WorldWideScience

Sample records for aberrant reward prediction

  1. Adaptive and aberrant reward prediction signals in the human brain.

    NARCIS (Netherlands)

    Roiser, J.P.; Stephan, K.E.; Ouden, H.E.M. den; Friston, K.J.; Joyce, E.M.

    2010-01-01

    Theories of the positive symptoms of schizophrenia hypothesize a role for aberrant reinforcement signaling driven by dysregulated dopamine transmission. Recently, we provided evidence of aberrant reward learning in symptomatic, but not asymptomatic patients with schizophrenia, using a novel paradigm

  2. Reward positivity: Reward prediction error or salience prediction error?

    Science.gov (United States)

    Heydari, Sepideh; Holroyd, Clay B

    2016-08-01

    The reward positivity is a component of the human ERP elicited by feedback stimuli in trial-and-error learning and guessing tasks. A prominent theory holds that the reward positivity reflects a reward prediction error signal that is sensitive to outcome valence, being larger for unexpected positive events relative to unexpected negative events (Holroyd & Coles, 2002). Although the theory has found substantial empirical support, most of these studies have utilized either monetary or performance feedback to test the hypothesis. However, in apparent contradiction to the theory, a recent study found that unexpected physical punishments also elicit the reward positivity (Talmi, Atkinson, & El-Deredy, 2013). The authors of this report argued that the reward positivity reflects a salience prediction error rather than a reward prediction error. To investigate this finding further, in the present study participants navigated a virtual T maze and received feedback on each trial under two conditions. In a reward condition, the feedback indicated that they would either receive a monetary reward or not and in a punishment condition the feedback indicated that they would receive a small shock or not. We found that the feedback stimuli elicited a typical reward positivity in the reward condition and an apparently delayed reward positivity in the punishment condition. Importantly, this signal was more positive to the stimuli that predicted the omission of a possible punishment relative to stimuli that predicted a forthcoming punishment, which is inconsistent with the salience hypothesis. PMID:27184070

  3. Dopamine signals mimic reward prediction errors

    OpenAIRE

    Schoenbaum, Geoffrey; Esber, Guillem R; Iordanova, Mihaela D.

    2013-01-01

    Modern theories of associative learning center on a prediction error. A study finds that artificial activation of dopamine neurons can substitute for missing reward prediction errors to rescue blocked learning.

  4. Contextual Bandit Learning with Predictable Rewards

    CERN Document Server

    Agarwal, Alekh; Kale, Satyen; Langford, John; Schapire, Robert E

    2012-01-01

    Contextual bandit learning is a reinforcement learning problem where the learner repeatedly receives a set of features (context), takes an action and receives a reward based on the action and context. We consider this problem under a realizability assumption: there exists a function in a (known) function class, always capable of predicting the expected reward, given the action and context. Under this assumption, we show three things. We present a new algorithm---Regressor Elimination--- with a regret similar to the agnostic setting (i.e. in the absence of realizability assumption). We prove a new lower bound showing no algorithm can achieve superior performance in the worst case even with the realizability assumption. However, we do show that for any set of policies (mapping contexts to actions), there is a distribution over rewards (given context) such that our new algorithm has constant regret unlike the previous approaches.

  5. Stimulus-Dependent Adjustment of Reward Prediction Error in the Midbrain

    OpenAIRE

    Takemura, Hiromasa; Samejima, Kazuyuki; Vogels, Rufin; Sakagami, Masamichi; Okuda, Jiro

    2011-01-01

    Previous reports have described that neural activities in midbrain dopamine areas are sensitive to unexpected reward delivery and omission. These activities are correlated with reward prediction error in reinforcement learning models, the difference between predicted reward values and the obtained reward outcome. These findings suggest that the reward prediction error signal in the brain updates reward prediction through stimulus–reward experiences. It remains unknown, however, how sensory pr...

  6. Trait Anticipatory Pleasure Predicts Effort Expenditure for Reward.

    Directory of Open Access Journals (Sweden)

    Joachim T Geaney

    Full Text Available Research in motivation and emotion has been increasingly influenced by the perspective that processes underpinning the motivated approach of rewarding goals are distinct from those underpinning enjoyment during reward consummation. This distinction recently inspired the construction of the Temporal Experience of Pleasure Scale (TEPS, a self-report measure that distinguishes trait anticipatory pleasure (pre-reward feelings of desire from consummatory pleasure (feelings of enjoyment and gratification upon reward attainment. In a university community sample (N = 97, we examined the TEPS subscales as predictors of (1 the willingness to expend effort for monetary rewards, and (2 affective responses to a pleasant mood induction procedure. Results showed that both anticipatory pleasure and a well-known trait measure of reward motivation predicted effort-expenditure for rewards when the probability of being rewarded was relatively low. Against expectations, consummatory pleasure was unrelated to induced pleasant affect. Taken together, our findings provide support for the validity of the TEPS anticipatory pleasure scale, but not the consummatory pleasure scale.

  7. Dopamine neurons share common response function for reward prediction error.

    Science.gov (United States)

    Eshel, Neir; Tian, Ju; Bukwich, Michael; Uchida, Naoshige

    2016-03-01

    Dopamine neurons are thought to signal reward prediction error, or the difference between actual and predicted reward. How dopamine neurons jointly encode this information, however, remains unclear. One possibility is that different neurons specialize in different aspects of prediction error; another is that each neuron calculates prediction error in the same way. We recorded from optogenetically identified dopamine neurons in the lateral ventral tegmental area (VTA) while mice performed classical conditioning tasks. Our tasks allowed us to determine the full prediction error functions of dopamine neurons and compare them to each other. We found marked homogeneity among individual dopamine neurons: their responses to both unexpected and expected rewards followed the same function, just scaled up or down. As a result, we were able to describe both individual and population responses using just two parameters. Such uniformity ensures robust information coding, allowing each dopamine neuron to contribute fully to the prediction error signal.

  8. The feedback-related negativity signals salience prediction errors, not reward prediction errors.

    Science.gov (United States)

    Talmi, Deborah; Atkinson, Ryan; El-Deredy, Wael

    2013-05-01

    Modulations of the feedback-related negativity (FRN) event-related potential (ERP) have been suggested as a potential biomarker in psychopathology. A dominant theory about this signal contends that it reflects the operation of the neural system underlying reinforcement learning in humans. The theory suggests that this frontocentral negative deflection in the ERP 230-270 ms after the delivery of a probabilistic reward expresses a prediction error signal derived from midbrain dopaminergic projections to the anterior cingulate cortex. We tested this theory by investigating whether FRN will also be observed for an inherently aversive outcome: physical pain. In another session, the outcome was monetary reward instead of pain. As predicted, unexpected reward omissions (a negative reward prediction error) yielded a more negative deflection relative to unexpected reward delivery. Surprisingly, unexpected pain omission (a positive reward prediction error) also yielded a negative deflection relative to unexpected pain delivery. Our data challenge the theory by showing that the FRN expresses aversive prediction errors with the same sign as reward prediction errors. Both FRNs were spatiotemporally and functionally equivalent. We suggest that FRN expresses salience prediction errors rather than reward prediction errors. PMID:23658166

  9. Use of chromosome aberrations for predicting genetic hazards to man

    International Nuclear Information System (INIS)

    The question of the use of chromosome aberrations for predicting genetic hazards to man is discussed under the following headings: interspecific comparisons of dicentric and deletion production in peripheral leukocytes; comparison of dicentric yields in leukocytes to reciprocal translocation yield in spermatogonia; recovery of spermatogonia induced translocations in the sons of irradiated males; cytologically and genetically detected deletions; and current gaps in our knowledge and problems of future interest

  10. Inferring reward prediction errors in patients with schizophrenia: a dynamic reward task for reinforcement learning

    Directory of Open Access Journals (Sweden)

    Chia-Tzu eLi

    2014-11-01

    Full Text Available Abnormalities in the dopamine system have long been implicated in explanations of reinforcement learning and psychosis. The updated reward prediction error (RPE—a discrepancy between the predicted and actual rewards—is thought to be encoded by dopaminergic neurons. Dysregulation of dopamine systems could alter the appraisal of stimuli and eventually lead to schizophrenia. Accordingly, the measurement of RPE provides a potential behavioral index for the evaluation of brain dopamine activity and psychotic symptoms. Here, we assess two features potentially crucial to the RPE process, namely belief formation and belief perseveration, via a probability learning task and reinforcement-learning modeling. Forty-five patients with schizophrenia (26 high-psychosis and 19 low-psychosis, based on their p1 and p3 scores in the positive-symptom subscales of the Positive and Negative Syndrome Scale (PANSS and 24 controls were tested in a feedback-based dynamic reward task for their RPE-related decision making. While task scores across the three groups were similar, matching law analysis revealed that the reward sensitivities of both psychosis groups were lower than that of controls. Trial-by-trial data were further fit with a reinforcement learning model using the Bayesian estimation approach. Model fitting results indicated that both psychosis groups tend to update their reward values more rapidly than controls. Moreover, among the three groups, high-psychosis patients had the lowest degree of choice perseveration. Lumping patients’ data together, we also found that patients’ perseveration appears to be negatively correlated (p = .09, trending towards significance with their PANSS p1+p3 scores. Our method provides an alternative for investigating reward-related learning and decision making in basic and clinical settings.

  11. Rewards.

    Science.gov (United States)

    Gunderman, Richard B; Kamer, Aaron P

    2011-05-01

    For much of the 20th century, psychologists and economists operated on the assumption that work is devoid of intrinsic rewards, and the only way to get people to work harder is through the use of rewards and punishments. This so-called carrot-and-stick model of workplace motivation, when applied to medical practice, emphasizes the use of financial incentives and disincentives to manipulate behavior. More recently, however, it has become apparent that, particularly when applied to certain kinds of work, such approaches can be ineffective or even frankly counterproductive. Instead of focusing on extrinsic rewards such as compensation, organizations and their leaders need to devote more attention to the intrinsic rewards of work itself. This article reviews this new understanding of rewards and traces out its practical implications for radiology today. PMID:21531311

  12. Morphological elucidation of basal ganglia circuits contributing reward prediction.

    Science.gov (United States)

    Fujiyama, Fumino; Takahashi, Susumu; Karube, Fuyuki

    2015-01-01

    Electrophysiological studies in monkeys have shown that dopaminergic neurons respond to the reward prediction error. In addition, striatal neurons alter their responsiveness to cortical or thalamic inputs in response to the dopamine signal, via the mechanism of dopamine-regulated synaptic plasticity. These findings have led to the hypothesis that the striatum exhibits synaptic plasticity under the influence of the reward prediction error and conduct reinforcement learning throughout the basal ganglia circuits. The reinforcement learning model is useful; however, the mechanism by which such a process emerges in the basal ganglia needs to be anatomically explained. The actor-critic model has been previously proposed and extended by the existence of role sharing within the striatum, focusing on the striosome/matrix compartments. However, this hypothesis has been difficult to confirm morphologically, partly because of the complex structure of the striosome/matrix compartments. Here, we review recent morphological studies that elucidate the input/output organization of the striatal compartments. PMID:25698913

  13. Deep and beautiful. The reward prediction error hypothesis of dopamine.

    Science.gov (United States)

    Colombo, Matteo

    2014-03-01

    According to the reward-prediction error hypothesis (RPEH) of dopamine, the phasic activity of dopaminergic neurons in the midbrain signals a discrepancy between the predicted and currently experienced reward of a particular event. It can be claimed that this hypothesis is deep, elegant and beautiful, representing one of the largest successes of computational neuroscience. This paper examines this claim, making two contributions to existing literature. First, it draws a comprehensive historical account of the main steps that led to the formulation and subsequent success of the RPEH. Second, in light of this historical account, it explains in which sense the RPEH is explanatory and under which conditions it can be justifiably deemed deeper than the incentive salience hypothesis of dopamine, which is arguably the most prominent contemporary alternative to the RPEH. PMID:24252364

  14. Mindfulness meditation modulates reward prediction errors in a passive conditioning task

    OpenAIRE

    Kirk, Ulrich; Montague, P. Read

    2015-01-01

    Reinforcement learning models have demonstrated that phasic activity of dopamine neurons during reward expectation encodes information about the predictability of reward and cues that predict reward. Self-control strategies such as those practiced in mindfulness-based approaches is claimed to reduce negative and positive reactions to stimuli suggesting the hypothesis that such training may influence basic reward processing. Using a passive conditioning task and fMRI in a group of experienced ...

  15. Morphological elucidation of basal ganglia circuits contributing reward prediction

    Directory of Open Access Journals (Sweden)

    Fumino eFujiyama

    2015-02-01

    Full Text Available Electrophysiological studies in monkeys have shown that dopaminergic neurons respond to the reward prediction error. In addition, striatal neurons alter their responsiveness to cortical or thalamic inputs in response to the dopamine signal, via the mechanism of dopamine-regulated synaptic plasticity. These findings have led to the hypothesis that the striatum exhibits synaptic plasticity under the influence of the reward prediction error and conduct reinforcement learning throughout the basal ganglia circuits.The reinforcement learning model is useful; however, the mechanism by which such a process emerges in the basal ganglia needs to be anatomically explained. The actor–critic model has been previously proposed and extended by the existence of role sharing within the striatum, focusing on the striosome/matrix compartments. However, this hypothesis has been difficult to confirm morphologically, partly because of the complex structure of the striosome/matrix compartments. Here, we review recent morphological studies that elucidate the input/output organization of the striatal compartments.

  16. Prediction-error in the context of real social relationships modulates reward system activity

    OpenAIRE

    Joshua ePoore; Jennifer ePfeifer; Elliot eBerkman; Tristen eInagaki; Benjamin Locke Welborn; Matthew eLieberman

    2012-01-01

    The human reward system is sensitive to both social (e.g., validation) and non-social rewards (e.g., money) and is likely integral for relationship development and reputation building. However, data is sparse on the question of whether implicit social reward processing meaningfully contributes to explicit social representations such as trust and attachment security in pre-existing relationships. This event-related fMRI experiment examined reward system prediction-error activity in response to...

  17. Scaling prediction errors to reward variability benefits error-driven learning in humans

    OpenAIRE

    Kelly M J Diederen; Schultz, Wolfram

    2015-01-01

    Effective error-driven learning requires individuals to adapt learning to environmental reward variability. The adaptive mechanism may involve decays in learning rate across subsequent trials, as shown previously, and rescaling of reward prediction errors. The present study investigated the influence of prediction error scaling and, in particular, the consequences for learning performance. Participants explicitly predicted reward magnitudes that were drawn from different probability distribut...

  18. Mindfulness meditation modulates reward prediction errors in the striatum in a passive conditioning task

    Directory of Open Access Journals (Sweden)

    Ulrich eKirk

    2015-02-01

    Full Text Available Reinforcement learning models have demonstrated that phasic activity of dopamine neurons during reward expectation encodes information about the predictability of rewards and cues that predict reward. Evidence indicates that mindfulness-based approaches reduce reward anticipation signal in the striatum to negative and positive incentives suggesting the hypothesis that such training influence basic reward processing. Using a passive conditioning task and fMRI in a group of experienced mindfulness meditators and age-matched controls, we tested the hypothesis that mindfulness meditation influence reward and reward prediction error signals. We found diminished positive and negative prediction error-related blood-oxygen level-dependent (BOLD responses in the putamen in meditators compared with controls. In the meditators, this decrease in striatal BOLD responses to reward prediction was paralleled by increased activity in posterior insula, a primary interoceptive region. Critically, responses in the putamen during early trials of the conditioning procedure (run 1 were elevated in both meditators and controls. These results provide evidence that experienced mindfulness meditators show attenuated reward prediction signals to valenced stimuli, which may be related to interoceptive processes encoded in the posterior insula.

  19. COMT val158met predicts reward responsiveness in humans.

    Science.gov (United States)

    Lancaster, T M; Linden, D E; Heerey, E A

    2012-11-01

    A functional variant of the catechol-O-methyltransferase (COMT) gene [val158met (rs4680)] is frequently implicated in decision-making and higher cognitive functions. It may achieve its effects by modulating dopamine-related decision-making and reward-guided behaviour. Here we demonstrate that individuals with the met/met polymorphism have greater responsiveness to reward than carriers of the val allele and that this correlates with risk-seeking behaviour. We assessed performance on a reward responsiveness task and the Balloon analogue risk task, which measure how participants (N = 70, western European, university and postgraduate students) respond to reward and take risks in the presence of available reward. Individuals with the met/met genotype (n = 19) showed significantly higher reward responsiveness, F2,64 = 4.02, P = 0.02, and reward-seeking behaviour, F(2,68) = 4.52, P = 0.01, than did either val/met (n = 25) or val/val (n = 26) carriers. These results highlight a scenario in which genotype-dependent reward responsiveness shapes reward-seeking, therefore suggesting a novel framework by which COMT may modulate behaviour. PMID:22900954

  20. A simple solution for model comparison in bold imaging: the special case of reward prediction error and reward outcomes.

    Science.gov (United States)

    Erdeniz, Burak; Rohe, Tim; Done, John; Seidler, Rachael D

    2013-01-01

    Conventional neuroimaging techniques provide information about condition-related changes of the BOLD (blood-oxygen-level dependent) signal, indicating only where and when the underlying cognitive processes occur. Recently, with the help of a new approach called "model-based" functional neuroimaging (fMRI), researchers are able to visualize changes in the internal variables of a time varying learning process, such as the reward prediction error or the predicted reward value of a conditional stimulus. However, despite being extremely beneficial to the imaging community in understanding the neural correlates of decision variables, a model-based approach to brain imaging data is also methodologically challenging due to the multicollinearity problem in statistical analysis. There are multiple sources of multicollinearity in functional neuroimaging including investigations of closely related variables and/or experimental designs that do not account for this. The source of multicollinearity discussed in this paper occurs due to correlation between different subjective variables that are calculated very close in time. Here, we review methodological approaches to analyzing such data by discussing the special case of separating the reward prediction error signal from reward outcomes.

  1. Lateral habenula neurons signal errors in the prediction of reward information.

    Science.gov (United States)

    Bromberg-Martin, Ethan S; Hikosaka, Okihide

    2011-08-21

    Humans and animals have the ability to predict future events, which they cultivate by continuously searching their environment for sources of predictive information. However, little is known about the neural systems that motivate this behavior. We hypothesized that information-seeking is assigned value by the same circuits that support reward-seeking, such that neural signals encoding reward prediction errors (RPEs) include analogous information prediction errors (IPEs). To test this, we recorded from neurons in the lateral habenula, a nucleus that encodes RPEs, while monkeys chose between cues that provided different chances to view information about upcoming rewards. We found that a subpopulation of lateral habenula neurons transmitted signals resembling IPEs, responding when reward information was unexpectedly cued, delivered or denied. These signals evaluated information sources reliably, even when the monkey's decisions did not. These neurons could provide a common instructive signal for reward-seeking and information-seeking behavior.

  2. Reward prediction-related increases and decreases in tonic neuronal activity of the pedunculopontine tegmental nucleus

    Directory of Open Access Journals (Sweden)

    Ken-Ichi eOkada

    2013-05-01

    Full Text Available The neuromodulators serotonin, acetylcholine, and dopamine have been proposed to play important roles in the execution of movement, control of several forms of attentional behavior, and reinforcement learning. While the response pattern of midbrain dopaminergic neurons and its specific role in reinforcement learning have been revealed, the roles of the other neuromodulators remain elusive. Reportedly, neurons in the dorsal raphe nucleus, one major source of serotonin, continually track the state of expectation of future rewards by showing a correlated response to the start of a behavioral task, reward cue presentation, and reward delivery. Here, we show that neurons in the pedunculopontine tegmental nucleus (PPTN, one major source of acetylcholine, showed similar encoding of the expectation of future rewards by a systematic increase or decrease in tonic activity. We recorded and analyzed PPTN neuronal activity in monkeys during a reward conditioned visually guided saccade task. The firing patterns of many PPTN neurons were tonically increased or decreased throughout the task period. The tonic activity pattern of neurons was correlated with their encoding of the predicted reward value; neurons exhibiting an increase or decrease in tonic activity showed higher or lower activity in the large reward-predicted trials, respectively. Tonic activity and reward-related modulation ended around the time of reward delivery. Additionally, some tonic changes in activity started prior to the appearance of the initial stimulus, and were related to the anticipatory fixational behavior. A partially overlapping population of neurons showed both the initial anticipatory response and subsequent predicted reward value-dependent activity modulation by their systematic increase or decrease of tonic activity. These bi-directional reward- and anticipatory behavior-related modulation patterns are suitable for the presumed role of the PPTN in reward processing and

  3. Cognitive strategies regulate fictive, but not reward prediction error signals in a sequential investment task.

    Science.gov (United States)

    Gu, Xiaosi; Kirk, Ulrich; Lohrenz, Terry M; Montague, P Read

    2014-08-01

    Computational models of reward processing suggest that foregone or fictive outcomes serve as important information sources for learning and augment those generated by experienced rewards (e.g. reward prediction errors). An outstanding question is how these learning signals interact with top-down cognitive influences, such as cognitive reappraisal strategies. Using a sequential investment task and functional magnetic resonance imaging, we show that the reappraisal strategy selectively attenuates the influence of fictive, but not reward prediction error signals on investment behavior; such behavioral effect is accompanied by changes in neural activity and connectivity in the anterior insular cortex, a brain region thought to integrate subjective feelings with high-order cognition. Furthermore, individuals differ in the extent to which their behaviors are driven by fictive errors versus reward prediction errors, and the reappraisal strategy interacts with such individual differences; a finding also accompanied by distinct underlying neural mechanisms. These findings suggest that the variable interaction of cognitive strategies with two important classes of computational learning signals (fictive, reward prediction error) represent one contributing substrate for the variable capacity of individuals to control their behavior based on foregone rewards. These findings also expose important possibilities for understanding the lack of control in addiction based on possibly foregone rewarding outcomes.

  4. Neurophysiology of Reward-Guided Behavior: Correlates Related to Predictions, Value, Motivation, Errors, Attention, and Action.

    Science.gov (United States)

    Bissonette, Gregory B; Roesch, Matthew R

    2016-01-01

    Many brain areas are activated by the possibility and receipt of reward. Are all of these brain areas reporting the same information about reward? Or are these signals related to other functions that accompany reward-guided learning and decision-making? Through carefully controlled behavioral studies, it has been shown that reward-related activity can represent reward expectations related to future outcomes, errors in those expectations, motivation, and signals related to goal- and habit-driven behaviors. These dissociations have been accomplished by manipulating the predictability of positively and negatively valued events. Here, we review single neuron recordings in behaving animals that have addressed this issue. We describe data showing that several brain areas, including orbitofrontal cortex, anterior cingulate, and basolateral amygdala signal reward prediction. In addition, anterior cingulate, basolateral amygdala, and dopamine neurons also signal errors in reward prediction, but in different ways. For these areas, we will describe how unexpected manipulations of positive and negative value can dissociate signed from unsigned reward prediction errors. All of these signals feed into striatum to modify signals that motivate behavior in ventral striatum and guide responding via associative encoding in dorsolateral striatum.

  5. Dual reward prediction components yield Pavlovian sign- and goal-tracking.

    Science.gov (United States)

    Kaveri, Sivaramakrishnan; Nakahara, Hiroyuki

    2014-01-01

    Reinforcement learning (RL) has become a dominant paradigm for understanding animal behaviors and neural correlates of decision-making, in part because of its ability to explain Pavlovian conditioned behaviors and the role of midbrain dopamine activity as reward prediction error (RPE). However, recent experimental findings indicate that dopamine activity, contrary to the RL hypothesis, may not signal RPE and differs based on the type of Pavlovian response (e.g. sign- and goal-tracking responses). In this study, we address this discrepancy by introducing a new neural correlate for learning reward predictions; the correlate is called "cue-evoked reward". It refers to a recall of reward evoked by the cue that is learned through simple cue-reward associations. We introduce a temporal difference learning model, in which neural correlates of the cue itself and cue-evoked reward underlie learning of reward predictions. The animal's reward prediction supported by these two correlates is divided into sign and goal components respectively. We relate the sign and goal components to approach responses towards the cue (i.e. sign-tracking) and the food-tray (i.e. goal-tracking) respectively. We found a number of correspondences between simulated models and the experimental findings (i.e. behavior and neural responses). First, the development of modeled responses is consistent with those observed in the experimental task. Second, the model's RPEs were similar to dopamine activity in respective response groups. Finally, goal-tracking, but not sign-tracking, responses rapidly emerged when RPE was restored in the simulated models, similar to experiments with recovery from dopamine-antagonist. These results suggest two complementary neural correlates, corresponding to the cue and its evoked reward, form the basis for learning reward predictions in the sign- and goal-tracking rats.

  6. Altered neural reward and loss processing and prediction error signalling in depression.

    Science.gov (United States)

    Ubl, Bettina; Kuehner, Christine; Kirsch, Peter; Ruttorf, Michaela; Diener, Carsten; Flor, Herta

    2015-08-01

    Dysfunctional processing of reward and punishment may play an important role in depression. However, functional magnetic resonance imaging (fMRI) studies have shown heterogeneous results for reward processing in fronto-striatal regions. We examined neural responsivity associated with the processing of reward and loss during anticipation and receipt of incentives and related prediction error (PE) signalling in depressed individuals. Thirty medication-free depressed persons and 28 healthy controls performed an fMRI reward paradigm. Regions of interest analyses focused on neural responses during anticipation and receipt of gains and losses and related PE-signals. Additionally, we assessed the relationship between neural responsivity during gain/loss processing and hedonic capacity. When compared with healthy controls, depressed individuals showed reduced fronto-striatal activity during anticipation of gains and losses. The groups did not significantly differ in response to reward and loss outcomes. In depressed individuals, activity increases in the orbitofrontal cortex and nucleus accumbens during reward anticipation were associated with hedonic capacity. Depressed individuals showed an absence of reward-related PEs but encoded loss-related PEs in the ventral striatum. Depression seems to be linked to blunted responsivity in fronto-striatal regions associated with limited motivational responses for rewards and losses. Alterations in PE encoding might mirror blunted reward- and enhanced loss-related associative learning in depression. PMID:25567763

  7. Chromosomal aberration frequency in lymphocytes predicts the risk of cancer

    DEFF Research Database (Denmark)

    Bonassi, Stefano; Norppa, Hannu; Ceppi, Marcello;

    2008-01-01

    incidence and/or mortality for an average of 10.1 years; 368 cancer deaths and 675 incident cancer cases were observed. Subjects were classified within each laboratory according to tertiles of CA frequency. The relative risk (RR) of cancer was increased for subjects in the medium [RR = 1.31, 95% confidence...... for stomach cancer [RR(medium) = 1.17 (95% CI = 0.37-3.70), RR(high) = 3.13 (95% CI = 1.17-8.39)]. Exposure to carcinogens did not modify the effect of CA levels on overall cancer risk. These results reinforce the evidence of a link between CA frequency and cancer risk and provide novel information......Mechanistic evidence linking chromosomal aberration (CA) to early stages of cancer has been recently supported by the results of epidemiological studies that associated CA frequency in peripheral lymphocytes of healthy individuals to future cancer incidence. To overcome the limitations of single...

  8. Prediction-error in the context of real social relationships modulates reward system activity

    Directory of Open Access Journals (Sweden)

    Joshua ePoore

    2012-08-01

    Full Text Available The human reward system is sensitive to both social (e.g., validation and non-social rewards (e.g., money and is likely integral for relationship development and reputation building. However, data is sparse on the question of whether implicit social reward processing meaningfully contributes to explicit social representations such as trust and attachment security in pre-existing relationships. This event-related fMRI experiment examined reward system prediction-error activity in response to a potent social reward—social validation—and this activity’s relation to both attachment security and trust in the context of real romantic relationships. During the experiment, participants’ expectations for their romantic partners’ positive regard of them were confirmed (validated or violated, in either positive or negative directions. Primary analyses were conducted using predefined regions of interest, the locations of which were taken from previously published research. Results indicate that activity for mid-brain and striatal reward system regions of interest was modulated by social reward expectation violation in ways consistent with prior research on reward prediction-error. Additionally, activity in the striatum during viewing of disconfirmatory information was associated with both increases in post-scan reports of attachment anxiety and decreases in post-scan trust, a finding that follows directly from representational models of attachment and trust.

  9. Effects of affective arousal on choice behavior, reward prediction errors, and feedback-related negativities in human reward-based decision making

    Directory of Open Access Journals (Sweden)

    Hong-Hsiang eLiu

    2015-05-01

    Full Text Available Emotional experience has a pervasive impact on choice behavior, but the underlying mechanism remains unclear. Introducing facial-expression primes into a probabilistic learning task, we investigated how affective arousal regulates reward-related choice based on behavioral, model fitting, and feedback-related negativity (FRN data. Sixty-six paid subjects were randomly assigned to the Neutral-Neutral (NN, Angry-Neutral (AN, and Happy-Neutral (HN groups. A total of 960 trials were conducted. Subjects in each group were randomly exposed to half trials of the pre-determined emotional faces and another half of the neutral faces before choosing between two cards drawn from two decks with different assigned reward probabilities. Trial-by-trial data were fit with a standard reinforcement learning model using the Bayesian estimation approach. The temporal dynamics of brain activity were simultaneously recorded and analyzed using event-related potentials. Our analyses revealed that subjects in the NN group gained more reward values than those in the other two groups; they also exhibited comparatively differential estimated model-parameter values for reward prediction errors. Computing the difference wave of FRNs in reward versus non-reward trials, compared to the NN group, we found that subjects in the AN and HN groups had larger General FRNs (i.e., FRNs in no-reward trials minus FRNs in reward trials and Expected FRNs (i.e., FRNs in expected reward-omission trials minus FRNs in expected reward-delivery trials, indicating an interruption in predicting reward. Further, both AN and HN groups appeared to be more sensitive to negative outcomes than the NN group. Collectively, our study suggests that affective arousal negatively regulates reward-related choice, probably through overweighting with negative feedback.

  10. Choice modulates the neural dynamics of prediction error processing during rewarded learning

    OpenAIRE

    David A. Peterson; Lotz, Daniel T.; Halgren, Eric; Sejnowski, Terrence J.; Poizner, Howard

    2010-01-01

    Our ability to selectively engage with our environment enables us to guide our learning and to take advantage of its benefits. When facing multiple possible actions, our choices are a critical aspect of learning. In the case of learning from rewarding feedback, there has been substantial theoretical and empirical progress in elucidating the associated behavioral and neural processes, predominantly in terms of a reward prediction error, a measure of the discrepancy between actual versus expect...

  11. Reward sensitivity predicts ice cream-related attentional bias assessed by inattentional blindness.

    Science.gov (United States)

    Li, Xiaoming; Tao, Qian; Fang, Ya; Cheng, Chen; Hao, Yangyang; Qi, Jianjun; Li, Yu; Zhang, Wei; Wang, Ying; Zhang, Xiaochu

    2015-06-01

    The cognitive mechanism underlying the association between individual differences in reward sensitivity and food craving is unknown. The present study explored the mechanism by examining the role of reward sensitivity in attentional bias toward ice cream cues. Forty-nine college students who displayed high level of ice cream craving (HICs) and 46 who displayed low level of ice cream craving (LICs) performed an inattentional blindness (IB) task which was used to assess attentional bias for ice cream. In addition, reward sensitivity and coping style were assessed by the Behavior Inhibition System/Behavior Activation System Scales and Simplified Coping Style Questionnaire. Results showed significant higher identification rate of the critical stimulus in the HICs than LICs, suggesting greater attentional bias for ice cream in the HICs. It was indicated that attentional bias for food cues persisted even under inattentional condition. Furthermore, a significant correlation was found between the attentional bias and reward sensitivity after controlling for coping style, and reward sensitivity predicted attentional bias for food cues. The mediation analyses showed that attentional bias mediated the relationship between reward sensitivity and food craving. Those findings suggest that the association between individual differences in reward sensitivity and food craving may be attributed to attentional bias for food-related cues. PMID:25681293

  12. Pain in context: Cues predicting a reward decrease fear of movement related pain and avoidance behavior.

    Science.gov (United States)

    Claes, Nathalie; Vlaeyen, Johan W S; Crombez, Geert

    2016-09-01

    Previous research shows that goal-directed behavior might be modulated by cues that predict (dis)similar outcomes. However, the literature investigating this modulation with pain outcomes is scarce. Therefore, this experiment investigated whether environmental cues predicting pain or reward modulate defensive pain responding. Forty-eight healthy participants completed a joystick movement task with two different movement orientations. Performing one movement was associated with a painful stimulus, whereas performance of another movement was associated with reward, i.e. lottery tickets. In a subsequent task, participants learned to associate three different cues withpain, reward, or neither of the two. Next, these cues were integrated in the movement task. This study demonstrates that in general, aversive cues enhance and appetitive cues reduce pain-related fear. Furthermore, we found that incongruence between the outcomes predicted by the movement and the cue results in more oscillatory behavior, i.e., participants were more willing to perform a painful movement when a cue predicting reward was simultaneously presented, and vice versa. Similarly, when given a choice, participants preferred to perform the reward movement, unless there was an incongruence between the outcomes predicted by the movements and cues. Taken together, these results provide experimental evidence that environmental cues are capable of modulating pain-related fear and avoidance behavior. PMID:27475876

  13. Efficacy of predictive wavefront control for compensating aero-optical aberrations

    Science.gov (United States)

    Goorskey, David J.; Schmidt, Jason; Whiteley, Matthew R.

    2013-07-01

    Imaging and laser beam propagation from airborne platforms are degraded by dynamic aberrations due to air flow around the aircraft, aero-mechanical distortions and jitter, and free atmospheric turbulence. For certain applications, like dim-object imaging, free-space optical communications, and laser weapons, adaptive optics (AO) is necessary to compensate for the aberrations in real time. Aero-optical flow is a particularly interesting source of aberrations whose flowing structures can be exploited by adaptive and predictive AO controllers, thereby realizing significant performance gains. We analyze dynamic aero-optical wavefronts to determine the pointing angles at which predictive wavefront control is more effective than conventional, fixed-gain, linear-filter control. It was found that properties of the spatial decompositions and temporal statistics of the wavefronts are directly traceable to specific features in the air flow. Furthermore, the aero-optical wavefront aberrations at the side- and aft-looking angles were the most severe, but they also benefited the most from predictive AO.

  14. Temporal dynamics of prediction error processing during reward-based decision making.

    Science.gov (United States)

    Philiastides, Marios G; Biele, Guido; Vavatzanidis, Niki; Kazzer, Philipp; Heekeren, Hauke R

    2010-10-15

    Adaptive decision making depends on the accurate representation of rewards associated with potential choices. These representations can be acquired with reinforcement learning (RL) mechanisms, which use the prediction error (PE, the difference between expected and received rewards) as a learning signal to update reward expectations. While EEG experiments have highlighted the role of feedback-related potentials during performance monitoring, important questions about the temporal sequence of feedback processing and the specific function of feedback-related potentials during reward-based decision making remain. Here, we hypothesized that feedback processing starts with a qualitative evaluation of outcome-valence, which is subsequently complemented by a quantitative representation of PE magnitude. Results of a model-based single-trial analysis of EEG data collected during a reversal learning task showed that around 220ms after feedback outcomes are initially evaluated categorically with respect to their valence (positive vs. negative). Around 300ms, and parallel to the maintained valence-evaluation, the brain also represents quantitative information about PE magnitude, thus providing the complete information needed to update reward expectations and to guide adaptive decision making. Importantly, our single-trial EEG analysis based on PEs from an RL model showed that the feedback-related potentials do not merely reflect error awareness, but rather quantitative information crucial for learning reward contingencies. PMID:20510376

  15. Temporal dynamics of prediction error processing during reward-based decision making.

    Science.gov (United States)

    Philiastides, Marios G; Biele, Guido; Vavatzanidis, Niki; Kazzer, Philipp; Heekeren, Hauke R

    2010-10-15

    Adaptive decision making depends on the accurate representation of rewards associated with potential choices. These representations can be acquired with reinforcement learning (RL) mechanisms, which use the prediction error (PE, the difference between expected and received rewards) as a learning signal to update reward expectations. While EEG experiments have highlighted the role of feedback-related potentials during performance monitoring, important questions about the temporal sequence of feedback processing and the specific function of feedback-related potentials during reward-based decision making remain. Here, we hypothesized that feedback processing starts with a qualitative evaluation of outcome-valence, which is subsequently complemented by a quantitative representation of PE magnitude. Results of a model-based single-trial analysis of EEG data collected during a reversal learning task showed that around 220ms after feedback outcomes are initially evaluated categorically with respect to their valence (positive vs. negative). Around 300ms, and parallel to the maintained valence-evaluation, the brain also represents quantitative information about PE magnitude, thus providing the complete information needed to update reward expectations and to guide adaptive decision making. Importantly, our single-trial EEG analysis based on PEs from an RL model showed that the feedback-related potentials do not merely reflect error awareness, but rather quantitative information crucial for learning reward contingencies.

  16. Brief optogenetic inhibition of dopamine neurons mimics endogenous negative reward prediction errors.

    Science.gov (United States)

    Chang, Chun Yun; Esber, Guillem R; Marrero-Garcia, Yasmin; Yau, Hau-Jie; Bonci, Antonello; Schoenbaum, Geoffrey

    2016-01-01

    Correlative studies have strongly linked phasic changes in dopamine activity with reward prediction error signaling. But causal evidence that these brief changes in firing actually serve as error signals to drive associative learning is more tenuous. Although there is direct evidence that brief increases can substitute for positive prediction errors, there is no comparable evidence that similarly brief pauses can substitute for negative prediction errors. In the absence of such evidence, the effect of increases in firing could reflect novelty or salience, variables also correlated with dopamine activity. Here we provide evidence in support of the proposed linkage, showing in a modified Pavlovian over-expectation task that brief pauses in the firing of dopamine neurons in rat ventral tegmental area at the time of reward are sufficient to mimic the effects of endogenous negative prediction errors. These results support the proposal that brief changes in the firing of dopamine neurons serve as full-fledged bidirectional prediction error signals.

  17. Principal components analysis of reward prediction errors in a reinforcement learning task.

    Science.gov (United States)

    Sambrook, Thomas D; Goslin, Jeremy

    2016-01-01

    Models of reinforcement learning represent reward and punishment in terms of reward prediction errors (RPEs), quantitative signed terms describing the degree to which outcomes are better than expected (positive RPEs) or worse (negative RPEs). An electrophysiological component known as feedback related negativity (FRN) occurs at frontocentral sites 240-340ms after feedback on whether a reward or punishment is obtained, and has been claimed to neurally encode an RPE. An outstanding question however, is whether the FRN is sensitive to the size of both positive RPEs and negative RPEs. Previous attempts to answer this question have examined the simple effects of RPE size for positive RPEs and negative RPEs separately. However, this methodology can be compromised by overlap from components coding for unsigned prediction error size, or "salience", which are sensitive to the absolute size of a prediction error but not its valence. In our study, positive and negative RPEs were parametrically modulated using both reward likelihood and magnitude, with principal components analysis used to separate out overlying components. This revealed a single RPE encoding component responsive to the size of positive RPEs, peaking at ~330ms, and occupying the delta frequency band. Other components responsive to unsigned prediction error size were shown, but no component sensitive to negative RPE size was found. PMID:26196667

  18. Principal components analysis of reward prediction errors in a reinforcement learning task.

    Science.gov (United States)

    Sambrook, Thomas D; Goslin, Jeremy

    2016-01-01

    Models of reinforcement learning represent reward and punishment in terms of reward prediction errors (RPEs), quantitative signed terms describing the degree to which outcomes are better than expected (positive RPEs) or worse (negative RPEs). An electrophysiological component known as feedback related negativity (FRN) occurs at frontocentral sites 240-340ms after feedback on whether a reward or punishment is obtained, and has been claimed to neurally encode an RPE. An outstanding question however, is whether the FRN is sensitive to the size of both positive RPEs and negative RPEs. Previous attempts to answer this question have examined the simple effects of RPE size for positive RPEs and negative RPEs separately. However, this methodology can be compromised by overlap from components coding for unsigned prediction error size, or "salience", which are sensitive to the absolute size of a prediction error but not its valence. In our study, positive and negative RPEs were parametrically modulated using both reward likelihood and magnitude, with principal components analysis used to separate out overlying components. This revealed a single RPE encoding component responsive to the size of positive RPEs, peaking at ~330ms, and occupying the delta frequency band. Other components responsive to unsigned prediction error size were shown, but no component sensitive to negative RPE size was found.

  19. Impaired cross-talk between mesolimbic food reward processing and metabolic signaling predicts body mass index

    Directory of Open Access Journals (Sweden)

    Joe J Simon

    2014-10-01

    Full Text Available The anticipation of the pleasure derived from food intake drives the motivation to eat, and hence facilitate overconsumption of food which ultimately results in obesity. Brain imaging studies provide evidence that mesolimbic brain regions underlie both general as well as food related anticipatory reward processing. In light of this knowledge, the present study examined the neural responsiveness of the ventral striatum in participants with a broad BMI spectrum. The study differentiated between general (i.e. monetary and food related anticipatory reward processing. We recruited a sample of volunteers with greatly varying body weights, ranging from a low BMI (below 20 kg/m² over a normal (20 to 25 kg/m² and overweight (25 to 30 kg/m² BMI, to class I (30 to 35 kg/m² and class II (35 to 40 kg/m² obesity. A total of 24 participants underwent functional magnetic resonance imaging whilst performing both a food and monetary incentive delay task, which allows to measure neural activation during the anticipation of rewards. After the presentation of a cue indicating the amount of food or money to be won, participants had to react correctly in order to earn snack points or money coins which could then be exchanged for real food or money, respectively, at the end of the experiment. During the anticipation of both types of rewards, participants displayed activity in the ventral striatum, a region that plays a pivotal role in the anticipation of rewards. Additionally, we observed that specifically anticipatory food reward processing predicted the individual BMI (current and maximum lifetime. This relation was found to be mediated by impaired hormonal satiety signaling, i.e. increased leptin levels and insulin resistance. These findings suggest that heightened food reward motivation contributes to obesity through impaired metabolic signaling.

  20. Testosterone and reward prediction-errors in healthy men and men with schizophrenia.

    Science.gov (United States)

    Morris, R W; Purves-Tyson, T D; Weickert, C Shannon; Rothmond, D; Lenroot, R; Weickert, T W

    2015-11-01

    Sex hormones impact reward processing, which is dysfunctional in schizophrenia; however, the degree to which testosterone levels relate to reward-related brain activity in healthy men and the extent to which this relationship may be altered in men with schizophrenia has not been determined. We used functional magnetic resonance imaging (fMRI) to measure neural responses in the striatum during reward prediction-errors and hormone assays to measure testosterone and prolactin in serum. To determine if testosterone can have a direct effect on dopamine neurons, we also localized and measured androgen receptors in human midbrain with immunohistochemistry and quantitative PCR. We found correlations between testosterone and prediction-error related activity in the ventral striatum of healthy men, but not in men with schizophrenia, such that testosterone increased the size of positive and negative prediction-error related activity in a valence-specific manner. We also identified midbrain dopamine neurons that were androgen receptor immunoreactive, and found that androgen receptor (AR) mRNA was positively correlated with tyrosine hydroxylase (TH) mRNA in human male substantia nigra. The results suggest that sex steroid receptors can potentially influence midbrain dopamine biosynthesis, and higher levels of serum testosterone are linked to better discrimination of motivationally-relevant signals in the ventral striatum, putatively by modulation of the dopamine biosynthesis pathway via AR ligand binding. However, the normal relationship between serum testosterone and ventral striatum activity during reward learning appears to be disrupted in schizophrenia. PMID:26232868

  1. Serotonin Differentially Regulates Short- and Long-Term Prediction of Rewards in the Ventral and Dorsal Striatum

    OpenAIRE

    Tanaka, Saori C.; Nicolas Schweighofer; Shuji Asahi; Kazuhiro Shishida; Yasumasa Okamoto; Shigeto Yamawaki; Kenji Doya

    2007-01-01

    BACKGROUND: The ability to select an action by considering both delays and amount of reward outcome is critical for maximizing long-term benefits. Although previous animal experiments on impulsivity have suggested a role of serotonin in behaviors requiring prediction of delayed rewards, the underlying neural mechanism is unclear. METHODOLOGY/PRINCIPAL FINDINGS: To elucidate the role of serotonin in the evaluation of delayed rewards, we performed a functional brain imaging experiment in which ...

  2. Predictive decision making driven by multiple time-linked reward representations in the anterior cingulate cortex.

    Science.gov (United States)

    Wittmann, Marco K; Kolling, Nils; Akaishi, Rei; Chau, Bolton K H; Brown, Joshua W; Nelissen, Natalie; Rushworth, Matthew F S

    2016-01-01

    In many natural environments the value of a choice gradually gets better or worse as circumstances change. Discerning such trends makes predicting future choice values possible. We show that humans track such trends by comparing estimates of recent and past reward rates, which they are able to hold simultaneously in the dorsal anterior cingulate cortex (dACC). Comparison of recent and past reward rates with positive and negative decision weights is reflected by opposing dACC signals indexing these quantities. The relative strengths of time-linked reward representations in dACC predict whether subjects persist in their current behaviour or switch to an alternative. Computationally, trend-guided choice can be modelled by using a reinforcement-learning mechanism that computes a longer-term estimate (or expectation) of prediction errors. Using such a model, we find a relative predominance of expected prediction errors in dACC, instantaneous prediction errors in the ventral striatum and choice signals in the ventromedial prefrontal cortex.

  3. Dopamine-signalled reward predictions generated by competitive excitation and inhibition in a spiking neural network model

    Directory of Open Access Journals (Sweden)

    Paul eChorley

    2011-05-01

    Full Text Available Dopaminergic neurons in the mammalian substantia nigra displaycharacteristic phasic responses to stimuli which reliably predict thereceipt of primary rewards. These responses have been suggested toencode reward prediction-errors similar to those used in reinforcementlearning. Here, we propose a model of dopaminergic activity in whichprediction error signals are generated by the joint action ofshort-latency excitation and long-latency inhibition, in a networkundergoing dopaminergic neuromodulation of both spike-timing dependentsynaptic plasticity and neuronal excitability. In contrast toprevious models, sensitivity to recent events is maintained by theselective modification of specific striatal synapses, efferent tocortical neurons exhibiting stimulus-specific, temporally extendedactivity patterns. Our model shows, in the presence of significantbackground activity, (i a shift in dopaminergic response from rewardto reward predicting stimuli, (ii preservation of a response tounexpected rewards, and (iii a precisely-timed below-baseline dip inactivity observed when expected rewards are omitted.

  4. Observing others stay or switch - How social prediction errors are integrated into reward reversal learning.

    Science.gov (United States)

    Ihssen, Niklas; Mussweiler, Thomas; Linden, David E J

    2016-08-01

    Reward properties of stimuli can undergo sudden changes, and the detection of these 'reversals' is often made difficult by the probabilistic nature of rewards/punishments. Here we tested whether and how humans use social information (someone else's choices) to overcome uncertainty during reversal learning. We show a substantial social influence during reversal learning, which was modulated by the type of observed behavior. Participants frequently followed observed conservative choices (no switches after punishment) made by the (fictitious) other player but ignored impulsive choices (switches), even though the experiment was set up so that both types of response behavior would be similarly beneficial/detrimental (Study 1). Computational modeling showed that participants integrated the observed choices as a 'social prediction error' instead of ignoring or blindly following the other player. Modeling also confirmed higher learning rates for 'conservative' versus 'impulsive' social prediction errors. Importantly, this 'conservative bias' was boosted by interpersonal similarity, which in conjunction with the lack of effects observed in a non-social control experiment (Study 2) confirmed its social nature. A third study suggested that relative weighting of observed impulsive responses increased with increased volatility (frequency of reversals). Finally, simulations showed that in the present paradigm integrating social and reward information was not necessarily more adaptive to maximize earnings than learning from reward alone. Moreover, integrating social information increased accuracy only when conservative and impulsive choices were weighted similarly during learning. These findings suggest that to guide decisions in choice contexts that involve reward reversals humans utilize social cues conforming with their preconceptions more strongly than cues conflicting with them, especially when the other is similar. PMID:27128170

  5. Belief about nicotine selectively modulates value and reward prediction error signals in smokers.

    Science.gov (United States)

    Gu, Xiaosi; Lohrenz, Terry; Salas, Ramiro; Baldwin, Philip R; Soltani, Alireza; Kirk, Ulrich; Cinciripini, Paul M; Montague, P Read

    2015-02-24

    Little is known about how prior beliefs impact biophysically described processes in the presence of neuroactive drugs, which presents a profound challenge to the understanding of the mechanisms and treatments of addiction. We engineered smokers' prior beliefs about the presence of nicotine in a cigarette smoked before a functional magnetic resonance imaging session where subjects carried out a sequential choice task. Using a model-based approach, we show that smokers' beliefs about nicotine specifically modulated learning signals (value and reward prediction error) defined by a computational model of mesolimbic dopamine systems. Belief of "no nicotine in cigarette" (compared with "nicotine in cigarette") strongly diminished neural responses in the striatum to value and reward prediction errors and reduced the impact of both on smokers' choices. These effects of belief could not be explained by global changes in visual attention and were specific to value and reward prediction errors. Thus, by modulating the expression of computationally explicit signals important for valuation and choice, beliefs can override the physical presence of a potent neuroactive compound like nicotine. These selective effects of belief demonstrate that belief can modulate model-based parameters important for learning. The implications of these findings may be far ranging because belief-dependent effects on learning signals could impact a host of other behaviors in addiction as well as in other mental health problems. PMID:25605923

  6. Serotonin differentially regulates short- and long-term prediction of rewards in the ventral and dorsal striatum.

    Directory of Open Access Journals (Sweden)

    Saori C Tanaka

    Full Text Available BACKGROUND: The ability to select an action by considering both delays and amount of reward outcome is critical for maximizing long-term benefits. Although previous animal experiments on impulsivity have suggested a role of serotonin in behaviors requiring prediction of delayed rewards, the underlying neural mechanism is unclear. METHODOLOGY/PRINCIPAL FINDINGS: To elucidate the role of serotonin in the evaluation of delayed rewards, we performed a functional brain imaging experiment in which subjects chose small-immediate or large-delayed liquid rewards under dietary regulation of tryptophan, a precursor of serotonin. A model-based analysis revealed that the activity of the ventral part of the striatum was correlated with reward prediction at shorter time scales, and this correlated activity was stronger at low serotonin levels. By contrast, the activity of the dorsal part of the striatum was correlated with reward prediction at longer time scales, and this correlated activity was stronger at high serotonin levels. CONCLUSIONS/SIGNIFICANCE: Our results suggest that serotonin controls the time scale of reward prediction by differentially regulating activities within the striatum.

  7. Endocannabinoid-dependent modulation of phasic dopamine signaling encodes external and internal reward-predictive cues.

    Science.gov (United States)

    Wenzel, Jennifer M; Cheer, Joseph F

    2014-01-01

    The mesolimbic dopamine (DA) system plays an integral role in incentive motivation and reward seeking and a growing body of evidence identifies signal transduction at cannabinoid receptors as a critical modulator of this system. Indeed, administration of exogenous cannabinoids results in burst firing of DA neurons of the ventral tegmental area and increases extracellular DA in the nucleus accumbens (NAcc). Implementation of fast-scan cyclic voltammetry (FSCV) confirms the ability of cannabinoids to augment DA within the NAcc on a subsecond timescale. The use of FSCV along with newly developed highly selective pharmacological compounds advances our understanding of how cannabinoids influence DA transmission and highlights a role for endocannabinoid-modulated subsecond DAergic activation in the incentive motivational properties of not only external, but also internal reward-predictive cues. For example, our laboratory has recently demonstrated that in mice responding under a fixed-interval (FI) schedule for food reinforcement, fluctuations in NAcc DA signal the principal cue predictive of reinforcer availability - time. That is, as the interval progresses, NAcc DA levels decline leading to accelerated food seeking and the resulting characteristic FI scallop pattern of responding. Importantly, administration of WIN 55,212-2, a synthetic cannabinoid agonist, or JZL184, an indirect cannabinoid agonist, increases DA levels during the interval and disrupts this pattern of responding. Along with a wealth of other reports, these results illustrate the role of cannabinoid receptor activation in the regulation of DA transmission and the control of temporally guided reward seeking. The current review will explore the striatal beat frequency model of interval timing as it pertains to cannabinoid signaling and propose a neurocircuitry through which this system modulates interoceptive time cues. PMID:25225488

  8. Endocannabinoid-dependent modulation of phasic dopamine signaling encodes external and internal reward-predictive cues

    Directory of Open Access Journals (Sweden)

    Jennifer M. Wenzel

    2014-09-01

    Full Text Available The mesolimbic dopamine (DA system plays an integral role in incentive motivation and reward seeking and a growing body of evidence identifies signal transduction at cannabinoid receptors as a critical modulator of this system. Indeed, administration of exogenous cannabinoids results in burst firing of DA neurons of the ventral tegmental area and increases extracellular DA in the nucleus accumbens (NAcc. Implementation of fast-scan cyclic voltammetry (FSCV confirms the ability of cannabinoids to augment DA within the NAcc on a subsecond timescale. The use of FSCV along with newly developed highly selective pharmacological compounds advances our understanding of how cannabinoids influence DA transmission, and highlights a role for endocannabinoid-modulated subsecond DAergic activation in the incentive motivational properties of not only external, but also internal reward-predictive cues. For example, our laboratory has recently demonstrated that in mice responding under a fixed interval (FI schedule for food reinforcement, fluctuations in NAcc DA signal the principal cue predictive of reinforcer availability – time. That is, as the interval progresses, NAcc DA levels decline leading to accelerated food seeking and the resulting characteristic FI scallop pattern of responding. Importantly, administration of WIN 55,212-2, a synthetic cannabinoid agonist, or JZL184, an indirect cannabinoid agonist, increase DA levels during the interval and disrupt this pattern of responding. Along with a wealth of other reports, these results illustrate the role of cannabinoid receptor activation in the regulation of DA transmission and the control of temporally guided reward seeking. The current review will explore the striatal beat frequency model of interval timing as it pertains cannabinoid signaling and propose a neurocircuitry through which this system modulates interoceptive time cues.

  9. Endocannabinoid-dependent modulation of phasic dopamine signaling encodes external and internal reward-predictive cues.

    Science.gov (United States)

    Wenzel, Jennifer M; Cheer, Joseph F

    2014-01-01

    The mesolimbic dopamine (DA) system plays an integral role in incentive motivation and reward seeking and a growing body of evidence identifies signal transduction at cannabinoid receptors as a critical modulator of this system. Indeed, administration of exogenous cannabinoids results in burst firing of DA neurons of the ventral tegmental area and increases extracellular DA in the nucleus accumbens (NAcc). Implementation of fast-scan cyclic voltammetry (FSCV) confirms the ability of cannabinoids to augment DA within the NAcc on a subsecond timescale. The use of FSCV along with newly developed highly selective pharmacological compounds advances our understanding of how cannabinoids influence DA transmission and highlights a role for endocannabinoid-modulated subsecond DAergic activation in the incentive motivational properties of not only external, but also internal reward-predictive cues. For example, our laboratory has recently demonstrated that in mice responding under a fixed-interval (FI) schedule for food reinforcement, fluctuations in NAcc DA signal the principal cue predictive of reinforcer availability - time. That is, as the interval progresses, NAcc DA levels decline leading to accelerated food seeking and the resulting characteristic FI scallop pattern of responding. Importantly, administration of WIN 55,212-2, a synthetic cannabinoid agonist, or JZL184, an indirect cannabinoid agonist, increases DA levels during the interval and disrupts this pattern of responding. Along with a wealth of other reports, these results illustrate the role of cannabinoid receptor activation in the regulation of DA transmission and the control of temporally guided reward seeking. The current review will explore the striatal beat frequency model of interval timing as it pertains to cannabinoid signaling and propose a neurocircuitry through which this system modulates interoceptive time cues.

  10. Autocorrelation structure at rest predicts value correlates of single neurons during reward-guided choice

    Science.gov (United States)

    Cavanagh, Sean E; Wallis, Joni D; Kennerley, Steven W; Hunt, Laurence T

    2016-01-01

    Correlates of value are routinely observed in the prefrontal cortex (PFC) during reward-guided decision making. In previous work (Hunt et al., 2015), we argued that PFC correlates of chosen value are a consequence of varying rates of a dynamical evidence accumulation process. Yet within PFC, there is substantial variability in chosen value correlates across individual neurons. Here we show that this variability is explained by neurons having different temporal receptive fields of integration, indexed by examining neuronal spike rate autocorrelation structure whilst at rest. We find that neurons with protracted resting temporal receptive fields exhibit stronger chosen value correlates during choice. Within orbitofrontal cortex, these neurons also sustain coding of chosen value from choice through the delivery of reward, providing a potential neural mechanism for maintaining predictions and updating stored values during learning. These findings reveal that within PFC, variability in temporal specialisation across neurons predicts involvement in specific decision-making computations. DOI: http://dx.doi.org/10.7554/eLife.18937.001 PMID:27705742

  11. Putting Reward in Art: A Tentative Prediction Error Account of Visual Art

    Directory of Open Access Journals (Sweden)

    Sander Van de Cruys

    2011-12-01

    Full Text Available The predictive coding model is increasingly and fruitfully used to explain a wide range of findings in perception. Here we discuss the potential of this model in explaining the mechanisms underlying aesthetic experiences. Traditionally art appreciation has been associated with concepts such as harmony, perceptual fluency, and the so-called good Gestalt. We observe that more often than not great artworks blatantly violate these characteristics. Using the concept of prediction error from the predictive coding approach, we attempt to resolve this contradiction. We argue that artists often destroy predictions that they have first carefully built up in their viewers, and thus highlight the importance of negative affect in aesthetic experience. However, the viewer often succeeds in recovering the predictable pattern, sometimes on a different level. The ensuing rewarding effect is derived from this transition from a state of uncertainty to a state of increased predictability. We illustrate our account with several example paintings and with a discussion of art movements and individual differences in preference. On a more fundamental level, our theorizing leads us to consider the affective implications of prediction confirmation and violation. We compare our proposal to other influential theories on aesthetics and explore its advantages and limitations.

  12. A neural reward prediction error revealed by a meta-analysis of ERPs using great grand averages.

    Science.gov (United States)

    Sambrook, Thomas D; Goslin, Jeremy

    2015-01-01

    Economic approaches to decision making assume that people attach values to prospective goods and act to maximize their obtained value. Neuroeconomics strives to observe these values directly in the brain. A widely used valuation term in formal learning and decision-making models is the reward prediction error: the value of an outcome relative to its expected value. An influential theory (Holroyd & Coles, 2002) claims that an electrophysiological component, feedback related negativity (FRN), codes a reward prediction error in the human brain. Such a component should be sensitive to both the prior likelihood of reward and its magnitude on receipt. A number of studies have found the FRN to be insensitive to reward magnitude, thus questioning the Holroyd and Coles account. However, because of marked inconsistencies in how the FRN is measured, a meaningful synthesis of this evidence is highly problematic. We conducted a meta-analysis of the FRN's response to both reward magnitude and likelihood using a novel method in which published effect sizes were disregarded in favor of direct measurement of the published waveforms themselves, with these waveforms then averaged to produce "great grand averages." Under this standardized measure, the meta-analysis revealed strong effects of magnitude and likelihood on the FRN, consistent with it encoding a reward prediction error. In addition, it revealed strong main effects of reward magnitude and likelihood across much of the waveform, indicating sensitivity to unsigned prediction errors or "salience." The great grand average technique is proposed as a general method for meta-analysis of event-related potential (ERP). PMID:25495239

  13. Suboptimal decision criteria are predicted by subjectively weighted probabilities and rewards.

    Science.gov (United States)

    Ackermann, John F; Landy, Michael S

    2015-02-01

    Subjects performed a visual detection task in which the probability of target occurrence at each of the two possible locations, and the rewards for correct responses for each, were varied across conditions. To maximize monetary gain, observers should bias their responses, choosing one location more often than the other in line with the varied probabilities and rewards. Typically, and in our task, observers do not bias their responses to the extent they should, and instead distribute their responses more evenly across locations, a phenomenon referred to as 'conservatism.' We investigated several hypotheses regarding the source of the conservatism. We measured utility and probability weighting functions under Prospect Theory for each subject in an independent economic choice task and used the weighting-function parameters to calculate each subject's subjective utility (SU(c)) as a function of the criterion c, and the corresponding weighted optimal criteria (wc opt ). Subjects' criteria were not close to optimal relative to wc opt . The slope of SU(c) and of expected gain EG(c) at the neutral criterion corresponding to β = 1 were both predictive of the subjects' criteria. The slope of SU(c) was a better predictor of observers' decision criteria overall. Thus, rather than behaving optimally, subjects move their criterion away from the neutral criterion by estimating how much they stand to gain by such a change based on the slope of subjective gain as a function of criterion, using inherently distorted probabilities and values. PMID:25366822

  14. From prediction error to incentive salience: mesolimbic computation of reward motivation

    OpenAIRE

    Berridge, Kent C.

    2012-01-01

    Reward contains separable psychological components of learning, incentive motivation and pleasure. Most computational models have focused only on the learning component of reward, but the motivational component is equally important in reward circuitry, and even more directly controls behavior. Modeling the motivational component requires recognition of additional control factors besides learning.

  15. Effort-reward imbalance at work is predicted by temporal and energetic characteristics of behavior: A population-based study

    Directory of Open Access Journals (Sweden)

    Taina Hintsa

    2013-06-01

    Full Text Available Objective: Personality dispositions may influence perceptions of work stress. The paper examines the relationship between temperament in terms of Strelau's Regulative Theory of Temperament and the effort-reward imbalance and its components. Material and Methods: There were 890 participants (360 men aged 37.9 years on average. Temperament traits of briskness and perseveration (temporal characteristics of behavior, sensory sensitivity, emotional reactivity, endurance and activity (energetic characteristics of behavior were measured by Strelau & Zawadzki's Formal Characteristics of Behavior-Temperament Inventory (FCB-TI in 1997 and 2001. Effort and reward at work were assessed with the original effortreward imbalance (ERI questionnaire of 2007. Results: Higher ERI at work was predicted by higher emotional reactivity, higher perseveration, lower briskness, and lower endurance. Higher effort and lower rewards at work were predicted by higher perseveration and lower endurance. The FCB-TI temperament characteristics accounted for 5.2%, 4.8% and 6.5% of the variance in the ERI, effort and reward, respectively. Lower emotional reactivity, lower perseveration, higher briskness and higher endurance predicted higher esteem at work, job promotion and job security. Conclusions: Individual differences in arousability, reflected in temporal and energetic characteristics of behavior, may predispose to or to protect from an effort-reward imbalance at work. Individual differences should be acknowledged in work stress prevention and developing interventions.

  16. Chronic exposure to a gambling-like schedule of reward predictive stimuli can promote sensitization to amphetamine in rats

    Directory of Open Access Journals (Sweden)

    Martin eZack

    2014-02-01

    Full Text Available Addiction is considered to be a brain disease caused by chronic exposure to drugs. Sensitization of brain dopamine (DA systems partly mediates this effect. Pathological gambling (PG is considered to be a behavioral addiction. Therefore, PG may be caused by chronic exposure to gambling. Identifying a gambling-induced sensitization of DA systems would support this possibility. Gambling rewards evoke DA release. One episode of slot machine play shifts the DA response from reward delivery to onset of cues (spinning reels for reward, in line with temporal difference learning principles. Thus, conditioned stimuli (CS play a key role in DA responses to gambling. In primates, DA response to a CS is strongest when reward probability is 50%. Under this schedule the CS elicits an expectancy of reward but provides no information about whether it will occur on a given trial. During gambling, a 50% schedule should elicit maximal DA release. This closely matches reward frequency (46% on a commercial slot machine. DA release can contribute to sensitization, especially for amphetamine. Chronic exposure to a CS that predicts reward 50% of the time could mimic this effect. We tested this hypothesis in 3 studies with rats. Animals received 15 x 45-min exposures to a CS that predicted reward with a probability of 0, 25, 50, 75 or 100%. The CS was a light; the reward was a 10% sucrose solution. After training, rats received a sensitizing regimen of 5 separate doses (1 mg/kg of d-amphetamine. Lastly they received a 0.5 or 1 mg/kg amphetamine challenge prior to a 90-min locomotor activity test. In all 3 studies the 50% group displayed greater activity than the other groups in response to both challenge doses. Effect sizes were modest but consistent, as reflected by a significant group x rank association ( = .986, p = .025. Chronic exposure to a gambling-like schedule of reward predictive stimuli can promote sensitization to amphetamine much like exposure to

  17. Adaptive coding of reward prediction errors is gated by striatal coupling

    OpenAIRE

    Park, Soyoung Q; Kahnt, Thorsten; Talmi, Deborah; Rieskamp, Jörg; Dolan, Raymond J.; Heekeren, Hauke R.

    2012-01-01

    To efficiently represent all of the possible rewards in the world, dopaminergic midbrain neurons dynamically adapt their coding range to the momentarily available rewards. Specifically, these neurons increase their activity for an outcome that is better than expected and decrease it for an outcome worse than expected, independent of the absolute reward magnitude. Although this adaptive coding is well documented, it remains unknown how this rescaling is implemented. To investigate the adaptive...

  18. Midbrain volume predicts fMRI and ERP measures of reward reactivity.

    Science.gov (United States)

    Carlson, Joshua M; Foti, Dan; Harmon-Jones, Eddie; Proudfit, Greg H

    2015-01-01

    Ventral striatal activation measured with functional magnetic resonance imaging (fMRI) and feedback negativity amplitude measured with event-related potentials (ERPs) are each enhanced during reward processing. Recent research has found that these two neural measures of reward processing are also related to one another, such that increases in ventral striatal activity are accompanied by increases in the amplitude of the feedback negativity. Although there is a long history of research implicating the midbrain dopamine system in reward processing, there has been little research into the possibility that structural variability in the midbrain may be linked to functional variability in reward reactivity. Here, we used structural MRI to measure midbrain volumes in addition to fMRI and ERP measures of functional neural reactivity to rewards in a simple gambling task. The results suggest that as midbrain volumes increase, fMRI reward reactivity in the ventral striatum and medial prefrontal cortex also increases. A similar relationship exists between midbrain structure and the amplitude of the feedback negativity; further, this relationship is mediated specifically by activity in the ventral striatum. These data demonstrate convergence between neuroanatomical, hemodynamic, and electrophysiological measures. Thus, structural variability in the midbrain relates to variability in fMRI and ERP measures of functional reward reactivity, which may play a critical role in reward-related psychopathologies and the treatment of these disorders.

  19. Girls’ challenging social experiences in early adolescence predict neural response to rewards and depressive symptoms

    Directory of Open Access Journals (Sweden)

    Melynda D. Casement

    2014-04-01

    Full Text Available Developmental models of psychopathology posit that exposure to social stressors may confer risk for depression in adolescent girls by disrupting neural reward circuitry. The current study tested this hypothesis by examining the relationship between early adolescent social stressors and later neural reward processing and depressive symptoms. Participants were 120 girls from an ongoing longitudinal study of precursors to depression across adolescent development. Low parental warmth, peer victimization, and depressive symptoms were assessed when the girls were 11 and 12 years old, and participants completed a monetary reward guessing fMRI task and assessment of depressive symptoms at age 16. Results indicate that low parental warmth was associated with increased response to potential rewards in the medial prefrontal cortex (mPFC, striatum, and amygdala, whereas peer victimization was associated with decreased response to potential rewards in the mPFC. Furthermore, concurrent depressive symptoms were associated with increased reward anticipation response in mPFC and striatal regions that were also associated with early adolescent psychosocial stressors, with mPFC and striatal response mediating the association between social stressors and depressive symptoms. These findings are consistent with developmental models that emphasize the adverse impact of early psychosocial stressors on neural reward processing and risk for depression in adolescence.

  20. Dopamine, reward learning, and active inference

    Directory of Open Access Journals (Sweden)

    Thomas eFitzgerald

    2015-11-01

    Full Text Available Temporal difference learning models propose phasic dopamine signalling encodes reward prediction errors that drive learning. This is supported by studies where optogenetic stimulation of dopamine neurons can stand in lieu of actual reward. Nevertheless, a large body of data also shows that dopamine is not necessary for learning, and that dopamine depletion primarily affects task performance. We offer a resolution to this paradox based on an hypothesis that dopamine encodes the precision of beliefs about alternative actions, and thus controls the outcome-sensitivity of behaviour. We extend an active inference scheme for solving Markov decision processes to include learning, and show that simulated dopamine dynamics strongly resemble those actually observed during instrumental conditioning. Furthermore, simulated dopamine depletion impairs performance but spares learning, while simulated excitation of dopamine neurons drives reward learning, through aberrant inference about outcome states. Our formal approach provides a novel and parsimonious reconciliation of apparently divergent experimental findings.

  1. Initial d2 dopamine receptor sensitivity predicts cocaine sensitivity and reward in rats.

    Directory of Open Access Journals (Sweden)

    Kathryn E Merritt

    Full Text Available The activation of dopamine receptors within the mesolimbic dopamine system is known to be involved in the initiation and maintenance of cocaine use. Expression of the D2 dopamine receptor subtype has been implicated as both a predisposing factor and consequence of chronic cocaine use. It is unclear whether there is a predictive relationship between D2 dopamine receptor function and cocaine sensitivity that would enable cocaine abuse. Therefore, we exploited individual differences in behavioral responses to D2 dopamine receptor stimulation to test its relationship with cocaine-mediated behaviors. Outbred, male Sprague-Dawley rats were initially characterized by their locomotor responsiveness to the D2 dopamine receptor agonist, quinpirole, in a within-session ascending dose-response regimen (0, 0.1, 0.3 & 1.0 mg/kg, sc. Rats were classified as high or low quinpirole responders (HD2 and LD2, respectively by a median split of their quinpirole-induced locomotor activity. Rats were subsequently tested for differences in the psychostimulant effects of cocaine by measuring changes in cocaine-induced locomotor activity (5 and 15 mg/kg, ip. Rats were also tested for differences in the development of conditioned place preference to a low dose of cocaine (7.5 mg/kg, ip that does not reliably produce a cocaine conditioned place preference. Finally, rats were tested for acquisition of cocaine self-administration and maintenance responding on fixed ratio 1 and 5 schedules of reinforcement, respectively. Results demonstrate that HD2 rats have enhanced sensitivity to the locomotor stimulating properties of cocaine, display greater cocaine conditioned place preference, and self-administer more cocaine compared to LD2 animals. These findings suggest that individual differences in D2 dopamine receptor sensitivity may be predictive of cocaine sensitivity and reward.

  2. Initial D2 Dopamine Receptor Sensitivity Predicts Cocaine Sensitivity and Reward in Rats

    Science.gov (United States)

    Merritt, Kathryn E.; Bachtell, Ryan K.

    2013-01-01

    The activation of dopamine receptors within the mesolimbic dopamine system is known to be involved in the initiation and maintenance of cocaine use. Expression of the D2 dopamine receptor subtype has been implicated as both a predisposing factor and consequence of chronic cocaine use. It is unclear whether there is a predictive relationship between D2 dopamine receptor function and cocaine sensitivity that would enable cocaine abuse. Therefore, we exploited individual differences in behavioral responses to D2 dopamine receptor stimulation to test its relationship with cocaine-mediated behaviors. Outbred, male Sprague-Dawley rats were initially characterized by their locomotor responsiveness to the D2 dopamine receptor agonist, quinpirole, in a within-session ascending dose-response regimen (0, 0.1, 0.3 & 1.0 mg/kg, sc). Rats were classified as high or low quinpirole responders (HD2 and LD2, respectively) by a median split of their quinpirole-induced locomotor activity. Rats were subsequently tested for differences in the psychostimulant effects of cocaine by measuring changes in cocaine-induced locomotor activity (5 and 15 mg/kg, ip). Rats were also tested for differences in the development of conditioned place preference to a low dose of cocaine (7.5 mg/kg, ip) that does not reliably produce a cocaine conditioned place preference. Finally, rats were tested for acquisition of cocaine self-administration and maintenance responding on fixed ratio 1 and 5 schedules of reinforcement, respectively. Results demonstrate that HD2 rats have enhanced sensitivity to the locomotor stimulating properties of cocaine, display greater cocaine conditioned place preference, and self-administer more cocaine compared to LD2 animals. These findings suggest that individual differences in D2 dopamine receptor sensitivity may be predictive of cocaine sensitivity and reward. PMID:24223783

  3. Life stress in adolescence predicts early adult reward-related brain function and alcohol dependence

    OpenAIRE

    Casement, Melynda D.; Shaw, Daniel S.; Sitnick, Stephanie L.; Musselman, Samuel C.; Forbes, Erika E.

    2014-01-01

    Stressful life events increase vulnerability to problematic alcohol use, and they may do this by disrupting reward-related neural circuitry. This is particularly relevant for adolescents because alcohol use rises sharply after mid-adolescence and alcohol abuse peaks at age 20. Adolescents also report more stressors compared with children, and neural reward circuitry may be especially vulnerable to stressors during adolescence because of prefrontal cortex remodeling. Using a large sample of ma...

  4. Love to win or hate to lose? Asymmetry of dopamine D2 receptor binding predicts sensitivity to reward vs. punishment

    Science.gov (United States)

    Tomer, Rachel; Slagter, Heleen A; Christian, Bradley T; Fox, Andrew S; King, Carlye R; Murali, Dhanabalan; Gluck, Mark A; Davidson, Richard J

    2014-01-01

    Humans show consistent differences in the extent to which their behavior reflects a bias towards appetitive approach-related behavior or avoidance of aversive stimuli (Elliot, 2008). We examined the hypothesis that in healthy subjects this motivational bias (assessed by self-report and by a probabilistic learning task that allows direct comparison of the relative sensitivity to reward and punishment) reflects lateralization of dopamine signaling. Using [F-18]fallypride to measure D2/D3 binding , we found that self-reported motivational bias was predicted by the asymmetry of frontal D2 binding. Similarly, striatal and frontal asymmetries in D2 dopamine receptor binding, rather than absolute binding levels, predicted individual differences in learning from reward vs. punishment. These results suggest that normal variation in asymmetry of dopamine signaling may, in part, underlie human personality and cognition. PMID:24345165

  5. Optogenetic stimulation in a computational model of the basal ganglia biases action selection and reward prediction error.

    Directory of Open Access Journals (Sweden)

    Pierre Berthet

    Full Text Available Optogenetic stimulation of specific types of medium spiny neurons (MSNs in the striatum has been shown to bias the selection of mice in a two choices task. This shift is dependent on the localisation and on the intensity of the stimulation but also on the recent reward history. We have implemented a way to simulate this increased activity produced by the optical flash in our computational model of the basal ganglia (BG. This abstract model features the direct and indirect pathways commonly described in biology, and a reward prediction pathway (RP. The framework is similar to Actor-Critic methods and to the ventral/dorsal distinction in the striatum. We thus investigated the impact on the selection caused by an added stimulation in each of the three pathways. We were able to reproduce in our model the bias in action selection observed in mice. Our results also showed that biasing the reward prediction is sufficient to create a modification in the action selection. However, we had to increase the percentage of trials with stimulation relative to that in experiments in order to impact the selection. We found that increasing only the reward prediction had a different effect if the stimulation in RP was action dependent (only for a specific action or not. We further looked at the evolution of the change in the weights depending on the stage of learning within a block. A bias in RP impacts the plasticity differently depending on that stage but also on the outcome. It remains to experimentally test how the dopaminergic neurons are affected by specific stimulations of neurons in the striatum and to relate data to predictions of our model.

  6. Optogenetic stimulation in a computational model of the basal ganglia biases action selection and reward prediction error.

    Science.gov (United States)

    Berthet, Pierre; Lansner, Anders

    2014-01-01

    Optogenetic stimulation of specific types of medium spiny neurons (MSNs) in the striatum has been shown to bias the selection of mice in a two choices task. This shift is dependent on the localisation and on the intensity of the stimulation but also on the recent reward history. We have implemented a way to simulate this increased activity produced by the optical flash in our computational model of the basal ganglia (BG). This abstract model features the direct and indirect pathways commonly described in biology, and a reward prediction pathway (RP). The framework is similar to Actor-Critic methods and to the ventral/dorsal distinction in the striatum. We thus investigated the impact on the selection caused by an added stimulation in each of the three pathways. We were able to reproduce in our model the bias in action selection observed in mice. Our results also showed that biasing the reward prediction is sufficient to create a modification in the action selection. However, we had to increase the percentage of trials with stimulation relative to that in experiments in order to impact the selection. We found that increasing only the reward prediction had a different effect if the stimulation in RP was action dependent (only for a specific action) or not. We further looked at the evolution of the change in the weights depending on the stage of learning within a block. A bias in RP impacts the plasticity differently depending on that stage but also on the outcome. It remains to experimentally test how the dopaminergic neurons are affected by specific stimulations of neurons in the striatum and to relate data to predictions of our model. PMID:24614169

  7. Phasic dopamine as a prediction error of intrinsic and extrinsic reinforcement driving both action acquisition and reward maximization: A simulated robotic study

    OpenAIRE

    Mirolli, Marco; Santucci, Vieri Giuliano; Baldassarre, Gianluca

    2013-01-01

    An important issue of recent neuroscientific research is to understand the functional role of the phasic release of dopamine in the striatum, and in particular its relation to reinforcement learning. The literature is split between two alternative hypotheses: one considers phasic dopamine as a reward prediction error similar to the computational TD-error, whose function is to guide an animal to maximize future rewards; the other holds that phasic dopamine is a sensory prediction error signal ...

  8. Prefrontal cortex fails to learn from reward prediction errors in alcohol dependence

    NARCIS (Netherlands)

    S.Q. Park; T. Kahnt; A. Beck; M.X. Cohen; R.J. Dolan; J. Wrase; A. Heinz

    2010-01-01

    Patients suffering from addiction persist in consuming substances of abuse, despite negative consequences or absence of positive consequences. One potential explanation is that these patients are impaired at flexibly adapting their behavior to changes in reward contingencies. A key aspect of adaptiv

  9. Dopamine Replacement Therapy, Learning and Reward Prediction in Parkinson's Disease: Implications for Rehabilitation.

    Science.gov (United States)

    Ferrazzoli, Davide; Carter, Adrian; Ustun, Fatma S; Palamara, Grazia; Ortelli, Paola; Maestri, Roberto; Yücel, Murat; Frazzitta, Giuseppe

    2016-01-01

    The principal feature of Parkinson's disease (PD) is the impaired ability to acquire and express habitual-automatic actions due to the loss of dopamine in the dorsolateral striatum, the region of the basal ganglia associated with the control of habitual behavior. Dopamine replacement therapy (DRT) compensates for the lack of dopamine, representing the standard treatment for different motor symptoms of PD (such as rigidity, bradykinesia and resting tremor). On the other hand, rehabilitation treatments, exploiting the use of cognitive strategies, feedbacks and external cues, permit to "learn to bypass" the defective basal ganglia (using the dorsolateral area of the prefrontal cortex) allowing the patients to perform correct movements under executive-volitional control. Therefore, DRT and rehabilitation seem to be two complementary and synergistic approaches. Learning and reward are central in rehabilitation: both of these mechanisms are the basis for the success of any rehabilitative treatment. Anyway, it is known that "learning resources" and reward could be negatively influenced from dopaminergic drugs. Furthermore, DRT causes different well-known complications: among these, dyskinesias, motor fluctuations, and dopamine dysregulation syndrome (DDS) are intimately linked with the alteration in the learning and reward mechanisms and could impact seriously on the rehabilitative outcomes. These considerations highlight the need for careful titration of DRT to produce the desired improvement in motor symptoms while minimizing the associated detrimental effects. This is important in order to maximize the motor re-learning based on repetition, reward and practice during rehabilitation. In this scenario, we review the knowledge concerning the interactions between DRT, learning and reward, examine the most impactful DRT side effects and provide suggestions for optimizing rehabilitation in PD. PMID:27378872

  10. Neural responses to threat and reward interact to predict stress-related problem drinking: A novel protective role of the amygdala

    Directory of Open Access Journals (Sweden)

    Nikolova Yuliya S

    2012-11-01

    Full Text Available Abstract Background Research into neural mechanisms of drug abuse risk has focused on the role of dysfunction in neural circuits for reward. In contrast, few studies have examined the role of dysfunction in neural circuits of threat in mediating drug abuse risk. Although typically regarded as a risk factor for mood and anxiety disorders, threat-related amygdala reactivity may serve as a protective factor against substance use disorders, particularly in individuals with exaggerated responsiveness to reward. Findings We used well-established neuroimaging paradigms to probe threat-related amygdala and reward-related ventral striatum reactivity in a sample of 200 young adult students from the ongoing Duke Neurogenetics Study. Recent life stress and problem drinking were assessed using self-report. We found a significant three-way interaction between threat-related amygdala reactivity, reward-related ventral striatum reactivity, and recent stress, wherein individuals with higher reward-related ventral striatum reactivity exhibit higher levels of problem drinking in the context of stress, but only if they also have lower threat-related amygdala reactivity. This three-way interaction predicted both contemporaneous problem drinking and problem drinking reported three-months later in a subset of participants. Conclusions These findings suggest complex interactions between stress and neural responsiveness to both threat and reward mediate problem drinking. Furthermore, they highlight a novel protective role for threat-related amygdala reactivity against drug use in individuals with high neural reactivity to reward.

  11. Hemispheric Asymmetries in Striatal Reward Responses Relate to Approach-Avoidance Learning and Encoding of Positive-Negative Prediction Errors in Dopaminergic Midbrain Regions.

    Science.gov (United States)

    Aberg, Kristoffer Carl; Doell, Kimberly C; Schwartz, Sophie

    2015-10-28

    Some individuals are better at learning about rewarding situations, whereas others are inclined to avoid punishments (i.e., enhanced approach or avoidance learning, respectively). In reinforcement learning, action values are increased when outcomes are better than predicted (positive prediction errors [PEs]) and decreased for worse than predicted outcomes (negative PEs). Because actions with high and low values are approached and avoided, respectively, individual differences in the neural encoding of PEs may influence the balance between approach-avoidance learning. Recent correlational approaches also indicate that biases in approach-avoidance learning involve hemispheric asymmetries in dopamine function. However, the computational and neural mechanisms underpinning such learning biases remain unknown. Here we assessed hemispheric reward asymmetry in striatal activity in 34 human participants who performed a task involving rewards and punishments. We show that the relative difference in reward response between hemispheres relates to individual biases in approach-avoidance learning. Moreover, using a computational modeling approach, we demonstrate that better encoding of positive (vs negative) PEs in dopaminergic midbrain regions is associated with better approach (vs avoidance) learning, specifically in participants with larger reward responses in the left (vs right) ventral striatum. Thus, individual dispositions or traits may be determined by neural processes acting to constrain learning about specific aspects of the world. PMID:26511241

  12. Hemispheric Asymmetries in Striatal Reward Responses Relate to Approach-Avoidance Learning and Encoding of Positive-Negative Prediction Errors in Dopaminergic Midbrain Regions.

    Science.gov (United States)

    Aberg, Kristoffer Carl; Doell, Kimberly C; Schwartz, Sophie

    2015-10-28

    Some individuals are better at learning about rewarding situations, whereas others are inclined to avoid punishments (i.e., enhanced approach or avoidance learning, respectively). In reinforcement learning, action values are increased when outcomes are better than predicted (positive prediction errors [PEs]) and decreased for worse than predicted outcomes (negative PEs). Because actions with high and low values are approached and avoided, respectively, individual differences in the neural encoding of PEs may influence the balance between approach-avoidance learning. Recent correlational approaches also indicate that biases in approach-avoidance learning involve hemispheric asymmetries in dopamine function. However, the computational and neural mechanisms underpinning such learning biases remain unknown. Here we assessed hemispheric reward asymmetry in striatal activity in 34 human participants who performed a task involving rewards and punishments. We show that the relative difference in reward response between hemispheres relates to individual biases in approach-avoidance learning. Moreover, using a computational modeling approach, we demonstrate that better encoding of positive (vs negative) PEs in dopaminergic midbrain regions is associated with better approach (vs avoidance) learning, specifically in participants with larger reward responses in the left (vs right) ventral striatum. Thus, individual dispositions or traits may be determined by neural processes acting to constrain learning about specific aspects of the world.

  13. Memory Consolidation and Neural Substrate of Reward

    OpenAIRE

    Redolar-Ripoll, Diego

    2012-01-01

    The aim of this report is to analyze the relationships between reward and learning and memory processes. Different studies have described how information about rewards influences behavior and how the brain uses this reward information to control learning and memory processes. Reward nature seems to be processed in different ways by neurons in different brain structures, ranging from the detection and perception of rewards to the use of information about predicted rewards for the control of go...

  14. Updating dopamine reward signals

    OpenAIRE

    Schultz, Wolfram

    2013-01-01

    Recent work has advanced our knowledge of phasic dopamine reward prediction error signals. The error signal is bidirectional, reflects well the higher order prediction error described by temporal difference learning models, is compatible with model-free and model-based reinforcement learning, reports the subjective rather than physical reward value during temporal discounting and reflects subjective stimulus perception rather than physical stimulus aspects. Dopamine activations are primarily ...

  15. An MEG signature corresponding to an axiomatic model of reward prediction error.

    Science.gov (United States)

    Talmi, Deborah; Fuentemilla, Lluis; Litvak, Vladimir; Duzel, Emrah; Dolan, Raymond J

    2012-01-01

    Optimal decision-making is guided by evaluating the outcomes of previous decisions. Prediction errors are theoretical teaching signals which integrate two features of an outcome: its inherent value and prior expectation of its occurrence. To uncover the magnetic signature of prediction errors in the human brain we acquired magnetoencephalographic (MEG) data while participants performed a gambling task. Our primary objective was to use formal criteria, based upon an axiomatic model (Caplin and Dean, 2008a), to determine the presence and timing profile of MEG signals that express prediction errors. We report analyses at the sensor level, implemented in SPM8, time locked to outcome onset. We identified, for the first time, a MEG signature of prediction error, which emerged approximately 320 ms after an outcome and expressed as an interaction between outcome valence and probability. This signal followed earlier, separate signals for outcome valence and probability, which emerged approximately 200 ms after an outcome. Strikingly, the time course of the prediction error signal, as well as the early valence signal, resembled the Feedback-Related Negativity (FRN). In simultaneously acquired EEG data we obtained a robust FRN, but the win and loss signals that comprised this difference wave did not comply with the axiomatic model. Our findings motivate an explicit examination of the critical issue of timing embodied in computational models of prediction errors as seen in human electrophysiological data.

  16. Striatal dopamine D2 receptor availability predicts the thalamic and medial prefrontal responses to reward in cocaine abusers three years later

    International Nuclear Information System (INIS)

    Low levels of dopamine (DA) D2 receptor availability at a resting baseline have been previously reported in drug addicted individuals and have been associated with reduced ventral and dorsal prefrontal metabolism. The reduction in DA D2 receptor availability along with the reduced ventral frontal metabolism is thought to underlie compromised sensitivity to nondrug reward, a core characteristic of drug addiction. We therefore hypothesized that variability in DA D2 receptor availability at baseline will covary with dynamic responses to monetary reward in addicted individuals. Striatal DA D2 receptor availability was measured with (11C)raclopride and positron emission tomography and response to monetary reward was measured (an average of three years later) with functional magnetic resonance imaging in seven cocaine-addicted individuals. Results show that low DA D2 receptor availability in the dorsal striatum was associated with decreased thalamic response to monetary reward; while low availability in ventral striatum was associated with increased medial prefrontal (Brodmann Area 6/8/32) response to monetary reward. These preliminary results, that need to be replicated in larger sample sizes and validated with healthy controls, suggest that resting striatal DA D2 receptor availability predicts variability in functional responses to a nondrug reinforcer (money) in prefrontal cortex, implicated in behavioral monitoring, and in thalamus, implicated in conditioned responses and expectation, in cocaine-addicted individuals.

  17. Striatal dopamine D2 receptor availability predicts the thalamic and medial prefrontal responses to reward in cocaine abusers three years later

    Energy Technology Data Exchange (ETDEWEB)

    Asensio, S.; Goldstein, R.; Asensio, S.; Romero, M.J.; Romero, F.J.; Wong, C.T.; Alia-Klein, N.; Tomasi, D.; Wang, G.-J.; Telang, F..; Volkow, N.D.; Goldstein, R.Z.

    2010-05-01

    Low levels of dopamine (DA) D2 receptor availability at a resting baseline have been previously reported in drug addicted individuals and have been associated with reduced ventral and dorsal prefrontal metabolism. The reduction in DA D2 receptor availability along with the reduced ventral frontal metabolism is thought to underlie compromised sensitivity to nondrug reward, a core characteristic of drug addiction. We therefore hypothesized that variability in DA D2 receptor availability at baseline will covary with dynamic responses to monetary reward in addicted individuals. Striatal DA D2 receptor availability was measured with [{sup 11}C]raclopride and positron emission tomography and response to monetary reward was measured (an average of three years later) with functional magnetic resonance imaging in seven cocaine-addicted individuals. Results show that low DA D2 receptor availability in the dorsal striatum was associated with decreased thalamic response to monetary reward; while low availability in ventral striatum was associated with increased medial prefrontal (Brodmann Area 6/8/32) response to monetary reward. These preliminary results, that need to be replicated in larger sample sizes and validated with healthy controls, suggest that resting striatal DA D2 receptor availability predicts variability in functional responses to a nondrug reinforcer (money) in prefrontal cortex, implicated in behavioral monitoring, and in thalamus, implicated in conditioned responses and expectation, in cocaine-addicted individuals.

  18. Predictive neural coding of reward preference involves dissociable responses in human ventral midbrain and ventral striatum.

    Science.gov (United States)

    O'Doherty, John P; Buchanan, Tony W; Seymour, Ben; Dolan, Raymond J

    2006-01-01

    Food preferences are acquired through experience and can exert strong influence on choice behavior. In order to choose which food to consume, it is necessary to maintain a predictive representation of the subjective value of the associated food stimulus. Here, we explore the neural mechanisms by which such predictive representations are learned through classical conditioning. Human subjects were scanned using fMRI while learning associations between arbitrary visual stimuli and subsequent delivery of one of five different food flavors. Using a temporal difference algorithm to model learning, we found predictive responses in the ventral midbrain and a part of ventral striatum (ventral putamen) that were related directly to subjects' actual behavioral preferences. These brain structures demonstrated divergent response profiles, with the ventral midbrain showing a linear response profile with preference, and the ventral striatum a bivalent response. These results provide insight into the neural mechanisms underlying human preference behavior. PMID:16387647

  19. Predicting clinical outcome from reward circuitry function and white matter structure in behaviorally and emotionally dysregulated youth.

    Science.gov (United States)

    Bertocci, M A; Bebko, G; Versace, A; Fournier, J C; Iyengar, S; Olino, T; Bonar, L; Almeida, J R C; Perlman, S B; Schirda, C; Travis, M J; Gill, M K; Diwadkar, V A; Forbes, E E; Sunshine, J L; Holland, S K; Kowatch, R A; Birmaher, B; Axelson, D; Horwitz, S M; Frazier, T W; Arnold, L E; Fristad, M A; Youngstrom, E A; Findling, R L; Phillips, M L

    2016-09-01

    Behavioral and emotional dysregulation in childhood may be understood as prodromal to adult psychopathology. Additionally, there is a critical need to identify biomarkers reflecting underlying neuropathological processes that predict clinical/behavioral outcomes in youth. We aimed to identify such biomarkers in youth with behavioral and emotional dysregulation in the Longitudinal Assessment of Manic Symptoms (LAMS) study. We examined neuroimaging measures of function and white matter in the whole brain using 80 youth aged 14.0 (s.d.=2.0) from three clinical sites. Linear regression using the LASSO (Least Absolute Shrinkage and Selection Operator) method for variable selection was used to predict severity of future behavioral and emotional dysregulation measured by the Parent General Behavior Inventory-10 Item Mania Scale (PGBI-10M)) at a mean of 14.2 months follow-up after neuroimaging assessment. Neuroimaging measures, together with near-scan PGBI-10M, a score of manic behaviors, depressive behaviors and sex, explained 28% of the variance in follow-up PGBI-10M. Neuroimaging measures alone, after accounting for other identified predictors, explained ~1/3 of the explained variance, in follow-up PGBI-10M. Specifically, greater bilateral cingulum length predicted lower PGBI-10M at follow-up. Greater functional connectivity in parietal-subcortical reward circuitry predicted greater PGBI-10M at follow-up. For the first time, data suggest that multimodal neuroimaging measures of underlying neuropathologic processes account for over a third of the explained variance in clinical outcome in a large sample of behaviorally and emotionally dysregulated youth. This may be an important first step toward identifying neurobiological measures with the potential to act as novel targets for early detection and future therapeutic interventions. PMID:26903272

  20. Predicting clinical outcome from reward circuitry function and white matter structure in behaviorally and emotionally dysregulated youth

    Science.gov (United States)

    Bertocci, Michele A.; Bebko, Genna; Versace, Amelia; Fournier, Jay C.; Iyengar, Satish; Olino, Thomas; Bonar, Lisa; Almeida, Jorge R. C.; Perlman, Susan B.; Schirda, Claudiu; Travis, Michael J.; Gill, Mary Kay; Diwadkar, Vaibhav A.; Forbes, Erika E.; Sunshine, Jeffrey L.; Holland, Scott K; Kowatch, Robert A.; Birmaher, Boris; Axelson, David; Horwitz, Sarah M.; Frazier, Thomas W.; Arnold, L. Eugene; Fristad, Mary. A; Youngstrom, Eric A.; Findling, Robert L.; Phillips, Mary L.

    2015-01-01

    Behavioral and emotional dysregulation in childhood may be understood as prodromal to adult psychopathology. Additionally, there is a critical need to identify biomarkers reflecting underlying neuropathological processes that predict clinical/behavioral outcomes in youth. We aimed to identify such biomarkers in youth with behavioral and emotional dysregulation in the Longitudinal Assessment of Manic Symptoms (LAMS) study. We examined neuroimaging measures of function and white matter in the whole brain using 80 youth aged 14.0(sd=2.0) from 3 clinical sites. Linear regression using the LASSO method for variable selection was used to predict severity of future behavioral and emotional dysregulation [measured by the Parent General Behavior Inventory-10 Item Mania Scale (PGBI-10M)] at a mean of 14.2 months follow-up after neuroimaging assessment. Neuroimaging measures, together with near-scan PGBI-10M, a score of manic behaviors, depressive behaviors, and sex, explained 28% of the variance in follow-up PGBI-10M. Neuroimaging measures alone, after accounting for other identified predictors, explained approximately one-third of the explained variance, in follow-up PGBI-10M. Specifically, greater bilateral cingulum length predicted lower PGBI-10M at follow-up. Greater functional connectivity in parietal-subcortical reward circuitry predicted greater PGBI-10M at follow-up. For the first time, data suggest that multimodal neuroimaging measures of underlying neuropathologic processes account for over a third of the explained variance in clinical outcome in a large sample of behaviorally and emotionally dysregulated youth. This may be an important first step toward identifying neurobiological measures with the potential to act as novel targets for early detection and future therapeutic interventions. PMID:26903272

  1. Encoding of both positive and negative reward prediction errors by neurons of the primate lateral prefrontal cortex and caudate nucleus.

    Science.gov (United States)

    Asaad, Wael F; Eskandar, Emad N

    2011-12-01

    Learning can be motivated by unanticipated success or unexpected failure. The former encourages us to repeat an action or activity, whereas the latter leads us to find an alternative strategy. Understanding the neural representation of these unexpected events is therefore critical to elucidate learning-related circuits. We examined the activity of neurons in the lateral prefrontal cortex (PFC) and caudate nucleus of monkeys as they performed a trial-and-error learning task. Unexpected outcomes were widely represented in both structures, and neurons driven by unexpectedly negative outcomes were as frequent as those activated by unexpectedly positive outcomes. Moreover, both positive and negative reward prediction errors (RPEs) were represented primarily by increases in firing rate, unlike the manner in which dopamine neurons have been observed to reflect these values. Interestingly, positive RPEs tended to appear with shorter latency than negative RPEs, perhaps reflecting the mechanism of their generation. Last, in the PFC but not the caudate, trial-by-trial variations in outcome-related activity were linked to the animals' subsequent behavioral decisions. More broadly, the robustness of RPE signaling by these neurons suggests that actor-critic models of reinforcement learning in which the PFC and particularly the caudate are considered primarily to be "actors" rather than "critics," should be reconsidered to include a prominent evaluative role for these structures. PMID:22159094

  2. Dissecting Neural Responses to Temporal Prediction, Attention, and Memory: Effects of Reward Learning and Interoception on Time Perception.

    Science.gov (United States)

    Tomasi, Dardo; Wang, Gene-Jack; Studentsova, Yana; Volkow, Nora D

    2015-10-01

    Temporal prediction (TP) is needed to anticipate future events and is essential for survival. Our sense of time is modulated by emotional and interoceptive (corporal) states that are hypothesized to rely on a dopamine (DA)-modulated "internal clock" in the basal ganglia. However, the neurobiological substrates for TP in the human brain have not been identified. We tested the hypothesis that TP involves DA striato-cortical pathways, and that accurate responses are reinforcing in themselves and activate the nucleus accumbens (NAc). Functional magnetic resonance imaging revealed the involvement of the NAc and anterior insula in the temporal precision of the responses, and of the ventral tegmental area in error processing. Moreover, NAc showed higher activation for successful than for unsuccessful trials, indicating that accurate TP per se is rewarding. Inasmuch as activation of the NAc is associated with drug-induced addictive behaviors, its activation by accurate TP could help explain why video games that rely on TP can trigger compulsive behaviors. PMID:25389123

  3. Reward functions of the basal ganglia.

    Science.gov (United States)

    Schultz, Wolfram

    2016-07-01

    Besides their fundamental movement function evidenced by Parkinsonian deficits, the basal ganglia are involved in processing closely linked non-motor, cognitive and reward information. This review describes the reward functions of three brain structures that are major components of the basal ganglia or are closely associated with the basal ganglia, namely midbrain dopamine neurons, pedunculopontine nucleus, and striatum (caudate nucleus, putamen, nucleus accumbens). Rewards are involved in learning (positive reinforcement), approach behavior, economic choices and positive emotions. The response of dopamine neurons to rewards consists of an early detection component and a subsequent reward component that reflects a prediction error in economic utility, but is unrelated to movement. Dopamine activations to non-rewarded or aversive stimuli reflect physical impact, but not punishment. Neurons in pedunculopontine nucleus project their axons to dopamine neurons and process sensory stimuli, movements and rewards and reward-predicting stimuli without coding outright reward prediction errors. Neurons in striatum, besides their pronounced movement relationships, process rewards irrespective of sensory and motor aspects, integrate reward information into movement activity, code the reward value of individual actions, change their reward-related activity during learning, and code own reward in social situations depending on whose action produces the reward. These data demonstrate a variety of well-characterized reward processes in specific basal ganglia nuclei consistent with an important function in non-motor aspects of motivated behavior. PMID:26838982

  4. Do aberrant crypt foci have predictive value for the occurrence of colorectal tumours? Potential of gene expression profiling in tumours

    NARCIS (Netherlands)

    Wijnands, M.V.W.; Erk, M.J. van; Doornbos, R.P.; Krul, C.A.M.; Woutersen, R.A.

    2004-01-01

    The effects of different dietary compounds on the formation of aberrant crypt foci (ACF) and colorectal tumours and on the expression of a selection of genes were studied in rats. Azoxymethane-treated male F344 rats were fed either a control diet or a diet containing 10% wheat bran (WB), 0.2% curcum

  5. AN EXTENDED REINFORCEMENT LEARNING MODEL OF BASAL GANGLIA TO UNDERSTAND THE CONTRIBUTIONS OF SEROTONIN AND DOPAMINE IN RISK-BASED DECISION MAKING, REWARD PREDICTION, AND PUNISHMENT LEARNING

    Directory of Open Access Journals (Sweden)

    Pragathi Priyadharsini Balasubramani

    2014-04-01

    Full Text Available Although empirical and neural studies show that serotonin (5HT plays many functional roles in the brain, prior computational models mostly focus on its role in behavioral inhibition. In this study, we present a model of risk based decision making in a modified Reinforcement Learning (RL-framework. The model depicts the roles of dopamine (DA and serotonin (5HT in Basal Ganglia (BG. In this model, the DA signal is represented by the temporal difference error (δ, while the 5HT signal is represented by a parameter (α that controls risk prediction error. This formulation that accommodates both 5HT and DA reconciles some of the diverse roles of 5HT particularly in connection with the BG system. We apply the model to different experimental paradigms used to study the role of 5HT: 1 Risk-sensitive decision making, where 5HT controls risk assessment, 2 Temporal reward prediction, where 5HT controls time-scale of reward prediction, and 3 Reward/Punishment sensitivity, in which the punishment prediction error depends on 5HT levels. Thus the proposed integrated RL model reconciles several existing theories of 5HT and DA in the BG.

  6. An extended reinforcement learning model of basal ganglia to understand the contributions of serotonin and dopamine in risk-based decision making, reward prediction, and punishment learning.

    Science.gov (United States)

    Balasubramani, Pragathi P; Chakravarthy, V Srinivasa; Ravindran, Balaraman; Moustafa, Ahmed A

    2014-01-01

    Although empirical and neural studies show that serotonin (5HT) plays many functional roles in the brain, prior computational models mostly focus on its role in behavioral inhibition. In this study, we present a model of risk based decision making in a modified Reinforcement Learning (RL)-framework. The model depicts the roles of dopamine (DA) and serotonin (5HT) in Basal Ganglia (BG). In this model, the DA signal is represented by the temporal difference error (δ), while the 5HT signal is represented by a parameter (α) that controls risk prediction error. This formulation that accommodates both 5HT and DA reconciles some of the diverse roles of 5HT particularly in connection with the BG system. We apply the model to different experimental paradigms used to study the role of 5HT: (1) Risk-sensitive decision making, where 5HT controls risk assessment, (2) Temporal reward prediction, where 5HT controls time-scale of reward prediction, and (3) Reward/Punishment sensitivity, in which the punishment prediction error depends on 5HT levels. Thus the proposed integrated RL model reconciles several existing theories of 5HT and DA in the BG.

  7. Prediction of alcohol drinking in adolescents: Personality-traits, behavior, brain responses, and genetic variations in the context of reward sensitivity.

    Science.gov (United States)

    Heinrich, Angela; Müller, Kathrin U; Banaschewski, Tobias; Barker, Gareth J; Bokde, Arun L W; Bromberg, Uli; Büchel, Christian; Conrod, Patricia; Fauth-Bühler, Mira; Papadopoulos, Dimitri; Gallinat, Jürgen; Garavan, Hugh; Gowland, Penny; Heinz, Andreas; Ittermann, Bernd; Mann, Karl; Martinot, Jean-Luc; Paus, Tomáš; Pausova, Zdenka; Smolka, Michael; Ströhle, Andreas; Rietschel, Marcella; Flor, Herta; Schumann, Gunter; Nees, Frauke

    2016-07-01

    Adolescence is a time that can set the course of alcohol abuse later in life. Sensitivity to reward on multiple levels is a major factor in this development. We examined 736 adolescents from the IMAGEN longitudinal study for alcohol drinking during early (mean age=14.37) and again later (mean age=16.45) adolescence. Conducting structural equation modeling we evaluated the contribution of reward-related personality traits, behavior, brain responses and candidate genes. Personality seems to be most important in explaining alcohol drinking in early adolescence. However, genetic variations in ANKK1 (rs1800497) and HOMER1 (rs7713917) play an equal role in predicting alcohol drinking two years later and are most important in predicting the increase in alcohol consumption. We hypothesize that the initiation of alcohol use may be driven more strongly by personality while the transition to increased alcohol use is more genetically influenced. PMID:27180911

  8. Prediction of alcohol drinking in adolescents: Personality-traits, behavior, brain responses, and genetic variations in the context of reward sensitivity.

    Science.gov (United States)

    Heinrich, Angela; Müller, Kathrin U; Banaschewski, Tobias; Barker, Gareth J; Bokde, Arun L W; Bromberg, Uli; Büchel, Christian; Conrod, Patricia; Fauth-Bühler, Mira; Papadopoulos, Dimitri; Gallinat, Jürgen; Garavan, Hugh; Gowland, Penny; Heinz, Andreas; Ittermann, Bernd; Mann, Karl; Martinot, Jean-Luc; Paus, Tomáš; Pausova, Zdenka; Smolka, Michael; Ströhle, Andreas; Rietschel, Marcella; Flor, Herta; Schumann, Gunter; Nees, Frauke

    2016-07-01

    Adolescence is a time that can set the course of alcohol abuse later in life. Sensitivity to reward on multiple levels is a major factor in this development. We examined 736 adolescents from the IMAGEN longitudinal study for alcohol drinking during early (mean age=14.37) and again later (mean age=16.45) adolescence. Conducting structural equation modeling we evaluated the contribution of reward-related personality traits, behavior, brain responses and candidate genes. Personality seems to be most important in explaining alcohol drinking in early adolescence. However, genetic variations in ANKK1 (rs1800497) and HOMER1 (rs7713917) play an equal role in predicting alcohol drinking two years later and are most important in predicting the increase in alcohol consumption. We hypothesize that the initiation of alcohol use may be driven more strongly by personality while the transition to increased alcohol use is more genetically influenced.

  9. Aberrant expression of nuclear HDAC3 and cytoplasmic CDH1 predict a poor prognosis for patients with pancreatic cancer.

    Science.gov (United States)

    Jiao, Feng; Hu, Hai; Han, Ting; Zhuo, Meng; Yuan, Cuncun; Yang, Haiyan; Wang, Lei; Wang, Liwei

    2016-03-29

    Previous studies showed that aberrant CDH1 or/and HDAC3 localization is essential for the progression of some human cancers. Here, we investigate the prognostic significance of aberrant CDH1 and HDAC3 localization in 84 pancreatic cancer patients. Our results show that increases in both membrane and cytoplasmic CDH1 correlate with lymph node metastasis (P = 0.026 and P 0.05). Multivariate analysis showed that nuclear HDAC3 and cytoplasmic CDH1 (P = 0.001 and P = 0.010, respectively), as well as tumor differentiation (P = 0.009) are independent prognostic factors. Most importantly, patients with high co-expression of nuclear HDAC3 and cytoplasmic CDH1 had shorter survival times (P CDH1 have independent prognostic value in pancreatic cancer and provide novel targets for prognostic therapeutics.

  10. Premotor and Motor Cortices Encode Reward.

    Science.gov (United States)

    Ramkumar, Pavan; Dekleva, Brian; Cooler, Sam; Miller, Lee; Kording, Konrad

    2016-01-01

    Rewards associated with actions are critical for motivation and learning about the consequences of one's actions on the world. The motor cortices are involved in planning and executing movements, but it is unclear whether they encode reward over and above limb kinematics and dynamics. Here, we report a categorical reward signal in dorsal premotor (PMd) and primary motor (M1) neurons that corresponds to an increase in firing rates when a trial was not rewarded regardless of whether or not a reward was expected. We show that this signal is unrelated to error magnitude, reward prediction error, or other task confounds such as reward consumption, return reach plan, or kinematic differences across rewarded and unrewarded trials. The availability of reward information in motor cortex is crucial for theories of reward-based learning and motivational influences on actions. PMID:27564707

  11. Updating dopamine reward signals.

    Science.gov (United States)

    Schultz, Wolfram

    2013-04-01

    Recent work has advanced our knowledge of phasic dopamine reward prediction error signals. The error signal is bidirectional, reflects well the higher order prediction error described by temporal difference learning models, is compatible with model-free and model-based reinforcement learning, reports the subjective rather than physical reward value during temporal discounting and reflects subjective stimulus perception rather than physical stimulus aspects. Dopamine activations are primarily driven by reward, and to some extent risk, whereas punishment and salience have only limited activating effects when appropriate controls are respected. The signal is homogeneous in terms of time course but heterogeneous in many other aspects. It is essential for synaptic plasticity and a range of behavioural learning situations.

  12. Reward Modulates Adaptations to Conflict

    Science.gov (United States)

    Braem, Senne; Verguts, Tom; Roggeman, Chantal; Notebaert, Wim

    2012-01-01

    Both cognitive conflict (e.g. Verguts & Notebaert, 2009) and reward signals (e.g. Waszak & Pholulamdeth, 2009) have been proposed to enhance task-relevant associations. Bringing these two notions together, we predicted that reward modulates conflict-based sequential adaptations in cognitive control. This was tested combining either a single…

  13. Social reward shapes attentional biases.

    Science.gov (United States)

    Anderson, Brian A

    2016-01-01

    Paying attention to stimuli that predict a reward outcome is important for an organism to survive and thrive. When visual stimuli are associated with tangible, extrinsic rewards such as money or food, these stimuli acquire high attentional priority and come to automatically capture attention. In humans and other primates, however, many behaviors are not motivated directly by such extrinsic rewards, but rather by the social feedback that results from performing those behaviors. In the present study, I examine whether positive social feedback can similarly influence attentional bias. The results show that stimuli previously associated with a high probability of positive social feedback elicit value-driven attentional capture, much like stimuli associated with extrinsic rewards. Unlike with extrinsic rewards, however, such stimuli also influence task-specific motivation. My findings offer a potential mechanism by which social reward shapes the information that we prioritize when perceiving the world around us. PMID:25941868

  14. Optical Aberrations and Wavefront

    Directory of Open Access Journals (Sweden)

    Nihat Polat

    2014-08-01

    Full Text Available The deviation of light to create normal retinal image in the optical system is called aberration. Aberrations are divided two subgroup: low-order aberrations (defocus: spherical and cylindrical refractive errors and high-order aberrations (coma, spherical, trefoil, tetrafoil, quadrifoil, pentafoil, secondary astigmatism. Aberrations increase with aging. Spherical aberrations are compensated by positive corneal and negative lenticular spherical aberrations in youth. Total aberrations are elevated by positive corneal and positive lenticular spherical aberrations in elderly. In this study, we aimed to analyze the basic terms regarding optic aberrations which have gained significance recently. (Turk J Ophthalmol 2014; 44: 306-11

  15. PER1 rs3027172 genotype interacts with early life stress to predict problematic alcohol use, but not reward-related ventral striatum activity

    Directory of Open Access Journals (Sweden)

    David eBaranger

    2016-03-01

    Full Text Available Increasing evidence suggests that the circadian and stress regulatory systems contribute to alcohol use disorder (AUD risk, which may partially arise through effects on reward-related neural function. The C allele of the PER1 rs3027172 single nucleotide polymorphism reduces PER1 expression in cells incubated with cortisol and has been associated with increased risk for adult AUD and problematic drinking among adolescents exposed to high levels of familial psychosocial adversity. Using data from undergraduate students who completed the ongoing Duke Neurogenetics Study (n=665, we tested whether exposure to early life stress (ELS; Childhood Trauma Questionnaire moderates the association between rs3027172 genotype and later problematic alcohol use (Alcohol Use Disorders Identification Test as well as ventral striatum (VS reactivity to reward (card-guessing task while functional magnetic resonance imaging data were acquired. Initial analyses found that PER1 rs3027172 genotype interacted with ELS to predict both problematic drinking and VS reactivity; minor C allele carriers, who were also exposed to elevated ELS reported greater problematic drinking and exhibited greater ventral striatum reactivity to reward-related stimuli. When gene x covariate and environment x covariate interactions were controlled for, the interaction predicting problematic alcohol use remained significant (p<0.05, corrected while the interaction predicting VS reactivity was no longer significant. These results extend our understanding of relationships between PER1 genotype, early life stress, and problematic alcohol use, and serve as a cautionary tale on the importance of controlling for potential confounders in studies of moderation including gene x environment interactions.

  16. PER1 rs3027172 Genotype Interacts with Early Life Stress to Predict Problematic Alcohol Use, but Not Reward-Related Ventral Striatum Activity.

    Science.gov (United States)

    Baranger, David A A; Ifrah, Chloé; Prather, Aric A; Carey, Caitlin E; Corral-Frías, Nadia S; Drabant Conley, Emily; Hariri, Ahmad R; Bogdan, Ryan

    2016-01-01

    Increasing evidence suggests that the circadian and stress regulatory systems contribute to alcohol use disorder (AUD) risk, which may partially arise through effects on reward-related neural function. The C allele of the PER1 rs3027172 single nucleotide polymorphism (SNP) reduces PER1 expression in cells incubated with cortisol and has been associated with increased risk for adult AUD and problematic drinking among adolescents exposed to high levels of familial psychosocial adversity. Using data from undergraduate students who completed the ongoing Duke Neurogenetics Study (DNS) (n = 665), we tested whether exposure to early life stress (ELS; Childhood Trauma Questionnaire) moderates the association between rs3027172 genotype and later problematic alcohol use (Alcohol Use Disorders Identification Test) as well as ventral striatum (VS) reactivity to reward (card-guessing task while functional magnetic resonance imaging data were acquired). Initial analyses found that PER1 rs3027172 genotype interacted with ELS to predict both problematic drinking and VS reactivity; minor C allele carriers, who were also exposed to elevated ELS reported greater problematic drinking and exhibited greater ventral striatum reactivity to reward-related stimuli. When gene × covariate and environment × covariate interactions were controlled for, the interaction predicting problematic alcohol use remained significant (p < 0.05, corrected) while the interaction predicting VS reactivity was no longer significant. These results extend our understanding of relationships between PER1 genotype, ELS, and problematic alcohol use, and serve as a cautionary tale on the importance of controlling for potential confounders in studies of moderation including gene × environment interactions. PMID:27065929

  17. Relative reward preference in primate orbitofrontal cortex.

    Science.gov (United States)

    Tremblay, L; Schultz, W

    1999-04-22

    The orbital part of prefrontal cortex appears to be crucially involved in the motivational control of goal-directed behaviour. Patients with lesions of orbitofrontal cortex show impairments in making decisions about the expected outcome of actions. Monkeys with orbitofrontal lesions respond abnormally to changes in reward expectations and show altered reward preferences. As rewards constitute basic goals of behaviour, we investigated here how neurons in the orbitofrontal cortex of monkeys process information about liquid and food rewards in a typical frontal task, spatial delayed responding. The activity of orbitofrontal neurons increases in response to reward-predicting signals, during the expectation of rewards, and after the receipt of rewards. Neurons discriminate between different rewards, mainly irrespective of the spatial and visual features of reward-predicting stimuli and behavioural reactions. Most reward discriminations reflect the animals' relative preference among the available rewards, as expressed by their choice behaviour, rather than physical reward properties. Thus, neurons in the orbitofrontal cortex appear to process the motivational value of rewarding outcomes of voluntary action. PMID:10227292

  18. WE-D-BRE-05: Prediction of Late Radiation-Induced Proctitis in Prostate Cancer Patients Using Chromosome Aberration and Cell Proliferation Rate

    Energy Technology Data Exchange (ETDEWEB)

    Oh, J; Deasy, J [Memorial Sloan Kettering Cancer Center, New York, NY (United States)

    2014-06-15

    Purpose: Chromosome damage and cell proliferation rate have been investigated as potential biomarkers for the early prediction of late radiationinduced toxicity. Incorporating these endpoints, we explored the predictive power for late radiation proctitis using a machine learning method. Methods: Recently, Beaton et al. showed that chromosome aberration and cell proliferation rate could be used as biomarkers to predict late radiation proctitis (Beaton et al. (2013) Int J Rad Onc Biol Phys, 85:1346–1352). For the identification of radiosensitive biomarkers, blood samples were collected from 10 patients with grade 3 late proctitis along with 20 control patients with grade 0 proctitis. After irradiation at 6 Gy, statistically significant difference was observed between the two groups, using the number of dicentrics and excess fragments, and the number of cells in metaphase 2 (M2). However, Beaton et al. did not show the usefulness of combining these endpoints. We reanalyzed the dataset to investigate whether incorporating these endpoints can increase the predictive power of radiation proctitis, using a support vector machine (SVM). Results: Using the SVM method with the number of fragments and M2 endpoints, perfect classification was achieved. In addition, to avoid biased estimate of the classification method, leave-one-out cross-validation (LOO-CV) was performed. The best performance was achieved when all three endpoints were used with 87% accuracy, 90% sensitivity, 85% specificity, and 0.85 AUC (the area under the receiver operating characteristic (ROC) curve). The most significant endpoint was the number of fragments that obtained 83% accuracy, 70% sensitivity, 90% specificity, and 0.82 AUC. Conclusion: We demonstrated that chromosome damage and cell proliferation rate could be significant biomarkers to predict late radiation proctitis. When these endpoints were used together in conjunction with a machine learning method, the better performance was obtained

  19. WE-D-BRE-05: Prediction of Late Radiation-Induced Proctitis in Prostate Cancer Patients Using Chromosome Aberration and Cell Proliferation Rate

    International Nuclear Information System (INIS)

    Purpose: Chromosome damage and cell proliferation rate have been investigated as potential biomarkers for the early prediction of late radiationinduced toxicity. Incorporating these endpoints, we explored the predictive power for late radiation proctitis using a machine learning method. Methods: Recently, Beaton et al. showed that chromosome aberration and cell proliferation rate could be used as biomarkers to predict late radiation proctitis (Beaton et al. (2013) Int J Rad Onc Biol Phys, 85:1346–1352). For the identification of radiosensitive biomarkers, blood samples were collected from 10 patients with grade 3 late proctitis along with 20 control patients with grade 0 proctitis. After irradiation at 6 Gy, statistically significant difference was observed between the two groups, using the number of dicentrics and excess fragments, and the number of cells in metaphase 2 (M2). However, Beaton et al. did not show the usefulness of combining these endpoints. We reanalyzed the dataset to investigate whether incorporating these endpoints can increase the predictive power of radiation proctitis, using a support vector machine (SVM). Results: Using the SVM method with the number of fragments and M2 endpoints, perfect classification was achieved. In addition, to avoid biased estimate of the classification method, leave-one-out cross-validation (LOO-CV) was performed. The best performance was achieved when all three endpoints were used with 87% accuracy, 90% sensitivity, 85% specificity, and 0.85 AUC (the area under the receiver operating characteristic (ROC) curve). The most significant endpoint was the number of fragments that obtained 83% accuracy, 70% sensitivity, 90% specificity, and 0.82 AUC. Conclusion: We demonstrated that chromosome damage and cell proliferation rate could be significant biomarkers to predict late radiation proctitis. When these endpoints were used together in conjunction with a machine learning method, the better performance was obtained

  20. Aberrant gene methylation in the peritoneal fluid is a risk factor predicting peritoneal recurrence in gastric cancer

    Institute of Scientific and Technical Information of China (English)

    Masatsugu; Hiraki; Yoshihiko; Kitajima; Seiji; Sato; Jun; Nakamura; Kazuyoshi; Hashiguchi; Hirokazu; Noshiro; Kohji; Miyazaki

    2010-01-01

    AIM:To investigate whether gene methylation in the peritoneal fluid (PF) predicts peritoneal recurrence in gastric cancer patients.METHODS: The gene methylation of CHFR (checkpoint with forkhead and ring finger domains), p16, RUNX3 (runt-related transcription factor 3), E-cadherin, hMLH1 (mutL homolog 1), ABCG2 (ATP-binding cassette, sub-family G, member 2) and BNIP3 (BCL2/adenovirus E1B 19 kDa interacting protein 3) were analyzed in 80 specimens of PF by quantitative methylation-specific polymerase chain r...

  1. Chromosomal aberrations in lymphocytes predict human cancer: a report from the European Study Group on Cytogenetic Biomarkers and Health (ESCH)

    DEFF Research Database (Denmark)

    Hagmar, L; Bonassi, S; Strömberg, U;

    1998-01-01

    . No association was seen between the SCEs or the MN frequencies and subsequent cancer incidence/mortality. The present study further supports our previous observation on the cancer predictivity of the CA biomarker, which seems to be independent of age at test, gender, and time since test. The risk patterns were...... similar within each national cohort. This result suggests that the frequency of CAs in peripheral blood lymphocytes is a relevant biomarker for cancer risk in humans, reflecting either early biological effects of genotoxic carcinogens or individual cancer susceptibility....

  2. Adolescent Alcohol Exposure Amplifies the Incentive Value of Reward-Predictive Cues Through Potentiation of Phasic Dopamine Signaling.

    Science.gov (United States)

    Spoelder, Marcia; Tsutsui, Kimberly T; Lesscher, Heidi M B; Vanderschuren, Louk J M J; Clark, Jeremy J

    2015-12-01

    Adolescent alcohol use remains a major public health concern due in part to well-established findings implicating the age of onset in alcohol use in the development of alcohol use disorders and persistent decision-making deficits in adults. We have previously demonstrated that moderate adolescent alcohol consumption in rats promotes suboptimal decision making and an associated perturbation in mesolimbic dopamine transmission in adulthood. Dopamine-dependent incentive learning processes are an integral component of value-based decision making and a fundamental element to many theoretical accounts of addiction. Thus we tested the hypothesis that adolescent alcohol use selectively alters incentive learning processes through perturbation of mesolimbic dopamine systems. To assess incentive learning, behavioral and neurochemical measurements were made during the acquisition, maintenance, extinction, and reacquisition of a Pavlovian conditioned approach procedure in adult rats with a history of adolescent alcohol consumption. We show that moderate adolescent alcohol consumption potentiates stimulus-evoked phasic dopamine transmission, measured in vivo by fast-scan cyclic voltammetry, in adulthood and biases individuals toward a dopamine-dependent incentive learning strategy. Moreover, we demonstrate that animals exposed to alcohol in adolescence are more sensitive to an unexpected variation in reward outcomes. This pattern of phasic dopamine signaling and the associated bias in learning may provide a mechanism for the well-documented vulnerability of individuals with early-life alcohol use for alcohol use disorders in adulthood.

  3. “Liking” and “Wanting” Linked to Reward Deficiency Syndrome (RDS): Hypothesizing Differential Responsivity in Brain Reward Circuitry

    OpenAIRE

    Blum, Kenneth; Gardner, Eliot; Oscar-Berman, Marlene; Gold, Mark

    2012-01-01

    In an attempt to resolve controversy regarding the causal contributions of mesolimbic dopamine (DA) systems to reward, we evaluate the three main competing explanatory categories: “liking,” “learning,” and “wanting” [1]. That is, DA may mediate (a) the hedonic impact of reward (liking), (b) learned predictions about rewarding effects (learning), or (c) the pursuit of rewards by attributing incentive salience to reward-related stimuli (wanting). We evaluate these hypotheses, especially as they...

  4. Hungry for reward: How can neuroscience inform the development of treatment for Anorexia Nervosa?

    Science.gov (United States)

    Park, Rebecca J; Godier, Lauren R; Cowdrey, Felicity A

    2014-11-01

    Dysfunctional reward from the pursuit of thinness presents a major challenge to recovery from Anorexia Nervosa (AN). We explore the neuroscientific basis of aberrant reward in AN, with the aim of generating novel hypotheses for translational investigation, and elucidate disease mechanisms to inform the development of targeted interventions. Relevant neuroimaging and behavioural studies are reviewed. These suggest that altered eating in AN may be a consequence of aberrant reward processing combined with exaggerated cognitive control. We consider evidence that such aberrant reward processing is reflected in the compulsive behaviours characterising AN, with substantial overlap in the neural circuits implicated in reward processing and compulsivity. Drawing on contemporary neuroscientific theories of substance dependence, processes underpinning the shift from the initially rewarding pursuit of thinness to extreme and compulsive weight control behaviours are discussed. It is suggested that in AN, weight loss behaviour begins as overtly rewarding, goal-directed and positively reinforced, but over time becomes habitual and increasingly negatively reinforced. Excessive habit formation is suggested as one underlying mechanism perpetuating compulsive behaviour. Ongoing research into the behavioural and neural basis of aberrant reward in AN is required to further elucidate mechanisms. We discuss clinical and transdiagnostic implications, and propose that future treatment innovation may benefit from the development of novel interventions targeting aberrant reward processing in AN. PMID:25151600

  5. Linear combination of one-step predictive information with an external reward in an episodic policy gradient setting: a critical analysis

    Directory of Open Access Journals (Sweden)

    Keyan eZahedi

    2013-11-01

    Full Text Available One of the main challenges in the field of embodied artificial intelligence is the open-ended autonomous learning of complex behaviours. Our approach is to use task-independent, information-driven intrinsic motivation(s to support task-dependent learning. The work presented here is a preliminary step in which we investigate the predictive information (the mutual information of the past and future of the sensor stream as an intrinsic drive, ideally supporting any kind of task acquisition. Previous experiments have shown that the predictive information (PI is a good candidate to support autonomous, open-ended learning of complex behaviours, because a maximisation of the PI corresponds to an exploration of morphology- and environment-dependent behavioural regularities. The idea is that these regularities can then be exploited in order to solve any given task. Three different experiments are presented and their results lead to the conclusion that the linear combination of the one-step PI with an external reward function is not generally recommended in an episodic policy gradient setting. Only for hard tasks a great speed-up can be achieved at the cost of an asymptotic performance lost.

  6. Dopamine neurons encode the better option in rats deciding between differently delayed or sized rewards

    OpenAIRE

    Roesch, Matthew R; Calu, Donna J.; Schoenbaum, Geoffrey

    2007-01-01

    The dopamine system is thought to be involved in making decisions about reward. Here we recorded from the ventral tegmental area in rats learning to choose between differently delayed and sized rewards. As expected, the activity of many putative dopamine neurons reflected reward prediction errors, changing when the value of the reward increased or decreased unexpectedly. During learning, neural responses to reward in these neurons waned and responses to cues that predicted reward emerged. Not...

  7. Memory Consolidation and Neural Substrate of Reward

    Directory of Open Access Journals (Sweden)

    Redolar-Ripoll, Diego

    2012-08-01

    Full Text Available The aim of this report is to analyze the relationships between reward and learning and memory processes. Different studies have described how information about rewards influences behavior and how the brain uses this reward information to control learning and memory processes. Reward nature seems to be processed in different ways by neurons in different brain structures, ranging from the detection and perception of rewards to the use of information about predicted rewards for the control of goal-directed behavior. The neural substrate underling this processing of reward information is a reliable way of improving learning and memory processes. Evidence from several studies indicates that this neural system can facilitate memory consolidation in a wide variety of learning tasks. From a molecular perspective, certain cardinal features of reward have been described as forms of memory. Studies of human addicts and studies in animal models of addiction show that chronic drug exposure produces stable changes in the brain at the cellular and molecular levels that underlie the long-lasting behavioral plasticity associated with addiction. These molecular and cellular adaptations involved in addiction are also implicated in learning and memory processes. Dopamine seems to be a critical common signal to activate different genetic mechanisms that ultimately remodel synapses and circuits. Despite memory is an active and complex process mediated by different brain areas, the neural substrate of reward is able to improve memory consolidation in a several paradigms. We believe that there are many equivalent traits between reward and learning and memory processes.

  8. Parabolic discounting of monetary rewards by physical effort.

    Science.gov (United States)

    Hartmann, Matthias N; Hager, Oliver M; Tobler, Philippe N; Kaiser, Stefan

    2013-11-01

    When humans and other animals make decisions in their natural environments prospective rewards have to be weighed against costs. It is well established that increasing costs lead to devaluation or discounting of reward. While our knowledge about discount functions for time and probability costs is quite advanced, little is known about how physical effort discounts reward. In the present study we compared three different models in a binary choice task in which human participants had to squeeze a handgrip to earn monetary rewards: a linear, a hyperbolic, and a parabolic model. On the group as well as the individual level, the concave parabolic model explained most variance of the choice data, thus contrasting with the typical hyperbolic discounting of reward value by delay. Research on effort discounting is not only important to basic science but also holds the potential to quantify aberrant motivational states in neuropsychiatric disorders.

  9. Intersection of reward and memory in monkey rhinal cortex

    OpenAIRE

    Clark, Andrew M.; Bouret, Sebastien; Young, Adrienne M.; Barry J Richmond

    2012-01-01

    In humans and other animals the vigor with which a reward is pursued depends on its desirability, that is, on the reward’s predicted value. Predicted value is generally context dependent, varying according to the value of rewards obtained in the recent and distant past. Signals related to reward prediction and valuation are believed to be encoded in a circuit centered around midbrain dopamine neurons and their targets in the prefrontal cortex and basal ganglia. Notably absent from this hypoth...

  10. Punished by Rewards?

    Science.gov (United States)

    Brandt, Ron

    1995-01-01

    The author of "Punished by Rewards" (1993), claims that rewards and punishments serve to manipulate behavior and destroy the potential for real learning. Praise is especially tricky, since intangible rewards can also foster compliance, not motivation. An engaging curriculum and a caring atmosphere encourage kids to exercise their natural…

  11. Motivation and reward systems

    NARCIS (Netherlands)

    W. van Eerde

    2014-01-01

    Reward systems are identified as one of the human resource management (HRM) practices that may impact motivation. Reward systems may consist of several components, including financial and nonfinancial rewards, in fixed and variable amounts. Reinforcement, expectancy, and equity principles are discus

  12. Aberration Corrected Emittance Exchange

    CERN Document Server

    Nanni, Emilio A

    2015-01-01

    Full exploitation of emittance exchange (EEX) requires aberration-free performance of a complex imaging system including active radio-frequency (RF) elements which can add temporal distortions. We investigate the performance of an EEX line where the exchange occurs between two dimensions with normalized emittances which differ by orders of magnitude. The transverse emittance is exchanged into the longitudinal dimension using a double dog-leg emittance exchange setup with a 5 cell RF deflector cavity. Aberration correction is performed on the four most dominant aberrations. These include temporal aberrations that are corrected with higher order magnetic optical elements located where longitudinal and transverse emittance are coupled. We demonstrate aberration-free performance of emittances differing by 4 orders of magnitude, i.e. an initial transverse emittance of $\\epsilon_x=1$ pm-rad is exchanged with a longitudinal emittance of $\\epsilon_z=10$ nm-rad.

  13. Reward guides vision when it's your thing: trait reward-seeking in reward-mediated visual priming.

    Directory of Open Access Journals (Sweden)

    Clayton Hickey

    Full Text Available Reward-related mesolimbic dopamine is thought to play an important role in guiding animal behaviour, biasing approach towards potentially beneficial environmental stimuli and away from objects unlikely to garner positive outcome. This is considered to result in part from an impact on perceptual and attentional processes: dopamine initiates a series of cognitive events that result in the priming of reward-associated perceptual features. We have provided behavioural and electrophysiological evidence that this mechanism guides human vision in search, an effect we refer to as reward priming. We have also demonstrated that there is substantial individual variability in this effect. Here we show that behavioural differences in reward priming are predicted remarkably well by a personality index that captures the degree to which a person's behaviour is driven by reward outcome. Participants with reward-seeking personalities are found to be those who allocate visual resources to objects characterized by reward-associated visual features. These results add to a rapidly developing literature demonstrating the crucial role reward plays in attentional control. They additionally illustrate the striking impact personality traits can have on low-level cognitive processes like perception and selective attention.

  14. Segregated encoding of reward-identity and stimulus-reward associations in human orbitofrontal cortex.

    Science.gov (United States)

    Klein-Flügge, Miriam Cornelia; Barron, Helen Catharine; Brodersen, Kay Henning; Dolan, Raymond J; Behrens, Timothy Edward John

    2013-02-13

    A dominant focus in studies of learning and decision-making is the neural coding of scalar reward value. This emphasis ignores the fact that choices are strongly shaped by a rich representation of potential rewards. Here, using fMRI adaptation, we demonstrate that responses in the human orbitofrontal cortex (OFC) encode a representation of the specific type of food reward predicted by a visual cue. By controlling for value across rewards and by linking each reward with two distinct stimuli, we could test for representations of reward-identity that were independent of associative information. Our results show reward-identity representations in a medial-caudal region of OFC, independent of the associated predictive stimulus. This contrasts with a more rostro-lateral OFC region encoding reward-identity representations tied to the predicate stimulus. This demonstration of adaptation in OFC to reward specific representations opens an avenue for investigation of more complex decision mechanisms that are not immediately accessible in standard analyses, which focus on correlates of average activity. PMID:23407973

  15. Components and characteristics of the dopamine reward utility signal.

    Science.gov (United States)

    Stauffer, William R; Lak, Armin; Kobayashi, Shunsuke; Schultz, Wolfram

    2016-06-01

    Rewards are defined by their behavioral functions in learning (positive reinforcement), approach behavior, economic choices, and emotions. Dopamine neurons respond to rewards with two components, similar to higher order sensory and cognitive neurons. The initial, rapid, unselective dopamine detection component reports all salient environmental events irrespective of their reward association. It is highly sensitive to factors related to reward and thus detects a maximal number of potential rewards. It also senses aversive stimuli but reports their physical impact rather than their aversiveness. The second response component processes reward value accurately and starts early enough to prevent confusion with unrewarded stimuli and objects. It codes reward value as a numeric, quantitative utility prediction error, consistent with formal concepts of economic decision theory. Thus, the dopamine reward signal is fast, highly sensitive and appropriate for driving and updating economic decisions.

  16. Components and characteristics of the dopamine reward utility signal.

    Science.gov (United States)

    Stauffer, William R; Lak, Armin; Kobayashi, Shunsuke; Schultz, Wolfram

    2016-06-01

    Rewards are defined by their behavioral functions in learning (positive reinforcement), approach behavior, economic choices, and emotions. Dopamine neurons respond to rewards with two components, similar to higher order sensory and cognitive neurons. The initial, rapid, unselective dopamine detection component reports all salient environmental events irrespective of their reward association. It is highly sensitive to factors related to reward and thus detects a maximal number of potential rewards. It also senses aversive stimuli but reports their physical impact rather than their aversiveness. The second response component processes reward value accurately and starts early enough to prevent confusion with unrewarded stimuli and objects. It codes reward value as a numeric, quantitative utility prediction error, consistent with formal concepts of economic decision theory. Thus, the dopamine reward signal is fast, highly sensitive and appropriate for driving and updating economic decisions. PMID:26272220

  17. The role of the neural reward system in attention selection.

    Science.gov (United States)

    Soder, Heather E; de Dios, Constanza; Potts, Geoffrey F

    2016-07-01

    The prefrontal cortex may play a role in attention selection using motivational information from the mesotelencephalic dopamine system, a neural system that responds to reward prediction violations. If so, neural indices of attention selection and reward prediction violation should have overlapping spatiotemporal distributions. Attention selection elicits a frontal event-related potential component around 200-300 ms, the frontal selection positivity. A component with similar spatiotemporal characteristics, the reward positivity is elicited in reward prediction designs to outcomes that are better than expected. The current study used dense sensor array recording in a sample of 41 participants performing visual oddball (attention) and a reward prediction 'slot machine-like' design to compare the spatiotemporal distributions of the frontal selection positivity and the reward positivity. The components did not differ in their peak latencies and had overlapping scalp topographies, supporting the hypothesis that these positivities represent attachment of incentive salience to perceptual representations in the prefrontal cortex. PMID:27232519

  18. Epigenetic silencing of the NR4A3 tumor suppressor, by aberrant JAK/STAT signaling, predicts prognosis in gastric cancer

    Science.gov (United States)

    Yeh, Chung-Min; Chang, Liang-Yu; Lin, Shu-Hui; Chou, Jian-Liang; Hsieh, Hsiao-Yen; Zeng, Li-Han; Chuang, Sheng-Yu; Wang, Hsiao-Wen; Dittner, Claudia; Lin, Cheng-Yu; Lin, Jora M. J.; Huang, Yao-Ting; Ng, Enders K. W.; Cheng, Alfred S. L.; Wu, Shu-Fen; Lin, Jiayuh; Yeh, Kun-Tu; Chan, Michael W. Y.

    2016-08-01

    While aberrant JAK/STAT signaling is crucial to the development of gastric cancer (GC), its effects on epigenetic alterations of its transcriptional targets remains unclear. In this study, by expression microarrays coupled with bioinformatic analyses, we identified a putative STAT3 target gene, NR4A3 that was downregulated in MKN28 GC daughter cells overexpressing a constitutively activated STAT3 mutant (S16), as compared to an empty vector control (C9). Bisulphite pyrosequencing and demethylation treatment showed that NR4A3 was epigenetically silenced by promoter DNA methylation in S16 and other GC cell lines including AGS cells, showing constitutive activation of STAT3. Subsequent experiments revealed that NR4A3 promoter binding by STAT3 might repress its transcription. Long-term depletion of STAT3 derepressed NR4A3 expression, by promoter demethylation, in AGS GC cells. NR4A3 re-expression in GC cell lines sensitized the cells to cisplatin, and inhibited tumor growth in vitro and in vivo, in an animal model. Clinically, GC patients with high NR4A3 methylation, or lower NR4A3 protein expression, had significantly shorter overall survival. Intriguingly, STAT3 activation significantly associated only with NR4A3 methylation in low-stage patient samples. Taken together, aberrant JAK/STAT3 signaling epigenetically silences a potential tumor suppressor, NR4A3, in gastric cancer, plausibly representing a reliable biomarker for gastric cancer prognosis.

  19. Motivated to win: Relationship between anticipatory and outcome reward-related neural activity.

    Science.gov (United States)

    Pornpattananangkul, Narun; Nusslock, Robin

    2015-11-01

    Reward-processing involves two temporal stages characterized by two distinct neural processes: reward-anticipation and reward-outcome. Intriguingly, very little research has examined the relationship between neural processes involved in reward-anticipation and reward-outcome. To investigate this, one needs to consider the heterogeneity of reward-processing within each stage. To identify different stages of reward processing, we adapted a reward time-estimation task. While EEG data were recorded, participants were instructed to button-press 3.5s after the onset of an Anticipation-Cue and received monetary reward for good time-estimation on the Reward trials, but not on No-Reward trials. We first separated reward-anticipation into event related potentials (ERPs) occurring at three sub-stages: reward/no-reward cue-evaluation, motor-preparation and feedback-anticipation. During reward/no-reward cue-evaluation, the Reward-Anticipation Cue led to a smaller N2 and larger P3. During motor-preparation, we report, for the first time, that the Reward-Anticipation Cue enhanced the Readiness Potential (RP), starting approximately 1s before movement. At the subsequent feedback-anticipation stage, the Reward-Anticipation Cue elevated the Stimulus-Preceding Negativity (SPN). We also separated reward-outcome ERPs into different components occurring at different time-windows: the Feedback-Related Negativity (FRN), Feedback-P3 (FB-P3) and Late-Positive Potentials (LPP). Lastly, we examined the relationship between reward-anticipation and reward-outcome ERPs. We report that individual-differences in specific reward-anticipation ERPs uniquely predicted specific reward-outcome ERPs. In particular, the reward-anticipation Early-RP (1-.8s before movement) predicted early reward-outcome ERPs (FRN and FB-P3), whereas, the reward-anticipation SPN most strongly predicted a later reward-outcome ERP (LPP). Results have important implications for understanding the nature of the relationship

  20. Reward Processing in Autism

    OpenAIRE

    Scott-Van Zeeland, Ashley A.; DAPRETTO, MIRELLA; Ghahremani, Dara G.; Poldrack, Russell A.; Bookheimer, Susan Y.

    2010-01-01

    The social motivation hypothesis of autism posits that infants with autism do not experience social stimuli as rewarding, thereby leading to a cascade of potentially negative consequences for later development. While possible downstream effects of this hypothesis such as altered face and voice processing have been examined, there has not been a direct investigation of social reward processing in autism. Here we use functional magnetic resonance imaging to examine social and monetary rewarded ...

  1. What is the role of dopamine in reward: hedonic impact, reward learning, or incentive salience?

    Science.gov (United States)

    Berridge, K C; Robinson, T E

    1998-12-01

    What roles do mesolimbic and neostriatal dopamine systems play in reward? Do they mediate the hedonic impact of rewarding stimuli? Do they mediate hedonic reward learning and associative prediction? Our review of the literature, together with results of a new study of residual reward capacity after dopamine depletion, indicates the answer to both questions is 'no'. Rather, dopamine systems may mediate the incentive salience of rewards, modulating their motivational value in a manner separable from hedonia and reward learning. In a study of the consequences of dopamine loss, rats were depleted of dopamine in the nucleus accumbens and neostriatum by up to 99% using 6-hydroxydopamine. In a series of experiments, we applied the 'taste reactivity' measure of affective reactions (gapes, etc.) to assess the capacity of dopamine-depleted rats for: 1) normal affect (hedonic and aversive reactions), 2) modulation of hedonic affect by associative learning (taste aversion conditioning), and 3) hedonic enhancement of affect by non-dopaminergic pharmacological manipulation of palatability (benzodiazepine administration). We found normal hedonic reaction patterns to sucrose vs. quinine, normal learning of new hedonic stimulus values (a change in palatability based on predictive relations), and normal pharmacological hedonic enhancement of palatability. We discuss these results in the context of hypotheses and data concerning the role of dopamine in reward. We review neurochemical, electrophysiological, and other behavioral evidence. We conclude that dopamine systems are not needed either to mediate the hedonic pleasure of reinforcers or to mediate predictive associations involved in hedonic reward learning. We conclude instead that dopamine may be more important to incentive salience attributions to the neural representations of reward-related stimuli. Incentive salience, we suggest, is a distinct component of motivation and reward. In other words, dopamine systems are necessary

  2. Do Substantia Nigra Dopaminergic Neurons Differentiate Between Reward and Punishment?

    Institute of Scientific and Technical Information of China (English)

    Michael J. Frank; D. James Surmeier

    2009-01-01

    The activity of dopaminergic neurons are thought to be increased by stimuli that predict reward and decreased by stimuli that predict aversive outcomes. Recent work by Matsumoto and Hikosaka challenges this model by asserting that stimuli associated with either rewarding or aversive outcomes increase the activity of dopaminergic neurons in the substantia nigra pars compacta.

  3. "Liking" and "wanting" linked to Reward Deficiency Syndrome (RDS): hypothesizing differential responsivity in brain reward circuitry.

    Science.gov (United States)

    Blum, Kenneth; Gardner, Eliot; Oscar-Berman, Marlene; Gold, Mark

    2012-01-01

    In an attempt to resolve controversy regarding the causal contributions of mesolimbic dopamine (DA) systems to reward, we evaluate the three main competing explanatory categories: "liking,"learning," and "wanting" [1]. That is, DA may mediate (a) the hedonic impact of reward (liking), (b) learned predictions about rewarding effects (learning), or (c) the pursuit of rewards by attributing incentive salience to reward-related stimuli (wanting). We evaluate these hypotheses, especially as they relate to the Reward Deficiency Syndrome (RDS), and we find that the incentive salience or "wanting" hypothesis of DA function is supported by a majority of the evidence. Neuroimaging studies have shown that drugs of abuse, palatable foods, and anticipated behaviors such as sex and gaming affect brain regions involving reward circuitry, and may not be unidirectional. Drugs of abuse enhance DA signaling and sensitize mesolimbic mechanisms that evolved to attribute incentive salience to rewards. Addictive drugs have in common that they are voluntarily selfadministered, they enhance (directly or indirectly) dopaminergic synaptic function in the nucleus accumbens (NAC), and they stimulate the functioning of brain reward circuitry (producing the "high" that drug users seek). Although originally believed simply to encode the set point of hedonic tone, these circuits now are believed to be functionally more complex, also encoding attention, reward expectancy, disconfirmation of reward expectancy, and incentive motivation. Elevated stress levels, together with polymorphisms of dopaminergic genes and other neurotransmitter genetic variants, may have a cumulative effect on vulnerability to addiction. The RDS model of etiology holds very well for a variety of chemical and behavioral addictions. PMID:22236117

  4. Early Effects of Reward Anticipation Are Modulated by Dopaminergic Stimulation

    OpenAIRE

    Thore Apitz; Nico Bunzeck

    2014-01-01

    The abilities to predict future rewards and assess the value of reward delivery are crucial aspects of adaptive behavior. While the mesolimbic system, including dopaminergic midbrain, ventral striatum and prefrontal cortex have long been associated with reward processing, recent studies also indicate a prominent role of early visual brain regions. However, the precise underlying neural mechanisms still remain unclear. To address this issue, we presented participants with visual cues predictin...

  5. Temptation in economic decision making: effects of immediate reward and reward-cues

    Directory of Open Access Journals (Sweden)

    Woelbert E

    2013-03-01

    Full Text Available Eva Woelbert, Rainer Goebel Department of Cognitive Neuroscience, Maastricht University, Maastricht, The Netherlands Abstract: Immediate exposure to reward or reward-predicting stimuli (cues influences behavior. For example, chips placed right in front of us are likely to get eaten even if we wish to lose weight or don't actually like chips so much. In this paper we review evidence that shows that immediate exposure to reward and the presence of reward-cues can change economic behavior across various decision domains. Reward cues lead to less patient intertemporal choice, seem to increase risk aversion, and bias consumer choice. This may explain various, at first glance very different, behavioral phenomena, such as dynamic inconsistency, the certainty effect, and the endowment effect. We suggest that immediacy in time, certainty, and physical possession all create immediacy to a rewarding outcome that might bias choice in a similar way as other reward-predicting stimuli. Keywords: immediacy, certainty, proximity, valuation, choice, Pavlovian cues

  6. Assessing the construct validity of aberrant salience

    Directory of Open Access Journals (Sweden)

    Kristin Schmidt

    2009-12-01

    Full Text Available We sought to validate the psychometric properties of a recently developed paradigm that aims to measure salience attribution processes proposed to contribute to positive psychotic symptoms, the Salience Attribution Test (SAT. The “aberrant salience” measure from the SAT showed good face validity in previous results, with elevated scores both in high-schizotypy individuals, and in patients with schizophrenia suffering from delusions. Exploring the construct validity of salience attribution variables derived from the SAT is important, since other factors, including latent inhibition/learned irrelevance, attention, probabilistic reward learning, sensitivity to probability, general cognitive ability and working memory could influence these measures. Fifty healthy participants completed schizotypy scales, the SAT, a learned irrelevance task, and a number of other cognitive tasks tapping into potentially confounding processes. Behavioural measures of interest from each task were entered into a principal components analysis, which yielded a five-factor structure accounting for ~75% percent of the variance in behaviour. Implicit aberrant salience was found to load onto its own factor, which was associated with elevated “Introvertive Anhedonia” schizotypy, replicating our previous finding. Learned irrelevance loaded onto a separate factor, which also included implicit adaptive salience, but was not associated with schizotypy. Explicit adaptive and aberrant salience, along with a measure of probabilistic learning, loaded onto a further factor, though this also did not correlate with schizotypy. These results suggest that the measures of learned irrelevance and implicit adaptive salience might be based on similar underlying processes, which are dissociable both from implicit aberrant salience and explicit measures of salience.

  7. Neural coding of basic reward terms of animal learning theory, game theory, microeconomics and behavioural ecology.

    Science.gov (United States)

    Schultz, Wolfram

    2004-04-01

    Neurons in a small number of brain structures detect rewards and reward-predicting stimuli and are active during the expectation of predictable food and liquid rewards. These neurons code the reward information according to basic terms of various behavioural theories that seek to explain reward-directed learning, approach behaviour and decision-making. The involved brain structures include groups of dopamine neurons, the striatum including the nucleus accumbens, the orbitofrontal cortex and the amygdala. The reward information is fed to brain structures involved in decision-making and organisation of behaviour, such as the dorsolateral prefrontal cortex and possibly the parietal cortex. The neural coding of basic reward terms derived from formal theories puts the neurophysiological investigation of reward mechanisms on firm conceptual grounds and provides neural correlates for the function of rewards in learning, approach behaviour and decision-making. PMID:15082317

  8. Validation and extension of the reward-mountain model

    Directory of Open Access Journals (Sweden)

    Yannick-André eBreton

    2013-10-01

    Full Text Available The reward-mountain model relates the vigor of reward seeking to the strength and cost of reward. Application of this model provides information about the stage of processing at which manipulations such as drug administration, lesions, deprivation states, and optogenetic interventions act to alter reward seeking. The model has been updated by incorporation of new information about frequency following in the directly stimulated neurons responsible for brain stimulation reward and about the function that maps objective opportunity costs into subjective ones. The behavioral methods for applying the model have been updated and improved as well. To assess the impact of these changes, two related predictions of the model that were supported by earlier work have been retested: 1 altering the duration of rewarding brain stimulation should change the pulse frequency required to produce a reward of half-maximal intensity, and 2 this manipulation should not change the opportunity cost at which half-maximal performance is directed at earning a maximally intense reward. Prediction 1 was supported in all six subjects, but prediction 2 was supported in only three. The latter finding is interpreted to reflect recruitment, at some stimulation sites, of a heterogeneous reward substrate comprising dual, parallel circuits that integrate the stimulation-induced neural signals.

  9. A universal role of the ventral striatum in reward-based learning: Evidence from human studies

    OpenAIRE

    Daniel, Reka; Pollmann, Stefan

    2014-01-01

    Reinforcement learning enables organisms to adjust their behavior in order to maximize rewards. Electrophysiological recordings of dopaminergic midbrain neurons have shown that they code the difference between actual and predicted rewards, i.e., the reward prediction error, in many species. This error signal is conveyed to both the striatum and cortical areas and is thought to play a central role in learning to optimize behavior. However, in human daily life rewards are dive...

  10. A new scale for measuring reward responsiveness

    Directory of Open Access Journals (Sweden)

    Ivo Van Den Berg

    2010-12-01

    Full Text Available Several psychological theories assume that there are two basic brain mechanisms that guide behavior: an avoidance or inhibition system, which is responsive to signals of punishment, and an approach or activation system, which is sensitive to signals of reward. Several self-report scales have been developed to assess the sensitivity to punishment and reward, and these instruments have been shown to be useful in research on personality, psychopathology, and underlying biological substrates. However, it is also true that in particular scales for measuring reward responsiveness suffer from various inadequacies. Therefore, a new Reward Responsiveness (RR scale was developed and subjected to an extensive psychometric evaluation. The results show that this scale measures a single factor, reward responsiveness that is clearly independent of punishment sensitivity. Further, the data indicated that the internal consistency, convergent validity, discriminant validity, test-retest reliability, and predictive properties of the new scale were all adequate. It can be concluded that the RR scale is a psychometrically sound instrument that may be useful for researchers with interest in the personality construct of reward responsiveness.

  11. Stress and reward

    DEFF Research Database (Denmark)

    Chumbley, J R; Hulme, O; Köchli, H;

    2014-01-01

    Healthy individuals tend to consume available rewards like food and sex. This tendency is attenuated or amplified in most stress-related psychiatric conditions, so we asked if it depends on endogenous levels of the 'canonical stress hormone' cortisol. We unobtrusively quantified how hard healthy...... preference declines with self-reported anhedonia but increases with long term exposure to endogenous cortisol. These results suggest that cortisol may affect reward-related behavior in healthy adults....

  12. Altered social reward and attention in anorexia nervosa

    Directory of Open Access Journals (Sweden)

    Karli K Watson

    2010-09-01

    Full Text Available Dysfunctional social reward and social orienting attend a variety of neuropsychiatric disorders including autism, schizophrenia, social anxiety, and psychopathy. Here we show that similar social reward and attention dysfunction attend anorexia nervosa, a disorder defined by avoidance of food and extreme weight loss. We measured the implicit reward value of social stimuli for female participants with (n=11 and without (n=11 anorexia nervosa using an econometric choice task and also tracked gaze patterns during free viewing of images of female faces and bodies. As predicted, the reward value of viewing bodies varied inversely with observed body weight for women with anorexia but not neurotypical women, in contrast with their explicit ratings of attractiveness. Surprisingly, women with anorexia nervosa, unlike neurotypical women, did not find female faces rewarding and avoided looking at both the face and eyes—independent of observed body weight. These findings demonstrate comorbid dysfunction in the neural circuits mediating gustatory and social reward in anorexia nervosa.

  13. Neural basis of reward anticipation and its genetic determinants.

    Science.gov (United States)

    Jia, Tianye; Macare, Christine; Desrivières, Sylvane; Gonzalez, Dante A; Tao, Chenyang; Ji, Xiaoxi; Ruggeri, Barbara; Nees, Frauke; Banaschewski, Tobias; Barker, Gareth J; Bokde, Arun L W; Bromberg, Uli; Büchel, Christian; Conrod, Patricia J; Dove, Rachel; Frouin, Vincent; Gallinat, Jürgen; Garavan, Hugh; Gowland, Penny A; Heinz, Andreas; Ittermann, Bernd; Lathrop, Mark; Lemaitre, Hervé; Martinot, Jean-Luc; Paus, Tomáš; Pausova, Zdenka; Poline, Jean-Baptiste; Rietschel, Marcella; Robbins, Trevor; Smolka, Michael N; Müller, Christian P; Feng, Jianfeng; Rothenfluh, Adrian; Flor, Herta; Schumann, Gunter

    2016-04-01

    Dysfunctional reward processing is implicated in various mental disorders, including attention deficit hyperactivity disorder (ADHD) and addictions. Such impairments might involve different components of the reward process, including brain activity during reward anticipation. We examined brain nodes engaged by reward anticipation in 1,544 adolescents and identified a network containing a core striatal node and cortical nodes facilitating outcome prediction and response preparation. Distinct nodes and functional connections were preferentially associated with either adolescent hyperactivity or alcohol consumption, thus conveying specificity of reward processing to clinically relevant behavior. We observed associations between the striatal node, hyperactivity, and the vacuolar protein sorting-associated protein 4A (VPS4A) gene in humans, and the causal role of Vps4 for hyperactivity was validated in Drosophila Our data provide a neurobehavioral model explaining the heterogeneity of reward-related behaviors and generate a hypothesis accounting for their enduring nature. PMID:27001827

  14. Neural basis of reward anticipation and its genetic determinants.

    Science.gov (United States)

    Jia, Tianye; Macare, Christine; Desrivières, Sylvane; Gonzalez, Dante A; Tao, Chenyang; Ji, Xiaoxi; Ruggeri, Barbara; Nees, Frauke; Banaschewski, Tobias; Barker, Gareth J; Bokde, Arun L W; Bromberg, Uli; Büchel, Christian; Conrod, Patricia J; Dove, Rachel; Frouin, Vincent; Gallinat, Jürgen; Garavan, Hugh; Gowland, Penny A; Heinz, Andreas; Ittermann, Bernd; Lathrop, Mark; Lemaitre, Hervé; Martinot, Jean-Luc; Paus, Tomáš; Pausova, Zdenka; Poline, Jean-Baptiste; Rietschel, Marcella; Robbins, Trevor; Smolka, Michael N; Müller, Christian P; Feng, Jianfeng; Rothenfluh, Adrian; Flor, Herta; Schumann, Gunter

    2016-04-01

    Dysfunctional reward processing is implicated in various mental disorders, including attention deficit hyperactivity disorder (ADHD) and addictions. Such impairments might involve different components of the reward process, including brain activity during reward anticipation. We examined brain nodes engaged by reward anticipation in 1,544 adolescents and identified a network containing a core striatal node and cortical nodes facilitating outcome prediction and response preparation. Distinct nodes and functional connections were preferentially associated with either adolescent hyperactivity or alcohol consumption, thus conveying specificity of reward processing to clinically relevant behavior. We observed associations between the striatal node, hyperactivity, and the vacuolar protein sorting-associated protein 4A (VPS4A) gene in humans, and the causal role of Vps4 for hyperactivity was validated in Drosophila Our data provide a neurobehavioral model explaining the heterogeneity of reward-related behaviors and generate a hypothesis accounting for their enduring nature.

  15. Anticipatory reward signals in ventral striatal neurons of behaving rats.

    Science.gov (United States)

    Khamassi, Mehdi; Mulder, Antonius B; Tabuchi, Eiichi; Douchamps, Vincent; Wiener, Sidney I

    2008-11-01

    It has been proposed that the striatum plays a crucial role in learning to select appropriate actions, optimizing rewards according to the principles of 'Actor-Critic' models of trial-and-error learning. The ventral striatum (VS), as Critic, would employ a temporal difference (TD) learning algorithm to predict rewards and drive dopaminergic neurons. This study examined this model's adequacy for VS responses to multiple rewards in rats. The respective arms of a plus-maze provided rewards of varying magnitudes; multiple rewards were provided at 1-s intervals while the rat stood still. Neurons discharged phasically prior to each reward, during both initial approach and immobile waiting, demonstrating that this signal is predictive and not simply motor-related. In different neurons, responses could be greater for early, middle or late droplets in the sequence. Strikingly, this activity often reappeared after the final reward, as if in anticipation of yet another. In contrast, previous TD learning models show decremental reward-prediction profiles during reward consumption due to a temporal-order signal introduced to reproduce accurate timing in dopaminergic reward-prediction error signals. To resolve this inconsistency in a biologically plausible manner, we adapted the TD learning model such that input information is nonhomogeneously distributed among different neurons. By suppressing reward temporal-order signals and varying richness of spatial and visual input information, the model reproduced the experimental data. This validates the feasibility of a TD-learning architecture where different groups of neurons participate in solving the task based on varied input information. PMID:18973599

  16. Neural dynamics of reward probability coding: a Magnetoencephalographic study in humans

    Directory of Open Access Journals (Sweden)

    Julie eThomas

    2013-11-01

    Full Text Available Prediction of future rewards and discrepancy between actual and expected outcomes (prediction error are crucial signals for adaptive behavior. In humans, a number of fMRI studies demonstrated that reward probability modulates these two signals in a large brain network. Yet, the spatio-temporal dynamics underlying the neural coding of reward probability remains unknown. Here, using magnetoencephalography, we investigated the neural dynamics of prediction and reward prediction error computations while subjects learned to associate cues of slot machines with monetary rewards with different probabilities. We showed that event-related magnetic fields (ERFs arising from the visual cortex coded the expected reward value 155 ms after the cue, demonstrating that reward value signals emerge early in the visual stream. Moreover, a prediction error was reflected in ERF peaking 300 ms after the rewarded outcome and showing decreasing amplitude with higher reward probability. This prediction error signal was generated in a network including the anterior and posterior cingulate cortex. These findings pinpoint the spatio-temporal characteristics underlying reward probability coding. Together, our results provide insights into the neural dynamics underlying the ability to learn probabilistic stimuli-reward contingencies.

  17. A selective role for dopamine in stimulus-reward learning.

    Science.gov (United States)

    Flagel, Shelly B; Clark, Jeremy J; Robinson, Terry E; Mayo, Leah; Czuj, Alayna; Willuhn, Ingo; Akers, Christina A; Clinton, Sarah M; Phillips, Paul E M; Akil, Huda

    2011-01-01

    Individuals make choices and prioritize goals using complex processes that assign value to rewards and associated stimuli. During Pavlovian learning, previously neutral stimuli that predict rewards can acquire motivational properties, becoming attractive and desirable incentive stimuli. However, whether a cue acts solely as a predictor of reward, or also serves as an incentive stimulus, differs between individuals. Thus, individuals vary in the degree to which cues bias choice and potentially promote maladaptive behaviour. Here we use rats that differ in the incentive motivational properties they attribute to food cues to probe the role of the neurotransmitter dopamine in stimulus-reward learning. We show that intact dopamine transmission is not required for all forms of learning in which reward cues become effective predictors. Rather, dopamine acts selectively in a form of stimulus-reward learning in which incentive salience is assigned to reward cues. In individuals with a propensity for this form of learning, reward cues come to powerfully motivate and control behaviour. This work provides insight into the neurobiology of a form of stimulus-reward learning that confers increased susceptibility to disorders of impulse control.

  18. Neural correlates of aberrant emotional salience predict psychotic symptoms and global functioning in high-risk and first-episode psychosis.

    Science.gov (United States)

    Modinos, Gemma; Tseng, Huai-Hsuan; Falkenberg, Irina; Samson, Carly; McGuire, Philip; Allen, Paul

    2015-10-01

    Neurobiological and behavioral findings suggest that psychosis is associated with corticolimbic hyperactivity during the processing of emotional salience. This has not been widely studied in the early stages of psychosis, and the impact of these abnormalities on psychotic symptoms and global functioning is unknown. We sought to address this issue in 18 patients with first-episode psychosis (FEP), 18 individuals at ultra high risk of psychosis (UHR) and 22 healthy controls (HCs). Corticolimbic response and subjective ratings to emotional and neutral scenes were measured using functional magnetic resonance imaging. The clinical and functional impact of corticolimbic abnormalities was assessed with regression analyses. The FEP and UHR groups reported increased subjective emotional arousal to neutral scenes compared with HCs. Across groups, emotional vs neutral scenes elicited activation in the dorsomedial prefrontal cortex, inferior frontal gyrus/anterior insula and amygdala. Although FEP and UHR participants showed reduced activation in these regions when viewing emotional scenes compared with controls, this was driven by increased activation to neutral scenes. Corticolimbic hyperactivity to neutral scenes predicted higher levels of positive symptoms and poorer levels of functioning. These results indicate that disruption of emotional brain systems may represent an important biological substrate for the pathophysiology of early psychosis and UHR states.

  19. Abnormal reward functioning across substance use disorders and major depressive disorder: Considering reward as a transdiagnostic mechanism.

    Science.gov (United States)

    Baskin-Sommers, Arielle R; Foti, Dan

    2015-11-01

    A common criticism of the Diagnostic and Statistical Manual of Mental Disorders (American Psychiatric Association, 2013) is that its criteria are based more on behavioral descriptions than on underlying biological mechanisms. Increasingly, calls have intensified for a more biologically-based approach to conceptualizing, studying, and treating psychological disorders, as exemplified by the Research Domain Criteria Project (RDoC). Among the most well-studied neurobiological mechanisms is reward processing. Moreover, individual differences in reward sensitivity are related to risk for substance abuse and depression. The current review synthesizes the available preclinical, electrophysiological, and neuroimaging literature on reward processing from a transdiagnostic, multidimensional perspective. Findings are organized with respect to key reward constructs within the Positive Valence Systems domain of the RDoC matrix, including initial responsiveness to reward (physiological 'liking'), approach motivation (physiological 'wanting'), and reward learning/habit formation. In the current review, we (a) describe the neural basis of reward, (b) elucidate differences in reward activity in substance abuse and depression, and (c) suggest a framework for integrating these disparate literatures and discuss the utility of shifting focus from diagnosis to process for understanding liability and co-morbidity. Ultimately, we believe that an integrative focus on abnormal reward functioning across the full continuum of clinically heterogeneous samples, rather than within circumscribed diagnostic categories, might actually help to refine the phenotypes and improve the prediction of onset and recovery of these disorders. PMID:25655926

  20. Reward contingencies and the recalibration of task monitoring and reward systems: a high-density electrical mapping study.

    Science.gov (United States)

    Morie, K P; De Sanctis, P; Foxe, J J

    2014-07-25

    Task execution almost always occurs in the context of reward-seeking or punishment-avoiding behavior. As such, ongoing task-monitoring systems are influenced by reward anticipation systems. In turn, when a task has been executed either successfully or unsuccessfully, future iterations of that task will be re-titrated on the basis of the task outcome. Here, we examined the neural underpinnings of the task-monitoring and reward-evaluation systems to better understand how they govern reward-seeking behavior. Twenty-three healthy adult participants performed a task where they accrued points that equated to real world value (gift cards) by responding as rapidly as possible within an allotted timeframe, while success rate was titrated online by changing the duration of the timeframe dependent on participant performance. Informative cues initiated each trial, indicating the probability of potential reward or loss (four levels from very low to very high). We manipulated feedback by first informing participants of task success/failure, after which a second feedback signal indicated actual magnitude of reward/loss. High-density electroencephalography (EEG) recordings allowed for examination of event-related potentials (ERPs) to the informative cues and in turn, to both feedback signals. Distinct ERP components associated with reward cues, task-preparatory and task-monitoring processes, and reward feedback processes were identified. Unsurprisingly, participants displayed increased ERP amplitudes associated with task-preparatory processes following cues that predicted higher chances of reward. They also rapidly updated reward and loss prediction information dependent on task performance after the first feedback signal. Finally, upon reward receipt, initial reward probability was no longer taken into account. Rather, ERP measures suggested that only the magnitude of actual reward or loss was now processed. Reward and task-monitoring processes are clearly dissociable, but

  1. SMS design and aberration theory

    OpenAIRE

    Corrente, Fabio; Benitez Gimenez, Pablo; Lin WANG; Miñano Dominguez, Juan Carlos; Muñoz, Fernando

    2012-01-01

    The SMS, Simultaneous Multiple Surfaces, design was born to Nonimaging Optics applications and is now being applied also to Imaging Optics. In this paper the wave aberration function of a selected SMS design is studied. It has been found the SMS aberrations can be analyzed with a little set of parameters, sometimes two. The connection of this model with the conventional aberration expansion is also presented. To verify these mathematical model two SMS design systems were raytraced and the dat...

  2. Rewards versus Intellectual Property Rights.

    OpenAIRE

    Shavell, S.; van Ypersele de Strihou, T.P.M.C.

    2001-01-01

    This paper compares reward systems to intellectual property rights (patents and copyrights). Under a reward system, innovators are paid for innovations directly by the government (possibly on the basis of sales), and innovations pass immediately into the public domain. Thus, reward systems engender incentives to innovate without creating the monopoly power of intellectual property rights. But a principal difficulty with rewards is the information required for their determination. We conclude ...

  3. Do Economic Rewards Work?

    Science.gov (United States)

    Wallace, Brian D.

    2009-01-01

    The love of learning--that intrinsic desire to gain knowledge and insight into new subjects--was once its own reward. That was altered decades ago when parents started using the proverbial "stick and carrot" to motivate their children to do well in school, or even just show up. Today, educators across the country have taken hold of this approach…

  4. Aberrations of the cathode objective lens up to fifth order

    Energy Technology Data Exchange (ETDEWEB)

    Tromp, R.M., E-mail: rtromp@us.ibm.com [Thomas J. Watson Research Center, IBM Research Division, 1101 Kitchawan Road, P.O. Box 218, Yorktown Heights, NY 10598 (United States); Leiden University, Kamerlingh Onnes Laboratorium, P.O. Box 9504, NL-2300 RA Leiden (Netherlands); Wan, W. [Ernest Orlando Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Mailstop 80R0114, Berkeley, CA 94720 (United States); Schramm, S.M. [Leiden University, Kamerlingh Onnes Laboratorium, P.O. Box 9504, NL-2300 RA Leiden (Netherlands)

    2012-08-15

    In this paper we discuss a topic that was close to Prof. Gertrude Rempfer s interests for many years. On this occasion of her 100th birthday, we remember and honor Gertrude for her many outstanding contributions, and for the inspiring example that she set. We derive theoretical expressions for the aberration coefficients of the uniform electrostatic field up to 5th order and compare these with raytracing calculations for the cathode lens used in Low Energy Electron Microscopy and Photo Electron Emission Microscopy experiments. These higher order aberration coefficients are of interest for aberration corrected experiments in which chromatic (C{sub c}) and spherical (C{sub 3}) aberrations of the microscope are set to zero. The theoretical predictions are in good agreement with the results of raytracing. Calculations of image resolution using the Contrast Transfer Function method show that sub-nanometer resolution is achievable in an aberration corrected LEEM system. -- Highlights: Black-Right-Pointing-Pointer A theory is presented for the aberrations of the uniform electrostatic field up to fifth order. Black-Right-Pointing-Pointer Such aberrations are important for advanced LEEM and PEEM instruments. Black-Right-Pointing-Pointer Good agreement between theory and raytracing results for a full cathode objective lens. Black-Right-Pointing-Pointer Contrast Transfer Function calculations predict that spatial resolution below 1 nm is achievable.

  5. Shared neural basis of social and non-social reward deficits in chronic cocaine users.

    Science.gov (United States)

    Tobler, Philippe N; Preller, Katrin H; Campbell-Meiklejohn, Daniel K; Kirschner, Matthias; Kraehenmann, Rainer; Stämpfli, Philipp; Herdener, Marcus; Seifritz, Erich; Quednow, Boris B

    2016-06-01

    Changed reward functions have been proposed as a core feature of stimulant addiction, typically observed as reduced neural responses to non-drug-related rewards. However, it was unclear yet how specific this deficit is for different types of non-drug rewards arising from social and non-social reinforcements. We used functional neuroimaging in cocaine users to investigate explicit social reward as modeled by agreement of music preferences with music experts. In addition, we investigated non-social reward as modeled by winning desired music pieces. The study included 17 chronic cocaine users and 17 matched stimulant-naive healthy controls. Cocaine users, compared with controls, showed blunted neural responses to both social and non-social reward. Activation differences were located in the ventromedial prefrontal cortex overlapping for both reward types and, thus, suggesting a non-specific deficit in the processing of non-drug rewards. Interestingly, in the posterior lateral orbitofrontal cortex, social reward responses of cocaine users decreased with the degree to which they were influenced by social feedback from the experts, a response pattern that was opposite to that observed in healthy controls. The present results suggest that cocaine users likely suffer from a generalized impairment in value representation as well as from an aberrant processing of social feedback. PMID:26969866

  6. RM-SORN: a reward-modulated self-organizing recurrent neural network.

    Science.gov (United States)

    Aswolinskiy, Witali; Pipa, Gordon

    2015-01-01

    Neural plasticity plays an important role in learning and memory. Reward-modulation of plasticity offers an explanation for the ability of the brain to adapt its neural activity to achieve a rewarded goal. Here, we define a neural network model that learns through the interaction of Intrinsic Plasticity (IP) and reward-modulated Spike-Timing-Dependent Plasticity (STDP). IP enables the network to explore possible output sequences and STDP, modulated by reward, reinforces the creation of the rewarded output sequences. The model is tested on tasks for prediction, recall, non-linear computation, pattern recognition, and sequence generation. It achieves performance comparable to networks trained with supervised learning, while using simple, biologically motivated plasticity rules, and rewarding strategies. The results confirm the importance of investigating the interaction of several plasticity rules in the context of reward-modulated learning and whether reward-modulated self-organization can explain the amazing capabilities of the brain.

  7. Photothermal Lens Aberration Effects in Two Laser Thermal Lens Spectrometry

    OpenAIRE

    Bialkowski, Stephen E.

    1985-01-01

    A comparison of theories describing two laser photothermal lens signals is given. The aberrant nature of this lens is accounted for in a theory which treats the propagation of a monitor laser in terms of a phase shift in this laser beam wave front. The difference between theories are discussed in terms of the predicted signal strengths and temporal behavior. The aberrant theory results in smaller theoretical signal strengths and different functional relationships between signal and analyte le...

  8. Early effects of reward anticipation are modulated by dopaminergic stimulation.

    Directory of Open Access Journals (Sweden)

    Thore Apitz

    Full Text Available The abilities to predict future rewards and assess the value of reward delivery are crucial aspects of adaptive behavior. While the mesolimbic system, including dopaminergic midbrain, ventral striatum and prefrontal cortex have long been associated with reward processing, recent studies also indicate a prominent role of early visual brain regions. However, the precise underlying neural mechanisms still remain unclear. To address this issue, we presented participants with visual cues predicting rewards of high and low magnitudes and probability (2 × 2 factorial design, while neural activity was scanned using magnetoencephalography. Importantly, one group of participants received 150 mg of the dopamine precursor levodopa prior to the experiment, while another group received a placebo. For the placebo group, neural signals of reward probability (but not magnitude emerged at ∼ 100 ms after cue presentation at occipital sensors in the event-related magnetic fields. Importantly, these probability signals were absent in the levodopa group indicating a close link. Moreover, levodopa administration reduced oscillatory power in the high (20-30 Hz and low (13-20 Hz beta band during both reward anticipation and delivery. Taken together, our findings indicate that visual brain regions are involved in coding prospective reward probability but not magnitude and that these effects are modulated by dopamine.

  9. Neuronal Reward and Decision Signals: From Theories to Data.

    Science.gov (United States)

    Schultz, Wolfram

    2015-07-01

    Rewards are crucial objects that induce learning, approach behavior, choices, and emotions. Whereas emotions are difficult to investigate in animals, the learning function is mediated by neuronal reward prediction error signals which implement basic constructs of reinforcement learning theory. These signals are found in dopamine neurons, which emit a global reward signal to striatum and frontal cortex, and in specific neurons in striatum, amygdala, and frontal cortex projecting to select neuronal populations. The approach and choice functions involve subjective value, which is objectively assessed by behavioral choices eliciting internal, subjective reward preferences. Utility is the formal mathematical characterization of subjective value and a prime decision variable in economic choice theory. It is coded as utility prediction error by phasic dopamine responses. Utility can incorporate various influences, including risk, delay, effort, and social interaction. Appropriate for formal decision mechanisms, rewards are coded as object value, action value, difference value, and chosen value by specific neurons. Although all reward, reinforcement, and decision variables are theoretical constructs, their neuronal signals constitute measurable physical implementations and as such confirm the validity of these concepts. The neuronal reward signals provide guidance for behavior while constraining the free will to act. PMID:26109341

  10. Dopamine signals for reward value and risk: basic and recent data

    Directory of Open Access Journals (Sweden)

    Schultz Wolfram

    2010-04-01

    Full Text Available Abstract Background Previous lesion, electrical self-stimulation and drug addiction studies suggest that the midbrain dopamine systems are parts of the reward system of the brain. This review provides an updated overview about the basic signals of dopamine neurons to environmental stimuli. Methods The described experiments used standard behavioral and neurophysiological methods to record the activity of single dopamine neurons in awake monkeys during specific behavioral tasks. Results Dopamine neurons show phasic activations to external stimuli. The signal reflects reward, physical salience, risk and punishment, in descending order of fractions of responding neurons. Expected reward value is a key decision variable for economic choices. The reward response codes reward value, probability and their summed product, expected value. The neurons code reward value as it differs from prediction, thus fulfilling the basic requirement for a bidirectional prediction error teaching signal postulated by learning theory. This response is scaled in units of standard deviation. By contrast, relatively few dopamine neurons show the phasic activation following punishers and conditioned aversive stimuli, suggesting a lack of relationship of the reward response to general attention and arousal. Large proportions of dopamine neurons are also activated by intense, physically salient stimuli. This response is enhanced when the stimuli are novel; it appears to be distinct from the reward value signal. Dopamine neurons show also unspecific activations to non-rewarding stimuli that are possibly due to generalization by similar stimuli and pseudoconditioning by primary rewards. These activations are shorter than reward responses and are often followed by depression of activity. A separate, slower dopamine signal informs about risk, another important decision variable. The prediction error response occurs only with reward; it is scaled by the risk of predicted reward

  11. A model of food reward learning with dynamic reward exposure

    Directory of Open Access Journals (Sweden)

    Ross A Hammond

    2012-10-01

    Full Text Available The process of conditioning via reward learning is highly relevant to the study of food choice and obesity. Learning is itself shaped by environmental exposure, with the potential for such exposures to vary substantially across individuals and across place and time. In this paper, we use computational techniques to extend a well-validated standard model of reward learning, introducing both substantial heterogeneity and dynamic reward exposures. We then apply the extended model to a food choice context. The model produces a variety of individual behaviors and population-level patterns which are not evident from the traditional formulation, but which offer potential insights for understanding food reward learning and obesity. These include a lock-in effect, through which early exposure can strongly shape later reward valuation. We discuss potential implications of our results for the study and prevention of obesity, for the reward learning field, and for future experimental and computational work.

  12. Imbalance in the sensitivity to different types of rewards in pathological gambling.

    Science.gov (United States)

    Sescousse, Guillaume; Barbalat, Guillaume; Domenech, Philippe; Dreher, Jean-Claude

    2013-08-01

    Pathological gambling is an addictive disorder characterized by a persistent and compulsive desire to engage in gambling activities. This maladaptive behaviour has been suggested to result from a decreased sensitivity to experienced rewards, regardless of reward type. Alternatively, pathological gambling might reflect an imbalance in the sensitivity to monetary versus non-monetary incentives. To directly test these two hypotheses, we examined how the brain reward circuit of pathological gamblers responds to different types of rewards. Using functional magnetic resonance imaging, we compared the brain responses of 18 pathological gamblers and 20 healthy control subjects while they engaged in a simple incentive task manipulating both monetary and visual erotic rewards. During reward anticipation, the ventral striatum of pathological gamblers showed a differential response to monetary versus erotic cues, essentially driven by a blunted reactivity to cues predicting erotic stimuli. This differential response correlated with the severity of gambling symptoms and was paralleled by a reduced behavioural motivation for erotic rewards. During reward outcome, a posterior orbitofrontal cortex region, responding to erotic rewards in both groups, was further recruited by monetary gains in pathological gamblers but not in control subjects. Moreover, while ventral striatal activity correlated with subjective ratings assigned to monetary and erotic rewards in control subjects, it only correlated with erotic ratings in gamblers. Our results point to a differential sensitivity to monetary versus non-monetary rewards in pathological gambling, both at the motivational and hedonic levels. Such an imbalance might create a bias towards monetary rewards, potentially promoting addictive gambling behaviour.

  13. Reward contingency modulates neuronal activity in rat septal nuclei during elemental and configural association tasks

    Directory of Open Access Journals (Sweden)

    Nozomu eMatsuyama

    2011-05-01

    Full Text Available It has been suggested that septal nuclei are important in the control of behavior during various reward and non-reward situations. In the present study, neuronal activity was recorded from rat septal nuclei during discrimination of conditioned sensory stimuli (CSs of the medial forebrain bundle associated with or without a reward (sucrose solution or intracranial self-stimulation, ICSS. Rats were trained to lick a spout protruding close to the mouth just after a CS to obtain a reward stimulus. The CSs included both elemental and configural stimuli. In the configural condition, the reward contingency of the stimuli presented together was opposite to that of each elemental stimulus presented alone, although the same sensory stimuli were involved. Of the 72 responsive septal neurons, 18 responded selectively to the CSs predicting reward (CS+-related, four to the CSs predicting nonreward (CS0-related, nine to some CSs predicting reward or nonreward, and 15 nondifferentially to all CSs. The remaining 26 neurons responded mainly during the ingestion/ICSS phase. A multivariate analysis of the septal neuronal responses to elemental and configural stimuli indicated that septal neurons encoded the CSs based on reward contingency, regardless of the stimulus physical properties and were categorized into three groups; CSs predicting the sucrose solution, CSs predicting a nonreward, and CSs predicting ICSS. The results suggest that septal nuclei are deeply involved in discriminating the reward contingency of environmental stimuli to manifest appropriate behaviors in response to changing stimuli.

  14. Reward processing in anorexia nervosa.

    Science.gov (United States)

    Keating, Charlotte; Tilbrook, Alan J; Rossell, Susan L; Enticott, Peter G; Fitzgerald, Paul B

    2012-04-01

    Individuals with anorexia nervosa (AN) demonstrate a relentless engagement in behaviors aimed to reduce their weight, which leads to severe underweight status, and occasionally death. Neurobiological abnormalities, as a consequence of starvation are controversial: evidence, however, demonstrates abnormalities in the reward system of patients, and recovered individuals. Despite this, a unifying explanation for reward abnormalities observed in AN and their relevance to symptoms of the illness, remains incompletely understood. Theories explaining reward dysfunction have conventionally focused on anhedonia, describing that patients have an impaired ability to experience reward or pleasure. We review taste reward literature and propose that patients' reduced responses to conventional taste-reward tasks may reflect a fear of weight gain associated with the caloric nature of the tasks, rather than an impaired ability to experience reward. Consistent with this, we propose that patients are capable of 'liking' hedonic taste stimuli (e.g., identifying them), however, they do not 'want' or feel motivated for the stimuli in the same way that healthy controls report. Recent brain imaging data on more complex reward processing tasks provide insights into fronto-striatal neural circuit dysfunction related to altered reward processing in AN that challenges the relevance of anhedonia in explaining reward dysfunction in AN. In this way, altered activity of the anterior cingulate cortex and striatum could explain patients' pathological engagement in behaviors they consider rewarding (e.g., self-starvation) that are otherwise aversive or punishing, to those without the eating disorder. Such evidence for altered patterns of brain activity associated with reward processing tasks in patients and recovered individuals may provide important information about mechanisms underlying symptoms of AN, their future investigation, and the development of treatment approaches. PMID:22349445

  15. Reward Programs and Tacit Collusion

    OpenAIRE

    Byung-Do Kim; Mengze Shi; Kannan Srinivasan

    2001-01-01

    Reward programs, a promotional tool to develop customer loyalty, offer incentives to consumers on the basis of cumulative purchases of a given product or service from a firm. Reward programs have become increasingly common in many industries. The best-known examples include frequent-flier programs offered by airlines, frequent-guest programs offered by hotels, and frequent-shopper programs offered by supermarkets. Despite the widespread business practice of reward programs, research efforts o...

  16. Monetary rewards modulate inhibitory control

    Directory of Open Access Journals (Sweden)

    Paula Marcela Herrera

    2014-05-01

    Full Text Available The ability to override a dominant response, often referred to as behavioural inhibiton, is considered a key element of executive cognition. Poor behavioural inhibition is a defining characteristic of several neurological and psychiatric populations. Recently, there has been increasing interest in the motivational dimension of behavioural inhibition, with some experiments incorporating emotional contingencies in classical inhibitory paradigms such as the Go/Nogo and Stop Signal Tasks. Several studies have reported a positive modulatory effect of reward on the performance of such tasks in pathological conditions such as substance abuse, pathological gambling, and ADHD. However, experiments that directly investigate the modulatory effects of reward magnitudes on the performance of inhibitory paradigms are rare and consequently, little is known about the finer grained relationship between motivation and self-control. Here, we probed the effect of reward and reward magnitude on behavioural inhibition using two modified version of the widely used Stop Signal Task. The first task compared no reward with reward, whilst the other compared two different reward magnitudes. The reward magnitude effect was confirmed by the second study, whereas it was less compelling in the first study, possibly due to the effect of having no reward in some conditions. In addition, our results showed a kick start effect over global performance measures. More specifically, there was a long lasting improvement in performance throughout the task, when participants received the highest reward magnitudes at the beginning of the protocol. These results demonstrate that individuals’ behavioural inhibition capacities are dynamic not static because they are modulated by the reward magnitude and initial reward history of the task at hand.

  17. Phase aberration effects in elastography.

    Science.gov (United States)

    Varghese, T; Bilgen, M; Ophir, J

    2001-06-01

    In sonography, phase aberration plays a role in the corruption of sonograms. Phase aberration does not have a significant impact on elastography, if statistically similar phase errors are present in both the pre- and postcompression signals. However, if the phase errors are present in only one of the pre- or postcompression signal pairs, the precision of the strain estimation process will be reduced. In some cases, increased phase errors may occur only in the postcompression signal due to changes in the tissue structure with the applied compression. Phase-aberration effects increase with applied strain and may be viewed as an image quality derating factor, much like frequency-dependent attenuation or undesired lateral tissue motion. In this paper, we present a theoretical and simulation study of the effects of phase aberration on the elastographic strain-estimation process, using the strain filter approach.

  18. The Roles of Dopamine and Hypocretin in Reward: A Electroencephalographic Study.

    Directory of Open Access Journals (Sweden)

    Armand Mensen

    Full Text Available The proper functioning of the mesolimbic reward system is largely dependent on the neurotransmitter dopamine. Recent evidence suggests that the hypocretin system has significant projections to this reward system. We examined the distinct effects of reduced dopamine or reduced hypocretin levels on reward activity in patients with Parkinson's disease, dopamine deficient, as well as patients with narcolepsy-cataplexy, hypocretin depleted, and healthy controls. Participants performed a simple game-like task while high-density electroencephalography was recorded. Topography and timing of event-related potentials for both reward cue, and reward feedback was examined across the entire dataset. While response to reward cue was similar in all groups, two distinct time points were found to distinguish patients and controls for reward feedback. Around 160 ms both patient groups had reduced ERP amplitude compared to controls. Later at 250 ms, both patient groups also showed a clear event-related potential (ERP, which was absent in controls. The initial differences show that both patient groups show a similar, blunted response to reward delivery. The second potential corresponds to the classic feedback-related negativity (FRN potential which relies on dopamine activity and reflects reward prediction-error signaling. In particular the mismatch between predicted reward and reward subsequently received was significantly higher in PD compared to NC, independent of reward magnitude and valence. The intermediate FRN response in NC highlights the contribution of hypocretin in reward processing, yet also shows that this is not as detrimental to the reward system as in Parkinson's. Furthermore, the inability to generate accurate predictions in NC may explain why hypocretin deficiency mediates cataplexy triggered by both positive and negative emotions.

  19. COMT Val(158) Met genotype is associated with reward learning: a replication study and meta-analysis.

    Science.gov (United States)

    Corral-Frías, N S; Pizzagalli, D A; Carré, J M; Michalski, L J; Nikolova, Y S; Perlis, R H; Fagerness, J; Lee, M R; Conley, E Drabant; Lancaster, T M; Haddad, S; Wolf, A; Smoller, J W; Hariri, A R; Bogdan, R

    2016-06-01

    Identifying mechanisms through which individual differences in reward learning emerge offers an opportunity to understand both a fundamental form of adaptive responding as well as etiological pathways through which aberrant reward learning may contribute to maladaptive behaviors and psychopathology. One candidate mechanism through which individual differences in reward learning may emerge is variability in dopaminergic reinforcement signaling. A common functional polymorphism within the catechol-O-methyl transferase gene (COMT; rs4680, Val(158) Met) has been linked to reward learning, where homozygosity for the Met allele (linked to heightened prefrontal dopamine function and decreased dopamine synthesis in the midbrain) has been associated with relatively increased reward learning. Here, we used a probabilistic reward learning task to asses response bias, a behavioral form of reward learning, across three separate samples that were combined for analyses (age: 21.80 ± 3.95; n = 392; 268 female; European-American: n = 208). We replicate prior reports that COMT rs4680 Met allele homozygosity is associated with increased reward learning in European-American participants (β = 0.20, t = 2.75, P learning (95% CI -0.11 to -0.03; z = 3.2; P < 0.01). These results suggest that variability in dopamine signaling associated with COMT rs4680 influences individual differences in reward which may potentially contribute to psychopathology characterized by reward dysfunction.

  20. Commitment to self-rewards

    DEFF Research Database (Denmark)

    Koch, Alexander; Nafziger, Julia

    People often overcome self-control problems by promising to reward themselves for accomplishing a task. Such strategies based on self-administered rewards however require the person to believe that she would indeed deny herself the reward if she should fail to achieve the desired outcome. Drawing...... on Koszegi and Rabin's (2006) model of endogenous reference point formation, we show how a rational forward-looking individual can achieve such internal commitment. But our results also demonstrate the limitations of self regulation based on self-rewards....

  1. Reward and the serotonergic system.

    Science.gov (United States)

    Kranz, G S; Kasper, S; Lanzenberger, R

    2010-04-14

    Anhedonia, as a failure to experience rewarding stimuli, is a key characteristic of many psychiatric disorders including depression and schizophrenia. Investigations on the neurobiological correlates of reward and hedonia/anhedonia have been a growing subject of research demonstrating several neuromodulators to mediate different aspects of reward processing. Whereas the majority of research on reward mainly focused on the dopamine and opioid systems, a serotonergic mechanism has been neglected. However, recent promising results strengthen the pivotal role of serotonin in reward processing. Evidence includes electrophysical and pharmacological as well as genetic and imaging studies. Primate research using single-unit recording of neurons within the dorsal raphe nucleus argues for a serotonergic mediation of reward value, whereas studies using intracranial self-stimulation point to an important contribution of serotonin in modulating motivational aspects of rewarding brain stimulation. Pharmacological studies using agonists and antagonists of serotonergic receptor subtypes and approaches investigating an increase or decrease of the extracellular level of serotonin offer strong evidence for a serotonergic mediation, ranging from aversion to pleasure. This review provides an argument for serotonin as a fundamental mediator of emotional, motivational and cognitive aspects of reward representation, which makes it possibly as important as dopamine for reward processing. PMID:20109531

  2. Intravascular food reward.

    Directory of Open Access Journals (Sweden)

    Albino J Oliveira-Maia

    Full Text Available Consumption of calorie-containing sugars elicits appetitive behavioral responses and dopamine release in the ventral striatum, even in the absence of sweet-taste transduction machinery. However, it is unclear if such reward-related postingestive effects reflect preabsorptive or postabsorptive events. In support of the importance of postabsorptive glucose detection, we found that, in rat behavioral tests, high concentration glucose solutions administered in the jugular vein were sufficient to condition a side-bias. Additionally, a lower concentration glucose solution conditioned robust behavioral responses when administered in the hepatic-portal, but not the jugular vein. Furthermore, enteric administration of glucose at a concentration that is sufficient to elicit behavioral conditioning resulted in a glycemic profile similar to that observed after administration of the low concentration glucose solution in the hepatic-portal, but not jugular vein. Finally using fast-scan cyclic voltammetry we found that, in accordance with behavioral findings, a low concentration glucose solution caused an increase in spontaneous dopamine release events in the nucleus accumbens shell when administered in the hepatic-portal, but not the jugular vein. These findings demonstrate that the postabsorptive effects of glucose are sufficient for the postingestive behavioral and dopaminergic reward-related responses that result from sugar consumption. Furthermore, glycemia levels in the hepatic-portal venous system contribute more significantly for this effect than systemic glycemia, arguing for the participation of an intra-abdominal visceral sensor for glucose.

  3. Do learning rates adapt to the distribution of rewards?

    Science.gov (United States)

    Gershman, Samuel J

    2015-10-01

    Studies of reinforcement learning have shown that humans learn differently in response to positive and negative reward prediction errors, a phenomenon that can be captured computationally by positing asymmetric learning rates. This asymmetry, motivated by neurobiological and cognitive considerations, has been invoked to explain learning differences across the lifespan as well as a range of psychiatric disorders. Recent theoretical work, motivated by normative considerations, has hypothesized that the learning rate asymmetry should be modulated by the distribution of rewards across the available options. In particular, the learning rate for negative prediction errors should be higher than the learning rate for positive prediction errors when the average reward rate is high, and this relationship should reverse when the reward rate is low. We tested this hypothesis in a series of experiments. Contrary to the theoretical predictions, we found that the asymmetry was largely insensitive to the average reward rate; instead, the dominant pattern was a higher learning rate for negative than for positive prediction errors, possibly reflecting risk aversion.

  4. Aberrant Effective Connectivity in Schizophrenia Patients During Appetitive Conditioning

    Directory of Open Access Journals (Sweden)

    Andreea Oliviana Diaconescu

    2011-01-01

    Full Text Available It has recently been suggested that schizophrenia involves dysfunction in brain connectivity at a neural level, and a dysfunction in reward processing at a behavioural level. The purpose of the present study was to link these two levels of analyses by examining effective connectivity patterns between brain regions mediating reward learning in patients with schizophrenia and healthy, age-matched controls. To this aim, we used functional magnetic resonance imaging (fMRI and galvanic skin recordings (GSR while patients and controls performed an appetitive conditioning experiment with visual cues as the conditioned (CS stimuli, and monetary reward as the appetitive unconditioned stimulus (US. Based on explicit stimulus contingency ratings, conditioning occurred in both groups; however, based on implicit, physiological GSR measures, patients failed to show differences between CS+ and CS- conditions. Healthy controls exhibited increased blood-oxygen-level dependent (BOLD activity across striatal, hippocampal and prefrontal regions and increased effective connectivity from the ventral striatum (VS to the orbitofrontal cortex (OFC BA 11 in the CS+ compared to the CS- condition. Compared to controls, patients showed increased BOLD activity across a similar network of brain regions, and increased effective connectivity from the striatum to hippocampus and prefrontal regions in the CS- compared to the CS+ condition. The findings of increased BOLD activity and effective connectivity in response to the CS- in patients with schizophrenia offer insight into the aberrant assignment of motivational salience to non-reinforced stimuli during conditioning that is thought to accompany schizophrenia.

  5. Rewards for safe road behaviour.

    NARCIS (Netherlands)

    2011-01-01

    It is known from psychology that behaviour can be changed more quickly and long lasting by rewarding desirable behaviour than by penalizing undesirable behaviour. Rewarding road safety behaviour can also be effective, as shown by research into, for instance, the use of seatbelts and driving speeds.

  6. Model Checking Multivariate State Rewards

    DEFF Research Database (Denmark)

    Nielsen, Bo Friis; Nielson, Flemming; Nielson, Hanne Riis

    2010-01-01

    We consider continuous stochastic logics with state rewards that are interpreted over continuous time Markov chains. We show how results from multivariate phase type distributions can be used to obtain higher-order moments for multivariate state rewards (including covariance). We also generalise...

  7. A spiking network model of decision making employing rewarded STDP.

    Directory of Open Access Journals (Sweden)

    Steven Skorheim

    Full Text Available Reward-modulated spike timing dependent plasticity (STDP combines unsupervised STDP with a reinforcement signal that modulates synaptic changes. It was proposed as a learning rule capable of solving the distal reward problem in reinforcement learning. Nonetheless, performance and limitations of this learning mechanism have yet to be tested for its ability to solve biological problems. In our work, rewarded STDP was implemented to model foraging behavior in a simulated environment. Over the course of training the network of spiking neurons developed the capability of producing highly successful decision-making. The network performance remained stable even after significant perturbations of synaptic structure. Rewarded STDP alone was insufficient to learn effective decision making due to the difficulty maintaining homeostatic equilibrium of synaptic weights and the development of local performance maxima. Our study predicts that successful learning requires stabilizing mechanisms that allow neurons to balance their input and output synapses as well as synaptic noise.

  8. Motivating forces of human actions. Neuroimaging reward and social interaction.

    Science.gov (United States)

    Walter, Henrik; Abler, Birgit; Ciaramidaro, Angela; Erk, Susanne

    2005-11-15

    In neuroeconomics, reward and social interaction are central concepts to understand what motivates human behaviour. Both concepts are investigated in humans using neuroimaging methods. In this paper, we provide an overview about these results and discuss their relevance for economic behaviour. For reward it has been shown that a system exists in humans that is involved in predicting rewards and thus guides behaviour, involving a circuit including the striatum, the orbitofrontal cortex and the amygdala. Recent studies on social interaction revealed a mentalizing system representing the mental states of others. A central part of this system is the medial prefrontal cortex, in particular the anterior paracingulate cortex. The reward as well as the mentalizing system is engaged in economic decision-making. We will discuss implications of this study for neuromarketing as well as general implications of these results that may help to provide deeper insights into the motivating forces of human behaviour.

  9. Motivating forces of human actions. Neuroimaging reward and social interaction.

    Science.gov (United States)

    Walter, Henrik; Abler, Birgit; Ciaramidaro, Angela; Erk, Susanne

    2005-11-15

    In neuroeconomics, reward and social interaction are central concepts to understand what motivates human behaviour. Both concepts are investigated in humans using neuroimaging methods. In this paper, we provide an overview about these results and discuss their relevance for economic behaviour. For reward it has been shown that a system exists in humans that is involved in predicting rewards and thus guides behaviour, involving a circuit including the striatum, the orbitofrontal cortex and the amygdala. Recent studies on social interaction revealed a mentalizing system representing the mental states of others. A central part of this system is the medial prefrontal cortex, in particular the anterior paracingulate cortex. The reward as well as the mentalizing system is engaged in economic decision-making. We will discuss implications of this study for neuromarketing as well as general implications of these results that may help to provide deeper insights into the motivating forces of human behaviour. PMID:16216683

  10. Intolerance of uncertainty and decisions about delayed, probabilistic rewards.

    Science.gov (United States)

    Luhmann, Christian C; Ishida, Kanako; Hajcak, Greg

    2011-09-01

    Worry is the inflated concern about potential future threats and is a hallmark feature of generalized anxiety disorder. Previous theoretical work has suggested that worry may be a consequence of intolerance of uncertainty (IU). The current study seeks to explore the behavioral consequences of IU. Specifically, we examine how IU might be associated with aspects of reward-based decision making. We utilized a simple laboratory gambling task in which participants chose between small, low-probability rewards available immediately at the beginning of each trial and large, high-probability rewards only available after some variable delay. Results demonstrate that higher levels of intolerance of uncertainty were associated with a tendency to select the immediately available, but less valuable and less probable rewards. IU also predicted decision-makers' sensitivity to outcomes. We discuss the cognitive and affective mechanisms that are likely to underlie the observed decision-making behavior and the implications for anxiety disorders.

  11. Homeostatic reinforcement learning for integrating reward collection and physiological stability.

    Science.gov (United States)

    Keramati, Mehdi; Gutkin, Boris

    2014-12-02

    Efficient regulation of internal homeostasis and defending it against perturbations requires adaptive behavioral strategies. However, the computational principles mediating the interaction between homeostatic and associative learning processes remain undefined. Here we use a definition of primary rewards, as outcomes fulfilling physiological needs, to build a normative theory showing how learning motivated behaviors may be modulated by internal states. Within this framework, we mathematically prove that seeking rewards is equivalent to the fundamental objective of physiological stability, defining the notion of physiological rationality of behavior. We further suggest a formal basis for temporal discounting of rewards by showing that discounting motivates animals to follow the shortest path in the space of physiological variables toward the desired setpoint. We also explain how animals learn to act predictively to preclude prospective homeostatic challenges, and several other behavioral patterns. Finally, we suggest a computational role for interaction between hypothalamus and the brain reward system.

  12. Relief as a reward: hedonic and neural responses to safety from pain.

    Directory of Open Access Journals (Sweden)

    Siri Leknes

    Full Text Available Relief fits the definition of a reward. Unlike other reward types the pleasantness of relief depends on the violation of a negative expectation, yet this has not been investigated using neuroimaging approaches. We hypothesized that the degree of negative expectation depends on state (dread and trait (pessimism sensitivity. Of the brain regions that are involved in mediating pleasure, the nucleus accumbens also signals unexpected reward and positive prediction error. We hypothesized that accumbens activity reflects the level of negative expectation and subsequent pleasant relief. Using fMRI and two purpose-made tasks, we compared hedonic and BOLD responses to relief with responses during an appetitive reward task in 18 healthy volunteers. We expected some similarities in task responses, reflecting common neural substrates implicated across reward types. However, we also hypothesized that relief responses would differ from appetitive rewards in the nucleus accumbens, since only relief pleasantness depends on negative expectations. The results confirmed these hypotheses. Relief and appetitive reward task activity converged in the ventromedial prefrontal cortex, which also correlated with appetitive reward pleasantness ratings. In contrast, dread and pessimism scores correlated with relief but not with appetitive reward hedonics. Moreover, only relief pleasantness covaried with accumbens activation. Importantly, the accumbens signal appeared to specifically reflect individual differences in anticipation of the adverse event (dread, pessimism but was uncorrelated to appetitive reward hedonics. In conclusion, relief differs from appetitive rewards due to its reliance on negative expectations, the violation of which is reflected in relief-related accumbens activation.

  13. Real and hypothetical monetary rewards modulate risk taking in the brain.

    Science.gov (United States)

    Xu, Sihua; Pan, Yu; Wang, You; Spaeth, Andrea M; Qu, Zhe; Rao, Hengyi

    2016-01-01

    Both real and hypothetical monetary rewards are widely used as reinforcers in risk taking and decision making studies. However, whether real and hypothetical monetary rewards modulate risk taking and decision making in the same manner remains controversial. In this study, we used event-related potentials (ERP) with a balloon analogue risk task (BART) paradigm to examine the effects of real and hypothetical monetary rewards on risk taking in the brain. Behavioral data showed reduced risk taking after negative feedback (money loss) during the BART with real rewards compared to those with hypothetical rewards, suggesting increased loss aversion with real monetary rewards. The ERP data demonstrated a larger feedback-related negativity (FRN) in response to money loss during risk taking with real rewards compared to those with hypothetical rewards, which may reflect greater prediction error or regret emotion after real monetary losses. These findings demonstrate differential effects of real versus hypothetical monetary rewards on risk taking behavior and brain activity, suggesting a caution when drawing conclusions about real choices from hypothetical studies of intended behavior, especially when large rewards are used. The results have implications for future utility of real and hypothetical monetary rewards in studies of risk taking and decision making. PMID:27383241

  14. Reward deficiency and anti-reward in pain chronification.

    Science.gov (United States)

    Borsook, D; Linnman, C; Faria, V; Strassman, A M; Becerra, L; Elman, I

    2016-09-01

    Converging lines of evidence suggest that the pathophysiology of pain is mediated to a substantial degree via allostatic neuroadaptations in reward- and stress-related brain circuits. Thus, reward deficiency (RD) represents a within-system neuroadaptation to pain-induced protracted activation of the reward circuits that leads to depletion-like hypodopaminergia, clinically manifested anhedonia, and diminished motivation for natural reinforcers. Anti-reward (AR) conversely pertains to a between-systems neuroadaptation involving over-recruitment of key limbic structures (e.g., the central and basolateral amygdala nuclei, the bed nucleus of the stria terminalis, the lateral tegmental noradrenergic nuclei of the brain stem, the hippocampus and the habenula) responsible for massive outpouring of stressogenic neurochemicals (e.g., norepinephrine, corticotropin releasing factor, vasopressin, hypocretin, and substance P) giving rise to such negative affective states as anxiety, fear and depression. We propose here the Combined Reward deficiency and Anti-reward Model (CReAM), in which biopsychosocial variables modulating brain reward, motivation and stress functions can interact in a 'downward spiral' fashion to exacerbate the intensity, chronicity and comorbidities of chronic pain syndromes (i.e., pain chronification). PMID:27246519

  15. ATLAS rewards industry

    CERN Multimedia

    2006-01-01

    Showing excellence in mechanics, electronics and cryogenics, three industries are honoured for their contributions to the ATLAS experiment. Representatives of the three award-wining companies after the ceremony. For contributing vital pieces to the ATLAS puzzle, three industries were recognized on Friday 5 May during a supplier awards ceremony. After a welcome and overview of the ATLAS experiment by spokesperson Peter Jenni, CERN Secretary-General Maximilian Metzger stressed the importance of industry to CERN's scientific goals. Close interaction with CERN was a key factor in the selection of each rewarded company, in addition to the high-quality products they delivered to the experiment. Alu Menziken Industrie AG, of Switzerland, was honoured for the production of 380,000 aluminium tubes for the Monitored Drift Tube Chambers (MDT). As Giora Mikenberg, the Muon System Project Leader stressed, the aluminium tubes were delivered on time with an extraordinary quality and precision. Between October 2000 and Jan...

  16. Behavioral and neural evidence of incentive bias for immediate rewards relative to preference-matched delayed rewards.

    Science.gov (United States)

    Luo, Shan; Ainslie, George; Giragosian, Lisa; Monterosso, John R

    2009-11-25

    Several theories of self-control [including intertemporal bargaining (Ainslie, 1992) and self-signaling (Bodner and Prelec, 2001)] imply that intertemporal decisions can be more farsighted than would be predicted by the incentive associated with rewards outside a decision context. We examined this hypothesis using behavior and functional neuroimaging. First, subjects expressed preferences between amounts of money delayed by 4 months and smaller amounts available that day. This allowed us to establish "indifference pairs" individualized to each participant: immediate and delayed amounts that were equally preferred. Participants subsequently performed a reaction time functional magnetic resonance imaging task (Knutson et al., 2001a) that provided them with distinct opportunities to win each of the rewards that comprised the indifference pairs. Anatomical region of interest analysis as well as whole-brain analysis indicated greater response recruited by the immediate rewards (relative to the preference-matched delayed rewards) in regions previously implicated as sensitive to incentive value using the same task (including bilateral putamen, bilateral anterior insula, and midbrain). Reaction time to the target was also faster during the immediate relative to delayed reward trials (p < 0.01), and individual differences in reaction time between immediate versus delayed reward trials correlated with variance in magnetic resonance signal in those clusters that responded preferentially to immediate rewards (r = 0.33, p < 0.05). These findings indicate a discrepancy in incentive associated with the immediate versus the preference-matched delayed rewards. This discrepancy may mark the contribution of self-control processes that are recruited during decision-making but that are absent when rewards are individually anticipated. PMID:19940177

  17. Reward-related neural dysfunction across depression and impulsivity: A dimensional approach.

    Science.gov (United States)

    Ait Oumeziane, Belel; Foti, Dan

    2016-08-01

    Recent theoretical models underline reward sensitivity as a potential endophenotype for major depressive disorder. Neural and behavioral evidence reveals depression is associated with reduced reward sensitivity. However, reward dysfunction is not unique to depression, as it is also common across disorders of poor impulse control. We examined the interrelationships of depression (Depression, Anxiety, and Stress Scale [DASS-21]) and impulsivity (UPPS-P Impulsive Behavior Scale) with reward sensitivity among a large, representative sample (N = 260). ERPs were recorded to isolate two neural indicators of consummatory reward processing: initial evaluation of rewards in the 250-350 ms time window postonset of feedback (reward positivity [RewP]), and salience to monetary outcomes (P3). Significant interactions were observed between depression and impulsivity facets across these two stages of reward processing: depression and positive urgency predicted RewP amplitude to reward outcomes (win vs. loss); depression and one other impulsivity trait, (lack of) premeditation, predicted P3 amplitude to monetary outcomes. Conversely, high symptoms of depression were related to three biobehavioral profiles: (1) blunted RewP in conjunction with high positive urgency, (2) combination of blunted RewP and low (lack of) premeditation, and (3) blunted P3 to monetary wins/losses, in conjunction with low (lack of) premeditation. Findings illustrate that reward-related dysfunctions may be optimally conceptualized when examining the interactions between dimensions of internalizing and externalizing psychopathology. PMID:27193188

  18. Adaptive Reward Pursuit: How Effort Requirements Affect Unconscious Reward Responses and Conscious Reward Decisions

    NARCIS (Netherlands)

    Bijleveld, E.H.; Custers, R.; Aarts, H.A.G.

    2012-01-01

    When in pursuit of rewards, humans weigh the value of potential rewards against the amount of effort that is required to attain them. Although previous research has generally conceptualized this process as a deliberate calculation, recent work suggests that rudimentary mechanisms operating without c

  19. Reward associations reduce behavioral interference by changing the temporal dynamics of conflict processing.

    Directory of Open Access Journals (Sweden)

    Ruth M Krebs

    Full Text Available Associating stimuli with the prospect of reward typically facilitates responses to those stimuli due to an enhancement of attentional and cognitive-control processes. Such reward-induced facilitation might be especially helpful when cognitive-control mechanisms are challenged, as when one must overcome interference from irrelevant inputs. Here, we investigated the neural dynamics of reward effects in a color-naming Stroop task by employing event-related potentials (ERPs. We found that behavioral facilitation in potential-reward trials, as compared to no-reward trials, was paralleled by early ERP modulations likely indexing increased attention to the reward-predictive stimulus. Moreover, reward changed the temporal dynamics of conflict-related ERP components, which may be a consequence of an early access to the various stimulus features and their relationships. Finally, although word meanings referring to potential-reward colors were always task-irrelevant, they caused greater interference compared to words referring to no-reward colors, an effect that was accompanied by a relatively early fronto-central ERP modulation. This latter observation suggests that task-irrelevant reward information can undermine goal-directed behavior at an early processing stage, presumably reflecting priming of a goal-incompatible response. Yet, these detrimental effects of incongruent reward-related words were absent in potential-reward trials, apparently due to the prioritized processing of task-relevant reward information. Taken together, the present data demonstrate that reward associations can influence conflict processing by changing the temporal dynamics of stimulus processing and subsequent cognitive-control mechanisms.

  20. Amphetamine sensitization alters reward processing in the human striatum and amygdala.

    Directory of Open Access Journals (Sweden)

    Owen G O'Daly

    Full Text Available Dysregulation of mesolimbic dopamine transmission is implicated in a number of psychiatric illnesses characterised by disruption of reward processing and goal-directed behaviour, including schizophrenia, drug addiction and impulse control disorders associated with chronic use of dopamine agonists. Amphetamine sensitization (AS has been proposed to model the development of this aberrant dopamine signalling and the subsequent dysregulation of incentive motivational processes. However, in humans the effects of AS on the dopamine-sensitive neural circuitry associated with reward processing remains unclear. Here we describe the effects of acute amphetamine administration, following a sensitising dosage regime, on blood oxygen level dependent (BOLD signal in dopaminoceptive brain regions during a rewarded gambling task performed by healthy volunteers. Using a randomised, double-blind, parallel-groups design, we found clear evidence for sensitization to the subjective effects of the drug, while rewarded reaction times were unchanged. Repeated amphetamine exposure was associated with reduced dorsal striatal BOLD signal during decision making, but enhanced ventromedial caudate activity during reward anticipation. The amygdala BOLD response to reward outcomes was blunted following repeated amphetamine exposure. Positive correlations between subjective sensitization and changes in anticipation- and outcome-related BOLD signal were seen for the caudate nucleus and amygdala, respectively. These data show for the first time in humans that AS changes the functional impact of acute stimulant exposure on the processing of reward-related information within dopaminoceptive regions. Our findings accord with pathophysiological models which implicate aberrant dopaminergic modulation of striatal and amygdala activity in psychosis and drug-related compulsive disorders.

  1. The neural correlates of temporal reward discounting

    NARCIS (Netherlands)

    Scheres, A.P.J.; Water, E. de; Mies, G.W.

    2013-01-01

    Temporal reward discounting (TD) refers to the decrease in subjective value of a reward when the delay to that reward increases. In recent years, a growing number of studies on the neural correlates of temporal reward discounting have been conducted. This article focuses on functional magnetic reson

  2. Evolutionary advantages of adaptive rewarding

    CERN Document Server

    Szolnoki, Attila

    2012-01-01

    Our wellbeing depends as much on our personal success, as it does on the success of our society. The realization of this fact makes cooperation a very much needed trait. Experiments have shown that rewards can elevate our readiness to cooperate, but since giving a reward inevitably entails paying a cost for it, the emergence and stability of such behavior remain elusive. Here we show that allowing for the act of rewarding to self-organize in dependence on the success of cooperation creates several evolutionary advantages that instill new ways through which collaborative efforts are promoted. Ranging from indirect territorial battle to the spontaneous emergence and destruction of coexistence, phase diagrams and the underlying spatial patterns reveal fascinatingly reach social dynamics that explains why this costly behavior has evolved and persevered. Comparisons with adaptive punishment, however, uncover an Achilles heel of adaptive rewarding that is due to over-aggression, which in turn hinders optimal utiliz...

  3. Response of neural reward regions to food cues in autism spectrum disorders

    Directory of Open Access Journals (Sweden)

    Cascio Carissa J

    2012-05-01

    Full Text Available Abstract Background One hypothesis for the social deficits that characterize autism spectrum disorders (ASD is diminished neural reward response to social interaction and attachment. Prior research using established monetary reward paradigms as a test of non-social reward to compare with social reward may involve confounds in the ability of individuals with ASD to utilize symbolic representation of money and the abstraction required to interpret monetary gains. Thus, a useful addition to our understanding of neural reward circuitry in ASD includes a characterization of the neural response to primary rewards. Method We asked 17 children with ASD and 18 children without ASD to abstain from eating for at least four hours before an MRI scan in which they viewed images of high-calorie foods. We assessed the neural reward network for increases in the blood oxygenation level dependent (BOLD signal in response to the food images Results We found very similar patterns of increased BOLD signal to these images in the two groups; both groups showed increased BOLD signal in the bilateral amygdala, as well as in the nucleus accumbens, orbitofrontal cortex, and insula. Direct group comparisons revealed that the ASD group showed a stronger response to food cues in bilateral insula along the anterior-posterior gradient and in the anterior cingulate cortex than the control group, whereas there were no neural reward regions that showed higher activation for controls than for ASD. Conclusion These results suggest that neural response to primary rewards is not diminished but in fact shows an aberrant enhancement in children with ASD.

  4. Public Praise vs. Private Pay: Effects of Rewards on Energy Conservation in the Workplace

    NARCIS (Netherlands)

    Handgraaf, M.J.J.; Lidth de Jeude, van M.; Appelt, K.C.

    2011-01-01

    Any solution to rising levels of CO2 depends on human behavior. One common approach to changing human behavior is rewarding desired behavior. Because financial incentives often have side effects that diminish efficacy, we predict that more psychologically oriented social rewards are more effective,

  5. Public praise vs. private pay: Effects of rewards on energy conservation in the workplace

    NARCIS (Netherlands)

    Handgraaf, M.J.J.; Lidth de Jeude, van M.; Appelt, K.C.

    2013-01-01

    Any solution to rising levels of CO2 depends on human behavior. One common approach to changing human behavior is rewarding desired behavior. Because financial incentives often have side effects that diminish efficacy, we predict that social rewards are more effective, because they invoke adherence

  6. The Reward System in the Corporation

    OpenAIRE

    Danielová, Ladislava

    2012-01-01

    The topic of this thesis deals with analysis of the reward system and improvement proposals of the reward system in a chosen company. The theoretic part of the thesis mentions the reward system and main principles of the reward system. The thesis deals with legal regulations that relate to reward system and labour-law relations too. The literary research deals with individual wage components, forms of wage, wage deductions, fringe benefits and performance management system. The se...

  7. Enriched encoding: reward motivation organizes cortical networks for hippocampal detection of unexpected events.

    Science.gov (United States)

    Murty, Vishnu P; Adcock, R Alison

    2014-08-01

    Learning how to obtain rewards requires learning about their contexts and likely causes. How do long-term memory mechanisms balance the need to represent potential determinants of reward outcomes with the computational burden of an over-inclusive memory? One solution would be to enhance memory for salient events that occur during reward anticipation, because all such events are potential determinants of reward. We tested whether reward motivation enhances encoding of salient events like expectancy violations. During functional magnetic resonance imaging, participants performed a reaction-time task in which goal-irrelevant expectancy violations were encountered during states of high- or low-reward motivation. Motivation amplified hippocampal activation to and declarative memory for expectancy violations. Connectivity of the ventral tegmental area (VTA) with medial prefrontal, ventrolateral prefrontal, and visual cortices preceded and predicted this increase in hippocampal sensitivity. These findings elucidate a novel mechanism whereby reward motivation can enhance hippocampus-dependent memory: anticipatory VTA-cortical-hippocampal interactions. Further, the findings integrate literatures on dopaminergic neuromodulation of prefrontal function and hippocampus-dependent memory. We conclude that during reward motivation, VTA modulation induces distributed neural changes that amplify hippocampal signals and records of expectancy violations to improve predictions-a potentially unique contribution of the hippocampus to reward learning.

  8. The role of the dorsal raphé nucleus in reward-seeking behavior

    Directory of Open Access Journals (Sweden)

    Kae eNakamura

    2013-08-01

    Full Text Available Pharmacological experiments have shown that the modulation of brain serotonin levels has a strong impact on value-based decision making. Anatomical and physiological evidence also revealed that the dorsal raphé nucleus (DRN, a major source of serotonin, and the dopamine system receive common inputs from brain regions associated with appetitive and aversive information processing. The serotonin and dopamine systems also have reciprocal functional influences on each other. However, the specific mechanism by which serotonin affects value-based decision making is not clear.To understand the information carried by the DRN for reward-seeking behavior, we measured single neuron activity in the primate DRN during the performance of saccade tasks to obtain different amounts of a reward. We found that DRN neuronal activity was characterized by tonic modulation that was altered by the expected and received reward value. Consistent reward-dependent modulation across different task periods suggested that DRN activity kept track of the reward value throughout a trial. The DRN was also characterized by modulation of its activity in the opposite direction by different neuronal subgroups, one firing strongly for the prediction and receipt of large rewards, with the other firing strongly for small rewards. Conversely, putative dopamine neurons showed positive phasic responses to reward-indicating cues and the receipt of an unexpected reward amount, which supports the reward prediction error signal hypothesis of dopamine.I suggest that the tonic reward monitoring signal of the DRN, possibly together with its interaction with the dopamine system, reports a continuous level of motivation throughout the performance of a task. Such a signal may provide reward context information to the targets of DRN projections, where it may be integrated further with incoming motivationally salient information.

  9. Phase Aberrations in Diffraction Microscopy

    CERN Document Server

    Marchesini, S; Barty, A; Cui, C; Howells, M R; Spence, J C H; Weierstall, U; Minor, A M

    2005-01-01

    In coherent X-ray diffraction microscopy the diffraction pattern generated by a sample illuminated with coherent x-rays is recorded, and a computer algorithm recovers the unmeasured phases to synthesize an image. By avoiding the use of a lens the resolution is limited, in principle, only by the largest scattering angles recorded. However, the imaging task is shifted from the experiment to the computer, and the algorithm's ability to recover meaningful images in the presence of noise and limited prior knowledge may produce aberrations in the reconstructed image. We analyze the low order aberrations produced by our phase retrieval algorithms. We present two methods to improve the accuracy and stability of reconstructions.

  10. Aberrant methylation patterns in cancer

    OpenAIRE

    Hudler, Petra; Videtič, Alja

    2016-01-01

    Epigenetic mechanisms, such as DNA methylation, DNA hydroxymethylation, post-translational modifications (PTMs) of histone proteins affecting nucleosome remodelling, and regulation by small and large non-coding RNAs (ncRNAs) work in concert with cis and trans acting elements to drive appropriate gene expression. Advances in detection methods and development of dedicated platforms and methylation arrays resulted in an explo - sion of information on aberrantly methylated sequences linking devia...

  11. Social stress reactivity alters reward and punishment learning

    OpenAIRE

    Cavanagh, James F.; Frank, Michael J; Allen, John J.B.

    2010-01-01

    To examine how stress affects cognitive functioning, individual differences in trait vulnerability (punishment sensitivity) and state reactivity (negative affect) to social evaluative threat were examined during concurrent reinforcement learning. Lower trait-level punishment sensitivity predicted better reward learning and poorer punishment learning; the opposite pattern was found in more punishment sensitive individuals. Increasing state-level negative affect was directly related to punishme...

  12. Heightened sensitivity to punishment and reward in anorexia nervosa

    NARCIS (Netherlands)

    Glashouwer, Klaske A; Bloot, Lotte; Veenstra, Esther M; Franken, Ingmar H A; de Jong, Peter J

    2014-01-01

    OBJECTIVE: The aim of this study was to investigate reinforcement sensitivity in anorexia nervosa (AN). It was tested whether self-reported punishment (PS) and reward sensitivity (RS) differed between adolescents with AN and healthy controls, and/or between AN-subtypes. In addition, the predictive v

  13. The better, the bigger: The effect of graded positive performance feedback on the reward positivity.

    Science.gov (United States)

    Frömer, Romy; Stürmer, Birgit; Sommer, Werner

    2016-02-01

    In this study on skill acquisition in a computerized throwing task, we examined the effect of graded correct-related performance feedback on the reward positivity of the event-related brain potential (ERP). Theories of reinforcement learning predict effects of reward magnitude and expectancy on the reward prediction error. The later is supposed to be reflected in reward positivity, a fronto-central ERP component. A sample of 68 participants learned to throw at a beamer-projected target disk while performance accuracy, displayed as the place of impact of the projectile on the target, served as graded feedback. Effects of performance accuracy in successful trials, hit frequency, and preceding trial performance on reward positivity were analyzed simultaneously on a trial-by-trial basis by means of linear mixed models. In accord with previous findings, reward positivity increased with feedback about more accurate performance. This relationship was not linear, but cubic, with larger impact of feedback towards the end of the accuracy distribution. In line with being a measure of expectancy, the reward positivity decreased with increasing hit frequency and was larger after unsuccessful trials. The effect of hit frequency was more pronounced following successful trials. These results indicate a fast trial-by-trial adaptation of expectation. The results confirm predictions of reinforcement learning theory and extend previous findings on reward magnitude to the area of complex, goal directed skill acquisition. PMID:26756995

  14. The better, the bigger: The effect of graded positive performance feedback on the reward positivity.

    Science.gov (United States)

    Frömer, Romy; Stürmer, Birgit; Sommer, Werner

    2016-02-01

    In this study on skill acquisition in a computerized throwing task, we examined the effect of graded correct-related performance feedback on the reward positivity of the event-related brain potential (ERP). Theories of reinforcement learning predict effects of reward magnitude and expectancy on the reward prediction error. The later is supposed to be reflected in reward positivity, a fronto-central ERP component. A sample of 68 participants learned to throw at a beamer-projected target disk while performance accuracy, displayed as the place of impact of the projectile on the target, served as graded feedback. Effects of performance accuracy in successful trials, hit frequency, and preceding trial performance on reward positivity were analyzed simultaneously on a trial-by-trial basis by means of linear mixed models. In accord with previous findings, reward positivity increased with feedback about more accurate performance. This relationship was not linear, but cubic, with larger impact of feedback towards the end of the accuracy distribution. In line with being a measure of expectancy, the reward positivity decreased with increasing hit frequency and was larger after unsuccessful trials. The effect of hit frequency was more pronounced following successful trials. These results indicate a fast trial-by-trial adaptation of expectation. The results confirm predictions of reinforcement learning theory and extend previous findings on reward magnitude to the area of complex, goal directed skill acquisition.

  15. The Social Rewards of Engagement

    DEFF Research Database (Denmark)

    Robison, Joshua

    2016-01-01

    particularly strong among individuals with low levels of external efficacy. Ultimately, the data provide clear evidence that political interest can be positively stimulated with social rewards mobilisation techniques and that it is rooted in beliefs about the potential motives pursuable through politics......Political interest is a crucial precursor to political engagement, but little is known about how to stimulate greater interest. The article explores the role social motives have in generating interest. A laboratory experiment is used in which it is possible to manipulate beliefs about the social...... rewards of political engagement as well as external efficacy beliefs. Across two types of measures for political interest (self-reports and revealed preferences), connecting political engagement with social rewards led to substantial increases in political interest. Moreover, these effects were...

  16. Goal or gold: overlapping reward processes in soccer players upon scoring and winning money.

    Directory of Open Access Journals (Sweden)

    Alexander Niklas Häusler

    Full Text Available Social rewards are important incentives for human behavior. This is especially true in team sports such as the most popular one worldwide: soccer. We investigated reward processing upon scoring a soccer goal in a standard two-versus-one situation and in comparison to winning in a monetary incentive task. The results show a strong overlap in brain activity between the two conditions in established reward regions of the mesolimbic dopaminergic system, including the ventral striatum and ventromedial pre-frontal cortex. The three main components of reward-associated learning, i.e., reward probability (RP, reward reception (RR and reward prediction errors (RPE showed highly similar activation in both con-texts, with only the RR and RPE components displaying overlapping reward activity. Passing and shooting behavior did not correlate with individual egoism scores, but we observe a positive correlation be-tween egoism and activity in the left middle frontal gyrus upon scoring after a pass versus a direct shot. Our findings suggest that rewards in the context of soccer and monetary incentives are based on similar neural processes.

  17. Goal or gold: overlapping reward processes in soccer players upon scoring and winning money.

    Science.gov (United States)

    Häusler, Alexander Niklas; Becker, Benjamin; Bartling, Marcel; Weber, Bernd

    2015-01-01

    Social rewards are important incentives for human behavior. This is especially true in team sports such as the most popular one worldwide: soccer. We investigated reward processing upon scoring a soccer goal in a standard two-versus-one situation and in comparison to winning in a monetary incentive task. The results show a strong overlap in brain activity between the two conditions in established reward regions of the mesolimbic dopaminergic system, including the ventral striatum and ventromedial pre-frontal cortex. The three main components of reward-associated learning, i.e., reward probability (RP), reward reception (RR) and reward prediction errors (RPE) showed highly similar activation in both con-texts, with only the RR and RPE components displaying overlapping reward activity. Passing and shooting behavior did not correlate with individual egoism scores, but we observe a positive correlation be-tween egoism and activity in the left middle frontal gyrus upon scoring after a pass versus a direct shot. Our findings suggest that rewards in the context of soccer and monetary incentives are based on similar neural processes. PMID:25875594

  18. Weak reward source memory in depression reflects blunted activation of VTA/SN and parahippocampus.

    Science.gov (United States)

    Dillon, Daniel G; Dobbins, Ian G; Pizzagalli, Diego A

    2014-10-01

    Reward responses in the medial temporal lobes and dopaminergic midbrain boost episodic memory formation in healthy adults, and weak memory for emotionally positive material in depression suggests this mechanism may be dysfunctional in major depressive disorder (MDD). To test this hypothesis, we performed a study in which unmedicated adults with MDD and healthy controls encoded drawings paired with reward or zero tokens during functional magnetic resonance imaging. In a recognition test, participants judged whether drawings were previously associated with the reward token ('reward source') or the zero token ('zero source'). Unlike controls, depressed participants failed to show better memory for drawings from the reward source vs the zero source. Consistent with predictions, controls also showed a stronger encoding response to reward tokens vs zero tokens in the right parahippocampus and dopaminergic midbrain, whereas the MDD group showed the opposite pattern-stronger responses to zero vs reward tokens-in these regions. Differential activation of the dopaminergic midbrain by reward vs zero tokens was positively correlated with the reward source memory advantage in controls, but not depressed participants. These data suggest that weaker memory for positive material in depression reflects blunted encoding responses in the dopaminergic midbrain and medial temporal lobes. PMID:24078019

  19. Motor Planning under Unpredictable Reward: Modulations of Movement Vigor and Primate Striatum Activity

    Directory of Open Access Journals (Sweden)

    Ioan eOpris

    2011-05-01

    Full Text Available Although reward probability is an important factor that shapes animal behavior, it is not well understood however, how the primate brain translates reward expectation into the vigor of movement (reaction time and speed. To address this question, we trained two monkeys in a reaction time task that required wrist movements in response to vibrotactile and visual stimuli, with a variable reward schedule. Correct performance was rewarded in 75 % of the trials. Monkeys were certain that they would be rewarded only in the trials immediately following withheld rewards. In these trials, the animals responded sooner and moved faster. Single-unit recordings from the dorsal striatum revealed that modulations in striatal neurons reflected such modulations of movement vigor. First, in the trials with certain rewards, striatal neurons modulated their firing rates earlier. Second, magnitudes of changes in neuronal firing rates depended on whether or not monkeys were certain about the reward. Third, these modulations depended on the sensory modality of the cue (visual vs. vibratory and/or movement direction (flexions vs. extensions. We conclude that dorsal striatum may be a part of the mechanism responsible for the modulation of movement vigor in response to changes of reward predictability.

  20. Item-based analysis of delayed reward discounting decision making.

    Science.gov (United States)

    Gray, Joshua C; Amlung, Michael T; Acker, John D; Sweet, Lawrence H; MacKillop, James

    2014-03-01

    Delayed reward discounting (DRD) is a behavioral economic index of time preference, referring to how much an individual devalues a reward based on its delay in time, and has been linked to a wide array of health behaviors. It is commonly assessed using a task that asks participants to make dichotomous choices between two monetary rewards, one available immediately and the other after a delay. This study sought to shorten an extended iterative DRD assessment to increase its versatility and efficiency. Data were drawn from two young adult samples, an exploratory sample (N=130) and a confirmatory sample (N=247). In the exploratory sample, eight items were identified as predicting the majority of the variance in the full task area under the curve (AUC) (R(2)=.821; pDRD. Priorities for further validation and potential applications are discussed. PMID:24440196

  1. Effects of material and non-material rewards on remembering to do things for others

    Directory of Open Access Journals (Sweden)

    Maria A. Brandimonte

    2015-12-01

    Full Text Available Recent research has shown that pro-social prospective memory, i.e., remembering to do something for others, is negatively affected by the presence of small material rewards. While this competition between pro-social and self-gain motives leads to poor memory for the intention, people do not seem to be aware of the possible collision effects of competing motives (Brandimonte, Ferrante, Bianco, & Villani, 2010. Extending research on this general topic, in two activity-based prospective memory experiments, we explored the effects of different types and amount of rewards on pro-social prospective remembering. In Experiment 1, participants could receive no reward, a low material reward (1 euro, or a high material reward (20 euro for their pro-social prospective memory action. In Experiment 2, their pro-social prospective memory performance could be rewarded or not with an image reward (publicity of their altruistic behavior. Results revealed that introducing a small material reward (Experiment 1 or a non-material reward (Experiment 2 impaired pro-social prospective memory. However, introducing a high material reward eliminated the impairment (Experiment 1. Importantly, in Experiment 1, ongoing task performance in the pro-social condition was faster than in the No PM condition. However, in Experiment 2, ongoing task costs emerged in the presence of a non-material reward, as compared to the pro-social condition. Also, results from two independent ratings showed that people’s predictions on their future pro-social actions were at odds (Experiment 1 or in line (Experiment 2 with actual PM performance. It is suggested that, according to the nature and amount of rewards, memory for a pro-social future action may be modulated by conscious or unconscious motivational mechanisms.

  2. 'The risks of playing it safe': a prospective longitudinal study of response to reward in the adolescent offspring of depressed parents

    OpenAIRE

    Rawal, A.; Collishaw, S.; Thapar, A; Rice, F.

    2013-01-01

    BACKGROUND Alterations in reward processing may represent an early vulnerability factor for the development of depressive disorder. Depression in adults is associated with reward hyposensitivity and diminished reward seeking may also be a feature of depression in children and adolescents. We examined the role of reward responding in predicting depressive symptoms, functional impairment and new-onset depressive disorder over time in the adolescent offspring of depressed parents. In additio...

  3. Reward Contingencies and the Development of Children's Skills and Self-Efficacy.

    Science.gov (United States)

    Schunk, Dale H.

    1983-01-01

    The present study provides evidence that offering performance-contingent rewards promotes children's task accomplishments, percepts of efficacy, and skill development. These findings are consistent with predictions from Bandura's theory of self-efficacy. (Author/PN)

  4. The role of reward in dynamic decision making

    OpenAIRE

    Magda eOsman

    2012-01-01

    The present study investigates two aspects of decision making that have yet to be explored within a dynamic environment, (1) comparing the accuracy of cue-outcome knowledge under conditions in which knowledge acquisition is either through Prediction or Choice, and (2) examining the effects of reward on both Prediction and Choice. In the present study participants either learnt about the cue-outcome relations in the environment by choosing cue values in order to maintain an outcome to criterio...

  5. Post-learning Hippocampal Dynamics Promote Preferential Retention of Rewarding Events.

    Science.gov (United States)

    Gruber, Matthias J; Ritchey, Maureen; Wang, Shao-Fang; Doss, Manoj K; Ranganath, Charan

    2016-03-01

    Reward motivation is known to modulate memory encoding, and this effect depends on interactions between the substantia nigra/ventral tegmental area complex (SN/VTA) and the hippocampus. It is unknown, however, whether these interactions influence offline neural activity in the human brain that is thought to promote memory consolidation. Here we used fMRI to test the effect of reward motivation on post-learning neural dynamics and subsequent memory for objects that were learned in high- and low-reward motivation contexts. We found that post-learning increases in resting-state functional connectivity between the SN/VTA and hippocampus predicted preferential retention of objects that were learned in high-reward contexts. In addition, multivariate pattern classification revealed that hippocampal representations of high-reward contexts were preferentially reactivated during post-learning rest, and the number of hippocampal reactivations was predictive of preferential retention of items learned in high-reward contexts. These findings indicate that reward motivation alters offline post-learning dynamics between the SN/VTA and hippocampus, providing novel evidence for a potential mechanism by which reward could influence memory consolidation.

  6. Distinct medial temporal networks encode surprise during motivation by reward versus punishment.

    Science.gov (United States)

    Murty, Vishnu P; LaBar, Kevin S; Adcock, R Alison

    2016-10-01

    Adaptive motivated behavior requires predictive internal representations of the environment, and surprising events are indications for encoding new representations of the environment. The medial temporal lobe memory system, including the hippocampus and surrounding cortex, encodes surprising events and is influenced by motivational state. Because behavior reflects the goals of an individual, we investigated whether motivational valence (i.e., pursuing rewards versus avoiding punishments) also impacts neural and mnemonic encoding of surprising events. During functional magnetic resonance imaging (fMRI), participants encountered perceptually unexpected events either during the pursuit of rewards or avoidance of punishments. Despite similar levels of motivation across groups, reward and punishment facilitated the processing of surprising events in different medial temporal lobe regions. Whereas during reward motivation, perceptual surprises enhanced activation in the hippocampus, during punishment motivation surprises instead enhanced activation in parahippocampal cortex. Further, we found that reward motivation facilitated hippocampal coupling with ventromedial PFC, whereas punishment motivation facilitated parahippocampal cortical coupling with orbitofrontal cortex. Behaviorally, post-scan testing revealed that reward, but not punishment, motivation resulted in greater memory selectivity for surprising events encountered during goal pursuit. Together these findings demonstrate that neuromodulatory systems engaged by anticipation of reward and punishment target separate components of the medial temporal lobe, modulating medial temporal lobe sensitivity and connectivity. Thus, reward and punishment motivation yield distinct neural contexts for learning, with distinct consequences for how surprises are incorporated into predictive mnemonic models of the environment. PMID:26854903

  7. Distinct medial temporal networks encode surprise during motivation by reward versus punishment.

    Science.gov (United States)

    Murty, Vishnu P; LaBar, Kevin S; Adcock, R Alison

    2016-10-01

    Adaptive motivated behavior requires predictive internal representations of the environment, and surprising events are indications for encoding new representations of the environment. The medial temporal lobe memory system, including the hippocampus and surrounding cortex, encodes surprising events and is influenced by motivational state. Because behavior reflects the goals of an individual, we investigated whether motivational valence (i.e., pursuing rewards versus avoiding punishments) also impacts neural and mnemonic encoding of surprising events. During functional magnetic resonance imaging (fMRI), participants encountered perceptually unexpected events either during the pursuit of rewards or avoidance of punishments. Despite similar levels of motivation across groups, reward and punishment facilitated the processing of surprising events in different medial temporal lobe regions. Whereas during reward motivation, perceptual surprises enhanced activation in the hippocampus, during punishment motivation surprises instead enhanced activation in parahippocampal cortex. Further, we found that reward motivation facilitated hippocampal coupling with ventromedial PFC, whereas punishment motivation facilitated parahippocampal cortical coupling with orbitofrontal cortex. Behaviorally, post-scan testing revealed that reward, but not punishment, motivation resulted in greater memory selectivity for surprising events encountered during goal pursuit. Together these findings demonstrate that neuromodulatory systems engaged by anticipation of reward and punishment target separate components of the medial temporal lobe, modulating medial temporal lobe sensitivity and connectivity. Thus, reward and punishment motivation yield distinct neural contexts for learning, with distinct consequences for how surprises are incorporated into predictive mnemonic models of the environment.

  8. Atom lens without chromatic aberrations

    CERN Document Server

    Efremov, Maxim A; Schleich, Wolfgang P

    2012-01-01

    We propose a lens for atoms with reduced chromatic aberrations and calculate its focal length and spot size. In our scheme a two-level atom interacts with a near-resonant standing light wave formed by two running waves of slightly different wave vectors, and a far-detuned running wave propagating perpendicular to the standing wave. We show that within the Raman-Nath approximation and for an adiabatically slow atom-light interaction, the phase acquired by the atom is independent of the incident atomic velocity.

  9. What can the monetary incentive delay task tell us about the neural processing of reward and punishment?

    Directory of Open Access Journals (Sweden)

    Lutz K

    2014-04-01

    Full Text Available Kai Lutz,1–3 Mario Widmer1,2,41Department of Neurology, University Hospital Zürich, Zürich, 2Cereneo, Center for Neurology and Rehabilitation, Vitznau, 3Division of Neuropsychology, Institute of Psychology, University of Zürich, Zürich, 4Neural Control of Movement Lab, ETH Zürich, Zürich, SwitzerlandAbstract: Since its introduction in 2000, the monetary incentive delay (MID task has been used extensively to investigate changes in neural activity in response to the processing of reward and punishment in healthy, but also in clinical populations. Typically, the MID task requires an individual to react to a target stimulus presented after an incentive cue to win or to avoid losing the indicated reward. In doing so, this paradigm allows the detailed examination of different stages of reward processing like reward prediction, anticipation, outcome processing, and consumption as well as the processing of tasks under different reward conditions. This review gives an overview of different utilizations of the MID task by outlining the neuronal processes involved in distinct aspects of human reward processing, such as anticipation versus consumption, reward versus punishment, and, with a special focus, reward-based learning processes. Furthermore, literature on specific influences on reward processing like behavioral, clinical and developmental influences, is reviewed, describing current findings and possible future directions.Keywords: reward, punishment, dopamine, reward system

  10. Remembering with gains and losses: effects of monetary reward and punishment on successful encoding activation of source memories.

    Science.gov (United States)

    Shigemune, Yayoi; Tsukiura, Takashi; Kambara, Toshimune; Kawashima, Ryuta

    2014-05-01

    The motivation of getting rewards or avoiding punishments reinforces learning behaviors. Although the neural mechanisms underlying the effect of rewards on episodic memory have been demonstrated, there is little evidence of the effect of punishments on this memory. Our functional magnetic resonance imaging (fMRI) study investigated the effects of monetary rewards and punishments on activation during the encoding of source memories. During encoding, participants memorized words (item) and locations of presented words (source) under 3 conditions (Reward, Punishment, and Control). During retrieval, participants retrieved item and source memories of the words and were rewarded or penalized according to their performance. Source memories encoded with rewards or punishments were remembered better than those without such encoding. fMRI data demonstrated that the ventral tegmental area and substantia nigra and nucleus accumbens activations reflected both the processes of reward and punishment, whereas insular activation increased as a linear function of punishment. Activation in the hippocampus and parahippocampal cortex predicted subsequent retrieval success of source memories. Additionally, correlations between these reward/punishment-related regions and the hippocampus were significant. The successful encoding of source memories could be enhanced by punishments and rewards, and interactions between reward/punishment-related regions and memory-related regions could contribute to memory enhancement by reward and/or punishment.

  11. Video game training and the reward system

    OpenAIRE

    Lorenz, Robert C.; Tobias eGleich; Jürgen eGallinat; Simone eKühn

    2015-01-01

    Video games contain elaborate reinforcement and reward schedules that have the potential to maximize motivation. Neuroimaging studies suggest that video games might have an influence on the reward system. However, it is not clear whether reward-related properties represent a precondition, which biases an individual towards playing video games, or if these changes are the result of playing video games. Therefore, we conducted a longitudinal study to explore reward-related functional predictors...

  12. Evaluating the Quality of Rewards Systems

    OpenAIRE

    Petera, Petr

    2011-01-01

    This paper deals with the issue of desired characteristics of rewards systems and outlines possible ways of their evaluation. Aims of the rewards systems are analyzed and desired properties, components and updating procedures that should be put in place are identified. Rewards system is understood as a tool for supporting business’s goals, attracting, motivating and retaining competent employees. It is stressed that rewards system is an important but not the only tool for reaching the mention...

  13. The Hidden Costs of Rewards.

    Science.gov (United States)

    Deci, Edward L.

    1976-01-01

    This paper discusses ways managers can motivate their employees to work and at the same time to increase their performance. Two theories of motivation--Vroom's theory and Atkinson's theory--focus on the use of extrinsic and intrinsic rewards respectively. A managerial strategy that combines the best of both intrinsic and extrinsic approaches to…

  14. Addiction: Beyond dopamine reward circuitry

    Energy Technology Data Exchange (ETDEWEB)

    Volkow, N.D.; Wang, G.; Volkow, N.D.; Wang, G.-J.; Fowler, J.S.; Tomasi, D.; Telang, F.

    2011-09-13

    Dopamine (DA) is considered crucial for the rewarding effects of drugs of abuse, but its role in addiction is much less clear. This review focuses on studies that used PET to characterize the brain DA system in addicted subjects. These studies have corroborated in humans the relevance of drug-induced fast DA increases in striatum [including nucleus accumbens (NAc)] in their rewarding effects but have unexpectedly shown that in addicted subjects, drug-induced DA increases (as well as their subjective reinforcing effects) are markedly blunted compared with controls. In contrast, addicted subjects show significant DA increases in striatum in response to drug-conditioned cues that are associated with self-reports of drug craving and appear to be of a greater magnitude than the DA responses to the drug. We postulate that the discrepancy between the expectation for the drug effects (conditioned responses) and the blunted pharmacological effects maintains drug taking in an attempt to achieve the expected reward. Also, whether tested during early or protracted withdrawal, addicted subjects show lower levels of D2 receptors in striatum (including NAc), which are associated with decreases in baseline activity in frontal brain regions implicated in salience attribution (orbitofrontal cortex) and inhibitory control (anterior cingulate gyrus), whose disruption results in compulsivity and impulsivity. These results point to an imbalance between dopaminergic circuits that underlie reward and conditioning and those that underlie executive function (emotional control and decision making), which we postulate contributes to the compulsive drug use and loss of control in addiction.

  15. What Rewards Do Students Want?

    Science.gov (United States)

    Ware, Barbara Ann

    1978-01-01

    In general, students ranked personal kinds of recognition high and teachers ranked tangible sources of recognition high in surveys of the kinds of rewards that motivate students. The students' top two kinds of recognition were ranked as the bottom two by teachers. (Author/IRT)

  16. Addiction: Beyond dopamine reward circuitry

    International Nuclear Information System (INIS)

    Dopamine (DA) is considered crucial for the rewarding effects of drugs of abuse, but its role in addiction is much less clear. This review focuses on studies that used PET to characterize the brain DA system in addicted subjects. These studies have corroborated in humans the relevance of drug-induced fast DA increases in striatum [including nucleus accumbens (NAc)] in their rewarding effects but have unexpectedly shown that in addicted subjects, drug-induced DA increases (as well as their subjective reinforcing effects) are markedly blunted compared with controls. In contrast, addicted subjects show significant DA increases in striatum in response to drug-conditioned cues that are associated with self-reports of drug craving and appear to be of a greater magnitude than the DA responses to the drug. We postulate that the discrepancy between the expectation for the drug effects (conditioned responses) and the blunted pharmacological effects maintains drug taking in an attempt to achieve the expected reward. Also, whether tested during early or protracted withdrawal, addicted subjects show lower levels of D2 receptors in striatum (including NAc), which are associated with decreases in baseline activity in frontal brain regions implicated in salience attribution (orbitofrontal cortex) and inhibitory control (anterior cingulate gyrus), whose disruption results in compulsivity and impulsivity. These results point to an imbalance between dopaminergic circuits that underlie reward and conditioning and those that underlie executive function (emotional control and decision making), which we postulate contributes to the compulsive drug use and loss of control in addiction.

  17. Effects of Varying Contingency and Directness of Rewards upon Children's Performance under Implicit Reward Conditions.

    Science.gov (United States)

    Sharpley, Christopher F.

    1988-01-01

    Investigated the application of verbal praise as a reward with 84 third and fourth grade children who completed a digit-symbol coding task under contingent versus noncontingent and direct versus implicit reward conditions. Noncontingent rewards possessed no significant reinforcer effect under either reward condition. (SKC)

  18. Random reward priming is task-contingent

    DEFF Research Database (Denmark)

    Ásgeirsson, Árni Gunnar; Kristjánsson, Árni

    2014-01-01

    for a Gabor patch of odd spatial frequency we found no evidence of reward priming, while we only partially replicate the reward priming in the exact original paradigm tested by Hickey and colleagues. The results cast doubt on the proposal that random reward enhances salience, suggested in the original papers...

  19. Defining rewardable innovation in drug therapy.

    Science.gov (United States)

    Aronson, Jeffrey K; Ferner, Robin E; Hughes, Dyfrig A

    2012-03-30

    Implementing mechanisms for rewarding those who introduce innovative medicinal products requires a definition of 'rewardable innovation'. Here, we propose a definition of innovation with respect to medicinal products, accompanied by a ranking of the importance of different types of innovativeness, with the aim of providing a basis for rewarding such innovation.

  20. Housing conditions affect rat responses to two types of ambiguity in a reward-reward discrimination cognitive bias task.

    Science.gov (United States)

    Parker, Richard M A; Paul, Elizabeth S; Burman, Oliver H P; Browne, William J; Mendl, Michael

    2014-11-01

    Decision-making under ambiguity in cognitive bias tasks is a promising new indicator of affective valence in animals. Rat studies support the hypothesis that animals in a negative affective state evaluate ambiguous cues negatively. Prior automated operant go/go judgement bias tasks have involved training rats that an auditory cue of one frequency predicts a Reward and a cue of a different frequency predicts a Punisher (RP task), and then measuring whether ambiguous cues of intermediate frequency are judged as predicting reward ('optimism') or punishment ('pessimism'). We investigated whether an automated Reward-Reward (RR) task yielded similar results to, and was faster to train than, RP tasks. We also introduced a new ambiguity test (simultaneous presentation of the two training cues) alongside the standard single ambiguous cue test. Half of the rats experienced an unpredictable housing treatment (UHT) designed to induce a negative state. Control rats were relatively 'pessimistic', whilst UHT rats were quicker, but no less accurate, in their responses in the RR test, and showed less anxiety-like behaviour in independent tests. A possible reason for these findings is that rats adapted to and were stimulated by UHT, whilst control rats in a predictable environment were more sensitive to novelty and change. Responses in the new ambiguity test correlated positively with those in single ambiguous cue tests, and may provide a measure of attention bias. The RR task was quicker to train than previous automated RP tasks. Together, they could be used to disentangle how reward and punishment processes underpin affect-induced cognitive biases. PMID:25106739

  1. A causal link between prediction errors, dopamine neurons and learning.

    Science.gov (United States)

    Steinberg, Elizabeth E; Keiflin, Ronald; Boivin, Josiah R; Witten, Ilana B; Deisseroth, Karl; Janak, Patricia H

    2013-07-01

    Situations in which rewards are unexpectedly obtained or withheld represent opportunities for new learning. Often, this learning includes identifying cues that predict reward availability. Unexpected rewards strongly activate midbrain dopamine neurons. This phasic signal is proposed to support learning about antecedent cues by signaling discrepancies between actual and expected outcomes, termed a reward prediction error. However, it is unknown whether dopamine neuron prediction error signaling and cue-reward learning are causally linked. To test this hypothesis, we manipulated dopamine neuron activity in rats in two behavioral procedures, associative blocking and extinction, that illustrate the essential function of prediction errors in learning. We observed that optogenetic activation of dopamine neurons concurrent with reward delivery, mimicking a prediction error, was sufficient to cause long-lasting increases in cue-elicited reward-seeking behavior. Our findings establish a causal role for temporally precise dopamine neuron signaling in cue-reward learning, bridging a critical gap between experimental evidence and influential theoretical frameworks.

  2. Neural Processing of Calories in Brain Reward Areas Can be Modulated by Reward Sensitivity

    OpenAIRE

    van Rijn, Inge; Griffioen-Roose, Sanne; de Graaf, Cees; Paul A.M. Smeets

    2016-01-01

    A food's reward value is dependent on its caloric content. Furthermore, a food's acute reward value also depends on hunger state. The drive to obtain rewards (reward sensitivity), however, differs between individuals. Here, we assessed the association between brain responses to calories in the mouth and trait reward sensitivity in different hunger states. Firstly, we assessed this in data from a functional neuroimaging study (van Rijn et al., 2015), in which participants (n = 30) tasted simpl...

  3. Neural processing of calories in brain reward areas can be modulated by reward sensitivity

    OpenAIRE

    Inge eVan Rijn; Sanne eGriffioen-Roose; Cees ede Graaf; Paul A.M. Smeets

    2016-01-01

    A food’s reward value is dependent on its caloric content. Furthermore, a food’s acute reward value also depends on hunger state. The drive to obtain rewards (reward sensitivity), however, differs between individuals. Here, we assessed the association between brain responses to calories in the mouth and trait reward sensitivity in different hunger states. Firstly, we assessed this in data from a functional neuroimaging study (van Rijn et al., 2015), in which participants (n=30) tasted simple ...

  4. Rewards are not always bad for fun: Undermining the Undermining Effect Using Task-Congruent Rewards

    OpenAIRE

    Steiner, Susanne

    2013-01-01

    Currently, researchers on the undermining effect agree: Tangible rewards could harm intrinsic motivation. The aim of the present research was to search for tangible rewards that do not harm intrinsic motivation. Guided by ideas of a recent model on motivation, I tested the assumptions that task-congruent rewards do not undermine intrinsic motivation, while task-incongruent rewards do. Furthermore, task-congruent rewards should even enhance intrinsic motivation. Three experiments confirmed the...

  5. Alterations of the Brain Reward System in Antipsychotic Naïve Schizophrenia Patients

    DEFF Research Database (Denmark)

    Nielsen, Mette Ødegaard; Rostrup, Egill; Wulff, Sanne;

    2012-01-01

    BACKGROUND: Various schizophrenic symptoms are suggested to be linked to a dysfunction of the brain reward system. Several studies have found alterations in the reward processing in patients with schizophrenia; however, most previous findings might be confounded by medication effects. METHODS...... arousing events) into behavioral salience (events where a predicted reward requires performance) and valence anticipation (the anticipation of a monetarily significant outcome). Furthermore, the evaluation of monetary gain and loss was assessed. RESULTS: During reward anticipation, patients had a...... and nonsignificant for value anticipation. Furthermore, patients showed a changed activation pattern during outcome evaluation in right prefrontal cortex. CONCLUSION: Our results suggest that changes during reward anticipation in schizophrenia are present from the beginning of the disease. This...

  6. Evidence for deficits in reward responsivity in antisocial youth with callous-unemotional traits.

    Science.gov (United States)

    Marini, Victoria A; Stickle, Timothy R

    2010-10-01

    This study investigated reward responsivity in youth with high levels of callous-unemotional (CU) traits using a cross-sectional design. Whereas deficits in responding to punishment cues are well established in youth with CU traits, it is unclear whether responsivity to rewarding stimuli is impaired as well. Participants were 148 predominantly Caucasian, adjudicated adolescents between the ages of 11 and 17 (M = 15.1, SD = 1.4) who completed the Balloon Analogue Risk Task as part of a larger battery investigating aggression and social information processing. A Reward Responsivity variable was created to capture changes in participants' responding after receiving a reward. A hierarchical regression analysis indicated that higher levels of CU traits significantly predicted less reward responsivity, above and beyond gender, sensation seeking, and impulsivity. Results support Blair's (2004) Integrated Emotion Systems model that proposes individuals with CU traits are impaired in their responsivity to both appetitive and aversive stimuli. PMID:22448665

  7. The effect of probability discounting on reward seeking: a three-dimensional perspective

    Directory of Open Access Journals (Sweden)

    Yannick-Andre eBreton

    2014-08-01

    Full Text Available Rats will work for electrical stimulation pulses of the medial forebrain bundle. The rewarding effect arises from the volleys of action potentials fired by the stimulation and subsequent spatio-temporal integration of their post-synpatic impact. The proportion of time allocated to self-stimulation depends on the intensity of the rewarding effect as well as on other key determinants of decision-making, such as subjective opportunity costs and reward probability. We have proposed that a 3D model relating time allocation to the intensity and cost of reward can distinguish manipulations acting prior to the output of the spatio-temporal integrator from those acting at or beyond it. Here, we test this proposition by varying reward probability, a variable that influences the computation of payoff in the 3D model downstream from the output of the integrator. On riskless trials, reward was delivered on every occasion that the rat held down the lever for a cumulative duration called the ``price,'' whereas on risky trials, reward was delivered with probability 0.75 or 0.50. According to the model, the 3D structure relating time allocation to reward intensity and price is shifted leftward along the price axis by reductions in reward probability; the magnitude of the shift estimates the change in subjective probability. The predictions were borne out: reducing reward probability shifted the 3D structure systematically along the price axis while producing only small, inconsistent displacements along the pulse-frequency axis. The results confirm that the model can accurately distinguish manipulations acting at or beyond the spatio-temporal integrator and strengthen the conclusions of previous studies showing similar shifts following dopaminergic manipulations. Subjective and objective reward probabilities appeared indistinguishable over the range of 0.5 <= p <= 1.0.

  8. Serotonergic modulation of reward and punishment

    DEFF Research Database (Denmark)

    Macoveanu, Julian

    2014-01-01

    of evidence on the key role serotonin plays in reward processing. The reviewed research has revealed how central serotonin availability and receptor specific transmission modulates the neural response to both appetitive (rewarding) and aversive (punishing) stimuli in putative reward-related brain regions....... Thus, serotonin is suggested to be involved in behavioral control when there is a prospect of reward or punishment. The new findings may have implications in understanding psychiatric disorders such as major depression which is characterized by abnormal serotonergic function and reward...

  9. Basal ganglia orient eyes to reward.

    Science.gov (United States)

    Hikosaka, Okihide; Nakamura, Kae; Nakahara, Hiroyuki

    2006-02-01

    Expectation of reward motivates our behaviors and influences our decisions. Indeed, neuronal activity in many brain areas is modulated by expected reward. However, it is still unclear where and how the reward-dependent modulation of neuronal activity occurs and how the reward-modulated signal is transformed into motor outputs. Recent studies suggest an important role of the basal ganglia. Sensorimotor/cognitive activities of neurons in the basal ganglia are strongly modulated by expected reward. Through their abundant outputs to the brain stem motor areas and the thalamocortical circuits, the basal ganglia appear capable of producing body movements based on expected reward. A good behavioral measure to test this hypothesis is saccadic eye movement because its brain stem mechanism has been extensively studied. Studies from our laboratory suggest that the basal ganglia play a key role in guiding the gaze to the location where reward is available. Neurons in the caudate nucleus and the substantia nigra pars reticulata are extremely sensitive to the positional difference in expected reward, which leads to a bias in excitability between the superior colliculi such that the saccade to the to-be-rewarded position occurs more quickly. It is suggested that the reward modulation occurs in the caudate where cortical inputs carrying spatial signals and dopaminergic inputs carrying reward-related signals are integrated. These data support a specific form of reinforcement learning theories, but also suggest further refinement of the theory.

  10. Incremental effects of reward on creativity.

    Science.gov (United States)

    Eisenberger, R; Rhoades, L

    2001-10-01

    The authors examined 2 ways reward might increase creativity. First, reward contingent on creativity might increase extrinsic motivation. Studies 1 and 2 found that repeatedly giving preadolescent students reward for creative performance in 1 task increased their creativity in subsequent tasks. Study 3 reported that reward promised for creativity increased college students' creative task performance. Second, expected reward for high performance might increase creativity by enhancing perceived self-determination and, therefore, intrinsic task interest. Study 4 found that employees' intrinsic job interest mediated a positive relationship between expected reward for high performance and creative suggestions offered at work. Study 5 found that employees' perceived self-determination mediated a positive relationship between expected reward for high performance and the creativity of anonymous suggestions for helping the organization. PMID:11642357

  11. Adolescent development of the reward system

    Directory of Open Access Journals (Sweden)

    Adriana Galván

    2010-02-01

    Full Text Available Adolescence is a developmental period characterized by increased reward-seeking behavior. Investigators have used functional magnetic resonance imaging (fMRI in conjunction with reward paradigms to test two opposing hypotheses about adolescent developmental changes in the striatum, a region implicated in reward processing. One hypothesis posits that the striatum is relatively hypo-responsive to rewards during adolescence, such that heightened reward-seeking behavior is necessary to achieve the same activation as adults. Another view suggests that during adolescence the striatal reward system is hyper-responsive, which subsequently results in greater reward-seeking. While evidence for both hypotheses has been reported, the field has generally converged on this latter hypothesis based on compelling evidence. In this review, I describe the evidence to support this notion, speculate on the disparate fMRI findings and conclude with future areas of inquiry to this fascinating question.

  12. Toward an autonomous brain machine interface: integrating sensorimotor reward modulation and reinforcement learning.

    Science.gov (United States)

    Marsh, Brandi T; Tarigoppula, Venkata S Aditya; Chen, Chen; Francis, Joseph T

    2015-05-13

    For decades, neurophysiologists have worked on elucidating the function of the cortical sensorimotor control system from the standpoint of kinematics or dynamics. Recently, computational neuroscientists have developed models that can emulate changes seen in the primary motor cortex during learning. However, these simulations rely on the existence of a reward-like signal in the primary sensorimotor cortex. Reward modulation of the primary sensorimotor cortex has yet to be characterized at the level of neural units. Here we demonstrate that single units/multiunits and local field potentials in the primary motor (M1) cortex of nonhuman primates (Macaca radiata) are modulated by reward expectation during reaching movements and that this modulation is present even while subjects passively view cursor motions that are predictive of either reward or nonreward. After establishing this reward modulation, we set out to determine whether we could correctly classify rewarding versus nonrewarding trials, on a moment-to-moment basis. This reward information could then be used in collaboration with reinforcement learning principles toward an autonomous brain-machine interface. The autonomous brain-machine interface would use M1 for both decoding movement intention and extraction of reward expectation information as evaluative feedback, which would then update the decoding algorithm as necessary. In the work presented here, we show that this, in theory, is possible. PMID:25972167

  13. Reward salience and risk aversion underlie differential ACC activity in substance dependence

    Directory of Open Access Journals (Sweden)

    William H. Alexander

    2015-01-01

    Full Text Available The medial prefrontal cortex, especially the dorsal anterior cingulate cortex (ACC, has long been implicated in cognitive control and error processing. Although the association between ACC and behavior has been established, it is less clear how ACC contributes to dysfunctional behavior such as substance dependence. Evidence from neuroimaging studies investigating ACC function in substance users is mixed, with some studies showing disengagement of ACC in substance dependent individuals (SDs, while others show increased ACC activity related to substance use. In this study, we investigate ACC function in SDs and healthy individuals performing a change signal task for monetary rewards. Using a priori predictions derived from a recent computational model of ACC, we find that ACC activity differs between SDs and controls in factors related to reward salience and risk aversion between SDs and healthy individuals. Quantitative fits of a computational model to fMRI data reveal significant differences in best fit parameters for reward salience and risk preferences. Specifically, the ACC in SDs shows greater risk aversion, defined as concavity in the utility function, and greater attention to rewards relative to reward omission. Furthermore, across participants risk aversion and reward salience are positively correlated. The results clarify the role that ACC plays in both the reduced sensitivity to omitted rewards and greater reward valuation in SDs. Clinical implications of applying computational modeling in psychiatry are also discussed.

  14. The Dopaminergic Midbrain Mediates an Effect of Average Reward on Pavlovian Vigor.

    Science.gov (United States)

    Rigoli, Francesco; Chew, Benjamin; Dayan, Peter; Dolan, Raymond J

    2016-09-01

    Dopamine plays a key role in motivation. Phasic dopamine response reflects a reinforcement prediction error (RPE), whereas tonic dopamine activity is postulated to represent an average reward that mediates motivational vigor. However, it has been hard to find evidence concerning the neural encoding of average reward that is uncorrupted by influences of RPEs. We circumvented this difficulty in a novel visual search task where we measured participants' button pressing vigor in a context where information (underlying an RPE) about future average reward was provided well before the average reward itself. Despite no instrumental consequence, participants' pressing force increased for greater current average reward, consistent with a form of Pavlovian effect on motivational vigor. We recorded participants' brain activity during task performance with fMRI. Greater average reward was associated with enhanced activity in dopaminergic midbrain to a degree that correlated with the relationship between average reward and pressing vigor. Interestingly, an opposite pattern was observed in subgenual cingulate cortex, a region implicated in negative mood and motivational inhibition. These findings highlight a crucial role for dopaminergic midbrain in representing aspects of average reward and motivational vigor. PMID:27082045

  15. Reactivation of Reward-Related Patterns from Single Past Episodes Supports Memory-Based Decision Making.

    Science.gov (United States)

    Wimmer, G Elliott; Büchel, Christian

    2016-03-01

    Rewarding experiences exert a strong influence on later decision making. While decades of neuroscience research have shown how reinforcement gradually shapes preferences, decisions are often influenced by single past experiences. Surprisingly, relatively little is known about the influence of single learning episodes. Although recent work has proposed a role for episodes in decision making, it is largely unknown whether and how episodic experiences contribute to value-based decision making and how the values of single episodes are represented in the brain. In multiple behavioral experiments and an fMRI experiment, we tested whether and how rewarding episodes could support later decision making. Participants experienced episodes of high reward or low reward in conjunction with incidental, trial-unique neutral pictures. In a surprise test phase, we found that participants could indeed remember the associated level of reward, as evidenced by accurate source memory for value and preferences to re-engage with rewarded objects. Further, in a separate experiment, we found that high-reward objects shown as primes before a gambling task increased financial risk taking. Neurally, re-exposure to objects in the test phase led to significant reactivation of reward-related patterns. Importantly, individual variability in the strength of reactivation predicted value memory performance. Our results provide a novel demonstration that affect-related neural patterns are reactivated during later experience. Reactivation of value information represents a mechanism by which memory can guide decision making. PMID:26961943

  16. The Dopaminergic Midbrain Mediates an Effect of Average Reward on Pavlovian Vigor.

    Science.gov (United States)

    Rigoli, Francesco; Chew, Benjamin; Dayan, Peter; Dolan, Raymond J

    2016-09-01

    Dopamine plays a key role in motivation. Phasic dopamine response reflects a reinforcement prediction error (RPE), whereas tonic dopamine activity is postulated to represent an average reward that mediates motivational vigor. However, it has been hard to find evidence concerning the neural encoding of average reward that is uncorrupted by influences of RPEs. We circumvented this difficulty in a novel visual search task where we measured participants' button pressing vigor in a context where information (underlying an RPE) about future average reward was provided well before the average reward itself. Despite no instrumental consequence, participants' pressing force increased for greater current average reward, consistent with a form of Pavlovian effect on motivational vigor. We recorded participants' brain activity during task performance with fMRI. Greater average reward was associated with enhanced activity in dopaminergic midbrain to a degree that correlated with the relationship between average reward and pressing vigor. Interestingly, an opposite pattern was observed in subgenual cingulate cortex, a region implicated in negative mood and motivational inhibition. These findings highlight a crucial role for dopaminergic midbrain in representing aspects of average reward and motivational vigor.

  17. Toward an autonomous brain machine interface: integrating sensorimotor reward modulation and reinforcement learning.

    Science.gov (United States)

    Marsh, Brandi T; Tarigoppula, Venkata S Aditya; Chen, Chen; Francis, Joseph T

    2015-05-13

    For decades, neurophysiologists have worked on elucidating the function of the cortical sensorimotor control system from the standpoint of kinematics or dynamics. Recently, computational neuroscientists have developed models that can emulate changes seen in the primary motor cortex during learning. However, these simulations rely on the existence of a reward-like signal in the primary sensorimotor cortex. Reward modulation of the primary sensorimotor cortex has yet to be characterized at the level of neural units. Here we demonstrate that single units/multiunits and local field potentials in the primary motor (M1) cortex of nonhuman primates (Macaca radiata) are modulated by reward expectation during reaching movements and that this modulation is present even while subjects passively view cursor motions that are predictive of either reward or nonreward. After establishing this reward modulation, we set out to determine whether we could correctly classify rewarding versus nonrewarding trials, on a moment-to-moment basis. This reward information could then be used in collaboration with reinforcement learning principles toward an autonomous brain-machine interface. The autonomous brain-machine interface would use M1 for both decoding movement intention and extraction of reward expectation information as evaluative feedback, which would then update the decoding algorithm as necessary. In the work presented here, we show that this, in theory, is possible.

  18. Psychometric Characteristics of the Aberrant Behavior Checklist.

    Science.gov (United States)

    Aman, Michael G.; And Others

    1985-01-01

    Information is presented on the psychometric characteristics of the Aberrant Behavior Checklist, a measure of psychotropic drug effects. Internal consistency and test-retest reliability of the checklist appeared very good. Interrater reliability was generally in the moderate range. In general, validity was established for most Aberrant Behavior…

  19. Animal models of cannabinoid reward

    OpenAIRE

    Panlilio, Leigh V; Justinova, Zuzana; Goldberg, Steven R.

    2010-01-01

    The endogenous cannabinoid system is involved in numerous physiological and neuropsychological functions. Medications that target this system hold promise for the treatment of a wide variety of disorders. However, as reward is one of the most prominent of these functions, medications that activate this system must be evaluated for abuse potential. Meanwhile, cannabis is already being used chronically by millions of people, many of whom eventually seek treatment for cannabis dependence. Theref...

  20. Aberration compensation in charged particle projection lithography

    International Nuclear Information System (INIS)

    Projection systems offer the opportunity to increase the throughput for charged particle lithography, because such systems image a large area of a mask directly on to a wafer as a single shot. Shots have to be imaged over a certain range of off-axis distances at the wafer to increase the writing speed, because shot sizes are limited to about 0.25x0.25 mm2 due to aberrations. In a projection system with only lenses, however, the aberrations for off-axis shots are still very large, and some aberration compensation elements need to be introduced. In this paper, three aberration compensation elements (deflectors, stigmators and dynamic focus lenses) are first discussed, a suite of newly developed software, called PROJECTION, based on this principle and our unified aberration theory is then described, and an illustrative example computed with the software is finally given

  1. Effort-Reward Imbalance at Work and Risk of Long-Term Sickness Absence in the Danish Workforce

    NARCIS (Netherlands)

    Nielsen, Maj Britt D.; Madsen, Ida E. H.; Bultmann, Ute; Aust, Birgit; Burr, Hermann; Rugulies, Reiner

    2013-01-01

    Objective: To examine whether effort-reward imbalance (ERI) at work predicts onset of register-based long-term sickness absence (LTSA) in a representative sample of the Danish workforce. Methods: We measured effort, reward, ERI, and covariates with self-administered questionnaires in a sample of 477

  2. Evaluating the neurobiology of sexual reward.

    Science.gov (United States)

    Paredes, Raúl G

    2009-01-01

    There is much evidence that naturally occurring behaviors (e.g., the ingestion of food and water) and social behaviors (e.g., play, maternal behavior) can induce a reward state. This review includes definitions to distinguish between "reward" and "reinforcement," and a description of methods to assess reward and demonstrate that social interactions can indeed produce a positive affective (PA) state. Operant responses, partner preference, and sexual incentive motivation are all effective methods for evaluating approach behaviors under different conditions. The method most frequently used to evaluate a positive affective or reward state is conditioned place preference (CPP), which entails modification of an animal's initial preference after alternating exposure to a control stimulus in one chamber and a rewarding condition in the other. At the end of the training the animal shows a clear preference for the compartment associated with the rewarding stimulus. CPP demonstrates that it is possible to use different treatments and naturally occurring behaviors (e.g., water or food consumption, exercise) to induce a reward state. Sexual interactions and other social behaviors also produce a clear change of preference, indicating the induction of a reward or PA state. The reward state in males and females is mediated by opioids, and the medial preoptic area of the anterior hypothalamus is a crucial site for sexual reward. PMID:19106449

  3. Involvement of the rat anterior cingulate cortex in control of instrumental responses guided by reward expectancy

    OpenAIRE

    Schweimer, Judith; Hauber, Wolfgang

    2005-01-01

    The anterior cingulate cortex (ACC) plays a critical role in stimulus-reinforcement learning and reward-guided selection of actions. Here we conducted a series of experiments to further elucidate the role of the ACC in instrumental behavior involving effort-based decision-making and instrumental learning guided by reward-predictive stimuli. In Experiment 1, rats were trained on a cost-benefit T-maze task in which they could either choose to climb a barrier to obtain a high reward (four pellet...

  4. Detection of epigenetic aberrations in the development of hepatocellular carcinoma.

    Science.gov (United States)

    Zhang, Yujing

    2015-01-01

    Hepatocellular carcinoma (HCC) is the third most common cause of cancer death worldwide. Hepatocarcinogenesis is a complex, multistep process. It is now recognized that HCC is a both genetic and epigenetic disease; genetic and epigenetic components cooperate at all stages of hepatocarcinogenesis. Epigenetic changes involve aberrant DNA methylation, posttranslational histone modifications and aberrant expression of microRNAs all of which can affect the expression of oncogenes, tumor suppressor genes and other tumor-related genes and alter the pathways in cancer development. Several risk factors for HCC, including hepatitis B and C virus infections and exposure to the chemical carcinogen aflatoxin B1 have been found to influence epigenetic changes. Their interactions could play an important role in the initiation and progression of HCC. Discovery and detection of biomarkers for epigenetic changes is a promising area for early diagnosis and risk prediction of HCC.

  5. Dopamine and reward: the anhedonia hypothesis 30 years on.

    Science.gov (United States)

    Wise, Roy A

    2008-10-01

    The anhedonia hypothesis--that brain dopamine plays a critical role in the subjective pleasure associated with positive rewards--was intended to draw the attention of psychiatrists to the growing evidence that dopamine plays a critical role in the objective reinforcement and incentive motivation associated with food and water, brain stimulation reward, and psychomotor stimulant and opiate reward. The hypothesis called to attention the apparent paradox that neuroleptics, drugs used to treat a condition involving anhedonia (schizophrenia), attenuated in laboratory animals the positive reinforcement that we normally associate with pleasure. The hypothesis held only brief interest for psychiatrists, who pointed out that the animal studies reflected acute actions of neuroleptics whereas the treatment of schizophrenia appears to result from neuroadaptations to chronic neuroleptic administration, and that it is the positive symptoms of schizophrenia that neuroleptics alleviate, rather than the negative symptoms that include anhedonia. Perhaps for these reasons, the hypothesis has had minimal impact in the psychiatric literature. Despite its limited heuristic value for the understanding of schizophrenia, however, the anhedonia hypothesis has had major impact on biological theories of reinforcement, motivation, and addiction. Brain dopamine plays a very important role in reinforcement of response habits, conditioned preferences, and synaptic plasticity in cellular models of learning and memory. The notion that dopamine plays a dominant role in reinforcement is fundamental to the psychomotor stimulant theory of addiction, to most neuroadaptation theories of addiction, and to current theories of conditioned reinforcement and reward prediction. Properly understood, it is also fundamental to recent theories of incentive motivation.

  6. On the influence of reward on action-effect binding.

    Science.gov (United States)

    Muhle-Karbe, Paul S; Krebs, Ruth M

    2012-01-01

    Ideomotor theory states that the formation of anticipatory representations about the perceptual consequences of an action [i.e., action-effect (A-E) binding] provides the functional basis of voluntary action control. A host of studies have demonstrated that A-E binding occurs fast and effortlessly, yet little is known about cognitive and affective factors that influence this learning process. In the present study, we sought to test whether the motivational value of an action modulates the acquisition of A-E associations. To this end, we linked specific actions with monetary incentives during the acquisition of novel A-E mappings. In a subsequent test phase, the degree of binding was assessed by presenting the former effect stimuli as task-irrelevant response primes in a forced-choice response task, absent reward. Binding, as indexed by response priming through the former action-effects, was only found for reward-related A-E mappings. Moreover, the degree to which reward associations modulated the binding strength was predicted by individuals' trait sensitivity to reward. These observations indicate that the association of actions and their immediate outcomes depends on the motivational value of the action during learning, as well as on the motivational disposition of the individual. On a larger scale, these findings also highlight the link between ideomotor theories and reinforcement-learning theories, providing an interesting perspective for future research on anticipatory regulation of behavior.

  7. On the influence of reward on action-effect binding

    Directory of Open Access Journals (Sweden)

    Paul Simon Muhle-Karbe

    2012-11-01

    Full Text Available Ideomotor theory states that the formation of anticipatory representations about the perceptual consequences of an action (i.e. action-effect (A-E binding provides the functional basis of voluntary action control. A host of studies has demonstrated that A-E binding occurs fast and effortlessly, yet only little is known about cognitive and affective factors that influence this learning process. In the present study, we sought to test whether the motivational value of an action modulates the acquisition of A-E associations. To this end, we associated specific actions with monetary incentives during the acquisition of novel A-E mappings. In a subsequent test phase, the degree of binding was assessed by presenting the former effect stimuli as task-irrelevant response primes in a forced-choice response task in the absence of any reward. Binding, as indexed by response priming through the former action effects, was only found for reward-related A-E mappings. Moreover, the degree to which reward associations modulated the binding strength was predicted by individuals’ trait sensitivity to reward. These observations indicate that the association of actions and their immediate outcomes depends on the motivational value of the action during learning, as well as on the motivational disposition of the individual. On a larger scale, these findings also highlight the link between ideomotor theories and reinforcement-learning theories, providing an interesting perspective for future research on anticipatory regulation of behavior.

  8. On the influence of reward on action-effect binding.

    Science.gov (United States)

    Muhle-Karbe, Paul S; Krebs, Ruth M

    2012-01-01

    Ideomotor theory states that the formation of anticipatory representations about the perceptual consequences of an action [i.e., action-effect (A-E) binding] provides the functional basis of voluntary action control. A host of studies have demonstrated that A-E binding occurs fast and effortlessly, yet little is known about cognitive and affective factors that influence this learning process. In the present study, we sought to test whether the motivational value of an action modulates the acquisition of A-E associations. To this end, we linked specific actions with monetary incentives during the acquisition of novel A-E mappings. In a subsequent test phase, the degree of binding was assessed by presenting the former effect stimuli as task-irrelevant response primes in a forced-choice response task, absent reward. Binding, as indexed by response priming through the former action-effects, was only found for reward-related A-E mappings. Moreover, the degree to which reward associations modulated the binding strength was predicted by individuals' trait sensitivity to reward. These observations indicate that the association of actions and their immediate outcomes depends on the motivational value of the action during learning, as well as on the motivational disposition of the individual. On a larger scale, these findings also highlight the link between ideomotor theories and reinforcement-learning theories, providing an interesting perspective for future research on anticipatory regulation of behavior. PMID:23130005

  9. Total Reward Concept: A Key Motivational Tool For Corporate Ghana

    OpenAIRE

    Dr. Olivia Anku-Tsede; Ernestina Kutin

    2013-01-01

    This paper examines the concept of total reward and its application in motivating employees in Ghana. Total reward as an integral element of reward management is the combination of financial and non-financial rewards given to employees in exchange for their efforts. The aim of total reward is to maximize the combined impact of a wide range of reward elements on motivation, commitment and job engagement. Hence, total reward embraces everything that employees¡¯ value in the employment relations...

  10. Reduced Caudate and Nucleus Accumbens Response to Rewards in Unmedicated Subjects with Major Depressive Disorder

    Science.gov (United States)

    Pizzagalli, Diego A.; Holmes, Avram J.; Dillon, Daniel G.; Goetz, Elena L.; Birk, Jeffrey L.; Bogdan, Ryan; Dougherty, Darin D.; Iosifescu, Dan V.; Rauch, Scott L.; Fava, Maurizio

    2009-01-01

    Objective Major depressive disorder (MDD) is characterized by impaired reward processing, possibly due to dysfunction in the basal ganglia. However, few neuroimaging studies of depression have distinguished between anticipatory and consummatory phases of reward processing. Using functional magnetic resonance imaging (fMRI) and a task that dissociates anticipatory and consummatory phases of reward processing, the authors tested the hypothesis that MDD participants would show reduced reward-related responses in basal ganglia structures. Method A monetary incentive delay task was presented to 30 unmedicated MDD subjects and 31 healthy comparison subjects during fMRI scanning. Whole-brain analyses focused on neural responses to reward-predicting cues and rewarding outcomes (i.e., monetary gains). Secondary analyses focused on the relationship between anhedonic symptoms and basal ganglia volumes. Results Relative to comparison subjects, MDD participants showed significantly weaker responses to gains in the left nucleus accumbens and bilateral caudate. Group differences in these regions were specific to rewarding outcomes and did not generalize to neutral or negative outcomes, although relatively reduced responses to monetary penalties in MDD emerged in other caudate regions. By contrast, evidence for group differences during reward anticipation was weaker, although MDD subjects showed reduced activation to reward cues in a small sector of the left posterior putamen. Among MDD subjects, anhedonic symptoms and depression severity were associated with reduced bilateral caudate volume. Conclusions These results indicate that basal ganglia dysfunction in MDD may affect the consummatory phase of reward processing. Additionally, morphometric results suggest that anhedonia in MDD is related to caudate volume. PMID:19411368

  11. Epigenetic aberrations and therapeutic implications in gliomas.

    Science.gov (United States)

    Natsume, Atsushi; Kondo, Yutaka; Ito, Motokazu; Motomura, Kazuya; Wakabayashi, Toshihiko; Yoshida, Jun

    2010-06-01

    Almost all cancer cells have multiple epigenetic abnormalities, which combine with genetic changes to affect many cellular processes, including cell proliferation and invasion, by silencing tumor-suppressor genes. In this review, we focus on the epigenetic mechanisms of DNA hypomethylation and CpG island hypermethylation in gliomas. Aberrant hypermethylation in promoter CpG islands has been recognized as a key mechanism involved in the silencing of cancer-associated genes and occurs at genes with diverse functions related to tumorigenesis and tumor progression. Such promoter hypermethylation can modulate the sensitivity of glioblastomas to drugs and radiotherapy. As an example, the methylation of the O6-methylguanine DNA methyltransferase (MGMT) promoter is a specific predictive biomarker of tumor responsiveness to chemotherapy with alkylating agents. Further, we reviewed reports on pyrosequencing - a simple technique for the accurate and quantitative analysis of DNA methylation. We believe that the quantification of MGMT methylation by pyrosequencing might enable the selection of patients who are most likely to benefit from chemotherapy. Finally, we also evaluated the potential of de novo NY-ESO-1, the most immunogenic cancer/testis antigen (CTA) discovered thus far, as an immunotherapy target. The use of potent epigenetics-based therapy for cancer cells might restore the abnormally regulated epigenomes to a more normal state through epigenetic reprogramming. Thus, epigenetic therapy may be a promising and potent treatment for human neoplasia.

  12. Chromosome aberration assays in Allium

    Energy Technology Data Exchange (ETDEWEB)

    Grant, W.F.

    1982-01-01

    The common onion (Allium cepa) is an excellent plant for the assay of chromosome aberrations after chemical treatment. Other species of Allium (A. cepa var. proliferum, A. carinatum, A. fistulosum and A. sativum) have also been used but to a much lesser extent. Protocols have been given for using root tips from either bulbs or seeds of Allium cepa to study the cytological end-points, such as chromosome breaks and exchanges, which follow the testing of chemicals in somatic cells. It is considered that both mitotic and meiotic end-points should be used to a greater extent in assaying the cytogenetic effects of a chemical. From a literature survey, 148 chemicals are tabulated that have been assayed in 164 Allium tests for their clastogenic effect. Of the 164 assays which have been carried out, 75 are reported as giving a positive reaction, 49 positive and with a dose response, 1 positive and temperature-related, 9 borderline positive, and 30 negative; 76% of the chemicals gave a definite positive response. It is proposed that the Allium test be included among those tests routinely used for assessing chromosomal damage induced by chemicals.

  13. Reward Sensitivity Is Associated with Brain Activity during Erotic Stimulus Processing

    OpenAIRE

    Victor Costumero; Alfonso Barrós-Loscertales; Juan Carlos Bustamante; Noelia Ventura-Campos; Paola Fuentes; Patricia Rosell-Negre; César Ávila

    2013-01-01

    The behavioral approach system (BAS) from Gray’s reinforcement sensitivity theory is a neurobehavioral system involved in the processing of rewarding stimuli that has been related to dopaminergic brain areas. Gray’s theory hypothesizes that the functioning of reward brain areas is modulated by BAS-related traits. To test this hypothesis, we performed an fMRI study where participants viewed erotic and neutral pictures, and cues that predicted their appearance. Forty-five heterosexual men compl...

  14. Cortical and Hippocampal Correlates of Deliberation during Model-Based Decisions for Rewards in Humans

    OpenAIRE

    Aaron M Bornstein; Daw, Nathaniel D.

    2013-01-01

    How do we use our memories of the past to guide decisions we've never had to make before? Although extensive work describes how the brain learns to repeat rewarded actions, decisions can also be influenced by associations between stimuli or events not directly involving reward - such as when planning routes using a cognitive map or chess moves using predicted countermoves - and these sorts of associations are critical when deciding among novel options. This process is known as model-based dec...

  15. Adolescent Depression: Stress and Reward Dysfunction

    OpenAIRE

    Auerbach, Randy P.; Admon, Roee; Pizzagalli, Diego A.

    2014-01-01

    Adolescence is a peak period for the onset of depression, and it is also a time marked by substantial stress as well as neural development within the brain reward circuitry. In the current review, we provide a selective overview of current animal and human research investigating the relationship among reward processes, stress, and depression. Three separate, but related, etiological models examine the differential roles that stress may play with regard to reward dysfunction and adolescent dep...

  16. Reward disrupts reactivated human skill memory

    OpenAIRE

    Eran Dayan; Rony Laor-Maayany; Nitzan Censor

    2016-01-01

    Accumulating evidence across species and memory domains shows that when an existing memory is reactivated, it becomes susceptible to modifications. However, the potential role of reward signals in these mechanisms underlying human memory dynamics is unknown. Leaning on a wealth of findings on the role of reward in reinforcing memory, we tested the impact of reinforcing a skill memory trace with monetary reward following memory reactivation, on strengthening of the memory trace. Reinforcing re...

  17. Blunted Reward Responsiveness in Remitted Depression

    OpenAIRE

    Pechtel, Pia; Dutra, Sunny J; Elena L. Goetz; Pizzagalli, Diego A.

    2013-01-01

    Major Depressive Disorder has been associated with blunted responsiveness to rewards, but inconsistencies exist whether such abnormalities persist after complete remission. To address this issue, across two independent studies, 47 adults with remitted Major Depressive Disorder (rMDD) and 37 healthy controls completed a Probabilistic Reward Task, which used a differential reinforcement schedule of social or monetary feedback to examine reward responsiveness (i.e., ability to modulate behavior ...

  18. The rewarding nature of social interactions

    OpenAIRE

    Sören Krach; Paulus, Frieder M.; Maren Bodden; TIlo Kircher

    2010-01-01

    The objective of this short review is to highlight rewarding aspects of social interactions for humans and discuss their neural basis. Thereby we report recent research findings to illustrate how social stimuli in general are processed in the reward system and highlight the role of Theory of Mind (ToM) as one mediating process for experiencing social reward during social interactions. In conclusion we discuss clinical implications for psychiatry and psychotherapy.

  19. Self-rewards and personal motivation

    DEFF Research Database (Denmark)

    Koch, Alexander Karl; Nafziger, Julia; Suvorov, Anton;

    2014-01-01

    Self-administered rewards are ubiquitous. They serve as incentives for personal accomplishments and are widely recommended to increase personal motivation. We show that in a model with time-inconsistent and reference-dependent preferences, self-rewards can be a credible and effective tool...... to overcome self-control problems. We also discuss the different types of self-rewards the individual can use, such as vice goods and virtue goods, and analyze which types of goods the individual prefers....

  20. Rewarding Altruism? A Natural Field Experiment

    OpenAIRE

    Nicola Lacetera; Mario Macis; Robert Slonim

    2011-01-01

    We present evidence from a natural field experiment involving nearly 100,000 individuals on the effects of offering economic incentives for blood donations. Subjects who were offered economic rewards to donate blood were more likely to donate, and more so the higher the value of the rewards. They were also more likely to attract others to donate, spatially alter the location of their donations towards the drives offering rewards, and modify their temporal donation schedule leading to a short-...

  1. Patent Reform: Aligning Reward and Contribution

    OpenAIRE

    Shapiro, Carl

    2007-01-01

    Economists and policy makers have long recognized that innovators must be able to appropriate a reasonable portion of the social benefits of their innovations if innovation is to be suitably rewarded and encouraged. However, this paper identifies a number of specific fact patterns under which the current U.S. patent system allows patent holders to capture private rewards that exceed their social contributions. Such excessive patentee rewards are socially costly, since they raise the deadweigh...

  2. Reward system dysfunction in autism spectrum disorders

    OpenAIRE

    Kohls, Gregor; Schulte-Rüther, Martin; Nehrkorn, Barbara; Müller, Kristin; Fink, Gereon R.; Kamp-Becker, Inge; Herpertz-Dahlmann, Beate; Schultz, Robert T.; Konrad, Kerstin

    2012-01-01

    Although it has been suggested that social deficits of autism spectrum disorders (ASDs) are related to reward circuitry dysfunction, very little is known about the neural reward mechanisms in ASD. In the current functional magnetic resonance imaging study, we investigated brain activations in response to both social and monetary reward in a group of children with ASD, relative to matched controls. Participants with ASD showed the expected hypoactivation in the mesocorticolimbic circuitry in r...

  3. Ventral Pallidum Roles in Reward and Motivation

    OpenAIRE

    Smith, Kyle S.; Tindell, Amy J.; Aldridge, J. Wayne; Berridge, Kent C.

    2008-01-01

    In recent years the ventral pallidum has become a focus of great research interest as a mechanism of reward and incentive motivation. As a major output for limbic signals, the ventral pallidum was once associated primarily with motor functions rather than regarded as a reward structure in its own right. However, ample evidence now suggests that ventral pallidum function is a major mechanism of reward in the brain. We review data indicating that 1) an intact ventral pallidum is necessary for n...

  4. Transitionality in addiction: A "temporal continuum" hypotheses involving the aberrant motivation, the hedonic dysregulation, and the aberrant learning.

    Science.gov (United States)

    Patrono, Enrico; Gasbarri, Antonella; Tomaz, Carlos; Nishijo, Hisao

    2016-08-01

    Addiction is a chronic compulsion and relapsing disorder. It involves several brain areas and circuits, which encode vary functions such as reward, motivation, and memory. Drug addiction is defined as a "pathological pattern of use of a substance", characterized by the loss of control on drug-taking-related behaviors, the pursuance of those behaviors even in the presence of negative consequences, and a strong motivated activity to assume substances. Three different theories guide experimental research on drug addiction. Each of these theories consider singles features, such as an aberrant motivation, a hedonic dysregulation, and an aberrant habit learning as the main actor to explain the entire process of the addictive behaviors. The major goal of this study is to present a new hypotheses of transitionality from a controlled use to abuse of addictive substances trough the overview of the three different theories, considering all the single features of each single theory together on the same "temporal continuum" from use to abuse of addictive substances. Recently, it has been suggested that common neural systems may be activated by natural and pharmacological stimuli, raising the hypotheses that binge-eating disorders could be considered as addictive behaviors. The second goal of this study is to present evidences in order to highlight a possible psycho-bio-physiological superimposition between drug and "food addiction". Finally, interesting questions are brought up starting from last findings about a theoretical/psycho-bio-physiological superimposition between drug and "food addiction" and their possibly same transitionality along the same "temporal continuum" from use to abuse of addictive substances in order to investigate new therapeutic strategies based on new therapeutic strategies based on the individual moments characterizing the transition from the voluntary intake of substances to the maladaptive addictive behavior. PMID:27372858

  5. Neural processing of reward in adolescent rodents

    Directory of Open Access Journals (Sweden)

    Nicholas W. Simon

    2015-02-01

    Full Text Available Immaturities in adolescent reward processing are thought to contribute to poor decision making and increased susceptibility to develop addictive and psychiatric disorders. Very little is known; however, about how the adolescent brain processes reward. The current mechanistic theories of reward processing are derived from adult models. Here we review recent research focused on understanding of how the adolescent brain responds to rewards and reward-associated events. A critical aspect of this work is that age-related differences are evident in neuronal processing of reward-related events across multiple brain regions even when adolescent rats demonstrate behavior similar to adults. These include differences in reward processing between adolescent and adult rats in orbitofrontal cortex and dorsal striatum. Surprisingly, minimal age related differences are observed in ventral striatum, which has been a focal point of developmental studies. We go on to discuss the implications of these differences for behavioral traits affected in adolescence, such as impulsivity, risk-taking, and behavioral flexibility. Collectively, this work suggests that reward-evoked neural activity differs as a function of age and that regions such as the dorsal striatum that are not traditionally associated with affective processing in adults may be critical for reward processing and psychiatric vulnerability in adolescents.

  6. Optimization of rewards in single machine scheduling in the rewards-driven systems

    OpenAIRE

    Abolfazl Gharaei; Bahman Naderi; Mohammad Mohammadi

    2015-01-01

    The single machine scheduling problem aims at obtaining the best sequence for a set of jobs in a manufacturing system with a single machine. In this paper, we optimize rewards in single machine scheduling in rewards-driven systems such that total reward is maximized while the constraints contains of limitation in total rewards for earliness and learning, independent of earliness and learning and etc. are satisfied. In mentioned systems as for earliness and learning the bonus is awarded to ope...

  7. Looking for reward in all the wrong places: dopamine receptor gene polymorphisms indirectly affect aggression through sensation-seeking.

    Science.gov (United States)

    Chester, David S; DeWall, C Nathan; Derefinko, Karen J; Estus, Steven; Lynam, Donald R; Peters, Jessica R; Jiang, Yang

    2016-10-01

    Individuals with genotypes that code for reduced dopaminergic brain activity often exhibit a predisposition toward aggression. However, it remains largely unknown how dopaminergic genotypes may increase aggression. Lower-functioning dopamine systems motivate individuals to seek reward from external sources such as illicit drugs and other risky experiences. Based on emerging evidence that aggression is a rewarding experience, we predicted that the effect of lower-functioning dopaminergic functioning on aggression would be mediated by tendencies to seek the environment for rewards. Caucasian female and male undergraduates (N = 277) were genotyped for five polymorphisms of the dopamine D2 receptor (DRD2) gene; they reported their previous history of aggression and their dispositional reward-seeking. Lower-functioning DRD2 profiles were associated with greater sensation-seeking, which then predicted greater aggression. Our findings suggest that lower-functioning dopaminergic activity puts individuals at risk for violence because it motivates them to experience aggression's hedonically rewarding qualities.

  8. Looking for reward in all the wrong places: dopamine receptor gene polymorphisms indirectly affect aggression through sensation-seeking.

    Science.gov (United States)

    Chester, David S; DeWall, C Nathan; Derefinko, Karen J; Estus, Steven; Lynam, Donald R; Peters, Jessica R; Jiang, Yang

    2016-10-01

    Individuals with genotypes that code for reduced dopaminergic brain activity often exhibit a predisposition toward aggression. However, it remains largely unknown how dopaminergic genotypes may increase aggression. Lower-functioning dopamine systems motivate individuals to seek reward from external sources such as illicit drugs and other risky experiences. Based on emerging evidence that aggression is a rewarding experience, we predicted that the effect of lower-functioning dopaminergic functioning on aggression would be mediated by tendencies to seek the environment for rewards. Caucasian female and male undergraduates (N = 277) were genotyped for five polymorphisms of the dopamine D2 receptor (DRD2) gene; they reported their previous history of aggression and their dispositional reward-seeking. Lower-functioning DRD2 profiles were associated with greater sensation-seeking, which then predicted greater aggression. Our findings suggest that lower-functioning dopaminergic activity puts individuals at risk for violence because it motivates them to experience aggression's hedonically rewarding qualities. PMID:26592425

  9. Flow cytometric detection of aberrant chromosomes

    Energy Technology Data Exchange (ETDEWEB)

    Gray, J.W.; Lucas, J.; Yu, L.C.; Langlois, R.

    1983-05-11

    This report describes the quantification of chromosomal aberrations by flow cytometry. Both homogeneously and heterogeneously occurring chromosome aberrations were studied. Homogeneously occurring aberrations were noted in chromosomes isolated from human colon carcinoma (LoVo) cells, stained with Hoechst 33258 and chromomycin A3 and analyzed using dual beam flow cytometry. The resulting bivariate flow karyotype showed a homogeneously occurring marker chromosome of intermediate size. Heterogeneously occurring aberrations were quantified by slit-scan flow cytometry in chromosomes isolated from control and irradiated Chinese hamster cells and stained with propidium iodide. Heterogeneously occurring dicentric chromosomes were detected by their shapes (two centrometers). The frequencies of such chromosomes estimated by slit-scan flow cytometry correlated well with the frequencies determined by visual microscopy.

  10. Aberration features in directional dark matter detection

    CERN Document Server

    Bozorgnia, Nassim; Gondolo, Paolo

    2012-01-01

    The motion of the Earth around the Sun causes an annual change in the magnitude and direction of the arrival velocity of dark matter particles on Earth, in a way analogous to aberration of stellar light. In directional detectors, aberration of weakly interacting massive particles (WIMPs) modulates the pattern of nuclear recoil directions in a way that depends on the orbital velocity of the Earth and the local galactic distribution of WIMP velocities. Knowing the former, WIMP aberration can give information on the latter, besides being a curious way of confirming the revolution of the Earth and the extraterrestrial provenance of WIMPs. While observing the full aberration pattern requires extremely large exposures, we claim that the annual variation of the mean recoil direction or of the event counts over specific solid angles may be detectable with moderately large exposures. For example, integrated counts over galactic hemispheres separated by planes perpendicular to Earth's orbit would modulate annually, res...

  11. Catadioptric aberration correction in cathode lens microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Tromp, R.M. [IBM T.J. Watson Research Center, PO Box 218, Yorktown Heights, NY 10598 (United States); Kamerlingh Onnes Laboratory, Leiden Institute of Physics, Niels Bohrweg 2, 2333 CA Leiden (Netherlands)

    2015-04-15

    In this paper I briefly review the use of electrostatic electron mirrors to correct the aberrations of the cathode lens objective lens in low energy electron microscope (LEEM) and photo electron emission microscope (PEEM) instruments. These catadioptric systems, combining electrostatic lens elements with a reflecting mirror, offer a compact solution, allowing simultaneous and independent correction of both spherical and chromatic aberrations. A comparison with catadioptric systems in light optics informs our understanding of the working principles behind aberration correction with electron mirrors, and may point the way to further improvements in the latter. With additional developments in detector technology, 1 nm spatial resolution in LEEM appears to be within reach. - Highlights: • The use of electron mirrors for aberration correction in LEEM/PEEM is reviewed. • A comparison is made with similar systems in light optics. • Conditions for 1 nm spatial resolution are discussed.

  12. Catadioptric aberration correction in cathode lens microscopy

    International Nuclear Information System (INIS)

    In this paper I briefly review the use of electrostatic electron mirrors to correct the aberrations of the cathode lens objective lens in low energy electron microscope (LEEM) and photo electron emission microscope (PEEM) instruments. These catadioptric systems, combining electrostatic lens elements with a reflecting mirror, offer a compact solution, allowing simultaneous and independent correction of both spherical and chromatic aberrations. A comparison with catadioptric systems in light optics informs our understanding of the working principles behind aberration correction with electron mirrors, and may point the way to further improvements in the latter. With additional developments in detector technology, 1 nm spatial resolution in LEEM appears to be within reach. - Highlights: • The use of electron mirrors for aberration correction in LEEM/PEEM is reviewed. • A comparison is made with similar systems in light optics. • Conditions for 1 nm spatial resolution are discussed

  13. Neural signal during immediate reward anticipation in schizophrenia: Relationship to real-world motivation and function.

    Science.gov (United States)

    Subramaniam, Karuna; Hooker, Christine I; Biagianti, Bruno; Fisher, Melissa; Nagarajan, Srikantan; Vinogradov, Sophia

    2015-01-01

    Amotivation in schizophrenia is a central predictor of poor functioning, and is thought to occur due to deficits in anticipating future rewards, suggesting that impairments in anticipating pleasure can contribute to functional disability in schizophrenia. In healthy comparison (HC) participants, reward anticipation is associated with activity in frontal-striatal networks. By contrast, schizophrenia (SZ) participants show hypoactivation within these frontal-striatal networks during this motivated anticipatory brain state. Here, we examined neural activation in SZ and HC participants during the anticipatory phase of stimuli that predicted immediate upcoming reward and punishment, and during the feedback/outcome phase, in relation to trait measures of hedonic pleasure and real-world functional capacity. SZ patients showed hypoactivation in ventral striatum during reward anticipation. Additionally, we found distinct differences between HC and SZ groups in their association between reward-related immediate anticipatory neural activity and their reported experience of pleasure. HC participants recruited reward-related regions in striatum that significantly correlated with subjective consummatory pleasure, while SZ patients revealed activation in attention-related regions, such as the IPL, which correlated with consummatory pleasure and functional capacity. These findings may suggest that SZ patients activate compensatory attention processes during anticipation of immediate upcoming rewards, which likely contribute to their functional capacity in daily life. PMID:26413478

  14. Reward sensitivity is associated with brain activity during erotic stimulus processing.

    Science.gov (United States)

    Costumero, Victor; Barrós-Loscertales, Alfonso; Bustamante, Juan Carlos; Ventura-Campos, Noelia; Fuentes, Paola; Rosell-Negre, Patricia; Ávila, César

    2013-01-01

    The behavioral approach system (BAS) from Gray's reinforcement sensitivity theory is a neurobehavioral system involved in the processing of rewarding stimuli that has been related to dopaminergic brain areas. Gray's theory hypothesizes that the functioning of reward brain areas is modulated by BAS-related traits. To test this hypothesis, we performed an fMRI study where participants viewed erotic and neutral pictures, and cues that predicted their appearance. Forty-five heterosexual men completed the Sensitivity to Reward scale (from the Sensitivity to Punishment and Sensitivity to Reward Questionnaire) to measure BAS-related traits. Results showed that Sensitivity to Reward scores correlated positively with brain activity during reactivity to erotic pictures in the left orbitofrontal cortex, left insula, and right ventral striatum. These results demonstrated a relationship between the BAS and reward sensitivity during the processing of erotic stimuli, filling the gap of previous reports that identified the dopaminergic system as a neural substrate for the BAS during the processing of other rewarding stimuli such as money and food. PMID:23840558

  15. Striatal sensitivity to reward deliveries and omissions in substance dependent patients.

    Science.gov (United States)

    Bjork, James M; Smith, Ashley R; Hommer, Daniel W

    2008-10-01

    Some motivational theories of substance dependence (SD) posit either pathologically increased or decreased ventral striatum (VS) recruitment by cues for nondrug rewards. The incentive-sensitization hypothesis, alternatively, attributes SD to enhanced incentive salience of drug-predictive cues specifically, with no requirement for altered nondrug incentive processing. We assessed whether individuals undergoing inpatient therapy for SD are characterized by altered recruitment of mesolimbic incentive neurocircuitry by cues and deliveries of nondrug rewards. During functional magnetic resonance imaging, substance-dependent patients (SDP) and controls performed a modified monetary incentive delay task featuring: a) anticipatory cues that signaled opportunities to respond to a target to either win money or avoid losing money, b) notifications of wins and losses, and c) unexpected replacement of reward trial outcomes with a demand to repeat the trial. Both anticipatory reward cues and loss cues elicited similar mood responses and VS activation between SDP and controls. However, in SDP (but not controls), reward notifications also activated VS and mesial frontal cortex, and loss notifications activated anterior insula. Finally, substitution of expected outcomes in reward trials with notifications to repeat the trial deactivated the VS in SDP but not in controls. These data do not suggest that SD is characterized by altered recruitment of VS circuitry by cues for nondrug incentives. Rather, SDP may instead have increased limbic system sensitivity to reward and loss delivery, consistent with the role of impulsivity in SD. PMID:18672069

  16. Neural signal during immediate reward anticipation in schizophrenia: Relationship to real-world motivation and function

    Directory of Open Access Journals (Sweden)

    Karuna Subramaniam

    2015-01-01

    Full Text Available Amotivation in schizophrenia is a central predictor of poor functioning, and is thought to occur due to deficits in anticipating future rewards, suggesting that impairments in anticipating pleasure can contribute to functional disability in schizophrenia. In healthy comparison (HC participants, reward anticipation is associated with activity in frontal–striatal networks. By contrast, schizophrenia (SZ participants show hypoactivation within these frontal–striatal networks during this motivated anticipatory brain state. Here, we examined neural activation in SZ and HC participants during the anticipatory phase of stimuli that predicted immediate upcoming reward and punishment, and during the feedback/outcome phase, in relation to trait measures of hedonic pleasure and real-world functional capacity. SZ patients showed hypoactivation in ventral striatum during reward anticipation. Additionally, we found distinct differences between HC and SZ groups in their association between reward-related immediate anticipatory neural activity and their reported experience of pleasure. HC participants recruited reward-related regions in striatum that significantly correlated with subjective consummatory pleasure, while SZ patients revealed activation in attention-related regions, such as the IPL, which correlated with consummatory pleasure and functional capacity. These findings may suggest that SZ patients activate compensatory attention processes during anticipation of immediate upcoming rewards, which likely contribute to their functional capacity in daily life.

  17. Reward sensitivity is associated with brain activity during erotic stimulus processing.

    Directory of Open Access Journals (Sweden)

    Victor Costumero

    Full Text Available The behavioral approach system (BAS from Gray's reinforcement sensitivity theory is a neurobehavioral system involved in the processing of rewarding stimuli that has been related to dopaminergic brain areas. Gray's theory hypothesizes that the functioning of reward brain areas is modulated by BAS-related traits. To test this hypothesis, we performed an fMRI study where participants viewed erotic and neutral pictures, and cues that predicted their appearance. Forty-five heterosexual men completed the Sensitivity to Reward scale (from the Sensitivity to Punishment and Sensitivity to Reward Questionnaire to measure BAS-related traits. Results showed that Sensitivity to Reward scores correlated positively with brain activity during reactivity to erotic pictures in the left orbitofrontal cortex, left insula, and right ventral striatum. These results demonstrated a relationship between the BAS and reward sensitivity during the processing of erotic stimuli, filling the gap of previous reports that identified the dopaminergic system as a neural substrate for the BAS during the processing of other rewarding stimuli such as money and food.

  18. MONITORING EXTRACELLULAR PH, OXYGEN, AND DOPAMINE DURING REWARD DELIVERY IN THE STRIATUM OF PRIMATES

    Directory of Open Access Journals (Sweden)

    Jennifer L Ariansen

    2012-07-01

    Full Text Available Dopamine projections that extend from the ventral tegmental area to the striatum have been implicated in the biological basis for behaviors associated with reward and addiction. Until recently, it has been difficult to evaluate the complex balance of energy utilization and neural activity in the striatum. Many techniques such as electrophysiology, functional magnetic resonance imaging (fMRI, and fast-scan cyclic voltammetry have been employed to monitor these neurochemical and neurophysiological changes. In this brain region, physiological responses to cues and rewards cause local, transient pH changes. Oxygen and pH are coupled in the brain through a complex system of blood flow and metabolism as a result of transient neural activity. Indeed, this balance is at the heart of imaging studies such as fMRI. To this end, we measured pH and O2 changes with fast-scan cyclic voltammetry in the striatum as indices of changes in metabolism and blood flow in vivo in three Macaca mulatta monkeys. The animals were presented with Pavlovian conditioned cues that predicted different probabilities of liquid reward. They also received free reward without predictive cues. The primary change consisted of pH shifts in the striatal extracellular environment following the reward predicting cues or the free reward. We observed three types of cue responses which consisted of purely basic pH shifts, basic pH shifts followed by acidic pH shifts, and purely acidic pH shifts. These responses increased with reward probability. The pH changes were accompanied by increases in extracellular O2. The changes in pH and extracellular O2 are consistent with current theories of metabolism and blood flow. The findings suggest a role of these chemical responses in neuronal reward processing

  19. Cognitive processing of food rewards.

    Science.gov (United States)

    Higgs, Suzanne

    2016-09-01

    Cues associated with tasty foods, such as their smell or taste, are strong motivators of eating, but the power of food cues on behaviour varies from moment to moment and from person to person. Variation in the rewarding value of a food with metabolic state explains why food cues are more attractive when hungry. However, cognitive processes are also important determinants of our responses to food cues. An urge to consume a tempting food may be resisted if, for example, a person has a longer term goal of weight loss. There is also evidence that responses to food cues can be facilitated or inhibited by memory processes. The aim of this review is to add to the literature on cognitive control of eating by reviewing recent evidence on the influence of working memory and episodic memory processes on responses to food cues. It is argued that processing of food information in working memory affects how much attention is paid to food cues in the environment and promotes the motivation to seek out food in the absence of direct contact with food cues. It is further argued that memories of specific recent eating episodes play an important role in directing food choices and influencing when and how much we eat. However, these memory processes are prone to disruption. When this happens, eating behaviour may become more cue-driven and less flexible. In the modern food environment, disruption of cognitive processing of food reward cues may lead to overconsumption and obesity. PMID:26458961

  20. Cognitive processing of food rewards.

    Science.gov (United States)

    Higgs, Suzanne

    2016-09-01

    Cues associated with tasty foods, such as their smell or taste, are strong motivators of eating, but the power of food cues on behaviour varies from moment to moment and from person to person. Variation in the rewarding value of a food with metabolic state explains why food cues are more attractive when hungry. However, cognitive processes are also important determinants of our responses to food cues. An urge to consume a tempting food may be resisted if, for example, a person has a longer term goal of weight loss. There is also evidence that responses to food cues can be facilitated or inhibited by memory processes. The aim of this review is to add to the literature on cognitive control of eating by reviewing recent evidence on the influence of working memory and episodic memory processes on responses to food cues. It is argued that processing of food information in working memory affects how much attention is paid to food cues in the environment and promotes the motivation to seek out food in the absence of direct contact with food cues. It is further argued that memories of specific recent eating episodes play an important role in directing food choices and influencing when and how much we eat. However, these memory processes are prone to disruption. When this happens, eating behaviour may become more cue-driven and less flexible. In the modern food environment, disruption of cognitive processing of food reward cues may lead to overconsumption and obesity.

  1. Dynamics of the eye's wave aberration.

    Science.gov (United States)

    Hofer, H; Artal, P; Singer, B; Aragón, J L; Williams, D R

    2001-03-01

    It is well known that the eye's optics exhibit temporal instability in the form of microfluctuations in focus; however, almost nothing is known of the temporal properties of the eye's other aberrations. We constructed a real-time Hartmann-Shack (HS) wave-front sensor to measure these dynamics at frequencies as high as 60 Hz. To reduce spatial inhomogeneities in the short-exposure HS images, we used a low-coherence source and a scanning system. HS images were collected on three normal subjects with natural and paralyzed accommodation. Average temporal power spectra were computed for the wave-front rms, the Seidel aberrations, and each of 32 Zernike coefficients. The results indicate the presence of fluctuations in all of the eye's aberration, not just defocus. Fluctuations in higher-order aberrations share similar spectra and bandwidths both within and between subjects, dropping at a rate of approximately 4 dB per octave in temporal frequency. The spectrum shape for higher-order aberrations is generally different from that for microfluctuations of accommodation. The origin of these measured fluctuations is not known, and both corneal/lenticular and retinal causes are considered. Under the assumption that they are purely corneal or lenticular, calculations suggest that a perfect adaptive optics system with a closed-loop bandwidth of 1-2 Hz could correct these aberrations well enough to achieve diffraction-limited imaging over a dilated pupil. PMID:11265680

  2. Correlating nurses’ levels of Psychological Capital with their reward preferences and reward satisfaction

    Directory of Open Access Journals (Sweden)

    Stacy A. Shelton

    2015-02-01

    Full Text Available Orientation: Psychological Capital (PsyCap is crucial for the effective performance of nurses, and may be influenced by rewarding employees according to their individual preferences. Research purpose: The purpose of this study was to establish whether relationships exist between nurses’ levels of PsyCap and both their reward preferences and levels of reward satisfaction. It also aimed to investigate whether demographic differences occurred across these variables. Motivation for the study: Currently there is limited research relating to PsyCap within the South African context, and none to date specifically related to the medical industry in South Africa. Moreover, it is vital that the reward preferences of nurses are taken into account when designing their rewards packages, in order for them to be satisfied within their respective medical institutions. Research approach, design and method: This quantitative study was conducted using nonprobability sampling, with 116 nurses within the public and private sectors of the Nelson Mandela Metropole medical industry completing the questionnaire. The instruments utilised were the Psychological Capital Questionnaire and the Reward Preferences Questionnaire.Main findings: It was found that the majority of the sample exhibited high levels of PsyCap. Correlations existed between PsyCap factors and certain reward preference and reward satisfaction factors. Significant differences occurred across the demographic variables of age, marital status, education level, tenure and sector.Practical/managerial implications: In order to maintain high PsyCap levels and ensure that nurses are satisfied, medical institutions should take individual reward preferences into account and reward their nurses accordingly. Contribution/value-add: These findings add to the current body of South African literature regarding PsyCap and reward preferences, and provide valuable insight into the use of rewards in improving levels of Psy

  3. Pulse compressor with aberration correction

    Energy Technology Data Exchange (ETDEWEB)

    Mankos, Marian [Electron Optica, Inc., Palo Alto, CA (United States)

    2015-11-30

    In this SBIR project, Electron Optica, Inc. (EOI) is developing an electron mirror-based pulse compressor attachment to new and retrofitted dynamic transmission electron microscopes (DTEMs) and ultrafast electron diffraction (UED) cameras for improving the temporal resolution of these instruments from the characteristic range of a few picoseconds to a few nanoseconds and beyond, into the sub-100 femtosecond range. The improvement will enable electron microscopes and diffraction cameras to better resolve the dynamics of reactions in the areas of solid state physics, chemistry, and biology. EOI’s pulse compressor technology utilizes the combination of electron mirror optics and a magnetic beam separator to compress the electron pulse. The design exploits the symmetry inherent in reversing the electron trajectory in the mirror in order to compress the temporally broadened beam. This system also simultaneously corrects the chromatic and spherical aberration of the objective lens for improved spatial resolution. This correction will be found valuable as the source size is reduced with laser-triggered point source emitters. With such emitters, it might be possible to significantly reduce the illuminated area and carry out ultrafast diffraction experiments from small regions of the sample, e.g. from individual grains or nanoparticles. During phase I, EOI drafted a set of candidate pulse compressor architectures and evaluated the trade-offs between temporal resolution and electron bunch size to achieve the optimum design for two particular applications with market potential: increasing the temporal and spatial resolution of UEDs, and increasing the temporal and spatial resolution of DTEMs. Specialized software packages that have been developed by MEBS, Ltd. were used to calculate the electron optical properties of the key pulse compressor components: namely, the magnetic prism, the electron mirror, and the electron lenses. In the final step, these results were folded

  4. Modelling and analysis of Markov reward automata

    NARCIS (Netherlands)

    Guck, Dennis; Timmer, Mark; Hatefi, Hassan; Ruijters, Enno; Stoelinga, Mariëlle

    2014-01-01

    Costs and rewards are important ingredients for many types of systems, modelling critical aspects like energy consumption, task completion, repair costs, and memory usage. This paper introduces Markov reward automata, an extension of Markov automata that allows the modelling of systems incorporating

  5. Video game training and the reward system.

    Science.gov (United States)

    Lorenz, Robert C; Gleich, Tobias; Gallinat, Jürgen; Kühn, Simone

    2015-01-01

    Video games contain elaborate reinforcement and reward schedules that have the potential to maximize motivation. Neuroimaging studies suggest that video games might have an influence on the reward system. However, it is not clear whether reward-related properties represent a precondition, which biases an individual toward playing video games, or if these changes are the result of playing video games. Therefore, we conducted a longitudinal study to explore reward-related functional predictors in relation to video gaming experience as well as functional changes in the brain in response to video game training. Fifty healthy participants were randomly assigned to a video game training (TG) or control group (CG). Before and after training/control period, functional magnetic resonance imaging (fMRI) was conducted using a non-video game related reward task. At pretest, both groups showed strongest activation in ventral striatum (VS) during reward anticipation. At posttest, the TG showed very similar VS activity compared to pretest. In the CG, the VS activity was significantly attenuated. This longitudinal study revealed that video game training may preserve reward responsiveness in the VS in a retest situation over time. We suggest that video games are able to keep striatal responses to reward flexible, a mechanism which might be of critical value for applications such as therapeutic cognitive training. PMID:25698962

  6. Performance-Based Rewards and Work Stress

    Science.gov (United States)

    Ganster, Daniel C.; Kiersch, Christa E.; Marsh, Rachel E.; Bowen, Angela

    2011-01-01

    Even though reward systems play a central role in the management of organizations, their impact on stress and the well-being of workers is not well understood. We review the literature linking performance-based reward systems to various indicators of employee stress and well-being. Well-controlled experiments in field settings suggest that certain…

  7. Video Game Training and the Reward System

    Directory of Open Access Journals (Sweden)

    Robert C. Lorenz

    2015-02-01

    Full Text Available Video games contain elaborate reinforcement and reward schedules that have the potential to maximize motivation. Neuroimaging studies suggest that video games might have an influence on the reward system. However, it is not clear whether reward-related properties represent a precondition, which biases an individual towards playing video games, or if these changes are the result of playing video games. Therefore, we conducted a longitudinal study to explore reward-related functional predictors in relation to video gaming experience as well as functional changes in the brain in response to video game training.Fifty healthy participants were randomly assigned to a video game training (TG or control group (CG. Before and after training/control period, functional magnetic resonance imaging (fMRI was conducted using a non-video game related reward task.At pretest, both groups showed strongest activation in ventral striatum (VS during reward anticipation. At posttest, the TG showed very similar VS activity compared to pretest. In the CG, the VS activity was significantly attenuated.This longitudinal study revealed that video game training may preserve reward responsiveness in the ventral striatum in a retest situation over time. We suggest that video games are able to keep striatal responses to reward flexible, a mechanism which might be of critical value for applications such as therapeutic cognitive training.

  8. Video game training and the reward system.

    Science.gov (United States)

    Lorenz, Robert C; Gleich, Tobias; Gallinat, Jürgen; Kühn, Simone

    2015-01-01

    Video games contain elaborate reinforcement and reward schedules that have the potential to maximize motivation. Neuroimaging studies suggest that video games might have an influence on the reward system. However, it is not clear whether reward-related properties represent a precondition, which biases an individual toward playing video games, or if these changes are the result of playing video games. Therefore, we conducted a longitudinal study to explore reward-related functional predictors in relation to video gaming experience as well as functional changes in the brain in response to video game training. Fifty healthy participants were randomly assigned to a video game training (TG) or control group (CG). Before and after training/control period, functional magnetic resonance imaging (fMRI) was conducted using a non-video game related reward task. At pretest, both groups showed strongest activation in ventral striatum (VS) during reward anticipation. At posttest, the TG showed very similar VS activity compared to pretest. In the CG, the VS activity was significantly attenuated. This longitudinal study revealed that video game training may preserve reward responsiveness in the VS in a retest situation over time. We suggest that video games are able to keep striatal responses to reward flexible, a mechanism which might be of critical value for applications such as therapeutic cognitive training.

  9. Reward Magnitude Effects on Temporal Discrimination

    Science.gov (United States)

    Galtress, Tiffany; Kirkpatrick, Kimberly

    2010-01-01

    Changes in reward magnitude or value have been reported to produce effects on timing behavior, which have been attributed to changes in the speed of an internal pacemaker in some instances and to attentional factors in other cases. The present experiments therefore aimed to clarify the effects of reward magnitude on timing processes. In Experiment…

  10. Self-rewards and personal motivation

    NARCIS (Netherlands)

    A.K. Koch; J. Nafziger; A. Suvorov; J. van de Ven

    2014-01-01

    Self-administered rewards are ubiquitous. They serve as incentives for personal accomplishments and are widely recommended to increase personal motivation. We show that in a model with time-inconsistent and reference-dependent preferences, self-rewards can be a credible and effective tool to overcom

  11. Social Reward Questionnaire (SRQ: Development and validation

    Directory of Open Access Journals (Sweden)

    Lucy eFoulkes

    2014-03-01

    Full Text Available Human beings seek out social interactions as a source of reward. To date, there have been limited attempts to identify different forms of social reward, and little is known about how the value of social rewards might vary between individuals. This study aimed to address both these issues by developing the Social Reward Questionnaire (SRQ, a measure of individual differences in the value of different social rewards. Exploratory factor analysis (EFA was run on an initial set of 75 items (N=305. Based on this analysis, confirmatory factor analysis (CFA was then conducted on a second sample (N=505 with a refined 23-item scale. This analysis was used to test a six-factor structure, which resulted in good model fit (CFI=.96, RSMEA=.07. The factors represent six subscales of social reward defined as follows: Admiration; Negative Social Potency; Passivity; Prosocial Interactions; Sexual Reward; and Sociability. All subscales demonstrated good test-retest reliability and internal consistency. Each subscale also showed a distinct pattern of associations with external correlates measuring personality traits, attitudes and goals, thus demonstrating construct validity. Taken together, the findings suggest that the SRQ is a reliable, valid measure that can be used to assess individual differences in the value experienced from different social rewards.

  12. Resource Allocation Problems with Concave Reward Functions

    NARCIS (Netherlands)

    Grundel, S.; Borm, P.E.M.; Hamers, H.J.M.

    2013-01-01

    Abstract: In a resource allocation problem there is a common-pool resource, which has to be divided among agents. Each agent is characterized by a claim on this pool and an individual concave reward function on assigned resources. An assignment of resources is optimal if the total joint reward is ma

  13. Discretionary rewards as a feedback mechanism

    NARCIS (Netherlands)

    A. Suvorov; J. van de Ven

    2009-01-01

    This paper studies the use of discretionary rewards in a finitely repeated principal-agent relationship with moral hazard. The key aspect is that rewards have informational content. When the principal obtains a private subjective signal about the agent's performance, she may pay discretionary bonuse

  14. Perceptual Salience and Reward Both Influence Feedback-Related Neural Activity Arising from Choice.

    Science.gov (United States)

    Lou, Bin; Hsu, Wha-Yin; Sajda, Paul

    2015-09-23

    For day-to-day decisions, multiple factors influence our choice between alternatives. Two dimensions of decision making that substantially affect choice are the objective perceptual properties of the stimulus (e.g., salience) and its subjective value. Here we measure EEGs in human subjects to relate their feedback-evoked EEG responses to estimates of prediction error given a neurally derived expected value for each trial. Unlike in traditional reinforcement learning paradigms, in our experiment the reward itself is not probabilistic; rather, it is a fixed value, which, when combined with the variable stimulus salience, yields uncertainty in the choice. We find that feedback-evoked event-related potentials (ERPs), specifically those classically termed feedback-related negativity, are modulated by both the reward level and stimulus salience. Using single-trial analysis of the EEG, we show stimulus-locked EEG components reflecting perceived stimulus salience can be combined with the level of reward to create an estimate of expected reward. This expected reward is used to form a prediction error that correlates with the trial-by-trial variability of the feedback ERPs for negative, but not positive, feedback. This suggests that the valence of prediction error is more important than the valence of the actual feedback, since only positive rewards were delivered in the experiment (no penalty or loss). Finally, we show that these subjectively defined prediction errors are informative of the riskiness of the subject's choice on the subsequent trial. In summary, our work shows that neural correlates of stimulus salience interact with value information to yield neural representations of subjective expected reward. Significance statement: How we make perceptual decisions depends on sensory evidence and the value of our options. These two factors often interact to yield subjective decisions; i.e., individuals integrate sensory evidence and value to form their own estimates of

  15. Individual differences in the time course of reward processing: Stage-specific links with depression and impulsivity.

    Science.gov (United States)

    Novak, Brittni K; Novak, Keisha D; Lynam, Donald R; Foti, Dan

    2016-09-01

    Reward dysfunction has been implicated in a wide range of psychological disorders, including internalizing and externalizing psychopathology. Basic neuroscience research has shown that reward is a multistage process, yet it is unclear how specific stages relate to individual differences in reward sensitivity. The current study utilized event-related potentials elicited during a monetary incentive task to parse sub-stages within anticipatory and consummatory reward processing. Effects of depressive symptoms and trait impulsivity were examined at each sub-stage (N=92). Reward anticipation modulated neural activity across three sub-stages: cue detection (cue-P3), approach behavior (contingent negative variation, CNV), and outcome anticipation (stimulus preceding negativity). Reward delivery modulated activity across two sub-stages: initial evaluation (reward positivity, RewP), and allocation of attention (feedback-P3). Sensation seeking predicted faster reaction times, as well as cue-P3 and RewP amplitudes. Depression and lack of premeditation interacted to predict CNV and RewP amplitudes. Results demonstrate that individual differences in reward functioning are stage-specific. PMID:27396750

  16. Individual differences in the time course of reward processing: Stage-specific links with depression and impulsivity.

    Science.gov (United States)

    Novak, Brittni K; Novak, Keisha D; Lynam, Donald R; Foti, Dan

    2016-09-01

    Reward dysfunction has been implicated in a wide range of psychological disorders, including internalizing and externalizing psychopathology. Basic neuroscience research has shown that reward is a multistage process, yet it is unclear how specific stages relate to individual differences in reward sensitivity. The current study utilized event-related potentials elicited during a monetary incentive task to parse sub-stages within anticipatory and consummatory reward processing. Effects of depressive symptoms and trait impulsivity were examined at each sub-stage (N=92). Reward anticipation modulated neural activity across three sub-stages: cue detection (cue-P3), approach behavior (contingent negative variation, CNV), and outcome anticipation (stimulus preceding negativity). Reward delivery modulated activity across two sub-stages: initial evaluation (reward positivity, RewP), and allocation of attention (feedback-P3). Sensation seeking predicted faster reaction times, as well as cue-P3 and RewP amplitudes. Depression and lack of premeditation interacted to predict CNV and RewP amplitudes. Results demonstrate that individual differences in reward functioning are stage-specific.

  17. Midbrain dopamine neurons signal aversion in a reward-context-dependent manner

    Science.gov (United States)

    Matsumoto, Hideyuki; Tian, Ju; Uchida, Naoshige; Watabe-Uchida, Mitsuko

    2016-01-01

    Dopamine is thought to regulate learning from appetitive and aversive events. Here we examined how optogenetically-identified dopamine neurons in the lateral ventral tegmental area of mice respond to aversive events in different conditions. In low reward contexts, most dopamine neurons were exclusively inhibited by aversive events, and expectation reduced dopamine neurons’ responses to reward and punishment. When a single odor predicted both reward and punishment, dopamine neurons’ responses to that odor reflected the integrated value of both outcomes. Thus, in low reward contexts, dopamine neurons signal value prediction errors (VPEs) integrating information about both reward and aversion in a common currency. In contrast, in high reward contexts, dopamine neurons acquired a short-latency excitation to aversive events that masked their VPE signaling. Our results demonstrate the importance of considering the contexts to examine the representation in dopamine neurons and uncover different modes of dopamine signaling, each of which may be adaptive for different environments. DOI: http://dx.doi.org/10.7554/eLife.17328.001 PMID:27760002

  18. Quantifying individual variation in the propensity to attribute incentive salience to reward cues.

    Science.gov (United States)

    Meyer, Paul J; Lovic, Vedran; Saunders, Benjamin T; Yager, Lindsay M; Flagel, Shelly B; Morrow, Jonathan D; Robinson, Terry E

    2012-01-01

    If reward-associated cues acquire the properties of incentive stimuli they can come to powerfully control behavior, and potentially promote maladaptive behavior. Pavlovian incentive stimuli are defined as stimuli that have three fundamental properties: they are attractive, they are themselves desired, and they can spur instrumental actions. We have found, however, that there is considerable individual variation in the extent to which animals attribute Pavlovian incentive motivational properties ("incentive salience") to reward cues. The purpose of this paper was to develop criteria for identifying and classifying individuals based on their propensity to attribute incentive salience to reward cues. To do this, we conducted a meta-analysis of a large sample of rats (N = 1,878) subjected to a classic Pavlovian conditioning procedure. We then used the propensity of animals to approach a cue predictive of reward (one index of the extent to which the cue was attributed with incentive salience), to characterize two behavioral phenotypes in this population: animals that approached the cue ("sign-trackers") vs. others that approached the location of reward delivery ("goal-trackers"). This variation in Pavlovian approach behavior predicted other behavioral indices of the propensity to attribute incentive salience to reward cues. Thus, the procedures reported here should be useful for making comparisons across studies and for assessing individual variation in incentive salience attribution in small samples of the population, or even for classifying single animals.

  19. Quantifying individual variation in the propensity to attribute incentive salience to reward cues.

    Directory of Open Access Journals (Sweden)

    Paul J Meyer

    Full Text Available If reward-associated cues acquire the properties of incentive stimuli they can come to powerfully control behavior, and potentially promote maladaptive behavior. Pavlovian incentive stimuli are defined as stimuli that have three fundamental properties: they are attractive, they are themselves desired, and they can spur instrumental actions. We have found, however, that there is considerable individual variation in the extent to which animals attribute Pavlovian incentive motivational properties ("incentive salience" to reward cues. The purpose of this paper was to develop criteria for identifying and classifying individuals based on their propensity to attribute incentive salience to reward cues. To do this, we conducted a meta-analysis of a large sample of rats (N = 1,878 subjected to a classic Pavlovian conditioning procedure. We then used the propensity of animals to approach a cue predictive of reward (one index of the extent to which the cue was attributed with incentive salience, to characterize two behavioral phenotypes in this population: animals that approached the cue ("sign-trackers" vs. others that approached the location of reward delivery ("goal-trackers". This variation in Pavlovian approach behavior predicted other behavioral indices of the propensity to attribute incentive salience to reward cues. Thus, the procedures reported here should be useful for making comparisons across studies and for assessing individual variation in incentive salience attribution in small samples of the population, or even for classifying single animals.

  20. Planning activity for internally generated reward goals in monkey amygdala neurons.

    Science.gov (United States)

    Hernádi, István; Grabenhorst, Fabian; Schultz, Wolfram

    2015-03-01

    The best rewards are often distant and can only be achieved by planning and decision-making over several steps. We designed a multi-step choice task in which monkeys followed internal plans to save rewards toward self-defined goals. During this self-controlled behavior, amygdala neurons showed future-oriented activity that reflected the animal's plan to obtain specific rewards several trials ahead. This prospective activity encoded crucial components of the animal's plan, including value and length of the planned choice sequence. It began on initial trials when a plan would be formed, reappeared step by step until reward receipt, and readily updated with a new sequence. It predicted performance, including errors, and typically disappeared during instructed behavior. Such prospective activity could underlie the formation and pursuit of internal plans characteristic of goal-directed behavior. The existence of neuronal planning activity in the amygdala suggests that this structure is important in guiding behavior toward internally generated, distant goals.

  1. Reward, dopamine and the control of food intake: implications for obesity

    International Nuclear Information System (INIS)

    The ability to resist the urge to eat requires the proper functioning of neuronal circuits involved in top-down control to oppose the conditioned responses that predict reward from eating the food and the desire to eat the food. Imaging studies show that obese subjects might have impairments in dopaminergic pathways that regulate neuronal systems associated with reward sensitivity, conditioning and control. It is known that the neuropeptides that regulate energy balance (homeostatic processes) through the hypothalamus also modulate the activity of dopamine cells and their projections into regions involved in the rewarding processes underlying food intake. It is postulated that this could also be a mechanism by which overeating and the resultant resistance to homoeostatic signals impairs the function of circuits involved in reward sensitivity, conditioning and cognitive control.

  2. Reward, dopamine and the control of food intake: implications for obesity

    Energy Technology Data Exchange (ETDEWEB)

    Volkow N. D.; Wang G.; Volkow, N.D.; Wang, G.-J.; Baler, R.D.

    2011-10-01

    The ability to resist the urge to eat requires the proper functioning of neuronal circuits involved in top-down control to oppose the conditioned responses that predict reward from eating the food and the desire to eat the food. Imaging studies show that obese subjects might have impairments in dopaminergic pathways that regulate neuronal systems associated with reward sensitivity, conditioning and control. It is known that the neuropeptides that regulate energy balance (homeostatic processes) through the hypothalamus also modulate the activity of dopamine cells and their projections into regions involved in the rewarding processes underlying food intake. It is postulated that this could also be a mechanism by which overeating and the resultant resistance to homoeostatic signals impairs the function of circuits involved in reward sensitivity, conditioning and cognitive control.

  3. A new perspective on human reward research: how consciously and unconsciously perceived reward information influences performance.

    Science.gov (United States)

    Zedelius, Claire M; Veling, Harm; Custers, Ruud; Bijleveld, Erik; Chiew, Kimberly S; Aarts, Henk

    2014-06-01

    The question of how human performance can be improved through rewards is a recurrent topic of interest in psychology and neuroscience. Traditional, cognitive approaches to this topic have focused solely on consciously communicated rewards. Recently, a largely neuroscience-inspired perspective has emerged to examine the potential role of conscious awareness of reward information in effective reward pursuit. The present article reviews research employing a newly developed monetary-reward-priming paradigm that allows for a systematic investigation of this perspective. We analyze this research to identify similarities and differences in how consciously and unconsciously perceived rewards impact three distinct aspects relevant to performance: decision making, task preparation, and task execution. We further discuss whether conscious awareness, in modulating the effects of reward information, plays a role similar to its role in modulating the effects of other affective information. Implications of these insights for understanding the role of consciousness in modulating goal-directed behavior more generally are discussed. PMID:24399682

  4. Prediction

    CERN Document Server

    Sornette, Didier

    2010-01-01

    This chapter first presents a rather personal view of some different aspects of predictability, going in crescendo from simple linear systems to high-dimensional nonlinear systems with stochastic forcing, which exhibit emergent properties such as phase transitions and regime shifts. Then, a detailed correspondence between the phenomenology of earthquakes, financial crashes and epileptic seizures is offered. The presented statistical evidence provides the substance of a general phase diagram for understanding the many facets of the spatio-temporal organization of these systems. A key insight is to organize the evidence and mechanisms in terms of two summarizing measures: (i) amplitude of disorder or heterogeneity in the system and (ii) level of coupling or interaction strength among the system's components. On the basis of the recently identified remarkable correspondence between earthquakes and seizures, we present detailed information on a class of stochastic point processes that has been found to be particu...

  5. Floral reward in Ranunculaceae species

    Directory of Open Access Journals (Sweden)

    Bożena Denisow

    2016-04-01

    Full Text Available Floral reward is important in ecological and evolutionary perspectives and essential in pollination biology. For example, floral traits, nectar and pollen features are essential for understanding the functional ecology, the dynamics of pollen transport, competition for pollinator services, and patterns of specialization and generalization in plant–pollinator interactions. We believe to present a synthetic description in the field of floral reward in Ranunculaceae family important in pollination biology and indicating connections between ecological and evolutionary approaches. The links between insect visitors’ behaviour and floral reward type and characteristics exist. Ranunculaceae is a family of aboot 1700 species (aboot 60 genera, distributed worldwide, however the most abundant representatives are in temperate and cool regions of the northern and southern hemispheres. The flowers are usually radially symmetric (zygomorphic and bisexual, but in Aconitum, Aquilegia are bilaterally symmetric (zygomorphic. Most Ranunculaceae flowers offer no nectar, only pollen (e.g., Ranunculus, Adonis vernalis, Thalictrum, but numerous species create trophic niches for different wild pollinators (e.g. Osmia, Megachile, Bombus, Andrena (Denisow et al. 2008. Pollen is a source of protein, vitamins, mineral salts, organic acids and hormones, but the nutritional value varies greatly between different plant species. The pollen production can differ significantly between Ranunculacea species. The mass of pollen produced in anthers differ due to variations in the number of developed anthers. For example, interspecies differences are considerable, 49 anthers are noted in Aquilegia vulgaris, 70 anthers in Ranunculus lanuginosus, 120 in Adonis vernalis. A significant intra-species differences’ in the number of anthers are also noted (e.g. 41 to 61 in Aquilegia vulgaris, 23-45 in Ranunculus cassubicus. Pollen production can be up to 62 kg per ha for Ranunculus acer

  6. Intense sweetness surpasses cocaine reward.

    Directory of Open Access Journals (Sweden)

    Magalie Lenoir

    Full Text Available BACKGROUND: Refined sugars (e.g., sucrose, fructose were absent in the diet of most people until very recently in human history. Today overconsumption of diets rich in sugars contributes together with other factors to drive the current obesity epidemic. Overconsumption of sugar-dense foods or beverages is initially motivated by the pleasure of sweet taste and is often compared to drug addiction. Though there are many biological commonalities between sweetened diets and drugs of abuse, the addictive potential of the former relative to the latter is currently unknown. METHODOLOGY/PRINCIPAL FINDINGS: Here we report that when rats were allowed to choose mutually-exclusively between water sweetened with saccharin-an intense calorie-free sweetener-and intravenous cocaine-a highly addictive and harmful substance-the large majority of animals (94% preferred the sweet taste of saccharin. The preference for saccharin was not attributable to its unnatural ability to induce sweetness without calories because the same preference was also observed with sucrose, a natural sugar. Finally, the preference for saccharin was not surmountable by increasing doses of cocaine and was observed despite either cocaine intoxication, sensitization or intake escalation-the latter being a hallmark of drug addiction. CONCLUSIONS: Our findings clearly demonstrate that intense sweetness can surpass cocaine reward, even in drug-sensitized and -addicted individuals. We speculate that the addictive potential of intense sweetness results from an inborn hypersensitivity to sweet tastants. In most mammals, including rats and humans, sweet receptors evolved in ancestral environments poor in sugars and are thus not adapted to high concentrations of sweet tastants. The supranormal stimulation of these receptors by sugar-rich diets, such as those now widely available in modern societies, would generate a supranormal reward signal in the brain, with the potential to override self

  7. Increased risk of cancer in radon-exposed miners with elevated frequency of chromosomal aberrations.

    Science.gov (United States)

    Smerhovsky, Zdenek; Landa, Karel; Rössner, Pavel; Juzova, Dagmar; Brabec, Marek; Zudova, Zdena; Hola, Nora; Zarska, Hana; Nevsimalova, Emilie

    2002-02-15

    In spite of the extensive use of cytogenetic analysis of human peripheral blood lymphocytes in the biomonitoring of exposure to various mutagens and carcinogens, the long-term effects of an increased frequency of chromosomal aberrations in individuals are still uncertain. Few epidemiologic studies have addressed this issue, and a moderate risk of cancer in individuals with an elevated frequency of chromosomal aberrations has been observed. In the present study, we analyzed data on 1323 cytogenetic assays and 225 subjects examined because of occupational exposures to radon (range of exposure from 1.7 to 662.3 working level month (WLM)). Seventy-five subjects were non-smokers. We found 36 cases of cancer in this cohort. Chromatid breaks were the most frequently observed type of aberrations (mean frequency 1.2 per 100 cells), which statistically significantly correlated with radon exposure (Spearman's correlation coefficient R=0.22, P<0.001). Also, the frequency of aberrant cells (median of 2.5%) correlated with radon exposure (Spearman's correlation coefficient R=0.16, P<0.02). Smoking and silicosis were not associated with results of cytogenetic analyses. The Cox regression models, which accounted for the age at time of first cytogenetic assay, radon exposure, and smoking showed strong and statistically significant associations between cancer incidence and frequency of chromatid breaks and frequency of aberrant cells, respectively. A 1% increase in the frequency of aberrant cells was paralleled by a 62% increase in risk of cancer (P<0.000). An increase in frequency of chromatid breaks by 1 per 100 cells was followed by a 99% increase in risk of cancer (P<0.000). We obtained similar results when we analyzed the incidence of lung cancer and the incidence other than lung cancer separately. Contrary to frequency of chromatid breaks and frequency of aberrant cells, the frequency of chromatid exchanges, and chromosome-type aberrations were not predictive of cancer.

  8. Reinforcement Learning by Comparing Immediate Reward

    CERN Document Server

    Pandey, Punit; Kumar, Shishir

    2010-01-01

    This paper introduces an approach to Reinforcement Learning Algorithm by comparing their immediate rewards using a variation of Q-Learning algorithm. Unlike the conventional Q-Learning, the proposed algorithm compares current reward with immediate reward of past move and work accordingly. Relative reward based Q-learning is an approach towards interactive learning. Q-Learning is a model free reinforcement learning method that used to learn the agents. It is observed that under normal circumstances algorithm take more episodes to reach optimal Q-value due to its normal reward or sometime negative reward. In this new form of algorithm agents select only those actions which have a higher immediate reward signal in comparison to previous one. The contribution of this article is the presentation of new Q-Learning Algorithm in order to maximize the performance of algorithm and reduce the number of episode required to reach optimal Q-value. Effectiveness of proposed algorithm is simulated in a 20 x20 Grid world dete...

  9. Modelling the formation of polycentric chromosome aberrations

    Energy Technology Data Exchange (ETDEWEB)

    Sachs, R.K.; Tarver, J. (California Univ., Berkeley, CA (United States). Dept. of Mathematics); Yates, B.L.; Morgan, W.F. (California Univ., San Francisco, CA (United States))

    1992-10-01

    Exchange-type chromosome aberrations produced by ionizing radiation or restriction enzymes are believed to result from pairwise interaction of DNA double-strand breaks (dsb). In addition to dicentrics, such aberrations may include higher-order polycentries (tricentries, tetracentrics, etc.). The authors have developed computer programs that calculate the probability of the various polycentrics for a given average number of pairwise interactions. Two models are used. Model I incorporates kinetic competition between restitution, complete exchanges (illegitimate recombination events), and incomplete exchanges. Model II allows unrestituted breaks even if there is no recombination. The models were applied to experimental observations of aberrations produced in G[sub 1] Chinese hamster ovary cells after electroporation with the restriction enzyme PvuII, which produces blunt-end dsb. (author).

  10. Modelling the formation of polycentric chromosome aberrations

    International Nuclear Information System (INIS)

    Exchange-type chromosome aberrations produced by ionizing radiation or restriction enzymes are believed to result from pairwise interaction of DNA double-strand breaks (dsb). In addition to dicentrics, such aberrations may include higher-order polycentries (tricentries, tetracentrics, etc.). The authors have developed computer programs that calculate the probability of the various polycentrics for a given average number of pairwise interactions. Two models are used. Model I incorporates kinetic competition between restitution, complete exchanges (illegitimate recombination events), and incomplete exchanges. Model II allows unrestituted breaks even if there is no recombination. The models were applied to experimental observations of aberrations produced in G1 Chinese hamster ovary cells after electroporation with the restriction enzyme PvuII, which produces blunt-end dsb. (author)

  11. State-based versus reward-based motivation in younger and older adults.

    Science.gov (United States)

    Worthy, Darrell A; Cooper, Jessica A; Byrne, Kaileigh A; Gorlick, Marissa A; Maddox, W Todd

    2014-12-01

    Recent decision-making work has focused on a distinction between a habitual, model-free neural system that is motivated toward actions that lead directly to reward and a more computationally demanding goal-directed, model-based system that is motivated toward actions that improve one's future state. In this article, we examine how aging affects motivation toward reward-based versus state-based decision making. Participants performed tasks in which one type of option provided larger immediate rewards but the alternative type of option led to larger rewards on future trials, or improvements in state. We predicted that older adults would show a reduced preference for choices that led to improvements in state and a greater preference for choices that maximized immediate reward. We also predicted that fits from a hybrid reinforcement-learning model would indicate greater model-based strategy use in younger than in older adults. In line with these predictions, older adults selected the options that maximized reward more often than did younger adults in three of the four tasks, and modeling results suggested reduced model-based strategy use. In the task where older adults showed similar behavior to younger adults, our model-fitting results suggested that this was due to the utilization of a win-stay-lose-shift heuristic rather than a more complex model-based strategy. Additionally, within older adults, we found that model-based strategy use was positively correlated with memory measures from our neuropsychological test battery. We suggest that this shift from state-based to reward-based motivation may be due to age related declines in the neural structures needed for more computationally demanding model-based decision making.

  12. Self-Rewards and Personal Motivation

    DEFF Research Database (Denmark)

    Koch, Alexander Karl; Nafziger, Julia; Suvorov, Anton;

    Self-administered rewards are ubiquitous. They serve as incentives for personal accomplishments and are widely recommended to increase personal motivation. We show that in a model with time-inconsistent and reference-dependent preferences, self-rewards can be a credible and effective tool...... to overcome self-control problems. We also characterize the type of self-rewards that can be used, such as vice goods and virtue goods, and analyze which types of goods will be preferred by the individual....

  13. Forebrain substrates of reward and motivation.

    Science.gov (United States)

    Wise, Roy A

    2005-12-01

    Electrical stimulation of the medial forebrain bundle can reward arbitrary acts or motivate biologically primitive, species-typical behaviors like feeding or copulation. The subsystems involved in these behaviors are only partially characterized, but they appear to transsynaptically activate the mesocorticolimbic dopamine system. Basal function of the dopamine system is essential for arousal and motor function; phasic activation of this system is rewarding and can potentiate the effectiveness of reward-predictors that guide learned behaviors. This system is phasically activated by most drugs of abuse and such activation contributes to the habit-forming actions of these drugs.

  14. Reward and punishment effects on error processing and conflict control

    Directory of Open Access Journals (Sweden)

    Birgit eStürmer

    2011-11-01

    Full Text Available Recently, positive mood has been shown to reduce cognitive conflicts and adaptation related to conflict control. Van Steenbergen et al. (2009 proposed that short-term adaptation after conflict is driven by the aversive quality of the conflict. They reasoned that monetary gain and its positive emotional consequences might counteract the aversive quality of the preceding conflict and hence reduce subsequent conflict-driven adaptation processes. According to Ashby et al. (1999, however, positive affect increases cognitive flexibility and might, therefore, support cognitive conflict control.In two experiments, we combined Simon-type conflicts with monetary gains and losses in between trials and analyzed event-related brain potentials (ERPs. In Experiment 1 gains and losses were applied randomly as a lottery in between two Simon trials whereas in the second experiment gains and losses were related to behavioral performance. Either the 25 % fastest responses were rewarded or the 25 % slowest responses were penalized. In Experiment 1 conflict adaptation was not at all modulated by gains and losses and in Experiment 2 conflict adaptation increased after a gain. In addition we analyzed the error-related negativity (ERN in Experiment 2 – a brain signal proposed to be related to the reward prediction error and response conflicts. The ERN and post-error slowing were enlarged in the context of reward. We conclude that a context of reward increases the subjective value of an error, thus, enhancing error adaptation. However, modulatory effects of affective states on cognitive conflict control are much more limited as previously asserted.

  15. Extending overjustification: the effect of perceived reward-giver intention on response to rewards.

    Science.gov (United States)

    Forehand, M R

    2000-12-01

    The perceived intention model incorporates a new moderator, beliefs about reward-giver intention, into the overjustification paradigm. In 2 simulated shopping studies featuring products paired with promotional rewards, consumers who believed the marketer was promotion focused (reward used to encourage purchase) reported lower purchase intentions and brand attitudes for promoted products after promotion, whereas consumers who believed the marketer was reward focused (promotion used to distribute the reward) showed no attitude change. Promotion-focus beliefs lowered attitudes by heightening the contingency between the promotion and purchase and thereby increasing the perceived causal role of the reward. This effect was contingent on initial behavior--postpromotion attitude change occurred for consumers who actively engaged in product decisions but not for consumers who passively observed the choice sets. PMID:11125656

  16. Blunted neural response to rewards as a vulnerability factor for depression: Results from a family study.

    Science.gov (United States)

    Weinberg, Anna; Liu, Huiting; Hajcak, Greg; Shankman, Stewart A

    2015-11-01

    Depressive disorders are associated with significant economic and public health burdens as well as increased morbidity. Yet, perhaps due to the heterogeneous nature of the disease, prevention and intervention efforts are only moderately efficacious. A better understanding of core mechanisms of depressive disorders might aid in the development of more targeted intervention, and perhaps help identify individuals at risk. One mechanism that may be particularly important to depressive phenotypes is reward insensitivity. Examination of neurobiological correlates of reward-processing, which should relate more directly to the neuropathology of depression, may be helpful in identifying liability for the disorder. To that end, we used a family study design to examine whether a neural response to rewards is a familial risk factor for depression in a sample of probands with a wide range of internalizing psychopathology, as well as their biological siblings. Event-related potentials were recorded during a simple forced-choice gambling paradigm, in which participants could either win or lose small amounts of money. Lower levels of positive affect in probands predicted a reduced neural response to rewards in siblings, even over and above the sibling's own level of positive and negative affect. Additionally, the neural response to rewards was familial (i.e., correlated among siblings). Combined, these analyses suggest that a blunted neural response to rewards may be useful in identifying individuals vulnerable to depressive illnesses. PMID:26214708

  17. Nucleus accumbens mediates relative motivation for rewards in the absence of choice

    Directory of Open Access Journals (Sweden)

    John A Clithero

    2011-08-01

    Full Text Available To dissociate a choice from its antecedent neural states, motivation associated with the expected outcome must be captured in the absence of choice. Yet, the neural mechanisms that mediate behavioral idiosyncrasies in motivation, particularly with regard to complex economic preferences, are rarely examined in situations without overt decisions. We employed functional magnetic resonance imaging (fMRI in a large sample of participants while they anticipated earning rewards from two different modalities: monetary and candy rewards. An index for relative motivation toward different reward types was constructed using reaction times to the target for earning rewards. Activation in the nucleus accumbens (NAcc and anterior insula (aINS predicted individual variation in relative motivation between our reward modalities. NAcc activation, however, mediated the effects of aINS, indicating the NAcc is the likely source of this relative weighting. These results demonstrate that neural idiosyncrasies in reward efficacy exist even in the absence of explicit choices, and extend the role of NAcc as a critical brain region for such choice-free motivation.

  18. The differential influences of positive affect, random reward, and performance-contingent reward on cognitive control.

    Science.gov (United States)

    Fröber, Kerstin; Dreisbach, Gesine

    2014-06-01

    Growing evidence suggests that positive affect and reward have differential effects on cognitive control. So far, however, these effects have never been studied together. Here, the authors present one behavioral study investigating the influences of positive affect and reward (contingent and noncontingent) on proactive control. A modified version of the AX-continuous performance task, which has repeatedly been shown to be sensitive to reward and affect manipulations, was used. In a first phase, two experimental groups received either neutral or positive affective pictures before every trial. In a second phase, the two halves of a given affect group additionally received, respectively, performance-contingent or random rewards. The results replicated the typical affect effect, in terms of reduced proactive control under positive as compared to neutral affect. Also, the typical reward effects associated with increased proactive control were replicated. Most interestingly, performance-contingent reward counteracted the positive affect effect, whereas random reward mirrored that effect. In sum, this study provides first evidence that performance-contingent reward, on the one hand, and positive affect and performance-noncontingent reward, on the other hand, have oppositional effects on cognitive control: Only performance-contingent reward showed a motivational effect in terms of a strategy shift toward increased proactive control, whereas positive affect alone and performance-noncontingent reward reduced proactive control. Moreover, the integrative design of this study revealed the vulnerability of positive affect effects to motivational manipulations. The results are discussed with respect to current neuroscientific theories of the effects of dopamine on affect, reward, and cognitive control. PMID:24659000

  19. Ketamine Suppresses the Ventral Striatal Response to Reward Anticipation: A Cross-Species Translational Neuroimaging Study.

    Science.gov (United States)

    Francois, Jennifer; Grimm, Oliver; Schwarz, Adam J; Schweiger, Janina; Haller, Leila; Risterucci, Celine; Böhringer, Andreas; Zang, Zhenxiang; Tost, Heike; Gilmour, Gary; Meyer-Lindenberg, Andreas

    2016-04-01

    Convergent evidence implicates regional neural responses to reward anticipation in the pathogenesis of several psychiatric disorders, such as schizophrenia, where blunted ventral striatal responses to positive reward are observed in patients and at-risk populations. In vivo oxygen amperometry measurements in the ventral striatum in awake, behaving rats reveal reward-related tissue oxygen changes that closely parallel blood oxygen level dependent (BOLD) signal changes observed in human functional magnetic resonance imaging (fMRI), suggesting that a cross-species approach targeting this mechanism might be feasible in psychopharmacology. The present study explored modulatory effects of acute, subanaesthetic doses of ketamine-a pharmacological model widely used in psychopharmacological research, both preclinically and clinically-on ventral striatum activity during performance of a reward anticipation task in both species, using fMRI in humans and in vivo oxygen amperometry in rats. In a region-of-interest analysis conducted following a cross-over placebo and ketamine study in human subjects, an attenuated ventral striatal response during reward anticipation was observed following ketamine relative to placebo during performance of a monetary incentive delay task. In rats, a comparable attenuation of ventral striatal signal was found after ketamine challenge, relative to vehicle, in response to a conditioned stimulus that predicted delivery of reward. This study provides the first data in both species demonstrating an attenuating effect of acute ketamine on reward-related ventral striatal (O2) and fMRI signals. These findings may help elucidate a deeper mechanistic understanding of the potential role of ketamine as a model for psychosis, show that cross-species pharmacological experiments targeting reward signaling are feasible, and suggest this phenotype as a promising translational biomarker for the development of novel compounds, assessment of disease status, and

  20. Utilization of reward-prospect enhances preparatory attention and reduces stimulus conflict.

    Science.gov (United States)

    van den Berg, Berry; Krebs, Ruth M; Lorist, Monicque M; Woldorff, Marty G

    2014-06-01

    The prospect of gaining money is an incentive widely at play in the real world. Such monetary motivation might have particularly strong influence when the cognitive system is challenged, such as when needing to process conflicting stimulus inputs. Here, we employed manipulations of reward-prospect and attentional-preparation levels in a cued-Stroop stimulus conflict task, along with the high temporal resolution of electrical brain recordings, to provide insight into the mechanisms by which reward-prospect and attention interact and modulate cognitive task performance. In this task, the cue indicated whether or not the participant needed to prepare for an upcoming Stroop stimulus and, if so, whether there was the potential for monetary reward (dependent on performance on that trial). Both cued attention and cued reward-prospect enhanced preparatory neural activity, as reflected by increases in the hallmark attention-related negative-polarity ERP slow wave (contingent negative variation [CNV]) and reductions in oscillatory Alpha activity, which was followed by enhanced processing of the subsequent Stroop stimulus. In addition, similar modulations of preparatory neural activity (larger CNVs and reduced Alpha) predicted shorter versus longer response times (RTs) to the subsequent target stimulus, consistent with such modulations reflecting trial-to-trial variations in attention. Particularly striking were the individual differences in the utilization of reward-prospect information. In particular, the size of the reward effects on the preparatory neural activity correlated across participants with the degree to which reward-prospect both facilitated overall task performance (shorter RTs) and reduced conflict-related behavioral interference. Thus, the prospect of reward appears to recruit attentional preparation circuits to enhance processing of task-relevant target information.

  1. Reward sensitivity deficits modulated by dopamine are associated with apathy in Parkinson’s disease

    Science.gov (United States)

    Manohar, Sanjay; Ben Yehuda, Michael; Chong, Trevor T.-J.; Tofaris, George; Lennox, Graham; Bogdanovic, Marko; Hu, Michele; Husain, Masud

    2016-01-01

    Apathy is a debilitating and under-recognized condition that has a significant impact in many neurodegenerative disorders. In Parkinson’s disease, it is now known to contribute to worse outcomes and a reduced quality of life for patients and carers, adding to health costs and extending disease burden. However, despite its clinical importance, there remains limited understanding of mechanisms underlying apathy. Here we investigated if insensitivity to reward might be a contributory factor and examined how this relates to severity of clinical symptoms. To do this we created novel ocular measures that indexed motivation level using pupillary and saccadic response to monetary incentives, allowing reward sensitivity to be evaluated objectively. This approach was tested in 40 patients with Parkinson’s disease, 31 elderly age-matched control participants and 20 young healthy volunteers. Thirty patients were examined ON and OFF their dopaminergic medication in two counterbalanced sessions, so that the effect of dopamine on reward sensitivity could be assessed. Pupillary dilation to increasing levels of monetary reward on offer provided quantifiable metrics of motivation in healthy subjects as well as patients. Moreover, pupillary reward sensitivity declined with age. In Parkinson’s disease, reduced pupillary modulation by incentives was predictive of apathy severity, and independent of motor impairment and autonomic dysfunction as assessed using overnight heart rate variability measures. Reward sensitivity was further modulated by dopaminergic state, with blunted sensitivity when patients were OFF dopaminergic drugs, both in pupillary response and saccadic peak velocity response to reward. These findings suggest that reward insensitivity may be a contributory mechanism to apathy and provide potential new clinical measures for improved diagnosis and monitoring of apathy. PMID:27452600

  2. TOTAL REWARDS MODEL IN ROMANIAN COMPANIES

    Directory of Open Access Journals (Sweden)

    Elena-Sabina HODOR

    2014-04-01

    Full Text Available Total Rewards Management is a subject of major importance for companies, because, by using models for this, firms can achieve their objectives of high performance. In order to analyse a validated total rewards model in Romanian Accounting and Consulting Companies, it is used The WorldatWork Total Rewards Model, which depict what contributes to applicant attraction and employee motivation and retention. Thus, the methodology of the previous survey is adjusted to the local context. The conclusions for the methodological aspects illustrate that the present research involves three strategic steps in order to achieve the objectives presented: the analysis of organizational environment of the companies from the sample, checking if Total Rewards Model proposed in the previous research is applicable for the same romanian companies from the previous survey, the analysing of the differences between results, and, if necessary, the adaptation of the model for Romania.

  3. Brain Reward Circuits in Morphine Addiction

    Science.gov (United States)

    Kim, Juhwan; Ham, Suji; Hong, Heeok; Moon, Changjong; Im, Heh-In

    2016-01-01

    Morphine is the most potent analgesic for chronic pain, but its clinical use has been limited by the opiate’s innate tendency to produce tolerance, severe withdrawal symptoms and rewarding properties with a high risk of relapse. To understand the addictive properties of morphine, past studies have focused on relevant molecular and cellular changes in the brain, highlighting the functional roles of reward-related brain regions. Given the accumulated findings, a recent, emerging trend in morphine research is that of examining the dynamics of neuronal interactions in brain reward circuits under the influence of morphine action. In this review, we highlight recent findings on the roles of several reward circuits involved in morphine addiction based on pharmacological, molecular and physiological evidences. PMID:27506251

  4. EuroPlus+ Reward / Alar Hammer

    Index Scriptorium Estoniae

    Hammer, Alar

    2000-01-01

    EuroPlus+ Reward on mitmes versioonis ilmunud inglise keele õppeprogramm, milles on ühendatud multimeedia võimalused ning distantsõpe ning mis loob täiesti uued võimalused keele omandamiseks arvuti abil

  5. Analysis of Bitcoin Pooled Mining Reward Systems

    CERN Document Server

    Rosenfeld, Meni

    2011-01-01

    In this paper we describe the various scoring systems used to calculate rewards of participants in Bitcoin pooled mining, explain the problems each were designed to solve and analyze their respective advantages and disadvantages.

  6. Dopamine Signaling in reward-related behaviors

    Directory of Open Access Journals (Sweden)

    Ja-Hyun eBaik

    2013-10-01

    Full Text Available Dopamine (DA regulates emotional and motivational behavior through the mesolimbic dopaminergic pathway. Changes in DAmesolimbic neurotransmission have been found to modify behavioral responses to various environmental stimuli associated with reward behaviors. Psychostimulants, drugs of abuse, and natural rewards such as food can cause substantial synaptic modifications to the mesolimbic DA system. Recent studies using optogenetics and DREADDs, together with neuron-specific or circuit-specific genetic manipulations have improved our understanding of DA signaling in the reward circuit, and provided a means to identify the neural substrates of complex behaviors such as drug addiction and eating disorders. This review focuses on the role of the DA system in drug addiction and food motivation, with an overview of the role of D1 and D2 receptors in the control of reward-associated behaviors.

  7. Dopamine signaling in reward-related behaviors.

    Science.gov (United States)

    Baik, Ja-Hyun

    2013-01-01

    Dopamine (DA) regulates emotional and motivational behavior through the mesolimbic dopaminergic pathway. Changes in DA mesolimbic neurotransmission have been found to modify behavioral responses to various environmental stimuli associated with reward behaviors. Psychostimulants, drugs of abuse, and natural reward such as food can cause substantial synaptic modifications to the mesolimbic DA system. Recent studies using optogenetics and DREADDs, together with neuron-specific or circuit-specific genetic manipulations have improved our understanding of DA signaling in the reward circuit, and provided a means to identify the neural substrates of complex behaviors such as drug addiction and eating disorders. This review focuses on the role of the DA system in drug addiction and food motivation, with an overview of the role of D1 and D2 receptors in the control of reward-associated behaviors.

  8. Aberrant crypt foci in the colo-rectal mucosa as reliable markers of tumor development

    DEFF Research Database (Denmark)

    Thorup, Inger

    The aim of the present thesis has been to evaluate a recently developed short term in vivo model, the aberrant crypt foci bioassay (ACF), for its ability to predict the development of colo-rectal tumors. Based on the knowledge obtained during the last decade, it can be stated that no simple...

  9. Motivating interdependent teams: individual rewards, shared rewards, or something in between?

    Science.gov (United States)

    Pearsall, Matthew J; Christian, Michael S; Ellis, Aleksander P J

    2010-01-01

    The primary purpose in this study was to extend theory and research regarding the motivational process in teams by examining the effects of hybrid rewards on team performance. Further, to better understand the underlying team level mechanisms, the authors examined whether the hypothesized benefits of hybrid over shared and individual rewards were due to increased information allocation and reduced social loafing. Results from 90 teams working on a command-and-control simulation supported the hypotheses. Hybrid rewards led to higher levels of team performance than did individual and shared rewards; these effects were due to improvements in information allocation and reductions in social loafing. PMID:20085415

  10. Dorsomedial striatum lesions affect adjustment to reward uncertainty, but not to reward devaluation or omission.

    Science.gov (United States)

    Torres, Carmen; Glueck, Amanda C; Conrad, Shannon E; Morón, Ignacio; Papini, Mauricio R

    2016-09-22

    The dorsomedial striatum (DMS) has been implicated in the acquisition of reward representations, a proposal leading to the hypothesis that it should play a role in situations involving reward loss. We report the results of an experiment in which the effects of DMS excitotoxic lesions were tested in consummatory successive negative contrast (reward devaluation), autoshaping training with partial vs. continuous reinforcement (reward uncertainty), and appetitive extinction (reward omission). Animals with DMS lesions exhibited reduced lever pressing responding, but enhanced goal entries, during partial reinforcement training in autoshaping. However, they showed normal negative contrast, acquisition under continuous reinforcement (CR), appetitive extinction, and response facilitation in early extinction trials. Open-field testing also indicated normal motor behavior. Thus, DMS lesions selectively affected the behavioral adjustment to a situation involving reward uncertainty, producing a behavioral reorganization according to which goal tracking (goal entries) became predominant at the expense of sign tracking (lever pressing). This pattern of results shows that the function of the DMS in situations involving reward loss is not general, but restricted to reward uncertainty. We suggest that a nonassociative, drive-related process induced by reward uncertainty requires normal output from DMS neurons. PMID:27365171

  11. Individual differences in sensitivity to reward and punishment and neural activity during reward and avoidance learning.

    Science.gov (United States)

    Kim, Sang Hee; Yoon, HeungSik; Kim, Hackjin; Hamann, Stephan

    2015-09-01

    In this functional neuroimaging study, we investigated neural activations during the process of learning to gain monetary rewards and to avoid monetary loss, and how these activations are modulated by individual differences in reward and punishment sensitivity. Healthy young volunteers performed a reinforcement learning task where they chose one of two fractal stimuli associated with monetary gain (reward trials) or avoidance of monetary loss (avoidance trials). Trait sensitivity to reward and punishment was assessed using the behavioral inhibition/activation scales (BIS/BAS). Functional neuroimaging results showed activation of the striatum during the anticipation and reception periods of reward trials. During avoidance trials, activation of the dorsal striatum and prefrontal regions was found. As expected, individual differences in reward sensitivity were positively associated with activation in the left and right ventral striatum during reward reception. Individual differences in sensitivity to punishment were negatively associated with activation in the left dorsal striatum during avoidance anticipation and also with activation in the right lateral orbitofrontal cortex during receiving monetary loss. These results suggest that learning to attain reward and learning to avoid loss are dependent on separable sets of neural regions whose activity is modulated by trait sensitivity to reward or punishment.

  12. A Practical Method to Estimate Entrepreneurship's Reward

    OpenAIRE

    Georgiou, Miltiades N.

    2005-01-01

    In the present note, an effort will be made for a contribution to the economic theory by introducing a practical method to estimate entrepreneurship's reward. As an example, a regression, based on the estimation of entrepreneurship's reward, with baning panel data will yield the same main results as in the article of Governance Structures, Efficiency and Firm Profitability, by E. E. Lehmann, S. Warning and J. Weigand, MPI, that firms with more efficient governance have higher profitability.

  13. Abnormal Reward System Activation in Mania

    OpenAIRE

    Abler, Birgit; Greenhouse, Ian; Ongur, Dost; Walter, Henrik; Heckers, Stephan

    2007-01-01

    Transmission of reward signals is a function of dopamine, a neurotransmitter known to be involved in the mechanism of psychosis. Using functional magnetic resonance imaging (fMRI), we investigated how expectation and receipt of monetary rewards modulate brain activation in patients with bipolar mania and schizophrenia. We studied 12 acutely manic patients with a history of bipolar disorder, 12 patients with a current episode of schizoaffective disorder or schizophrenia and 12 healthy subjects...

  14. The circadian clock, reward and memory

    OpenAIRE

    Urs eAlbrecht

    2011-01-01

    During our daily activities, we experience variations in our cognitive performance, which is often accompanied by cravings for small rewards, such as consuming coffee or chocolate. This indicates that the time of day, cognitive performance, and reward may be related to one another. This review will summarize data that describe the influence of the circadian clock on addiction and mood-related behavior and put the data into perspective in relation to memory processes.

  15. The correction of electron lens aberrations

    Energy Technology Data Exchange (ETDEWEB)

    Hawkes, P.W., E-mail: peter.hawkes@cemes.fr

    2015-09-15

    The progress of electron lens aberration correction from about 1990 onwards is chronicled. Reasonably complete lists of publications on this and related topics are appended. A present for Max Haider and Ondrej Krivanek in the year of their 65th birthdays. By a happy coincidence, this review was completed in the year that both Max Haider and Ondrej Krivanek reached the age of 65. It is a pleasure to dedicate it to the two leading actors in the saga of aberration corrector design and construction. They would both wish to associate their colleagues with such a tribute but it is the names of Haider and Krivanek (not forgetting Joachim Zach) that will remain in the annals of electron optics, next to that of Harald Rose. I am proud to know that both regard me as a friend as well as a colleague. - Highlights: • Geometrical aberration correction. • Chromatic aberration correction. • 50 pm resolution. • High-resolution electron energy-loss spectroscopy. • Extensive bibliographies.

  16. Optical advantages of astigmatic aberration corrected heliostats

    Science.gov (United States)

    van Rooyen, De Wet; Schöttl, Peter; Bern, Gregor; Heimsath, Anna; Nitz, Peter

    2016-05-01

    Astigmatic aberration corrected heliostats adapt their shape in dependence of the incidence angle of the sun on the heliostat. Simulations show that this optical correction leads to a higher concentration ratio at the target and thus in a decrease in required receiver aperture in particular for smaller heliostat fields.

  17. Prenatal hydronephrosis caused by aberrant renal vessels

    DEFF Research Database (Denmark)

    Lenz, K; Thorup, Jørgen Mogens; Rabol, A;

    1996-01-01

    With routine use of obstetric ultrasonography, fetal low-grade hydronephrosis is commonly detected, but may resolve spontaneously after birth. Two cases are presented to illustrate that in some cases such findings can express intermittent hydronephrosis caused by aberrant renal vessels. Renal...

  18. Anti-forensics of chromatic aberration

    Science.gov (United States)

    Mayer, Owen; Stamm, Matthew C.

    2015-03-01

    Over the past decade, a number of information forensic techniques have been developed to identify digital image manipulation and falsification. Recent research has shown, however, that an intelligent forger can use anti-forensic countermeasures to disguise their forgeries. In this paper, an anti-forensic technique is proposed to falsify the lateral chromatic aberration present in a digital image. Lateral chromatic aberration corresponds to the relative contraction or expansion between an image's color channels that occurs due to a lens's inability to focus all wavelengths of light on the same point. Previous work has used localized inconsistencies in an image's chromatic aberration to expose cut-and-paste image forgeries. The anti-forensic technique presented in this paper operates by estimating the expected lateral chromatic aberration at an image location, then removing deviations from this estimate caused by tampering or falsification. Experimental results are presented that demonstrate that our anti-forensic technique can be used to effectively disguise evidence of an image forgery.

  19. Musical pleasure and reward: mechanisms and dysfunction.

    Science.gov (United States)

    Zatorre, Robert J

    2015-03-01

    Most people derive pleasure from music. Neuroimaging studies show that the reward system of the human brain is central to this experience. Specifically, the dorsal and ventral striatum release dopamine when listening to pleasurable music, and activity in these structures also codes the reward value of musical excerpts. Moreover, the striatum interacts with cortical mechanisms involved in perception and valuation of musical stimuli. Recent studies have begun to explore individual differences in the way that this complex system functions. Development of a questionnaire for music reward experiences has allowed the identification of separable factors associated with musical pleasure, described as music-seeking, emotion-evocation, mood regulation, sensorimotor, and social factors. Applying this questionnaire to a large sample uncovered approximately 5% of the population with low sensitivity to musical reward in the absence of generalized anhedonia or depression. Further study of this group revealed that there are individuals who respond normally both behaviorally and psychophysiologically to rewards other than music (e.g., monetary value) but do not experience pleasure from music despite normal music perception ability and preserved ability to identify intended emotions in musical passages. This specific music anhedonia bears further study, as it may shed light on the function and dysfunction of the reward system. PMID:25773636

  20. Increases in rewards promote flexible behavior.

    Science.gov (United States)

    Shen, Y Jeremy; Chun, Marvin M

    2011-04-01

    Offering reward for performance can motivate people to perform a task better, but better preparation for one task usually means decreased flexibility to perform different tasks. In six experiments in which reward varied between low and high levels, we found that reward can encourage people to prepare more flexibly for different tasks, but only as it increased from the level on the previous trial. When the same high rewards were offered continuously trial after trial, people were more inclined to simply stick with doing what had worked previously. We demonstrated such enhancements in flexibility in task switching, a difficult visual search task, and an easier priming of pop-out search task, which shows that this effect generalizes from executive tasks to perceptual processes that require relatively little executive control. These findings suggest that relative, transient changes in reward can exert more potent effects on behavioral flexibility than can the absolute amount of reward, whether it consists of money or points in a social competition.

  1. Synchrony Can Destabilize Reward-Sensitive Networks

    Directory of Open Access Journals (Sweden)

    Michael eChary

    2014-04-01

    Full Text Available When exposed to rewarding stimuli, only some animals develop persistent craving. Others are resilient and do not. How the activity of neural populations relates to the development of persistent craving behavior is not fully understood. Previous computational studies suggest that synchrony helps a network embed certain patterns of activity, although the role of synchrony in reward-dependent learning has been less studied. Increased synchrony has been reported as a marker for both susceptibility and resilience to developing persistent craving. Here we use computational simulations to study the effect of reward salience on the ability of synchronous input to embed a new pattern of activity into a neural population. Our main finding is that weak stimulus-reward correlations can facilitate the short-term repetition of a pattern of neural activity, while blocking long-term embedding of that pattern. Interestingly, synchrony did not have this dual effect on all patterns, which suggests that synchrony is more effective at embedding some patterns of activity than others. Our results demonstrate that synchrony can have opposing effects in networks sensitive to the correlation structure of their inputs, in this case the correlation between stimulus and reward. This work contributes to an understanding of the interplay between synchrony and reward-dependent plasticity.

  2. Timing and expectation of reward: a neuro-computational model of the afferents to the ventral tegmental area

    Directory of Open Access Journals (Sweden)

    Julien eVitay

    2014-01-01

    Full Text Available Neural activity in dopaminergic areas such as the ventral tegmental area is influenced by timing processes, in particular by the temporal expectation of rewards during Pavlovian conditioning. Receipt of a reward at the expected time allows to compute reward-prediction errors which can drive learning in motor or cognitive structures. Reciprocally, dopamine plays an important role in the timing of external events. Several models of the dopaminergic system exist, but the substrate of temporal learning is rather unclear. In this article, we propose a neuro-computational model of the afferent network to the ventral tegmental area, including the lateral hypothalamus, the pedunculopontine nucleus, the amygdala, the ventromedial prefrontal cortex, the ventral basal ganglia (including the nucleus accumbens and the ventral pallidum, as well as the lateral habenula and the rostromedial tegmental nucleus. Based on a plausible connectivity and realistic learning rules, this neuro-computational model reproduces several experimental observations, such as the progressive cancellation of dopaminergic bursts at reward delivery, the appearance of bursts at the onset of reward-predicting cues or the influence of reward magnitude on activity in the amygdala and ventral tegmental area. While associative learning occurs primarily in the amygdala, learning of the temporal relationship between the cue and the associated reward is implemented as a dopamine-modulated coincidence detection mechanism in the nucleus accumbens.

  3. Nucleus accumbens response to rewards and testosterone levels are related to alcohol use in adolescents and young adults

    Directory of Open Access Journals (Sweden)

    Barbara R. Braams

    2016-02-01

    Full Text Available During adolescence there is a normative increase in risk-taking behavior, which is reflected in, for example, increases in alcohol consumption. Prior research has demonstrated a link between testosterone and alcohol consumption, and between testosterone and neural responses to rewards. Yet, no study to date tested how testosterone levels and neural responses to rewards relate to and predict individual differences in alcohol use. The current study aimed to investigate this by assessing alcohol use, testosterone levels and neural responses to rewards in adolescents (12–17 years old and young adults (18–26 years old. Participants were measured twice with a two-year interval between testing sessions. Cross-sectional analysis showed that at the second time point higher neural activity to rewards, but not testosterone levels, explained significant variance above age in reported alcohol use. Predictive analyses showed that, higher testosterone level at the first time point, but not neural activity to rewards at the first time point, was predictive of more alcohol use at the second time point. These results suggest that neural responses to rewards are correlated with current alcohol consumption, and that testosterone level is predictive of future alcohol consumption. These results are interpreted in the context of trajectory models of adolescent development.

  4. Nucleus accumbens response to rewards and testosterone levels are related to alcohol use in adolescents and young adults.

    Science.gov (United States)

    Braams, Barbara R; Peper, Jiska S; van der Heide, Dianne; Peters, Sabine; Crone, Eveline A

    2016-02-01

    During adolescence there is a normative increase in risk-taking behavior, which is reflected in, for example, increases in alcohol consumption. Prior research has demonstrated a link between testosterone and alcohol consumption, and between testosterone and neural responses to rewards. Yet, no study to date tested how testosterone levels and neural responses to rewards relate to and predict individual differences in alcohol use. The current study aimed to investigate this by assessing alcohol use, testosterone levels and neural responses to rewards in adolescents (12-17 years old) and young adults (18-26 years old). Participants were measured twice with a two-year interval between testing sessions. Cross-sectional analysis showed that at the second time point higher neural activity to rewards, but not testosterone levels, explained significant variance above age in reported alcohol use. Predictive analyses showed that, higher testosterone level at the first time point, but not neural activity to rewards at the first time point, was predictive of more alcohol use at the second time point. These results suggest that neural responses to rewards are correlated with current alcohol consumption, and that testosterone level is predictive of future alcohol consumption. These results are interpreted in the context of trajectory models of adolescent development.

  5. Identifying nurses' rewards: a qualitative categorization study in Belgium

    OpenAIRE

    Du Bois Cindy; Caers Ralf; Pepermans Roland; De Cooman Rein; De Gieter Sara; Jegers Marc

    2006-01-01

    Abstract Background Rewards are important in attracting, motivating and retaining the most qualified employees, and nurses are no exception to this rule. This makes the establishment of an efficient reward system for nurses a true challenge for every hospital manager. A reward does not necessarily have a financial connotation: non-financial rewards may matter too, or may even be more important. Therefore, the present study examines nurses' reward perceptions, in order to identify potential re...

  6. Reward-related attentional bias and adolescent substance use: a prognostic relationship?

    Directory of Open Access Journals (Sweden)

    Madelon E van Hemel-Ruiter

    Full Text Available Current cognitive-motivational addiction theories propose that prioritizing appetitive, reward-related information (attentional bias plays a vital role in substance abuse behavior. Previous cross-sectional research has shown that adolescent substance use is related to reward-related attentional biases. The present study was designed to extend these findings by testing whether these reward biases have predictive value for adolescent substance use at three-year follow-up. Participants (N = 657, mean age = 16.2 yrs at baseline were a sub-sample of Tracking Adolescents' Individual Lives Survey (TRAILS, a large longitudinal community cohort study. We used a spatial orienting task as a behavioral index of appetitive-related attentional processes at baseline and a substance use questionnaire at both baseline and three years follow-up. Bivariate correlational analyses showed that enhanced attentional engagement with cues that predicted potential reward and nonpunishment was positively associated with substance use (alcohol, tobacco, and cannabis three years later. However, reward bias was not predictive of changes in substance use. A post-hoc analysis in a selection of adolescents who started using illicit drugs (other than cannabis in the follow-up period demonstrated that stronger baseline attentional engagement toward cues of nonpunishment was related to a higher level of illicit drug use three years later. The finding that reward bias was not predictive for the increase in substance use in adolescents who already started using substances at baseline, but did show prognostic value in adolescents who initiated drug use in between baseline and follow-up suggests that appetitive bias might be especially important in the initiation stages of adolescent substance use.

  7. Reward sensitivity for a palatable food reward peaks during pubertal developmental in rats

    Directory of Open Access Journals (Sweden)

    Chris M Friemel

    2010-07-01

    Full Text Available Puberty is a critical period for the initiation of drug use and abuse. Because early drug use onset often accounts for a more severe progression of addiction, it is of importance to understand the underlying mechanisms and neurodevelopmental changes during puberty that are contributing to enhanced reward processing in teenagers. The present study investigated the progression of reward sensitivity towards a natural food reward over the whole course of adolescence in male rats (postnatal days 30–90 by monitoring consummatory, motivational behavior and neurobiological correlates of reward. Using a limited-free intake paradigm, consumption of sweetened condensed milk (SCM was measured repeatedly in adolescent and adult rats. Additionally, early- and mid-pubertal animals were tested in Progressive Ratio responding for SCM and c-fos protein expression in reward-associated brain structures was examined after odor-conditioning for SCM. We found a transient increase in SCM consumption and motivational incentive for SCM during puberty. This increased reward sensitivity was most pronounced around mid-puberty. The behavioral findings are paralleled by enhanced c-fos staining in reward-related structures revealing an intensified neuronal response after reward-cue presentation, distinctive for pubertal animals. Taken together, these data indicate an increase in reward sensitivity during adolescence accompanied by enhanced responsiveness of reward associated brain structures to incentive stimuli, and it seems that both is strongly pronounced around mid-puberty. Therefore, higher reward sensitivity during pubertal maturation might contribute to the enhanced vulnerability of teenagers for the initiation of experimental drug use.

  8. Changes in Monkey Crystalline Lens Spherical Aberration During Simulated Accommodation in a Lens Stretcher

    Science.gov (United States)

    Maceo Heilman, Bianca; Manns, Fabrice; de Castro, Alberto; Durkee, Heather; Arrieta, Esdras; Marcos, Susana; Parel, Jean-Marie

    2015-01-01

    Purpose. The purpose of this study was to quantify accommodation-induced changes in the spherical aberration of cynomolgus monkey lenses. Methods. Twenty-four lenses from 20 cynomolgus monkeys (Macaca fascicularis; 4.4–16.0 years of age; postmortem time 13.5 ± 13.0 hours) were mounted in a lens stretcher. Lens spherical aberration was measured in the unstretched (accommodated) and stretched (relaxed) states with a laser ray tracing system that delivered 51 equally spaced parallel rays along 1 meridian of the lens over the central 6-mm optical zone. A camera mounted below the lens was used to measure the ray height at multiple positions along the optical axis. For each entrance ray, the change in ray height with axial position was fitted with a third-order polynomial. The effective paraxial focal length and Zernike spherical aberration coefficients corresponding to a 6-mm pupil diameter were extracted from the fitted values. Results. The unstretched lens power decreased with age from 59.3 ± 4.0 diopters (D) for young lenses to 45.7 ± 3.1 D for older lenses. The unstretched lens shifted toward less negative spherical aberration with age, from −6.3 ± 0.7 μm for young lenses to −5.0 ± 0.5 μm for older lenses. The power and spherical aberration of lenses in the stretched state were independent of age, with values of 33.5 ± 3.4 D and −2.6 ± 0.5 μm, respectively. Conclusions. Spherical aberration is negative in cynomolgus monkey lenses and becomes more negative with accommodation. These results are in good agreement with the predicted values using computational ray tracing in a lens model with a reconstructed gradient refractive index. The spherical aberration of the unstretched lens becomes less negative with age. PMID:25670492

  9. Is sensitivity to reward associated with the malleability of implicit inclinations toward high-fat food?

    Science.gov (United States)

    Ashby, Casey R; Stritzke, Werner G K

    2013-08-01

    Two experiments examined the effect of positive and negative priming on implicit approach and avoidance inclinations toward high-fat food stimuli in participants high or low in reward sensitivity, using personalized unipolar variants of the Implicit Association Test (IAT; A. G. Greenwald, D. E. McGhee, & J. L. K. Schwartz, 1998, "Measuring individual differences in implicit cognition: The Implicit Association Test," Journal of Personality and Social Psychology, Vol. 74, pp. 1464-1480). Participants high in reward sensitivity showed an automatic processing bias that is characterized by a dual vulnerability of being particularly susceptible to priming of the rewarding aspects of high-fat foods, while being unaffected by priming of the negative aspects of those foods. In contrast, participants low in reward sensitivity generally showed no facilitation of implicit-approach inclinations following positive priming, but consistently showed facilitation of implicit-avoidance inclinations following negative priming. These results are consistent with the revised reinforcement sensitivity theory ( J. A. Gray & N. McNaughton, 2000, The neuropsychology of anxiety: An enquiry into the functions of the septo-hippocampal system, 2nd ed., New York, NY, Oxford University Press.) and suggest that the systems mediating reward sensitivity and punishment sensitivity are not orthogonal, as predicted by the separable subsystems hypothesis, but can be interdependent, as predicted by the joint subsystems hypothesis. PMID:23527505

  10. Validation and Psychometric Properties of the French Versions of the Environmental Reward Observation Scale and of the Reward Probability Index

    OpenAIRE

    Aurélie Wagener; Sylvie Blairy

    2015-01-01

    Background: Low levels of environmental rewards have been related to depression on a number of occasions in the scientific literature. Two scales have been created to assess environmental rewards: the Environmental Reward Observation Scale (EROS) and the Reward Probability Index (RPI). This study aims to validate the French versions of these two scales. Method: 466 non-clinical adults completed an online survey assessing environmental rewards, depression, anxiety, activation, avoidance and be...

  11. Exploring the depth range for three-dimensional laser machining with aberration correction.

    Science.gov (United States)

    Salter, P S; Baum, M; Alexeev, I; Schmidt, M; Booth, M J

    2014-07-28

    The spherical aberration generated when focusing from air into another medium limits the depth at which ultrafast laser machining can be accurately maintained. We investigate how the depth range may be extended using aberration correction via a liquid crystal spatial light modulator (SLM), in both single point and parallel multi-point fabrication in fused silica. At a moderate numerical aperture (NA = 0.5), high fidelity fabrication with a significant level of parallelisation is demonstrated at the working distance of the objective lens, corresponding to a depth in the glass of 2.4 mm. With a higher numerical aperture (NA = 0.75) objective lens, single point fabrication is demonstrated to a depth of 1 mm utilising the full NA, and deeper with reduced NA, while maintaining high repeatability. We present a complementary theoretical model that enables prediction of the effectiveness of SLM based correction for different aberration magnitudes.

  12. DNA Copy Number Aberrations in Breast Cancer by Array Comparative Genomic Hybridization

    Institute of Scientific and Technical Information of China (English)

    Jian Li; Kai Wang; Shengting Li; Vera Timmermans-Wielenga; Fritz Rank; Carsten Wiuf; Xiuqing Zhang; Huanming Yang; Lars Bolund

    2009-01-01

    Array comparative genomic hybridization (CGH) has been popularly used for an-alyzing DNA copy number variations in diseases like cancer. In this study, we investigated 82 sporadic samples from 49 breast cancer patients using 1-Mb reso-lution bacterial artificial chromosome CGH arrays. A number of highly frequent genomic aberrations were discovered, which may act as "drivers" of tumor pro-gression. Meanwhile, the genomic profiles of four "normal" breast tissue samples taken at least 2 cm away from the primary tumor sites were also found to have some genomic aberrations that recurred with high frequency in the primary tu-mors, which may have important implications for clinical therapy. Additionally, we performed class comparison and class prediction for various clinicopathological pa-rameters, and a list of characteristic genomic aberrations associated with different clinicopathological phenotypes was compiled. Our study provides clues for further investigations of the underlying mechanisms of breast carcinogenesis.

  13. Nucleus accumbens response to rewards and testosterone levels are related to alcohol use in adolescents and young adults

    OpenAIRE

    Barbara R. Braams; Peper, Jiska S.; Dianne van der Heide; Sabine Peters; Crone, Eveline A.

    2016-01-01

    During adolescence there is a normative increase in risk-taking behavior, which is reflected in, for example, increases in alcohol consumption. Prior research has demonstrated a link between testosterone and alcohol consumption, and between testosterone and neural responses to rewards. Yet, no study to date tested how testosterone levels and neural responses to rewards relate to and predict individual differences in alcohol use. The current study aimed to investigate this by assessing alcohol...

  14. Neural sensitivity to absolute and relative anticipated reward in adolescents.

    Science.gov (United States)

    Vaidya, Jatin G; Knutson, Brian; O'Leary, Daniel S; Block, Robert I; Magnotta, Vincent

    2013-01-01

    Adolescence is associated with a dramatic increase in risky and impulsive behaviors that have been attributed to developmental differences in neural processing of rewards. In the present study, we sought to identify age differences in anticipation of absolute and relative rewards. To do so, we modified a commonly used monetary incentive delay (MID) task in order to examine brain activity to relative anticipated reward value (neural sensitivity to the value of a reward as a function of other available rewards). This design also made it possible to examine developmental differences in brain activation to absolute anticipated reward magnitude (the degree to which neural activity increases with increasing reward magnitude). While undergoing fMRI, 18 adolescents and 18 adult participants were presented with cues associated with different reward magnitudes. After the cue, participants responded to a target to win money on that trial. Presentation of cues was blocked such that two reward cues associated with $.20, $1.00, or $5.00 were in play on a given block. Thus, the relative value of the $1.00 reward varied depending on whether it was paired with a smaller or larger reward. Reflecting age differences in neural responses to relative anticipated reward (i.e., reference dependent processing), adults, but not adolescents, demonstrated greater activity to a $1 reward when it was the larger of the two available rewards. Adults also demonstrated a more linear increase in ventral striatal activity as a function of increasing absolute reward magnitude compared to adolescents. Additionally, reduced ventral striatal sensitivity to absolute anticipated reward (i.e., the difference in activity to medium versus small rewards) correlated with higher levels of trait Impulsivity. Thus, ventral striatal activity in anticipation of absolute and relative rewards develops with age. Absolute reward processing is also linked to individual differences in Impulsivity. PMID:23544046

  15. Neural sensitivity to absolute and relative anticipated reward in adolescents.

    Directory of Open Access Journals (Sweden)

    Jatin G Vaidya

    Full Text Available Adolescence is associated with a dramatic increase in risky and impulsive behaviors that have been attributed to developmental differences in neural processing of rewards. In the present study, we sought to identify age differences in anticipation of absolute and relative rewards. To do so, we modified a commonly used monetary incentive delay (MID task in order to examine brain activity to relative anticipated reward value (neural sensitivity to the value of a reward as a function of other available rewards. This design also made it possible to examine developmental differences in brain activation to absolute anticipated reward magnitude (the degree to which neural activity increases with increasing reward magnitude. While undergoing fMRI, 18 adolescents and 18 adult participants were presented with cues associated with different reward magnitudes. After the cue, participants responded to a target to win money on that trial. Presentation of cues was blocked such that two reward cues associated with $.20, $1.00, or $5.00 were in play on a given block. Thus, the relative value of the $1.00 reward varied depending on whether it was paired with a smaller or larger reward. Reflecting age differences in neural responses to relative anticipated reward (i.e., reference dependent processing, adults, but not adolescents, demonstrated greater activity to a $1 reward when it was the larger of the two available rewards. Adults also demonstrated a more linear increase in ventral striatal activity as a function of increasing absolute reward magnitude compared to adolescents. Additionally, reduced ventral striatal sensitivity to absolute anticipated reward (i.e., the difference in activity to medium versus small rewards correlated with higher levels of trait Impulsivity. Thus, ventral striatal activity in anticipation of absolute and relative rewards develops with age. Absolute reward processing is also linked to individual differences in Impulsivity.

  16. Anger is associated with reward-related electrocortical activity: Evidence from the reward positivity

    NARCIS (Netherlands)

    Angus, D.J.; Kemkes, K.; Schutter, D.J.L.G.; Harmon-Jones, E.

    2015-01-01

    Previous research indicates that the reward positivity (RewP), an electrophysiological correlate of sensitivity and biases towards rewarding stimuli, is modulated by affective and motivational variables. Studies have provided evidence that states and traits associated with negative affect and reduce

  17. The Timing Effects of Reward, Business Longevity, and Involvement on Consumers’ Responses to a Reward Program

    Directory of Open Access Journals (Sweden)

    Badri Munir Sukoco

    2015-06-01

    Full Text Available Managers could elicit customers’ repeat purchase behavior through a well-designed reward program. This study examines two extrinsic cues - business longevity and timing effects of reward – to determine the consumers’ perceived risk and intention to participate in this kind of program. Moreover, this study discusses how different levels of involvement might interact with these two cues. An experiment with a 2 (business longevity: long vs. short x 2 (timing of reward: delayed vs. immediate x 2 (involvement: high vs. low between-subject factorial design is conducted to validate the proposed research hypotheses. The results show that an immediate reward offered by an older, more established, firm for a highly-involved product, make loyalty programs less risky and consequently attract consumers to participate. Interestingly, immediate rewards that are offered by older firms for a product that customers are less involved in has the opposite effects. Managerial and academic implications are further presented in this study.

  18. Electrophysiological Evidence of Atypical Motivation and Reward Processing in Children with Attention-Deficit Hyperactivity Disorder

    Science.gov (United States)

    Holroyd, Clay B.; Baker, Travis E.; Kerns, Kimberly A.; Muller, Ulrich

    2008-01-01

    Behavioral and neurophysiological evidence suggest that attention-deficit hyperactivity disorder (ADHD) is characterized by the impact of abnormal reward prediction error signals carried by the midbrain dopamine system on frontal brain areas that implement cognitive control. To investigate this issue, we recorded the event-related brain potential…

  19. Withholding a Reward-driven Action: Studies of the Rise and Fall of Motor Activation and the Effect of Cognitive Depletion.

    Science.gov (United States)

    Freeman, Scott M; Aron, Adam R

    2016-02-01

    Controlling an inappropriate response tendency in the face of a reward-predicting stimulus likely depends on the strength of the reward-driven activation, the strength of a putative top-down control process, and their relative timing. We developed a rewarded go/no-go paradigm to investigate such dynamics. Participants made rapid responses (on go trials) to high versus low reward-predicting stimuli and sometimes had to withhold responding (on no-go trials) in the face of the same stimuli. Behaviorally, for high versus low reward stimuli, responses were faster on go trials, and there were more errors of commission on no-go trials. We used single-pulse TMS to map out the corticospinal excitability dynamics, especially on no-go trials where control is needed. For successful no-go trials, there was an early rise in motor activation that was then sharply reduced beneath baseline. This activation-reduction pattern was more pronounced for high- versus low-reward trials and in individuals with greater motivational drive for reward. A follow-on experiment showed that, when participants were fatigued by an effortful task, they made more errors on no-go trials for high versus low reward stimuli. Together, these studies show that, when a response is inappropriate, reward-predicting stimuli induce early motor activation, followed by a top-down effortful control process (which we interpret as response suppression) that depends on the strength of the preceding activation. Our findings provide novel information about the activation-suppression dynamics during control over reward-driven actions, and they illustrate how fatigue or depletion leads to control failures in the face of reward.

  20. Deep Brain Stimulation of the Subthalamic Nucleus improves Reward-based decision-learning in Parkinson’s Disease

    Directory of Open Access Journals (Sweden)

    Nelleke Corine Van Wouwe

    2011-04-01

    Full Text Available Recently, the subthalamic nucleus (STN has been shown to be critically involved in decision-making, action selection, and motor control. Here we investigate the effect of deep brain stimulation (DBS of the STN on reward-based decision-learning in patients diagnosed with Parkinson’s disease (PD. We determined computational measures of outcome evaluation and reward prediction from PD patients who performed a probabilistic reward-based decision-learning task. In previous work, these measures covaried with activation in the nucleus caudatus (outcome evaluation during the early phases of learning and the putamen (reward prediction during later phases of learning. We observed that stimulation of the STN motor regions in PD patients served to improve reward-based decision-learning, probably through its effect on activity in frontostriatal motor loops (prominently involving the putamen and, hence, reward prediction. In a subset of relatively younger patients with relatively shorter disease duration, the effects of DBS appeared to spread to more cognitive regions of the STN, benefitting loops that connect the caudate to various prefrontal areas important for outcome evaluation. These results highlight positive effects of STN stimulation on cognitive functions that may benefit PD patients in daily-life association-learning situations.

  1. A tribute to Charlie Chaplin: Induced positive affect improves reward-based decision-learning in Parkinson’s Disease

    Directory of Open Access Journals (Sweden)

    K. Richard eRidderinkhof

    2012-06-01

    Full Text Available Reward-based decision-learning refers to the process of learning to select those actions that lead to rewards while avoiding actions that lead to punishments. This process, known to rely on dopaminergic activity in striatal brain regions, is compromised in Parkinson’s disease (PD. We hypothesized that such decision-learning deficits are alleviated by induced positive affect, which is thought to incur transient boosts in midbrain and striatal dopaminergic activity. Computational measures of probabilistic reward-based decision-learning were determined for 51 patients diagnosed with PD. Previous work has shown these measures to rely on the nucleus caudatus (outcome evaluation during the early phases of learning and the putamen (reward prediction during later phases of learning. We observed that induced positive affect facilitated learning, through its effects on reward prediction rather than outcome evaluation. Viewing a few minutes of comedy clips served to remedy dopamine-related problems in putamen-based frontostriatal circuitry and, consequently, in learning to predict which actions will yield reward.

  2. Specific genomic aberrations in primary colorectal cancer are associated with liver metastases

    Directory of Open Access Journals (Sweden)

    Wessels Lodewyk F

    2010-12-01

    Full Text Available Abstract Background Accurate staging of colorectal cancer (CRC with clinicopathological parameters is important for predicting prognosis and guiding treatment but provides no information about organ site of metastases. Patterns of genomic aberrations in primary colorectal tumors may reveal a chromosomal signature for organ specific metastases. Methods Array Comparative Genomic Hybridization (aCGH was employed to asses DNA copy number changes in primary colorectal tumors of three distinctive patient groups. This included formalin-fixed, paraffin-embedded tissue of patients who developed liver metastases (LM; n = 36, metastases (PM; n = 37 and a group that remained metastases-free (M0; n = 25. A novel statistical method for identifying recurrent copy number changes, KC-SMART, was used to find specific locations of genomic aberrations specific for various groups. We created a classifier for organ specific metastases based on the aCGH data using Prediction Analysis for Microarrays (PAM. Results Specifically in the tumors of primary CRC patients who subsequently developed liver metastasis, KC-SMART analysis identified genomic aberrations on chromosome 20q. LM-PAM, a shrunken centroids classifier for liver metastases occurrence, was able to distinguish the LM group from the other groups (M0&PM with 80% accuracy (78% sensitivity and 86% specificity. The classification is predominantly based on chromosome 20q aberrations. Conclusion Liver specific CRC metastases may be predicted with a high accuracy based on specific genomic aberrations in the primary CRC tumor. The ability to predict the site of metastases is important for improvement of personalized patient management.

  3. Listening to music in a risk-reward context: The roles of the temporoparietal junction and the orbitofrontal/insular cortices in reward-anticipation, reward-gain, and reward-loss.

    Science.gov (United States)

    Li, Chia-Wei; Chen, Jyh-Horng; Tsai, Chen-Gia

    2015-12-10

    Artificial rewards, such as visual arts and music, produce pleasurable feelings. Popular songs in the verse-chorus form provide a useful model for understanding the neural mechanisms underlying the processing of artificial rewards, because the chorus is usually the most rewarding element of a song. In this functional magnetic resonance imaging (fMRI) study, the stimuli were excerpts of 10 popular songs with a tensioned verse-to-chorus transition. We examined the neural correlates of three phases of reward processing: (1) reward-anticipation during the verse-to-chorus transition, (2) reward-gain during the first phrase of the chorus, and (3) reward-loss during the unexpected noise followed by the verse-to-chorus transition. Participants listened to these excerpts in a risk-reward context because the verse was followed by either the chorus or noise with equal probability. The results showed that reward-gain and reward-loss were associated with left- and right-biased temporoparietal junction activation, respectively. The bilateral temporoparietal junctions were active during reward-anticipation. Moreover, we observed left-biased lateral orbitofrontal activation during reward-anticipation, whereas the medial orbitofrontal cortex was activated during reward-gain. The findings are discussed in relation to the cognitive and emotional aspects of reward processing. PMID:26499261

  4. Listening to music in a risk-reward context: The roles of the temporoparietal junction and the orbitofrontal/insular cortices in reward-anticipation, reward-gain, and reward-loss.

    Science.gov (United States)

    Li, Chia-Wei; Chen, Jyh-Horng; Tsai, Chen-Gia

    2015-12-10

    Artificial rewards, such as visual arts and music, produce pleasurable feelings. Popular songs in the verse-chorus form provide a useful model for understanding the neural mechanisms underlying the processing of artificial rewards, because the chorus is usually the most rewarding element of a song. In this functional magnetic resonance imaging (fMRI) study, the stimuli were excerpts of 10 popular songs with a tensioned verse-to-chorus transition. We examined the neural correlates of three phases of reward processing: (1) reward-anticipation during the verse-to-chorus transition, (2) reward-gain during the first phrase of the chorus, and (3) reward-loss during the unexpected noise followed by the verse-to-chorus transition. Participants listened to these excerpts in a risk-reward context because the verse was followed by either the chorus or noise with equal probability. The results showed that reward-gain and reward-loss were associated with left- and right-biased temporoparietal junction activation, respectively. The bilateral temporoparietal junctions were active during reward-anticipation. Moreover, we observed left-biased lateral orbitofrontal activation during reward-anticipation, whereas the medial orbitofrontal cortex was activated during reward-gain. The findings are discussed in relation to the cognitive and emotional aspects of reward processing.

  5. Reward disrupts reactivated human skill memory.

    Science.gov (United States)

    Dayan, Eran; Laor-Maayany, Rony; Censor, Nitzan

    2016-01-01

    Accumulating evidence across species and memory domains shows that when an existing memory is reactivated, it becomes susceptible to modifications. However, the potential role of reward signals in these mechanisms underlying human memory dynamics is unknown. Leaning on a wealth of findings on the role of reward in reinforcing memory, we tested the impact of reinforcing a skill memory trace with monetary reward following memory reactivation, on strengthening of the memory trace. Reinforcing reactivated memories did not strengthen the memory, but rather led to disruption of the memory trace, breaking down the link between memory reactivation and subsequent memory strength. Statistical modeling further revealed a strong mediating role for memory reactivation in linking between memory encoding and subsequent memory strength only when the memory was replayed without reinforcement. We suggest that, rather than reinforcing the existing memory trace, reward creates a competing memory trace, impairing expression of the original reward-free memory. This mechanism sheds light on the processes underlying skill acquisition, having wide translational implications. PMID:27306380

  6. Rewarding Useful Suggestions in an Organizational Unit

    Directory of Open Access Journals (Sweden)

    Rajko Vidic

    2014-02-01

    Full Text Available Research Question (RQ: Do organizational unit leaders reward useful suggestions? How does the rewarding of useful employee suggestions encourage creativity and effectiveness? Purpose: On the basis of group conversations through focus groups, to determine whether rewarding effects the creativity and performance of employees. Method: Quantitative method using focus groups. Results: The results of the research study showed that the organizational unit appropriately rewards useful suggestions and that this has an impact on employee creativity and efficiency. In addition, the massive inventive activity is a system that effectively influences the success of business. Organization: Massive inventive activity has become a system in which increasingly more employees from different organizational units are becoming a part of. An important role is by managers, who are responsible for creating a positive atmosphere and encourage employees into innovative thinking, performance, and rewarding of useful suggestions. Society: The research shows that this is part of the organizational culture and that it is necessary to transfer to new employees. Originality: This is the first such research in our organizational unit. Limitations/Future Research: The research study was conducted in only one organizational unit of the company.

  7. Single pulse TMS differentially modulates reward behavior.

    Science.gov (United States)

    Stanford, Arielle D; Luber, Bruce; Unger, Layla; Cycowicz, Yael M; Malaspina, Dolores; Lisanby, Sarah H

    2013-12-01

    Greater knowledge of cortical brain regions in reward processing may set the stage for using transcranial magnetic stimulation (TMS) as a treatment in patients with avolition, apathy or other drive-related symptoms. This study examined the effects of single pulse (sp) TMS to two reward circuit targets on drive in healthy subjects. Fifteen healthy subjects performed the monetary incentive delay task (MID) while receiving fMRI-guided spTMS to either inferior parietal lobe (IPL) or supplemental motor area (SMA). The study demonstrated decreasing reaction times (RT) for increasing reward. It also showed significant differences in RT modulation for TMS pulses to the IPL versus the SMA. TMS pulses during the delay period produced significantly more RT slowing when targeting the IPL than those to the SMA. This RT slowing carried over into subsequent trials without TMS stimulation, with significantly slower RTs in sessions that had targeted the IPL compared to those targeting SMA. The results of this study suggest that both SMA and IPL are involved in reward processing, with opposite effects on RT in response to TMS stimulation. TMS to these target cortical regions may be useful in modulating reward circuit deficits in psychiatric populations.

  8. The correction of electron lens aberrations.

    Science.gov (United States)

    Hawkes, P W

    2015-09-01

    The progress of electron lens aberration correction from about 1990 onwards is chronicled. Reasonably complete lists of publications on this and related topics are appended. A present for Max Haider and Ondrej Krivanek in the year of their 65th birthdays. By a happy coincidence, this review was completed in the year that both Max Haider and Ondrej Krivanek reached the age of 65. It is a pleasure to dedicate it to the two leading actors in the saga of aberration corrector design and construction. They would both wish to associate their colleagues with such a tribute but it is the names of Haider and Krivanek (not forgetting Joachim Zach) that will remain in the annals of electron optics, next to that of Harald Rose. I am proud to know that both regard me as a friend as well as a colleague. PMID:26025209

  9. Beyond simple reinforcement learning: the computational neurobiology of reward-learning and valuation.

    Science.gov (United States)

    O'Doherty, John P

    2012-04-01

    Neural computational accounts of reward-learning have been dominated by the hypothesis that dopamine neurons behave like a reward-prediction error and thus facilitate reinforcement learning in striatal target neurons. While this framework is consistent with a lot of behavioral and neural evidence, this theory fails to account for a number of behavioral and neurobiological observations. In this special issue of EJN we feature a combination of theoretical and experimental papers highlighting some of the explanatory challenges faced by simple reinforcement-learning models and describing some of the ways in which the framework is being extended in order to address these challenges.

  10. Cosmological parameter estimation: impact of CMB aberration

    CERN Document Server

    Catena, Riccardo

    2012-01-01

    The peculiar motion of an observer with respect to the CMB rest frame induces an apparent deflection of the observed CMB photons, i.e. aberration, and a shift in their frequency, i.e. Doppler effect. Both effects distort the temperature multipoles a_lm's via a mixing matrix at any l. The common lore when performing a CMB based cosmological parameter estimation is to consider that Doppler affects only the l=1 multipole, and neglect any other corrections. In this paper we reconsider the validity of this assumption, showing that it is actually not robust when sky cuts are included to model CMB foreground contaminations. Assuming a simple fiducial cosmological model with five parameters, we simulated CMB temperature maps of the sky in a WMAP-like and in a Planck-like experiment and added aberration and Doppler effects to the maps. We then analyzed with a MCMC in a Bayesian framework the maps with and without aberration and Doppler effects in order to assess the ability of reconstructing the parameters of the fidu...

  11. Vigor in the face of fluctuating rates of reward: an experimental examination.

    Science.gov (United States)

    Guitart-Masip, Marc; Beierholm, Ulrik R; Dolan, Raymond; Duzel, Emrah; Dayan, Peter

    2011-12-01

    Two fundamental questions underlie the expression of behavior, namely what to do and how vigorously to do it. The former is the topic of an overwhelming wealth of theoretical and empirical work particularly in the fields of reinforcement learning and decision-making, with various forms of affective prediction error playing key roles. Although vigor concerns motivation, and so is the subject of many empirical studies in diverse fields, it has suffered a dearth of computational models. Recently, Niv et al. [Niv, Y., Daw, N. D., Joel, D., & Dayan, P. Tonic dopamine: Opportunity costs and the control of response vigor. Psychopharmacology (Berlin), 191, 507-520, 2007] suggested that vigor should be controlled by the opportunity cost of time, which is itself determined by the average rate of reward. This coupling of reward rate and vigor can be shown to be optimal under the theory of average return reinforcement learning for a particular class of tasks but may also be a more general, perhaps hard-wired, characteristic of the architecture of control. We, therefore, tested the hypothesis that healthy human participants would adjust their RTs on the basis of the average rate of reward. We measured RTs in an odd-ball discrimination task for rewards whose magnitudes varied slowly but systematically. Linear regression on the subjects' individual RTs using the time varying average rate of reward as the regressor of interest, and including nuisance regressors such as the immediate reward in a round and in the preceding round, showed that a significant fraction of the variance in subjects' RTs could indeed be explained by the rate of experienced reward. This validates one of the key proposals associated with the model, illuminating an apparently mandatory form of coupling that may involve tonic levels of dopamine. PMID:21736459

  12. Neostriatal Neuronal Activity Correlates Better with Movement Kinematics under Certain Rewards.

    Science.gov (United States)

    Opris, Ioan; Lebedev, Mikhail A; Nelson, Randall J

    2016-01-01

    This study investigated how the activity of neostriatal neurons is related to the kinematics of movement when monkeys performed visually and vibratory cued wrist extensions and flexions. Single-unit recordings of 142/236 neostriatal neurons showed pre-movement activity (PMA) in a reaction time task with unpredictable reward. Monkeys were pseudo-randomly (75%) rewarded for correct performance. A regression model was used to determine whether the correlation between neostriatal neuronal activity and the kinematic variables (position, velocity, and acceleration) of wrist movement changes as a function of reward contingency, sensory cues, and movement direction. The coefficients of determination (CoD) representing the proportion of the variance in neuronal activity explained by the regression model on a trial by trial basis, together with their temporal occurrences (time of best regression/correlation, ToC) were compared across sensory modality, movement direction, and reward contingency. The best relationship (correlation) between neuronal activity and movement kinematic variables, given by the average coefficient of determination (CoD), was: (a) greater during trials in which rewards were certain, called "A" trials, as compared with those in which reward was uncertain called ("R") trials, (b) greater during flexion (Flex) trials as compared with extension (Ext) trials, and (c) greater during visual (VIS) cued trials than during vibratory (VIB) cued trials, for the same type of trial and the same movement direction. These results are consistent with the hypothesis that predictability of reward for correct performance is accompanied by faster linkage between neostriatal PMA and the vigor of wrist movement kinematics. Furthermore, the results provide valuable insights for building an upper-limb neuroprosthesis. PMID:27579022

  13. Vigor in the face of fluctuating rates of reward: an experimental examination.

    Science.gov (United States)

    Guitart-Masip, Marc; Beierholm, Ulrik R; Dolan, Raymond; Duzel, Emrah; Dayan, Peter

    2011-12-01

    Two fundamental questions underlie the expression of behavior, namely what to do and how vigorously to do it. The former is the topic of an overwhelming wealth of theoretical and empirical work particularly in the fields of reinforcement learning and decision-making, with various forms of affective prediction error playing key roles. Although vigor concerns motivation, and so is the subject of many empirical studies in diverse fields, it has suffered a dearth of computational models. Recently, Niv et al. [Niv, Y., Daw, N. D., Joel, D., & Dayan, P. Tonic dopamine: Opportunity costs and the control of response vigor. Psychopharmacology (Berlin), 191, 507-520, 2007] suggested that vigor should be controlled by the opportunity cost of time, which is itself determined by the average rate of reward. This coupling of reward rate and vigor can be shown to be optimal under the theory of average return reinforcement learning for a particular class of tasks but may also be a more general, perhaps hard-wired, characteristic of the architecture of control. We, therefore, tested the hypothesis that healthy human participants would adjust their RTs on the basis of the average rate of reward. We measured RTs in an odd-ball discrimination task for rewards whose magnitudes varied slowly but systematically. Linear regression on the subjects' individual RTs using the time varying average rate of reward as the regressor of interest, and including nuisance regressors such as the immediate reward in a round and in the preceding round, showed that a significant fraction of the variance in subjects' RTs could indeed be explained by the rate of experienced reward. This validates one of the key proposals associated with the model, illuminating an apparently mandatory form of coupling that may involve tonic levels of dopamine.

  14. Adolescents, adults and rewards: comparing motivational neurocircuitry recruitment using fMRI.

    Directory of Open Access Journals (Sweden)

    James M Bjork

    Full Text Available BACKGROUND: Adolescent risk-taking, including behaviors resulting in injury or death, has been attributed in part to maturational differences in mesolimbic incentive-motivational neurocircuitry, including ostensible oversensitivity of the nucleus accumbens (NAcc to rewards. METHODOLOGY/PRINCIPAL FINDINGS: To test whether adolescents showed increased NAcc activation by cues for rewards, or by delivery of rewards, we scanned 24 adolescents (age 12-17 and 24 adults age (22-42 with functional magnetic resonance imaging while they performed a monetary incentive delay (MID task. The MID task was configured to temporally disentangle potential reward or potential loss anticipation-related brain signal from reward or loss notification-related signal. Subjects saw cues signaling opportunities to win or avoid losing $0, $.50, or $5 for responding quickly to a subsequent target. Subjects then viewed feedback of their trial success after a variable interval from cue presentation of between 6 to 17 s. Adolescents showed reduced NAcc recruitment by reward-predictive cues compared to adult controls in a linear contrast with non-incentive cues, and in a volume-of-interest analysis of signal change in the NAcc. In contrast, adolescents showed little difference in striatal and frontocortical responsiveness to reward deliveries compared to adults. CONCLUSIONS/SIGNIFICANCE: In light of divergent developmental difference findings between neuroimaging incentive paradigms (as well as at different stages within the same task, these data suggest that maturational differences in incentive-motivational neurocircuitry: 1 may be sensitive to nuances of incentive tasks or stimuli, such as behavioral or learning contingencies, and 2 may be specific to the component of the instrumental behavior (such as anticipation versus notification.

  15. DNA Repair Defects and Chromosomal Aberrations

    Science.gov (United States)

    Hada, Megumi; George, K. A.; Huff, J. L.; Pluth, J. M.; Cucinotta, F. A.

    2009-01-01

    Yields of chromosome aberrations were assessed in cells deficient in DNA doublestrand break (DSB) repair, after exposure to acute or to low-dose-rate (0.018 Gy/hr) gamma rays or acute high LET iron nuclei. We studied several cell lines including fibroblasts deficient in ATM (ataxia telangiectasia mutated; product of the gene that is mutated in ataxia telangiectasia patients) or NBS (nibrin; product of the gene mutated in the Nijmegen breakage syndrome), and gliomablastoma cells that are proficient or lacking in DNA-dependent protein kinase (DNA-PK) activity. Chromosomes were analyzed using the fluorescence in situ hybridization (FISH) chromosome painting method in cells at the first division post irradiation, and chromosome aberrations were identified as either simple exchanges (translocations and dicentrics) or complex exchanges (involving >2 breaks in 2 or more chromosomes). Gamma irradiation induced greater yields of both simple and complex exchanges in the DSB repair-defective cells than in the normal cells. The quadratic dose-response terms for both simple and complex chromosome exchanges were significantly higher for the ATM- and NBS-deficient lines than for normal fibroblasts. However, in the NBS cells the linear dose-response term was significantly higher only for simple exchanges. The large increases in the quadratic dose-response terms in these repair-defective cell lines points the importance of the functions of ATM and NBS in chromatin modifications to facilitate correct DSB repair and minimize the formation of aberrations. The differences found between ATM- and NBS-deficient cells at low doses suggest that important questions should with regard to applying observations of radiation sensitivity at high dose to low-dose exposures. For aberrations induced by iron nuclei, regression models preferred purely linear dose responses for simple exchanges and quadratic dose responses for complex exchanges. Relative biological effectiveness (RBE) factors of all of

  16. Radiotherapeutical chromosomal aberrations in laryngeal cancer patients

    Directory of Open Access Journals (Sweden)

    Stošić-Divjak Svetlana L.

    2009-01-01

    Full Text Available Introduction. The authors present the results of cytogenetic analysis of 21 patients with laryngeal carcinomas diagnosed and treated in the period 1995-2000 at the Institute of Otorhinolaryngology and Maxillofacial Surgery, Clinical Center of Serbia and Clinical Center of Novi Sad. Material and methods. The patients were specially monitored and the material was analyzed at the Institute of Human Genetics of the School of Medicine in Belgrade as well as in the Laboratory for Radiological Protection of the Institute of Occupational and Radiological Health 'Dr Dragomir Karajovic' in Belgrade. Results. The incidence of chromosomal aberrations and incidence of exchange of material between sister chromatids were observed in the preparation of the metaphasic lymphocyte chromosomes of the peripheral blood obtained in the culture. Structural aberrations were found on the chromosomes in the form of breakups, rings, translocations and dicentrics as early as after a single exposure of patients to tumor radiation dose of 2 Gy in the field sized 5x7. Out of the total number of 35 cultivated blood samples obtained from 13 patients, 21 were successfully cultivated and they were proved to contain chromosomal aberrations. Some of the peripheral blood samples failed to show cell growth in vitro due to the lethal cell damages in vivo. Discussion.. We have consluded that the number of structural aberrations cannot be used as a biological measure of the absorbed ionizing radiation dose. The presence of aberrations per se is indicative of the mutagenic effect of the ionizing radiation, which was also confirmed in our series on the original model by cultivation of the peripheral blood lymphocytes in the culture of the cells of the volunteer donors upon in vitro radiation. Using the method of bromdeoxyuridylreductase, the increased incidence of SCE as a mutagenic effect was registered. Conclusion. It has been concluded that the increase of absorbed radiation dose in

  17. Optimization of rewards in single machine scheduling in the rewards-driven systems

    Directory of Open Access Journals (Sweden)

    Abolfazl Gharaei

    2015-06-01

    Full Text Available The single machine scheduling problem aims at obtaining the best sequence for a set of jobs in a manufacturing system with a single machine. In this paper, we optimize rewards in single machine scheduling in rewards-driven systems such that total reward is maximized while the constraints contains of limitation in total rewards for earliness and learning, independent of earliness and learning and etc. are satisfied. In mentioned systems as for earliness and learning the bonus is awarded to operators, we consider only rewards in mentioned systems and it will not be penalized under any circumstances. Our objective is to optimize total rewards in mentioned system by taking the rewards in the form of quadratic for both learning and earliness. The recently-developed sequential quadratic programming (SQP, is used by solve the problem. Results show that SQP had satisfactory performance in terms of optimum solutions, number of iterations, infeasibility and optimality error. Finally, a sensitivity analysis is performed on the change rate of the objective function obtained based on the change rate of the “amount of earliness for jobs (Ei parameter”.

  18. Reward from bugs to bipeds: a comparative approach to understanding how reward circuits function.

    Science.gov (United States)

    Scaplen, Kristin M; Kaun, Karla R

    2016-06-01

    In a complex environment, animals learn from their responses to stimuli and events. Appropriate response to reward and punishment can promote survival, reproduction and increase evolutionary fitness. Interestingly, the neural processes underlying these responses are remarkably similar across phyla. In all species, dopamine is central to encoding reward and directing motivated behaviors, however, a comprehensive understanding of how circuits encode reward and direct motivated behaviors is still lacking. In part, this is a result of the sheer diversity of neurons, the heterogeneity of their responses and the complexity of neural circuits within which they are found. We argue that general features of reward circuitry are common across model organisms, and thus principles learned from invertebrate model organisms can inform research across species. In particular, we discuss circuit motifs that appear to be functionally equivalent from flies to primates. We argue that a comparative approach to studying and understanding reward circuit function provides a more comprehensive understanding of reward circuitry, and informs disorders that affect the brain's reward circuitry. PMID:27328845

  19. Striatal Reward Activity and Antipsychotic-Associated Weight Change in Patients With Schizophrenia Undergoing Initial Treatment

    DEFF Research Database (Denmark)

    Nielsen, Mette Ødegaard; Rostrup, Egill; Wulff, Sanne;

    2016-01-01

    anticipation is associated with amisulpride-induced weight change in antipsychotic-naive patients with schizophrenia undergoing initial treatment and to examine the association between weight change and changes in reward anticipation activity after treatment. Design, Setting, and Participants: Sixty......-nine antipsychotic-naive inpatients and outpatients with schizophrenia were included in a multimodal longitudinal cohort study from December 16, 2008, to December 11, 2013. Fifty-eight patients underwent functional magnetic resonance imaging (fMRI) while performing a monetary reward task. After 6 weeks of treatment......Importance: Weight gain is a common and serious adverse effect of antipsychotic treatment. A variable individual predisposition to development of metabolic disturbances calls for predictive biological markers. Objectives: To investigate whether attenuated striatal activity during reward...

  20. Implicit trustworthiness ratings of self-resembling faces activate brain centers involved in reward.

    Science.gov (United States)

    Platek, Steven M; Krill, Austen L; Wilson, Benjamin

    2009-01-01

    On the basis of Hamilton's (Hamilton, W. D. (1964). The genetical evolution of social behavior I, II. Journal of Theoretical Biology, 7, 17-52) theory of inclusive fitness, self-facial resemblance is hypothesized as a mechanism for self-referent phenotypic matching by which humans can detect kin. To understand the mechanisms underlying pro-sociality toward self-resembling faces, we investigated the neural correlates of implicit trustworthiness ratings for self-resembling faces. Here we show that idiosyncratic trustworthiness ratings of self-resembling faces predict brain activation in the ventral inferior, middle and medial frontal gyri, substrates involved in reward processing. These findings demonstrate that neural reward centers are implicated in evaluating implicit pro-social behaviors toward self-resembling faces. These findings suggest that humans have evolved to use neurocomputational architecture dedicated to face processing and reward evaluation for the differentiation of kin, which drives implicit idiosyncratic affectively regulated social interactions. PMID:18761362

  1. The relationship between personality types and reward preferences

    Directory of Open Access Journals (Sweden)

    R. Nienaber

    2011-12-01

    Full Text Available Orientation: Research has shown that total rewards models structured according to individual preferences, positively influence efforts to attract, retain and motivate key employees. Yet, this is seldom done. Structuring total rewards models according to the preferences of employee segments is a viable alternative to accommodate individual preferences. Research purpose: The primary aim of the study was to determine the relationship between personality types and reward preferences. The secondary aim was to determine the reward preferences for different demographic groups. Motivation for the study: An enhanced understanding of reward preferences for different employee segments will enable employers to offer more competitive reward options to their employees. This may, in turn, have a positive impact on retention. Research design, approach and method: Two measuring instruments, the MBTI® Form GRV and the Rewards Preferences Questionnaire, were distributed electronically to 5 000 potential respondents. The results from 589 sets of questionnaires were used in the data analyses. Primary and secondary factor analyses were done on the items in the Rewards Preferences Questionnaire. Main findings/results: The study confirmed that individuals with certain personality types and personality preferences, have different preferences for certain reward categories. There was a stronger relationship between reward preferences and personality preferences than for reward preferences and personality types. Preferences for reward categories by different demographic groups were confirmed. The significant difference in reward preferences between Black and White respondents in particular was noteworthy, with Black respondents indicating significantly higher mean scores for all reward categories than White respondents. Finally, a total rewards framework influenced by the most prominent preferences for reward categories, was designed. Practical/Managerial implications

  2. Anticipation of Monetary Reward Can Attenuate the Vigilance Decrement.

    Science.gov (United States)

    Esterman, Michael; Grosso, Mallory; Liu, Guanyu; Mitko, Alex; Morris, Rachael; DeGutis, Joseph

    2016-01-01

    Motivation and reward can have differential effects on separate aspects of sustained attention. We previously demonstrated that continuous reward/punishment throughout a sustained attention task improves overall performance, but not vigilance decrements. One interpretation of these findings is that vigilance decrements are due to resource depletion, which is not overcome by increasing overall motivation. However, an alternative explanation is that as one performs a continuously rewarded task there are less potential gains/losses as the task progresses, which could decrease motivation over time, producing a vigilance decrement. This would predict that keeping future gains/losses consistent throughout the task would reduce the vigilance decrement. In the current study, we examined this possibility by comparing two versions (continuous-small loss vs. anticipate-large loss) of a 10-minute gradual onset continuous performance task (gradCPT), a challenging go/no-go sustained attention task. Participants began each task with the potential to keep $18. In the continuous-small-loss version, small monetary losses were accrued continuously throughout the task for each error. However, in the anticipate-large-loss version, participants lost all $18 if they erroneously responded to one target that always appeared toward the end of the vigil. Typical vigilance decrements were observed in the continuous-small-loss condition. In the anticipate-large-loss condition, vigilance decrements were reduced, particularly when the anticipate-large loss condition was completed second. This suggests that the looming possibility of a large loss can attenuate the vigilance decrement and that this attenuation may occur most consistently after sufficient task experience. We discuss these results in the context of current theories of sustained attention. PMID:27472785

  3. Sensitivity and bias in decision-making under risk: evaluating the perception of reward, its probability and value.

    Directory of Open Access Journals (Sweden)

    Madeleine E Sharp

    Full Text Available BACKGROUND: There are few clinical tools that assess decision-making under risk. Tests that characterize sensitivity and bias in decisions between prospects varying in magnitude and probability of gain may provide insights in conditions with anomalous reward-related behaviour. OBJECTIVE: We designed a simple test of how subjects integrate information about the magnitude and the probability of reward, which can determine discriminative thresholds and choice bias in decisions under risk. DESIGN/METHODS: Twenty subjects were required to choose between two explicitly described prospects, one with higher probability but lower magnitude of reward than the other, with the difference in expected value between the two prospects varying from 3 to 23%. RESULTS: Subjects showed a mean threshold sensitivity of 43% difference in expected value. Regarding choice bias, there was a 'risk premium' of 38%, indicating a tendency to choose higher probability over higher reward. An analysis using prospect theory showed that this risk premium is the predicted outcome of hypothesized non-linearities in the subjective perception of reward value and probability. CONCLUSIONS: This simple test provides a robust measure of discriminative value thresholds and biases in decisions under risk. Prospect theory can also make predictions about decisions when subjective perception of reward or probability is anomalous, as may occur in populations with dopaminergic or striatal dysfunction, such as Parkinson's disease and schizophrenia.

  4. Visual Sexual Stimuli-Cue or Reward? A Perspective for Interpreting Brain Imaging Findings on Human Sexual Behaviors.

    Science.gov (United States)

    Gola, Mateusz; Wordecha, Małgorzata; Marchewka, Artur; Sescousse, Guillaume

    2016-01-01

    There is an increasing number of neuroimaging studies using visual sexual stimuli (VSS), especially within the emerging field of research on compulsive sexual behaviors (CSB). A central question in this field is whether behaviors such as excessive pornography consumption share common brain mechanisms with widely studied substance and behavioral addictions. Depending on how VSS are conceptualized, different predictions can be formulated within the frameworks of Reinforcement Learning or Incentive Salience Theory, where a crucial distinction is made between conditioned and unconditioned stimuli (related to reward anticipation vs. reward consumption, respectively). Surveying 40 recent human neuroimaging studies we show existing ambiguity about the conceptualization of VSS. Therefore, we feel that it is important to address the question of whether VSS should be considered as conditioned stimuli (cue) or unconditioned stimuli (reward). Here we present our own perspective, which is that in most laboratory settings VSS play a role of reward, as evidenced by: (1) experience of pleasure while watching VSS, possibly accompanied by genital reaction; (2) reward-related brain activity correlated with these pleasurable feelings in response to VSS; (3) a willingness to exert effort to view VSS similarly as for other rewarding stimuli such as money; and (4) conditioning for cues predictive of VSS. We hope that this perspective article will initiate a scientific discussion on this important and overlooked topic and increase attention for appropriate interpretations of results of human neuroimaging studies using VSS. PMID:27574507

  5. Visual Sexual Stimuli—Cue or Reward? A Perspective for Interpreting Brain Imaging Findings on Human Sexual Behaviors

    Science.gov (United States)

    Gola, Mateusz; Wordecha, Małgorzata; Marchewka, Artur; Sescousse, Guillaume

    2016-01-01

    There is an increasing number of neuroimaging studies using visual sexual stimuli (VSS), especially within the emerging field of research on compulsive sexual behaviors (CSB). A central question in this field is whether behaviors such as excessive pornography consumption share common brain mechanisms with widely studied substance and behavioral addictions. Depending on how VSS are conceptualized, different predictions can be formulated within the frameworks of Reinforcement Learning or Incentive Salience Theory, where a crucial distinction is made between conditioned and unconditioned stimuli (related to reward anticipation vs. reward consumption, respectively). Surveying 40 recent human neuroimaging studies we show existing ambiguity about the conceptualization of VSS. Therefore, we feel that it is important to address the question of whether VSS should be considered as conditioned stimuli (cue) or unconditioned stimuli (reward). Here we present our own perspective, which is that in most laboratory settings VSS play a role of reward, as evidenced by: (1) experience of pleasure while watching VSS, possibly accompanied by genital reaction; (2) reward-related brain activity correlated with these pleasurable feelings in response to VSS; (3) a willingness to exert effort to view VSS similarly as for other rewarding stimuli such as money; and (4) conditioning for cues predictive of VSS. We hope that this perspective article will initiate a scientific discussion on this important and overlooked topic and increase attention for appropriate interpretations of results of human neuroimaging studies using VSS. PMID:27574507

  6. Visual Sexual Stimuli-Cue or Reward? A Perspective for Interpreting Brain Imaging Findings on Human Sexual Behaviors.

    Science.gov (United States)

    Gola, Mateusz; Wordecha, Małgorzata; Marchewka, Artur; Sescousse, Guillaume

    2016-01-01

    There is an increasing number of neuroimaging studies using visual sexual stimuli (VSS), especially within the emerging field of research on compulsive sexual behaviors (CSB). A central question in this field is whether behaviors such as excessive pornography consumption share common brain mechanisms with widely studied substance and behavioral addictions. Depending on how VSS are conceptualized, different predictions can be formulated within the frameworks of Reinforcement Learning or Incentive Salience Theory, where a crucial distinction is made between conditioned and unconditioned stimuli (related to reward anticipation vs. reward consumption, respectively). Surveying 40 recent human neuroimaging studies we show existing ambiguity about the conceptualization of VSS. Therefore, we feel that it is important to address the question of whether VSS should be considered as conditioned stimuli (cue) or unconditioned stimuli (reward). Here we present our own perspective, which is that in most laboratory settings VSS play a role of reward, as evidenced by: (1) experience of pleasure while watching VSS, possibly accompanied by genital reaction; (2) reward-related brain activity correlated with these pleasurable feelings in response to VSS; (3) a willingness to exert effort to view VSS similarly as for other rewarding stimuli such as money; and (4) conditioning for cues predictive of VSS. We hope that this perspective article will initiate a scientific discussion on this important and overlooked topic and increase attention for appropriate interpretations of results of human neuroimaging studies using VSS.

  7. A Collateral Effect of Reward Predicted by Matching Theory.

    Science.gov (United States)

    Mace, F. Charles; And Others

    1990-01-01

    The behavior of special education students (age 12 and 16) was evaluated as they were presented with 2 academic response alternatives on concurrent reinforcement schedules. Both subjects allocated higher rates of responses to the richer schedule of reinforcement, although only 1 responded exclusively to the richer schedule. (Author/JDD)

  8. A collateral effect of reward predicted by matching theory.

    OpenAIRE

    Mace, F C; McCurdy, B; Quigley, E A

    1990-01-01

    Matching theory describes a process by which organisms distribute their behavior between two or more concurrent schedules of reinforcement (Herrnstein, 1961). In an attempt to determine the generality of matching theory to applied settings, 2 students receiving special education were provided with academic response alternatives. Using a combined simultaneous treatments design and reversal design, unequal ratio schedules of reinforcement were varied across two academic responses. Findings indi...

  9. Modelling and analysis of Markov reward automata (extended version)

    NARCIS (Netherlands)

    Guck, Dennis; Timmer, Mark; Hatefi, Hassan; Ruijters, Enno; Stoelinga, Mariëlle

    2014-01-01

    Costs and rewards are important ingredients for cyberphysical systems, modelling critical aspects like energy consumption, task completion, repair costs, and memory usage. This paper introduces Markov reward automata, an extension of Markov automata that allows the modelling of systems incorporating

  10. Reward and cooperation in the spatial public goods game

    CERN Document Server

    Szolnoki, Attila

    2010-01-01

    The promise of punishment and reward in promoting public cooperation is debatable. While punishment is traditionally considered more successful than reward, the fact that the cost of punishment frequently fails to offset gains from enhanced cooperation has lead some to reconsider reward as the main catalyst behind collaborative efforts. Here we elaborate on the "stick versus carrot" dilemma by studying the evolution of cooperation in the spatial public goods game, where besides the traditional cooperators and defectors, rewarding cooperators supplement the array of possible strategies. The latter are willing to reward cooperative actions at a personal cost, thus effectively downgrading pure cooperators to second-order free-riders due to their unwillingness to bear these additional costs. Consequently, we find that defection remains viable, especially if the rewarding is costly. Rewards, however, can promote cooperation, especially if the synergetic effects of cooperation are low. Surprisingly, moderate reward...

  11. Identifying nurses' rewards: a qualitative categorization study in Belgium

    Directory of Open Access Journals (Sweden)

    Du Bois Cindy

    2006-07-01

    Full Text Available Abstract Background Rewards are important in attracting, motivating and retaining the most qualified employees, and nurses are no exception to this rule. This makes the establishment of an efficient reward system for nurses a true challenge for every hospital manager. A reward does not necessarily have a financial connotation: non-financial rewards may matter too, or may even be more important. Therefore, the present study examines nurses' reward perceptions, in order to identify potential reward options. Methods To answer the research question "What do nurses consider a reward and how can these rewards be categorized?", 20 in-depth semi-structured interviews with nurses were conducted and analysed using discourse and content analyses. In addition, the respondents received a list of 34 rewards (derived from the literature and were asked to indicate the extent to which they perceived each of them to be rewarding. Results Discourse analysis revealed three major reward categories: financial, non-financial and psychological, each containing different subcategories. In general, nurses more often mentioned financial rewards spontaneously in the interview, compared to non-financial and psychological rewards. The questionnaire results did not, however, indicate a significant difference in the rewarding potential of these three categories. Both the qualitative and quantitative data revealed that a number of psychological and non-financial rewards were important for nurses in addition to their monthly pay and other remunerations. In particular, appreciation for their work by others, compliments from others, presents from others and contact with patients were highly valued. Moreover, some demographical variables influenced the reward perceptions. Younger and less experienced nurses considered promotion possibilities as more rewarding than the older and more senior ones. The latter valued job security and working for a hospital with a good reputation higher

  12. Social and monetary reward processing in autism spectrum disorders

    Directory of Open Access Journals (Sweden)

    Delmonte Sonja

    2012-09-01

    Full Text Available Abstract Background Social motivation theory suggests that deficits in social reward processing underlie social impairments in autism spectrum disorders (ASD. However, the extent to which abnormalities in reward processing generalize to other classes of stimuli remains unresolved. The aim of the current study was to examine if reward processing abnormalities in ASD are specific to social stimuli or can be generalized to other classes of reward. Additionally, we sought to examine the results in the light of behavioral impairments in ASD. Methods Participants performed adapted versions of the social and monetary incentive delay tasks. Data from 21 unmedicated right-handed male participants with ASD and 21 age- and IQ-matched controls were analyzed using a factorial design to examine the blood-oxygen-level-dependent (BOLD response during the anticipation and receipt of both reward types. Results Behaviorally, the ASD group showed less of a reduction in reaction time (RT for rewarded compared to unrewarded trials than the control group. In terms of the fMRI results, there were no significant group differences in reward circuitry during reward anticipation. During the receipt of rewards, there was a significant interaction between group and reward type in the left dorsal striatum (DS. The ASD group showed reduced activity in the DS compared to controls for social rewards but not monetary rewards and decreased activation for social rewards compared to monetary rewards. Controls showed no significant difference between the two reward types. Increased activation in the DS during social reward processing was associated with faster response times for rewarded trials, compared to unrewarded trials, in both groups. This is in line with behavioral results indicating that the ASD group showed less of a reduction in RT for rewarded compared to unrewarded trials. Additionally, de-activation to social rewards was associated with increased repetitive behavior in

  13. Differentiating neural reward responsiveness in autism versus ADHD.

    OpenAIRE

    2014-01-01

    Although attention deficit hyperactivity disorders (ADHD) and autism spectrum disorders (ASD) share certain neurocognitive characteristics, it has been hypothesized to differentiate the two disorders based on their brain's reward responsiveness to either social or monetary reward. Thus, the present fMRI study investigated neural activation in response to both reward types in age and IQ-matched boys with ADHD versus ASD relative to typically controls (TDC). A significant group by reward type i...

  14. Robot Reinforcement Learning using EEG-based reward signals

    OpenAIRE

    Iturrate, Inaki; Montesano, Luis; Minguez, Javier

    2010-01-01

    Reinforcement learning algorithms have been successfully applied in robotics to learn how to solve tasks based on reward signals obtained during task execution. These reward signals are usually modeled by the programmer or provided by supervision. However, there are situations in which this reward is hard to encode, and so would require a supervised approach of reinforcement learning, where a user directly types the reward on each trial. This paper proposes to use brain activity recorded by a...

  15. Encouraging Classroom Participation with Empty Extrinsic Rewards

    Science.gov (United States)

    Guinee, William

    2012-01-01

    In this article, the author talks about how to encourage classroom participation with empty extrinsic rewards. He uses "bonus points" in awarding students for particularly interesting or well thought-out contributions to the class discussion. These bonus points have absolutely no effect on the student's course grade. But the students respond…

  16. Competitive Pressure on China : Factor Rewards Migration

    NARCIS (Netherlands)

    Ten Raa, T.; Pan, H.

    2001-01-01

    Our objective is to assess personal income under perfect competition, when factors are rewarded according to their productivities, and to contrast the ensuing distribution with the status quo.Competition will yield winners and losers, both in terms of factor claims and in terms of regions or provinc

  17. The Effects of Rewarding User Engagement

    DEFF Research Database (Denmark)

    Claussen, Jörg; Kretschmer, Tobias; Mayrhofer, Philip

    2013-01-01

    We study the market for apps on Facebook, the dominant social networking platform, and make use of a rule change by Facebook by which highly engaging apps were rewarded with further opportunities to engage users. The rule change led to new applications with significantly higher user ratings being...

  18. Associations between sleep parameters and food reward.

    Science.gov (United States)

    McNeil, Jessica; Cadieux, Sébastien; Finlayson, Graham; Blundell, John E; Doucet, Éric

    2015-06-01

    This study examined the effects of acute, isocaloric aerobic and resistance exercise on different sleep parameters, and whether changes in these sleep parameters between sessions were related to next morning food reward. Fourteen men and women (age: 21.9 ± 2.7 years; body mass index: 22.7 ± 1.9 kg m(-) ²) participated in three randomized crossover sessions: aerobic exercise; resistance exercise; and sedentary control. Target exercise energy expenditure was matched at 4 kcal kg(-1) of body weight, and performed at 70% of VO2peak or 70% of 1 repetition-maximal. Sleep was measured (accelerometry) for 22 h following each session. The 'wanting' for visual food cues (validated computer task) was assessed the next morning. There were no differences in sleep parameters and food 'wanting' between conditions. Decreases in sleep duration and earlier wake-times were significantly associated with increased food 'wanting' between sessions (P = 0.001). However, these associations were no longer significant after controlling for elapsed time between wake-time and the food reward task. These findings suggest that shorter sleep durations and earlier wake-times are associated with increased food reward, but these associations are driven by elapsed time between awakening and completion of the food reward task. PMID:25644582

  19. Motivating Intrapreneurs: The Relevance of Rewards

    Science.gov (United States)

    de Villiers-Scheepers, M. J.

    2011-01-01

    A challenge faced by management graduates in promoting intrapreneurship to achieve competitive advantage is the use of motivational techniques that build commitment to entrepreneurial behaviour. Despite the acknowledged importance of rewards to encourage innovation, there is surprisingly little empirical evidence to provide guidance on which…

  20. Results-based Rewards - Leveraging Wage Increases?

    DEFF Research Database (Denmark)

    Bregn, Kirsten

    2005-01-01

    A good seven years ago, as a part of a large-scale pay reform, the Danish public sector introduced results-based rewards (RBR), i.e. a pay component awarded for achieving or exceeding targets set in advance. RBR represent a possibility for combining wage-earners interests in higher wages with a g...

  1. Impact of aging on frontostriatal reward processing

    NARCIS (Netherlands)

    Vink, Matthijs; Kleerekooper, Iris; van den Wildenberg, Wery P M; Kahn, Rene S

    2015-01-01

    Healthy aging is associated with a progressive decline across a range of cognitive functions. An important factor underlying this decline may be the age-related impairment in stimulus-reward processing. Several studies have investigated age-related effects, but compared young versus old subjects. Th

  2. The left hemisphere learns what is right: Hemispatial reward learning depends on reinforcement learning processes in the contralateral hemisphere.

    Science.gov (United States)

    Aberg, Kristoffer Carl; Doell, Kimberly Crystal; Schwartz, Sophie

    2016-08-01

    Orienting biases refer to consistent, trait-like direction of attention or locomotion toward one side of space. Recent studies suggest that such hemispatial biases may determine how well people memorize information presented in the left or right hemifield. Moreover, lesion studies indicate that learning rewarded stimuli in one hemispace depends on the integrity of the contralateral striatum. However, the exact neural and computational mechanisms underlying the influence of individual orienting biases on reward learning remain unclear. Because reward-based behavioural adaptation depends on the dopaminergic system and prediction error (PE) encoding in the ventral striatum, we hypothesized that hemispheric asymmetries in dopamine (DA) function may determine individual spatial biases in reward learning. To test this prediction, we acquired fMRI in 33 healthy human participants while they performed a lateralized reward task. Learning differences between hemispaces were assessed by presenting stimuli, assigned to different reward probabilities, to the left or right of central fixation, i.e. presented in the left or right visual hemifield. Hemispheric differences in DA function were estimated through differential fMRI responses to positive vs. negative feedback in the left vs. right ventral striatum, and a computational approach was used to identify the neural correlates of PEs. Our results show that spatial biases favoring reward learning in the right (vs. left) hemifield were associated with increased reward responses in the left hemisphere and relatively better neural encoding of PEs for stimuli presented in the right (vs. left) hemifield. These findings demonstrate that trait-like spatial biases implicate hemisphere-specific learning mechanisms, with individual differences between hemispheres contributing to reinforcing spatial biases. PMID:27221149

  3. The left hemisphere learns what is right: Hemispatial reward learning depends on reinforcement learning processes in the contralateral hemisphere.

    Science.gov (United States)

    Aberg, Kristoffer Carl; Doell, Kimberly Crystal; Schwartz, Sophie

    2016-08-01

    Orienting biases refer to consistent, trait-like direction of attention or locomotion toward one side of space. Recent studies suggest that such hemispatial biases may determine how well people memorize information presented in the left or right hemifield. Moreover, lesion studies indicate that learning rewarded stimuli in one hemispace depends on the integrity of the contralateral striatum. However, the exact neural and computational mechanisms underlying the influence of individual orienting biases on reward learning remain unclear. Because reward-based behavioural adaptation depends on the dopaminergic system and prediction error (PE) encoding in the ventral striatum, we hypothesized that hemispheric asymmetries in dopamine (DA) function may determine individual spatial biases in reward learning. To test this prediction, we acquired fMRI in 33 healthy human participants while they performed a lateralized reward task. Learning differences between hemispaces were assessed by presenting stimuli, assigned to different reward probabilities, to the left or right of central fixation, i.e. presented in the left or right visual hemifield. Hemispheric differences in DA function were estimated through differential fMRI responses to positive vs. negative feedback in the left vs. right ventral striatum, and a computational approach was used to identify the neural correlates of PEs. Our results show that spatial biases favoring reward learning in the right (vs. left) hemifield were associated with increased reward responses in the left hemisphere and relatively better neural encoding of PEs for stimuli presented in the right (vs. left) hemifield. These findings demonstrate that trait-like spatial biases implicate hemisphere-specific learning mechanisms, with individual differences between hemispheres contributing to reinforcing spatial biases.

  4. Dopamine in the Brain: Hypothesizing Surfeit or Deficit Links to Reward and Addiction

    Directory of Open Access Journals (Sweden)

    Kenneth Blum

    2015-10-01

    Full Text Available Recently there has been debate concerning the role of brain dopamine in reward and addiction. David Nutt and associates eloquently proposed that dopamine (DA may be central to psycho stimulant dependence and some what important for alcohol, but not important for opiates, nicotine or even cannabis. Others have also argued that surfeit theories can explain for example cocaine seeking behavior as well as non-substance-related addictive behaviors. It seems prudent to distinguish between what constitutes "surfeit" compared to" deficit" in terms of short-term (acute and long-term (chronic brain reward circuitry responsivity. In an attempt to resolve controversy regarding the contributions of mesolimbic DA systems to reward, we review the three main competing explanatory categories: "liking", "learning", and "wanting". They are (a the hedonic impact -liking reward, (b the ability to predict rewarding effects -learning and (c the incentive salience of reward-related stimuli -wanting. In terms of acute effects, most of the evidence seems to favor the "surfeit theory". Due to preferential dopamine release at mesolimbic-VTA-caudate-accumbens loci most drugs of abuse and Reward Deficiency Syndrome (RDS behaviors have been linked to heightened feelings of well-being and hyperdopaminergic states.The "dopamine hypotheses" originally thought to be simple, is now believed to be quite complex and involves encoding the set point of hedonic tone, encoding attention, reward expectancy, and incentive motivation. Importantly, Willuhn et al. shows that in a self-administration paradigm, (chronic excessive use of cocaine is caused by decreased phasic dopamine signaling in the striatum. In terms of chronic addictions, others have shown a blunted responsivity at brain reward sites with food, nicotine, and even gambling behavior. Finally, we are cognizant of the differences in dopaminergic function as addiction progresses and argue that relapse may be tied to dopamine

  5. Dopamine in the Brain: Hypothesizing Surfeit or Deficit Links to Reward and Addiction

    Science.gov (United States)

    Blum, Kenneth; Thanos, Peter K.; Oscar-Berman, Marlene; Febo, Marcelo; Baron, David; Badgaiyan, Rajendra D.; Gardner, Eliot; Demetrovics, Zsolt; Fahlke, Claudia; Haberstick, Brett C.; Dushaj, Kristina; Gold, Mark S.

    2016-01-01

    Recently there has been debate concerning the role of brain dopamine in reward and addiction. David Nutt and associates eloquently proposed that dopamine (DA) may be central to psycho stimulant dependence and some what important for alcohol, but not important for opiates, nicotine or even cannabis. Others have also argued that surfeit theories can explain for example cocaine seeking behavior as well as non-substance-related addictive behaviors. It seems prudent to distinguish between what constitutes “surfeit” compared to” deficit” in terms of short-term (acute) and long-term (chronic) brain reward circuitry responsivity. In an attempt to resolve controversy regarding the contributions of mesolimbic DA systems to reward, we review the three main competing explanatory categories: “liking”, “learning”, and “wanting”. They are (a) the hedonic impact -liking reward, (b) the ability to predict rewarding effects-learning and (c) the incentive salience of reward-related stimuli -wanting. In terms of acute effects, most of the evidence seems to favor the “surfeit theory”. Due to preferential dopamine release at mesolimbic-VTA-caudate-accumbens loci most drugs of abuse and Reward Deficiency Syndrome (RDS) behaviors have been linked to heightened feelings of well-being and hyperdopaminergic states.The “dopamine hypotheses” originally thought to be simple, is now believed to be quite complex and involves encoding the set point of hedonic tone, encoding attention, reward expectancy, and incentive motivation. Importantly, Willuhn et al. shows that in a self-administration paradigm, (chronic) excessive use of cocaine is caused by decreased phasic dopamine signaling in the striatum. In terms of chronic addictions, others have shown a blunted responsivity at brain reward sites with food, nicotine, and even gambling behavior. Finally, we are cognizant of the differences in dopaminergic function as addiction progresses and argue that relapse may be tied

  6. Aberrant splicing and drug resistance in AML.

    Science.gov (United States)

    de Necochea-Campion, Rosalia; Shouse, Geoffrey P; Zhou, Qi; Mirshahidi, Saied; Chen, Chien-Shing

    2016-01-01

    The advent of next-generation sequencing technologies has unveiled a new window into the heterogeneity of acute myeloid leukemia (AML). In particular, recurrent mutations in spliceosome machinery and genome-wide aberrant splicing events have been recognized as a prominent component of this disease. This review will focus on how these factors influence drug resistance through altered splicing of tumor suppressor and oncogenes and dysregulation of the apoptotic signaling network. A better understanding of these factors in disease progression is necessary to design appropriate therapeutic strategies recognizing specific alternatively spliced or mutated oncogenic targets. PMID:27613060

  7. Metering, settlement and export reward options for micro-generation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-07-01

    This report presents the results of a study carried out as part of the Department of Trade and Industry's New and Renewable Energy Programme to evaluate the costs and benefits of various metering, settlement and export reward opportunities for both renewable and non-renewable forms of microgeneration based on existing projections to 2020. The technologies studied included single and three-phase applications of: solar photovoltaic (rated at 1 kW per installation); small-scale wind generation (rated at 1 kW per installation); micro-CHP (combined heat and power) (rated at 1.1 kW per installation); and micro-hydropower (rated at 3.7 and 6.4 kW per installation). The report outlines a number of different options for metering, settlement and export rewards, and describes the development of an economic model to quantify their costs and benefits. This model is then used to predict the future costs and benefits of the various options. The potential value of the options to the UK economy and any environmental benefits are discussed and a commentary on possible barriers to implementation is provided.

  8. Associations between sensitivity to punishment, sensitivity to reward, and gambling.

    Science.gov (United States)

    Gaher, Raluca M; Hahn, Austin M; Shishido, Hanako; Simons, Jeffrey S; Gaster, Sam

    2015-03-01

    The majority of individuals gamble during their lifetime; however only a subset of these individuals develops problematic gambling. Gray's Reinforcement Sensitivity Theory may be relevant to understanding gambling problems. Differences in sensitivity to punishments and rewards can influence an individual's behavior and may be pertinent to the development of gambling problems. This study examined the functional associations between sensitivity to punishment (SP), sensitivity to reward (SR), and gambling problems in a sample of 2254 college students. Zero-inflated negative binomial regression was used to predict gambling problems as well as the absence of gambling problems. Gambling problems were hypothesized to be positively associated with SR and inversely associated with SP. In addition, SP was hypothesized to moderate the association between SR and gambling problems, attenuating the strength of the association. As hypothesized, SR was positively associated with gambling problems. However, SP did not moderate the relationship between SR and gambling problems. SP did, however, moderate the relationship between SR and the likelihood of never experiencing gambling problems. The results demonstrate that individual differences in SP and SR are functionally associated with gambling problems. PMID:25481451

  9. Associations between sensitivity to punishment, sensitivity to reward, and gambling.

    Science.gov (United States)

    Gaher, Raluca M; Hahn, Austin M; Shishido, Hanako; Simons, Jeffrey S; Gaster, Sam

    2015-03-01

    The majority of individuals gamble during their lifetime; however only a subset of these individuals develops problematic gambling. Gray's Reinforcement Sensitivity Theory may be relevant to understanding gambling problems. Differences in sensitivity to punishments and rewards can influence an individual's behavior and may be pertinent to the development of gambling problems. This study examined the functional associations between sensitivity to punishment (SP), sensitivity to reward (SR), and gambling problems in a sample of 2254 college students. Zero-inflated negative binomial regression was used to predict gambling problems as well as the absence of gambling problems. Gambling problems were hypothesized to be positively associated with SR and inversely associated with SP. In addition, SP was hypothesized to moderate the association between SR and gambling problems, attenuating the strength of the association. As hypothesized, SR was positively associated with gambling problems. However, SP did not moderate the relationship between SR and gambling problems. SP did, however, moderate the relationship between SR and the likelihood of never experiencing gambling problems. The results demonstrate that individual differences in SP and SR are functionally associated with gambling problems.

  10. Neural response to reward anticipation is modulated by Gray's impulsivity.

    Science.gov (United States)

    Hahn, Tim; Dresler, Thomas; Ehlis, Ann-Christine; Plichta, Michael M; Heinzel, Sebastian; Polak, Thomas; Lesch, Klaus-Peter; Breuer, Felix; Jakob, Peter M; Fallgatter, Andreas J

    2009-07-15

    According to the Reinforcement Sensitivity Theory (RST), Gray's dimension of impulsivity, reflecting human trait reward sensitivity, determines the extent to which stimuli activate the Behavioural Approach System (BAS). The potential neural underpinnings of the BAS, however, remain poorly understood. In the present study, we examined the association between Gray's impulsivity as defined by the RST and event-related fMRI BOLD-response to anticipation of reward in twenty healthy human subjects in brain regions previously associated with reward processing. Anticipation of reward during a Monetary Incentive Delay Task elicited activation in key components of the human reward circuitry such as the ventral striatum, the amygdala and the orbitofrontal cortex. Interindividual differences in Gray's impulsivity accounted for a significant amount of variance of the reward-related BOLD-response in the ventral striatum and the orbitofrontal cortex. Specifically, higher trait reward sensitivity was associated with increased activation in response to cues indicating potential reward. Extending previous evidence, here we show that variance in functional brain activation during anticipation of reward is attributed to interindividual differences regarding Gray's dimension of impulsivity. Thus, trait reward sensitivity contributes to the modulation of responsiveness in major components of the human reward system which thereby display a core property of the BAS. Generally, fostering our understanding of the neural underpinnings of the association of reward-related interindividual differences in affective traits might aid researchers in quest for custom-tailored treatments of psychiatric disorders, further disentangling the complex relationship between personality traits, emotion, and health. PMID:19328237

  11. Extending Markov Automata with State and Action Rewards

    NARCIS (Netherlands)

    Guck, Dennis; Timmer, Mark; Blom, Stefan; Bertrand, N.; Bortolussi, L.

    2014-01-01

    This presentation introduces the Markov Reward Automaton (MRA), an extension of the Markov automaton that allows the modelling of systems incorporating rewards in addition to nondeterminism, discrete probabilistic choice and continuous stochastic timing. Our models support both rewards that are acqu

  12. Rewards versus Learning: A Response to Paul Chance.

    Science.gov (United States)

    Kohn, Alfie

    1993-01-01

    Responding to Paul Chance's November 1992 "Kappan" article on motivational value of rewards, this article argues that manipulating student behavior with either punishments or rewards is unnecessary and counterproductive. Extrinsic rewards can never buy more than short-term compliance because they are inherently controlling and ineffective and make…

  13. Should Rewards Have a Place in Early Childhood Programs?

    Science.gov (United States)

    Shiller, Virginia M.; O'Flynn, Janet C.; Reineke, June; Sonsteng, Kathleen; Gartrell, Dan

    2008-01-01

    Does the use of rewards to motivate children to learn or to follow classroom rules run counter to fostering a true desire for mastery? This column, which consists of two separate articles, provides the opposing opinions of the authors regarding the appropriateness of giving rewards in an early childhood classroom. In "Using Rewards in the Early…

  14. Motivating Inhibition--Reward Prospect Speeds up Response Cancellation

    Science.gov (United States)

    Boehler, Carsten N.; Hopf, Jens-Max; Stoppel, Christian M.; Krebs, Ruth M.

    2012-01-01

    Reward prospect has been demonstrated to facilitate various cognitive and behavioral operations, particularly by enhancing the speed and vigor of processes linked to approaching reward. Studies in this domain typically employed task regimes in which participants' overt responses are facilitated by prospective rewards. In contrast, we demonstrate…

  15. Changes in reward-induced brain activation in opiate addicts

    NARCIS (Netherlands)

    Martin-Soelch, C; Chevalley, AF; Kunig, G; Missimer, J; Magyar, S; Mino, A; Schultz, W; Leenders, KL

    2001-01-01

    Many studies indicate a role of the cerebral dopaminergic reward system in addiction. Motivated by these findings, we examined in opiate addicts whether brain regions involved in the reward circuitry also react to human prototypical rewards. We measured regional cerebral blood flow (rCBF) with (H2O)

  16. Rewards, Intrinsic Motivation, and Achievement in Intact Classrooms

    Science.gov (United States)

    Luis, Melissa Ann

    2011-01-01

    The purpose of this study was to examine the effects of performance-contingent rewards in a real-world setting, namely the sixth grade math classroom. This study is significant in that it represents a field study on the effects of rewards in the classroom. The purpose of this study was to investigate what effect, if any, the choice of a reward had…

  17. Distinct neural responses to conscious versus unconscious monetary reward cues

    NARCIS (Netherlands)

    Bijleveld, Erik; Custers, Ruud; Van der Stigchel, Stefan; Aarts, Henk; Pas, Pascal; Vink, Matthijs

    2014-01-01

    Human reward pursuit is often assumed to involve conscious processing of reward information. However, recent research revealed that reward cues enhance cognitive performance even when perceived without awareness. Building on this discovery, the present functional MRI study tested two hypotheses usin

  18. The role of fair treatment and rewards in perceptions of organizational support and leader-member exchange.

    Science.gov (United States)

    Wayne, Sandy J; Shore, Lynn M; Bommer, William H; Tetrick, Lois E

    2002-06-01

    This study examined a model of the antecedents and consequences of perceived organizational support (POS) and leader-member exchange (LMX). It was predicted that organizational justice (procedural and distributive justice) and organizational practices that provide recognition to the employee (feelings of inclusion and recognition from upper management) would influence POS. For LMX, it was predicted that leader reward (distributive justice and contingent rewards) and punishment behavior would be important antecedents. Results based on a sample of 211 employee-supervisor dyads indicated that organizational justice, inclusion, and recognition were related to POS and contingent rewards were related to LMX. In terms of consequences, POS was related to employee commitment and organizational citizenship behavior, whereas LMX predicted performance ratings. PMID:12090617

  19. The role of fair treatment and rewards in perceptions of organizational support and leader-member exchange.

    Science.gov (United States)

    Wayne, Sandy J; Shore, Lynn M; Bommer, William H; Tetrick, Lois E

    2002-06-01

    This study examined a model of the antecedents and consequences of perceived organizational support (POS) and leader-member exchange (LMX). It was predicted that organizational justice (procedural and distributive justice) and organizational practices that provide recognition to the employee (feelings of inclusion and recognition from upper management) would influence POS. For LMX, it was predicted that leader reward (distributive justice and contingent rewards) and punishment behavior would be important antecedents. Results based on a sample of 211 employee-supervisor dyads indicated that organizational justice, inclusion, and recognition were related to POS and contingent rewards were related to LMX. In terms of consequences, POS was related to employee commitment and organizational citizenship behavior, whereas LMX predicted performance ratings.

  20. Developmental changes in the reward positivity: An electrophysiological trajectory of reward processing

    OpenAIRE

    Carmen N. Lukie; Somayyeh Montazer-Hojat; Holroyd, Clay B.

    2014-01-01

    Children and adolescents learn to regulate their behavior by utilizing feedback from the environment but exactly how this ability develops remains unclear. To investigate this question, we recorded the event-related brain potential (ERP) from children (8–13 years), adolescents (14–17 years) and young adults (18–23 years) while they navigated a “virtual maze” in pursuit of monetary rewards. The amplitude of the reward positivity, an ERP component elicited by feedback stimuli, was evaluated for...

  1. Agent Reward Shaping for Alleviating Traffic Congestion

    Science.gov (United States)

    Tumer, Kagan; Agogino, Adrian

    2006-01-01

    Traffic congestion problems provide a unique environment to study how multi-agent systems promote desired system level behavior. What is particularly interesting in this class of problems is that no individual action is intrinsically "bad" for the system but that combinations of actions among agents lead to undesirable outcomes, As a consequence, agents need to learn how to coordinate their actions with those of other agents, rather than learn a particular set of "good" actions. This problem is ubiquitous in various traffic problems, including selecting departure times for commuters, routes for airlines, and paths for data routers. In this paper we present a multi-agent approach to two traffic problems, where far each driver, an agent selects the most suitable action using reinforcement learning. The agent rewards are based on concepts from collectives and aim to provide the agents with rewards that are both easy to learn and that if learned, lead to good system level behavior. In the first problem, we study how agents learn the best departure times of drivers in a daily commuting environment and how following those departure times alleviates congestion. In the second problem, we study how agents learn to select desirable routes to improve traffic flow and minimize delays for. all drivers.. In both sets of experiments,. agents using collective-based rewards produced near optimal performance (93-96% of optimal) whereas agents using system rewards (63-68%) barely outperformed random action selection (62-64%) and agents using local rewards (48-72%) performed worse than random in some instances.

  2. Chromosomal aberrations related to metastasis of human solid tumors

    Institute of Scientific and Technical Information of China (English)

    Lun-Xiu Qin

    2002-01-01

    between the chromosomal aberrations and the metastatic phenotype of cancer. As the progression of human genome project and the establishment of more and more new techniques, it is hopeful to make clear the genetic mechanisms involved in the tumor metastasis in a not very long future, and provide new clues to predicting and controlling the metastasis.

  3. Reward signals, attempted suicide, and impulsivity in late-life depression.

    Science.gov (United States)

    Dombrovski, Alexandre Y; Szanto, Katalin; Clark, Luke; Reynolds, Charles F; Siegle, Greg J

    2013-10-01

    IMPORTANCE—Suicide can be viewed as an escape from unendurable punishment at the cost of any future rewards. Could faulty estimation of these outcomes predispose to suicidal behavior? In behavioral studies, many of those who have attempted suicide misestimate expected rewards on gambling and probabilistic learning tasks.OBJECTIVES—To describe the neural circuit abnormalities that underlie disadvantageous choices in people at risk for suicide and to relate these abnormalities to impulsivity, which is one of the components of vulnerability to suicide.DESIGN—Case-control functional magnetic resonance imaging study of reward learning using are inforcement learning model.SETTING—University hospital and outpatient clinic.PATIENTS—Fifty-three participants 60 years or older, including 15 depressed patients who had attempted suicide, 18 depressed patients who had never attempted suicide (depressed control subjects), and 20 psychiatrically healthy controls.MAIN OUTCOMES AND MEASURES—Components of the cortical blood oxygenation level–dependent response tracking expected and unpredicted rewards.RESULTS—Depressed elderly participants displayed 2 distinct disruptions of control over reward-guided behavior. First, impulsivity and a history of suicide attempts (particularly poorly planned ones) were associated with a weakened expected reward signal in the paralimbic cortex,which in turn predicted the behavioral insensitivity to contingency change. Second, depression was associated with disrupted corticostriatothalamic encoding of unpredicted rewards, which in turn predicted the behavioral over sensitivity to punishment. These results were robust to the effects of possible brain damage from suicide attempts, depressive severity, co-occurring substance use and anxiety disorders, antidepressant and anticholinergic exposure, lifetime exposure to electroconvulsive therapy, vascular illness, and incipient dementia.CONCLUSIONS AND RELEVANCE—Altered paralimbic reward

  4. How the behavioral approach system predicts everyday life outcomes.

    Science.gov (United States)

    Izadikhah, Zahra; Jackson, Chris J

    2010-01-01

    This study tested crucial components of Gray's reinforcement sensitivity theory that have generally been overlooked in the literature. We tested whether the perceived amount of reward moderates the behavioral approach system (BAS) and the importance of reward mediates BAS in the prediction of job satisfaction and organizational commitment. Results from 514 participants employed in part-time and full-time jobs provided support for our model, such that the indirect effect of BAS through the importance of reward was strongest when reward was provided. This model advances our understanding of reinforcement sensitivity theory and offers a solid foundation for predicting outcomes in everyday life. PMID:20923087

  5. How the behavioral approach system predicts everyday life outcomes.

    Science.gov (United States)

    Izadikhah, Zahra; Jackson, Chris J

    2010-01-01

    This study tested crucial components of Gray's reinforcement sensitivity theory that have generally been overlooked in the literature. We tested whether the perceived amount of reward moderates the behavioral approach system (BAS) and the importance of reward mediates BAS in the prediction of job satisfaction and organizational commitment. Results from 514 participants employed in part-time and full-time jobs provided support for our model, such that the indirect effect of BAS through the importance of reward was strongest when reward was provided. This model advances our understanding of reinforcement sensitivity theory and offers a solid foundation for predicting outcomes in everyday life.

  6. Change in delay discounting and substance reward value following a brief alcohol and drug use intervention.

    Science.gov (United States)

    Dennhardt, Ashley A; Yurasek, Ali M; Murphy, James G

    2015-01-01

    The present study examined (1) the impact of a brief substance use intervention on delay discounting and indices of substance reward value (RV), and (2) whether baseline values and posttreatment change in these behavioral economic variables predict substance use outcomes. Participants were 97 heavy drinking college students (58.8% female, 41.2% male) who completed a brief motivational intervention (BMI) and then were randomized to one of two conditions: a supplemental behavioral economic intervention that attempted to increase engagement in substance-free activities associated with delayed rewards (SFAS) or an Education control (EDU). Demand intensity, and Omax, decreased and elasticity significantly increased after treatment, but there was no effect for condition. Both baseline values and change in RV, but not discounting, predicted substance use outcomes at 6-month follow-up. Students with high RV who used marijuana were more likely to reduce their use after the SFAS intervention. These results suggest that brief interventions may reduce substance reward value, and that changes in reward value are associated with subsequent drinking and drug use reductions. High RV marijuana users may benefit from intervention elements that enhance future time orientation and substance-free activity participation. PMID:25533393

  7. Aberration measurement from specific photolithographic images: a different approach.

    Science.gov (United States)

    Nomura, H; Tawarayama, K; Kohno, T

    2000-03-01

    Techniques for measurement of higher-order aberrations of a projection optical system in photolithographic exposure tools have been established. Even-type and odd-type aberrations are independently obtained from printed grating patterns on a wafer by three-beam interference under highly coherent illumination. Even-type aberrations, i.e., spherical aberration and astigmatism, are derived from the best focus positions of vertical, horizontal, and oblique grating patterns by an optical microscope. Odd-type aberrations, i.e., coma and three-foil, are obtained by detection of relative shifts of a fine grating pattern to a large pattern by an overlay inspection tool. Quantitative diagnosis of lens aberrations with a krypton fluoride (KrF) excimer laser scanner is demonstrated.

  8. Temporal Reward Discounting in Attention-Deficit/Hyperactivity Disorder: The Contribution of Symptom Domains, Reward Magnitude, and Session Length

    NARCIS (Netherlands)

    Scheres, A.P.J.; Tontsch, C.; Thoeny, A.L.; Kaczkurkin, A.

    2010-01-01

    Background - Theoretical models have hypothesized that one core problem in attention-deficit/hyperactivity disorder (ADHD) is abnormal reward processing. Temporal reward discounting (decreases in subjective reward value due to prereward delay) is of interest because of its relation with a key sympto

  9. Aberration influenced generation of rotating two-lobe light fields

    Science.gov (United States)

    Kotova, S. P.; Losevsky, N. N.; Prokopova, D. V.; Samagin, S. A.; Volostnikov, V. G.; Vorontsov, E. N.

    2016-08-01

    The influence of aberrations on light fields with a rotating intensity distribution is considered. Light fields were generated with the phase masks developed using the theory of spiral beam optics. The effects of basic aberrations, such as spherical aberration, astigmatism and coma are studied. The experimental implementation of the fields was achieved with the assistance of a liquid crystal spatial light modulator HOLOEYE HEO-1080P, operating in reflection mode. The results of mathematical modelling and experiments have been qualitatively compared.

  10. Higher order aberrations of the eye: Part one

    Directory of Open Access Journals (Sweden)

    Marsha Oberholzer

    2016-03-01

    Full Text Available This article is the first in a series of two articles that provide a comprehensive literature review of higher order aberrations (HOAs of the eye. The present article mainly explains the general principles of such HOAs as well as HOAs of importance, and the measuring apparatus used to measure HOAs of the eye. The second article in the series discusses factors contributing to variable results in measurements of HOAs of the eye.Keywords: Higher order aberrations; wavefront aberrations; aberrometer

  11. Neural processing of calories in brain reward areas can be modulated by reward sensitivity

    Directory of Open Access Journals (Sweden)

    Inge eVan Rijn

    2016-01-01

    Full Text Available A food’s reward value is dependent on its caloric content. Furthermore, a food’s acute reward value also depends on hunger state. The drive to obtain rewards (reward sensitivity, however, differs between individuals. Here, we assessed the association between brain responses to calories in the mouth and trait reward sensitivity in different hunger states. Firstly, we assessed this in data from a functional neuroimaging study (van Rijn et al., 2015, in which participants (n=30 tasted simple solutions of a non-caloric sweetener with or without a non-sweet carbohydrate (maltodextrin during hunger and satiety. Secondly, we expanded these analyses to regular drinks by assessing the same relationship in data from a study in which soft drinks sweetened with either sucrose or a non-caloric sweetener were administered during hunger (n=18 (Griffioen-Roose et al., 2013. First, taste activation by the non-caloric solution/soft drink was subtracted from that by the caloric solution/soft drink to eliminate sweetness effects and retain activation induced by calories. Subsequently, this difference in taste activation was correlated with reward sensitivity as measured with the BAS drive subscale of the Behavioral Activation System (BAS questionnaire.When participants were hungry and tasted calories from the simple solution, brain activation in the right ventral striatum (caudate, right amygdala and anterior cingulate cortex (bilaterally correlated negatively with BAS drive scores. In contrast, when participants were satiated, taste responses correlated positively with BAS drive scores in the left caudate. These results were not replicated for soft drinks. Thus, neural responses to oral calories from maltodextrin were modulated by reward sensitivity in reward-related brain areas. This was not the case for sucrose. This may be due to the direct detection of maltodextrin, but not sucrose in the oral cavity. Also, in a familiar beverage, detection of calories per

  12. Women seek more variety in rewards when closer to ovulation.

    OpenAIRE

    Faraji-Rad, Ali; Moeini-Jazani, Mehrad; Warlop, Luk

    2013-01-01

    We propose that women’s increased generalized sensitivity to rewards during the fertile phase of the menstrual cycle causes them to seek more variety in rewards when they are in the fertile phase than when they are not in the fertile phase of the cycle. In Studies 1–3, across the reward domains of mating and hedonic food, we show that women seek more variety in rewards when closer to ovulation. Moreover, we provide support for the proposition that women’s increased reward sensitivity during t...

  13. A network-dependent rewarding system: proof-of-mining

    OpenAIRE

    Lao, Joe

    2014-01-01

    A soft control of the network activity through varying reward in a proof-of-work (PoW) cryptocurrency is reported. Rewards are the necessity to incent the contributors activities (i.e., mining) in order to maintain the PoW network. Contrary to constant rewarding in a certain period implemented in most of cryptocurrency, such as bitcoin, we propose a network-dependent rewarding model system, primarily including two phases: 1) activities encouraging phase in which higher rewards are issued at h...

  14. Finding intrinsic rewards by embodied evolution and constrained reinforcement learning.

    Science.gov (United States)

    Uchibe, Eiji; Doya, Kenji

    2008-12-01

    Understanding the design principle of reward functions is a substantial challenge both in artificial intelligence and neuroscience. Successful acquisition of a task usually requires not only rewards for goals, but also for intermediate states to promote effective exploration. This paper proposes a method for designing 'intrinsic' rewards of autonomous agents by combining constrained policy gradient reinforcement learning and embodied evolution. To validate the method, we use Cyber Rodent robots, in which collision avoidance, recharging from battery packs, and 'mating' by software reproduction are three major 'extrinsic' rewards. We show in hardware experiments that the robots can find appropriate 'intrinsic' rewards for the vision of battery packs and other robots to promote approach behaviors.

  15. Latitude-based approach for detecting aberrations of hand, foot, and mouth disease epidemics

    OpenAIRE

    Tang, Jia-Hong; Chan, Ta-Chien; SHIGEMATSU Mika; Hwang, Jing-Shiang

    2015-01-01

    Background Epidemics of hand, foot and mouth disease (HFMD) among children in East Asia have been a serious annual public health problem. Previous studies in China and island-type territories in East Asia showed that the onset of HFMD epidemics evolved with increased latitude. Based on the natural characteristics of the epidemics, we developed regression models for issuing aberration alerts and predictions. Methods HFMD sentinel surveillance data from 2008 to 2014 in Japan are used in this st...

  16. Reward system and temporal pole contributions to affective evaluation during a first person shooter video game

    Directory of Open Access Journals (Sweden)

    Weber René

    2011-07-01

    Full Text Available Abstract Background Violent content in video games evokes many concerns but there is little research concerning its rewarding aspects. It was demonstrated that playing a video game leads to striatal dopamine release. It is unclear, however, which aspects of the game cause this reward system activation and if violent content contributes to it. We combined functional Magnetic Resonance Imaging (fMRI with individual affect measures to address the neuronal correlates of violence in a video game. Results Thirteen male German volunteers played a first-person shooter game (Tactical Ops: Assault on Terror during fMRI measurement. We defined success as eliminating opponents, and failure as being eliminated themselves. Affect was measured directly before and after game play using the Positive and Negative Affect Schedule (PANAS. Failure and success events evoked increased activity in visual cortex but only failure decreased activity in orbitofrontal cortex and caudate nucleus. A negative correlation between negative affect and responses to failure was evident in the right temporal pole (rTP. Conclusions The deactivation of the caudate nucleus during failure is in accordance with its role in reward-prediction error: it occurred whenever subject missed an expected reward (being eliminated rather than eliminating the opponent. We found no indication that violence events were directly rewarding for the players. We addressed subjective evaluations of affect change due to gameplay to study the reward system. Subjects reporting greater negative affect after playing the game had less rTP activity associated with failure. The rTP may therefore be involved in evaluating the failure events in a social context, to regulate the players' mood.

  17. Effort-reward imbalance and burnout among German nurses in medical compared with psychiatric hospital settings.

    Science.gov (United States)

    Schulz, M; Damkröger, A; Heins, C; Wehlitz, L; Löhr, M; Driessen, M; Behrens, J; Wingenfeld, K

    2009-04-01

    The aim of this study was to investigate whether nurses' efforts and rewards, as well as the effort-reward imbalance (ERI) and burnout, differ between subjects working in psychiatric vs. medical hospitals and between nurses under education and examined nurses respectively. Furthermore, the relationship between ERI and burnout was evaluated. Nursing is associated with high levels of emotional strain and heavy workloads. Burnout and a negative ERI can result in high absenteeism and turnover and have been identified as reasons why nurses leave their profession. In the last decade, working conditions of the nursing profession have changed in Germany, but somatic and psychiatric hospitals developed in different ways. This development may lead to different profiles. A sample of 389 nurses (78.8% female) in four German hospitals was investigated. A total of 147 nurses worked in psychiatric hospitals and 236 nurses worked in medical (somatic) hospitals. Fifty participants were still under education. The Effort-Reward Imbalance Inventory measures effort, reward and overcommitment at job and provides an imbalance score between effort and reward. The Maslach Burnout Inventory with the subscales, emotional exhaustion, lack of accomplishment and depersonalization, was also used. Nurses working in medical hospitals reported more burnout and had higher ERI scores. Subjects under education were comparable to examined nurses in terms of burnout but had lower ERI scores. Multiple regression analyses showed all ERI scales to be significant predictors for emotional exhaustion, while age, field of work and educational status further predict effort or ERI respectively. At present, the working situation of nurses in different settings appears to be characterized by a perceived imbalance of effort and reward and is associated with a high risk of developing burnout symptoms.

  18. Functional Relevance of Different Basal Ganglia Pathways Investigated in a Spiking Model with Reward Dependent Plasticity.

    Science.gov (United States)

    Berthet, Pierre; Lindahl, Mikael; Tully, Philip J; Hellgren-Kotaleski, Jeanette; Lansner, Anders

    2016-01-01

    The brain enables animals to behaviorally adapt in order to survive in a complex and dynamic environment, but how reward-oriented behaviors are achieved and computed by its underlying neural circuitry is an open question. To address this concern, we have developed a spiking model of the basal ganglia (BG) that learns to dis-inhibit the action leading to a reward despite ongoing changes in the reward schedule. The architecture of the network features the two pathways commonly described in BG, the direct (denoted D1) and the indirect (denoted D2) pathway, as well as a loop involving striatum and the dopaminergic system. The activity of these dopaminergic neurons conveys the reward prediction error (RPE), which determines the magnitude of synaptic plasticity within the different pathways. All plastic connections implement a versatile four-factor learning rule derived from Bayesian inference that depends upon pre- and post-synaptic activity, receptor type, and dopamine level. Synaptic weight updates occur in the D1 or D2 pathways depending on the sign of the RPE, and an efference copy informs upstream nuclei about the action selected. We demonstrate successful performance of the system in a multiple-choice learning task with a transiently changing reward schedule. We simulate lesioning of the various pathways and show that a condition without the D2 pathway fares worse than one without D1. Additionally, we simulate the degeneration observed in Parkinson's disease (PD) by decreasing the number of dopaminergic neurons during learning. The results suggest that the D1 pathway impairment in PD might have been overlooked. Furthermore, an analysis of the alterations in the synaptic weights shows that using the absolute reward value instead of the RPE leads to a larger change in D1. PMID:27493625

  19. Cellular origin of prognostic chromosomal aberrations in AML patients

    DEFF Research Database (Denmark)

    Mora-Jensen, H.; Jendholm, J.; Rapin, N.;

    2015-01-01

    karyotype have demonstrated the presence of prognostic driver aberrations (that is, NPM1, FLT3-ITD and FLT3-TKD) in committed HPCs but not in multipotent HSCs. However, the HSC populations lacking the prognostic driver aberrations contained preleukemic clones harboring a series of recurrent molecular...... aberrations that were present in the fully transformed committed HPCs together with the prognostic driver aberration. Adding to this vast heterogeneity and complexity of AML genomes and their clonal evolution, a recent study of a murine AML model demonstrated that t(9;11) AML originating from HSCs responded...

  20. Chromosome aberration analysis for biological dosimetry: a review

    International Nuclear Information System (INIS)

    Among various biological dosimetry techniques, dicentric chromosome aberration method appears to be the method of choice in analysing accidental radiation exposure in most of the laboratories. The major advantage of this method is its sensitivity as the number of dicentric chromosomes present in control population is too small and more importantly radiation induces mainly dicentric chromosome aberration among unstable aberration. This report brings out the historical development of various cytogenetic methods, the basic structure of DNA, chromosomes and different forms of chromosome aberrations. It also highlights the construction of dose-response curve for dicentric chromosome and its use in the estimation of radiation dose. (author)

  1. The taxonomic structure of rewards as work outcomes

    Directory of Open Access Journals (Sweden)

    W. I. Myburgh

    1986-04-01

    Full Text Available Contemporary cognitive process theories of motivation, specifically expectancy/valence theory, use rewards as an important work outcome variable, to explain and predict the interaction processes between motivation and other variables. To date, relatively little attention has been given to define and describe work outcomes empirically. Use is currently made of a hierarchical extrinsic/intrinsic structure, representing outcomes grouped together with universal valence and related to each other. This investigation aims to investigate this taxonomy. Opsomming In kontemporere kognitiewe prosesteoriee van motivering en veral verwagtingsteorie, word verwys na werksuitkomstes (vergoeding as 'n belangrike veranderlike in die verklaring en voorspelling van die interaksieprosesse tussen ander motiveringsfaktore. Tot dusver is relatiefmin aandag bestee om werksuitkomstes empiries te ontleed en te beskryfen teoretici gebruik tans 'n hierargiese struktuur om, uitkomstes wat oor universiele valensie beskik en onderling met mekaar verband hou, te groepeer in ekstrinsieke en intrinsieke uitkomstes of vergoedings. In hierdie ondersoek word gepoog om hierdie taksonomie empirics na te vors.

  2. Aberrant water homeostasis detected by stable isotope analysis.

    Directory of Open Access Journals (Sweden)

    Shannon P O'Grady

    Full Text Available While isotopes are frequently used as tracers in investigations of disease physiology (i.e., 14C labeled glucose, few studies have examined the impact that disease, and disease-related alterations in metabolism, may have on stable isotope ratios at natural abundance levels. The isotopic composition of body water is heavily influenced by water metabolism and dietary patterns and may provide a platform for disease detection. By utilizing a model of streptozotocin (STZ-induced diabetes as an index case of aberrant water homeostasis, we demonstrate that untreated diabetes mellitus results in distinct combinations, or signatures, of the hydrogen (delta2H and oxygen (delta18O isotope ratios in body water. Additionally, we show that the delta2H and delta18O values of body water are correlated with increased water flux, suggesting altered blood osmolality, due to hyperglycemia, as the mechanism behind this correlation. Further, we present a mathematical model describing the impact of water flux on the isotopic composition of body water and compare model predicted values with actual values. These data highlight the importance of factors such as water flux and energy expenditure on predictive models of body water and additionally provide a framework for using naturally occurring stable isotope ratios to monitor diseases that impact water homeostasis.

  3. Trust versus paranoia: abnormal response to social reward in psychotic illness.

    Science.gov (United States)

    Gromann, Paula M; Heslenfeld, Dirk J; Fett, Anne-Kathrin; Joyce, Dan W; Shergill, Sukhi S; Krabbendam, Lydia

    2013-06-01

    Psychosis is characterized by an elementary lack of trust in others. Trust is an inherently rewarding aspect of successful social interactions and can be examined using neuroeconomic paradigms. This study was aimed at investigating the underlying neural basis of diminished trust in psychosis. Functional magnetic resonance imaging data were acquired from 20 patients with psychosis and 20 healthy control subjects during two multiple-round trust games; one with a cooperative and the other with a deceptive counterpart. An a priori region of interest analysis of the right caudate nucleus, right temporo-parietal junction and medial prefrontal cortex was performed focusing on the repayment phase of the games. For regions with group differences, correlations were calculated between the haemodynamic signal change, behavioural outcomes and patients' symptoms. Patients demonstrated reduced levels of baseline trust, indicated by smaller initial investments. For the caudate nucleus, there was a significant game × group interaction, with controls showing stronger activation for the cooperative game than patients, and no differences for the deceptive game. The temporo-parietal junction was significantly more activated in control subjects than in patients during cooperative and deceptive repayments. There were no significant group differences for the medial prefrontal cortex. Patients' reduced activation within the caudate nucleus correlated negatively with paranoia scores. The temporo-parietal junction signal was positively correlated with positive symptom scores during deceptive repayments. Reduced sensitivity to social reward may explain the basic loss of trust in psychosis, mediated by aberrant activation of the caudate nucleus and the temporo-parietal junction.

  4. Rewarding Sequential Innovators: Patents Prizes and Buyouts

    OpenAIRE

    Matthew Mitchell

    2000-01-01

    This paper presents a model of cumulative innovation where firms are heterogeneous in their research ability. We study the optimal reward policy when the quality of the ideas and their subsequent development effort are private information. The optimal assignment of property rights must counterbalance the incentives of current and future innovators. The resulting mechanism resembles a menu of patents that, contrary to the existing literature, have infinite duration and fixed scope, where the l...

  5. Rewarding Sequential Innovators: Prizes, Patents, and Buyouts

    OpenAIRE

    Hugo Hopenhayn; Gerard Llobet; Matthew Mitchell

    2006-01-01

    This paper presents a model of cumulative innovation in which firms are heterogeneous in their research ability. We study the optimal reward policy when the quality of the ideas and their subsequent development effort are private information. Monopoly power is a scarce resource to be allocated across innovators who arrive at various times. The optimal assignment of property rights must counterbalance the incentives of current and future innovators. The resulting mechanism resembles a menu of ...

  6. The influence of rewards on employee motivation

    OpenAIRE

    Ščigulinská, Erika

    2013-01-01

    The main topic of this thesis is the impact of reward system on the motivation of employees, which is one of the most important tools for human resources management. The main objective of this paper is the description, analysis and evaluation of the impact of this system on the motivation of employees in the selected company and the proposal of changes in this system. The theoretical part includes a literature review that has been prepared for the purpose of outlining definitions and ...

  7. Individual Heterogeneity in Punishment and Reward

    OpenAIRE

    Leibbrandt, Andreas; López Pérez, Raúl

    2011-01-01

    We design experiments to study the extent to which individuals differ in their motivations behind costly punishment and rewarding. Our findings qualify existing evidence and suggest that the largest fraction of players is motivated by a mixture of both inequity-aversion and reciprocity, while smaller fractions are primarily motivated by pure inequity-aversion and pure reciprocity. These findings provide new insights into the literature on other-regarding preferences and may help to reconcile ...

  8. Rewards and Copyrights with Hidden Information

    OpenAIRE

    Sandén, Klas

    2008-01-01

    This paper makes a theoretical contribution by investigating how the optimal copyright legislation depend on hidden information. A mixed hidden action – hidden information model is used. The regulator neither observes the type of firm nor the quality choice of firms. The paper provides no evidence that hidden information can motivate a copyright legislation. In fact it shows that the optimal policy, with asymmetric information, is a reward system that is second best.

  9. Neurobiologic Processes in Drug Reward and Addiction

    OpenAIRE

    Adinoff, Bryon

    2004-01-01

    Neurophysiologic processes underlie the uncontrolled, compulsive behaviors defining the addicted state. These “hard-wired” changes in the brain are considered critical for the transition from casual to addictive drug use. This review of preclinical and clinical (primarily neuroimaging) studies will describe how the delineation between pleasure, reward, and addiction has evolved as our understanding of the biologic mechanisms underlying these processes has progressed. Although the mesolimbic d...

  10. Strategies for reward-based crowdfunding campaigns

    OpenAIRE

    Kraus, Sascha; Richter, Christian; Brem, Alexander; Chang, M.-L.; Cheng, C. -F.

    2016-01-01

    Crowdfunding represents an alternative way of funding entrepreneurial ventures – and is attracting a high amount of interest in research as well as practice. Against this back- ground, this paper analyzes reward-based crowdfunding campaign strategies and their communication tools. To do this, 446 crowdfunding projects were gathered and empirically analyzed. Three different paths of successful crowdfunding projects could be identified and are described in detail. Practical implications of crow...

  11. Aberrant angiogenesis: The gateway to diabetic complications

    Directory of Open Access Journals (Sweden)

    Sunil K Kota

    2012-01-01

    Full Text Available Diabetes Mellitus is a metabolic cum vascular syndrome with resultant abnormalities in both micro- and macrovasculature. The adverse long-term effects of diabetes mellitus have been described to involve many organ systems. Apart from hyperglycemia, abnormalities of angiogenesis may cause or contribute toward many of the clinical manifestations of diabetes. These are implicated in the pathogenesis of vascular abnormalities of the retina, kidneys, and fetus, impaired wound healing, increased risk of rejection of transplanted organs, and impaired formation of coronary collaterals. A perplexing feature of the aberrant angiogenesis is that excessive and insufficient angiogenesis can occur in different organs in the same individual. The current article hereby reviews the molecular mechanisms including abnormalities in growth factors, cytokines, and metabolic derangements, clinical implications, and therapeutic options of dealing with abnormal angiogenesis in diabetes.

  12. Environmental TEM in an Aberration Corrected Microscope

    DEFF Research Database (Denmark)

    Hansen, Thomas Willum; Wagner, Jakob Birkedal

    The increasing use of environmental transmission electron microscopy (ETEM) in materials science provides exciting new possibilities for investigating chemical reactions and understanding both the interaction of fast electrons with gas molecules and the effect of the presence of gas on high......‐resolution imaging. A gaseous atmosphere in the pole‐piece gap of the objective lens of the microscope alters both the incoming electron wave prior to interaction with the sample and the outgoing wave below the sample. Whereas conventional TEM samples are usually thin (below 10‐20 nm), the gas in the environmental......‐of‐the‐art aberration corrected TEMs provide electron micrographs with high spatial resolution. The apparent interpretability of such images encourages microscopists to analyze data more quantitatively. Such an analysis requires a detailed knowledge of the entire path and propagation of the electrons along...

  13. Rewarding safe behavior: strategies for change.

    Science.gov (United States)

    Fell-Carlson, Deborah

    2004-12-01

    Effective, sustainable safety incentives are integrated into a performance management system designed to encourage long term behavior change. Effective incentive program design integrates the fundamental considerations of compensation (i.e., valence, instrumentality, expectancy, equity) with behavior change theory in the context of a strong merit based performance management system. Clear expectations are established and communicated from the time applicants apply for the position. Feedback and social recognition are leveraged and used as rewards, in addition to financial incentives built into the compensation system and offered periodically as short term incentives. Rewards are tied to specific objectives intended to influence specific behaviors. Objectives are designed to challenge employees, providing opportunities to grow and enhance their sense of belonging. Safety contests and other awareness activities are most effective when used to focus safety improvement efforts on specific behaviors or processes, for a predetermined period of time, in the context of a comprehensive safety system. Safety incentive programs designed around injury outcomes can result in unintended, and undesirable, consequences. Safety performance can be leveraged by integrating safety into corporate cultural indicators. Symbols of safety remind employees of corporate safety goals and objectives (e.g., posted safety goals and integrating safety into corporate mission and vision). Rites and ceremonies provide opportunities for social recognition and feedback and demonstrate safety is a corporate value. Feedback opportunities, rewards, and social recognition all provide content for corporate legends, those stories embellished over time, that punctuate the overall system of organizational norms, and provide examples of the organizational safety culture in action.

  14. GABAA receptor drugs and neuronal plasticity in reward and aversion: focus on the ventral tegmental area

    Directory of Open Access Journals (Sweden)

    Elena eVashchinkina

    2014-11-01

    Full Text Available GABAA receptors are the main fast inhibitory neurotransmitter receptors in the mammalian brain, and targets for many clinically important drugs widely used in the treatment of anxiety disorders, insomnia and in anesthesia. Nonetheless, there are significant risks associated with the long-term use of these drugs particularly related to development of tolerance and addiction. Addictive mechanisms of GABAA receptor drugs are poorly known, but recent findings suggest that those drugs may induce aberrant neuroadaptations in the brain reward circuitry. Recently, benzodiazepines, acting on synaptic GABAA receptors, and modulators of extrasynaptic GABAA receptors (THIP and neurosteroids have been found to induce plasticity in the ventral tegmental area (VTA dopamine neurons and their main target projections. Furthermore, depending whether synaptic or extrasynaptic GABAA receptor populations are activated, the behavioral outcome of repeated administration seems to correlate with rewarding or aversive behavioral responses, respectively. The VTA dopamine neurons project to forebrain centers such as the nucleus accumbens and medial prefrontal cortex, and receive afferent projections from these brain regions and especially from the extended amygdala and lateral habenula, forming the major part of the reward and aversion circuitry. Both synaptic and extrasynaptic GABAA drugs inhibit the VTA GABAergic interneurons, thus activating the VTA DA neurons by disinhibition and this way inducing glutamatergic synaptic plasticity. However, the GABAA drugs failed to alter synaptic spine numbers as studied from Golgi-Cox-stained VTA dendrites. Since the GABAergic drugs are known to depress the brain metabolism and gene expression, their likely way of inducing neuroplasticity in mature neurons is by disinhibiting the principal neurons, which remains to be rigorously tested for a number of clinically important anxiolytics, sedatives and anesthetics in different parts of

  15. Extinction Can Reduce the Impact of Reward Cues on Reward-Seeking Behavior.

    Science.gov (United States)

    Lovibond, Peter F; Satkunarajah, Michelle; Colagiuri, Ben

    2015-07-01

    Reward-associated cues are thought to promote relapse after treatment of appetitive disorders such as drug-taking, binge eating, and gambling. This process has been modelled in the laboratory using a Pavlovian-instrumental transfer (PIT) design in which Pavlovian cues facilitate instrumental reward-directed action. Attempts to reduce facilitation by cue exposure (extinction) have produced mixed results. We tested the effect of extinction in a recently developed PIT procedure using a natural reward, chocolate, in human participants. Facilitation of instrumental responding was only observed in participants who were aware of the Pavlovian contingencies. Pavlovian extinction successfully reduced, but did not completely eliminate, expectancy of reward and facilitation of instrumental responding. The results indicate that exposure can reduce the ability of cues to promote reward-directed behavior in the laboratory. However, the residual potency of extinguished cues means that additional active strategies may be needed in clinical practice to train patients to resist the impact of these cues in their environment.

  16. Developmental changes in the reward positivity: an electrophysiological trajectory of reward processing.

    Science.gov (United States)

    Lukie, Carmen N; Montazer-Hojat, Somayyeh; Holroyd, Clay B

    2014-07-01

    Children and adolescents learn to regulate their behavior by utilizing feedback from the environment but exactly how this ability develops remains unclear. To investigate this question, we recorded the event-related brain potential (ERP) from children (8-13 years), adolescents (14-17 years) and young adults (18-23 years) while they navigated a "virtual maze" in pursuit of monetary rewards. The amplitude of the reward positivity, an ERP component elicited by feedback stimuli, was evaluated for each age group. A current theory suggests the reward positivity is produced by the impact of reinforcement learning signals carried by the midbrain dopamine system on anterior cingulate cortex, which utilizes the signals to learn and execute extended behaviors. We found that the three groups produced a reward positivity of comparable size despite relatively longer ERP component latencies for the children, suggesting that the reward processing system reaches maturity early in development. We propose that early development of the midbrain dopamine system facilitates the development of extended goal-directed behaviors in anterior cingulate cortex. PMID:24879113

  17. Developmental changes in the reward positivity: An electrophysiological trajectory of reward processing

    Directory of Open Access Journals (Sweden)

    Carmen N. Lukie

    2014-07-01

    Full Text Available Children and adolescents learn to regulate their behavior by utilizing feedback from the environment but exactly how this ability develops remains unclear. To investigate this question, we recorded the event-related brain potential (ERP from children (8–13 years, adolescents (14–17 years and young adults (18–23 years while they navigated a “virtual maze” in pursuit of monetary rewards. The amplitude of the reward positivity, an ERP component elicited by feedback stimuli, was evaluated for each age group. A current theory suggests the reward positivity is produced by the impact of reinforcement learning signals carried by the midbrain dopamine system on anterior cingulate cortex, which utilizes the signals to learn and execute extended behaviors. We found that the three groups produced a reward positivity of comparable size despite relatively longer ERP component latencies for the children, suggesting that the reward processing system reaches maturity early in development. We propose that early development of the midbrain dopamine system facilitates the development of extended goal-directed behaviors in anterior cingulate cortex.

  18. Developmental changes in the reward positivity: an electrophysiological trajectory of reward processing.

    Science.gov (United States)

    Lukie, Carmen N; Montazer-Hojat, Somayyeh; Holroyd, Clay B

    2014-07-01

    Children and adolescents learn to regulate their behavior by utilizing feedback from the environment but exactly how this ability develops remains unclear. To investigate this question, we recorded the event-related brain potential (ERP) from children (8-13 years), adolescents (14-17 years) and young adults (18-23 years) while they navigated a "virtual maze" in pursuit of monetary rewards. The amplitude of the reward positivity, an ERP component elicited by feedback stimuli, was evaluated for each age group. A current theory suggests the reward positivity is produced by the impact of reinforcement learning signals carried by the midbrain dopamine system on anterior cingulate cortex, which utilizes the signals to learn and execute extended behaviors. We found that the three groups produced a reward positivity of comparable size despite relatively longer ERP component latencies for the children, suggesting that the reward processing system reaches maturity early in development. We propose that early development of the midbrain dopamine system facilitates the development of extended goal-directed behaviors in anterior cingulate cortex.

  19. Deciphering causal and statistical relations of molecular aberrations and gene expressions in NCI-60 cell lines

    Directory of Open Access Journals (Sweden)

    Li Shyh-Dar

    2011-11-01

    Full Text Available Abstract Background Cancer cells harbor a large number of molecular alterations such as mutations, amplifications and deletions on DNA sequences and epigenetic changes on DNA methylations. These aberrations may dysregulate gene expressions, which in turn drive the malignancy of tumors. Deciphering the causal and statistical relations of molecular aberrations and gene expressions is critical for understanding the molecular mechanisms of clinical phenotypes. Results In this work, we proposed a computational method to reconstruct association modules containing driver aberrations, passenger mRNA or microRNA expressions, and putative regulators that mediate the effects from drivers to passengers. By applying the module-finding algorithm to the integrated datasets of NCI-60 cancer cell lines, we found that gene expressions were driven by diverse molecular aberrations including chromosomal segments' copy number variations, gene mutations and DNA methylations, microRNA expressions, and the expressions of transcription factors. In-silico validation indicated that passenger genes were enriched with the regulator binding motifs, functional categories or pathways where the drivers were involved, and co-citations with the driver/regulator genes. Moreover, 6 of 11 predicted MYB targets were down-regulated in an MYB-siRNA treated leukemia cell line. In addition, microRNA expressions were driven by distinct mechanisms from mRNA expressions. Conclusions The results provide rich mechanistic information regarding molecular aberrations and gene expressions in cancer genomes. This kind of integrative analysis will become an important tool for the diagnosis and treatment of cancer in the era of personalized medicine.

  20. Statistical virtual eye model based on wavefront aberration

    OpenAIRE

    Wang, Jie-Mei; Liu, Chun-Ling; Luo, Yi-Ning; Liu, Yi-Guang; Hu, Bing-Jie

    2012-01-01

    Wavefront aberration affects the quality of retinal image directly. This paper reviews the representation and reconstruction of wavefront aberration, as well as the construction of virtual eye model based on Zernike polynomial coefficients. In addition, the promising prospect of virtual eye model is emphasized.

  1. Fifth-order aberrations in magnetic quadrupole-octupole systems

    International Nuclear Information System (INIS)

    Explicit integral expressions are given for the fifth-order geometrical aberration coefficients in rectilinear magnetic quadrupole-octupole systems used for the transport of nonrelativistic charged particle beams. The numerical values of the fifth-order geometrical aberration coefficients for a rare earth cobalt (REC) quadrupole doublet are given as an example. 26 refs., 5 figs., 4 tabs

  2. Expressions for third-order aberration theory for holographic images

    Indian Academy of Sciences (India)

    S K Tripathy; S Ananda Rao

    2003-01-01

    Expressions for third-order aberration in the reconstructed wave front of point objects are established by Meier. But Smith, Neil Mohon, Sweatt independently reported that their results differ from that of Meier. We found that coefficients for spherical aberration, astigmatism, tally with Meier’s while coefficients for distortion and coma differ.

  3. Who, what, where, when (and maybe even why)? How the experience of sexual reward connects sexual desire, preference, and performance.

    Science.gov (United States)

    Pfaus, James G; Kippin, Tod E; Coria-Avila, Genaro A; Gelez, Hélène; Afonso, Veronica M; Ismail, Nafissa; Parada, Mayte

    2012-02-01

    Although sexual behavior is controlled by hormonal and neurochemical actions in the brain, sexual experience induces a degree of plasticity that allows animals to form instrumental and Pavlovian associations that predict sexual outcomes, thereby directing the strength of sexual responding. This review describes how experience with sexual reward strengthens the development of sexual behavior and induces sexually-conditioned place and partner preferences in rats. In both male and female rats, early sexual experience with partners scented with a neutral or even noxious odor induces a preference for scented partners in subsequent choice tests. Those preferences can also be induced by injections of morphine or oxytocin paired with a male rat's first exposure to scented females, indicating that pharmacological activation of opioid or oxytocin receptors can "stand in" for the sexual reward-related neurochemical processes normally activated by sexual stimulation. Conversely, conditioned place or partner preferences can be blocked by the opioid receptor antagonist naloxone. A somatosensory cue (a rodent jacket) paired with sexual reward comes to elicit sexual arousal in male rats, such that paired rats with the jacket off show dramatic copulatory deficits. We propose that endogenous opioid activation forms the basis of sexual reward, which also sensitizes hypothalamic and mesolimbic dopamine systems in the presence of cues that predict sexual reward. Those systems act to focus attention on, and activate goal-directed behavior toward, reward-related stimuli. Thus, a critical period exists during an individual's early sexual experience that creates a "love map" or Gestalt of features, movements, feelings, and interpersonal interactions associated with sexual reward.

  4. Differentiating neural reward responsiveness in autism versus ADHD

    Directory of Open Access Journals (Sweden)

    Gregor Kohls

    2014-10-01

    Full Text Available Although attention deficit hyperactivity disorders (ADHD and autism spectrum disorders (ASD share certain neurocognitive characteristics, it has been hypothesized to differentiate the two disorders based on their brain's reward responsiveness to either social or monetary reward. Thus, the present fMRI study investigated neural activation in response to both reward types in age and IQ-matched boys with ADHD versus ASD relative to typically controls (TDC. A significant group by reward type interaction effect emerged in the ventral striatum with greater activation to monetary versus social reward only in TDC, whereas subjects with ADHD responded equally strong to both reward types, and subjects with ASD showed low striatal reactivity across both reward conditions. Moreover, disorder-specific neural abnormalities were revealed, including medial prefrontal hyperactivation in response to social reward in ADHD versus ventral striatal hypoactivation in response to monetary reward in ASD. Shared dysfunction was characterized by fronto-striato-parietal hypoactivation in both clinical groups when money was at stake. Interestingly, lower neural activation within parietal circuitry was associated with higher autistic traits across the entire study sample. In sum, the present findings concur with the assumption that both ASD and ADHD display distinct and shared neural dysfunction in response to reward.

  5. A non-reward attractor theory of depression.

    Science.gov (United States)

    Rolls, Edmund T

    2016-09-01

    A non-reward attractor theory of depression is proposed based on the operation of the lateral orbitofrontal cortex and supracallosal cingulate cortex. The orbitofrontal cortex contains error neurons that respond to non-reward for many seconds in an attractor state that maintains a memory of the non-reward. The human lateral orbitofrontal cortex is activated by non-reward during reward reversal, and by a signal to stop a response that is now incorrect. Damage to the human orbitofrontal cortex impairs reward reversal learning. Not receiving reward can produce depression. The theory proposed is that in depression, this lateral orbitofrontal cortex non-reward system is more easily triggered, and maintains its attractor-related firing for longer. This triggers negative cognitive states, which in turn have positive feedback top-down effects on the orbitofrontal cortex non-reward system. Treatments for depression, including ketamine, may act in part by quashing this attractor. The mania of bipolar disorder is hypothesized to be associated with oversensitivity and overactivity in the reciprocally related reward system in the medial orbitofrontal cortex and pregenual cingulate cortex. PMID:27181908

  6. Influence of supraliminal reward information on unconsciously triggered response inhibition.

    Science.gov (United States)

    Diao, Liuting; Ding, Cody; Qi, Senqing; Zeng, Qinghong; Huang, Bo; Xu, Mengsi; Fan, Lingxia; Yang, Dong

    2014-01-01

    Although executive functions (e.g., response inhibition) are often thought to interact consciously with reward, recent studies have demonstrated that they can also be triggered by unconscious stimuli. Further research has suggested a close relationship between consciously and unconsciously triggered response inhibition. To date, however, the effect of reward on unconsciously triggered response inhibition has not been explored. To address this issue, participants in this study performed runs of a modified Go/No-Go task during which they were exposed to both high and low value monetary rewards presented both supraliminally and subliminally. Participants were informed that they would earn the reward displayed if they responded correctly to each trial of the run. According to the results, when rewards were presented supraliminally, a greater unconsciously triggered response inhibition was observed for high-value rewards than for low-value rewards. In contrast, when rewards were presented subliminally, no enhanced unconsciously triggered response inhibition was observed. Results revealed that supraliminal and subliminal rewards have distinct effects on unconsciously triggered response inhibition. These findings have important implications for extending our understanding of the relationship between reward and response inhibition. PMID:25268227

  7. Chromosome aberration analysis based on a beta-binomial distribution

    International Nuclear Information System (INIS)

    Analyses carried out here generalized on earlier studies of chromosomal aberrations in the populations of Hiroshima and Nagasaki, by allowing extra-binomial variation in aberrant cell counts corresponding to within-subject correlations in cell aberrations. Strong within-subject correlations were detected with corresponding standard errors for the average number of aberrant cells that were often substantially larger than was previously assumed. The extra-binomial variation is accomodated in the analysis in the present report, as described in the section on dose-response models, by using a beta-binomial (B-B) variance structure. It is emphasized that we have generally satisfactory agreement between the observed and the B-B fitted frequencies by city-dose category. The chromosomal aberration data considered here are not extensive enough to allow a precise discrimination between competing dose-response models. A quadratic gamma ray and linear neutron model, however, most closely fits the chromosome data. (author)

  8. Brown's transport up to third order aberration by artificial intelligence

    International Nuclear Information System (INIS)

    Brown's TRANSPORT is a first and second order matrix multiplication computer program intended for the design of accelerator beam transport systems, neglecting the third order aberration. Recently a new method was developed to derive analytically any order aberration coefficients of general charged particle optic system, applicable to any practical systems, such as accelerators, electron microscopes, lithographs, including those unknown systems yet to be invented. An artificial intelligence program in Turbo Prolog was implemented on IBM-PC 286 or 386 machine to generate automatically the analytical expression of any order aberration coefficients of general charged particle optic system. Based on this new method and technique, Brown's TRANSPORT is extended beyond the second order aberration effect by artificial intelligence, outputting automatically all the analytical expressions up to the third order aberration coefficients

  9. Decisions in Motion: Decision Dynamics during Intertemporal Choice reflect Subjective Evaluation of Delayed Rewards.

    Science.gov (United States)

    O'Hora, Denis; Carey, Rachel; Kervick, Aoife; Crowley, David; Dabrowski, Maciej

    2016-01-01

    People tend to discount rewards or losses that occur in the future. Such delay discounting has been linked to many behavioral and health problems, since people choose smaller short-term gains over greater long-term gains. We investigated whether the effect of delays on the subjective value of rewards is expressed in how people move when they make choices. Over 600 patrons of the RISK LAB exhibition hosted by the Science Gallery Dublin(TM) played a short computer game in which they used a computer mouse to choose between amounts of money at various delays. Typical discounting effects were observed and decision dynamics indicated that choosing smaller short-term rewards became easier (i.e., shorter response times, tighter trajectories, less vacillation) as the delays until later rewards increased. Based on a sequence of choices, subjective values of delayed outcomes were estimated and decision dynamics during initial choices predicted these values. Decision dynamics are affected by subjective values of available options and thus provide a means to estimate such values.

  10. Cannabinoid modulation of drug reward and the implications of marijuana legalization.

    Science.gov (United States)

    Covey, Dan P; Wenzel, Jennifer M; Cheer, Joseph F

    2015-12-01

    Marijuana is the most popular illegal drug worldwide. Recent trends indicate that this may soon change; not due to decreased marijuana use, but to an amendment in marijuana's illegal status. The cannabinoid type 1 (CB1) receptor mediates marijuana's psychoactive and reinforcing properties. CB1 receptors are also part of the brain endocannabinoid (eCB) system and support numerous forms of learning and memory, including the conditioned reinforcing properties of cues predicting reward or punishment. This is accomplished via eCB-dependent alterations in mesolimbic dopamine function, which plays an obligatory role in reward learning and motivation. Presynaptic CB1 receptors control midbrain dopamine neuron activity and thereby shape phasic dopamine release in target regions, particularly the nucleus accumbens (NAc). By also regulating synaptic input to the NAc, CB1 receptors modulate NAc output onto downstream neurons of the basal ganglia motor circuit, and thereby support goal-directed behaviors. Abused drugs promote short- and long-term adaptations in eCB-regulation of mesolimbic dopamine function, and thereby hijack neural systems related to the pursuit of rewards to promote drug abuse. By pharmacologically targeting the CB1 receptors, marijuana has preferential access to this neuronal system and can potently alter eCB-dependent processing of reward-related stimuli. As marijuana legalization progresses, greater access to this drug should increase the utility of marijuana as a research tool to better understand the eCB system, which has the potential to advance cannabinoid-based treatments for drug addiction. PMID:25463025

  11. Cannabinoid modulation of drug reward and the implications of marijuana legalization.

    Science.gov (United States)

    Covey, Dan P; Wenzel, Jennifer M; Cheer, Joseph F

    2015-12-01

    Marijuana is the most popular illegal drug worldwide. Recent trends indicate that this may soon change; not due to decreased marijuana use, but to an amendment in marijuana's illegal status. The cannabinoid type 1 (CB1) receptor mediates marijuana's psychoactive and reinforcing properties. CB1 receptors are also part of the brain endocannabinoid (eCB) system and support numerous forms of learning and memory, including the conditioned reinforcing properties of cues predicting reward or punishment. This is accomplished via eCB-dependent alterations in mesolimbic dopamine function, which plays an obligatory role in reward learning and motivation. Presynaptic CB1 receptors control midbrain dopamine neuron activity and thereby shape phasic dopamine release in target regions, particularly the nucleus accumbens (NAc). By also regulating synaptic input to the NAc, CB1 receptors modulate NAc output onto downstream neurons of the basal ganglia motor circuit, and thereby support goal-directed behaviors. Abused drugs promote short- and long-term adaptations in eCB-regulation of mesolimbic dopamine function, and thereby hijack neural systems related to the pursuit of rewards to promote drug abuse. By pharmacologically targeting the CB1 receptors, marijuana has preferential access to this neuronal system and can potently alter eCB-dependent processing of reward-related stimuli. As marijuana legalization progresses, greater access to this drug should increase the utility of marijuana as a research tool to better understand the eCB system, which has the potential to advance cannabinoid-based treatments for drug addiction.

  12. Examination of cocaine dose in a preclinical model of natural reward devaluation by cocaine

    OpenAIRE

    Green, Jennifer L; Dykstra, Linda A.; Carelli, Regina M.

    2015-01-01

    In a preclinical model of natural reward devaluation by cocaine, taste cues elicit aversive taste reactivity when they predict impending but delayed cocaine self-administration. Here, we investigated this negative affective state as a function of cocaine dose. Male, Sprague-Dawley rats were given 45 brief intraoral infusions of a 0.15% saccharin solution prior to 2 h cocaine self-administration for 14 days. Rats were video recorded; taste reactivity and patterns of self-administration were qu...

  13. Trade-off between travel distance and prioritization of high-reward sites in traplining bumblebees

    OpenAIRE

    Lihoreau, Mathieu; Chittka, Lars; Raine, Nigel

    2011-01-01

    1. Animals exploiting renewable resource patches are faced with complex multi-location routing problems. In many species, individuals visit foraging patches in predictable sequences called traplines. However, whether and how they optimize their routes remains poorly understood. 2. In this study, we demonstrate that traplining bumblebees (Bombus terrestris) make a trade-off between minimizing travel distance and prioritizing the most rewarding feeding locations. 3. Individual bees trained to...

  14. Extrinsic Rewards Diminish Costly Sharing in 3-Year-Olds.

    Science.gov (United States)

    Ulber, Julia; Hamann, Katharina; Tomasello, Michael

    2016-07-01

    Two studies investigated the influence of external rewards and social praise in young children's fairness-related behavior. The motivation of ninety-six 3-year-olds' to equalize unfair resource allocations was measured in three scenarios (collaboration, windfall, and dictator game) following three different treatments (material reward, verbal praise, and neutral response). In all scenarios, children's willingness to engage in costly sharing was negatively influenced when they had received a reward for equal sharing during treatment than when they had received praise or no reward. The negative effect of material rewards was not due to subjects responding in kind to their partner's termination of rewards. These results provide new evidence for the intrinsic motivation of prosociality-in this case, costly sharing behavior-in preschool children. PMID:27084549

  15. Effects of monetary reward and punishment on information checking behaviour.

    Science.gov (United States)

    Li, Simon Y W; Cox, Anna L; Or, Calvin; Blandford, Ann

    2016-03-01

    Two experiments were conducted to examine whether checking one's own work can be motivated by monetary reward and punishment. Participants were randomly assigned to one of three conditions: a flat-rate payment for completing the task (Control); payment increased for error-free performance (Reward); payment decreased for error performance (Punishment). Experiment 1 (N = 90) was conducted with liberal arts students, using a general data-entry task. Experiment 2 (N = 90) replicated Experiment 1 with clinical students and a safety-critical 'cover story' for the task. In both studies, Reward and Punishment resulted in significantly fewer errors, more frequent and longer checking, than Control. No such differences were obtained between the Reward and Punishment conditions. It is concluded that error consequences in terms of monetary reward and punishment can result in more accurate task performance and more rigorous checking behaviour than errors without consequences. However, whether punishment is more effective than reward, or vice versa, remains inconclusive. PMID:26549151

  16. Effects of monetary reward and punishment on information checking behaviour.

    Science.gov (United States)

    Li, Simon Y W; Cox, Anna L; Or, Calvin; Blandford, Ann

    2016-03-01

    Two experiments were conducted to examine whether checking one's own work can be motivated by monetary reward and punishment. Participants were randomly assigned to one of three conditions: a flat-rate payment for completing the task (Control); payment increased for error-free performance (Reward); payment decreased for error performance (Punishment). Experiment 1 (N = 90) was conducted with liberal arts students, using a general data-entry task. Experiment 2 (N = 90) replicated Experiment 1 with clinical students and a safety-critical 'cover story' for the task. In both studies, Reward and Punishment resulted in significantly fewer errors, more frequent and longer checking, than Control. No such differences were obtained between the Reward and Punishment conditions. It is concluded that error consequences in terms of monetary reward and punishment can result in more accurate task performance and more rigorous checking behaviour than errors without consequences. However, whether punishment is more effective than reward, or vice versa, remains inconclusive.

  17. Reward networks in the brain as captured by connectivity measures

    Directory of Open Access Journals (Sweden)

    Estela Camara

    2009-12-01

    Full Text Available An assortment of human behaviors is thought to be driven by rewards including reinforcement learning, novelty processing, learning, decision making, economic choice, incentive motivation, and addiction. In each case the ventral tegmental area / ventral striatum (Nucleus accumbens system (VTA-VS has been implicated as a key structure by functional imaging studies, mostly on the basis of standard, univariate analyses. Here we propose that standard fMRI analysis needs to be complemented by methods that take into account the differential connectivity of the VTA-VS system in the different behavioral contexts in order to describe reward based processes more appropriately. We first consider the wider network for reward processing as it emerged from animal experimentation. Subsequently, an example for a method to assess functional connectivity is given. Finally, we illustrate the usefulness of such analyses by examples regarding reward valuation, reward expectation and the role of reward in addiction.

  18. Dopaminergic balance between reward maximization and policy complexity

    Directory of Open Access Journals (Sweden)

    Naama eParush

    2011-05-01

    Full Text Available Previous reinforcement-learning models of the basal ganglia network have highlighted the role of dopamine in encoding the mismatch between prediction and reality. Far less attention has been paid to the computational goals and algorithms of the main-axis (actor. Here, we construct a top-down model of the basal ganglia with emphasis on the role of dopamine as both a reinforcement learning signal and as a pseudo-temperature signal controlling the general level of basal ganglia excitability and motor vigilance of the acting agent. We argue that the basal ganglia endow the thalamic-cortical networks with the optimal dynamic tradeoff between two constraints: minimizing the policy complexity (cost and maximizing the expected future reward (gain. We show that this multi-dimensional optimization processes results in an experience-modulated version of the softmax behavioral policy. Thus, as in classical softmax behavioral policies, probability of actions are selected according to their estimated values and the pseudo-temperature, but in addition also vary according to the frequency of previous choices of these actions. We conclude that the computational goal of the basal ganglia is not to maximize cumulative (positive and negative reward. Rather, the basal ganglia aim at optimization of independent gain and cost functions. Unlike previously suggested single-variable maximization processes, this multi-dimensional optimization process leads naturally to a softmax-like behavioral policy. We suggest that beyond its role in the modulation of the efficacy of the cortico-striatal synapses, dopamine directly affects striatal excitability and thus provides a pseudo-temperature signal that modulates the trade-off between gain and cost. The resulting experience and dopamine modulated softmax policy can then serve as a theoretical framework to account for the broad range of behaviors and clinical states governed by the basal ganglia and dopamine systems.

  19. Extrinsic Rewards: An Adventist Curriculum Perspective for Classroom Management

    OpenAIRE

    Nadine A. Joseph

    2014-01-01

    Extrinsic rewards refer to gifts used as a form of motivation for students’ to attain an academic goal, or given when that particular goal is reached. Though the use of extrinsic rewards have been proven to have some impact on’ behavior change, such as academic performance, the absence of rewards can cause students’ to revert to the initial unwanted behavior. Consequently, the curricula focus in the Adventist classroom should address the deeper issues that affect behavior and implement the us...

  20. Layered reward signalling through octopamine and dopamine in Drosophila

    OpenAIRE

    Burke, Christopher J.; Huetteroth, Wolf; Owald, David; Perisse, Emmanuel; Krashes, Michael J.; Das, Gaurav; Gohl, Daryl; Silies, Marion; Certel, Sarah; Waddell, Scott

    2012-01-01

    Dopamine is synonymous with reward and motivation in mammals. However, only recently has dopamine been linked to motivated behaviour and rewarding reinforcement in fruitflies. Instead, octopamine has historically been considered to be the signal for reward in insects. Here we show, using temporal control of neural function in Drosophila, that only short-term appetitive memory is reinforced by octopamine. Moreover, octopamine-dependent memory formation requires signalling through dopamine neur...

  1. Dopamine and Reward: The Anhedonia Hypothesis 30 years on

    OpenAIRE

    Wise, Roy A.

    2008-01-01

    The anhedonia hypothesis – that brain dopamine plays a critical role in the subjective pleasure associated with positive rewards – was intended to draw the attention of psychiatrists to the growing evidence that dopamine plays a critical role in the objective reinforcement and incentive motivation associated with food and water, brain stimulation reward, and psychomotor stimulant and opiate reward. The hypothesis called to attention the apparent paradox that neuroleptics, drugs used to treat ...

  2. Autistic traits modulate mimicry of social but not nonsocial rewards

    OpenAIRE

    Haffey, Anthony; Press, Clare; O'Connell, Garret; Chakrabarti, Bhisma

    2013-01-01

    Autism Spectrum Conditions (ASC) are associated with diminished responsiveness to social stimuli, and especially to social rewards such as smiles. Atypical responsiveness to social rewards, which reinforce socially appropriate behavior in children, can potentially lead to a cascade of deficits in social behavior. Individuals with ASC often show diminished spontaneous mimicry of social stimuli in a natural setting. In the general population, mimicry is modulated both by the reward value and th...

  3. Synergistic effects of ethanol and cocaine on brain stimulation reward.

    OpenAIRE

    Lewis, M. J.; June, H L

    1994-01-01

    The effects of two widely abused drugs, ethanol and cocaine, were examined alone and in combination on intracranial reward processes. In agreement with previous research, higher doses of both cocaine and ethanol alone produced facilitation of behavior maintained by brain stimulation reward. Low intraperitoneal doses of ethanol and cocaine, which alone did not affect performance, were found to reduce stimulation reward threshold and modestly increase response rate. The enhancement of brain sti...

  4. Rewarding Peer Reviewers: Maintaining the Integrity of Science Communication

    OpenAIRE

    Gasparyan, Armen Yuri; Gerasimov, Alexey N.; Voronov, Alexander A.; Kitas, George D.

    2015-01-01

    This article overviews currently available options for rewarding peer reviewers. Rewards and incentives may help maintain the quality and integrity of scholarly publications. Publishers around the world implemented a variety of financial and nonfinancial mechanisms for incentivizing their best reviewers. None of these is proved effective on its own. A strategy of combined rewards and credits for the reviewers1 creative contributions seems a workable solution. Opening access to reviews and ass...

  5. Rewards modulate saccade latency but not exogenous spatial attention

    OpenAIRE

    Dunne, Stephen; Ellison, Amanda; Smith, Daniel T.

    2015-01-01

    The eye movement system is sensitive to reward. However, whilst the eye movement system is extremely flexible, the extent to which changes to oculomotor behavior induced by reward paradigms persist beyond the training period or transfer to other oculomotor tasks is unclear. To address these issues we examined the effects of presenting feedback that represented small monetary rewards to spatial locations on the latency of saccadic eye movements, the time-course of learning and extinction of th...

  6. Employees Reward and Evaluation System in the Company

    OpenAIRE

    Říhová, Zuzana

    2012-01-01

    The main aim of bachelor´s thesis is to compare relationship between employees reward system and employees evaluation system in chosen company. The conclusion should recommend proposals to improve efficiency of employees reward and evaluation system in company. It was used questionnaire survey in the chosen department of firm to reach the aim. The questionnaire survey showed that most of respondents are satisfied with rewards system in the company. The main shortcomings were found in intercon...

  7. Acute Stress Reduces Reward Responsiveness: Implications for Depression

    OpenAIRE

    Bogdan, Ryan; Pizzagalli, Diego

    2006-01-01

    Background: Stress, one of the strongest risk factors for depression, has been linked to "anbedonic" behavior and dysfunctional reward-related neural circuitry in preclinical models. Methods: To test if acute stress reduces reward responsiveness (i.e., the ability to modulate behavior as a function of past reward), a signal-detection task coupled with a differential reinforcement schedule was utilized. Eighty female participants completed the task under both a stress condition, either threat-...

  8. Antisocial pool rewarding does not deter public cooperation

    OpenAIRE

    Szolnoki, Attila; Perc, Matjaz

    2015-01-01

    Rewarding cooperation is in many ways expected behaviour from social players. However, strategies that promote antisocial behaviour are also surprisingly common, not just in human societies, but also among eusocial insects and bacteria. Examples include sanctioning of individuals who behave prosocially, or rewarding of freeriders who do not contribute to collective enterprises. We therefore study the public goods game with antisocial and prosocial pool rewarding in order to determine the pote...

  9. Payment Card Rewards Programs and Consumer Payment Choice

    OpenAIRE

    Ching, Andrew; Hayashi, Fumiko

    2008-01-01

    Card payments have been growing very rapidly. To continue the growth, payment card networks keep adding new merchants and card issuers try to stimulate their existing customers’ card usage by providing rewards. This paper seeks to analyze the effects of payment card rewards programs on consumer payment choice, by using consumer survey data. Specifically, we examine whether credit/debit reward receivers use credit/debit cards relatively more often than other consumers, if so how much more ofte...

  10. Neural coding of reward magnitude in the orbitofrontal cortex of the rat during a five-odor olfactory discrimination task.

    NARCIS (Netherlands)

    E. van Duuren; F.A.N. Escamez; R.N.J.M.A. Joosten; R. Visser; A.B. Mulder; C.M.A. Pennartz

    2007-01-01

    The orbitofrontal cortex (OBFc) has been suggested to code the motivational value of environmental stimuli and to use this information for the flexible guidance of goal-directed behavior. To examine whether information regarding reward prediction is quantitatively represented in the rat OBFc, neural

  11. Reduced alcohol intake and reward associated with impaired endocannabinoid signaling in mice with a deletion of the glutamate transporter GLAST

    DEFF Research Database (Denmark)

    Karlsson, Rose-Marie; Adermark, Louise; Molander, Anna;

    2012-01-01

    mice with a deletion of GLAST to test this prediction. WT and GLAST KO mice were tested for alcohol consumption using two-bottle free-choice drinking. Alcohol reward was evaluated using conditioned place preference (CPP). Sensitivity to depressant alcohol effects was tested using the accelerating...

  12. Hypoalgesia Induced by Reward Devaluation in Rats

    Science.gov (United States)

    Jiménez-García, Ana María; Ruíz-Leyva, Leandro; Cendán, Cruz Miguel; Torres, Carmen; Papini, Mauricio R.; Morón, Ignacio

    2016-01-01

    Reduced sensitivity to physical pain (hypoalgesia) has been reported after events involving reward devaluation. Reward devaluation was implemented in a consummatory successive negative contrast (cSNC) task. Food-deprived Wistar rats had access to 32% sucrose during 16 sessions followed by access to 4% sucrose during 3 additional sessions. An unshifted control group had access to 4% sucrose throughout the 19 sessions. Pain sensitivity was measured using von Frey filaments (Experiment 1) and Hargreaves thermal stimuli (Experiment 2) in pretraining baseline, 5 min, and 300 min after either the first (session 17) or second (session 18) devaluation session in the cSNC situation. Sucrose consumption was lower in downshifted groups relative to unshifted groups during postshift sessions—the cSNC effect. Hypoalgesia was observed in downshifted groups relative to unshifted controls when pain sensitivity was assessed 5 min after either the first or second devaluation session, regardless of the pain sensitivity test used. Both pain sensitivity tests yielded evidence of hypoalgesia 300 min after the second downshift session, but not 300 min after the first devaluation session. Whereas hypoalgesia was previously shown only after the second devaluation session, here we report evidence of hypoalgesia after both the first and second devaluation sessions using mechanical and thermal nociceptive stimuli. Moreover, the hypoalgesia observed 300 min after the second devaluation session in both experiments provides unique evidence of the effects of reward loss on sensitivity to physical pain 5 hours after the loss episode. The underlying neurobehavioral mechanisms remain to be identified. PMID:27764142

  13. Rewarding safe behavior: strategies for change.

    Science.gov (United States)

    Fell-Carlson, Deborah

    2004-12-01

    Effective, sustainable safety incentives are integrated into a performance management system designed to encourage long term behavior change. Effective incentive program design integrates the fundamental considerations of compensation (i.e., valence, instrumentality, expectancy, equity) with behavior change theory in the context of a strong merit based performance management system. Clear expectations are established and communicated from the time applicants apply for the position. Feedback and social recognition are leveraged and used as rewards, in addition to financial incentives built into the compensation system and offered periodically as short term incentives. Rewards are tied to specific objectives intended to influence specific behaviors. Objectives are designed to challenge employees, providing opportunities to grow and enhance their sense of belonging. Safety contests and other awareness activities are most effective when used to focus safety improvement efforts on specific behaviors or processes, for a predetermined period of time, in the context of a comprehensive safety system. Safety incentive programs designed around injury outcomes can result in unintended, and undesirable, consequences. Safety performance can be leveraged by integrating safety into corporate cultural indicators. Symbols of safety remind employees of corporate safety goals and objectives (e.g., posted safety goals and integrating safety into corporate mission and vision). Rites and ceremonies provide opportunities for social recognition and feedback and demonstrate safety is a corporate value. Feedback opportunities, rewards, and social recognition all provide content for corporate legends, those stories embellished over time, that punctuate the overall system of organizational norms, and provide examples of the organizational safety culture in action. PMID:15635933

  14. Aberrant driving behaviors: a study of drivers in Beijing.

    Science.gov (United States)

    Shi, Jing; Bai, Yun; Ying, Xiwen; Atchley, Paul

    2010-07-01

    The addition of massive numbers of new drivers with varied driving experience to roads in China suggests it is important to understand the nature of aberrant driving behaviors for this new set of drivers. A paper-based and an Internet survey were administered. Factor analysis produced a five-factor structure for each survey. The distinction between violations and errors indicated in previous studies was confirmed. The violations included emotional violations, risky violations and self-willed violations, and the errors included inexperience errors and distraction errors. In contrast to previous work, age was not found to be a good predictor of violations though driving experience was. Contrary to expectations, non-automotive (bicycle) roadway experience or level of driving training failed to predict poor driving behavior. On-road experience is the key to risk for China's drivers. Good agreement between the paper-based and Internet surveys indicate online surveys to be a feasible way to conduct research of driving behavior at low cost. PMID:20441810

  15. Perceived no reference image quality measurement for chromatic aberration

    Science.gov (United States)

    Lamb, Anupama B.; Khambete, Madhuri

    2016-03-01

    Today there is need for no reference (NR) objective perceived image quality measurement techniques as conducting subjective experiments and making reference image available is a very difficult task. Very few NR perceived image quality measurement algorithms are available for color distortions like chromatic aberration (CA), color quantization with dither, and color saturation. We proposed NR image quality assessment (NR-IQA) algorithms for images distorted with CA. CA is mostly observed in images taken with digital cameras, having higher sensor resolution with inexpensive lenses. We compared our metric performance with two state-of-the-art NR blur techniques, one full reference IQA technique and three general-purpose NR-IQA techniques, although they are not tailored for CA. We used a CA dataset in the TID-2013 color image database to evaluate performance. Proposed algorithms give comparable performance with state-of-the-art techniques in terms of performance parameters and outperform them in terms of monotonicity and computational complexity. We have also discovered that the proposed CA algorithm best predicts perceived image quality of images distorted with realistic CA.

  16. Reward and cooperation in the spatial public goods game

    Science.gov (United States)

    Szolnoki, A.; Perc, M.

    2010-11-01

    The promise of punishment and reward in promoting public cooperation is debatable. While punishment is traditionally considered more successful than reward, the fact that the cost of punishment frequently fails to offset gains from enhanced cooperation has lead some to reconsider reward as the main catalyst behind collaborative efforts. Here we elaborate on the "stick vs. carrot" dilemma by studying the evolution of cooperation in the spatial public goods game, where besides the traditional cooperators and defectors, rewarding cooperators supplement the array of possible strategies. The latter are willing to reward cooperative actions at a personal cost, thus effectively downgrading pure cooperators to second-order free-riders due to their unwillingness to bear these additional costs. Consequently, we find that defection remains viable, especially if the rewarding is costly. Rewards, however, can promote cooperation, especially if the synergetic effects of cooperation are low. Surprisingly, moderate rewards may promote cooperation better than high rewards, which is due to the spontaneous emergence of cyclic dominance between the three strategies.

  17. Ventral Striatum Connectivity During Reward Anticipation in Adolescent Smokers.

    Science.gov (United States)

    Jollans, Lee; Zhipeng, Cao; Icke, Ilknur; Greene, Ciara; Kelly, Clare; Banaschewski, Tobias; Bokde, Arun L W; Bromberg, Uli; Büchel, Christian; Cattrell, Anna; Conrod, Patricia J; Desrivières, Sylvane; Flor, Herta; Frouin, Vincent; Gallinat, Jürgen; Garavan, Hugh; Gowland, Penny; Heinz, Andreas; Ittermann, Bernd; Martinot, Jean-Luc; Artiges, Eric; Nees, Frauke; Papadopoulos Orfanos, Dimitri; Paus, Tomáš; Smolka, Michael N; Walter, Henrik; Schumann, Gunter; Whelan, Robert

    2016-01-01

    Substance misusers, including adolescent smokers, often have reduced reward system activity during processing of non-drug rewards. Using a psychophysiological interaction approach, we examined functional connectivity with the ventral striatum during reward anticipation in a large (N = 206) sample of adolescent smokers. Increased smoking frequency was associated with (1) increased connectivity with regions involved in saliency and valuation, including the orbitofrontal cortex and (2) reduced connectivity between the ventral striatum and regions associated with inhibition and risk aversion, including the right inferior frontal gyrus. These results demonstrate that functional connectivity during reward processing is relevant to adolescent addiction. PMID:27074029

  18. Give or take? Rewards vs. Charges for a Congested Bottleneck

    OpenAIRE

    Rouwendal, Jan; Erik T. Verhoef; Knockaert, Jasper

    2010-01-01

    This discussion paper resulted in a publication in 'Regional Science and Urban Economics', 42(1-2), 166-76.This paper analyzes the possibilities to relieve congestion using rewards instead of taxes, as well as combinations of rewards and taxes. The model considers a Vickrey-ADL model of bottleneck congestion with endogenous scheduling. With inelastic demand, a fine (time-varying) reward is equivalent to a fine toll, and to a continuum of combinations of time-varying tolls and rewards (includi...

  19. The Cooperative Multi-agent Learning with Random Reward Values

    Institute of Scientific and Technical Information of China (English)

    ZHANG Hua-xiang; HUANG Shang-teng

    2005-01-01

    This paper investigated how to learn the optimal action policies in cooperative multiagent systems if the agents' rewards are random variables, and proposed a general two-stage learning algorithm for cooperative multiagent decision processes. The algorithm first calculates the averaged immediate rewards, and considers these learned rewards as the agents' immediate action rewards to learn the optimal action policies. It is proved that the learning algorithm can find the optimal policies in stochastic environment. Extending the algorithm to stochastic Markov decision processes was also discussed.

  20. Communicating total rewards to the generations.

    Science.gov (United States)

    Reynolds, Leah A

    2005-01-01

    This is the first time in American history that four distinct generations have been in the workforce at the same time. Because employers have finite resources with which to compete for talent, they must understand the generations, what matters most to them and what they can do to motivate different generations of workers. Perhaps surprisingly, the author argues that the generations share in most valuing "soft cost" rewards over "hard dollar cost" items. This article advises employers on how to make their company a great place to work for all generations.