WorldWideScience

Sample records for aberrant receptor binding

  1. Epidermal Growth Factor Receptor Regulates Aberrant Expression of Insulin-Like Growth Factor-Binding Protein 3

    OpenAIRE

    TAKAOKA, MUNENORI; Harada, Hideki; Andl, Claudia D; Oyama, Kenji; Naomoto, Yoshio; Dempsey, Kelly L.; Klein-Szanto, Andres J.; El-Deiry, Wafik S; GRIMBERG, ADDA; Nakagawa, Hiroshi

    2004-01-01

    Epidermal growth factor receptor (EGFR) is frequently overexpressed in esophageal carcinoma and its precursor lesions. To gain insights into how EGFR overexpression affects cellular functions in primary human esophageal cells, we performed gene expression profiling and identified insulin-like growth factor-binding protein (IGFBP)-3 as the most up-regulated gene. IGFBP-3 regulates cell proliferation through both insulin-like growth factor-dependent and independent mechanisms. We found that IGF...

  2. Binding characteristics of swine erythrocyte insulin receptors

    International Nuclear Information System (INIS)

    Crossbred gilts had 8.8 +/- 1.1% maximum binding of [125I]insulin to insulin receptors on erythrocytes. The number of insulin-binding sites per cell was 137 +/- 19, with a binding affinity ranging from 7.4 X 10(7)M-1 to 11.2 X 10(7)M-1 and mean of 8.8 X 10(7)M-1. Pregnant sows had a significant increase in maximum binding due to an increase in number of receptor sites per cell. Lactating sows fed a high-fiber diet and a low-fiber diet did not develop a significant difference in maximum binding of insulin. Sows fed the low-fiber diet had a significantly higher number of binding sites and a significantly lower binding affinity than did sows fed a high-fiber diet. Receptor-binding affinity was lower in the low-fiber diet group than in cycling gilts, whereas data from sows fed the high-fiber diet did not differ from data for cycling gilts. Data from this study indicated that insulin receptors of swine erythrocytes have binding characteristics similar to those in other species. Pregnancy and diet will alter insulin receptor binding in swine

  3. Receptor binding studies of the living heart

    International Nuclear Information System (INIS)

    Receptors form a class of intrinsic membrane proteins (or glycoproteins) defined by the high affinity and specificity with which they bind ligands. Many receptors are associated directly or indirectly with membrane ion channels that open or close after a conformational change of the receptor induced by the binding of the neurotransmitter. Changes in number and/or affinity of cardiac neurotransmitter receptors have been associated with myocardial ischemia and infarction, congestive heart failure, and cardiomyopathy as well as diabetes or thyroid-induced heart muscle disease. These alterations of cardiac receptors have been demonstrated in vitro on membrane homogenates from samples collected mainly during surgery or postmortem. The disadvantage of these in vitro binding techniques is that receptors lose their natural environment and their relationships with the other components of the tissue

  4. Binding of Glutamate to the Umami Receptor

    OpenAIRE

    Lopez Cacales, J.; Oliviera Costa, S.; de Groot, B.; Walters, D

    2010-01-01

    Abstract The umami taste receptor is a heterodimer composed of two members of the T1R taste receptor family: T1R1 and T1R3. It detects glutamate in humans, and is a more general amino acid detector in other species. We have constructed homology models of the ligand binding domains of the human umami receptor (based on crystallographic structures of the metabotropic glutamate receptor of the central nervous system). We have carried out molecular dynamics simulations of the ligand bi...

  5. Targeting Androgen Receptor Aberrations in Castration-Resistant Prostate Cancer.

    Science.gov (United States)

    Sharp, Adam; Welti, Jonathan; Blagg, Julian; de Bono, Johann S

    2016-09-01

    Androgen receptor (AR) splice variants (SV) have been implicated in the development of metastatic castration-resistant prostate cancer and resistance to AR targeting therapies, including abiraterone and enzalutamide. Agents targeting AR-SV are urgently needed to test this hypothesis and further improve the outcome of patients suffering from this lethal disease. Clin Cancer Res; 22(17); 4280-2. ©2016 AACRSee related article by Yang et al., p. 4466.

  6. DC-SIGN:Binding receptor for HCV?

    Institute of Scientific and Technical Information of China (English)

    Zhi-Hua Feng; Quan-Chu Wang; Qing-He Nie; Zhan-Sheng Jia; Yong-Xin Zhou

    2004-01-01

    DC-SIGN, a dendritic Cell-specific adhesion receptor and a type Ⅱ transmembrane mannose-binding C-type lectin, is very important in the function of DC, both in mediating naive T cell interactions through ICAM-3 and as a rolling receptor that mediates the DC-specific ICAM-2-dependent migration processes. It can be used by viral and bacterial pathogens including Human Immunodeficiency Virus (HIV), HCV, Ebola Virus, CMV and Mycobacterium tuberculosis to facilitate infection. Both DC-SIGN and DC-SIGNR can act either in cis,by concentrating virus on target cells, or in trans, by transmission of bound virus to a target cell expressing appropropriate entry receptors. Recent work showed that DC-SIGN are highaffinity binding receptors for HCV. Besides playing a role in entry into DC, HCV E2 interaction with DC-SIGN might also be detrimental for the interaction of DC with T cells during antigen presentation. The clinical strategies that target DCSIGN may be successful in restricting HCV dissemination and pathogenesis as well as directing the migration of DCs to manipulate appropriate immune responses in autoimmunity and tumorigenic situations.

  7. Estradiol Binds to Insulin and Insulin Receptor Decreasing Insulin Binding in vitro

    Directory of Open Access Journals (Sweden)

    Robert eRoot-Bernstein

    2014-07-01

    Full Text Available Rationale: Insulin resistance associated with hyperestrogenemias occurs in gestational diabetes mellitus, polycystic ovary syndrome, ovarian hyperstimulation syndrome, estrogen therapies, metabolic syndrome and obesity. The mechanism by which insulin and estrogen interact is unknown. We hypothesize that estrogen binds directly to insulin and the insulin receptor producing insulin resistance.Objectives: To determine the binding constants of steroid hormones to insulin, the insulin receptor, and insulin-like peptides derived from the insulin receptor; and to investigate the effect of estrogens on the binding of insulin to its receptor.Methods: Ultraviolet spectroscopy, capillary electrophoresis and NMR demonstrated estrogen binding to insulin and its receptor. Horse-radish peroxidase-linked insulin was used in an ELISA-like procedure to measure the effect of estradiol on binding of insulin to its receptor. Measurements: Binding constants for estrogens to insulin and the insulin receptor were determined by concentration-dependent spectral shifts. The effect of estradiol on insulin-HRP binding to its receptor was determined by shifts in the insulin binding curve. Main Results: Estradiol bound to insulin with a Kd of 12 x 10-9 M and to the insulin receptor with a Kd of 24 x 10-9 M, while other hormones had significantly less affinity. 200 nM estradiol shifted the binding curve of insulin to its receptor 0.8 log units to the right. Conclusions: Estradiol concentrations in many hyperestrogenemic syndromes are sufficient to interfere with insulin binding to its receptor producing significant insulin resistance.

  8. In Silico Investigation of the Neurotensin Receptor 1 Binding Site

    DEFF Research Database (Denmark)

    Lückmann, Michael; Holst, Birgitte; Schwartz, Thue W.;

    2016-01-01

    the binding mode of SR48692 and other small mol. compds. to NTSR1, we applied an Automated Ligand-guided Backbone Ensemble Receptor Optimization protocol (ALiBERO), taking receptor flexibility and ligand knowledge into account. Structurally overlapping binding poses for SR48692 and NTS8-13 were obsd., despite...

  9. THE RECEPTOR BINDING AFFINITIES, ANTIPROGESTERONE AND ANTIGLUCOCORTICOID ACTIVITIES OF MIFEPRISTONE AND LILOPRISTONE

    Institute of Scientific and Technical Information of China (English)

    LIUYong-Qiang; WUXi-Rui

    1989-01-01

    With radioligand binding assays, the receptor binding affmities of mifepristone and lilopristone to the rabbit uterus cytosol progesterone receptor and the rat fiver cytosol glucocorticoid receptor have been measured. The relative binding affinities ( RBA ) of

  10. Localization of CGRP receptor components and receptor binding sites in rhesus monkey brainstem

    DEFF Research Database (Denmark)

    Eftekhari, Sajedeh; Roberts, Rhonda; Chen, Tsing-Bau;

    2016-01-01

    -like receptor (CLR) and receptor activity-modifying protein 1 (RAMP1), respectively. To define CGRP receptor binding sites, in vitro autoradiography was performed with [(3)H]MK-3207 (a CGRP receptor antagonist). CLR and RAMP1 mRNA and protein expression were detected in the pineal gland, medial mammillary...

  11. Characterization of pulmonary sigma receptors by radioligand binding.

    Science.gov (United States)

    Lever, John R; Litton, Tyler P; Fergason-Cantrell, Emily A

    2015-09-01

    This study establishes the expression of appreciable populations of sites on mouse lung membranes that exhibit radioligand binding properties and pharmacology consistent with assignment as sigma1 and sigma2 receptors. Specific binding of the sigma1 receptor radioligand [(3)H](+)-pentazocine reached steady state within 6h at 37°C. Saturation studies revealed high affinity binding to a single class of sites (Kd 1.36±0.04nM; Bmax 967±11fmol/mg protein). Inhibition studies showed appropriate sigma1 receptor pharmacology, including higher affinity for (+)-N-allylnormetazocine with respect to the (-)-enantiomer, and positive allosteric modulation of dextromethorphan binding by phenytoin. Using [(3)H]1,3-di(2-tolyl)guanidine in the presence of (+)-pentazocine to assess sigma2 receptor binding, steady state was achieved within 2min at 25°C. Cold saturation studies revealed one high affinity, low capacity binding site (Kd 31.8±8.3nM; Bmax 921±228fmol/mg protein) that displayed sigma2 receptor pharmacology. A very low affinity, high capacity interaction also was observed that represents saturable, but not sigma receptor specific, binding. A panel of ligands showed rank order inhibition of radioligand binding appropriate for the sigma2 receptor, with ifenprodil displaying the highest apparent affinity. In vivo, dextromethorphan inhibited the specific binding of a radioiodinated sigma1 receptor ligand in lung with an ED50 of 1.2μmol/kg, a value near the recommended dosage for the drug as a cough suppressant. Overall, the present work provides a foundation for studies of drug interactions with pulmonary sigma1 and sigma2 receptors in vitro and in vivo. PMID:26004528

  12. Flavonoids with M1 Muscarinic Acetylcholine Receptor Binding Activity

    Directory of Open Access Journals (Sweden)

    Meyyammai Swaminathan

    2014-06-01

    Full Text Available Muscarinic acetylcholine receptor-active compounds have potential for the treatment of Alzheimer’s disease. In this study, a series of natural and synthetic flavones and flavonols was assayed in vitro for their ability to inhibit radioligand binding at human cloned M1 muscarinic receptors. Several compounds were found to possess competitive binding affinity (Ki = 40–110 µM, comparable to that of acetylcholine (Ki = 59 µM. Despite the fact that these compounds lack a positively-charged ammonium group under physiological conditions, molecular modelling studies suggested that they bind to the orthosteric site of the receptor, mainly through non-polar interactions.

  13. Deletion of glutamate delta-1 receptor in mouse leads to aberrant emotional and social behaviors.

    Directory of Open Access Journals (Sweden)

    Roopali Yadav

    Full Text Available The delta family of ionotropic glutamate receptors consists of glutamate δ1 (GluD1 and glutamate δ2 (GluD2 receptors. While the role of GluD2 in the regulation of cerebellar physiology is well understood, the function of GluD1 in the central nervous system remains elusive. We demonstrate for the first time that deletion of GluD1 leads to abnormal emotional and social behaviors. We found that GluD1 knockout mice (GluD1 KO were hyperactive, manifested lower anxiety-like behavior, depression-like behavior in a forced swim test and robust aggression in the resident-intruder test. Chronic lithium rescued the depression-like behavior in GluD1 KO. GluD1 KO mice also manifested deficits in social interaction. In the sociability test, GluD1 KO mice spent more time interacting with an inanimate object compared to a conspecific mouse. D-Cycloserine (DCS administration was able to rescue social interaction deficits observed in GluD1 KO mice. At a molecular level synaptoneurosome preparations revealed lower GluA1 and GluA2 subunit expression in the prefrontal cortex and higher GluA1, GluK2 and PSD95 expression in the amygdala of GluD1 KO. Moreover, DCS normalized the lower GluA1 expression in prefrontal cortex of GluD1 KO. We propose that deletion of GluD1 leads to aberrant circuitry in prefrontal cortex and amygdala owing to its potential role in presynaptic differentiation and synapse formation. Furthermore, these findings are in agreement with the human genetic studies suggesting a strong association of GRID1 gene with several neuropsychiatric disorders including schizophrenia, bipolar disorder, autism spectrum disorders and major depressive disorder.

  14. Characterisation of the melanocortin 4 receptor by radioligand binding

    International Nuclear Information System (INIS)

    The DNA encoding the human melanocortin 4 receptor was expressed in COS (CV-1 origin, Sv 40) cells and its radioligand binding properties was tested by using the [124I[(Nle4, D-Phe7) αmelanocyte stimulating hormone (MSH). The radioligand was found to bind to a single saturable site with a Kd of 3l84±0.57 nmol/l in the MC4 receptor expressing cells. The order of potency of a number of substance competing for the [1225I[[Nle4, D-Phe7[ αMSH binding was the following; [Nle4, D-Phe7[ α-MSH>[Nlee[-α-MSH>β-MSH>desacetyl-α-MSH >α-MSH>ACTH (1-39)>ACTH (4-10)>γ2-MSH. This order of potency is unique for the melanocortin 4 receptor when compared to our previously published data for the other melanocortin receptor subtypes. Most notably the melanocortin 4 receptor shows highest affinity for β-MSH, among the endogenous MSH-peptides. Furthermore the melanocortin 4 receptor shows very low affinity for the γ-MSH peptides. This distinguishes the melanocortin 4 receptor from the melanocortin 3 receptor, which is the other major central nervous system melanocortin-receptor, as melanocortin 3 receptor shows high affinity for γ-MSH. Our finding might indicate a specific role for β-MSH for the melanocortin 4 receptor. (au) 31 refs

  15. Study of binding glycyrrhetic acid to AT1 receptor

    Institute of Scientific and Technical Information of China (English)

    ZHANG; Fengyun; (张凤云); YUE; Baozhen; (岳保珍); HE; Shipeng; (贺师鹏)

    2003-01-01

    To analyze the binding of glycyrrhetic acid (GA) to angiotensin II type I (AT1) receptor and to explore the mechanisms underlying the binding, primary cell culture of rat vascular smooth muscle cell (VSMC), radioactive ligand-receptor binding assay, lascer confocal scanning microscope (LCSM), Northern blot, 3H-TdR incorporation DNA assay were used in this study. The results suggest that specific binding of GA to AT1 receptor (IC50 value was 35.0 μmol/L) increases intracellular [Ca2+]i of VSMC, activates transcription factor c-myc and promotes the proliferation of VSMC, therefore GA was probably an agonist of AT1 receptor, providing a new target for GA's pharmaceutical effects.

  16. Noncovalent Interactions within a Synthetic Receptor Can Reinforce Guest Binding

    OpenAIRE

    Rodriguez-Docampo, Zaida; Pascu, Sofia I.; Kubik, Stefan; Otto, Sijbren

    2006-01-01

    Structural and thermodynamic data are presented on the binding properties of anion receptors containing two covalently linked cyclopeptide subunits that bind sulfate and iodide anions with micromolar affinity in aqueous solution. A synchrotron X-ray crystal structure of the sulfate complex of one receptor revealed that the anion is bound between the peptide rings of the biscyclopeptide. Intimate intramolecular contacts between the nonpolar surfaces of the proline rings of the individual recep...

  17. Sex Differences in Serotonin 1 Receptor Binding in Rat Brain

    Science.gov (United States)

    Fischette, Christine T.; Biegon, Anat; McEwen, Bruce S.

    1983-10-01

    Male and female rats exhibit sex differences in binding by serotonin 1 receptors in discrete areas of the brain, some of which have been implicated in the control of ovulation and of gonadotropin release. The sex-specific changes in binding, which occur in response to the same hormonal (estrogenic) stimulus, are due to changes in the number of binding sites. Castration alone also affects the number of binding sites in certain areas. The results lead to the conclusion that peripheral hormones modulate binding by serotonin 1 receptors. The status of the serotonin receptor system may affect the reproductive capacity of an organism and may be related to sex-linked emotional disturbances in humans.

  18. Risperidone treatment increases CB1 receptor binding in rat brain

    DEFF Research Database (Denmark)

    Secher, Anna; Husum, Henriette; Holst, Birgitte;

    2010-01-01

    BACKGROUND/AIMS: Body weight gain is a common side effect of treatment with antipsychotics, but the mechanisms underlying this weight gain are unknown. Several factors may be involved in antipsychotic-induced body weight gain including the cannabinoid receptor 1 (CB(1)), the serotonin receptor 2C...... positively correlated with visceral fat mass. Risperidone treatment increased CB(1) receptor binding in the arcuate nucleus (40%), hippocampus (25-30%) and amygdala (35%) without concurrent alterations in the CB(1) receptor mRNA. Risperidone treatment increased adiponectin mRNA. CONCLUSION: The present study...... showed that risperidone treatment altered CB(1) receptor binding in the rat brain. Risperidone-induced adiposity and metabolic dysfunction in the clinic may be explained by increased CB(1) receptor density in brain regions involved in appetite and regulation of metabolic function....

  19. Fatty acid binding receptors in intestinal physiology and pathophysiology

    OpenAIRE

    Kaemmerer, Elke; Plum, Patrick; Klaus, Christina; Weiskirchen, Ralf; Liedtke, Christian; Adolf, Maximilian; Schippers, Angela; Wagner, Norbert; Reinartz, Andrea; Gassler, Nikolaus

    2010-01-01

    Free fatty acids are essential dietary components and recognized as important molecules in the maintenance of cellular homeostasis. In the last decade, the molecular pathways for free fatty acid sensing in the gastrointestinal tract have been further elucidated by molecular identification and functional characterization of fatty acid binding receptors. These sensing molecules belong to the family of G protein-coupled receptors. In the intestine, four important receptors have been described so...

  20. Extra-helical binding site of a glucagon receptor antagonist.

    Science.gov (United States)

    Jazayeri, Ali; Doré, Andrew S; Lamb, Daniel; Krishnamurthy, Harini; Southall, Stacey M; Baig, Asma H; Bortolato, Andrea; Koglin, Markus; Robertson, Nathan J; Errey, James C; Andrews, Stephen P; Teobald, Iryna; Brown, Alastair J H; Cooke, Robert M; Weir, Malcolm; Marshall, Fiona H

    2016-05-12

    Glucagon is a 29-amino-acid peptide released from the α-cells of the islet of Langerhans, which has a key role in glucose homeostasis. Glucagon action is transduced by the class B G-protein-coupled glucagon receptor (GCGR), which is located on liver, kidney, intestinal smooth muscle, brain, adipose tissue, heart and pancreas cells, and this receptor has been considered an important drug target in the treatment of diabetes. Administration of recently identified small-molecule GCGR antagonists in patients with type 2 diabetes results in a substantial reduction of fasting and postprandial glucose concentrations. Although an X-ray structure of the transmembrane domain of the GCGR has previously been solved, the ligand (NNC0640) was not resolved. Here we report the 2.5 Å structure of human GCGR in complex with the antagonist MK-0893 (ref. 4), which is found to bind to an allosteric site outside the seven transmembrane (7TM) helical bundle in a position between TM6 and TM7 extending into the lipid bilayer. Mutagenesis of key residues identified in the X-ray structure confirms their role in the binding of MK-0893 to the receptor. The unexpected position of the binding site for MK-0893, which is structurally similar to other GCGR antagonists, suggests that glucagon activation of the receptor is prevented by restriction of the outward helical movement of TM6 required for G-protein coupling. Structural knowledge of class B receptors is limited, with only one other ligand-binding site defined--for the corticotropin-releasing hormone receptor 1 (CRF1R)--which was located deep within the 7TM bundle. We describe a completely novel allosteric binding site for class B receptors, providing an opportunity for structure-based drug design for this receptor class and furthering our understanding of the mechanisms of activation of these receptors. PMID:27111510

  1. Modeling of ligand binding to dopamine D2 receptor

    Directory of Open Access Journals (Sweden)

    Ostopovici-Halip Liliana

    2014-01-01

    Full Text Available The dopaminic receptors have been for long time the major targets for developing new small molecules with high affinity and selectivity to treat psychiatric disorders, neurodegeneration, drug abuse, and other therapeutic areas. In the absence of a 3D structure for the human D2 dopamine (HDD2 receptor, the efforts for discovery and design of new potential drugs rely on comparative models generation, docking and pharmacophore development studies. To get a better understanding of the HDD2 receptor binding site and the ligand-receptor interactions a homology model of HDD2 receptor based on the X-ray structure of β2-adrenergic receptor has been built and used to dock a set of partial agonists of HDD2 receptor. The main characteristics of the binding mode for the HDD2 partial agonists set are given by the ligand particular folding and a complex network of contacts represented by stacking interactions, salt bridge and hydrogen bond formation. The characterization of the partial agonist binding mode at HDD2 receptor provide the needed information to generate pharmacophore models which represent essential information in the future virtual screening studies in order to identify new potential HDD2 partial agonists.

  2. Estradiol Binds to Insulin and Insulin Receptor Decreasing Insulin Binding in vitro

    OpenAIRE

    RobertRoot-Bernstein

    2014-01-01

    Rationale: Insulin resistance associated with hyperestrogenemias occurs in gestational diabetes mellitus, polycystic ovary syndrome, ovarian hyperstimulation syndrome, estrogen therapies, metabolic syndrome and obesity. The mechanism by which insulin and estrogen interact is unknown. We hypothesize that estrogen binds directly to insulin and the insulin receptor producing insulin resistance. Objectives: To determine the binding constants of steroid hormones to insulin, the insulin recepto...

  3. Characterisation of the melanocortin 4 receptor by radioligand binding

    Energy Technology Data Exchange (ETDEWEB)

    Schioeth, H.B.; Wikberg, J.E.S. [Uppsala Univ., Dept. of Pharmaceutical Pharmacology, Uppsala (Sweden); Muceniece, R. [Inst. of Organic Synthesis, Lab. of Pharmacology, Riga (Latvia)

    1996-09-01

    The DNA encoding the human melanocortin 4 receptor was expressed in COS (CV-1 origin, Sv 40) cells and its radioligand binding properties was tested by using the [{sup 124}I](Nle{sup 4}, D-Phe{sup 7}) {alpha}melanocyte stimulating hormone (MSH). The radioligand was found to bind to a single saturable site with a K{sub d} of 3l84{+-}0.57 nmol/l in the MC4 receptor expressing cells. The order of potency of a number of substance competing for the [{sup 12}25I][Nle{sup 4}, D-Phe{sup 7}] {alpha}MSH binding was the following; [Nle{sup 4}, D-Phe{sup 7}] {alpha}-MSH>[Nle{sup e}]-{alpha}-MSH>{beta}-MSH>desacetyl-{alpha}-MSH >{alpha}-MSH>ACTH (1-39)>ACTH (4-10)>{gamma}2-MSH. This order of potency is unique for the melanocortin 4 receptor when compared to our previously published data for the other melanocortin receptor subtypes. Most notably the melanocortin 4 receptor shows highest affinity for {beta}-MSH, among the endogenous MSH-peptides. Furthermore the melanocortin 4 receptor shows very low affinity for the {gamma}-MSH peptides. This distinguishes the melanocortin 4 receptor from the melanocortin 3 receptor, which is the other major central nervous system melanocortin-receptor, as melanocortin 3 receptor shows high affinity for {gamma}-MSH. Our finding might indicate a specific role for {beta}-MSH for the melanocortin 4 receptor. (au) 31 refs.

  4. Coregulator Control of Androgen Receptor Action by a Novel Nuclear Receptor-Binding Motif

    OpenAIRE

    Jehle, Katja; Cato, Laura; Neeb, Antje; Muhle-Goll, Claudia; Jung, Nicole; Smith, Emmanuel W.; Buzon, Victor; Carbó, Laia R.; Estébanez-Perpiñá, Eva; Schmitz, Katja; Fruk, Ljiljana; Luy, Burkhard; Chen, Yu; Cox, Marc B.; Bräse, Stefan

    2014-01-01

    The androgen receptor (AR) is a ligand-activated transcription factor that is essential for prostate cancer development. It is activated by androgens through its ligand-binding domain (LBD), which consists predominantly of 11 α-helices. Upon ligand binding, the last helix is reorganized to an agonist conformation termed activator function-2 (AF-2) for coactivator binding. Several coactivators bind to the AF-2 pocket through conserved LXXLL or FXXLF sequences to enhance the activity of the rec...

  5. Differential effect of glucocorticoid receptor antagonists on glucocorticoid receptor nuclear translocation and DNA binding

    Science.gov (United States)

    Spiga, Francesca; Knight, David M; Droste, Susanne K; Conway-Campbell, Becky; Kershaw, Yvonne; MacSweeney, Cliona P; Thomson, Fiona J; Craighead, Mark; Peeters, Bernard WMM; Lightman, Stafford L

    2016-01-01

    The effects of RU486 and S-P, a more selective glucocorticoid receptor antagonist from Schering-Plough, were investigated on glucocorticoid receptor nuclear translocation and DNA binding. In the in vitro study, AtT20 cells were treated with vehicle or with RU486, S-P or corticosterone (3–300 nM) or co-treated with vehicle or glucocorticoid receptor antagonists (3–300 nM) and 30 nM corticosterone. Both glucocorticoid receptor antagonists induced glucocorticoid receptor nuclear translocation but only RU486 induced DNA binding. RU486 potentiated the effect of corticosterone on glucocorticoid receptor nuclear translocation and DNA binding, S-P inhibited corticosterone-induced glucocorticoid receptor nuclear translocation, but not glucocorticoid receptor-DNA binding. In the in vivo study, adrenalectomized rats were treated with vehicle, RU486 (20 mg/kg) and S-P (50 mg/kg) alone or in combination with corticosterone (3 mg/kg). RU486 induced glucocorticoid receptor nuclear translocation in the pituitary, hippocampus and prefrontal cortex and glucocorticoid receptor-DNA binding in the hippocampus, whereas no effect of S-P on glucocorticoid receptor nuclear translocation or DNA binding was observed in any of the areas analysed. These findings reveal differential effects of RU486 and S-P on areas involved in regulation of hypothalamic–pituitary–adrenal axis activity in vivo and they are important in light of the potential use of this class of compounds in the treatment of disorders associated with hyperactivity of the hypothalamic–pituitary–adrenal axis. PMID:20093322

  6. Structural Allostery and Binding of the Transferring Receptor Complex

    Energy Technology Data Exchange (ETDEWEB)

    Xu,G.; Liu, R.; Zak, O.; Aisen, P.; Chance, M.

    2005-01-01

    The structural allostery and binding interface for the human serum transferrin (Tf){center_dot}transferrin receptor (TfR) complex were identified using radiolytic footprinting and mass spectrometry. We have determined previously that the transferrin C-lobe binds to the receptor helical domain. In this study we examined the binding interactions of full-length transferrin with receptor and compared these data with a model of the complex derived from cryoelectron microscopy (cryo-EM) reconstructions. The footprinting results provide the following novel conclusions. First, we report characteristic oxidations of acidic residues in the C-lobe of native Tf and basic residues in the helical domain of TfR that were suppressed as a function of complex formation; this confirms ionic interactions between these protein segments as predicted by cryo-EM data and demonstrates a novel method for detecting ion pair interactions in the formation of macromolecular complexes. Second, the specific side-chain interactions between the C-lobe and N-lobe of transferrin and the corresponding interactions sites on the transferrin receptor predicted from cryo-EM were confirmed in solution. Last, the footprinting data revealed allosteric movements of the iron binding C- and N-lobes of Tf that sequester iron as a function of complex formation; these structural changes promote tighter binding of the metal ion and facilitate efficient ion transport during endocytosis.

  7. Radioiodination of chicken luteinizing hormone without affecting receptor binding potency

    Energy Technology Data Exchange (ETDEWEB)

    Kikuchi, M.; Ishii, S. (Waseda Univ., Tokyo (Japan))

    1989-12-01

    By improving the currently used lactoperoxidase method, we were able to obtain radioiodinated chicken luteinizing hormone (LH) that shows high specific binding and low nonspecific binding to a crude plasma membrane fraction of testicular cells of the domestic fowl and the Japanese quail, and to the ovarian granulosa cells of the Japanese quail. The change we made from the original method consisted of (1) using chicken LH for radioiodination that was not only highly purified but also retained a high receptor binding potency; (2) controlling the level of incorporation of radioiodine into chicken LH molecules by employing a short reaction time and low temperature; and (3) fractionating radioiodinated chicken LH further by gel filtration using high-performance liquid chromatography. Specific radioactivity of the final {sup 125}I-labeled chicken LH preparation was 14 microCi/micrograms. When specific binding was 12-16%, nonspecific binding was as low as 2-4% in the gonadal receptors. {sup 125}I-Labeled chicken LH was displaced by chicken LH and ovine LH but not by chicken follicle-stimulating hormone. The equilibrium association constant of quail testicular receptor was 3.6 x 10(9) M-1. We concluded that chicken LH radioiodinated by the present method is useful for studies of avian LH receptors.

  8. Whole-genome cartography of estrogen receptor alpha binding sites.

    Directory of Open Access Journals (Sweden)

    Chin-Yo Lin

    2007-06-01

    Full Text Available Using a chromatin immunoprecipitation-paired end diTag cloning and sequencing strategy, we mapped estrogen receptor alpha (ERalpha binding sites in MCF-7 breast cancer cells. We identified 1,234 high confidence binding clusters of which 94% are projected to be bona fide ERalpha binding regions. Only 5% of the mapped estrogen receptor binding sites are located within 5 kb upstream of the transcriptional start sites of adjacent genes, regions containing the proximal promoters, whereas vast majority of the sites are mapped to intronic or distal locations (>5 kb from 5' and 3' ends of adjacent transcript, suggesting transcriptional regulatory mechanisms over significant physical distances. Of all the identified sites, 71% harbored putative full estrogen response elements (EREs, 25% bore ERE half sites, and only 4% had no recognizable ERE sequences. Genes in the vicinity of ERalpha binding sites were enriched for regulation by estradiol in MCF-7 cells, and their expression profiles in patient samples segregate ERalpha-positive from ERalpha-negative breast tumors. The expression dynamics of the genes adjacent to ERalpha binding sites suggest a direct induction of gene expression through binding to ERE-like sequences, whereas transcriptional repression by ERalpha appears to be through indirect mechanisms. Our analysis also indicates a number of candidate transcription factor binding sites adjacent to occupied EREs at frequencies much greater than by chance, including the previously reported FOXA1 sites, and demonstrate the potential involvement of one such putative adjacent factor, Sp1, in the global regulation of ERalpha target genes. Unexpectedly, we found that only 22%-24% of the bona fide human ERalpha binding sites were overlapping conserved regions in whole genome vertebrate alignments, which suggest limited conservation of functional binding sites. Taken together, this genome-scale analysis suggests complex but definable rules governing ERalpha

  9. DC-SIGN:binding receptors for hepatitis C virus

    Institute of Scientific and Technical Information of China (English)

    王全楚; 冯志华; 聂青和; 周永兴

    2004-01-01

    Objective To review the recent developments in and research into binding receptors of hepatitis C virus (HCV) and especially the role of dendritic cell-specitic adhesion receptor (DC-SIGN) in HCV.Data sources Both Chinese- and English-languge literature was searched using MEDLINE (2000-2003) and the databank of Chinese-language literature (2000-2003).Study selection Relevant articles on DC-SIGN and HCV binding receptors in recent domestic and foreign literature were selected.Data extraction Data were mainly extracted from 40 articles which are listed in the references section of this review. Results DC-SIGN, a dendritic cell-specific adhesion receptor and a type Ⅱ transmembrane mannose-binding C-type lectin, is very important in the function of dendritic cells (DC), both in mediating na(I)ve T cell interactions through ICAM-3 and as a rolling receptor that mediates the DC-specific ICAM-2-dependent migration processes-It can be used by HCV and other viral and bacterial pathogens including human immunodeficiency virus (HIV), Ebola virus, CMV and Mycobacterium tuberculosis- to facilitate infection. Both DC-SIGN and DC-SIGNR can act either in cis, by concentrating virus on target cells, or in trans, by transmission of bound virus to a target cell expressing appropriate entry receptors. Recent report showed that DC-S IGN not only plays a role in entry into DC, HCV E2 interaction with DC-SIGN might also be detrimental to the interaction of DC with T cells during antigen presentation.Conclusions DC-SIGNs are high-affinity binding receptors for HCV.The clinical strategies that target DC-SIGN may be successful in restricting HCV dissemination and pathogenesis as well as directing the migration of DCs to manipulate appropriate immune responses in autoimmunity and tumorigenic situations.

  10. Blocking and binding folate receptor alpha autoantibodies identify novel autism spectrum disorder subgroups

    Directory of Open Access Journals (Sweden)

    Richard Eugene Frye

    2016-03-01

    Full Text Available Folate receptor α (FRα autoantibodies (FRAAs are prevalent in autism spectrum disorder (ASD. They disrupt the transportation of folate across the blood-brain barrier by binding to the FRα. Children with ASD with FRAAs have been reported to respond well to treatment with a form of folate known as folinic acid, suggesting that they may be an important ASD subgroup to identify and treat. There has been no investigation of whether they manifest unique behavioral and physiological characteristics. Thus, in this study we measured both blocking and binding FRAAs, physiological measurements including indices of redox and methylation metabolism and inflammation as well as serum folate and B12 concentrations and measurements of development and behavior in 94 children with ASD. Children positive for the binding FRAA were found to have higher serum B12 levels as compared to those negative for binding FRAAs while children positive for the blocking FRAA were found to have relatively better redox metabolism and inflammation markers as compared to those negative for blocking FRAAs. In addition, ASD children positive for the blocking FRAA demonstrated better communication on the Vineland Adaptive Behavior Scale, stereotyped behavior on the Aberrant Behavioral Checklist and Mannerisms on the Social Responsiveness Scale. This study suggests that FRAAs are associated with specific physiological and behavioral characteristics in children with ASD and provides support for the notion that these biomarkers may be useful for subgrouping children with ASD, especially with respect to targeted treatments.

  11. Blocking and Binding Folate Receptor Alpha Autoantibodies Identify Novel Autism Spectrum Disorder Subgroups.

    Science.gov (United States)

    Frye, Richard E; Delhey, Leanna; Slattery, John; Tippett, Marie; Wynne, Rebecca; Rose, Shannon; Kahler, Stephen G; Bennuri, Sirish C; Melnyk, Stepan; Sequeira, Jeffrey M; Quadros, Edward

    2016-01-01

    Folate receptor α (FRα) autoantibodies (FRAAs) are prevalent in autism spectrum disorder (ASD). They disrupt the transportation of folate across the blood-brain barrier by binding to the FRα. Children with ASD and FRAAs have been reported to respond well to treatment with a form of folate known as folinic acid, suggesting that they may be an important ASD subgroup to identify and treat. There has been no investigation of whether they manifest unique behavioral and physiological characteristics. Thus, in this study we measured both blocking and binding FRAAs, physiological measurements including indices of redox and methylation metabolism and inflammation as well as serum folate and B12 concentrations and measurements of development and behavior in 94 children with ASD. Children positive for the binding FRAA were found to have higher serum B12 levels as compared to those negative for binding FRAAs while children positive for the blocking FRAA were found to have relatively better redox metabolism and inflammation markers as compared to those negative for blocking FRAAs. In addition, ASD children positive for the blocking FRAA demonstrated better communication on the Vineland Adaptive Behavior Scale, stereotyped behavior on the Aberrant Behavioral Checklist and mannerisms on the Social Responsiveness Scale. This study suggests that FRAAs are associated with specific physiological and behavioral characteristics in children with ASD and provides support for the notion that these biomarkers may be useful for subgrouping children with ASD, especially with respect to targeted treatments. PMID:27013943

  12. D-2 receptor binding in dopa-responsive dystonia

    NARCIS (Netherlands)

    Kunig, G; Leenders, KL; Antonini, A; Vontobel, P; Weindl, A; Meinck, HM

    1998-01-01

    We have studied dopamine D-2 receptor binding by [C-11]raclopride positron emission tomography in 14 patients with dopa-responsive dystonia (DRD). Data were compared with 16 levodopa-treated patients with Parkinson's disease (PD) and 26 healthy controls. The results revealed an elevated [C-11]raclop

  13. ERPs reveal the time-course of aberrant visual-phonological binding in developmental dyslexia

    Directory of Open Access Journals (Sweden)

    Manon Wyn Jones

    2016-03-01

    Full Text Available New evidence is accumulating for a deficit in binding visual-orthographic information with the corresponding phonological code in developmental dyslexia. Here, we identify the mechanisms underpinning this deficit using event-related brain potentials (ERPs in dyslexic and control adult readers performing a letter-matching task. In each trial, a printed letter was presented synchronously with an auditory letter name. Incongruent (mismatched, frequent trials were interleaved with congruent (matched infrequent target pairs, which participants were asked to report by pressing a button. In critical trials, incongruent letter pairs were mismatched but confusable in terms of their visual or phonological features. Typical readers showed early detection of deviant trials, indicated by larger modulation in the range of the phonological mismatch negativity (PMN compared with standard trials. This was followed by stronger modulation of the P3b wave for visually confusable deviants and an increased lateralized readiness potential (LRP for phonological deviants, compared with standards. In contrast, dyslexic readers showed reduced sensitivity to deviancy in the PMN range. Responses to deviants in the P3b range indicated normal letter recognition processes, but the LRP calculation revealed a specific impairment for visual-orthographic information during response selection in dyslexia. In a follow-up experiment using an analogous non-lexical task in the same participants, we found no reading-group differences, indicating a degree of specificity to over-learnt visual-phonological binding. Our findings indicate early insensitivity to visual-phonological binding in developmental dyslexia, coupled with difficulty selecting the correct orthographic code.

  14. ERPs Reveal the Time-Course of Aberrant Visual-Phonological Binding in Developmental Dyslexia.

    Science.gov (United States)

    Jones, Manon W; Kuipers, Jan-Rouke; Thierry, Guillaume

    2016-01-01

    New evidence is accumulating for a deficit in binding visual-orthographic information with the corresponding phonological code in developmental dyslexia. Here, we identify the mechanisms underpinning this deficit using event-related brain potentials (ERPs) in dyslexic and control adult readers performing a letter-matching task. In each trial, a printed letter was presented synchronously with an auditory letter name. Incongruent (mismatched), frequent trials were interleaved with congruent (matched) infrequent target pairs, which participants were asked to report by pressing a button. In critical trials, incongruent letter pairs were mismatched but confusable in terms of their visual or phonological features. Typical readers showed early detection of deviant trials, indicated by larger modulation in the range of the phonological mismatch negativity (PMN) compared with standard trials. This was followed by stronger modulation of the P3b wave for visually confusable deviants and an increased lateralized readiness potential (LRP) for phonological deviants, compared with standards. In contrast, dyslexic readers showed reduced sensitivity to deviancy in the PMN range. Responses to deviants in the P3b range indicated normal letter recognition processes, but the LRP calculation revealed a specific impairment for visual-orthographic information during response selection in dyslexia. In a follow-up experiment using an analogous non-lexical task in the same participants, we found no reading-group differences, indicating a degree of specificity to over-learnt visual-phonological binding. Our findings indicate early insensitivity to visual-phonological binding in developmental dyslexia, coupled with difficulty selecting the correct orthographic code. PMID:26973493

  15. Beyond Ribosomal Binding: The Increased Polarity and Aberrant Molecular Interactions of 3-epi-deoxynivalenol

    Science.gov (United States)

    Hassan, Yousef I.; Zhu, Honghui; Zhu, Yan; Zhou, Ting

    2016-01-01

    Deoxynivalenol (DON) is a secondary fungal metabolite and contaminant mycotoxin that is widely detected in wheat and corn products cultivated around the world. Bio-remediation methods have been extensively studied in the past two decades and promising ways to reduce DON-associated toxicities have been reported. Bacterial epimerization of DON at the C3 carbon was recently reported to induce a significant loss in the bio-toxicity of the resulting stereoisomer (3-epi-DON) in comparison to the parental compound, DON. In an earlier study, we confirmed the diminished bio-potency of 3-epi-DON using different mammalian cell lines and mouse models and mechanistically attributed it to the reduced binding of 3-epi-DON within the ribosomal peptidyl transferase center (PTC). In the current study and by inspecting the chromatographic behavior of 3-epi-DON and its molecular interactions with a well-characterized enzyme, Fusarium graminearum Tri101 acetyltransferase, we provide the evidence that the C3 carbon epimerization of DON influences its molecular interactions beyond the abrogated PTC binding. PMID:27618101

  16. Evidence for an intrinsic binding force between dodecaborate dianions and receptors with hydrophobic binding pockets.

    Science.gov (United States)

    Warneke, Jonas; Jenne, Carsten; Bernarding, Johannes; Azov, Vladimir A; Plaumann, Markus

    2016-05-01

    A gas phase binding study revealed strong intrinsic intermolecular interactions between dianionic halogenated closo-dodecaborates [B12X12](2-) and several neutral organic receptors. Oxidation of a tetrathiafulvalene host allowed switching between two host-guest binding modes in a supramolecular complex. Complexes of β-cyclodextrin with [B12F12](2-) show remarkable stability in the gas phase and were successfully tested as carriers for the delivery of boron clusters into cancer cells. PMID:27087168

  17. Aberrant splicing of androgenic receptor mRNA results in synthesis of a nonfunctional receptor protein in a patient with androgen insensitivity

    Energy Technology Data Exchange (ETDEWEB)

    Ris-Stalpers, C.; Kuiper, G.G.J.M.; Faber, P.W.; van Rooij, H.C.J.; Degenhart, H.J.; Trapman, J.; Brinkmann, A.O. (Erasmus Univ., Rotterdam (Netherlands)); Schweikert, H.U. (Univ. of Bonn (Germany)); Zegers, N.D. (Medical Biological Laboratory-Organization for Applied Scientific Research, Rijswijk (Netherlands)); Hodgins, M.B. (Glasgow Univ. (United Kingdom))

    1990-10-01

    Androgen insensitivity is a disorder in which the correct androgen response in an androgen target cell is impaired. The clinical symtpoms of this X chromosome-linked syndrome are presumed to be caused by mutations in the androgen receptor gene. The authors report a G {r arrow} T mutation in the splice donor site of intron 4 of the androgen receptor gene of a 46, XY subject lacking detectable androgen binding to the receptor and with the complete form of androgen insensitivity. This point mutation completely abolishes normal RNA splicing at the exon 4/intron 4 boundary and results in the activation of a cryptic splice donor site in exon 4, which leads to the deletion of 123 nucleotides from the mRNA. Translation of the mutant mRNA results in an androgen receptor protein {approx}5 kDa smaller than the wild type. This mutated androgen receptor protein was unable to bind androgens and unable to activate transcription of an androgen-regulated reporter gene construct. This mutation in the human androgen receptor gene demonstrates the importance of an intact steroid-binding domain for proper androgen receptor functioning in vivo.

  18. Aberrant splicing of androgenic receptor mRNA results in synthesis of a nonfunctional receptor protein in a patient with androgen insensitivity

    International Nuclear Information System (INIS)

    Androgen insensitivity is a disorder in which the correct androgen response in an androgen target cell is impaired. The clinical symtpoms of this X chromosome-linked syndrome are presumed to be caused by mutations in the androgen receptor gene. The authors report a G → T mutation in the splice donor site of intron 4 of the androgen receptor gene of a 46, XY subject lacking detectable androgen binding to the receptor and with the complete form of androgen insensitivity. This point mutation completely abolishes normal RNA splicing at the exon 4/intron 4 boundary and results in the activation of a cryptic splice donor site in exon 4, which leads to the deletion of 123 nucleotides from the mRNA. Translation of the mutant mRNA results in an androgen receptor protein ∼5 kDa smaller than the wild type. This mutated androgen receptor protein was unable to bind androgens and unable to activate transcription of an androgen-regulated reporter gene construct. This mutation in the human androgen receptor gene demonstrates the importance of an intact steroid-binding domain for proper androgen receptor functioning in vivo

  19. Receptor binding of biosynthetic human insulin on isolated pig hepatocytes

    Energy Technology Data Exchange (ETDEWEB)

    Gammeltoft, S.

    Biosynthetic human insulin (BHI) and pancreatic human insulin were compared with respect to receptor binding in a heterologous assay system: displacement of pork A14-/sup 125/I-monoiodoinsulin from receptors on pig hepatocytes. The concentrations of human insulin giving half-maximal displacement were identical for both preparations, i.e., 0.5 nM. Their relative potency was 1.01 +/- 0.14 (SD, N . 5), suggesting that biosynthetic and pancreatic human insulin exert the same biologic activity.

  20. Receptor binding of biosynthetic human insulin on isolated pig hepatocytes

    International Nuclear Information System (INIS)

    Biosynthetic human insulin (BHI) and pancreatic human insulin were compared with respect to receptor binding in a heterologous assay system: displacement of pork A14-125I-monoiodoinsulin from receptors on pig hepatocytes. The concentrations of human insulin giving half-maximal displacement were identical for both preparations, i.e., 0.5 nM. Their relative potency was 1.01 +/- 0.14 (SD, N . 5), suggesting that biosynthetic and pancreatic human insulin exert the same biologic activity

  1. Tacrolimus increases Nox4 expression in human renal fibroblasts and induces fibrosis-related genes by aberrant TGF-beta receptor signalling.

    Directory of Open Access Journals (Sweden)

    Georg Kern

    Full Text Available Chronic nephrotoxicity of immunosuppressives is one of the main limiting factors in the long-term outcome of kidney transplants, leading to tissue fibrosis and ultimate organ failure. The cytokine TGF-β is considered a key factor in this process. In the human renal fibroblast cell line TK-173, the macrolide calcineurin inhibitor tacrolimus (FK-506 induced TGF-β-like effects, manifested by increased expression of NAD(PH-oxidase 4 (Nox4, transgelin, tropomyosin 1, and procollagen α1(V mRNA after three days. The macrolide mTOR inhibitor rapamycin had similar effects, while cyclosporine A did not induce fibrose-related genes. Concentration dependence curves were sigmoid, where mRNA expression was induced already at low nanomolar levels of tacrolimus, and reached saturation at 100-300 nM. The effects were independent of extracellular TGF-β as confirmed by the use of neutralizing antibodies, and thus most likely caused by aberrant TGF-β receptor signaling, where binding of tacrolimus to the regulatory FKBP12 protein results in a "leaky" TGF-β receptor. The myofibroblast marker α-smooth muscle actin was neither induced by tacrolimus nor by TGF-β1, indicating an incomplete activation of TK-173 fibroblasts under culture conditions. Tacrolimus- and TGF-β1-induced Nox4 protein upregulation was confirmed by Western blotting, and was accompanied by a rise in intracellular H2O2 concentration. Si-RNA mediated knock-down of Nox4 expression prevented up-regulation of procollagen α1(V mRNA in tacrolimus-treated cells, but induced procollagen α1(V expression in control cells. Nox4 knock-down had no significant effect on the other genes tested. TGF-β is a key molecule in fibrosis, and the constant activation of aberrant receptor signaling by tacrolimus might contribute to the long-term development of interstitial kidney fibrosis in immunosuppressed patients. Nox4 levels possibly play a regulatory role in these processes.

  2. Binding of polychlorinated biphenyls to the aryl hydrocarbon receptor.

    OpenAIRE

    Kafafi, S A; Afeefy, H Y; A. H. Ali; Said, H K; Kafafi, A G

    1993-01-01

    A new thermodynamic model for calculating the dissociation constants of complexes formed between the aryl hydrocarbon receptor (AhR) and polychlorinated biphenyls (PCBs) is reported. The free energies of binding of PCBs to AhR are controlled by their lipophilicities, electron affinities, and entropies. The corresponding physicochemical properties of polychlorinated dibenzo-p-dioxins and dibenzofurans also control their interactions with AhR. We present evidence supporting the hypothesis that ...

  3. Binding Mode of Insulin Receptor and Agonist Peptide

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Insulin is a protein hormone secreted by pancreatic β cells. One of its main functions is to keep the balance of glucose inside the body by regulating the absorption and metabolism of glucose in the periphery tissue, as well as the production and storage of hepatic glycogen. The insulin receptor is a transmembrane glycoprotein in which two α subunits with a molecular weight of 135 kD and twoβ subunits with a molecular weight of 95 kD are joined by a disulfide bond to form a β-α-α-β structure. The extracellular α subunit, especially, its three domains near the N-terminal are partially responsible for signal transduction or ligand-binding, as indicated by the experiments. The extracellular α subunits are involved in binding the ligands. The experimental results indicate that the three domains of the N-terminal of the α subunits are the main determinative parts of the insulin receptor to bind the insulin or mimetic peptide.We employed the extracellular domain (PDBID: 1IGR) of the insulin-like growth factor-1 receptor (IGF-1 R ) as the template to simulate and optimize the spatial structures of the three domains in the extracellular domain of the insulin receptor, which includes 468 residues. The work was accomplished by making use of the homology program in the Insight Ⅱ package on an Origin3800 server. The docking calculations of the insulin receptor obtained by homology with hexapeptides were carried out by means of the program Affinity. The analysis indicated that there were hydrogen bonding, and electrostatic and hydrophobic effects in the docking complex of the insulin receptor with hexapeptides.Moreover, we described the spatial orientation of a mimetic peptide with agonist activity in the docking complex. We obtained a rough model of binding of DLAPSQ or STIVYS with the insulin receptor, which provides the powerful theoretical support for designing the minimal insulin mimetic peptide with agonist activity, making it possible to develop oral small

  4. Involvement of aberrant DNA methylation on reduced expression of lysophosphatidic acid receptor-1 gene in rat tumor cell lines

    International Nuclear Information System (INIS)

    Lysophosphatidic acid (LPA) is a bioactive phospholipid that stimulates cell proliferation, migration, and protects cells from apoptosis. It interacts with specific G protein-coupled transmembrane receptors. Recently, it has been reported that alterations of LPA receptor expression might be important in the malignant transformation of tumor cells. Therefore, to assess an involvement of DNA methylation in reduced expression of the LPA receptor-1 (lpa1) gene, we investigated the expression of the lpa1 gene and its DNA methylation patterns in rat tumor cell lines. Both rat brain-derived neuroblastoma B103 and liver-derived hepatoma RH7777 cells used in this study indicated no expression of lpa1. For the analysis of methylation status, bisulfite sequencing was performed with B103 and RH7777 cells, comparing with other lpa1 expressed cells and normal tissues of brain and liver. The lpa1 expressed cells and tissues were all unmethylated in this region of lpa1. In contrast, both B103 and RH7777 cells were highly methylated, correlating with reduced expression of the lpa1. Treatment with 5-aza 2'-deoxycytidine induced expression of lpa1 gene in B103 and RH7777 cells after 24 h. In RH7777 cells treated with 5-aza 2'-deoxycytidine, stress fiber formation was also observed in response to LPA in RH7777 cells, but not in untreated RH7777 cells. These results suggest that aberrant DNA methylation of the lpa1 gene may be involved in its reduced expression in rat tumor cells

  5. Aberrant splicing of androgen receptor mRNA results in synthesis of a nonfunctional receptor protein in a patient with androgen insensitivity.

    OpenAIRE

    Ris-Stalpers, C.; Kuiper, G G; Faber, P.W.; SCHWEIKERT, H. U.; van Rooij, H C; Zegers, N.D.; Hodgins, M B; Degenhart, H J; Trapman, J; Brinkmann, A.O.

    1990-01-01

    Androgen insensitivity is a disorder in which the correct androgen response in an androgen target cell is impaired. The clinical symptoms of this X chromosome-linked syndrome are presumed to be caused by mutations in the androgen receptor gene. We report a G----T mutation in the splice donor site of intron 4 of the androgen receptor gene of a 46,XY subject lacking detectable androgen binding to the receptor and with the complete form of androgen insensitivity. This point mutation completely a...

  6. Development of prolactin receptor antagonists with reduced pH-dependence of receptor binding

    DEFF Research Database (Denmark)

    Hansen, Mathilde Johanne Kaas; Olsen, Johan Gotthardt; Bernichtein, Sophie;

    2011-01-01

    and thermodynamic characterization of receptor binding by isothermal titration calorimetry combined with in vitro bioactivity in living cells. Histidine residue 27 was recognized as a central hot spot for pH sensitivity and conservative substitutions at this site resulted in strong receptor binding at low pH. Pure...... antagonists were developed earlier and the histidine mutations were introduced within such background. The antagonistic properties were maintained and the high affinity at low pH conserved. The implications of these findings may open new areas of research in the field of prolactin cancer biology. Copyright...

  7. Characterization of DNA Binding and Retinoic Acid Binding Properties of Retinoic Acid Receptor

    Science.gov (United States)

    Yang, Na; Schule, Roland; Mangelsdorf, David J.; Evans, Ronald M.

    1991-05-01

    High-level expression of the full-length human retinoic acid receptor (RAR) α and the DNA binding domain of the RAR in Escherichia coli was achieved by using a T7 RNA polymerase-directed expression system. After induction, full-length RAR protein was produced at an estimated level of 20% of the total bacterial proteins. Both intact RAR molecules and the DNA binding domain bind to the cognate DNA response element with high specificity in the absence of retinoic acid. However, this binding is enhanced to a great extent upon the addition of eukaryotic cell extracts. The factor responsible for this enhancement is heat-sensitive and forms a complex with RAR that binds to DNA and exhibits a distinct migration pattern in the gel-mobility-shift assay. The interaction site of the factor with RAR is localized in the 70-amino acid DNA binding region of RAR. The hormone binding ability of the RARα protein was assayed by a charcoal absorption assay and the RAR protein was found to bind to retinoic acid with a K_d of 2.1 x 10-10 M.

  8. Breakpoint sites disclose the role of the V(D)J recombination machinery in the formation of T-cell receptor (TCR) and non-TCR associated aberrations in T-cell acute lymphoblastic leukemia.

    Science.gov (United States)

    Larmonie, Nicole S D; Dik, Willem A; Meijerink, Jules P P; Homminga, Irene; van Dongen, Jacques J M; Langerak, Anton W

    2013-08-01

    Aberrant recombination between T-cell receptor genes and oncogenes gives rise to chromosomal translocations that are genetic hallmarks in several subsets of human T-cell acute lymphoblastic leukemias. The V(D)J recombination machinery has been shown to play a role in the formation of these T-cell receptor translocations. Other, non-T-cell receptor chromosomal aberrations, such as SIL-TAL1 deletions, have likewise been recognized as V(D)J recombination associated aberrations. Despite the postulated role of V(D)J recombination, the extent of the V(D)J recombination machinery involvement in the formation of T-cell receptor and non-T-cell receptor aberrations in T-cell acute lymphoblastic leukemia is still poorly understood. We performed a comprehensive in silico and ex vivo evaluation of 117 breakpoint sites from 22 different T-cell receptor translocation partners as well as 118 breakpoint sites from non-T-cell receptor chromosomal aberrations. Based on this extensive set of breakpoint data, we provide a comprehensive overview of T-cell receptor and oncogene involvement in T-ALL. Moreover, we assessed the role of the V(D)J recombination machinery in the formation of chromosomal aberrations, and propose an up-dated mechanistic classification on how the V(D)J recombination machinery contributes to the formation of T-cell receptor and non-T-cell receptor aberrations in human T-cell acute lymphoblastic leukemia.

  9. Selective Cancer Targeting via Aberrant Behavior of Cancer Cell-associated Glucocorticoid Receptor

    OpenAIRE

    Mukherjee, Amarnath; Narayan, Kumar P; Pal, Krishnendu; Kumar, Jerald M.; Rangaraj, Nandini; Shasi V Kalivendi; Banerjee, Rajkumar

    2009-01-01

    Glucocorticoid receptors (GRs) are ubiquitous, nuclear hormone receptors residing in cell types of both cancer and noncancerous origin. It is not known whether cancer cell–associated GR alone can be selectively manipulated for delivery of exogenous genes to its nucleus for eliciting anticancer effect. We find that GR ligand, dexamethasone (Dex) in association with cationic lipoplex (termed as targeted lipoplex) could selectively manipulate GR in cancer cells alone for the delivery of transgen...

  10. Cholinergic receptor binding in the frontal cortex of suicide victims

    International Nuclear Information System (INIS)

    Because there is a high incidence of individuals diagnosed as having an affective disorder who subsequently commit suicide, the author thought it would be of interest to determine QNB binding in the brains of a large sample of suicide victims, and to compare the findings with a well-matched control group. Brain samples were obtained at autopsy from 22 suicide victims and 22 controls. Frontal cortex samples were diseected, frozen, and stored until assayed. Samples of tissue homogenate were incubated in duplicate with 10 concentrations of tritium-QNB. Specific binding was determined with and without atropine. The results confirmed previous studies in which no changes were noted in suicide versus control brains. While the findings neither disprove nor support the cholinergic hypothesis of depression, they do suggest that the neurochemical basis for the in vivo observations of increased responsivity of depressed individuals to muscarinic cholinergic agents might not involve changes in receptors estimated by QNB binding

  11. Malignant Peripheral Nerve Sheath Tumor Invasion Requires Aberrantly Expressed Epidermal Growth Factor (EGF) Receptors and is Variably Enhanced by Multiple EGF Family Ligands

    Science.gov (United States)

    Byer, Stephanie J.; Brossier, Nicole M.; Peavler, Lafe T.; Eckert, Jenell M.; Watkins, Stacey; Roth, Kevin A.; Carroll, Steven L.

    2013-01-01

    Aberrant epidermal growth factor receptor (EGFR) expression promotes the pathogenesis of malignant peripheral nerve sheath tumors (MPNSTs), the most common malignancy associated with neurofibromatosis type 1, but the mechanisms by which EGFR expression promotes MPNST pathogenesis are poorly understood. We hypothesized that inappropriately expressed EGFRs promote MPNST invasion and found that these kinases are concentrated in MPNST invadopodia in vitro. EGFR knockdown inhibited the migration of unstimulated MPNST cells in vitro and exogenous EGF further enhanced MPNST migration in a substrate-specific manner, promoting migration on laminin and, to a lesser extent, collagen. Thus, in this setting, EGF acts as a chemotactic factor. We also found that the 7 known EGFR ligands (EGF, betacellulin, epiregulin, heparin-binding EGF, transforming growth factor α [TGFα], amphiregulin, and epigen) variably enhanced MPNST migration in a concentration-dependent manner, with TGFα being particularly potent. With the exception of epigen, these factors similarly promoted the migration of non-neoplastic Schwann cells. Although transcripts encoding all 7 EGFR ligands were detected in human MPNST cells and tumor tissues, only TGFα was consistently overexpressed and was found to colocalize with EGFR in situ. These data indicate that constitutive EGFR activation, potentially driven by autocrine or paracrine TGFα signaling, promotes the aggressive invasive behavior characteristic of MPNSTs. PMID:23399900

  12. Interaction of chemokines with their receptors--from initial chemokine binding to receptor activating steps

    DEFF Research Database (Denmark)

    Thiele, Stefanie; Rosenkilde, Mette Marie

    2014-01-01

    interactions possibly occur, resulting in a multi-step process, as recently proposed for other 7TM receptors. Overall, the N-terminus of chemokine receptors is pivotal for binding of all chemokines. During receptor activation, differences between the two major chemokine subgroups occur, as CC-chemokines mainly......The human chemokine system comprises 19 seven-transmembrane helix (7TM) receptors and 45 endogenous chemokines that often interact with each other in a promiscuous manner. Due to the chemokine system's primary function in leukocyte migration, it has a central role in immune homeostasis...... and surveillance. Chemokines are a group of 8-12 kDa large peptides with a secondary structure consisting of a flexible N-terminus and a core-domain usually stabilized by two conserved disulfide bridges. They mainly interact with the extracellular domains of their cognate 7TM receptors. Affinityand activity...

  13. The Receptor Binding Domain of Botulinum Neurotoxin Stereotype C Binds Phosphoinositides

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yanfeng; Varnum, Susan M.

    2012-03-01

    Botulinum neurotoxins (BoNTs) are the most toxic proteins known for humans and animals with an extremely low LD50 of {approx} 1 ng/kg. BoNTs generally require a protein and a ganglioside on the cell membrane surface for binding, which is known as a 'dual receptor' mechanism for host intoxication. Recent studies have suggested that in addition to gangliosides, other membrane lipids such as phosphoinositides may be involved in the interactions with the receptor binding domain (HCR) of BoNTs for better membrane penetration. Here, using two independent lipid-binding assays, we tested the interactions of BoNT/C-HCR with lipids in vitro. BoNT/C-HCR was found to bind negatively charged phospholipids, preferentially phosphoinositides. Additional interactions to phosphoinositides may help BoNT/C bind membrane more tightly and transduct signals for subsequent steps of intoxication. Our results provide new insights into the mechanisms of host cell membrane recognition by BoNTs.

  14. Radiolabelled GLP-1 receptor antagonist binds to GLP-1 receptor-expressing human tissues

    Energy Technology Data Exchange (ETDEWEB)

    Waser, Beatrice; Reubi, Jean Claude [University of Berne, Division of Cell Biology and Experimental Cancer Research, Institute of Pathology, PO Box 62, Berne (Switzerland)

    2014-06-15

    Radiolabelled glucagon-like peptide 1 (GLP-1) receptor agonists have recently been shown to successfully image benign insulinomas in patients. For the somatostatin receptor targeting of tumours, however, it was recently reported that antagonist tracers were superior to agonist tracers. The present study therefore evaluated various forms of the {sup 125}iodinated-Bolton-Hunter (BH)-exendin(9-39) antagonist tracer for the in vitro visualization of GLP-1 receptor-expressing tissues in rats and humans and compared it with the agonist tracer {sup 125}I-GLP-1(7-36)amide. Receptor autoradiography studies with {sup 125}I-GLP-1(7-36)amide agonist or {sup 125}I-BH-exendin(9-39) antagonist radioligands were performed in human and rat tissues. The antagonist {sup 125}I-BH-exendin(9-39) labelled at lysine 19 identifies all human and rat GLP-1 target tissues and GLP-1 receptor-expressing tumours. Binding is of high affinity and is comparable in all tested tissues in its binding properties with the agonist tracer {sup 125}I-GLP-1(7-36)amide. For comparison, {sup 125}I-BH-exendin(9-39) with the BH labelled at lysine 4 did identify the GLP-1 receptor in rat tissues but not in human tissues. The GLP-1 receptor antagonist exendin(9-39) labelled with {sup 125}I-BH at lysine 19 is an excellent GLP-1 radioligand that identifies human and rat GLP-1 receptors in normal and tumoural tissues. It may therefore be the molecular basis to develop suitable GLP-1 receptor antagonist radioligands for in vivo imaging of GLP-1 receptor-expressing tissues in patients. (orig.)

  15. Development of Gamma-Emitting Receptor Binding Radiopharmace

    Energy Technology Data Exchange (ETDEWEB)

    Reba, Richard

    2003-02-20

    The long-term objective is to develop blood-brain barrier (BBB) permeable m2-selective (relative to m1, m3, and m4) receptor-binding radiotracers and utilize these radiotracers for quantifying receptor concentrations obtained from PET or SPECT images of human brain. In initial studies, we concluded that the lipophilicity and high affinity prevented (R,S)-I-QNB from reaching a flow-independent and receptor-dependent state in a reasonable time. Thus, it was clear that (R,S)-I-QNB should be modified. Therefore, during the last portion of this funded research, we proposed that more polar heterocycles should help accomplish that. Since reports of others concluded that radiobromination and radiofluorination of the unactivated phenyl ring is not feasible (Newkome et al,,1982), we, therefore, explored during this grant period a series of analogues of (R)-QNB in which one or both of the six-membered phenyl rings is replaced by a five-membered thienyl (Boulay et al., 1995), or furyl ring. The chemistry specific aims were to synthesize novel compounds designed to be m2-selective mAChR ligands capable of penetrating into the CNS, and develop methods for efficient radiolabeling of promising m2-selective muscarinic ligands. The pharmacology specific aims were to determine the affinity and subtype-selectivity of the novel compounds using competition binding studies with membranes from cells that express each of the five muscarinic receptor subtypes, to determine the ability of the promising non-radioactive compounds and radiolabeled novel compounds to cross the BBB, to determine the biodistribution, in-vivo pharmacokinetics, and in-vitm kinetics of promising m2-selective radioligands and to determine the distribution of receptors for the novel m2-selective radioligands using quantitative autoradiography of rat brain, and compare this distribution to the distribution of known m2-selective compounds.

  16. Receptor binding characteristics and cytotoxicity of insulin-methotrexate

    Institute of Scientific and Technical Information of China (English)

    Xiao-Hong Ou; An-Ren Kuang; Zheng-Lu Liang; Xian Peng; Yu-Guo Zhong

    2004-01-01

    AIM: To characterize the receptor binding affinity and cytotoxicity of insulin-methotrexate (MTX) for the potential utilization of insulin as carriers for carcinoma target drugs.METHODS: MTX was covalently linked to insulin. InsulinMTX conjugate was purified by Sephadex G-25 column and analyzed by high performance liquid chromatography.Hepatocellular carcinoma cell membrane fractions were isolated by sucrose density gradient centrifugation.Competitive displacement of 125I-insulin with insulin and insulin-MTX binding to insulin receptors were carried out.Cytoreductive effect of insulin-MTX on human hepatoma BEL7402 cells and human hepatocyte cell line HL7702 was evaluated using the MTT assay.RESULTS: Insulin-MTX competed as effectively as insulin with 125I-insulin for insulin receptors. The values of Kd for insulin-MTX and insulin were 93.82±19.32 nmol/L and 5.01±1.24 nmol/L, respectively. The value of Kd for insulinMTX was significantly increased in comparison with insulin (t=7.2532,n=4, P<0.005). Insulin-MTX inhibited the growth of human hepatoma cells (BEL7402) almost as potently as MTX. The inhibitory effect reached a peak on the 5 th day when the growth of cells was inhibited by 79% at a concentration of 5.0 μg/mL insulin-MTX. Treatment with 5.0 μg/mL of MTX and 5.0 μg/mL of insulin-MTX merely resulted in inhibition of HL7702 cells by 31.5% and 7.8%on the 5 th day.CONCLUSION: Insulin-MTX specifically recognizes insulin receptors and inhibits the growth of BEL7402 cells. These results suggest that insulin can be used as a carrier in receptor mediated carcinoma-targeting therapy.

  17. Identification of the Receptor Binding Domain of the Mouse Mammary Tumor Virus Envelope Protein

    OpenAIRE

    Zhang, Yuanming; Rassa, John C.; deObaldia, Maria Elena; Albritton, Lorraine M.; Susan R Ross

    2003-01-01

    Mouse mammary tumor virus (MMTV) is a betaretrovirus that infects rodent cells and uses mouse transferrin receptor 1 for cell entry. To characterize the interaction of MMTV with its receptor, we aligned the MMTV envelope surface (SU) protein with that of Friend murine leukemia virus (F-MLV) and identified a putative receptor-binding domain (RBD) that included a receptor binding sequence (RBS) of five amino acids and a heparin-binding domain (HBD). Mutation of the HBD reduced virus infectivity...

  18. Midbrain dopamine D2/3 receptor binding in schizophrenia.

    Science.gov (United States)

    Tuppurainen, Heli; Kuikka, Jyrki T; Laakso, Mikko P; Viinamäki, Heimo; Husso, Minna; Tiihonen, Jari

    2006-09-01

    Several studies suggest that dysregulation of dopaminergic transmission in the midbrain and thalamus may contribute to the symptomatology of schizophrenia. The objective of this study was to examine the putative alteration of dopamine D(2/3 )receptor densities in the thalamus and midbrain of drug-naïve schizophrenic patients. We used the high-affinity single-photon emission tomography ligand [(123)I]epidepride for imaging D(2/3 )receptor binding sites in six neuroleptic-naïve schizophrenic patients, and seven healthy controls. Schizophrenic symptoms were evaluated by the Positive and Negative Syndrome Scale. Significantly lower D(2/3 )values were observed in the midbrain of patients with schizophrenia compared to controls (P = 0.02). No statistically significant difference was observed in the thalamus between two groups. Negative correlations were found between thalamic D(2/3 )receptor binding and general psychopathological schizophrenic symptoms (r from -0.78 to -0.92). These observations implicate altered dopaminergic activity in the midbrain of schizophrenic patients. PMID:16783502

  19. Treponema pallidum receptor binding proteins interact with fibronectin

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, K.M.; Baseman, J.B.; Alderete, J.F.

    1983-06-01

    Analysis of plasma proteins avidly bound to T. pallidum surfaces revealed the ability of T. pallidum to acquire numerous host macromolecules. No acquisition was evident by the avirulent spirochete, T. phagedenis biotype Reiter. Western blotting technology using hyperimmune antifibronectin serum as a probe revealed the ability of virulent treponemes to avidly bind fibronectin from a complex medium such as plasma. The specificity of the tiplike adherence of motile T. pallidum to fibronectin-coated glass surfaces and to fibronectin on HEp-2 cells was reinforced by the observation that pretreatment of coverslips or cell monolayers with monospecific antiserum against fibronectin substantially reduced T. pallidum attachment. The stoichiometric binding of T. pallidum to fibronectin-coated coverslips and the inability of unlabeled or /sup 35/S-radiolabeled treponemes to interact with glass surfaces treated with other plasma proteins further established the specific nature of the interaction between virulent T. pallidum and fibronectin. The avid association between three outer envelope proteins of T. pallidum and fibronectin was also demonstrated. These treponemal surface proteins have been previously identified as putative receptor-binding proteins responsible for T. pallidum parasitism of host cells. The data suggest that surface fibronectin mediates tip-oriented attachment of T. pallidum to host cells via a receptor-ligand mechanism of recognition.

  20. Study on Synthesis and Binding Ability of a New Anion Receptor Containing NH Binding Sites

    Institute of Scientific and Technical Information of China (English)

    QIAO,Yan-Hong; LIN,Hai; LIN,Hua-Kuan

    2007-01-01

    A new colorimetric recognition receptor 1 based on the dual capability containing NH binding sites of selectively sensing anionic guest species has been synthesized. Compared with other halide anions, its UV/Vis absorption spectrum in dimethyl sulfoxide showed the response toward the presence of fluoride anion with high selectivity,and also displayed dramatic color changes from colorless to yellow in the presence of TBAF (5 × 10-5 mol/L). The similar UV/Vis absorption spectrum change also occurred when 1 was treated with AcO- while a little change with H2PO-4 and OH-. Receptor 1 has almost not affinity abilities to Cl-, Br- and I-. The binding ability of receptor 1to fluoride with high selectivity over other halides contributes to the anion size and the ability of forming hydrogen bonding. While the different ability of binding with geometrically triangular (AcO-), tetrahedral (H2PO-4 ) and linear (OH-) anions maybe result from their geometry configuration.

  1. Rescue of ligand binding of a mutant IGF-I receptor by complementation

    DEFF Research Database (Denmark)

    Chakravarty, Arjun Anders; Hinrichsen, Jane; Whittaker, Linda;

    2005-01-01

    from a wild-type receptor monomer and a mutant receptor monomer devoid of binding activity. Receptor hybrids were generated by transient co-transfection of cDNAs encoding wild-type and mutant receptors with unique epitope tags. Hybrid receptors were purified from transfected cells by sequential immuno......-affinity chromatography and their ligand-binding properties were determined. Complementation produced a hybrid with near wild-type affinity. Dissociation studies demonstrated that the hybrid did not exhibit negative cooperativity....

  2. Menthol binding and inhibition of α7-nicotinic acetylcholine receptors.

    Directory of Open Access Journals (Sweden)

    Abrar Ashoor

    Full Text Available Menthol is a common compound in pharmaceutical and commercial products and a popular additive to cigarettes. The molecular targets of menthol remain poorly defined. In this study we show an effect of menthol on the α7 subunit of the nicotinic acetylcholine (nACh receptor function. Using a two-electrode voltage-clamp technique, menthol was found to reversibly inhibit α7-nACh receptors heterologously expressed in Xenopus oocytes. Inhibition by menthol was not dependent on the membrane potential and did not involve endogenous Ca(2+-dependent Cl(- channels, since menthol inhibition remained unchanged by intracellular injection of the Ca(2+ chelator BAPTA and perfusion with Ca(2+-free bathing solution containing Ba(2+. Furthermore, increasing ACh concentrations did not reverse menthol inhibition and the specific binding of [(125I] α-bungarotoxin was not attenuated by menthol. Studies of α7- nACh receptors endogenously expressed in neural cells demonstrate that menthol attenuates α7 mediated Ca(2+ transients in the cell body and neurite. In conclusion, our results suggest that menthol inhibits α7-nACh receptors in a noncompetitive manner.

  3. Fluorescent Receptor Binding Assay for Detecting Ciguatoxins in Fish.

    Science.gov (United States)

    Hardison, D Ransom; Holland, William C; McCall, Jennifer R; Bourdelais, Andrea J; Baden, Daniel G; Darius, H Taiana; Chinain, Mireille; Tester, Patricia A; Shea, Damian; Quintana, Harold A Flores; Morris, James A; Litaker, R Wayne

    2016-01-01

    Ciguatera fish poisoning is an illness suffered by > 50,000 people yearly after consumption of fish containing ciguatoxins (CTXs). One of the current methodologies to detect ciguatoxins in fish is a radiolabeled receptor binding assay (RBA(R)). However, the license requirements and regulations pertaining to radioisotope utilization can limit the applicability of the RBA(R) in certain labs. A fluorescence based receptor binding assay (RBA(F)) was developed to provide an alternative method of screening fish samples for CTXs in facilities not certified to use radioisotopes. The new assay is based on competition binding between CTXs and fluorescently labeled brevetoxin-2 (BODIPY®-PbTx-2) for voltage-gated sodium channel receptors at site 5 instead of a radiolabeled brevetoxin. Responses were linear in fish tissues spiked from 0.1 to 1.0 ppb with Pacific ciguatoxin-3C (P-CTX-3C) with a detection limit of 0.075 ppb. Carribean ciguatoxins were confirmed in Caribbean fish by LC-MS/MS analysis of the regional biomarker (C-CTX-1). Fish (N = 61) of six different species were screened using the RBA(F). Results for corresponding samples analyzed using the neuroblastoma cell-based assay (CBA-N2a) correlated well (R2 = 0.71) with those of the RBA(F), given the low levels of CTX present in positive fish. Data analyses also showed the resulting toxicity levels of P-CTX-3C equivalents determined by CBA-N2a were consistently lower than the RBA(F) affinities expressed as % binding equivalents, indicating that a given amount of toxin bound to the site 5 receptors translates into corresponding lower cytotoxicity. Consequently, the RBA(F), which takes approximately two hours to perform, provides a generous estimate relative to the widely used CBA-N2a which requires 2.5 days to complete. Other RBA(F) advantages include the long-term (> 5 years) stability of the BODIPY®-PbTx-2 and having similar results as the commonly used RBA(R). The RBA(F) is cost-effective, allows high sample

  4. Coregulator control of androgen receptor action by a novel nuclear receptor-binding motif.

    Science.gov (United States)

    Jehle, Katja; Cato, Laura; Neeb, Antje; Muhle-Goll, Claudia; Jung, Nicole; Smith, Emmanuel W; Buzon, Victor; Carbó, Laia R; Estébanez-Perpiñá, Eva; Schmitz, Katja; Fruk, Ljiljana; Luy, Burkhard; Chen, Yu; Cox, Marc B; Bräse, Stefan; Brown, Myles; Cato, Andrew C B

    2014-03-28

    The androgen receptor (AR) is a ligand-activated transcription factor that is essential for prostate cancer development. It is activated by androgens through its ligand-binding domain (LBD), which consists predominantly of 11 α-helices. Upon ligand binding, the last helix is reorganized to an agonist conformation termed activator function-2 (AF-2) for coactivator binding. Several coactivators bind to the AF-2 pocket through conserved LXXLL or FXXLF sequences to enhance the activity of the receptor. Recently, a small compound-binding surface adjacent to AF-2 has been identified as an allosteric modulator of the AF-2 activity and is termed binding function-3 (BF-3). However, the role of BF-3 in vivo is currently unknown, and little is understood about what proteins can bind to it. Here we demonstrate that a duplicated GARRPR motif at the N terminus of the cochaperone Bag-1L functions through the BF-3 pocket. These findings are supported by the fact that a selective BF-3 inhibitor or mutations within the BF-3 pocket abolish the interaction between the GARRPR motif(s) and the BF-3. Conversely, amino acid exchanges in the two GARRPR motifs of Bag-1L can impair the interaction between Bag-1L and AR without altering the ability of Bag-1L to bind to chromatin. Furthermore, the mutant Bag-1L increases androgen-dependent activation of a subset of AR targets in a genome-wide transcriptome analysis, demonstrating a repressive function of the GARRPR/BF-3 interaction. We have therefore identified GARRPR as a novel BF-3 regulatory sequence important for fine-tuning the activity of the AR.

  5. Localization of CGRP receptor components, CGRP, and receptor binding sites in human and rhesus cerebellar cortex

    DEFF Research Database (Denmark)

    Eftekhari, Sajedeh; Salvatore, Christopher A; Gaspar, Renee C;

    2013-01-01

    receptor activity modifying protein 1 (RAMP1), was examined. In addition, expression of procalcitonin was studied. We observed high [(3)H]MK-3207 (CGRP receptor antagonist) binding densities in the molecular layer of rhesus cerebellar cortex; however, due to the limit of resolution of the autoradiographic....... Immunofluorescence revealed expression of CGRP, CLR, and RAMP1 in the Purkinje cells and in cells in the molecular layer. Procalcitonin was found in the same localization. Recent research in the biology of cerebellum indicates that it may have a role in nociception. For the first time we have identified CGRP and...

  6. Aberrant expression of regulatory cytokine IL-35 and pattern recognition receptor NOD2 in patients with allergic asthma.

    Science.gov (United States)

    Wong, Chun Kwok; Leung, Ting Fan; Chu, Ida Miu Ting; Dong, Jie; Lam, Yvonne Yi On; Lam, Christopher Wai Kei

    2015-02-01

    We investigated the plasma concentration of the novel regulatory cytokine IL-35 and intracytosolic pattern recognition receptors nucleotide-binding oligomerization domain (NOD)-like receptors in granulocytes and explored their potential implication in disease severity monitoring of allergic asthma. The expression of circulating IL-35 and other pro-inflammatory mediators in asthmatic patients or control subjects were evaluated using enzyme-linked immunosorbent assay (ELISA). The intracellular expressions of NOD1 and NOD2 in CCR3+ granulocytes were assessed using flow cytometry. Plasma concentrations of IL-35, IL-17A, basophil activation marker basogranulin, and eosinophilic airway inflammation biomarker periostin were significantly elevated in allergic asthmatic patients compared to non-atopic control subjects (all probability (p) IL-35 concentration in asthmatic patients (all p IL-35 and periostin with disease severity score in asthmatic patients (both p IL-35 (p IL-35 may serve as a potential surrogate biomarker for disease severity of allergic asthma.

  7. Differential estrogen receptor binding of estrogenic substances: a species comparison.

    Science.gov (United States)

    Matthews, J; Celius, T; Halgren, R; Zacharewski, T

    2000-11-15

    The study investigated the ability of 34 natural and synthetic chemicals to compete with [3H]17beta-estradiol (E2) for binding to bacterially expressed glutathione-S-transferase (GST)-estrogen receptors (ER) fusion proteins from five different species. Fusion proteins consisted of the ER D, E and F domains of human alpha (GST-hERalphadef), mouse alpha (GST-mERalphadef), chicken (GST-cERdef), green anole (GST-aERdef) and rainbow trout ERs (GST-rtERdef). All five fusion proteins displayed high affinity for E2 with dissociation constants (K(d)) ranging from 0.3 to 0.9 nM. Although, the fusion proteins exhibited similar binding preferences and binding affinities for many of the chemicals, several differences were observed. For example, alpha-zearalenol bound with greater affinity to GST-rtERdef than E2, which was in contrast to other GST-ERdef fusion proteins examined. Coumestrol, genistein and naringenin bound with higher affinity to the GST-aERdef, than to the other GST-ERdef fusion proteins. Many of the industrial chemicals examined preferentially bound to GST-rtERdef. Bisphenol A, 4-t-octylphenol and o,p' DDT bound with approximately a ten-fold greater affinity to GST-rtERdef than to other GST-ERdefs. Methoxychlor, p,p'-DDT, o,p'-DDE, p,p'-DDE, alpha-endosulfan and dieldrin weakly bound to the ERs from the human, mouse, chicken and green anole. In contrast, these compounds completely displaced [3H]E2 from GST-rtERdef. These results demonstrate that ERs from different species exhibit differential ligand preferences and relative binding affinities for estrogenic compounds and that these differences may be due to the variability in the amino acid sequence within their respective ER ligand binding domains. PMID:11162928

  8. The angiotensin II type 1 receptor antagonist Losartan binds and activates bradykinin B2 receptor signaling

    DEFF Research Database (Denmark)

    Bonde, Marie Mi; Olsen, Kristine Boisen; Erikstrup, Niels;

    2011-01-01

    The angiotensin II type 1 receptor (AT1R) blocker (ARB) Losartan has cardioprotective effects during ischemia-reperfusion injury and inhibits reperfusion arrhythmias -effects that go beyond the benefits of lowering blood pressure. The renin-angiotensin and kallikrein-kinin systems are intricately...... connected and some of the cardioprotective effects of Losartan are abolished by blocking the bradykinin B2 receptor (B2R) signaling. In this study, we investigated the ability of six clinically available ARBs to specifically bind and activate the B2R. First, we investigated their ability to activate...... phosphoinositide (PI) hydrolysis in COS-7 cells transiently expressing the B2R. We found that only Losartan activated the B2R, working as a partial agonist compared to the endogenous ligand bradykinin. This effect was blocked by the B2R antagonist HOE 140. A competitive binding analysis revealed that Losartan does...

  9. Benzodiazepine receptor binding in vivo with (/sup 3/)-Ro 15-1788

    Energy Technology Data Exchange (ETDEWEB)

    Goeders, N.E.; Kuhar, M.J.

    1985-07-29

    In vivo benzodiazepine receptor binding has generally been studied by ex vivo techniques. In this investigation, the authors identify the conditions where (/sup 3/H)-Ro 15-1788 labels benzodiazepine receptors by true in vivo binding, i.e. where workable specific to nonspecific ratios are obtained in intact tissues without homogenization or washing. (/sup 3/H)-Flunitrazepam and (/sup 3/H)-clonazepam did not exhibit useful in vivo receptor binding. 39 references, 5 figures, 1 table.

  10. Benzodiazepine receptor binding in vivo with [3]-Ro 15-1788

    International Nuclear Information System (INIS)

    In vivo benzodiazepine receptor binding has generally been studied by ex vivo techniques. In this investigation, the authors identify the conditions where [3H]-Ro 15-1788 labels benzodiazepine receptors by true in vivo binding, i.e. where workable specific to nonspecific ratios are obtained in intact tissues without homogenization or washing. [3H]-Flunitrazepam and [3H]-clonazepam did not exhibit useful in vivo receptor binding. 39 references, 5 figures, 1 table

  11. Genetic, functional and molecular features of glucocorticoid receptor binding.

    Directory of Open Access Journals (Sweden)

    Francesca Luca

    Full Text Available Glucocorticoids (GCs are key mediators of stress response and are widely used as pharmacological agents to treat immune diseases, such as asthma and inflammatory bowel disease, and certain types of cancer. GCs act mainly by activating the GC receptor (GR, which interacts with other transcription factors to regulate gene expression. Here, we combined different functional genomics approaches to gain molecular insights into the mechanisms of action of GC. By profiling the transcriptional response to GC over time in 4 Yoruba (YRI and 4 Tuscans (TSI lymphoblastoid cell lines (LCLs, we suggest that the transcriptional response to GC is variable not only in time, but also in direction (positive or negative depending on the presence of specific interacting transcription factors. Accordingly, when we performed ChIP-seq for GR and NF-κB in two YRI LCLs treated with GC or with vehicle control, we observed that features of GR binding sites differ for up- and down-regulated genes. Finally, we show that eQTLs that affect expression patterns only in the presence of GC are 1.9-fold more likely to occur in GR binding sites, compared to eQTLs that affect expression only in its absence. Our results indicate that genetic variation at GR and interacting transcription factors binding sites influences variability in gene expression, and attest to the power of combining different functional genomic approaches.

  12. Influences of hydrocarbon linkers on the receptor binding affinities of gonadotropin-releasing hormone peptides

    OpenAIRE

    Guo, Haixun; Hathaway, Helen; Royce, Melanie E.; Prossnitz, Eric R.; Miao, Yubin

    2013-01-01

    Three new DOTA-conjugated GnRH peptides with various hydrocarbon linkers were synthesized to evaluate the influences of the linkers on their receptor binding affinities. The hydrocarbon linker displayed a profound impact on the receptor binding affinities of DOTA-conjugated GnRH peptides. The Aun linker was better than Gaba, Ahx and Aoc linkers in retaining strong receptor binding affinity of the GnRH peptide. DOTA-Aun-(D-Lys6-GnRH) displayed 22.8 nM GnRH receptor binding affinity. 111In-DOTA...

  13. Aberrant Activation of the RANK Signaling Receptor Induces Murine Salivary Gland Tumors.

    Directory of Open Access Journals (Sweden)

    Maria M Szwarc

    Full Text Available Unlike cancers of related exocrine tissues such as the mammary and prostate gland, diagnosis and treatment of aggressive salivary gland malignancies have not markedly advanced in decades. Effective clinical management of malignant salivary gland cancers is undercut by our limited knowledge concerning the key molecular signals that underpin the etiopathogenesis of this rare and heterogeneous head and neck cancer. Without knowledge of the critical signals that drive salivary gland tumorigenesis, tumor vulnerabilities cannot be exploited that allow for targeted molecular therapies. This knowledge insufficiency is further exacerbated by a paucity of preclinical mouse models (as compared to other cancer fields with which to both study salivary gland pathobiology and test novel intervention strategies. Using a mouse transgenic approach, we demonstrate that deregulation of the Receptor Activator of NFkB Ligand (RANKL/RANK signaling axis results in rapid tumor development in all three major salivary glands. In line with its established role in other exocrine gland cancers (i.e., breast cancer, the RANKL/RANK signaling axis elicits an aggressive salivary gland tumor phenotype both at the histologic and molecular level. Despite the ability of this cytokine signaling axis to drive advanced stage disease within a short latency period, early blockade of RANKL/RANK signaling markedly attenuates the development of malignant salivary gland neoplasms. Together, our findings have uncovered a tumorigenic role for RANKL/RANK in the salivary gland and suggest that targeting this pathway may represent a novel therapeutic intervention approach in the prevention and/or treatment of this understudied head and neck cancer.

  14. Complement Component C3 Binds to Activated Normal Platelets without Preceding Proteolytic Activation and Promotes Binding to Complement Receptor 1

    OpenAIRE

    Osama A Hamad; Nilsson, Per H.; Wouters, Diana; Lambris, John D.; Ekdahl, Kristina N.; Nilsson, Bo

    2010-01-01

    It has been reported that complement is activated on the surface of activated platelets, despite the presence of multiple regulators of complement activation. To reinvestigate the mechanisms by which activated platelets bind to complement components, the presence of complement proteins on the surfaces of nonactivated and thrombin receptor-activating peptide-activated platelets was analyzed by flow cytometry and Western blot analyses. C1q, C4, C3, and C9 were found to bind to thrombin receptor...

  15. Analysis of the hormone-binding domain of steroid receptors using chimeras generated by homologous recombination

    International Nuclear Information System (INIS)

    The glucocorticoid receptor and the mineralocorticoid receptor are members of the steroid receptor family that exhibit ligand cross-reactivity. Specificity of steroid receptor action is investigated in the present work by the construction and characterization of chimeras between the glucocorticoid receptor and the mineralocorticoid receptor. We used an innovative approach to make novel steroid receptor proteins in vivo that in general, contrary to our expectations, show increased ligand specificity compared to the parental receptors. We describe a receptor that is specific for the potent synthetic glucocorticoid triamcinolone acetonide and does not bind aldosterone. A further set of chimeras has an increased ability to discriminate between ligands, responding potently to mineralocorticoids and only very weakly to synthetic glucocorticoids. A chimera with the fusion site in the hinge highlights the importance of the region between the DNA-binding and the hormone-binding domains since, unlike both the glucocorticoid and mineralocorticoid receptors, it only responds to mineralocorticoids. One chimera has reduced specificity in that it acts as a general corticoid receptor, responding to glucocorticoids and mineralocorticoids with similar potency and efficacy. Our data suggest that regions of the glucocorticoid and mineralocorticoid receptor hormone-binding domains are functionally non-reciprocal. We present transcriptional, hormone-binding, and structure-modeling evidence that suggests that receptor-specific interactions within and across domains mediate aspects of specificity in transcriptional responses to steroids

  16. Reevaluation of ANS binding to human and bovine serum albumins: key role of equilibrium microdialysis in ligand - receptor binding characterization.

    Directory of Open Access Journals (Sweden)

    Irina M Kuznetsova

    Full Text Available In this work we return to the problem of the determination of ligand-receptor binding stoichiometry and binding constants. In many cases the ligand is a fluorescent dye which has low fluorescence quantum yield in free state but forms highly fluorescent complex with target receptor. That is why many researchers use dye fluorescence for determination of its binding parameters with receptor, but they leave out of account that fluorescence intensity is proportional to the part of the light absorbed by the solution rather than to the concentration of bound dye. We showed how ligand-receptor binding parameters can be determined by spectrophotometry of the solutions prepared by equilibrium microdialysis. We determined the binding parameters of ANS - human serum albumin (HSA and ANS - bovine serum albumin (BSA interaction, absorption spectra, concentration and molar extinction coefficient, as well as fluorescence quantum yield of the bound dye. It was found that HSA and BSA have two binding modes with significantly different affinity to ANS. Correct determination of the binding parameters of ligand-receptor interaction is important for fundamental investigations and practical aspects of molecule medicine and pharmaceutics. The data obtained for albumins are important in connection with their role as drugs transporters.

  17. Modulation of glutamate transport and receptor binding by glutamate receptor antagonists in EAE rat brain.

    Science.gov (United States)

    Sulkowski, Grzegorz; Dąbrowska-Bouta, Beata; Salińska, Elżbieta; Strużyńska, Lidia

    2014-01-01

    The etiology of multiple sclerosis (MS) is currently unknown. However, one potential mechanism involved in the disease may be excitotoxicity. The elevation of glutamate in cerebrospinal fluid, as well as changes in the expression of glutamate receptors (iGluRs and mGluRs) and excitatory amino acid transporters (EAATs), have been observed in the brains of MS patients and animals subjected to experimental autoimmune encephalomyelitis (EAE), which is the predominant animal model used to investigate the pathophysiology of MS. In the present paper, the effects of glutamatergic receptor antagonists, including amantadine, memantine, LY 367583, and MPEP, on glutamate transport, the expression of mRNA of glutamate transporters (EAATs), the kinetic parameters of ligand binding to N-methyl-D-aspartate (NMDA) receptors, and the morphology of nerve endings in EAE rat brains were investigated. The extracellular level of glutamate in the brain is primarily regulated by astrocytic glutamate transporter 1 (GLT-1) and glutamate-aspartate transporter (GLAST). Excess glutamate is taken up from the synaptic space and metabolized by astrocytes. Thus, the extracellular level of glutamate decreases, which protects neurons from excitotoxicity. Our investigations showed changes in the expression of EAAT mRNA, glutamate transport (uptake and release) by synaptosomal and glial plasmalemmal vesicle fractions, and ligand binding to NMDA receptors; these effects were partially reversed after the treatment of EAE rats with the NMDA antagonists amantadine and memantine. The antagonists of group I metabotropic glutamate receptors (mGluRs), including LY 367385 and MPEP, did not exert any effect on the examined parameters. These results suggest that disturbances in these mechanisms may play a role in the processes associated with glutamate excitotoxicity and the progressive brain damage in EAE.

  18. Mapping convulsants’ binding to the GABA-A receptor chloride ionophore: a proposed model for channel binding sites

    OpenAIRE

    Kalueff, A.V.

    2006-01-01

    Gamma aminobutyric acid (GABA) type A receptors play a key role in brain inhibitory neurotransmission, and are ligand-activated chloride channels blocked by numerous convulsant ligands. Here we summarize data on binding of picrotoxin, tetrazoles, β-lactams, bicyclophosphates, butyrolactones and neurotoxic pesticides to GABA-A ionophore, and discuss functional and structural overlapping of their binding sites. The paper reviews data on convulsants’ binding sensitivity to different point mutati...

  19. Mutation in apolipoprotein B associated with hypobetalipoproteinemia despite decreased binding to the low density lipoprotein receptor

    DEFF Research Database (Denmark)

    Benn, Marianne; Nordestgaard, Børge G; Jensen, Jan Skov;

    2005-01-01

    Mutations in apolipoprotein B (APOB) may reduce binding of low density lipoprotein (LDL) to the LDL receptor and cause hypercholesterolemia. We showed that heterozygotes for a new mutation in APOB have hypobetalipoproteinemia, despite a reduced binding of LDL to the LDL receptor. APOB R3480P...

  20. Familial defective apolipoprotein B-100: low density lipoproteins with abnormal receptor binding

    International Nuclear Information System (INIS)

    Previous in vivo turnover studies suggested that retarded clearance of low density lipoproteins (LDL) from the plasma of some hypercholesterolemic patients is due to LDL with defective receptor binding. The present study examined this postulate directly by receptor binding experiments. The LDL from a hypercholesterolemic patient (G.R.) displayed a reduced ability to bind to the LDL receptors on normal human fibroblasts. The G.R. LDL possessed 32% of normal receptor binding activity. Likewise, the G.R. LDL were much less effective than normal LDL in competing with 125I-labeled normal LDL for cellular uptake and degradation and in stimulating intracellular cholesteryl ester synthesis. The defect in LDL binding appears to be due to a genetic abnormality of apolipoprotein B-100: two brothers of the proband possess LDL defective in receptor binding, whereas a third brother and the proband's son have normally binding LDL. Further, the defect in receptor binding does not appear to be associated wit an abnormal lipid composition or structure of the LDL. Normal and abnormal LDL subpopulations were partially separated from plasma of two subjects by density-gradient ultracentrifugation, a finding consistent with the presence of a normal and a mutant allele. The affected family members appear to be heterozygous for this disorder, which has been designated familial defective apolipoprotein B-100. These studies indicate that the defective receptor binding results in inefficient clearance of LDL and the hypercholesterolemia observed in these patients

  1. Bioluminescent Ligand-Receptor Binding Assays for Protein or Peptide Hormones.

    Science.gov (United States)

    Liu, Ya-Li; Guo, Zhan-Yun

    2016-01-01

    Bioluminescence has been widely used in biomedical research due to its high sensitivity, low background, and broad linear range. In recent studies, we applied bioluminescence to ligand-receptor binding assays for some protein or peptide hormones based on a newly developed small monomeric Nanoluciferase (NanoLuc) reporter that has the so far brightest bioluminescence. The conventional ligand-receptor binding assays rely on radioligands that have drawbacks, such as radioactive hazards and short shelf lives. In contrast, the novel bioluminescent binding assays use the NanoLuc-based protein or peptide tracers that are safe, stable, and ultrasensitive. Thus, the novel bioluminescent ligand-receptor binding assay would be applied to more and more protein or peptide hormones for ligand-receptor interaction studies in future. In the present article, we provided detailed protocols for setting up the novel bioluminescent ligand-receptor binding assays using two representative protein hormones as examples. PMID:27424896

  2. Competitive inhibition of [3H]dexamethasone binding to mammary glucocorticoid receptor by leupeptin

    International Nuclear Information System (INIS)

    The inhibitory effect of leupeptin on [3H]dexamethasone binding to the glucocorticoid receptor from lactating goat mammary cytosol has been studied. Leupeptin (10 mM) caused a significant (about 35%) inhibition of [3H]dexamethasone binding to glucocorticoid receptor. Binding inhibition is further increased following filtration of unlabeled cytosolic receptor through a Bio-Gel A 0.5-m column. Binding inhibition was partially reversed by monothioglycerol at 10 mM concentration. A double reciprocal plot revealed that leupeptin appears to be a competitive inhibitor of [3H]dexamethasone binding to the glucocorticoid receptor. Low salt sucrose density gradient centrifugation revealed that the leupeptin-treated sample formed a slightly larger (approximately 9 S) receptor complex (leupeptin-free complex sediments at 8 S)

  3. RAINBOW TROUT ANDROGEN RECEPTOR ALPHA AND THE HUMAN ANDROGEN RECEPTOR: COMPARISONS IN THE COS WHOLE CELL BINDING ASSAY

    Science.gov (United States)

    Rainbow Trout Androgen Receptor Alpha And Human Androgen Receptor: Comparisons in the COS Whole Cell Binding Assay Mary C. Cardon, L. Earl Gray, Jr. and Vickie S. WilsonU.S. Environmental Protection Agency, ORD, NHEERL, Reproductive Toxicology Division, Research Triangle...

  4. Definition of the G protein-coupled receptor transmembrane bundle binding pocket and calculation of receptor similarities for drug design

    DEFF Research Database (Denmark)

    Gloriam, David Erik Immanuel; Foord, Steven M; Blaney, Frank E;

    2009-01-01

    Recent advances in structural biology for G-protein-coupled receptors (GPCRs) have provided new opportunities to improve the definition of the transmembrane binding pocket. Here a reference set of 44 residue positions accessible for ligand binding was defined through detailed analysis of all curr...

  5. Neurotensin receptor binding levels in basal ganglia are not altered in Huntington's chorea or schizophrenia

    International Nuclear Information System (INIS)

    Autoradiographic techniques were used to examine the distribution and levels of neurotensin receptor binding sites in the basal ganglia and related regions of the human brain. Monoiodo (125I-Tyr3)neurotensin was used as a ligand. High amounts of neurotensin receptor binding sites were found in the substantia nigra pars compacta. Lower but significant quantities of neurotensin receptor binding sites characterized the caudate, putamen, and nucleus accumbens, while very low quantities were seen in both medial and lateral segments of the globus pallidus. In Huntington's chorea, the levels of neurotensin receptor binding sites were found to be comparable to those of control cases. Only slight but not statistically significant decreases in amounts of receptor binding sites were detected in the dorsal part of the head and in the body of caudate nucleus. No alterations in the levels of neurotensin receptor binding sites were observed in the substantia nigra pars compacta and reticulata. These results suggest that a large proportion of neurotensin receptor binding sites in the basal ganglia are located on intrinsic neurons and on extrinsic afferent fibers that do not degenerate in Huntington's disease

  6. Calcitonin receptor binding properties in bone and kidney of the chicken during the oviposition cycle.

    Science.gov (United States)

    Yasuoka, T; Kawashima, M; Takahashi, T; Tatematsu, N; Tanaka, K

    1998-09-01

    The binding property of calcitonin (CT) in the membrane fraction of calvaria and kidney of egg-laying and nonlaying hens was analyzed using a [125I] CT binding assay system. Binding properties of CT receptors in both tissues satisfy the authentic criteria of a receptor-ligand interaction in terms of specificity, reversibility, and saturation. Scatchard plots revealed a single class of binding sites. Values of the equilibrium dissociation constant (Kd) and binding capacity (Bmax) in laying hens showed a decrease during the period between 3 h before and 2 h after oviposition. No change was observed in nonlaying hens. In vivo administration of 17beta-estradiol or progesterone caused the decrease in Kd and Bmax values. The results suggest that the binding affinity and capacity of the CT receptor in the calvaria and the kidney of the hen may be modulated by the ovarian steroid hormone. PMID:9738513

  7. Absence of serum growth hormone binding protein in patients with growth hormone receptor deficiency (Laron dwarfism).

    OpenAIRE

    Daughaday, W H; Trivedi, B

    1987-01-01

    It has recently been recognized that human serum contains a protein that specifically binds human growth hormone (hGH). This protein has the same restricted specificity for hGH as the membrane-bound GH receptor. To determine whether the GH-binding protein is a derivative of, or otherwise related to, the GH receptor, we have examined the serum of three patients with Laron-type dwarfism, a condition in which GH refractoriness has been attributed to a defect in the GH receptor. The binding of 12...

  8. Origin and evolution of the ligand-binding ability of nuclear receptors.

    Science.gov (United States)

    Markov, Gabriel V; Laudet, Vincent

    2011-03-01

    The origin of the ligand-binding ability of nuclear receptors is still a matter of discussion. Current opposing models are the early evolution of an ancestral receptor that would bind a specific ligand with high affinity and the early evolution of an ancestral orphan that was a constitutive transcription factor. Here we review the arguments in favour or against these two hypotheses, and we discuss an alternative possibility that the ancestor was a ligand sensor, which would be able to explain the apparently contradictory data generated in previous models for the evolution of ligand binding in nuclear receptors. PMID:21055443

  9. Genome-Wide Profiling of Liver X Receptor, Retinoid X Receptor, and Peroxisome Proliferator-Activated Receptor α in Mouse Liver Reveals Extensive Sharing of Binding Sites

    DEFF Research Database (Denmark)

    Boergesen, Michael; Pedersen, Thomas Åskov; Gross, Barbara;

    2012-01-01

    The liver X receptors (LXRs) are nuclear receptors that form permissive heterodimers with retinoid X receptor (RXR) and are important regulators of lipid metabolism in the liver. We have recently shown that RXR agonist-induced hypertriglyceridemia and hepatic steatosis in mice are dependent on LXRs...... increases the genomic binding of RXR, whereas the LXR agonist T0901317 greatly increases both LXR and RXR binding. Functional annotation of putative direct LXR target genes revealed a significant association with classical LXR-regulated pathways as well as peroxisome proliferator-activated receptor (PPAR...

  10. A cation-pi interaction in the binding site of the glycine receptor is mediated by a phenylalanine residue

    DEFF Research Database (Denmark)

    Pless, Stephan Alexander; Millen, Kat S; Hanek, Ariele P;

    2008-01-01

    Cys-loop receptor binding sites characteristically contain many aromatic amino acids. In nicotinic ACh and 5-HT3 receptors, a Trp residue forms a cation-pi interaction with the agonist, whereas in GABA(A) receptors, a Tyr performs this role. The glycine receptor binding site, however, contains pr...

  11. The mu1, mu2, delta, kappa opioid receptor binding profiles of methadone stereoisomers and morphine

    DEFF Research Database (Denmark)

    Kristensen, K; Christensen, C B; Christrup, Lona Louring

    1995-01-01

    The binding affinities of racemic methadone and its optical isomers R-methadone and S-methadone were evaluated for the opioid receptors mu1, mu2, delta and kappa, in comparison with that of morphine. The analgesic R-methadone had a 10-fold higher affinity for mu1 receptors than S-methadone (IC50 3...... receptors. This result suggests that S-methadone does not essentially contribute to opioid effect of racemic methadone. R-methadone has a receptor binding profile which resembles that of morphine....

  12. Aberrant calcium signaling by transglutaminase-mediated posttranslational modification of inositol 1,4,5-trisphosphate receptors.

    Science.gov (United States)

    Hamada, Kozo; Terauchi, Akiko; Nakamura, Kyoko; Higo, Takayasu; Nukina, Nobuyuki; Matsumoto, Nagisa; Hisatsune, Chihiro; Nakamura, Takeshi; Mikoshiba, Katsuhiko

    2014-09-23

    The inositol 1,4,5-trisphosphate receptor (IP3R) in the endoplasmic reticulum mediates calcium signaling that impinges on intracellular processes. IP3Rs are allosteric proteins comprising four subunits that form an ion channel activated by binding of IP3 at a distance. Defective allostery in IP3R is considered crucial to cellular dysfunction, but the specific mechanism remains unknown. Here we demonstrate that a pleiotropic enzyme transglutaminase type 2 targets the allosteric coupling domain of IP3R type 1 (IP3R1) and negatively regulates IP3R1-mediated calcium signaling and autophagy by locking the subunit configurations. The control point of this regulation is the covalent posttranslational modification of the Gln2746 residue that transglutaminase type 2 tethers to the adjacent subunit. Modification of Gln2746 and IP3R1 function was observed in Huntington disease models, suggesting a pathological role of this modification in the neurodegenerative disease. Our study reveals that cellular signaling is regulated by a new mode of posttranslational modification that chronically and enzymatically blocks allosteric changes in the ligand-gated channels that relate to disease states.

  13. Analyzing machupo virus-receptor binding by molecular dynamics simulations

    Directory of Open Access Journals (Sweden)

    Austin G. Meyer

    2014-02-01

    Full Text Available In many biological applications, we would like to be able to computationally predict mutational effects on affinity in protein–protein interactions. However, many commonly used methods to predict these effects perform poorly in important test cases. In particular, the effects of multiple mutations, non alanine substitutions, and flexible loops are difficult to predict with available tools and protocols. We present here an existing method applied in a novel way to a new test case; we interrogate affinity differences resulting from mutations in a host–virus protein–protein interface. We use steered molecular dynamics (SMD to computationally pull the machupo virus (MACV spike glycoprotein (GP1 away from the human transferrin receptor (hTfR1. We then approximate affinity using the maximum applied force of separation and the area under the force-versus-distance curve. We find, even without the rigor and planning required for free energy calculations, that these quantities can provide novel biophysical insight into the GP1/hTfR1 interaction. First, with no prior knowledge of the system we can differentiate among wild type and mutant complexes. Moreover, we show that this simple SMD scheme correlates well with relative free energy differences computed via free energy perturbation. Second, although the static co-crystal structure shows two large hydrogen-bonding networks in the GP1/hTfR1 interface, our simulations indicate that one of them may not be important for tight binding. Third, one viral site known to be critical for infection may mark an important evolutionary suppressor site for infection-resistant hTfR1 mutants. Finally, our approach provides a framework to compare the effects of multiple mutations, individually and jointly, on protein–protein interactions.

  14. Analyzing machupo virus-receptor binding by molecular dynamics simulations.

    Science.gov (United States)

    Meyer, Austin G; Sawyer, Sara L; Ellington, Andrew D; Wilke, Claus O

    2014-01-01

    In many biological applications, we would like to be able to computationally predict mutational effects on affinity in protein-protein interactions. However, many commonly used methods to predict these effects perform poorly in important test cases. In particular, the effects of multiple mutations, non alanine substitutions, and flexible loops are difficult to predict with available tools and protocols. We present here an existing method applied in a novel way to a new test case; we interrogate affinity differences resulting from mutations in a host-virus protein-protein interface. We use steered molecular dynamics (SMD) to computationally pull the machupo virus (MACV) spike glycoprotein (GP1) away from the human transferrin receptor (hTfR1). We then approximate affinity using the maximum applied force of separation and the area under the force-versus-distance curve. We find, even without the rigor and planning required for free energy calculations, that these quantities can provide novel biophysical insight into the GP1/hTfR1 interaction. First, with no prior knowledge of the system we can differentiate among wild type and mutant complexes. Moreover, we show that this simple SMD scheme correlates well with relative free energy differences computed via free energy perturbation. Second, although the static co-crystal structure shows two large hydrogen-bonding networks in the GP1/hTfR1 interface, our simulations indicate that one of them may not be important for tight binding. Third, one viral site known to be critical for infection may mark an important evolutionary suppressor site for infection-resistant hTfR1 mutants. Finally, our approach provides a framework to compare the effects of multiple mutations, individually and jointly, on protein-protein interactions. PMID:24624315

  15. Specific receptor binding of staphylococcal enterotoxins by murine splenic lymphocytes.

    OpenAIRE

    Buxser, S; Bonventre, P F; Archer, D L

    1981-01-01

    We describe a reliable assay to measure the specific binding of 125I-labeled staphylococcal enterotoxin A (SEA) by murine spleen cells. Toxin binding by lymphocytes was specific in that it was inhibited by unlabeled SEA but not by unrelated proteins. The biological activity of SEA (T-lymphocyte mitogenesis) correlated with toxin binding to splenic lymphocytes. In the presence of high concentrations of [125I]SEA, specific binding increased rapidly and approached saturation after 2 h. Toxin bin...

  16. Substance P and substance K receptor binding sites in the human gastrointestinal tract: localization by autoradiography

    Energy Technology Data Exchange (ETDEWEB)

    Gates, T.S.; Zimmerman, R.P.; Mantyh, C.R.; Vigna, S.R.; Maggio, J.E.; Welton, M.L.; Passaro, E.P. Jr.; Mantyh, P.W.

    1988-11-01

    Quantitative receptor autoradiography was used to localize and quantify the distribution of binding sites for /sup 125/I-radiolabeled substance P (SP), substance K (SK) and neuromedin K (NK) in the human GI tract using histologically normal tissue obtained from uninvolved margins of resections for carcinoma. The distribution of SP and SK binding sites is different for each gastrointestinal (GI) segment examined. Specific SP binding sites are expressed by arterioles and venules, myenteric plexus, external circular muscle, external longitudinal muscle, muscularis mucosa, epithelial cells of the mucosa, and the germinal centers of lymph nodules. SK binding sites are distributed in a pattern distinct from SP binding sites and are localized to the external circular muscle, external longitudinal muscle, and the muscularis mucosa. Binding sites for NK were not detected in any part of the human GI tract. These results demonstrate that: (1) surgical specimens from the human GI tract can be effectively processed for quantitative receptor autoradiography; (2) of the three mammalian tachykinins tested, SP and SK, but not NK binding sites are expressed in detectable levels in the human GI tract; (3) whereas SK receptor binding sites are expressed almost exclusively by smooth muscle, SP binding sites are expressed by smooth muscle cells, arterioles, venules, epithelial cells of the mucosa and cells associated with lymph nodules; and (4) both SP and SK binding sites expressed by smooth muscle are more stable than SP binding sites expressed by blood vessels, lymph nodules, and mucosal cells.

  17. Negative cooperativity in binding of muscarinic receptor agonists and GDP as a measure of agonist efficacy

    OpenAIRE

    Jakubík, J; Janíčková, H; El-Fakahany, EE; Doležal, V

    2011-01-01

    BACKGROUND AND PURPOSE Conventional determination of agonist efficacy at G-protein coupled receptors is measured by stimulation of guanosine-5′-γ−thiotriphosphate (GTPγS) binding. We analysed the role of guanosine diphosphate (GDP) in the process of activation of the M2 muscarinic acetylcholine receptor and provide evidence that negative cooperativity between agonist and GDP binding is an alternative measure of agonist efficacy. EXPERIMENTAL APPROACH Filtration and scintillation proximity ass...

  18. Changes in parathyroid hormone receptor binding affinity during egg laying: implications for calcium homeostasis in chicken.

    Science.gov (United States)

    Yasuoka, T; Kawashima, M; Takahashi, T; Iwata, A; Oka, N; Tanaka, K

    1996-12-01

    Parathyroid hormone (PTH) receptor bindings were examined in the membrane fraction of the calvaria and the kidney of the hen by the use of [125I]PTH-related protein (PTHrP) binding assays. The binding specificity, reversibility, and saturation of the receptor were demonstrated. The equilibrium dissociation constant (Kd) and the maximum binding capacity (Bmax) were obtained by Scatchard analyses. In both calvaria and kidney, Kd and Bmax values decreased at 3 h before oviposition in egg-laying hens, but not in nonlaying hens. Administration of 17 beta-estradiol or progesterone in vivo caused a decrease in the Kd and Bmax values. Ionized calcium concentrations in the blood plasma showed a decrease at 13 h before oviposition. The results suggest that the PTH receptor binding in the calvaria and the kidney is affected by ovarian steroid hormones and may play a role in maintaining the calcium homeostasis in the egg-laying hen. PMID:8970893

  19. Transition of arrestin into the active receptor-binding state requires an extended interdomain hinge.

    Science.gov (United States)

    Vishnivetskiy, Sergey A; Hirsch, Joel A; Velez, Maria-Gabriela; Gurevich, Yulia V; Gurevich, Vsevolod V

    2002-11-15

    Arrestins selectively bind to the phosphorylated activated form of G protein-coupled receptors, thereby blocking further G protein activation. Structurally, arrestins consist of two domains topologically connected by a 12-residue long loop, which we term the "hinge" region. Both domains contain receptor-binding elements. The relative size and shape of arrestin and rhodopsin suggest that dramatic changes in arrestin conformation are required to bring all of its receptor-binding elements in contact with the cytoplasmic surface of the receptor. Here we use the visual arrestin/rhodopsin system to test the hypothesis that the transition of arrestin into its active receptor-binding state involves a movement of the two domains relative to each other that might be limited by the length of the hinge. We have introduced three insertions and 24 deletions in the hinge region and measured the binding of all of these mutants to light-activated phosphorylated (P-Rh*), dark phosphorylated (P-Rh), dark unphosphorylated (Rh), and light-activated unphosphorylated rhodopsin (Rh*). The addition of 1-3 extra residues to the hinge has no effect on arrestin function. In contrast, sequential elimination of 1-8 residues results in a progressive decrease in P-Rh* binding without changing arrestin selectivity for P-Rh*. These results suggest that there is a minimum length of the hinge region necessary for high affinity binding, consistent with the idea that the two domains move relative to each other in the process of arrestin transition into its active receptor-binding state. The same length of the hinge is also necessary for the binding of "constitutively active" arrestin mutants to P-Rh*, dark P-Rh, and Rh*, suggesting that the active (receptor-bound) arrestin conformation is essentially the same in both wild type and mutant forms.

  20. Changes in 5-HT4 receptor and 5-HT transporter binding in olfactory bulbectomized and glucocorticoid receptor heterozygous mice

    DEFF Research Database (Denmark)

    Licht, Cecilie L; Kirkegaard, Lisbeth; Zueger, Maha;

    2010-01-01

    ]citalopram in two murine models of depression-related states, olfactory bulbectomy and glucocorticoid receptor heterozygous (GR(+/-)) mice. The olfactory bulbectomy model is characterized by 5-HT system changes, while the GR(+/-) mice have a deficit in hypothalamic-pituitary-adrenal (HPA) system control....... The olfactory bulbectomized mice displayed increased activity in the open field test, a characteristic depression-like feature of this model. After bulbectomy, 5-HT(4) receptor binding was increased in the ventral hippocampus (12%) but unchanged in the dorsal hippocampus, frontal and caudal caudate putamen....... Among post hoc analyzed regions, there was a 14% decrease in 5-HT(4) receptor binding in the olfactory tubercles. The 5-HTT binding was unchanged in the hippocampus and caudate putamen of bulbectomized mice but post hoc analysis showed small decreases in lateral septum and lateral globus pallidus...

  1. Evaluation of the In Vivo and Ex Vivo Binding of Novel BC1 Cannabinoid Receptor Radiotracers

    Energy Technology Data Exchange (ETDEWEB)

    Miller, A.; Gatley, J.; Gifford, A.

    2002-01-01

    The primary active ingredient of marijuana, 9-tetrahydrocannabinol, exerts its psychoactive effects by binding to cannabinoid CB1 receptors. These receptors are found throughout the brain with high concentrations in the hippocampus and cerebellum. The current study was conducted to evaluate the binding of a newly developed putative cannabinoid antagonist, AM630, and a classical cannabinoid 8-tetrahydrocannabinol as potential PET and/or SPECT imaging agents for brain CB1 receptors. For both of these ligands in vivo and ex vivo studies in mice were conducted. AM630 showed good overall brain uptake (as measure by %IA/g) and a moderately rapid clearance from the brain with a half-clearance time of approximately 30 minutes. However, AM630 did not show selective binding to CB1 cannabinoid receptors. Ex vivo autoradiography supported the lack of selective binding seen in the in vivo study. Similar to AM630, 8-tetrahydrocanibol also failed to show selective binding to CB1 receptor rich brain areas. The 8-tetrahydrocanibol showed moderate overall brain uptake and relatively slow brain clearance as compared to AM630. Further studies were done with AM2233, a cannabinoid ligand with a similar structure as AM630. These studies were done to develop an ex vivo binding assay to quantify the displacement of [131I]AM2233 binding by other ligands in Swiss-Webster and CB1 receptor knockout mice. By developing this assay we hoped to determine the identity of an unknown binding site for AM2233 present in the hippocampus of CB1 knockout mice. Using an approach based on incubation of brain slices prepared from mice given intravenous [131I]AM2233 in either the presence or absence of AM2233 (unlabelled) it was possible to demonstrate a significant AM2233-displacable binding in the Swiss-Webster mice. Future studies will determine if this assay is appropriate for identifying the unknown binding site for AM2233 in the CB1 knockout mice.

  2. The different ligand-binding modes of relaxin family peptide receptors RXFP1 and RXFP2.

    Science.gov (United States)

    Scott, Daniel J; Rosengren, K Johan; Bathgate, Ross A D

    2012-11-01

    Relaxin and insulin-like peptide 3 (INSL3) are peptide hormones with a number of important physiological roles in reproduction, regulation of extracellular matrix turnover, and cardiovascular function. Relaxin and INSL3 mediate their actions through the closely related G-protein coupled receptors, relaxin family peptide receptors 1 and 2 (RXFP1 and RXFP2), respectively. These receptors have large extracellular domains (ECD) that contain high-affinity ligand-binding sites within their 10 leucine-rich repeat (LRR)-containing modules. Although relaxin can bind and activate both RXFP1 and RXFP2, INSL3 can only bind and activate RXFP2. To investigate whether this difference is related to the nature of the high-affinity ECD binding site or to differences in secondary binding sites involving the receptor transmembrane (TM) domain, we created a suite of constructs with RXFP1/2 chimeric ECD attached to single TM helices. We show that by changing as little as one LRR, representing four amino acid substitutions, we were able to engineer a high-affinity INSL3-binding site into the ECD of RXFP1. Molecular modeling of the INSL3-RXFP2 interaction based on extensive experimental data highlights the differences in the binding mechanisms of relaxin and INSL3 to the ECD of their cognate receptors. Interestingly, when the engineered RXFP1/2 ECD were introduced into full-length RXFP1 constructs, INSL3 exhibited only low affinity and efficacy on these receptors. These results highlight critical differences both in the ECD binding and in the coordination of the ECD-binding site with the TM domain, and provide new mechanistic insights into the binding and activation events of RXFP1 and RXFP2 by their native hormone ligands. PMID:22973049

  3. Synthesis and Binding Properties of Two New Artificial Anion Receptors

    Institute of Scientific and Technical Information of China (English)

    ZENG Zhen-Ya; HUANG Yan-Yan; HU Ling; WANG Fa-Jun; HE Yong-Bing

    2003-01-01

    @@ The development of anion receptor has attracted increasing interest in supramolecular chemistry, due to poten tial applications in clinical diagnosis, environmental monitoring and biological process. [1] In comparison with thelarge variety of ligands that have been described for cations, [2] the development of selective artificial receptors foranion is still very limited. [3] Two new neutral anion receptors (1 and 2) containing thiourea and amide groups weresynthesized as shown in Scheme 1.

  4. Ligand binding was acquired during evolution of nuclear receptors

    OpenAIRE

    Escriva, Hector; Safi, Rachid; Hänni, Catherine; Langlois, Marie-Claire; Saumitou-Laprade, Pierre; Stehelin, Dominique; Capron, André; Pierce, Raymond; Laudet, Vincent

    1997-01-01

    The nuclear receptor (NR) superfamily comprises, in addition to ligand-activated transcription factors, members for which no ligand has been identified to date. We demonstrate that orphan receptors are randomly distributed in the evolutionary tree and that there is no relationship between the position of a given liganded receptor in the tree and the chemical nature of its ligand. NRs are specific to metazoans, as revealed by a screen of NR-related sequences in early- and non-metazoan organism...

  5. Ivermectin binding sites in human and invertebrate Cys-loop receptors

    DEFF Research Database (Denmark)

    Lynagh, Timothy Peter; Lynch, Joseph W

    2012-01-01

    modelling now explain how ivermectin binds to these receptors and reveal why it is selective for invertebrate members of the Cys-loop receptor family. Combining this with emerging genomic information, we are now in a position to predict species sensitivity to ivermectin and better understand the molecular...

  6. Muscarinic receptor subtypes in airway smooth muscle: Binding, transduction, and function

    OpenAIRE

    Roffel, Adriaan Frans

    1990-01-01

    The present thesis deals with investigations concerning binding properties, transductional properties as well as functional properties of these muscarinic receptors in airway smooth muscle (in comparison with cardiac and brain tissue), in view of the notion emerged during the past decade that muscarinic receptors can be distinguished into discrete subtypes. ... Zie: Summary

  7. Genome-wide identification of estrogen receptor alpha-binding sites in mouse liver

    DEFF Research Database (Denmark)

    Gao, Hui; Fält, Susann; Sandelin, Albin;

    2007-01-01

    We report the genome-wide identification of estrogen receptor alpha (ERalpha)-binding regions in mouse liver using a combination of chromatin immunoprecipitation and tiled microarrays that cover all nonrepetitive sequences in the mouse genome. This analysis identified 5568 ERalpha-binding regions...... genes. The majority of ERalpha-binding regions lie in regions that are evolutionarily conserved between human and mouse. Motif-finding algorithms identified the estrogen response element, and variants thereof, together with binding sites for activator protein 1, basic-helix-loop-helix proteins, ETS...... signaling in mouse liver, by characterizing the first step in this signaling cascade, the binding of ERalpha to DNA in intact chromatin....

  8. Ligand binding to G protein-coupled receptors in tethered cell membranes

    DEFF Research Database (Denmark)

    Martinez, Karen L.; Meyer, Bruno H.; Hovius, Ruud;

    2003-01-01

    G protein-coupled receptors (GPCRs) constitute a large class of seven transmembrane proteins, which bind selectively agonists or antagonists with important consequences for cellular signaling and function. Comprehension of the molecular details of ligand binding is important for the understanding...

  9. Computational Exploration of a Protein Receptor Binding Space with Student Proposed Peptide Ligands

    Science.gov (United States)

    King, Matthew D.; Phillips, Paul; Turner, Matthew W.; Katz, Michael; Lew, Sarah; Bradburn, Sarah; Andersen, Tim; McDougal, Owen M.

    2016-01-01

    Computational molecular docking is a fast and effective "in silico" method for the analysis of binding between a protein receptor model and a ligand. The visualization and manipulation of protein to ligand binding in three-dimensional space represents a powerful tool in the biochemistry curriculum to enhance student learning. The…

  10. Structural Studies of GABAA Receptor Binding Sites: Which Experimental Structure Tells us What?

    Science.gov (United States)

    Puthenkalam, Roshan; Hieckel, Marcel; Simeone, Xenia; Suwattanasophon, Chonticha; Feldbauer, Roman V; Ecker, Gerhard F; Ernst, Margot

    2016-01-01

    Atomic resolution structures of cys-loop receptors, including one of a γ-aminobutyric acid type A receptor (GABAA receptor) subtype, allow amazing insights into the structural features and conformational changes that these pentameric ligand-gated ion channels (pLGICs) display. Here we present a comprehensive analysis of more than 30 cys-loop receptor structures of homologous proteins that revealed several allosteric binding sites not previously described in GABAA receptors. These novel binding sites were examined in GABAA receptor homology models and assessed as putative candidate sites for allosteric ligands. Four so far undescribed putative ligand binding sites were proposed for follow up studies based on their presence in the GABAA receptor homology models. A comprehensive analysis of conserved structural features in GABAA and glycine receptors (GlyRs), the glutamate gated ion channel, the bacterial homologs Erwinia chrysanthemi (ELIC) and Gloeobacter violaceus GLIC, and the serotonin type 3 (5-HT3) receptor was performed. The conserved features were integrated into a master alignment that led to improved homology models. The large fragment of the intracellular domain that is present in the structure of the 5-HT3 receptor was utilized to generate GABAA receptor models with a corresponding intracellular domain fragment. Results of mutational and photoaffinity ligand studies in GABAA receptors were analyzed in the light of the model structures. This led to an assignment of candidate ligands to two proposed novel pockets, candidate binding sites for furosemide and neurosteroids in the trans-membrane domain were identified. The homology models can serve as hypotheses generators, and some previously controversial structural interpretations of biochemical data can be resolved in the light of the presented multi-template approach to comparative modeling. Crystal and cryo-EM microscopic structures of the closest homologs that were solved in different conformational

  11. The Different Ligand-Binding Modes of Relaxin Family Peptide Receptors RXFP1 and RXFP2

    OpenAIRE

    Scott, Daniel J.; Rosengren, K. Johan; Bathgate, Ross A. D.

    2012-01-01

    Relaxin and insulin-like peptide 3 (INSL3) are peptide hormones with a number of important physiological roles in reproduction, regulation of extracellular matrix turnover, and cardiovascular function. Relaxin and INSL3 mediate their actions through the closely related G-protein coupled receptors, relaxin family peptide receptors 1 and 2 (RXFP1 and RXFP2), respectively. These receptors have large extracellular domains (ECD) that contain high-affinity ligand-binding sites within their 10 leuci...

  12. Structural Basis for Negative Cooperativity in Growth Factor Binding to an EGF Receptor

    Energy Technology Data Exchange (ETDEWEB)

    Alvarado, Diego; Klein, Daryl E.; Lemmon, Mark A. (UPENN-MED)

    2010-09-27

    Transmembrane signaling by the epidermal growth factor receptor (EGFR) involves ligand-induced dimerization and allosteric regulation of the intracellular tyrosine kinase domain. Crystallographic studies have shown how ligand binding induces dimerization of the EGFR extracellular region but cannot explain the high-affinity and low-affinity classes of cell-surface EGF-binding sites inferred from curved Scatchard plots. From a series of crystal structures of the Drosophila EGFR extracellular region, we show here how Scatchard plot curvature arises from negatively cooperative ligand binding. The first ligand-binding event induces formation of an asymmetric dimer with only one bound ligand. The unoccupied site in this dimer is structurally restrained, leading to reduced affinity for binding of the second ligand, and thus negative cooperativity. Our results explain the cell-surface binding characteristics of EGF receptors and suggest how individual EGFR ligands might stabilize distinct dimeric species with different signaling properties.

  13. Antiandrogens prevent stable DNA-binding of the androgen receptor

    NARCIS (Netherlands)

    P. Farla; R. Hersmus (Remko); J. Trapman (Jan); A.B. Houtsmuller (Adriaan)

    2005-01-01

    textabstractThe androgen receptor (AR) is essential for development of the male gender and in the growth of the majority of prostate cancers. Agonists as well as most antagonists induce translocation of the receptor to the nucleus, whereas only agonists can activate AR function. An

  14. Computational approaches to modeling receptor flexibility upon ligand binding: Application to interfacially activated enzymes

    DEFF Research Database (Denmark)

    Wade, R.C.; Sobolev, V.; Ortiz, A.R. .;

    1998-01-01

    Receptors generally undergo conformational change upon ligand binding. We describe how fairly simple techniques may be used in docking and design studies to account for some of the changes in the conformations of proteins on ligand binding. Simulations of protein-ligand interactions that give...... a more complete description of the dynamics important for ligand binding are then discussed. These methods are illustrated for phospholipase A(2) and lipase, enzymes that both undergo interfacial activation....

  15. Preliminary Molecular Dynamic Simulations of the Estrogen Receptor Alpha Ligand Binding Domain from Antagonist to Apo

    Directory of Open Access Journals (Sweden)

    Adrian E. Roitberg

    2008-06-01

    Full Text Available Estrogen receptors (ER are known as nuclear receptors. They exist in the cytoplasm of human cells and serves as a DNA binding transcription factor that regulates gene expression. However the estrogen receptor also has additional functions independent of DNA binding. The human estrogen receptor comes in two forms, alpha and beta. This work focuses on the alpha form of the estrogen receptor. The ERα is found in breast cancer cells, ovarian stroma cells, endometrium, and the hypothalamus. It has been suggested that exposure to DDE, a metabolite of DDT, and other pesticides causes conformational changes in the estrogen receptor. Before examining these factors, this work examines the protein unfolding from the antagonist form found in the 3ERT PDB crystal structure. The 3ERT PDB crystal structure has the estrogen receptor bound to the cancer drug 4-hydroxytamoxifen. The 4-hydroxytamoxifen ligand was extracted before the simulation, resulting in new conformational freedom due to absence of van der Waals contacts between the ligand and the receptor. The conformational changes that result expose the binding clef of the co peptide beside Helix 12 of the receptor forming an apo conformation. Two key conformations in the loops at either end of the H12 are produced resulting in the antagonist to apo conformation transformation. The results were produced over a 42ns Molecular Dynamics simulation using the AMBER FF99SB force field.

  16. The complex binding mode of the peptide hormone H2 relaxin to its receptor RXFP1

    OpenAIRE

    Sethi, Ashish; Bruell, Shoni; Patil, Nitin; Hossain, Mohammed Akhter; Scott, Daniel J.; Petrie, Emma J.; Bathgate, Ross A. D.; Gooley, Paul R.

    2016-01-01

    H2 relaxin activates the relaxin family peptide receptor-1 (RXFP1), a class A G-protein coupled receptor, by a poorly understood mechanism. The ectodomain of RXFP1 comprises an N-terminal LDLa module, essential for activation, tethered to a leucine-rich repeat (LRR) domain by a 32-residue linker. H2 relaxin is hypothesized to bind with high affinity to the LRR domain enabling the LDLa module to bind and activate the transmembrane domain of RXFP1. Here we define a relaxin-binding site on the L...

  17. Identification of a Binding Site for Unsaturated Fatty Acids in the Orphan Nuclear Receptor Nurr1.

    Science.gov (United States)

    de Vera, Ian Mitchelle S; Giri, Pankaj K; Munoz-Tello, Paola; Brust, Richard; Fuhrmann, Jakob; Matta-Camacho, Edna; Shang, Jinsai; Campbell, Sean; Wilson, Henry D; Granados, Juan; Gardner, William J; Creamer, Trevor P; Solt, Laura A; Kojetin, Douglas J

    2016-07-15

    Nurr1/NR4A2 is an orphan nuclear receptor, and currently there are no known natural ligands that bind Nurr1. A recent metabolomics study identified unsaturated fatty acids, including arachidonic acid and docosahexaenoic acid (DHA), that interact with the ligand-binding domain (LBD) of a related orphan receptor, Nur77/NR4A1. However, the binding location and whether these ligands bind other NR4A receptors were not defined. Here, we show that unsaturated fatty acids also interact with the Nurr1 LBD, and solution NMR spectroscopy reveals the binding epitope of DHA at its putative ligand-binding pocket. Biochemical assays reveal that DHA-bound Nurr1 interacts with high affinity with a peptide derived from PIASγ, a protein that interacts with Nurr1 in cellular extracts, and DHA also affects cellular Nurr1 transactivation. This work is the first structural report of a natural ligand binding to a canonical NR4A ligand-binding pocket and indicates a natural ligand can bind and affect Nurr1 function. PMID:27128111

  18. Iron uptake and increased intracellular enzyme activity follow host lactoferrin binding by Trichomonas vaginalis receptors

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, K.M.; Alderete, J.F.

    1984-08-01

    Lactoferrin acquisition and iron uptake by pathogenic Trichomonas vaginalis was examined. Saturation binding kinetics were obtained for trichomonads using increasing amounts of radioiodinated lactoferrin, while no significant binding by transferrin under similar conditions was achieved. Only unlabeled lactoferrin successfully and stoichiometrically competed with 125I-labeled lactoferrin binding. Time course studies showed maximal lactoferrin binding by 30 min at 37 degrees C. Data suggest no internalization of bound lactoferrin. The accumulation of radioactivity in supernatants after incubation of T. vaginalis with 125I-labeled lactoferrin and washing in PBS suggested the presence of low affinity sites for this host macromolecule. Scatchard analysis indicated the presence of 90,000 receptors per trichomonad with an apparent Kd of 1.0 microM. Two trichomonad lactoferrin binding proteins were identified by affinity chromatography and immunoprecipitation of receptor-ligand complexes. A 30-fold accumulation of iron was achieved using 59Fe-lactoferrin when compared to the steady state concentration of bound lactoferrin. The activity of pyruvate/ferrodoxin oxidoreductase, an enzyme involved in trichomonal energy metabolism, increased more than sixfold following exposure of the parasites to lactoferrin, demonstrating a biologic response to the receptor-mediated binding of lactoferrin. These data suggest that T. vaginalis possesses specific receptors for biologically relevant host proteins and that these receptors contribute to the metabolic processes of the parasites.

  19. Novel Bioluminescent Binding Assays for Ligand–Receptor Interaction Studies of the Fibroblast Growth Factor Family

    Science.gov (United States)

    Song, Ge; Shao, Xiao-Xia; Wu, Qing-Ping; Xu, Zeng-Guang; Liu, Ya-Li; Guo, Zhan-Yun

    2016-01-01

    We recently developed novel bioluminescent binding assays for several protein/peptide hormones to study their interactions with receptors using the so far brightest NanoLuc reporter. To validate the novel bioluminescent binding assay using a variety of protein/peptide hormones, in the present work we applied it to the fibroblast growth factor (FGF) family using the prototype member FGF2 as an example. A fully active recombinant FGF2 retaining a unique exposed cysteine (Cys) residue was chemically conjugated with an engineered NanoLuc carrying a unique exposed Cys residue at the C-terminus via formation of an intermolecular disulfide linkage. The NanoLuc-conjugated FGF2 (FGF2-Luc) retained high binding affinity to the overexpressed FGFR1 and the endogenous FGF receptor with the calculated dissociation constants of 161 ± 21 pM (n = 3) and 25 ± 4 pM (n = 3), respectively. In competition binding assays using FGF2-Luc as a tracer, receptor-binding potencies of wild-type or mutant FGF2s were accurately quantified. Thus, FGF2-Luc represents a novel non-radioactive tracer for the quantitative measurement of ligand–receptor interactions in the FGF family. These data suggest that the novel bioluminescent binding assay can be applied to a variety of protein/peptide hormones for ligand–receptor interaction studies. PMID:27414797

  20. Imaging G protein-coupled receptors while quantifying their ligand-binding free-energy landscape.

    Science.gov (United States)

    Alsteens, David; Pfreundschuh, Moritz; Zhang, Cheng; Spoerri, Patrizia M; Coughlin, Shaun R; Kobilka, Brian K; Müller, Daniel J

    2015-09-01

    Imaging native membrane receptors and testing how they interact with ligands is of fundamental interest in the life sciences but has proven remarkably difficult to accomplish. Here, we introduce an approach that uses force-distance curve-based atomic force microscopy to simultaneously image single native G protein-coupled receptors in membranes and quantify their dynamic binding strength to native and synthetic ligands. We measured kinetic and thermodynamic parameters for individual protease-activated receptor-1 (PAR1) molecules in the absence and presence of antagonists, and these measurements enabled us to describe PAR1's ligand-binding free-energy landscape with high accuracy. Our nanoscopic method opens an avenue to directly image and characterize ligand binding of native membrane receptors. PMID:26167642

  1. Effect of estradiol-17β on calcitonin receptor bindings in the hen neurohypophysis.

    Science.gov (United States)

    Nakayama, H; Takahashi, T; Nakagawa-Mizuyachi, K; Kawashima, M

    2011-01-01

    The present study was performed to elucidate whether estradiol-17β (E₂) would affect calcitonin (CT) receptor binding in the hen neurohypophysis. The equilibrium dissociation constant (K(d)) and the maximum binding capacity (B(max)) of the CT receptor in the plasma membrane fraction of the hen neurohypophysis were examined by Scatchard analysis of specific binding of (125)I-labeled chicken CT. A single i.m. injection of E₂ into nonlaying hens caused a decrease in K(d) and B(max) values of the CT receptor. The K(d) and B(max) values of the CT receptor were smaller in laying hens than in nonlaying hens. The present study suggests that E₂ may increase the action of CT on the neurohypophysis in hens. PMID:21177459

  2. Ivermectin binding sites in human and invertebrate Cys-loop receptors.

    Science.gov (United States)

    Lynagh, Timothy; Lynch, Joseph W

    2012-08-01

    Ivermectin is a gold standard antiparasitic drug that has been used successfully to treat billions of humans, livestock and pets. Until recently, the binding site on its Cys-loop receptor target had been a mystery. Recent protein crystal structures, site-directed mutagenesis data and molecular modelling now explain how ivermectin binds to these receptors and reveal why it is selective for invertebrate members of the Cys-loop receptor family. Combining this with emerging genomic information, we are now in a position to predict species sensitivity to ivermectin and better understand the molecular basis of ivermectin resistance. An understanding of the molecular structure of the ivermectin binding site, which is formed at the interface of two adjacent subunits in the transmembrane domain of the receptor, should also aid the development of new lead compounds both as anthelmintics and as therapies for a wide variety of human neurological disorders. PMID:22677714

  3. Probing the orthosteric binding site of GABAA receptors with heterocyclic GABA carboxylic acid bioisosteres

    DEFF Research Database (Denmark)

    Petersen, Jette G; Bergmann, Rikke; Krogsgaard-Larsen, Povl;

    2013-01-01

    the orthosteric binding site. The physicochemical properties of the heterocyclic moieties making them suitable for bioisosteric replacement of the carboxylic acid in the molecule of GABA are discussed. A variety of synthetic strategies for synthesis of the heterocyclic scaffolds are available. Likewise, methods...... for introduction of substituents into specific positions of the heterocyclic scaffolds facilitate the investigation of different regions in the orthosteric binding pocket in close vicinity of the core scaffolds of muscimol/GABA. The development of structural models, from pharmacophore models to receptor homology...... models, has provided more insight into the molecular basis for binding. Similar binding modes are proposed for the heterocyclic GABA analogues covered in this review by use of ligand-receptor docking into the receptor homology model and the presented structure-activity relationships. A network...

  4. Reduced 5-HT2A receptor binding in patients with mild cognitive impairment

    DEFF Research Database (Denmark)

    Hasselbalch, S G; Madsen, K; Svarer, C;

    2008-01-01

    Previous studies of patients with Alzheimer's disease (AD) have described reduced brain serotonin 2A (5-HT(2A)) receptor density. It is unclear whether this abnormality sets in early in the course of the disease and whether it is related to early cognitive and neuropsychiatric symptoms. We assessed...... cerebral 5-HT(2A) receptor binding in patients with mild cognitive impairment (MCI) and related 5-HT(2A) receptor binding to clinical symptoms. Sixteen patients with MCI of the amnestic type (mean age 73, mean MMSE 26.1) and 17 age and sex matched control subjects were studied with MRI and [(18)F......]altanserin PET in a bolus-infusion approach. A significant global reduction of 20-30% in 5-HT(2A) binding (atrophy corrected) was found in most neocortical areas. Reduced 5-HT(2A) binding in the striatum correlated significantly with Neuropsychiatric Inventory depression and anxiety scores. We conclude...

  5. The minor binding pocket: a major player in 7TM receptor activation

    DEFF Research Database (Denmark)

    Rosenkilde, Mette Marie; Benned-Jensen, Tau; Frimurer, Thomas M.;

    2010-01-01

    From the deep part of the main ligand-binding crevice, a minor, often shallower pocket extends between the extracellular ends of transmembrane domains (TM)-I, II, III and VII of 7TM receptors. This minor binding pocket is defined by a highly conserved kink in TM-II that is induced by a proline...... residue located in one of two adjacent positions. Here we argue that this minor binding pocket is important for receptor activation. Functional coupling of the receptors seems to be mediated through the hydrogen bond network located between the intracellular segments of these TMs, with the allosteric...... interface between TM-II and TM-VII being of particular significance. Importantly, the minor binding pocket, especially the proline-kink in TM-II, is involved in G protein versus arrestin pathway-biased signaling, for example in the angiotensin AT1 system. Consequently, this pocket could be specifically...

  6. GHB receptor targets in the CNS: focus on high-affinity binding sites.

    Science.gov (United States)

    Bay, Tina; Eghorn, Laura F; Klein, Anders B; Wellendorph, Petrine

    2014-01-15

    γ-Hydroxybutyric acid (GHB) is an endogenous compound in the mammalian brain with both low- and high-affinity receptor targets. GHB is used clinically in the treatment of symptoms of narcolepsy and alcoholism, but also illicitly abused as the recreational drug Fantasy. Major pharmacological effects of exogenous GHB are mediated by GABA subtype B (GABAB) receptors that bind GHB with low affinity. The existence of GHB high-affinity binding sites has been known for more than three decades, but the uncovering of their molecular identity has only recently begun. This has been prompted by the generation of molecular tools to selectively study high-affinity sites. These include both genetically modified GABAB knock-out mice and engineered selective GHB ligands. Recently, certain GABA subtype A (GABAA) receptor subtypes emerged as high-affinity GHB binding sites and potential physiological mediators of GHB effects. In this research update, a description of the various reported receptors for GHB is provided, including GABAB receptors, certain GABAA receptor subtypes and other reported GHB receptors. The main focus will thus be on the high-affinity binding targets for GHB and their potential functional roles in the mammalian brain.

  7. Multiple opioid receptor binding in dissociated intact guinea pig brain cells

    International Nuclear Information System (INIS)

    Dissociated intact guinea pig brain cells were prepared by the method of Rogers and El-Fakahany. Over 95% of these cells are viable as demonstrated by their exclusion of the dye trypan blue. Opioid receptor binding assays were performed in a modified Kreb-Ringers physiological buffer. The following radiolabeled ligands and conditions were used to selectively labeled multiple opioid receptors: mu binding, 1 nM [3H]naloxone + 20 nM DADLE + 300 nM U50,488H; kappa binding, 4 nM (-)-[3H]-EKC + 100 nM DAGO + 500 nM DADLE; delta binding, 2 nM [3H]-DADLE + 100 nM DAGO + 300 nM U50,488H; sigma binding, 4 nM (+)-[3H]SKF 10,047. The intact brain cells in physiological buffer demonstrated specific binding for mu, kappa, delta, and sigma receptors. The relative binding potency of naloxone for each of the receptor types is arbitrarily set at 1

  8. The intact urokinase receptor is required for efficient vitronectin binding

    DEFF Research Database (Denmark)

    Høyer-Hansen, G; Behrendt, N; Ploug, M;

    1997-01-01

    The urokinase receptor (uPAR) is a receptor for both urokinase plasminogen activator (uPA) and the adhesion protein vitronectin. There are two forms of cell surface-bound uPAR; intact uPAR and a cleaved form, uPAR(2+3), which is formed by uPA-catalyzed cleavage of uPAR. In ligand-blotting experim...

  9. Severe malaria is associated with parasite binding to endothelial protein C receptor

    DEFF Research Database (Denmark)

    Turner, Louise; Lavstsen, Thomas; Berger, Sanne S;

    2013-01-01

    . falciparum erythrocyte membrane protein 1 (PfEMP1) family and receptors on the endothelial lining. Severe childhood malaria is associated with expression of specific PfEMP1 subtypes containing domain cassettes (DCs) 8 and 13 (ref. 3), but the endothelial receptor for parasites expressing these proteins...... was unknown. Here we identify endothelial protein C receptor (EPCR), which mediates the cytoprotective effects of activated protein C, as the endothelial receptor for DC8 and DC13 PfEMP1. We show that EPCR binding is mediated through the amino-terminal cysteine-rich interdomain region (CIDRα1) of DC8...... and group A PfEMP1 subfamilies, and that CIDRα1 interferes with protein C binding to EPCR. This PfEMP1 adhesive property links P. falciparum cytoadhesion to a host receptor involved in anticoagulation and endothelial cytoprotective pathways, and has implications for understanding malaria pathology...

  10. Doubling the Size of the Glucocorticoid Receptor Ligand Binding Pocket by Deacylcortivazol

    Energy Technology Data Exchange (ETDEWEB)

    Suino-Powell, Kelly; Xu, Yong; Zhang, Chenghai; Tao, Yong-guang; Tolbert, W. David; Simons, Jr., S. Stoney; Xu, H. Eric (NIH)

    2010-03-08

    A common feature of nuclear receptor ligand binding domains (LBD) is a helical sandwich fold that nests a ligand binding pocket within the bottom half of the domain. Here we report that the ligand pocket of glucocorticoid receptor (GR) can be continuously extended into the top half of the LBD by binding to deacylcortivazol (DAC), an extremely potent glucocorticoid. It has been puzzling for decades why DAC, which contains a phenylpyrazole replacement at the conserved 3-ketone of steroid hormones that are normally required for activation of their cognate receptors, is a potent GR activator. The crystal structure of the GR LBD bound to DAC and the fourth LXXLL motif of steroid receptor coactivator 1 reveals that the GR ligand binding pocket is expanded to a size of 1,070 {angstrom}{sup 3}, effectively doubling the size of the GR dexamethasone-binding pocket of 540 {angstrom}{sup 3} and yet leaving the structure of the coactivator binding site intact. DAC occupies only {approx}50% of the space of the pocket but makes intricate interactions with the receptor around the phenylpyrazole group that accounts for the high-affinity binding of DAC. The dramatic expansion of the DAC-binding pocket thus highlights the conformational adaptability of GR to ligand binding. The new structure also allows docking of various nonsteroidal ligands that cannot be fitted into the previous structures, thus providing a new rational template for drug discovery of steroidal and nonsteroidal glucocorticoids that can be specifically designed to reach the unoccupied space of the expanded pocket.

  11. Changes in 5-HT4 receptor and 5-HT transporter binding in olfactory bulbectomized and glucocorticoid receptor heterozygous mice

    DEFF Research Database (Denmark)

    Licht, Cecilie Löe; Kirkegaard, Lisbeth; Zueger, Maha;

    2010-01-01

    . The olfactory bulbectomized mice displayed increased activity in the open field test, a characteristic depression-like feature of this model. After bulbectomy, 5-HT(4) receptor binding was increased in the ventral hippocampus (12%) but unchanged in the dorsal hippocampus, frontal and caudal caudate putamen...

  12. Sequence similarity between the erythrocyte binding domain of the Plasmodium vivax Duffy binding protein and the V3 loop of HIV-1 strain MN reveals a functional heparin binding motif involved in binding to the Duffy antigen receptor for chemokines

    Directory of Open Access Journals (Sweden)

    Bolton Michael J

    2011-11-01

    Full Text Available Abstract Background The HIV surface glycoprotein gp120 (SU, gp120 and the Plasmodium vivax Duffy binding protein (PvDBP bind to chemokine receptors during infection and have a site of amino acid sequence similarity in their binding domains that often includes a heparin binding motif (HBM. Infection by either pathogen has been found to be inhibited by polyanions. Results Specific polyanions that inhibit HIV infection and bind to the V3 loop of X4 strains also inhibited DBP-mediated infection of erythrocytes and DBP binding to the Duffy Antigen Receptor for Chemokines (DARC. A peptide including the HBM of PvDBP had similar affinity for heparin as RANTES and V3 loop peptides, and could be specifically inhibited from heparin binding by the same polyanions that inhibit DBP binding to DARC. However, some V3 peptides can competitively inhibit RANTES binding to heparin, but not the PvDBP HBM peptide. Three other members of the DBP family have an HBM sequence that is necessary for erythrocyte binding, however only the protein which binds to DARC, the P. knowlesi alpha protein, is inhibited by heparin from binding to erythrocytes. Heparitinase digestion does not affect the binding of DBP to erythrocytes. Conclusion The HBMs of DBPs that bind to DARC have similar heparin binding affinities as some V3 loop peptides and chemokines, are responsible for specific sulfated polysaccharide inhibition of parasite binding and invasion of red blood cells, and are more likely to bind to negative charges on the receptor than cell surface glycosaminoglycans.

  13. HTLV-1 and -2 envelope SU subdomains and critical determinants in receptor binding

    Directory of Open Access Journals (Sweden)

    Valle Carine

    2004-12-01

    Full Text Available Abstract Background Human T-cell leukemia virus (HTLV -1 and -2 are deltaretroviruses that infect a wide range of cells. Glut1, the major vertebrate glucose transporter, has been shown to be the HTLV Env receptor. While it is well established that the extracellular surface component (SU of the HTLV envelope glycoprotein (Env harbors all of the determinants of interaction with the receptor, identification of SU subdomains that are necessary and sufficient for interaction with the receptor, as well as critical amino acids therein, remain to be precisely defined. Although highly divergent in the rest of their genomes, HTLV and murine leukemia virus (MLV Env appear to be related and based on homologous motifs between the HTLV and MLV SU, we derived chimeric HTLV/MLV Env and soluble HTLV-1 and -2 truncated amino terminal SU subdomains. Results Using these SU constructs, we found that the 183 and 178 amino terminal residues of the HTLV-1 and -2 Env, respectively, were sufficient to efficiently bind target cells of different species. Binding resulted from bona fide interaction with the HTLV receptor as isolated SU subdomains specifically interfered with HTLV Env-mediated binding, cell fusion, and cell-free as well as cell-to-cell infection. Therefore, the HTLV receptor-binding domain (RBD lies in the amino terminus of the SU, immediately upstream of a central immunodominant proline rich region (Env residues 180 to 205, that we show to be dispensible for receptor-binding and interference. Moreover, we identified a highly conserved tyrosine residue at position 114 of HTLV-1 Env, Tyr114, as critical for receptor-binding and subsequent interference to cell-to-cell fusion and infection. Finally, we observed that residues in the vicinity of Tyr114 have lesser impact on receptor binding and had various efficiency in interference to post-binding events. Conclusions The first 160 residues of the HTLV-1 and -2 mature cleaved SU fold as autonomous domains that

  14. MANAGING TIGHT BINDING RECEPTORS FOR NEW SPEARATIONS TECHNOLOGIES

    Energy Technology Data Exchange (ETDEWEB)

    DARYLE H BUSCH RICHARD S GIVENS

    2004-12-10

    Much of the earth's pollution involves compounds of the metallic elements, including actinides, strontium, cesium, technetium, and RCRA metals. Metal ions bind to molecules called ligands, which are the molecular tools that can manipulate the metal ions under most conditions. This DOE-EMSP sponsored program strives (1) to provide the foundations for using the most powerful ligands in transformational separations technologies and (2) to produce seminal examples of their applications to separations appropriate to the DOE EM mission. These ultra tight-binding ligands can capture metal ions in the most competitive of circumstances (from mineralized sites, lesser ligands, and even extremely dilute solutions), but they react so slowly that they are useless in traditional separations methodologies. Two attacks on this problem are underway. The first accommodates to the challenging molecular lethargy by developing a seminal slow separations methodology termed the soil poultice. The second designs ligands that are only tight-binding while wrapped around the targeted metal ion, but can be put in place by switch-binding and removed by switch-release. We envision a kind of molecular switching process to accelerate the union between metal ion and tight-binding ligand. Molecular switching processes are suggested for overcoming the slow natural equilibration rate with which ultra tight-binding ligands combine with metal ions. Ligands that bind relatively weakly combine with metal ions rapidly, so the trick is to convert a ligand from a weak, rapidly binding species to a powerful, slow releasing ligand--during the binding of the ligand to the metal ion. Such switch-binding ligands must react with themselves, and the reaction must take place under the influence of the metal ion. For example, our generation 1 ligands showed that a well-designed linear ligand with ends that readily combine, forms a cyclic molecule when it wraps around a metal ion. Our generation 2 ligands are

  15. Molecular mechanism of ATP binding and ion channel activation in P2X receptors

    Energy Technology Data Exchange (ETDEWEB)

    Hattori, Motoyuki; Gouaux, Eric (Oregon HSU)

    2012-10-24

    P2X receptors are trimeric ATP-activated ion channels permeable to Na{sup +}, K{sup +} and Ca{sup 2+}. The seven P2X receptor subtypes are implicated in physiological processes that include modulation of synaptic transmission, contraction of smooth muscle, secretion of chemical transmitters and regulation of immune responses. Despite the importance of P2X receptors in cellular physiology, the three-dimensional composition of the ATP-binding site, the structural mechanism of ATP-dependent ion channel gating and the architecture of the open ion channel pore are unknown. Here we report the crystal structure of the zebrafish P2X4 receptor in complex with ATP and a new structure of the apo receptor. The agonist-bound structure reveals a previously unseen ATP-binding motif and an open ion channel pore. ATP binding induces cleft closure of the nucleotide-binding pocket, flexing of the lower body {beta}-sheet and a radial expansion of the extracellular vestibule. The structural widening of the extracellular vestibule is directly coupled to the opening of the ion channel pore by way of an iris-like expansion of the transmembrane helices. The structural delineation of the ATP-binding site and the ion channel pore, together with the conformational changes associated with ion channel gating, will stimulate development of new pharmacological agents.

  16. Inter-species chimeras of leukaemia inhibitory factor define a major human receptor-binding determinant.

    OpenAIRE

    Owczarek, C M; Layton, M. J.; Metcalf, D; Lock, P; Willson, T A; Gough, N M; Nicola, N A

    1993-01-01

    Human leukaemia inhibitory factor (hLIF) binds to both human and mouse LIF receptors (LIF-R), while mouse LIF (mLIF) binds only to mouse LIF-R. Moreover, hLIF binds with higher affinity to the mLIF-R than does mLIF. In order to define the regions of the hLIF molecule responsible for species-specific interaction with the hLIF-R and for the unusual high-affinity binding to the mLIF-R, a series of 15 mouse/human LIF hybrids has been generated. Perhaps surprisingly, both of these properties mappe...

  17. Screening of a specific peptide binding to VPAC1 receptor from a phage display peptide library.

    Directory of Open Access Journals (Sweden)

    Bo Tang

    Full Text Available BACKGROUND/PURPOSE: The VPAC1 receptor, a member of the vasoactive intestinal peptide receptors (VIPRs, is overexpressed in the most frequently occurring malignant tumors and plays a major role in the progression and angiogenesis of a number of malignancies. Recently, phage display has become widely used for many applications, including ligand generation for targeted imaging, drug delivery and therapy. In this work, we developed a panning procedure using a phage display peptide library to select a peptide that specifically binds to the VPAC1 receptor to develop a novel targeted probe for molecular imaging and therapy. METHODS: CHO-K1 cells stably expressing VPAC1 receptors (CHO-K1/VPAC1 cells were used to select a VPAC1-binding peptide from a 12-mer phage peptide library. DNA sequencing and homologous analysis of the randomly selected phage clones were performed. A cellular ELISA was used to determine the most selectively binding peptide for further investigation. Binding specificity to the VPAC1 receptor was analyzed by competitive inhibition ELISA and flow cytometry. The binding ability of the selected peptide to CHO-K1/VPAC1 cells and colorectal cancer (CRC cell lines was confirmed using fluorescence microscopy and flow cytometry. RESULTS: A significant enrichment of phages that specifically bound to CHO-K1/VPAC1 cells was obtained after four rounds of panning. Of the selected phage clones, 16 out of 60 shared the same peptide sequence, GFRFGALHEYNS, which we termed the VP2 peptide. VP2 and vasoactive intestinal peptide (VIP competitively bound to the VPAC1 receptor. More importantly, we confirmed that VP2 specifically bound to CHO-K1/VPAC1 cells and several CRC cell lines. CONCLUSION: Our results demonstrate that the VP2 peptide could specifically bind to VPAC1 receptor and several CRC cell lines. And VP2 peptide may be a potential candidate to be developed as a useful diagnostic molecular imaging probe for early detection of CRC.

  18. Purification of high affinity benzodiazepine receptor binding site fragments from rat brain

    International Nuclear Information System (INIS)

    In central nervous system benzodiazepine recognition sites occur on neuronal cell surfaces as one member of a multireceptor complex, including recognition sites for benzodiazepines, gamma aminobutyric acid (GABA), barbiturates and a chloride ionophore. During photoaffinity labelling, the benzodiazepine agonist, 3H-flunitrazepam, is irreversibly bound to central benzodiazepine high affinity recognition sites in the presence of ultraviolet light. In these studies a 3H-flunitrazepam radiolabel was used to track the isolation and purification of high affinity agonist binding site fragments from membrane-bound benzodiazepine receptor in rat brain. The authors present a method for limited proteolysis of 3H-flunitrazepam photoaffinity labeled rat brain membranes, generating photolabeled benzodiazepine receptor fragments containing the agonist binding site. Using trypsin chymotrypsin A4, or a combination of these two proteases, they have demonstrated the extent and time course for partial digestion of benzodiazepine receptor, yielding photolabeled receptor binding site fragments. These photolabeled receptor fragments have been further purified on the basis of size, using ultrafiltration, gel permeation chromatography, and sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) as well as on the basis of hydrophobicity, using a high performance liquid chromatography (HPLC) precolumn, several HPLC elution schemes, and two different HPLC column types. Using these procedures, they have purified three photolabeled benzodiazepine receptor fragments containing the agonist binding site which appear to have a molecular weight of less than 2000 daltons each

  19. Aging-induced changes in brain regional serotonin receptor binding: Effect of Carnosine.

    Science.gov (United States)

    Banerjee, S; Poddar, M K

    2016-04-01

    Monoamine neurotransmitter, serotonin (5-HT) has its own specific receptors in both pre- and post-synapse. In the present study the role of carnosine on aging-induced changes of [(3)H]-5-HT receptor binding in different brain regions in a rat model was studied. The results showed that during aging (18 and 24 months) the [(3)H]-5-HT receptor binding was reduced in hippocampus, hypothalamus and pons-medulla with a decrease in their both Bmax and KD but in cerebral cortex the [(3)H]-5-HT binding was increased with the increase of its only Bmax. The aging-induced changes in [(3)H]-5-HT receptor binding with carnosine (2.0 μg/kg/day, intrathecally, for 21 consecutive days) attenuated in (a) 24-month-aged rats irrespective of the brain regions with the attenuation of its Bmax except hypothalamus where both Bmax and KD were significantly attenuated, (b) hippocampus and hypothalamus of 18-month-aged rats with the attenuation of its Bmax, and restored toward the [(3)H]-5-HT receptor binding that observed in 4-month-young rats. The decrease in pons-medullary [(3)H]-5-HT binding including its Bmax of 18-month-aged rats was promoted with carnosine without any significant change in its cerebral cortex. The [(3)H]-5-HT receptor binding with the same dosages of carnosine in 4-month-young rats (a) increased in the cerebral cortex and hippocampus with the increase in their only Bmax whereas (b) decreased in hypothalamus and pons-medulla with a decrease in their both Bmax and KD. These results suggest that carnosine treatment may (a) play a preventive role in aging-induced brain region-specific changes in serotonergic activity (b) not be worthy in 4-month-young rats in relation to the brain regional serotonergic activity. PMID:26808776

  20. Defining the functional binding sites of interleukin 12 receptor β1 and interleukin 23 receptor to Janus kinases.

    Science.gov (United States)

    Floss, Doreen M; Klöcker, Tobias; Schröder, Jutta; Lamertz, Larissa; Mrotzek, Simone; Strobl, Birgit; Hermanns, Heike; Scheller, Jürgen

    2016-07-15

    The interleukin (IL)-12-type cytokines IL-12 and IL-23 are involved in T-helper (Th) 1 and Th17 immunity, respectively. They share the IL-12 receptor β1 (IL-12Rβ1) as one component of their receptor signaling complexes, with IL-12Rβ2 as second receptor for IL-12 and IL-23R for IL-23 signal transduction. Stimulation with IL-12 and IL-23 results in activation of receptor-associated Janus kinases (Jak) and phosphorylation of STAT proteins in target cells. The Janus kinase tyrosine kinase (Tyk) 2 associates with IL-12Rβ1, whereas Jak2 binds to IL-23R and also to IL-12Rβ2. Receptor association of Jak2 is mediated by Box1 and Box2 motifs located within the intracellular domain of the receptor chains. Here we define the Box1 and Box2 motifs in IL-12Rβ1 and an unusual Jak2-binding site in IL-23R by the use of deletion and site-directed mutagenesis. Our data show that nonfunctional box motifs abolish IL-12- and IL-23-induced STAT3 phosphorylation and cytokine-dependent proliferation of Ba/F3 cells. Coimmunoprecipitation of Tyk2 by IL-12Rβ1 and Jak2 by IL‑23R supported these findings. In addition, our data demonstrate that association of Jak2 with IL-23R is mandatory for IL-12 and/or IL-23 signaling, whereas Tyk2 seems to be dispensable.

  1. Evaluation of a novel virtual screening strategy using receptor decoy binding sites.

    Science.gov (United States)

    Patel, Hershna; Kukol, Andreas

    2016-01-01

    Virtual screening is used in biomedical research to predict the binding affinity of a large set of small organic molecules to protein receptor targets. This report shows the development and evaluation of a novel yet straightforward attempt to improve this ranking in receptor-based molecular docking using a receptor-decoy strategy. This strategy includes defining a decoy binding site on the receptor and adjusting the ranking of the true binding-site virtual screen based on the decoy-site screen. The results show that by docking against a receptor-decoy site with Autodock Vina, improved Receiver Operator Characteristic Enrichment (ROCE) was achieved for 5 out of fifteen receptor targets investigated, when up to 15 % of a decoy site rank list was considered. No improved enrichment was seen for 7 targets, while for 3 targets the ROCE was reduced. The extent to which this strategy can effectively improve ligand prediction is dependent on the target receptor investigated. PMID:27553084

  2. Distinct ETA receptor binding mode of macitentan as determined by site directed mutagenesis.

    Directory of Open Access Journals (Sweden)

    John Gatfield

    Full Text Available The competitive endothelin receptor antagonists (ERA bosentan and ambrisentan, which have long been approved for the treatment of pulmonary arterial hypertension, are characterized by very short (1 min occupancy half-lives at the ET(A receptor. The novel ERA macitentan, displays a 20-fold increased receptor occupancy half-life, causing insurmountable antagonism of ET-1-induced signaling in pulmonary arterial smooth muscle cells. We show here that the slow ET(A receptor dissociation rate of macitentan was shared with a set of structural analogs, whereas compounds structurally related to bosentan displayed fast dissociation kinetics. NMR analysis showed that macitentan adopts a compact structure in aqueous solution and molecular modeling suggests that this conformation tightly fits into a well-defined ET(A receptor binding pocket. In contrast the structurally different and negatively charged bosentan-type molecules only partially filled this pocket and expanded into an extended endothelin binding site. To further investigate these different ET(A receptor-antagonist interaction modes, we performed functional studies using ET(A receptor variants harboring amino acid point mutations in the presumed ERA interaction site. Three ET(A receptor residues significantly and differentially affected ERA activity: Mutation R326Q did not affect the antagonist activity of macitentan, however the potencies of bosentan and ambrisentan were significantly reduced; mutation L322A rendered macitentan less potent, whereas bosentan and ambrisentan were unaffected; mutation I355A significantly reduced bosentan potency, but not ambrisentan and macitentan potencies. This suggests that--in contrast to bosentan and ambrisentan--macitentan-ET(A receptor binding is not dependent on strong charge-charge interactions, but depends predominantly on hydrophobic interactions. This different binding mode could be the reason for macitentan's sustained target occupancy and

  3. A mollusk retinoic acid receptor (RAR) ortholog sheds light on the evolution of ligand binding.

    Science.gov (United States)

    Gutierrez-Mazariegos, Juliana; Nadendla, Eswar Kumar; Lima, Daniela; Pierzchalski, Keely; Jones, Jace W; Kane, Maureen; Nishikawa, Jun-Ichi; Hiromori, Youhei; Nakanishi, Tsuyoshi; Santos, Miguel M; Castro, L Filipe C; Bourguet, William; Schubert, Michael; Laudet, Vincent

    2014-11-01

    Nuclear receptors are transcription factors that regulate networks of target genes in response to small molecules. There is a strong bias in our knowledge of these receptors because they were mainly characterized in classical model organisms, mostly vertebrates. Therefore, the evolutionary origins of specific ligand-receptor couples still remain elusive. Here we present the identification and characterization of a retinoic acid receptor (RAR) from the mollusk Nucella lapillus (NlRAR). We show that this receptor specifically binds to DNA response elements organized in direct repeats as a heterodimer with retinoid X receptor. Surprisingly, we also find that NlRAR does not bind all-trans retinoic acid or any other retinoid we tested. Furthermore, NlRAR is unable to activate the transcription of reporter genes in response to stimulation by retinoids and to recruit coactivators in the presence of these compounds. Three-dimensional modeling of the ligand-binding domain of NlRAR reveals an overall structure that is similar to vertebrate RARs. However, in the ligand-binding pocket (LBP) of the mollusk receptor, the alteration of several residues interacting with the ligand has apparently led to an overall decrease in the strength of the interaction with the ligand. Accordingly, mutations of NlRAR at key positions within the LBP generate receptors that are responsive to retinoids. Altogether our data suggest that, in mollusks, RAR has lost its affinity for all-trans retinoic acid, highlighting the evolutionary plasticity of its LBP. When put in an evolutionary context, our results reveal new structural and functional features of nuclear receptors validated by millions of years of evolution that were impossible to reveal in model organisms. PMID:25116705

  4. Ascorbic acid enables reversible dopamine receptor /sup 3/H-agonist binding

    Energy Technology Data Exchange (ETDEWEB)

    Leff, S.; Sibley, D.R.; Hamblin, M.; Creese, I.

    1981-11-16

    The effects of ascorbic acid on dopaminergic /sup 3/H-agonist receptor binding were studied in membrane homogenates of bovine anterior pituitary and caudate, and rat striatum. In all tissues virtually no stereospecific binding (defined using 1uM (+)butaclamol) of the /sup 3/H-agonists N-propylnorapomorphine (NPA), apomorphine, or dopamine could be demonstrated in the absence of ascorbic acid. Although levels of total /sup 3/H-agonist binding were three to five times greater in the absence than in the presence of 0.1% ascorbic acid, the increased binding was entirely non-stereospecific. Greater amounts of dopamine-inhibitable /sup 3/H-NPA binding could be demonstrated in the absence of 0.1% ascorbic acid, but this measure of ''specific binding'' was demonstrated not to represent dopamine receptor binding since several other catecholamines and catechol were equipotent with dopamine and more potent than the dopamine agonist (+/-)amino-6,7-dihydroxy-1,2,3,4-tetrahydronapthalene (ADTN) in inhibiting this binding. High levels of dopamine-displaceable /sup 3/H-agonist binding were detected in fresh and boiled homogenates of cerebellum, an area of brain which receives no dopaminergic innervation, further demonstrating the non-specific nature of /sup 3/H-agonist binding in the absence of ascorbic acid. These studies emphasize that under typical assay conditions ascorbic acid is required in order to demonstrate reversible and specific /sup 3/H-agonist binding to dopamine receptors.

  5. Computational Analysis of the Ligand Binding Site of the Extracellular ATP Receptor, DORN1.

    Science.gov (United States)

    Nguyen, Cuong The; Tanaka, Kiwamu; Cao, Yangrong; Cho, Sung-Hwan; Xu, Dong; Stacey, Gary

    2016-01-01

    DORN1 (also known as P2K1) is a plant receptor for extracellular ATP, which belongs to a large gene family of legume-type (L-type) lectin receptor kinases. Extracellular ATP binds to DORN1 with strong affinity through its lectin domain, and the binding triggers a variety of intracellular activities in response to biotic and abiotic stresses. However, information on the tertiary structure of the ligand binding site of DORN1is lacking, which hampers efforts to fully elucidate the mechanism of receptor action. Available data of the crystal structures from more than 50 L-type lectins enable us to perform an in silico study of molecular interaction between DORN1 and ATP. In this study, we employed a computational approach to develop a tertiary structure model of the DORN1 lectin domain. A blind docking analysis demonstrated that ATP binds to a cavity made by four loops (defined as loops A B, C and D) of the DORN1 lectin domain with high affinity. In silico target docking of ATP to the DORN1 binding site predicted interaction with 12 residues, located on the four loops, via hydrogen bonds and hydrophobic interactions. The ATP binding pocket is structurally similar in location to the carbohydrate binding pocket of the canonical L-type lectins. However, four of the residues predicted to interact with ATP are not conserved between DORN1 and the other carbohydrate-binding lectins, suggesting that diversifying selection acting on these key residues may have led to the ATP binding activity of DORN1. The in silico model was validated by in vitro ATP binding assays using the purified extracellular lectin domain of wild-type DORN1, as well as mutated DORN1 lacking key ATP binding residues. PMID:27583834

  6. Interleukin 1α and interleukin 1β bind to the same receptor on T cells

    International Nuclear Information System (INIS)

    Pure, E. coli-derived recombinant murine interleukin 1α (IL 1α) was labeled with 125I and used for receptor binding studies. The 125I-IL 1 binds to murine EL-4 thymoma cells in a specific and saturable manner. Scatchard plot analysis for binding studies carried out at 40C reveals a single type of high affinity binding site with an apparent dissociation constant of approximately 2.6 X 10-10 M and the presence of approximately 1200 binding sites per cell. Unlabeled recombinant murine IL 1 competes for 125I-IL 1 binding in a dose-dependent manner, whereas interferon-αA, interleukin 2 (IL 2), epidermal growth factor, and nerve growth factor have no effect. The 125I-IL 1 binding site is sensitive to trypsin, suggesting that it is localized on the cell surface. The authors have also examined the ability of purified recombinant human IL 1α and IL 1β to compete for binding of the radiolabeled murine IL 1 to its receptor and to stimulate IL 2 production by EL-4 cells. They report here that both human IL 1 proteins are able to recognize the same binding site on mouse IL 1. In addition, murine as well as both human IL 1 proteins stimulate IL 2 production by EL-4 cells

  7. In vivo (/sup 3/H)flunitrazepam binding: imaging of receptor regulation

    Energy Technology Data Exchange (ETDEWEB)

    Ciliax, B.J.; Penney, J.B. Jr.; Young, A.B.

    1986-08-01

    The use of (/sup 3/H)flunitrazepam as a ligand to measure alterations in benzodiazepine receptors in vivo in rats was investigated. Animals were injected with (/sup 3/H)flunitrazepam i.v., arterial samples of (/sup 3/H)flunitrazepam were obtained and, later, the animals were sacrificed to assay brain binding. (/sup 3/H)flunitrazepam enters the brain rapidly and binds to benzodiazepine receptors. About two-thirds of this binding is blocked by predosing the animals with 5 mg/kg of clonazepam. The amount of remaining (nonspecific) binding correlates very well (r = 0.88) with the amount of radioactivity found in plasma at the time of death. A series of rats were lesioned unilaterally with kainic acid in the caudate-putamen several months before the infusion of (/sup 3/H)flunitrazepam. In vivo autoradiography in lesioned rats showed that benzodiazepine binding in globus pallidus and substantia nigra on the side of the lesion was increased significantly as compared to the intact side. The observed changes in benzodiazepine binding were similar to those observed previously in lesioned rats using in vitro techniques. Thus, benzodiazepine receptor regulation can be imaged quantitatively using in vivo binding techniques.

  8. In vivo [3H]flunitrazepam binding: imaging of receptor regulation

    International Nuclear Information System (INIS)

    The use of [3H]flunitrazepam as a ligand to measure alterations in benzodiazepine receptors in vivo in rats was investigated. Animals were injected with [3H]flunitrazepam i.v., arterial samples of [3H]flunitrazepam were obtained and, later, the animals were sacrificed to assay brain binding. [3H]flunitrazepam enters the brain rapidly and binds to benzodiazepine receptors. About two-thirds of this binding is blocked by predosing the animals with 5 mg/kg of clonazepam. The amount of remaining (nonspecific) binding correlates very well (r = 0.88) with the amount of radioactivity found in plasma at the time of death. A series of rats were lesioned unilaterally with kainic acid in the caudate-putamen several months before the infusion of [3H]flunitrazepam. In vivo autoradiography in lesioned rats showed that benzodiazepine binding in globus pallidus and substantia nigra on the side of the lesion was increased significantly as compared to the intact side. The observed changes in benzodiazepine binding were similar to those observed previously in lesioned rats using in vitro techniques. Thus, benzodiazepine receptor regulation can be imaged quantitatively using in vivo binding techniques

  9. Modulatory effects of unsaturated fatty acids on the binding of glucocorticoids to rat liver glucocorticoid receptors.

    Science.gov (United States)

    Vallette, G; Vanet, A; Sumida, C; Nunez, E A

    1991-09-01

    Binding of the synthetic glucocorticoid dexamethasone to the rat liver cytosol glucocorticoid receptor was inhibited by physiological concentrations of nonesterified fatty acids as a function of increasing dose, degree of unsaturation, and chain length of the fatty acid. Polyunsaturated fatty acids were the most potent inhibitors. Scatchard analysis and Line-weaver-Burk plots of the binding data revealed that both the association constants and number of binding sites decreased and that polyunsaturated fatty acids inhibition was of a mixed non-competitive type. The dissociation rate constant of [3H]dexamethasone from glucocorticoid receptors was increased by up to 10 times in the presence of docosahexaenoic acid, whereas a competitive inhibitor like the glucocorticoid antagonist RU 38486 had no effect. Moreover, sucrose density gradient analysis showed that docosahexaenoic acid inhibited the binding of [3H] dexamethasone to both the 8.8S and 4S forms. The results strongly suggest that unsaturated fatty acids are interacting at a site on the receptor different from the hormone binding site and the heat shock protein and that by binding to a second site unsaturated fatty acids greatly change the conformation of the hormone binding site to reduce its affinity for the hormone, either partially or completely depending on the concentration and the class of the fatty acid. PMID:1874175

  10. Receptor-transporter interactions of canonical ATP-binding cassette import systems in prokaryotes.

    Science.gov (United States)

    Schneider, Erwin; Eckey, Viola; Weidlich, Daniela; Wiesemann, Nicole; Vahedi-Faridi, Ardeshir; Thaben, Paul; Saenger, Wolfram

    2012-04-01

    ATP-binding cassette (ABC) transport systems mediate the translocation of solutes across biological membranes at the expense of ATP. They share a common modular architecture comprising two pore-forming transmembrane domains and two nucleotide binding domains. In prokaryotes, ABC transporters are involved in the uptake of a large variety of chemicals, including nutrients, osmoprotectants and signal molecules. In pathogenic bacteria, some ABC importers are virulence factors. Canonical ABC import systems require an additional component, a substrate-specific receptor or binding protein for function. Interaction of the liganded receptor with extracytoplasmic loop regions of the transmembrane domains initiate the transport cycle. In this review we summarize the current knowledge on receptor-transporter interplay provided by crystal structures as well as by biochemical and biophysical means. In particular, we focus on the maltose/maltodextrin transporter of enterobacteria and the transporters for positively charged amino acids from the thermophile Geobacillus stearothermophilus and Salmonella enterica serovar Typhimurium.

  11. GHB receptor targets in the CNS: Focus on high-affinity binding sites

    DEFF Research Database (Denmark)

    Bay, Tina; Eghorn, Laura Friis; Klein, Anders Bue;

    2014-01-01

    γ-Hydroxybutyric acid (GHB) is an endogenous compound in the mammalian brain with both low- and high-affinity receptor targets. GHB is used clinically in the treatment of symptoms of narcolepsy and alcoholism, but also illicitly abused as the recreational drug Fantasy. Major pharmacological effects...... of exogenous GHB are mediated by GABA subtype B (GABAB) receptors that bind GHB with low affinity. The existence of GHB high-affinity binding sites has been known for more than three decades, but the uncovering of their molecular identity has only recently begun. This has been prompted by the generation...... of molecular tools to selectively study high-affinity sites. These include both genetically modified GABAB knock-out mice and engineered selective GHB ligands. Recently, certain GABA subtype A (GABAA) receptor subtypes emerged as high-affinity GHB binding sites and potential physiological mediators of GHB...

  12. Miniaturizing VEGF: Peptides mimicking the discontinuous VEGF receptor-binding site modulate the angiogenic response.

    Science.gov (United States)

    De Rosa, Lucia; Finetti, Federica; Diana, Donatella; Di Stasi, Rossella; Auriemma, Sara; Romanelli, Alessandra; Fattorusso, Roberto; Ziche, Marina; Morbidelli, Lucia; D'Andrea, Luca Domenico

    2016-08-08

    The angiogenic properties of VEGF are mediated through the binding of VEGF to its receptor VEGFR2. The VEGF/VEGFR interface is constituted by a discontinuous binding region distributed on both VEGF monomers. We attempted to reproduce this discontinuous binding site by covalently linking into a single molecular entity two VEGF segments involved in receptor recognition. We designed and synthesized by chemical ligation a set of peptides differing in length and flexibility of the molecular linker joining the two VEGF segments. The biological activity of the peptides was characterized in vitro and in vivo showing a VEGF-like activity. The most biologically active mini-VEGF was further analyzed by NMR to determine the atomic details of its interaction with the receptor.

  13. Miniaturizing VEGF: Peptides mimicking the discontinuous VEGF receptor-binding site modulate the angiogenic response

    Science.gov (United States)

    De Rosa, Lucia; Finetti, Federica; Diana, Donatella; di Stasi, Rossella; Auriemma, Sara; Romanelli, Alessandra; Fattorusso, Roberto; Ziche, Marina; Morbidelli, Lucia; D’Andrea, Luca Domenico

    2016-08-01

    The angiogenic properties of VEGF are mediated through the binding of VEGF to its receptor VEGFR2. The VEGF/VEGFR interface is constituted by a discontinuous binding region distributed on both VEGF monomers. We attempted to reproduce this discontinuous binding site by covalently linking into a single molecular entity two VEGF segments involved in receptor recognition. We designed and synthesized by chemical ligation a set of peptides differing in length and flexibility of the molecular linker joining the two VEGF segments. The biological activity of the peptides was characterized in vitro and in vivo showing a VEGF-like activity. The most biologically active mini-VEGF was further analyzed by NMR to determine the atomic details of its interaction with the receptor.

  14. Receptor-transporter interactions of canonical ATP-binding cassette import systems in prokaryotes.

    Science.gov (United States)

    Schneider, Erwin; Eckey, Viola; Weidlich, Daniela; Wiesemann, Nicole; Vahedi-Faridi, Ardeshir; Thaben, Paul; Saenger, Wolfram

    2012-04-01

    ATP-binding cassette (ABC) transport systems mediate the translocation of solutes across biological membranes at the expense of ATP. They share a common modular architecture comprising two pore-forming transmembrane domains and two nucleotide binding domains. In prokaryotes, ABC transporters are involved in the uptake of a large variety of chemicals, including nutrients, osmoprotectants and signal molecules. In pathogenic bacteria, some ABC importers are virulence factors. Canonical ABC import systems require an additional component, a substrate-specific receptor or binding protein for function. Interaction of the liganded receptor with extracytoplasmic loop regions of the transmembrane domains initiate the transport cycle. In this review we summarize the current knowledge on receptor-transporter interplay provided by crystal structures as well as by biochemical and biophysical means. In particular, we focus on the maltose/maltodextrin transporter of enterobacteria and the transporters for positively charged amino acids from the thermophile Geobacillus stearothermophilus and Salmonella enterica serovar Typhimurium. PMID:21561685

  15. Computational Characterization and Prediction of Estrogen Receptor Coactivator Binding Site Inhibitors

    Energy Technology Data Exchange (ETDEWEB)

    Bennion, B J; Kulp, K S; Cosman, M; Lightstone, F C

    2005-08-26

    Many carcinogens have been shown to cause tissue specific tumors in animal models. The mechanism for this specificity has not been fully elucidated and is usually attributed to differences in organ metabolism. For heterocyclic amines, potent carcinogens that are formed in well-done meat, the ability to either bind to the estrogen receptor and activate or inhibit an estrogenic response will have a major impact on carcinogenicity. Here we describe our work with the human estrogen receptor alpha (hERa) and the mutagenic/carcinogenic heterocyclic amines PhIP, MeIQx, IFP, and the hydroxylated metabolite of PhIP, N2-hydroxy-PhIP. We found that PhIP, in contrast to the other heterocyclic amines, increased cell-proliferation in MCF-7 human breast cancer cells and activated the hERa receptor. We show mechanistic data supporting this activation both computationally by homology modeling and docking, and by NMR confirmation that PhIP binds with the ligand binding domain (LBD). This binding competes with estradiol (E2) in the native E2 binding cavity of the receptor. We also find that other heterocyclic amines and N2-hydroxy-PhIP inhibit ER activation presumably by binding into another cavity on the LBD. Moreover, molecular dynamics simulations of inhibitory heterocyclic amines reveal a disruption of the surface of the receptor protein involved with protein-protein signaling. We therefore propose that the mechanism for the tissue specific carcinogenicity seen in the rat breast tumors and the presumptive human breast cancer associated with the consumption of well-done meat maybe mediated by this receptor activation.

  16. Metal ion enhanced binding of AMD3100 to Asp262 in the CXCR4 receptor

    DEFF Research Database (Denmark)

    Gerlach, Lars Ole; Jakobsen, Janus S; Jensen, Kasper P;

    2003-01-01

    +), Zn(2+), or Ni(2+) into the cyclam rings of the compound. The rank order of the transition metal ions correlated with the calculated binding energy between free acetate and the metal ions coordinated in a cyclam ring. Construction of AMD3100 substituted with only a single Cu(2+) or Ni(2+) ion...... demonstrated that the increase in binding affinity of the metal ion substituted bicyclam is achieved through an enhanced interaction of just one of the ring systems. Mutational analysis of potential metal ion binding residues in the main ligand binding crevice of the CXCR4 receptor showed that although binding...... of the bicyclam is dependent on both Asp(171) and Asp(262), the enhancing effect of the metal ion was selectively eliminated by substitution of Asp(262) located at the extracellular end of TM-VI. It is concluded that the increased binding affinity of the metal ion substituted AMD3100 is obtained through enhanced...

  17. Expression and Purification of Functional Ligand-binding Domains of T1R3 Taste Receptors

    Energy Technology Data Exchange (ETDEWEB)

    Nie,Y.; Hobbs, J.; Vigues, S.; Olson, W.; Conn, G.; Munger, S.

    2006-01-01

    Chemosensory receptors, including odor, taste, and vomeronasal receptors, comprise the largest group of G protein-coupled receptors (GPCRs) in the mammalian genome. However, little is known about the molecular determinants that are critical for the detection and discrimination of ligands by most of these receptors. This dearth of understanding is due in part to difficulties in preparing functional receptors suitable for biochemical and biophysical analyses. Here we describe in detail two strategies for the expression and purification of the ligand-binding domain of T1R taste receptors, which are constituents of the sweet and umami taste receptors. These class C GPCRs contain a large extracellular N-terminal domain (NTD) that is the site of interaction with most ligands and that is amenable to expression as a separate polypeptide in heterologous cells. The NTD of mouse T1R3 was expressed as two distinct fusion proteins in Escherichia coli and purified by column chromatography. Spectroscopic analysis of the purified NTD proteins shows them to be properly folded and capable of binding ligands. This methodology should not only facilitate the characterization of T1R ligand interactions but may also be useful for dissecting the function of other class C GPCRs such as the large family of orphan V2R vomeronasal receptors.

  18. Molecular determinants of receptor binding and signaling by the CX3C chemokine fractalkine

    DEFF Research Database (Denmark)

    Mizoue, L S; Sullivan, S K; King, D S;

    2001-01-01

    Fractalkine/CX3CL1 is a membrane-tethered chemokine that functions as a chemoattractant and adhesion protein by interacting with the receptor CX3CR1. To understand the molecular basis for the interaction, an extensive mutagenesis study of fractalkine's chemokine domain was undertaken. The results...... reveal a cluster of basic residues (Lys-8, Lys-15, Lys-37, Arg-45, and Arg-48) and one aromatic (Phe-50) that are critical for binding and/or signaling. The mutant R48A could bind but not induce chemotaxis, demonstrating that Arg-48 is a signaling trigger. This result also shows that signaling residues......, but not all, pathways required for migration. Fractalkine also binds the human cytomegalovirus receptor US28, and analysis of the mutants indicates that US28 recognizes many of the same epitopes of fractalkine as CX3CR1. Comparison of the binding surfaces of fractalkine and the CC chemokine MCP-1 reveals...

  19. Site-directed alkylation of multiple opioid receptors. I. Binding selectivity

    International Nuclear Information System (INIS)

    A method for measuring and expressing the binding selectivity of ligands for mu, delta, and kappa opioid binding sites is reported. Radioligands are used that are partially selective for these sites in combination with membrane preparations enriched in each site. Enrichment was obtained by treatment of membranes with the alkylating agent beta-chlornaltrexamine in the presence of appropriate protecting ligands. After enrichment for mu receptors, [3H] dihydromorphine bound to a single type of site as judged by the slope of competition binding curves. After enrichment for delta or kappa receptors, binding sites for [3H] [D-Ala2, D-Leu5]enkephalin and [3H]ethylketocyclazocine, respectively, were still not homogeneous. There were residual mu sites in delta-enriched membranes but no evidence for residual mu or delta sites in kappa-enriched membranes were found. This method was used to identify ligands that are highly selective for each of the three types of sites

  20. Synthesis and receptor binding affinity of new selective GluR5 ligands

    DEFF Research Database (Denmark)

    Bunch, L; Johansen, T H; Bräuner-Osborne, Hans;

    2001-01-01

    Two hybrid analogues of the kainic acid receptor agonists, 2-amino-3-(5-tert-butyl-3-hydroxy-4-isoxazolyl)propionic acid (ATPA) and (2S,4R)-4-methylglutamic acid ((2S,4R)-4-Me-Glu), were designed, synthesized, and characterized in radioligand binding assays using cloned ionotropic and metabotropi.......0 and 2.0 microM. respectively. Their affinities in the [3H]AMPA binding assay on native cortical receptors were shown to correlate with their GluR2 affinity rather than their GluR5 affinity. No affinity for GluR6 was detected (IC50 > 100 microM)....

  1. Temporal cortex dopamine D2/3 receptor binding in major depression.

    Science.gov (United States)

    Lehto, Soili M; Kuikka, Jyrki; Tolmunen, Tommi; Hintikka, Jukka; Viinamäki, Heimo; Vanninen, Ritva; Haatainen, Kaisa; Koivumaa-Honkanen, Heli; Honkalampi, Kirsi; Tiihonen, Jari

    2008-06-01

    The aim of this study was to assess the dopamine function of the temporal cortex in major depressive disorder using [(123)I]epidepride to image D(2/3) receptor binding sites. Ten major depressives and 10 healthy controls were selected from a general population sample for single-photon emission computed tomography imaging. Among the major depressives there was a strong bilateral correlation between the scores on the 21-item Hamilton Depression Rating Scale and D(2/3) receptor binding. Dopaminergic abnormalities may be present in the temporal cortices of major depressives. PMID:18588596

  2. Ligand-induced Coupling versus Receptor Pre-association: Cellular automaton simulations of FGF-2 binding

    OpenAIRE

    Gopalakrishnan, Manoj; Forsten-Williams, Kimberly; Tauber, Uwe C.

    2003-01-01

    The binding of basic fibroblast growth factor (FGF-2) to its cell surface receptor (CSR) and subsequent signal transduction is known to be enhanced by Heparan Sulfate Proteoglycans (HSPGs). HSPGs bind FGF-2 with low affinity and likely impact CSR-mediated signaling via stabilization of FGF-2-CSR complexes via association with both the ligand and the receptor. What is unknown is whether HSPG associates with CSR in the absence of FGF-2. In this paper, we determine conditions by which pre-associ...

  3. Identifying and quantifying two ligand-binding sites while imaging native human membrane receptors by AFM

    Science.gov (United States)

    Pfreundschuh, Moritz; Alsteens, David; Wieneke, Ralph; Zhang, Cheng; Coughlin, Shaun R.; Tampé, Robert; Kobilka, Brian K.; Müller, Daniel J.

    2015-11-01

    A current challenge in life sciences is to image cell membrane receptors while characterizing their specific interactions with various ligands. Addressing this issue has been hampered by the lack of suitable nanoscopic methods. Here we address this challenge and introduce multifunctional high-resolution atomic force microscopy (AFM) to image human protease-activated receptors (PAR1) in the functionally important lipid membrane and to simultaneously localize and quantify their binding to two different ligands. Therefore, we introduce the surface chemistry to bifunctionalize AFM tips with the native receptor-activating peptide and a tris-N-nitrilotriacetic acid (tris-NTA) group binding to a His10-tag engineered to PAR1. We further introduce ways to discern between the binding of both ligands to different receptor sites while imaging native PAR1s. Surface chemistry and nanoscopic method are applicable to a range of biological systems in vitro and in vivo and to concurrently detect and localize multiple ligand-binding sites at single receptor resolution.

  4. Selectivity in progesterone and androgen receptor binding of progestagens used in oral contraceptives

    International Nuclear Information System (INIS)

    The relative binding affinities (RBAs) of four progestational compounds (norethisterone, levonorgestrel, 3-keto-desogestrel and gestodene) for the human progesterone and androgen receptors were measured in MCF-7 cytosol and intact MCF-7 cells. For the binding to the progesterone receptor, both Org 2058 and Org 3236 (or 3-keto-desogestrel) were used as labelled ligands. The following ranking (low to high) for the RBA of the nuclear (intact cells) progesterone receptor irrespective of the ligand used is found: norethisterone much less than levonorgestrel less than 3-keto-destogestrel less than gestodene. The difference between the various progestagens is significant with the exception of that between 3-keto-desogestrel and gestodene, when Org 2058 is used as ligand. For the cytosolic progesterone receptor, the same order is found with the exception that similar RBAs are found for gestodene and 3-keto-desogestrel. The four progestagens clearly differ with respect to binding to the androgen receptor using dihydrotestosterone as labelled ligand in intact cells; the ranking (low to high) is: norethisterone less than 3 keto-desogestrel less than levonorgestrel and gestodene. The difference between 3-keto-desogestrel and levonorgestrel or gestodene is significant. The selectivity indices (ratio of the mean RBA for the progesterone receptor to that of androgen receptor) in intact cells are significantly higher for 3-keto-desogestrel and gestodene than for levonorgestrel and norethisterone. From these results we conclude that the introduction of the 18-methyl in norethisterone (levonorgestel) increases both the binding to the progesterone and androgen receptors

  5. Genome-Wide Binding and Transcriptome Analysis of Human Farnesoid X Receptor in Primary Human Hepatocytes

    OpenAIRE

    Zhan, Le; Liu, Hui-Xin; Fang, Yaping; Kong, Bo; He, Yuqi; Zhong, Xiao-bo; Fang, Jianwen; Wan, Yu-Jui Yvonne; Guo, Grace L.

    2014-01-01

    Background & Aims Farnesoid X receptor (FXR, NR1H4) is a ligand-activated transcription factor, belonging to the nuclear receptor superfamily. FXR is highly expressed in the liver and is essential in regulating bile acid homeostasis. FXR deficiency is implicated in numerous liver diseases and mice with modulation of FXR have been used as animal models to study liver physiology and pathology. We have reported genome-wide binding of FXR in mice by chromatin immunoprecipitation - deep sequencing...

  6. Farnesoid X Receptor Inhibits the Transcriptional Activity of Carbohydrate Response Element Binding Protein in Human Hepatocytes

    OpenAIRE

    Caron, Sandrine; Huaman Samanez, Carolina; Dehondt, Hélène; Ploton, Maheul; Briand, Olivier; Lien, Fleur; Dorchies, Emilie; Dumont, Julie; Postic, Catherine; Cariou, Bertrand; Lefebvre, Philippe; Staels, Bart

    2013-01-01

    The glucose-activated transcription factor carbohydrate response element binding protein (ChREBP) induces the expression of hepatic glycolytic and lipogenic genes. The farnesoid X receptor (FXR) is a nuclear bile acid receptor controlling bile acid, lipid, and glucose homeostasis. FXR negatively regulates hepatic glycolysis and lipogenesis in mouse liver. The aim of this study was to determine whether FXR regulates the transcriptional activity of ChREBP in human hepatocytes and to unravel the...

  7. Interactions between Human Liver Fatty Acid Binding Protein and Peroxisome Proliferator Activated Receptor Selective Drugs

    OpenAIRE

    Tony Velkov

    2013-01-01

    Fatty acid binding proteins (FABPs) act as intracellular shuttles for fatty acids as well as lipophilic xenobiotics to the nucleus, where these ligands are released to a group of nuclear receptors called the peroxisome proliferator activated receptors (PPARs). PPAR mediated gene activation is ultimately involved in maintenance of cellular homeostasis through the transcriptional regulation of metabolic enzymes and transporters that target the activating ligand. Here we show that liver- (L-) FA...

  8. Cytotoxic purine nucleoside analogues bind to A1, A2A and A3 adenosine receptors

    OpenAIRE

    Jensen, Kyle; Johnson, L’Aurelle A.; Jacobson, Pamala A.; Kachler, Sonja; Kirstein, Mark N.; Lamba, Jatinder; Klotz, Karl-Norbert

    2012-01-01

    Fludarabine, clofarabine and cladribine are anti-cancer agents which are analogues of the purine nucleoside adenosine. These agents have been associated with cardiac and neurological toxicities. Because these agents are analogues of adenosine, they may act through adenosine receptors to elicit their toxic effects. The objective of this study was to evaluate the ability of cytotoxic nucleoside analogues to bind and activate adenosine receptor subtypes (A1, A2A, A2B, and A3). Radioligand bindin...

  9. Selectivity in progesterone and androgen receptor binding of progestagens used in oral contraceptives

    Energy Technology Data Exchange (ETDEWEB)

    Kloosterboer, H.J.; Vonk-Noordegraaf, C.A.; Turpijn, E.W.

    1988-09-01

    The relative binding affinities (RBAs) of four progestational compounds (norethisterone, levonorgestrel, 3-keto-desogestrel and gestodene) for the human progesterone and androgen receptors were measured in MCF-7 cytosol and intact MCF-7 cells. For the binding to the progesterone receptor, both Org 2058 and Org 3236 (or 3-keto-desogestrel) were used as labelled ligands. The following ranking (low to high) for the RBA of the nuclear (intact cells) progesterone receptor irrespective of the ligand used is found: norethisterone much less than levonorgestrel less than 3-keto-destogestrel less than gestodene. The difference between the various progestagens is significant with the exception of that between 3-keto-desogestrel and gestodene, when Org 2058 is used as ligand. For the cytosolic progesterone receptor, the same order is found with the exception that similar RBAs are found for gestodene and 3-keto-desogestrel. The four progestagens clearly differ with respect to binding to the androgen receptor using dihydrotestosterone as labelled ligand in intact cells; the ranking (low to high) is: norethisterone less than 3 keto-desogestrel less than levonorgestrel and gestodene. The difference between 3-keto-desogestrel and levonorgestrel or gestodene is significant. The selectivity indices (ratio of the mean RBA for the progesterone receptor to that of androgen receptor) in intact cells are significantly higher for 3-keto-desogestrel and gestodene than for levonorgestrel and norethisterone. From these results we conclude that the introduction of the 18-methyl in norethisterone (levonorgestel) increases both the binding to the progesterone and androgen receptors.

  10. Monoclonal antibodies against rabbit mammary prolactin receptors. Specific antibodies to the hormone binding domain

    International Nuclear Information System (INIS)

    Three monoclonal antibodies (M110, A82, and A917) were obtained by fusing myeloma cells and spleen cells from mice immunized with partially purified rabbit mammary gland prolactin (PRL) receptors. All 3 antibodies were capable of complete inhibition of 125I-ovine prolactin (oPRL) binding to rabbit mammary PRL receptors in either particulate or soluble form. M110 showed slightly greater potency than oPRL in competing for 125I-oPRL binding. These antibodies also inhibited PRL binding to microsomal fractions from rabbit liver, kidney, adrenal, ovary, and pig mammary gland, although A82 showed poor inhibition in pig mammary gland. There was no cross-reaction of any of the 3 monoclonal antibodies (mAbs) for the other species tested: human (T-47D breast cancer cells) and rat (liver, ovary). In order to confirm that these antibodies are specific to the binding domain, antibodies were purified, iodinated, and binding characteristics were investigated. 125I-M110 and 125I-A82 binding was completely inhibited by lactogenic hormones, whereas nonlactogenic hormones did not cross-react. Competition of 125I-M110 by oPRL was comparable to that of 125I-oPRL by unlabeled oPRL, while 125I-A917 binding was only partially competed (30-60%) by lactogenic hormones. Tissue and species specificity of labeled antibody binding paralleled results of binding inhibition experiments using 125I-oPRL. In addition, A82 and A917 completely inhibited 125I-M110 binding. In contrast, 125I-A82 binding was stimulated by A917 and 125I-A917 binding was stimulated by A82

  11. Characterization of the Binding Site of Aspartame in the Human Sweet Taste Receptor.

    Science.gov (United States)

    Maillet, Emeline L; Cui, Meng; Jiang, Peihua; Mezei, Mihaly; Hecht, Elizabeth; Quijada, Jeniffer; Margolskee, Robert F; Osman, Roman; Max, Marianna

    2015-10-01

    The sweet taste receptor, a heterodimeric G protein-coupled receptor comprised of T1R2 and T1R3, binds sugars, small molecule sweeteners, and sweet proteins to multiple binding sites. The dipeptide sweetener, aspartame binds in the Venus Flytrap Module (VFTM) of T1R2. We developed homology models of the open and closed forms of human T1R2 and human T1R3 VFTMs and their dimers and then docked aspartame into the closed form of T1R2's VFTM. To test and refine the predictions of our model, we mutated various T1R2 VFTM residues, assayed activity of the mutants and identified 11 critical residues (S40, Y103, D142, S144, S165, S168, Y215, D278, E302, D307, and R383) in and proximal to the binding pocket of the sweet taste receptor that are important for ligand recognition and activity of aspartame. Furthermore, we propose that binding is dependent on 2 water molecules situated in the ligand pocket that bridge 2 carbonyl groups of aspartame to residues D142 and L279. These results shed light on the activation mechanism and how signal transmission arising from the extracellular domain of the T1R2 monomer of the sweet receptor leads to the perception of sweet taste.

  12. Tension-compression asymmetry in the binding affinity of membrane-anchored receptors and ligands

    Science.gov (United States)

    Xu, Guang-Kui; Liu, Zishun; Feng, Xi-Qiao; Gao, Huajian

    2016-03-01

    Cell adhesion plays a crucial role in many biological processes of cells, e.g., immune responses, tissue morphogenesis, and stem cell differentiation. An essential problem in the molecular mechanism of cell adhesion is to characterize the binding affinity of membrane-anchored receptors and ligands under different physiological conditions. In this paper, a theoretical model is presented to study the binding affinity between a large number of anchored receptors and ligands under both tensile and compressive stresses, and corroborated by demonstrating excellent agreement with Monte Carlo simulations. It is shown that the binding affinity becomes lower as the magnitude of the applied stress increases, and drops to zero at a critical tensile or compressive stress. Interestingly, the critical compressive stress is found to be substantially smaller than the critical tensile stress for relatively long and flexible receptor-ligand complexes. This counterintuitive finding is explained by using the Euler instability theory of slender columns under compression. The tension-compression asymmetry in the binding affinity of anchored receptors and ligands depends subtly on the competition between the breaking and instability of their complexes. This study helps in understanding the role of mechanical forces in cell adhesion mediated by specific binding molecules.

  13. Taste substance binding elicits conformational change of taste receptor T1r heterodimer extracellular domains.

    Science.gov (United States)

    Nango, Eriko; Akiyama, Shuji; Maki-Yonekura, Saori; Ashikawa, Yuji; Kusakabe, Yuko; Krayukhina, Elena; Maruno, Takahiro; Uchiyama, Susumu; Nuemket, Nipawan; Yonekura, Koji; Shimizu, Madoka; Atsumi, Nanako; Yasui, Norihisa; Hikima, Takaaki; Yamamoto, Masaki; Kobayashi, Yuji; Yamashita, Atsuko

    2016-01-01

    Sweet and umami tastes are perceived by T1r taste receptors in oral cavity. T1rs are class C G-protein coupled receptors (GPCRs), and the extracellular ligand binding domains (LBDs) of T1r1/T1r3 and T1r2/T1r3 heterodimers are responsible for binding of chemical substances eliciting umami or sweet taste. However, molecular analyses of T1r have been hampered due to the difficulties in recombinant expression and protein purification, and thus little is known about mechanisms for taste perception. Here we show the first molecular view of reception of a taste substance by a taste receptor, where the binding of the taste substance elicits a different conformational state of T1r2/T1r3 LBD heterodimer. Electron microscopy has showed a characteristic dimeric structure. Förster resonance energy transfer and X-ray solution scattering have revealed the transition of the dimerization manner of the ligand binding domains, from a widely spread to compactly organized state upon taste substance binding, which may correspond to distinct receptor functional states. PMID:27160511

  14. Thermodynamics of calmodulin binding to cardiac and skeletal muscle ryanodine receptor ion channels

    OpenAIRE

    Meissner, Gerhard; Pasek, Daniel A.; Yamaguchi, Naohiro; Ramachandran, Srinivas; Dokholyan, Nikolay V.; Tripathy, Ashutosh

    2009-01-01

    The skeletal muscle (RyR1) and cardiac muscle (RyR2) ryanodine receptor calcium release channels contain a single, conserved calmodulin (CaM) binding domain, yet are differentially regulated by CaM. Here, we report that high-affinity [35S]CaM binding to RyR1 is driven by favorable enthalpic and entropic contributions at Ca2+ concentrations from

  15. The glucocorticoid receptor hormone binding domain mediates transcriptional activation in vitro in the absence of ligand.

    OpenAIRE

    Schmitt, J.; Stunnenberg, H G

    1993-01-01

    We show that recombinant rat glucocorticoid receptor (vvGR) expressed using vaccinia virus is indistinguishable from authentic GR with respect to DNA and hormone binding. In the absence of hormone, vvGR is mainly found in the cytoplasm in a complex with heat shock protein 90. Upon incubation with ligand, vvGR is released from this complex and translocated to the nucleus. Thus, the ligand binding domain displays the known biochemical properties. However, in vitro, transcription from a syntheti...

  16. Receptor-like function of heparin in the binding and uptake of neutral lipids.

    OpenAIRE

    Bosner, M S; Gulick, T; Riley, D J; Spilburg, C. A.; Lange, L G

    1988-01-01

    Molecular mechanisms regulating the binding, amphipathic stabilization, and metabolism of the major neutral lipids (e.g., cholesteryl esters, triglycerides, and fatty acids) are well studied, but the details of their movement from a binding compartment to a metabolic compartment deserve further attention. Since all neutral lipids must cross hydrophilic segments of plasma membranes during such movement, we postulate that a critical receptor-like site exists on the plasma membrane to mediate a ...

  17. Structural proof of a dimeric positive modulator bridging two identical AMPA receptor-binding sites

    DEFF Research Database (Denmark)

    Kaae, Birgitte Høiriis; Harpsøe, Kasper; Kastrup, Jette Sandholm Jensen;

    2007-01-01

    have dramatically increased potencies, more than three orders of magnitude higher than the corresponding monomers. Dimer (R,R)-2a was cocrystallized with the GluR2-S1S2J construct, and an X-ray crystallographic analysis showed (R,R)-2a to bridge two identical binding pockets on two neighboring GluR2...... subunits. Thus, this is biostructural evidence of a homomeric dimer bridging two identical receptor-binding sites....

  18. Effect of receptor binding domain mutations on receptor binding and transmissibility of avian influenza H5N1 viruses

    DEFF Research Database (Denmark)

    Maines, Taronna R; Chen, Li-Mei; Van Hoeven, Neal;

    2011-01-01

    Although H5N1 influenza viruses have been responsible for hundreds of human infections, these avian influenza viruses have not fully adapted to the human host. The lack of sustained transmission in humans may be due, in part, to their avian-like receptor preference. Here, we have introduced recep...

  19. An amphioxus orthologue of the estrogen receptor that does not bind estradiol: Insights into estrogen receptor evolution

    Directory of Open Access Journals (Sweden)

    Laudet Vincent

    2008-07-01

    Full Text Available Abstract Background The origin of nuclear receptors (NRs and the question whether the ancestral NR was a liganded or an unliganded transcription factor has been recently debated. To obtain insight into the evolution of the ligand binding ability of estrogen receptors (ER, we comparatively characterized the ER from the protochordate amphioxus (Branchiostoma floridae, and the ER from lamprey (Petromyzon marinus, a basal vertebrate. Results Extensive phylogenetic studies as well as signature analysis allowed us to confirm that the amphioxus ER (amphiER and the lamprey ER (lampER belong to the ER group. LampER behaves as a "classical" vertebrate ER, as it binds to specific DNA Estrogen Responsive Elements (EREs, and is activated by estradiol (E2, the classical ER natural ligand. In contrast, we found that although amphiER binds EREs, it is unable to bind E2 and to activate transcription in response to E2. Among the 7 natural and synthetic ER ligands tested as well as a large repertoire of 14 cholesterol derivatives, only Bisphenol A (an endocrine disruptor with estrogenic activity bound to amphiER, suggesting that a ligand binding pocket exists within the receptor. Parsimony analysis considering all available ER sequences suggest that the ancestral ER was not able to bind E2 and that this ability evolved specifically in the vertebrate lineage. This result does not support a previous analysis based on ancestral sequence reconstruction that proposed the ancestral steroid receptor to bind estradiol. We show that biased taxonomic sampling can alter the calculation of ancestral sequence and that the previous result might stem from a high proportion of vertebrate ERs in the dataset used to compute the ancestral sequence. Conclusion Taken together, our results highlight the importance of comparative experimental approaches vs ancestral reconstructions for the evolutionary study of endocrine systems: comparative analysis of extant ERs suggests that the

  20. Bio-inspired Dynamic Gradients Regulated by Supramolecular Bindings in Receptor-Embedded Hydrogel Matrices.

    Science.gov (United States)

    Luan, Xinglong; Zhang, Yihe; Wu, Jing; Jonkheijm, Pascal; Li, Guangtao; Jiang, Lei; Huskens, Jurriaan; An, Qi

    2016-08-01

    The kinetics of supramolecular bindings are fundamentally important for molecular motions and spatial-temporal distributions in biological systems, but have rarely been employed in preparing artificial materials. This report proposes a bio-inspired concept to regulate dynamic gradients through the coupled supramolecular binding and diffusion process in receptor-embedded hydrogel matrices. A new type of hydrogel that uses cyclodextrin (CD) as both the gelling moiety and the receptors is prepared as the diffusion matrices. The diffusible guest, 4-aminoazobenzene, quickly and reversibly binds to matrices-bound CD during diffusion and generates steeper gradients than regular diffusion. Weakened bindings induced through UV irradiation extend the gradients. Combined with numerical simulation, these results indicate that the coupled binding-diffusion could be viewed as slowed diffusion, regulated jointly by the binding constant and the equilibrium receptor concentrations, and gradients within a bio-relevant extent of 4 mm are preserved up to 90 h. This report should inspire design strategies of biomedical or cell-culturing materials. PMID:27547643

  1. Putative hAPN receptor binding sites in SARS_CoV spike protein

    Institute of Scientific and Technical Information of China (English)

    YUXiao-Jing; LUOCheng; LinJian-Cheng; HAOPei; HEYou-Yu; GUOZong-Ming; QINLei; SUJiong; LIUBo-Shu; HUANGYin; NANPeng; LIChuan-Song; XIONGBin; LUOXiao-Min; ZHAOGuo-Ping; PEIGang; CHENKai-Xian; SHENXu; SHENJian-Hua; ZOUJian-Ping; HEWei-Zhong; SHITie-Liu; ZHONGYang; JIANGHua-Liang; LIYi-Xue

    2003-01-01

    AIM:To obtain the information of ligand-receptor binding between thd S protein of SARS_CoV and CD13, identify the possible interacting domains or motifs related to binding sites, and provide clues for studying the functions of SARS proteins and designing anti-SARS drugs and vaccines. METHODS: On the basis of comparative genomics, the homology search, phylogenetic analyses, and multi-sequence alignment were used to predict CD13 related interacting domains and binding sites sites in the S protein of SARS_CoV. Molecular modeling and docking simulation methods were employed to address the interaction feature between CD13 and S protein of SARS_CoV in validating the bioinformatics predictions. RESULTS:Possible binding sites in the SARS_CoV S protein to CD13 have been mapped out by using bioinformatics analysis tools. The binding for one protein-protein interaction pair (D757-R761 motif of the SARS_CoV S protein to P585-A653 domain of CD13) has been simulated by molecular modeling and docking simulation methods. CONCLUSION:CD13 may be a possible receptor of the SARS_CoV S protein which may be associated with the SARS infection. This study also provides a possible strategy for mapping the possible binding receptors of the proteins in a genome.

  2. Characterization of the Receptor-binding Domain of Ebola Glycoprotein in Viral Entry

    Institute of Scientific and Technical Information of China (English)

    Jizhen Wang; Balaji Manicassamy; Michael Caffrey; Lijun Rong

    2011-01-01

    Ebola virus infection causes severe hemorrhagic fever in human and non-human primates with high mortality.Viral entry/infection is initiated by binding of glycoprotein GP protein on Ebola virion to host cells,followed by fusion of virus-cell membrane also mediated by GP.Using an human immunodeficiency virus (HIV)-based pseudotyping system,the roles of 41 Ebola GP1 residues in the receptor-binding domain in viral entry were studied by alanine scanning substitutions.We identified that four residues appear to be involved in protein folding/structure and four residues are important for viral entry.An improved entry interference assay was developed and used to study the role of these residues that are important for viral entry.It was found that R64 and K95 are involved in receptor binding.In contrast,some residues such as I170 are important for viral entry,but do not play a major role in receptor binding as indicated by entry interference assay and/or protein binding data,suggesting that these residues are involved in post-binding steps of viral entry.Furthermore,our results also suggested that Ebola and Marburg viruses share a common cellular molecule for entry.

  3. Time course of the estradiol-dependent induction of oxytocin receptor binding in the ventromedial hypothalamic nucleus of the rat

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, A.E.; Ball, G.F.; Coirini, H.; Harbaugh, C.R.; McEwen, B.S.; Insel, T.R. (National Institute of Mental Health, Poolesville, MD (USA))

    1989-09-01

    Oxytocin (OT) transmission is involved in the steroid-dependent display of sexual receptivity in rats. One of the biochemical processes stimulated by the ovarian steroid 17 beta-estradiol (E2) that is relevant to reproduction is the induction of OT receptor binding in the ventromedial hypothalamic nucleus (VMN). The purpose of these experiments was to determine if E2-induced changes in OT receptor binding in the VMN occur within a time frame relevant to cyclic changes in ovarian steroid secretion. OT receptor binding was measured in the VMN of ovariectomized rats implanted for 0-96 h with E2-containing Silastic capsules. The rate of decay of OT receptor binding was measured in another group of animals 6-48 h after capsule removal. Receptors were labeled with the specific OT receptor antagonist ({sup 125}I)d(CH2)5(Tyr(Me)2,Thr4,Tyr-NH2(9))OVT, and binding was measured with quantitative autoradiographic methods. In addition, plasma E2 levels and uterine weights were assessed in animals from each treatment condition. Significant increases in E2-dependent OT receptor binding and uterine weight occurred within 24 h of steroid treatment. After E2 withdrawal, OT receptor binding and uterine weight decreased significantly within 24 h. These results are consistent with the hypothesis that steroid modulation of OT receptor binding is necessary for the induction of sexual receptivity.

  4. Testin, a novel binding partner of the calcium-sensing receptor, enhances receptor-mediated Rho-kinase signalling

    International Nuclear Information System (INIS)

    Highlights: → A yeast two-hybrid screen revealed testin bound to the calcium-sensing receptor. → The second zinc finger of LIM domain 1 of testin is critical for interaction. → Testin bound to a region of the receptor tail important for cell signalling. → Testin and receptor interaction was confirmed in mammalian (HEK293) cells. → Overexpression of testin enhanced receptor-mediated Rho signalling in HEK293 cells. -- Abstract: The calcium-sensing receptor (CaR) plays an integral role in calcium homeostasis and the regulation of other cellular functions including cell proliferation and cytoskeletal organisation. The multifunctional nature of the CaR is manifested through ligand-dependent stimulation of different signalling pathways that are also regulated by partner binding proteins. Following a yeast two-hybrid library screen using the intracellular tail of the CaR as bait, we identified several novel binding partners including the focal adhesion protein, testin. Testin has not previously been shown to interact with cell surface receptors. The sites of interaction between the CaR and testin were mapped to the membrane proximal region of the receptor tail and the second zinc-finger of LIM domain 1 of testin, the integrity of which was found to be critical for the CaR-testin interaction. The CaR-testin association was confirmed in HEK293 cells by coimmunoprecipitation and confocal microscopy studies. Ectopic expression of testin in HEK293 cells stably expressing the CaR enhanced CaR-stimulated Rho activity but had no effect on CaR-stimulated ERK signalling. These results suggest an interplay between the CaR and testin in the regulation of CaR-mediated Rho signalling with possible effects on the cytoskeleton.

  5. Testin, a novel binding partner of the calcium-sensing receptor, enhances receptor-mediated Rho-kinase signalling

    Energy Technology Data Exchange (ETDEWEB)

    Magno, Aaron L. [Western Australian Institute for Medical Research and Centre for Medical Research, University of Western Australia, Nedlands, Western Australia 6009 (Australia); Department of Endocrinology and Diabetes, Sir Charles Gairdner Hospital, Hospital Avenue, Nedlands, Western Australia 6009 (Australia); Ingley, Evan [Western Australian Institute for Medical Research and Centre for Medical Research, University of Western Australia, Nedlands, Western Australia 6009 (Australia); Brown, Suzanne J. [Department of Endocrinology and Diabetes, Sir Charles Gairdner Hospital, Hospital Avenue, Nedlands, Western Australia 6009 (Australia); Conigrave, Arthur D. [School of Molecular Bioscience, University of Sydney, New South Wales 2000 (Australia); Ratajczak, Thomas [Western Australian Institute for Medical Research and Centre for Medical Research, University of Western Australia, Nedlands, Western Australia 6009 (Australia); Department of Endocrinology and Diabetes, Sir Charles Gairdner Hospital, Hospital Avenue, Nedlands, Western Australia 6009 (Australia); Ward, Bryan K., E-mail: bryanw@cyllene.uwa.edu.au [Western Australian Institute for Medical Research and Centre for Medical Research, University of Western Australia, Nedlands, Western Australia 6009 (Australia); Department of Endocrinology and Diabetes, Sir Charles Gairdner Hospital, Hospital Avenue, Nedlands, Western Australia 6009 (Australia)

    2011-09-09

    Highlights: {yields} A yeast two-hybrid screen revealed testin bound to the calcium-sensing receptor. {yields} The second zinc finger of LIM domain 1 of testin is critical for interaction. {yields} Testin bound to a region of the receptor tail important for cell signalling. {yields} Testin and receptor interaction was confirmed in mammalian (HEK293) cells. {yields} Overexpression of testin enhanced receptor-mediated Rho signalling in HEK293 cells. -- Abstract: The calcium-sensing receptor (CaR) plays an integral role in calcium homeostasis and the regulation of other cellular functions including cell proliferation and cytoskeletal organisation. The multifunctional nature of the CaR is manifested through ligand-dependent stimulation of different signalling pathways that are also regulated by partner binding proteins. Following a yeast two-hybrid library screen using the intracellular tail of the CaR as bait, we identified several novel binding partners including the focal adhesion protein, testin. Testin has not previously been shown to interact with cell surface receptors. The sites of interaction between the CaR and testin were mapped to the membrane proximal region of the receptor tail and the second zinc-finger of LIM domain 1 of testin, the integrity of which was found to be critical for the CaR-testin interaction. The CaR-testin association was confirmed in HEK293 cells by coimmunoprecipitation and confocal microscopy studies. Ectopic expression of testin in HEK293 cells stably expressing the CaR enhanced CaR-stimulated Rho activity but had no effect on CaR-stimulated ERK signalling. These results suggest an interplay between the CaR and testin in the regulation of CaR-mediated Rho signalling with possible effects on the cytoskeleton.

  6. Monoclonal antibodies to the human insulin receptor block insulin binding and inhibit insulin action.

    OpenAIRE

    Roth, R A; Cassell, D J; Wong, K. Y.; Maddux, B A; Goldfine, I D

    1982-01-01

    Antibodies to the insulin receptor were prepared in BALB/c mice by immunization with IM-9 human lymphocytes, a cell type that has a large number of plasma membrane insulin receptors. The spleens of these mice were then removed, and their lymphocytes were fused to a mouse myeloma cell line, FO cells. After screening over 1,200 resulting hybrids, one stable hybrid was obtained that produced IgG1 antibodies directed towards the insulin receptor. This antibody blocked 125I-labeled insulin binding...

  7. Quantitative characterization of glycan-receptor binding of H9N2 influenza A virus hemagglutinin.

    Directory of Open Access Journals (Sweden)

    Karunya Srinivasan

    Full Text Available Avian influenza subtypes such as H5, H7 and H9 are yet to adapt to the human host so as to establish airborne transmission between humans. However, lab-generated reassorted viruses possessing hemagglutinin (HA and neuraminidase (NA genes from an avian H9 isolate and other genes from a human-adapted (H3 or H1 subtype acquired two amino acid changes in HA and a single amino acid change in NA that confer respiratory droplet transmission in ferrets. We previously demonstrated for human-adapted H1, H2 and H3 subtypes that quantitative binding affinity of their HA to α2→6 sialylated glycan receptors correlates with respiratory droplet transmissibility of the virus in ferrets. Such a relationship remains to be established for H9 HA. In this study, we performed a quantitative biochemical characterization of glycan receptor binding properties of wild-type and mutant forms of representative H9 HAs that were previously used in context of reassorted viruses in ferret transmission studies. We demonstrate here that distinct molecular interactions in the glycan receptor-binding site of different H9 HAs affect the glycan-binding specificity and affinity. Further we show that α2→6 glycan receptor-binding affinity of a mutant H9 HA carrying Thr-189→Ala amino acid change correlates with the respiratory droplet transmission in ferrets conferred by this change. Our findings contribute to a framework for monitoring the evolution of H9 HA by understanding effects of molecular changes in HA on glycan receptor-binding properties.

  8. Identification of the Receptor Binding Domain of the Mouse Mammary Tumor Virus Envelope Protein

    Science.gov (United States)

    Zhang, Yuanming; Rassa, John C.; deObaldia, Maria Elena; Albritton, Lorraine M.; Ross, Susan R.

    2003-01-01

    Mouse mammary tumor virus (MMTV) is a betaretrovirus that infects rodent cells and uses mouse transferrin receptor 1 for cell entry. To characterize the interaction of MMTV with its receptor, we aligned the MMTV envelope surface (SU) protein with that of Friend murine leukemia virus (F-MLV) and identified a putative receptor-binding domain (RBD) that included a receptor binding sequence (RBS) of five amino acids and a heparin-binding domain (HBD). Mutation of the HBD reduced virus infectivity, and soluble heparan sulfate blocked infection of cells by wild-type pseudovirus. Interestingly, some but not all MMTV-like elements found in primary and cultured human breast cancer cell lines, termed h-MTVs, had sequence alterations in the putative RBS. Single substitution of one of the amino acids found in an h-MTV RBS variant in the RBD of MMTV, Phe40 to Ser, did not alter species tropism but abolished both virus binding to cells and infectivity. Neutralizing anti-SU monoclonal antibodies also recognized a glutathione S-transferase fusion protein that contained the five-amino-acid RBS region from MMTV. The critical Phe40 residue is located on a surface of the MMTV RBD model that is distant from and may be structurally more rigid than the region of F-MLV RBD that contains its critical binding site residues. This suggests that, in contrast to other murine retroviruses, binding to its receptor may result in few or no changes in MMTV envelope protein conformation. PMID:12970432

  9. Receptor binding site-deleted foot-and-mouth disease (FMD) virus protects cattle from FMD.

    OpenAIRE

    McKenna, T S; Lubroth, J; Rieder, E; Baxt, B; Mason, P W

    1995-01-01

    Binding of foot-and-mouth disease virus (FMDV) to cells requires an arginine-glycine-aspartic acid (RGD) sequence in the capsid protein VP1. We have genetically engineered an FMDV in which these three amino acids have been deleted, producing a virus particle which is unable to bind to cells. Cattle vaccinated with these receptor binding site-deleted virions were protected from disease when challenged with a virulent virus, demonstrating that these RGD-deleted viruses could serve as the basis ...

  10. Chronic morphine treatment up-regulates mu opioid receptor binding in cells lacking Filamin A

    OpenAIRE

    Onoprishvili, Irma; Simon, Eric J.

    2007-01-01

    We investigated the effects of morphine and other agonists on the human mu opioid receptor (MOP) expressed in M2 melanoma cells, lacking the actin cytoskeleton protein filamin A and in A7, a sub clone of the M2 melanoma cells, stably transfected with filamin A cDNA. The results of binding experiments showed, that after chronic morphine treatment (24 hr) of A7 cells, MOP binding sites were down-regulated to 63% of control, whereas, unexpectedly, in M2 cells, MOP binding was up-regulated to 188...

  11. Changes in angiotensin II receptor bindings in the hen neurohypophysis before and after oviposition.

    Science.gov (United States)

    Takahashi, T; Nozaki, Y; Nakagawa-Mizuyachi, K; Nakayama, H; Kawashima, M

    2011-11-01

    The present study was performed to elucidate whether the angiotensin II (ANG II) receptor exists in the plasma membrane fraction of the neurohypophysis in hens, to estimate the time of action of ANG II on the neurohypophysis before and after oviposition, and to examine relationships between the action of ANG II on the neurohypophysis and those of estrogen and prostaglandin F(2α) (PGF(2α)) in relation to arginine vasotocin (AVT) release. The specific binding had a binding specificity to chicken ANG II (cANG II), reversibility, and saturation in the [(125)I]cANG II binding assay. Scatchard analysis revealed that the binding sites are of a single class. The equilibrium dissociation constant (K(d)) obtained by kinetic analysis and Scatchard analysis suggested a high affinity, and the maximum binding capacity (B(max)) obtained by Scatchard analysis suggested a limited capacity. These results suggest that an ANG II receptor exists in the neurohypophysis of hens. The K(d) and the B(max) value was significantly smaller in laying hens than in nonlaying hens, which suggests that bindings of the cANG II receptor change, depending on the difference in laying condition. Values of the K(d) and the B(max) decreased approximately 15 min before oviposition in laying hens, and decreased 1 h after an intramuscular injection of estradiol-17β and 5 min after an intravenous injection of cANG II in nonlaying hens. The amount of specific binding of PGF(2α) receptor in the neurohypophysis also decreased and AVT concentration in blood increased after the cANG II injection. It seems likely that the action of cANG II in the neurohypophysis increases due to the effect of estrogen approximately 15 min before oviposition, and the cANG II action stimulates AVT release through the increase in the PGF(2α) action in this tissue. PMID:22010242

  12. Binding of levomepromazine and cyamemazine to human recombinant dopamine receptor subtypes

    Directory of Open Access Journals (Sweden)

    Lalit K. Srivastava

    2009-09-01

    Full Text Available Background and Objectives: Clozapine (CLOZ and levomepromazine (LMP improve treatment-resistant schizophrenia. The superior efficacy of CLOZ compared with other antipsychotic agents has been attributed to an effect on D1-like and D4 receptors. We examined the binding of LMP, CLOZ and cyamemazine (CMZ, a neuroleptic analog of LMP, to human recombinant dopamine (rDA receptor subtypes. Methods: Binding studies were performed on frozen membrane suspensions of human rDA receptor subtypes expressed in Sf9 cells. Results: (i LMP has a high affinity (Ki, nM for rD2 receptor subtypes (rD2L 8.6; rD2S 4.3; rD3 8.3; rD4.2 7.9; (ii LMP and CLOZ have comparable affinities for the rD1 receptor (54.3 vs 34.6; (iii CMZ has high affinities for rD2-like and rD1-like receptors (rD2L 4.6; rD2S 3.3; rD3 6.2; rD4.2 8.5; rD1 3.9; rD5 10.7; (iv CMZ is 9 times more potent than CLOZ at the rD1 receptor and 5 times more potent than CLOZ at the rD4.2 receptor; (v CMZ has high affinities for rD1 and rD5 receptor subtypes compared with LMP and CLOZ. Conclusions: If D1 and D4 receptors are important sites for the unique action of CLOZ, the present study points to a need for clinical trials comparing CMZ with CLOZ in schizophrenia and in particular, treatment-resistant schizophrenia, especially given the risk for agranulocytosis with CLOZ.

  13. Regulation of CYP3A4 by pregnane X receptor: The role of nuclear receptors competing for response element binding

    Energy Technology Data Exchange (ETDEWEB)

    Istrate, Monica A., E-mail: monicai@scripps.edu [Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany, and University of Tuebingen, Auerbachstr. 112, D-70376 Stuttgart (Germany); Nussler, Andreas K., E-mail: nuessler@uchir.me.tum.de [Department of Traumatology, Technical University Munich, Ismaningerstr. 22, 81675 Munich (Germany); Eichelbaum, Michel, E-mail: michel.eichelbaum@ikp-stuttgart.de [Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany, and University of Tuebingen, Auerbachstr. 112, D-70376 Stuttgart (Germany); Burk, Oliver, E-mail: oliver.burk@ikp-stuttgart.de [Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany, and University of Tuebingen, Auerbachstr. 112, D-70376 Stuttgart (Germany)

    2010-03-19

    Induction of the major drug metabolizing enzyme CYP3A4 by xenobiotics contributes to the pronounced interindividual variability of its expression and often results in clinically relevant drug-drug interactions. It is mainly mediated by PXR, which regulates CYP3A4 expression by binding to several specific elements in the 5' upstream regulatory region of the gene. Induction itself shows a marked interindividual variability, whose underlying determinants are only partly understood. In this study, we investigated the role of nuclear receptor binding to PXR response elements in CYP3A4, as a potential non-genetic mechanism contributing to interindividual variability of induction. By in vitro DNA binding experiments, we showed that several nuclear receptors bind efficiently to the proximal promoter ER6 and distal xenobiotic-responsive enhancer module DR3 motifs. TR{alpha}1, TR{beta}1, COUP-TFI, and COUP-TFII further demonstrated dose-dependent repression of PXR-mediated CYP3A4 enhancer/promoter reporter activity in transient transfection in the presence and absence of the PXR inducer rifampin, while VDR showed this effect only in the absence of treatment. By combining functional in vitro characterization with hepatic expression analysis, we predict that TR{alpha}1, TR{beta}1, COUP-TFI, and COUP-TFII show a strong potential for the repression of PXR-mediated activation of CYP3A4 in vivo. In summary, our results demonstrate that nuclear receptor binding to PXR response elements interferes with PXR-mediated expression and induction of CYP3A4 and thereby contributes to the interindividual variability of induction.

  14. Developmental Profile of the Aberrant Dopamine D2 Receptor Response in Striatal Cholinergic Interneurons in DYT1 Dystonia

    OpenAIRE

    Giuseppe Sciamanna; Annalisa Tassone; Giuseppina Martella; Georgia Mandolesi; Francesca Puglisi; Dario Cuomo; Grazia Madeo; Giulia Ponterio; David George Standaert; Paola Bonsi; Antonio Pisani

    2011-01-01

    BACKGROUND: DYT1 dystonia, a severe form of genetically determined human dystonia, exhibits reduced penetrance among carriers and begins usually during adolescence. The reasons for such age dependence and variability remain unclear. METHODS AND RESULTS: We characterized the alterations in D2 dopamine receptor (D2R) signalling in striatal cholinergic interneurons at different ages in mice overexpressing human mutant torsinA (hMT). An abnormal excitatory response to the D2R agonist quinpirole w...

  15. Binding of the cyclic AMP receptor protein of Escherichia coli to RNA polymerase.

    Science.gov (United States)

    Pinkney, M; Hoggett, J G

    1988-03-15

    Fluorescence polarization studies were used to study the interaction of a fluorescein-labelled conjugate of the Escherichia coli cyclic AMP receptor protein (F-CRP) and RNA polymerase. Under conditions of physiological ionic strength, F-CRP binds to RNA polymerase holoenzyme in a cyclic AMP-dependent manner; the dissociation constant was about 3 microM in the presence of cyclic AMP and about 100 microM in its absence. Binding to core RNA polymerase under the same conditions was weak (Kdiss. approx. 80-100 microM) and independent of cyclic AMP. Competition experiments established that native CRP and F-CRP compete for the same binding site on RNA polymerase holoenzyme and that the native protein binds about 3 times more strongly than does F-CRP. Analytical ultracentrifuge studies showed that CRP binds predominantly to the monomeric rather than the dimeric form of RNA polymerase. PMID:2839152

  16. Muscarinic receptor subtypes in airway smooth muscle : Binding, transduction, and function

    NARCIS (Netherlands)

    Roffel, Adriaan Frans

    1990-01-01

    The present thesis deals with investigations concerning binding properties, transductional properties as well as functional properties of these muscarinic receptors in airway smooth muscle (in comparison with cardiac and brain tissue), in view of the notion emerged during the past decade that muscar

  17. Binding of ArgTX-636 in the NMDA receptor ion channel

    DEFF Research Database (Denmark)

    Poulsen, Mette H; Andersen, Jacob; Christensen, Rune;

    2015-01-01

    The N-methyl-d-aspartate receptors (NMDARs) constitute an important class of ligand-gated cation channels that are involved in the majority of excitatory neurotransmission in the human brain. Compounds that bind in the NMDAR ion channel and act as blockers are use- and voltage-dependent inhibitor...

  18. Similar serotonin-2A receptor binding in rats with different coping styles or levels of aggression

    DEFF Research Database (Denmark)

    Visser, Anniek Kd; Ettrup, Anders; Klein, Anders Bue;

    2015-01-01

    Individual differences in coping style emerge as a function of underlying variability in the activation of a mesocorticolimbic brain circuitry. Particularly serotonin seems to play an important role. For this reason, we assessed serotonin-2A receptor (5-HT2A R) binding in the brain of rats with d...

  19. Lynx1 and Aβ1-42 bind competitively to multiple nicotinic acetylcholine receptor subtypes

    DEFF Research Database (Denmark)

    Thomsen, Morten S; Arvaniti, Maria; Jensen, Majbrit M;

    2016-01-01

    Lynx1 regulates synaptic plasticity in the brain by regulating nicotinic acetylcholine receptors (nAChRs). It is not known to which extent Lynx1 can bind to endogenous nAChR subunits in the brain or how this interaction is affected by Alzheimer's disease pathology. We apply affinity purification...

  20. Binding specificity of Bacillus thuringiensis Cry1Aa for purified, native Bombyx mori aminopeptidase N and cadherin-like receptors

    Directory of Open Access Journals (Sweden)

    Jenkins Jeremy L

    2001-10-01

    Full Text Available Abstract Background To better understand the molecular interactions of Bt toxins with non-target insects, we have examined the real-time binding specificity and affinity of Cry1 toxins to native silkworm (Bombyx mori midgut receptors. Previous studies on B. mori receptors utilized brush border membrane vesicles or purifed receptors in blot-type assays. Results The Bombyx mori (silkworm aminopeptidase N (APN and cadherin-like receptors for Bacillus thuringiensis insecticidal Cry1Aa toxin were purified and their real-time binding affinities for Cry toxins were examined by surface plasmon resonance. Cry1Ab and Cry1Ac toxins did not bind to the immobilized native receptors, correlating with their low toxicities. Cry1Aa displayed moderate affinity for B. mori APN (75 nM, and unusually tight binding to the cadherin-like receptor (2.6 nM, which results from slow dissociation rates. The binding of a hybrid toxin (Aa/Aa/Ac was identical to Cry1Aa. Conclusions These results indicate domain II of Cry1Aa is essential for binding to native B. mori receptors and for toxicity. Moreover, the high-affinity binding of Cry1Aa to native cadherin-like receptor emphasizes the importance of this receptor class for Bt toxin research.

  1. Biological activities of binding site specific monoclonal antibodies to prolactin receptors of rabbit mammary gland

    International Nuclear Information System (INIS)

    The biological activity of three monoclonal antibodies (mAbs) against the rabbit mammary prolactin (PRL) receptor (M110, A82, and A917) were investigated using explants of rabbit mammary gland. The three mAbs which were all able to inhibit the binding of 125I-ovine prolactin to its receptor had different biological activities. Two mAbs (M110 and A82) were able to prevent the stimulating effect of PRL on casein synthesis when the molar ratio between the mAb and PRL was 100. One mAb (A917) was able to mimic the action of PRL on both casein and DNA ([3H]thymidine incorporation) synthesis, whereas the other two mAbs were without any stimulatory effect. For this stimulatory effect to be observed, bivalency of the antibody was essential, since monovalent fragments, which were able to inhibit PRL binding, had no agonistic activity. The ability of the mAbs to induce a down-regulation of receptors was also studied. These studies suggest that the binding domain of the receptor might be relatively complex, since only a part of this domain recognized by the antibody with PRL-like activity was able to induce hormonal action. Alternatively, only those antibodies able to microaggregate the receptors may possess PRL-like activity

  2. Estrogen receptor determination in endometrial carcinoma: ligand binding assay versus enzyme immunoassay

    DEFF Research Database (Denmark)

    Nyholm, H C; Nielsen, Anette Lynge; Lyndrup, J;

    1995-01-01

    We compared concentrations of cytosolic estrogen receptors (ERc) measured in 35 postmenopausal endometrial carcinomas by ligand binding method (LBA) (dextran-coated charcoal assay) and enzyme immunoassay (EIA). Correlations between ERc, nuclear estrogen receptors (ERn) determined by EIA, and cyto......We compared concentrations of cytosolic estrogen receptors (ERc) measured in 35 postmenopausal endometrial carcinomas by ligand binding method (LBA) (dextran-coated charcoal assay) and enzyme immunoassay (EIA). Correlations between ERc, nuclear estrogen receptors (ERn) determined by EIA......, and cytosolic progesterone receptors (PR) measured by LBA were also studied. While ERc concentrations determined by LBA and EIA were highly correlated (r: 0.94), ERc values detected by LBA were approximately twice those found by EIA (median values of ERc: 155 vs. 64 fmol/mg cytosol protein, DCC vs. EIA......). The percentages of ERc positive tumors were 89% by LBA and 77% by EIA. The median fraction of total ER present as ERn was 63%. PR levels correlated positively with ERn concentrations (r: 0.73). We explore possible reasons why greater concentrations of ERc are determined by estradiol binding than by the ER-EIA kit...

  3. Defining the functional binding sites of interleukin 12 receptor β1 and interleukin 23 receptor to Janus kinases.

    Science.gov (United States)

    Floss, Doreen M; Klöcker, Tobias; Schröder, Jutta; Lamertz, Larissa; Mrotzek, Simone; Strobl, Birgit; Hermanns, Heike; Scheller, Jürgen

    2016-07-15

    The interleukin (IL)-12-type cytokines IL-12 and IL-23 are involved in T-helper (Th) 1 and Th17 immunity, respectively. They share the IL-12 receptor β1 (IL-12Rβ1) as one component of their receptor signaling complexes, with IL-12Rβ2 as second receptor for IL-12 and IL-23R for IL-23 signal transduction. Stimulation with IL-12 and IL-23 results in activation of receptor-associated Janus kinases (Jak) and phosphorylation of STAT proteins in target cells. The Janus kinase tyrosine kinase (Tyk) 2 associates with IL-12Rβ1, whereas Jak2 binds to IL-23R and also to IL-12Rβ2. Receptor association of Jak2 is mediated by Box1 and Box2 motifs located within the intracellular domain of the receptor chains. Here we define the Box1 and Box2 motifs in IL-12Rβ1 and an unusual Jak2-binding site in IL-23R by the use of deletion and site-directed mutagenesis. Our data show that nonfunctional box motifs abolish IL-12- and IL-23-induced STAT3 phosphorylation and cytokine-dependent proliferation of Ba/F3 cells. Coimmunoprecipitation of Tyk2 by IL-12Rβ1 and Jak2 by IL‑23R supported these findings. In addition, our data demonstrate that association of Jak2 with IL-23R is mandatory for IL-12 and/or IL-23 signaling, whereas Tyk2 seems to be dispensable. PMID:27193299

  4. Temperature dependence of estrogen binding: importance of a subzone in the ligand binding domain of a novel piscine estrogen receptor.

    Science.gov (United States)

    Tan, N S; Frecer, V; Lam, T J; Ding, J L

    1999-11-11

    The full length estrogen receptor from Oreochromis aureus (OaER) was cloned and expressed in vitro and in vivo as a functional transcription factor. Amino acid residues involved in the thermal stability of the receptor are located at/near subzones beta1 and beta3, which are highly conserved in other non-piscine species but not in OaER. Hormone binding studies, however, indicate that OaER is thermally stable but exhibited a approximately 3-fold reduced affinity for estrogen at elevated temperatures. Transfection of OaER into various cell lines cultured at different temperatures displayed a significant estrogen dose-response shift compared with that of chicken ER (cER). At 37 degrees C, OaER requires approximately 80-fold more estrogen to achieve half-maximal stimulation of CAT. Lowering of the incubation temperature from 37 degrees C to 25 degrees C or 20 degrees C resulted in a 4-fold increase in its affinity for estrogen. The thermally deficient transactivation of OaER at temperatures above 25 degrees C was fully prevented by high levels of estrogen. Thus, compared to cER, the OaER exhibits reduced affinity for estrogen at elevated temperature as reflected in its deficient transactivation capability. Amino acid replacements of OaER beta3 subzones with corresponding amino acids from cER could partially rescue this temperature sensitivity. The three-dimensional structure of the OaER ligand binding domain (LBD) was modelled based on conformational similarity and sequence homology with human RXRalpha apo, RARgamma holo and ERalpha LBDs. Unliganded and 17beta-estradiol-liganded OaER LBD retained the overall folding pattern of the nuclear receptor LBDs. The residues at/near the subzone beta3 of the LBD constitute the central core of OaER structure. Thus, amino acid alteration at this region potentially alters the structure and consequently its temperature-dependent ligand binding properties. PMID:10559464

  5. The binding site for neohesperidin dihydrochalcone at the human sweet taste receptor

    Directory of Open Access Journals (Sweden)

    Kratochwil Nicole A

    2007-10-01

    Full Text Available Abstract Background Differences in sweet taste perception among species depend on structural variations of the sweet taste receptor. The commercially used isovanillyl sweetener neohesperidin dihydrochalcone activates the human but not the rat sweet receptor TAS1R2+TAS1R3. Analysis of interspecies combinations and chimeras of rat and human TAS1R2+TAS1R3 suggested that the heptahelical domain of human TAS1R3 is crucial for the activation of the sweet receptor by neohesperidin dihydrochalcone. Results By mutational analysis combined with functional studies and molecular modeling we identified a set of different amino acid residues within the heptahelical domain of human TAS1R3 that forms the neohesperidin dihydrochalcone binding pocket. Sixteen amino acid residues in the transmembrane domains 2 to 7 and one in the extracellular loop 2 of hTAS1R3 influenced the receptor's response to neohesperidin dihydrochalcone. Some of these seventeen residues are also part of the binding sites for the sweetener cyclamate or the sweet taste inhibitor lactisole. In line with this observation, lactisole inhibited activation of the sweet receptor by neohesperidin dihydrochalcone and cyclamate competitively, whereas receptor activation by aspartame, a sweetener known to bind to the N-terminal domain of TAS1R2, was allosterically inhibited. Seven of the amino acid positions crucial for activation of hTAS1R2+hTAS1R3 by neohesperidin dihydrochalcone are thought to play a role in the binding of allosteric modulators of other class C GPCRs, further supporting our model of the neohesperidin dihydrochalcone pharmacophore. Conclusion From our data we conclude that we identified the neohesperidin dihydrochalcone binding site at the human sweet taste receptor, which overlaps with those for the sweetener cyclamate and the sweet taste inhibitor lactisole. This readily delivers a molecular explanation of our finding that lactisole is a competitive inhibitor of the receptor

  6. The complex binding mode of the peptide hormone H2 relaxin to its receptor RXFP1.

    Science.gov (United States)

    Sethi, Ashish; Bruell, Shoni; Patil, Nitin; Hossain, Mohammed Akhter; Scott, Daniel J; Petrie, Emma J; Bathgate, Ross A D; Gooley, Paul R

    2016-01-01

    H2 relaxin activates the relaxin family peptide receptor-1 (RXFP1), a class A G-protein coupled receptor, by a poorly understood mechanism. The ectodomain of RXFP1 comprises an N-terminal LDLa module, essential for activation, tethered to a leucine-rich repeat (LRR) domain by a 32-residue linker. H2 relaxin is hypothesized to bind with high affinity to the LRR domain enabling the LDLa module to bind and activate the transmembrane domain of RXFP1. Here we define a relaxin-binding site on the LDLa-LRR linker, essential for the high affinity of H2 relaxin for the ectodomain of RXFP1, and show that residues within the LDLa-LRR linker are critical for receptor activation. We propose H2 relaxin binds and stabilizes a helical conformation of the LDLa-LRR linker that positions residues of both the linker and the LDLa module to bind the transmembrane domain and activate RXFP1. PMID:27088579

  7. Intact brain cells: a novel model system for studying opioid receptor binding

    International Nuclear Information System (INIS)

    The use of a novel tissue preparation to study opioid receptor binding in viable, intact cells derived from whole brains of adult rats is presented. Mechanically dissociated and sieved cells, which were not homogenized at any stage of the experimental protocol, and iso-osmotic physiological buffer were used in these experiments. This system was adapted in order to avoid mechanical and chemical disruption of cell membranes, cytoskeletal ultrastructure or receptor topography by homogenization or by the use of nonphysiological buffers, and to mimic in vivo binding conditions as much as possible. Using [3H]naloxone as the radioligand, the studies showed saturable and stereospecific high-affinity binding of this opioid antagonist in intact cells, which in turn showed consistently high viability. [3H]Naloxone binding was also linear over a wide range of tissue concentrations. This technique provides a very promising model for future studies of the binding of opioids and of many other classes of drugs to brain tissue receptors in a more physiologically relevant system than those commonly used to date

  8. The complex interplay between ligand binding and conformational structure of the folate binding protein (folate receptor)

    DEFF Research Database (Denmark)

    Holm, Jan; Bruun, Susanne Wrang; Hansen, Steen I.

    2015-01-01

    , and the binding induces a conformational change with formation of hydrophilic and stable holo-FBP. Holo-FBP exhibits a ligand-mediated concentration-dependent self-association into multimers of great thermal and chemical stability due to strong intermolecular forces. Both ligand and FBP are thus protected against...

  9. Label-free impedimetric biosensor for thrombin using the thrombin-binding aptamer as receptor

    Science.gov (United States)

    Frense, D.; Kang, S.; Schieke, K.; Reich, P.; Barthel, A.; Pliquett, U.; Nacke, T.; Brian, C.; Beckmann, D.

    2013-04-01

    This study presents the further establishment of impedimetric biosensors with aptamers as receptors. Aptamers are short single-stranded oligonucleotides which bind analytes with a specific region of their 3D structure. Electrical impedance spectroscopy is a sensitive method for analyzing changes on the electrode surface, e.g. caused by receptor-ligand-interactions. Fast and inexpensive prototyping of electrodes on the basis of commercially available compact discs having a 24 carat gold reflective layer was investigated. Electrode structures (CDtrodes [1]) in the range from few millimetres down to 100 microns were realized. The well-studied thrombin-binding aptamer (TBA) was used as receptor for characterizing these micro- and macro-electrodes. The impedance signal showed a linear correlation for concentrations of thrombin between 1.0 nM to 100 nM. This range corresponds well with most of the references and may be useful for the point-of-care testing (POCT).

  10. Ligand-specific conformational changes in the alpha1 glycine receptor ligand-binding domain

    DEFF Research Database (Denmark)

    Pless, Stephan Alexander; Lynch, Joseph W

    2009-01-01

    indicate that channel opening is accompanied by conformational rearrangements in both beta-sheets. In an attempt to resolve ligand-dependent movements in the ligand-binding domain, we employed voltage-clamp fluorometry on alpha1 glycine receptors to compare changes mediated by the agonist, glycine...... in the inner beta-sheet and pre-M1 domain that may be important for activation, desensitization, or both. In contrast, most labeled residues in loops C and F yielded fluorescence changes identical in magnitude for glycine and strychnine. A notable exception was H201C in loop C. This labeled residue responded...... differently to glycine and strychnine, thus underlining the importance of loop C in ligand discrimination. These results provide an important step toward mapping the domains crucial for ligand discrimination in the ligand-binding domain of glycine receptors and possibly other Cys loop receptors....

  11. Development of an in vitro binding assay for ecdysone receptor of mysid shrimp (Americamysis bahia)

    Energy Technology Data Exchange (ETDEWEB)

    Yokota, Hirofumi, E-mail: h-yokota@mail.kobe-c.ac.jp [Department of Biosphere Sciences, School of Human Sciences, Kobe College 4-1, Okadayama, Nishinomiya-shi, Hyogo 662-8505 (Japan); Eguchi, Sayaka [Department of Biosphere Sciences, School of Human Sciences, Kobe College 4-1, Okadayama, Nishinomiya-shi, Hyogo 662-8505 (Japan); Nakai, Makoto [Hita Laboratory, Chemicals Evaluation and Research Institute (CERI), 3-822, Ishii-machi, Hita-shi, Oita 877-0061 (Japan)

    2011-10-15

    Highlights: We successfully performed cDNA cloning of EcR and USP of mysid shrimp. We then expressed the ligand-binding domains of the corresponding receptor peptides. The translated peptides could bind to ecdysone agonists as heterodimers. These results indicate that they are functional hormone receptors of mysid shrimp. - Abstract: A global effort has been made to establish screening and testing methods that can identify the effects of endocrine-disrupting chemicals (EDCs) on invertebrates. The purpose of our study was to develop an in vitro receptor binding assay for ecdysone receptor (EcR) in mysid shrimp (Americamysis bahia). We cloned mysid shrimp EcR cDNA (2888 nucleotides) and ultraspiracle (USP) cDNA (2116 nucleotides), and determined that they encode predicted proteins of length 570 and 410 amino acids, respectively. The deduced amino acid sequences of these proteins shared 36-71% homology for EcR and 44-65% for USP with those of other arthropods. Phylogenetic analysis revealed that mysid shrimp EcR was classified into an independent cluster together with the EcRs of another mysid species, Neomysis integer and the cluster diverged early from those of the other taxonomic orders of crustaceans. We then expressed the ligand-binding domains (DEF regions) of mysid shrimp EcR (abEcRdef) and USP (abUSPdef) as glutathione S-transferase (GST)-fusion peptides in Escherichia coli. After purifying the fusion peptides by affinity chromatography and removing the GST labels, we subjected the peptides to a ligand-receptor binding assay. [{sup 3}H]-ponasterone A did not bind to abEcRdef or abUSPdef peptides alone but bound strongly to the abEcRdef/abUSPdef mixture with dissociation constant (K{sub d}) = 2.14 nM. Competitive binding assays showed that the IC{sub 50} values for ponasterone A, muristerone A, 20-hydroxyecdysone, and {alpha}-ecdysone were 1.2, 1.9, 35, and 1200 nM, respectively. In contrast, the IC{sub 50} values for two dibenzoylhydrazine ligands

  12. Loss of Glycosaminoglycan Receptor Binding after Mosquito Cell Passage Reduces Chikungunya Virus Infectivity.

    Directory of Open Access Journals (Sweden)

    Dhiraj Acharya

    Full Text Available Chikungunya virus (CHIKV is a mosquito-transmitted alphavirus that can cause fever and chronic arthritis in humans. CHIKV that is generated in mosquito or mammalian cells differs in glycosylation patterns of viral proteins, which may affect its replication and virulence. Herein, we compare replication, pathogenicity, and receptor binding of CHIKV generated in Vero cells (mammal or C6/36 cells (mosquito through a single passage. We demonstrate that mosquito cell-derived CHIKV (CHIKV mos has slower replication than mammalian cell-derived CHIKV (CHIKV vero, when tested in both human and murine cell lines. Consistent with this, CHIKV mos infection in both cell lines produce less cytopathic effects and reduced antiviral responses. In addition, infection in mice show that CHIKV mos produces a lower level of viremia and less severe footpad swelling when compared with CHIKV vero. Interestingly, CHIKV mos has impaired ability to bind to glycosaminoglycan (GAG receptors on mammalian cells. However, sequencing analysis shows that this impairment is not due to a mutation in the CHIKV E2 gene, which encodes for the viral receptor binding protein. Moreover, CHIKV mos progenies can regain GAG receptor binding capability and can replicate similarly to CHIKV vero after a single passage in mammalian cells. Furthermore, CHIKV vero and CHIKV mos no longer differ in replication when N-glycosylation of viral proteins was inhibited by growing these viruses in the presence of tunicamycin. Collectively, these results suggest that N-glycosylation of viral proteins within mosquito cells can result in loss of GAG receptor binding capability of CHIKV and reduction of its infectivity in mammalian cells.

  13. Quantitative description of glycan-receptor binding of influenza A virus H7 hemagglutinin.

    Directory of Open Access Journals (Sweden)

    Karunya Srinivasan

    Full Text Available In the context of recently emerged novel influenza strains through reassortment, avian influenza subtypes such as H5N1, H7N7, H7N2, H7N3 and H9N2 pose a constant threat in terms of their adaptation to the human host. Among these subtypes, it was recently demonstrated that mutations in H5 and H9 hemagglutinin (HA in the context of lab-generated reassorted viruses conferred aerosol transmissibility in ferrets (a property shared by human adapted viruses. We previously demonstrated that the quantitative binding affinity of HA to α2→6 sialylated glycans (human receptors is one of the important factors governing human adaptation of HA. Although the H7 subtype has infected humans causing varied clinical outcomes from mild conjunctivitis to severe respiratory illnesses, it is not clear where the HA of these subtypes stand in regard to human adaptation since its binding affinity to glycan receptors has not yet been quantified. In this study, we have quantitatively characterized the glycan receptor-binding specificity of HAs from representative strains of Eurasian (H7N7 and North American (H7N2 lineages that have caused human infection. Furthermore, we have demonstrated for the first time that two specific mutations; Gln226→Leu and Gly228→Ser in glycan receptor-binding site of H7 HA substantially increase its binding affinity to human receptor. Our findings contribute to a framework for monitoring the evolution of H7 HA to be able to adapt to human host.

  14. Optical Aberrations and Wavefront

    Directory of Open Access Journals (Sweden)

    Nihat Polat

    2014-08-01

    Full Text Available The deviation of light to create normal retinal image in the optical system is called aberration. Aberrations are divided two subgroup: low-order aberrations (defocus: spherical and cylindrical refractive errors and high-order aberrations (coma, spherical, trefoil, tetrafoil, quadrifoil, pentafoil, secondary astigmatism. Aberrations increase with aging. Spherical aberrations are compensated by positive corneal and negative lenticular spherical aberrations in youth. Total aberrations are elevated by positive corneal and positive lenticular spherical aberrations in elderly. In this study, we aimed to analyze the basic terms regarding optic aberrations which have gained significance recently. (Turk J Ophthalmol 2014; 44: 306-11

  15. Synthesis and binding characteristics of [(3)H]neuromedin N, a NTS2 receptor ligand.

    Science.gov (United States)

    Tóth, Fanni; Mallareddy, Jayapal Reddy; Tourwé, Dirk; Lipkowski, Andrzej W; Bujalska-Zadrozny, Magdalena; Benyhe, Sándor; Ballet, Steven; Tóth, Géza; Kleczkowska, Patrycja

    2016-06-01

    Neurotensin (NT) and its analog neuromedin N (NN) are formed by the processing of a common precursor in mammalian brain tissue and intestines. The biological effects mediated by NT and NN (e.g. analgesia, hypothermia) result from the interaction with G protein-coupled receptors. The goal of this study consisted of the synthesis and radiolabeling of NN, as well as the determination of the binding characteristics of [(3)H]NN and G protein activation by the cold ligand. In homologous displacement studies a weak affinity was determined for NN, with IC50 values of 454nM in rat brain and 425nM in rat spinal cord membranes. In saturation binding experiments the Kd value proved to be 264.8±30.18nM, while the Bmax value corresponded to 3.8±0.2pmol/mg protein in rat brain membranes. The specific binding of [(3)H]NN was saturable, interacting with a single set of homogenous binding sites. In sodium sensitivity experiments, a very weak inhibitory effect of Na(+) ions was observed on the binding of [(3)H]NN, resulting in an IC50 of 150.6mM. In [(35)S]GTPγS binding experiments the Emax value was 112.3±1.4% in rat brain and 112.9±2.4% in rat spinal cord membranes and EC50 values of 0.7nM and 0.79nM were determined, respectively. NN showed moderate agonist activities in stimulating G proteins. The stimulatory effect of NN could be maximally inhibited via use of the NTS2 receptor antagonist levocabastine, but not by the opioid receptor specific antagonist naloxone, nor by the NTS1 antagonist SR48692. These observations allow us to conclude that [(3)H]NN labels NTS2 receptors in rat brain membranes. PMID:26707235

  16. Ondansetron and Granisetron Binding Orientation in the 5-HT3 Receptor Determined by Unnatural Amino Acid Mutagenesis

    Science.gov (United States)

    Duffy, Noah H.; Lester, Henry A.; Dougherty, Dennis A.

    2012-01-01

    The serotonin type 3 receptor (5-HT3R) is a ligand-gated ion channel that mediates fast synaptic transmission in the central and peripheral nervous systems. The 5-HT3R is a therapeutic target, and the clinically available drugs ondansetron and granisetron inhibit receptor activity. Their inhibitory action is through competitive binding to the native ligand binding site, although the binding orientation of the drugs at the receptor has been a matter of debate. Here we heterologously express mouse 5-HT3A receptors in Xenopus oocytes and use unnatural amino acid mutagenesis to establish a cation-π interaction for both ondansetron and granisetron to tryptophan 183 in the ligand binding pocket. This cation-π interaction establishes a binding orientation for both ondansetron and granisetron within the binding pocket. PMID:22873819

  17. Immunohistology of oestrogen receptor and D5 antigen in breast cancer: correlation with oestrogen receptor content of adjacent cryostat sections assayed by radioligand binding and enzyme immunoassay.

    OpenAIRE

    Giri, D. D.; Dangerfield, V J; Lonsdale, R; Rogers, K.; Underwood, J C

    1987-01-01

    Two monoclonal antibodies recognising epitopes associated with oestrogen receptor protein were evaluated against the assayable soluble oestrogen receptor concentration in a series of 149 breast carcinomas. One antibody (anti-ER) recognises the hormone binding unit of oestrogen receptor and gives nuclear staining; the other antibody (anti-D5) was raised to a component of soluble oestrogen receptor and gives cytoplasmic staining. To minimise variations attributable to tumour heterogeneity and s...

  18. Sequence similarity between the erythrocyte binding domain 1 of the Plasmodium vivax Duffy binding protein and the V3 loop of HIV-1 strain MN reveals binding residues for the Duffy Antigen Receptor for Chemokines

    Directory of Open Access Journals (Sweden)

    Garry Robert F

    2011-01-01

    Full Text Available Abstract Background The surface glycoprotein (SU, gp120 of the human immunodeficiency virus (HIV must bind to a chemokine receptor, CCR5 or CXCR4, to invade CD4+ cells. Plasmodium vivax uses the Duffy Binding Protein (DBP to bind the Duffy Antigen Receptor for Chemokines (DARC and invade reticulocytes. Results Variable loop 3 (V3 of HIV-1 SU and domain 1 of the Plasmodium vivax DBP share a sequence similarity. The site of amino acid sequence similarity was necessary, but not sufficient, for DARC binding and contained a consensus heparin binding site essential for DARC binding. Both HIV-1 and P. vivax can be blocked from binding to their chemokine receptors by the chemokine, RANTES and its analog AOP-RANTES. Site directed mutagenesis of the heparin binding motif in members of the DBP family, the P. knowlesi alpha, beta and gamma proteins abrogated their binding to erythrocytes. Positively charged residues within domain 1 are required for binding of P. vivax and P. knowlesi erythrocyte binding proteins. Conclusion A heparin binding site motif in members of the DBP family may form part of a conserved erythrocyte receptor binding pocket.

  19. Ring size in cyclic endomorphin-2 analogs modulates receptor binding affinity and selectivity.

    Science.gov (United States)

    Piekielna, Justyna; Kluczyk, Alicja; Gentilucci, Luca; Cerlesi, Maria Camilla; Calo', Girolamo; Tomböly, Csaba; Łapiński, Krzysztof; Janecki, Tomasz; Janecka, Anna

    2015-06-01

    The study reports the solid-phase synthesis and biological evaluation of a series of new side chain-to-side chain cyclized opioid peptide analogs of the general structure Tyr-[D-Xaa-Phe-Phe-Asp]NH2, where Xaa = Lys (1), Orn (2), Dab (3), or Dap (4) (Dab = 2,4-diaminobutyric acid, Dap = 2,3-diaminopropionic acid), containing 17- to 14-membered rings. The influence of the ring size on binding to the MOP, DOP and KOP opioid receptors was studied. In general, the reduction of the size of the macrocyclic ring increased the selectivity for the MOP receptor. The cyclopeptide incorporating Xaa = Lys displayed subnanomolar MOP affinity but modest selectivity over the KOP receptor, while the analog with the Orn residue showed increased affinity and selectivity for MOP. The analog with Dab was a weak MOP agonist and did not bind to the other two opioid receptors. Finally, the peptide with Xaa = Dap was completely MOP receptor-selective with subnanomolar affinity. Interestingly, the deletion of one Phe residue from 1 led to the 14-membered Tyr-c[D-Lys-Phe-Asp]NH2 (5), a potent and selective MOP receptor ligand. The in vitro potencies of the new analogs were determined in a calcium mobilization assay performed in Chinese Hamster Ovary (CHO) cells expressing human recombinant opioid receptors and chimeric G proteins. A good correlation between binding and the functional test results was observed. The influence of the ring size, solid support and the N-terminal protecting group on the formation of cyclodimers was studied. PMID:25948019

  20. Binding of 125I-human growth hormone to specific receptors in human cultured lymphocytes

    International Nuclear Information System (INIS)

    The interaction of human growth hormone with human lymphocytes from an established culture (IM-9) was studied using 125I- human growth hormone. The binding of 125I-human growth hormone was rapid; with human growth hormone at 0.1 nM a steady state was observed in 90 min at 300. Bound labeled human growth hormone was dissociated rapidly by addition of excess unlabeled human growth hormone. Binding of 125I-human growth hormone to cultured lymphocytes was relatively insensitive to alterations in the pH and in the concentrations of Ca2+, Mg2+, EDTA. At 800 there was very little degradation of labeled human growth hormone or of the specific receptor sites. Tryptic digestion destroyed the capacity of cells to bind human growth hormone. The IM-9 cells bound all human growth hormone preparations but not unrelated hormones or nonprimate growth hormones. The binding of 125I-human growth hormone was inhibited 10 to 14 percent with 1 to 2 ng per ml of unlabeled human growth hormone and 50 percent with 30 to 40 ng per ml, well within the range of hormone concentrations in vivo. Analysis of steady state data revealed a single order of binding sites with an affinity constant of 1.3 x 109 M-1 and about 4000 binding sites per cell. Numerous human growth hormone preparations were assayed by use of this receptor system as well as by immunoassay and by bioassay in vivo. The po

  1. Computational study of the binding modes of caffeine to the adenosine A2A receptor.

    Science.gov (United States)

    Liu, Yuli; Burger, Steven K; Ayers, Paul W; Vöhringer-Martinez, Esteban

    2011-12-01

    Using the recently solved crystal structure of the human adenosine A(2A) receptor, we applied MM/PBSA to compare the binding modes of caffeine with those of the high-affinity selective antagonist ZM241385. MD simulations were performed in the environment of the lipid membrane bilayer. Four low-energy binding modes of caffeine-A(2A) were found, all of which had similar energies. Assuming an equal contribution of each binding mode of caffeine, the computed binding free energy difference between caffeine and ZM241385 is -2.4 kcal/mol, which compares favorably with the experimental value, -3.6 kcal/mol. The configurational entropy contribution of -0.9 kcal/mol from multiple binding modes of caffeine helps explain how a small molecule like caffeine can compete with a significantly larger molecule, ZM241385, which can form many more interactions with the receptor. We also performed residue-wise energy decomposition and found that Phe168, Leu249, and Ile274 contribute most significantly to the binding modes of caffeine and ZM241385. PMID:21970461

  2. The role of Arg(78) in the metabotropic glutamate receptor mGlu(1) for agonist binding and selectivity

    DEFF Research Database (Denmark)

    Jensen, Anders A.; Sheppard, P O; O'Hara, P J;

    2000-01-01

    The metabotropic glutamate receptors belong to family C of the G-protein coupled receptor superfamily. These receptors all possess large extracellular amino terminal domains, where agonist binding takes place. We have previously constructed a molecular model of the amino terminal domain of the mG...

  3. Structural determinants for binding to angiotensin converting enzyme 2 (ACE2 and angiotensin receptors

    Directory of Open Access Journals (Sweden)

    Daniel eClayton

    2015-01-01

    Full Text Available Angiotensin converting enzyme 2 (ACE2 is a zinc carboxypeptidase involved in the renin angiotensin system (RAS and inactivates the potent vasopressive peptide angiotensin II (Ang II by removing the C-terminal phenylalanine residue to yield Ang1-7. This conversion inactivates the vasoconstrictive action of Ang II and yields a peptide that acts as a vasodilatory molecule at the Mas receptor and potentially other receptors. Given the growing complexity of RAS and level of cross-talk between ligands and their corresponding enzymes and receptors, the design of molecules with selectivity for the major RAS binding partners to control cardiovascular tone is an on-going challenge. In previous studies we used single β-amino acid substitutions to modulate the structure of Ang II and its selectivity for ACE2, AT1R and angiotensin type 2 (AT2R receptor. We showed that modification at the C-terminus of Ang II generally resulted in more pronounced changes to secondary structure and ligand binding, and here we further explore this region for the potential to modulate ligand specificity. In this study, 1 a library of forty-seven peptides derived from the C-terminal tetra-peptide sequence (-IHPF of Ang II was synthesised and assessed for ACE2 binding, 2 the terminal group requirements for high affinity ACE2 binding were explored by and N- and C-terminal modification, 3 high affinity ACE2 binding chimeric AngII analogues were then synthesized and assessed, 4 the structure of the full-length Ang II analogues were assessed by circular dichroism, and 5 the Ang II analogues were assessed for AT1R/AT2R selectivity by cell-based assays. Studies on the C-terminus of Ang II demonstrated varied specificity at different residue positions for ACE2 binding and four Ang II chimeric peptides were identified as selective ligands for the AT2 receptor. Overall, these results provide insight into the residue and structural requirements for ACE2 binding and angiotensin receptor

  4. Different binding of stimulatory-type and blocking-type TSH receptor antibody with guinea-pig testis membrane.

    Science.gov (United States)

    Inui, T; Ochi, Y; Hachiya, T; Chen, W; Nakajima, Y; Kajita, Y; Ogura, H

    1991-11-01

    A receptor assay using [125I]bTSH-binding to guinea-pig testis membrane was developed. Unlabelled hCG and FSH inhibited [125I]bTSH binding. In patients with Graves' disease and in untreated hyperthyroid patients, almost all long-acting thyroid stimulators and thyroid-stimulating antibodies, respectively did not inhibit [125I]bTSH binding, which on the other hand was inhibited by thyroid stimulation blocking antibodies in patients with primary hypothyroidism. When the inhibitory effect on the binding of [125I]hCG and 125I-synthetic alpha-subunit peptide (alpha 26-46) of hCG to testis membrane was examined, bTSH resulted in a significant inhibition. However, all three kinds of TSH receptor antibodies had no inhibitory effect. This study demonstrated 1. interaction of alpha-subunit of TSH and hCG with the testicular receptor; 2. binding of thyroid stimulation-blocking antibody and lack of binding of thyroid-stimulating antibody to the testicular TSH receptor in spite of binding of these TSH receptor antibodies to the thyroidal TSH receptor, and 3. lack of binding of thyroid-stimulating antibody and thyroid stimulation-blocking antibody to the testicular gonadotropin receptor. PMID:1684686

  5. Localization and synthesis of an insulin-binding region on human insulin receptor

    International Nuclear Information System (INIS)

    Seven regions of the alpha subunit of human insulin receptor (HIR) were synthesized and examined for their ability to bind radioiodinated insulin. A peptide representing one of these regions (namely, residues alpha 655-670) exhibited a specific binding activity for insulin. In quantitative radiometric titrations, the binding curves of 125I-labeled insulin to adsorbents of peptide alpha 655-670 and of purified placental membrane were similar or superimposable. The binding of radioiodinated insulin to peptide or to membrane adsorbents was completely inhibited by unlabeled insulin, and the inhibition curves indicated that the peptide and the membrane on the adsorbents had similar affinities. Synthetic peptides that were shorter (peptide alpha 661-670) or longer (peptide alpha 651-670) than the region alpha 655-670 exhibited lower insulin-binding activity. It was concluded that an insulin-binding region in the HIR alpha subunit resides within residues alpha 655-670. The results do not rule out the possibility that other regions of the alpha subunit may also participate in binding of HIR to insulin, with the region described here forming a face within a larger binding site

  6. Localization and synthesis of an insulin-binding region on human insulin receptor

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, S.; Sakata, S.; Atassi, M.Z. (Baylor College of Medicine, Houston, TX (USA))

    1990-04-01

    Seven regions of the alpha subunit of human insulin receptor (HIR) were synthesized and examined for their ability to bind radioiodinated insulin. A peptide representing one of these regions (namely, residues alpha 655-670) exhibited a specific binding activity for insulin. In quantitative radiometric titrations, the binding curves of {sup 125}I-labeled insulin to adsorbents of peptide alpha 655-670 and of purified placental membrane were similar or superimposable. The binding of radioiodinated insulin to peptide or to membrane adsorbents was completely inhibited by unlabeled insulin, and the inhibition curves indicated that the peptide and the membrane on the adsorbents had similar affinities. Synthetic peptides that were shorter (peptide alpha 661-670) or longer (peptide alpha 651-670) than the region alpha 655-670 exhibited lower insulin-binding activity. It was concluded that an insulin-binding region in the HIR alpha subunit resides within residues alpha 655-670. The results do not rule out the possibility that other regions of the alpha subunit may also participate in binding of HIR to insulin, with the region described here forming a face within a larger binding site.

  7. The Membrane Receptor for Plasma Retinol Binding Protein, a New Type of Cell-Surface Receptor

    OpenAIRE

    Sun, Hui; KAWAGUCHI, RIKI

    2011-01-01

    Vitamin A is essential for diverse aspects of life ranging from embryogenesis to the proper functioning of most adult organs. Its derivatives (retinoid) have potent biological activities such as regulating cell growth and differentiation. Plasma retinol binding protein (RBP) is the specific vitamin A carrier protein in the blood that binds to vitamin A with high affinity and delivers it to target organs. A large amount of evidence has accumulated over the past decades supporting the existence...

  8. A mutation in the ligand binding domain of the androgen receptor of human LNCaP cells affects steroid binding characteristics and response to anti-androgens

    NARCIS (Netherlands)

    J. Veldscholte (Jos); C. Ris-Stalpers (Carolyn); G.G.J.M. Kuiper (George); G.W. Jenster (Guido); C.A. Berrevoets (Cor); H.J.H.M. Claassen (Eric); H.C.J. van Rooij (Henri); J. Trapman (Jan); A.O. Brinkmann (Albert); E. Mulder (Eppo)

    1990-01-01

    markdownabstractAbstract INCaP prostate tumor cells contain an abnormal androgen receptor system. Progestagens, estradiol and anti-androgens can compete with androgens for binding to the androgen receptor and can stimulate both cell growth and excretion of prostate specific acid phosphatase. We ha

  9. A phase IIa randomized, double-blind trial of erlotinib in inhibiting epidermal growth factor receptor signaling in aberrant crypt foci of the colorectum.

    Science.gov (United States)

    Gillen, Daniel L; Meyskens, Frank L; Morgan, Timothy R; Zell, Jason A; Carroll, Robert; Benya, Richard; Chen, Wen-Pin; Mo, Allen; Tucker, Chris; Bhattacharya, Asmita; Huang, Zhiliang; Arcilla, Myra; Wong, Vanessa; Chung, Jinah; Gonzalez, Rachel; Rodriguez, Luz Maria; Szabo, Eva; Rosenberg, Daniel W; Lipkin, Steven M

    2015-03-01

    Colorectal cancer progresses through multiple distinct stages that are potentially amenable to chemopreventative intervention. Epidermal growth factor receptor (EGFR) inhibitors are efficacious in advanced tumors including colorectal cancer. There is significant evidence that EGFR also plays important roles in colorectal cancer initiation, and that EGFR inhibitors block tumorigenesis. We performed a double-blind randomized clinical trial to test whether the EGFR inhibitor erlotinib given for up to 30 days had an acceptable safety and efficacy profile to reduce EGFR signaling biomarkers in colorectal aberrant crypt foci (ACF), a subset of which progress to colorectal cancer, and normal rectal tissue. A total of 45 patients were randomized to one of three erlotinib doses (25, 50, and 100 mg) with randomization stratified by nonsteroidal anti-inflammatory drug (NSAID) use. There were no unanticipated adverse events with erlotinib therapy. Erlotinib was detected in both normal rectal mucosa and ACFs. Colorectal ACF phosphorylated ERK (pERK), phosphorylated EGFR (pEGFR), and total EGFR signaling changes from baseline were modest and there was no dose response. Overall, this trial did not meet is primary efficacy endpoint. Colorectal EGFR signaling inhibition by erlotinib is therefore likely insufficient to merit further studies without additional prescreening stratification or potentially longer duration of use.

  10. Loss of the repressor REST in uterine fibroids promotes aberrant G protein-coupled receptor 10 expression and activates mammalian target of rapamycin pathway

    Science.gov (United States)

    Varghese, Binny V.; Koohestani, Faezeh; McWilliams, Michelle; Colvin, Arlene; Gunewardena, Sumedha; Kinsey, William H.; Nowak, Romana A.; Nothnick, Warren B.; Chennathukuzhi, Vargheese M.

    2013-01-01

    Uterine fibroids (leiomyomas) are the most common tumors of the female reproductive tract, occurring in up to 77% of reproductive-aged women, yet molecular pathogenesis remains poorly understood. A role for atypically activated mammalian target of rapamycin (mTOR) pathway in the pathogenesis of uterine fibroids has been suggested in several studies. We identified that G protein-coupled receptor 10 [GPR10, a putative signaling protein upstream of the phosphoinositide 3-kinase–protein kinase B/AKT–mammalian target of rapamycin (PI3K/AKT–mTOR) pathway] is aberrantly expressed in uterine fibroids. The activation of GPR10 by its cognate ligand, prolactin releasing peptide, promotes PI3K–AKT–mTOR pathways and cell proliferation specifically in cultured primary leiomyoma cells. Additionally, we report that RE1 suppressing transcription factor/neuron-restrictive silencing factor (REST/NRSF), a known tumor suppressor, transcriptionally represses GPR10 in the normal myometrium, and that the loss of REST in fibroids permits GPR10 expression. Importantly, mice overexpressing human GPR10 in the myometrium develop myometrial hyperplasia with excessive extracellular matrix deposition, a hallmark of uterine fibroids. We demonstrate previously unrecognized roles for GPR10 and its upstream regulator REST in the pathogenesis of uterine fibroids. Importantly, we report a unique genetically modified mouse model for a gene that is misexpressed in uterine fibroids. PMID:23284171

  11. Ligand-receptor binding kinetics in surface plasmon resonance cells: A Monte Carlo analysis

    CERN Document Server

    Carroll, Jacob; Forsten-Williams, Kimberly; Täuber, Uwe C

    2016-01-01

    Surface plasmon resonance (SPR) chips are widely used to measure association and dissociation rates for the binding kinetics between two species of chemicals, e.g., cell receptors and ligands. It is commonly assumed that ligands are spatially well mixed in the SPR region, and hence a mean-field rate equation description is appropriate. This approximation however ignores the spatial fluctuations as well as temporal correlations induced by multiple local rebinding events, which become prominent for slow diffusion rates and high binding affinities. We report detailed Monte Carlo simulations of ligand binding kinetics in an SPR cell subject to laminar flow. We extract the binding and dissociation rates by means of the techniques frequently employed in experimental analysis that are motivated by the mean-field approximation. We find major discrepancies in a wide parameter regime between the thus extracted rates and the known input simulation values. These results underscore the crucial quantitative importance of s...

  12. Electrostatics and Intrinsic Disorder Drive Translocon Binding of the SRP Receptor FtsY.

    Science.gov (United States)

    Lakomek, Nils-Alexander; Draycheva, Albena; Bornemann, Thomas; Wintermeyer, Wolfgang

    2016-08-01

    Integral membrane proteins in bacteria are co-translationally targeted to the SecYEG translocon for membrane insertion via the signal recognition particle (SRP) pathway. The SRP receptor FtsY and its N-terminal A domain, which is lacking in any structural model of FtsY, were studied using NMR and fluorescence spectroscopy. The A domain is mainly disordered and highly flexible; it binds to lipids via its N terminus and the C-terminal membrane targeting sequence. The central A domain binds to the translocon non-specifically and maintains disorder. Translocon targeting and binding of the A domain is driven by electrostatic interactions. The intrinsically disordered A domain tethers FtsY to the translocon, and because of its flexibility, allows the FtsY NG domain to scan a large area for binding to the NG domain of ribosome-bound SRP, thereby promoting the formation of the quaternary transfer complex at the membrane. PMID:27346853

  13. Intracellular binding site kinetics of 201 Tl binding compared to β-adrenergic analog receptors in dog myocardium

    International Nuclear Information System (INIS)

    It has been demonstrated with the multiple indicator dilution technique (MID) in an isolated dog heart preparation, that the permeation of thallium ions across the sarcolemma is about ten times larger compared to potassium ions (cellular permeability surface area product PSM 8.90 +- 4.60 vs. 0.65 +- 0.46 ml/min gsup(-1)). Similarly, the intracellular (IC) distribution space of Tlsup(+) is larger compared to that of Ksup(+). These properties may explain in part the rapid and large extraction of Tl in the myocardium. To explain the slow washout rate of Tl from the myocardium (T 1/2>600 sec determined with an on-line residue detection) we proposed a temporary binding of Tl to an IC protein. In experiments the permeation properties of 201 Tl were compared to 125 I-cyanopinodolol (I-CP) and 131 I metabenzylquanidin (I-MBG) by means of MID. The latter two substances act at the β-adrenergic receptor site. Both substances have a lower capillary permeability surface area product PSC of 0.43 +- 0.37 ml/min gsup(-1) compared to that of 201 Tl (1.37 +- 0.49 ml/min gsup(-1)). I-CP and I-MBG are sequestered extracellularly in contrast to Tl, which permeates intracellularly. However, the relation between time and instantaneous extraction during a single bolus passage of 201 Tl is very comparable to that of those receptor substances suggesting also a receptor-type kinetics for Tl with intracellular binding which may elucidate its prolonged washout. (Author)

  14. Sequence-specific binding of a hormonally regulated mRNA binding protein to cytidine-rich sequences in the lutropin receptor open reading frame.

    Science.gov (United States)

    Kash, J C; Menon, K M

    1999-12-21

    In previous studies, a lutropin receptor mRNA binding protein implicated in the hormonal regulation of lutropin receptor mRNA stability was identified. This protein, termed LRBP-1, was shown by RNA gel electrophoretic mobility shift assay to specifically interact with lutropin receptor RNA sequences. The present studies have examined the specificity of lutropin receptor mRNA recognition by LRBP-1 and mapped the contact site by RNA footprinting and by site-directed mutagenesis. LRBP-1 was partially purified by cation-exchange chromatography, and the mRNA binding properties of the partially purified LRBP-1 were examined by RNA gel electrophoretic mobility shift assay and hydroxyl-radical RNA footprinting. These data showed that the LRBP-1 binding site is located between nucleotides 203 and 220 of the receptor open reading frame, and consists of the bipartite polypyrimidine sequence 5'-UCUC-X(7)-UCUCCCU-3'. Competition RNA gel electrophoretic mobility shift assays demonstrated that homoribopolymers of poly(rC) were effective RNA binding competitors, while poly(rA), poly(rG), and poly(rU) showed no effect. Mutagenesis of the cytidine residues contained within the LRBP-1 binding site demonstrated that all the cytidines in the bipartite sequence contribute to LRBP-1 binding specificity. Additionally, RNA gel electrophoretic mobility supershift analysis showed that LRBP-1 was not recognized by antibodies against two well-characterized poly(rC) RNA binding proteins, alphaCP-1 and alphaCP-2, implicated in the regulation of RNA stability of alpha-globin and tyrosine hydroxylase mRNAs. In summary, we show that partially purified LRBP-1 binds to a polypyrimidine sequence within nucleotides 203 and 220 of lutropin receptor mRNA with a high degree of specificity which is indicative of its role in posttranscriptional control of lutropin receptor expression.

  15. Insulin binding changes the interface region between α subunits of the insulin receptor

    International Nuclear Information System (INIS)

    The homobifunctional cross-linking reagent disuccinimidyl suberate (DSS) was used to probe the interface region between the two α subunits of the α2β2 human insulin receptor. The two α subunits formed a covalent dimer when affinity-purified receptor or membrane-bound receptor was reacted with DSS. The α2 species was detected on protein blots from SDS gels using an anti-α-subunit antibody or 125I-concanavalin A. Alternatively, iodinated receptor was reacted with DSS and the α2 species measured directly in an SDS gel. As shown by all three assay systems, more α2 was formed when insulin was bound to receptor than when insulin was absent. These data indicate that the conformational change which occurs in the α subunit response to insulin binding results in a change in the α-α interaction within the receptor complex. The results are consistent with a kinase activation mechanism involving communication between the two αβ receptor halves

  16. An ELISA Based Binding and Competition Method to Rapidly Determine Ligand-receptor Interactions.

    Science.gov (United States)

    Syedbasha, Mohameedyaseen; Linnik, Janina; Santer, Deanna; O'Shea, Daire; Barakat, Khaled; Joyce, Michael; Khanna, Nina; Tyrrell, D Lorne; Houghton, Michael; Egli, Adrian

    2016-01-01

    A comprehensive understanding of signaling pathways requires detailed knowledge regarding ligand-receptor interaction. This article describes two fast and reliable point-by-point protocols of enzyme-linked immunosorbent assays (ELISAs) for the investigation of ligand-receptor interactions: the direct ligand-receptor interaction assay (LRA) and the competition LRA. As a case study, the ELISA based analysis of the interaction between different lambda interferons (IFNLs) and the alpha subunit of their receptor (IL28RA) is presented: the direct LRA is used for the determination of dissociation constants (KD values) between receptor and IFN ligands, and the competition LRA for the determination of the inhibitory capacity of an oligopeptide, which was designed to compete with the IFNLs at their receptor binding site. Analytical steps to estimate KD and half maximal inhibitory concentration (IC50) values are described. Finally, the discussion highlights advantages and disadvantages of the presented method and how the results enable a better molecular understanding of ligand-receptor interactions.

  17. Structures of Receptor Complexes of a North American H7N2 Influenza Hemagglutinin with a Loop Deletion in the Receptor Binding Site

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Hua; Chen, Li-Mei; Carney, Paul J.; Donis, Ruben O.; Stevens, James (CDC)

    2012-02-21

    Human infections with subtype H7 avian influenza viruses have been reported as early as 1979. In 1996, a genetically stable 24-nucleotide deletion emerged in North American H7 influenza virus hemagglutinins, resulting in an eight amino acid deletion in the receptor-binding site. The continuous circulation of these viruses in live bird markets, as well as its documented ability to infect humans, raises the question of how these viruses achieve structural stability and functionality. Here we report a detailed molecular analysis of the receptor binding site of the North American lineage subtype H7N2 virus A/New York/107/2003 (NY107), including complexes with an avian receptor analog (3'-sialyl-N-acetyllactosamine, 3'SLN) and two human receptor analogs (6'-sialyl-N-acetyllactosamine, 6'SLN; sialyllacto-N-tetraose b, LSTb). Structural results suggest a novel mechanism by which residues Arg220 and Arg229 (H3 numbering) are used to compensate for the deletion of the 220-loop and form interactions with the receptor analogs. Glycan microarray results reveal that NY107 maintains an avian-type ({alpha}2-3) receptor binding profile, with only moderate binding to human-type ({alpha}2-6) receptor. Thus despite its dramatically altered receptor binding site, this HA maintains functionality and confirms a need for continued influenza virus surveillance of avian and other animal reservoirs to define their zoonotic potential.

  18. A receptor-binding region in Escherichia coli alpha-haemolysin.

    Science.gov (United States)

    Cortajarena, Aitziber L; Goni, Félix M; Ostolaza, Helena

    2003-05-23

    Escherichia coli alpha-hemolysin (HlyA) is a 107-kDa protein toxin with a wide range of mammalian target cells. Previous work has shown that glycophorin is a specific receptor for HlyA in red blood cells (Cortajarena, A. L., Goñi, F. M., and Ostolaza, H. (2001) J. Biol. Chem. 276, 12513-12519). The present study was aimed at identifying the glycophorin-binding region in the toxin. Data in the literature pointed to a short amino acid sequence near the C terminus as a putative receptor-binding domain. Previous sequence analyses of several homologous toxins that belong, like HlyA, to the so-called RTX toxin family revealed a conserved region that corresponded to residues 914-936 of HlyA. We therefore prepared a deletion mutant lacking these residues (HlyA Delta 914-936) and found that its hemolytic activity was decreased by 10,000-fold with respect to the wild type. This deletion mutant was virtually unable to bind human and horse red blood cells or to bind pure glycophorin in an affinity column. The peptide Trp914-Arg936 had no lytic activity of its own, but it could bind glycophorin reconstituted in lipid vesicles. Moreover, the peptide Trp914-Arg936 protected red blood cells from hemolysis induced by wild type HlyA. It was concluded that amino acid residues 914-936 constitute a major receptor-binding region in alpha-hemolysin. PMID:12582172

  19. Developmental profile of the aberrant dopamine D2 receptor response in striatal cholinergic interneurons in DYT1 dystonia.

    Directory of Open Access Journals (Sweden)

    Giuseppe Sciamanna

    Full Text Available BACKGROUND: DYT1 dystonia, a severe form of genetically determined human dystonia, exhibits reduced penetrance among carriers and begins usually during adolescence. The reasons for such age dependence and variability remain unclear. METHODS AND RESULTS: We characterized the alterations in D2 dopamine receptor (D2R signalling in striatal cholinergic interneurons at different ages in mice overexpressing human mutant torsinA (hMT. An abnormal excitatory response to the D2R agonist quinpirole was recorded at postnatal day 14, consisting of a membrane depolarization coupled to an increase in spiking frequency, and persisted unchanged at 3 and 9 months in hMT mice, compared to mice expressing wild-type human torsinA and non-transgenic mice. This response was blocked by the D2R antagonist sulpiride and depended upon G-proteins, as it was prevented by intrapipette GDP-β-S. Patch-clamp recordings from dissociated interneurons revealed a significant increase in the Cav2.2-mediated current fraction at all ages examined. Consistently, chelation of intracellular calcium abolished the paradoxical response to quinpirole. Finally, no gross morphological changes were observed during development. CONCLUSIONS: These results suggest that an imbalanced striatal dopaminergic/cholinergic signaling occurs early in DYT1 dystonia and persists along development, representing a susceptibility factor for symptom generation.

  20. Interactions between Human Liver Fatty Acid Binding Protein and Peroxisome Proliferator Activated Receptor Selective Drugs

    Directory of Open Access Journals (Sweden)

    Tony Velkov

    2013-01-01

    Full Text Available Fatty acid binding proteins (FABPs act as intracellular shuttles for fatty acids as well as lipophilic xenobiotics to the nucleus, where these ligands are released to a group of nuclear receptors called the peroxisome proliferator activated receptors (PPARs. PPAR mediated gene activation is ultimately involved in maintenance of cellular homeostasis through the transcriptional regulation of metabolic enzymes and transporters that target the activating ligand. Here we show that liver- (L- FABP displays a high binding affinity for PPAR subtype selective drugs. NMR chemical shift perturbation mapping and proteolytic protection experiments show that the binding of the PPAR subtype selective drugs produces conformational changes that stabilize the portal region of L-FABP. NMR chemical shift perturbation studies also revealed that L-FABP can form a complex with the PPAR ligand binding domain (LBD of PPARα. This protein-protein interaction may represent a mechanism for facilitating the activation of PPAR transcriptional activity via the direct channeling of ligands between the binding pocket of L-FABP and the PPARαLBD. The role of L-FABP in the delivery of ligands directly to PPARα via this channeling mechanism has important implications for regulatory pathways that mediate xenobiotic responses and host protection in tissues such as the small intestine and the liver where L-FABP is highly expressed.

  1. The receptor binding domain of MERS-CoV: the dawn of vaccine and treatment development.

    Science.gov (United States)

    Zhou, Nan; Zhang, Yun; Zhang, Jin-Chun; Feng, Ling; Bao, Jin-Ku

    2014-03-01

    The newly emerged Middle East respiratory syndrome coronavirus (MERS-CoV) is becoming another "SARS-like" threat to the world. It has an extremely high death rate (∼50%) as there is no vaccine or efficient therapeutics. The identification of the structures of both the MERS-CoV receptor binding domain (RBD) and its complex with dipeptidyl peptidase 4 (DPP4), raises the hope of alleviating this currently severe situation. In this review, we examined the molecular basis of the RBD-receptor interaction to outline why/how could we use MERS-CoV RBD to develop vaccines and antiviral drugs.

  2. Brain serotonin 2A receptor binding: Relations to body mass index, tobacco and alcohol use

    DEFF Research Database (Denmark)

    Erritzoe, D.; Frokjaer, V. G.; Haugbol, S.;

    2009-01-01

    to increased food and alcohol intake, and conversely, stimulation of the serotonergic system induces weight reduction and decreased food/alcohol intake as well as tobacco smoking. To investigate whether body weight, alcohol intake and tobacco smoking were related to the regulation of the cerebral serotonin 2A...... receptor (5-HT(2A)) in humans, we tested in 136 healthy human subjects if body mass index (BMI), degree of alcohol consumption and tobacco smoking was associated to the cerebral in vivo 5-HT(2A) receptor binding as measured with (18)F-altanserin PET. The subjects' BMI's ranged from 18.4 to 42.8 (25...

  3. The 5-HT2A receptor binding pattern in the human brain is strongly genetically determined

    DEFF Research Database (Denmark)

    Pinborg, Lars H; Arfan, Haroon; Haugbol, Steven;

    2007-01-01

    variability in cortical 5-HT(2A) receptor binding as measured with [(18)F]altanserin PET imaging. The intraclass correlation coefficients were 0.67 for dizygotic and 0.87 for monozygotic twin pairs. For comparison, the intraclass correlation coefficient was 0.93 in a group of six male healthy subjects...... brain anatomy is largely genetically determined, it is currently unknown to what degree neuromodulatory markers are subjected to genetic and environmental influence. Changes in serotonin 2A (5-HT(2A)) receptors have been reported to occur in various neuropsychiatric disorders and an association between...

  4. Characterization of 5-HT1D receptor binding sites in post-mortem human brain cortex.

    OpenAIRE

    Martial, J; de Montigny, C; Cecyre, D; Quirion, R

    1991-01-01

    The present study provides further evidence for the presence of serotonin1D (5-HT1D) receptors in post-mortem human brain. Receptor binding parameters in temporal cortex homogenates were assessed using [3H]5-HT in the presence of 100 nM 8-OH-DPAT, 1 microM propranolol and 1 microM mesulergine to prevent labelling of the 5-HT1A, 5-HT1B and 5-HT1C sites, respectively. Under these conditions, [3H]5-HT apparently bound to a class of high affinity (Kd = 5.0 +/- 1.0 nM) low capacity (Bmax = 96 +/- ...

  5. Differential binding of prohibitin-2 to estrogen receptor α and to drug-resistant ERα mutants

    Energy Technology Data Exchange (ETDEWEB)

    Chigira, Takeru, E-mail: 8120661875@mail.ecc.u-tokyo.ac.jp [Department of Chemistry and Biotechnology, School of Engineering, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639 (Japan); Nagatoishi, Satoru, E-mail: nagatoishi@bioeng.t.u-tokyo.ac.jp [Department of Bioengineering, School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654 (Japan); Tsumoto, Kouhei, E-mail: tsumoto@bioeng.t.u-tokyo.ac.jp [Department of Chemistry and Biotechnology, School of Engineering, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639 (Japan); Department of Bioengineering, School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654 (Japan)

    2015-08-07

    Endocrine resistance is one of the most challenging problems in estrogen receptor alpha (ERα)-positive breast cancer. The transcriptional activity of ERα is controlled by several coregulators, including prohibitin-2 (PHB2). Because of its ability to repress the transcriptional activity of activated ERα, PHB2 is a promising antiproliferative agent. In this study, were analyzed the interaction of PHB2 with ERα and three mutants (Y537S, D538G, and E380Q) that are frequently associated with a lack of sensitivity to hormonal treatments, to help advance novel drug discovery. PHB2 bound to ERα wild-type (WT), Y537S, and D538G, but did not bind to E380Q. The binding thermodynamics of Y537S and D538G to PHB2 were favorably altered entropically compared with those of WT to PHB2. Our results show that PHB2 binds to the ligand binding domain of ERα with a conformational change in the helix 12 of ERα. - Highlights: • Molten globule-likeness of an ERα repressor Prohibitin-2 (PHB2) is identified. • The thermodynamics is validated for the interaction between ERα and PHB2. • PHB2 binds to Y537S and D538G mutants of ERα commonly found in breast cancer. • ERα WT and mutants showed different thermodynamic parameters in the binding to PHB2. • ERα binds to PHB2 with conformational change involving packing of helix 12.

  6. Nuclear thyroid hormone receptor binding in human mononuclear blood cells after goitre resection

    DEFF Research Database (Denmark)

    Kvetny, J; Matzen, L E; Blichert-Toft, M;

    1989-01-01

    Nuclear thyroxine and triiodothyronine receptor-binding in human mononuclear blood cells were examined in 14 euthyroid persons prior to and 1, 6, 24 and 53 weeks after goitre resection. One week after resection decreased serum T3 from 1.47 nmol/l to 1.14 nmol/l (P less than 0.05), FT4I from 103 a...... to preresectional values. We conclude that the expected alteration of the metabolic state caused by resection of the gland is opposed by increased nuclear binding of T4 and T3....

  7. MULTIPLE G PROTEINS COMPETE FOR BINDING WITH THE HUMAN GONADOTROPIN RELEASING HORMONE RECEPTOR

    OpenAIRE

    Knollman, Paul E.; Conn, P. Michael

    2008-01-01

    The GnRH receptor is coupled to G proteins of the families Gq and G11. Gq and G11. Coupling leads to intracellular signaling through the phospholipase C pathway. GnRHR coupling to other G proteins is controversial. This study provides evidence that G protein families Gs, Gi, Gq and G11 complete for binding with the GnRHR. We quantified interactions of over-expressed G proteins with GnRHR by a competitive binding approach, using measurements of second messengers, IP and cAMP. Transient co-tran...

  8. GNL3L Inhibits Estrogen Receptor-Related Protein Activities by Competing for Coactivator Binding

    OpenAIRE

    Yasumoto, Hiroaki; Meng, Lingjun; Lin, Tao; Zhu, Qubo; Tsai, Robert Y.L.

    2007-01-01

    Guanine-nucleotide binding protein 3-like (GNL3L) is the closest homologue of a stem cell-enriched factor nucleostemin in vertebrates. They share the same yeast orthologue, Grn1p, but only GNL3L can rescue the growth-deficient phenotype in Grn1p-null yeasts. To determine the unique function of GNL3L, we identified estrogen receptor-related protein-γ (ERRγ) as a GNL3L-specific binding protein. GNL3L and ERRγ are coexpressed in the eye, kidney and muscle, and co-reside in the nucleoplasm. The i...

  9. Muscarinic receptor binding increases in anterior thalamus and cingulate cortex during discriminative avoidance learning

    International Nuclear Information System (INIS)

    Training-induced neuronal activity develops in the mammalian limbic system during discriminative avoidance conditioning. This study explores behaviorally relevant changes in muscarinic ACh receptor binding in 52 rabbits that were trained to one of five stages of conditioned response acquisition. Sixteen naive and 10 animals yoked to criterion performance served as control cases. Upon reaching a particular stage of training, the brains were removed and autoradiographically assayed for 3H-oxotremorine-M binding with 50 nM pirenzepine (OxO-M/PZ) or for 3H-pirenzepine binding in nine limbic thalamic nuclei and cingulate cortex. Specific OxO-M/PZ binding increased in the parvocellular division of the anterodorsal nucleus early in training when the animals were first exposed to pairing of the conditional and unconditional stimuli. Elevated binding in this nucleus was maintained throughout subsequent training. In the parvocellular division of the anteroventral nucleus (AVp), OxO-M/PZ binding progressively increased throughout training, reached a peak at the criterion stage of performance, and returned to control values during extinction sessions. Peak OxO-M/PZ binding in AVp was significantly elevated over that for cases yoked to criterion performance. In the magnocellular division of the anteroventral nucleus (AVm), OxO-M/PZ binding was elevated only during criterion performance of the task, and it was unaltered in any other limbic thalamic nuclei. Specific OxO-M/PZ binding was also elevated in most layers in rostral area 29c when subjects first performed a significant behavioral discrimination. Training-induced alterations in OxO-M/PZ binding in AVp and layer Ia of area 29c were similar and highly correlated

  10. Application of the novel bioluminescent ligand-receptor binding assay to relaxin-RXFP1 system for interaction studies.

    Science.gov (United States)

    Wu, Qing-Ping; Zhang, Lei; Shao, Xiao-Xia; Wang, Jia-Hui; Gao, Yu; Xu, Zeng-Guang; Liu, Ya-Li; Guo, Zhan-Yun

    2016-04-01

    Relaxin is a prototype of the relaxin family peptide hormones and plays important biological functions by binding and activating the G protein-coupled receptor RXFP1. To study their interactions, in the present work, we applied the newly developed bioluminescent ligand-receptor binding assay to the relaxin-RXFP1 system. First, a fully active easily labeled relaxin, in which three Lys residues of human relaxin-2 were replaced by Arg, was prepared through overexpression of a single-chain precursor in Pichia pastoris and in vitro enzymatic maturation. Thereafter, the B-chain N-terminus of the easily labeled relaxin was chemically cross-linked with a C-terminal cysteine residue of an engineered NanoLuc through a disulfide linkage. Receptor-binding assays demonstrated that the NanoLuc-conjugated relaxin retained high binding affinity with the receptor RXFP1 (K d = 1.11 ± 0.08 nM, n = 3) and was able to sensitively monitor binding of a variety of ligands with RXFP1. Using the novel bioluminescent binding assay, we demonstrated that three highly conserved B-chain Arg residues of relaxin-3 had distinct contributions to binding of the receptor RXFP1. In summary, our present work provides a novel bioluminescent ligand-receptor binding assay for the relaxin-RXFP1 system to facilitate their interaction studies, such as characterization of relaxin analogues or screening novel agonists or antagonists of RXFP1. PMID:26767372

  11. The Sigma-2 Receptor and Progesterone Receptor Membrane Component 1 are Different Binding Sites Derived From Independent Genes

    Directory of Open Access Journals (Sweden)

    Uyen B. Chu

    2015-11-01

    Full Text Available The sigma-2 receptor (S2R is a potential therapeutic target for cancer and neuronal diseases. However, the identity of the S2R has remained a matter of debate. Historically, the S2R has been defined as (1 a binding site with high affinity to 1,3-di-o-tolylguanidine (DTG and haloperidol but not to the selective sigma-1 receptor ligand (+-pentazocine, and (2 a protein of 18–21 kDa, as shown by specific photolabeling with [3H]-Azido-DTG and [125I]-iodoazido-fenpropimorph ([125I]-IAF. Recently, the progesterone receptor membrane component 1 (PGRMC1, a 25 kDa protein, was reported to be the S2R (Nature Communications, 2011, 2:380. To confirm this identification, we created PGRMC1 knockout NSC34 cell lines using the CRISPR/Cas9 technology. We found that in NSC34 cells devoid of or overexpressing PGRMC1, the maximum [3H]-DTG binding to the S2R (Bmax as well as the DTG-protectable [125I]-IAF photolabeling of the S2R were similar to those of wild-type control cells. Furthermore, the affinities of DTG and haloperidol for PGRMC1 (KI = 472 μM and 350 μM, respectively, as determined in competition with [3H]-progesterone, were more than 3 orders of magnitude lower than those reported for the S2R (20–80 nM. These results clarify that PGRMC1 and the S2R are distinct binding sites expressed by different genes.

  12. Activin Decoy Receptor ActRIIB:Fc Lowers FSH and Therapeutically Restores Oocyte Yield, Prevents Oocyte Chromosome Misalignments and Spindle Aberrations, and Increases Fertility in Midlife Female SAMP8 Mice.

    Science.gov (United States)

    Bernstein, Lori R; Mackenzie, Amelia C L; Lee, Se-Jin; Chaffin, Charles L; Merchenthaler, István

    2016-03-01

    Women of advanced maternal age (AMA) (age ≥ 35) have increased rates of infertility, miscarriages, and trisomic pregnancies. Collectively these conditions are called "egg infertility." A root cause of egg infertility is increased rates of oocyte aneuploidy with age. AMA women often have elevated endogenous FSH. Female senescence-accelerated mouse-prone-8 (SAMP8) has increased rates of oocyte spindle aberrations, diminished fertility, and rising endogenous FSH with age. We hypothesize that elevated FSH during the oocyte's FSH-responsive growth period is a cause of abnormalities in the meiotic spindle. We report that eggs from SAMP8 mice treated with equine chorionic gonadotropin (eCG) for the period of oocyte growth have increased chromosome and spindle misalignments. Activin is a molecule that raises FSH, and ActRIIB:Fc is an activin decoy receptor that binds and sequesters activin. We report that ActRIIB:Fc treatment of midlife SAMP8 mice for the duration of oocyte growth lowers FSH, prevents egg chromosome and spindle misalignments, and increases litter sizes. AMA patients can also have poor responsiveness to FSH stimulation. We report that although eCG lowers yields of viable oocytes, ActRIIB:Fc increases yields of viable oocytes. ActRIIB:Fc and eCG cotreatment markedly reduces yields of viable oocytes. These data are consistent with the hypothesis that elevated FSH contributes to egg aneuploidy, declining fertility, and poor ovarian response and that ActRIIB:Fc can prevent egg aneuploidy, increase fertility, and improve ovarian response. Future studies will continue to examine whether ActRIIB:Fc works via FSH and/or other pathways and whether ActRIIB:Fc can prevent aneuploidy, increase fertility, and improve stimulation responsiveness in AMA women. PMID:26713784

  13. Aberrant activation of the androgen receptor by NF-kappaB2/p52 in prostate cancer cells.

    Science.gov (United States)

    Nadiminty, Nagalakshmi; Lou, Wei; Sun, Meng; Chen, Jun; Yue, Jiao; Kung, Hsing-Jien; Evans, Christopher P; Zhou, Qinghua; Gao, Allen C

    2010-04-15

    Prostate cancer initiation and progression are uniquely dependent on the androgen receptor (AR). Even when the cancer progresses to a castration-resistant stage, AR signaling remains active via a variety of mechanisms. In the present study, we showed that NF-kappaB/p52 can activate the AR, resulting in increased transactivation of AR-responsive genes, such as PSA and NKX3.1, in a ligand-independent manner. NF-kappaB2/p52 enhances nuclear translocation and activation of AR by interacting with its NH(2)-terminal domain and enhances the recruitment of coactivators such as p300 to the promoters of AR-dependent genes. These results were confirmed in three different prostate cancer cell lines: LAPC-4 (wild-type AR), LNCaP (mutant AR), and C4-2 (castration resistant). Transfection of p52 into LAPC-4 and LNCaP cells (which express low levels of p52) showed increased activation of the endogenous AR. Downregulation of endogenous p52 in C4-2 cells resulted in abrogation of AR constitutive activation. Comparison of the relative effects of p52 and p65 (RelA) showed that p52, but not p65, could activate the AR. Collectively, these findings, together with previous reports that the levels of NF-kappaB2/p52 are elevated in prostate cancer cells and that active NF-kappaB2/p52 promotes prostate cancer cell growth in vitro and in vivo, suggest that NF-kappaB2/p52 may play a critical role in the progression of castration-resistant prostate cancer.

  14. Comparison of chemical binding to recombinant fathead minnow and human estrogen receptors alpha in whole cell and cell-free binding assays.

    Science.gov (United States)

    Rider, Cynthia V; Hartig, Phillip C; Cardon, Mary C; Wilson, Vickie S

    2009-10-01

    Mammalian receptors and assay systems are generally used for in vitro screening of endocrine-disrupting chemicals with the assumption that minor differences in amino acid sequences among species do not translate into significant differences in receptor function. Objectives of the present study were to evaluate the performance of two different in vitro assay systems (a whole cell and a cell-free competitive binding assay) in assessing whether binding of chemicals differs significantly between full-length recombinant estrogen receptors from fathead minnows (fhERalpha) and those from humans (hERalpha). It was confirmed that 17beta-estradiol displays a reduction in binding to fhERalpha at an elevated temperature (37 degrees C), as has been reported with other piscine estrogen receptors. Several of the chemicals (17beta-estradiol, ethinylestradiol, alpha-zearalanol, fulvestrant, dibutyl phthalate, benzyl butyl phthalate, and cadmium chloride) displayed higher affinity for fhERalpha than for hERalpha in the whole cell assay, while only dibutyl phthalate had a higher affinity for fhERalpha than for hERalpha in the cell-free assay. Both assays were effective in identifying strong binders, weak binders, and nonbinders to the two receptors. However, the cell-free assay provided a less complicated and more efficient binding platform and is, therefore, recommended over the whole cell binding assay. In conclusion, no strong evidence showed species-specific binding among the chemicals tested. PMID:19453209

  15. Measurement of biologically active interleukin-1 by a soluble receptor binding assay

    International Nuclear Information System (INIS)

    A soluble receptor binding assay has been developed for measuring human interleukin-1 alpha (IL-1 alpha), human IL-1 beta, and mouse IL-1 alpha. The assay is based on a competition between unlabeled IL-1 and 125I-labeled mouse recombinant IL-1 alpha for binding to soluble IL-1 receptor prepared from mouse EL-4 cells. The assay measures only biologically active IL-1 folded in its native conformation. The ratio of human IL-1 alpha to human IL-1 beta can be measured in the same sample by a pretreatment step which removes human IL-1 beta from samples prior to assay. This technique has been used to monitor the purification of recombinant IL-1, and may be utilized to specifically and accurately measure bioactive IL-1 in human serum and cell culture supernatants

  16. Differential binding of urokinase and peptide antagonists to the urokinase receptor

    DEFF Research Database (Denmark)

    Engelholm, L H; Behrendt, N

    2001-01-01

    though these sequences contain very few substitutions relative to the human uPAR, the receptor protein products differ markedly in terms of ligand selectivity. Thus, a well described competitive peptide antagonist directed against the human uPAR reacts with only one of the monkey receptors (chimpanzee u......PAR), in spite of the fact that uPAR from all of the four species cross-reacts with human uPA. Notably, uPAR from African green monkey, which is completely devoid of reactivity with the peptide, contains only three substitutions relative to chimpanzee uPAR in the molecular regions critical for binding....... These findings aid the elucidation of the structure/function relationship of uPAR and, unexpectedly, identify a structural distinction governing the binding of uPA and a very similar peptide antagonist....

  17. Structure-dependent binding and activation of perfluorinated compounds on human peroxisome proliferator-activated receptor γ

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Lianying [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, 18 Shuangqing Road, Beijing 100085 (China); College of Life Science, Dezhou University, Dezhou 253023 (China); Ren, Xiao-Min; Wan, Bin [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, 18 Shuangqing Road, Beijing 100085 (China); Guo, Liang-Hong, E-mail: LHGuo@rcees.ac.cn [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, 18 Shuangqing Road, Beijing 100085 (China)

    2014-09-15

    Perfluorinated compounds (PFCs) have been shown to disrupt lipid metabolism and even induce cancer in rodents through activation of peroxisome proliferator-activated receptors (PPARs). Lines of evidence showed that PPARα was activated by PFCs. However, the information on the binding interactions between PPARγ and PFCs and subsequent alteration of PPARγ activity is still limited and sometimes inconsistent. In the present study, in vitro binding of 16 PFCs to human PPARγ ligand binding domain (hPPARγ-LBD) and their activity on the receptor in cells were investigated. The results showed that the binding affinity was strongly dependent on their carbon number and functional group. For the eleven perfluorinated carboxylic acids (PFCAs), the binding affinity increased with their carbon number from 4 to 11, and then decreased slightly. The binding affinity of the three perfluorinated sulfonic acids (PFSAs) was stronger than their PFCA counterparts. No binding was detected for the two fluorotelomer alcohols (FTOHs). Circular dichroim spectroscopy showed that PFC binding induced distinctive structural change of the receptor. In dual luciferase reporter assays using transiently transfected Hep G2 cells, PFCs acted as hPPARγ agonists, and their potency correlated with their binding affinity with hPPARγ-LBD. Molecular docking showed that PFCs with different chain length bind with the receptor in different geometry, which may contribute to their differences in binding affinity and transcriptional activity. - Highlights: • Binding affinity between PFCs and PPARγ was evaluated for the first time. • The binding strength was dependent on fluorinated carbon chain and functional group. • PFC binding induced distinctive structural change of the receptor. • PFCs could act as hPPARγ agonists in Hep G2 cells.

  18. Receptor-Like Function of Heparin in the Binding and Uptake of Neutral Lipids

    Science.gov (United States)

    Bosner, Matthew S.; Gulick, Tod; Riley, D. J. S.; Spilburg, Curtis A.; Lange, Louis G.

    1988-10-01

    Molecular mechanisms regulating the binding, amphipathic stabilization, and metabolism of the major neutral lipids (e.g., cholesteryl esters, triglycerides, and fatty acids) are well studied, but the details of their movement from a binding compartment to a metabolic compartment deserve further attention. Since all neutral lipids must cross hydrophilic segments of plasma membranes during such movement, we postulate that a critical receptor-like site exists on the plasma membrane to mediate a step between binding and metabolism and that membrane-associated heparin is a key part of this mediator. For example, intestinal brush border membranes containing heparin bind homogeneous human pancreatic 125I-labeled cholesterol esterase (100 kDa) and 125I-labeled triglyceride lipase (52 kDa). This interaction is enzyme concentration-dependent, specific, and saturable and is reversed upon addition of soluble heparin. Scatchard analysis demonstrates a single class of receptors with a Kd of 100 nM and a Bmax of approximately 50-60 pmol per mg of vesicle protein. In contrast, enzymes associated with the hydrolysis of hydrophilic compounds such as amylase, phospholipase A2, and deoxyribonuclease do not bind to intestinal membranes in this manner. Human pancreatic cholesterol esterase also binds specifically and saturably to cultured intestinal epithelial cells (CaCo-2), and soluble heparin significantly diminishes the cellular uptake of the resultant hydrophobic reaction products (cholesterol and free fatty acids). We conclude that a physiological role for intestinal heparin is that of a mediator to bind neutral lipolytic enzymes at the brush border and thus promote absorption of the subsequent hydrolyzed nutrients in the intestine. This mechanism may be a generalizable pathway for transport of neutral lipids into endothelial and other cells.

  19. Investigation of in vitro Opioid Receptor Binding Activities of Some Turkish Salvia species

    OpenAIRE

    Özge Gündüz Çınar; Hasan Kırmızıbekmez; Galip Akaydın; Erdem Yesilada

    2011-01-01

    Kappa Opioid Peptide Receptor (KOPr) activation produces analgesic, psychotomimetic, diuretic and antipruritic effects. KOPr ligands are investigated for their potential roles in the treatment of addiction, depression, feeding behavior, psychosis and schizophrenia. In this study the methanolic extracts of a number of Salvia species which are native to Turkey (S. tomentosa, S. tchihatcheffii , S. rosifolia, S. dichroantha and S. sclarea) were tested for their potential binding to opioid recept...

  20. Glucose regulates fatty acid binding protein interaction with lipids and peroxisome proliferator-activated receptor α

    OpenAIRE

    Hostetler, Heather A.; Balanarasimha, Madhumitha; Huang, Huan; Kelzer, Matthew S.; Kaliappan, Alagammai; Kier, Ann B.; Schroeder, Friedhelm

    2010-01-01

    Although the pathophysiology of diabetes is characterized by elevated levels of glucose and long-chain fatty acids (LCFA), nuclear mechanisms linking glucose and LCFA metabolism are poorly understood. As the liver fatty acid binding protein (L-FABP) shuttles LCFA to the nucleus, where L-FABP directly interacts with peroxisome proliferator-activated receptor-α (PPARα), the effect of glucose on these processes was examined. In vitro studies showed that L-FABP strongly bound glucose and glucose-...

  1. Neonicotinoid Binding, Toxicity and Expression of Nicotinic Acetylcholine Receptor Subunits in the Aphid Acyrthosiphon pisum

    OpenAIRE

    Taillebois, Emiliane; Beloula, Abdelhamid; Quinchard, Sophie; Jaubert-Possamai, Stéphanie; Daguin, Antoine; Servent, Denis; Tagu, Denis; Thany, Steeve H.; Tricoire-Leignel, Helene

    2014-01-01

    Neonicotinoid insecticides act on nicotinic acetylcholine receptor and are particularly effective against sucking pests. They are widely used in crops protection to fight against aphids, which cause severe damage. In the present study we evaluated the susceptibility of the pea aphid Acyrthosiphon pisum to the commonly used neonicotinoid insecticides imidacloprid (IMI), thiamethoxam (TMX) and clothianidin (CLT). Binding studies on aphid membrane preparations revealed the existence of high and ...

  2. Blocking and Binding Folate Receptor Alpha Autoantibodies Identify Novel Autism Spectrum Disorder Subgroups

    OpenAIRE

    Frye, Richard E; Delhey, Leanna; Slattery, John; Tippett, Marie; Wynne, Rebecca; Rose, Shannon; Kahler, Stephen G.; Bennuri, Sirish C.; Melnyk, Stepan; Sequeira, Jeffrey M.; Quadros, Edward

    2016-01-01

    Folate receptor α (FRα) autoantibodies (FRAAs) are prevalent in autism spectrum disorder (ASD). They disrupt the transportation of folate across the blood-brain barrier by binding to the FRα. Children with ASD and FRAAs have been reported to respond well to treatment with a form of folate known as folinic acid, suggesting that they may be an important ASD subgroup to identify and treat. There has been no investigation of whether they manifest unique behavioral and physiological characteristic...

  3. Biophysical characterization of G-protein coupled receptor-peptide ligand binding

    OpenAIRE

    Langelaan, David N.; Ngweniform, Pascaline; Rainey, Jan K.

    2011-01-01

    G-protein coupled receptors (GPCRs) are ubiquitous membrane proteins allowing intracellular response to extracellular factors that range from photons of light to small molecules to proteins. Despite extensive exploitation of GRCRs as therapeutic targets, biophysical characterization of GPCR-ligand interactions remains challenging. In this minireview, we focus on techniques which have been successfully employed for structural and biophysical characterization of peptide ligands binding to their...

  4. Kinetics of leptin binding to the Q223R leptin receptor.

    Directory of Open Access Journals (Sweden)

    Hans Verkerke

    Full Text Available Studies in human populations and mouse models of disease have linked the common leptin receptor Q223R mutation to obesity, multiple forms of cancer, adverse drug reactions, and susceptibility to enteric and respiratory infections. Contradictory results cast doubt on the phenotypic consequences of this variant. We set out to determine whether the Q223R substitution affects leptin binding kinetics using surface plasmon resonance (SPR, a technique that allows sensitive real-time monitoring of protein-protein interactions. We measured the binding and dissociation rate constants for leptin to the extracellular domain of WT and Q223R murine leptin receptors expressed as Fc-fusion proteins and found that the mutant receptor does not significantly differ in kinetics of leptin binding from the WT leptin receptor. (WT: ka 1.76×106±0.193×106 M-1 s-1, kd 1.21×10-4±0.707×10-4 s-1, KD 6.47×10-11±3.30×10-11 M; Q223R: ka 1.75×106±0.0245×106 M-1 s-1, kd 1.47×10-4±0.0505×10-4 s-1, KD 8.43×10-11±0.407×10-11 M. Our results support earlier findings that differences in affinity and kinetics of leptin binding are unlikely to explain mechanistically the phenotypes that have been linked to this common genetic variant. Future studies will seek to elucidate the mechanism by which this mutation influences susceptibility to metabolic, infectious, and malignant pathologies.

  5. Evolutionary diversification of retinoic acid receptor ligand-binding pocket structure by molecular tinkering.

    Science.gov (United States)

    Gutierrez-Mazariegos, Juliana; Nadendla, Eswar Kumar; Studer, Romain A; Alvarez, Susana; de Lera, Angel R; Kuraku, Shigehiro; Bourguet, William; Schubert, Michael; Laudet, Vincent

    2016-03-01

    Whole genome duplications (WGDs) have been classically associated with the origin of evolutionary novelties and the so-called duplication-degeneration-complementation model describes the possible fates of genes after duplication. However, how sequence divergence effectively allows functional changes between gene duplicates is still unclear. In the vertebrate lineage, two rounds of WGDs took place, giving rise to paralogous gene copies observed for many gene families. For the retinoic acid receptors (RARs), for example, which are members of the nuclear hormone receptor (NR) superfamily, a unique ancestral gene has been duplicated resulting in three vertebrate paralogues: RARα, RARβ and RARγ. It has previously been shown that this single ancestral RAR was neofunctionalized to give rise to a larger substrate specificity range in the RARs of extant jawed vertebrates (also called gnathostomes). To understand RAR diversification, the members of the cyclostomes (lamprey and hagfish), jawless vertebrates representing the extant sister group of gnathostomes, provide an intermediate situation and thus allow the characterization of the evolutionary steps that shaped RAR ligand-binding properties following the WGDs. In this study, we assessed the ligand-binding specificity of cyclostome RARs and found that their ligand-binding pockets resemble those of gnathostome RARα and RARβ. In contrast, none of the cyclostome receptors studied showed any RARγ-like specificity. Together, our results suggest that cyclostome RARs cover only a portion of the specificity repertoire of the ancestral gnathostome RARs and indicate that the establishment of ligand-binding specificity was a stepwise event. This iterative process thus provides a rare example for the diversification of receptor-ligand interactions of NRs following WGDs. PMID:27069642

  6. Identification of an Inhibitory Alcohol Binding Site in GABAA ρ1 Receptors.

    Science.gov (United States)

    Borghese, Cecilia M; Ruiz, Carlos I; Lee, Ui S; Cullins, Madeline A; Bertaccini, Edward J; Trudell, James R; Harris, R Adron

    2016-01-20

    Alcohols inhibit γ-aminobutyric acid type A ρ1 receptor function. After introducing mutations in several positions of the second transmembrane helix in ρ1, we studied the effects of ethanol and hexanol on GABA responses using two-electrode voltage clamp electrophysiology in Xenopus laevis oocytes. The 6' mutations produced the following effects on ethanol and hexanol responses: small increase or no change (T6'M), increased inhibition (T6'V), and small potentiation (T6'Y and T6'F). The 5' mutations produced mainly increases in hexanol inhibition. Other mutations produced small (3' and 9') or no changes (2' and L277 in the first transmembrane domain) in alcohol effects. These results suggest an inhibitory alcohol binding site near the 6' position. Homology models of ρ1 receptors based on the X-ray structure of GluCl showed that the 2', 5', 6', and 9' residues were easily accessible from the ion pore, with 5' and 6' residues from neighboring subunits facing each other; L3' and L277 also faced the neighboring subunit. We tested ethanol through octanol on single and double mutated ρ1 receptors [ρ1(I15'S), ρ1(T6'Y), and ρ1(T6'Y,I15'S)] to further characterize the inhibitory alcohol pocket in the wild-type ρ1 receptor. The pocket can only bind relatively short-chain alcohols and is eliminated by introducing Y in the 6' position. Replacing the bulky 15' residue with a smaller side chain introduced a potentiating binding site, more sensitive to long-chain than to short-chain alcohols. In conclusion, the net alcohol effect on the ρ1 receptor is determined by the sum of its actions on inhibitory and potentiating sites.

  7. Structure-based rational design of a Toll-like receptor 4 (TLR4 decoy receptor with high binding affinity for a target protein.

    Directory of Open Access Journals (Sweden)

    Jieun Han

    Full Text Available Repeat proteins are increasingly attracting much attention as alternative scaffolds to immunoglobulin antibodies due to their unique structural features. Nonetheless, engineering interaction interface and understanding molecular basis for affinity maturation of repeat proteins still remain a challenge. Here, we present a structure-based rational design of a repeat protein with high binding affinity for a target protein. As a model repeat protein, a Toll-like receptor4 (TLR4 decoy receptor composed of leucine-rich repeat (LRR modules was used, and its interaction interface was rationally engineered to increase the binding affinity for myeloid differentiation protein 2 (MD2. Based on the complex crystal structure of the decoy receptor with MD2, we first designed single amino acid substitutions in the decoy receptor, and obtained three variants showing a binding affinity (K(D one-order of magnitude higher than the wild-type decoy receptor. The interacting modes and contributions of individual residues were elucidated by analyzing the crystal structures of the single variants. To further increase the binding affinity, single positive mutations were combined, and two double mutants were shown to have about 3000- and 565-fold higher binding affinities than the wild-type decoy receptor. Molecular dynamics simulations and energetic analysis indicate that an additive effect by two mutations occurring at nearby modules was the major contributor to the remarkable increase in the binding affinities.

  8. Molecular Modeling of the M3 Acetylcholine Muscarinic Receptor and Its Binding Site

    Science.gov (United States)

    Martinez-Archundia, Marlet; Cordomi, Arnau; Garriga, Pere; Perez, Juan J.

    2012-01-01

    The present study reports the results of a combined computational and site mutagenesis study designed to provide new insights into the orthosteric binding site of the human M3 muscarinic acetylcholine receptor. For this purpose a three-dimensional structure of the receptor at atomic resolution was built by homology modeling, using the crystallographic structure of bovine rhodopsin as a template. Then, the antagonist N-methylscopolamine was docked in the model and subsequently embedded in a lipid bilayer for its refinement using molecular dynamics simulations. Two different lipid bilayer compositions were studied: one component palmitoyl-oleyl phosphatidylcholine (POPC) and two-component palmitoyl-oleyl phosphatidylcholine/palmitoyl-oleyl phosphatidylserine (POPC-POPS). Analysis of the results suggested that residues F222 and T235 may contribute to the ligand-receptor recognition. Accordingly, alanine mutants at positions 222 and 235 were constructed, expressed, and their binding properties determined. The results confirmed the role of these residues in modulating the binding affinity of the ligand. PMID:22500107

  9. Characterization of a ligand binding site in the human transient receptor potential ankyrin 1 pore.

    Science.gov (United States)

    Klement, Göran; Eisele, Lina; Malinowsky, David; Nolting, Andreas; Svensson, Mats; Terp, Gitte; Weigelt, Dirk; Dabrowski, Michael

    2013-02-19

    The pharmacology and regulation of Transient Receptor Potential Ankyrin 1 (TRPA1) ion channel activity is intricate due to the physiological function as an integrator of multiple chemical, mechanical, and temperature stimuli as well as differences in species pharmacology. In this study, we describe and compare the current inhibition efficacy of human TRPA1 on three different TRPA1 antagonists. We used a homology model of TRPA1 based on Kv1.2 to select pore vestibule residues available for interaction with ligands entering the vestibule. Site-directed mutation constructs were expressed in Xenopus oocytes and their functionality and pharmacology assessed to support and improve our homology model. Based on the functional pharmacology results we propose an antagonist-binding site in the vestibule of the TRPA1 ion channel. We use the results to describe the proposed intravestibular ligand-binding site in TRPA1 in detail. Based on the single site substitutions, we designed a human TRPA1 receptor by substituting several residues in the vestibule and adjacent regions from the rat receptor to address and explain observed species pharmacology differences. In parallel, the lack of effect on HC-030031 inhibition by the vestibule substitutions suggests that this molecule interacts with TRPA1 via a binding site not situated in the vestibule.

  10. Molecular Modeling of the M3 Acetylcholine Muscarinic Receptor and Its Binding Site

    Directory of Open Access Journals (Sweden)

    Marlet Martinez-Archundia

    2012-01-01

    Full Text Available The present study reports the results of a combined computational and site mutagenesis study designed to provide new insights into the orthosteric binding site of the human M3 muscarinic acetylcholine receptor. For this purpose a three-dimensional structure of the receptor at atomic resolution was built by homology modeling, using the crystallographic structure of bovine rhodopsin as a template. Then, the antagonist N-methylscopolamine was docked in the model and subsequently embedded in a lipid bilayer for its refinement using molecular dynamics simulations. Two different lipid bilayer compositions were studied: one component palmitoyl-oleyl phosphatidylcholine (POPC and two-component palmitoyl-oleyl phosphatidylcholine/palmitoyl-oleyl phosphatidylserine (POPC-POPS. Analysis of the results suggested that residues F222 and T235 may contribute to the ligand-receptor recognition. Accordingly, alanine mutants at positions 222 and 235 were constructed, expressed, and their binding properties determined. The results confirmed the role of these residues in modulating the binding affinity of the ligand.

  11. Chronic brief restraint decreases in vivo binding of benzodiazepine receptor ligand to mouse brain.

    Science.gov (United States)

    Mosaddeghi, M; Burke, T F; Moerschbaecher, J M

    1993-01-01

    This study examines the effects of chronic brief restraint on in vivo benzodiazepine (BZD) receptor binding in mouse brain. Three groups of mice were used. Mice in group 1 were neither restrained nor injected (ACUTE control). Mice in group 2 were restrained for 5-6 s by grabbing the back skin and holding the subject upside-down at a 45 degrees angle as if to be injected (CHRONIC SHAM control) for 7 d. Mice in group 3 (CHRONIC SALINE) received daily single intraperitoneal (ip) injections of saline (5 mL/kg) for 7 d. On d 8 BZD receptors were labeled in vivo by administration of 3 microCi [3H]flumazenil (ip). The levels of ligand bound in vivo to cerebral cortex (CX), cerebellum (CB), brain stem (BS), striatum (ST), hippocampus (HP), and hypothalamus (HY) were determined. Results indicated that the level of binding was significantly (p stress produces a decrease in BZD receptor binding sites. PMID:8385464

  12. Structural Determinants for the Binding of Morphinan Agonists to the μ-Opioid Receptor.

    Directory of Open Access Journals (Sweden)

    Xiaojing Cong

    Full Text Available Atomistic descriptions of the μ-opioid receptor (μOR noncovalently binding with two of its prototypical morphinan agonists, morphine (MOP and hydromorphone (HMP, are investigated using molecular dynamics (MD simulations. Subtle differences between the binding modes and hydration properties of MOP and HMP emerge from the calculations. Alchemical free energy perturbation calculations show qualitative agreement with in vitro experiments performed in this work: indeed, the binding free energy difference between MOP and HMP computed by forward and backward alchemical transformation is 1.2±1.1 and 0.8±0.8 kcal/mol, respectively, to be compared with 0.4±0.3 kcal/mol from experiment. Comparison with an MD simulation of μOR covalently bound with the antagonist β-funaltrexamine hints to agonist-induced conformational changes associated with an early event of the receptor's activation: a shift of the transmembrane helix 6 relative to the transmembrane helix 3 and a consequent loss of the key R165-T279 interhelical hydrogen bond. This finding is consistent with a previous proposal suggesting that the R165-T279 hydrogen bond between these two helices indicates an inactive receptor conformation.

  13. Active regions' setting of the extracellular ligand-binding domain of human interleukin-6 receptor

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The reliable three dimensional (3-D) structure of the extracellular ligand-binding domain (V106-P322) of human interleukin-6 receptor (hIL-6R) has been constructed by means of computer-guided homology modeling techniques using the crystal structure of the extracellular ligand-binding region (K52-L251) of human growth hormone receptor (hGHR) as templet. The space location of some key residues which influence the combination ability between the receptor and the ligand has been observed and the effects of point mutagenesis of the four conservative cysteine residues on the space conformation are analyzed. The results show that the space conformation of the side-chain carboxyl of E305 plays a key role in the ligand-binding ability. Furthermore, the space conformation of the side-chain carboxyl of E305 is very important for the electrostatic potential complementarity between hIL-6R and hIL-6 according to the docking method.

  14. Phosphorylation inhibits DNA-binding of alternatively spliced aryl hydrocarbon receptor nuclear translocator

    International Nuclear Information System (INIS)

    The basic helix-loop-helix/PER-ARNT-SIM homology (bHLH/PAS) transcription factor ARNT (aryl hydrocarbon receptor nuclear translocator) is a key component of various pathways which induce the transcription of cytochrome P450 and hypoxia response genes. ARNT can be alternatively spliced to express Alt ARNT, containing an additional 15 amino acids immediately N-terminal to the DNA-binding basic region. Here, we show that ARNT and Alt ARNT proteins are differentially phosphorylated by protein kinase CKII in vitro. Phosphorylation had an inhibitory effect on DNA-binding to an E-box probe by Alt ARNT, but not ARNT, homodimers. This inhibitory phosphorylation occurs through Ser77. Moreover, a point mutant, Alt ARNT S77A, shows increased activity on an E-box reporter gene, consistent with Ser77 being a regulatory site in vivo. In contrast, DNA binding by an Alt ARNT/dioxin receptor heterodimer to the xenobiotic response element is not inhibited by phosphorylation with CKII, nor does Alt ARNT S77A behave differently from wild type Alt ARNT in the context of a dioxin receptor heterodimer

  15. Monitoring Solution Structures of Peroxisome Proliferator-Activated Receptor β/δ upon Ligand Binding.

    Science.gov (United States)

    Schwarz, Rico; Tänzler, Dirk; Ihling, Christian H; Sinz, Andrea

    2016-01-01

    Peroxisome proliferator-activated receptors (PPARs) have been intensively studied as drug targets to treat type 2 diabetes, lipid disorders, and metabolic syndrome. This study is part of our ongoing efforts to map conformational changes in PPARs in solution by a combination of chemical cross-linking and mass spectrometry (MS). To our best knowledge, we performed the first studies addressing solution structures of full-length PPAR-β/δ. We monitored the conformations of the ligand-binding domain (LBD) as well as full-length PPAR-β/δ upon binding of two agonists. (Photo-) cross-linking relied on (i) a variety of externally introduced amine- and carboxyl-reactive linkers and (ii) the incorporation of the photo-reactive amino acid p-benzoylphenylalanine (Bpa) into PPAR-β/δ by genetic engineering. The distances derived from cross-linking experiments allowed us to monitor conformational changes in PPAR-β/δ upon ligand binding. The cross-linking/MS approach proved highly advantageous to study nuclear receptors, such as PPARs, and revealed the interplay between DBD (DNA-binding domain) and LDB in PPAR-β/δ. Our results indicate the stabilization of a specific conformation through ligand binding in PPAR-β/δ LBD as well as full-length PPAR-β/δ. Moreover, our results suggest a close distance between the N- and C-terminal regions of full-length PPAR-β/δ in the presence of GW1516. Chemical cross-linking/MS allowed us gaining detailed insights into conformational changes that are induced in PPARs when activating ligands are present. Thus, cross-linking/MS should be added to the arsenal of structural methods available for studying nuclear receptors. PMID:26992147

  16. Effect of tetrahydrocurcumin on insulin receptor status in type 2 diabetic rats: studies on insulin binding to erythrocytes

    Indian Academy of Sciences (India)

    Pidaran Murugan; Leelavinothan Pari; Chippada Appa Rao

    2008-03-01

    Curcumin is the most active component of turmeric. It is believed that curcumin is a potent antioxidant and anti-inflammatory agent. Tetrahydrocurcumin (THC) is one of the major metabolites of curcumin, and exhibits many of the same physiological and pharmacological activities as curcumin and, in some systems, may exert greater antioxidant activity than curcumin. Using circulating erythrocytes as the cellular mode, the insulin-binding effect of THC and curcumin was investigated. Streptozotocin (STZ)–nicotinamide-induced male Wistar rats were used as the experimental models. THC (80 mg/kg body weight) was administered orally for 45 days. The effect of THC on blood glucose, plasma insulin and insulin binding to its receptor on the cell membrane of erythrocytes were studied. Mean specific binding of insulin was significantly lowered in diabetic rats with a decrease in plasma insulin. This was due to a significant decrease in mean insulin receptors. Erythrocytes from diabetic rats showed a decreased ability for insulin–receptor binding when compared with THC-treated diabetic rats. Scatchard analysis demonstrated that the decrease in insulin binding was accounted for by a decrease in insulin receptor sites per cell, with erythrocytes of diabetic rats having less insulin receptor sites per cell than THC-treated rats. High affinity (Kd1), low affinity (Kd2) and kinetic analyses revealed an increase in the average receptor affinity of erythrocytes from THC-treated rats compared with those of diabetic rats. These results suggest that acute alteration of the insulin receptor on the membranes of erythrocytes occurred in diabetic rats. Treatment with THC significantly improved specific insulin binding to the receptors, with receptor numbers and affinity binding reaching near-normal levels. Our study suggests the mechanism by which THC increases the number of total cellular insulin binding sites resulting in a significant increase in plasma insulin. The effect of THC is

  17. Sexually dimorphic development and binding characteristics of NMDA receptors in the brain of the platyfish

    Science.gov (United States)

    Flynn, K. M.; Schreibman, M. P.; Yablonsky-Alter, E.; Banerjee, S. P.

    1999-01-01

    This study investigated age- and gender-specific variations in properties of the glutamate N-methyl-d-aspartate receptor (NMDAR) in a freshwater teleost, the platyfish (Xiphophorus maculatus). Prior localization of the immunoreactive (ir)-R1 subunit of the NMDAR protein (R1) in cells of the nucleus olfactoretinalis (NOR), a primary gonadotropin-releasing hormone (GnRH)-containing brain nucleus in the platyfish, suggests that NMDAR, as in mammals, is involved in modulation of the platyfish brain-pituitary-gonad (BPG) axis. The current study shows that the number of cells in the NOR displaying ir-R1 is significantly increased in pubescent and mature female platyfish when compared to immature and senescent animals. In males, there is no significant change in ir-R1 expression in the NOR at any time in their lifespan. The affinity of the noncompetitive antagonist ((3)H)MK-801 for the NMDAR is significantly increased in pubescent females while maximum binding of ((3)H)MK-801 to the receptor reaches a significant maximum in mature females. In males, both MK-801 affinity and maximum binding remain unchanged throughout development. This is the first report of gender differences in the association of NMDA receptors with neuroendocrine brain areas during development. It is also the first report to suggest NMDA receptor involvement in the development of the BPG axis in a nonmammalian vertebrate. Copyright 1999 Academic Press.

  18. Molecular characterization of the haptoglobin.hemoglobin receptor CD163. Ligand binding properties of the scavenger receptor cysteine-rich domain region

    DEFF Research Database (Denmark)

    Madsen, Mette; Møller, Holger J; Nielsen, Marianne Jensby;

    2004-01-01

    CD163 is the macrophage receptor for endocytosis of haptoglobin.hemoglobin complexes. The extracellular region consisting of nine scavenger receptor cysteine rich (SRCR) domains also circulates in plasma as a soluble protein. By ligand binding analysis of a broad spectrum of soluble CD163...

  19. High-affinity cannabinoid binding site in brain: A possible marijuana receptor

    Energy Technology Data Exchange (ETDEWEB)

    Nye, J.S.

    1988-01-01

    The mechanism by which delta{sup 9} tetrahydrocannabinol (delta{sup 9}THC), the major psychoactive component of marijuana or hashish, produces its potent psychological and physiological effects is unknown. To find receptor binding sites for THC, we designed a water-soluble analog for use as a radioligand. 5{prime}-Trimethylammonium-delta{sup 8}THC (TMA) is a positively charged analog of delta-{sup 8}THC modified on the 5{prime} carbon, a portion of the molecule not important for its psychoactivity. We have studied the binding of ({sup 3}H)-5{prime}-trimethylammonium-delta-{sup 8}THC (({sup 3}H)TMA) to rat neuronal membranes. ({sup 3}H)TMA binds saturably and reversibly to brain membranes with high affinity to apparently one class of sites. Highest binding site density occurs in brain, but several peripheral organs also display specific binding. Detergent solubilizes the sites without affecting their pharmacologial properties. Molecular sieve chromatography reveals a bimodal peak of ({sup 3}H)TMA binding activity of approximately 60,000 daltons apparent molecular weight.

  20. High-affinity cannabinoid binding site in brain: A possible marijuana receptor

    International Nuclear Information System (INIS)

    The mechanism by which delta9 tetrahydrocannabinol (delta9THC), the major psychoactive component of marijuana or hashish, produces its potent psychological and physiological effects is unknown. To find receptor binding sites for THC, we designed a water-soluble analog for use as a radioligand. 5'-Trimethylammonium-delta8THC (TMA) is a positively charged analog of delta-8THC modified on the 5' carbon, a portion of the molecule not important for its psychoactivity. We have studied the binding of [3H]-5'-trimethylammonium-delta-8THC ([3H]TMA) to rat neuronal membranes. [3H]TMA binds saturably and reversibly to brain membranes with high affinity to apparently one class of sites. Highest binding site density occurs in brain, but several peripheral organs also display specific binding. Detergent solubilizes the sites without affecting their pharmacologial properties. Molecular sieve chromatography reveals a bimodal peak of [3H]TMA binding activity of approximately 60,000 daltons apparent molecular weight

  1. A physiological role for androgen actions in the absence of androgen receptor DNA binding activity.

    Science.gov (United States)

    Pang, Tammy P S; Clarke, Michele V; Ghasem-Zadeh, Ali; Lee, Nicole K L; Davey, Rachel A; MacLean, Helen E

    2012-01-01

    We tested the hypothesis that androgens have physiological actions via non-DNA binding-dependent androgen receptor (AR) signaling pathways in males, using our genetically modified mice that express a mutant AR with deletion of the 2nd zinc finger of the DNA binding domain (AR(ΔZF2)) that cannot bind DNA. In cultured genital skin fibroblasts, the mutant AR(ΔZF2) has normal ligand binding ability, phosphorylates ERK-1/2 in response to 1 min DHT treatment (blocked by the AR antagonist bicalutamide), but has reduced androgen-dependent nuclear localization compared to wildtype (WT). AR(ΔZF2) males have normal baseline ERK-1/2 phosphorylation, with a 1.5-fold increase in Akt phosphorylation in AR(ΔZF2) muscle vs WT. To identify physiological actions of non-DNA binding-dependent AR signaling, AR(ΔZF2) males were treated for 6 weeks with dihydrotestosterone (DHT). Cortical bone growth was suppressed by DHT in AR(ΔZF2) mice (6% decrease in periosteal and 7% decrease in medullary circumference vs untreated AR(ΔZF2) males). In conclusion, these data suggest that non-DNA binding dependent AR actions suppress cortical bone growth, which may provide a mechanism to fine-tune the response to androgens in bone.

  2. Structural insights into human peroxisome proliferator activated receptor delta (PPAR-delta selective ligand binding.

    Directory of Open Access Journals (Sweden)

    Fernanda A H Batista

    Full Text Available Peroxisome proliferator activated receptors (PPARs δ, α and γ are closely related transcription factors that exert distinct effects on fatty acid and glucose metabolism, cardiac disease, inflammatory response and other processes. Several groups developed PPAR subtype specific modulators to trigger desirable effects of particular PPARs without harmful side effects associated with activation of other subtypes. Presently, however, many compounds that bind to one of the PPARs cross-react with others and rational strategies to obtain highly selective PPAR modulators are far from clear. GW0742 is a synthetic ligand that binds PPARδ more than 300-fold more tightly than PPARα or PPARγ but the structural basis of PPARδ:GW0742 interactions and reasons for strong selectivity are not clear. Here we report the crystal structure of the PPARδ:GW0742 complex. Comparisons of the PPARδ:GW0742 complex with published structures of PPARs in complex with α and γ selective agonists and pan agonists suggests that two residues (Val312 and Ile328 in the buried hormone binding pocket play special roles in PPARδ selective binding and experimental and computational analysis of effects of mutations in these residues confirms this and suggests that bulky substituents that line the PPARα and γ ligand binding pockets as structural barriers for GW0742 binding. This analysis suggests general strategies for selective PPARδ ligand design.

  3. Controlling the taste receptor accessible structure of rebaudioside A via binding to bovine serum albumin.

    Science.gov (United States)

    Mudgal, Samriddh; Keresztes, Ivan; Feigenson, Gerald W; Rizvi, S S H

    2016-04-15

    We illustrate a method that uses bovine serum albumin (BSA) to control the receptor-accessible part of rebaudioside A (Reb A). The critical micelle concentration (CMC) of Reb A was found to be 4.5 mM and 5 mM at pH 3 and 6.7 respectively. NMR studies show that below its CMC, Reb A binds weakly to BSA to generate a Reb A-protein complex ("RPC"), which is only modestly stable under varying conditions of pH (3.0-6.7) and temperature (4-40°C) with its binding affinities determined to be in the range of 5-280 mM. Furthermore, saturation transfer difference (STD) NMR experiments confirm that the RPC has fast exchange of the bitterness-instigating diterpene of Reb A into the binding sites of BSA. Our method can be used to alter the strength of Reb A-receptor interaction, as a result of binding of Reb A to BSA, which may ultimately lead to moderation of its taste.

  4. The Binding Ability Analysis of the Normal VLDL Receptor and Its Mutant

    Institute of Scientific and Technical Information of China (English)

    QU Shen; FENG Ning; LIU Zhiguo; ZHOU Hua; DENG Yaozu; FENG Zongchen

    2001-01-01

    The ligand-binding domain of VLDL receptor contains eight imperfectly similar repeats.To discuss the contribution of each repeat to ligand binding, the RT-PCR technique was used to clone the VLDLR-cDNA from the heart muscle of Chinese people. Two recombinants were further constructed, which contained the full-length cDNA of VLDLR and the mutant lacking repeats 1-5.CHO cell line was transfected with two recombinants. The expression of VLDLR gene could be detected by RT-PCR from the CHO cells transfected with pCD-VR. The results of binding experiments showed that the ability of the CHO cells transfected with the full-length cDNA of VLDL-R binding DiI-labeled β-VLDL was higher than that of the CHO cells transfected with the mutant. Our findings indicated that human VLDL-R gene could be expressed effectively on CHO cells, and the receptor was almost inactivated when repeats1-5 were deleted.

  5. Retinoic acid receptors recognize the mouse genome through binding elements with diverse spacing and topology.

    Science.gov (United States)

    Moutier, Emmanuel; Ye, Tao; Choukrallah, Mohamed-Amin; Urban, Sylvia; Osz, Judit; Chatagnon, Amandine; Delacroix, Laurence; Langer, Diana; Rochel, Natacha; Moras, Dino; Benoit, Gerard; Davidson, Irwin

    2012-07-27

    Retinoic acid receptors (RARs) heterodimerize with retinoid X receptors (RXRs) and bind to RA response elements (RAREs) in the regulatory regions of their target genes. Although previous studies on limited sets of RA-regulated genes have defined canonical RAREs as direct repeats of the consensus RGKTCA separated by 1, 2, or 5 nucleotides (DR1, DR2, DR5), we show that in mouse embryoid bodies or F9 embryonal carcinoma cells, RARs occupy a large repertoire of sites with DR0, DR8, and IR0 (inverted repeat 0) elements. Recombinant RAR-RXR binds these non-canonical spacings in vitro with comparable affinities to DR2 and DR5. Most DR8 elements comprise three half-sites with DR2 and DR0 spacings. This specific half-site organization constitutes a previously unrecognized but frequent signature of RAR binding elements. In functional assays, DR8 and IR0 elements act as independent RAREs, whereas DR0 does not. Our results reveal an unexpected diversity in the spacing and topology of binding elements for the RAR-RXR heterodimer. The differential ability of RAR-RXR bound to DR0 compared to DR2, DR5, and DR8 to mediate RA-dependent transcriptional activation indicates that half-site spacing allosterically regulates RAR function.

  6. Use of computational modeling approaches in studying the binding interactions of compounds with human estrogen receptors.

    Science.gov (United States)

    Wang, Pan; Dang, Li; Zhu, Bao-Ting

    2016-01-01

    Estrogens have a whole host of physiological functions in many human organs and systems, including the reproductive, cardiovascular, and central nervous systems. Many naturally-occurring compounds with estrogenic or antiestrogenic activity are present in our environment and food sources. Synthetic estrogens and antiestrogens are also important therapeutic agents. At the molecular level, estrogen receptors (ERs) mediate most of the well-known actions of estrogens. Given recent advances in computational modeling tools, it is now highly practical to use these tools to study the interaction of human ERs with various types of ligands. There are two common categories of modeling techniques: one is the quantitative structure activity relationship (QSAR) analysis, which uses the structural information of the interacting ligands to predict the binding site properties of a macromolecule, and the other one is molecular docking-based computational analysis, which uses the 3-dimensional structural information of both the ligands and the receptor to predict the binding interaction. In this review, we discuss recent results that employed these and other related computational modeling approaches to characterize the binding interaction of various estrogens and antiestrogens with the human ERs. These examples clearly demonstrate that the computational modeling approaches, when used in combination with other experimental methods, are powerful tools that can precisely predict the binding interaction of various estrogenic ligands and their derivatives with the human ERs.

  7. Directed evolution of estrogen receptor proteins with altered ligand-binding specificities.

    Science.gov (United States)

    Islam, Kazi Mohammed Didarul; Dilcher, Meik; Thurow, Corinna; Vock, Carsten; Krimmelbein, Ilga Kristine; Tietze, Lutz Friedjan; Gonzalez, Victor; Zhao, Huimin; Gatz, Christiane

    2009-01-01

    Transcriptional activators that respond to ligands with no cellular targets are powerful tools that can confer regulated expression of a transgene in almost all biological systems. In this study, we altered the ligand-binding specificity of the human estrogen receptor alpha (hER alpha) so that it would recognize a non-steroidal synthetic compound with structural similarities to the phytoestrogen resveratrol. For this purpose, we performed iterative rounds of site-specific saturation mutagenesis of a fixed set of ligand-contacting residues and subsequent random mutagenesis of the entire ligand-binding domain. Selection of the receptor mutants and quantification of the interaction were carried out by exploiting a yeast two-hybrid system that reports the ligand-dependent interaction between hER alpha and steroid receptor coactivator-1 (SRC-1). The screen was performed with a synthetic ligand (CV3320) that promoted growth of the reporter yeast strain to half maximal levels at a concentration of 3.7 microM. The optimized receptor mutant (L384F/L387M/Y537S) showed a 67-fold increased activity to the synthetic ligand CV3320 (half maximal yeast growth at 0.055 microM) and a 10-fold decreased activity to 17beta-estradiol (E2; half maximal yeast growth at 4 nM). The novel receptor-ligand pair partially fulfills the requirements for a specific 'gene switch' as it responds to concentrations of the synthetic ligand which do not activate the wildtype receptor. Due to its residual responsiveness to E2 at concentrations (4 nM) that might occur in vivo, further improvements have to be performed to render the system applicable in organisms with endogenous E2 synthesis.

  8. Ligand binding affinities of arctigenin and its demethylated metabolites to estrogen receptor alpha.

    Science.gov (United States)

    Jin, Jong-Sik; Lee, Jong-Hyun; Hattori, Masao

    2013-01-01

    Phytoestrogens are defined as plant-derived compounds with estrogen-like activities according to their chemical structures and activities. Plant lignans are generally categorized as phytoestrogens. It was reported that (-)-arctigenin, the aglycone of arctiin, was demethylated to (-)-dihydroxyenterolactone (DHENL) by Eubacterium (E.) sp. ARC-2. Through stepwise demethylation, E. sp. ARC-2 produced six intermediates, three mono-desmethylarctigenins and three di-desmethylarctigenins. In the present study, ligand binding affinities of (-)-arctigenin and its seven metabolites, including DHENL, were investigated for an estrogen receptor alpha, and found that demethylated metabolites had stronger binding affinities than (-)-arctigenin using a ligand binding screen assay method. The IC(50) value of (2R,3R)-2-(4-hydroxy-3-methoxybenzyl)-3-(3,4-dihydroxybenzyl)-butyrolactone was 7.9 × 10⁻⁴ M. PMID:23325100

  9. Ligand Binding Affinities of Arctigenin and Its Demethylated Metabolites to Estrogen Receptor Alpha

    Directory of Open Access Journals (Sweden)

    Masao Hattori

    2013-01-01

    Full Text Available Phytoestrogens are defined as plant-derived compounds with estrogen-like activities according to their chemical structures and activities. Plant lignans are generally categorized as phytoestrogens. It was reported that (−-arctigenin, the aglycone of arctiin, was demethylated to (−-dihydroxyenterolactone (DHENL by Eubacterium (E. sp. ARC-2. Through stepwise demethylation, E. sp. ARC-2 produced six intermediates, three mono-desmethylarctigenins and three di-desmethylarctigenins. In the present study, ligand binding affinities of (−-arctigenin and its seven metabolites, including DHENL, were investigated for an estrogen receptor alpha, and found that demethylated metabolites had stronger binding affinities than (−-arctigenin using a ligand binding screen assay method. The IC50 value of (2R,3R-2-(4-hydroxy-3-methoxybenzyl-3-(3,4-dihydroxybenzyl-butyrolactone was 7.9 × 10−4 M.

  10. Efficient cell-free production of olfactory receptors: detergent optimization, structure, and ligand binding analyses.

    Science.gov (United States)

    Kaiser, Liselotte; Graveland-Bikker, Johanna; Steuerwald, Dirk; Vanberghem, Mélanie; Herlihy, Kara; Zhang, Shuguang

    2008-10-14

    High-level production of membrane proteins, particularly of G protein-coupled receptors (GPCRs) in heterologous cell systems encounters a number of difficulties from their inherent hydrophobicity in their transmembrane domains, which frequently cause protein aggregation and cytotoxicity and thus reduce the protein yield. Recent advances in cell-free protein synthesis circumvent those problems to produce membrane proteins with a yield sometimes exceeding the cell-based approach. Here, we report cell-free production of a human olfactory receptor 17-4 (hOR17-4) using the wheat germ extract. Using the simple method, we also successful produced two additional olfactory receptors. To obtain soluble olfactory receptors and to increase yield, we directly added different detergents in varying concentrations to the cell-free reaction. To identify a purification buffer system that maintained the receptor in a nonaggregated form, we developed a method that uses small-volume size-exclusion column chromatography combined with rapid and sensitive dot-blot detection. Different buffer components including salt concentration, various detergents and detergent concentration, and reducing agent and its concentrations were evaluated for their ability to maintain the cell-free produced protein stable and nonaggregated. The purified olfactory receptor displays a typical a alpha-helical CD spectrum. Surface plasmon resonance measurements were used to show binding of a known ligand undecanal to hOR17-4. Our approach to produce a high yield of purified olfactory receptor is a milestone toward obtaining a large quantity of olfactory receptors for designing bionic sensors. Furthermore, this simple approach may be broadly useful not only for other classes of GPCRs but also for other membrane proteins. PMID:18840687

  11. Efficient cell-free production of olfactory receptors: detergent optimization, structure, and ligand binding analyses.

    Science.gov (United States)

    Kaiser, Liselotte; Graveland-Bikker, Johanna; Steuerwald, Dirk; Vanberghem, Mélanie; Herlihy, Kara; Zhang, Shuguang

    2008-10-14

    High-level production of membrane proteins, particularly of G protein-coupled receptors (GPCRs) in heterologous cell systems encounters a number of difficulties from their inherent hydrophobicity in their transmembrane domains, which frequently cause protein aggregation and cytotoxicity and thus reduce the protein yield. Recent advances in cell-free protein synthesis circumvent those problems to produce membrane proteins with a yield sometimes exceeding the cell-based approach. Here, we report cell-free production of a human olfactory receptor 17-4 (hOR17-4) using the wheat germ extract. Using the simple method, we also successful produced two additional olfactory receptors. To obtain soluble olfactory receptors and to increase yield, we directly added different detergents in varying concentrations to the cell-free reaction. To identify a purification buffer system that maintained the receptor in a nonaggregated form, we developed a method that uses small-volume size-exclusion column chromatography combined with rapid and sensitive dot-blot detection. Different buffer components including salt concentration, various detergents and detergent concentration, and reducing agent and its concentrations were evaluated for their ability to maintain the cell-free produced protein stable and nonaggregated. The purified olfactory receptor displays a typical a alpha-helical CD spectrum. Surface plasmon resonance measurements were used to show binding of a known ligand undecanal to hOR17-4. Our approach to produce a high yield of purified olfactory receptor is a milestone toward obtaining a large quantity of olfactory receptors for designing bionic sensors. Furthermore, this simple approach may be broadly useful not only for other classes of GPCRs but also for other membrane proteins.

  12. Increased dopamine D1 receptor binding in the human mesocortical system following central cholinergic activation

    International Nuclear Information System (INIS)

    Full text: The interaction between the cholinergic and dopaminergic system has been implicated in many pathological processes including, Alzheimer's disease, schizophrenia and drug addiction. Little is known about the control of dopamine (DA) release following central cholinergic activation in humans, but experimental studies suggest that endogenously released Acetylcholine (ACh) achieved by the administration of cholinesterase inhibitors, can increase dopamine efflux in different regions of the brain. This leads to the activation of different types of post-synaptic dopaminergic receptors which belong to the family of G-protein coupled receptors (GPCRs). A common paradigm of the GPCRs desensitization is that agonist-induced receptor signaling is rapidly attenuated by receptor internalisation. Several experiments have shown that the activation of Dl receptors in acute conditions leads, within minutes, to translocation of the receptor from the surface of the neurons to the endosomal compartment in the cytoplasm and increased receptor turnover. To assess changes in Dl receptor density following an intravenous infusion of the selective cholinesterase inhibitor physostigmine salicylate (PHY), we studied eleven normal subjects (10 male and 1 female, mean age 36.1 and 61617; 9.9) using [11C]-SCH23390 and PET The binding potential (BP) for SCH23390 was significantly (p0.05). There was no statistically significant difference between baseline and physostigmine Kl ratio (p>0.05) suggesting that BP changes observed were not secondary to regional blood flow changes or to an order effect of the scans. Copyright (2002) The Australian and New Zealand Society of Nuclear Medicine Inc

  13. Improved binding affinity and interesting selectivities of aminopyrimidine-bearing carbohydrate receptors in comparison with their aminopyridine analogues.

    Science.gov (United States)

    Lippe, Jan; Seichter, Wilhelm; Mazik, Monika

    2015-12-28

    Due to the problems with the exact prediction of the binding properties of an artificial carbohydrate receptor, the identification of characteristic structural features, having the ability to influence the binding properties in a predictable way, is of high importance. The purpose of our investigation was to examine whether the previously observed higher affinity of 2-aminopyrimidine-bearing carbohydrate receptors in comparison with aminopyridine substituted analogues represents a general tendency of aminopyrimidine-bearing compounds. Systematic binding studies on new compounds consisting of 2-aminopyrimidine groups confirmed such a tendency and allowed the identification of interesting structure-activity relationships. Receptors having different symmetries showed systematic preferences for specific glycosides, which are remarkable for such simple receptor systems. Particularly suitable receptor architectures for the recognition of selected glycosides were identified and represent a valuable base for further developments in this field. PMID:26467387

  14. Cloning of human tumor necrosis factor (TNF) receptor cDNA and expression of recombinant soluble TNF-binding protein

    International Nuclear Information System (INIS)

    The cDNA for one of the receptors for human tumor necrosis factor (TNF) has been isolated. This cDNA encodes a protein of 455 amino acids that is divided into an extracellular domain of 171 residues and a cytoplasmic domain of 221 residues. The extracellular domain has been engineered for expression in mammalian cells, and this recombinant derivative binds TNFα with high affinity and inhibits its cytotoxic activity in vitro. The TNF receptor exhibits similarity with a family of cell surface proteins that includes the nerve growth factor receptor, the human B-cell surface antigen CD40, and the rat T-cell surface antigen OX40. The TNF receptor contains four cysteine-rich subdomains in the extracellular portion. Mammalian cells transfected with the entire TNF receptor cDNA bind radiolabeled TNFα with an affinity of 2.5 x 10-9 M. This binding can be competitively inhibited with unlabeled TNFα or lymphotoxin (TNFβ)

  15. Structural comparison of phospholipase-A2-binding regions in phospholipase-A2 receptors from various mammals.

    Science.gov (United States)

    Higashino, K; Ishizaki, J; Kishino, J; Ohara, O; Arita, H

    1994-10-01

    We determined the nucleotide sequence of a mouse cDNA encoding the receptor for pancreatic group I phospholipase A2 (PLA2-I). Interspecies structural comparison of the mouse receptor with bovine PLA2-I receptor, whose structure had been clarified, revealed that the fourth carbohydrate-recognition domain (CRD)-like domain (CRD-like 4) was the most conserved among the domains in the PLA2-I receptor, suggesting the functional importance of CRD-like 4. A transient expression experiment with a truncated form of the receptor consisting of three CRD-like domains, from the third to the fifth, demonstrated that the PLA2-I-binding site of the receptor is constituted from these three CRD-like domains, supporting the functional indispensability of CRD-like 4 in the receptor. Since the PLA2-I-binding region was thus assigned to be CRD-like domains 3-5, we further analyzed the structures of the PLA2-I-binding regions in the PLA2-I receptors from the rat, rabbit and human. Furthermore, the obtained PLA2-I receptor cDNA fragments from these animals made it possible to examine the tissue expression patterns of this receptor in various mammals. The results, together with the results of the genomic structural analysis of this gene, indicated that a PLA2 receptor recently characterized by Lambeau et al. [Lambeau, G., Ancian, P., Barhanin, J. & Lazdunski, M. (1994) J. Biol. Chem. 269, 1575-1578] is a rabbit counterpart of the PLA2-I receptor although these two PLA2 receptors have distinctive PLA2-binding specificities.

  16. Ritonavir binds to and downregulates estrogen receptors: Molecular mechanism of promoting early atherosclerosis

    Energy Technology Data Exchange (ETDEWEB)

    Xiang, Jin [Ministry of Education Laboratory of Combinatorial Biosynthesis and Drug Discovery, School of Pharmaceutical Science, Wuhan University, Wuhan 430071 (China); Wang, Ying [Department of Pathophysiology, School of Medicine, Wuhan University, Wuhan 430071 (China); Su, Ke [Department of Nephrology, Renmin Hospital of Wuhan University, Wuhan 430060 (China); Liu, Min [Ministry of Education Laboratory of Combinatorial Biosynthesis and Drug Discovery, School of Pharmaceutical Science, Wuhan University, Wuhan 430071 (China); Hu, Peng-Chao [Department of Pathophysiology, School of Medicine, Wuhan University, Wuhan 430071 (China); Ma, Tian; Li, Jia-Xi [Ministry of Education Laboratory of Combinatorial Biosynthesis and Drug Discovery, School of Pharmaceutical Science, Wuhan University, Wuhan 430071 (China); Wei, Lei [Department of Pathophysiology, School of Medicine, Wuhan University, Wuhan 430071 (China); Zheng, Zhongliang, E-mail: biochem@whu.edu.cn [State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072 (China); Yang, Fang, E-mail: fang-yang@whu.edu.cn [Department of Physiology, School of Medicine, Wuhan University, Wuhan 430071 (China)

    2014-10-01

    Estrogenic actions are closely related to cardiovascular disease. Ritonavir (RTV), a human immunodeficiency virus (HIV) protease inhibitor, induces atherosclerosis in an estrogen-related manner. However, how RTV induce pathological phenotypes through estrogen pathway remains unclear. In this study, we found that RTV increases thickness of coronary artery walls of Sprague Dawley rats and plasma free fatty acids (FFA) levels. In addition, RTV could induce foam cell formation, downregulate both estrogen receptor α (ERα) and ERβ expression, upregulate G protein-coupled estrogen receptor (GPER) expression, and all of them could be partially blocked by 17β-estradiol (E2), suggesting RTV acts as an antagonist for E2. Computational modeling shows a similar interaction with ERα between RTV and 2-aryl indoles, which are highly subtype-selective ligands for ERα. We also found that RTV directly bound to ERα and selectively inhibited the nuclear localization of ERα, and residue Leu536 in the hydrophobic core of ligand binding domain (LBD) was essential for the interaction with RTV. In addition, RTV did not change the secondary structure of ERα-LBD like E2, which explained how ERα lost the capacity of nuclear translocation under the treatment of RTV. All of the evidences suggest that ritonavir acts as an antagonist for 17β-estradiol in regulating α subtype estrogen receptor function and early events of atherosclerosis. - Graphical abstract: RTV directly binds to ERα and Leu536 in the hydrophobic core of ligand binding domain is essential for the interaction. - Highlights: • RTV increases the thickness of rat coronary artery wall and foam cell formation. • RTV downregulates the expression of ERα and ERβ. • RTV inhibits ERα promoter activity. • RTV directly binds to ERα and the key amino acid is Leu536. • RTV inhibits the nuclear translocation of ERα and GPER.

  17. Bacteriophage receptor binding protein based assays for the simultaneous detection of Campylobacter jejuni and Campylobacter coli.

    Science.gov (United States)

    Javed, Muhammad A; Poshtiban, Somayyeh; Arutyunov, Denis; Evoy, Stephane; Szymanski, Christine M

    2013-01-01

    Campylobacter jejuni and Campylobacter coli are the most common bacterial causes of foodborne gastroenteritis which is occasionally followed by a debilitating neuropathy known as Guillain-Barré syndrome. Rapid and specific detection of these pathogens is very important for effective control and quick treatment of infection. Most of the diagnostics available for these organisms are time consuming and require technical expertise with expensive instruments and reagents to perform. Bacteriophages bind to their host specifically through their receptor binding proteins (RBPs), which can be exploited for pathogen detection. We recently sequenced the genome of C. jejuni phage NCTC12673 and identified its putative host receptor binding protein, Gp047. In the current study, we localized the receptor binding domain to the C-terminal quarter of Gp047. CC-Gp047 could be produced recombinantly and was capable of agglutinating both C. jejuni and C. coli cells unlike the host range of the parent phage which is limited to a subset of C. jejuni isolates. The agglutination procedure could be performed within minutes on a glass slide at room temperature and was not hindered by the presence of buffers or nutrient media. This agglutination assay showed 100% specificity and the sensitivity was 95% for C. jejuni (n = 40) and 90% for C. coli (n = 19). CC-Gp047 was also expressed as a fusion with enhanced green fluorescent protein (EGFP). Chimeric EGFP_CC-Gp047 was able to specifically label C. jejuni and C. coli cells in mixed cultures allowing for the detection of these pathogens by fluorescent microscopy. This study describes a simple and rapid method for the detection of C. jejuni and C. coli using engineered phage RBPs and offers a promising new diagnostics platform for healthcare and surveillance laboratories.

  18. Bacteriophage receptor binding protein based assays for the simultaneous detection of Campylobacter jejuni and Campylobacter coli.

    Directory of Open Access Journals (Sweden)

    Muhammad A Javed

    Full Text Available Campylobacter jejuni and Campylobacter coli are the most common bacterial causes of foodborne gastroenteritis which is occasionally followed by a debilitating neuropathy known as Guillain-Barré syndrome. Rapid and specific detection of these pathogens is very important for effective control and quick treatment of infection. Most of the diagnostics available for these organisms are time consuming and require technical expertise with expensive instruments and reagents to perform. Bacteriophages bind to their host specifically through their receptor binding proteins (RBPs, which can be exploited for pathogen detection. We recently sequenced the genome of C. jejuni phage NCTC12673 and identified its putative host receptor binding protein, Gp047. In the current study, we localized the receptor binding domain to the C-terminal quarter of Gp047. CC-Gp047 could be produced recombinantly and was capable of agglutinating both C. jejuni and C. coli cells unlike the host range of the parent phage which is limited to a subset of C. jejuni isolates. The agglutination procedure could be performed within minutes on a glass slide at room temperature and was not hindered by the presence of buffers or nutrient media. This agglutination assay showed 100% specificity and the sensitivity was 95% for C. jejuni (n = 40 and 90% for C. coli (n = 19. CC-Gp047 was also expressed as a fusion with enhanced green fluorescent protein (EGFP. Chimeric EGFP_CC-Gp047 was able to specifically label C. jejuni and C. coli cells in mixed cultures allowing for the detection of these pathogens by fluorescent microscopy. This study describes a simple and rapid method for the detection of C. jejuni and C. coli using engineered phage RBPs and offers a promising new diagnostics platform for healthcare and surveillance laboratories.

  19. DIFFERENTIAL BINDING OF HUMAN INTERLEUKIN-1 (IL-1) RECEPTOR ANTAGONIST TO NATURAL AND RECOMBINANT SOLUBLE AND CELLULAR IL-1 TYPE-I RECEPTORS

    DEFF Research Database (Denmark)

    Svenson, Morten; Nedergaard, Susanne; Heegaard, Peter M. H.;

    1995-01-01

    A recently described factor, interleukin-1 receptor antagonist binding factor (IL-1raBF), in serum of normal individuals is immunologically related to the interleukin-1 receptor type I (IL-1RI). It is presumably a soluble form of the receptor that binds exclusively to interleukin-1 receptor...... antagonist (IL-1ra). Recombinant soluble human IL-1RI expressed in COS cells (sIL-1RI) consists of the extracellular part of the receptor and binds all three known IL-1 species but preferentially to IL-1ra. We further characterized the sizes and binding of IL-1raBF and sIL-1RI to IL-1ra by polyacrylamide gel...... electrophoresis in the presence of sodium dodecylsulfate, ligand binding interference analyses, N-glycosidase treatment, concanavalin A affinity chromatography, and with the use of monoclonal antibodies (mAb) to human recombinant IL-1ra. We also evaluated the binding of IL-1ra to cellular IL-1RI on MRC5...

  20. Insulin-like growth factor II: complexity of biosynthesis and receptor binding

    DEFF Research Database (Denmark)

    Gammeltoft, S; Christiansen, Jan; Nielsen, F C;

    1991-01-01

    Insulin-like growth factor II (IGF-II) belongs to the insulin family of peptides and acts as a growth factor in many fetal tissues and tumors. The gene expression of IGF-II is initiated at three different promoters which gives rise to multiple transcripts. In a human rhabdomyosarcoma cell line...... the 4.8-kb mRNA is translated to IGF-II. The cell line secretes two forms of immunoreactive and bioactive IGF-II to the medium of molecular size 10 kd and 7.5 kd which may be involved in autocrine control of cell growth. IGF-II binds to two receptors on the surface of many cell types: the IGF-I receptor...... and the mannose-6-phosphate (Man-6-P)/IGF-II receptor. There is consensus that the cellular effects of IGF-II are mediated by the IGF-I receptor via activation of its intrinsic tyrosine kinase. The Man-6-P/IGF-II receptor is involved in endocytosis of lysosomal enzymes and IGF-II. In selected cell types, however...

  1. (+)-Cannabidiol analogues which bind cannabinoid receptors but exert peripheral activity only.

    Science.gov (United States)

    Fride, Ester; Feigin, Cfir; Ponde, Datta E; Breuer, Aviva; Hanus, Lumír; Arshavsky, Nina; Mechoulam, Raphael

    2004-12-15

    Delta9-Tetrahydrocannabinol (Delta9-THC) and (-)-cannabidiol are major constituents of the Cannabis sativa plant with different pharmacological profiles: (-)-Delta9-tetrahydrocannabinol, but not (-)-cannabidiol, activates cannabinoid CB1 and CB2 receptors and induces psychoactive and peripheral effects. We have tested a series of (+)-cannabidiol derivatives, namely, (+)-cannabidiol-DMH (DMH-1,1-dimethylheptyl-), (+)-7-OH-cannabidiol-DMH, (+)-7-OH- cannabidiol, (+)-7-COOH- cannabidiol and (+)-7-COOH-cannabidiol-DMH, for central and peripheral (intestinal, antiinflammatory and peripheral pain) effects in mice. Although all (+)-cannabidiols bind to cannabinoid CB1 and CB2 receptors, only (+)-7-OH-cannabidiol-DMH was centrally active, while all (+)-cannabidiol analogues completely arrested defecation. The effects of (+)-cannabidiol-DMH and (+)-7-OH-cannabidiol-DMH were partially antagonized by the cannabinoid CB1 receptor antagonist N-(piperidiny-1-yl)-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamide (SR141716), but not by the cannabinoid CB2 receptor antagonist N-[-(1S)-endo-1,3,3-trimethil bicyclo [2.2.1] heptan-2-yl-5-(4-chloro-3-methylphenyl)-1-(4-methylbenzyl)-pyrazole-3-carboxamide (SR144528), and had no effect on CB1(-/-) receptor knockout mice. (+)-Cannabidiol-DMH inhibited the peripheral pain response and arachidonic-acid-induced inflammation of the ear. We conclude that centrally inactive (+)-cannabidiol analogues should be further developed as antidiarrheal, antiinflammatory and analgesic drugs for gastrointestinal and other peripheral conditions. PMID:15588739

  2. Pharmacophore-directed Homology Modeling and Molecular Dynamics Simulation of G Protein-coupled Receptor: Study of Possible Binding Modes of 5-HT2C Receptor Agonists

    Institute of Scientific and Technical Information of China (English)

    Zhili ZUO; Gang CHEN; Xiaomin LUO; Chummok PUAH; Weiliang ZHU; Kaixian CHEN; Hualiang JIANG

    2007-01-01

    A new pharmacophore-based modeling procedure, including homology modeling, pharmacophore study, flexible molecular docking, and long-time molecular dynamics (MD) simulations, was employed to construct the structure of the human 5-HT2C receptor and determine the characteristics of binding modes of 5-HT2C receptor agonists. An agonist-receptor complex has been constructed based on homology modeling and a pharmacophore hypothesis model based on some high active compounds. Then MD simulations of the ligand-receptor complex in an explicit membrane environment were carried out. The conformation of the 5-HT2C receptor during MD simulation was explored, and the stable binding modes of the studied agonist were determined. Flexible molecular docking of several structurally diverse agonists of the human 5-HT2C receptor was carried out, and the general binding modes of these agonists were investigated. According to the models presented in this work and the results of Flexi-Dock, the involvement of the amino acid residues Asp134,Ser138, Asn210, Asn331, Tyr358, Ile131, Ser 132, Val135, Thr139, Ile189, Va1202, Va1208, Leu209, Phe214,Va1215, Gly218, Ser219, Phe223, Trp324, Phe327, and Phe328 in agonist recognition was studied. The obtained binding modes of the human 5-HT2C receptor agonists have good agreement with the site-directed mutagenesis data and other studies.

  3. Altered levels of laminin receptor mRNA in various human carcinoma cells that have different abilities to bind laminin

    DEFF Research Database (Denmark)

    Wewer, U M; Liotta, L A; Jaye, M;

    1986-01-01

    isolated after screening a human endothelial lambda gt11 cDNA library with a monoclonal antibody directed against a domain of the laminin receptor involved in ligand binding. Definitive identification of the cDNA clones was based on comparison of cDNA sequence with the amino acid sequence of a cyanogen...... bromide-generated octapeptide of purified placental laminin receptor. The laminin receptor mRNA is approximately 1700 bases long. The level of laminin receptor mRNA in a variety of human carcinoma-derived cell lines correlated with the number of laminin receptors on the cell surfaces of those cells...

  4. Structural Analysis of the Ligand-Binding Domain of the Aspartate Receptor Tar from Escherichia coli.

    Science.gov (United States)

    Mise, Takeshi

    2016-07-01

    The Escherichia coli cell-surface aspartate receptor Tar mediates bacterial chemotaxis toward an attractant, aspartate (Asp), and away from a repellent, Ni(2+). These signals are transmitted from the extracellular region of Tar to the cytoplasmic region via the transmembrane domain. The mechanism by which extracellular signals are transmitted into the cell through conformational changes in Tar is predicted to involve a piston displacement of one of the α4 helices of the homodimer. To understand the molecular mechanisms underlying the induction of Tar activity by an attractant, the three-dimensional structures of the E. coli Tar periplasmic domain with and without bound aspartate, Asp-Tar and apo-Tar, respectively, were determined. Of the two ligand-binding sites, only one site was occupied, and it clearly showed the electron density of an aspartate. The slight changes in conformation and the electrostatic surface potential around the aspartate-binding site were observed. In addition, the presence of an aspartate stabilized residues Phe-150' and Arg-73. A pistonlike displacement of helix α4b' was also induced by aspartate binding as predicted by the piston model. Taken together, these small changes might be related to the induction of Tar activity and might disturb binding of the second aspartate to the second binding site in E. coli. PMID:27292793

  5. High-Mobility Group Chromatin Proteins 1 and 2 Functionally Interact with Steroid Hormone Receptors To Enhance Their DNA Binding In Vitro and Transcriptional Activity in Mammalian Cells

    OpenAIRE

    Boonyaratanakornkit, Viroj; Melvin, Vida; Prendergast, Paul; Altmann, Magda; Ronfani, Lorenza; Marco E. Bianchi; Taraseviciene, Laima; Nordeen, Steven K.; Allegretto, Elizabeth A.; Edwards, Dean P.

    1998-01-01

    We previously reported that the chromatin high-mobility group protein 1 (HMG-1) enhances the sequence-specific DNA binding activity of progesterone receptor (PR) in vitro, thus providing the first evidence that HMG-1 may have a coregulatory role in steroid receptor-mediated gene transcription. Here we show that HMG-1 and the highly related HMG-2 stimulate DNA binding by other steroid receptors, including estrogen, androgen, and glucocorticoid receptors, but have no effect on DNA binding by se...

  6. A robust homogeneous binding assay for α4β2 nicotinic acetylcholine receptor

    Institute of Scientific and Technical Information of China (English)

    Xin HUI; Jie GAO; Xin XIE; Naoki SUTO; Tsuyoshi OGIKU; Ming-Wei WANG

    2005-01-01

    Aim: To develop a homogeneous high-throughput screening (HTS) assay based on scintillation proximity assay (SPA) technology for identification of novel α4β2 nicotinic acetylcholine receptor (nAChR) modulators. Methods: Membrane preparation of HEK293 cells expressing α4β2 nAChR, [3H]cytisine and wheat germ agglutinin (WGA)-coupled microbeads were used to develop an HTS assay based on SPA technology. This method was validated against a conventional filter binding approach and applied to large-scale screening of a library containing 32 000 synthetic compounds. Intracellular calcium measurement was carried out to verify the bioactivities of the hits found by the SPA assay. Results: IC50 values of 2 reference compounds (epibatidine and RJR 2403) determined by SPA and filter binding methods were comparable and consistent with those reported elsewhere. A total of 54 compounds, showing more than 60% competitive inhibition on [3H]cytisine binding to α4β2 nAChR, were identified initially following an HTS campaign. Secondary screening confirmed that 17 compounds with novel chemical structures possessed relatively high binding affinity to α4β2 nAChR (Ki<2 μmol/L). Eight compounds displayed antagonistic effects with >50% inhibition on ABT-594-induced calcium mobilization while none showed any agonist activity. Conclusions: This homogeneous binding assay is a highly efficient,amenable to automation and robust tool to screen potential α4β2 nAChR modulators in an HTS setting. Its application may be expanded to other membrane receptors and ion channels.

  7. A cation-π interaction at a phenylalanine residue in the glycine receptor binding site is conserved for different agonists

    DEFF Research Database (Denmark)

    Pless, Stephan Alexander; Hanek, Ariele P; Price, Kerry L;

    2011-01-01

    Cation-π interactions have been demonstrated to play a major role in agonist-binding in Cys-loop receptors. However, neither the aromatic amino acid contributing to this interaction nor its location is conserved among Cys-loop receptors. Likewise, it is not clear how many different agonists of a ...

  8. Deoxyribonucleic acid-binding ability of androgen receptors in whole cells: implications for the actions of androgens and antiandrogens

    NARCIS (Netherlands)

    C.W. Kuil (Cor); E. Mulder (Eppo)

    1996-01-01

    textabstractIn whole cells, the effects of several androgens and antiandrogens on the in the induction of DNA binding for the human wild-type androgen receptor (AR) and a mutant receptor ARL (LNCaP mutation; codon 868, Thr to Ala) were examined and related to the transc

  9. Oxidative stress effect on progesterone-induced blocking factor (PIBF) binding to PIBF-receptor in lymphocytes.

    Science.gov (United States)

    de la Haba, Carlos; Palacio, José R; Palkovics, Tamas; Szekeres-Barthó, Júlia; Morros, Antoni; Martínez, Paz

    2014-01-01

    Receptor-ligand binding is an essential interaction for biological function. Oxidative stress can modify receptors and/or membrane lipid dynamics, thus altering cell physiological functions. The aim of this study is to analyze how oxidative stress may alter receptor-ligand binding and lipid domain distribution in the case of progesterone-induced blocking factor/progesterone-induced blocking factor-receptor. For membrane fluidity regionalization analysis of MEC-1 lymphocytes, two-photon microscopy was used in individual living cells. Lymphocytes were also double stained with AlexaFluor647/progesterone-induced blocking factor and Laurdan to evaluate -induced blocking factor/progesterone-induced blocking factor-receptor distribution in the different membrane domains, under oxidative stress. A new procedure has been developed which quantitatively analyzes the regionalization of a membrane receptor among the lipid domains of different fluidity in the plasma membrane. We have been able to establish a new tool which detects and evaluates lipid raft clustering from two-photon microscopy images of individual living cells. We show that binding of progesterone-induced blocking factor to progesterone-induced blocking factor-receptor causes a rigidification of plasma membrane which is related to an increase of lipid raft clustering. However, this clustering is inhibited under oxidative stress conditions. In conclusion, oxidative stress decreases membrane fluidity, impairs receptor-ligand binding and reduces lipid raft clustering. PMID:23954806

  10. Design and synthesis of a stable oxidized phospholipid mimic with specific binding recognition for macrophage scavenger receptors

    DEFF Research Database (Denmark)

    Turner, William W; Hartvigsen, Karsten; Boullier, Agnes;

    2012-01-01

    Macrophage scavenger receptors appear to play a major role in the clearance of oxidized phospholipid (OxPL) products. Discrete peptide-phospholipid conjugates with the phosphatidylcholine headgroup have been shown to exhibit binding affinity for these receptors. We report the preparation of a wat...

  11. Oxidative stress effect on progesterone-induced blocking factor (PIBF) binding to PIBF-receptor in lymphocytes.

    Science.gov (United States)

    de la Haba, Carlos; Palacio, José R; Palkovics, Tamas; Szekeres-Barthó, Júlia; Morros, Antoni; Martínez, Paz

    2014-01-01

    Receptor-ligand binding is an essential interaction for biological function. Oxidative stress can modify receptors and/or membrane lipid dynamics, thus altering cell physiological functions. The aim of this study is to analyze how oxidative stress may alter receptor-ligand binding and lipid domain distribution in the case of progesterone-induced blocking factor/progesterone-induced blocking factor-receptor. For membrane fluidity regionalization analysis of MEC-1 lymphocytes, two-photon microscopy was used in individual living cells. Lymphocytes were also double stained with AlexaFluor647/progesterone-induced blocking factor and Laurdan to evaluate -induced blocking factor/progesterone-induced blocking factor-receptor distribution in the different membrane domains, under oxidative stress. A new procedure has been developed which quantitatively analyzes the regionalization of a membrane receptor among the lipid domains of different fluidity in the plasma membrane. We have been able to establish a new tool which detects and evaluates lipid raft clustering from two-photon microscopy images of individual living cells. We show that binding of progesterone-induced blocking factor to progesterone-induced blocking factor-receptor causes a rigidification of plasma membrane which is related to an increase of lipid raft clustering. However, this clustering is inhibited under oxidative stress conditions. In conclusion, oxidative stress decreases membrane fluidity, impairs receptor-ligand binding and reduces lipid raft clustering.

  12. Development and application of a nonradioactive binding assay of oxidized low-density lipoprotein to macrophage scavenger receptors

    Science.gov (United States)

    Montano, Erica N.; Boullier, Agnès; Almazan, Felicidad; Binder, Christoph J.; Witztum, Joseph L.; Hartvigsen, Karsten

    2013-01-01

    Macrophages play a key role in atherogenesis in part through excessive uptake of oxidized LDL (OxLDL) via scavenger receptors. Binding of OxLDL to macrophages has traditionally been assessed using radiolabeled OxLDL. To allow more efficient and convenient measurements, we developed a nonradioactive binding assay in which biotinylated OxLDL (Bt-OxLDL) is added to macrophages in 96-well microtiter culture plates under various conditions and the extent of binding is determined using solid phase chemiluminescent immunoassay techniques. As examples, we show that Bt-OxLDL displayed high and saturable binding to macrophages in contrast to Bt-LDL, which showed very low binding. In competition assays, unlabeled OxLDL and the anti-OxLDL monoclonal antibody E06 inhibited Bt-OxLDL binding to macrophages in a dose-dependent manner. Specific binding of Bt-OxLDL to ApoE/SR-A/CD36 triple knockout macrophages was reduced by 80% as compared with binding to macrophages from ApoE knockout mice. Binding of Bt-OxLDL to CD36 transfected COS-7 cells showed enhanced saturable binding compared with mock-transfected cells. This assay avoids the use of radioactivity and uses small amounts of materials. It can be used to study binding of OxLDL to macrophages and factors that influence this binding. The techniques described should be readily adaptable to study of other ligands, receptors, and cell types. PMID:23997238

  13. Nuclear Receptor HNF4α Binding Sequences are Widespread in Alu Repeats

    Directory of Open Access Journals (Sweden)

    Bolotin Eugene

    2011-11-01

    Full Text Available Abstract Background Alu repeats, which account for ~10% of the human genome, were originally considered to be junk DNA. Recent studies, however, suggest that they may contain transcription factor binding sites and hence possibly play a role in regulating gene expression. Results Here, we show that binding sites for a highly conserved member of the nuclear receptor superfamily of ligand-dependent transcription factors, hepatocyte nuclear factor 4alpha (HNF4α, NR2A1, are highly prevalent in Alu repeats. We employ high throughput protein binding microarrays (PBMs to show that HNF4α binds > 66 unique sequences in Alu repeats that are present in ~1.2 million locations in the human genome. We use chromatin immunoprecipitation (ChIP to demonstrate that HNF4α binds Alu elements in the promoters of target genes (ABCC3, APOA4, APOM, ATPIF1, CANX, FEMT1A, GSTM4, IL32, IP6K2, PRLR, PRODH2, SOCS2, TTR and luciferase assays to show that at least some of those Alu elements can modulate HNF4α-mediated transactivation in vivo (APOM, PRODH2, TTR, APOA4. HNF4α-Alu elements are enriched in promoters of genes involved in RNA processing and a sizeable fraction are in regions of accessible chromatin. Comparative genomics analysis suggests that there may have been a gain in HNF4α binding sites in Alu elements during evolution and that non Alu repeats, such as Tiggers, also contain HNF4α sites. Conclusions Our findings suggest that HNF4α, in addition to regulating gene expression via high affinity binding sites, may also modulate transcription via low affinity sites in Alu repeats.

  14. Cloning, expression, and ligand-binding characterization of two neuropeptide Y receptor subtypes in orange-spotted grouper, Epinephelus coioides.

    Science.gov (United States)

    Wang, Fei; Chen, Weimin; Lin, Haoran; Li, Wensheng

    2014-12-01

    As one of the most important multifunctional peptides, neuropeptide Y (NPY) performs its physiological functions through different subtype receptors. In this study, full-length cDNAs of two NPY receptors (YRs) in orange-spotted grouper (Epinephelus coioides) were cloned and named npy8br (y8b) and npy2r (y2). Phylogenetic analysis indicated that the Y8b receptor is an ortholog of the teleostean Y8b receptor, which belongs to the Y1 subfamily, and the Y2 receptor is an ortholog of the teleostean Y2 receptor, which belongs to the Y2 subfamily. Both of the YRs have G protein-coupled receptor family profiles. Multiple alignments demonstrate that the extracellular loop regions of YRs have distinctive residues of each species. Expression profile analysis revealed that the grouper Y8b receptor mRNA is primarily expressed in the brain, stomach and intestine, while the grouper Y2 receptor mRNA is primarily expressed in the brain, ovary, liver and heart. Double immunofluorescence analysis determined that the grouper YRs interact with the grouper NPY around the human embryonic kidney 293T cell surface. Furthermore, site-directed mutagenesis in a phage display system revealed that Asp(6.59) might be a common NPY-binding site, while Asp(2.68) of the Y8b receptor and Glu(5.24) of the Y2 receptor could be likely involved in subtype-specific binding. Combining the expression profile and ligand-binding feature, the grouper Y8b receptor could be involved in regulating food intake via the brain-gut axis and the grouper Y2 receptor might play a role in balancing the regulatory activity of the Y8b receptor and participate in metabolism in the liver and ovary.

  15. Prediction on the binding domain between human interleukin-6 and its receptor

    Institute of Scientific and Technical Information of China (English)

    冯健男; 任蕴芳; 沈倍奋

    2000-01-01

    Based on the spatial conformations of human interleukin-6 (hlL-6) derived from nuclear magnetic resonance analysis and human interleukin-6 receptor (hlL-6R) modeled with homology modeling method using human growth hormone receptor as template, the interaction between hlL-6 and its receptor (hIL-6R) is studied with docking program according to the surface electrostatic potential analysis and spatial conformation complement. The stable region structure composed of hlL-6 and hlL-6R is obtained on the basis of molecular mechanism optimization and molecular dynamics simulation. The binding domain between hIL-6 and hIL-6R is predicted theoretically. Furthermore, the especial binding sites that influence the interaction between hlL-6 and hlL-6R are confirmed. The results lay a theoretical foundation for confirming the active regions of hlL-6 and designing novel antagonist with computer-guided techniques.

  16. Prediction on the binding domain between human interleukin-6 and its receptor

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Based on the spatial conformations of human interleukin-6 (hIL-6) derived from nuclear magnetic resonance analysis and human interleukin-6 receptor (hIL-6R) modeled with homology modeling method using human growth hormone receptor as template, the interaction between hIL-6 and its receptor (hIL-6R) is studied with docking program according to the surface electrostatic potential analysis and spatial conformation complement. The stable region structure composed of hIL-6 and hIL-6R is obtained on the basis of molecular mechanism optimization and molecular dynamics simulation. The binding domain between hIL-6 and hIL-6R is predicted theoretically. Furthermore, the especial binding sites that influence the interaction between hIL-6 and hIL-6R are confirmed. The results lay a theoretical foundation for confirming the active regions of hIL-6 and designing novel antagonist with computer-guided techniques.

  17. Hormone- and DNA-binding mechanisms of the recombinant human estrogen receptor.

    Science.gov (United States)

    Obourn, J D; Koszewski, N J; Notides, A C

    1993-06-22

    We have investigated the hormone- and DNA-binding mechanisms of the wild-type human estrogen receptor (hER) overproduced in insect cells using a baculovirus expression system. The recombinant hER was indistinguishable in size (67 kDa) and immunogenically from the native human estrogen receptor in MCF-7 breast carcinoma cells. The recombinant hER was purified to 70-80% homogeneity with a two-step procedure that included ammonium sulfate precipitation and oligonucleotide affinity chromatography using a unique Teflon affinity matrix. The recombinant hER bound estradiol with a positively cooperative mechanism. At hER concentrations in excess of 13 nM the Hill coefficient reached a maximal value of 1.6, whereas, at lower hER concentrations, the Hill coefficient approached 1.0, suggesting that the hER was dissociated to the monomeric species and site-site interactions were diminished. The hER specifically bound an estrogen responsive element (ERE) from chicken vitellogenin II gene as measured by the gel mobility assay, ethylation, and thymine interference footprinting. Specific interference patterns suggest a two-fold symmetry of the hER binding to the ERE with each monomer of the hER bound in the major groove of the DNA. These data indicate that the recombinant hER is valuable to define the biochemical and structural properties of the native estrogen receptor. PMID:8512933

  18. Calcitonin receptor binding in the hen anterior pituitary during an oviposition cycle.

    Science.gov (United States)

    Nakayama, Hiroyuki; Takahashi, Tetsuya; Nakagawa-Mizuyachi, Kaori; Kawashima, Mitsuo

    2011-10-01

    The equilibrium dissociation constant (K(d) ) and the maximum binding capacity (B(max) ) of calcitonin (CT) receptor in the plasma membrane of the anterior pituitary in hens were examined by Scatchard analysis of specific binding of (125) I-labeled chicken CT. Values of K(d) and B(max) of CT receptor were smaller in laying hens than in non-laying hens. A decrease in the K(d) and B(max) value of CT receptor was observed in the anterior pituitary after the injection of estradiol-17β and progesterone into nonlaying hens, but not changed after the injection of 5α-dihydrotestosterone. During an oviposition cycle, the K(d) and the B(max) value decreased 3 h before oviposition. In non-laying hens, neither the K(d) nor the B(max) value changed during a full day period. The present study suggests that the CT action on the anterior pituitary may increase 3 h before oviposition by the effect of estradiol-17β and progesterone in laying hens. PMID:21951904

  19. Binding of phylogenetically distant Bacillus thuringiensis cry toxins to a Bombyx mori aminopeptidase N suggests importance of Cry toxin's conserved structure in receptor binding.

    Science.gov (United States)

    Shinkawa, A; Yaoi, K; Kadotani, T; Imamura, M; Koizumi, N; Iwahana, H; Sato, R

    1999-07-01

    We investigated the binding proteins for three Cry toxins, Cry1Aa, Cry1Ac, and the phylogenetically distant Cry9Da, in the midgut cell membrane of the silkworm. In a ligand blot experiment, Cry1Ac and Cry9Da bound to the same 120-kDa aminopeptidase N (APN) as Cry1Aa. A competition experiment with the ligand blot indicated that the three toxins share the same binding site on several proteins. The values of the dissociation constants of the three Cry toxins and 120-kDa APN are as low as the case of other Cry toxins and receptors. These results suggest that distantly related Cry toxins bind to the same site on the same proteins, especially with APN. We propose that the conserved structure in these three toxins includes the receptor-binding site. PMID:10387111

  20. Acute social defeat does not alter cerebral 5-HT2A receptor binding in male Wistar rats

    DEFF Research Database (Denmark)

    Visser, Anniek K D; Meerlo, Peter; Ettrup, Anders;

    2014-01-01

    suppressed growth, but did not affect anxiety-like behavior in an open field test. A positron emission tomography scan with the 5-HT2A R tracer [11C]MDL 100907 1 day and 3 weeks after defeat did not show significant changes in receptor binding. To verify these results, [3H]MDL 100907 binding assays were...

  1. Mu Opioid Receptor Binding Correlates with Nicotine Dependence and Reward in Smokers.

    Directory of Open Access Journals (Sweden)

    Hiroto Kuwabara

    Full Text Available The rewarding effects of nicotine are associated with activation of nicotine receptors. However, there is increasing evidence that the endogenous opioid system is involved in nicotine's rewarding effects. We employed PET imaging with [11C]carfentanil to test the hypotheses that acute cigarette smoking increases release of endogenous opioids in the human brain and that smokers have an upregulation of mu opioid receptors (MORs when compared to nonsmokers. We found no significant changes in binding potential (BPND of [11C]carfentanil between the placebo and the active cigarette sessions, nor did we observe differences in MOR binding between smokers and nonsmokers. Interestingly, we showed that in smokers MOR availability in bilateral superior temporal cortices during the placebo condition was negatively correlated with scores on the Fagerström Test for Nicotine Dependence (FTND. Also in smokers, smoking-induced decreases in [11C]carfentanil binding in frontal cortical regions were associated with self-reports of cigarette liking and wanting. Although we did not show differences between smokers and nonsmokers, the negative correlation with FTND corroborates the role of MORs in superior temporal cortices in nicotine addiction and provides preliminary evidence of a role of endogenous opioid signaling in frontal cortex in nicotine reward.

  2. Expression and Purification of the Bacillus anthracis Protective Antigen Receptor-binding Domain

    Institute of Scientific and Technical Information of China (English)

    葛猛; 徐俊杰; 李冰; 董大勇; 宋小红; 郭强; 赵剑; 陈薇

    2004-01-01

    The aim of this study is to express the receptor-binding domain of Bacillus anthracis protective antigen in E. coli. Signal sequence of the outer membrane protein A (OmpA) of E. coli was attached to the 5' end of the gene encoding protective antigen receptor-binding domain (the 4th domain of PA, PALM). The plasmid carrying the fusion gene was then transformed into E. coli and induced to express recombinant PAlM by IFFG. The recombinant protein was purified by chromatography and then identified by N-terrainal sequencing and Western blot. The recombinant protein, about 10% of the total bacterial protein in volume, was secreted to the periplasmic space of the cell. After a purification procedure including ionexchange chromatography and gel filtration, about 10 mg of homogenous recombinant PAD4 was obtained from 1 L culture. Data from N-terminal sequencing suggested that the amino acid sequence of recombinant PAD4 was identical with its natural counterpart. And the result of Western blot showed the recombinant protein could bind with anti-PA serum from rabbit. High level secreted expression of PAD4 was obtained in E. coli. The results reported here are parts of a continuing research to evaluate PAD4 as a potential drug for anthrax therapy or a candidate of new vaccine.

  3. Development of an Assay for the Identification of Receptor Binding Proteins from Bacteriophages

    Science.gov (United States)

    Simpson, David J.; Sacher, Jessica C.; Szymanski, Christine M.

    2016-01-01

    Recently, a large number of new technologies have been developed that exploit the unique properties of bacteriophage receptor binding proteins (RBPs). These include their use in diagnostic applications that selectively capture bacteria and as therapeutics that reduce bacterial colonization in vivo. RBPs exhibit comparable, and in many cases superior, stability, receptor specificity, and affinity to other carbohydrate binding proteins such as antibodies or lectins. In order to further exploit the use of RBPs, we have developed an assay for discovering RBPs using phage genome expression libraries and protein screens to identify binding partners that recognize the host bacterium. When phage P22 was screened using this assay, Gp9 was the only RBP discovered, confirming previous predictions that this is the sole RBP encoded by this phage. We then examined the Escherichia coli O157:H7 typing phage 1 in our assay and identified a previously undescribed RBP. This general approach has the potential to assist in the identification of RBPs from other bacteriophages. PMID:26761028

  4. Development of an Assay for the Identification of Receptor Binding Proteins from Bacteriophages

    Directory of Open Access Journals (Sweden)

    David J. Simpson

    2016-01-01

    Full Text Available Recently, a large number of new technologies have been developed that exploit the unique properties of bacteriophage receptor binding proteins (RBPs. These include their use in diagnostic applications that selectively capture bacteria and as therapeutics that reduce bacterial colonization in vivo. RBPs exhibit comparable, and in many cases superior, stability, receptor specificity, and affinity to other carbohydrate binding proteins such as antibodies or lectins. In order to further exploit the use of RBPs, we have developed an assay for discovering RBPs using phage genome expression libraries and protein screens to identify binding partners that recognize the host bacterium. When phage P22 was screened using this assay, Gp9 was the only RBP discovered, confirming previous predictions that this is the sole RBP encoded by this phage. We then examined the Escherichia coli O157:H7 typing phage 1 in our assay and identified a previously undescribed RBP. This general approach has the potential to assist in the identification of RBPs from other bacteriophages.

  5. Momordica charantia and its novel polypeptide regulate glucose homeostasis in mice via binding to insulin receptor.

    Science.gov (United States)

    Lo, Hsin-Yi; Ho, Tin-Yun; Lin, Chingju; Li, Chia-Cheng; Hsiang, Chien-Yun

    2013-03-13

    Momordica charantia (MC) has been used as an alternative therapy for diabetes mellitus. This study analyzed and elucidated therapeutic targets contributing to the hypoglycemic effect of aqueous extract of MC seeds (MCSE) by transcriptomic analysis. Protein ingredients aimed at the hypoglycemic target were further identified by proteomic, docking, and receptor-binding assays. The data showed that MSCE (1 g/kg) significantly lowered the blood glucose level in normal and diabetic mice. Moreover, MCSE primarily regulated the insulin signaling pathway in muscles and adipose tissues, suggesting that MCSE might target insulin receptor (IR), stimulate the IR-downstream pathway, and subsequently display hypoglycemic activity in mice. It was further revealed that inhibitor against trypsin (TI) of MC directly docked into IR and activated the kinase activity of IR in a dose-dependent manner. In conclusion, the findings suggested that MCSE regulated glucose metabolism mainly via the insulin signaling pathway. Moreover, TI was newly identified as a novel IR-binding protein of MC that triggered the insulin signaling pathway via binding to IR. PMID:23414136

  6. The Influence of Adnectin Binding on the Extracellular Domain of Epidermal Growth Factor Receptor

    Science.gov (United States)

    Iacob, Roxana E.; Chen, Guodong; Ahn, Joomi; Houel, Stephane; Wei, Hui; Mo, Jingjie; Tao, Li; Cohen, Daniel; Xie, Dianlin; Lin, Zheng; Morin, Paul E.; Doyle, Michael L.; Tymiak, Adrienne A.; Engen, John R.

    2014-12-01

    The precise and unambiguous elucidation and characterization of interactions between a high affinity recognition entity and its cognate protein provides important insights for the design and development of drugs with optimized properties and efficacy. In oncology, one important target protein has been shown to be the epidermal growth factor receptor (EGFR) through the development of therapeutic anticancer antibodies that are selective inhibitors of EGFR activity. More recently, smaller protein derived from the 10th type III domain of human fibronectin termed an adnectin has also been shown to inhibit EGFR in clinical studies. The mechanism of EGFR inhibition by either an adnectin or an antibody results from specific binding of the high affinity protein to the extracellular portion of EGFR (exEGFR) in a manner that prevents phosphorylation of the intracellular kinase domain of the receptor and thereby blocks intracellular signaling. Here, the structural changes induced upon binding were studied by probing the solution conformations of full length exEGFR alone and bound to a cognate adnectin through hydrogen/deuterium exchange mass spectrometry (HDX MS). The effects of binding in solution were identified and compared with the structure of a bound complex determined by X-ray crystallography.

  7. ICAM-5 affects spine maturation by regulation of NMDA receptor binding to α-actinin

    Directory of Open Access Journals (Sweden)

    Lin Ning

    2015-01-01

    Full Text Available ICAM-5 is a negative regulator of dendritic spine maturation and facilitates the formation of filopodia. Its absence results in improved memory functions, but the mechanisms have remained poorly understood. Activation of NMDA receptors induces ICAM-5 ectodomain cleavage through a matrix metalloproteinase (MMP-dependent pathway, which promotes spine maturation and synapse formation. Here, we report a novel, ICAM-5-dependent mechanism underlying spine maturation by regulating the dynamics and synaptic distribution of α-actinin. We found that GluN1 and ICAM-5 partially compete for the binding to α-actinin; deletion of the cytoplasmic tail of ICAM-5 or ablation of the gene resulted in increased association of GluN1 with α-actinin, whereas internalization of ICAM-5 peptide perturbed the GluN1/α-actinin interaction. NMDA treatment decreased α-actinin binding to ICAM-5, and increased the binding to GluN1. Proper synaptic distribution of α-actinin requires the ICAM-5 cytoplasmic domain, without which α-actinin tended to accumulate in filopodia, leading to F-actin reorganization. The results indicate that ICAM-5 retards spine maturation by preventing reorganization of the actin cytoskeleton, but NMDA receptor activation is sufficient to relieve the brake and promote the maturation of spines.

  8. Development of an Assay for the Identification of Receptor Binding Proteins from Bacteriophages.

    Science.gov (United States)

    Simpson, David J; Sacher, Jessica C; Szymanski, Christine M

    2016-01-11

    Recently, a large number of new technologies have been developed that exploit the unique properties of bacteriophage receptor binding proteins (RBPs). These include their use in diagnostic applications that selectively capture bacteria and as therapeutics that reduce bacterial colonization in vivo. RBPs exhibit comparable, and in many cases superior, stability, receptor specificity, and affinity to other carbohydrate binding proteins such as antibodies or lectins. In order to further exploit the use of RBPs, we have developed an assay for discovering RBPs using phage genome expression libraries and protein screens to identify binding partners that recognize the host bacterium. When phage P22 was screened using this assay, Gp9 was the only RBP discovered, confirming previous predictions that this is the sole RBP encoded by this phage. We then examined the Escherichia coli O157:H7 typing phage 1 in our assay and identified a previously undescribed RBP. This general approach has the potential to assist in the identification of RBPs from other bacteriophages.

  9. Identification of two potential receptor-binding sites for hGM-CSF

    Directory of Open Access Journals (Sweden)

    Eberhardt M.O.

    2003-01-01

    Full Text Available Two receptor-binding sites for hGM-CSF are described. Competitive binding ELISA using four monoclonal antibodies (MAbs showed different epitope recognitions. The antibody combining sites were mapped using sets of overlapping peptides and hexapeptide libraries prepared by the SPOT synthesis technique. We identified the conformationally dependent epitopes A18E21R23R24F119 and R23E21N17W13 bound by MAb CC5B5 and the nonlinear epitope P118F119W13E14 bound by MAb M1B8. The epitopes recognized by these two MAbs are very closely located on the native protein surface. The peptide L61YKQGKLRGSLTK72 was recognized by MAb M7E10 and the peptide A1PAR4, representing the N-terminal sequence of the protein, was bound by the nonneutralizing MAb CC1H7. Inhibition assays of the GM-CSF biological activity demonstrated that MAb M1B8, CC5B5 and M7E10 bind to domains which are responsible for the interaction of the cytokine with the GM-CSF receptor.

  10. Genomic analysis of hepatic Farnesoid X Receptor (FXR) binding sites reveals altered binding in obesity and direct gene repression by FXR

    OpenAIRE

    Lee, Jiyoung; Seok, Sun Mi; Yu, Pengfei; Kim, Kyungsu; Smith, Zachary; Rivas-Astroza, Marcelo; Zhong, Sheng; Kemper, Jongsook Kim

    2012-01-01

    The nuclear bile acid receptor, Farnesoid X Receptor (FXR), is an important transcriptional regulator of liver metabolism. Despite recent advances in understanding its functions, how FXR regulates genomic targets and whether the transcriptional regulation by FXR is altered in obesity remain largely unknown. Here, we analyzed hepatic genome-wide binding sites of FXR in normal and dietary obese mice by chromatin immunoprecipitation-sequencing (ChIP-seq) analysis. A total of 15,263 and 5,272 FXR...

  11. Acetylcholine-Binding Protein Engineered to Mimic the α4-α4 Binding Pocket in α4β2 Nicotinic Acetylcholine Receptors Reveals Interface Specific Interactions Important for Binding and Activity

    DEFF Research Database (Denmark)

    Shahsavar, Azadeh; Ahring, Philip K; Olsen, Jeppe A;

    2015-01-01

    Neuronal α4β2 nicotinic acetylcholine receptors are attractive drug targets for psychiatric and neurodegenerative disorders and smoking cessation aids. Recently, a third agonist binding site between two α4 subunits in the (α4)(3)(β2)(2) receptor subpopulation was discovered. In particular, three...

  12. Binding of estrogen receptor with estrogen conjugated to bovine serum albumin (BSA).

    Science.gov (United States)

    Taguchi, Yasuto; Koslowski, Mirek; Bodenner, Donald L

    2004-08-19

    BACKGROUND: The classic model of estrogen action requires that the estrogen receptor (ER) activates gene expression by binding directly or indirectly to DNA. Recent studies, however, strongly suggest that ER can act through nongenomic signal transduction pathways and may be mediated by a membrane bound form of the ER. Estradiol covalently linked to membrane impermeable BSA (E2-BSA) has been widely used as an agent to study these novel membrane-associated ER events. However, a recent report suggests that E2-BSA does not compete for E2 binding to purified ER in vitro. To resolve this apparent discrepancy, we performed competition studies examining the binding of E2 and E2-BSA to both purified ER preparations and ER within intact cells. To eliminate potential artifacts due to contamination of commercially available E2-BSA preparations with unconjugated E2 (usually between 3-5%), the latter was carefully removed by ultrafiltration. RESULTS: As previously reported, a 10-to 1000-fold molar excess of E2-BSA was unable to compete with 3H-E2 binding to ER when added simultaneously. However, when ER was pre-incubated with the same concentrations of E2-BSA, the binding of 3H-E2 was significantly reduced. E2-BSA binding to a putative membrane-associated ER was directly visualized using fluorescein labeled E2-BSA (E2-BSA-FITC). Staining was restricted to the cell membrane when E2-BSA-FITC was incubated with stable transfectants of the murine ERalpha within ER-negative HeLa cells and with MC7 cells that endogenously produce ERalpha. This staining appeared highly specific since it was competed by pre-incubation with E2 in a dose dependent manner and with the competitor ICI-182,780. CONCLUSIONS: These results demonstrate that E2-BSA does bind to purified ER in vitro and to ER in intact cells. It seems likely that the size and structure of E2-BSA requires more energy for it to bind to the ER and consequently binds more slowly than E2. More importantly, these findings demonstrate

  13. Transient elevation of amygdala alpha 2 adrenergic receptor binding sites during the early stages of amygdala kindling.

    Science.gov (United States)

    Chen, M J; Vigil, A; Savage, D D; Weiss, G K

    1990-03-01

    Enhanced noradrenergic neurotransmission retards but does not prevent the development of kindling. We previously reported that locus coeruleus (LC) alpha 2 adrenergic receptor binding sites are transiently elevated during the early stages of kindling development. Since the firing activity of LC noradrenergic neurons is partially regulated via an alpha 2 receptor-mediated recurrent inhibition, the transient elevation in LC alpha 2 receptors could decrease LC activity and consequently facilitate the development of kindling. Transient elevation of alpha 2 receptor binding sites during early stages of kindling may also occur on noradrenergic axon terminals projecting to forebrain sites. Using in vitro neurotransmitter autoradiography techniques, we investigated this hypothesis by measuring specific [3H]idazoxan binding in 5 different areas of rat forebrain at 2 different stages of kindling development. After 2 class 1 kindled seizures, specific [3H]idazoxan binding was elevated significantly in the amygdala, but not in other forebrain regions. No differences in specific [3H]idazoxan binding were observed in any of the 5 brain regions in rats kindled to a single class 5 kindled motor seizure. Saturation of binding experiments indicated that the increase in amygdala [3H]idazoxan binding, following 2 class 1 kindled motor seizures, was due to an increase in the total number of alpha 2 receptor binding sites without a change in the affinity of the binding sites for [3H]idazoxan. Thus, the transient increase in alpha 2 receptors that occurs in the LC in the early stages of kindling also occurs in the forebrain region in which the kindled seizure originates.

  14. In Silico Investigation of the Neurotensin Receptor 1 Binding Site: Overlapping Binding Modes for Small Molecule Antagonists and the Endogenous Peptide Agonist.

    Science.gov (United States)

    Lückmann, Michael; Holst, Birgitte; Schwartz, Thue W; Frimurer, Thomas M

    2016-01-01

    The neurotensin receptor 1 (NTSR1) belongs to the family of 7TM, G protein-coupled receptors, and is activated by the 13-amino-acid peptide neurotensin (NTS) that has been shown to play important roles in neurological disorders and the promotion of cancer cells. Recently, a high-resolution x-ray crystal structure of NTSR1 in complex with NTS8-13 has been determined, providing novel insights into peptide ligand recognition by 7TM receptors. SR48692, a potent and selective small molecule antagonist has previously been used extensively as a tool compound to study NTSR1 receptor signaling properties. To investigate the binding mode of SR48692 and other small molecule compounds to NTSR1, we applied an Automated Ligand-guided Backbone Ensemble Receptor Optimization protocol (ALiBERO), taking receptor flexibility and ligand knowledge into account. Structurally overlapping binding poses for SR48692 and NTS8-13 were observed, despite their distinct chemical nature and inverse pharmacological profiles. The optimized models showed significantly improved ligand recognition in a large-scale virtual screening assessment compared to the crystal structure. Our models provide new insights into small molecule ligand binding to NTSR1 and could facilitate the structure-based design of non-peptide ligands for the evaluation of the pharmacological potential of NTSR1 in neurological disorders and cancer. PMID:27491650

  15. Has asialoglycoprotein receptor (ASGP-R) a role to play in binding and processing of different parasites?

    OpenAIRE

    2002-01-01

    Liver asialoglycoprotein receptor (ASGP-R), which specifically recognizes and binds galactose and N-acetyl galactosamine, has been implicated in binding and endocytosis of glycoproteins. Therefore, the possibility that it may have a role in contacting and processing pathogenic organisms was investigated. The interaction in vitro between ASGP-R and surface oligosaccharide structures of Echinococcus granulosus and Trichinella spiralis was studied by immunohistochemical methods. Specific binding...

  16. Expression of HIV receptors, alternate receptors and co-receptors on tonsillar epithelium: implications for HIV binding and primary oral infection

    Directory of Open Access Journals (Sweden)

    Maher Diane M

    2006-04-01

    Full Text Available Abstract Background Primary HIV infection can develop from exposure to HIV in the oral cavity. In previous studies, we have documented rapid and extensive binding of HIV virions in seminal plasma to intact mucosal surfaces of the palatine tonsil and also found that virions readily penetrated beneath the tissue surfaces. As one approach to understand the molecular interactions that support HIV virion binding to human mucosal surfaces, we have examined the distribution of the primary HIV receptor CD4, the alternate HIV receptors heparan sulfate proteoglycan (HS and galactosyl ceramide (GalCer and the co-receptors CXCR4 and CCR5 in palatine tonsil. Results Only HS was widely expressed on the surface of stratified squamous epithelium. In contrast, HS, GalCer, CXCR4 and CCR5 were all expressed on the reticulated epithelium lining the tonsillar crypts. We have observed extensive variability, both across tissue sections from any tonsil and between tonsils, in the distribution of epithelial cells expressing either CXCR4 or CCR5 in the basal and suprabasal layers of stratified epithelium. The general expression patterns of CXCR4, CCR5 and HS were similar in palatine tonsil from children and adults (age range 3–20. We have also noted the presence of small clusters of lymphocytes, including CD4+ T cells within stratified epithelium and located precisely at the mucosal surfaces. CD4+ T cells in these locations would be immediately accessible to HIV virions. Conclusion In total, the likelihood of oral HIV transmission will be determined by macro and micro tissue architecture, cell surface expression patterns of key molecules that may bind HIV and the specific properties of the infectious inoculum.

  17. GABA(A) receptors implicated in REM sleep control express a benzodiazepine binding site.

    Science.gov (United States)

    Nguyen, Tin Quang; Liang, Chang-Lin; Marks, Gerald A

    2013-08-21

    It has been reported that non-subtype-selective GABAA receptor antagonists injected into the nucleus pontis oralis (PnO) of rats induced long-lasting increases in REM sleep. Characteristics of these REM sleep increases were identical to those resulting from injection of muscarinic cholinergic agonists. Both actions were blocked by the muscarinic antagonist, atropine. Microdialysis of GABAA receptor antagonists into the PnO resulted in increased acetylcholine levels. These findings were consistent with GABAA receptor antagonists disinhibiting acetylcholine release in the PnO to result in an acetylcholine-mediated REM sleep induction. Direct evidence has been lacking for localization in the PnO of the specific GABAA receptor-subtypes mediating the REM sleep effects. Here, we demonstrated a dose-related, long-lasting increase in REM sleep following injection (60 nl) in the PnO of the inverse benzodiazepine agonist, methyl-6,7-dimethoxy-4-ethyl-β-carboline (DMCM, 10(-2)M). REM sleep increases were greater and more consistently produced than with the non-selective antagonist gabazine, and both were blocked by atropine. Fluorescence immunohistochemistry and laser scanning confocal microscopy, colocalized in PnO vesicular acetylcholine transporter, a presynaptic marker of cholinergic boutons, with the γ2 subunit of the GABAA receptor. These data provide support for the direct action of GABA on mechanisms of acetylcholine release in the PnO. The presence of the γ2 subunit at this locus and the REM sleep induction by DMCM are consistent with binding of benzodiazepines by a GABAA receptor-subtype in control of REM sleep.

  18. Synthetic Peptide Ligands of the Antigen Binding Receptor Induce Programmed Cell Death in a Human B-Cell Lymphoma

    Science.gov (United States)

    Renschler, Markus F.; Bhatt, Ramesh R.; Dower, William J.; Levy, Ronald

    1994-04-01

    Peptide ligands for the antigen binding site of the surface immunoglobulin receptor of a human B-cell lymphoma cell line were identified with the use of filamentous phage libraries displaying random 8- and 12-amino acid peptides. Corresponding synthetic peptides bound specifically to the antigen binding site of this immunoglobulin receptor and blocked the binding of an anti-idiotype antibody. The ligands, when conjugated to form dimers or tetramers, induced cell death by apoptosis in vitro with an IC50 between 40 and 200 nM. This effect was associated with specific stimulation of intracellular protein tyrosine phosphorylation.

  19. An automated system for the analysis of G protein-coupled receptor transmembrane binding pockets: alignment, receptor-based pharmacophores, and their application.

    Science.gov (United States)

    Kratochwil, Nicole A; Malherbe, Pari; Lindemann, Lothar; Ebeling, Martin; Hoener, Marius C; Mühlemann, Andreas; Porter, Richard H P; Stahl, Martin; Gerber, Paul R

    2005-01-01

    G protein-coupled receptors (GPCRs) share a common architecture consisting of seven transmembrane (TM) domains. Various lines of evidence suggest that this fold provides a generic binding pocket within the TM region for hosting agonists, antagonists, and allosteric modulators. Here, a comprehensive and automated method allowing fast analysis and comparison of these putative binding pockets across the entire GPCR family is presented. The method relies on a robust alignment algorithm based on conservation indices, focusing on pharmacophore-like relationships between amino acids. Analysis of conservation patterns across the GPCR family and alignment to the rhodopsin X-ray structure allows the extraction of the amino acids lining the TM binding pocket in a so-called ligand binding pocket vector (LPV). In a second step, LPVs are translated to simple 3D receptor pharmacophore models, where each amino acid is represented by a single spherical pharmacophore feature and all atomic detail is omitted. Applications of the method include the assessment of selectivity issues, support of mutagenesis studies, and the derivation of rules for focused screening to identify chemical starting points in early drug discovery projects. Because of the coarseness of this 3D receptor pharmacophore model, however, meaningful scoring and ranking procedures of large sets of molecules are not justified. The LPV analysis of the trace amine-associated receptor family and its experimental validation is discussed as an example. The value of the 3D receptor model is demonstrated for a class C GPCR family, the metabotropic glutamate receptors.

  20. Sensitivity of binding of high-affinity dopamine receptor radioligands to increased synaptic dopamine.

    Science.gov (United States)

    Gatley, S J; Gifford, A N; Carroll, F I; Volkow, N D

    2000-12-15

    PET and SPECT studies have documented that D2 radioligands of moderate affinity, but not radioligands of high affinity, are sensitive to pharmacological challenges that alter synaptic dopamine levels. The objective of this work was to determine whether the brain kinetics of high-affinity radioligands for dopamine D1 ([(3)H]SCH 23390) and D2 ([(123)I]epidepride) receptors were altered by a prolonged elevation of synaptic dopamine induced by the potent cocaine analog RTI-55. Mice were injected intravenously with radioligands either 30 min after or 4 h before intraperitoneal administration of RTI-55 (2 mg/kg). In separate experiments, the pharmacological effects of RTI-55 were assessed biochemically by measuring uptake of dopamine in synaptosomes prepared from RTI-treated mice and behaviorally by monitoring locomotor activity. Consistent with the expected elevation of synaptic dopamine, RTI-55 induced a long-lasting decrement in dopamine uptake measured ex vivo, and a prolonged increase in locomotor activity. RTI-55 injected prior to the radioligands induced a significant (P epidepride at 15 min, relative to saline-treated controls, but there were no differences between the two groups at later time-points. For [(3)H]SCH 23390, both initial striatal uptake and subsequent clearance were slightly increased by preadministration of RTI-55. Administration of RTI-55 4 h after the radioligands (i.e., when it was presumed that a state of near equilibrium binding of the radioligands had been reached), was associated with a significant reduction of striatal radioactivity for both radiotracers. Our results are consistent with increased competition between dopamine and radioligand for binding to both D1 and D2 receptors after treatment with RTI-55. We suggest that the magnitude of the competition is reduced by failure of the receptor binding of high-affinity radioligands to rapidly attain equilibrium. PMID:11044896

  1. Cocaine treatment alters oxytocin receptor binding but not mRNA production in postpartum rat dams☆

    Science.gov (United States)

    Jarrett, T.M.; McMurray, M.S.; Walker, C.H.; Johns, J.M.

    2011-01-01

    Gestational cocaine treatment in rat dams results in decreased oxytocin (OT) levels, up-regulated oxytocin receptor (OTR) binding density and decreased receptor affinity in the whole amygdala, all concomitant with a significant increase in maternal aggression on postpartum day six. Rat dams with no gestational drug treatment that received an infusion of an OT antagonist directly into the central nucleus of the amygdala (CeA) exhibited similarly high levels of maternal aggression towards intruders. Additionally, studies indicate that decreased OT release from the hypothalamic division of the paraventricular nucleus (PVN) is coincident with heightened maternal aggression in rats. Thus, it appears that cocaine-induced alterations in OT system dynamics (levels, receptors, production, and/or release) may mediate heightened maternal aggression following cocaine treatment, but the exact mechanisms through which cocaine impacts the OT system have not yet been determined. Based on previous studies, we hypothesized that two likely mechanisms of cocaine’s action would be, increased OTR binding specifically in the CeA, and decreased OT mRNA production in the PVN. Autoradiography and in situ hybridization assays were performed on targeted nuclei in brain regions of rat dams on postpartum day six, following gestational treatment twice daily with cocaine (15 mg/kg) or normal saline (1 ml/kg). We now report cocaine-induced reductions in OTR binding density in the ventromedial hypothalamus (VMH) and bed nucleus of the stria terminalis (BNST), but not the CeA. There was no significant change in OT mRNA production in the PVN following cocaine treatment. PMID:16677710

  2. 3D Pharmacophore, hierarchical methods, and 5-HT4 receptor binding data.

    Science.gov (United States)

    Varin, Thibault; Saettel, Nicolas; Villain, Jonathan; Lesnard, Aurelien; Dauphin, François; Bureau, Ronan; Rault, Sylvain

    2008-10-01

    5-Hydroxytryptamine subtype-4 (5-HT(4)) receptors have stimulated considerable interest amongst scientists and clinicians owing to their importance in neurophysiology and potential as therapeutic targets. A comparative analysis of hierarchical methods applied to data from one thousand 5-HT(4) receptor-ligand binding interactions was carried out. The chemical structures were described as chemical and pharmacophore fingerprints. The definitions of indices, related to the quality of the hierarchies in being able to distinguish between active and inactive compounds, revealed two interesting hierarchies with the Unity (1 active cluster) and pharmacophore fingerprints (4 active clusters). The results of this study also showed the importance of correct choice of metrics as well as the effectiveness of a new alternative of the Ward clustering algorithm named Energy (Minimum E-Distance method). In parallel, the relationship between these classifications and a previously defined 3D 5-HT(4) antagonist pharmacophore was established.

  3. Mutational analysis of the putative receptor-binding domain of Moloney murine leukemia virus glycoprotein gp70.

    Science.gov (United States)

    Panda, B R; Kingsman, S M; Kingsman, A J

    2000-07-20

    The entry of Moloney murine leukemia virus (MoMuLV) to murine cells is mediated by the binding of its envelope glycoprotein gp70 to its receptor, the cationic amino acid transporter MCAT-1. The binding property of the envelope protein lies mainly in the N-terminal half of the protein. To identify essential residues involved in the binding of gp70 to its receptor, we have mutated amino acids within the putative receptor-binding domain of MoMuLV gp70. Changes in the residues P94 and W100 resulted in lower viral titers in comparison to the wild-type virions. Single, double, or triple point mutations involving the residue W100 make the envelope protein severely defective in binding to its receptor. Binding studies and cell fusion experiments with murine XC cells suggested that the residue W100 might play an important role in the process of infection by making contact between gp70 and its receptor. PMID:10891411

  4. An integrated methodology for data processing in dynamic force spectroscopy of ligand-receptor binding

    Energy Technology Data Exchange (ETDEWEB)

    Odorico, M.; Teulon, J.-M.; Berthoumieu, O. [CEA-Valrho, DSV-DIEP-SBTN, BP 17171, Bagnols sur Ceze 30207 (France); Chen, S.-W. [13 avenue de la Mayre, Bagnols sur Ceze 30200 (France); Parot, P.; Pellequer, J.-L. [CEA-Valrho, DSV-DIEP-SBTN, BP 17171, Bagnols sur Ceze 30207 (France)

    2007-10-15

    Dynamic force spectroscopy (DFS), using atomic force microscopy (AFM), is a powerful tool to study ligand-receptor binding. The interaction mode of two binding partners is investigated by exploring stochastic behaviors of bond rupture events. However, to define a rupture event from force-distance measurements is not conclusive or unique in literature. To reveal the influence of event identification methods, we have developed an efficient protocol to manage tremendous amount of data by implementing different choices of peak selection from the force-distance curve. This data processing software simplifies routinely experimental procedures such as cantilever spring constant and force-distance curve calibrations, statistical treatments of data, and analysis distributions of rupture events. In the present work, we took available experimental data from a complex between a chelate metal compound and a monoclonal antibody as a study system.

  5. Ligand-binding domains of nuclear receptors facilitate tight control of split CRISPR activity.

    Science.gov (United States)

    Nguyen, Duy P; Miyaoka, Yuichiro; Gilbert, Luke A; Mayerl, Steven J; Lee, Brian H; Weissman, Jonathan S; Conklin, Bruce R; Wells, James A

    2016-01-01

    Cas9-based RNA-guided nuclease (RGN) has emerged to be a versatile method for genome editing due to the ease of construction of RGN reagents to target specific genomic sequences. The ability to control the activity of Cas9 with a high temporal resolution will facilitate tight regulation of genome editing processes for studying the dynamics of transcriptional regulation or epigenetic modifications in complex biological systems. Here we show that fusing ligand-binding domains of nuclear receptors to split Cas9 protein fragments can provide chemical control over split Cas9 activity. The method has allowed us to control Cas9 activity in a tunable manner with no significant background, which has been challenging for other inducible Cas9 constructs. We anticipate that our design will provide opportunities through the use of different ligand-binding domains to enable multiplexed genome regulation of endogenous genes in distinct loci through simultaneous chemical regulation of orthogonal Cas9 variants. PMID:27363581

  6. Ligand-binding domains of nuclear receptors facilitate tight control of split CRISPR activity

    Science.gov (United States)

    Nguyen, Duy P.; Miyaoka, Yuichiro; Gilbert, Luke A.; Mayerl, Steven J.; Lee, Brian H.; Weissman, Jonathan S.; Conklin, Bruce R.; Wells, James A.

    2016-01-01

    Cas9-based RNA-guided nuclease (RGN) has emerged to be a versatile method for genome editing due to the ease of construction of RGN reagents to target specific genomic sequences. The ability to control the activity of Cas9 with a high temporal resolution will facilitate tight regulation of genome editing processes for studying the dynamics of transcriptional regulation or epigenetic modifications in complex biological systems. Here we show that fusing ligand-binding domains of nuclear receptors to split Cas9 protein fragments can provide chemical control over split Cas9 activity. The method has allowed us to control Cas9 activity in a tunable manner with no significant background, which has been challenging for other inducible Cas9 constructs. We anticipate that our design will provide opportunities through the use of different ligand-binding domains to enable multiplexed genome regulation of endogenous genes in distinct loci through simultaneous chemical regulation of orthogonal Cas9 variants. PMID:27363581

  7. Localization of the binding site for the human high-affinity Fc receptor on IgG.

    Science.gov (United States)

    Duncan, A R; Woof, J M; Partridge, L J; Burton, D R; Winter, G

    1988-04-01

    A major pathway in the clearance of pathogens involves the coating of the pathogen with specific antibodies, and the binding of the antibody Fc region to cell receptors. This can trigger engulfment of the pathogen by phagocytes or lysis by killer cells. By oligonucleotide site-directed mutagenesis we have engineered a single amino acid change in a mouse IgG2b antibody (Glu 235----Leu) which now enables the antibody to bind to the FcRI (high affinity) receptor on human monocytes with a 100-fold improvement in affinity. This indicates that Leu 235 is a major determinant in the binding of antibody to FcRI and that the receptor may interact directly with the region linking the CH2 domain to the hinge. Tailoring the affinity of antibodies for cell receptors could help dissect their role in clearing pathogen. PMID:2965792

  8. Thyroid hormone receptor binds to a site in the rat growth hormone promoter required for induction by thyroid hormone

    International Nuclear Information System (INIS)

    Transcription of the rat growth hormone (rGH) gene in pituitary cells is increased by addition of thyroid hormone (T3). This induction is dependent on the presence of specific sequences just upstream of the rGH promoter. The authors have partially purified T3 receptor from rat liver and examined its interaction with these rGH sequences. They show here that T3 receptor binds specifically to a site just upstream of the basal rGH promoter. This binding site includes two copies of a 7-base-pair direct repeat, the centers of which are separated by 10 base pairs. Deletions that specifically remove the T3 receptor binding site drastically reduce response to T3 in transient transfection experiments. These results demonstrate that T3 receptor can recognize specific DNA sequences and suggest that it can act directly as a positive transcriptional regulatory factor

  9. Targeting the Binding Function 3 (BF3) Site of the Human Androgen Receptor Through Virtual Screening

    OpenAIRE

    Lack, Nathan A.; Axerio-Cilies, Peter; Tavassoli, Peyman; Han, Frank Q.; Chan, Ka Hong; Feau, Clementine; LeBlanc, Eric; Guns, Emma Tomlinson; Guy, R. Kiplin; Rennie, Paul S.; Cherkasov, Artem

    2011-01-01

    The androgen receptor (AR) is the best studied drug target for the treatment of prostate cancer. While there are a number of drugs that target the AR, they all work through the same mechanism of action and are prone to the development of drug resistance. There is a large unmet need for novel AR inhibitors which work through alternative mechanism(s). Recent studies have identified a novel site on the AR called Binding Function 3 (BF3) that is involved into AR transcriptional activity. In order...

  10. Legume receptors perceive the rhizobial lipochitin oligosaccharide signal molecules by direct binding

    DEFF Research Database (Denmark)

    Broghammer, Angelique; Krusell, Lene; Blaise, Mickaël;

    2012-01-01

    , and NFR1 protein retained its in vitro kinase activity. Processing of NFR5 protein was characterized by determining the N-glycosylation patterns of the ectodomain. Two different glycan structures with identical composition, Man(3)XylFucGlcNAc(4), were identified by mass spectrometry and located at...... amino acid positions N68 and N198. Receptor-ligand interaction was measured by using ligands that were labeled or immobilized by application of chemoselective chemistry at the anomeric center. High-affinity ligand binding was demonstrated with both solid-phase and free solution techniques. The K...

  11. Computational prediction of cAMP receptor protein (CRP) binding sites in cyanobacterial genomes

    Science.gov (United States)

    Xu, Minli; Su, Zhengchang

    2009-01-01

    Background Cyclic AMP receptor protein (CRP), also known as catabolite gene activator protein (CAP), is an important transcriptional regulator widely distributed in many bacteria. The biological processes under the regulation of CRP are highly diverse among different groups of bacterial species. Elucidation of CRP regulons in cyanobacteria will further our understanding of the physiology and ecology of this important group of microorganisms. Previously, CRP has been experimentally studied in only two cyanobacterial strains: Synechocystis sp. PCC 6803 and Anabaena sp. PCC 7120; therefore, a systematic genome-scale study of the potential CRP target genes and binding sites in cyanobacterial genomes is urgently needed. Results We have predicted and analyzed the CRP binding sites and regulons in 12 sequenced cyanobacterial genomes using a highly effective cis-regulatory binding site scanning algorithm. Our results show that cyanobacterial CRP binding sites are very similar to those in E. coli; however, the regulons are very different from that of E. coli. Furthermore, CRP regulons in different cyanobacterial species/ecotypes are also highly diversified, ranging from photosynthesis, carbon fixation and nitrogen assimilation, to chemotaxis and signal transduction. In addition, our prediction indicates that crp genes in modern cyanobacteria are likely inherited from a common ancestral gene in their last common ancestor, and have adapted various cellular functions in different environments, while some cyanobacteria lost their crp genes as well as CRP binding sites during the course of evolution. Conclusion The CRP regulons in cyanobacteria are highly diversified, probably as a result of divergent evolution to adapt to various ecological niches. Cyanobacterial CRPs may function as lineage-specific regulators participating in various cellular processes, and are important in some lineages. However, they are dispensable in some other lineages. The loss of CRPs in these species

  12. Computational prediction of cAMP receptor protein (CRP binding sites in cyanobacterial genomes

    Directory of Open Access Journals (Sweden)

    Su Zhengchang

    2009-01-01

    Full Text Available Abstract Background Cyclic AMP receptor protein (CRP, also known as catabolite gene activator protein (CAP, is an important transcriptional regulator widely distributed in many bacteria. The biological processes under the regulation of CRP are highly diverse among different groups of bacterial species. Elucidation of CRP regulons in cyanobacteria will further our understanding of the physiology and ecology of this important group of microorganisms. Previously, CRP has been experimentally studied in only two cyanobacterial strains: Synechocystis sp. PCC 6803 and Anabaena sp. PCC 7120; therefore, a systematic genome-scale study of the potential CRP target genes and binding sites in cyanobacterial genomes is urgently needed. Results We have predicted and analyzed the CRP binding sites and regulons in 12 sequenced cyanobacterial genomes using a highly effective cis-regulatory binding site scanning algorithm. Our results show that cyanobacterial CRP binding sites are very similar to those in E. coli; however, the regulons are very different from that of E. coli. Furthermore, CRP regulons in different cyanobacterial species/ecotypes are also highly diversified, ranging from photosynthesis, carbon fixation and nitrogen assimilation, to chemotaxis and signal transduction. In addition, our prediction indicates that crp genes in modern cyanobacteria are likely inherited from a common ancestral gene in their last common ancestor, and have adapted various cellular functions in different environments, while some cyanobacteria lost their crp genes as well as CRP binding sites during the course of evolution. Conclusion The CRP regulons in cyanobacteria are highly diversified, probably as a result of divergent evolution to adapt to various ecological niches. Cyanobacterial CRPs may function as lineage-specific regulators participating in various cellular processes, and are important in some lineages. However, they are dispensable in some other lineages. The

  13. Modulation of radioligand binding to the GABA(A)-benzodiazepine receptor complex by a new component from Cyperus rotundus.

    Science.gov (United States)

    Ha, Jeoung-Hee; Lee, Kwang-Youn; Choi, Hyoung-Chul; Cho, Jungsook; Kang, Byung-Soo; Lim, Jae-Chul; Lee, Dong-Ung

    2002-01-01

    Four sesquiterpenes, beta-selinene, isocurcumenol, nootkatone and aristolone and one triterpene, oleanolic acid were isolated from the ethylacetate fraction of the rhizomes of Cyperus rotundus and tested for their ability to modulate gamma-aminobutyric acid (GABA(A))-benzodiazepine receptor function by radioligand binding assays using rat cerebrocortical membranes. Among these compounds, only isocurcumenol, one of the newly identified constituents of this plant, was found to inhibit [3H]Ro15-1788 binding and enhance [3H]flunitrazepam binding in the presence of GABA. These results suggest that isocurcumenol may serve as a benzodiazepine receptor agonist and allosterically modulate GABAergic neurotransmission via enhancement of endogenous receptor ligand binding. PMID:11824542

  14. The Structure of a High-Affinity Kainate Receptor: GluK4 Ligand-Binding Domain Crystallized with Kainate.

    Science.gov (United States)

    Kristensen, Ole; Kristensen, Lise Baadsgaard; Møllerud, Stine; Frydenvang, Karla; Pickering, Darryl S; Kastrup, Jette Sandholm

    2016-09-01

    Ionotropic glutamate receptors play a key role in fast neurotransmission in the CNS and have been linked to several neurological diseases and disorders. One subfamily is the kainate receptors, which are grouped into low-affinity (GluK1-3) and high-affinity (GluK4-5) receptors based on their affinity for kainate. Although structures of the ligand-binding domain (LBD) of all low-affinity kainate receptors have been reported, no structures of the high-affinity receptor subunits are available. Here, we present the X-ray structure of GluK4-LBD with kainate at 2.05 Å resolution, together with thermofluor and radiolabel binding affinity data. Whereas binding-site residues in GluK4 are most similar to the AMPA receptor subfamily, the domain closure and D1-D2 interlobe contacts induced by kainate are similar to the low-affinity kainate receptor GluK1. These observations provide a likely explanation for the high binding affinity of kainate at GluK4-LBD.

  15. Heptapeptide ligands against receptor-binding sites of influenza hemagglutinin toward anti-influenza therapy.

    Science.gov (United States)

    Matsubara, Teruhiko; Onishi, Ai; Yamaguchi, Daisuke; Sato, Toshinori

    2016-03-01

    The initial attachment of influenza virus to cells is the binding of hemagglutinin (HA) to the sialyloligosaccharide receptor; therefore, the small molecules that inhibit the sugar-protein interaction are promising as HA inhibitors to prevent the infection. We herein demonstrate that sialic acid-mimic heptapeptides are identified through a selection from a primary library against influenza virus HA. In order to obtain lead peptides, an affinity selection from a phage-displayed random heptapeptide library was performed with the HAs of the H1 and H3 strains, and two kinds of the HA-binding peptides were identified. The binding of the peptides to HAs was inhibited in the presence of sialic acid, and plaque assays indicated that the corresponding N-stearoyl peptide strongly inhibited infections by the A/Aichi/2/68 (H3N2) strain of the virus. Alanine scanning of the peptides indicated that arginine and proline were responsible for binding. The affinities of several mutant peptides with single-amino-acid substitutions against H3 HA were determined, and corresponding docking studies were performed. A Spearman analysis revealed a correlation between the affinity of the peptides and the docking study. These results provide a practicable method to design of peptide-based HA inhibitors that are promising as anti-influenza drugs. PMID:26833245

  16. Identification of the bioactive and consensus peptide motif from Momordica charantia insulin receptor-binding protein.

    Science.gov (United States)

    Lo, Hsin-Yi; Li, Chia-Cheng; Ho, Tin-Yun; Hsiang, Chien-Yun

    2016-08-01

    Many food bioactive peptides with diverse functions have been discovered by studying plant proteins. We have previously identified a 68-residue insulin receptor (IR)-binding protein (mcIRBP) from Momordica charantia that exhibits hypoglycemic effects in mice via interaction with IR. By in vitro digestion, we found that mcIRBP-19, spanning residues 50-68 of mcIRBP, enhanced the binding of insulin to IR, stimulated the phosphorylation of PDK1 and Akt, induced the expression of glucose transporter 4, and stimulated both the uptake of glucose in cells and the clearance of glucose in diabetic mice. Furthermore, mcIRBP-19 homologs were present in various plants and shared similar β-hairpin structures and IR kinase-activating abilities to mcIRBP-19. In conclusion, our findings suggested that mcIRBP-19 is a blood glucose-lowering bioactive peptide that exhibits IR-binding potentials. Moreover, we newly identified novel IR-binding bioactive peptides in various plants which belonged to different taxonomic families. PMID:26988505

  17. The NMDA receptor ion channel: a site for binding of Huperzine A.

    Science.gov (United States)

    Gordon, R K; Nigam, S V; Weitz, J A; Dave, J R; Doctor, B P; Ved, H S

    2001-12-01

    Huperzine A (HUP-A), first isolated from the Chinese club moss Huperzia serrata, is a potent, reversible and selective inhibitor of acetylcholinesterase (AChE) over butyrylcholinesterase (BChE) (Life Sci. 54: 991-997). Because HUP-A has been shown to penetrate the blood-brain barrier, is more stable than the carbamates used as pretreatments for organophosphate poisoning (OP) and the HUP-A:AChE complex has a longer half-life than other prophylactic sequestering agents, HUP-A has been proposed as a pretreatment drug for nerve agent toxicity by protecting AChE from irreversible OP-induced phosphonylation. More recently (NeuroReport 8: 963-968), pretreatment of embryonic neuronal cultures with HUP-A reduced glutamate-induced cell death and also decreased glutamate-induced calcium mobilization. These results suggest that HUP-A might interfere with and be beneficial for excitatory amino acid overstimulation, such as seen in ischemia, where persistent elevation of internal calcium levels by activation of the N-methyl-D-aspartate (NMDA) glutamate subtype receptor is found. We have now investigated the interaction of HUP-A with glutamate receptors. Freshly frozen cortex or synaptic plasma membranes were used, providing 60-90% specific radioligand binding. Huperzine A (< or =100 microM) had no effect on the binding of [3H]glutamate (low- and high-affinity glutamate sites), [3H]MDL 105,519 (NMDA glycine regulatory site), [3H]ifenprodil (NMDA polyamine site) or [3H]CGS 19755 (NMDA antagonist). In contrast with these results, HUP-A non-competitively (Hill slope < 1) inhibited [3H]MK-801 and [3H]TCP binding (co-located NMDA ion channel PCP site) with pseudo K(i) approximately 6 microM. Furthermore, when neuronal cultures were pretreated with HUP-A for 45 min prior to NMDA exposure, HUP-A dose-dependently inhibited the NMDA-induced toxicity. Although HUP-A has been implicated to interact with cholinergic receptors, it was without effect at 100 microM on muscarinic (measured by

  18. G protein-coupled receptor transmembrane binding pockets and their applications in GPCR research and drug discovery: a survey.

    Science.gov (United States)

    Kratochwil, Nicole A; Gatti-McArthur, Silvia; Hoener, Marius C; Lindemann, Lothar; Christ, Andreas D; Green, Luke G; Guba, Wolfgang; Martin, Rainer E; Malherbe, Pari; Porter, Richard H P; Slack, Jay P; Winnig, Marcel; Dehmlow, Henrietta; Grether, Uwe; Hertel, Cornelia; Narquizian, Robert; Panousis, Constantinos G; Kolczewski, Sabine; Steward, Lucinda

    2011-01-01

    G protein-coupled receptors (GPCRs) share a common architecture consisting of seven transmembrane (TM) domains. Various lines of evidence suggest that this fold provides a generic binding pocket within the TM region for hosting agonists, antagonists, and allosteric modulators. Hence, an automated method was developed that allows a fast analysis and comparison of these generic ligand binding pockets across the entire GPCR family by providing the relevant information for all GPCRs in the same format. This methodology compiles amino acids lining the TM binding pocket including parts of the ECL2 loop in a so-called 1D ligand binding pocket vector and translates these 1D vectors in a second step into 3D receptor pharmacophore models. It aims to support various aspects of GPCR drug discovery in the pharmaceutical industry. Applications of pharmacophore similarity analysis of these 1D LPVs include definition of receptor subfamilies, prediction of species differences within subfamilies in regard to in vitro pharmacology and identification of nearest neighbors for GPCRs of interest to generate starting points for GPCR lead identification programs. These aspects of GPCR research are exemplified in the field of melanopsins, trace amine-associated receptors and somatostatin receptor subtype 5. In addition, it is demonstrated how 3D pharmacophore models of the LPVs can support the prediction of amino acids involved in ligand recognition, the understanding of mutational data in a 3D context and the elucidation of binding modes for GPCR ligands and their evaluation. Furthermore, guidance through 3D receptor pharmacophore modeling for the synthesis of subtype-specific GPCR ligands will be reported. Illustrative examples are taken from the GPCR family class C, metabotropic glutamate receptors 1 and 5 and sweet taste receptors, and from the GPCR class A, e.g. nicotinic acid and 5-hydroxytryptamine 5A receptor.

  19. Familial Risk for Major Depression is Associated with Lower Striatal 5-HT4 Receptor Binding

    DEFF Research Database (Denmark)

    Madsen, Karine; Torstensen, Eva; Holst, Klaus Kähler;

    2015-01-01

    BACKGROUND: The 5-HT4 receptor provides a novel potential target for antidepressant treatment. No studies exist to elucidate the 5-HT4 receptor's in vivo distribution in the depressed state or in populations that may display trait markers for major depression disorder (MDD). The aim of this study...... was to determine whether familial risk for MDD is associated with cerebral 5-HT4 receptor binding as measured with [(11)C]SB207145 brain PET imaging. Familial risk is the most potent risk factor of MDD. METHODS: We studied 57 healthy individuals (mean age 36 yrs, range 20-86; 21 women), 26 of which...... depression, and that lower striatal 5-HT4 receptor binding is associated with increased risk for developing MDD. The finding is intriguing considering that the 5-HT4 receptor has been suggested to be an effective target for antidepressant treatment....

  20. High-affinity naloxone binding to filamin a prevents mu opioid receptor-Gs coupling underlying opioid tolerance and dependence.

    Directory of Open Access Journals (Sweden)

    Hoau-Yan Wang

    Full Text Available Ultra-low-dose opioid antagonists enhance opioid analgesia and reduce analgesic tolerance and dependence by preventing a G protein coupling switch (Gi/o to Gs by the mu opioid receptor (MOR, although the binding site of such ultra-low-dose opioid antagonists was previously unknown. Here we show that with approximately 200-fold higher affinity than for the mu opioid receptor, naloxone binds a pentapeptide segment of the scaffolding protein filamin A, known to interact with the mu opioid receptor, to disrupt its chronic opioid-induced Gs coupling. Naloxone binding to filamin A is demonstrated by the absence of [(3H]-and FITC-naloxone binding in the melanoma M2 cell line that does not contain filamin or MOR, contrasting with strong [(3H]naloxone binding to its filamin A-transfected subclone A7 or to immunopurified filamin A. Naloxone binding to A7 cells was displaced by naltrexone but not by morphine, indicating a target distinct from opioid receptors and perhaps unique to naloxone and its analogs. The intracellular location of this binding site was confirmed by FITC-NLX binding in intact A7 cells. Overlapping peptide fragments from c-terminal filamin A revealed filamin A(2561-2565 as the binding site, and an alanine scan of this pentapeptide revealed an essential mid-point lysine. Finally, in organotypic striatal slice cultures, peptide fragments containing filamin A(2561-2565 abolished the prevention by 10 pM naloxone of both the chronic morphine-induced mu opioid receptor-Gs coupling and the downstream cAMP excitatory signal. These results establish filamin A as the target for ultra-low-dose opioid antagonists previously shown to enhance opioid analgesia and to prevent opioid tolerance and dependence.

  1. Characterization of the hormone-binding domain of the chicken c-erbA/thyroid hormone receptor protein

    DEFF Research Database (Denmark)

    Muñoz, A; Zenke, M; Gehring, U;

    1988-01-01

    To identify and characterize the hormone-binding domain of the thyroid hormone receptor, we analyzed the ligand-binding capacities of proteins representing chimeras between the normal receptor and P75gag-v-erbA, the retrovirus-encoded form deficient in binding ligand. Our results show that severa......gag-v-erbA and that renders it biologically inactive fails to affect hormone binding by the c-erbA protein. These results suggest that the mutation changed the ability of P75gag-v-erbA to affect transcription since it also had no effect on DNA binding. Our data also suggest that hormone......-independent activity of P75gag-v-erbA provided a selective advantage to the avian erythroblastosis virus during the original selection for a highly oncogenic strain of the virus....

  2. Metallothionein and a peptide modeled after metallothionein, EmtinB, induce neuronal differentiation and survival through binding to receptors of the low-density lipoprotein receptor family

    DEFF Research Database (Denmark)

    Ambjørn, Malene; Asmussen, Johanne W; Lindstam, Mats;

    2007-01-01

    Accumulating evidence suggests that metallothionein (MT)-I and -II promote neuronal survival and regeneration in vivo. The present study investigated the molecular mechanisms underlying the differentiation and survival-promoting effects of MT and a peptide modeled after MT, EmtinB. Both MT...... and EmtinB directly stimulated neurite outgrowth and promoted survival in vitro using primary cultures of cerebellar granule neurons. In addition, expression and surface localization of megalin, a known MT receptor, and the related lipoprotein receptor-related protein-1 (LRP) are demonstrated in cerebellar...... granule neurons. By means of surface plasmon resonance MT and EmtinB were found to bind to both megalin and LRP. The bindings were abrogated in the presence of receptor-associated protein-1, an antagonist of the low-density lipoprotein receptor family, which also inhibited MT- and EmtinB-induced neurite...

  3. CYCLIC CHOLECYSTOKININ ANALOGUES EXHIBIT HIGH BLOOD STABILITY AND BINDING AFFINITY WITH CHOLECYSTOKININ RECEPTOR

    Directory of Open Access Journals (Sweden)

    Eun-Ha Joh

    2014-01-01

    Full Text Available Recently, incidence of Cholecystokinin (CCK receptor is recognized as a factor that determines the aggressive phenotype of pancreatic cancer. In this study, a novel Cholecystokinin (CCK analogues; DOTA-Nle-cyclo (Glu-Trp-Met-Asp-Phe-Lys-NH2 (DOTA-cCCK and DOTA-Nle-cyclo (Glu-Trp-Nle-Asp-Phe-Lys-NH2 (DOTA-[Nle]-cCCK were synthesized and radiolabeled and the targeting abilities on the CCK receptor were evaluated for new CCK receptor targeting agents searching. Peptides were prepared through a solid phase synthesis method and their purity was over 98%. DOTA is the chelating agent for 68Ga-labelling, which the peptides were radiolabeled with 68Ga by a high radiolabeling yield (>98%. Peptides were stable over 98% by incubation in mouse blood at 37°C for 2 h. A competitive displacement of 125I-CCK8 on the AR42J human pancreatic carcinoma cells revealed that 50% inhibitory concentration value (IC50 were 12.31 nM of DOTA-cCCK and 1.69 nM of DOTA-[Nle]-cCCK. Stable in the blood of both DOTA-cCCK and DOTA-[Nle]-cCCK, but the binding rate with the CCK receptor on AR42J cells, DOTA-[Nle]-cCCK confirmed better than DOTA-cCCK. Therefore, it is concluded that 68Ga-DOTA-[Nle]-cCCK can be potential candidate as a targeting modality for the CCK receptor over-expressing tumors and further studies to evaluate their biological characteristics are needed.

  4. High throughput techniques for discovering new glycine receptor modulators and their binding sites

    Directory of Open Access Journals (Sweden)

    Daniel F Gilbert

    2009-10-01

    Full Text Available The inhibitory glycine receptor (GlyR is a member of the Cys-loop receptor family that mediates inhibitory neurotransmission in the central nervous system. These receptors are emerging as potential drug targets for inflammatory pain, immunomodulation, spasticity and epilepsy. Antagonists that specifically inhibit particular GlyR isoforms are also required as pharmacological probes for elucidating the roles of particular GlyR isoforms in health and disease. Although a substantial number of both positive and negative GlyR modulators have been identified, very few of these are specific for the GlyR over other receptor types. Thus, the potential of known compounds as either therapeutic leads or pharmacological probes is limited. It is therefore surprising that there have been few published studies describing attempts to discover novel GlyR isoform-specific compounds. The first aim of this review is to consider various methods for efficiently screening compounds against these receptors. We conclude that an anion sensitive yellow fluorescent protein is optimal for primary screening and that automated electrophysiology of cells stably expressing GlyRs is useful for confirming hits and quantitating the actions of identified compounds. The second aim of this review is to demonstrate how these techniques are used in our laboratory for the purpose of both discovering novel GlyR-active compounds and characterizing their binding sites. We also describe a reliable, cost effective method for transfecting HEK293 cells in single wells of a 384 well plate using nanogram quantities of cDNA.

  5. Identification of the Calmodulin-Binding Domains of Fas Death Receptor.

    Directory of Open Access Journals (Sweden)

    Bliss J Chang

    Full Text Available The extrinsic apoptotic pathway is initiated by binding of a Fas ligand to the ectodomain of the surface death receptor Fas protein. Subsequently, the intracellular death domain of Fas (FasDD and that of the Fas-associated protein (FADD interact to form the core of the death-inducing signaling complex (DISC, a crucial step for activation of caspases that induce cell death. Previous studies have shown that calmodulin (CaM is recruited into the DISC in cholangiocarcinoma cells and specifically interacts with FasDD to regulate the apoptotic/survival signaling pathway. Inhibition of CaM activity in DISC stimulates apoptosis significantly. We have recently shown that CaM forms a ternary complex with FasDD (2:1 CaM:FasDD. However, the molecular mechanism by which CaM binds to two distinct FasDD motifs is not fully understood. Here, we employed mass spectrometry, nuclear magnetic resonance (NMR, biophysical, and biochemical methods to identify the binding regions of FasDD and provide a molecular basis for the role of CaM in Fas-mediated apoptosis. Proteolytic digestion and mass spectrometry data revealed that peptides spanning residues 209-239 (Fas-Pep1 and 251-288 (Fas-Pep2 constitute the two CaM-binding regions of FasDD. To determine the molecular mechanism of interaction, we have characterized the binding of recombinant/synthetic Fas-Pep1 and Fas-Pep2 peptides with CaM. Our data show that both peptides engage the N- and C-terminal lobes of CaM simultaneously. Binding of Fas-Pep1 to CaM is entropically driven while that of Fas-Pep2 to CaM is enthalpically driven, indicating that a combination of electrostatic and hydrophobic forces contribute to the stabilization of the FasDD-CaM complex. Our data suggest that because Fas-Pep1 and Fas-Pep2 are involved in extensive intermolecular contacts with the death domain of FADD, binding of CaM to these regions may hinder its ability to bind to FADD, thus greatly inhibiting the initiation of apoptotic signaling

  6. Discovery of inhibitors of aberrant gene transcription from Libraries of DNA binding molecules: inhibition of LEF-1-mediated gene transcription and oncogenic transformation.

    Science.gov (United States)

    Stover, James S; Shi, Jin; Jin, Wei; Vogt, Peter K; Boger, Dale L

    2009-03-11

    The screening of a >9000 compound library of synthetic DNA binding molecules for selective binding to the consensus sequence of the transcription factor LEF-1 followed by assessment of the candidate compounds in a series of assays that characterized functional activity (disruption of DNA-LEF-1 binding) at the intended target and site (inhibition of intracellular LEF-1-mediated gene transcription) resulting in a desired phenotypic cellular change (inhibit LEF-1-driven cell transformation) provided two lead compounds: lefmycin-1 and lefmycin-2. The sequence of screens defining the approach assures that activity in the final functional assay may be directly related to the inhibition of gene transcription and DNA binding properties of the identified molecules. Central to the implementation of this generalized approach to the discovery of DNA binding small molecule inhibitors of gene transcription was (1) the use of a technically nondemanding fluorescent intercalator displacement (FID) assay for initial assessment of the DNA binding affinity and selectivity of a library of compounds for any sequence of interest, and (2) the technology used to prepare a sufficiently large library of DNA binding compounds.

  7. Comparison of immunochemical and radioligand binding assays for estrogen receptors in human breast tumors.

    Science.gov (United States)

    Di Fronzo, G; Miodini, P; Brivio, M; Cappelletti, V; Coradini, D; Granata, G; Ronchi, E

    1986-08-01

    We have compared a new enzyme immunoassay (EIA) for estrogen receptors (ER) with our conventional radioligand binding assays (multipoint dextran-coated charcoal assay for cytoplasmic ER and hydroxylapatite exchange assay for nuclear ER). Cytoplasmic ERs were measured in 76 human breast cancer specimens by EIA and by five-point Scatchard analysis. The correlation between the two assays yielded a straight line with a slope of 0.92 (r = 0.95; P less than 0.001); conversely, in 31 nuclear salt extracts, linear regression analysis of hydroxylapatite exchange assay data with EIA showed a clear correlation (r = 0.93; P less than 0.001) but a slope of 1.7, demonstrating that EIA detects more ER sites. The binding of the antibody to the cytoplasmic ER molecules was investigated by sucrose density gradient analysis, which showed that EIA recognizes both cytoplasmic forms (9 and 3S), but does not distinguish between them. Advantages and drawbacks of this method are discussed with respect to its application for routine receptor determination for clinical management of breast cancer patients.

  8. The androgen receptor is transcriptionally suppressed by proteins that bind single-stranded DNA.

    Science.gov (United States)

    Grossmann, M E; Tindall, D J

    1995-05-01

    The androgen receptor (AR) is a nuclear transcription factor that is essential for development of the male urogenital tract. In the current work, we have characterized the mouse androgen receptor suppressor (mARS). A single, 20-base pair, region (TCCCCCCACCCACCCCC-CCT) was sufficient for suppression in chloramphenicol acetyltransferase assays. Northern analysis indicated that translational regulation is not necessary for the suppression. Analysis of the AR mRNA half-life indicated that the mARS does not affect AR RNA degradation. Gel mobility assays showed that the mARS is bound by multiple proteins that can recognize single-stranded DNA and RNA. In addition, differing proteins are expressed in distinct tissues. Purification of some of these proteins has shown that a doublet of 33 and 35 kDa binds to the G-rich strand and that a 52-kDa protein binds to the C-rich strand. Southwestern blots have confirmed that these proteins are indeed recognized by the mARS. The results of these experiments indicate that the AR 5'-untranslated region contains a suppressor element that can be bound by multiple proteins. The mARS appears to be acting either by altering transcription initiation or blocking transcription elongation. Characterization of this suppressor may provide insight into the physiological means by which the AR is regulated.

  9. Mineralocorticoid specificity of renal type I receptors: in vivo binding studies

    Energy Technology Data Exchange (ETDEWEB)

    Sheppard, K.; Funder, J.W.

    1987-02-01

    The authors have injected rats with (TH)aldosterone or (TH) corticosterone, plus 100-fold excess of the highly specific glucocorticoid RU 28362, with or without excess unlabeled aldosterone or corticosterone and compared type I receptor occupancy in kidney and hippocampus. Thirty minutes after subcutaneous injection (TH)aldosterone was well retained in renal papilla-inner medulla, renal cortex-outer medulla, and hippocampus; in contrast, (TH)corticosterone was well retained only in hippocampus. Competition studies for (TH)aldosterone binding sites showed corticosterone to be a poor competitor in the kidney compared with hippocampus. Time-course studies, with rats killed 10-180 min after tracer administration, showed very low uptake/retention of (TH)corticosterone by kidney; in hippocampus (TH)corticosterone retention was similar to that of (TH)aldosterone in kidney, and retention of (TH)aldosterone by hippocampus was much more prolonged than of either tracer in any other tissue. Studies in 10-day-old rats, with very low levels of corticosteroid binding globulin (CBG), showed a high degree of aldosterone selectivity in both zones of the kidney, whereas 9TH)aldosterone and (TH)corticosterone were equivalently bound in hippocampus. They interpret these data as evidenced for a mechanism unrelated to extravascular CBG conferring mineralocorticoid specificity on renal type I receptors and propose two models derived from their findings consistent with such differential selectivity.

  10. Brownian nanoimaging of interface dynamics and ligand-receptor binding at cell surfaces in 3-D.

    Science.gov (United States)

    Kuznetsov, Igor R; Evans, Evan A

    2013-04-01

    We describe a method for nanoimaging interfacial dynamics and ligand-receptor binding at surfaces of live cells in 3-D. The imaging probe is a 1-μm diameter glass bead confined by a soft laser trap to create a "cloud" of fluctuating states. Using a facile on-line method of video image analysis, the probe displacements are reported at ~10 ms intervals with bare precisions (±SD) of 4-6 nm along the optical axis (elevation) and 2 nm in the transverse directions. We demonstrate how the Brownian distributions are analyzed to characterize the free energy potential of each small probe in 3-D taking into account the blur effect of its motions during CCD image capture. Then, using the approach to image interactions of a labeled probe with lamellae of leukocytic cells spreading on cover-glass substrates, we show that deformations of the soft distribution in probe elevations provide both a sensitive long-range sensor for defining the steric topography of a cell lamella and a fast telemetry for reporting rare events of probe binding with its surface receptors. Invoking established principles of Brownian physics and statistical thermodynamics, we describe an off-line method of super resolution that improves precision of probe separations from a non-reactive steric boundary to ~1 nm.

  11. Receptor binding and adenylate cyclase activities of glucagon analogues modified in the N-terminal region

    Energy Technology Data Exchange (ETDEWEB)

    McKee, R.L.; Pelton, J.T.; Trivedi, D.; Johnson, D.G.; Coy, D.H.; Sueiras-Diaz, J.; Hruby, V.J.

    1986-04-08

    In this study, we determined the ability of four N-terminally modified derivatives of glucagon, (3-Me-His1,Arg12)-, (Phe1,Arg12)-, (D-Ala4,Arg12)-, and (D-Phe4)glucagon, to compete with 125I-glucagon for binding sites specific for glucagon in hepatic plasma membranes and to activate the hepatic adenylate cyclase system, the second step involved in producing many of the physiological effects of glucagon. Relative to the native hormone, (3-Me-His1,Arg12)glucagon binds approximately twofold greater to hepatic plasma membranes but is fivefold less potent in the adenylate cyclase assay. (Phe1,Arg12)glucagon binds threefold weaker and is also approximately fivefold less potent in adenylate cyclase activity. In addition, both analogues are partial agonists with respect to adenylate cyclase. These results support the critical role of the N-terminal histidine residue in eliciting maximal transduction of the hormonal message. (D-Ala4,Arg12)glucagon and (D-Phe4)glucagon, analogues designed to examine the possible importance of a beta-bend conformation in the N-terminal region of glucagon for binding and biological activities, have binding potencies relative to glucagon of 31% and 69%, respectively. (D-Ala4,Arg12)glucagon is a partial agonist in the adenylate cyclase assay system having a fourfold reduction in potency, while the (D-Phe4) derivative is a full agonist essentially equipotent with the native hormone. These results do not necessarily support the role of an N-terminal beta-bend in glucagon receptor recognition. With respect to in vivo glycogenolysis activities, all of the analogues have previously been reported to be full agonists.

  12. Cross-talk between the ligand- and DNA-binding domains of estrogen receptor.

    Science.gov (United States)

    Huang, Wei; Greene, Geoffrey L; Ravikumar, Krishnakumar M; Yang, Sichun

    2013-11-01

    Estrogen receptor alpha (ERα) is a hormone-responsive transcription factor that contains several discrete functional domains, including a ligand-binding domain (LBD) and a DNA-binding domain (DBD). Despite a wealth of knowledge about the behaviors of individual domains, the molecular mechanisms of cross-talk between LBD and DBD during signal transduction from hormone to DNA-binding of ERα remain elusive. Here, we apply a multiscale approach combining coarse-grained (CG) and atomistically detailed simulations to characterize this cross-talk mechanism via an investigation of the ERα conformational landscape. First, a CG model of ERα is built based on crystal structures of individual LBDs and DBDs, with more emphasis on their interdomain interactions. Second, molecular dynamics simulations are implemented and enhanced sampling is achieved via the "push-pull-release" strategy in the search for different LBD-DBD orientations. Third, multiple energetically stable ERα conformations are identified on the landscape. A key finding is that estradiol-bound LBDs utilize the well-described activation helix H12 to pack and stabilize LBD-DBD interactions. Our results suggest that the estradiol-bound LBDs can serve as a scaffold to position and stabilize the DBD-DNA complex, consistent with experimental observations of enhanced DNA binding with the LBD. Final assessment using atomic-level simulations shows that these CG-predicted models are significantly stable within a 15-ns simulation window and that specific pairs of lysine residues in close proximity at the domain interfaces could serve as candidate sites for chemical cross-linking studies. Together, these simulation results provide a molecular view of the role of ERα domain interactions in response to hormone binding.

  13. Examining the Effects of Sodium Ions on the Binding of Antagonists to Dopamine D2 and D3 Receptors

    Science.gov (United States)

    Wood, Martyn D.; Strange, Philip G.

    2016-01-01

    Many G protein-coupled receptors have been shown to be sensitive to the presence of sodium ions (Na+). Using radioligand competition binding assays, we have examined and compared the effects of sodium ions on the binding affinities of a number of structurally diverse ligands at human dopamine D2 and dopamine D3 receptor subtypes, which are important therapeutic targets for the treatment of psychotic disorders. At both receptors, the binding affinities of the antagonists/inverse agonists SB-277011-A, L,741,626, GR 103691 and U 99194 were higher in the presence of sodium ions compared to those measured in the presence of the organic cation, N-methyl-D-glucamine, used to control for ionic strength. Conversely, the affinities of spiperone and (+)-butaclamol were unaffected by the presence of sodium ions. Interestingly, the binding of the antagonist/inverse agonist clozapine was affected by changes in ionic strength of the buffer used rather than the presence of specific cations. Similar sensitivities to sodium ions were seen at both receptors, suggesting parallel effects of sodium ion interactions on receptor conformation. However, no clear correlation between ligand characteristics, such as subtype selectivity, and sodium ion sensitivity were observed. Therefore, the properties which determine this sensitivity remain unclear. However these findings do highlight the importance of careful consideration of assay buffer composition for in vitro assays and when comparing data from different studies, and may indicate a further level of control for ligand binding in vivo. PMID:27379794

  14. Reduction of GABA/sub B/ receptor binding induced by climbing fiber degeneration in the rat cerebellum

    International Nuclear Information System (INIS)

    When the rat cerebellar climbing fibers degenerated, as induced by lesioning the inferior olive with 3-acetylpyridine (3-AP), GABA/sub B/ receptor binding determined with 3H-(+/-)baclofen was reduced in the cerebellum but not in the cerebral cortex of rats. Computer analysis of saturation data revealed two components of the binding sites, and indicated that decrease of the binding in the cerebellum was due to reduction in receptor density, mainly of the high-affinity sites, the B/sub max/ of which was reduced to one-third that in the control animals. In vitro treatment with 3-AP, of the membranes prepared from either the cerebellum or the cerebral cortex, induced no alteration in the binding sites, thereby indicating that the alteration of GABA/sub B/ sites induced by in vivo treatment with 3-AP is not due to a direct action of 3-AP on the receptor. GABA/sub A/ and benzodiazepine receptor binding labelled with 3H-muscimol and 3H-diazepam, respectively, in both of brain regions was not affected by destruction of the inferior olive. These results provide evidence that some of the GABA/sub B/ sites but neither GABA/sub A/ nor benzodiazepine receptors in the cerebellum are located at the climbing fiber terminals. 28 references, 4 figures, 2 tables

  15. Reduction of GABA/sub B/ receptor binding induced by climbing fiber degeneration in the rat cerebellum

    Energy Technology Data Exchange (ETDEWEB)

    Kato, K.; Fukuda, H.

    1985-07-22

    When the rat cerebellar climbing fibers degenerated, as induced by lesioning the inferior olive with 3-acetylpyridine (3-AP), GABA/sub B/ receptor binding determined with /sup 3/H-(+/-)baclofen was reduced in the cerebellum but not in the cerebral cortex of rats. Computer analysis of saturation data revealed two components of the binding sites, and indicated that decrease of the binding in the cerebellum was due to reduction in receptor density, mainly of the high-affinity sites, the B/sub max/ of which was reduced to one-third that in the control animals. In vitro treatment with 3-AP, of the membranes prepared from either the cerebellum or the cerebral cortex, induced no alteration in the binding sites, thereby indicating that the alteration of GABA/sub B/ sites induced by in vivo treatment with 3-AP is not due to a direct action of 3-AP on the receptor. GABA/sub A/ and benzodiazepine receptor binding labelled with /sup 3/H-muscimol and /sup 3/H-diazepam, respectively, in both of brain regions was not affected by destruction of the inferior olive. These results provide evidence that some of the GABA/sub B/ sites but neither GABA/sub A/ nor benzodiazepine receptors in the cerebellum are located at the climbing fiber terminals. 28 references, 4 figures, 2 tables.

  16. Insights into the binding of Phenyltiocarbamide (PTC agonist to its target human TAS2R38 bitter receptor.

    Directory of Open Access Journals (Sweden)

    Xevi Biarnés

    Full Text Available Humans' bitter taste perception is mediated by the hTAS2R subfamily of the G protein-coupled membrane receptors (GPCRs. Structural information on these receptors is currently limited. Here we identify residues involved in the binding of phenylthiocarbamide (PTC and in receptor activation in one of the most widely studied hTAS2Rs (hTAS2R38 by means of structural bioinformatics and molecular docking. The predictions are validated by site-directed mutagenesis experiments that involve specific residues located in the putative binding site and trans-membrane (TM helices 6 and 7 putatively involved in receptor activation. Based on our measurements, we suggest that (i residue N103 participates actively in PTC binding, in line with previous computational studies. (ii W99, M100 and S259 contribute to define the size and shape of the binding cavity. (iii W99 and M100, along with F255 and V296, play a key role for receptor activation, providing insights on bitter taste receptor activation not emerging from the previously reported computational models.

  17. Binding of receptor-recognized forms of alpha2-macroglobulin to the alpha2-macroglobulin signaling receptor activates phosphatidylinositol 3-kinase.

    Science.gov (United States)

    Misra, U K; Pizzo, S V

    1998-05-29

    Ligation of the alpha2-macroglobulin (alpha2M) signaling receptor by receptor-recognized forms of alpha2M (alpha2M*) initiates mitogenesis secondary to increased intracellular Ca2+. We report here that ligation of the alpha2M signaling receptor also causes a 1. 5-2.5-fold increase in wortmannin-sensitive phosphatidylinositol 3-kinase (PI3K) activity as measured by the quantitation of phosphatidylinositol 3,4,5-trisphosphate (PIP3). PIP3 formation was alpha2M* concentration-dependent with a maximal response at approximately 50 pM ligand concentration. The peak formation of PIP3 occurred at 10 min of incubation. The alpha2M receptor binding fragment mutant K1370R which binds to the alpha2M signaling receptor activating the signaling cascade, increased PIP3 formation by 2-fold. The mutant K1374A, which binds very poorly to the alpha2M signaling receptor, did not cause any increase in PIP3 formation. alpha2M*-induced DNA synthesis was inhibited by wortmannin. 1, 2Bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acetoxymethylester a chelator of intracellular Ca2+, drastically reduced alpha2M*-induced increases in PIP3 formation. We conclude that PI3K is involved in alpha2M*-induced mitogenesis in macrophages and intracellular Ca2+ plays a role in PI3K activation. PMID:9593670

  18. S cysteine-rich (SCR) binding domain analysis of the Brassica self-incompatibility S-locus receptor kinase.

    Science.gov (United States)

    Kemp, Benjamin P; Doughty, James

    2007-01-01

    Brassica self-incompatibility, a highly discriminating outbreeding mechanism, has become a paradigm for the study of plant cell-cell communications. When self-pollen lands on a stigma, the male ligand S cysteine-rich (SCR), which is present in the pollen coat, is transmitted to the female receptor, S-locus receptor kinase (SRK). SRK is a membrane-spanning serine/threonine receptor kinase present in the stigmatic papillar cell membrane. Haplotype-specific binding of SCR to SRK brings about pollen rejection. The extracellular receptor domain of SRK (eSRK) is responsible for binding SCR. Based on sequence homology, eSRK can be divided into three subdomains: B lectin-like, hypervariable, and PAN. Biochemical analysis of these subdomains showed that the hypervariable subdomain is responsible for most of the SCR binding capacity of eSRK, whereas the B lectin-like and PAN domains have little, if any, affinity for SCR. Fine mapping of the SCR binding region of SRK using a peptide array revealed a region of the hypervariable subdomain that plays a key role in binding the SCR molecule. We show that residues within the hypervariable subdomain define SRK binding and are likely to be involved in defining haplotype specificity.

  19. Using Nature's "Tricks" To Rationally Tune the Binding Properties of Biomolecular Receptors.

    Science.gov (United States)

    Ricci, Francesco; Vallée-Bélisle, Alexis; Simon, Anna J; Porchetta, Alessandro; Plaxco, Kevin W

    2016-09-20

    The biosensor community has long focused on achieving the lowest possible detection limits, with specificity (the ability to differentiate between closely similar target molecules) and sensitivity (the ability to differentiate between closely similar target concentrations) largely being relegated to secondary considerations and solved by the inclusion of cumbersome washing and dilution steps or via careful control experimental conditions. Nature, in contrast, cannot afford the luxury of washing and dilution steps, nor can she arbitrarily change the conditions (temperature, pH, ionic strength) under which binding occurs in the homeostatically maintained environment within the cell. This forces evolution to focus at least as much effort on achieving optimal sensitivity and specificity as on achieving low detection limits, leading to the "invention" of a number of mechanisms, such as allostery and cooperativity, by which the useful dynamic range of receptors can be tuned, extended, narrowed, or otherwise optimized by design, rather than by sample manipulation. As the use of biomolecular receptors in artificial technologies matures (i.e., moves away from multistep, laboratory-bound processes and toward, for example, systems supporting continuous in vivo measurement) and these technologies begin to mimic the reagentless single-step convenience of naturally occurring chemoperception systems, the ability to artificially design receptors of enhanced sensitivity and specificity will likely also grow in importance. Thus motivated, we have begun to explore the adaptation of nature's solutions to these problems to the biomolecular receptors often employed in artificial biotechnologies. Using the population-shift mechanism, for example, we have generated nested sets of receptors and allosteric inhibitors that greatly expanded the normally limited (less than 100-fold) useful dynamic range of unmodified molecular and aptamer beacons, enabling the single-step (e.g., dilution

  20. Ability of luteinizing hormone releasing hormone-Pseudomonas aeruginosa exotoxin 40 binding to LHRH receptor on human liver cancer cells

    Institute of Scientific and Technical Information of China (English)

    Shou-Liang Gong; Gang Zhao; Hong-Guang Zhao; Wen-Tian Lü; Guang-Wei Liu; Ping Zhu

    2004-01-01

    AIM: To explore the ability of recombinant toxin luteinizing hormone releasing hormone-Pseudomonas aeruginosa exotoxin 40 (LHRH-PE40) anH binding to LHRH receptor(LHRHR) on the membrane surfa ogf hman liver cancer HEPG cells.METHODS: LHRH was beled by using 125I with enzymatic reaction. The affinity and receptor volume of LHRH-PE40and LHRH binding to LHRHR on the membrane surface of human liver cancer cells were measured with radioligand receptor assay.RESULTS:The specific activity of LHRH labeled with 125I was 2.7×104 kBq/μL, and its radiochemical purity reached to 99.2-99.7%. The binding of 125I to LHRH was maximal for 240 min in the warm cultivation, and this binding was stabilized. The inhibiting rates of 125I-LHRH and LHRH on the proliferation of human liver cancer HEPG cells were not significantly different. On the basis of the saturation curve of 125I-LHRH binding to the membrane LHRHR of HEPG cells, 125I-LHRH of 1×105 cpm was selected for radioligand receptor assay. The affinity constants (Kd) of LHRH-PE40and LHRH bively,and their receptor volumes were 0.37±0.15 μmol/g and0.42±0.13 μmol/g, respectively. The binding of LHRH-PE40to the membrane proteinof normal liver cells was not observed.CONCLUSION: The recombinant toxin LHRH-PE40 binding to the membrane surface of LHRHR of human liver cancer HEPG cells was very strong, while the specific binding of it to normal liver cells was not observed. The results provide an important experimental basis for the clinical application of LHRH-PE.

  1. The Receptor-Binding Domain in the VP1u Region of Parvovirus B19.

    Science.gov (United States)

    Leisi, Remo; Di Tommaso, Chiarina; Kempf, Christoph; Ros, Carlos

    2016-03-01

    Parvovirus B19 (B19V) is known as the human pathogen causing the mild childhood disease erythema infectiosum. B19V shows an extraordinary narrow tissue tropism for erythroid progenitor cells in the bone marrow, which is determined by a highly restricted uptake. We have previously shown that the specific internalization is mediated by the interaction of the viral protein 1 unique region (VP1u) with a yet unknown cellular receptor. To locate the receptor-binding domain (RBD) within the VP1u, we analyzed the effect of truncations and mutations on the internalization capacity of the recombinant protein into UT7/Epo cells. Here we report that the N-terminal amino acids 5-80 of the VP1u are necessary and sufficient for cellular binding and internalization; thus, this N-terminal region represents the RBD required for B19V uptake. Using site-directed mutagenesis, we further identified a cluster of important amino acids playing a critical role in VP1u internalization. In silico predictions and experimental results suggest that the RBD is structured as a rigid fold of three α-helices. Finally, we found that dimerization of the VP1u leads to a considerably enhanced cellular binding and internalization. Taken together, we identified the RBD that mediates B19V uptake and mapped functional and structural motifs within this sequence. The findings reveal insights into the uptake process of B19V, which contribute to understand the pathogenesis of the infection and the neutralization of the virus by the immune system. PMID:26927158

  2. Genome-wide binding and transcriptome analysis of human farnesoid X receptor in primary human hepatocytes.

    Directory of Open Access Journals (Sweden)

    Le Zhan

    Full Text Available Farnesoid X receptor (FXR, NR1H4 is a ligand-activated transcription factor, belonging to the nuclear receptor superfamily. FXR is highly expressed in the liver and is essential in regulating bile acid homeostasis. FXR deficiency is implicated in numerous liver diseases and mice with modulation of FXR have been used as animal models to study liver physiology and pathology. We have reported genome-wide binding of FXR in mice by chromatin immunoprecipitation - deep sequencing (ChIP-seq, with results indicating that FXR may be involved in regulating diverse pathways in liver. However, limited information exists for the functions of human FXR and the suitability of using murine models to study human FXR functions.In the current study, we performed ChIP-seq in primary human hepatocytes (PHHs treated with a synthetic FXR agonist, GW4064 or DMSO control. In parallel, RNA deep sequencing (RNA-seq and RNA microarray were performed for GW4064 or control treated PHHs and wild type mouse livers, respectively.ChIP-seq showed similar profiles of genome-wide FXR binding in humans and mice in terms of motif analysis and pathway prediction. However, RNA-seq and microarray showed more different transcriptome profiles between PHHs and mouse livers upon GW4064 treatment.In summary, we have established genome-wide human FXR binding and transcriptome profiles. These results will aid in determining the human FXR functions, as well as judging to what level the mouse models could be used to study human FXR functions.

  3. Broadly neutralizing human antibody that recognizes the receptor-binding pocket of influenza virus hemagglutinin

    Energy Technology Data Exchange (ETDEWEB)

    Whittle, James R.R.; Zhang, Ruijun; Khurana, Surender; King, Lisa R.; Manischewitz, Jody; Golding, Hana; Dormitzer, Philip R.; Haynes, Barton F.; Walter, Emmanuel B.; Moody, M. Anthony; Kepler, Thomas B.; Liao, Hua-Xin; Harrison, Stephen C. (Harvard-Med); (Novartis); (US-FDA); (Duke)

    2011-09-20

    Seasonal antigenic drift of circulating influenza virus leads to a requirement for frequent changes in vaccine composition, because exposure or vaccination elicits human antibodies with limited cross-neutralization of drifted strains. We describe a human monoclonal antibody, CH65, obtained by isolating rearranged heavy- and light-chain genes from sorted single plasma cells, coming from a subject immunized with the 2007 trivalent influenza vaccine. The crystal structure of a complex of the hemagglutinin (HA) from H1N1 strain A/Solomon Islands/3/2006 with the Fab of CH65 shows that the tip of the CH65 heavy-chain complementarity determining region 3 (CDR3) inserts into the receptor binding pocket on HA1, mimicking in many respects the interaction of the physiological receptor, sialic acid. CH65 neutralizes infectivity of 30 out of 36 H1N1 strains tested. The resistant strains have a single-residue insertion near the rim of the sialic-acid pocket. We conclude that broad neutralization of influenza virus can be achieved by antibodies with contacts that mimic those of the receptor.

  4. Neonicotinoid binding, toxicity and expression of nicotinic acetylcholine receptor subunits in the aphid Acyrthosiphon pisum.

    Directory of Open Access Journals (Sweden)

    Emiliane Taillebois

    Full Text Available Neonicotinoid insecticides act on nicotinic acetylcholine receptor and are particularly effective against sucking pests. They are widely used in crops protection to fight against aphids, which cause severe damage. In the present study we evaluated the susceptibility of the pea aphid Acyrthosiphon pisum to the commonly used neonicotinoid insecticides imidacloprid (IMI, thiamethoxam (TMX and clothianidin (CLT. Binding studies on aphid membrane preparations revealed the existence of high and low-affinity binding sites for [3H]-IMI (Kd of 0.16 ± 0.04 nM and 41.7 ± 5.9 nM and for the nicotinic antagonist [125I]-α-bungarotoxin (Kd of 0.008 ± 0.002 nM and 1.135 ± 0.213 nM. Competitive binding experiments demonstrated that TMX displayed a higher affinity than IMI for [125I]-α-bungarotoxin binding sites while CLT affinity was similar for both [125I]-α-bungarotoxin and [3H]-IMI binding sites. Interestingly, toxicological studies revealed that at 48 h, IMI (LC50 = 0.038 µg/ml and TMX (LC50 = 0.034 µg/ml were more toxic than CLT (LC50 = 0.118 µg/ml. The effect of TMX could be associated to its metabolite CLT as demonstrated by HPLC/MS analysis. In addition, we found that aphid larvae treated either with IMI, TMX or CLT showed a strong variation of nAChR subunit expression. Using semi-quantitative PCR experiments, we detected for all insecticides an increase of Apisumα10 and Apisumβ1 expressions levels, whereas Apisumβ2 expression decreased. Moreover, some other receptor subunits seemed to be differently regulated according to the insecticide used. Finally, we also demonstrated that nAChR subunit expression differed during pea aphid development. Altogether these results highlight species specificity that should be taken into account in pest management strategies.

  5. Expression cloning of a cDNA encoding the murine interleukin 4 receptor based on ligand binding

    Energy Technology Data Exchange (ETDEWEB)

    Harada, N.; Castle, B.E.; Gorman, D.M.; Itoh, A.; Schreurs, J.; Barrett, R.L.; Howard, M.; Miyajima, A. (DNAX Research Institute of Molecular and Cellular Biology, Palo Alto, CA (USA))

    1990-02-01

    Interleukin 4 (IL-4) is a potent mediator of growth and differentiation for various lymphoid and myeloid cells. To isolate a cDNA encoding the murine IL-4 receptor, the authors have developed an expression cloning method that uses biotinylated ligand as a probe and that may be generally applicable to cloning of receptor genes. COS-7 cells transiently transfected with the cloned full-length cDNA bind murine IL-4 specifically with a K{sub d} = 165 pM. Crosslinking of {sup 125}I-labeled IL-4 to COS-7 cells transfected with the cDNA reveals binding to proteins of 120-140 kDa. IL-4-responsive cells also express IL-4-binding proteins of 120-140 kDa but show additional bands at 60-70 kDa; the relationship of the smaller proteins to the larger ones is unclear. The nucleotide sequence indicates that the full-length cDNA encodes 810 amino acids including the signal sequence. While no consensus sequence for protein kinases is present in the cytoplasmic domain, a sequence comparison with the erythropoietin receptor, the IL-6 receptor, and the {beta} chain of the IL-2 receptor reveals a significant homology in the extracellular domain, indicating that the IL-4 receptor is a member of a cytokine receptor family.

  6. Binding characteristics of brain-derived neurotrophic factor to its receptors on neurons from the chick embryo

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez-Tebar, A.; Barde, Y.A.

    1988-09-01

    Brain-derived neurotrophic factor (BDNF), a protein known to support the survival of embryonic sensory neurons and retinal ganglion cells, was derivatized with 125I-Bolton-Hunter reagent and obtained in a biologically active, radioactive form (125I-BDNF). Using dorsal root ganglion neurons from chick embryos at 9 d of development, the basic physicochemical parameters of the binding of 125I-BDNF with its receptors were established. Two different classes of receptors were found, with dissociation constants of 1.7 x 10(-11) M (high-affinity receptors) and 1.3 x 10(-9) M (low-affinity receptors). Unlabeled BDNF competed with 125I-BDNF for binding to the high-affinity receptors with an inhibition constant essentially identical to the dissociation constant of the labeled protein: 1.2 x 10(-11) M. The association and dissociation rates from both types of receptors were also determined, and the dissociation constants calculated from these kinetic experiments were found to correspond to the results obtained from steady-state binding. The number of high-affinity receptors (a few hundred per cell soma) was 15 times lower than that of low-affinity receptors. No high-affinity receptors were found on sympathetic neurons, known not to respond to BDNF, although specific binding of 125I-BDNF to these cells was detected at a high concentration of the radioligand. These results are discussed and compared with those obtained with nerve growth factor on the same neuronal populations.

  7. Computational Estimates of Binding Affinities for Estrogen Receptor Isoforms in Rainbow Trout

    CERN Document Server

    Shyu, Conrad

    2009-01-01

    Molecular dynamics simulations are performed to determine the binding affinities between the hormone 17 beta-estradiol (E2) and different estrogen receptor (ER) isoforms in the rainbow trout (Oncorhynchus mykiss). Previous studies have demonstrated that a recent, unique gene duplication of the ER alpha subtype created two isoforms ER alpha 1 and ER alpha 2, and an early secondary split of ER beta produced two distinct isoforms of ER beta 1 and ER beta 2 based on the phylogenetic analysis. The objective of our computational studies is to provide insight into the underlying evolutionary selection pressure on the ER isoforms. Our results show that E2 binds preferentially to ER alpha 1. This finding corresponds to the experimental results as the ERs evolved from gene duplication events are frequently free from selective pressure and should exhibit no deleterious effects. The E2, however, only binds slightly better to ER beta 2. Both isoforms remain competitive. This finding reflects the fact that since ER beta 2 ...

  8. Predictive Modeling of Estrogen Receptor Binding Agents Using Advanced Cheminformatics Tools and Massive Public Data

    Science.gov (United States)

    Ribay, Kathryn; Kim, Marlene T.; Wang, Wenyi; Pinolini, Daniel; Zhu, Hao

    2016-01-01

    Estrogen receptors (ERα) are a critical target for drug design as well as a potential source of toxicity when activated unintentionally. Thus, evaluating potential ERα binding agents is critical in both drug discovery and chemical toxicity areas. Using computational tools, e.g., Quantitative Structure-Activity Relationship (QSAR) models, can predict potential ERα binding agents before chemical synthesis. The purpose of this project was to develop enhanced predictive models of ERα binding agents by utilizing advanced cheminformatics tools that can integrate publicly available bioassay data. The initial ERα binding agent data set, consisting of 446 binders and 8307 non-binders, was obtained from the Tox21 Challenge project organized by the NIH Chemical Genomics Center (NCGC). After removing the duplicates and inorganic compounds, this data set was used to create a training set (259 binders and 259 non-binders). This training set was used to develop QSAR models using chemical descriptors. The resulting models were then used to predict the binding activity of 264 external compounds, which were available to us after the models were developed. The cross-validation results of training set [Correct Classification Rate (CCR) = 0.72] were much higher than the external predictivity of the unknown compounds (CCR = 0.59). To improve the conventional QSAR models, all compounds in the training set were used to search PubChem and generate a profile of their biological responses across thousands of bioassays. The most important bioassays were prioritized to generate a similarity index that was used to calculate the biosimilarity score between each two compounds. The nearest neighbors for each compound within the set were then identified and its ERα binding potential was predicted by its nearest neighbors in the training set. The hybrid model performance (CCR = 0.94 for cross validation; CCR = 0.68 for external prediction) showed significant improvement over the original QSAR

  9. Adenosine A2A receptor binding profile of two antagonists, ST1535 and KW6002: consideration on the presence of atypical adenosine A2A binding sites

    Directory of Open Access Journals (Sweden)

    Teresa Riccioni

    2010-08-01

    Full Text Available Adenosine A2A receptors seem to exist in typical (more in striatum and atypical (more in hippocampus and cortex subtypes. In the present study, we investigated the affinity of two adenosine A2A receptor antagonists, ST1535 [2 butyl -9-methyl-8-(2H-1,2,3-triazol 2-yl-9H-purin-6-xylamine] and KW6002 [(E-1,3-diethyl-8-(3,4-dimethoxystyryl-7-methyl-3,7-dihydro-1H-purine-2,6,dione] to the “typical” and “atypical” A2A binding sites. Affinity was determined by radioligand competition experiments in membranes from rat striatum and hippocampus. Displacement of the adenosine analog [3H]CGS21680 [2-p-(2-carboxyethylphenethyl-amino-5’-N-ethylcarbox-amidoadenosine] was evaluated in the absence or in the presence of either CSC [8-(3-chlorostyryl-caffeine], an adenosine A2A antagonist that pharmacologically isolates atypical binding sites, or DPCPX (8-cyclopentyl-1,3-dipropylxanthine, an adenosine A1 receptor antagonist that pharmacologically isolates typical binding site. ZM241385 [84-(2-[7-amino-2-(2-furyl [1,2,4]-triazol[2,3-a][1,3,5]triazin-5-yl amino]ethyl phenol] and SCH58261 [(5-amino-7-(β-phenylethyl-2-(8-furylpyrazolo(4,3-e-1,2,4-triazolo(1,5-c pyrimidine], two other adenosine A2A receptor antagonists, which were reported to differently bind to atypical and typical A2A receptors, were used as reference compounds. ST1535, KW6002, ZM241385 and SCH58261 displaced [3H]CGS21680 with higher affinity in striatum than in hippocampus. In hippocampus, no typical adenosine A2A binding was detected, and ST1535 was the only compound that occupied atypical A2A adenosine receptors. Present data are explained in terms of heteromeric association among adenosine A2A, A2B and A1 receptors, rather than with the presence of atypical A2A receptor subtype.

  10. Lipid raft-dependent FcepsilonRI ubiquitination regulates receptor endocytosis through the action of ubiquitin binding adaptors.

    Directory of Open Access Journals (Sweden)

    Rosa Molfetta

    Full Text Available The best characterized role for ubiquitination of membrane receptors is to negatively regulate signaling by targeting receptors for lysosomal degradation. The high affinity receptor for IgE (FcepsilonRI expressed on mast cells and basophils is rapidly ubiquitinated upon antigen stimulation. However, the nature and the role of this covalent modification are still largelly unknown. Here, we show that FcepsilonRI subunits are preferentially ubiquitinated at multiple sites upon stimulation, and provide evidence for a role of ubiquitin as an internalization signal: under conditions of impaired receptor ubiquitination a decrease of receptor entry is observed by FACS analysis and fluorescence microscopy. We also used biochemical approaches combined with fluorescence microscopy, to demonstrate that receptor endocytosis requires the integrity of specific membrane domains, namely lipid rafts. Additionally, by RNA interference we demonstrate the involvement of ubiquitin-binding endocytic adaptors in FcepsilonRI internalization and sorting. Notably, the triple depletion of Eps15, Eps15R and Epsin1 negatively affects the early steps of Ag-induced receptor endocytosis, whereas Hrs depletion retains ubiquitinated receptors into early endosomes and partially prevents their sorting into lysosomes for degradation. Our results are compatible with a scenario in which the accumulation of engaged receptor subunits into lipid rafts is required for receptor ubiquitination, a prerequisite for efficient receptor internalization, sorting and delivery to a lysosomal compartment.

  11. Identification of residues on human receptor DPP4 critical for MERS-CoV binding and entry

    Energy Technology Data Exchange (ETDEWEB)

    Song, Wenfei [Ministry of Education Key Laboratory of Protein Science, Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084 (China); Wang, Ying [Comprehensive AIDS Research Center, Research Center for Public Health, School of Medicine, Tsinghua University, Beijing 100084 (China); Wang, Nianshuang; Wang, Dongli [Ministry of Education Key Laboratory of Protein Science, Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084 (China); Guo, Jianying; Fu, Lili [Comprehensive AIDS Research Center, Research Center for Public Health, School of Medicine, Tsinghua University, Beijing 100084 (China); Shi, Xuanling, E-mail: shixuanlingsk@tsinghua.edu.cn [Comprehensive AIDS Research Center, Research Center for Public Health, School of Medicine, Tsinghua University, Beijing 100084 (China)

    2014-12-15

    Middle East respiratory syndrome coronavirus (MERS-CoV) infects host cells through binding the receptor binding domain (RBD) on its spike glycoprotein to human receptor dipeptidyl peptidase 4 (hDPP4). Here, we report identification of critical residues on hDPP4 for RBD binding and virus entry through analysis of a panel of hDPP4 mutants. Based on the RBD–hDPP4 crystal structure we reported, the mutated residues were located at the interface between RBD and hDPP4, which potentially changed the polarity, hydrophobic or hydrophilic properties of hDPP4, thereby interfering or disrupting their interaction with RBD. Using surface plasmon resonance (SPR) binding analysis and pseudovirus infection assay, we showed that several residues in hDPP4–RBD binding interface were important on hDPP4–RBD binding and viral entry. These results provide atomic insights into the features of interactions between hDPP4 and MERS-CoV RBD, and also provide potential explanation for cellular and species tropism of MERS-CoV infection. - Highlights: • It has been demonstrated that MERS-CoV infects host cells through binding its envelope spike (S) glycoprotein to the host cellular receptor dipeptidyl peptidase 4 (DPP4). • To identify the critical residues on hDPP4 for RBD binding and virus entry, we constructed a panel of hDPP4 mutants based on structure-guided mutagenesis. • Using surface plasmon resonance (SPR) binding analysis and pseudovirus infection assay, we showed that several residues on hDPP4 had significant impacts on virus/receptor interactions and viral entry. • Our study has provided new insights into the features of interactions between hDPP4 and MERS-CoV RBD, and provides potential explanation for cellular and species tropism of MERS-CoV infection.

  12. Identification of residues on human receptor DPP4 critical for MERS-CoV binding and entry

    International Nuclear Information System (INIS)

    Middle East respiratory syndrome coronavirus (MERS-CoV) infects host cells through binding the receptor binding domain (RBD) on its spike glycoprotein to human receptor dipeptidyl peptidase 4 (hDPP4). Here, we report identification of critical residues on hDPP4 for RBD binding and virus entry through analysis of a panel of hDPP4 mutants. Based on the RBD–hDPP4 crystal structure we reported, the mutated residues were located at the interface between RBD and hDPP4, which potentially changed the polarity, hydrophobic or hydrophilic properties of hDPP4, thereby interfering or disrupting their interaction with RBD. Using surface plasmon resonance (SPR) binding analysis and pseudovirus infection assay, we showed that several residues in hDPP4–RBD binding interface were important on hDPP4–RBD binding and viral entry. These results provide atomic insights into the features of interactions between hDPP4 and MERS-CoV RBD, and also provide potential explanation for cellular and species tropism of MERS-CoV infection. - Highlights: • It has been demonstrated that MERS-CoV infects host cells through binding its envelope spike (S) glycoprotein to the host cellular receptor dipeptidyl peptidase 4 (DPP4). • To identify the critical residues on hDPP4 for RBD binding and virus entry, we constructed a panel of hDPP4 mutants based on structure-guided mutagenesis. • Using surface plasmon resonance (SPR) binding analysis and pseudovirus infection assay, we showed that several residues on hDPP4 had significant impacts on virus/receptor interactions and viral entry. • Our study has provided new insights into the features of interactions between hDPP4 and MERS-CoV RBD, and provides potential explanation for cellular and species tropism of MERS-CoV infection

  13. Contrasting roles of leu(356) in the human CCK(1) receptor for antagonist SR 27897 and agonist SR 146131 binding.

    Science.gov (United States)

    Gouldson, P; Legoux, P; Carillon, C; Delpech, B; Le Fur, G; Ferrara, P; Shire, D

    1999-11-01

    A new highly specific, potent non-peptide agonist for the cholecystokinin subtype 1 receptor (CCK(1)), SR 146131 (2-[4-(4-chloro-2, 5-dimethoxyphenyl)-5-(2-cyclohexyl-ethyl)-thiazol-2-ylcarbamoyl ]-5, 7-dimethyl-indol-1-yl-1-acetic acid) was recently described [Bignon, E., Bachy, A., Boigegrain, R., Brodin, R., Cottineau, M., Gully, D., Herbert, J.-M., Keane, P., Labie, C., Molimard, J.-C., Olliero, D., Oury-Donat, F., Petereau, C., Prabonneaud, V., Rockstroh, M.-P., Schaeffer, P., Servant, O.Thurneyssen, O., Soubrié, P., Pascal, M., Maffrand, J.-P., Le Fur, G., 1999. SR 146131: a new, potent, orally active and selective non-peptide cholecystokinin subtype I receptor agonist: I. In vitro studies. J. Pharmacol. Exp. Ther. 289, 742-751]. From binding and activity assays with chimeric constructs of human CCK(1) and the cholecystokinin subtype 2 receptor (CCK(2)) and receptors carrying point mutations, we show that Leu(356), situated in transmembrane domain seven in the CCK(1) receptor, is a putative contact point for SR 146131. In contrast, Leu(356) is probably not in contact with the CCK(1) receptor specific antagonist SR 27897 (1-[2-(4-(2-chlorophenyl)thiazol-2-yl)aminocarbonyl indoyl]acetic acid), a compound structurally related to SR 146131, since its replacement by alanine, histidine or asparagine gave receptors having wild-type CCK(1) receptor SR 27897 binding affinity. Previous mutational analysis of His(381), the cognate position in the rat CCK(2) receptor, had implicated it as being involved in subtype specificity for SR 27897, results which we confirm with corresponding mutations in the human CCK(2) receptor. Moreover, binding and activity assays with the natural CCK receptor agonist, CCK-8S, show that CCK-8S is more susceptible to the mutations in that position in the CCK(1) receptor than in the CCK(2) receptor. The results suggest different binding modes for SR 27897, SR 146131 and CCK-8S in each CCK receptor subtype. PMID:10594328

  14. Homogeneous time-resolved G protein-coupled receptor-ligand binding assay based on fluorescence cross-correlation spectroscopy.

    Science.gov (United States)

    Antoine, Thomas; Ott, David; Ebell, Katharina; Hansen, Kerrin; Henry, Luc; Becker, Frank; Hannus, Stefan

    2016-06-01

    G protein-coupled receptors (GPCRs) mediate many important physiological functions and are considered as one of the most successful therapeutic target classes for a wide spectrum of diseases. Drug discovery projects generally benefit from a broad range of experimental approaches for screening compound libraries and for the characterization of binding modes of drug candidates. Owing to the difficulties in solubilizing and purifying GPCRs, assay formats have been so far mainly limited to cell-based functional assays and radioligand binding assays. In this study, we used fluorescence cross-correlation spectroscopy (FCCS) to analyze the interaction of detergent-solubilized receptors to various types of GPCR ligands: endogenous peptides, small molecules, and a large surrogate antagonist represented by a blocking monoclonal antibody. Our work demonstrates the suitability of the homogeneous and time-resolved FCCS assay format for a robust, high-throughput determination of receptor-ligand binding affinities and kinetic rate constants for various therapeutically relevant GPCRs. PMID:26954998

  15. Specific binding and laterality of human extrastriatal dopamine D2/D3 receptors in late onset type 1 alcoholic patients.

    Science.gov (United States)

    Kuikka, J T; Repo, E; Bergström, K A; Tupala, E; Tiihonen, J

    2000-09-29

    Late onset type 1 alcoholism has been suggested to be associated with decreased dopaminergic transmission. Our hypothesis was that late onset type 1 alcoholics have also abnormal extrastriatal dopamine D(2)/D(3) receptor distribution. We performed binding, heterogeneity and laterality analysis of extrastriatal and striatal dopamine D(2)/D(3) receptors in nine late onset male alcoholics and in 12 age-matched healthy males. A radioligand, [(123)I]epidepride was used in high resolution single-photon emission tomography (SPET). Specific binding of epidepride in the left temporal pole was significantly (Pepidepride distribution observed in control males (0.89+/-0.19 vs. 1.10+/-0.19; P<0.05). The results suggest that the specific binding of dopamine D(2)/D(3) receptors in late type 1 alcoholics is decreased and its laterality in the temporal brain is altered from normal. PMID:10996449

  16. Homology-modeled ligand-binding domains of medaka estrogen receptors and androgen receptors: A model system for the study of reproduction

    International Nuclear Information System (INIS)

    Estrogen and androgen and their receptors play critical roles in physiological processes such as sexual differentiation and development. Using the available structural models for the human estrogen receptors alpha and beta and androgen receptor as templates, we designed in silico agonist and antagonist models of medaka estrogen receptor (meER) alpha, beta-1, and beta-2, and androgen receptor (meAR) alpha and beta. Using these models, we studied (1) the structural relationship between the ligand-binding domains (LBDs) of ERs and ARs of human and medaka, and (2) whether medaka ER and AR can be potential models for studying the ligand-binding activities of various agonists and antagonists of these receptors by docking analysis. A high level of conservation was observed between the sequences of the ligand-binding domains of meERα and huERα, meERβ1 and huERβ, meERβ2, and huERβ with 62.8%, 66.4%, and 65.1% identity, respectively. The sequence conservation between meARα and huAR, meARβ, and huAR was found with 70.1% and 61.0% of identity, respectively. Thirty-three selected endocrine disrupting chemicals (EDCs), including both agonists and antagonists, were docked into the LBD of ER and AR, and the corresponding docking score for medaka models and human templates were calculated. In order to confirm the conservation of the overall geometry and the binding pocket, the backbone root mean square deviation (RMSD) for Cα atoms was derived from the structure superposition of all 10 medaka homology models to the six human templates. Our results suggested conformational conservation between the ERs and ARs of medaka and human, Thus, medaka could be highly useful as a model system for studies involving estrogen and androgen interaction with their receptors.

  17. Quantitative dissection of the binding contributions of ligand lysines of the receptor-associated protein (RAP) to the low density lipoprotein receptor-related protein (LRP1).

    Science.gov (United States)

    Dolmer, Klavs; Campos, Andres; Gettins, Peter G W

    2013-08-16

    Although lysines are known to be critical for ligand binding to LDL receptor family receptors, relatively small reductions in affinity have been found when such lysines have been mutated. To resolve this paradox, we have examined the specific binding contributions of four lysines, Lys-253, Lys-256, Lys-270, and Lys-289, in the third domain (D3) of receptor-associated protein (RAP), by eliminating all other lysine residues. Using D3 variants containing lysine subsets, we examined binding to the high affinity fragment CR56 from LRP1. With this simplification, we found that elimination of the lysine pairs Lys-253/Lys-256 and Lys-270/Lys-289 resulted in increases in Kd of 1240- and 100,000-fold, respectively. Each pair contributed additively to overall affinity, with 61% from Lys-270/Lys-289 and 39% from Lys-253/Lys-256. Furthermore, the Lys-270/Lys-289 pair alone could bind different single CR domains with similar affinity. Within the pairs, binding contributions of Lys-270 ≫ Lys-256 > Lys-253 ∼ Lys-289 were deduced. Importantly, however, Lys-289 could significantly compensate for the loss of Lys-270, thus explaining how previous studies have underestimated the importance of Lys-270. Calorimetry showed that favorable enthalpy, from Lys-256 and Lys-270, overwhelmingly drives binding, offset by unfavorable entropy. Our findings support a mode of ligand binding in which a proximal pair of lysines engages the negatively charged pocket of a CR domain, with two such pairs of interactions (requiring two CR domains), appropriately separated, being alone sufficient to provide the low nanomolar affinity found for most protein ligands of LDL receptor family members.

  18. Androgen receptor serine 81 phosphorylation mediates chromatin binding and transcriptional activation.

    Science.gov (United States)

    Chen, Shaoyong; Gulla, Sarah; Cai, Changmeng; Balk, Steven P

    2012-03-01

    Our previous findings indicated that androgen receptor (AR) phosphorylation at serine 81 is stimulated by the mitotic cyclin-dependent kinase 1 (CDK1). In this report, we extended our previous study and confirmed that Ser-81 phosphorylation increases during mitosis, coincident with CDK1 activation. We further showed blocking cell cycle at G(1) or S phase did not disrupt androgen-induced Ser-81 phosphorylation and AR-dependent transcription, consistent with a recent report that AR was phosphorylated at Ser-81 and activated by the transcriptional CDK9. To assess the function of Ser-81 phosphorylation in prostate cancer (PCa) cells expressing endogenous AR, we developed a ligand switch strategy using a ligand-binding domain mutation (W741C) that renders AR responsive to the antagonist bicalutamide. An S81A/W741C double mutant AR stably expressed in PCa cells failed to transactivate the endogenous AR-regulated PSA or TMPRSS2 genes. ChIP showed that the S81A mutation prevented ligand-induced AR recruitment to these genes, and cellular fractionation revealed that the S81A mutation globally abrogated chromatin binding. Conversely, the AR fraction rapidly recruited to chromatin after androgen stimulation was highly enriched for Ser-81 phosphorylation. Finally, inhibition of CDK1 and CDK9 decreased AR Ser-81 phosphorylation, chromatin binding, and transcriptional activity. These findings indicate that Ser-81 phosphorylation by CDK9 stabilizes AR chromatin binding for transcription and suggest that CDK1-mediated Ser-81 phosphorylation during mitosis provides a pool of Ser-81 phosphorylation AR that can be readily recruited to chromatin for gene reactivation and may enhance AR activity in PCa.

  19. Receptor binding proteins of Listeria monocytogenes bacteriophages A118 and P35 recognize serovar-specific teichoic acids

    International Nuclear Information System (INIS)

    Adsorption of a bacteriophage to the host requires recognition of a cell wall-associated receptor by a receptor binding protein (RBP). This recognition is specific, and high affinity binding is essential for efficient virus attachment. The molecular details of phage adsorption to the Gram-positive cell are poorly understood. We present the first description of receptor binding proteins and a tail tip structure for the siphovirus group infecting Listeria monocytogenes. The host-range determining factors in two phages, A118 and P35 specific for L. monocytogenes serovar 1/2 have been determined. Two proteins were identified as RBPs in phage A118. Rhamnose residues in wall teichoic acids represent the binding ligands for both proteins. In phage P35, protein gp16 could be identified as RBP and the role of both rhamnose and N-acetylglucosamine in phage adsorption was confirmed. Immunogold-labeling and transmission electron microscopy allowed the creation of a topological model of the A118 phage tail. - Highlights: • We present the first description of receptor binding proteins and a tail tip structure for the Siphovirus group infecting Listeria monocytogenes. • The host-range determining factors in two phages, A118 and P35 specific for L. monocytogenes serovar 1/2 have been determined. • Rhamnose residues in wall teichoic acids represent the binding ligands for both receptor binding proteins in phage A118. • Rhamnose and N-acetylglucosamine are required for adsorption of phage P35. • We preset a topological model of the A118 phage tail

  20. Receptor binding proteins of Listeria monocytogenes bacteriophages A118 and P35 recognize serovar-specific teichoic acids

    Energy Technology Data Exchange (ETDEWEB)

    Bielmann, Regula; Habann, Matthias; Eugster, Marcel R. [Institute of Food, Nutrition and Health, ETH Zurich, Schmelzbergstrasse 7, 8092 Zurich (Switzerland); Lurz, Rudi [Max-Planck Institute for Molecular Genetics, 14195 Berlin (Germany); Calendar, Richard [Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720-3202 (United States); Klumpp, Jochen, E-mail: jochen.klumpp@hest.ethz.ch [Institute of Food, Nutrition and Health, ETH Zurich, Schmelzbergstrasse 7, 8092 Zurich (Switzerland); Loessner, Martin J. [Institute of Food, Nutrition and Health, ETH Zurich, Schmelzbergstrasse 7, 8092 Zurich (Switzerland)

    2015-03-15

    Adsorption of a bacteriophage to the host requires recognition of a cell wall-associated receptor by a receptor binding protein (RBP). This recognition is specific, and high affinity binding is essential for efficient virus attachment. The molecular details of phage adsorption to the Gram-positive cell are poorly understood. We present the first description of receptor binding proteins and a tail tip structure for the siphovirus group infecting Listeria monocytogenes. The host-range determining factors in two phages, A118 and P35 specific for L. monocytogenes serovar 1/2 have been determined. Two proteins were identified as RBPs in phage A118. Rhamnose residues in wall teichoic acids represent the binding ligands for both proteins. In phage P35, protein gp16 could be identified as RBP and the role of both rhamnose and N-acetylglucosamine in phage adsorption was confirmed. Immunogold-labeling and transmission electron microscopy allowed the creation of a topological model of the A118 phage tail. - Highlights: • We present the first description of receptor binding proteins and a tail tip structure for the Siphovirus group infecting Listeria monocytogenes. • The host-range determining factors in two phages, A118 and P35 specific for L. monocytogenes serovar 1/2 have been determined. • Rhamnose residues in wall teichoic acids represent the binding ligands for both receptor binding proteins in phage A118. • Rhamnose and N-acetylglucosamine are required for adsorption of phage P35. • We preset a topological model of the A118 phage tail.

  1. Monomer-dimer model explains the results of radiation inactivation: binding characteristics of insulin receptor purified from human placenta

    International Nuclear Information System (INIS)

    The technique of radiation inactivation has been used on highly purified human placental insulin receptor in order to determine the functional molecular size responsible for the insulin binding and to evaluate the affinity regulator hypothesis, which has been proposed to explain the increase in specific insulin binding to rat liver membranes observed at low radiation does. Three different types of inactivation curves were observed: (1) biphasic with an enhanced binding activity after exposure to low radiation doses, (2) nonlinear with no change in binding activity after exposure to low radiation doses, and (3) linear with a loss in the binding activity with increasing radiation exposures. A monomer-dimer model was the simplest model that best described the three types of radiation inactivation curves observed. The model predicts that an increase in insulin binding activity would result after exposure to low radiation doses when the initial dimer/monomer ratio is equal to or greater than 1 and a monomer is more active than a dimer. The monomer size of the binding activity was estimated to be 227,000 daltons by this model. To substantiate this model, the purified receptor was fractionated by Sepharose CL-6B chromatography. The insulin binding profile of this column indicated two peaks. These studies suggest that the affinity regulator does not exist as a separate structural protein but is due to the dimeric form of the receptor. The dimeric form (α2β2) possesses a much lower specific activity for insulin binding than does the monomeric αβ form (under the standard conditions), but the dimeric structure is necessary to observe the negative cooperative binding isotherm

  2. Structural Changes in the Lectin Domain of CD23, the Low-Affinity IgE Receptor, upon Calcium Binding

    Energy Technology Data Exchange (ETDEWEB)

    Wurzburg, Beth A.; Tarchevskaya, Svetlana S.; Jardetzky, Theodore S. (NWU)

    2010-03-08

    CD23, the low-affinity receptor for IgE (Fc{var_epsilon}RII), regulates IgE synthesis and also mediates IgE-dependent antigen transport and processing. CD23 is a unique Fc receptor belonging to the C-type lectin-like domain superfamily and binds IgE in an unusual, non-lectin-like manner, requiring calcium but not carbohydrate. We have solved the high-resolution crystal structures of the human CD23 lectin domain in the presence and absence of Ca{sup 2+}. The crystal structures differ significantly from a previously determined NMR structure and show that calcium binding occurs at the principal binding site, but not at an auxiliary site that appears to be absent in human CD23. Conformational differences between the apo and Ca{sup 2+} bound structures suggest how IgE-Fc binding can be both calcium-dependent and carbohydrate-independent.

  3. Autoradiographic comparison of [125I]epidepride and [125I]NCQ 298 binding to human brain extrastriated dopamine receptors.

    Science.gov (United States)

    Hall, H; Halldin, C; Jerning, E; Osterlund, M; Farde, L; Sedvall, G

    1997-07-01

    Extrastriatal D2-dopamine receptors can be visualised in the monkey and human brain using the benzamides [11C]- and [76Br]FLB 457 in PET and [123I]epidepride in SPECT but not with the salicylamide analogues [76Br]FLB 463 and [123I]NCQ 298. To clarify the background for the differences in binding seen in vivo, we have compared the in vitro binding of [125I]epidepride and [123I]NCQ 298, using human whole hemisphere autoradiography. The images obtained with any radioligand showed detailed distribution with very dense binding in the putamen and the caudate nucleus and with the same detailed extrastriatal distribution. Thus, the divergent results obtained in vivo cannot be explained by different binding properties of the extrastriatal receptors. PMID:9290072

  4. Autoradiographic comparison of [125I]epidepride and [125I]NCQ 298 binding to human brain extrastriated dopamine receptors

    International Nuclear Information System (INIS)

    Extrastriatal D2-dopamine receptors can be visualized in the monkey and human brain using the benzamides [11C]- and [76Br]FLB 457 in PET and [123I]epidepride in SPECT but not with the salicylamide analogues [76Br]FLB 463 and [123I]NCQ 298. To clarify the background for the differences in binding seen in vivo, we have compared the in vitro binding of [125I]epidepride and [125I]NCQ 298, using human whole hemisphere autoradiography. The images obtained with any radioligand showed detailed distribution with very dense binding in the putamen and the caudate nucleus and with the same detailed extrastriatal distribution. Thus, the divergent results obtained in vivo cannot be explained by different binding properties of the extrastriatal receptors

  5. Domain interplay in the urokinase receptor. Requirement for the third domain in high affinity ligand binding and demonstration of ligand contact sites in distinct receptor domains

    DEFF Research Database (Denmark)

    Behrendt, N; Ronne, E; Dano, K

    1996-01-01

    . This result shows that in addition to D1, which has an established function in ligand binding (Behrendt, N., Ploug, M., Patthy, L., Houen, G., Blasi, F., and Dano, K. (1991) J. Biol. Chem. 266, 7842-7847), D3 has an important role in governing a high affinity in the intact receptor. Real-time biomolecular...

  6. Differences in human skin between the epidermal growth factor receptor distribution detected by EGF binding and monoclonal antibody recognition

    DEFF Research Database (Denmark)

    Green, M R; Couchman, J R

    1985-01-01

    , the eccrine sweat glands, capillary system, and the hair follicle outer root sheath, generally similar in pattern to that previously reported for full-thickness rat skin and human epidermis. The same areas also bound EGF-R1 but in addition the monoclonal antibody recognized a cone of melanin containing...... the distribution on frozen skin sections of an extracellular epitope on the EGF receptor. The [125I]EGF binding experiments showed accessible, unoccupied EGF receptors to be present on the epidermal basal cells (with reduced binding to spinous cells), the basal cells of the hair shaft and sebaceous gland...

  7. Multiple Transmembrane Binding Sites for p-Trifluoromethyldiazirinyl-etomidate, a Photoreactive Torpedo Nicotinic Acetylcholine Receptor Allosteric Inhibitor*

    OpenAIRE

    Hamouda, Ayman K.; Stewart, Deirdre S.; Husain, S. Shaukat; Cohen, Jonathan B.

    2011-01-01

    Photoreactive derivatives of the general anesthetic etomidate have been developed to identify their binding sites in γ-aminobutyric acid, type A and nicotinic acetylcholine receptors. One such drug, [3H]TDBzl-etomidate (4-[3-(trifluoromethyl)-3H-diazirin-3-yl]benzyl-[3H]1-(1-phenylethyl)-1H-imidazole-5-carboxylate), acts as a positive allosteric potentiator of Torpedo nACh receptor (nAChR) and binds to a novel site in the transmembrane domain at the γ-α subunit interface. To extend our unders...

  8. Characterization of histamine receptors in isolated pig basilar artery by functional and radioligand binding studies

    International Nuclear Information System (INIS)

    Histamine receptors in pig basilar arteries were investigated in vitro by radioligand binding assays and by measuring the contractile and relaxant responses to histamine. Histamine and 2-pyridyethylamine (H1-agonist) induced concentration-dependent contractions, whereas impromidine (H2-agonist) induced concentration-dependent relaxations. These responses were independent of the presence of endothelial cells. Diphenhydramine (H1-antagonist) partially reversed the histamine-induced contractions to relaxations. Cimetidine (Hα2-antagonist) potentiated the contraction in a concentration-dependent manner. In the presence of cimetidine, the pEC50 value of histamine for the contraction was 6.30, and diphenhydramine competitively antagonized the histamine-induced contractions (pA2, 7.77). In the presence of diphenhydramine, the pEC50 value of histamine for the relaxation was 5.93, and cimetidine competitively antagonized the histamine-induced relaxations (pA2, 6.62). In the binding studies, the Kd value of [3H]mepyramine was 2.1 nM and the Bmax value was 95.6 fmol/mg protein. A competition experiment with diphenhydramine showed that the pKi value (7.51) was similar to the pA2 value. The Kd value for [3H]cimetidine was 126.0 nM and the Bmax value was 459.8 fmol/mg protein. The pKd (6.90) for [3H]cimetidine was similar to the pA2 for cimetidine. The Hill coefficients for these experiments were not significantly different from unity. The present findings indicate that the number of H1-receptors, in terms of the Bmax value for [3H]mepyramine, is smaller than that of H2-receptors, in terms of the Bmax value for [3H]cimetidine. However, the contractile response to histamine is predominantly mediated through stimulation of H1-receptors on vascular smooth muscle cells in pig basilar artery

  9. Structural heterogeneity of membrane receptors and GTP-binding proteins and its functional consequences for signal transduction

    OpenAIRE

    Boege, Fritz; Neumann, Eberhard; Helmreich, Ernst J. M.

    1991-01-01

    Recent information obtained, mainly by recombinant cDNA technology, on structural heterogeneity of hormone and transmitter receptors, of GTP-binding proteins (G-proteins) and, especially, of G-protein-linked receptors is reviewed and the implications of structural heterogeneity for diversity of hormone and transmitter actions is discussed. For the future, three-dimensional structural analysis of membrane proteins participating in signal transmission and transduction pathways is needed in orde...

  10. Probing the structure and function of the estrogen receptor ligand binding domain by analysis of mutants with altered transactivation characteristics.

    OpenAIRE

    Eng, F C; Lee, H.S.; Ferrara, J; Willson, T M; White, J H

    1997-01-01

    We have developed a genetic screen for the yeast Saccharomyces cerevisiae to isolate estrogen receptor (ER) mutants with altered transactivation characteristics. Use of a "reverse" ER, in which the mutagenized ligand binding domain was placed at the N terminus of the receptor, eliminated the isolation of truncated constitutively active mutants. A library was screened with a low-affinity estrogen, 2-methoxyestrone (2ME), at concentrations 50-fold lower than those required for activation of the...

  11. Sensitive and direct detection of receptor binding specificity of highly pathogenic avian influenza A virus in clinical samples.

    Directory of Open Access Journals (Sweden)

    Tadanobu Takahashi

    Full Text Available Influenza A virus (IAV recognizes two types of N-acetylneuraminic acid (Neu5Ac by galactose (Gal linkages, Neu5Acα2,3Gal and Neu5Acα2,6Gal. Avian IAV preferentially binds to Neu5Acα2,3Gal linkage, while human IAV preferentially binds to Neu5Acα2,6Gal linkage, as a virus receptor. Shift in receptor binding specificity of avian IAV from Neu5Acα2,3Gal linkage to Neu5Acα2,6Gal linkage is generally believed to be a critical factor for its transmission ability among humans. Surveillance of this shift of highly pathogenic H5N1 avian IAV (HPAI is thought to be a very important for prediction and prevention of a catastrophic pandemic of HPAI among humans. In this study, we demonstrated that receptor binding specificity of IAV bound to sialo-glycoconjugates was sensitively detected by quantifying the HA gene with real-time reverse-transcription-PCR. The new assay enabled direct detection of receptor binding specificity of HPAIs in chicken clinical samples including trachea and cloaca swabs in only less than 4 h.

  12. Distinctive receptor binding properties of the surface glycoprotein of a natural Feline Leukemia Virus isolate with unusual disease spectrum

    Directory of Open Access Journals (Sweden)

    Albritton Lorraine M

    2011-05-01

    Full Text Available Abstract Background Feline leukemia virus (FeLV-945, a member of the FeLV-A subgroup, was previously isolated from a cohort of naturally infected cats. An unusual multicentric lymphoma of non-T-cell origin was observed in natural and experimental infection with FeLV-945. Previous studies implicated the FeLV-945 surface glycoprotein (SU as a determinant of disease outcome by an as yet unknown mechanism. The present studies demonstrate that FeLV-945 SU confers distinctive properties of binding to the cell surface receptor. Results Virions bearing the FeLV-945 Env protein were observed to bind the cell surface receptor with significantly increased efficiency, as was soluble FeLV-945 SU protein, as compared to the corresponding virions or soluble protein from a prototype FeLV-A isolate. SU proteins cloned from other cohort isolates exhibited increased binding efficiency comparable to or greater than FeLV-945 SU. Mutational analysis implicated a domain containing variable region B (VRB to be the major determinant of increased receptor binding, and identified a single residue, valine 186, to be responsible for the effect. Conclusions The FeLV-945 SU protein binds its cell surface receptor, feTHTR1, with significantly greater efficiency than does that of prototype FeLV-A (FeLV-A/61E when present on the surface of virus particles or in soluble form, demonstrating a 2-fold difference in the relative dissociation constant. The results implicate a single residue, valine 186, as the major determinant of increased binding affinity. Computational modeling suggests a molecular mechanism by which residue 186 interacts with the receptor-binding domain through residue glutamine 110 to effect increased binding affinity. Through its increased receptor binding affinity, FeLV-945 SU might function in pathogenesis by increasing the rate of virus entry and spread in vivo, or by facilitating entry into a novel target cell with a low receptor density.

  13. Rat neuronal nicotinic acetylcholine receptors containing a7 subunit: pharmacological properties of ligand binding and function

    Institute of Scientific and Technical Information of China (English)

    Yingxian XIAO; Galya R ABDRAKHMANOVA; Maryna BAYDYUK; Susan HERNANDEZ; Kenneth J KELLAR

    2009-01-01

    Aim: To compare pharmacological properties of heterologously expressed homomeric a7 nicotinic acetylcholine receptors (a.7 nAChRs) with those of native nAChRs containing a.7 subunit (a.7* nAChRs) in rat hippocampus and cerebral cortex. Methods: We established a stably transfected HEK-293 cell line that expresses homomeric rat a7 nAChRs. We studies ligand binding profiles and functional properties of nAChRs expressed in this cell line and native rat a.7* nAChRs in rat hippocampus and cerebral cortex. We used [125IJ-a-bungarotoxin to compare ligand binding profiles in these cells with those in rat hippocampus and cerebral cortex. The functional properties of the a.7 nAChRs expressed in this cell line were studied using whole-cell current recording.Results: The newly established cell line, KXa7Rl, expresses homomeric a7 nAChRs that bind [125I]-a-bungarotoxin with a Kd value of 0.38±0.06 nmol/L, similar to Kj values of native rat a.7* nAChRs from hippocampus (Kd=0.28±0.03 nmol/L) and cerebral cortex (Kd=0.33±0.05 nmol/L). Using whole-cell current recording, the homomeric a7 nAChRs expressed in the cells were activated by acetylcholine and (-)-nicotine with EC50 values of 280±19 nmol/L and 180±40 nmol/L, respectively. The acetylcholine activated currents were potently blocked by two selective antagonists of a.7 nAChRs, a-bungarotoxin (IC5o=19±2 nmol/L) and methyllycaconitine (IC50=100±10 pmol/L). A comparative study of ligand binding profiles, using 13 nicotinic ligands, showed many similarities between the homomeric a.7 nAChRs and native a.7* receptors in rat brain, but it also revealed several notable differences.Conclusion: This newly established stable cell line should be very useful for studying the properties of homomeric a7 nAChRs and comparing these properties to native a.7* nAChRs.

  14. The unsialylated subpopulation of recombinant activated factor VII binds to the asialo-glycoprotein receptor (ASGPR) on primary rat hepatocytes.

    Science.gov (United States)

    Seested, Torben; Nielsen, Hanne M; Christensen, Erik I; Appa, Rupa S

    2010-12-01

    Recombinant activated factor VII (rFVIIa; NovoSeven®) is a heterogeneously glycosylated serine protease used for treatment of haemophiliacs with inhibitors. The drug substance contains a subpopulation consisting of ~20% of rFVIIa molecules which are unsialylated and consists of carbohydrate moieties with terminally exposed galactose and N-acetyl-D-galactosamine (GalNAc). Recently, data from an in situ perfused liver model showed that a subpopulation of rFVIIa, appearing to be unsialylated rFVIIa, was cleared by the liver, thus suggesting a carbohydrate-moiety mediated mechanism. The parenchymal cells of the liver, hepatocytes, are known to abundantly express functional carbohydrate-specific receptors and in this study we therefore used primary rat hepatocytes to study binding and intracellular fate of rFVIIa at a cellular level. Immunofluorescence microscopy showed that rFVIIa was distributed into distinct intracellular vesicles and electron microscopic autoradiography revealed that radioiodinated rFVIIa distributed only into cytoplasmic free vesicles resembling endosomes and lysosomes. These findings suggest that endocytosis of rFVIIa in hepatocytes could be partly mediated via initial membrane binding to a receptor. Quantitative binding studies showed that the presence of excess unlabelled asialo-orosomucoid, asialo-rFVIIa and GalNAc significantly decreased binding of 125I-rFVIIa. An antibody which specifically binds to the carbohydrate recognition domain of the asialoglycoprotein receptor (ASGPR) significantly decreased binding of asialo-rFVIIa by ~36% and rFVIIa by ~19%. Together our data showed that a receptor-mediated mechanism involving the ASGPR is able to bind a subpopulation of unsialylated rFVIIa, while a hepatic mechanism for binding and clearing sialylated rFVIIa is still unknown.

  15. Biosensor-Based Approach Identifies Four Distinct Calmodulin-Binding Domains in the G Protein-Coupled Estrogen Receptor 1

    OpenAIRE

    Tran, Quang-Kim; VerMeer, Mark

    2014-01-01

    The G protein-coupled estrogen receptor 1 (GPER) has been demonstrated to participate in many cellular functions, but its regulatory inputs are not clearly understood. Here we describe a new approach that identifies GPER as a calmodulin-binding protein, locates interaction sites, and characterizes their binding properties. GPER coimmunoprecipitates with calmodulin in primary vascular smooth muscle cells under resting conditions, which is enhanced upon acute treatment with either specific liga...

  16. Liver X receptor regulates hepatic nuclear O-GlcNAc signaling and carbohydrate responsive element-binding protein activity

    DEFF Research Database (Denmark)

    Bindesbøll, Christian; Fan, Qiong; Nørgaard, Rikke C;

    2015-01-01

    Liver X receptor (LXR)α and LXRβ play key roles in hepatic de novo lipogenesis through their regulation of lipogenic genes, including sterol regulatory element-binding protein (SREBP)-1c and carbohydrate responsive element-binding protein (ChREBP). LXRs activate lipogenic gene transcription...... metabolic sensors upstream of ChREBP by modulating GK expression, nuclear O-GlcNAc signaling, and ChREBP expression and activity....

  17. Genetic induction of the gastrin releasing peptide receptor on tumor cells for radiolabeled peptide binding

    International Nuclear Information System (INIS)

    Purpose/Objective: To improve upon existing radioimmunotherapy (RAIT) approaches, we have devised a strategy to genetically induce high levels of new membrane-associated receptors on human cancer cells targetable by radiolabeled peptides. In this context, we report successful adenoviral-mediated transduction of tumor cells to express the murine gastrin releasing peptide receptor (mGRPr) as demonstrated by125 I-labeled bombesin binding. Materials and Methods: To demonstrate the feasibility of our strategy and to provide rapid proof of principle, we constructed a plasmid encoding the mGRPr gene. We cloned the mGRPr gene into the adenoviral shuttle vector pACMVpLpARS+ (F. Graham). We then utilized the methodology of adenovirus-polylysine-mediated transfection (AdpLmGRPr) to accomplish transient gene expression of mGRPr in two human cancer cell lines including A427 non-small cell lung cancer cells and HeLa cervical cancer cells. Murine GRPr expression was then measured by a live-cell binding assay using 125I-labeled bombesin. In order to develop this strategy further, it was necessary to construct a vector that would be more efficient for in vivo transduction. In this regard, we constructed a recombinant adenoviral vector (AdCMVGRPr) encoding the mGRPr under the control of the CMV promoter based on in vivo homologous recombination methods. The recombinant shuttle vector containing mGRPr was co-transfected with the adenoviral rescue plasmid pJM17 into the E1A trans complementing cell line 293 allowing for derivation of replication-incompetent, recombinant adenoviral vector. Individual plaques were isolated and subjected to two further rounds of plaque purification. The identity of the virus was confirmed at each step by PCR employing primers for mGRPr. The absence of wild-type adenovirus was confirmed by PCR using primers to the adenoviral E1A gene. SKOV3.ip1 human ovarian cancer cells and MDA-MB-231 human breast cancer cells were transduced in vitro with AdCMVGRPr at

  18. Crystallization and preliminary X-ray analysis of the human androgen receptor ligand-binding domain with a coactivator-like peptide and selective androgen receptor modulators

    International Nuclear Information System (INIS)

    The human androgen receptor ligand-binding domain has been crystallized as a ternary complex with a coactivator-like undecapeptide and two different synthetic ligands. The ligand-binding domain of the human androgen receptor has been cloned, overproduced and crystallized in the presence of a coactivator-like 11-mer peptide and two different nonsteroidal ligands. The crystals of the two ternary complexes were isomorphous and belonged to space group P212121, with one molecule in the asymmetric unit. They diffracted to 1.7 and 1.95 Å resolution, respectively. Structure determination of these two complexes will help in understanding the mode of binding of selective nonsteroidal androgens versus endogenous steroidal ligands and possibly the origin of their tissue selectivity

  19. Methodology for benzodiazepine receptor binding assays at physiological temperature. Rapid change in equilibrium with falling temperature

    Energy Technology Data Exchange (ETDEWEB)

    Dawson, R.M.

    1986-12-01

    Benzodiazepine receptors of rat cerebellum were assayed with (/sup 3/H)-labeled flunitrazepam at 37/sup 0/C, and assays were terminated by filtration in a cold room according to one of three protocols: keeping each sample at 37 degrees C until ready for filtration, taking the batch of samples (30) into the cold room and filtering sequentially in the order 1-30, and taking the batch of 30 samples into the cold room and filtering sequentially in the order 30-1. the results for each protocol were substantially different from each other, indicating that rapid disruption of equilibrium occurred as the samples cooled in the cold room while waiting to be filtered. Positive or negative cooperativity of binding was apparent, and misleading effects of gamma-aminobutyric acid on the affinity of diazepam were observed, unless each sample was kept at 37/sup 0/C until just prior to filtration.

  20. Validation of a Flow Cytometry Based Binding Assay for Evaluation of Monoclonal Antibody Recognizing EGF Receptor

    Science.gov (United States)

    Cedeño-Arias, Mercedes; Sánchez-Ramírez, Javier; Blanco-Santana, Rancés; Rengifo-Calzado, Enrique

    2011-01-01

    An ideal test used to characterize a product must be appropriate for the measurement of product quality, manufacturing consistency, product stability, and comparability studies. Flow cytometry has been successfully applied to the examination of antibodies and receptors on membrane surfaces; however, to date, the analytical validation of cytometry based assays is limited. Here we report on the validation of a flow cytometry-based assay used in the evaluation of nimotuzumab binding to cells over-expressing EGFR on cell surface. The assay was validated by examining, assay robustness, specificity, repeatability and intermediate precision. The assay was highly specific, robust for all studied factors except for cell fixation with 1% paraformaldehyde and met criteria for precision with RSD < 2%. In addition the assay has stability-indicating properties evidenced by the ability to detect changes in mAb degraded samples. Most importantly, the assay demonstrated to be useful for its intended use. PMID:21886904

  1. Introduction of D-Phenylalanine enhanced the receptor binding affinities of gonadotropin-releasing hormone peptides

    OpenAIRE

    Lu, Jie; Hathaway, Helen J.; Royce, Melanie E.; Prossnitz, Eric R.; Miao, Yubin

    2014-01-01

    The purpose of this study was to examine whether the introduction of D-Phe could improve the GnRH receptor binding affinities of DOTA-conjugated D-Lys6-GnRH peptides. Building upon the construct of DOTA-Ahx-(D-Lys6-GnRH1) we previously reported, an aromatic amino acid of D-Phe was inserted either between the DOTA and Ahx or between the Ahx and D-Lys6 to generate new DOTA-D-Phe-Ahx-(D-Lys6-GnRH) or DOTA-Ahx-D-Phe-(D-Lys6-GnRH) peptides. Compared to DOTA-Ahx-(D-Lys6-GnRH1) (36.1 nM), the introd...

  2. Rational Design of an Epstein-Barr Virus Vaccine Targeting the Receptor-Binding Site.

    Science.gov (United States)

    Kanekiyo, Masaru; Bu, Wei; Joyce, M Gordon; Meng, Geng; Whittle, James R R; Baxa, Ulrich; Yamamoto, Takuya; Narpala, Sandeep; Todd, John-Paul; Rao, Srinivas S; McDermott, Adrian B; Koup, Richard A; Rossmann, Michael G; Mascola, John R; Graham, Barney S; Cohen, Jeffrey I; Nabel, Gary J

    2015-08-27

    Epstein-Barr virus (EBV) represents a major global health problem. Though it is associated with infectious mononucleosis and ∼200,000 cancers annually worldwide, a vaccine is not available. The major target of immunity is EBV glycoprotein 350/220 (gp350) that mediates attachment to B cells through complement receptor 2 (CR2/CD21). Here, we created self-assembling nanoparticles that displayed different domains of gp350 in a symmetric array. By focusing presentation of the CR2-binding domain on nanoparticles, potent neutralizing antibodies were elicited in mice and non-human primates. The structurally designed nanoparticle vaccine increased neutralization 10- to 100-fold compared to soluble gp350 by targeting a functionally conserved site of vulnerability, improving vaccine-induced protection in a mouse model. This rational approach to EBV vaccine design elicited potent neutralizing antibody responses by arrayed presentation of a conserved viral entry domain, a strategy that can be applied to other viruses.

  3. Loss of D2 receptor binding with age in rhesus monkeys: importance of correction for differences in striatal size.

    Science.gov (United States)

    Morris, E D; Chefer, S I; Lane, M A; Muzic, R F; Wong, D F; Dannals, R F; Matochik, J A; Bonab, A A; Villemagne, V L; Grant, S J; Ingram, D K; Roth, G S; London, E D

    1999-02-01

    The relation between striatal dopamine D2 receptor binding and aging was investigated in rhesus monkeys with PET. Monkeys (n = 18, 39 to 360 months of age) were scanned with 11C-raclopride; binding potential in the striatum was estimated graphically. Because our magnetic resonance imaging analysis revealed a concomitant relation between size of striatum and age, the dynamic positron emission tomography (PET) data were corrected for possible partial volume (PV) artifacts before parameter estimation. The age-related decline in binding potential was 1% per year and was smaller than the apparent effect if the age-related change in size was ignored. This is the first in vivo demonstration of a decline in dopamine receptor binding in nonhuman primates. The rate of decline in binding potential is consistent with in vitro findings in monkeys but smaller than what has been measured previously in humans using PET. Previous PET studies in humans, however, have not corrected for PV error, although a decline in striatal size with age has been demonstrated. The results of this study suggest that PV correction must be applied to PET data to accurately detect small changes in receptor binding that may occur in parallel with structural changes in the brain.

  4. Structure of a Thyroid Hormone Receptor DNA-Binding Domain Homodimer Bound to an Inverted Palindrome DNA Response Element

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yi; Young, Matthew A. (Michigan)

    2010-10-22

    Thyroid hormone receptor (TR), as a member of the nuclear hormone receptor family, can recognize and bind different classes of DNA response element targets as either a monomer, a homooligomer, or a heterooligomer. We report here the first crystal structure of a homodimer TR DNA-binding domain (DBD) in complex with an inverted repeat class of thyroid response element (TRE). The structure shows a nearly symmetric structure of the TR DBD assembled on the F2 TRE where the base recognition contacts in the homodimer DNA complex are conserved relative to the previously published structure of a TR-9-cis-retinoic acid receptor heterodimer DNA complex. The new structure also reveals that the T-box region of the DBD can function as a structural hinge that enables a large degree of flexibility in the position of the C-terminal extension helix that connects the DBD to the ligand-binding domain. Although the isolated TR DBDs exist as monomers in solution, we have measured highly cooperative binding of the two TR DBD subunits onto the inverted repeat DNA sequence. This suggests that elements of the DBD can influence the specific TR oligomerization at target genes, and it is not just interactions between the ligand-binding domains that are responsible for TR oligomerization at target genes. Mutational analysis shows that intersubunit contacts at the DBD C terminus account for some, but not all, of the cooperative homodimer TR binding to the inverted repeat class TRE.

  5. Residues accessible in the binding-site crevice of transmembrane helix 6 of the CB2 cannabinoid receptor.

    Science.gov (United States)

    Nebane, Ntsang M; Hurst, Dow P; Carrasquer, Carl A; Qiao, Zhuanhong; Reggio, Patricia H; Song, Zhao-Hui

    2008-12-30

    We have used the substituted-cysteine accessibility method (SCAM) to map the residues in the sixth membrane-spanning segment of the CB2 cannabinoid receptor that contribute to the surface of the water-accessible binding-site crevice. Using a background of the mutant C2.59S which is relatively insensitive to the methanethiosulfonate (MTS) reagents, we mutated to cysteine, one at a time, 34 consecutive residues in TMH6 of the CB2 receptor. These mutant receptors were then expressed in HEK293 cells. By incubating HEK293 cells stably transfected with CB2 receptors with the small, charged, hydrophilic, thiol-specific reagent methanethiosulfonate ethylammonium (MTSEA), [(3)H]CP55940 binding was significantly inhibited for six mutant receptors. All six of the mutants that reacted with MTSEA were protected from the reaction when pretreated with the cannabinoid agonist WIN55212-2, suggesting that MTSEA modification occurred within the binding crevice. Therefore, the side chains of the residues at these reactive loci (V6.51, L6.52, L6.54, M6.55, L6.59, and T6.62) are on the water-accessible surface of the binding-site crevice. These residues are extracellular to the TMH6 CWXP hinge motif. The pattern of accessibility is consistent with a alpha-helical conformation for this segment of TMH6. Molecular modeling studies performed in the context of the CB2 model show that V6.51, L6.52, L6.54, M6.55, L6.59, and T6.62 face into the CB2 binding pocket, further confirming our SCAM results. These results are similar to the accessibility patterns determined by SCAM studies of TMH6 in the opioid and dopamine D2 receptors. PMID:19053233

  6. Effects of chronic delta-9-tetrahydrocannabinol (THC) administration on neurotransmitter concentrations and receptor binding in the rat brain.

    Science.gov (United States)

    Ali, S F; Newport, G D; Scallet, A C; Gee, K W; Paule, M G; Brown, R M; Slikker, W

    1989-01-01

    THC is the major psychoactive constituent of marijuana and is also known as an hallucinogenic compound. Numerous reports have shown that large doses of THC produce significant alterations in various neurotransmitter systems. The present study was designed to determine whether chronic exposure to THC produces significant alterations in selected neurotransmitter systems (dopamine, serotonin, acetylcholine, GABAergic, benzodiazepine, and opiate) in the rat brain. In Experiment 1, male Sprague-Dawley rats were gavaged with vehicle, 10 or 20 mg THC/kg body weight daily, 5 days/week for 90 days. Animals were killed either 24 hours or two months after the last dose. Brains were dissected into different regions for neurochemical analyses. Two months after the cessation of chronic administration, there was a significant decrease in GABA receptor binding in the hippocampus of animals in the high dose group. However, no other significant changes were found in neurotransmitter receptor binding characteristics in the hippocampus or in neurotransmitter concentrations in the caudate nucleus, hypothalamus or septum after chronic THC administration. In an attempt to replicate the GABA receptor binding changes and also to determine the [35S]TBPS binding in hippocampus, we designed Experiment 2. In this experiment, we dosed the animals by gavage with 0, 5, 10 or 20 mg THC/kg daily, 5 days/week or with 20 mg THC/kg Monday through Thursday and 60 mg/kg on Friday for 90 days. Results from this experiment failed to replicate the dose-dependent effect of THC on GABA receptor binding in hippocampus. Modulation of [35S]TBPS binding by GABA or 3 alpha-OH-DHP or inhibition by cold TBPS in frontal cortex did not show any significant dose-related effects. Results from these experiments suggest that chronic exposure to THC does not produce significant alterations in catecholamine or indoleamine neurotransmitter systems or in opiate or GABA receptor systems in the rat brain.

  7. Localization of CGRP receptor components and receptor binding sites in rhesus monkey brainstem: A detailed study using in situ hybridization, immunofluorescence, and autoradiography.

    Science.gov (United States)

    Eftekhari, Sajedeh; Gaspar, Renee C; Roberts, Rhonda; Chen, Tsing-Bau; Zeng, Zhizhen; Villarreal, Stephanie; Edvinsson, Lars; Salvatore, Christopher A

    2016-01-01

    Functional imaging studies have revealed that certain brainstem areas are activated during migraine attacks. The neuropeptide calcitonin gene-related peptide (CGRP) is associated with activation of the trigeminovascular system and transmission of nociceptive information and plays a key role in migraine pathophysiology. Therefore, to elucidate the role of CGRP, it is critical to identify the regions within the brainstem that process CGRP signaling. In situ hybridization and immunofluorescence were performed to detect mRNA expression and define cellular localization of calcitonin receptor-like receptor (CLR) and receptor activity-modifying protein 1 (RAMP1), respectively. To define CGRP receptor binding sites, in vitro autoradiography was performed with [(3)H]MK-3207 (a CGRP receptor antagonist). CLR and RAMP1 mRNA and protein expression were detected in the pineal gland, medial mammillary nucleus, median eminence, infundibular stem, periaqueductal gray, area postrema, pontine raphe nucleus, gracile nucleus, spinal trigeminal nucleus, and spinal cord. RAMP1 mRNA expression was also detected in the posterior hypothalamic area, trochlear nucleus, dorsal raphe nucleus, medial lemniscus, pontine nuclei, vagus nerve, inferior olive, abducens nucleus, and motor trigeminal nucleus; protein coexpression of CLR and RAMP1 was observed in these areas via immunofluorescence. [(3)H]MK-3207 showed high binding densities concordant with mRNA and protein expression. The present study suggests that several regions in the brainstem may be involved in CGRP signaling. Interestingly, we found receptor expression and antagonist binding in some areas that are not protected by the blood-brain barrier, which suggests that drugs inhibiting CGRP signaling may not be able to penetrate the central nervous system to antagonize receptors in these brain regions. PMID:26105175

  8. Clearance kinetics and matrix binding partners of the receptor for advanced glycation end products.

    Directory of Open Access Journals (Sweden)

    Pavle S Milutinovic

    Full Text Available Elucidating the sites and mechanisms of sRAGE action in the healthy state is vital to better understand the biological importance of the receptor for advanced glycation end products (RAGE. Previous studies in animal models of disease have demonstrated that exogenous sRAGE has an anti-inflammatory effect, which has been reasoned to arise from sequestration of pro-inflammatory ligands away from membrane-bound RAGE isoforms. We show here that sRAGE exhibits in vitro binding with high affinity and reversibly to extracellular matrix components collagen I, collagen IV, and laminin. Soluble RAGE administered intratracheally, intravenously, or intraperitoneally, does not distribute in a specific fashion to any healthy mouse tissue, suggesting against the existence of accessible sRAGE sinks and receptors in the healthy mouse. Intratracheal administration is the only effective means of delivering exogenous sRAGE to the lung, the organ in which RAGE is most highly expressed; clearance of sRAGE from lung does not differ appreciably from that of albumin.

  9. Neurobiology of corticotropin releasing factor (CRF) receptors and CRF-binding protein: implications for the treatment of CNS disorders.

    Science.gov (United States)

    Behan, D P; Grigoriadis, D E; Lovenberg, T; Chalmers, D; Heinrichs, S; Liaw, C; De Souza, E B

    1996-09-01

    The actions of CRF in the brain and in the periphery are mediated through multiple binding sites. There are three receptors, CRF1, CRF2 alpha and CRF2 beta, which encode 411, 415 and 431 amino acid proteins and transduce signals via the stimulation of intracellular cAMP production. The recent identification of high-affinity non-peptide CRF receptor antagonists should allow for rapid progress in drug development of CRF receptor antagonists. In addition to the receptors, the actions of CRF in brain and in the periphery can also be modulated by a binding protein of 322 amino acids. Ligands of CRF-BP, such as CRF (6-33) can elevate brain levels of 'free' CRF and improve learning and memory without stress-like side effects of CRF receptor agonists. Urocortin, a mammalian CRF-related peptide with close sequence homology to fish urotensin, interacts with CRF1, CRF2 receptors and with CRF-BP. These data indicate that CRF receptor antagonists may be useful for the treatment of the disease states where CRF is elevated such as anxiety and depression, anorexia nervosa and stroke and that ligand inhibitors of CRF-BP may be used to elevate brain levels of 'free' urocortin and other CRF-related peptides. PMID:9118350

  10. Altering Antibody-Drug Conjugate Binding to the Neonatal Fc Receptor Impacts Efficacy and Tolerability.

    Science.gov (United States)

    Hamblett, Kevin J; Le, Tiep; Rock, Brooke M; Rock, Dan A; Siu, Sophia; Huard, Justin N; Conner, Kip P; Milburn, Robert R; O'Neill, Jason W; Tometsko, Mark E; Fanslow, William C

    2016-07-01

    Antibody-drug conjugates (ADC) rely on the target-binding specificity of an antibody to selectively deliver potent drugs to cancer cells. IgG antibody half-life is regulated by neonatal Fc receptor (FcRn) binding. Histidine 435 of human IgG was mutated to alanine (H435A) to explore the effect of FcRn binding on the pharmacokinetics, efficacy, and tolerability of two separate maytansine-based ADC pairs with noncleavable linkers, (c-DM1 and c-H435A-DM1) and (7v-Cys-may and 7v-H435A-Cys-may). The in vitro cell-killing potency of each pair of ADCs was similar, demonstrating that H435A showed no measurable impact on ADC bioactivity. The H435A mutant antibodies showed no detectable binding to human or mouse FcRn in vitro, whereas their counterpart wild-type IgG ADCs were found to bind to FcRn at pH = 6.0. In xenograft bearing SCID mice expressing mouse FcRn, the AUC of 7v-Cys-may was 1.6-fold higher than that of 7v-H435A-may, yet the observed efficacy was similar. More severe thrombocytopenia was observed with 7v-H435A-Cys-may as compared to 7v-Cys-may at multiple dose levels. The AUC of c-DM1 was approximately 3-fold higher than that of c-H435A-DM1 in 786-0 xenograft bearing SCID mice, which led to a 3-fold difference in efficacy by dose. Murine FcRn knockout, human FcRn transgenic line 32 SCID animals bearing 786-0 xenografts showed an amplified exposure difference between c-DM1 and c-H435A-DM1 as compared to murine FcRn expressing SCID mice, leading to a 10-fold higher dose required for efficacy despite a 6-fold higher AUC of the c-H435A-DM1. The accelerated clearance observed for the noncleavable maytansine ADCs with the H435A FcRn mutation led to reduced efficacy at equivalent doses and exacerbation of clinical pathology parameters (decreased tolerability) at equivalent doses. The results show that reduced ADC clearance mediated by FcRn modulation can improve therapeutic index. PMID:27248573

  11. The structure of myostatin:follistatin 288: insights into receptor utilization and heparin binding

    Energy Technology Data Exchange (ETDEWEB)

    Cash, Jennifer N.; Rejon, Carlis A.; McPherron, Alexandra C.; Bernard, Daniel J.; Thompson, Thomas B.; (UCIN); (McGill); (NIH)

    2009-09-29

    Myostatin is a member of the transforming growth factor-{beta} (TGF-{beta}) family and a strong negative regulator of muscle growth. Here, we present the crystal structure of myostatin in complex with the antagonist follistatin 288 (Fst288). We find that the prehelix region of myostatin very closely resembles that of TGF-{beta} class members and that this region alone can be swapped into activin A to confer signalling through the non-canonical type I receptor Alk5. Furthermore, the N-terminal domain of Fst288 undergoes conformational rearrangements to bind myostatin and likely acts as a site of specificity for the antagonist. In addition, a unique continuous electropositive surface is created when myostatin binds Fst288, which significantly increases the affinity for heparin. This translates into stronger interactions with the cell surface and enhanced myostatin degradation in the presence of either Fst288 or Fst315. Overall, we have identified several characteristics unique to myostatin that will be paramount to the rational design of myostatin inhibitors that could be used in the treatment of muscle-wasting disorders.

  12. Chronic ACE inhibitor treatment increases angiotensin type 1 receptor binding in vivo in the dog kidney

    Energy Technology Data Exchange (ETDEWEB)

    Zober, Tamas G. [Johns Hopkins University, Departments of Radiology and Surgery, Baltimore, MD (United States); Semmelweis University, Department of Pathophysiology, Budapest (Hungary); Fabucci, Maria E.; Zheng, Wei; Sandberg, Kathryn [Georgetown University, Department of Medicine, Washington, DC (United States); Brown, Phillip R.; Seckin, Esen; Mathews, William B. [Johns Hopkins University, Departments of Radiology and Surgery, Baltimore, MD (United States); Szabo, Zsolt [Johns Hopkins University, Departments of Radiology and Surgery, Baltimore, MD (United States); Johns Hopkins Outpatient Center, Division of Nuclear Medicine, Baltimore, MD (United States)

    2008-06-15

    PET imaging has been recently introduced for investigating the type 1 angiotensin II receptor (AT{sub 1}R) in vivo. The goal of the present study was to investigate the effects of acute and chronic exposure to angiotensin converting enzyme inhibitors (ACEI) on the AT{sub 1}R in the dog kidney. Animals were imaged at baseline, after acute intravenous ACEI treatment and after a chronic 2-week exposure to an oral ACEI. Control animals were imaged at identical time points in the absence of ACEI treatment. In vivo AT{sub 1}R binding expressed by K{sub i} was increased in the renal cortex by chronic ACEI treatment (p < 0.05). In vitro measurements of AT{sub 1}R density (B{sub max}) also revealed significant increases in AT{sub 1}R in isolated glomeruli (p < 0.05). Plasma renin activity was increased, but angiotensin II (Ang II) and the Ang II/Ang I ratio showed a weak correlation with chronic ACEI treatment, consistent with an Ang II escape phenomenon. This study reveals, for the first time, that chronic ACEI treatment increases AT{sub 1}R binding in vivo in the dog renal cortex. (orig.)

  13. Direct nuclear magnetic resonance observation of odorant binding to mouse odorant receptor MOR244-3.

    Science.gov (United States)

    Burger, Jessica L; Jeerage, Kavita M; Bruno, Thomas J

    2016-06-01

    Mammals are able to perceive and differentiate a great number of structurally diverse odorants through the odorant's interaction with odorant receptors (ORs), proteins found within the cell membrane of olfactory sensory neurons. The natural gas industry has used human olfactory sensitivity to sulfur compounds (thiols, sulfides, etc.) to increase the safety of fuel gas transport, storage, and use through the odorization of this product. In the United States, mixtures of sulfur compounds are used, but the major constituent of odorant packages is 2-methylpropane-2-thiol, also known as tert-butyl mercaptan. It has been fundamentally challenging to understand olfaction and odorization due to the low affinity of odorous ligands to the ORs and the difficulty in expressing a sufficient number of OR proteins. Here, we directly observed the binding of tert-butyl mercaptan and another odiferous compound, cis-cyclooctene, to mouse OR MOR244-3 on living cells by saturation transfer difference (STD) nuclear magnetic resonance (NMR) spectroscopy. This effort lays the groundwork for resolving molecular mechanisms responsible for ligand binding and resulting signaling, which in turn will lead to a clearer understanding of odorant recognition and competition.

  14. Progesterone-induced blocking factor activates STAT6 via binding to a novel IL-4 receptor.

    Science.gov (United States)

    Kozma, Noemi; Halasz, Melinda; Polgar, Beata; Poehlmann, Tobias G; Markert, Udo R; Palkovics, Tamas; Keszei, Marton; Par, Gabriella; Kiss, Katalin; Szeberenyi, Jozsef; Grama, Laszlo; Szekeres-Bartho, Julia

    2006-01-15

    Progesterone-induced blocking factor (PIBF) induces Th2-dominant cytokine production. Western blotting and EMSA revealed phosphorylation as well as nuclear translocation of STAT6 and inhibition of STAT4 phosphorylation in PIBF-treated cells. The silencing of STAT6 by small interfering RNA reduced the cytokine effects. Because the activation of the STAT6 pathway depends on the ligation of IL-4R, we tested the involvement of IL-4R in PIBF-induced STAT6 activation. Although PIBF does not bind to IL-4R, the blocking of the latter with an Ab abolished PIBF-induced STAT6 activation, whereas the blocking of the IL-13R had no effect. PIBF activated suppressor of cytokine signaling-3 and inhibited IL-12-induced suppressor of cytokine signaling-1 activation. The blocking of IL-4R counteracted all the described effects, suggesting that the PIBF receptor interacts with IL-4R alpha-chain, allowing PIBF to activate the STAT6 pathway. PIBF did not phosphorylate Jak3, suggesting that the gamma-chain is not needed for PIBF signaling. Confocal microscopic analysis revealed a colocalization and at 37 degrees C a cocapping of the FITC PIBF-activated PIBF receptor and PE anti-IL-4R-labeled IL-4R. After the digestion of the cells with phosphatidylinositol-specific phospholipase C, the STAT6-activating effect of PIBF was lost, whereas that of IL-4 remained unaltered. These data suggest the existence of a novel type of IL-4R composed of the IL-4R alpha-chain and the GPI-anchored PIBF receptor. PMID:16393965

  15. Preferential binding of allosteric modulators to active and inactive conformational states of metabotropic glutamate receptors

    Directory of Open Access Journals (Sweden)

    Klein-Seetharaman Judith

    2008-02-01

    Full Text Available Abstract Metabotropic glutamate receptors (mGluRs are G protein coupled receptors that play important roles in synaptic plasticity and other neuro-physiological and pathological processes. Allosteric mGluR ligands are particularly promising drug targets because of their modulatory effects – enhancing or suppressing the response of mGluRs to glutamate. The mechanism by which this modulation occurs is not known. Here, we propose the hypothesis that positive and negative modulators will differentially stabilize the active and inactive conformations of the receptors, respectively. To test this hypothesis, we have generated computational models of the transmembrane regions of different mGluR subtypes in two different conformations. The inactive conformation was modeled using the crystal structure of the inactive, dark state of rhodopsin as template and the active conformation was created based on a recent model of the light-activated state of rhodopsin. Ligands for which the nature of their allosteric effects on mGluRs is experimentally known were docked to the modeled mGluR structures using ArgusLab and Autodock softwares. We find that the allosteric ligand binding pockets of mGluRs are overlapping with the retinal binding pocket of rhodopsin, and that ligands have strong preferences for the active and inactive states depending on their modulatory nature. In 8 out of 14 cases (57%, the negative modulators bound the inactive conformations with significant preference using both docking programs, and 6 out of 9 cases (67%, the positive modulators bound the active conformations. Considering results by the individual programs only, even higher correlations were observed: 12/14 (86% and 8/9 (89% for ArgusLab and 10/14 (71% and 7/9 (78% for AutoDock. These findings strongly support the hypothesis that mGluR allosteric modulation occurs via stabilization of different conformations analogous to those identified in rhodopsin where they are induced by

  16. Characterization of the ligand binding site of the bovine IgA Fc receptor (bFc alpha R).

    Science.gov (United States)

    Morton, H Craig; Pleass, Richard J; Woof, Jenny M; Brandtzaeg, Per

    2004-12-24

    Recently, we identified a bovine IgA Fc receptor (bFc alpha R), which shows high homology to the human myeloid Fc alpha R, CD89. IgA binding has previously been shown to depend on several specific residues located in the B-C and F-G loops of the membrane-distal extracellular domain 1 of CD89. To compare the ligand binding properties of these two Fc alpha Rs, we have mapped the IgA binding site of bFc alpha R. We show that, in common with CD89, Tyr-35 in the B-C loop is essential for IgA binding. However, in contrast to earlier observations on CD89, mutation of residues in the F-G loop did not significantly inhibit IgA binding.

  17. Characterization of the ligand binding site of the bovine IgA Fc receptor (bFc alpha R).

    Science.gov (United States)

    Morton, H Craig; Pleass, Richard J; Woof, Jenny M; Brandtzaeg, Per

    2004-12-24

    Recently, we identified a bovine IgA Fc receptor (bFc alpha R), which shows high homology to the human myeloid Fc alpha R, CD89. IgA binding has previously been shown to depend on several specific residues located in the B-C and F-G loops of the membrane-distal extracellular domain 1 of CD89. To compare the ligand binding properties of these two Fc alpha Rs, we have mapped the IgA binding site of bFc alpha R. We show that, in common with CD89, Tyr-35 in the B-C loop is essential for IgA binding. However, in contrast to earlier observations on CD89, mutation of residues in the F-G loop did not significantly inhibit IgA binding. PMID:15485844

  18. Inactivation of the first nucleotide-binding fold of the sulfonylurea receptor, and familial persistent hyperinsulinemic hypoglycemia of infancy

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, P.M.; Wohllk, N.; Huang, E. [Univ. of Texas, Houston, TX (United States)] [and others

    1996-09-01

    Familial persistent hyperinsulinemic hypoglycemia of infancy is a disorder of glucose homeostasis and is characterized by unregulated insulin secretion and profound hypoglycemia. Loss-of-function mutations in the second nucleotide-binding fold of the sulfonylurea receptor, a subunit of the pancreatic-islet {beta}-cell ATP-dependent potassium channel, has been demonstrated to be causative for persistent hyperinsulinemic hypoglycemia of infancy. We now describe three additional mutations in the first nucleotide-binding fold of the sulfonylurea-receptor gene. One point mutation disrupts the highly conserved Walker A motif of the first nucleotide-binding-fold region. The other two mutations occur in noncoding sequences required for RNA processing and are predicted to disrupt the normal splicing pathway of the sulfonylurea-receptor mRNA precursor. These data suggest that both nucleotide-binding-fold regions of the sulfortylurea receptor are required for normal regulation of {beta}-cell ATP-dependent potassium channel activity and insulin secretion. 32 refs., 4 figs., 1 tab.

  19. Serotonin 2A receptor agonist binding in the human brain with [11C]Cimbi-36

    DEFF Research Database (Denmark)

    Ettrup, Anders; Svarer, Claus; McMahon, Brenda;

    2016-01-01

    ]Cimbi-36 and the 5-HT2A receptor antagonist [(18)F]altanserin. METHODS: Sixteen healthy volunteers (mean age 23.9 ± 6.4years, 6 males) were scanned twice with a high resolution research tomography PET scanner. All subjects were scanned after a bolus of [(11)C]Cimbi-36; eight were scanned twice to determine...... BPNDs measured with [(11)C]Cimbi-36 and [(18)F]altanserin (mean Pearson's r: 0.95 ± 0.04) suggesting similar cortical binding of the radioligands. Relatively higher binding with [(11)C]Cimbi-36 as compared to [(18)F]altanserin was found in the choroid plexus and hippocampus in the human brain....... CONCLUSIONS: Excellent test-retest reproducibility highlights the potential of [(11)C]Cimbi-36 for PET imaging of 5-HT2A receptor agonist binding in vivo. Our data suggest that Cimbi-36 and altanserin both bind to 5-HT2A receptors, but in regions with high 5-HT2C receptor density, choroid plexus...

  20. Predicting treatment response in Schizophrenia: the role of stratal and frontal dopamine D2/D3 receptor binding potential

    DEFF Research Database (Denmark)

    Wulff, Sanne; Nørbak-Emig, Henrik; Nielsen, Mette Ødegaard;

    2014-01-01

    the ligand [123]IBZM (123labeled iodbenzamid) to examine the binding potential (BP) of dopamine D2/D3 receptors in striatum. Patients were treated with amisulpride for six weeks. In the EPIcohort we included 25 patients. The ligand [123I]epidepride was used for quantification of extrastriatal dopamine D2/D3...

  1. Predicting treatment response in schizophrenia: The role of striatal and frontal dopamine D2/D3 receptor binding potential

    DEFF Research Database (Denmark)

    Nørbak, Henrik; Wulff, Sanne; Nielsen, Mette Ødegaard;

    structural Magnetic Resonance Imaging, SPECT and PANSS. In the IBZMcohort we included 26 patients. We used the ligand [123]IBZM (123labeled iodbenzamid) to examine the binding potential (BP) of dopamine D2/D3 receptors in striatum. Patients were treated with amisulpride for six weeks. In the EPIcohort we...

  2. Investigation of the Relationship between Lactococcal Host Cell Wall Polysaccharide Genotype and 936 Phage Receptor Binding Protein Phylogeny

    DEFF Research Database (Denmark)

    Mahony, Jennifer; Kot, Witold Piotr; Murphy, James;

    2013-01-01

    Comparative genomics of 11 lactococcal 936-type phages combined with host range analysis allowed subgrouping of these phage genomes, particularly with respect to their encoded receptor binding proteins. The so-called pellicle or cell wall polysaccharide of Lactococcus lactis, which has been impli...

  3. Azaflavones compared to flavones as ligands to the benzodiazepine binding site of brain GABAA receptors

    DEFF Research Database (Denmark)

    Nilsson, Jakob; Nielsen, Elsebet Østergaard; Liljefors, Tommy;

    2008-01-01

    A series of azaflavone derivatives and analogues were prepared and evaluated for their affinity to the benzodiazepine binding site of the GABA(A) receptor, and compared to their flavone counterparts. Three of the compounds, the azaflavones 9 and 12 as well as the new flavone 13, were also assayed...

  4. Identification of amino acid residues in PEPHC1 important for binding to the tumor-specific receptor EGFRvIII

    DEFF Research Database (Denmark)

    Hansen, Charlotte Lund; Hansen, Paul Robert; Pedersen, Nina;

    2008-01-01

    EGFRvIII is a cancer-specific epidermal growth factor tyrosine kinase receptor mutation, expressed in different kinds of cancer, in particular ovarian, glioblastomas, and breast cancer. A peptide, PEPHC1, has previously been shown to bind selectively to EGFRvIII. An alanine scan was performed...

  5. Enthalpy-Entropy Compensation in the Binding of Modulators at Ionotropic Glutamate Receptor GluA2

    DEFF Research Database (Denmark)

    Krintel, Christian; Francotte, Pierre; Pickering, Darryl S;

    2016-01-01

    The 1,2,4-benzothiadiazine 1,1-dioxide type of positive allosteric modulators of the ionotropic glutamate receptor A2 (GluA2) are promising lead compounds for the treatment of cognitive disorders, e.g., Alzheimer’s disease. The modulators bind in a cleft formed by the interface of two neighboring...

  6. BINDING OF STEROIDS AND ENVIRONMENTAL CHEMICALS TO THE RAINBOW TROUT ANDROGEN RECEPTOR ALPHA EXPRESSED IN COS CELLS

    Science.gov (United States)

    Binding of Steroids and Environmental Chemicals to the Rainbow Trout Androgen Receptor Alpha Expressed in COS Cells. Mary C. Cardon, L. Earl Gray. Jr., Phillip C. Hartig and Vickie S. Wilson U.S. Environmental Protection Agency, ORD, NHEERL, Reproductive Toxicology...

  7. Trait aggression and trait impulsivity are not related to frontal cortex 5-HT2A receptor binding in healthy individuals

    DEFF Research Database (Denmark)

    da Cunha-Bang, Sophie; Stenbæk, Dea Siggaard; Holst, Klaus;

    2013-01-01

    age 47.0±18.7, range 23-86) to determine if trait aggression and trait impulsivity were related to frontal cortex 5-HT2A receptor binding (5-HT2AR) as measured with [(18)F]-altanserin PET imaging. Trait aggression and trait impulsivity were assessed with the Buss-Perry Aggression Questionnaire (AQ...

  8. Enantioselective binding of amino acids and amino alcohols by self-assembled chiral basket-shaped receptors

    NARCIS (Netherlands)

    Escuder, B.; Rowan, A.E.; Feiters, M.C.; Nolte, R.J.M.

    2004-01-01

    Amino acid appended diphenylglycoluril-based chiral molecular receptors 2 and 3 have been prepared and their aggregation has been studied in water at various pH's and in chloroform. The binding of several biologically relevant guests with aromatic moieties to these aggregates has been studied with U

  9. Pharmacology and Structural Analysis of Ligand Binding to the Orthosteric Site of Glutamate-Like GluD2 Receptors

    DEFF Research Database (Denmark)

    Kristensen, Anders S; Hansen, Kasper B; Naur, Peter;

    2016-01-01

    -term depression. Here, we investigate the pharmacology of the orthosteric binding site in GluD2 by examining the activity of analogs of D-Ser and GluN1 glycine site competitive antagonists at GluD2 receptors containing the lurcher mutation (GluD2(LC)), which promotes spontaneous channel activation. We identify...

  10. Salt bridges overlapping the gonadotropin-releasing hormone receptor agonist binding site reveal a coincidence detector for G protein-coupled receptor activation.

    Science.gov (United States)

    Janovick, Jo Ann; Pogozheva, Irina D; Mosberg, Henry I; Conn, P Michael

    2011-08-01

    G protein-coupled receptors (GPCRs) play central roles in most physiological functions, and mutations in them cause heritable diseases. Whereas crystal structures provide details about the structure of GPCRs, there is little information that identifies structural features that permit receptors to pass the cellular quality control system or are involved in transition from the ground state to the ligand-activated state. The gonadotropin-releasing hormone receptor (GnRHR), because of its small size among GPCRs, is amenable to molecular biological approaches and to computer modeling. These techniques and interspecies comparisons are used to identify structural features that are important for both intracellular trafficking and GnRHR activation yet distinguish between these processes. Our model features two salt (Arg(38)-Asp(98) and Glu(90)-Lys(121)) and two disulfide (Cys(14)-Cys(200) and Cys(114)-Cys(196)) bridges, all of which are required for the human GnRHR to traffic to the plasma membrane. This study reveals that both constitutive and ligand-induced activation are associated with a "coincidence detector" that occurs when an agonist binds. The observed constitutive activation of receptors lacking Glu(90)-Lys(121), but not Arg(38)-Asp(98) ionic bridge, suggests that the role of the former connection is holding the receptor in the inactive conformation. Both the aromatic ring and hydroxyl group of Tyr(284) and the hydrogen bonding of Ser(217) are important for efficient receptor activation. Our modeling results, supported by the observed influence of Lys(191) from extracellular loop 2 (EL2) and a four-residue motif surrounding this loop on ligand binding and receptor activation, suggest that the positioning of EL2 within the seven-α-helical bundle regulates receptor stability, proper trafficking, and function. PMID:21527534

  11. Cloning of human tumor necrosis factor (TNF) receptor cDNA and expression of recombinant soluble TNF-binding protein

    Energy Technology Data Exchange (ETDEWEB)

    Gray, P.W.; Barrett, K.; Chantry, D.; Turner, M.; Feldmann, M. (Charing Cross Sunley Research Centre, Hammersmith, London (England))

    1990-10-01

    The cDNA for one of the receptors for human tumor necrosis factor (TNF) has been isolated. This cDNA encodes a protein of 455 amino acids that is divided into an extracellular domain of 171 residues and a cytoplasmic domain of 221 residues. The extracellular domain has been engineered for expression in mammalian cells, and this recombinant derivative binds TNF{alpha} with high affinity and inhibits its cytotoxic activity in vitro. The TNF receptor exhibits similarity with a family of cell surface proteins that includes the nerve growth factor receptor, the human B-cell surface antigen CD40, and the rat T-cell surface antigen OX40. The TNF receptor contains four cysteine-rich subdomains in the extracellular portion. Mammalian cells transfected with the entire TNF receptor cDNA bind radiolabeled TNF{alpha} with an affinity of 2.5 {times} 10{sup {minus}9} M. This binding can be competitively inhibited with unlabeled TNF{alpha} or lymphotoxin (TNF{beta}).

  12. Cloning of Human Tumor Necrosis Factor (TNF) Receptor cDNA and Expression of Recombinant Soluble TNF-Binding Protein

    Science.gov (United States)

    Gray, Patrick W.; Barrett, Kathy; Chantry, David; Turner, Martin; Feldmann, Marc

    1990-10-01

    The cDNA for one of the receptors for human tumor necrosis factor (TNF) has been isolated. This cDNA encodes a protein of 455 amino acids that is divided into an extracellular domain of 171 residues and a cytoplasmic domain of 221 residues. The extracellular domain has been engineered for expression in mammalian cells, and this recombinant derivative binds TNFα with high affinity and inhibits its cytotoxic activity in vitro. The TNF receptor exhibits similarity with a family of cell surface proteins that includes the nerve growth factor receptor, the human B-cell surface antigen CD40, and the rat T-cell surface antigen OX40. The TNF receptor contains four cysteine-rich subdomains in the extra-cellular portion. Mammalian cells transfected with the entire TNF receptor cDNA bind radiolabeled TNFα with an affinity of 2.5 x 10-9 M. This binding can be competitively inhibited with unlabeled TNFα or lymphotoxin (TNFβ).

  13. Effect of Yoga and Traditional Physical Exercise on Hormones and Percentage Insulin Binding Receptor in Patients with Type 2 Diabetes

    Directory of Open Access Journals (Sweden)

    Lorenzo Gordon

    2008-01-01

    Full Text Available The objective of the study was to investigate the short-term impact of a brief lifestyle intervention of yoga and traditional Physical Training (PT exercise regimens on: serum insulin, percentage insulin binding receptor, internalization of insulin-receptor complex, T3, T4, TSH and cortisol at baseline, 3 months and 6 months in patients with type 2 diabetes mellitus. A total of 231 patients completed this prospective randomized study with 77 type 2 diabetic patients in the yoga group (62 females and 15 males that were matched with the same number of patients in the traditional Physical Training (PT exercise and control groups. Biochemical parameters such as fasting Blood Glucose (FBG, serum insulin, percentage insulin binding receptor and internalization of insulin-receptor complex were determined at the beginning (baseline and two consecutive three monthly intervals. The effect of the lifestyle interventions on hormones such as cortisol, TSH, T4 and T3 were also investigated. The FBG concentration in the yoga and the traditional PT exercise groups were markedly decreased compared with control (P 0.05. The findings indicates the beneficial effects of yoga and traditional PT exercise regimens in improving glycaemic control by increasing percentage insulin binding receptor in type 2 diabetic patients with no significant change in cortisol and thyroid hormones.

  14. Crystal Structure of the Ligand Binding Suppressor Domain of Type 1 Inositol 1,4,5-Trisphosphate Receptor

    Energy Technology Data Exchange (ETDEWEB)

    Bosanac, Ivan; Yamazaki, Haruka; Matsu-ura, Toru; Michikawa, Takayuki; Mikoshiba, Katsuhiko; Ikura, Mitsuhiko (U. of Texas-SMED)

    2010-11-10

    Binding of inositol 1,4,5-trisphosphate (IP{sub 3}) to the amino-terminal region of IP{sub 3} receptor promotes Ca{sup 2+} release from the endoplasmic reticulum. Within the amino terminus, the first 220 residues directly preceding the IP{sub 3} binding core domain play a key role in IP{sub 3} binding suppression and regulatory protein interaction. Here we present a crystal structure of the suppressor domain of the mouse type 1 IP{sub 3} receptor at 1.8 {angstrom}. Displaying a shape akin to a hammer, the suppressor region contains a Head subdomain forming the {beta}-trefoil fold and an Arm subdomain possessing a helix-turn-helix structure. The conserved region on the Head subdomain appeared to interact with the IP{sub 3} binding core domain and is in close proximity to the previously proposed binding sites of Homer, RACK1, calmodulin, and CaBP1. The present study sheds light onto the mechanism underlying the receptor's sensitivity to the ligand and its communication with cellular signaling proteins.

  15. Characterization of the modes of binding between human sweet taste receptor and low-molecular-weight sweet compounds.

    Directory of Open Access Journals (Sweden)

    Katsuyoshi Masuda

    Full Text Available One of the most distinctive features of human sweet taste perception is its broad tuning to chemically diverse compounds ranging from low-molecular-weight sweeteners to sweet-tasting proteins. Many reports suggest that the human sweet taste receptor (hT1R2-hT1R3, a heteromeric complex composed of T1R2 and T1R3 subunits belonging to the class C G protein-coupled receptor family, has multiple binding sites for these sweeteners. However, it remains unclear how the same receptor recognizes such diverse structures. Here we aim to characterize the modes of binding between hT1R2-hT1R3 and low-molecular-weight sweet compounds by functional analysis of a series of site-directed mutants and by molecular modeling-based docking simulation at the binding pocket formed on the large extracellular amino-terminal domain (ATD of hT1R2. We successfully determined the amino acid residues responsible for binding to sweeteners in the cleft of hT1R2 ATD. Our results suggest that individual ligands have sets of specific residues for binding in correspondence with the chemical structures and other residues responsible for interacting with multiple ligands.

  16. A Novel Binding Mode Reveals Two Distinct Classes of NMDA Receptor GluN2B-selective Antagonists.

    Science.gov (United States)

    Stroebel, David; Buhl, Derek L; Knafels, John D; Chanda, Pranab K; Green, Michael; Sciabola, Simone; Mony, Laetitia; Paoletti, Pierre; Pandit, Jayvardhan

    2016-05-01

    N-methyl-d-aspartate receptors (NMDARs) are glutamate-gated ion channels that play key roles in brain physiology and pathology. Because numerous pathologic conditions involve NMDAR overactivation, subunit-selective antagonists hold strong therapeutic potential, although clinical successes remain limited. Among the most promising NMDAR-targeting drugs are allosteric inhibitors of GluN2B-containing receptors. Since the discovery of ifenprodil, a range of GluN2B-selective compounds with strikingly different structural motifs have been identified. This molecular diversity raises the possibility of distinct binding sites, although supporting data are lacking. Using X-ray crystallography, we show that EVT-101, a GluN2B antagonist structurally unrelated to the classic phenylethanolamine pharmacophore, binds at the same GluN1/GluN2B dimer interface as ifenprodil but adopts a remarkably different binding mode involving a distinct subcavity and receptor interactions. Mutagenesis experiments demonstrate that this novel binding site is physiologically relevant. Moreover, in silico docking unveils that GluN2B-selective antagonists broadly divide into two distinct classes according to binding pose. These data widen the allosteric and pharmacological landscape of NMDARs and offer a renewed structural framework for designing next-generation GluN2B antagonists with therapeutic value for brain disorders. PMID:26912815

  17. Molecular mechanism of AMD3100 antagonism in the CXCR4 receptor: transfer of binding site to the CXCR3 receptor

    DEFF Research Database (Denmark)

    Rosenkilde, Mette M; Gerlach, Lars-Ole; Jakobsen, Janus S;

    2004-01-01

    , respectively. Metal ion binding in the cyclam rings of AMD3100 increased its dependence on Asp(262) and provided a tighter molecular map of the binding site, where borderline mutational hits became clear hits for the Zn(II)-loaded analog. The proposed binding site for AMD3100 was confirmed by a gradual build...

  18. A novel chemical footprinting approach identifies critical lysine residues involved in the binding of receptor-associated protein to cluster II of LDL receptor-related protein.

    Science.gov (United States)

    Bloem, Esther; Ebberink, Eduard H T M; van den Biggelaar, Maartje; van der Zwaan, Carmen; Mertens, Koen; Meijer, Alexander B

    2015-05-15

    Tandem mass tags (TMTs) were utilized in a novel chemical footprinting approach to identify lysine residues that mediate the interaction of receptor-associated protein (RAP) with cluster II of LDL (low-density lipoprotein) receptor (LDLR)-related protein (LRP). The isolated RAP D3 domain was modified with TMT-126 and the D3 domain-cluster II complex with TMT-127. Nano-LC-MS analysis revealed reduced modification with TMT-127 of peptides including Lys(256), Lys(270) and Lys(305)-Lys(306) suggesting that these residues contribute to cluster II binding. This agrees with previous findings that Lys(256) and Lys(270) are critical for binding cluster II sub-domains [Fisher, Beglova and Blacklow (2006) Mol. Cell 22, 277-283]. Cluster II-binding studies utilizing D3 domain variants K(256)A, K(305)A and K(306)A now showed that Lys(306) contributes to cluster II binding as well. For full-length RAP, we observed that peptides including Lys(60), Lys(191), Lys(256), Lys(270) and Lys(305)-Lys(306) exhibited reduced modification with TMT in the RAP-cluster II complex. Notably, Lys(60) has previously been implicated to mediate D1 domain interaction with cluster II. Our results suggest that also Lys(191) of the D2 domain contributes to cluster II binding. Binding studies employing the RAP variants K(191)A, K(256)A, K(305)A and K(306)A, however, revealed a modest reduction in cluster II binding for the K(256)A variant only. This suggests that the other lysine residues can compensate for the absence of a single lysine residue for effective complex assembly. Collectively, novel insight has been obtained into the contribution of lysine residues of RAP to cluster II binding. In addition, we propose that TMTs can be utilized to identify lysine residues critical for protein complex formation. PMID:25728577

  19. Cortical and subcortical 5-HT2A receptor binding in neuroleptic-naive first-episode schizophrenic patients

    DEFF Research Database (Denmark)

    Erritzoe, David; Rasmussen, Hans; Kristiansen, Klaus Nyegaard;

    2008-01-01

    .5+/-5.7 years) and gender underwent a 40 min positron emission tomography (PET) study using the 5-HT(2A) antagonist, [(18)F]altanserin, as a radioligand. PET images were co-registered to 3 T magnetic resonance images (MRIs) for each individual subject, and ROIs were applied automatically onto the individual...... in the caudate nucleus was detected in the group of schizophrenic patients (0.7+/-0.1) when compared to the healthy controls (0.5+/-0.3) (p=0.02). Our results confirm other in vivo findings of no difference in cortical 5-HT(2A) receptor binding between first-episode antipsychotic-naive schizophrenic patients...... and age- and gender-matched healthy control subjects. However, a preliminary finding of increased 5-HT(2A) binding in the caudate nucleus requires further investigation to explore the relation of subcortical and cortical 5-HT(2A) receptor binding....

  20. High-affinity insulin binding to an atypical insulin-like growth factor-I receptor in human breast cancer cells.

    OpenAIRE

    Milazzo, G.; Yip, C. C.; Maddux, B A; Vigneri, R; Goldfine, I D

    1992-01-01

    We studied the nature of insulin receptor binding in MCF-7 breast cancer cells. In both intact cells and solubilized receptor preparations, high-affinity insulin binding was seen. However, unlabeled insulin-like growth factor-I (IGF-I) was five-fold more potent in inhibiting 125I-insulin binding than insulin itself. With monoclonal antibodies to the insulin receptor, 30% of 125I-insulin binding was inhibited. In contrast when alpha-IR3, a monoclonal antibody that recognizes typical IGF-I rece...

  1. Gender and the use of hormonal contraception in women are not associated with cerebral cortical 5-HT 2A receptor binding

    DEFF Research Database (Denmark)

    Frokjaer, V G; Erritzoe, D; Madsen, J;

    2009-01-01

    Gender influences brain function including serotonergic neurotransmission, which may play a role in the well-known gender variations in vulnerability to mood and anxiety disorders. Even though hormonal replacement therapy in menopause is associated with globally increased cerebral 5-HT(2A) receptor...... binding it is not clear if gender or use of hormonal contraception exhibits associations with 5-HT(2A) receptor binding. We found no significant effect of gender on cortical 5-HT(2A) receptor binding (P=0.15, n=132). When adjusting for the personality trait neuroticism, known to be positively correlated...... to frontolimbic 5-HT(2A) receptor binding and to be more pronounced in women, again, the effect of gender was not significant (P=0.42, n=127). Also, the use of hormonal contraception (n=14) within the group of pre-menopausal women (total n=29) was not associated with cortical 5-HT(2A) receptor binding (P=0...

  2. Predicting novel binding modes of agonists to β adrenergic receptors using all-atom molecular dynamics simulations.

    Directory of Open Access Journals (Sweden)

    Stefano Vanni

    Full Text Available Understanding the binding mode of agonists to adrenergic receptors is crucial to enabling improved rational design of new therapeutic agents. However, so far the high conformational flexibility of G protein-coupled receptors has been an obstacle to obtaining structural information on agonist binding at atomic resolution. In this study, we report microsecond classical molecular dynamics simulations of β(1 and β(2 adrenergic receptors bound to the full agonist isoprenaline and in their unliganded form. These simulations show a novel agonist binding mode that differs from the one found for antagonists in the crystal structures and from the docking poses reported by in silico docking studies performed on rigid receptors. Internal water molecules contribute to the stabilization of novel interactions between ligand and receptor, both at the interface of helices V and VI with the catechol group of isoprenaline as well as at the interface of helices III and VII with the ethanolamine moiety of the ligand. Despite the fact that the characteristic N-C-C-OH motif is identical in the co-crystallized ligands and in the full agonist isoprenaline, the interaction network between this group and the anchor site formed by Asp(3.32 and Asn(7.39 is substantially different between agonists and inverse agonists/antagonists due to two water molecules that enter the cavity and contribute to the stabilization of a novel network of interactions. These new binding poses, together with observed conformational changes in the extracellular loops, suggest possible determinants of receptor specificity.

  3. Probing the GnRH receptor agonist binding site identifies methylated triptorelin as a new anti-proliferative agent

    Directory of Open Access Journals (Sweden)

    Robert P Millar

    2012-06-01

    Full Text Available D-amino acid substitutions at Glycine postion-6 in GnRH-I decapeptide can possess super-agonist activity and enhanced in vivo pharmacokinetics. Agonists elicit growth-inhibition in tumorigenic cells expressing the GnRH receptor above threshold levels. However, new agonists with modified properties are required to improve the anti-proliferative range. Effects of residue substitutions and methylations on tumourigenic HEK293[SCL60] and WPE-1-NB26-3 prostate cells expressing the rat GnRH receptor were compared. Peptides were ranked according to receptor binding affinity, induction of inositol phosphate production and cell growth-inhibition. Analogues possessing D-Trp6 (including Triptorelin, D-Leu6 (including Leuprolide, D-Ala6, D-Lys6, or D-Arg6 exhibited agonist and anti-proliferative activity. Residues His5 or His5,Trp7,Tyr8, corresponding to residues found in GnRH-II , were tolerated, with retention of sub-nanomolar/low nanomolar binding affinities and EC50s for receptor activation and IC50s for cell growth-inhibition. His5D-Arg6-GnRH-I exhibited reduced binding affinity and potency, effective in the mid-nanomolar range. However, all GnRH-II-like analogues were less potent than Triptorelin. By comparison, three methylated-Trp6 Triptorelin variants showed differential binding, receptor activation and anti-proliferation potency. Significantly, 5-Methyl-DL-Trp6-Triptorelin was equipotent to triptorelin. Subsequent studies should determine whether pharmacologically enhanced derivatives of Triptorelin can be developed by further alkylations, without substitutions or cleavable cytotoxic adducts, to improve the extent of growth-inhibition of tumour cells expressing the GnRH receptor.

  4. Effects of chronic delta-9-tetrahydrocannabinol (THC) administration on neurotransmitter concentrations and receptor binding in the rat brain

    Energy Technology Data Exchange (ETDEWEB)

    Ali, S.F.; Newport, G.D.; Scallet, A.C.; Gee, K.W.; Paule, M.G.; Brown, R.M.; Slikker, W. Jr. (National Center for Toxicological Research, Jefferson, Arkansas (USA))

    THC is the major psychoactive constituent of marijuana and is also known as an hallucinogenic compound. Numerous reports have shown that large doses of THC produce significant alterations in various neurotransmitter systems. The present study was designed to determine whether chronic exposure to THC produces significant alterations in selected neurotransmitter systems (dopamine, serotonin, acetylcholine, GABAergic, benzodiazepine, and opiate) in the rat brain. In Experiment 1, male Sprague-Dawley rats were gavaged with vehicle, 10 or 20 mg THC/kg body weight daily, 5 days/week for 90 days. Animals were killed either 24 hours or two months after the last dose. Brains were dissected into different regions for neurochemical analyses. Two months after the cessation of chronic administration, there was a significant decrease in GABA receptor binding in the hippocampus of animals in the high dose group. However, no other significant changes were found in neurotransmitter receptor binding characteristics in the hippocampus or in neurotransmitter concentrations in the caudate nucleus, hypothalamus or septum after chronic THC administration. In an attempt to replicate the GABA receptor binding changes and also to determine the (35S)TBPS binding in hippocampus, we designed Experiment 2. In this experiment, we dosed the animals by gavage with 0, 5, 10 or 20 mg THC/kg daily, 5 days/week or with 20 mg THC/kg Monday through Thursday and 60 mg/kg on Friday for 90 days. Results from this experiment failed to replicate the dose-dependent effect of THC on GABA receptor binding in hippocampus. Modulation of (35S)TBPS binding by GABA or 3 alpha-OH-DHP or inhibition by cold TBPS in frontal cortex did not show any significant dose-related effects.

  5. Influence of the hinge region and its adjacent domains on binding and signaling patterns of the thyrotropin and follitropin receptor.

    Directory of Open Access Journals (Sweden)

    Jörg Schaarschmidt

    Full Text Available Glycoprotein hormone receptors (GPHR have a large extracellular domain (ECD divided into the leucine rich repeat (LRR domain for binding of the glycoprotein hormones and the hinge region (HinR, which connects the LRR domain with the transmembrane domain (TMD. Understanding of the activation mechanism of GPHRs is hindered by the unknown interaction of the ECD with the TMD and the structural changes upon ligand binding responsible for receptor activation. Recently, our group showed that the HinR of the thyrotropin receptor (TSHR can be replaced by those of the follitropin (FSHR and lutropin receptor (LHCGR without effects on surface expression and hTSH signaling. However, differences in binding characteristics for bovine TSH at the various HinRs were obvious. To gain further insights into the interplay between LRR domain, HinR and TMD we generated chimeras between the TSHR and FSHR. Our results obtained by the determination of cell surface expression, ligand binding and G protein activation confirm the similar characteristics of GPHR HinRs but they also demonstrate an involvement of the HinR in ligand selectivity indicated by the observed promiscuity of some chimeras. While the TSHR HinR contributes to specific binding of TSH and its variants, no such contribution is observed for FSH and its analog TR4401 at the HinR of the FSHR. Furthermore, the charge distribution at the poorly characterized LRR domain/HinR transition affected ligand binding and signaling even though this area is not in direct contact with the ligand. In addition our results also demonstrate the importance of the TMD/HinR interface. Especially the combination of the TSHR HinR with the FSHR-TMD resulted in a loss of cell surface expression of the respective chimeras. In conclusion, the HinRs of GPHRs do not only share similar characteristics but also behave as ligand specific structural and functional entities.

  6. Effects of chronic delta-9-tetrahydrocannabinol (THC) administration on neurotransmitter concentrations and receptor binding in the rat brain

    International Nuclear Information System (INIS)

    THC is the major psychoactive constituent of marijuana and is also known as an hallucinogenic compound. Numerous reports have shown that large doses of THC produce significant alterations in various neurotransmitter systems. The present study was designed to determine whether chronic exposure to THC produces significant alterations in selected neurotransmitter systems (dopamine, serotonin, acetylcholine, GABAergic, benzodiazepine, and opiate) in the rat brain. In Experiment 1, male Sprague-Dawley rats were gavaged with vehicle, 10 or 20 mg THC/kg body weight daily, 5 days/week for 90 days. Animals were killed either 24 hours or two months after the last dose. Brains were dissected into different regions for neurochemical analyses. Two months after the cessation of chronic administration, there was a significant decrease in GABA receptor binding in the hippocampus of animals in the high dose group. However, no other significant changes were found in neurotransmitter receptor binding characteristics in the hippocampus or in neurotransmitter concentrations in the caudate nucleus, hypothalamus or septum after chronic THC administration. In an attempt to replicate the GABA receptor binding changes and also to determine the [35S]TBPS binding in hippocampus, we designed Experiment 2. In this experiment, we dosed the animals by gavage with 0, 5, 10 or 20 mg THC/kg daily, 5 days/week or with 20 mg THC/kg Monday through Thursday and 60 mg/kg on Friday for 90 days. Results from this experiment failed to replicate the dose-dependent effect of THC on GABA receptor binding in hippocampus. Modulation of [35S]TBPS binding by GABA or 3 alpha-OH-DHP or inhibition by cold TBPS in frontal cortex did not show any significant dose-related effects

  7. Binding affinity to and dependence on some opioidsin Sf9 insect cells expressing human μ-opioid receptor

    Institute of Scientific and Technical Information of China (English)

    LIUZhong-Hua; HEYou; JINWen-Qiao; CHENXin-Jian; ZHANGHong-Ping; SHENQing-Xiang; CHIZhi-Qiang

    2003-01-01

    AIM: To investigate the receptor binding affinity and naloxone-precipitated cAMP overshoot of dihydroetorphine,fentanyl, heroin, and pethidine in Sf9 insect cells expressing human μ-opioid receptor (Sf9-μ cells). METHODS:Competitive binding assay of [3H]ohmefentanyl was used to reveal the affinity for μ-opioid receptor in Sf9-μ cells.[3H]cAMP RIA was used to determine cAMP level. Antinociceptive activity was evaluated using 55℃ mouse hotplate test. Naloxone-precipitated withdrawal jumping was used to reflect physical dependence in mice. RESULTS:All drugs displayed antinociceptive activity and produced physical dependence in mice. The Ki values ofdihydroetorphine, fentanyl, heroin, and pethidine in competitive binding assay were (0.85±0.20)nmol, (59.1±11.7)nmol, (0.36±0.13)μmol, and (12.2±3.8) μmol respectively. The binding affinities of these drugs for μ-opioidreceptor in Sf9-μ cells were paralleled to their antinociceptive activities in mice. After chronic pretreatment withthese drugs, naloxone induced cAMP withdrawal overshoot in Sf9-μ cells. The dependence index in Sf9-μ cellswas calculated as Ki value in competitive binding assay over ECs0 value in naloxone-precipitated cAMP assay, Thephysical dependence index in mice was calculated as antinociceptive ED50/withdrawal jumping cumulative EDs0.There was a good linear correlation between dependence index in Sf9-μ cells and physical dependence index inmice. CONCLUSION: The Sf9-μ cells could be used as a cell model to evaluate the receptor binding affinity andphysical dependent liability of analgesic agents.

  8. Comparative study of somatostatin-human serum albumin fusion proteins and natural somatostatin on receptor binding, internalization and activation.

    Directory of Open Access Journals (Sweden)

    Ying Peng

    Full Text Available Albumin fusion technology, the combination of small molecular proteins or peptides with human serum albumin (HSA, is an effective method for improving the medicinal values of natural small molecular proteins or peptides. However, comparative studies between HSA-fusion proteins or peptides and the parent small molecules in biological and molecular mechanisms are less reported. In this study, we examined the binding property of two novel somatostatin-HSA fusion proteins, (SST142-HSA and (SST282-HSA, to human SSTRs in stably expressing SSTR1-5 HEK 293 cells; observed the regulation of receptor internalization and internalized receptor recycling; and detected the receptors activation of HSA fusion proteins in stably expressing SSTR2- and SSTR3-EGFP cells. We showed that both somatostatin-HSA fusion proteins had high affinity to all five SSTRs, stimulated the ERK1/2 phosphorylation and persistently inhibited the accumulation of forskolin-stimulated cAMP in SSTR2- and SSTR3-expressing cells; but were less potent than the synthetic somatostatin-14 (SST-14. Our experiments also showed that somatostatin-HSA fusion proteins did not induce the receptors internalization; rather, they accelerated the recycling of the internalized receptors induced by SST-14 to the plasma membrane. Our results indicated that somatostatin-HSA fusion proteins, different from SST-14, exhibit some particular properties in binding, regulating, and activating somatostatin receptors.

  9. Gentamicin binds to the megalin receptor as a competitive inhibitor using the common ligand binding motif of complement type repeats

    DEFF Research Database (Denmark)

    Dagil, Robert; O'Shea, Charlotte; Nykjær, Anders;

    2013-01-01

    Gentamicin is an aminoglycoside widely used in treatments of, in particular, enterococcal, mycobacterial, and severe Gram-negative bacterial infections. Large doses of gentamicin cause nephrotoxicity and ototoxicity, entering the cell via the receptor megalin. Until now, no structural information...

  10. The PickPocket method for predicting binding specificities for receptors based on receptor pocket similarities: application to MHC-peptide binding

    DEFF Research Database (Denmark)

    Zhang, H.; Lund, Ole; Nielsen, M.

    2009-01-01

    the polymorphic pocket residues in MHC molecules that are in close proximity to the peptide residue. For MHC molecules with known specificities, we established a library of pocket-residues and corresponding binding specificities. The binding specificity for a novel MHC molecule is calculated as the average...

  11. Structure-function relationships for the interleukin 2 receptor: location of ligand and antibody binding sites on the Tac receptor chain by mutational analysis.

    OpenAIRE

    1988-01-01

    The Tac protein plays a role in high- and low-affinity interleukin 2 (IL-2) receptors. A mutational survey of this molecule identified several small segments in which the binding of IL-2 was particularly sensitive to amino acid substitutions. Two of the segments (residues 1-6 and 35-43) located in the exon 2-encoded region of the molecule overlapped the apparent binding sites of three monoclonal antibodies (anti-Tac, GL439, and H31) that block high- and low-affinity Tac-IL-2 interactions, thu...

  12. Direct Channeling of Retinoic Acid between Cellular Retinoic Acid-Binding Protein II and Retinoic Acid Receptor Sensitizes Mammary Carcinoma Cells to Retinoic Acid-Induced Growth Arrest

    OpenAIRE

    Budhu, Anuradha S.; Noy, Noa

    2002-01-01

    Cellular retinoic acid-binding protein II (CRABP-II) is an intracellular lipid-binding protein that associates with retinoic acid with a subnanomolar affinity. We previously showed that CRABP-II enhances the transcriptional activity of the nuclear receptor with which it shares a common ligand, namely, the retinoic acid receptor (RAR), and we suggested that it may act by delivering retinoic acid to this receptor. Here, the mechanisms underlying the effects of CRABP-II on the transcriptional ac...

  13. Structural and functional insights into the ligand-binding domain of a nonduplicated retinoid X nuclear receptor from the invertebrate chordate amphioxus

    OpenAIRE

    Tocchini-Valentini, Guiseppe D.; Rochel, Natacha; Escriva, Hector; Germain, Pierre; Peluso-Iltis, Carole; Paris, Mathilde; Sanglier-Cianferani, Sarah; Van Dorsselaer, Alain; Moras, Dino; Laudet, Vincent

    2009-01-01

    Retinoid X nuclear receptors (RXRs), as well as their insect orthologue, ultraspiracle protein (USP), play an important role in the transcription regulation mediated by the nuclear receptors as the common partner of many other nuclear receptors. Phylogenetic and structural studies have shown that the several evolutionary shifts have modified the ligand binding ability of RXRs. To understand the vertebrate-specific character of RXRs, we have studied the RXR ligand-binding domain of the cephalo...

  14. Leptin Increases Striatal Dopamine D2 Receptor Binding in Leptin-Deficient Obese (ob/ob) Mice

    Energy Technology Data Exchange (ETDEWEB)

    Pfaffly, J.; Michaelides, M.; Wang, G-J.; Pessin, J.E.; Volkow, N.D.; Thanos, P.K.

    2010-06-01

    Peripheral and central leptin administration have been shown to mediate central dopamine (DA) signaling. Leptin-receptor deficient rodents show decreased DA D2 receptor (D2R) binding in striatum and unique DA profiles compared to controls. Leptin-deficient mice show increased DA activity in reward-related brain regions. The objective of this study was to examine whether basal D2R-binding differences contribute to the phenotypic behaviors of leptin-deficient ob/ob mice, and whether D2R binding is altered in response to peripheral leptin treatment in these mice. Leptin decreased body weight, food intake, and plasma insulin concentration in ob/ob mice but not in wild-type mice. Basal striatal D2R binding (measured with autoradiography [{sup 3}H] spiperone) did not differ between ob/ob and wild-type mice but the response to leptin did. In wild-type mice, leptin decreased striatal D2R binding, whereas, in ob/ob mice, leptin increased D2R binding. Our findings provide further evidence that leptin modulates D2R expression in striatum and that these effects are genotype/phenotype dependent.

  15. Insulin/receptor binding: the last piece of the puzzle? What recent progress on the structure of the insulin/receptor complex tells us (or not) about negative cooperativity and activation.

    Science.gov (United States)

    De Meyts, Pierre

    2015-04-01

    Progress in solving the structure of insulin bound to its receptor has been slow and stepwise, but a milestone has now been reached with a refined structure of a complex of insulin with a "microreceptor" that contains the primary binding site. The insulin receptor is a dimeric allosteric enzyme that belongs to the family of receptor tyrosine kinases. The insulin binding process is complex and exhibits negative cooperativity. Biochemical evidence suggested that insulin, through two distinct binding sites, crosslinks two receptor sites located on each α subunit. The structure of the unliganded receptor ectodomain showed a symmetrical folded-over conformation with an antiparallel disposition. Further work resolved the detailed structure of receptor site 1, both without and with insulin. Recently, a missing piece in the puzzle was added: the C-terminal portion of insulin's B-chain known to be critical for binding and negative cooperativity. Here I discuss these findings and their implications.

  16. Aberrant expression of glucagon receptors in adrenal glands of a patient with Cushing's syndrome and ACTH-independent macronodular adrenal hyperplasia

    Directory of Open Access Journals (Sweden)

    Valeria de Miguel

    2010-06-01

    Full Text Available Adrenocorticotropin (ACTH independent bilateral macronodular adrenal hyperplasia (AIMAH is a rare cause of Cushing´s syndrome, characterized by bilateral adrenal lesions and excess cortisol production despite ACTH suppression. Cortisol synthesis is produced in response to abnormal activation of G-protein- coupled receptors, such as gastric inhibitory peptide, vasopressin, beta adrenergic agonists, LH/hCG and serotonin receptors. The aim of this study was to analyze the expression of glucagon receptors in adrenal glands from an AIMAH patient. A patient with ACTH-independent Cushing´s syndrome and bilateral macronodular adrenal hyperplasia was screened for altered activation of adrenal receptors by physiological (mixed meal and pharmacological (gonadotrophin releasing hormone, ACTH and glucagon tests. The results showed abnormally high levels of serum cortisol after stimulation with glucagon. Hypercortisolism was successfully managed with ketoconazole treatment. Interestingly, a 4-month treatment with a somatostatin analogue (octreotide was also able to reduce cortisol secretion. Finally, Cushing's syndrome was cured after bilateral adrenalectomy. Abnormal mRNA expression for glucagon receptor in the patient´s adrenal glands was observed by Real-Time PCR procedure. These results strongly suggest that the mechanism of AIMAH causing Cushing´s syndrome in this case involves the illicit activation of adrenal glucagon receptors. This is the first case reported of AIMAH associated with ectopic glucagon receptors.

  17. Nucleotide binding by the widespread high-affinity cyclic di-GMP receptor MshEN domain.

    Science.gov (United States)

    Wang, Yu-Chuan; Chin, Ko-Hsin; Tu, Zhi-Le; He, Jin; Jones, Christopher J; Sanchez, David Zamorano; Yildiz, Fitnat H; Galperin, Michael Y; Chou, Shan-Ho

    2016-01-01

    C-di-GMP is a bacterial second messenger regulating various cellular functions. Many bacteria contain c-di-GMP-metabolizing enzymes but lack known c-di-GMP receptors. Recently, two MshE-type ATPases associated with bacterial type II secretion system and type IV pilus formation were shown to specifically bind c-di-GMP. Here we report crystal structure of the MshE N-terminal domain (MshEN1-145) from Vibrio cholerae in complex with c-di-GMP at a 1.37 Å resolution. This structure reveals a unique c-di-GMP-binding mode, featuring a tandem array of two highly conserved binding motifs, each comprising a 24-residue sequence RLGxx(L/V/I)(L/V/I)xxG(L/V/I)(L/V/I)xxxxLxxxLxxQ that binds half of the c-di-GMP molecule, primarily through hydrophobic interactions. Mutating these highly conserved residues markedly reduces c-di-GMP binding and biofilm formation by V. cholerae. This c-di-GMP-binding motif is present in diverse bacterial proteins exhibiting binding affinities ranging from 0.5 μM to as low as 14 nM. The MshEN domain contains the longest nucleotide-binding motif reported to date. PMID:27578558

  18. Nucleotide binding by the widespread high-affinity cyclic di-GMP receptor MshEN domain.

    Science.gov (United States)

    Wang, Yu-Chuan; Chin, Ko-Hsin; Tu, Zhi-Le; He, Jin; Jones, Christopher J; Sanchez, David Zamorano; Yildiz, Fitnat H; Galperin, Michael Y; Chou, Shan-Ho

    2016-01-01

    C-di-GMP is a bacterial second messenger regulating various cellular functions. Many bacteria contain c-di-GMP-metabolizing enzymes but lack known c-di-GMP receptors. Recently, two MshE-type ATPases associated with bacterial type II secretion system and type IV pilus formation were shown to specifically bind c-di-GMP. Here we report crystal structure of the MshE N-terminal domain (MshEN1-145) from Vibrio cholerae in complex with c-di-GMP at a 1.37 Å resolution. This structure reveals a unique c-di-GMP-binding mode, featuring a tandem array of two highly conserved binding motifs, each comprising a 24-residue sequence RLGxx(L/V/I)(L/V/I)xxG(L/V/I)(L/V/I)xxxxLxxxLxxQ that binds half of the c-di-GMP molecule, primarily through hydrophobic interactions. Mutating these highly conserved residues markedly reduces c-di-GMP binding and biofilm formation by V. cholerae. This c-di-GMP-binding motif is present in diverse bacterial proteins exhibiting binding affinities ranging from 0.5 μM to as low as 14 nM. The MshEN domain contains the longest nucleotide-binding motif reported to date.

  19. Retinoic acid receptor agonists regulate expression of ATP-binding cassette transporter G1 in macrophages.

    Science.gov (United States)

    Ayaori, Makoto; Yakushiji, Emi; Ogura, Masatsune; Nakaya, Kazuhiro; Hisada, Tetsuya; Uto-Kondo, Harumi; Takiguchi, Shunichi; Terao, Yoshio; Sasaki, Makoto; Komatsu, Tomohiro; Iizuka, Maki; Yogo, Makiko; Uehara, Yoshinari; Kagechika, Hiroyuki; Nakanishi, Tsuyoshi; Ikewaki, Katsunori

    2012-04-01

    ABC transporter G1 (ABCG1) plays a pivotal role in HDL-mediated cholesterol efflux and atherogenesis. We investigated whether, and how, retinoic acid receptors (RARs) regulate ABCG1 expression in macrophages. All-trans retinoic acid (ATRA), an RAR ligand, increased ABCG1 protein levels and apoA-I/HDL-mediated cholesterol efflux from the macrophages. Both ATRA and other RAR agonists, TTNPB and Am580, increased major transcripts driven by promoter B upstream of exon 5, though minor transcripts driven by promoter A upstream of exon 1 were only increased by ATRA. The stimulatory effects of ATRA on ABCG1 expression were completely abolished in the presence of RAR/RXR antagonists but were only partially canceled in the presence of an LXR antagonist. Adenovirus with overexpressed oxysterol sulfotransferase abolished the LXR pathway, as previously reported, and ATRA-responsiveness in ABCA1/ABCG1 expressions were respectively attenuated by 38 and 22% compared to the control virus. Promoter assays revealed that ABCG1 levels were regulated more by promoter B than promoter A, and ATRA activated promoter B in a liver X receptor-responsive element (LXRE)-dependent manner. Further, LXRE-B in intron 7, but not LXRE-A in intron 5, enhanced ATRA responsiveness under overexpression of all RAR isoforms-RARα/β/γ. In contrast, the activation of promoter B by TTNPB depended on LXRE-B and RARα, but not on RARβ/γ. Finally, chromatin immunoprecipitation and gel-shift assays revealed a specific and direct repeat 4-dependent binding of RARα to LXRE-B. In conclusion, RAR ligands increase ABCA1/G1 expression and apoA-I/HDL-mediated cholesterol efflux from macrophages, and modulate ABCG1 promoter activity via LXRE-dependent mechanisms.

  20. Interlaboratory comparisons of receptor binding assay with mouse bioassay as screening method for shellfish toxicity

    International Nuclear Information System (INIS)

    The Receptor-binding Assay (RBA) is an isotope-based technique using tritium-labeled saxitoxin (STX) as a tracer. Its response is based on the competition between the labeled and unlabeled saxitoxin to specifically interact with its receptor, sodium (Na+) channel. RBA is locally established at PNRI and now being routinely used for research purposes. RBA results were compared with the standard mouse bioassay method (MBA) as a part of screening program for shellfish toxins. The Microplate RBA is shown to have a sensitivity of 0.40 μg Saxitoxin equiv/100 g shellfish meat. A good agreement at low levels (40-50 μg Saxitoxin equiv/100 g shellfish meat) in the preliminary assays was obtained between the methods. With this, RBA method shows potential in the routine monitoring of shellfish PSP toxicity. Assay interlaboratory comparisons among Asia-Pacific Region laboratories were also performed. The RBA, in microplate and traditional formats, shown to have a sensitivity of 0.30 and 0.25 μg STX equiv/100 g shellfish meat respectively. The inter-and intra-assay variation for RBA is within 5-11%, which met the <30% criterion. The quality control check is within 6.3%, which validates day-to-day analyses. The results are highly comparable and consistent with expected values, with an RSD value <20%, as expected for good variability among the samples. RBA results were highly correlated and exhibited close quantitative agreement with MBA. It provides a reliable means of rapidly assessing PSP toxicity in laboratory and field samples. Thus, RBA can be effective screening tool in responding to suspected cases of PSP intoxication. (author)

  1. Novel Alexa Fluor-488 labeled antagonist of the A(2A) adenosine receptor: Application to a fluorescence polarization-based receptor binding assay.

    Science.gov (United States)

    Kecskés, Miklós; Kumar, T Santhosh; Yoo, Lena; Gao, Zhan-Guo; Jacobson, Kenneth A

    2010-08-15

    Fluorescence polarization (FP) assay has many advantages over the traditional radioreceptor binding studies. We developed an A(2A) adenosine receptor (AR) FP assay using a newly synthesized fluorescent antagonist of the A(2A)AR (MRS5346), a pyrazolo[4,3-e][1,2,4]triazolo[1,5-c]pyrimidin-5-amine derivative conjugated to the fluorescent dye Alexa Fluor-488. MRS5346 displayed a K(i) value of 111+/-16nM in radioligand binding using [(3)H]CGS21680 and membranes prepared from HEK293 cells stably expressing the human A(2A)AR. In a cyclic AMP functional assay, MRS5346 was shown to be an A(2A)AR antagonist. MRS5346 did not show any effect on A(1) and A(3) ARs in binding or the A(2B)AR in a cyclic AMP assay at 10microM. Its suitability as a fluorescent tracer was indicated in an initial observation of an FP signal following A(2A)AR binding. The FP signal was optimal with 20nM MRS5346 and 150microg protein/mL HEK293 membranes. The association and dissociation kinetic parameters were readily determined using this FP assay. The K(d) value of MRS5346 calculated from kinetic parameters was 16.5+/-4.7nM. In FP competition binding experiments using MRS5346 as a tracer, K(i) values of known AR agonists and antagonists consistently agreed with K(i) values from radioligand binding. Thus, this FP assay, which eliminates using radioisotopes, appears to be appropriate for both routine receptor binding and high-throughput screening with respect to speed of analysis, displaceable signal and precision. The approach used in the present study could be generally applicable to other GPCRs.

  2. A helminth cestode parasite express an estrogen-binding protein resembling a classic nuclear estrogen receptor.

    Science.gov (United States)

    Ibarra-Coronado, Elizabeth Guadalupe; Escobedo, Galileo; Nava-Castro, Karen; Jesús Ramses, Chávez-Rios; Hernández-Bello, Romel; García-Varela, Martìn; Ambrosio, Javier R; Reynoso-Ducoing, Olivia; Fonseca-Liñán, Rocío; Ortega-Pierres, Guadalupe; Pavón, Lenin; Hernández, María Eugenia; Morales-Montor, Jorge

    2011-01-01

    The role of an estrogen-binding protein similar to a known mammalian estrogen receptor (ER) is described in the estradiol-dependent reproduction of the helminth parasite Taenia crassiceps. Previous results have shown that 17-β-estradiol induces a concentration-dependent increase in bud number of in vitro cultured cysticerci. This effect is inhibited when parasites are also incubated in the presence of an ER binding-inhibitor (tamoxifen). RT-PCR assays using specific oligonucleotides of the most conserved ER sequences, showed expression by the parasite of a mRNA band of molecular weight and sequence corresponding to an ER. Western blot assays revealed reactivity with a 66 kDa protein corresponding to the parasite ER protein. Tamoxifen treatment strongly reduced the production of the T. crassiceps ER-like protein. Antibody specificity was demonstrated by immunoprecipitating the total parasite protein extract with anti-ER-antibodies. Cross-contamination by host cells was discarded by flow cytometry analysis. ER was specifically detected on cells expressing paramyosin, a specific helminth cell marker. Parasite cells expressing the ER-like protein were located by confocal microscopy in the subtegumental tissue exclusively. Analysis of the ER-like protein by bidimensional electrophoresis and immunoblot identified a specific protein of molecular weight and isoelectric point similar to a vertebrates ER. Sequencing of the spot produced a small fragment of protein similar to the mammalian nuclear ER. Together these results show that T. crassiceps expresses an ER-like protein which activates the budding of T. crassiceps cysticerci in vitro. To the best of our knowledge, this is the first report of an ER-like protein in parasites. This finding may have strong implications in the fields of host-parasite co-evolution as well as in sex-associated susceptibility to this infection, and could be an important target for the design of new drugs.

  3. Bisphenol A binds to the local anesthetic receptor site to block the human cardiac sodium channel.

    Directory of Open Access Journals (Sweden)

    Andrias O O'Reilly

    Full Text Available Bisphenol A (BPA has attracted considerable public attention as it leaches from plastic used in food containers, is detectable in human fluids and recent epidemiologic studies link BPA exposure with diseases including cardiovascular disorders. As heart-toxicity may derive from modified cardiac electrophysiology, we investigated the interaction between BPA and hNav1.5, the predominant voltage-gated sodium channel subtype expressed in the human heart. Electrophysiology studies of heterologously-expressed hNav1.5 determined that BPA blocks the channel with a K(d of 25.4±1.3 µM. By comparing the effects of BPA and the local anesthetic mexiletine on wild type hNav1.5 and the F1760A mutant, we demonstrate that both compounds share an overlapping binding site. With a key binding determinant thus identified, an homology model of hNav1.5 was generated based on the recently-reported crystal structure of the bacterial voltage-gated sodium channel NavAb. Docking predictions position both ligands in a cavity delimited by F1760 and contiguous with the DIII-IV pore fenestration. Steered molecular dynamics simulations used to assess routes of ligand ingress indicate that the DIII-IV pore fenestration is a viable access pathway. Therefore BPA block of the human heart sodium channel involves the local anesthetic receptor and both BPA and mexiletine may enter the closed-state pore via membrane-located side fenestrations.

  4. Phocid seal leptin: tertiary structure and hydrophobic receptor binding site preservation during distinct leptin gene evolution.

    Directory of Open Access Journals (Sweden)

    John A Hammond

    Full Text Available The cytokine hormone leptin is a key signalling molecule in many pathways that control physiological functions. Although leptin demonstrates structural conservation in mammals, there is evidence of positive selection in primates, lagomorphs and chiropterans. We previously reported that the leptin genes of the grey and harbour seals (phocids have significantly diverged from other mammals. Therefore we further investigated the diversification of leptin in phocids, other marine mammals and terrestrial taxa by sequencing the leptin genes of representative species. Phylogenetic reconstruction revealed that leptin diversification was pronounced within the phocid seals with a high dN/dS ratio of 2.8, indicating positive selection. We found significant evidence of positive selection along the branch leading to the phocids, within the phocid clade, but not over the dataset as a whole. Structural predictions indicate that the individual residues under selection are away from the leptin receptor (LEPR binding site. Predictions of the surface electrostatic potential indicate that phocid seal leptin is notably different to other mammalian leptins, including the otariids. Cloning the grey seal leptin binding domain of LEPR confirmed that this was structurally conserved. These data, viewed in toto, support a hypothesis that phocid leptin divergence is unlikely to have arisen by random mutation. Based upon these phylogenetic and structural assessments, and considering the comparative physiology and varying life histories among species, we postulate that the unique phocid diving behaviour has produced this selection pressure. The Phocidae includes some of the deepest diving species, yet have the least modified lung structure to cope with pressure and volume changes experienced at depth. Therefore, greater surfactant production is required to facilitate rapid lung re-inflation upon surfacing, while maintaining patent airways. We suggest that this additional

  5. Phosphorylation-dependent changes in nucleotide binding, conformation, and dynamics of the first nucleotide binding domain (NBD1) of the sulfonylurea receptor 2B (SUR2B).

    Science.gov (United States)

    de Araujo, Elvin D; Alvarez, Claudia P; López-Alonso, Jorge P; Sooklal, Clarissa R; Stagljar, Marijana; Kanelis, Voula

    2015-09-11

    The sulfonylurea receptor 2B (SUR2B) forms the regulatory subunit of ATP-sensitive potassium (KATP) channels in vascular smooth muscle. Phosphorylation of the SUR2B nucleotide binding domains (NBD1 and NBD2) by protein kinase A results in increased channel open probability. Here, we investigate the effects of phosphorylation on the structure and nucleotide binding properties of NBD1. Phosphorylation sites in SUR2B NBD1 are located in an N-terminal tail that is disordered. Nuclear magnetic resonance (NMR) data indicate that phosphorylation of the N-terminal tail affects multiple residues in NBD1, including residues in the NBD2-binding site, and results in altered conformation and dynamics of NBD1. NMR spectra of NBD1 lacking the N-terminal tail, NBD1-ΔN, suggest that phosphorylation disrupts interactions of the N-terminal tail with the core of NBD1, a model supported by dynamic light scattering. Increased nucleotide binding of phosphorylated NBD1 and NBD1-ΔN, compared with non-phosphorylated NBD1, suggests that by disrupting the interaction of the NBD core with the N-terminal tail, phosphorylation also exposes the MgATP-binding site on NBD1. These data provide insights into the molecular basis by which phosphorylation of SUR2B NBD1 activates KATP channels. PMID:26198630

  6. Temporal lobe epilepsy causes selective changes in mu opioid and nociceptin receptor binding and functional coupling to G-proteins in human temporal neocortex.

    Science.gov (United States)

    Rocha, Luisa; Orozco-Suarez, Sandra; Alonso-Vanegas, Mario; Villeda-Hernandez, Juana; Gaona, Andres; Páldy, Eszter; Benyhe, Sandor; Borsodi, Anna

    2009-09-01

    There is no information concerning signal transduction mechanisms downstream of the opioid/nociceptin receptors in the human epileptic brain. The aim of this work was to evaluate the level of G-proteins activation mediated by DAMGO (a mu receptor selective peptide) and nociceptin, and the binding to mu and nociceptin (NOP) receptors and adenylyl cyclase (AC) in neocortex of patients with pharmacoresistant temporal lobe epilepsy. Patients with temporal lobe epilepsy associated with mesial sclerosis (MTLE) or secondary to tumor or vascular lesion showed enhanced [3H]DAMGO and [3H]forskolin binding, lower DAMGO-stimulated [35S]GTPgammaS binding and no significant changes in nociceptin-stimulated G-protein. [3H]Nociceptin binding was lower in patients with MTLE. Age of seizure onset correlated positively with [3H]DAMGO binding and DAMGO-stimulated [35S]GTPgammaS binding, whereas epilepsy duration correlated negatively with [3H]DAMGO and [3H]nociceptin binding, and positively with [3H]forskolin binding. In conclusion, our present data obtained from neocortex of epileptic patients provide strong evidence that a) temporal lobe epilepsy is associated with alterations in mu opioid and NOP receptor binding and signal transduction mechanisms downstream of these receptors, and b) clinical aspects may play an important role on these receptor changes.

  7. Molecular characterization of a novel human hybrid-type receptor that binds the alpha2-macroglobulin receptor-associated protein

    DEFF Research Database (Denmark)

    Jacobsen, Linda; Madsen, P; Moestrup, S K;

    1996-01-01

    but not in several major organs. Both RAP and an antibody against a synthetic peptide derived from a sequence determined in the mature protein detected sorLA-1 in crude human brain extracts. The domain structure suggests that sorLA-1 is an endocytic receptor possibly implicated in the uptake of lipoproteins...... density lipoprotein receptor gene family receptors, and 3) six tandemly arranged fibronectin type III repeats also found in certain neural adhesion proteins. sorLA-1 may therefore be classified as a hybrid receptor. Northern blotting revealed specific mRNA transcripts in brain, spinal cord, and testis...

  8. Lipid-binding proteins modulate ligand-dependent trans-activation by peroxisome proliferator-activated receptors and localize to the nucleus as well as the cytoplasm

    DEFF Research Database (Denmark)

    Helledie, T; Antonius, M; Sorensen, R V;

    2000-01-01

    Peroxisome proliferator-activated receptors (PPARs) are activated by a variety of fatty acids, eicosanoids, and hypolipidemic and insulin-sensitizing drugs. Many of these compounds bind avidly to members of a family of small lipid-binding proteins, the fatty acid-binding proteins (FABPs). Fatty...

  9. Receptor binding profiles and quantitative structure-affinity relationships of some 5-substituted-N,N-diallyltryptamines.

    Science.gov (United States)

    Cozzi, Nicholas V; Daley, Paul F

    2016-02-01

    N,N-Diallyltryptamine (DALT) and 5-methoxy-N,N-diallyltryptamine (5-MeO-DALT) are two tryptamines synthesized and tested by Alexander Shulgin. In self-experiments, 5-MeO-DALT was reported to be psychoactive in the 12-20mg range, while the unsubstituted compound DALT had few discernible effects in the 42-80 mg range. Recently, 5-MeO-DALT has been used in nonmedical settings for its psychoactive effects, but these effects have been poorly characterized and little is known of its pharmacological properties. We extended the work of Shulgin by synthesizing additional 5-substituted-DALTs. We then compared them to DALT and 5-MeO-DALT for their binding affinities at 45 cloned receptors and transporter proteins. Based on in vitro binding affinity, we identified 27 potential receptor targets for the 5-substituted-DALT compounds. Five of the DALT compounds had affinity in the 10-80 nM range for serotonin 5-HT1A and 5-HT2B receptors, while the affinity of DALT itself at 5-HT1A receptors was slightly lower at 100 nM. Among the 5-HT2 subtypes, the weakest affinity was at 5-HT2A receptors, spanning 250-730 nM. Five of the DALT compounds had affinity in the 50-400 nM range for serotonin 5-HT1D, 5-HT6, and 5-HT7 receptors; again, it was the unsubstituted DALT that had the weakest affinity at all three subtypes. The test drugs had even weaker affinity for 5-HT1B, 5-HT1E, and 5-HT5A subtypes and little or no affinity for the 5-HT3 subtype. These compounds also had generally nanomolar affinities for adrenergic α2A, α2B, and α2C receptors, sigma receptors σ1 and σ2, histamine H1 receptors, and norepinephrine and serotonin uptake transporters. They also bound to other targets in the nanomolar-to-low micromolar range. Based on these binding results, it is likely that multiple serotonin receptors, as well as several nonserotonergic sites are important for the psychoactive effects of DALT drugs. To learn whether any quantitative structure-affinity relationships existed, we evaluated

  10. A peptide derived from the CD loop-D helix region of ciliary neurotrophic factor (CNTF) induces neuronal differentiation and survival by binding to the leukemia inhibitory factor (LIF) receptor and common cytokine receptor chain gp130

    DEFF Research Database (Denmark)

    Rathje, Mette; Pankratova, Stanislava; Nielsen, Janne;

    2011-01-01

    Ciliary neurotrophic factor (CNTF) induces neuronal differentiation and promotes the survival of various neuronal cell types by binding to a receptor complex formed by CNTF receptor a (CNTFRa), gp130, and the leukemia inhibitory factor (LIF) receptor (LIFR). The CD loop-D helix region of CNTF has...

  11. Dissecting the Relation between a nuclear receptor and GATA: binding affinity studies of thyroid hormone receptor and GATA2 on TSHβ promoter.

    Directory of Open Access Journals (Sweden)

    Ana Carolina Migliorini Figueira

    Full Text Available BACKGROUND: Much is known about how genes regulated by nuclear receptors (NRs are switched on in the presence of a ligand. However, the molecular mechanism for gene down-regulation by liganded NRs remains a conundrum. The interaction between two zinc-finger transcription factors, Nuclear Receptor and GATA, was described almost a decade ago as a strategy adopted by the cell to up- or down-regulate gene expression. More recently, cell-based assays have shown that the Zn-finger region of GATA2 (GATA2-Zf has an important role in down-regulation of the thyrotropin gene (TSHβ by liganded thyroid hormone receptor (TR. METHODOLOGY/PRINCIPAL FINDINGS: In an effort to better understand the mechanism that drives TSHβ down-regulation by a liganded TR and GATA2, we have carried out equilibrium binding assays using fluorescence anisotropy to study the interaction of recombinant TR and GATA2-Zf with regulatory elements present in the TSHβ promoter. Surprisingly, we observed that ligand (T3 weakens TR binding to a negative regulatory element (NRE present in the TSHβ promoter. We also show that TR may interact with GATA2-Zf in the absence of ligand, but T3 is crucial for increasing the affinity of this complex for different GATA response elements (GATA-REs. Importantly, these results indicate that TR complex formation enhances DNA binding of the TR-GATA2 in a ligand-dependent manner. CONCLUSIONS: Our findings extend previous results obtained in vivo, further improving our understanding of how liganded nuclear receptors down-regulate gene transcription, with the cooperative binding of transcription factors to DNA forming the core of this process.

  12. Short-term desensitization of muscarinic cholinergic receptors in mouse neuroblastoma cells: selective loss of agonist low-affinity and pirenzepine high-affinity binding sites

    International Nuclear Information System (INIS)

    The effects of brief incubation with carbamylcholine on subsequent binding of [3H]N-methylscopolamine were investigated in mouse neuroblastoma cells (clone N1E-115). This treatment demonstrated that the muscarinic receptors in this neuronal clone can be divided into two types; one which is readily susceptible to regulation by receptor agonists, whereas the other is resistant in this regard. In control cells, both pirenzepine and carbamylcholine interacted with high- and low-affinity subsets of muscarinic receptors. Computer-assisted analysis of the competition between pirenzepine and carbamylcholine with [3H]N-methylscopolamine showed that the receptor sites remaining upon desensitization are composed mainly of pirenzepine low-affinity and agonist high-affinity binding sites. Furthermore, there was an excellent correlation between the ability of various muscarinic receptor agonists to induce a decrease in consequent [3H]N-methylscopolamine binding and their efficacy in stimulating cyclic GMP synthesis in these cells. Thus, only the agonists that are known to recognize the receptor's low-affinity conformation in order to elicit increases in cyclic GMP levels were capable of diminishing ligand binding. Taken together, our present results suggest that the receptor population that is sensitive to regulation by agonists includes both the pirenzepine high-affinity and the agonist low-affinity receptor binding states. In addition, the sensitivity of these receptor subsets to rapid regulation by agonists further implicates their involvement in desensitization of muscarinic receptor-mediated cyclic GMP formation

  13. Receptor binding sites for substance P in surgical specimens obtained from patients with ulcerative colitis and Crohn disease

    Energy Technology Data Exchange (ETDEWEB)

    Mantyh, C.R.; Gates, T.S.; Zimmerman, R.P.; Welton, M.L.; Passaro, E.P. Jr.; Vigna, S.R.; Maggio, J.E.; Kruger, L.; Mantyh, P.W.

    1988-05-01

    Several lines of evidence indicate that tachykinin neuropeptides (substance P (SP), substance K (SK), and neuromedin K (NK)) play a role in regulating the inflammatory and immune responses. To test this hypothesis in a human inflammatory disease, quantitative receptor autoradiography was used to examine possible abnormalities in tachykinin binding sites in surgical specimens from patients with inflammatory bowel disease. In all cases, specimens were processed for quantitative receptor autoradiography by using /sup 125/I-labeled Bolton-Hunter conjugates of NK, SK, and SP. In colon tissue obtained from ulcerative colitis and Crohn disease patients, very high concentrations of SP receptor binding sites are expressed by arterioles and venules located in the submucosa, muscalairs mucosa, external circular muscle, external longitudinal muscle, and serosa, in contrast to control patients. These results demonstrate that receptor binding sites for SP, but not SK or NK, are ectopically expressed in high concentrations by cells involved in mediating inflammatory and immune responses. These data suggest that SP may be involved in the pathophysiology of inflammatory bowel disease and might provide some insight into the interaction between the nervous system and the regulation of inflammation and the immune response in human inflammatory disease.

  14. A structural model for binding of the serine-rich repeat adhesin GspB to host carbohydrate receptors.

    Directory of Open Access Journals (Sweden)

    Tasia M Pyburn

    2011-07-01

    Full Text Available GspB is a serine-rich repeat (SRR adhesin of Streptococcus gordonii that mediates binding of this organism to human platelets via its interaction with sialyl-T antigen on the receptor GPIbα. This interaction appears to be a major virulence determinant in the pathogenesis of infective endocarditis. To address the mechanism by which GspB recognizes its carbohydrate ligand, we determined the high-resolution x-ray crystal structure of the GspB binding region (GspB(BR, both alone and in complex with a disaccharide precursor to sialyl-T antigen. Analysis of the GspB(BR structure revealed that it is comprised of three independently folded subdomains or modules: 1 an Ig-fold resembling a CnaA domain from prokaryotic pathogens; 2 a second Ig-fold resembling the binding region of mammalian Siglecs; 3 a subdomain of unique fold. The disaccharide was found to bind in a pocket within the Siglec subdomain, but at a site distinct from that observed in mammalian Siglecs. Confirming the biological relevance of this binding pocket, we produced three isogenic variants of S. gordonii, each containing a single point mutation of a residue lining this binding pocket. These variants have reduced binding to carbohydrates of GPIbα. Further examination of purified GspB(BR-R484E showed reduced binding to sialyl-T antigen while S. gordonii harboring this mutation did not efficiently bind platelets and showed a significant reduction in virulence, as measured by an animal model of endocarditis. Analysis of other SRR proteins revealed that the predicted binding regions of these adhesins also had a modular organization, with those known to bind carbohydrate receptors having modules homologous to the Siglec and Unique subdomains of GspB(BR. This suggests that the binding specificity of the SRR family of adhesins is determined by the type and organization of discrete modules within the binding domains, which may affect the tropism of organisms for different tissues.

  15. A Structural Model for Binding of the Serine-Rich Repeat Adhesin GspB to Host Carbohydrate Receptors

    Energy Technology Data Exchange (ETDEWEB)

    Pyburn, Tasia M.; Bensing, Barbara A.; Xiong, Yan Q.; Melancon, Bruce J.; Tomasiak, Thomas M.; Ward, Nicholas J.; Yankovskaya, Victoria; Oliver, Kevin M.; Cecchini, Gary; Sulikowski, Gary A.; Tyska, Matthew J.; Sullam, Paul M.; Iverson, T.M. (VA); (UCLA); (Vanderbilt); (UCSF)

    2014-10-02

    GspB is a serine-rich repeat (SRR) adhesin of Streptococcus gordonii that mediates binding of this organism to human platelets via its interaction with sialyl-T antigen on the receptor GPIb{alpha}. This interaction appears to be a major virulence determinant in the pathogenesis of infective endocarditis. To address the mechanism by which GspB recognizes its carbohydrate ligand, we determined the high-resolution x-ray crystal structure of the GspB binding region (GspB{sub BR}), both alone and in complex with a disaccharide precursor to sialyl-T antigen. Analysis of the GspB{sub BR} structure revealed that it is comprised of three independently folded subdomains or modules: (1) an Ig-fold resembling a CnaA domain from prokaryotic pathogens; (2) a second Ig-fold resembling the binding region of mammalian Siglecs; (3) a subdomain of unique fold. The disaccharide was found to bind in a pocket within the Siglec subdomain, but at a site distinct from that observed in mammalian Siglecs. Confirming the biological relevance of this binding pocket, we produced three isogenic variants of S. gordonii, each containing a single point mutation of a residue lining this binding pocket. These variants have reduced binding to carbohydrates of GPIb{alpha}. Further examination of purified GspB{sub BR}-R484E showed reduced binding to sialyl-T antigen while S. gordonii harboring this mutation did not efficiently bind platelets and showed a significant reduction in virulence, as measured by an animal model of endocarditis. Analysis of other SRR proteins revealed that the predicted binding regions of these adhesins also had a modular organization, with those known to bind carbohydrate receptors having modules homologous to the Siglec and Unique subdomains of GspBBR. This suggests that the binding specificity of the SRR family of adhesins is determined by the type and organization of discrete modules within the binding domains, which may affect the tropism of organisms for different tissues.

  16. Evaluation of drug-muscarinic receptor affinities using cell membrane chromatography and radioligand binding assay in guinea pig jejunum membrane

    Institute of Scientific and Technical Information of China (English)

    Bing-xiang YUAN; Jin HOU; Lang-chong HE; Guang-de YANG

    2005-01-01

    Aim: To study if cell membrane chromatography (CMC) could reflect drug-receptor interaction and evaluate the affinity and competitive binding to muscarinic acetylcholine receptor (mAChR). Methods: The cell membrane stationary phase(CMSP) was prepared by immobilizing guinea pig jejunum cell membrane on the surface of a silica carrier, and was used for the rapid on-line chromatographic evaluation of ligand binding affinities to mAChR. The affinity to mAChR was also evaluated from radioligand binding assays (RBA) using the same jejunum membrane preparation. Results: The capacity factor (k') profiles in guinea pig jejunum CMSP were: (-)QNB (15.4)>(+)QNB (11.5)>atropine (5.35)>pirenzepine(5.26)>4-DAMP (4.45)>AF-DX 116 (4.18)>pilocarpine (3.93)>acetylcholine(1.31). These results compared with the affinity rank orders obtained from radioligand binding assays indicated that there wasa positive correlation (r2=0.8525, P<0.0001) between both data sets. Conclusion: The CMC method can be used to evaluate drug-receptor affinities for drug candidates.

  17. The human IgA-Fc alpha receptor interaction and its blockade by streptococcal IgA-binding proteins.

    Science.gov (United States)

    Woof, J M

    2002-08-01

    IgA plays a key role in immune defence of the mucosal surfaces. IgA can trigger elimination mechanisms against pathogens through the interaction of its Fc region with Fc alpha Rs (receptors specific for the Fc region of IgA) present on neutrophils, macrophages, monocytes and eosinophils. The human Fc alpha R (CD89) shares homology with receptors specific for the Fc region of IgG (Fc gamma Rs) and IgE (Fc epsilon RIs), but is a more distantly related member of the receptor family. CD89 interacts with residues lying at the interface of the two domains of IgA Fc, a site quite distinct from the homologous regions at the top of IgG and IgE Fc recognized by Fc gamma R and Fc epsilon RI respectively. Certain pathogenic bacteria express surface proteins that bind to human IgA Fc. Experiments with domain-swap antibodies and mutant IgAs indicate that binding of three such proteins (Sir22 and Arp4 of Streptococcus pyogenes and beta protein of group B streptococci) depend on sites in the Fc interdomain region of IgA, the binding region also used by CD89. Further, we have found that the streptococcal proteins can inhibit interaction of IgA with CD89, and have thereby identified a mechanism by which a bacterial IgA-binding protein may modulate IgA effector function. PMID:12196121

  18. Love to win or hate to lose? Asymmetry of dopamine D2 receptor binding predicts sensitivity to reward vs. punishment

    Science.gov (United States)

    Tomer, Rachel; Slagter, Heleen A; Christian, Bradley T; Fox, Andrew S; King, Carlye R; Murali, Dhanabalan; Gluck, Mark A; Davidson, Richard J

    2014-01-01

    Humans show consistent differences in the extent to which their behavior reflects a bias towards appetitive approach-related behavior or avoidance of aversive stimuli (Elliot, 2008). We examined the hypothesis that in healthy subjects this motivational bias (assessed by self-report and by a probabilistic learning task that allows direct comparison of the relative sensitivity to reward and punishment) reflects lateralization of dopamine signaling. Using [F-18]fallypride to measure D2/D3 binding , we found that self-reported motivational bias was predicted by the asymmetry of frontal D2 binding. Similarly, striatal and frontal asymmetries in D2 dopamine receptor binding, rather than absolute binding levels, predicted individual differences in learning from reward vs. punishment. These results suggest that normal variation in asymmetry of dopamine signaling may, in part, underlie human personality and cognition. PMID:24345165

  19. Autoantibodies enhance agoni