that exhibits anti-proliferative, anti-inflammatory, anti-oxidant, and antineoplastic properties. In this study, we demonstrated that CAPE suppressed the expression of PLD1 at the transcriptional level via inhibition of binding of NFκB to PLD1 promoter. Moreover, CAPE, but not its analogs, bound to a Cys837 residue of PLD1 and inhibited enzymatic activity of PLD. CAPE also decreased activation of matrix metalloproteinases-2 induced by phosphatidic acid, a product of PLD activity. Ultimately, CAPE-induced downregulation of PLD1 suppressed invasion and proliferation of glioma cells. Taken together, the results of this study indicate that CAPE might contribute to anti-neoplastic effect by targeting PLD1.

  13. Docosahexaenoic acid inhibits cancer cell growth via p27Kip1, CDK2, ERK1/ERK2, and retinoblastoma phosphorylation.

    Science.gov (United States)

    Khan, Naim A; Nishimura, Kazuhiro; Aires, Virginie; Yamashita, Tomoko; Oaxaca-Castillo, David; Kashiwagi, Keiko; Igarashi, Kazuei

    2006-10-01

    Docosahexaenoic acid (DHA), a PUFA of the n-3 family, inhibited the growth of FM3A mouse mammary cancer cells by arresting their progression from the late-G(1) to the S phase of the cell cycle. DHA upregulated p27(Kip1) levels by inhibiting phosphorylation of mitogen-activated protein (MAP) kinases, i.e., ERK1/ERK2. Indeed, inhibition of ERK1/ERK2 phosphorylation by DHA, U0126 [chemical MAPK extracellularly signal-regulated kinase kinase (MEK) inhibitor], and MEK(SA) (cells expressing dominant negative constructs of MEK) resulted in the accumulation of p27(Kip1). MAP kinase (MAPK) inhibition by DHA did not increase p27(Kip1) mRNA levels. Rather, this fatty acid stabilized p27(Kip1) contents and inhibited MAPK-dependent proteasomal degradation of this protein. DHA also diminished cyclin E phosphorylation, cyclin-dependent kinase-2 (CDK2) activity, and phosphorylation of retinoblastoma protein in these cells. Our study shows that DHA arrests cell growth by modulating the phosphorylation of cell cycle-related proteins.

  14. N-Acylethanolamine-hydrolyzing acid amidase inhibition increases colon N-palmitoylethanolamine levels and counteracts murine colitis

    Science.gov (United States)

    Alhouayek, Mireille; Bottemanne, Pauline; Subramanian, Kumar V.; Lambert, Didier M.; Makriyannis, Alexandros; Cani, Patrice D.; Muccioli, Giulio G.

    2015-01-01

    N-Palmitoylethanolamine or palmitoylethanolamide (PEA) is an anti-inflammatory compound that was recently shown to exert peroxisome proliferator-activated receptor-α-dependent beneficial effects on colon inflammation. The actions of PEA are terminated following hydrolysis by 2 enzymes: fatty acid amide hydrolase (FAAH), and the less-studied N-acylethanolamine-hydrolyzing acid amidase (NAAA). This study aims to investigate the effects of inhibiting the enzymes responsible for PEA hydrolysis in colon inflammation in order to propose a potential therapeutic target for inflammatory bowel diseases (IBDs). Two murine models of IBD were used to assess the effects of NAAA inhibition, FAAH inhibition, and PEA on macroscopic signs of colon inflammation, macrophage/neutrophil infiltration, and the expression of proinflammatory mediators in the colon, as well as on the colitis-related systemic inflammation. NAAA inhibition increases PEA levels in the colon and reduces colon inflammation and systemic inflammation, similarly to PEA. FAAH inhibition, however, does not increase PEA levels in the colon and does not affect the macroscopic signs of colon inflammation or immune cell infiltration. This is the first report of an anti-inflammatory effect of a systemically administered NAAA inhibitor. Because NAAA is the enzyme responsible for the control of PEA levels in the colon, we put forth this enzyme as a potential therapeutic target in chronic inflammation in general and IBD in particular.—Alhouayek, M., Bottemanne, P., Subramanian, K. V., Lambert, D. M., Makriyannis, A., Cani, P. D., and Muccioli, G. G. N-Acylethanolamine-hydrolyzing acid amidase inhibition increases colon N-palmitoylethanolamine levels and counteracts murine colitis. PMID:25384424

  15. Down-regulation of hepatic urea synthesis by oxypurines: xanthine and uric acid inhibit N-acetylglutamate synthase.

    Science.gov (United States)

    Nissim, Itzhak; Horyn, Oksana; Nissim, Ilana; Daikhin, Yevgeny; Caldovic, Ljubica; Barcelona, Belen; Cervera, Javier; Tuchman, Mendel; Yudkoff, Marc

    2011-06-24

    We previously reported that isobutylmethylxanthine (IBMX), a derivative of oxypurine, inhibits citrulline synthesis by an as yet unknown mechanism. Here, we demonstrate that IBMX and other oxypurines containing a 2,6-dione group interfere with the binding of glutamate to the active site of N-acetylglutamate synthetase (NAGS), thereby decreasing synthesis of N-acetylglutamate, the obligatory activator of carbamoyl phosphate synthase-1 (CPS1). The result is reduction of citrulline and urea synthesis. Experiments were performed with (15)N-labeled substrates, purified hepatic CPS1, and recombinant mouse NAGS as well as isolated mitochondria. We also used isolated hepatocytes to examine the action of various oxypurines on ureagenesis and to assess the ameliorating affect of N-carbamylglutamate and/or l-arginine on NAGS inhibition. Among various oxypurines tested, only IBMX, xanthine, or uric acid significantly increased the apparent K(m) for glutamate and decreased velocity of NAGS, with little effect on CPS1. The inhibition of NAGS is time- and dose-dependent and leads to decreased formation of the CPS1-N-acetylglutamate complex and consequent inhibition of citrulline and urea synthesis. However, such inhibition was reversed by supplementation with N-carbamylglutamate. The data demonstrate that xanthine and uric acid, both physiologically occurring oxypurines, inhibit the hepatic synthesis of N-acetylglutamate. An important and novel concept emerging from this study is that xanthine and/or uric acid may have a role in the regulation of ureagenesis and, thus, nitrogen homeostasis in normal and disease states.

  16. Fatty acid synthase inhibitors induce apoptosis in non-tumorigenic melan-a cells associated with inhibition of mitochondrial respiration.

    Directory of Open Access Journals (Sweden)

    Franco A Rossato

    Full Text Available The metabolic enzyme fatty acid synthase (FASN is responsible for the endogenous synthesis of palmitate, a saturated long-chain fatty acid. In contrast to most normal tissues, a variety of human cancers overexpress FASN. One such cancer is cutaneous melanoma, in which the level of FASN expression is associated with tumor invasion and poor prognosis. We previously reported that two FASN inhibitors, cerulenin and orlistat, induce apoptosis in B16-F10 mouse melanoma cells via the intrinsic apoptosis pathway. Here, we investigated the effects of these inhibitors on non-tumorigenic melan-a cells. Cerulenin and orlistat treatments were found to induce apoptosis and decrease cell proliferation, in addition to inducing the release of mitochondrial cytochrome c and activating caspases-9 and -3. Transfection with FASN siRNA did not result in apoptosis. Mass spectrometry analysis demonstrated that treatment with the FASN inhibitors did not alter either the mitochondrial free fatty acid content or composition. This result suggests that cerulenin- and orlistat-induced apoptosis events are independent of FASN inhibition. Analysis of the energy-linked functions of melan-a mitochondria demonstrated the inhibition of respiration, followed by a significant decrease in mitochondrial membrane potential (ΔΨm and the stimulation of superoxide anion generation. The inhibition of NADH-linked substrate oxidation was approximately 40% and 61% for cerulenin and orlistat treatments, respectively, and the inhibition of succinate oxidation was approximately 46% and 52%, respectively. In contrast, no significant inhibition occurred when respiration was supported by the complex IV substrate N,N,N',N'-tetramethyl-p-phenylenediamine (TMPD. The protection conferred by the free radical scavenger N-acetyl-cysteine indicates that the FASN inhibitors induced apoptosis through an oxidative stress-associated mechanism. In combination, the present results demonstrate that cerulenin

  17. Plant lectin can target receptors containing sialic acid, exemplified by podoplanin, to inhibit transformed cell growth and migration.

    Directory of Open Access Journals (Sweden)

    Jhon Alberto Ochoa-Alvarez

    Full Text Available Cancer is a leading cause of death of men and women worldwide. Tumor cell motility contributes to metastatic invasion that causes the vast majority of cancer deaths. Extracellular receptors modified by α2,3-sialic acids that promote this motility can serve as ideal chemotherapeutic targets. For example, the extracellular domain of the mucin receptor podoplanin (PDPN is highly O-glycosylated with α2,3-sialic acid linked to galactose. PDPN is activated by endogenous ligands to induce tumor cell motility and metastasis. Dietary lectins that target proteins containing α2,3-sialic acid inhibit tumor cell growth. However, anti-cancer lectins that have been examined thus far target receptors that have not been identified. We report here that a lectin from the seeds of Maackia amurensis (MASL with affinity for O-linked carbohydrate chains containing sialic acid targets PDPN to inhibit transformed cell growth and motility at nanomolar concentrations. Interestingly, the biological activity of this lectin survives gastrointestinal proteolysis and enters the cardiovascular system to inhibit melanoma cell growth, migration, and tumorigenesis. These studies demonstrate how lectins may be used to help develop dietary agents that target specific receptors to combat malignant cell growth.

  18. Synthesis and characterization of a novel eco-friendly corrosion inhibition for mild steel in 1 M hydrochloric acid.

    Science.gov (United States)

    Al-Amiery, Ahmed A; Binti Kassim, Fatin A; Kadhum, Abdul Amir H; Mohamad, Abu Bakar

    2016-01-22

    The acid corrosion inhibition process of mild steel in 1 M HCl by azelaic acid dihydrazide has been investigated using electrochemical impedance spectroscopy (EIS), potentiodynamic polarization, open circuit potential (OCP) and electrochemical frequency modulation (EFM). Azelaic acid dihydrazide was synthesized, and its chemical structure was elucidated and confirmed using spectroscopic techniques (infrared, nuclear magnetic resonance and mass spectroscopy). Potentiodynamic polarization studies indicate that azelaic acid dihydrazide is a mixed-type inhibitor. The inhibition efficiency increases with increased inhibitor concentration and reaches its maximum of 93% at 5 × 10(-3) M. The adsorption of the inhibitor on a mild steel surface obeys Langmuir's adsorption isotherm. The effect of te perature on corrosion behavior in the presence of 5 × 10(-3) M inhibitor was studied in the temperature range of 30-60 °C. The results indicated that inhibition efficiencies were enhanced with an increase in concentration of inhibitor and decreased with a rise in temperature. To inspect the surface morphology of inhibitor film on the mild steel surface, scanning electron microscopy (SEM) was used before and after immersion in 1.0 M HCl.

  19. Anion-Channel Blockers Inhibit S-Type Anion Channels and Abscisic Acid Responses in Guard Cells.

    Science.gov (United States)

    Schwartz, A.; Ilan, N.; Schwarz, M.; Scheaffer, J.; Assmann, S. M.; Schroeder, J. I.

    1995-10-01

    The effects of anion-channel blockers on light-mediated stomatal opening, on the potassium dependence of stomatal opening, on stomatal responses to abscisic acid (ABA), and on current through slow anion channels in the plasma membrane of guard cells were investigated. The anion-channel blockers anthracene-9-carboxylic acid (9-AC) and niflumic acid blocked current through slow anion channels of Vicia faba L. guard cells. Both 9-AC and niflumic acid reversed ABA inhibition of stomatal opening in V. faba L. and Commelina communis L. The anion-channel blocker probenecid also abolished ABA inhibition of stomatal opening in both species. Additional tests of 9-AC effects on stomatal aperture in Commelina revealed that application of this anion-channel blocker allowed wide stomatal opening under low (1 mM) KCI conditions and increased the rate of stomatal opening under both low and high (100 mM) KCI conditions. These results indicate that anion channels can function as a negative regulator of stomatal opening, presumably by allowing anion efflux and depolarization, which prohibits ion up-take in guard cells. Furthermore, 9-AC prevented ABA induction of stomatal closure. A model in which ABA activation of anion channels contributes a rate-limiting mechanism during ABA-induced stomatal closure and inhibition of stomatal opening is discussed.

  20. Inhibition of Hyaluronic Acid Synthesis Suppresses Angiogenesis in Developing Endometriotic Lesions.

    Directory of Open Access Journals (Sweden)

    Carla N Olivares

    Full Text Available The development and long-term survival of endometriotic lesions is crucially dependent on an adequate vascularization. Hyaluronic acid (HA through its receptor CD44 has been described to be involved in the process of angiogenesis.To study the effect of HA synthesis inhibition using non-toxic doses of 4-methylumbelliferone (4-MU on endometriosis-related angiogenesis.The cytotoxicity of different in vitro doses of 4-MU on endothelial cells was firstly tested by means of a lactate dehydrogenase assay. The anti-angiogenic action of non-cytotoxic doses of 4-MU was then assessed by a rat aortic ring assay. In addition, endometriotic lesions were induced in dorsal skinfold chambers of female BALB/c mice, which were daily treated with an intraperitoneal injection of 0.9% NaCl (vehicle group; n = 6, 20 mg/kg 4-MU (n = 8 or 80 mg/kg 4-MU (n = 7 throughout an observation period of 14 days. The effect of 4-MU on their vascularization, survival and growth were studied by intravital fluorescence microscopy, histology and immunohistochemistry.Non-cytotoxic doses of 4-MU effectively inhibited vascular sprout formation in the rat aortic ring assay. Endometriotic lesions in dorsal skinfold chambers of 4-MU-treated mice dose-dependently exhibited a significantly smaller vascularized area and lower functional microvessel density when compared to vehicle-treated controls. Histological analyses revealed a downregulation of HA expression in 4-MU-treated lesions. This was associated with a reduced density of CD31-positive microvessels within the lesions. In contrast, numbers of PCNA-positive proliferating and cleaved caspase-3-positive apoptotic cells did not differ between 4-MU-treated and control lesions.The present study demonstrates for the first time that targeting the synthesis of HA suppresses angiogenesis in developing endometriotic lesions. Further studies have to clarify now whether in the future this anti-angiogenic effect can be used beneficially for the

  1. Oleanolic acid acetate inhibits atopic dermatitis and allergic contact dermatitis in a murine model

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jin Kyeong [CMRI, Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu 700-422 (Korea, Republic of); Oh, Hyun-Mee [Bio-Materials Research Institute, Korea Research Institute of Bioscience and Biotechnology, Jeongeup 580-185 (Korea, Republic of); Lee, Soyoung [CMRI, Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu 700-422 (Korea, Republic of); Park, Jin-Woo [Department of Periodontology, School of Dentistry, Kyungpook National University, Daegu 700-412 (Korea, Republic of); Khang, Dongwoo [School of Nano and Advanced Materials Science and Engineering, Gyeongsang National University, Jinju 660-701 (Korea, Republic of); Lee, Seung Woong; Lee, Woo Song [Bio-Materials Research Institute, Korea Research Institute of Bioscience and Biotechnology, Jeongeup 580-185 (Korea, Republic of); Rho, Mun-Chual, E-mail: rho-m@kribb.re.kr [Bio-Materials Research Institute, Korea Research Institute of Bioscience and Biotechnology, Jeongeup 580-185 (Korea, Republic of); Kim, Sang-Hyun, E-mail: shkim72@knu.ac.kr [CMRI, Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu 700-422 (Korea, Republic of)

    2013-05-15

    Atopic dermatitis (AD) and allergic contact dermatitis (ACD) are common allergic and inflammatory skin diseases caused by a combination of eczema, scratching, pruritus, and cutaneous sensitization with allergens. This paper examines whether oleanolic acid acetate (OAA) modulates AD and ACD symptoms by using an existing AD model based on the repeated local exposure of mite extract (Dermatophagoides farinae extract, DFE) and 2,4-dinitrochlorobenzene to the ears of BALB/c mice. In addition, the paper uses a 2,4-dinitrofluorobenzene-sensitized local lymph node assay (LLNA) for the ACD model. The oral administration of OAA over a four-week period attenuated AD symptoms in terms of decreased skin lesions, epidermal thickness, the infiltration of immune cells (CD4{sup +} cells, eosinophils, and mast cells), and serum IgE, IgG2a, and histamine levels. The gene expression of Th1, Th2, Th17, and Th22 cytokines was reduced by OAA in the lymph node and ear tissue, and the LLNA verified that OAA suppressed ACD. The oral administration of OAA over a three-day period attenuated ACD symptoms in terms of ear thickness, lymphocyte proliferation, and serum IgG2a levels. The gene expression of Th1, Th2, and Th17 cytokines was reduced by OAA in the thymus and ear tissue. Finally, to define the underlying mechanism, this paper uses a TNF-α/IFN-γ-activated human keratinocyte (HaCaT) model. OAA inhibited the expression of cytokines and chemokines through the downregulation of NF-κB and MAPKs in HaCaT cells. Taken together, the results indicate that OAA inhibited AD and ACD symptoms, suggesting that OAA may be effective in treating allergic skin disorders. - Highlights: • OAA reduced both acute and chronic AD symptoms. • OAA had a controlling effect on the immune reaction for ACD. • The effect of OAA on allergic skin disorders was comparable to the cyclosporine A. • OAA might be a candidate for the treatment of allergic skin disorders.

  2. Inhibition of Blue Light-Dependent H+ Pumping by Abscisic Acid in Vicia Guard-Cell Protoplasts.

    Science.gov (United States)

    Goh, C. H.; Kinoshita, T.; Oku, T.; Shimazaki, Ki.

    1996-06-01

    Blue-light (BL)-dependent H+ pumping in guard-cell protoplasts (GCPs) from Vicia faba was inhibited by 65% in the presence of abscisic acid (ABA). The inhibition increased with the time after application of ABA and was concentration dependent with a saturating concentration of 1 [mu]M at pH 6.2. The inhibition was nearly independent of the pH of the medium in the range 5.4 to 7.2 when ABA was applied at 10 [mu]M, whereas it was dependent on pH when the ABA concentration was decreased. The protonated form of ABA was saturating at 40 nM in inhibiting BL-dependent H+ pumping under various experimental conditions, whereas the dissociated form at 500 nM had no inhibitory effect on the pumping, suggesting that the protonated form of ABA is the form active in inhibiting the pumping. Fusicoccin (10 [mu]M), an activator of plasma membrane H+-ATPase, induced H+ pumping from GCPs, and the rate of H+ pumping was decreased to 70% by ABA. In contrast, ABA did not inhibit H+ pumping in isolated microsome vesicles from GCPs. These results suggest that the inhibition of BL-dependent H+ pumping by ABA in GCPs may be due to indirect inactivation of plasma membrane H+-ATPase and/or inhibition of the BL-signaling pathway. The pump inhibition by ABA causes membrane depolarization and can be an initial step to induce stomatal closure and reduces the transpirational water loss under drought stress in the daytime.

  3. Abietane diterpene acids from the bark of lllicium jiadifengpi%假地枫皮中二萜酸类化合物研究

    Institute of Scientific and Technical Information of China (English)

    黄平; Gloria Karagianis; Peter G Waterman

    2005-01-01

    Five diterpene acids were isolated from the bark of Illicium jiadifengpi (Illiciaceae). On the basis of spectral data(1H NMR and 13C NMR, 1H-1H COSY and NOESY, HSQC and HMBC), their structures were elucidated as 4-epi-dehydroabietic acid (1), 4-epi-sandaracopinaric acid (2), 4- epi-abietic acid ( 3 ), 4- epi-isopimaric acid ( 4 ) and 8,11,13, 15-abietatetraen19-oic acid (5).%从八角属植物假地枫皮的石油醚提取物中分离出5个二萜酸类化合物,经波谱数据分析(1H NMR、13C NMR、1H-1H COSY、NOESY、HSQC和HMBC),分别鉴定为4-epi-dehydroabietic acid(1)、4-epi-sandaracopinaric acid (2)、4-epi-abietic acid(3)、4-epi-isopimaric acid(4)和8,11,13,15-abietatetraen-19-oic acid(4).

  4. Inhibition of lactoperoxidase-catalyzed 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) and tyrosine oxidation by tyrosine-containing random amino acid copolymers.

    Science.gov (United States)

    Clausen, Morten R; Skibsted, Leif H; Stagsted, Jan

    2008-09-24

    Oxidation of 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) by lactoperoxidase was found to be inhibited by tyrosine-containing random amino acid copolymers but not by tyrosine. Both electrostatic effects and polymer size were found to be important by comparison of negatively and positively charged copolymers of varying lengths, with poly(Glu, Tyr)4:1 ([E 4Y 1] approximately 40) as the strongest competitive inhibitor (EC 50 approximately 20 nM). This polymer did not form dityrosine in the presence of lactoperoxidase (LPO) and peroxide. Furthermore, incubation with tert-butyl hydroperoxide, as opposed to hydrogen peroxide, resulted in a peculiar long lag phase of the reaction between the redox intermediate compound II and [E 4Y 1] approximately 40, indicating a very tight association between enzyme and inhibitor. We propose that interactions between multiple positively charged areas on the surface of LPO and the polymer are required for optimal inhibition.

  5. Revealing the Mechanistic Pathway of Acid Activation of Proton Pump Inhibitors To Inhibit the Gastric Proton Pump: A DFT Study.

    Science.gov (United States)

    Jana, Kalyanashis; Bandyopadhyay, Tusar; Ganguly, Bishwajit

    2016-12-29

    Acid-related gastric diseases are associated with disorder of digestive tract acidification due to the acid secretion by gastric proton pump, H(+),K(+)-ATPase. Omeprazole is one of the persuasive irreversible inhibitor of the proton pump H(+),K(+)-ATPase. However, the reports on the mechanistic pathway of irreversible proton pump inhibitors (PPIs) on the acid activation and formation of disulfide complex are scarce in the literature. We have examined the acid activation PPIs, i.e., timoprazole, S-omeprazole and R-omeprazole using M062X/6-31++G(d,p) in aqueous phase with SMD solvation model. The proton pump inhibitor is a prodrug and activated in the acidic canaliculi of the gastric pump H(+),K(+)-ATPase to sulfenic acid which can either form another acid activate intermediate sulfenamide or a disulfide complex with cysteine amino acid of H(+),K(+)-ATPase. The quantum chemical calculations suggest that the transition state (TS5) for the disulfide complex formation is the rate-determining step of the multistep acid inhibition process by PPIs. The free energy barrier of TS5 is 5.5 kcal/mol higher for timoprazole compared to the S-omeprazole. The stability of the transition state for the formation of disulfide bond between S-omeprazole and cysteine amino acid of H(+),K(+)-ATPase is governed by inter- and intramolecular hydrogen bonding. The disulfide complex for S-omeprazole is thermodynamically more stable by 4.5 kcal/mol in aqueous phase compared to disulfide complex of timoprazole, which corroborates the less efficacy of timoprazole as irreversible PPI for acid inhibition process. It has been speculated that sulfenic acid can either form sulfenamide or a stable disulfide complex with cysteine amino acid residue of H(+),K(+)-ATPase. The M062X/6-31++G(d,p) level of theory calculated results reveal that the formation of tetra cyclic sulfenamide is unfavored by ∼17 kcal/mol for S-omeprazole and 11.5 kcal/mol for timoprazole compared to the disulfide complex formation

  6. Cauliflower mosaic virus protein P6 inhibits signaling responses to salicylic acid and regulates innate immunity.

    Directory of Open Access Journals (Sweden)

    Andrew J Love

    Full Text Available Cauliflower mosaic virus (CaMV encodes a multifunctional protein P6 that is required for translation of the 35S RNA and also acts as a suppressor of RNA silencing. Here we demonstrate that P6 additionally acts as a pathogenicity effector of an unique and novel type, modifying NPR1 (a key regulator of salicylic acid (SA- and jasmonic acid (JA-dependent signaling and inhibiting SA-dependent defence responses We find that that transgene-mediated expression of P6 in Arabidopsis and transient expression in Nicotiana benthamiana has profound effects on defence signaling, suppressing expression of representative SA-responsive genes and increasing expression of representative JA-responsive genes. Relative to wild-type Arabidopsis P6-expressing transgenics had greatly reduced expression of PR-1 following SA-treatment, infection by CaMV or inoculation with an avirulent bacterial pathogen Pseudomonas syringae pv tomato (Pst. Similarly transient expression in Nicotiana benthamiana of P6 (including a mutant form defective in translational transactivation activity suppressed PR-1a transcript accumulation in response to Agrobacterium infiltration and following SA-treatment. As well as suppressing the expression of representative SA-regulated genes, P6-transgenic Arabidopsis showed greatly enhanced susceptibility to both virulent and avirulent Pst (titres elevated 10 to 30-fold compared to non-transgenic controls but reduced susceptibility to the necrotrophic fungus Botrytis cinerea. Necrosis following SA-treatment or inoculation with avirulent Pst was reduced and delayed in P6-transgenics. NPR1 an important regulator of SA/JA crosstalk, was more highly expressed in the presence of P6 and introduction of the P6 transgene into a transgenic line expressing an NPR1:GFP fusion resulted in greatly increased fluorescence in nuclei even in the absence of SA. Thus in the presence of P6 an inactive form of NPR1 is mislocalized in the nucleus even in uninduced plants

  7. The Inhibitive Effect of para-Amino Benzoic Acid and Its Polymer on Corrosion of Iron in 1 mol/L HCl Solution

    Institute of Scientific and Technical Information of China (English)

    P. Manivel; G. Venkatachari

    2006-01-01

    Poly p-aminobenzoic acid has been synthesized by chemical oxidation method. The inhibitive effect of poly p-aminobenzoic acid on iron in 1 mol/l HCl solution was investigated by polarization and electrochemical impedance spectroscopy and compared with that of monomer p-aminobenzoic acid. The effectiveness of poly p-aminobenzoic acid is very high in comparison with that of monomer. The results show that both cathodic and anodic processes were suppressed by p-aminobenzoic acid and poly p-aminobenzoic acid of iron dissolution in 1 mol/L HCl by their adsorption on the iron surface. The inhibition efficiency of both p-aminobenzoic acid and poly p-aminobenzoic acid were found to increase with the inhibitor concentrations. Ultraviolet (UV)reflectance studies of the iron surface after exposure to inhibitor acid show that poly p-aminobenzoic acid is strongly adsorbed on iron surface.

  8. Echinocystic acid inhibits RANKL-induced osteoclastogenesis by regulating NF-κB and ERK signaling pathways

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Jian-hui, E-mail: jianhui_yangxa@163.com [Rehabilitation Center, First Affiliated Hospital of Health Science Center, Xi’an Jiaotong University, Xi’an, 710061, Shaanxi Province (China); Li, Bing [Department of Dermatology, the 451st Hospital of People’s Liberation Army, Xi’an 710054, Shaanxi Province (China); Wu, Qiong; Lv, Jian-guo; Nie, Hui-Yong [Rehabilitation Center, First Affiliated Hospital of Health Science Center, Xi’an Jiaotong University, Xi’an, 710061, Shaanxi Province (China)

    2016-09-02

    Receptor activator of nuclear factor-κB ligand (RANKL) is a key factor in the differentiation and activation of osteoclasts. Echinocystic acid (EA), a pentacyclic triterpene isolated from the fruits of Gleditsia sinensis Lam, was reported to prevent reduction of bone mass and strength and improve the cancellous bone structure and biochemical properties in ovariectomy rats. However, the molecular mechanism of EA on the osteoclast formation has not been reported. The purpose of this study was to investigate the effects and mechanism of EA on RANKL-induced osteoclastogenesis. Our results showed that EA inhibited the formation of osteoclast, as well as the expression of osteoclastogenesis-related marker proteins in bone marrow macrophages (BMMs). At molecular levels, EA inhibited RANKL-induced NF-κB activation and ERK phosphorylation in BMMs. In conclusion, the present study demonstrated that EA can suppress osteoclastogenesis in vitro. Moreover, we clarified that these inhibitory effects of EA occur through suppression of NF-κB and ERK activation. Therefore, EA may be a potential agent in the treatment of osteoclast-related diseases such as osteoporosis. - Highlights: • EA inhibited the formation of osteoclast in BMMs. • EA inhibits the expression of osteoclastogenesis-related marker proteins in BMMs. • EA inhibits RANKL-induced NF-κB activation in BMMs. • EA inhibits RANKL-induced ERK phosphorylation in BMMs.

  9. Mechanism of fusidic acid inhibition of RRF- and EF-G-dependent splitting of the bacterial post-termination ribosome.

    Science.gov (United States)

    Borg, Anneli; Pavlov, Michael; Ehrenberg, Måns

    2016-04-20

    The antibiotic drug fusidic acid (FA) is commonly used in the clinic against gram-positive bacterial infections. FA targets ribosome-bound elongation factor G (EF-G), a translational GTPase that accelerates both messenger RNA (mRNA) translocation and ribosome recycling. How FA inhibits translocation was recently clarified, but FA inhibition of ribosome recycling by EF-G and ribosome recycling factor (RRF) has remained obscure. Here we use fast kinetics techniques to estimate mean times of ribosome splitting and the stoichiometry of GTP hydrolysis by EF-G at varying concentrations of FA, EF-G and RRF. These mean times together with previous data on uninhibited ribosome recycling were used to clarify the mechanism of FA inhibition of ribosome splitting. The biochemical data on FA inhibition of translocation and recycling were used to model the growth inhibitory effect of FA on bacterial populations. We conclude that FA inhibition of translocation provides the dominant cause of bacterial growth reduction, but that FA inhibition of ribosome recycling may contribute significantly to FA-induced expression of short regulatory open reading frames, like those involved in FA resistance.

  10. Methylprednisolone Inhibits the Expression of Glial Fibrillary Acidic Protein and Chondroitin Sulfate Proteoglycans in Reactivated Astrocytes

    Institute of Scientific and Technical Information of China (English)

    WEI-LIN LIU; YI-HSUAN LEE; SHIH-YING TSAI; CHUNG YI HSU; YU-YO SUN; LIANG-YO YANG; SHING-HAN TSAI; WEI-CHUNG VIVIAN YANG

    2008-01-01

    创伤后的神经胶质增生导致硫酸软骨素蛋白聚糖(CSPG)的显著表达,从而抑制轴突生长和再生.甲基强地松龙(MP),一种合成的糖皮质激素,在急性脊髓损伤(SCI)的治疗中有神经保护作用和抗炎效应.但是,MP对于CSPG在活性胶质细胞中的表达的作用尚不清楚.本文用a-氨基-3-羟基-5-甲基-4-异恶唑丙酸酯(AM-PA)诱导星形胶质细胞再活化,用环噻嗪模拟SCI的兴奋性中毒刺激.AMPA治疗后,星形胶质细胞再活化的标志物-胶质纤维酸性蛋白(GFAP)、CSPG神经聚糖和磷酸盐的表达都显著上调.AMPA治疗星形胶质细胞的条件培养液强烈抑制大鼠背根神经节中神经元的轴突生长,但这种作用能被MP的预处理所逆转.此外,MP下调成年SCI大鼠中GFAP和CSPG的表达,对抗RU486的糖皮质激素受体(GR)和GR siRNA能逆转MP对GFAP和神经聚糖表达的抑制作用.这些结果提示,MP能在兴奋性中毒损伤后通过GR介导的星形胶质细胞再活化下调和GSPG表达抑制来改善神经修复,促进轴突生长.%Reactive gliosis caused by post-traumatic injury often results in marked expression of chondroitin sul-fate proteoglycan(CSPG), which inhibits neurite outgrowth and regeneration. Methylprednisolone (MP), a synthet-ic glucocorticoid, has been shown to have neuroprotective and anti-inflammatory effects for the treatment of acute spinal cord injury (SCI). However, the effect of MP on CSPG expression in reactive glial cells remains unclear. In our study, we induced astrocyte reactivation using a-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA) and cyclothiazide to mimic the exciotoxic stimuli of SCI. The expression of glial fibrillary acidic protein (GFAP), a marker of astrocyte reactivation, and CSPG neurocan and phosphacan were significantly elevated by AMPA treat-ment. The conditioned media from AMPA-treated astrocytes strongly inhibited neurite outgrowth of rat dorsal root ganglion neurons, and this

  11. Inhibition of Hsp27 Radiosensitizes Head-and-Neck Cancer by Modulating Deoxyribonucleic Acid Repair

    Energy Technology Data Exchange (ETDEWEB)

    Guttmann, David M.; Hart, Lori [Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania (United States); Du, Kevin [Department of Radiation Oncology, New York University School of Medicine, New York, New York (United States); Seletsky, Andrew [Department of Biology, Drexel University, Philadelphia, Pennsylvania (United States); Koumenis, Constantinos, E-mail: koumenis@xrt.upenn.edu [Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania (United States)

    2013-09-01

    Purpose: To present a novel method of tumor radiosensitization through Hsp27 knockdown using locked nucleic acid (LNA) and to investigate the role of Hsp27 in DNA double strand break (DSB) repair. Methods and Materials: Clonogenic survival assays, immunoblotting, the proximity ligation assay, and γH2AX foci analysis were conducted in SQ20B and FaDu human head-and-neck cancer cell lines treated with Hsp27 LNA and Hsp27 short hairpin RNA (shRNA). Additionally, nude mice with FaDu flank tumors were treated with fractionated radiation therapy after pretreatment with Hsp27 LNA and monitored for tumor growth. Results: Hsp27 LNA and Hsp27 shRNA radiosensitized head-and-neck cancer cell lines in an Hsp27-dependent manner. Ataxia-Telangectasia Mutated-mediated DNA repair signaling was impaired in irradiated cells with Hsp27 knockdown. ATM kinase inhibition abrogated the radiosensitizing effect of Hsp27. Furthermore, Hsp27 LNA and shRNA both attenuated DNA repair kinetics after radiation, and Hsp27 was found to colocalize with ATM in both untreated and irradiated cells. Last, combined radiation and Hsp27 LNA treatment in tumor xenografts in nude mice suppressed tumor growth compared with either treatment alone. Conclusions: These results support a radiosensitizing property of Hsp27 LNA in vitro and in vivo, implicate Hsp27 in double strand break repair, and suggest that Hsp27 LNA might eventually serve as an effective clinical agent in the radiotherapy of head-and-neck cancer.

  12. Ellagic Acid Inhibits Bladder Cancer Invasiveness and In Vivo Tumor Growth

    Directory of Open Access Journals (Sweden)

    Claudia Ceci

    2016-11-01

    Full Text Available Ellagic acid (EA is a polyphenolic compound that can be found as a naturally occurring hydrolysis product of ellagitannins in pomegranates, berries, grapes, green tea and nuts. Previous studies have reported the antitumor properties of EA mainly using in vitro models. No data are available about EA influence on bladder cancer cell invasion of the extracellular matrix triggered by vascular endothelial growth factor-A (VEGF-A, an angiogenic factor associated with disease progression and recurrence, and tumor growth in vivo. In this study, we have investigated EA activity against four different human bladder cancer cell lines (i.e., T24, UM-UC-3, 5637 and HT-1376 by in vitro proliferation tests (measuring metabolic and foci forming activity, invasion and chemotactic assays in response to VEGF-A and in vivo preclinical models in nude mice. Results indicate that EA exerts anti-proliferative effects as a single agent and enhances the antitumor activity of mitomycin C, which is commonly used for the treatment of bladder cancer. EA also inhibits tumor invasion and chemotaxis, specifically induced by VEGF-A, and reduces VEGFR-2 expression. Moreover, EA down-regulates the expression of programmed cell death ligand 1 (PD-L1, an immune checkpoint involved in immune escape. EA in vitro activity was confirmed by the results of in vivo studies showing a significant reduction of the growth rate, infiltrative behavior and tumor-associated angiogenesis of human bladder cancer xenografts. In conclusion, these results suggest that EA may have a potential role as an adjunct therapy for bladder cancer.

  13. Solution structure of the squash aspartic acid proteinase inhibitor (SQAPI) and mutational analysis of pepsin inhibition.

    Science.gov (United States)

    Headey, Stephen J; Macaskill, Ursula K; Wright, Michele A; Claridge, Jolyon K; Edwards, Patrick J B; Farley, Peter C; Christeller, John T; Laing, William A; Pascal, Steven M

    2010-08-27

    The squash aspartic acid proteinase inhibitor (SQAPI), a proteinaceous proteinase inhibitor from squash, is an effective inhibitor of a range of aspartic proteinases. Proteinaceous aspartic proteinase inhibitors are rare in nature. The only other example in plants probably evolved from a precursor serine proteinase inhibitor. Earlier work based on sequence homology modeling suggested SQAPI evolved from an ancestral cystatin. In this work, we determined the solution structure of SQAPI using NMR and show that SQAPI shares the same fold as a plant cystatin. The structure is characterized by a four-strand anti-parallel beta-sheet gripping an alpha-helix in an analogous manner to fingers of a hand gripping a tennis racquet. Truncation and site-specific mutagenesis revealed that the unstructured N terminus and the loop connecting beta-strands 1 and 2 are important for pepsin inhibition, but the loop connecting strands 3 and 4 is not. Using ambiguous restraints based on the mutagenesis results, SQAPI was then docked computationally to pepsin. The resulting model places the N-terminal strand of SQAPI in the S' side of the substrate binding cleft, whereas the first SQAPI loop binds on the S side of the cleft. The backbone of SQAPI does not interact with the pepsin catalytic Asp(32)-Asp(215) diad, thus avoiding cleavage. The data show that SQAPI does share homologous structural elements with cystatin and appears to retain a similar protease inhibitory mechanism despite its different target. This strongly supports our hypothesis that SQAPI evolved from an ancestral cystatin.

  14. Yangxueqingnao particles inhibit rat vascular smooth muscle cell proliferation induced by lysophosphatidic acid

    Institute of Scientific and Technical Information of China (English)

    CAI Wei; XU Yi; CHEN Jun-zhu; HUANG Shu-ru; LU Zhen-ya; WANG Zhan-kun

    2005-01-01

    Objective: To observe the effect of Yangxueqingnao particles on rat vascular smooth muscle cell (VSMC) proliferation induced by lysophosphatidic acid (LPA). Methods: The amount of3H-TdR (3H-thymidine) admixed in cultured rat VSMC was measured and mitogen-activated protein kinase (MAPK) activity and lipid peroxidation end product malondialdehyde (MDA)content of the VSMC were assayed. Results: 1×10-9, 1×10-8, 1×10-7 mol/L LPA in a concentration dependent manner, induced the amount of 3H-TdR admixed, MAP kinase activity, and MDA content of the cultured rat VSMC to increase. However, 5%, 10%,and 15% Yangxueqingnao serum preincubation resulted in a decrease of 23.0%, 42.0%, and 52.0% (P<0.01) respectively in the amount of 3H-TdR admixed, a decline in VSMC MAP kinase activity of 13.9% (P<0.05), 29.6% (P<0.01), and 48.9% (P<0.01)respectively, and also, a decrease in MDA content of VSMC of 19.4%, 24.7%, and 43.2% (P<0.01) respectively, in the 1×10-7mol/L LPA-treated VSMC. Conclusions: LPA activates the proliferation and lipid peroxidation of VSMC in a concentration dependent manner. The LPA-induced VSMC proliferation is related to the activity of MAP kinases, enzymes involved in an intracellular signalling pathway. The results of the present study showed that Yangxueqingnao particles can effectively inhibit LPA-induced VSMC proliferation, MAP kinase activation, and reduce lipid peroxidative lesion.

  15. Synthetic cajanin stilbene acid derivatives inhibit c-MYC in breast cancer cells.

    Science.gov (United States)

    Kadioglu, Onat; Fu, Yujie; Wiench, Benjamin; Zu, Yuangang; Efferth, Thomas

    2016-03-01

    In the present study, we investigated the activity and modes of action of cajanin stilbene acid (CSA) and its derivatives in terms of cytotoxicity, gene expression profile, and transcription factor activity. XTT assays on MCF7 cells were performed upon treatment with CSA or derivatives. After the determination of IC50 values, gene expression profiling was performed with Agilent microarray experiments. Deregulated genes were determined with Chipster software, pathway and functional analyses were performed with Ingenuity pathway software. In order to identify the potential upstream regulators, MatInspector software was used to perform transcription factor binding motif search in the promoter regions of the deregulated genes. Molecular docking on MYC/MAX complex and reporter cell line experiments were performed to validate the MYC inhibitory activity of CSA and its derivatives. Two known MYC inhibitors: 10058-F4 and 10074-G5 were used as positive control. All compounds showed cytotoxicities in the micromolar range. Microarray analyses pointed to cell cycle, DNA damage, and DNA repair as mainly affected cellular functions. Promoter motif analysis of the deregulated genes further supported the microarray gene expression analysis results emphasizing the relevance of transcription factors regulating cell cycle and proliferation, with MYC as being the most pronounced one. Luciferase-based reporter cell line experiments and molecular docking studies yielded supportive results emphasizing the inhibitory activity of CSA and its derivatives on MYC. CSA and its derivatives are shown to be promising anticancer compounds with low toxicity. They inhibit MYC activity comparable to 10058-F4 and 10074-G5. Further studies are warranted to analyze the therapeutic applicability of these compounds in more detail.

  16. Acid-sensitive channel inhibition prevents fetal alcohol spectrum disorders cerebellar Purkinje cell loss.

    Science.gov (United States)

    Ramadoss, Jayanth; Lunde, Emilie R; Ouyang, Nengtai; Chen, Wei-Jung A; Cudd, Timothy A

    2008-08-01

    Ethanol is now considered the most common human teratogen. Educational campaigns have not reduced the incidence of ethanol-mediated teratogenesis, leading to a growing interest in the development of therapeutic prevention or mitigation strategies. On the basis of the observation that maternal ethanol consumption reduces maternal and fetal pH, we hypothesized that a pH-sensitive pathway involving the TWIK-related acid-sensitive potassium channels (TASKs) is implicated in ethanol-induced injury to the fetal cerebellum, one of the most sensitive targets of prenatal ethanol exposure. Pregnant ewes were intravenously infused with ethanol (258+/-10 mg/dl peak blood ethanol concentration) or saline in a "3 days/wk binge" pattern throughout the third trimester. Quantitative stereological analysis demonstrated that ethanol resulted in a 45% reduction in the total number of fetal cerebellar Purkinje cells, the cell type most sensitive to developmental ethanol exposure. Extracellular pH manipulation to create the same degree and pattern of pH fall caused by ethanol (manipulations large enough to inhibit TASK 1 channels), resulted in a 24% decrease in Purkinje cell number. We determined immunohistochemically that TASK 1 channels are expressed in Purkinje cells and that the TASK 3 isoform is expressed in granule cells of the ovine fetal cerebellum. Pharmacological blockade of both TASK 1 and TASK 3 channels simultaneous with ethanol effectively prevented any reduction in fetal cerebellar Purkinje cell number. These results demonstrate for the first time functional significance of fetal cerebellar two-pore domain pH-sensitive channels and establishes them as a potential therapeutic target for prevention of ethanol teratogenesis.

  17. Inhibition of Streptococcus mutans biofilm formation on composite resins containing ursolic acid

    Science.gov (United States)

    Kim, Soohyeon; Song, Minju; Roh, Byoung-Duck; Park, Sung-Ho

    2013-01-01

    Objectives To evaluate the inhibitory effect of ursolic acid (UA)-containing composites on Streptococcus mutans (S. mutans) biofilm. Materials and Methods Composite resins with five different concentrations (0.04, 0.1, 0.2, 0.5, and 1.0 wt%) of UA (U6753, Sigma Aldrich) were prepared, and their flexural strengths were measured according to ISO 4049. To evaluate the effect of carbohydrate source on biofilm formation, either glucose or sucrose was used as a nutrient source, and to investigate the effect of saliva treatment, the specimen were treated with either unstimulated whole saliva or phosphate-buffered saline (PBS). For biofilm assay, composite disks were transferred to S. mutans suspension and incubated for 24 hr. Afterwards, the specimens were rinsed with PBS and sonicated. The colony forming units (CFU) of the disrupted biofilm cultures were enumerated. For growth inhibition test, the composites were placed on a polystyrene well cluster, and S. mutans suspension was inoculated. The optical density at 600 nm (OD600) was recorded by Infinite F200 pro apparatus (TECAN). One-way ANOVA and two-way ANOVA followed by Bonferroni correction were used for the data analyses. Results The flexural strength values did not show significant difference at any concentration (p > 0.01). In biofilm assay, the CFU score decreased as the concentration of UA increased. The influence of saliva pretreatment was conflicting. The sucrose groups exhibited higher CFU score than glucose group (p composite showed inhibitory effect on S. mutans biofilm formation and growth. PMID:23741708

  18. Solution Structure of the Squash Aspartic Acid Proteinase Inhibitor (SQAPI) and Mutational Analysis of Pepsin Inhibition

    Science.gov (United States)

    Headey, Stephen J.; MacAskill, Ursula K.; Wright, Michele A.; Claridge, Jolyon K.; Edwards, Patrick J. B.; Farley, Peter C.; Christeller, John T.; Laing, William A.; Pascal, Steven M.

    2010-01-01

    The squash aspartic acid proteinase inhibitor (SQAPI), a proteinaceous proteinase inhibitor from squash, is an effective inhibitor of a range of aspartic proteinases. Proteinaceous aspartic proteinase inhibitors are rare in nature. The only other example in plants probably evolved from a precursor serine proteinase inhibitor. Earlier work based on sequence homology modeling suggested SQAPI evolved from an ancestral cystatin. In this work, we determined the solution structure of SQAPI using NMR and show that SQAPI shares the same fold as a plant cystatin. The structure is characterized by a four-strand anti-parallel β-sheet gripping an α-helix in an analogous manner to fingers of a hand gripping a tennis racquet. Truncation and site-specific mutagenesis revealed that the unstructured N terminus and the loop connecting β-strands 1 and 2 are important for pepsin inhibition, but the loop connecting strands 3 and 4 is not. Using ambiguous restraints based on the mutagenesis results, SQAPI was then docked computationally to pepsin. The resulting model places the N-terminal strand of SQAPI in the S′ side of the substrate binding cleft, whereas the first SQAPI loop binds on the S side of the cleft. The backbone of SQAPI does not interact with the pepsin catalytic Asp32–Asp215 diad, thus avoiding cleavage. The data show that SQAPI does share homologous structural elements with cystatin and appears to retain a similar protease inhibitory mechanism despite its different target. This strongly supports our hypothesis that SQAPI evolved from an ancestral cystatin. PMID:20538608

  19. Retinoic acid decreases ATF-2 phosphorylation and sensitizes melanoma cells to taxol-mediated growth inhibition.

    Science.gov (United States)

    Huang, Ying; Minigh, Jennifer; Miles, Sarah; Niles, Richard M

    2008-02-12

    Cutaneous melanoma is often resistant to chemo- and radiotherapy. This resistance has recently been demonstrated to be due, at least in part, to high activating transcription factor 2 (ATF-2) activity in these tumors. In concordance with these reports, we found that B16 mouse melanoma cells had higher levels of ATF-2 than immortalized, but non-malignant mouse melanocytes. In addition, the melanoma cells had a much higher amount of phosphorylated (active) ATF-2 than the immortalized melanocytes. In the course of determining how retinoic acid (RA) stimulates activating protein-1 (AP-1) activity in B16 melanoma, we discovered that this retinoid decreased the phosphorylation of ATF-2. It appears that this effect is mediated through p38 MAPK, because RA decreased p38 phosphorylation, and a selective inhibitor of p38 MAPK (SB203580) also inhibited the phosphorylation of ATF-2. Since ATF-2 activity appears to be involved in resistance of melanoma to chemotherapy, we tested the hypothesis that treatment of the melanoma cells with RA would sensitize them to the growth-inhibitory effect of taxol. We found that pretreatment of B16 cells with RA decreased the IC50 from 50 nM to 1 nM taxol. On the basis of these findings and our previous work on AP-1, we propose a model in which treatment of B16 cells with RA decreases the phosphorylation of ATF-2, which results in less dimer formation with Jun. The "freed-up" Jun can then form a heterodimer with Fos, resulting in the increased AP-1 activity observed in RA-treated B16 cells. Shifting the balance from predominantly ATF-2:Jun dimers to a higher amount of Jun:Fos dimers could lead a change in target gene expression that reduces resistance to chemotherapeutic drugs and contributes to the pathway by which RA arrests proliferation and induces differentiation.

  20. Selective inhibition of sweetness by the sodium salt of +/-2-(4-methoxyphenoxy)propanoic acid.

    Science.gov (United States)

    Schiffman, S S; Booth, B J; Sattely-Miller, E A; Graham, B G; Gibes, K M

    1999-08-01

    The purpose of this study was to determine the degree to which the sodium salt of +/-2-(4-methoxyphenoxy)propanoic acid (Na-PMP) reduced sweet intensity ratings of 15 sweeteners in mixtures. Na-PMP has been approved for use in confectionary/frostings, soft candy and snack products in the USA at concentrations up to 150 p.p.m. A trained panel evaluated the effect of Na-PMP on the intensity of the following 15 sweeteners: three sugars (fructose, glucose, sucrose), three terpenoid glycosides (monoammonium glycyrrhizinate, rebaudioside-A, stevioside), two dipeptide derivatives (alitame, aspartame), two N-sulfonylamides (acesulfame-K, sodium saccharin), two polyhydric alcohols (mannitol, sorbitol), 1 dihydrochalcone (neohesperidin dihydrochalcone), one protein (thaumatin) and one sulfamate (sodium cyclamate). Sweeteners were tested at concentrations isosweet with 2.5, 5, 7.5 and 10% sucrose in mixtures with two levels of Na-PMP: 250 and 500 p.p.m. In addition, the 15 sweeteners were tested either immediately or 30 s after a pre-rinse with 500 p.p.m. Na-PMP. In mixtures, Na-PMP at both the 250 and 500 p.p.m. levels significantly blocked sweetness intensity for 12 of the 15 sweeteners. However, when Na-PMP was mixed with three of the 15 sweeteners (monoammonium glycyrrhizinate, neohesperidin dihydrochalcone and thaumatin), there was little reduction in sweetness intensity. Pre-rinsing with Na-PMP both inhibited and enhanced sweetness with the greatest enhancements found for monoammonium glycyrrhizinate, neohesperidin dihydrochalcone and thaumatin, which were not suppressed by Na-PMP in mixtures. The mixture data suggest that Na-PMP is a selective competitive inhibitor of sweet taste. The finding that pre-treatment can produce enhancement may be due to sensitization of sweetener receptors by Na-PMP.

  1. Amphypterygium adstringens anacardic acid mixture inhibits quorum sensing-controlled virulence factors of Chromobacterium violaceum and Pseudomonas aeruginosa.

    Science.gov (United States)

    Castillo-Juárez, Israel; García-Contreras, Rodolfo; Velázquez-Guadarrama, Norma; Soto-Hernández, Marcos; Martínez-Vázquez, Mariano

    2013-10-01

    Quorum sensing (QS) is a process of bacterial cell-cell communication that controls a large number of systems affecting pathogenicity. Interrupting this communication system can provide nonvirulent pathogenic bacteria. The aim of this study was to evaluate the anti-quorum sensing (anti-QS) potential of an anacardic acids mixture isolated from Amphipterygium adstringens, a medicinal plant known as "cuachalalate", to prevent the onset of bacterial infections as an alternate to antibiotics. Initially we investigated the anti-QS activity of A. adstringens hexane extract (HE) by the inhibition of violacein production in Chromobacterium violaceum. From the active HE, an anacardic acid mixture (AAM) was obtained. The anti-quorum sensing activity of AAM was investigated by the rhamnolipid and pyocyanin production constraint as well as decrease of elastase activity, all being quorum sensing-controlled virulence factors expressed in the pathogenic bacteria Pseudomonas aeruginosa. HE induced a 91.6% of inhibition of the violecin production at 55 μg/mL concentration, whereas AAM showed 94% of inhibition at 166 μg/mL. In both cases, inhibition of violacein production did not affect the viability of the bacterium. AAM inhibited pyocyanin (86% at 200 μg/mL) and rhamnolipid (91% at 500 μg/mL) production in a dose/response form and decrease the elastase (75% at 500 μg/mL) activity in P. aeruginosa without affecting its development. Because an anacardic acids mixture isolated from A. adstringens demonstrated anti-QS, it could be further exploited for novel molecules to treat the emerging infections of antibiotic-resistant bacterial pathogens. Copyright © 2013 IMSS. Published by Elsevier Inc. All rights reserved.

  2. Kinetics of Corrosion Inhibition of Aluminum in Acidic Media by Water-Soluble Natural Polymeric Pectates as Anionic Polyelectrolyte Inhibitors

    Directory of Open Access Journals (Sweden)

    Refat M. Hassan

    2013-06-01

    Full Text Available Corrosion inhibition of aluminum (Al in hydrochloric acid by anionic polyeletrolyte pectates (PEC as a water-soluble natural polymer polysaccharide has been studied using both gasometric and weight loss techniques. The results drawn from these two techniques are comparable and exhibit negligible differences. The inhibition efficiency was found to increase with increasing inhibitor concentration and decrease with increasing temperature. The inhibition action of PEC on Al metal surface was found to obey the Freundlich isotherm. Factors such as the concentration and geometrical structure of the inhibitor, concentration of the corrosive medium, and temperature affecting the corrosion rates were examined. The kinetic parameters were evaluated and a suitable corrosion mechanism consistent with the kinetic results is discussed in the paper.

  3. Renewal and spontaneous recovery, but not latent inhibition, are mediated by gamma-aminobutyric acid in appetitive conditioning.

    Science.gov (United States)

    Delamater, Andrew R; Campese, Vincent; Westbrook, R Frederick

    2009-04-01

    Previous research has reported a role for the neurotransmitter gamma-aminobutyric acid (GABA) in the extinction and renewal of conditioned fear. Here, the authors examine whether GABA is involved in the acquisition, extinction, renewal, spontaneous recovery, and latent inhibition of appetitive conditioning. Using Long-Evans rats, systemic injection of the GABA A receptor inverse agonist FG 7142 was shown to eliminate ABA renewal (Experiment 1) and spontaneous recovery (Experiment 4) of appetitive responding by selectively reducing the recovery of extinguished magazine approach. Furthermore, treatment with FG 7142 had no effects on acquisition or single-session extinction (Experiment 3) or on the context-specific expression of latent inhibition (Experiment 2). These data suggest that ABA renewal and spontaneous recovery, but not latent inhibition or responding during acquisition and an initial extinction session, are mediated by GABAergic mechanisms in appetitive Pavlovian conditioning. They provide support for the view that renewal and spontaneous recovery share a common psychological mechanism.

  4. Inhibition of inward K+ channels and stomatal response by abscisic acid: an intracellular locus of phytohormone action.

    OpenAIRE

    Schwartz, A; Wu, W. H.; Tucker, E B; Assmann, S M

    1994-01-01

    Abscisic acid (ABA), a plant hormone whose production is stimulated by water stress, reduces the apertures of stomatal pores in the leaf surface, thereby lessening transpirational water loss. It has been thought that inhibition of stomatal opening and promotion of stomatal closure by ABA are initiated by the binding of extracellular ABA to a receptor located in the guard-cell plasma membrane. However, in the present research, we employ three distinct experimental approaches to demonstrate tha...

  5. Organic compounds as corrosion inhibitors for mild steel in acidic media: correlation between inhibition efficiency and chemical structure

    Energy Technology Data Exchange (ETDEWEB)

    Elias, Elizandra C.S.; Chrisman, Erika C.A.N. [Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ (Brazil). Escola de Quimica

    2009-12-19

    The use of inhibitors for mild steels corrosion control which are in contact with aggressive environment is an accepted practice in acid treatment of oil-wells. Organic compounds have been studied to evaluate their corrosion inhibition potential. Film-forming corrosion inhibitors, commonly used to protect oil-field equipment, can be absorbed on the steel surface to give structurally ordered layers. Therefore, the electrons should act as an important role for this adsorption. Studies reveal that organic compounds show significant inhibition efficiency. For this purpose, their molecules should contain N, O and S heteroatoms in various functional groups, long hydrocarbon linear or branched radical and anion and cation active components. However, most of these compounds are not only expensive but also toxic to living beings. According to the 'Green Chemistry' rules, corrosion inhibitors based on organic compounds should be cheap, with low toxicity and have high inhibition efficiency. In this study, the effects of some organic compounds with different groups such as amide, ether, phenyldiamine, anime and aminophenol on the corrosion behavior of mild steel in acidic media have been investigated. The experimental data were obtained by gravimetric measurements. The results show that these compounds reveal a promising corrosion inhibition where phenyldiamine is the most efficient. The effect of molecular structure on the corrosion inhibition efficiency was investigated by semi-empirical quantum chemical calculations. The electronic properties such as highest occupied molecular orbital (HOMO), lowest unoccupied molecular orbital (LUMO) energy levels, and LUMO-HOMO energy gap orbital density were calculated. The relations between the inhibition efficiency and some quantum parameters are discussed and correlations are proposed. The highest values for the HOMO densities were found in the vicinity nitrogen atom, indicating that it is the most probable adsorption center

  6. Efficacy of organic acids, bacteriocins, and the lactoperoxidase system in inhibiting the growth of Cronobacter spp. in rehydrated infant formula.

    Science.gov (United States)

    Oshima, Satoru; Rea, Mary C; Lothe, Sheba; Morgan, Sheila; Begley, Maire; O'Connor, Paula M; Fitzsimmons, Aidan; Kamikado, Hideaki; Walton, Richard; Ross, R Paul; Hill, Colin

    2012-10-01

    Thirty-three antimicrobial agents, including antimicrobial peptides (nisin, lacticin 3147, isracidin), organic acids, emulsifiers (organic acid esters), glycine, lysozyme, tocopherol, EDTA, milk fat globule membrane, and the lactoperoxidase system (LPOS) were screened for anti-Cronobacter sakazakii activity. The compounds were initially screened individually in parallel in synthetic media. Those showing antimicrobial activity were then tested in reconstituted whole milk and finally in reconstituted powdered infant formula (PIF), using mild temperatures of reconstitution and prolonged storage at room temperature. Propionic acid and monocaprylin (as POEM M-100) in combination showed inhibitory activity at sufficiently low concentrations (0.1 to 0.2%) in milk to be considered as potential antimicrobial additives for the inhibition of C. sakazakii in reconstituted PIF. More interestingly, LPOS, when combined with the broad-spectrum bacteriocins nisin or lacticin 3147, inhibited outgrowth of C. sakazakii at 37°C for 8 h. The combined effects of POEM M-100 and either acetate or propionate and LPOS with lacticin 3147 or nisin were evaluated under the Food and Agriculture Organization of the United Nations-World Health Organization high-risk scenario for PIF, i.e., low temperature of reconstitution and long storage or feeding times at ambient temperature. In the presence of LPOS and lacticin 3147, growth of Cronobacter spp. was inhibited for up to 12 h when the PIF was rehydrated at 40 or 50°C. These results highlight the potential of combinatory approaches to improving the safety of infant milk formula.

  7. Asparagine and boric Acid cause allantoate accumulation in soybean leaves by inhibiting manganese-dependent allantoate amidohydrolase.

    Science.gov (United States)

    Lukaszewski, K M; Blevins, D G; Randall, D D

    1992-08-01

    Our previous work demonstrated substantial accumulation of allantoate in leaf tissue of nodulated soybeans (Glycine max L. Merr., cv Williams) in response to nitrogen fertilization. Research was continued to determine the effect of nitrate and asparagine on ureide assimilation in soybean leaves. Stem infusion of asparagine into ureide-transporting soybeans resulted in a significant increase in allantoate concentration in leaf tissue. Accumulation of allantoate was also observed when asparagine was supplied in the presence of allopurinol, an inhibitor of xanthine dehydrogenase in the pathway of ureide biosynthesis. In vitro, asparagine was found to have an inhibitory effect on the activity of allantoate amidohydrolase, a Mn(2+)-dependent enzyme catalyzing allantoate breakdown in soybean leaves. The inhibition was partially overcome by supplemental Mn(2+) in enzyme assays. Another inhibitor of allantoate amidohydrolase, boric acid, applied foliarly on field-grown nodulated soybeans, caused up to a 10-fold increase in allantoate content of leaf tissue. Accumulation of allantoate in response to boric acid was either eliminated or greatly reduced in plants presprayed with Mn(2+). We conclude that elevated levels of allantoate in leaves of ureide-transporting soybeans fertilized with ammonium nitrate result from inhibition of allantoate degradation by asparagine and that Mn(2+) is a critical factor in this inhibition. Furthermore, our studies with asparagine and boric acid indicate that availability of Mn(2+) has a direct effect on ureide catabolism in soybean.

  8. Phenolic acids isolated from the fungus Schizophyllum commune exert analgesic activity by inhibiting voltage-gated sodium channels.

    Science.gov (United States)

    Yao, Hui-Min; Wang, Gan; Liu, Ya-Ping; Rong, Ming-Qiang; Shen, Chuan-Bin; Yan, Xiu-Wen; Luo, Xiao-Dong; Lai, Ren

    2016-09-01

    The present study was designed to search for compounds with analgesic activity from the Schizophyllum commune (SC), which is widely consumed as edible and medicinal mushroom world. Thin layer chromatography (TLC), tosilica gel column chromatography, sephadex LH 20, and reverse-phase high performance liquid chromatography (RP-HPLC) were used to isolate and purify compounds from SC. Structural analysis of the isolated compounds was based on nuclear magnetic resonance (NMR). The effects of these compounds on voltage-gated sodium (NaV) channels were evaluated using patch clamp. The analgesic activity of these compounds was tested in two types of mouse pain models induced by noxious chemicals. Five phenolic acids identified from SC extracts in the present study included vanillic acid, m-hydroxybenzoic acid, o-hydroxybenzeneacetic acid, 3-hydroxy-5-methybenzoic acid, and p-hydroxybenzoic acid. They inhibited the activity of both tetrodotoxin-resistant (TTX-r) and tetrodotoxin-sensitive (TTX-s) NaV channels. All the compounds showed low selectivity on NaV channel subtypes. After intraperitoneal injection, three compounds of these compounds exerted analgesic activity in mice. In conclusion, phenolic acids identified in SC demonstrated analgesic activity, facilitating the mechanistic studies of SC in the treatment of neurasthenia.

  9. Triterpene Acids from Rose Hip Powder Inhibit Self-antigen- and LPS-induced Cytokine Production and CD4(+) T-cell Proliferation in Human Mononuclear Cell Cultures

    DEFF Research Database (Denmark)

    Saaby, Lasse; Nielsen, Claus Henrik

    2012-01-01

    A triterpene acid mixture consisting of oleanolic, ursolic and betulinic acid isolated from a standardized rose hip powder (Rosa canina L.) has been shown to inhibit interleukin (IL)-6 release from Mono Mac 6 cells. The present study examined the effects of the triterpene acid mixture...

  10. Heterodimeric BMP-2/7 antagonizes the inhibition of all-trans retinoic acid and promotes the osteoblastogenesis.

    Directory of Open Access Journals (Sweden)

    Wenjuan Bi

    Full Text Available OBJECTIVES: Hypervitaminosis A and alcoholism can result in a low mineral density and compromised regenerative capacity of bone, thus delaying implant osteointegration. The inhibitory effect of all-trans retinoic acid on osteoblastogenesis is considered to be one of the mechanisms. We hypothesized that heterodimeric bone morphogenetic protein-2/7 could antagonize all-trans retinoic acid and enhance osteoblastogenesis, with an aim to accelerate and enhance bone regeneration and implant osteointegration. MATERIALS AND METHODS: We applied 5 ng/ml or 50 ng/ml bone morphogenetic protein-2/7 to restore the osteoblastogenesis of pre-osteoblasts (MC3T3-E1 cell line that was inhibited by 1 µM all-trans retinoic acid. We evaluated the efficacy by assessing cell numbers (proliferation, alkaline phosphatase activity (a marker for early differentiation, osteocalcin (a marker for late differentiation, calcium deposition (a marker for final mineralization and the expression of osteoblastogenic genes (such as Runx2, Collagen Ia, alkaline phosphatase and osteocalcin at different time points. RESULTS: All-trans retinoic acid significantly inhibited the expression of all the tested osteoblastogenic genes and proteins except alkaline phosphatase activity. In the presence of ATRA, 50 ng/ml bone morphogenetic protein-2/7 not only completely restored but also significantly enhanced all the osteoblastogenic genes and proteins. On the 28(th day, mineralization was completely inhibited by all-trans retinoic acid. In contrast, 50 ng/ml BMP-2/7 could antagonize ATRA and significantly enhance the mineralization about 2.5 folds in comparison with the control treatment (no ATRA, no BMP2/7. CONCLUSIONS: Heterodimeric bone morphogenetic protein-2/7 bears a promising application potential to significantly promote bone regeneration and implant osteointegration for the patients with hypervitaminosis A and alcoholism.

  11. Enterobacter sp. I-3, a bio-herbicide inhibits gibberellins biosynthetic pathway and regulates abscisic acid and amino acids synthesis to control plant growth.

    Science.gov (United States)

    Radhakrishnan, Ramalingam; Park, Jae-Man; Lee, In-Jung

    2016-12-01

    Very few bacterial species were identified as bio-herbicides for weed control. The present research was focused to elucidate the plant growth retardant properties of Enterobacter sp. I-3 during their interaction by determining the changes in endogenous photosynthetic pigments, plant hormones and amino acids. The two bacterial isolates I-4-5 and I-3 were used to select the superior bacterium for controlling weed seeds (Echinochloa crus-galli L. and Portulaca oleracea L.) germination. The post-inoculation of I-3 (Enterobacter sp. I-3) significantly inhibited the weeds seed germination than their controls. The mechanism of bacterium induced plant growth reduction was identified in lettuce treated with I-3 bacterium and compared their effects with known chemical herbicide, trinexapac-ethyl (TE). The treatment of I-3 and TE showed a significant inhibitory effect on shoot length, leaf number, leaf length, leaf width, shoot weight, root weight and chlorophyll content in lettuce seedlings. The endogenous gibberellins (GAs) and abscisic acid (ABA) analysis showed that Enterobacter sp. I-3 treated plants had lower levels of GAs (GA12, GA19, GA20 and GA8) and GAs/ABA ratio and then, the higher level of ABA when compared to their controls. Indeed, the individual amino acids ie., aspartic acid, glutamic acid, glycine, threonine, alanine, serine, leucine, isoleucine and tyrosine were declined in TE and I-3 exposed plants. Our results suggest that the utilization of Enterobacter sp. I-3 inhibits the GAs pathway and amino acids synthesis in weeds to control their growth can be an alternative to chemical herbicides. Copyright © 2016 Elsevier GmbH. All rights reserved.

  12. Clavulanic acid inhibits MPP+-induced ROS generation and subsequent loss of dopaminergic cells☆

    OpenAIRE

    Kost, Gina Chun; Selvaraj, Senthil; Lee, Young Bok; Kim, Deog Joong; Ahn, Chang-Ho; Singh, Brij B

    2012-01-01

    Clavulanic acid is a psychoactive compound that has been shown to modulate central nervous system activity. Importantly, in neurotoxin-induced animal models, clavulanic acid has been shown to improve motor function (Huh et al., 2010) suggesting that it can be neuroprotective; however, the mechanism as how clavulanic acid can induce neuroprotection is not known. We demonstrate here that clavulanic acid abrogates the effects of the neurotoxin 1-methyl-4-phenylpyridinium (MPP+) which mimics Park...

  13. Gut microbiota inhibit Asbt-dependent intestinal bile acid reabsorption via Gata4

    NARCIS (Netherlands)

    Out, Carolien; Patankar, Jay V.; Doktorova, Marcela; Boesjes, Marije; Bos, Trijnie; de Boer, Sanna; Havinga, Rick; Wolters, Henk; Boverhof, Renze; van Dijk, Theo H.; Smoczek, Anna; Bleich, Andre; Sachdev, Vinay; Kratky, Dagmar; Kuipers, Folkert; Verkade, Henkjan J.; Groen, Albert K.

    2015-01-01

    Background & Aims: Regulation of bile acid homeostasis in mammals is a complex process regulated via extensive cross-talk between liver, intestine and intestinal microbiota. Here we studied the effects of gut microbiota on bile acid homeostasis in mice. Methods: Bile acid homeostasis was assessed in

  14. 18{beta}-Glycyrrhetinic acid inhibits adipogenic differentiation and stimulates lipolysis

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Myung-Hee; Jeong, Jae-Kyo; Lee, You-Jin; Seol, Jae-Won; Ahn, Dong-Choon; Kim, In-Shik [Center for Healthcare Technology Development, Biosafety Research Institute, College of Veterinary Medicine, Chonbuk National University, Jeonju, Jeonbuk 561-756 (Korea, Republic of); Park, Sang-Youel, E-mail: sypark@chonbuk.ac.kr [Center for Healthcare Technology Development, Biosafety Research Institute, College of Veterinary Medicine, Chonbuk National University, Jeonju, Jeonbuk 561-756 (Korea, Republic of)

    2012-04-20

    Highlights: Black-Right-Pointing-Pointer 18{beta}-GA inhibits adipogenic differentiation in 3T3-L1 preadipocytes and stimulates lipolysis in differentiated adipocytes. Black-Right-Pointing-Pointer Anti-adipogenic effect of 18{beta}-GA is caused by down-regulation of PPAR{gamma} and inactivation of Akt signalling. Black-Right-Pointing-Pointer Lipolytic effect of 18{beta}-GA is mediated by up-regulation of HSL, ATGL and perilipin and activation of HSL. -- Abstract: 18{beta}-Glycyrrhetinic acid (18{beta}-GA) obtained from the herb liquorice has various pharmacological properties including anti-inflammatory and anti-bacterial activities. However, potential biological anti-obesity activities are unclear. In this study, novel biological activities of 18{beta}-GA in the adipogenesis of 3T3-L1 preadipocytes and in lipolysis of differentiated adipocytes were identified. Mouse 3T3-L1 cells were used as an in vitro model of adipogenesis and lipolysis, using a mixture of insulin/dexamethasone/3-isobutyl-1-methylxanthine (IBMX) to induce differentiation. The amount of lipid droplet accumulation was determined by an AdipoRed assay. The expression of several adipogenic transcription factors and enzymes was investigated using real-time reverse transcriptase-polymerase chain reaction (RT-PCR) and Western blotting. 18{beta}-GA dose-dependently (1-40 {mu}M) significantly decreased lipid accumulation in maturing preadipocytes. In 3T3-L1 preadipocytes, 10 {mu}M of 18{beta}-GA down-regulated the transcriptional levels of the peroxisome proliferator-activated receptor {gamma}, CCAAT/enhancer-binding protein {alpha} and adiponectin, which are markers of adipogenic differentiation via Akt phosphorylation. Also, in differentiated adipocytes, 18{beta}-GA increased the level of glycerol release and up-regulated the mRNA of hormone-sensitive lipase, adipose TG lipase and perilipin, as well as the phosphorylation of hormone-sensitive lipase at Serine 563. The results indicate that 18{beta

  15. Effect of inhibition of fatty acid amide hydrolase on MPTP-induced dopaminergic neuronal damage.

    Science.gov (United States)

    Viveros-Paredes, J M; Gonzalez-Castañeda, R E; Escalante-Castañeda, A; Tejeda-Martínez, A R; Castañeda-Achutiguí, F; Flores-Soto, M E

    2017-01-16

    Parkinson's disease (PD) is a neurodegenerative disorder characterised by balance problems, muscle rigidity, and slow movement due to low dopamine levels and loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc). The endocannabinoid system is known to modulate the nigrostriatal pathway through endogenous ligands such as anandamide (AEA), which is hydrolysed by fatty acid amide hydrolase (FAAH). The purpose of this study was to increase AEA levels using FAAH inhibitor URB597 to evaluate the modulatory effect of AEA on dopaminergic neuronal death induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Our study included 4 experimental groups (n = 6 mice per group): a control group receiving no treatment, a group receiving URB597 (0.2mg/kg) every 3 days for 30 days, a group treated with MPTP (30mg/kg) for 5 days, and a group receiving URB597 and subsequently MPTP injections. Three days after the last dose, we conducted a series of behavioural tests (beam test, pole test, and stride length test) to compare motor coordination between groups. We subsequently analysed immunoreactivity of dopaminergic cells and microglia in the SNpc and striatum. Mice treated with URB597 plus MPTP were found to perform better on behavioural tests than mice receiving MPTP only. According to the immunohistochemistry study, mice receiving MPTP showed fewer dopaminergic cells and fibres in the SNpc and striatum. Animals treated with URB597 plus MPTP displayed increased tyrosine hydroxylase immunoreactivity compared to those treated with MPTP only. Regarding microglial immunoreactivity, the group receiving MPTP showed higher Iba1 immunoreactivity in the striatum and SNpc than did the group treated with URB597 plus MPTP. Our results show that URB597 exerts a protective effect since it inhibits dopaminergic neuronal death, decreases microglial immunoreactivity, and improves MPTP-induced motor alterations. Copyright © 2016 Sociedad Española de Neurología. Publicado

  16. Gallic acid-based indanone derivative interacts synergistically with tetracycline by inhibiting efflux pump in multidrug resistant E. coli.

    Science.gov (United States)

    Dwivedi, Gaurav Raj; Tiwari, Nimisha; Singh, Aastha; Kumar, Akhil; Roy, Sudeep; Negi, Arvind Singh; Pal, Anirban; Chanda, Debabrata; Sharma, Ashok; Darokar, Mahendra P

    2016-03-01

    The purpose of the present study was to study the synergy potential of gallic acid-based derivatives in combination with conventional antibiotics using multidrug resistant cultures of Escherichia coli. Gallic acid-based derivatives significantly reduced the MIC of tetracycline against multidrug resistant clinical isolate of E. coli. The best representative, 3-(3',4,'5'-trimethoxyphenyl)-4,5,6-trimethoxyindanone-1, an indanone derivative of gallic acid, was observed to inhibit ethidium bromide efflux and ATPase which was also supported by in silico docking. This derivative extended the post-antibiotic effect and decreased the mutation prevention concentration of tetracycline. This derivative in combination with TET was able to reduce the concentration of TNFα up to 18-fold in Swiss albino mice. This derivative was nontoxic and well tolerated up to 300 mg/kg dose in subacute oral toxicity study in mice. This is the first report of gallic acid-based indanone derivative as drug resistance reversal agent acting through ATP-dependent efflux pump inhibition.

  17. Combined effects of carbonation with heating and fatty acid esters on inactivation and growth inhibition of various bacillus spores.

    Science.gov (United States)

    Klangpetch, Wannaporn; Nakai, Tomoe; Noma, Seiji; Igura, Noriyuki; Shimoda, Mitsuya

    2013-09-01

    The effects of carbonation treatment (1 to 5 MPa, 30 min) plus heat treatment (30 to 80°C, 30 min) in the presence of various fatty acid esters (FAEs; 0.05 and 0.1%, wt/vol) on counts of viable Bacillus subtilis spores were investigated. FAEs or carbonation alone had no inactivation or growth inhibition effects on B. subtilis spores. However, carbonation plus heat (CH; 80°C, 5 MPa, 30 min) in the presence of mono- and diglycerol fatty acid esters markedly decreased counts of viable spores, and the spore counts did not change during storage for 30 days. The greatest decrease in viable spore counts occurred in the presence of monoglycerol fatty acid esters. Under CH conditions, inactivation and/or growth inhibition occurred at only 80°C and increased with increasing pressure. The greatest decrease in spore counts (more than 4 log units) occurred with CH (80°C, 5 MPa, 30 min) in the presence of monoglycerol fatty acid esters. However, this treatment was less effective against Bacillus coagulans and Geobacillus stearothermophilus spores.

  18. Inhibition of Fusarium Growth and Mycotoxin Production in Culture Medium and in Maize Kernels by Natural Phenolic Acids.

    Science.gov (United States)

    Ferruz, Elena; Loran, Susana; Herrera, Marta; Gimenez, Isabel; Bervis, Noemi; Barcena, Carmen; Carramiñana, Juan Jose; Juan, Teresa; Herrera, Antonio; Ariño, Agustin

    2016-10-01

    The possible role of natural phenolic compounds in inhibiting fungal growth and toxin production has been of recent interest as an alternative strategy to the use of chemical fungicides for the maintenance of food safety. Fusarium is a worldwide fungal genus mainly associated with cereal crops. The most important Fusarium mycotoxins are trichothecenes, zearalenone, and fumonisins. This study was conducted to evaluate the potential of four natural phenolic acids (caffeic, ferulic, p-coumaric, and chlorogenic) for the control of mycelial growth and mycotoxin production by six toxigenic species of Fusarium . The addition of phenolic acids to corn meal agar had a marked inhibitory effect on the radial growth of all Fusarium species at levels of 2.5 to 10 mM in a dose-response pattern, causing total inhibition (100%) in all species except F. sporotrichioides and F. langsethiae . However, the effects of phenolic acids on mycotoxin production in maize kernels were less evident than the effects on growth. The fungal species differed in their responses to the phenolic acid treatments, and significant reductions in toxin concentrations were observed only for T-2 and HT-2 (90% reduction) and zearalenone (48 to 77% reduction). These results provide data that could be used for developing pre- and postharvest strategies for controlling Fusarium infection and subsequent toxin production in cereal grains.

  19. N-Terminal peptidic boronic acids selectively inhibit human ClpXP.

    Science.gov (United States)

    Knott, Kenneth; Fishovitz, Jennifer; Thorpe, Steven B; Lee, Irene; Santos, Webster L

    2010-08-07

    The synthesis and development of N-terminal peptidic boronic acids as protease inhibitors is reported. N-Terminal peptidic boronic acids interrogate the S' sites of the target protein for selectivity and provide a new strategy that complements the currently known peptidic alpha-amino boronic acids (C-terminal boronic acids). After screening a series of N-terminal peptidic boronic acids, the first selective inhibitor of human ClpXP, an ATP-dependent serine protease present in the mitochondrial matrix, was discovered. This should facilitate the understanding of the physiological function of this protease.

  20. Eicosapentaenoic acid inhibits intestinal β-carotene absorption by downregulation of lipid transporter expression via PPAR-α dependent mechanism.

    Science.gov (United States)

    Mashurabad, Purna Chandra; Kondaiah, Palsa; Palika, Ravindranadh; Ghosh, Sudip; Nair, Madhavan K; Raghu, Pullakhandam

    2016-01-15

    The involvement of lipid transporters, the scavenger receptor class B, type I (SR-BI) and Niemann-Pick type C1 Like 1 protein (NPC1L1) in carotenoid absorption is demonstrated in intestinal cells and animal models. Dietary ω-3 fatty acids are known to possess antilipidemic properties, which could be mediated by activation of PPAR family transcription factors. The present study was conducted to determine the effect of docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA), on intestinal β-carotene absorption. β-carotene uptake in Caco-2/TC7 cells was inhibited by EPA (p intestinal β-carotene absorption by down regulation of SR B1 expression via PPARα dependent mechanism and provide an evidence for dietary modulation of intestinal β-carotene absorption.

  1. TORC1 Inhibits GSK3-Mediated Elo2 Phosphorylation to Regulate Very Long Chain Fatty Acid Synthesis and Autophagy

    DEFF Research Database (Denmark)

    Zimmermann, Christine; Santos, Aline; Gable, Kenneth;

    2013-01-01

    Very long chain fatty acids (VLCFAs) are essential fatty acids with multiple functions, including ceramide synthesis. Although the components of the VLCFA biosynthetic machinery have been elucidated, how their activity is regulated to meet the cell's metabolic demand remains unknown. The goal...... of this study was to identify mechanisms that regulate the rate of VLCFA synthesis, and we discovered that the fatty acid elongase Elo2 is regulated by phosphorylation. Elo2 phosphorylation is induced upon inhibition of TORC1 and requires GSK3. Expression of nonphosphorylatable Elo2 profoundly alters...... of autophagy. Together, our data reveal a function for TORC1 and GSK3 in the regulation of VLCFA synthesis that has important implications for autophagy and cell homeostasis....

  2. Inhibition effects of acetyl coumarines and thiazole derivatives on corrosion of zinc in acidic medium

    Indian Academy of Sciences (India)

    A V Shanbhag; T V Venkatesha; R A Prabhu; B M Praveen

    2011-06-01

    The corrosion inhibition characteristics of acetyl coumarine (AC), bromo acetyl coumarine (BAC) and thiazole derivatives (BTMQ and BTCQ) on the corrosion of zinc in 0.1 M HCl solution were investigated by weight loss, potentiodynamic polarization and impedance techniques. The inhibition efficiency increased with increase in inhibitor concentration upto 5 × 10-4 M, then gave almost same inhibition efficiency. The polarizationmeasurements indicated the mixed nature of inhibitors. The adsorption of compounds obeyed Langmuir’s adsorption isotherm. The thermodynamic functions for adsorption processes were evaluated.

  3. Corrosion inhibition of aminated hydroxyl ethyl cellulose on mild steel in acidic condition.

    Science.gov (United States)

    Sangeetha, Y; Meenakshi, S; Sairam Sundaram, C

    2016-10-05

    Aminated hydroxyethyl cellulose (AHEC) was synthesized, characterized using Fourier Transform Infrared spectroscopy (FTIR) and the corrosion inhibition of AHEC on mild steel in 1M HCl was studied using chemical and electrochemical studies. Results obtained in weight loss method showed that inhibition efficiency increased with increase in concentration of AHEC. The adsorption of the inhibitor on metal surface followed Frumkin isotherm. Polarization studies revealed that the AHEC inhibits through mixed mode. Thermodynamic parameters and activation energy were calculated and discussed. FTIR and X-ray diffraction studies (XRD) confirmed the adsorption of the inhibitor. The surface morphology was studied using Scanning Electron Microscope (SEM) and Atomic Force Microscopy (AFM).

  4. Corrosion inhibition of mild steel in hydrochloric acid solution by some double Schiff bases

    Energy Technology Data Exchange (ETDEWEB)

    Soltani, N. [Payame Noor University (PNU), Shahin Shahr Branch, Isfahan (Iran, Islamic Republic of)], E-mail: N.Soltani@kashanu.ac.ir; Behpour, M.; Ghoreishi, S.M.; Naeimi, H. [Department of Chemistry, Faculty of Science, University of Kashan, Kashan (Iran, Islamic Republic of)

    2010-04-15

    The inhibition effect of four double Schiff bases on the corrosion of mild steel in 2 M HCl has been studied by polarization, electrochemical impedance spectroscopy (EIS) and weight loss measurements. The inhibitors were adsorbed on the steel surface according to the Langmuir adsorption isotherm model. From the adsorption isotherm, some thermodynamic data for the adsorption process were calculated and discussed. Kinetic parameters activation such as E{sub a}, {delta}H*, {delta}S* were evaluated from the effect of temperature on corrosion and inhibition processes. Quantum chemical calculations have been performed and several quantum chemical indices were calculated and correlated with the corresponding inhibition efficiencies.

  5. Extracts of Morus nigra L. Leaves Standardized in Chlorogenic Acid, Rutin and Isoquercitrin: Tyrosinase Inhibition and Cytotoxicity.

    Science.gov (United States)

    de Freitas, Marcela Medeiros; Fontes, Pedro Ribeiro; Souza, Paula Monteiro; William Fagg, Christopher; Neves Silva Guerra, Eliete; de Medeiros Nóbrega, Yanna Karla; Silveira, Damaris; Fonseca-Bazzo, Yris; Simeoni, Luiz Alberto; Homem-de-Mello, Maurício; Oliveira Magalhães, Pérola

    Melanogenesis is a process responsible for melanin production, which is stored in melanocytes containing tyrosinase. Inhibition of this enzyme is a target in the cosmetics industry, since it controls undesirable skin conditions such as hyperpigmentation due to the overproduction of melanin. Species of the Morus genus are known for the beneficial uses offered in different parts of its plants, including tyrosinase inhibition. Thus, this project aimed to study the inhibitory activity of tyrosinase by extracts from Morus nigra leaves as well as the characterization of its chromatographic profile and cytotoxicity in order to become a new therapeutic option from a natural source. M. nigra leaves were collected, pulverized, equally divided into five batches and the standardized extract was obtained by passive maceration. There was no significant difference between batches for total solids content, yield and moisture content, which shows good reproducibility of the extraction process. Tyrosinase enzymatic activity was determined for each batch, providing the percentage of enzyme inhibition and IC50 values obtained by constructing dose-response curves and compared to kojic acid, a well-known tyrosinase inhibitor. High inhibition of tyrosinase activity was observed (above 90% at 15.625 μg/mL). The obtained IC50 values ranged from 5.00 μg/mL ± 0.23 to 8.49 μg/mL ± 0.59 and were compared to kojic acid (3.37 μg/mL ± 0.65). High Performance Liquid Chromatography analysis revealed the presence of chlorogenic acid, rutin and, its major compound, isoquercitrin. The chromatographic method employed was validated according to ICH guidelines and the extract was standardized using these polyphenols as markers. Cytotoxicity, assessed by MTT assay, was not observed on murine melanomas, human keratinocytes and mouse fibroblasts in tyrosinase IC50 values. This study demonstrated the potential of M. nigra leaf extract as a promising whitening agent of natural source against skin

  6. Branched Chain Amino Acids Cause Liver Injury in Obese/Diabetic Mice by Promoting Adipocyte Lipolysis and Inhibiting Hepatic Autophagy

    Directory of Open Access Journals (Sweden)

    Fuyang Zhang

    2016-11-01

    Full Text Available The Western meat-rich diet is both high in protein and fat. Although the hazardous effect of a high fat diet (HFD upon liver structure and function is well recognized, whether the co-presence of high protein intake contributes to, or protects against, HF-induced hepatic injury remains unclear. Increased intake of branched chain amino acids (BCAA, essential amino acids compromising 20% of total protein intake reduces body weight. However, elevated circulating BCAA is associated with non-alcoholic fatty liver disease and injury. The mechanisms responsible for this quandary remain unknown; the role of BCAA in HF-induced liver injury is unclear. Utilizing HFD or HFD + BCAA models, we demonstrated BCAA supplementation attenuated HFD-induced weight gain, decreased fat mass, activated mammalian target of rapamycin (mTOR, inhibited hepatic lipogenic enzymes, and reduced hepatic triglyceride content. However, BCAA caused significant hepatic damage in HFD mice, evidenced by exacerbated hepatic oxidative stress, increased hepatic apoptosis, and elevated circulation hepatic enzymes. Compared to solely HFD-fed animals, plasma levels of free fatty acids (FFA in the HFD + BCAA group are significantly further increased, due largely to AMPKα2-mediated adipocyte lipolysis. Lipolysis inhibition normalized plasma FFA levels, and improved insulin sensitivity. Surprisingly, blocking lipolysis failed to abolish BCAA-induced liver injury. Mechanistically, hepatic mTOR activation by BCAA inhibited lipid-induced hepatic autophagy, increased hepatic apoptosis, blocked hepatic FFA/triglyceride conversion, and increased hepatocyte susceptibility to FFA-mediated lipotoxicity. These data demonstrated that BCAA reduces HFD-induced body weight, at the expense of abnormal lipolysis and hyperlipidemia, causing hepatic lipotoxicity. Furthermore, BCAA directly exacerbate hepatic lipotoxicity by reducing lipogenesis and inhibiting autophagy in the hepatocyte.

  7. Branched Chain Amino Acids Cause Liver Injury in Obese/Diabetic Mice by Promoting Adipocyte Lipolysis and Inhibiting Hepatic Autophagy.

    Science.gov (United States)

    Zhang, Fuyang; Zhao, Shihao; Yan, Wenjun; Xia, Yunlong; Chen, Xiyao; Wang, Wei; Zhang, Jinglong; Gao, Chao; Peng, Cheng; Yan, Feng; Zhao, Huishou; Lian, Kun; Lee, Yan; Zhang, Ling; Lau, Wayne Bond; Ma, Xinliang; Tao, Ling

    2016-11-01

    The Western meat-rich diet is both high in protein and fat. Although the hazardous effect of a high fat diet (HFD) upon liver structure and function is well recognized, whether the co-presence of high protein intake contributes to, or protects against, HF-induced hepatic injury remains unclear. Increased intake of branched chain amino acids (BCAA, essential amino acids compromising 20% of total protein intake) reduces body weight. However, elevated circulating BCAA is associated with non-alcoholic fatty liver disease and injury. The mechanisms responsible for this quandary remain unknown; the role of BCAA in HF-induced liver injury is unclear. Utilizing HFD or HFD+BCAA models, we demonstrated BCAA supplementation attenuated HFD-induced weight gain, decreased fat mass, activated mammalian target of rapamycin (mTOR), inhibited hepatic lipogenic enzymes, and reduced hepatic triglyceride content. However, BCAA caused significant hepatic damage in HFD mice, evidenced by exacerbated hepatic oxidative stress, increased hepatic apoptosis, and elevated circulation hepatic enzymes. Compared to solely HFD-fed animals, plasma levels of free fatty acids (FFA) in the HFD+BCAA group are significantly further increased, due largely to AMPKα2-mediated adipocyte lipolysis. Lipolysis inhibition normalized plasma FFA levels, and improved insulin sensitivity. Surprisingly, blocking lipolysis failed to abolish BCAA-induced liver injury. Mechanistically, hepatic mTOR activation by BCAA inhibited lipid-induced hepatic autophagy, increased hepatic apoptosis, blocked hepatic FFA/triglyceride conversion, and increased hepatocyte susceptibility to FFA-mediated lipotoxicity. These data demonstrated that BCAA reduces HFD-induced body weight, at the expense of abnormal lipolysis and hyperlipidemia, causing hepatic lipotoxicity. Furthermore, BCAA directly exacerbate hepatic lipotoxicity by reducing lipogenesis and inhibiting autophagy in the hepatocyte.

  8. Extracts of Morus nigra L. Leaves Standardized in Chlorogenic Acid, Rutin and Isoquercitrin: Tyrosinase Inhibition and Cytotoxicity

    Science.gov (United States)

    Fontes, Pedro Ribeiro; Souza, Paula Monteiro; William Fagg, Christopher; Neves Silva Guerra, Eliete; de Medeiros Nóbrega, Yanna Karla; Silveira, Damaris; Fonseca-Bazzo, Yris; Simeoni, Luiz Alberto; Homem-de-Mello, Maurício; Oliveira Magalhães, Pérola

    2016-01-01

    Melanogenesis is a process responsible for melanin production, which is stored in melanocytes containing tyrosinase. Inhibition of this enzyme is a target in the cosmetics industry, since it controls undesirable skin conditions such as hyperpigmentation due to the overproduction of melanin. Species of the Morus genus are known for the beneficial uses offered in different parts of its plants, including tyrosinase inhibition. Thus, this project aimed to study the inhibitory activity of tyrosinase by extracts from Morus nigra leaves as well as the characterization of its chromatographic profile and cytotoxicity in order to become a new therapeutic option from a natural source. M. nigra leaves were collected, pulverized, equally divided into five batches and the standardized extract was obtained by passive maceration. There was no significant difference between batches for total solids content, yield and moisture content, which shows good reproducibility of the extraction process. Tyrosinase enzymatic activity was determined for each batch, providing the percentage of enzyme inhibition and IC50 values obtained by constructing dose-response curves and compared to kojic acid, a well-known tyrosinase inhibitor. High inhibition of tyrosinase activity was observed (above 90% at 15.625 μg/mL). The obtained IC50 values ranged from 5.00 μg/mL ± 0.23 to 8.49 μg/mL ± 0.59 and were compared to kojic acid (3.37 μg/mL ± 0.65). High Performance Liquid Chromatography analysis revealed the presence of chlorogenic acid, rutin and, its major compound, isoquercitrin. The chromatographic method employed was validated according to ICH guidelines and the extract was standardized using these polyphenols as markers. Cytotoxicity, assessed by MTT assay, was not observed on murine melanomas, human keratinocytes and mouse fibroblasts in tyrosinase IC50 values. This study demonstrated the potential of M. nigra leaf extract as a promising whitening agent of natural source against skin

  9. Direct Inhibition of Cellular Fatty Acid Synthase Impairs Replication of Respiratory Syncytial Virus and Other Respiratory Viruses.

    Directory of Open Access Journals (Sweden)

    Yamini M Ohol

    Full Text Available Fatty acid synthase (FASN catalyzes the de novo synthesis of palmitate, a fatty acid utilized for synthesis of more complex fatty acids, plasma membrane structure, and post-translational palmitoylation of host and viral proteins. We have developed a potent inhibitor of FASN (TVB-3166 that reduces the production of respiratory syncytial virus (RSV progeny in vitro from infected human lung epithelial cells (A549 and in vivo from mice challenged intranasally with RSV. Addition of TVB-3166 to the culture medium of RSV-infected A549 cells reduces viral spread without inducing cytopathic effects. The antiviral effect of the FASN inhibitor is a direct consequence of reducing de novo palmitate synthesis; similar doses are required for both antiviral activity and inhibition of palmitate production, and the addition of exogenous palmitate to TVB-3166-treated cells restores RSV production. TVB-3166 has minimal effect on RSV entry but significantly reduces viral RNA replication, protein levels, viral particle formation and infectivity of released viral particles. TVB-3166 substantially impacts viral replication, reducing production of infectious progeny 250-fold. In vivo, oral administration of TVB-3166 to RSV-A (Long-infected BALB/c mice on normal chow, starting either on the day of infection or one day post-infection, reduces RSV lung titers 21-fold and 9-fold respectively. Further, TVB-3166 also inhibits the production of RSV B, human parainfluenza 3 (PIV3, and human rhinovirus 16 (HRV16 progeny from A549, HEp2 and HeLa cells respectively. Thus, inhibition of FASN and palmitate synthesis by TVB-3166 significantly reduces RSV progeny both in vitro and in vivo and has broad-spectrum activity against other respiratory viruses. FASN inhibition may alter the composition of regions of the host cell membrane where RSV assembly or replication occurs, or change the membrane composition of RSV progeny particles, decreasing their infectivity.

  10. Betulinic Acid Inhibits Growth of Cultured Vascular Smooth Muscle Cells In Vitro by Inducing G1 Arrest and Apoptosis

    Directory of Open Access Journals (Sweden)

    Raja Kumar Vadivelu

    2012-01-01

    Full Text Available Betulinic acid is a widely available plant-derived triterpene which is reported to possess selective cytotoxic activity against cancer cells of neuroectodermal origin and leukemia. However, the potential of betulinic acid as an antiproliferative and cytotoxic agent on vascular smooth muscle (VSMC is still unclear. This study was carried out to demonstrate the antiproliferative and cytotoxic effect of betulinic acid on VSMCs using 3-[4,5-dimethylthizol-2-yl]-2,5-diphenyltetrazolium bromide (MTT assay, flow cytometry cell cycle assay, BrdU proliferation assay, acridine orange/propidium iodide staining, and comet assay. Result from MTT and BrdU assays indicated that betulinic acid was able to inhibit the growth and proliferation of VSMCs in a dose-dependent manner with IC50 of 3.8 μg/mL significantly (P<0.05. Nevertheless, betulinic acid exhibited G1 cell cycle arrest in flow cytometry cell cycle profiling and low level of DNA damage against VSMC in acridine orange/propidium iodide and comet assay after 24 h of treatment. In conclusion, betulinic acid induced G1 cell cycle arrest and dose-dependent DNA damage on VSMC.

  11. Specific inhibition of mitochondrial fatty acid oxidation by 2-bromopalmitate and its coenzyme A and carnitine esters.

    Science.gov (United States)

    Chase, J F; Tubbs, P K

    1972-08-01

    1. The CoA and carnitine esters of 2-bromopalmitate are extremely powerful and specific inhibitors of mitochondrial fatty acid oxidation. 2. 2-Bromopalmitoyl-CoA, added as such or formed from 2-bromopalmitate, inhibits the carnitine-dependent oxidation of palmitate or palmitoyl-CoA, but not the oxidation of palmitoylcarnitine, by intact liver mitochondria. 3. 2-Bromopalmitoylcarnitine inhibits the oxidation of palmitoylcarnitine as well as that of palmitate or palmitoyl-CoA. It has no effect on succinate oxidation, but inhibits that of pyruvate, 2-oxoglutarate or hexanoate; however, the oxidation of these substrates (but not of palmitate, palmitoyl-CoA or palmitoyl-carnitine) is restored by carnitine. 4. In damaged mitochondria, added 2-bromopalmitoyl-CoA does inhibit palmitoylcarnitine oxidation; pyruvate oxidation is unaffected by the inhibitor alone, but is impaired if palmitoylcarnitine is subsequently added. 5. The findings have been interpreted as follows. 2-Bromopalmitoyl-CoA inactivates (in a carnitine-dependent manner) a pool of carnitine palmitoyltransferase which is accessible to external acyl-CoA. This results in inhibition of palmitate or palmitoyl-CoA oxidation. A second pool of carnitine palmitoyltransferase, inaccessible to added acyl-CoA in intact mitochondria, can generate bromopalmitoyl-CoA within the matrix from external 2-bromopalmitoylcarnitine; this reaction is reversible. Such internal 2-bromopalmitoyl-CoA inactivates long-chain beta-oxidation (as does added 2-bromopalmitoyl-CoA if the mitochondria are damaged) and its formation also sequesters intramitochondrial CoA. Since this CoA is shared by pyruvate and 2-oxoglutarate dehydrogenases, the oxidation of their substrates is depressed by 2-bromopalmitoylcarnitine, unless free carnitine is available to act as a ;sink' for long-chain acyl groups. 6. These effects are compared with those reported for other inhibitors of fatty acid oxidation.

  12. Specific inhibition of mitochondrial fatty acid oxidation by 2-bromopalmitate and its co-enzyme A and carnitine esters

    Science.gov (United States)

    Chase, J. F. A.; Tubbs, P. K.

    1972-01-01

    1. The Co