WorldWideScience

Sample records for aberrant methylation impairs

  1. Osteoponin Promoter Controlled by DNA Methylation: Aberrant Methylation in Cloned Porcine Genome

    Directory of Open Access Journals (Sweden)

    Chih-Jie Shen

    2014-01-01

    Full Text Available Cloned animals usually exhibited many defects in physical characteristics or aberrant epigenetic reprogramming, especially in some important organ development. Osteoponin (OPN is an extracellular-matrix protein involved in heart and bone development and diseases. In this study, we investigated the correlation between OPN mRNA and its promoter methylation changes by the 5-aza-dc treatment in fibroblast cell and promoter assay. Aberrant methylation of porcine OPN was frequently found in different tissues of somatic nuclear transferred cloning pigs, and bisulfite sequence data suggested that the OPN promoter region −2615 to −2239 nucleotides (nt may be a crucial regulation DNA element. In pig ear fibroblast cell culture study, the demethylation of OPN promoter was found in dose-dependent response of 5-aza-dc treatment and followed the OPN mRNA reexpression. In cloned pig study, discrepant expression pattern was identified in several cloned pig tissues, especially in brain, heart, and ear. Promoter assay data revealed that four methylated CpG sites presenting in the −2615 to −2239 nt region cause significant downregulation of OPN promoter activity. These data suggested that methylation in the OPN promoter plays a crucial role in the regulation of OPN expression that we found in cloned pigs genome.

  2. Aberrant DNA Methylation in Chronic Myeloid Leukemia: Cell Fate Control, Prognosis, and Therapeutic Response.

    Science.gov (United States)

    Behzad, Masumeh Maleki; Shahrabi, Saeid; Jaseb, Kaveh; Bertacchini, Jessika; Ketabchi, Neda; Saki, Najmaldin

    2018-01-31

    Chronic myeloid leukemia (CML) is a hematopoietic stem cell malignancy characterized by the expression of the BCR-ABL1 fusion gene with different chimeric transcripts. Despite the crucial impact of constitutively active tyrosine kinase in CML pathogenesis, aberrant DNA methylation of certain genes plays an important role in disease progression and the development of drug resistance. This article reviews recent findings relevant to the effect of DNA methylation pattern of regulatory genes on various cellular activities such as cell proliferation and survival, as well as cell-signaling molecules in CML. These data might contribute to defining the role of aberrant DNA methylation in disease initiation and progression. However, further studies are needed on the validation of specific aberrant methylation markers regarding the prognosis and prediction of response among the CML patients.

  3. Deletion and aberrant CpG island methylation of Caspase 8 gene in medulloblastoma.

    Science.gov (United States)

    Gonzalez-Gomez, Pilar; Bello, M Josefa; Inda, M Mar; Alonso, M Eva; Arjona, Dolores; Amiñoso, Cinthia; Lopez-Marin, Isabel; de Campos, Jose M; Sarasa, Jose L; Castresana, Javier S; Rey, Juan A

    2004-09-01

    Aberrant methylation of promoter CpG islands in human genes is an alternative genetic inactivation mechanism that contributes to the development of human tumors. Nevertheless, few studies have analyzed methylation in medulloblastomas. We determined the frequency of aberrant CpG island methylation for Caspase 8 (CASP8) in a group of 24 medulloblastomas arising in 8 adult and 16 pediatric patients. Complete methylation of CASP8 was found in 15 tumors (62%) and one case displayed hemimethylation. Three samples amplified neither of the two primer sets for methylated or unmethylated alleles, suggesting that genomic deletion occurred in the 5' flanking region of CASP8. Our findings suggest that methylation commonly contributes to CASP8 silencing in medulloblastomas and that homozygous deletion or severe sequence changes involving the promoter region may be another mechanism leading to CASP8 inactivation in this neoplasm.

  4. Aberrantly methylated DNA as a biomarker in breast cancer.

    Science.gov (United States)

    Kristiansen, Søren; Jørgensen, Lars M; Guldberg, Per; Sölétormos, György

    2013-01-01

    Aberrant DNA hypermethylation at gene promoters is a frequent event in human breast cancer. Recent genome-wide studies have identified hundreds of genes that exhibit differential methylation between breast cancer cells and normal breast tissue. Due to the tumor-specific nature of DNA hypermethylation events, their use as tumor biomarkers is usually not hampered by analytical signals from normal cells, which is a general problem for existing protein tumor markers used for clinical assessment of breast cancer. There is accumulating evidence that DNA-methylation changes in breast cancer patients occur early during tumorigenesis. This may open up for effective screening, and analysis of blood or nipple aspirate may later help in diagnosing breast cancer. As a more detailed molecular characterization of different types of breast cancer becomes available, the ability to divide patients into subgroups based on DNA biomarkers may improve prognosis. Serial monitoring of DNA-methylation markers in blood during treatment may be useful, particularly when the cancer burden is below the detection level for standard imaging techniques. Overall, aberrant DNA methylation has a great potential as a versatile biomarker tool for screening, diagnosis, prognosis and monitoring of breast cancer. Standardization of methods and biomarker panels will be required to fully exploit this clinical potential.

  5. Aberrant DNA Methylation in Human iPSCs Associates with MYC-Binding Motifs in a Clone-Specific Manner Independent of Genetics.

    Science.gov (United States)

    Panopoulos, Athanasia D; Smith, Erin N; Arias, Angelo D; Shepard, Peter J; Hishida, Yuriko; Modesto, Veronica; Diffenderfer, Kenneth E; Conner, Clay; Biggs, William; Sandoval, Efren; D'Antonio-Chronowska, Agnieszka; Berggren, W Travis; Izpisua Belmonte, Juan Carlos; Frazer, Kelly A

    2017-04-06

    Induced pluripotent stem cells (iPSCs) show variable methylation patterns between lines, some of which reflect aberrant differences relative to embryonic stem cells (ESCs). To examine whether this aberrant methylation results from genetic variation or non-genetic mechanisms, we generated human iPSCs from monozygotic twins to investigate how genetic background, clone, and passage number contribute. We found that aberrantly methylated CpGs are enriched in regulatory regions associated with MYC protein motifs and affect gene expression. We classified differentially methylated CpGs as being associated with genetic and/or non-genetic factors (clone and passage), and we found that aberrant methylation preferentially occurs at CpGs associated with clone-specific effects. We further found that clone-specific effects play a strong role in recurrent aberrant methylation at specific CpG sites across different studies. Our results argue that a non-genetic biological mechanism underlies aberrant methylation in iPSCs and that it is likely based on a probabilistic process involving MYC that takes place during or shortly after reprogramming. Published by Elsevier Inc.

  6. Aberrantly methylated genes in human papillary thyroid cancer and their association with BRAF/RAS mutation.

    Directory of Open Access Journals (Sweden)

    Yasuko eKikuchi

    2013-12-01

    Full Text Available Cancer arises through accumulation of epigenetic and genetic alteration. Aberrant promoter methylation is a common epigenetic mechanism of gene silencing in cancer cells. We here performed genome-wide analysis of DNA methylation of promoter regions by Infinium HumanMethylation27 BeadChip, using 14 clinical papillary thyroid cancer samples and 10 normal thyroid samples. Among the 14 papillary cancer cases, 11 showed frequent aberrant methylation, but the other three cases showed no aberrant methylation at all. Distribution of the hypermethylation among cancer samples was non-random, which implied existence of a subset of preferentially methylated papillary thyroid cancer. Among 25 frequently methylated genes, methylation status of six genes (HIST1H3J, POU4F2, SHOX2, PHKG2, TLX3, HOXA7 was validated quantitatively by pyrosequencing. Epigenetic silencing of these genes in methylated papillary thyroid cancer cell lines was confirmed by gene re-expression following treatment with 5-aza-2'-deoxycytidine and trichostatin A, and detected by real-time RT-PCR. Methylation of these six genes was validated by analysis of additional 20 papillary thyroid cancer and 10 normal samples. Among the 34 cancer samples in total, 26 cancer samples with preferential methylation were significantly associated with mutation of BRAF/RAS oncogene (P=0.04, Fisher’s exact test. Thus we identified new genes with frequent epigenetic hypermethylation in papillary thyroid cancer, two subsets of either preferentially methylated or hardly methylated papillary thyroid cancer, with a concomitant occurrence of oncogene mutation and gene methylation. These hypermethylated genes may constitute potential biomarkers for papillary thyroid cancer.

  7. Aberrant methylation of cell-free circulating DNA in plasma predicts poor outcome in diffuse large B cell lymphoma

    DEFF Research Database (Denmark)

    Sommer Kristensen, Lasse; Hansen, Jakob Werner; Kristensen, Søren Sommer

    2016-01-01

    BACKGROUND: The prognostic value of aberrant DNA methylation of cell-free circulating DNA in plasma has not previously been evaluated in diffuse large B cell lymphoma (DLBCL). The aim of this study was to investigate if aberrant promoter DNA methylation can be detected in plasma from DLBCL patients...

  8. Aberrant DNA methylation of cancer-related genes in giant breast fibroadenoma: a case report

    Directory of Open Access Journals (Sweden)

    Orozco Javier I

    2011-10-01

    Full Text Available Abstract Introduction Giant fibroadenoma is an uncommon variant of benign breast lesions. Aberrant methylation of CpG islands in promoter regions is known to be involved in the silencing of genes (for example, tumor-suppressor genes and appears to be an early event in the etiology of breast carcinogenesis. Only hypermethylation of p16INK4a has been reported in non-giant breast fibroadenoma. In this particular case, there are no previously published data on epigenetic alterations in giant fibroadenomas. Our previous results, based on the analysis of 49 cancer-related CpG islands have confirmed that the aberrant methylation is specific to malignant breast tumors and that it is completely absent in normal breast tissue and breast fibroadenomas. Case presentation A 13-year-old Hispanic girl was referred after she had noted a progressive development of a mass in her left breast. On physical examination, a 10 × 10 cm lump was detected and axillary lymph nodes were not enlarged. After surgical removal the lump was diagnosed as a giant fibroadenoma. Because of the high growth rate of this benign tumor, we decided to analyze the methylation status of 49 CpG islands related to cell growth control. We have identified the methylation of five cancer-related CpG islands in the giant fibroadenoma tissue: ESR1, MGMT, WT-1, BRCA2 and CD44. Conclusion In this case report we show for the first time the methylation analysis of a giant fibroadenoma. The detection of methylation of these five cancer-related regions indicates substantial epigenomic differences with non-giant fibroadenomas. Epigenetic alterations could explain the higher growth rate of this tumor. Our data contribute to the growing knowledge of aberrant methylation in breast diseases. In this particular case, there exist no previous data regarding the role of methylation in giant fibroadenomas, considered by definition as a benign breast lesion.

  9. Impairment of sperm DNA methylation in male infertility: a meta-analytic study.

    Science.gov (United States)

    Santi, D; De Vincentis, S; Magnani, E; Spaggiari, G

    2017-07-01

    Considering the widespread use of assisted reproductive techniques (ART), DNA methylation of specific genes involved in spermatogenesis achieves increasingly clinical relevance, representing a possible explanation of increased incidence of syndromes related to genomic imprinting in medically assisted pregnancies. Several trials suggested a relationship between male sub-fertility and sperm DNA methylation, although its weight on seminal parameters alteration is still a matter of debate. To evaluate whether aberrant sperm DNA methylation of imprinted genes is associated with impaired sperm parameters. Meta-analysis of controlled clinical trials evaluating imprinted genes sperm DNA methylation comparing men with idiopathic infertility to fertile controls. Twenty-four studies were included, allowing a meta-analytic evaluation for H19, MEST, SNRPN, and LINE-1. When a high heterogeneity of the results was demonstrated, the random effect model was used. H19 methylation levels resulted significantly lower in 879 infertile compared with 562 fertile men (7.53%, 95% CI: 5.14-9.93%, p male infertility is associated with altered sperm methylation at H19, MEST, and SNRPN. Although its role in infertility remains unclear, sperm DNA methylation could be associated with the epigenetic risk in ART. In this setting, before proposing this analysis in clinical practice, an accurate identification of the most representative genes and a cost-effectiveness evaluation should be assessed in ad hoc prospective studies. © 2017 American Society of Andrology and European Academy of Andrology.

  10. Identification of Differentially Expressed Genes Induced by Aberrant Methylation in Oral Squamous Cell Carcinomas Using Integrated Bioinformatic Analysis

    Directory of Open Access Journals (Sweden)

    Xiaoqi Zhang

    2018-06-01

    Full Text Available Oral squamous cell carcinoma (OSCC is a malignant disease. Methylation plays a key role in the etiology and pathogenesis of OSCC. The goal of this study was to identify aberrantly methylated differentially expressed genes (DEGs in OSCCs, and to explore the underlying mechanisms of tumorigenesis by using integrated bioinformatic analysis. Gene expression profiles (GSE30784 and GSE38532 were analyzed using the R software to obtain aberrantly methylated DEGs. Functional enrichment analysis of screened genes was performed using the DAVID software. Protein–protein interaction (PPI networks were constructed using the STRING database. The cBioPortal software was used to exhibit the alterations of genes. Lastly, we validated the results with the Cancer Genome Atlas (TCGA data. Twenty-eight upregulated hypomethylated genes and 24 downregulated hypermethylated genes were identified. These genes were enriched in the biological process of regulation in immune response, and were mainly involved in the PI3K-AKT and EMT pathways. Additionally, three upregulated hypomethylated oncogenes and four downregulated hypermethylated tumor suppressor genes (TSGs were identified. In conclusion, our study indicated possible aberrantly methylated DEGs and pathways in OSCCs, which could improve the understanding of the underlying molecular mechanisms. Aberrantly methylated oncogenes and TSGs may also serve as biomarkers and therapeutic targets for the precise diagnosis and treatment of OSCCs in the future.

  11. Aberrant TET1 Methylation Closely Associated with CpG Island Methylator Phenotype in Colorectal Cancer.

    Science.gov (United States)

    Ichimura, Norihisa; Shinjo, Keiko; An, Byonggu; Shimizu, Yasuhiro; Yamao, Kenji; Ohka, Fumiharu; Katsushima, Keisuke; Hatanaka, Akira; Tojo, Masayuki; Yamamoto, Eiichiro; Suzuki, Hiromu; Ueda, Minoru; Kondo, Yutaka

    2015-08-01

    Inactivation of methylcytosine dioxygenase, ten-eleven translocation (TET) is known to be associated with aberrant DNA methylation in cancers. Tumors with a CpG island methylator phenotype (CIMP), a distinct subgroup with extensive DNA methylation, show characteristic features in the case of colorectal cancer. The relationship between TET inactivation and CIMP in colorectal cancers is not well understood. The expression level of TET family genes was compared between CIMP-positive (CIMP-P) and CIMP-negative (CIMP-N) colorectal cancers. Furthermore, DNA methylation profiling, including assessment of the TET1 gene, was assessed in colorectal cancers, as well as colon polyps. The TET1 was silenced by DNA methylation in a subset of colorectal cancers as well as cell lines, expression of which was reactivated by demethylating agent. TET1 methylation was more frequent in CIMP-P (23/55, 42%) than CIMP-N (2/113, 2%, P CIMP-P, 16/40, 40%; CIMP-N, 2/24, 8%; P = 0.002), suggesting that TET1 methylation is an early event in CIMP tumorigenesis. TET1 methylation was significantly associated with BRAF mutation but not with hMLH1 methylation in the CIMP-P colorectal cancers. Colorectal cancers with TET1 methylation have a significantly greater number of DNA methylated genes and less pathological metastasis compared to those without TET1 methylation (P = 0.007 and 0.045, respectively). Our data suggest that TET1 methylation may contribute to the establishment of a unique pathway in respect to CIMP-mediated tumorigenesis, which may be incidental to hMLH1 methylation. In addition, our findings provide evidence that TET1 methylation may be a good biomarker for the prediction of metastasis in colorectal cancer. ©2015 American Association for Cancer Research.

  12. Comparative methylome analysis in solid tumors reveals aberrant methylation at chromosome 6p in nasopharyngeal carcinoma

    International Nuclear Information System (INIS)

    Dai, Wei; Cheung, Arthur Kwok Leung; Ko, Josephine Mun Yee; Cheng, Yue; Zheng, Hong; Ngan, Roger Kai Cheong; Ng, Wai Tong; Lee, Anne Wing Mui; Yau, Chun Chung; Lee, Victor Ho Fu; Lung, Maria Li

    2015-01-01

    Altered patterns of DNA methylation are key features of cancer. Nasopharyngeal carcinoma (NPC) has the highest incidence in Southern China. Aberrant methylation at the promoter region of tumor suppressors is frequently reported in NPC; however, genome-wide methylation changes have not been comprehensively investigated. Therefore, we systematically analyzed methylome data in 25 primary NPC tumors and nontumor counterparts using a high-throughput approach with the Illumina HumanMethylation450 BeadChip. Comparatively, we examined the methylome data of 11 types of solid tumors collected by The Cancer Genome Atlas (TCGA). In NPC, the hypermethylation pattern was more dominant than hypomethylation and the majority of de novo methylated loci were within or close to CpG islands in tumors. The comparative methylome analysis reveals hypermethylation at chromosome 6p21.3 frequently occurred in NPC (false discovery rate; FDR=1.33 × 10 −9 ), but was less obvious in other types of solid tumors except for prostate and Epstein–Barr virus (EBV)-positive gastric cancer (FDR<10 −3 ). Bisulfite pyrosequencing results further confirmed the aberrant methylation at 6p in an additional patient cohort. Evident enrichment of the repressive mark H3K27me3 and active mark H3K4me3 derived from human embryonic stem cells were found at these regions, indicating both DNA methylation and histone modification function together, leading to epigenetic deregulation in NPC. Our study highlights the importance of epigenetic deregulation in NPC. Polycomb Complex 2 (PRC2), responsible for H3K27 trimethylation, is a promising therapeutic target. A key genomic region on 6p with aberrant methylation was identified. This region contains several important genes having potential use as biomarkers for NPC detection

  13. Aberrant DNA methylation in 5'regions of DNA methyltransferase genes in aborted bovine clones

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    High rate of abortion and developmental abnormalities is thought to be closely associated with inefficient epigenetic reprogramming of the transplanted nuclei during bovine cloning.It is known that one of the important mechanisms for epigenetic reprogramming is DNA methylation.DNA methylation is established and maintained by DNA methyltransferases(DNMTs),therefore,it is postulated that the inefficient epigenetic reprogramming of transplanted nuclei may be due to abnormal expression of DNMTs.Since DNA methylation can strongly inhibit gene expression,aberrant DNA methylation of DNMT genes may disturb gene expression.But presently,it is not clear whether the methylation abnormality of DNMT genes is related to developmental failure of somatic cell nuclear transfer embryos.In our study,we analyzed methylation patterns of the 5' regions of four DNMT genes including Dnmt3a,Dnmt3b,Dnmtl and Dnmt2 in four aborted bovine clones.Using bisulfite sequencing method,we found that 3 out of 4 aborted bovine clones(AF1,AF2 and AF3)showed either hypermethylation or hypomethylation in the 5' regions of Dnmt3a and Dnmt3b.indicating that Dnmt3a and Dnmt3b genes are not properly reprogrammed.However,the individual AF4 exhibited similar methylation level and pattern to age-matched in vitro fertilized (IVF)fetuses.Besides,we found that tle 5'regions of Dnmtl and Dnmt2 were nearly completely unmethylated in all normal adults.IVF fetuses,sperm and aborted clones.Together,our results suggest that the aberrant methylation of Dnmt3a and Dnmt3b 5' regions is probably associated with the high abortion of bovine clones.

  14. Aberrant DNA methylation of matrix remodeling and cell adhesion related genes in pterygium.

    Directory of Open Access Journals (Sweden)

    Andri K Riau

    Full Text Available BACKGROUND: Pterygium is a common ocular surface disease characterized by abnormal epithelial and fibrovascular proliferation, invasion, and matrix remodeling. This lesion, which migrates from the periphery to the center of the cornea, impairs vision and causes considerable irritation. The mechanism of pterygium formation remains ambiguous, and current treatment is solely surgical excision, with a significant risk of recurrence after surgery. Here, we investigate the role of methylation in DNA sequences that regulate matrix remodeling and cell adhesion in pterygium formation. METHODOLOGY/PRINCIPAL FINDINGS: Pterygium and uninvolved conjunctiva samples were obtained from the same eye of patients undergoing surgery. The EpiTYPER Sequenom technology, based on differential base cleavage and bisulfite sequencing was used to evaluate the extent of methylation of 29 matrix and adhesion related genes. In pterygium, three CpG sites at -268, -32 and -29 bp upstream of transglutaminase 2 (TGM-2 transcription initiation were significantly hypermethylated (p<0.05, whereas hypomethylation was detected at CpGs +484 and +602 bp downstream of matrix metalloproteinase 2 (MMP-2 transcription start site, and -809, -762, -631 and -629 bp upstream of the CD24 transcription start site. RT-qPCR, western blot and immunofluorescent staining showed that transcript and protein expression were reduced for TGM-2 and increased for MMP-2 and CD24. Inhibition of methylation in cultured conjunctival epithelial cells increased these transcripts. CONCLUSIONS/SIGNIFICANCE: We found regions of aberrant DNA methylation which were consistent with alteration of TGM-2, MMP-2, and CD24 transcript and protein expression, and that inhibition of methylation in cultured cells can increase the expression of these genes. Since these genes were related to cell adhesion and matrix remodeling, dysregulation may lead to fibroblastic and neovascular changes and pterygium formation. These results

  15. Identification of aberrant gene expression associated with aberrant promoter methylation in primordial germ cells between E13 and E16 rat F3 generation vinclozolin lineage.

    Science.gov (United States)

    Taguchi, Y-h

    2015-01-01

    Transgenerational epigenetics (TGE) are currently considered important in disease, but the mechanisms involved are not yet fully understood. TGE abnormalities expected to cause disease are likely to be initiated during development and to be mediated by aberrant gene expression associated with aberrant promoter methylation that is heritable between generations. However, because methylation is removed and then re-established during development, it is not easy to identify promoter methylation abnormalities by comparing normal lineages with those expected to exhibit TGE abnormalities. This study applied the recently proposed principal component analysis (PCA)-based unsupervised feature extraction to previously reported and publically available gene expression/promoter methylation profiles of rat primordial germ cells, between E13 and E16 of the F3 generation vinclozolin lineage that are expected to exhibit TGE abnormalities, to identify multiple genes that exhibited aberrant gene expression/promoter methylation during development. The biological feasibility of the identified genes were tested via enrichment analyses of various biological concepts including pathway analysis, gene ontology terms and protein-protein interactions. All validations suggested superiority of the proposed method over three conventional and popular supervised methods that employed t test, limma and significance analysis of microarrays, respectively. The identified genes were globally related to tumors, the prostate, kidney, testis and the immune system and were previously reported to be related to various diseases caused by TGE. Among the genes reported by PCA-based unsupervised feature extraction, we propose that chemokine signaling pathways and leucine rich repeat proteins are key factors that initiate transgenerational epigenetic-mediated diseases, because multiple genes included in these two categories were identified in this study.

  16. Supra-physiological folic acid concentrations induce aberrant DNA methylation in normal human cells in vitro.

    Science.gov (United States)

    Charles, Michelle A; Johnson, Ian T; Belshaw, Nigel J

    2012-07-01

    The micronutrients folate and selenium may modulate DNA methylation patterns by affecting intracellular levels of the methyl donor S-adenosylmethionine (SAM) and/or the product of methylation reactions S-adenosylhomocysteine (SAH). WI-38 fibroblasts and FHC colon epithelial cells were cultured in the presence of two forms of folate or four forms of selenium at physiologically-relevant doses, and their effects on LINE-1 methylation, gene-specific CpG island (CGI) methylation and intracellular SAM:SAH were determined. At physiologically-relevant doses the forms of folate or selenium had no effect on LINE-1 or CGI methylation, nor on intracellular SAM:SAH. However the commercial cell culture media used for the selenium studies, containing supra-physiological concentrations of folic acid, induced LINE-1 hypomethylation, CGI hypermethylation and decreased intracellular SAM:SAH in both cell lines. We conclude that the exposure of normal human cells to supra-physiological folic acid concentrations present in commercial cell culture media perturbs the intracellular SAM:SAH ratio and induces aberrant DNA methylation.

  17. DNA methylation in Cosmc promoter region and aberrantly glycosylated IgA1 associated with pediatric IgA nephropathy.

    Directory of Open Access Journals (Sweden)

    Qiang Sun

    Full Text Available IgA nephropathy (IgAN is one of the most common glomerular diseases leading to end-stage renal failure. Elevation of aberrantly glycosylated IgA1 is a key feature of it. The expression of the specific molecular chaperone of core1ß1, 3galactosyl transferase (Cosmc is known to be reduced in IgAN. We aimed to investigate whether the methylation of CpG islands of Cosmc gene promoter region could act as a possible mechanism responsible for down-regulation of Cosmc and related higher secretion of aberrantly glycosylated IgA1in lymphocytes from children with IgA nephropathy. Three groups were included: IgAN children (n = 26, other renal diseases (n = 11 and healthy children (n = 13. B-lymphocytes were isolated and cultured, treated or not with IL-4 or 5-Aza-2'-deoxycytidine (AZA. The levels of DNA methylation of Cosmc promotor region were not significantly different between the lymphocytes of the three children populations (P = 0.113, but there were significant differences between IgAN lymphocytes and lymphocytes of the other two children populations after IL-4 (P<0.0001 or AZA (P<0.0001. Cosmc mRNA expression was low in IgAN lymphocytes compared to the other two groups (P<0.0001. The level of aberrantly glycosylated IgA1 was markedly higher in IgAN group compared to the other groups (P<0.0001. After treatment with IL-4, the levels of Cosmc DNA methylation and aberrantly glycosylated IgA1 in IgAN lymphocytes were remarkably higher than the other two groups (P<0.0001 with more markedly decreased Cosmc mRNA content (P<0.0001. After treatment with AZA, the levels in IgAN lymphocytes were decreased, but was still remarkably higher than the other two groups (P<0.0001, while Cosmc mRNA content in IgAN lymphocytes were more markedly increased than the other two groups (P<0.0001. The alteration of DNA methylation by IL-4 or AZA specifically correlates in IgAN lymphocytes with alterations in Cosmc mRNA expression and with the level of aberrantly glycosylated

  18. Aberrant gene promoter methylation associated with sporadic multiple colorectal cancer.

    Directory of Open Access Journals (Sweden)

    Victoria Gonzalo

    Full Text Available BACKGROUND: Colorectal cancer (CRC multiplicity has been mainly related to polyposis and non-polyposis hereditary syndromes. In sporadic CRC, aberrant gene promoter methylation has been shown to play a key role in carcinogenesis, although little is known about its involvement in multiplicity. To assess the effect of methylation in tumor multiplicity in sporadic CRC, hypermethylation of key tumor suppressor genes was evaluated in patients with both multiple and solitary tumors, as a proof-of-concept of an underlying epigenetic defect. METHODOLOGY/PRINCIPAL FINDINGS: We examined a total of 47 synchronous/metachronous primary CRC from 41 patients, and 41 gender, age (5-year intervals and tumor location-paired patients with solitary tumors. Exclusion criteria were polyposis syndromes, Lynch syndrome and inflammatory bowel disease. DNA methylation at the promoter region of the MGMT, CDKN2A, SFRP1, TMEFF2, HS3ST2 (3OST2, RASSF1A and GATA4 genes was evaluated by quantitative methylation specific PCR in both tumor and corresponding normal appearing colorectal mucosa samples. Overall, patients with multiple lesions exhibited a higher degree of methylation in tumor samples than those with solitary tumors regarding all evaluated genes. After adjusting for age and gender, binomial logistic regression analysis identified methylation of MGMT2 (OR, 1.48; 95% CI, 1.10 to 1.97; p = 0.008 and RASSF1A (OR, 2.04; 95% CI, 1.01 to 4.13; p = 0.047 as variables independently associated with tumor multiplicity, being the risk related to methylation of any of these two genes 4.57 (95% CI, 1.53 to 13.61; p = 0.006. Moreover, in six patients in whom both tumors were available, we found a correlation in the methylation levels of MGMT2 (r = 0.64, p = 0.17, SFRP1 (r = 0.83, 0.06, HPP1 (r = 0.64, p = 0.17, 3OST2 (r = 0.83, p = 0.06 and GATA4 (r = 0.6, p = 0.24. Methylation in normal appearing colorectal mucosa from patients with multiple and solitary CRC showed no relevant

  19. Aberrant Methylation of Preproenkephalin and p16 Genes in Pancreatic Intraepithelial Neoplasia and Pancreatic Ductal Adenocarcinoma

    OpenAIRE

    Fukushima, Noriyoshi; Sato, Norihiro; Ueki, Takashi; Rosty, Christophe; Walter, Kimberly M.; Wilentz, Robb E.; Yeo, Charles J.; Hruban, Ralph H.; Goggins, Michael

    2002-01-01

    Pancreatic intraductal neoplasia (PanIN) is thought to be the precursor to infiltrating pancreatic ductal adenocarcinoma. We have previously shown that the preproenkephalin (ppENK) and p16 genes are aberrantly methylated in pancreatic adenocarcinoma. In this study we define the methylation status of the ppENK and p16 genes in various grades of PanINs. One hundred seventy-four samples (28 nonneoplastic pancreatic epithelia, 7 reactive epithelia, 29 PanIN-1A, 48 PanIN-1B, 27 PanIN-2, 14 PanIN-3...

  20. ABERRANT METHYLATION OF THE PROMOTER OF APC, CDH13 AND MGMT GENES IN COLORECTAL CANCER PATIENTS

    Directory of Open Access Journals (Sweden)

    O. I. Kit

    2016-01-01

    Full Text Available Aberrant methylation of gene promoter regions is the main epigenetic change characterizing colorectal cancer. Methylation levels of 42 CpG-sites of promoter regions of the MGMT, APC and CDH13 genes in colorectal cancer were studied in comparison with methylation levels of the adjacent normal tissue in 25 patients. Pyrosequencing showed an increase in methylation levels of promoter regions of the MGMT, APC and CDH13 genes in tumor samples by 3 to 5 times. These tumor samples were screened for activating SNP-mutations in the KRAS (40 %, NRAS (0 % and BRAF (0 % oncogenes. SNP-mutations in the KRAS gene were accompanied by hypermethylation of one or more promoters of the studied genes. Association of this epigenetic index with tumor metastasis was proved. The data on an increase in methylation of the promoter regions of oncosupressor genes can be used as sensitive prognostic markers of progression and metastasis of colorectal cancer.

  1. ∆DNMT3B4-del Contributes to Aberrant DNA Methylation Patterns in Lung Tumorigenesis

    Directory of Open Access Journals (Sweden)

    Mark Z. Ma

    2015-10-01

    Full Text Available Aberrant DNA methylation is a hallmark of cancer but mechanisms contributing to the abnormality remain elusive. We have previously shown that ∆DNMT3B is the predominantly expressed form of DNMT3B. In this study, we found that most of the lung cancer cell lines tested predominantly expressed DNMT3B isoforms without exons 21, 22 or both 21 and 22 (a region corresponding to the enzymatic domain of DNMT3B termed DNMT3B/∆DNMT3B-del. In normal bronchial epithelial cells, DNMT3B/ΔDNMT3B and DNMT3B/∆DNMT3B-del displayed equal levels of expression. In contrast, in patients with non-small cell lung cancer NSCLC, 111 (93% of the 119 tumors predominantly expressed DNMT3B/ΔDNMT3B-del, including 47 (39% tumors with no detectable DNMT3B/∆DNMT3B. Using a transgenic mouse model, we further demonstrated the biological impact of ∆DNMT3B4-del, the ∆DNMT3B-del isoform most abundantly expressed in NSCLC, in global DNA methylation patterns and lung tumorigenesis. Expression of ∆DNMT3B4-del in the mouse lungs resulted in an increased global DNA hypomethylation, focal DNA hypermethylation, epithelial hyperplastia and tumor formation when challenged with a tobacco carcinogen. Our results demonstrate ∆DNMT3B4-del as a critical factor in developing aberrant DNA methylation patterns during lung tumorigenesis and suggest that ∆DNMT3B4-del may be a target for lung cancer prevention.

  2. Aberrant DNA methylation of ESR1 and p14ARF genes could be useful as prognostic indicators in osteosarcoma

    Directory of Open Access Journals (Sweden)

    Sonaglio V

    2013-06-01

    Full Text Available Viviane Sonaglio,1 Ana C de Carvalho,2 Silvia R C Toledo,3,4 Carolina Salinas-Souza,3,4 André L Carvalho,5 Antonio S Petrilli,3 Beatriz de Camargo,6 André L Vettore21Pediatrics Department, A C Camargo Hospital, São Paulo, Brazil; 2Biological Science Department, Federal University of São Paulo, Diadema, Brazil; 3Department of Pediatrics, Pediatric Oncology Institute, GRAACC/Federal University of São Paulo, São Paulo, Brazil; 4Department of Morphology and Genetics, Federal University of São Paulo, São Paulo, Brazil; 5Department of Head and Neck Surgery, PIO XII Foundation, Barretos Cancer Hospital, Barretos, São Paulo, Brazil; 6Research Program Pediatric Oncology Program, CPNq, Instituto Nacional do Cancer, Rio de Janeiro, BrazilAbstract: Osteosarcoma (OS is the eighth most common form of childhood and adolescence cancer. Approximately 10%–20% of patients present metastatic disease at diagnosis and the 5-year overall survival remains around 70% for nonmetastatic patients and around 30% for metastatic patients. Metastatic disease at diagnosis and the necrosis grade induced by preoperative treatment are the only well-established prognostic factors for osteosarcoma. The DNA aberrant methylation is a frequent epigenetic alteration in humans and has been described as a molecular marker in different tumor types. This study evaluated the DNA aberrant methylation status of 18 genes in 34 OS samples without previous chemotherapy treatment and in four normal bone specimens and compared the methylation profile with clinicopathological characteristics of the patients. We were able to define a three-gene panel (AIM1, p14ARF, and ESR1 in which methylation was correlated with OS cases. The hypermethylation of p14ARF showed a significant association with the absence of metastases at diagnoses, while ESR1 hypermethylation was marginally associated with worse overall survival. This study demonstrated that aberrant promoter methylation is a common event

  3. Identification of the CIMP-like subtype and aberrant methylation of members of the chromosomal segregation and spindle assembly pathways in esophageal adenocarcinoma.

    Science.gov (United States)

    Krause, Lutz; Nones, Katia; Loffler, Kelly A; Nancarrow, Derek; Oey, Harald; Tang, Yue Hang; Wayte, Nicola J; Patch, Ann Marie; Patel, Kalpana; Brosda, Sandra; Manning, Suzanne; Lampe, Guy; Clouston, Andrew; Thomas, Janine; Stoye, Jens; Hussey, Damian J; Watson, David I; Lord, Reginald V; Phillips, Wayne A; Gotley, David; Smithers, B Mark; Whiteman, David C; Hayward, Nicholas K; Grimmond, Sean M; Waddell, Nicola; Barbour, Andrew P

    2016-04-01

    The incidence of esophageal adenocarcinoma (EAC) has risen significantly over recent decades. Although survival has improved, cure rates remain poor, with <20% of patients surviving 5 years. This is the first study to explore methylome, transcriptome and ENCODE data to characterize the role of methylation in EAC. We investigate the genome-wide methylation profile of 250 samples including 125 EAC, 19 Barrett's esophagus (BE), 85 squamous esophagus and 21 normal stomach. Transcriptome data of 70 samples (48 EAC, 4 BE and 18 squamous esophagus) were used to identify changes in methylation associated with gene expression. BE and EAC showed similar methylation profiles, which differed from squamous tissue. Hypermethylated sites in EAC and BE were mainly located in CpG-rich promoters. A total of 18575 CpG sites associated with 5538 genes were differentially methylated, 63% of these genes showed significant correlation between methylation and mRNA expression levels. Pathways involved in tumorigenesis including cell adhesion, TGF and WNT signaling showed enrichment for genes aberrantly methylated. Genes involved in chromosomal segregation and spindle formation were aberrantly methylated. Given the recent evidence that chromothripsis may be a driver mechanism in EAC, the role of epigenetic perturbation of these pathways should be further investigated. The methylation profiles revealed two EAC subtypes, one associated with widespread CpG island hypermethylation overlapping H3K27me3 marks and binding sites of the Polycomb proteins. These subtypes were supported by an independent set of 89 esophageal cancer samples. The most hypermethylated tumors showed worse patient survival. © The Author 2016. Published by Oxford University Press.

  4. Aberrant methylation of Polo-like kinase CpG islands in Plk4 heterozygous mice

    International Nuclear Information System (INIS)

    Ward, Alejandra; Morettin, Alan; Shum, David; Hudson, John W

    2011-01-01

    Hepatocellular carcinoma (HCC), one of the most common cancers world-wide occurs twice as often in men compared to women. Predisposing conditions such as alcoholism, chronic viral hepatitis, aflatoxin B1 ingestion, and cirrhosis all contribute to the development of HCC. We used a combination of methylation specific PCR and bisulfite sequencing, qReal-Time PCR (qPCR), and Western blot analysis to examine epigenetic changes for the Polo-like kinases (Plks) during the development of hepatocellular carcinoma (HCC) in Plk4 heterozygous mice and murine embryonic fibroblasts (MEFs). Here we report that the promoter methylation of Plk4 CpG islands increases with age, was more prevalent in males and that Plk4 epigenetic modification and subsequent downregulation of expression was associated with the development of HCC in Plk4 mutant mice. Interestingly, the opposite occurs with another Plk family member, Plk1 which was typically hypermethylated in normal liver tissue but became hypomethylated and upregulated in liver tumours. Furthermore, upon alcohol exposure murine embryonic fibroblasts exhibited increased Plk4 hypermethylation and downregulation along with increased centrosome numbers and multinucleation. These results suggest that aberrant Plk methylation is correlated with the development of HCC in mice

  5. Methylated genes as new cancer biomarkers

    DEFF Research Database (Denmark)

    Brunner, Nils; Duffy, M.J; Napieralski, R.

    2009-01-01

    Aberrant hypermethylation of promoter regions in specific genes is a key event in the formation and progression of cancer. In at least some situations, these aberrant alterations occur early in the formation of malignancy and appear to be tumour specific. Multiple reports have suggested that meas......Aberrant hypermethylation of promoter regions in specific genes is a key event in the formation and progression of cancer. In at least some situations, these aberrant alterations occur early in the formation of malignancy and appear to be tumour specific. Multiple reports have suggested...... that measurement of the methylation status of the promoter regions of specific genes can aid early detection of cancer, determine prognosis and predict therapy responses. Promising DNA methylation biomarkers include the use of methylated GSTP1 for aiding the early diagnosis of prostate cancer, methylated PITX2...... for predicting outcome in lymph node-negative breast cancer patients and methylated MGMT in predicting benefit from alkylating agents in patients with glioblastomas. However, prior to clinical utilisation, these findings require validation in prospective clinical studies. Furthermore, assays for measuring gene...

  6. Aberrant DNA methylation of WNT pathway genes in the development and progression of CIMP-negative colorectal cancer.

    Science.gov (United States)

    Galamb, Orsolya; Kalmár, Alexandra; Péterfia, Bálint; Csabai, István; Bodor, András; Ribli, Dezső; Krenács, Tibor; Patai, Árpád V; Wichmann, Barnabás; Barták, Barbara Kinga; Tóth, Kinga; Valcz, Gábor; Spisák, Sándor; Tulassay, Zsolt; Molnár, Béla

    2016-08-02

    The WNT signaling pathway has an essential role in colorectal carcinogenesis and progression, which involves a cascade of genetic and epigenetic changes. We aimed to analyze DNA methylation affecting the WNT pathway genes in colorectal carcinogenesis in promoter and gene body regions using whole methylome analysis in 9 colorectal cancer, 15 adenoma, and 6 normal tumor adjacent tissue (NAT) samples by methyl capture sequencing. Functional methylation was confirmed on 5-aza-2'-deoxycytidine-treated colorectal cancer cell line datasets. In parallel with the DNA methylation analysis, mutations of WNT pathway genes (APC, β-catenin/CTNNB1) were analyzed by 454 sequencing on GS Junior platform. Most differentially methylated CpG sites were localized in gene body regions (95% of WNT pathway genes). In the promoter regions, 33 of the 160 analyzed WNT pathway genes were differentially methylated in colorectal cancer vs. normal, including hypermethylated AXIN2, CHP1, PRICKLE1, SFRP1, SFRP2, SOX17, and hypomethylated CACYBP, CTNNB1, MYC; 44 genes in adenoma vs. NAT; and 41 genes in colorectal cancer vs. adenoma comparisons. Hypermethylation of AXIN2, DKK1, VANGL1, and WNT5A gene promoters was higher, while those of SOX17, PRICKLE1, DAAM2, and MYC was lower in colon carcinoma compared to adenoma. Inverse correlation between expression and methylation was confirmed in 23 genes, including APC, CHP1, PRICKLE1, PSEN1, and SFRP1. Differential methylation affected both canonical and noncanonical WNT pathway genes in colorectal normal-adenoma-carcinoma sequence. Aberrant DNA methylation appears already in adenomas as an early event of colorectal carcinogenesis.

  7. Inhibition of DNA Methylation Impairs Synaptic Plasticity during an Early Time Window in Rats

    Directory of Open Access Journals (Sweden)

    Pablo Muñoz

    2016-01-01

    Full Text Available Although the importance of DNA methylation-dependent gene expression to neuronal plasticity is well established, the dynamics of methylation and demethylation during the induction and expression of synaptic plasticity have not been explored. Here, we combined electrophysiological, pharmacological, molecular, and immunohistochemical approaches to examine the contribution of DNA methylation and the phosphorylation of Methyl-CpG-binding protein 2 (MeCP2 to synaptic plasticity. We found that, at twenty minutes after theta burst stimulation (TBS, the DNA methylation inhibitor 5-aza-2-deoxycytidine (5AZA impaired hippocampal long-term potentiation (LTP. Surprisingly, after two hours of TBS, when LTP had become a transcription-dependent process, 5AZA treatment had no effect. By comparing these results to those in naive slices, we found that, at two hours after TBS, an intergenic region of the RLN gene was hypomethylated and that the phosphorylation of residue S80 of MeCP2 was decreased, while the phosphorylation of residue S421 was increased. As expected, 5AZA affected only the methylation of the RLN gene and exerted no effect on MeCP2 phosphorylation patterns. In summary, our data suggest that tetanic stimulation induces critical changes in synaptic plasticity that affects both DNA methylation and the phosphorylation of MeCP2. These data also suggest that early alterations in DNA methylation are sufficient to impair the full expression of LTP.

  8. Inhibition of DNA Methylation Impairs Synaptic Plasticity during an Early Time Window in Rats.

    Science.gov (United States)

    Muñoz, Pablo; Estay, Carolina; Díaz, Paula; Elgueta, Claudio; Ardiles, Álvaro O; Lizana, Pablo A

    2016-01-01

    Although the importance of DNA methylation-dependent gene expression to neuronal plasticity is well established, the dynamics of methylation and demethylation during the induction and expression of synaptic plasticity have not been explored. Here, we combined electrophysiological, pharmacological, molecular, and immunohistochemical approaches to examine the contribution of DNA methylation and the phosphorylation of Methyl-CpG-binding protein 2 (MeCP2) to synaptic plasticity. We found that, at twenty minutes after theta burst stimulation (TBS), the DNA methylation inhibitor 5-aza-2-deoxycytidine (5AZA) impaired hippocampal long-term potentiation (LTP). Surprisingly, after two hours of TBS, when LTP had become a transcription-dependent process, 5AZA treatment had no effect. By comparing these results to those in naive slices, we found that, at two hours after TBS, an intergenic region of the RLN gene was hypomethylated and that the phosphorylation of residue S80 of MeCP2 was decreased, while the phosphorylation of residue S421 was increased. As expected, 5AZA affected only the methylation of the RLN gene and exerted no effect on MeCP2 phosphorylation patterns. In summary, our data suggest that tetanic stimulation induces critical changes in synaptic plasticity that affects both DNA methylation and the phosphorylation of MeCP2. These data also suggest that early alterations in DNA methylation are sufficient to impair the full expression of LTP.

  9. Aberrant Methylation and Reduced Expression of LHX9 in Malignant Gliomas of Childhood

    Directory of Open Access Journals (Sweden)

    Valentina Vladimirova

    2009-07-01

    Full Text Available High-grade gliomas (HGGs of childhood represent approximately 7% of pediatric brain tumors. They are highly invasive tumors and respond poorly to conventional treatments in contrast to pilocytic astrocytomas, which usually are well demarcated and frequently can be cured by surgery. The molecular events for this clinical relevant finding are only partially understood. In the current study, to identify aberrantly methylated genes that may be involved in the tumorigenesis of pediatric HGGs, we performed a microarray-based differential methylation hybridization approach and found frequent hypermethylation of the LHX9 (human Lim-homebox 9 gene encoding a transcription factor involved in brain development. Bisulfite genomic sequencing and combined bisulfite restriction analysis showed that HGGs were frequently methylated at two CpG-rich LHX9 regions in comparison to benign, nondiffuse pilocytic astrocytomas and normal brain tissues. The LHX9 hypermethylation was associated with reduced messenger RNA expression in pediatric HGG samples and corresponding cell lines. This epigenetic modification was reversible by pharmacological inhibition (5-aza-2′-deoxycytidine, and reexpression of LHX9 transcript was induced in pediatric glioma cell lines. Exogenous expression of LHX9 in glioma cell lines did not directly affect cell proliferation and apoptosis but specifically inhibited glioma cell migration and invasion in vitro, suggesting a possible implication of LHX9 in the migratory phenotype of HGGs. Our results demonstrate that the LHX9 gene is frequently silenced in pediatric malignant astrocytomas by hypermethylation and that this epigenetic alteration is involved in glioma cell migration and invasiveness.

  10. Aberrant regulation of DNA methylation in amyotrophic lateral sclerosis: a new target of disease mechanisms.

    Science.gov (United States)

    Martin, Lee J; Wong, Margaret

    2013-10-01

    Amyotrophic lateral sclerosis (ALS) is the third most common adult-onset neurodegenerative disease. A diagnosis is fatal owing to degeneration of motor neurons in brain and spinal cord that control swallowing, breathing, and movement. ALS can be inherited, but most cases are not associated with a family history of the disease. The mechanisms causing motor neuron death in ALS are still unknown. Given the suspected complex interplay between multiple genes, the environment, metabolism, and lifestyle in the pathogenesis of ALS, we have hypothesized that the mechanisms of disease in ALS involve epigenetic contributions that can drive motor neuron degeneration. DNA methylation is an epigenetic mechanism for gene regulation engaged by DNA methyltransferase (Dnmt)-catalyzed methyl group transfer to carbon-5 in cytosine residues in gene regulatory promoter and nonpromoter regions. Recent genome-wide analyses have found differential gene methylation in human ALS. Neuropathologic assessments have revealed that motor neurons in human ALS show significant abnormalities in Dnmt1, Dnmt3a, and 5-methylcytosine. Similar changes are seen in mice with motor neuron degeneration, and Dnmt3a was found abundantly at synapses and in mitochondria. During apoptosis of cultured motor neuron-like cells, Dnmt1 and Dnmt3a protein levels increase, and 5-methylcytosine accumulates. Enforced expression of Dnmt3a, but not Dnmt1, induces degeneration of cultured neurons. Truncation mutation of the Dnmt3a catalytic domain and Dnmt3a RNAi blocks apoptosis of cultured neurons. Inhibition of Dnmt catalytic activity with small molecules RG108 and procainamide protects motor neurons from excessive DNA methylation and apoptosis in cell culture and in a mouse model of ALS. Thus, motor neurons can engage epigenetic mechanisms to cause their degeneration, involving Dnmts and increased DNA methylation. Aberrant DNA methylation in vulnerable cells is a new direction for discovering mechanisms of ALS

  11. Impaired methylation as a novel mechanism for proteasome suppression in liver cells

    Energy Technology Data Exchange (ETDEWEB)

    Osna, Natalia A., E-mail: nosna@UNMC.edu [Liver Study Unit, The Omaha Veterans Affairs VA Medical Center, Omaha, NE 68105 (United States); Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68105 (United States); White, Ronda L.; Donohue, Terrence M. [Liver Study Unit, The Omaha Veterans Affairs VA Medical Center, Omaha, NE 68105 (United States); Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68105 (United States); Beard, Michael R. [Department of Molecular Biosciences, University of Adelaide (Australia); Tuma, Dean J.; Kharbanda, Kusum K. [Liver Study Unit, The Omaha Veterans Affairs VA Medical Center, Omaha, NE 68105 (United States); Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68105 (United States)

    2010-01-08

    The proteasome is a multi-catalytic protein degradation enzyme that is regulated by ethanol-induced oxidative stress; such suppression is attributed to CYP2E1-generated metabolites. However, under certain conditions, it appears that in addition to oxidative stress, other mechanisms are also involved in proteasome regulation. This study investigated whether impaired protein methylation that occurs during exposure of liver cells to ethanol, may contribute to suppression of proteasome activity. We measured the chymotrypsin-like proteasome activity in Huh7CYP cells, hepatocytes, liver cytosols and nuclear extracts or purified 20S proteasome under conditions that maintain or prevent protein methylation. Reduction of proteasome activity of hepatoma cell and hepatocytes by ethanol or tubercidin was prevented by simultaneous treatment with S-adenosylmethionine (SAM). Moreover, the tubercidin-induced decline in proteasome activity occurred in both nuclear and cytosolic fractions. In vitro exposure of cell cytosolic fractions or highly purified 20S proteasome to low SAM:S-adenosylhomocysteine (SAH) ratios in the buffer also suppressed proteasome function, indicating that one or more methyltransferase(s) may be associated with proteasomal subunits. Immunoblotting a purified 20S rabbit red cell proteasome preparation using methyl lysine-specific antibodies revealed a 25 kDa proteasome subunit that showed positive reactivity with anti-methyl lysine. This reactivity was modified when 20S proteasome was exposed to differential SAM:SAH ratios. We conclude that impaired methylation of proteasome subunits suppressed proteasome activity in liver cells indicating an additional, yet novel mechanism of proteasome activity regulation by ethanol.

  12. Aberrant septin 9 DNA methylation in colorectal cancer is restricted to a single CpG island

    International Nuclear Information System (INIS)

    Wasserkort, Reinhold; Kalmar, Alexandra; Valcz, Gabor; Spisak, Sandor; Krispin, Manuel; Toth, Kinga; Tulassay, Zsolt; Sledziewski, Andrew Z; Molnar, Bela

    2013-01-01

    The septin 9 gene (SEPT9) codes for a GTP-binding protein associated with filamentous structures and cytoskeleton formation. SEPT9 plays a role in multiple cancers as either an oncogene or a tumor suppressor gene. Regulation of SEPT9 expression is complex and not well understood; however, hypermethylation of the gene was recently introduced as a biomarker for early detection of colorectal cancer (CRC) and has been linked to cancer of the breast and of the head and neck. Because the DNA methylation landscape of different regions of SEPT9 is poorly understood in cancer, we analyzed the methylation patterns of this gene in distinct cell populations from normal and diseased colon mucosa. Laser capture microdissection was performed to obtain homogeneous populations of epithelial and stromal cells from normal, adenomatous, and tumorous colon mucosa. Microdissected samples were analyzed using direct bisulfite sequencing to determine the DNA methylation status of eight regions within and near the SEPT9 gene. Septin-9 protein expression was assessed using immunohistochemistry (IHC). Regions analyzed in SEPT9 were unmethylated in normal tissue except for a methylation boundary detected downstream of the largest CpG island. In adenoma and tumor tissues, epithelial cells displayed markedly increased DNA methylation levels (>80%, p <0.0001) in only one of the CpG islands investigated. SEPT9 methylation in stromal cells increased in adenomatous and tumor tissues (≤50%, p <0.0001); however, methylation did not increase in stromal cells of normal tissue close to the tumor. IHC data indicated a significant decrease (p <0.01) in Septin-9 protein levels in epithelial cells derived from adenoma and tumor tissues; Septin-9 protein levels in stromal cells were low in all tissues. Hypermethylation of SEPT9 in adenoma and CRC specimens is confined to one of several CpG islands of this gene. Tumor-associated aberrant methylation originates in epithelial cells; stromal cells appear to

  13. Aberrant methylation of GCNT2 is tightly related to lymph node metastasis of primary CRC.

    Science.gov (United States)

    Nakamura, Kazunori; Yamashita, Keishi; Sawaki, Hiromichi; Waraya, Mina; Katoh, Hiroshi; Nakayama, Nobukazu; Kawamata, Hiroshi; Nishimiya, Hiroshi; Ema, Akira; Narimatsu, Hisashi; Watanabe, Masahiko

    2015-03-01

    Glycoprotein expression profile is dramatically altered in human cancers; however, specific glycogenes have not been fully identified. A comprehensive real-time polymerase chain reaction (PCR) system for glycogenes (CRPS-G) identified several outstanding glycogenes. GCNT2 was of particular interest after GCNT2 expression and epigenetics were rigorously investigated in primary colorectal cancer (CRC). The highlights of this work can be summarized as follows: (i) Expression of GCNT2 was remarkably suppressed. (ii) Silenced expression of GCNT2 was reactivated by combined demethylating agents. (iii) Promoter DNA methylation of GCNT2 was silenced in CRC cell lines and tissues. Hypomethylation of GCNT2 variant 2 is tightly associated with lymph node metastasis in primary CRC. (iv) GCNT2 methylation level in the normal tissues also showed a close association with that in the tumor tissues and reflected lymph node metastasis. We identified aberrant expression of GCNT2, which can be explained by promoter DNA hypermethylation. Hypomethylation of the GCNT2 variant 2 reflected lymph node metastasis of CRC in the tumor and normal tissues. Copyright© 2015 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  14. Methylated genes as new cancer biomarkers.

    LENUS (Irish Health Repository)

    Duffy, M J

    2012-02-01

    Aberrant hypermethylation of promoter regions in specific genes is a key event in the formation and progression of cancer. In at least some situations, these aberrant alterations occur early in the formation of malignancy and appear to be tumour specific. Multiple reports have suggested that measurement of the methylation status of the promoter regions of specific genes can aid early detection of cancer, determine prognosis and predict therapy responses. Promising DNA methylation biomarkers include the use of methylated GSTP1 for aiding the early diagnosis of prostate cancer, methylated PITX2 for predicting outcome in lymph node-negative breast cancer patients and methylated MGMT in predicting benefit from alkylating agents in patients with glioblastomas. However, prior to clinical utilisation, these findings require validation in prospective clinical studies. Furthermore, assays for measuring gene methylation need to be standardised, simplified and evaluated in external quality assurance programmes. It is concluded that methylated genes have the potential to provide a new generation of cancer biomarkers.

  15. Brahmarasayana protects against Ethyl methanesulfonate or Methyl methanesulfonate induced chromosomal aberrations in mouse bone marrow cells

    Directory of Open Access Journals (Sweden)

    Guruprasad Kanive

    2012-08-01

    Full Text Available Abstract Background Ayurveda, the traditional Indian system of medicine has given great emphasis to the promotion of health. Rasayana is one of the eight branches of Ayurveda which refers to rejuvenant therapy. It has been reported that rasayanas have immuno-modulatory, antioxidant and antitumor functions, however, the genotoxic potential and modulation of DNA repair of many rasayanas have not been evaluated. Methods The present study assessed the role of Brahmarasayana (BR on Ethyl methanesulfonate (EMS-and Methyl methanesulfonate (MMS-induced genotoxicity and DNA repair in in vivo mouse test system. The mice were orally fed with BR (5 g or 8 mg / day for two months and 24 h later EMS or MMS was given intraperitoneally. The genotoxicity was analyzed by chromosomal aberrations, sperm count, and sperm abnormalities. Results The results have revealed that BR did not induce significant chromosomal aberrations when compared to that of the control animals (p >0.05. On the other hand, the frequencies of chromosomal aberrations induced by EMS (240 mg / kg body weight or MMS (125 mg / kg body weight were significantly higher (p Conclusion The effect of BR, as it relates to antioxidant activity was not evident in liver tissue however rasayana treatment was observed to increase constitutive DNA base excision repair and reduce clastogenicity. Whilst, the molecular mechanisms of such repair need further exploration, this is the first report to demonstrate these effects and provides further evidence for the role of brahmarasayana in the possible improvement of quality of life.

  16. Impairing DNA methylation obstructs memory enhancement for at least 24 hours in Lymnaea.

    Science.gov (United States)

    Rothwell, Cailin M; Lukowiak, Ken D

    2017-01-01

    Stressor-induced memory enhancement has previously been shown to involve DNA methylation in the mollusc Lymnaea stagnalis . Specifically, injection of the DNA methylation inhibitor 5-AZA one hour before exposure to a memory-enhancing stressor obstructs memory augmentation. However, the duration of the influence of 5-AZA on this memory enhancement has not yet been examined. In this study, 2 memory-enhancing stressors (a thermal stress and exposure to the scent of a predator) were used to examine whether injection of the DNA methylation inhibitor 5-AZA 24 hours before stress exposure would still impair memory enhancement. Indeed, it was observed that memory is still obstructed when 5-AZA is injected 24 hours before exposure to either of these stressors in Lymnaea . Understanding that 5-AZA still effectively impairs memory enhancement after a period of 24 hours is valuable because it indicates that experimental manipulations do not need to be made within one hour after the injection of this DNA methylation inhibitor and can instead be made within one day (i.e. 24 hours). These results will allow for a future examination of the possible involvement of DNA methylation in memory enhancement related to longer-term stressors or environmental changes. This study further elucidates the involvement of epigenetic changes in memory enhancement in Lymnaea , providing insight into the process of memory formation in this mollusc.

  17. DNA methylation dynamics in human induced pluripotent stem cells over time.

    Directory of Open Access Journals (Sweden)

    Koichiro Nishino

    2011-05-01

    Full Text Available Epigenetic reprogramming is a critical event in the generation of induced pluripotent stem cells (iPSCs. Here, we determined the DNA methylation profiles of 22 human iPSC lines derived from five different cell types (human endometrium, placental artery endothelium, amnion, fetal lung fibroblast, and menstrual blood cell and five human embryonic stem cell (ESC lines, and we followed the aberrant methylation sites in iPSCs for up to 42 weeks. The iPSCs exhibited distinct epigenetic differences from ESCs, which were caused by aberrant methylation at early passages. Multiple appearances and then disappearances of random aberrant methylation were detected throughout iPSC reprogramming. Continuous passaging of the iPSCs diminished the differences between iPSCs and ESCs, implying that iPSCs lose the characteristics inherited from the parent cells and adapt to very closely resemble ESCs over time. Human iPSCs were gradually reprogrammed through the "convergence" of aberrant hyper-methylation events that continuously appeared in a de novo manner. This iPS reprogramming consisted of stochastic de novo methylation and selection/fixation of methylation in an environment suitable for ESCs. Taken together, random methylation and convergence are driving forces for long-term reprogramming of iPSCs to ESCs.

  18. Potentialities of aberrantly methylated circulating DNA for diagnostics and post-treatment follow-up of lung cancer patients.

    Science.gov (United States)

    Ponomaryova, Anastasia A; Rykova, Elena Yu; Cherdyntseva, Nadezda V; Skvortsova, Tatiana E; Dobrodeev, Alexey Yu; Zav'yalov, Alexander A; Bryzgalov, Leonid O; Tuzikov, Sergey A; Vlassov, Valentin V; Laktionov, Pavel P

    2013-09-01

    To date, aberrant DNA methylation has been shown to be one of the most common and early causes of malignant cell transformation and tumors of different localizations, including lung cancer. Cancer cell-specific methylated DNA has been found in the blood of cancer patients, indicating that cell-free DNA circulating in the blood (cirDNA) is a convenient tumor-associated DNA marker that can be used as a minimally invasive diagnostic test. In the current study, we investigated the methylation status in blood samples of 32 healthy donors and 60 lung cancer patients before and after treatment with neoadjuvant chemotherapy followed by total tumor resection. Using quantitative methylation-specific PCR, we found that the index of methylation (IM), calculated as IM = 100 × [copy number of methylated/(copy number of methylated + unmethylated gene)], for the RASSF1A and RARB2 genes in the cirDNA isolated from blood plasma and cell-surface-bound cirDNA was elevated 2- to 3-fold in lung cancer patients compared with healthy donors. Random forest classification tree model based on these variables combined (RARB2 and RASSF1A IM in both plasma and cell-surface-bound cirDNA) lead to NSCLC patients' and healthy subjects' differentiation with 87% sensitivity and 75% specificity. An association of increased IM values with an advanced stage of non-small-cell lung cancer was found for RARB2 but not for RASSF1A. Chemotherapy and total tumor resection resulted in a significant decrease in the IM for RARB2 and RASSF1A, in both cirDNA fractions, comparable to the IM level of healthy subjects. Importantly, a rise in the IM for RARB2 was detected in patients within the follow-up period, which manifested in disease relapse at 9 months, confirmed with instrumental and pathologic methods. Our data indicate that quantitative analysis of the methylation status of the RARB2 and RASSF1A tumor suppressor genes in both cirDNA fractions is a useful tool for lung cancer diagnostics, evaluation of cancer

  19. MECP2 promoter methylation and X chromosome inactivation in autism.

    Science.gov (United States)

    Nagarajan, Raman P; Patzel, Katherine A; Martin, Michelle; Yasui, Dag H; Swanberg, Susan E; Hertz-Picciotto, Irva; Hansen, Robin L; Van de Water, Judy; Pessah, Isaac N; Jiang, Ruby; Robinson, Wendy P; LaSalle, Janine M

    2008-06-01

    Epigenetic mechanisms have been proposed to play a role in the etiology of autism. This hypothesis is supported by the discovery of increased MECP2 promoter methylation associated with decreased MeCP2 protein expression in autism male brain. To further understand the influence of female X chromosome inactivation (XCI) and neighboring methylation patterns on aberrant MECP2 promoter methylation in autism, multiple methylation analyses were peformed on brain and blood samples from individuals with autism. Bisulfite sequencing analyses of a region 0.6 kb upstream of MECP2 in brain DNA samples revealed an abrupt transition from a highly methylated region in both sexes to a region unmethylated in males and subject to XCI in females. Chromatin immunoprecipitation analysis demonstrated that the CCTC-binding factor (CTCF) bound to this transition region in neuronal cells, consistent with a chromatin boundary at the methylation transition. Male autism brain DNA samples displayed a slight increase in methylation in this transition region, suggesting a possible aberrant spreading of methylation into the MECP2 promoter in autism males across this boundary element. In addition, autistic female brain DNA samples showed evidence for aberrant MECP2 promoter methylation as an increase in the number of bisulfite sequenced clones with undefined XCI status for MECP2 but not androgen receptor (AR). To further investigate the specificity of MECP2 methylation alterations in autism, blood DNA samples from females and mothers of males with autism were also examined for XCI skewing at AR, but no significant increase in XCI skewing was observed compared to controls. These results suggest that the aberrant MECP2 methylation in autism brain DNA samples is due to locus-specific rather than global X chromosome methylation changes.

  20. Inferring a role for methylation of intergenic DNA in the regulation of genes aberrantly expressed in precursor B-cell acute lymphoblastic leukemia.

    Science.gov (United States)

    Almamun, Md; Kholod, Olha; Stuckel, Alexei J; Levinson, Benjamin T; Johnson, Nathan T; Arthur, Gerald L; Davis, J Wade; Taylor, Kristen H

    2017-09-01

    A complete understanding of the mechanisms involved in the development of pre-B ALL is lacking. In this study, we integrated DNA methylation data and gene expression data to elucidate the impact of aberrant intergenic DNA methylation on gene expression in pre-B ALL. We found a subset of differentially methylated intergenic loci that were associated with altered gene expression in pre-B ALL patients. Notably, 84% of these regions were also bound by transcription factors (TF) known to play roles in differentiation and B-cell development in a lymphoblastoid cell line. Further, an overall downregulation of eRNA transcripts was observed in pre-B ALL patients and these transcripts were associated with the downregulation of putative target genes involved in B-cell migration, proliferation, and apoptosis. The identification of novel putative regulatory regions highlights the significance of intergenic DNA sequences and may contribute to the identification of new therapeutic targets for the treatment of pre-B ALL.

  1. Involvement of aberrant DNA methylation on reduced expression of lysophosphatidic acid receptor-1 gene in rat tumor cell lines

    International Nuclear Information System (INIS)

    Tsujiuchi, Toshifumi; Shimizu, Kyoko; Onishi, Mariko; Sugata, Eriko; Fujii, Hiromasa; Mori, Toshio; Honoki, Kanya; Fukushima, Nobuyuki

    2006-01-01

    Lysophosphatidic acid (LPA) is a bioactive phospholipid that stimulates cell proliferation, migration, and protects cells from apoptosis. It interacts with specific G protein-coupled transmembrane receptors. Recently, it has been reported that alterations of LPA receptor expression might be important in the malignant transformation of tumor cells. Therefore, to assess an involvement of DNA methylation in reduced expression of the LPA receptor-1 (lpa1) gene, we investigated the expression of the lpa1 gene and its DNA methylation patterns in rat tumor cell lines. Both rat brain-derived neuroblastoma B103 and liver-derived hepatoma RH7777 cells used in this study indicated no expression of lpa1. For the analysis of methylation status, bisulfite sequencing was performed with B103 and RH7777 cells, comparing with other lpa1 expressed cells and normal tissues of brain and liver. The lpa1 expressed cells and tissues were all unmethylated in this region of lpa1. In contrast, both B103 and RH7777 cells were highly methylated, correlating with reduced expression of the lpa1. Treatment with 5-aza 2'-deoxycytidine induced expression of lpa1 gene in B103 and RH7777 cells after 24 h. In RH7777 cells treated with 5-aza 2'-deoxycytidine, stress fiber formation was also observed in response to LPA in RH7777 cells, but not in untreated RH7777 cells. These results suggest that aberrant DNA methylation of the lpa1 gene may be involved in its reduced expression in rat tumor cells

  2. Aberrant methylation and associated transcriptional mobilization of Alu elements contributes to genomic instability in hypoxia.

    Science.gov (United States)

    Pal, Arnab; Srivastava, Tapasya; Sharma, Manish K; Mehndiratta, Mohit; Das, Prerna; Sinha, Subrata; Chattopadhyay, Parthaprasad

    2010-11-01

    Hypoxia is an integral part of tumorigenesis and contributes extensively to the neoplastic phenotype including drug resistance and genomic instability. It has also been reported that hypoxia results in global demethylation. Because a majority of the cytosine-phosphate-guanine (CpG) islands are found within the repeat elements of DNA, and are usually methylated under normoxic conditions, we suggested that retrotransposable Alu or short interspersed nuclear elements (SINEs) which show altered methylation and associated changes of gene expression during hypoxia, could be associated with genomic instability. U87MG glioblastoma cells were cultured in 0.1% O₂ for 6 weeks and compared with cells cultured in 21% O₂ for the same duration. Real-time PCR analysis showed a significant increase in SINE and reverse transcriptase coding long interspersed nuclear element (LINE) transcripts during hypoxia. Sequencing of bisulphite treated DNA as well as the Combined Bisulfite Restriction Analysis (COBRA) assay showed that the SINE loci studied underwent significant hypomethylation though there was patchy hypermethylation at a few sites. The inter-alu PCR profile of DNA from cells cultured under 6-week hypoxia, its 4-week revert back to normoxia and 6-week normoxia showed several changes in the band pattern indicating increased alu mediated genomic alteration. Our results show that aberrant methylation leading to increased transcription of SINE and reverse transcriptase associated LINE elements could lead to increased genomic instability in hypoxia. This might be a cause of genetic heterogeneity in tumours especially in variegated hypoxic environment and lead to a development of foci of more aggressive tumour cells. © 2009 The Authors Journal compilation © 2010 Foundation for Cellular and Molecular Medicine/Blackwell Publishing Ltd.

  3. [THE SOMATIC MUTATIONS AND ABERRANT METHYLATION AS POTENTIAL GENETIC MARKERS OF URINARY BLADDER CANCER].

    Science.gov (United States)

    Mikhailenko, D S; Kushlinskii, N E

    2016-02-01

    All around the world, more than 330 thousands cases of bladder cancer are registered annually hence representing actual problem of modern oncology. Still in demand are search and characteristic of new molecular markers of bladder cancer detecting in tumor cells from urinary sediment and having high diagnostic accuracy. The studies of last decade, especially using methods of genome-wide sequencing, permitted to receive a large amount of experimental data concerning development and progression of bladder cancer The review presents systematic analysis of publications available in PubMed data base mainly of last five years. The original studies of molecular genetic disorders under bladder cancer and meta-analyzes were considered This approach permitted to detected the most common local alterations of DNA under bladder cancer which can be detected using routine genetic methods indifferent clinical material and present prospective interest for development of test-systems. The molecular genetic markers of disease can be activating missense mutations in 7 and 10 exons of gene of receptor of growth factor of fibroblasts 3 (FGFR3), 9 and 20 exons of gene of Phosphatidylinositol-4,5-bi-phosphate-3-kinase (PIK3CA) and mutation in -124 and -146 nucleotides in promoter of gene of catalytic subunit telomerase (TERT). The development of test-systems on the basis of aberrant methylation of CpG-islets of genes-suppressors still is seemed as a difficult task because of differences in pattern of methylation of different primary tumors at various stages of clonal evolution of bladder cancer though they can be considered as potential markers.

  4. Aberrant Methylation-Mediated Suppression of APAF1 in Myelodysplastic Syndrome.

    Science.gov (United States)

    Zaker, Farhad; Nasiri, Nahid; Amirizadeh, Naser; Razavi, Seyed Mohsen; Yaghmaie, Marjan; Teimoori-Toolabi, Ladan; Maleki, Ali; Bakhshayesh, Masoumeh

    2017-04-01

    Background: Myelodysplastic syndromes (MDSs) include a diverse group of clonal bone marrow disorders characterized by ineffective hematopoiesis and pancytopenia. It was found that down regulation of APAF1, a putative tumor suppressor gene (TSG), leads to resistance to chemotherapy and disease development in some cancers. In this study, we investigated the relation of APAF1 methylation status with its expression and clinicopathological factors in myelodysplastic syndrome (MDS) patients. Materials and Methods: Methylation Sensitive-High Resolution Melting Curve Analysis (MS-HRM) was employed in studying the methylation of CpG islands in the APAF1promoter region in MDS. Gene expression was analyzed by using real time RT-PCR. Results: 42.6% of patient samples were methylated in promoter region of APAF1analyzed, while methylation of the gene was not seen in controls (P<0.05). Methylation of APAF1was significantly associated with the suppression of its mRNA expression (P=0.00). The methylation status of APAF1in advanced-stage MDS patients (80%) was significantly higher than that of the early-stage MDS patients (28.2%) (P=0.001). The difference in frequency of hypermethylatedAPAF1 gene was significant between good (37.5%) and poor (85.71%) cytogenetic risk groups (P=0.043). In addition, a higher frequency of APAF1hypermethylation was observed in higher-risk MDS group (69.2%) compared to lower-risk MDS group (34.14%) (P=0.026). Conclusion: Our study indicated that APAF1hypermethylation in MDS was associated to high-risk disease classified according to the IPSS, WHO and cytogenetic risk.

  5. Similarity of aberrant DNA methylation in Barrett's esophagus and esophageal adenocarcinoma

    Directory of Open Access Journals (Sweden)

    Gotley David C

    2008-10-01

    Full Text Available Abstract Background Barrett's esophagus (BE is the metaplastic replacement of squamous with columnar epithelium in the esophagus, as a result of reflux. It is the major risk factor for the development of esophageal adenocarcinoma (EAC. Methylation of CpG dinucleotides of normally unmethylated genes is associated with silencing of their expression, and is common in EAC. This study was designed to determine at what stage, in the progression from BE to EAC, methylation of key genes occurs. Results We examined nine genes (APC, CDKN2A, ID4, MGMT, RBP1, RUNX3, SFRP1, TIMP3, and TMEFF2, frequently methylated in multiple cancer types, in a panel of squamous (19 biopsies from patients without BE or EAC, 16 from patients with BE, 21 from patients with EAC, BE (40 metaplastic, seven high grade dysplastic and 37 EAC tissues. The methylation frequency, the percentage of samples that had any extent of methylation, for each of the nine genes in the EAC (95%, 59%, 76%, 57%, 70%, 73%, 95%, 74% and 83% respectively was significantly higher than in any of the squamous groups. The methylation frequency for each of the nine genes in the metaplastic BE (95%, 28%, 78%, 48%, 58%, 48%, 93%, 88% and 75% respectively was significantly higher than in the squamous samples except for CDKN2A and RBP1. The methylation frequency did not differ between BE and EAC samples, except for CDKN2A and RUNX3 which were significantly higher in EAC. The methylation extent was an estimate of both the number of methylated alleles and the density of methylation on these alleles. This was significantly greater in EAC than in metaplastic BE for all genes except APC, MGMT and TIMP3. There was no significant difference in methylation extent for any gene between high grade dysplastic BE and EAC. Conclusion We found significant methylation in metaplastic BE, which for seven of the nine genes studied did not differ in frequency from that found in EAC. This is also the first report of gene silencing

  6. Aberrant DNA Methylation: Implications in Racial Health Disparity.

    Directory of Open Access Journals (Sweden)

    Xuefeng Wang

    Full Text Available Incidence and mortality rates of colorectal carcinoma (CRC are higher in African Americans (AAs than in Caucasian Americans (CAs. Deficient micronutrient intake due to dietary restrictions in racial/ethnic populations can alter genetic and molecular profiles leading to dysregulated methylation patterns and the inheritance of somatic to germline mutations.Total DNA and RNA samples of paired tumor and adjacent normal colon tissues were prepared from AA and CA CRC specimens. Reduced Representation Bisulfite Sequencing (RRBS and RNA sequencing were employed to evaluate total genome methylation of 5'-regulatory regions and dysregulation of gene expression, respectively. Robust analysis was conducted using a trimming-and-retrieving scheme for RRBS library mapping in conjunction with the BStool toolkit.DNA from the tumor of AA CRC patients, compared to adjacent normal tissues, contained 1,588 hypermethylated and 100 hypomethylated differentially methylated regions (DMRs. Whereas, 109 hypermethylated and 4 hypomethylated DMRs were observed in DNA from the tumor of CA CRC patients; representing a 14.6-fold and 25-fold change, respectively. Specifically; CHL1, 4 anti-inflammatory genes (i.e., NELL1, GDF1, ARHGEF4, and ITGA4, and 7 miRNAs (of which miR-9-3p and miR-124-3p have been implicated in CRC were hypermethylated in DNA samples from AA patients with CRC. From the same sample set, RNAseq analysis revealed 108 downregulated genes (including 14 ribosomal proteins and 34 upregulated genes (including POLR2B and CYP1B1 [targets of miR-124-3p] in AA patients with CRC versus CA patients.DNA methylation profile and/or products of its downstream targets could serve as biomarker(s addressing racial health disparity.

  7. Aberrant DNA methylation associated with Alzheimer's disease in the superior temporal gyrus.

    Science.gov (United States)

    Gao, Zhan; Fu, Hong-Juan; Zhao, Li-Bo; Sun, Zhuo-Yan; Yang, Yu-Fei; Zhu, Hong-Yan

    2018-01-01

    Abnormal DNA methylation patterns have been demonstrated to be associated with the pathogenesis of Alzheimer's disease (AD). The present study aimed to identify differential methylation in the superior temporal gyrus (STG) of patients with late-onset AD based on epigenome-wide DNA methylation data by bioinformatics analysis. The genome-wide DNA methylation data in the STG region of 34 patients with late-onset AD and 34 controls without dementia were recruited from the Gene Expression Omnibus database. Through systemic quality control, differentially methylated CpG sites were determined by the Student's t-test and mean methylation value differences between the two conditions. Hierarchical clustering analysis was applied to assess the classification performance of differentially methylated CpGs. Functional analysis was performed to investigate the biological functions of the genes associated with differentially methylated CpGs. A total of 17,895 differentially methylated CpG sites were initially identified, including 11,822 hypermethylated CpGs and 6,073 hypomethylated CpGs. Further analysis examined 2,211 differentially methylated CpGs (covering 1,991 genes). AD subjects demonstrated distinctive DNA methylation patterns when compared with the controls, with a classification accuracy value of 1. Hypermethylation was mainly detected for genes regulating the cell cycle progression, whereas hypomethylation was observed in genes involved in transcription factor binding. The present study demonstrated widespread and distinctive DNA methylation alterations in late-onset AD. Identification of AD-associated epigenetic biomarkers may allow for the development of novel diagnostic and therapeutic targets.

  8. Reduced MeCP2 expression is frequent in autism frontal cortex and correlates with aberrant MECP2 promoter methylation.

    Science.gov (United States)

    Nagarajan, Raman P; Hogart, Amber R; Gwye, Ynnez; Martin, Michelle R; LaSalle, Janine M

    2006-01-01

    Mutations in MECP2, encoding methyl CpG binding protein 2 (MeCP2), cause most cases of Rett syndrome (RTT), an X-linked neurodevelopmental disorder. Both RTT and autism are "pervasive developmental disorders" and share a loss of social, cognitive and language skills and a gain in repetitive stereotyped behavior, following apparently normal perinatal development. Although MECP2 coding mutations are a rare cause of autism, MeCP2 expression defects were previously found in autism brain. To further study the role of MeCP2 in autism spectrum disorders (ASDs), we determined the frequency of MeCP2 expression defects in brain samples from autism and other ASDs. We also tested the hypotheses that MECP2 promoter mutations or aberrant promoter methylation correlate with reduced expression in cases of idiopathic autism. MeCP2 immunofluorescence in autism and other neurodevelopmental disorders was quantified by laser scanning cytometry and compared with control postmortem cerebral cortex samples on a large tissue microarray. A significant reduction in MeCP2 expression compared to age-matched controls was found in 11/14 autism (79%), 9/9 RTT (100%), 4/4 Angelman syndrome (100%), 3/4 Prader-Willi syndrome (75%), 3/5 Down syndrome (60%), and 2/2 attention deficit hyperactivity disorder (100%) frontal cortex samples. One autism female was heterozygous for a rare MECP2 promoter variant that correlated with reduced MeCP2 expression. A more frequent occurrence was significantly increased MECP2 promoter methylation in autism male frontal cortex compared to controls. Furthermore, percent promoter methylation of MECP2 significantly correlated with reduced MeCP2 protein expression. These results suggest that both genetic and epigenetic defects lead to reduced MeCP2 expression and may be important in the complex etiology of autism.

  9. Aberrant Modulation of Brain Oscillatory Activity and Attentional Impairment in Attention-Deficit/Hyperactivity Disorder.

    Science.gov (United States)

    Lenartowicz, Agatha; Mazaheri, Ali; Jensen, Ole; Loo, Sandra K

    2018-01-01

    Electroencephalography and magnetoencephalography are noninvasive neuroimaging techniques that have been used extensively to study various resting-state and cognitive processes in the brain. The purpose of this review is to highlight a number of recent studies that have investigated the alpha band (8-12 Hz) oscillatory activity present in magnetoencephalography and electroencephalography, to provide new insights into the maladaptive network activity underlying attentional impairments in attention-deficit/hyperactivity disorder (ADHD). Studies reviewed demonstrate that event-related decrease in alpha is attenuated during visual selective attention, primarily in ADHD inattentive type, and is often significantly associated with accuracy and reaction time during task performance. Furthermore, aberrant modulation of alpha activity has been reported across development and may have abnormal or atypical lateralization patterns in ADHD. Modulations in the alpha band thus represent a robust, relatively unexplored putative biomarker of attentional impairment and a strong prospect for future studies aimed at examining underlying neural mechanisms and treatment response among individuals with ADHD. Potential limitations of its use as a diagnostic biomarker and directions for future research are discussed. Copyright © 2017 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  10. Comprehensive analyses of imprinted differentially methylated regions reveal epigenetic and genetic characteristics in hepatoblastoma

    International Nuclear Information System (INIS)

    Rumbajan, Janette Mareska; Aoki, Shigehisa; Kohashi, Kenichi; Oda, Yoshinao; Hata, Kenichiro; Saji, Tsutomu; Taguchi, Tomoaki; Tajiri, Tatsuro; Soejima, Hidenobu; Joh, Keiichiro; Maeda, Toshiyuki; Souzaki, Ryota; Mitsui, Kazumasa; Higashimoto, Ken; Nakabayashi, Kazuhiko; Yatsuki, Hitomi; Nishioka, Kenichi; Harada, Ryoko

    2013-01-01

    Aberrant methylation at imprinted differentially methylated regions (DMRs) in human 11p15.5 has been reported in many tumors including hepatoblastoma. However, the methylation status of imprinted DMRs in imprinted loci scattered through the human genome has not been analyzed yet in any tumors. The methylation statuses of 33 imprinted DMRs were analyzed in 12 hepatoblastomas and adjacent normal liver tissue by MALDI-TOF MS and pyrosequencing. Uniparental disomy (UPD) and copy number abnormalities were investigated with DNA polymorphisms. Among 33 DMRs analyzed, 18 showed aberrant methylation in at least 1 tumor. There was large deviation in the incidence of aberrant methylation among the DMRs. KvDMR1 and IGF2-DMR0 were the most frequently hypomethylated DMRs. INPP5Fv2-DMR and RB1-DMR were hypermethylated with high frequencies. Hypomethylation was observed at certain DMRs not only in tumors but also in a small number of adjacent histologically normal liver tissue, whereas hypermethylation was observed only in tumor samples. The methylation levels of long interspersed nuclear element-1 (LINE-1) did not show large differences between tumor tissue and normal liver controls. Chromosomal abnormalities were also found in some tumors. 11p15.5 and 20q13.3 loci showed the frequent occurrence of both genetic and epigenetic alterations. Our analyses revealed tumor-specific aberrant hypermethylation at some imprinted DMRs in 12 hepatoblastomas with additional suggestion for the possibility of hypomethylation prior to tumor development. Some loci showed both genetic and epigenetic alterations with high frequencies. These findings will aid in understanding the development of hepatoblastoma

  11. DNA methylation in the pathophysiology of hyperphenylalaninemia in the PAH(enu2) mouse model of phenylketonuria.

    Science.gov (United States)

    Dobrowolski, S F; Lyons-Weiler, J; Spridik, K; Vockley, J; Skvorak, K; Biery, A

    2016-09-01

    Phenylalanine hydroxylase deficient phenylketonuria (PKU) is the paradigm for a treatable inborn error of metabolism where maintaining plasma phenylalanine (Phe) in the therapeutic range relates to improved clinical outcomes. While Phe is the presumed intoxicating analyte causal in neurologic damage, the mechanism(s) of Phe toxicity has remained elusive. Altered DNA methylation is a recognized response associated with exposure to numerous small molecule toxic agents. Paralleling this effect, we hypothesized that chronic Phe over-exposure in the brain would lead to aberrant DNA methylation with secondary influence upon gene regulation that would ultimately contribute to PKU neuropathology. The PAH(enu2) mouse models human PKU with intrinsic hyperphenylalaninemia, abnormal response to Phe challenge, and neurologic deficit. To examine this hypothesis, we assessed DNA methylation patterns in brain tissues using methylated DNA immunoprecipitation and paired end sequencing in adult PAH(enu2) animals maintained under either continuous dietary Phe restriction or chronic hyperphenylalaninemia. Heterozygous PAH(enu2/WT) litter mates served as controls for normal Phe exposure. Extensive repatterning of DNA methylation was observed in brain tissue of hyperphenylalaninemic animals while Phe restricted animals displayed an attenuated pattern of aberrant DNA methylation. Affected gene coding regions displayed aberrant hypermethylation and hypomethylation. Gene body methylation of noncoding RNA genes was observed and among these microRNA genes were prominent. Of particular note, observed only in hyperphenylalaninemic animals, was hypomethylation of miRNA genes within the imprinted Dlk1-Dio3 locus on chromosome 12. Aberrant methylation of microRNA genes influenced their expression which has secondary effects upon the expression of targeted protein coding genes. Differential hypermethylation of gene promoters was exclusive to hyperphenylalaninemic PAH(enu2) animals. Genes with

  12. NSun2-Mediated Cytosine-5 Methylation of Vault Noncoding RNA Determines Its Processing into Regulatory Small RNAs

    Directory of Open Access Journals (Sweden)

    Shobbir Hussain

    2013-07-01

    Full Text Available Autosomal-recessive loss of the NSUN2 gene has been identified as a causative link to intellectual disability disorders in humans. NSun2 is an RNA methyltransferase modifying cytosine-5 in transfer RNAs (tRNAs, yet the identification of cytosine methylation in other RNA species has been hampered by the lack of sensitive and reliable molecular techniques. Here, we describe miCLIP as an additional approach for identifying RNA methylation sites in transcriptomes. miCLIP is a customized version of the individual-nucleotide-resolution crosslinking and immunoprecipitation (iCLIP method. We confirm site-specific methylation in tRNAs and additional messenger and noncoding RNAs (ncRNAs. Among these, vault ncRNAs contained six NSun2-methylated cytosines, three of which were confirmed by RNA bisulfite sequencing. Using patient cells lacking the NSun2 protein, we further show that loss of cytosine-5 methylation in vault RNAs causes aberrant processing into Argonaute-associated small RNA fragments that can function as microRNAs. Thus, impaired processing of vault ncRNA may contribute to the etiology of NSun2-deficiency human disorders.

  13. The ability of two cooked food mutagens to induce aberrant crypt foci in mice

    DEFF Research Database (Denmark)

    Kristiansen, E.; Meyer, Otto A.; Thorup, I.

    1997-01-01

    induced a higher percentage of medium or large sized aberrant crypt foci than PhIP or IQ, The interpretation of the aberrant crypt foci as precursor lesions for colon cancer in the PhIP and IQ mice is difficult because PhIP and IQ have not been reported to be colonic carcinogens, If cooked food mutagens......The aberrant crypt foci assay has been used extensively to study different compounds for chemopreventive action, but almost all investigations have used initiators not normally found in the diet, In the present study two food-borne initiators, 2-amino-3-methyl-imidazo [4,5-f]quinoline (IQ) and 2......-amino-1-methyl-6-phenyl-imidazo[4,5-b]pyridine (PhIP) were used, To simulate the human exposure further, we chose a feeding regimen with continuous low IQ- and PhIP-doses, Throughout the study female mice were given diets with or without 0.03% IQ or 0.03% PhIP, Two additional groups were given...

  14. Aberrant epigenetic changes and gene expression in cloned cattle dying around birth

    Directory of Open Access Journals (Sweden)

    Zhao Dingsheng

    2008-02-01

    Full Text Available Abstract Background Aberrant reprogramming of donor somatic cell nuclei may result in many severe problems in animal cloning. To assess the extent of abnormal epigenetic modifications and gene expression in clones, we simultaneously examined DNA methylation, histone H4 acetylation and expression of six genes (β-actin, VEGF, oct4, TERT, H19 and Igf2 and a repetitive sequence (art2 in five organs (heart, liver, spleen, lung and kidney from two cloned cattle groups that had died at different stages. In the ED group (early death, n = 3, the cloned cattle died in the perinatal period. The cattle in the LD group (late death, n = 3 died after the perinatal period. Normally reproduced cattle served as a control group (n = 3. Results Aberrant DNA methylation, histone H4 acetylation and gene expression were observed in both cloned groups. The ED group showed relatively fewer severe DNA methylation abnormalities (p Conclusion Deaths of clones may be ascribed to abnormal expression of a very limited number of genes.

  15. Studies on drosophila radiosensitive strains. 6. Influence of UV-rays and methyl methansulfonate on the survival and the frequency of chromosome aberrations in somatic cells of the larvae of mutant mus(2)201sup(G1)

    International Nuclear Information System (INIS)

    Levina, V.V.; Sharygin, V.I.

    1984-01-01

    Larvae of mutagen-sensitive mutant of mus (2) 201sup(G1) drosophila of different ages are subjected to the effect of UV-rays and methyl methan-sulfonate. After this mortality of individuals at the larva and chrysalis development stages is accounted, as well as chromosome aberrations in somatic cells of larvae of the 3-rd age. It is shown that mutation studied determines high mortality of flies at both larva and chrysalis stages and increased number of both spontaneous and induced aberrations. The conclusion is made that chromosome aberrations are not the only reason for the death of mutant individuals after treatment with mutagens and that functions of the gene studied are important for both dividing and nondividing cells

  16. Gametocidal chromosomes enhancing chromosome aberration in common wheat induced by 5-azacytidine.

    Science.gov (United States)

    Su, W-Y; Cong, W-W; Shu, Y-J; Wang, D; Xu, G-H; Guo, C-H

    2013-07-08

    The gametocidal (Gc) chromosome from Aegilops spp induces chromosome mutation, which is introduced into common wheat as a tool of chromosome manipulation for genetic improvement. The Gc chromosome functions similar to a restriction-modification system in bacteria, in which DNA methylation is an important regulator. We treated root tips of wheat carrying Gc chromosomes with the hypomethylation agent 5-azacytidine; chromosome breakage and micronuclei were observed in these root tips. The frequency of aberrations differed in wheat containing different Gc chromosomes, suggesting different functions inducing chromosome breakage. Gc chromosome 3C caused the greatest degree of chromosome aberration, while Gc chromosome 3C(SAT) and 2C caused only slight chromosome aberration. Gc chromosome 3C induced different degrees of chromosome aberration in wheat varieties Triticum aestivum var. Chinese Spring and Norin 26, demonstrating an inhibition function in common wheat.

  17. Quantitative DNA methylation analyses reveal stage dependent DNA methylation and association to clinico-pathological factors in breast tumors

    International Nuclear Information System (INIS)

    Klajic, Jovana; Tost, Jörg; Kristensen, Vessela N; Fleischer, Thomas; Dejeux, Emelyne; Edvardsen, Hege; Warnberg, Fredrik; Bukholm, Ida; Lønning, Per Eystein; Solvang, Hiroko; Børresen-Dale, Anne-Lise

    2013-01-01

    Aberrant DNA methylation of regulatory genes has frequently been found in human breast cancers and correlated to clinical outcome. In the present study we investigate stage specific changes in the DNA methylation patterns in order to identify valuable markers to understand how these changes affect breast cancer progression. Quantitative DNA methylation analyses of 12 candidate genes ABCB1, BRCCA1, CDKN2A, ESR1, GSTP1, IGF2, MGMT, HMLH1, PPP2R2B, PTEN, RASSF1A and FOXC1 was performed by pyrosequencing a series of 238 breast cancer tissue samples from DCIS to invasive tumors stage I to IV. Significant differences in methylation levels between the DCIS and invasive stage II tumors were observed for six genes RASSF1A, CDKN2A, MGMT, ABCB1, GSTP1 and FOXC1. RASSF1A, ABCB1 and GSTP1 showed significantly higher methylation levels in late stage compared to the early stage breast carcinoma. Z-score analysis revealed significantly lower methylation levels in DCIS and stage I tumors compared with stage II, III and IV tumors. Methylation levels of PTEN, PPP2R2B, FOXC1, ABCB1 and BRCA1 were lower in tumors harboring TP53 mutations then in tumors with wild type TP53. Z-score analysis showed that TP53 mutated tumors had significantly lower overall methylation levels compared to tumors with wild type TP53. Methylation levels of RASSF1A, PPP2R2B, GSTP1 and FOXC1 were higher in ER positive vs. ER negative tumors and methylation levels of PTEN and CDKN2A were higher in HER2 positive vs. HER2 negative tumors. Z-score analysis also showed that HER2 positive tumors had significantly higher z-scores of methylation compared to the HER2 negative tumors. Univariate survival analysis identifies methylation status of PPP2R2B as significant predictor of overall survival and breast cancer specific survival. In the present study we report that the level of aberrant DNA methylation is higher in late stage compared with early stage of invasive breast cancers and DCIS for genes mentioned above

  18. Potential of DNA methylation in rectal cancer as diagnostic and prognostic biomarkers

    OpenAIRE

    Exner, Ruth; Pulverer, Walter; Diem, Martina; Spaller, Lisa; Woltering, Laura; Schreiber, Martin; Wolf, Brigitte; Sonntagbauer, Markus; Schr?der, Fabian; Stift, Judith; Wrba, Fritz; Bergmann, Michael; Weinh?usel, Andreas; Egger, Gerda

    2015-01-01

    Background: Aberrant DNA methylation is more prominent in proximal compared with distal colorectal cancers. Although a number of methylation markers were identified for colon cancer, yet few are available for rectal cancer. Methods: DNA methylation differences were assessed by a targeted DNA microarray for 360 marker candidates between 22 fresh frozen rectal tumour samples and 8 controls and validated by microfluidic high-throughput and methylation-sensitive qPCR in fresh frozen and formalin-...

  19. Quantitative DNA methylation analysis of candidate genes in cervical cancer.

    Directory of Open Access Journals (Sweden)

    Erin M Siegel

    Full Text Available Aberrant DNA methylation has been observed in cervical cancer; however, most studies have used non-quantitative approaches to measure DNA methylation. The objective of this study was to quantify methylation within a select panel of genes previously identified as targets for epigenetic silencing in cervical cancer and to identify genes with elevated methylation that can distinguish cancer from normal cervical tissues. We identified 49 women with invasive squamous cell cancer of the cervix and 22 women with normal cytology specimens. Bisulfite-modified genomic DNA was amplified and quantitative pyrosequencing completed for 10 genes (APC, CCNA, CDH1, CDH13, WIF1, TIMP3, DAPK1, RARB, FHIT, and SLIT2. A Methylation Index was calculated as the mean percent methylation across all CpG sites analyzed per gene (~4-9 CpG site per sequence. A binary cut-point was defined at >15% methylation. Sensitivity, specificity and area under ROC curve (AUC of methylation in individual genes or a panel was examined. The median methylation index was significantly higher in cases compared to controls in 8 genes, whereas there was no difference in median methylation for 2 genes. Compared to HPV and age, the combination of DNA methylation level of DAPK1, SLIT2, WIF1 and RARB with HPV and age significantly improved the AUC from 0.79 to 0.99 (95% CI: 0.97-1.00, p-value = 0.003. Pyrosequencing analysis confirmed that several genes are common targets for aberrant methylation in cervical cancer and DNA methylation level of four genes appears to increase specificity to identify cancer compared to HPV detection alone. Alterations in DNA methylation of specific genes in cervical cancers, such as DAPK1, RARB, WIF1, and SLIT2, may also occur early in cervical carcinogenesis and should be evaluated.

  20. Downregulation of miR-130b~301b cluster is mediated by aberrant promoter methylation and impairs cellular senescence in prostate cancer

    Directory of Open Access Journals (Sweden)

    João Ramalho-Carvalho

    2017-02-01

    Full Text Available Abstract Background Numerous DNA-damaging cellular stresses, including oncogene activation and DNA-damage response (DDR, may lead to cellular senescence. Previous observations linked microRNA deregulation with altered senescent patterns, prompting us to investigate whether epigenetic repression of microRNAs expression might disrupt senescence in prostate cancer (PCa cells. Methods Differential methylation mapping in prostate tissues was carried using Infinium HumanMethylation450 BeadChip. After validation of methylation and expression analyses in a larger series of prostate tissues, the functional role of the cluster miR-130b~301b was explored using in vitro studies testing cell viability, apoptosis, invasion and DNA damage in prostate cancer cell lines. Western blot and RT-qPCR were performed to support those observations. Results We found that the miR-130b~301b cluster directs epigenetic activation of cell cycle inhibitors required for DDR activation, thus stimulating the senescence-associated secretory phenotype (SASP. Furthermore, overexpression of miR-130b~301b cluster markedly reduced the malignant phenotype of PCa cells. Conclusions Altogether, these data demonstrate that miR-130b~301b cluster overexpression might effectively induce PCa cell growth arrest through epigenetic regulation of proliferation-blocking genes and activation of cellular senescence.

  1. Transcription factors as readers and effectors of DNA methylation.

    Science.gov (United States)

    Zhu, Heng; Wang, Guohua; Qian, Jiang

    2016-08-01

    Recent technological advances have made it possible to decode DNA methylomes at single-base-pair resolution under various physiological conditions. Many aberrant or differentially methylated sites have been discovered, but the mechanisms by which changes in DNA methylation lead to observed phenotypes, such as cancer, remain elusive. The classical view of methylation-mediated protein-DNA interactions is that only proteins with a methyl-CpG binding domain (MBD) can interact with methylated DNA. However, evidence is emerging to suggest that transcription factors lacking a MBD can also interact with methylated DNA. The identification of these proteins and the elucidation of their characteristics and the biological consequences of methylation-dependent transcription factor-DNA interactions are important stepping stones towards a mechanistic understanding of methylation-mediated biological processes, which have crucial implications for human development and disease.

  2. Frequent silencing of RASSF1A by DNA methylation in thymic neuroendocrine tumours.

    Science.gov (United States)

    Kajiura, Koichiro; Takizawa, Hiromitsu; Morimoto, Yuki; Masuda, Kiyoshi; Tsuboi, Mitsuhiro; Kishibuchi, Reina; Wusiman, Nuliamina; Sawada, Toru; Kawakita, Naoya; Toba, Hiroaki; Yoshida, Mitsuteru; Kawakami, Yukikiyo; Naruto, Takuya; Imoto, Issei; Tangoku, Akira; Kondo, Kazuya

    2017-09-01

    Aberrant methylation of promoter CpG islands (CGIs) of tumour suppressor genes is a common epigenetic mechanism underlying cancer pathogenesis. The methylation patterns of thymic tumours have not been studied in detail since such tumours are rare. Herein, we sought to identify genes that could serve as epigenetic targets for thymic neuroendocrine tumour (NET) therapy. Genome-wide screening for aberrantly methylated CGIs was performed in three NET samples, seven thymic carcinoma (TC) samples, and eight type-B3 thymoma samples. The methylation status of thymic epithelial tumours (TETs) samples was validated by pyrosequencing in a larger cohort. The expression status was analysed by quantitative polymerase chain reaction (PCR) and immunohistochemistry. We identified a CGI on a novel gene, RASSF1A, which was strongly hypermethylated in NET, but not in thymic carcinoma or B3 thymoma. RASSF1A was identified as a candidate gene statistically and bibliographically, as it showed frequent CGI hypermethylation in NET by genome-wide screening. Pyrosequencing confirmed significant hypermethylation of a RASSF1A CGI in NET. Low-grade NET tissue was more strongly methylated than high-grade NET. Quantitative PCR and immunohistochemical staining revealed that RASSF1A mRNA and protein expression levels were negatively regulated by DNA methylation. RASSF1A is a tumour suppressor gene epigenetically dysregulated in NET. Aberrant methylation of RASSF1A has been reported in various tumours, but this is the first report of RASSF1A hypermethylation in TETs. RASSF1A may represent an epigenetic therapeutic target in thymic NET. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. In silico analysis and DHPLC screening strategy identifies novel apoptotic gene targets of aberrant promoter hypermethylation in prostate cancer.

    LENUS (Irish Health Repository)

    Murphy, Therese M

    2011-01-01

    Aberrant DNA methylation has been implicated as a key survival mechanism in cancer, whereby promoter hypermethylation silences genes essential for many cellular processes including apoptosis. Limited data is available on the methylation profile of apoptotic genes in prostate cancer (CaP). The aim of this study was to profile methylation of apoptotic-related genes in CaP using denaturing high performance liquid chromatography (DHPLC).

  4. Distinct DNA Methylation Profiles in Ovarian Tumors: Opportunities for Novel Biomarkers

    Directory of Open Access Journals (Sweden)

    Lorena Losi

    2018-05-01

    Full Text Available Aberrant methylation of multiple promoter CpG islands could be related to the biology of ovarian tumors and its determination could help to improve treatment strategies. DNA methylation profiling was performed using the Methylation Ligation-dependent Macroarray (MLM, an array-based analysis. Promoter regions of 41 genes were analyzed in 102 ovarian tumors and 17 normal ovarian samples. An average of 29% of hypermethylated promoter genes was observed in normal ovarian tissues. This percentage increased slightly in serous, endometrioid, and mucinous carcinomas (32%, 34%, and 45%, respectively, but decreased in germ cell tumors (20%. Ovarian tumors had methylation profiles that were more heterogeneous than other epithelial cancers. Unsupervised hierarchical clustering identified four groups that are very close to the histological subtypes of ovarian tumors. Aberrant methylation of three genes (BRCA1, MGMT, and MLH1, playing important roles in the different DNA repair mechanisms, were dependent on the tumor subtype and represent powerful biomarkers for precision therapy. Furthermore, a promising relationship between hypermethylation of MGMT, OSMR, ESR1, and FOXL2 and overall survival was observed. Our study of DNA methylation profiling indicates that the different histotypes of ovarian cancer should be treated as separate diseases both clinically and in research for the development of targeted therapies.

  5. DNA methylation analysis reveals distinct methylation signatures in pediatric germ cell tumors

    International Nuclear Information System (INIS)

    Amatruda, James F; Frazier, A Lindsay; Poynter, Jenny N; Ross, Julie A; Christensen, Brock; Fustino, Nicholas J; Chen, Kenneth S; Hooten, Anthony J; Nelson, Heather; Kuriger, Jacquelyn K; Rakheja, Dinesh

    2013-01-01

    Aberrant DNA methylation is a prominent feature of many cancers, and may be especially relevant in germ cell tumors (GCTs) due to the extensive epigenetic reprogramming that occurs in the germ line during normal development. We used the Illumina GoldenGate Cancer Methylation Panel to compare DNA methylation in the three main histologic subtypes of pediatric GCTs (germinoma, teratoma and yolk sac tumor (YST); N = 51) and used recursively partitioned mixture models (RPMM) to test associations between methylation pattern and tumor and demographic characteristics. We identified genes and pathways that were differentially methylated using generalized linear models and Ingenuity Pathway Analysis. We also measured global DNA methylation at LINE1 elements and evaluated methylation at selected imprinted loci using pyrosequencing. Methylation patterns differed by tumor histology, with 18/19 YSTs forming a distinct methylation class. Four pathways showed significant enrichment for YSTs, including a human embryonic stem cell pluripotency pathway. We identified 190 CpG loci with significant methylation differences in mature and immature teratomas (q < 0.05), including a number of CpGs in stem cell and pluripotency-related pathways. Both YST and germinoma showed significantly lower methylation at LINE1 elements compared with normal adjacent tissue while there was no difference between teratoma (mature and immature) and normal tissue. DNA methylation at imprinted loci differed significantly by tumor histology and location. Understanding methylation patterns may identify the developmental stage at which the GCT arose and the at-risk period when environmental exposures could be most harmful. Further, identification of relevant genetic pathways could lead to the development of new targets for therapy

  6. Agonists and partial agonists of rhodopsin: retinal polyene methylation affects receptor activation.

    Science.gov (United States)

    Vogel, Reiner; Lüdeke, Steffen; Siebert, Friedrich; Sakmar, Thomas P; Hirshfeld, Amiram; Sheves, Mordechai

    2006-02-14

    Using Fourier transform infrared (FTIR) difference spectroscopy, we have studied the impact of sites and extent of methylation of the retinal polyene with respect to position and thermodynamic parameters of the conformational equilibrium between the Meta I and Meta II photoproducts of rhodopsin. Deletion of methyl groups to form 9-demethyl and 13-demethyl analogues, as well as addition of a methyl group at C10 or C12, shifted the Meta I/Meta II equilibrium toward Meta I, such that the retinal analogues behaved like partial agonists. This equilibrium shift resulted from an apparent reduction of the entropy gain of the transition of up to 65%, which was only partially offset by a concomitant reduction of the enthalpy increase. The analogues produced Meta II photoproducts with relatively small alterations, while their Meta I states were significantly altered, which accounted for the aberrant transitions to Meta II. Addition of a methyl group at C14 influenced the thermodynamic parameters but had little impact on the position of the Meta I/Meta II equilibrium. Neutralization of the residue 134 in the E134Q opsin mutant increased the Meta II content of the 13-demethyl analogue, but not of the 9-demethyl analogue, indicating a severe impairment of the allosteric coupling between the conserved cytoplasmic ERY motif involved in proton uptake and the Schiff base/Glu 113 microdomain in the 9-demethyl analogue. The 9-methyl group appears therefore essential for the correct positioning of retinal to link protonation of the cytoplasmic motif with protonation of Glu 113 during receptor activation.

  7. Identification of a Novel Methylated Gene in Nasopharyngeal Carcinoma: TTC40

    Directory of Open Access Journals (Sweden)

    Wajdi Ayadi

    2014-01-01

    Full Text Available To further explore the epigenetic changes in nasopharyngeal carcinoma (NPC, methylation-sensitive arbitrarily primed PCR was performed on NPC biopsies and nontumor nasopharyngeal samples. We have shown mainly two DNA fragments that appeared to be differentially methylated in NPCs versus nontumors. The first, defined as hypermethylated, corresponds to a CpG island at the 5′-end of the tetratricopeptide repeat domain 40 (TTC40 gene, whereas the second, defined as hypo-methylated, is located on repetitive sequences at chromosomes 16p11.1 and 13.1. Thereafter, the epigenetic alteration on the 5′-TTC40 gene was confirmed by methylation-specific PCR, showing a significant aberrant methylation in NPCs, compared to nontumors. In addition, the bisulfite sequencing analysis has shown a very high density of methylated cytosines in C15, C17, and X666 NPC xenografts. To assess whether TTC40 gene is silenced by aberrant methylation, we examined the gene expression by reverse transcription-PCR. Our analysis showed that the mRNA expression was significantly lower in tumors than in nontumors, which is associated with 5′-TTC40 gene hypermethylation. In conclusion, we found that the 5′-TTC40 gene is frequently methylated and is associated with the loss of mRNA expression in NPCs. Hypermethylation of 5′-TTC40 gene might play a role in NPC development; nevertheless, other studies are needed.

  8. Molecular mechanisms involved in the production of chromosomal aberrations. I

    International Nuclear Information System (INIS)

    Natarajan, A.T.; Obe, G.

    1978-01-01

    Chinese hamster ovary cells (CHO) were X-irradiated in G2 stage of the cell cycle and immediately treated, in the presence of inactivated Sendai virus, with Neurospora endonuclease (E.C. 3.1.4.), an enzyme which is specific for cleaving single-stranded DNA. With this treatment, the frequencies of all types of chromosome aberrations increased when compared to X-irradiated controls. These results are interpreted as due to the conversion of some of the X-ray induced single-stranded DNA breaks into double-strand breaks by this enzyme. Similar enhancement due to this enzyme was found following treatment with methyl methanesulfonate (MMS) and bleomycin, but not following UV and mitomycin C. Addition of Micrococcus endonuclease and Neurospora endonuclease to the cells did not alter the frequencies of aberrations induced by UV. The introduction of enzymes with specific DNA-repair function offers possibilities to probe into the molecular events involved in the formation of structural chromosome aberrations induced by different classes of physical and chemical mutagens. (Auth.)

  9. Methylation signature of lymph node metastases in breast cancer patients

    International Nuclear Information System (INIS)

    Barekati, Zeinab; Radpour, Ramin; Lu, Qing; Bitzer, Johannes; Zheng, Hong; Toniolo, Paolo; Lenner, Per; Zhong, Xiao Yan

    2012-01-01

    Invasion and metastasis are two important hallmarks of malignant tumors caused by complex genetic and epigenetic alterations. The present study investigated the contribution of aberrant methylation profiles of cancer related genes, APC, BIN1, BMP6, BRCA1, CST6, ESR-b, GSTP1, P14 (ARF), P16 (CDKN2A), P21 (CDKN1A), PTEN, and TIMP3, in the matched axillary lymph node metastasis in comparison to the primary tumor tissue and the adjacent normal tissue from the same breast cancer patients to identify the potential of candidate genes methylation as metastatic markers. The quantitative methylation analysis was performed using the SEQUENOM’s EpiTYPER™ assay which relies on matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). The quantitative DNA methylation analysis of the candidate genes showed higher methylation proportion in the primary tumor tissue than that of the matched normal tissue and the differences were significant for the APC, BIN1, BMP6, BRCA1, CST6, ESR-b, P16, PTEN and TIMP3 promoter regions (P<0.05). Among those candidate methylated genes, APC, BMP6, BRCA1 and P16 displayed higher methylation proportion in the matched lymph node metastasis than that found in the normal tissue (P<0.05). The pathway analysis revealed that BMP6, BRCA1 and P16 have a role in prevention of neoplasm metastasis. The results of the present study showed methylation heterogeneity between primary tumors and metastatic lesion. The contribution of aberrant methylation alterations of BMP6, BRCA1 and P16 genes in lymph node metastasis might provide a further clue to establish useful biomarkers for screening metastasis

  10. Stepwise DNA Methylation Changes Are Linked to Escape from Defined Proliferation Barriers and Mammary Epithelial Cell Immortalization

    Energy Technology Data Exchange (ETDEWEB)

    Novak, Petr; Jensen, Taylor J.; Garbe, James C.; Stampfer, Martha R.; Futscher, Bernard W.

    2009-04-20

    The timing and progression of DNA methylation changes during carcinogenesis are not completely understood. To develop a timeline of aberrant DNA methylation events during malignant transformation, we analyzed genome-wide DNA methylation patterns in an isogenic human mammary epithelial cell (HMEC) culture model of transformation. To acquire immortality and malignancy, the cultured finite lifespan HMEC must overcome two distinct proliferation barriers. The first barrier, stasis, is mediated by the retinoblastoma protein and can be overcome by loss of p16(INK4A) expression. HMEC that escape stasis and continue to proliferate become genomically unstable before encountering a second more stringent proliferation barrier, telomere dysfunction due to telomere attrition. Rare cells that acquire telomerase expression may escape this barrier, become immortal, and develop further malignant properties. Our analysis of HMEC transitioning from finite lifespan to malignantly transformed showed that aberrant DNA methylation changes occur in a stepwise fashion early in the transformation process. The first aberrant DNA methylation step coincides with overcoming stasis, and results in few to hundreds of changes, depending on how stasis was overcome. A second step coincides with immortalization and results in hundreds of additional DNA methylation changes regardless of the immortalization pathway. A majority of these DNA methylation changes are also found in malignant breast cancer cells. These results show that large-scale epigenetic remodeling occurs in the earliest steps of mammary carcinogenesis, temporally links DNA methylation changes and overcoming cellular proliferation barriers, and provides a bank of potential epigenetic biomarkers that mayprove useful in breast cancer risk assessment.

  11. Aberrant methylation of the M-type phospholipase A2 receptor gene in leukemic cells

    International Nuclear Information System (INIS)

    Menschikowski, Mario; Platzbecker, Uwe; Hagelgans, Albert; Vogel, Margot; Thiede, Christian; Schönefeldt, Claudia; Lehnert, Renate; Eisenhofer, Graeme; Siegert, Gabriele

    2012-01-01

    The M-type phospholipase A2 receptor (PLA2R1) plays a crucial role in several signaling pathways and may act as tumor-suppressor. This study examined the expression and methylation of the PLA2R1 gene in Jurkat and U937 leukemic cell lines and its methylation in patients with myelodysplastic syndrome (MDS) or acute leukemia. Sites of methylation of the PLA2R1 locus were identified by sequencing bisulfite-modified DNA fragments. Methylation specific-high resolution melting (MS-HRM) analysis was then carried out to quantify PLA2R1 methylation at 5-CpG sites identified with differences in methylation between healthy control subjects and leukemic patients using sequencing of bisulfite-modified genomic DNA. Expression of PLA2R1 was found to be completely down-regulated in Jurkat and U937 cells, accompanied by complete methylation of PLA2R1 promoter and down-stream regions; PLA2R1 was re-expressed after exposure of cells to 5-aza-2´-deoxycytidine. MS-HRM analysis of the PLA2R1 locus in patients with different types of leukemia indicated an average methylation of 28.9% ± 17.8%, compared to less than 9% in control subjects. In MDS patients the extent of PLA2R1 methylation significantly increased with disease risk. Furthermore, measurements of PLA2R1 methylation appeared useful for predicting responsiveness to the methyltransferase inhibitor, azacitidine, as a pre-emptive treatment to avoid hematological relapse in patients with high-risk MDS or acute myeloid leukemia. The study shows for the first time that PLA2R1 gene sequences are a target of hypermethylation in leukemia, which may have pathophysiological relevance for disease evolution in MDS and leukemogenesis

  12. Aberrant Myokine Signaling in Congenital Myotonic Dystrophy

    Directory of Open Access Journals (Sweden)

    Masayuki Nakamori

    2017-10-01

    Full Text Available Summary: Myotonic dystrophy types 1 (DM1 and 2 (DM2 are dominantly inherited neuromuscular disorders caused by a toxic gain of function of expanded CUG and CCUG repeats, respectively. Although both disorders are clinically similar, congenital myotonic dystrophy (CDM, a severe DM form, is found only in DM1. CDM is also characterized by muscle fiber immaturity not observed in adult DM, suggesting specific pathological mechanisms. Here, we revealed upregulation of the interleukin-6 (IL-6 myokine signaling pathway in CDM muscles. We also found a correlation between muscle immaturity and not only IL-6 expression but also expanded CTG repeat length and CpG methylation status upstream of the repeats. Aberrant CpG methylation was associated with transcriptional dysregulation at the repeat locus, increasing the toxic RNA burden that upregulates IL-6. Because the IL-6 pathway is involved in myocyte maturation and muscle atrophy, our results indicate that enhanced RNA toxicity contributes to severe CDM phenotypes through aberrant IL-6 signaling. : Congenital myotonic dystrophy (CDM manifests characteristic genetic (very large CTG repeat expansions, epigenetic (CpG hypermethylation upstream of the repeat, and phenotypic (muscle immaturity features not seen in adult DM. Nakamori et al. find phenotype-genotype and epigenotype correlation in CDM muscle and reveal involvement of the IL-6 myokine signaling pathway in the disease process. Keywords: CTCF, ER stress, IL-6, muscular dystrophy, NF-κB, trinucleotide, cytokine, splicing

  13. Dynamic Alu Methylation during Normal Development, Aging, and Tumorigenesis

    Directory of Open Access Journals (Sweden)

    Yanting Luo

    2014-01-01

    Full Text Available DNA methylation primarily occurs on CpG dinucleotides and plays an important role in transcriptional regulations during tissue development and cell differentiation. Over 25% of CpG dinucleotides in the human genome reside within Alu elements, the most abundant human repeats. The methylation of Alu elements is an important mechanism to suppress Alu transcription and subsequent retrotransposition. Decades of studies revealed that Alu methylation is highly dynamic during early development and aging. Recently, many environmental factors were shown to have a great impact on Alu methylation. In addition, aberrant Alu methylation has been documented to be an early event in many tumors and Alu methylation levels have been associated with tumor aggressiveness. The assessment of the Alu methylation has become an important approach for early diagnosis and/or prognosis of cancer. This review focuses on the dynamic Alu methylation during development, aging, and tumor genesis. The cause and consequence of Alu methylation changes will be discussed.

  14. Chromosomal aberration

    International Nuclear Information System (INIS)

    Ishii, Yutaka

    1988-01-01

    Chromosomal aberrations are classified into two types, chromosome-type and chromatid-type. Chromosom-type aberrations include terminal deletion, dicentric, ring and interstitial deletion, and chromatid-type aberrations include achromatic lesion, chromatid deletion, isochromatid deletion and chromatid exchange. Clastogens which induce chromosomal aberration are divided into ''S-dependent'' agents and ''S-independent''. It might mean whether they can induce double strand breaks independent of the S phase or not. Double strand breaks may be the ultimate lesions to induce chromosomal aberrations. Caffeine added even in the G 2 phase appeared to modify the frequency of chromatid aberrations induced by X-rays and mitomycin C. Those might suggest that the G 2 phase involves in the chromatid aberration formation. The double strand breaks might be repaired by ''G 2 repair system'', the error of which might yield breakage types of chromatid aberrations and the by-pass of which might yield chromatid exchanges. Chromosome-type aberrations might be formed in the G 1 phase. (author)

  15. Whole-genome transcription and DNA methylation analysis of peripheral blood mononuclear cells identified aberrant gene regulation pathways in systemic lupus erythematosus.

    Science.gov (United States)

    Zhu, Honglin; Mi, Wentao; Luo, Hui; Chen, Tao; Liu, Shengxi; Raman, Indu; Zuo, Xiaoxia; Li, Quan-Zhen

    2016-07-13

    CpG sites in the promotor region of the gene. Our study has demonstrated that significant number of differential genes in SLE were involved in IFN, TLR signaling pathways, and inflammatory cytokines. The enrichment of differential genes has been associated with aberrant DNA methylation, which may be relevant to the pathogenesis of SLE. Our observations have laid the groundwork for further diagnostic and mechanistic studies of SLE and LN.

  16. [Novel Approaches in DNA Methylation Studies - MS-HRM Analysis and Electrochemistry].

    Science.gov (United States)

    Bartošík, M; Ondroušková, E

    Cytosine methylation in DNA is an epigenetic mechanism regulating gene expression and plays a vital role in cell differentiation or proliferation. Tumor cells often exhibit aberrant DNA methylation, e.g. hypermethylation of tumor suppressor gene promoters. New methods, capable of determining methylation status of specific DNA sequences, are thus being developed. Among them, MS-HRM (methylation-specific high resolution melting) and electrochemistry offer relatively inexpensive instrumentation, fast assay times and possibility of screening multiple samples/DNA regions simultaneously. MS-HRM is due to its sensitivity and simplicity an interesting alternative to already established techniques, including methylation-specific PCR or bisulfite sequencing. Electrochemistry, when combined with suitable electroactive labels and electrode surfaces, has been applied in several unique strategies for discrimination of cytosines and methylcytosines. Both techniques were successfully tested in analysis of DNA methylation within promoters of important tumor suppressor genes and could thus help in achieving more precise diagnostics and prognostics of cancer. Aberrant methylation of promoters has already been described in hundreds of genes associated with tumorigenesis and could serve as important biomarker if new methods applicable into clinical practice are sufficiently advanced.Key words: DNA methylation - 5-methylcytosine - HRM analysis - melting temperature - DNA duplex - electrochemistry - nucleic acid hybridizationThis work was supported by MEYS - NPS I - LO1413.The authors declare they have no potential conflicts of interest concerning drugs, products, or services used in the study.The Editorial Board declares that the manuscript met the ICMJE recommendation for biomedical papers.Submitted: 6. 5. 2016Accepted: 16. 5. 2016.

  17. Aberrant methylation patterns affect the molecular pathogenesis of rheumatoid arthritis.

    Science.gov (United States)

    Lin, Yang; Luo, Zhengqiang

    2017-05-01

    This study aims to investigate DNA methylation signatures in fibroblast-like synoviocytes (FLS) from patients with rheumatoid arthritis (RA), and to explore the relationship with transcription factors (TFs) that help to distinguish RA from osteoarthritis (OA). Microarray dataset of GSE46346, including six FLS samples from patients with RA and five FLS samples from patients with OA, was downloaded from the Gene Expression Omnibus database. RA and OA samples were screened for differentially methylated loci (DMLs). The corresponding differentially methylated genes (DMGs) were identified, followed by Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway and Gene Ontology (GO) enrichment analysis. A transcriptional regulatory network was built with TFs and their corresponding DMGs. Overall, 280 hypomethylated loci and 561 hypermethylated loci were screened. Genes containing hypermethylated loci were enriched in pathways in cancer, ECM-receptor interaction, focal adhesion and neurotrophin signaling pathways. Genes containing hypomethylated loci were enriched in the neurotrophin signaling pathway. Moreover, we found that CCCTC-binding factor (CTCF), Yin Yang 1 (YY1), v-myc avian myelocytomatosis viral oncogene homolog (c-MYC), and early growth response 1 (EGR1) were important TFs in the transcriptional regulatory network. Therefore, DMGs might participate in the neurotrophin signaling pathway, pathways in cancer, ECM-receptor interaction and focal adhesion pathways in RA. Furthermore, CTCF, c-MYC, YY1, and EGR1 may play important roles in RA through regulating DMGs. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Association of Cognitive Impairment in Patients on 3-Hydroxy-3-Methyl-Glutaryl-CoA Reductase Inhibitors.

    Science.gov (United States)

    Roy, Satyajeet; Weinstock, Joshua Louis; Ishino, Allyse Sachiko; Benites, Jefferson Felix; Pop, Samantha Rachel; Perez, Christopher David; Gumbs, Edvard Adrian; Rosenbaum, Jennifer Ann; Roccato, Mary Kate; Shah, Hely; Contino, Gabriela; Hunter, Krystal

    2017-07-01

    Atherosclerotic cardiovascular diseases are the leading cause of death in the United States. A reduction in cholesterol with 3-hydroxy-3-methyl-glutaryl-CoA reductase inhibitors (statin) significantly reduces mortality and morbidity. Statins may be associated with cognitive impairment or dementia. Our aim was to study the association of cognitive impairment or dementia in patients who were on a statin. Electronic medical records of 3,500 adult patients in our suburban internal medicine office were reviewed. There were 720 (20.6%) patients in the statin treatment group. Dementia or cognitive impairment was an associated comorbid condition in 7.9% patients in the statin treatment group compared to 3.1% patients in the non-statin group (P impairment or dementia showed that among the age ranges of 51 years through 100 years, the patients in the statin treatment group had a higher prevalence of cognitive impairment or dementia compared to the non-statin group. In the statin treatment group, we found significantly higher prevalence of hyperlipidemia (86.3%), hypertension (69.6%), diabetes mellitus (36.0%), osteoarthritis (31.5%), coronary artery disease (26.1%), hypothyroidism (21.5%) and depression (19.3%) compared to the non-statin group (P impairment were on statin therapy compared to 18.9% patients who had no dementia or cognitive impairment and were on statin therapy (P impairment with each year increase in age (1.3 times), in women (2.2 times), African American race (2.7 times), non-consumption of moderate amount of alcohol (two times), diabetes mellitus (1.6 times), hypothyroidism (1.7 times), cerebrovascular accident (3.2 times), and other rheumatological diseases (1.8 times). The association of dementia or cognitive impairment was significantly higher in the patients who were on statin therapy compared to the patients who were not on a statin.

  19. Differential DNA methylation profiles in gynecological cancers and correlation with clinico-pathological data

    Directory of Open Access Journals (Sweden)

    Tsang Percy CK

    2006-08-01

    Full Text Available Abstract Background Epigenetic gene silencing is one of the major causes of carcinogenesis. Its widespread occurrence in cancer genome could inactivate many cellular pathways including DNA repair, cell cycle control, apoptosis, cell adherence, and detoxification. The abnormal promoter methylation might be a potential molecular marker for cancer management. Methods For rapid identification of potential targets for aberrant methylation in gynecological cancers, methylation status of the CpG islands of 34 genes was determined using pooled DNA approach and methylation-specific PCR. Pooled DNA mixture from each cancer type (50 cervical cancers, 50 endometrial cancers and 50 ovarian cancers was made to form three test samples. The corresponding normal DNA from the patients of each cancer type was also pooled to form the other three control samples. Methylated alleles detected in tumors, but not in normal controls, were indicative of aberrant methylation in tumors. Having identified potential markers, frequencies of methylation were further analyzed in individual samples. Markers identified are used to correlate with clinico-pathological data of tumors using χ2 or Fisher's exact test. Results APC and p16 were hypermethylated across the three cancers. MINT31 and PTEN were hypermethylated in cervical and ovarian cancers. Specific methylation was found in cervical cancer (including CDH1, DAPK, MGMT and MINT2, endometrial cancer (CASP8, CDH13, hMLH1 and p73, and ovarian cancer (BRCA1, p14, p15, RIZ1 and TMS1. The frequencies of occurrence of hypermethylation in 4 candidate genes in individual samples of each cancer type (DAPK, MGMT, p16 and PTEN in 127 cervical cancers; APC, CDH13, hMLH1 and p16 in 60 endometrial cancers; and BRCA1, p14, p16 and PTEN in 49 ovarian cancers were examined for further confirmation. Incidence varied among different genes and in different cancer types ranging from the lowest 8.2% (PTEN in ovarian cancer to the highest 56

  20. Differential DNA methylation profiles in gynecological cancers and correlation with clinico-pathological data

    International Nuclear Information System (INIS)

    Yang, Hui-Juan; Liu, Vincent WS; Wang, Yue; Tsang, Percy CK; Ngan, Hextan YS

    2006-01-01

    Epigenetic gene silencing is one of the major causes of carcinogenesis. Its widespread occurrence in cancer genome could inactivate many cellular pathways including DNA repair, cell cycle control, apoptosis, cell adherence, and detoxification. The abnormal promoter methylation might be a potential molecular marker for cancer management. For rapid identification of potential targets for aberrant methylation in gynecological cancers, methylation status of the CpG islands of 34 genes was determined using pooled DNA approach and methylation-specific PCR. Pooled DNA mixture from each cancer type (50 cervical cancers, 50 endometrial cancers and 50 ovarian cancers) was made to form three test samples. The corresponding normal DNA from the patients of each cancer type was also pooled to form the other three control samples. Methylated alleles detected in tumors, but not in normal controls, were indicative of aberrant methylation in tumors. Having identified potential markers, frequencies of methylation were further analyzed in individual samples. Markers identified are used to correlate with clinico-pathological data of tumors using χ 2 or Fisher's exact test. APC and p16 were hypermethylated across the three cancers. MINT31 and PTEN were hypermethylated in cervical and ovarian cancers. Specific methylation was found in cervical cancer (including CDH1, DAPK, MGMT and MINT2), endometrial cancer (CASP8, CDH13, hMLH1 and p73), and ovarian cancer (BRCA1, p14, p15, RIZ1 and TMS1). The frequencies of occurrence of hypermethylation in 4 candidate genes in individual samples of each cancer type (DAPK, MGMT, p16 and PTEN in 127 cervical cancers; APC, CDH13, hMLH1 and p16 in 60 endometrial cancers; and BRCA1, p14, p16 and PTEN in 49 ovarian cancers) were examined for further confirmation. Incidence varied among different genes and in different cancer types ranging from the lowest 8.2% (PTEN in ovarian cancer) to the highest 56.7% (DAPK in cervical cancer). Aberrant methylation

  1. Molecular mechanisms involved in the production of chromosomal aberrations. I. Utilization of Neurospora endonuclease for the study of aberration production in G2 stage of the cell cycle

    Energy Technology Data Exchange (ETDEWEB)

    Natarajan, A T; Obe, G [Rijksuniversiteit Leiden (Netherlands). J.A. Cohen Inst. voor Radiopathologie en Stralingsbescherming

    1978-10-01

    Chinese hamster ovary cells (CHO) were X-irradiated in G2 stage of the cell cycle and immediately treated, in the presence of inactivated Sendai virus, with Neurospora endonuclease (E.C. 3.1.4.), an enzyme which is specific for cleaving single-stranded DNA. With this treatment, the frequencies of all types of chromosome aberrations increased when compared to X-irradiated controls. These results are interpreted as due to the conversion of some of the X-ray induced single-stranded DNA breaks into double-strand breaks by this enzyme. Similar enhancement due to this enzyme was found following treatment with methyl methanesulfonate (MMS) and bleomycin, but not following UV and mitomycin C. Addition of Micrococcus endonuclease and Neurospora endonuclease to the cells did not alter the frequencies of aberrations induced by UV. The introduction of enzymes with specific DNA-repair function offers possibilities to probe into the molecular events involved in the formation of structural chromosome aberrations induced by different classes of physical and chemical mutagens.

  2. Genome-scale analysis of aberrant DNA methylation in colorectal cancer

    Science.gov (United States)

    Hinoue, Toshinori; Weisenberger, Daniel J.; Lange, Christopher P.E.; Shen, Hui; Byun, Hyang-Min; Van Den Berg, David; Malik, Simeen; Pan, Fei; Noushmehr, Houtan; van Dijk, Cornelis M.; Tollenaar, Rob A.E.M.; Laird, Peter W.

    2012-01-01

    Colorectal cancer (CRC) is a heterogeneous disease in which unique subtypes are characterized by distinct genetic and epigenetic alterations. Here we performed comprehensive genome-scale DNA methylation profiling of 125 colorectal tumors and 29 adjacent normal tissues. We identified four DNA methylation–based subgroups of CRC using model-based cluster analyses. Each subtype shows characteristic genetic and clinical features, indicating that they represent biologically distinct subgroups. A CIMP-high (CIMP-H) subgroup, which exhibits an exceptionally high frequency of cancer-specific DNA hypermethylation, is strongly associated with MLH1 DNA hypermethylation and the BRAFV600E mutation. A CIMP-low (CIMP-L) subgroup is enriched for KRAS mutations and characterized by DNA hypermethylation of a subset of CIMP-H-associated markers rather than a unique group of CpG islands. Non-CIMP tumors are separated into two distinct clusters. One non-CIMP subgroup is distinguished by a significantly higher frequency of TP53 mutations and frequent occurrence in the distal colon, while the tumors that belong to the fourth group exhibit a low frequency of both cancer-specific DNA hypermethylation and gene mutations and are significantly enriched for rectal tumors. Furthermore, we identified 112 genes that were down-regulated more than twofold in CIMP-H tumors together with promoter DNA hypermethylation. These represent ∼7% of genes that acquired promoter DNA methylation in CIMP-H tumors. Intriguingly, 48/112 genes were also transcriptionally down-regulated in non-CIMP subgroups, but this was not attributable to promoter DNA hypermethylation. Together, we identified four distinct DNA methylation subgroups of CRC and provided novel insight regarding the role of CIMP-specific DNA hypermethylation in gene silencing. PMID:21659424

  3. Aberrant innate immune activation following tissue injury impairs pancreatic regeneration.

    Directory of Open Access Journals (Sweden)

    Alexandra E Folias

    Full Text Available Normal tissue architecture is disrupted following injury, as resident tissue cells become damaged and immune cells are recruited to the site of injury. While injury and inflammation are critical to tissue remodeling, the inability to resolve this response can lead to the destructive complications of chronic inflammation. In the pancreas, acinar cells of the exocrine compartment respond to injury by transiently adopting characteristics of progenitor cells present during embryonic development. This process of de-differentiation creates a window where a mature and stable cell gains flexibility and is potentially permissive to changes in cellular fate. How de-differentiation can turn an acinar cell into another cell type (such as a pancreatic β-cell, or a cell with cancerous potential (as in cases of deregulated Kras activity is of interest to both the regenerative medicine and cancer communities. While it is known that inflammation and acinar de-differentiation increase following pancreatic injury, it remains unclear which immune cells are involved in this process. We used a combination of genetically modified mice, immunological blockade and cellular characterization to identify the immune cells that impact pancreatic regeneration in an in vivo model of pancreatitis. We identified the innate inflammatory response of macrophages and neutrophils as regulators of pancreatic regeneration. Under normal conditions, mild innate inflammation prompts a transient de-differentiation of acinar cells that readily dissipates to allow normal regeneration. However, non-resolving inflammation developed when elevated pancreatic levels of neutrophils producing interferon-γ increased iNOS levels and the pro-inflammatory response of macrophages. Pancreatic injury improved following in vivo macrophage depletion, iNOS inhibition as well as suppression of iNOS levels in macrophages via interferon-γ blockade, supporting the impairment in regeneration and the

  4. Methylation in hepatocellular carcinoma

    Directory of Open Access Journals (Sweden)

    Regina M. Santella

    2007-02-01

    Full Text Available

    The development of HCC is a complex, multistep, multistage process. The molecular pathogenesis of HCC appears to involve multiple genetic aberrations in the molecular control of hepatocyte proliferation, differentiation and death and the maintenance of genomic integrity. This process is influenced by the cumulative activation and inactivation of oncogenes, tumor suppressor genes and other genes. p53, a tumor suppressor gene, is the most frequently mutated gene in human cancers. There is also a striking sequence specific binding and induction of mutations by AFB1 at codon 249 of p53 in HCC.

    Epigenetic alterations are also involved in cancer development and progression. Methylation of promoter CpG islands is associated with inhibition of transcriptional initiation and permanent silencing of downstream genes.

    It is now known that most important tumor suppressor genes are inactivated, not only by mutations and deletions but also by promoter methylation. Several studies indicated that p16, p15, RASSF1A, MGMT, and GSTP1 promoter hypermethylation are prevalent in HCC. In addition, geographic variation in the methylation status of tumor DNA indicates that environmental factors may influence the frequent and concordant degree of hypermethylation in multiple genes in HCC and that epigeneticenvironmental interactions may be involved in hepatocarcinogenesis. We have found significant relationships between promoter methylation and AFB1-DNA adducts confirming the impact of environmental exposures on gene methylation.

    DNA isolated from serum or plasma of cancer patients frequently contains the same genetic and

  5. Chromatin structure and ionizing-radiation-induced chromosome aberrations

    International Nuclear Information System (INIS)

    Muehlmann-Diaz, M.C.

    1993-01-01

    The possible influence of chromatic structure or activity on chromosomal radiosensitivity was studied. A cell line was isolated which contained some 10 5 copies of an amplified plasmid in a single large mosquito artificial chromosome (MAC). This chromosome was hypersensitive to DNase I. Its radiosensitivity was some three fold greater than normal mosquito chromosomes in the same cell. In cultured human cells irradiated during G 0 , the initial breakage frequency in chromosome 4, 19 and the euchromatic and heterochromatic portions of the Y chromosome were measured over a wide range of doses by inducing Premature Chromosome Condensation (PCC) immediately after irradiation with Cs-137 gamma rays. No evidence was seen that Y heterochromatin or large fragments of it remained unbroken. The only significant deviation from the expected initial breakage frequency per Gy per unit length of chromosome was that observed for the euchromatic portion of the Y chromosome, with breakage nearly twice that expected. The development of aberrations involving X and Y chromosomes at the first mitosis after irradation was also studied. Normal female cells sustained about twice the frequency of aberrations involving X chromosomes for a dose of 7.3 Gy than the corresponding male cells. Fibroblasts from individuals with supernumerary X chromosomes did not show any further increase in X aberrations for this dos. The frequency of aberrations involving the heterochromatic portion of the long arm of the Y chromosome was about what would be expected for a similar length of autosome, but the euchromatic portion of the Y was about 3 times more radiosensitive per unit length. 5-Azacytidine treatment of cultured human female fibroblasts or fibroblasts from a 49,XXXXY individual, reduced the methylation of cytosine residues in DNA, and resulted in an increased chromosomal radiosensitivity in general, but it did not increase the frequency of aberrations involving the X chromosomes

  6. Genome-wide signatures of differential DNA methylation in pediatric acute lymphoblastic leukemia

    DEFF Research Database (Denmark)

    Nordlund, Jessica; Bäcklin, Christofer L; Wahlberg, Per

    2013-01-01

    BACKGROUND: Although aberrant DNA methylation has been observed previously in acute lymphoblastic leukemia (ALL), the patterns of differential methylation have not been comprehensively determined in all subtypes of ALL on a genome-wide scale. The relationship between DNA methylation, cytogenetic...... background, drug resistance and relapse in ALL is poorly understood. RESULTS: We surveyed the DNA methylation levels of 435,941 CpG sites in samples from 764 children at diagnosis of ALL and from 27 children at relapse. This survey uncovered four characteristic methylation signatures. First, compared...... cells at relapse, compared with matched samples at diagnosis. Analysis of relapse-free survival identified CpG sites with subtype-specific differential methylation that divided the patients into different risk groups, depending on their methylation status. CONCLUSIONS: Our results suggest an important...

  7. Genetic variants of methyl metabolizing enzymes and epigenetic regulators: Associations with promoter CpG island hypermethylation in colorectal cancer

    NARCIS (Netherlands)

    Vogel, S. de; Wouters, K.A.D.; Gottschalk, R.W.H.; Schooten, F.J. van; Goeij, A.F.P.M. de; Bruïne, A.P. de; Goldbohm, R.A.; Brandt, P.A. van den; Weijenberg, M.P.; Engeland, M. van

    2009-01-01

    Aberrant DNA methylation affects carcinogenesis of colorectal cancer. Folate metabolizing enzymes may influence the bioavailability of methyl groups, whereas DNA and histone methyltransferases are involved in epigenetic regulation of gene expression. We studied associations of genetic variants of

  8. Mismatch Negativity Encoding of Prediction Errors Predicts S-ketamine-Induced Cognitive Impairments

    Science.gov (United States)

    Schmidt, André; Bachmann, Rosilla; Kometer, Michael; Csomor, Philipp A; Stephan, Klaas E; Seifritz, Erich; Vollenweider, Franz X

    2012-01-01

    Psychotomimetics like the N-methyl--aspartate receptor (NMDAR) antagonist ketamine and the 5-hydroxytryptamine2A receptor (5-HT2AR) agonist psilocybin induce psychotic symptoms in healthy volunteers that resemble those of schizophrenia. Recent theories of psychosis posit that aberrant encoding of prediction errors (PE) may underlie the expression of psychotic symptoms. This study used a roving mismatch negativity (MMN) paradigm to investigate whether the encoding of PE is affected by pharmacological manipulation of NMDAR or 5-HT2AR, and whether the encoding of PE under placebo can be used to predict drug-induced symptoms. Using a double-blind within-subject placebo-controlled design, S-ketamine and psilocybin, respectively, were administrated to two groups of healthy subjects. Psychological alterations were assessed using a revised version of the Altered States of Consciousness (ASC-R) questionnaire. As an index of PE, we computed changes in MMN amplitudes as a function of the number of preceding standards (MMN memory trace effect) during a roving paradigm. S-ketamine, but not psilocybin, disrupted PE processing as expressed by a frontally disrupted MMN memory trace effect. Although both drugs produced positive-like symptoms, the extent of PE processing under placebo only correlated significantly with the severity of cognitive impairments induced by S-ketamine. Our results suggest that the NMDAR, but not the 5-HT2AR system, is implicated in PE processing during the MMN paradigm, and that aberrant PE signaling may contribute to the formation of cognitive impairments. The assessment of the MMN memory trace in schizophrenia may allow detecting early phases of the illness and might also serve to assess the efficacy of novel pharmacological treatments, in particular of cognitive impairments. PMID:22030715

  9. Optical Aberrations and Wavefront

    Directory of Open Access Journals (Sweden)

    Nihat Polat

    2014-08-01

    Full Text Available The deviation of light to create normal retinal image in the optical system is called aberration. Aberrations are divided two subgroup: low-order aberrations (defocus: spherical and cylindrical refractive errors and high-order aberrations (coma, spherical, trefoil, tetrafoil, quadrifoil, pentafoil, secondary astigmatism. Aberrations increase with aging. Spherical aberrations are compensated by positive corneal and negative lenticular spherical aberrations in youth. Total aberrations are elevated by positive corneal and positive lenticular spherical aberrations in elderly. In this study, we aimed to analyze the basic terms regarding optic aberrations which have gained significance recently. (Turk J Ophthalmol 2014; 44: 306-11

  10. Current trends in electrochemical sensing and biosensing of DNA methylation.

    Science.gov (United States)

    Krejcova, Ludmila; Richtera, Lukas; Hynek, David; Labuda, Jan; Adam, Vojtech

    2017-11-15

    DNA methylation plays an important role in physiological and pathological processes. Several genetic diseases and most malignancies tend to be associated with aberrant DNA methylation. Among other analytical methods, electrochemical approaches have been successfully employed for characterisation of DNA methylation patterns that are essential for the diagnosis and treatment of particular diseases. This article discusses current trends in the electrochemical sensing and biosensing of DNA methylation. Particularly, it provides an overview of applied electrode materials, electrode modifications and biorecognition elements applications with an emphasis on strategies that form the core DNA methylation detection approaches. The three main strategies as (i) bisulfite treatment, (ii) cleavage by restriction endonucleases, and (iii) immuno/affinity reaction were described in greater detail. Additionally, the availability of the reviewed platforms for early cancer diagnosis and the approval of methylation inhibitors for anticancer therapy were discussed. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. The Clinical Implications of Methylated p15 and p73 Genes in Adult Acute Lymphoblastic Leukemia

    International Nuclear Information System (INIS)

    ABD EL-HAMID, Th.M.; SHERISHER, M.A.; MOSSALLAM, Gh.I.

    2010-01-01

    Aberrant methylation of promoter associated CpG islands is an epigenetic modification of DNA which is associated with gene silencing. It plays an important role in the leukemia pathogenesis. This phenomenon is frequently observed in acute lymphoblastic leukemia (ALL) and results in the functional inactivation of its associated genes. The aim of this study is to investigate the frequency and the prognostic impact of p15 and p73 genes methylation in adult acute lymphoblastic leukemia patients. Patients and Methods: Methylation-specific polymerase chain reaction (PCR) was used to analyze methylation of the p15 and p73 genes in 51 newly diagnosed adult ALL patients. Results: The methylation frequencies of p15 and p73 genes at diagnosis were 41.2% and 27.5% respectively, while concomitant methylation was detected in 14% of the patients. Concomitant methylation of p15 and p73 genes was associated with significant lower rate of CR compared to patients without methylation (57% versus 90%), p=0.008. Overall survival (OS) was not affected by p15 methylation, but was poorer with p73 methylation and the difference was near significant (p=0.059). For patients without meyhylation, the survival benefit was significant when compared to patients with p15, p73 or both genes methylation (p=0.047). The leukemia free survival was not affected by the methylation status of single gene p15 or p73, but tended to be worse in patients with methylated p15, p73 or both genes when compared to patients without methylation (p= 0.08). Conclusion: Aberrant p73 promoter methylation is a potential prognostic factor in adult ALL patients. P15 methylation is frequent in Egyptian adult ALL patients, its concomitant methylation with p73 is of poor prognostic significance. Identification of these molecular targets improve risk assessment and selection of appropriate therapy.

  12. Growth rate of late passage sarcoma cells is independent of epigenetic events but dependent on the amount of chromosomal aberrations

    International Nuclear Information System (INIS)

    Becerikli, Mustafa; Jacobsen, Frank; Rittig, Andrea; Köhne, Wiebke; Nambiar, Sandeep; Mirmohammadsadegh, Alireza; Stricker, Ingo; Tannapfel, Andrea; Wieczorek, Stefan; Epplen, Joerg Thomas; Tilkorn, Daniel; Steinstraesser, Lars

    2013-01-01

    Soft tissue sarcomas (STS) are characterized by co-participation of several epigenetic and genetic events during tumorigenesis. Having bypassed cellular senescence barriers during oncogenic transformation, the factors further affecting growth rate of STS cells remain poorly understood. Therefore, we investigated the role of gene silencing (DNA promoter methylation of LINE-1, PTEN), genetic aberrations (karyotype, KRAS and BRAF mutations) as well as their contribution to the proliferation rate and migratory potential that underlies “initial” and “final” passage sarcoma cells. Three different cell lines were used, SW982 (synovial sarcoma), U2197 (malignant fibrous histiocytoma (MFH)) and HT1080 (fibrosarcoma). Increased proliferative potential of final passage STS cells was not associated with significant differences in methylation (LINE-1, PTEN) and mutation status (KRAS, BRAF), but it was dependent on the amount of chromosomal aberrations. Collectively, our data demonstrate that these fairly differentiated/advanced cancer cell lines have still the potential to gain an additional spontaneous growth benefit without external influences and that maintenance of increased proliferative potential towards longevity of STS cells (having crossed senescence barriers) may be independent of overt epigenetic alterations. -- Highlights: Increased proliferative potential of late passage STS cells was: • Not associated with epigenetic changes (methylation changes at LINE-1, PTEN). • Not associated with mutation status of KRAS, BRAF. • Dependent on presence/absence of chromosomal aberrations

  13. Repressive but not activating epigenetic modifications are aberrant on the inactive X chromosome in live cloned cattle.

    Science.gov (United States)

    Geng-Sheng, Cao; Yu, Gao; Kun, Wang; Fang-Rong, Ding; Ning, Li

    2009-08-01

    X inactivation is the process of a chromosome-wide silencing of the majority of genes on the X chromosome during early mammalian development. This process may be aberrant in cloned animals. Here we show that repressive modifications, such as methylation of DNA, and the presence of methylated histones, H3K9me2 and H3K27me3, exhibit distinct aberrance on the inactive X chromosome in live clones. In contrast, H3K4me3, an active gene marker, is obviously missing from the inactive X chromosome in all cattle studied. This suggests that the disappearance of active histone modifications (H3K4me3) seems to be more important for X inactivation than deposition of marks associated with heterochromatin (DNA methylation, H3K27me3 and H3K9me2). It also implies that even apparently normal clones may have subtle abnormalities in repressive, but not activating epigenetic modifications on the inactive X when they survive to term. We also found that the histone H3 methylations were enriched and co-localized at q21-31 of the active X chromosome, which may be associated with an abundance of LINE1 repeat elements. © 2009 The Authors. Journal compilation © 2009 Japanese Society of Developmental Biologists.

  14. BRAF mutation-specific promoter methylation of FOX genes in colorectal cancer

    NARCIS (Netherlands)

    E.H.J. van Roon (Eddy); A. Boot (Arnoud); A.A. Dihal (Ashwin); R.F. Ernst (Robert); T. van Wezel (Tom); H. Morreau (Hans); J.M. Boer (Judith)

    2013-01-01

    textabstractBackground: Cancer-specific hypermethylation of (promoter) CpG islands is common during the tumorigenesis of colon cancer. Although associations between certain genetic aberrations, such as BRAF mutation and microsatellite instability, and the CpG island methylator phenotype (CIMP), have

  15. Genome-wide DNA methylation sequencing reveals miR-663a is a novel epimutation candidate in CIMP-high endometrial cancer

    OpenAIRE

    Yanokura, Megumi; Banno, Kouji; Adachi, Masataka; Aoki, Daisuke; Abe, Kuniya

    2017-01-01

    Aberrant DNA methylation is widely observed in many cancers. Concurrent DNA methylation of multiple genes occurs in endometrial cancer and is referred to as the CpG island methylator phenotype (CIMP). However, the features and causes of CIMP-positive endometrial cancer are not well understood. To investigate DNA methylation features characteristic to CIMP-positive endometrial cancer, we first classified samples from 25 patients with endometrial cancer based on the methylation status of three ...

  16. Genome-wide DNA methylation sequencing reveals miR-663a is a novel epimutation candidate in CIMP-high endometrial cancer.

    Science.gov (United States)

    Yanokura, Megumi; Banno, Kouji; Adachi, Masataka; Aoki, Daisuke; Abe, Kuniya

    2017-06-01

    Aberrant DNA methylation is widely observed in many cancers. Concurrent DNA methylation of multiple genes occurs in endometrial cancer and is referred to as the CpG island methylator phenotype (CIMP). However, the features and causes of CIMP-positive endometrial cancer are not well understood. To investigate DNA methylation features characteristic to CIMP-positive endometrial cancer, we first classified samples from 25 patients with endometrial cancer based on the methylation status of three genes, i.e. MLH1, CDH1 (E-cadherin) and APC: CIMP-high (CIMP-H, 2/25, 8.0%), CIMP-low (CIMP-L, 7/25, 28.0%) and CIMP-negative (CIMP(-), 16/25, 64.0%). We then selected two samples each from CIMP-H and CIMP(-) classes, and analyzed DNA methylation status of both normal (peripheral blood cells: PBCs) and cancer tissues by genome-wide, targeted bisulfite sequencing. Genomes of the CIMP-H cancer tissues were significantly hypermethylated compared to those of the CIMP(-). Surprisingly, in normal tissues of the CIMP-H patients, promoter region of the miR-663a locus is hypermethylated relative to CIMP(-) samples. Consistent with this finding, miR-663a expression was lower in the CIMP-H PBCs than in the CIMP(-) PBCs. The same region of the miR663a locus is found to be highly methylated in cancer tissues of both CIMP-H and CIMP(-) cases. This is the first report showing that aberrant DNA methylation of the miR-663a promoter can occur in normal tissue of the cancer patients, suggesting a possible link between this epigenetic abnormality and endometrial cancer. This raises the possibility that the hypermethylation of the miR-663a promoter represents an epimutation associated with the CIMP-H endometrial cancers. Based on these findings, relationship of the aberrant DNA methylation and CIMP-H phenotype is discussed.

  17. Analysis of aberrant methylation on promoter sequences of tumor suppressor genes and total DNA in sputum samples: a promising tool for early detection of COPD and lung cancer in smokers

    Directory of Open Access Journals (Sweden)

    Guzmán Leda

    2012-07-01

    Full Text Available Abstract Background Chronic obstructive pulmonary disease (COPD is a disorder associated to cigarette smoke and lung cancer (LC. Since epigenetic changes in oncogenes and tumor suppressor genes (TSGs are clearly important in the development of LC. In this study, we hypothesize that tobacco smokers are susceptible for methylation in the promoter region of TSGs in airway epithelial cells when compared with non-smoker subjects. The purpose of this study was to investigate the usefulness of detection of genes promoter methylation in sputum specimens, as a complementary tool to identify LC biomarkers among smokers with early COPD. Methods We determined the amount of DNA in induced sputum from patients with COPD (n = 23, LC (n = 26, as well as in healthy subjects (CTR (n = 33, using a commercial kit for DNA purification, followed by absorbance measurement at 260 nm. The frequency of CDKN2A, CDH1 and MGMT promoter methylation in the same groups was determined by methylation-specific polymerase chain reaction (MSP. The Fisher’s exact test was employed to compare frequency of results between different groups. Results DNA concentration was 7.4 and 5.8 times higher in LC and COPD compared to the (CTR (p  Conclusions We provide evidence that aberrant methylation of TSGs in samples of induced sputum is a useful tool for early diagnostic of lung diseases (LC and COPD in smoker subjects. Virtual slides The abstract MUST finish with the following text: Virtual Slides The virtual slide(s for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/1127865005664160

  18. Different Aberrant Mentalizing Networks in Males and Females with Autism Spectrum Disorders: Evidence from Resting-State Functional Magnetic Resonance Imaging

    Science.gov (United States)

    Yang, Jie; Lee, Jonathan

    2018-01-01

    Previous studies have found that individuals with autism spectrum disorders show impairments in mentalizing processes and aberrant brain activity compared with typically developing participants. However, the findings are mainly from male participants and the aberrant effects in autism spectrum disorder females and sex differences are still…

  19. Quantitative promoter methylation analysis of multiple cancer-related genes in renal cell tumors

    International Nuclear Information System (INIS)

    Costa, Vera L; Henrique, Rui; Ribeiro, Franclim R; Pinto, Mafalda; Oliveira, Jorge; Lobo, Francisco; Teixeira, Manuel R; Jerónimo, Carmen

    2007-01-01

    Aberrant promoter hypermethylation of cancer-associated genes occurs frequently during carcinogenesis and may serve as a cancer biomarker. In this study we aimed at defining a quantitative gene promoter methylation panel that might identify the most prevalent types of renal cell tumors. A panel of 18 gene promoters was assessed by quantitative methylation-specific PCR (QMSP) in 85 primarily resected renal tumors representing the four major histologic subtypes (52 clear cell (ccRCC), 13 papillary (pRCC), 10 chromophobe (chRCC), and 10 oncocytomas) and 62 paired normal tissue samples. After genomic DNA isolation and sodium bisulfite modification, methylation levels were determined and correlated with standard clinicopathological parameters. Significant differences in methylation levels among the four subtypes of renal tumors were found for CDH1 (p = 0.0007), PTGS2 (p = 0.002), and RASSF1A (p = 0.0001). CDH1 hypermethylation levels were significantly higher in ccRCC compared to chRCC and oncocytoma (p = 0.00016 and p = 0.0034, respectively), whereas PTGS2 methylation levels were significantly higher in ccRCC compared to pRCC (p = 0.004). RASSF1A methylation levels were significantly higher in pRCC than in normal tissue (p = 0.035). In pRCC, CDH1 and RASSF1A methylation levels were inversely correlated with tumor stage (p = 0.031) and nuclear grade (p = 0.022), respectively. The major subtypes of renal epithelial neoplasms display differential aberrant CDH1, PTGS2, and RASSF1A promoter methylation levels. This gene panel might contribute to a more accurate discrimination among common renal tumors, improving preoperative assessment and therapeutic decision-making in patients harboring suspicious renal masses

  20. DNA methylation, microRNAs, and their crosstalk as potential biomarkers in hepatocellular carcinoma

    Science.gov (United States)

    Anwar, Sumadi Lukman; Lehmann, Ulrich

    2014-01-01

    Epigenetic alterations have been identified as a major characteristic in human cancers. Advances in the field of epigenetics have contributed significantly in refining our knowledge of molecular mechanisms underlying malignant transformation. DNA methylation and microRNA expression are epigenetic mechanisms that are widely altered in human cancers including hepatocellular carcinoma (HCC), the third leading cause of cancer related mortality worldwide. Both DNA methylation and microRNA expression patterns are regulated in developmental stage specific-, cell type specific- and tissue-specific manner. The aberrations are inferred in the maintenance of cancer stem cells and in clonal cell evolution during carcinogenesis. The availability of genome-wide technologies for DNA methylation and microRNA profiling has revolutionized the field of epigenetics and led to the discovery of a number of epigenetically silenced microRNAs in cancerous cells and primary tissues. Dysregulation of these microRNAs affects several key signalling pathways in hepatocarcinogenesis suggesting that modulation of DNA methylation and/or microRNA expression can serve as new therapeutic targets for HCC. Accumulative evidence shows that aberrant DNA methylation of certain microRNA genes is an event specifically found in HCC which correlates with unfavorable outcomes. Therefore, it can potentially serve as a biomarker for detection as well as for prognosis, monitoring and predicting therapeutic responses in HCC. PMID:24976726

  1. A CpG island methylator phenotype of colorectal cancer that is contiguous with conventional adenomas, but not serrated polyps.

    Science.gov (United States)

    Hokazono, Koji; Ueki, Takashi; Nagayoshi, Kinuko; Nishioka, Yasunobu; Hatae, Tatsunobu; Koga, Yutaka; Hirahashi, Minako; Oda, Yoshinao; Tanaka, Masao

    2014-11-01

    A subset of colorectal cancers (CRCs) harbor the CpG island methylator phenotype (CIMP), with concurrent multiple promoter hypermethylation of tumor-related genes. A serrated pathway in which CIMP is developed from serrated polyps is proposed. The present study characterized CIMP and morphologically examined precursor lesions of CIMP. In total, 104 CRCs treated between January 1996 and December 2004 were examined. Aberrant promoter methylation of 15 cancer-related genes was analyzed. CIMP status was classified according to the number of methylated genes and was correlated with the clinicopathological features, including the concomitant polyps in and around the tumors. The frequency of aberrant methylation in each CRC showed a bimodal pattern, and the CRCs were classified as CIMP-high (CIMP-H), CIMP-low (CIMP-L) and CIMP-negative (CIMP-N). CIMP-H was associated with aberrant methylation of MLH1 (P=0.005) and with an improved recurrence-free survival (RFS) rate following curative resection compared with CIMP-L/N (five-year RFS rate, 93.8 vs. 67.1%; P=0.044), while CIMP-N tumors were associated with frequent distant metastases at diagnosis (P=0.023). No concomitant serrated lesions were present in the tumors, whereas conventional adenoma was contiguous with 11 (10.6%) of 104 CRCs, including four CIMP-H CRCs. CIMP-H was classified in CRCs by a novel CIMP marker panel and the presence of concomitant tumors revealed that certain CIMP-H CRCs may have arisen from conventional adenomas.

  2. The Fine LINE: Methylation Drawing the Cancer Landscape

    Directory of Open Access Journals (Sweden)

    Isabelle R. Miousse

    2015-01-01

    Full Text Available LINE-1 (L1 is the most abundant mammalian transposable element that comprises nearly 20% of the genome, and nearly half of the mammalian genome has stemmed from L1-mediated mobilization. Expression and retrotransposition of L1 are suppressed by complex mechanisms, where the key role belongs to DNA methylation. Alterations in L1 methylation may lead to aberrant expression of L1 and have been described in numerous diseases. Accumulating evidence clearly indicates that loss of global DNA methylation observed in cancer development and progression is tightly associated with hypomethylation of L1 elements. Significant progress achieved in the last several years suggests that such parameters as L1 methylation status can be potentially utilized as clinical biomarkers for determination of the disease stage and in predicting the disease-free survival in cancer patients. In this paper, we summarize the current knowledge on L1 methylation, with specific emphasis given to success and challenges on the way of introduction of L1 into clinical practice.

  3. Genomic and Epigenomic Aberrations in Esophageal Squamous Cell Carcinoma and Implications for Patients

    Science.gov (United States)

    Lin, De-Chen; Wang, Ming-Rong; Koeffler, H. Phillip

    2018-01-01

    Esophageal squamous cell carcinoma (ESCC) is a common malignancy without effective therapy. The exomes of more than 600 ESCCs have been sequenced in the past 4 years, and numerous key aberrations have been identified. Recently, researchers reported both inter- and intratumor heterogeneity. Although these are interesting observations, their clinical implications are unclear due to the limited number of samples profiled. Epigenomic alterations, such as changes in DNA methylation, histone acetylation, and RNA editing, also have been observed in ESCCs. However, it is not clear what proportion of ESCC cells carry these epigenomic aberrations or how they contribute to tumor development. We review the genomic and epigenomic characteristics of ESCCs, with a focus on emerging themes. We discuss their clinical implications and future research directions. PMID:28757263

  4. γ-radiation induces cellular sensitivity and aberrant methylation in human tumor cell lines.

    Science.gov (United States)

    Kumar, Ashok; Rai, Padmalatha S; Upadhya, Raghavendra; Vishwanatha; Prasada, K Shama; Rao, B S Satish; Satyamoorthy, Kapettu

    2011-11-01

    Ionizing radiation induces cellular damage through both direct and indirect mechanisms, which may include effects from epigenetic changes. The purpose of this study was to determine the effect of ionizing radiation on DNA methylation patterns that may be associated with altered gene expression. Sixteen human tumor cell lines originating from various cancers were initially tested for radiation sensitivity by irradiating them with γ-radiation in vitro and subsequently, radiation sensitive and resistant cell lines were treated with different doses of a demethylating agent, 5-Aza-2'-Deoxycytidine (5-aza-dC) and a chromatin modifier, Trichostatin-A (TSA). Survival of these cell lines was measured using 3-(4, 5-Dimethylthiazol- 2-yl)-2, 5-diphenyltetrazolium (MTT) and clonogenic assays. The effect of radiation on global DNA methylation was measured using reverse phase high performance liquid chromatography (RP-HPLC). The transcription response of methylated gene promoters, from cyclin-dependent kinase inhibitor 2A (p16(INK4a)) and ataxia telangiectasia mutated (ATM) genes, to radiation was measured using a luciferase reporter assay. γ-radiation resistant (SiHa and MDAMB453) and sensitive (SaOS2 and WM115) tumor cell lines were examined for the relationship between radiation sensitivity and DNA methylation. Treatment of cells with 5-aza-dC and TSA prior to irradiation enhanced DNA strand breaks, G2/M phase arrest, apoptosis and cell death. Exposure to γ-radiation led to global demethylation in a time-dependent manner in tumor cells in relation to resistance and sensitivity to radiation with concomitant activation of p16(INK4a) and ATM gene promoters. These results provide important information on alterations in DNA methylation as one of the determinants of radiation effects, which may be associated with altered gene expression. Our results may help in delineating the mechanisms of radiation resistance in tumor cells, which can influence diagnosis, prognosis and

  5. Quantitative promoter methylation analysis of multiple cancer-related genes in renal cell tumors

    Directory of Open Access Journals (Sweden)

    Oliveira Jorge

    2007-07-01

    Full Text Available Abstract Background Aberrant promoter hypermethylation of cancer-associated genes occurs frequently during carcinogenesis and may serve as a cancer biomarker. In this study we aimed at defining a quantitative gene promoter methylation panel that might identify the most prevalent types of renal cell tumors. Methods A panel of 18 gene promoters was assessed by quantitative methylation-specific PCR (QMSP in 85 primarily resected renal tumors representing the four major histologic subtypes (52 clear cell (ccRCC, 13 papillary (pRCC, 10 chromophobe (chRCC, and 10 oncocytomas and 62 paired normal tissue samples. After genomic DNA isolation and sodium bisulfite modification, methylation levels were determined and correlated with standard clinicopathological parameters. Results Significant differences in methylation levels among the four subtypes of renal tumors were found for CDH1 (p = 0.0007, PTGS2 (p = 0.002, and RASSF1A (p = 0.0001. CDH1 hypermethylation levels were significantly higher in ccRCC compared to chRCC and oncocytoma (p = 0.00016 and p = 0.0034, respectively, whereas PTGS2 methylation levels were significantly higher in ccRCC compared to pRCC (p = 0.004. RASSF1A methylation levels were significantly higher in pRCC than in normal tissue (p = 0.035. In pRCC, CDH1 and RASSF1A methylation levels were inversely correlated with tumor stage (p = 0.031 and nuclear grade (p = 0.022, respectively. Conclusion The major subtypes of renal epithelial neoplasms display differential aberrant CDH1, PTGS2, and RASSF1A promoter methylation levels. This gene panel might contribute to a more accurate discrimination among common renal tumors, improving preoperative assessment and therapeutic decision-making in patients harboring suspicious renal masses.

  6. [Neuroepigenetics: Desoxyribonucleic acid methylation in Alzheimer's disease and other dementias].

    Science.gov (United States)

    Mendioroz Iriarte, Maite; Pulido Fontes, Laura; Méndez-López, Iván

    2015-05-21

    DNA methylation is an epigenetic mechanism that controls gene expression. In Alzheimer's disease (AD), global DNA hypomethylation of neurons has been described in the human cerebral cortex. Moreover, several variants in the methylation pattern of candidate genes have been identified in brain tissue when comparing AD patients and controls. Specifically, DNA methylation changes have been observed in PSEN1 and APOE, both genes previously being involved in the pathophysiology of AD. In other degenerative dementias, methylation variants have also been described in key genes, such as hypomethylation of the SNCA gene in Parkinson's disease and dementia with Lewy bodies or hypermethylation of the GRN gene promoter in frontotemporal dementia. The finding of aberrant DNA methylation patterns shared by brain tissue and peripheral blood opens the door to use those variants as epigenetic biomarkers in the diagnosis of neurodegenerative diseases. Copyright © 2014 Elsevier España, S.L.U. All rights reserved.

  7. DNA methylation in states of cell physiology and pathology.

    Directory of Open Access Journals (Sweden)

    Lech Chyczewski

    2007-10-01

    Full Text Available DNA methylation is one of epigenetic mechanisms regulating gene expression. The methylation pattern is determined during embryogenesis and passed over to differentiating cells and tissues. In a normal cell, a significant degree of methylation is characteristic for extragenic DNA (cytosine within the CG dinucleotide while CpG islands located in gene promoters are unmethylated, except for inactive genes of the X chromosome and the genes subjected to genomic imprinting. The changes in the methylation pattern, which may appear as the organism age and in early stages of cancerogenesis, may lead to the silencing of over ninety endogenic genes. It has been found, that these disorders consist not only of the methylation of CpG islands, which are normally unmethylated, but also of the methylation of other dinucleotides, e.g. CpA. Such methylation has been observed in non-small cell lung cancer, in three regions of the exon 5 of the p53 gene (so-called "non-CpG" methylation. The knowledge of a normal methylation process and its aberrations appeared to be useful while searching for new markers enabling an early detection of cancer. With the application of the Real-Time PCR technique (using primers for methylated and unmethylated sequences five new genes which are potential biomarkers of lung cancer have been presented.

  8. Frequent silencing of the candidate tumor suppressor TRIM58 by promoter methylation in early-stage lung adenocarcinoma.

    Science.gov (United States)

    Kajiura, Koichiro; Masuda, Kiyoshi; Naruto, Takuya; Kohmoto, Tomohiro; Watabnabe, Miki; Tsuboi, Mitsuhiro; Takizawa, Hiromitsu; Kondo, Kazuya; Tangoku, Akira; Imoto, Issei

    2017-01-10

    In this study, we aimed to identify novel drivers that would be epigenetically altered through aberrant methylation in early-stage lung adenocarcinoma (LADC), regardless of the presence or absence of tobacco smoking-induced epigenetic field defects. Through genome-wide screening for aberrantly methylated CpG islands (CGIs) in 12 clinically uniform, stage-I LADC cases affecting six non-smokers and six smokers, we identified candidate tumor-suppressor genes (TSGs) inactivated by hypermethylation. Through systematic expression analyses of those candidates in panels of additional tumor samples and cell lines treated or not treated with 5-aza-deoxycitidine followed by validation analyses of cancer-specific silencing by CGI hypermethylation using a public database, we identified TRIM58 as the most prominent candidate for TSG. TRIM58 was robustly silenced by hypermethylation even in early-stage primary LADC, and the restoration of TRIM58 expression in LADC cell lines inhibited cell growth in vitro and in vivo in anchorage-dependent and -independent manners. Our findings suggest that aberrant inactivation of TRIM58 consequent to CGI hypermethylation might stimulate the early carcinogenesis of LADC regardless of smoking status; furthermore, TRIM58 methylation might be a possible early diagnostic and epigenetic therapeutic target in LADC.

  9. Aberrantly methylated DNA as a biomarker in breast cancer

    DEFF Research Database (Denmark)

    Kristiansen, Søren; Jørgensen, Lars Mønster; Guldberg, Per

    2013-01-01

    hypermethylation events, their use as tumor biomarkers is usually not hampered by analytical signals from normal cells, which is a general problem for existing protein tumor markers used for clinical assessment of breast cancer. There is accumulating evidence that DNA-methylation changes in breast cancer patients...... occur early during tumorigenesis. This may open up for effective screening, and analysis of blood or nipple aspirate may later help in diagnosing breast cancer. As a more detailed molecular characterization of different types of breast cancer becomes available, the ability to divide patients...... as a versatile biomarker tool for screening, diagnosis, prognosis and monitoring of breast cancer. Standardization of methods and biomarker panels will be required to fully exploit this clinical potential....

  10. Genome-wide DNA methylation analysis of transient neonatal diabetes type 1 patients with mutations in ZFP57.

    Science.gov (United States)

    Bak, Mads; Boonen, Susanne E; Dahl, Christina; Hahnemann, Johanne M D; Mackay, Deborah J D G; Tümer, Zeynep; Grønskov, Karen; Temple, I Karen; Guldberg, Per; Tommerup, Niels

    2016-04-14

    Transient neonatal diabetes mellitus 1 (TNDM1) is a rare imprinting disorder characterized by intrautering growth retardation and diabetes mellitus usually presenting within the first six weeks of life and resolves by the age of 18 months. However, patients have an increased risk of developing diabetes mellitus type 2 later in life. Transient neonatal diabetes mellitus 1 is caused by overexpression of the maternally imprinted genes PLAGL1 and HYMAI on chromosome 6q24. One of the mechanisms leading to overexpression of the locus is hypomethylation of the maternal allele of PLAGL1 and HYMAI. A subset of patients with maternal hypomethylation at PLAGL1 have hypomethylation at additional imprinted loci throughout the genome, including GRB10, ZIM2 (PEG3), MEST (PEG1), KCNQ1OT1 and NESPAS (GNAS-AS1). About half of the TNDM1 patients carry mutations in ZFP57, a transcription factor involved in establishment and maintenance of methylation of imprinted loci. Our objective was to investigate whether additional regions are aberrantly methylated in ZFP57 mutation carriers. Genome-wide DNA methylation analysis was performed on four individuals with homozygous or compound heterozygous ZFP57 mutations, three relatives with heterozygous ZFP57 mutations and five controls. Methylation status of selected regions showing aberrant methylation in the patients was verified using bisulfite-sequencing. We found large variability among the patients concerning the number and identity of the differentially methylated regions, but more than 60 regions were aberrantly methylated in two or more patients and a novel region within PPP1R13L was found to be hypomethylated in all the patients. The hypomethylated regions in common between the patients are enriched for the ZFP57 DNA binding motif. We have expanded the epimutational spectrum of TNDM1 associated with ZFP57 mutations and found one novel region within PPP1R13L which is hypomethylated in all TNDM1 patients included in this study. Functional

  11. Aberrant Promoter Hypermethylation of RASSF Family Members in Merkel Cell Carcinoma

    Science.gov (United States)

    Richter, Antje M.; Haag, Tanja; Walesch, Sara; Herrmann-Trost, Peter; Marsch, Wolfgang C.; Kutzner, Heinz; Helmbold, Peter; Dammann, Reinhard H.

    2013-01-01

    Merkel cell carcinoma (MCC) is one of the most aggressive cancers of the skin. RASSFs are a family of tumor suppressors that are frequently inactivated by promoter hypermethylation in various cancers. We studied CpG island promoter hypermethylation in MCC of RASSF2, RASSF5A, RASSF5C and RASSF10 by combined bisulfite restriction analysis (COBRA) in MCC samples and control tissue. We found RASSF2 to be methylated in three out of 43 (7%), RASSF5A in 17 out of 39 (44%, but also 43% in normal tissue), RASSF5C in two out of 26 (8%) and RASSF10 in 19 out of 84 (23%) of the cancer samples. No correlation between the methylation status of the analyzed RASSFs or between RASSF methylation and MCC characteristics (primary versus metastatic, Merkel cell polyoma virus infection, age, sex) was found. Our results show that RASSF2, RASSF5C and RASSF10 are aberrantly hypermethylated in MCC to a varying degree and this might contribute to Merkel cell carcinogenesis. PMID:24252868

  12. Aberrant Promoter Hypermethylation of RASSF Family Members in Merkel Cell Carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Richter, Antje M.; Haag, Tanja; Walesch, Sara [Institute for Genetics, University of Giessen, Giessen D-35392 (Germany); Herrmann-Trost, Peter [Institute of Pathology, Halle D-06097 (Germany); Marsch, Wolfgang C. [Department of Dermatology, University of Halle, Halle D-06120 (Germany); Kutzner, Heinz [DermPath, Friedrichshafen D-88048 (Germany); Helmbold, Peter [Department of Dermatology, University of Heidelberg, Heidelberg D-69120 (Germany); Dammann, Reinhard H., E-mail: Reinhard.Dammann@gen.bio.uni-giessen.de [Institute for Genetics, University of Giessen, Giessen D-35392 (Germany)

    2013-11-18

    Merkel cell carcinoma (MCC) is one of the most aggressive cancers of the skin. RASSFs are a family of tumor suppressors that are frequently inactivated by promoter hypermethylation in various cancers. We studied CpG island promoter hypermethylation in MCC of RASSF2, RASSF5A, RASSF5C and RASSF10 by combined bisulfite restriction analysis (COBRA) in MCC samples and control tissue. We found RASSF2 to be methylated in three out of 43 (7%), RASSF5A in 17 out of 39 (44%, but also 43% in normal tissue), RASSF5C in two out of 26 (8%) and RASSF10 in 19 out of 84 (23%) of the cancer samples. No correlation between the methylation status of the analyzed RASSFs or between RASSF methylation and MCC characteristics (primary versus metastatic, Merkel cell polyoma virus infection, age, sex) was found. Our results show that RASSF2, RASSF5C and RASSF10 are aberrantly hypermethylated in MCC to a varying degree and this might contribute to Merkel cell carcinogenesis.

  13. Aberrant Promoter Hypermethylation of RASSF Family Members in Merkel Cell Carcinoma

    International Nuclear Information System (INIS)

    Richter, Antje M.; Haag, Tanja; Walesch, Sara; Herrmann-Trost, Peter; Marsch, Wolfgang C.; Kutzner, Heinz; Helmbold, Peter; Dammann, Reinhard H.

    2013-01-01

    Merkel cell carcinoma (MCC) is one of the most aggressive cancers of the skin. RASSFs are a family of tumor suppressors that are frequently inactivated by promoter hypermethylation in various cancers. We studied CpG island promoter hypermethylation in MCC of RASSF2, RASSF5A, RASSF5C and RASSF10 by combined bisulfite restriction analysis (COBRA) in MCC samples and control tissue. We found RASSF2 to be methylated in three out of 43 (7%), RASSF5A in 17 out of 39 (44%, but also 43% in normal tissue), RASSF5C in two out of 26 (8%) and RASSF10 in 19 out of 84 (23%) of the cancer samples. No correlation between the methylation status of the analyzed RASSFs or between RASSF methylation and MCC characteristics (primary versus metastatic, Merkel cell polyoma virus infection, age, sex) was found. Our results show that RASSF2, RASSF5C and RASSF10 are aberrantly hypermethylated in MCC to a varying degree and this might contribute to Merkel cell carcinogenesis

  14. Determination of aberration center of Ronchigram for automated aberration correctors in scanning transmission electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Sannomiya, Takumi, E-mail: sannomiya@mtl.titech.ac.jp [Tokyo Institute of Technology, Ookayama, Tokyo (Japan); Sawada, Hidetaka; Nakamichi, Tomohiro; Hosokawa, Fumio [JEOL Limited, Akishima, Tokyo (Japan); Nakamura, Yoshio; Tanishiro, Yasumasa; Takayanagi, Kunio [Tokyo Institute of Technology, Ookayama, Tokyo (Japan)

    2013-12-15

    A generic method to determine the aberration center is established, which can be utilized for aberration calculation and axis alignment for aberration corrected electron microscopes. In this method, decentering induced secondary aberrations from inherent primary aberrations are minimized to find the appropriate axis center. The fitness function to find the optimal decentering vector for the axis was defined as a sum of decentering induced secondary aberrations with properly distributed weight values according to the aberration order. Since the appropriate decentering vector is determined from the aberration values calculated at an arbitrary center axis, only one aberration measurement is in principle required to find the center, resulting in /very fast center search. This approach was tested for the Ronchigram based aberration calculation method for aberration corrected scanning transmission electron microscopy. Both in simulation and in experiments, the center search was confirmed to work well although the convergence to find the best axis becomes slower with larger primary aberrations. Such aberration center determination is expected to fully automatize the aberration correction procedures, which used to require pre-alignment of experienced users. This approach is also applicable to automated aperture positioning. - Highlights: • A generic method to determine the aberration center is established for (S)TEM. • Decentering induced secondary aberrations are utilized to find the center. • The method is tested on Ronchigrams both in simulation and experiment. • Proper weighting of the aberration gives a good convergence. • Larger primary aberration results in a slower convergence.

  15. Acute and chronic methyl mercury poisoning impairs rat adrenal and testicular function

    Energy Technology Data Exchange (ETDEWEB)

    Burton, G.V.; Meikle, A.W.

    1980-05-01

    Animals poisoned with methyl mercury (CH/sub 3/Hg) exhibit stress intolerance and decreased sexual activity, which suggest both adrenal and testicular dysfunction. Adrenal and testicular function was studied in male rats after treatment with CH/sub 3/Hg. In animals treated chronically, the adrenal glands were markedly hyperplastic with enlargement of the zona fasciculata. The mean basal serum levels of corticosterone were similar in experimental (17.8 ..mu..g/dl) and control (16.8 ..mu..g/dl) groups. However, with ether stress, experimental animals had a subnormal response, and the mean serum levels of corticosterone increased to only 23.9 ..mu../dl compared to 40.6 ..mu..g/dl in the controls. Exogenous ACTH stimulation produced a mean level of 19.0 ..mu..g/dl in the CH/sub 3/Hg-treated animals and 49.7 ..mu..g/dl in the controls. In vitro studies demonstrated a defect in the conversion of cholesterol to pregnenolone. A profound impairment in swimming was partially reversed with glucocorticoid therapy. In animals treated with CH/sub 3/Hg, serum testosterone was lower than normal in the basal state. Human chorionic gonadotropin stimulation increased the mean serum concentration of testosterone to 23.4 ng/ml in controls, but it was only 4.50 ng/ml in experimental animals. The data indicate that CH/sub 3/Hg poisoning impairs adrenal and testicular steroid hormone secretion, which accounts in part for the diminished stress tolerance and decreased sexual activity observed in CH/sub 3/Hg-intoxicated animals.

  16. The effect of defective DNA double-strand break repair on mutations and chromosome aberrations in the Chinese hamster cell mutant XR-V15B

    International Nuclear Information System (INIS)

    Helbig, R.; Speit, G.; Zdzienicka, M.Z.

    1995-01-01

    The radiosensitive Chinese hamster cell line XR-V15B was used to study the effect of decreased rejoining of DNA double-strand breaks (DSBs) on gene mutations and chromosome aberrations. XR-V15B cells are hypersensitive to the cytotoxic effects of neocarzinostatin (NCS) and methyl methanesulfonate (MMS). Both mutagens induced more chromosome aberrations in XR-V15B cells than in the parental cell strain. The clastogenic action of NCS was characterized by the induction of predominantly chromosome-type aberrations in cells of both strains, whereas MMS induced mainly chromatid aberrations. The frequency of induced gene mutations at the hprt locus was not increased compared to the parental V79 cells when considering the same survival level. Molecular analysis by multiplex polymerase chain reaction (PCR) of mutants induced by NCS revealed a high frequency of deletions in cells of both cell lines. Methyl methane-sulfonate induced mainly mutations without visible change in the PCR pattern, which probably represent point mutations. Our findings suggest a link between a defect in DNA DSB repair and increased cytotoxic and clastogenic effects. However, a decreased ability to rejoin DNA DSBs does not seem to influence the incidence and types of gene mutations at the hprt locus induced by NCS and MMS. 28 refs., 4 figs., 3 tabs

  17. How environmental and genetic factors combine to cause autism: A redox/methylation hypothesis.

    Science.gov (United States)

    Deth, Richard; Muratore, Christina; Benzecry, Jorge; Power-Charnitsky, Verna-Ann; Waly, Mostafa

    2008-01-01

    Recently higher rates of autism diagnosis suggest involvement of environmental factors in causing this developmental disorder, in concert with genetic risk factors. Autistic children exhibit evidence of oxidative stress and impaired methylation, which may reflect effects of toxic exposure on sulfur metabolism. We review the metabolic relationship between oxidative stress and methylation, with particular emphasis on adaptive responses that limit activity of cobalamin and folate-dependent methionine synthase. Methionine synthase activity is required for dopamine-stimulated phospholipid methylation, a unique membrane-delimited signaling process mediated by the D4 dopamine receptor that promotes neuronal synchronization and attention, and synchrony is impaired in autism. Genetic polymorphisms adversely affecting sulfur metabolism, methylation, detoxification, dopamine signaling and the formation of neuronal networks occur more frequently in autistic subjects. On the basis of these observations, a "redox/methylation hypothesis of autism" is described, in which oxidative stress, initiated by environment factors in genetically vulnerable individuals, leads to impaired methylation and neurological deficits secondary to reductions in the capacity for synchronizing neural networks.

  18. Aberrant gene methylation in non-neoplastic mucosa as a predictive marker of ulcerative colitis-associated CRC.

    Science.gov (United States)

    Scarpa, Marco; Scarpa, Melania; Castagliuolo, Ignazio; Erroi, Francesca; Kotsafti, Andromachi; Basato, Silvia; Brun, Paola; D'Incà, Renata; Rugge, Massimo; Angriman, Imerio; Castoro, Carlo

    2016-03-01

    BACKGROUND PROMOTER: hypermethylation plays a major role in cancer through transcriptional silencing of critical genes. The aim of our study is to evaluate the methylation status of these genes in the colonic mucosa without dysplasia or adenocarcinoma at the different steps of sporadic and UC-related carcinogenesis and to investigate the possible role of genomic methylation as a marker of CRC. The expression of Dnmts 1 and 3A was significantly increased in UC-related carcinogenesis compared to non inflammatory colorectal carcinogenesis. In non-neoplastic colonic mucosa, the number of methylated genes resulted significantly higher in patients with CRC and in those with UC-related CRC compared to the HC and UC patients and patients with dysplastic lesion of the colon. The number of methylated genes in non-neoplastic colonic mucosa predicted the presence of CRC with good accuracy either in non inflammatory and inflammatory related CRC. Colonic mucosal samples were collected from healthy subjects (HC) (n = 30) and from patients with ulcerative colitis (UC) (n = 29), UC and dysplasia (n = 14), UC and cancer (n = 10), dysplastic adenoma (n = 14), and colon adenocarcinoma (n = 10). DNA methyltransferases-1, -3a, -3b, mRNA expression were quantified by real time qRT-PCR. The methylation status of CDH13, APC, MLH1, MGMT1 and RUNX3 gene promoters was assessed by methylation-specific PCR. Methylation status of APC, CDH13, MGMT, MLH1 and RUNX3 in the non-neoplastic mucosa may be used as a marker of CRC: these preliminary results could allow for the adjustment of a patient's surveillance interval and to select UC patients who should undergo intensive surveillance.

  19. Methylation status of imprinted genes DLK1-GTL2, MEST (PEG1), ZAC (PLAGL1), and LINE-1 elements in spermatozoa of normozoospermic men, unlike H19 imprinting control regions, is not associated with idiopathic recurrent spontaneous miscarriages.

    Science.gov (United States)

    Ankolkar, Mandar; Salvi, Vinita; Warke, Himangi; Vundinti, Babu Rao; Balasinor, N H

    2013-05-01

    To study methylation aberrations in spermatozoa at developmentally important imprinted regions to ascertain their role in early embryo loss in idiopathic recurrent spontaneous miscarriages (RSM). Case-control study. Academic research setting at National Institute for Research in Reproductive Health, Parel, Mumbai. Male partners of couples with a history of RSM and male partners of couples with proven fertility (control group). None. DNA methylation levels at imprinting control regions of DLK1-GTL2, MEST (PEG1), and ZAC (PLAGL1) by Epityper Massarray and global methylation levels as measured by LINE-1 methylation and anti-5-methyl cytosine antibody in spermatozoa of 23 men in control group and 23 men in RSM group. We did not observe any aberration in the total methylation levels in any of the imprinted genes or global methylation analyzed. Our results indicate that paternal methylation aberrations at imprinting control regions of DLK1-GTL2, MEST (PEG1), and ZAC (PLAGL1) and global methylation levels are not associated with idiopathic RSM and may not be good epigenetic markers (unlike the H-19 imprinting control region) for diagnosis of idiopathic RSM. Copyright © 2013 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  20. Histone Lysine Methylation in Diabetic Nephropathy

    Directory of Open Access Journals (Sweden)

    Guang-dong Sun

    2014-01-01

    Full Text Available Diabetic nephropathy (DN belongs to debilitating microvascular complications of diabetes and is the leading cause of end-stage renal diseases worldwide. Furthermore, outcomes from the DCCT/EDIC study showed that DN often persists and progresses despite intensive glucose control in many diabetes patients, possibly as a result of prior episode of hyperglycemia, which is called “metabolic memory.” The underlying mechanisms responsible for the development and progression of DN remain poorly understood. Activation of multiple signaling pathways and key transcription factors can lead to aberrant expression of DN-related pathologic genes in target renal cells. Increasing evidence suggests that epigenetic mechanisms in chromatin such as DNA methylation, histone acetylation, and methylation can influence the pathophysiology of DN and metabolic memory. Exciting researches from cell culture and experimental animals have shown that key histone methylation patterns and the related histone methyltransferases and histone demethylases can play important roles in the regulation of inflammatory and profibrotic genes in renal cells under diabetic conditions. Because histone methylation is dynamic and potentially reversible, it can provide a window of opportunity for the development of much-needed novel therapeutic potential for DN in the future. In this minireview, we discuss recent advances in the field of histone methylation and its roles in the pathogenesis and progression of DN.

  1. Folate, colorectal cancer and the involvement of DNA methylation.

    Science.gov (United States)

    Williams, Elizabeth A

    2012-11-01

    Diet is a major factor in the aetiology of colorectal cancer (CRC). Epidemiological evidence suggests that folate confers a modest protection against CRC risk. However, the relationship is complex, and evidence from human intervention trials and animal studies suggests that a high-dose of folic acid supplementation may enhance the risk of colorectal carcinogenesis in certain circumstances. The molecular mechanisms underlying the apparent dual modulatory effect of folate on colorectal carcinogenesis are not fully understood. Folate is central to C1 metabolism and is needed for both DNA synthesis and DNA methylation, providing plausible biological mechanisms through which folate could modulate cancer risk. Aberrant DNA methylation is an early event in colorectal carcinogenesis and is typically associated with the transcriptional silencing of tumour suppressor genes. Folate is required for the production of S-adenosyl methionine, which serves as a methyl donor for DNA methylation events; thereby folate availability is proposed to modulate DNA methylation status. The evidence for an effect of folate on DNA methylation in the human colon is limited, but a modulation of DNA methylation in response to folate has been demonstrated. More research is required to clarify the optimum intake of folate for CRC prevention and to elucidate the effect of folate availability on DNA methylation and the associated impact on CRC biology.

  2. Isoflurane induced cognitive impairment in aged rats through hippocampal calcineurin/NFAT signaling

    Energy Technology Data Exchange (ETDEWEB)

    Ni, Cheng; Li, Zhengqian; Qian, Min; Zhou, Yang; Wang, Jun; Guo, Xiangyang, E-mail: puthmzk@163.com

    2015-05-15

    Calcineurin (CaN) over-activation constrains synaptic plasticity and memory formation. Upon CaN activation, NFAT imports into the nucleus and guides its downstream genes, which also affect neuronal and synaptic function. Aberrant CaN/NFAT signaling involves in neurotoxicity and cognitive impairment in neurological disorders such as Alzheimer's disease, but its role in postoperative cognitive dysfunction (POCD) remains uninvestigated. Inhaled anesthetic isoflurane facilitates the development of POCD, and the present study investigated the role of CaN/NFAT signaling in isoflurane induced cognitive impairment of aged rats, and the therapeutic effects of CaN inhibitor cyclosporine A (CsA). The results indicated that hippocampal CaN activity increased and peaked at 6 h after isoflurane exposure, and NFAT, especially NFATc4, imported into the nucleus following CaN activation. Furthermore, phamacological inhibition of CaN by CsA markedly attenuated isoflurane induced aberrant CaN/NFATc4 signaling in the hippocampus, and rescued relevant spatial learning and memory impairment of aged rats. Overall, the study suggests hippocampal CaN/NFAT signaling as the upstream mechanism of isoflurane induced cognitive impairment, and provides potential therapeutic target and possible treatment methods for POCD. - Highlights: • Isoflurane induces hippocampal calcineurin activation. • Isoflurane induces hippocampal NFAT, especially NFATc4, nuclear import. • Cyclosporine A attenuates isoflurane induced aberrant calcineurin/NFAT signaling. • Cyclosporine A rescues isoflurane induced cognitive impairment. • Calcineurin/NFAT signaling is the upstream mechanism of isoflurane induced synaptic dysfunction and cognitive impairment.

  3. Isoflurane induced cognitive impairment in aged rats through hippocampal calcineurin/NFAT signaling

    International Nuclear Information System (INIS)

    Ni, Cheng; Li, Zhengqian; Qian, Min; Zhou, Yang; Wang, Jun; Guo, Xiangyang

    2015-01-01

    Calcineurin (CaN) over-activation constrains synaptic plasticity and memory formation. Upon CaN activation, NFAT imports into the nucleus and guides its downstream genes, which also affect neuronal and synaptic function. Aberrant CaN/NFAT signaling involves in neurotoxicity and cognitive impairment in neurological disorders such as Alzheimer's disease, but its role in postoperative cognitive dysfunction (POCD) remains uninvestigated. Inhaled anesthetic isoflurane facilitates the development of POCD, and the present study investigated the role of CaN/NFAT signaling in isoflurane induced cognitive impairment of aged rats, and the therapeutic effects of CaN inhibitor cyclosporine A (CsA). The results indicated that hippocampal CaN activity increased and peaked at 6 h after isoflurane exposure, and NFAT, especially NFATc4, imported into the nucleus following CaN activation. Furthermore, phamacological inhibition of CaN by CsA markedly attenuated isoflurane induced aberrant CaN/NFATc4 signaling in the hippocampus, and rescued relevant spatial learning and memory impairment of aged rats. Overall, the study suggests hippocampal CaN/NFAT signaling as the upstream mechanism of isoflurane induced cognitive impairment, and provides potential therapeutic target and possible treatment methods for POCD. - Highlights: • Isoflurane induces hippocampal calcineurin activation. • Isoflurane induces hippocampal NFAT, especially NFATc4, nuclear import. • Cyclosporine A attenuates isoflurane induced aberrant calcineurin/NFAT signaling. • Cyclosporine A rescues isoflurane induced cognitive impairment. • Calcineurin/NFAT signaling is the upstream mechanism of isoflurane induced synaptic dysfunction and cognitive impairment

  4. Possible mechanisms of chromosome aberrations. 2. Formation of aberrations after UV-irradiation

    International Nuclear Information System (INIS)

    Lebedeva, L.I.

    1982-01-01

    One of mechanisms of chromosome aberrations after UV-radiation of animal cells initiated by thymine dimerization from different dna threads (by cross joints) and finished in mitosis metaphase is discussed. The model of aberration formation, taking a count of peculiarities of chromosome ansate structure and predicting the important role of chromosome isolation during mitosis in realization of structural aberrations, is suggested. An attempt to present aberration formation under conditions of exact repair is the distinguishing feature of the model

  5. Agglomerates of aberrant DNA methylation are associated with toxicant-induced malignant transformation

    Czech Academy of Sciences Publication Activity Database

    Severson, P.L.; Tokar, E.J.; Vrba, Lukáš; Waalkes, M.P.; Futscher, B. W.

    2012-01-01

    Roč. 7, č. 11 (2012), s. 1238-1248 ISSN 1559-2294 Institutional research plan: CEZ:AV0Z50510513 Keywords : agglomerative DNA methylation * H3K27me3 * H3K9me3 * epigenetics Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.920, year: 2012

  6. Epigenomic profiling of DNA methylation in paired prostate cancer versus adjacent benign tissue.

    Science.gov (United States)

    Geybels, Milan S; Zhao, Shanshan; Wong, Chao-Jen; Bibikova, Marina; Klotzle, Brandy; Wu, Michael; Ostrander, Elaine A; Fan, Jian-Bing; Feng, Ziding; Stanford, Janet L

    2015-12-01

    Aberrant DNA methylation may promote prostate carcinogenesis. We investigated epigenome-wide DNA methylation profiles in prostate cancer (PCa) compared to adjacent benign tissue to identify differentially methylated CpG sites. The study included paired PCa and adjacent benign tissue samples from 20 radical prostatectomy patients. Epigenetic profiling was done using the Infinium HumanMethylation450 BeadChip. Linear models that accounted for the paired study design and False Discovery Rate Q-values were used to evaluate differential CpG methylation. mRNA expression levels of the genes with the most differentially methylated CpG sites were analyzed. In total, 2,040 differentially methylated CpG sites were identified in PCa versus adjacent benign tissue (Q-value Cancer Genome Atlas (TCGA) data provided confirmatory evidence for our findings. This study of PCa versus adjacent benign tissue showed many differentially methylated CpGs and regions in and outside gene promoter regions, which may potentially be used for the development of future epigenetic-based diagnostic tests or as therapeutic targets. © 2015 Wiley Periodicals, Inc.

  7. Quantitative Detection of ID4 Gene Aberrant Methylation in the Differentiation of Myelodysplastic Syndrome from Aplastic Anemia

    Directory of Open Access Journals (Sweden)

    Mian-Yang Li

    2015-01-01

    Full Text Available Background: The diagnosis of myelodysplastic syndrome (MDS, especially hypoplastic MDS, and MDS with low blast counts or normal karyotype may be problematic. This study characterized ID4 gene methylation in patients with MDS and aplastic anemia (AA. Methods: The methylation status of ID4 was analyzed by bisulfite sequencing polymerase chain reaction (PCR and quantitative real-time methylation-specific PCR (MethyLight PCR in 100 patients with MDS and 31 patients with AA. Results: The MDS group had a higher ID4 gene methylation positivity rate (22.22% and higher methylation levels (0.21 [0-3.79] than the AA group (P < 0.05. Furthermore, there were significant differences between the hypoplastic MDS and AA groups, the MDS with low blast count and the AA groups, and the MDS with normal karyotype and the AA groups. The combination of genetic and epigenetic markers was used in much more patients with MDS (62.5% [35/56] than the use of genetic markers only (51.79% [29/56]. Conclusions: These results showed that the detection of ID4 methylation positivity rates and levels could be a useful biomarker for MDS diagnosis.

  8. Low-energy foil aberration corrector

    International Nuclear Information System (INIS)

    Aken, R.H. van; Hagen, C.W.; Barth, J.E.; Kruit, P.

    2002-01-01

    A spherical and chromatic aberration corrector for electron microscopes is proposed, consisting of a thin foil sandwiched between two apertures. The electrons are retarded at the foil to almost zero energy, so that they can travel ballistically through the foil. It is shown that such a low-voltage corrector has a negative spherical aberration for not too large distances between aperture and foil, as well as a negative chromatic aberration. For various distances the third- and fifth-order spherical aberration coefficients and the first- and second-order chromatic aberration coefficients are calculated using ray tracing. Provided that the foils have sufficient electron transmission the corrector is able to correct the third-order spherical aberration and the first-order chromatic aberration of a typical low-voltage scanning electron microscope. Preliminary results show that the fifth-order spherical aberration and the second-order chromatic aberration can be kept sufficiently low

  9. The effects of old, new and emerging medicines on metabolic aberrations in PCOS

    Science.gov (United States)

    Bargiota, Alexandra

    2012-01-01

    Polycystic ovary syndrome (PCOS) is a common endocrine disorder in women of reproductive age that is associated with significant adverse short- and long-term health consequences. Multiple metabolic aberrations, such as insulin resistance (IR) and hyperinsulinaemia, high incidence of impaired glucose tolerance, visceral obesity, inflammation and endothelial dysfunction, hypertension and dyslipidemia are associated with the syndrome. Assessing the metabolic aberrations and their long term health impact in women with PCOS is challenging and becomes more important as therapeutic interventions currently available for the management of PCOS are not fully able to deal with all these consequences. Current therapeutic management of PCOS has incorporated new treatments resulting from the better understanding of the pathophysiology of the syndrome. The aim of this review is to summarize the effect of old, new and emerging therapies used in the management of PCOS, on the metabolic aberrations of PCOS PMID:23148192

  10. MeInfoText 2.0: gene methylation and cancer relation extraction from biomedical literature

    Directory of Open Access Journals (Sweden)

    Fang Yu-Ching

    2011-12-01

    Full Text Available Abstract Background DNA methylation is regarded as a potential biomarker in the diagnosis and treatment of cancer. The relations between aberrant gene methylation and cancer development have been identified by a number of recent scientific studies. In a previous work, we used co-occurrences to mine those associations and compiled the MeInfoText 1.0 database. To reduce the amount of manual curation and improve the accuracy of relation extraction, we have now developed MeInfoText 2.0, which uses a machine learning-based approach to extract gene methylation-cancer relations. Description Two maximum entropy models are trained to predict if aberrant gene methylation is related to any type of cancer mentioned in the literature. After evaluation based on 10-fold cross-validation, the average precision/recall rates of the two models are 94.7/90.1 and 91.8/90% respectively. MeInfoText 2.0 provides the gene methylation profiles of different types of human cancer. The extracted relations with maximum probability, evidence sentences, and specific gene information are also retrievable. The database is available at http://bws.iis.sinica.edu.tw:8081/MeInfoText2/. Conclusion The previous version, MeInfoText, was developed by using association rules, whereas MeInfoText 2.0 is based on a new framework that combines machine learning, dictionary lookup and pattern matching for epigenetics information extraction. The results of experiments show that MeInfoText 2.0 outperforms existing tools in many respects. To the best of our knowledge, this is the first study that uses a hybrid approach to extract gene methylation-cancer relations. It is also the first attempt to develop a gene methylation and cancer relation corpus.

  11. Refined carbohydrate enhancement of aberrant crypt foci (ACF) in rat colon induced by the food-borne carcinogen 2-amino-3-methyl-imidazo[4,5-f]quinoline (IQ)

    DEFF Research Database (Denmark)

    Kristiansen, E.; Meyer, Otto A.; Thorup, I.

    1996-01-01

    ,2-dimethylhydrazine dihydrochloride (DMH) and azoxymethane (AOM), the use of a diet-related colon cancer initiator, such as the heterocyclic amine 2-amino-3-methyl-imidazo[4,5-f]quinoline (IQ) formed during meat cooking, would probably give a more relevant insight into diet-related colon carcinogenesis......The aberrant crypt foci (ACF) bioassay has been used extensively to study the early effects of different dietary components on the colonic mucosa of laboratory rodents. ACF are proposed to represent preneoplastic lesions of colon cancer. Compared to the normally used initiators 1....... In the present study it is shown that a feeding regimen with continuous low IQ doses (0.03% in the diet) throughout a study period of 10 weeks has a significant effect on the induction of ACF in the colon of male F344 rats. In addition, the study illustrates that the incidence of the IQ-induced ACF can...

  12. High dietary folate in pregnant mice leads to pseudo-MTHFR deficiency and altered methyl metabolism, with embryonic growth delay and short-term memory impairment in offspring.

    Science.gov (United States)

    Bahous, Renata H; Jadavji, Nafisa M; Deng, Liyuan; Cosín-Tomás, Marta; Lu, Jessica; Malysheva, Olga; Leung, Kit-Yi; Ho, Ming-Kai; Pallàs, Mercè; Kaliman, Perla; Greene, Nicholas D E; Bedell, Barry J; Caudill, Marie A; Rozen, Rima

    2017-03-01

    Methylenetetrahydrofolate reductase (MTHFR) generates methyltetrahydrofolate for methylation reactions. Severe MTHFR deficiency results in homocystinuria and neurologic impairment. Mild MTHFR deficiency (677C > T polymorphism) increases risk for complex traits, including neuropsychiatric disorders. Although low dietary folate impacts brain development, recent concerns have focused on high folate intake following food fortification and increased vitamin use. Our goal was to determine whether high dietary folate during pregnancy affects brain development in murine offspring. Female mice were placed on control diet (CD) or folic acid-supplemented diet (FASD) throughout mating, pregnancy and lactation. Three-week-old male pups were evaluated for motor and cognitive function. Tissues from E17.5 embryos, pups and dams were collected for choline/methyl metabolite measurements, immunoblotting or gene expression of relevant enzymes. Brains were examined for morphology of hippocampus and cortex. Pups of FASD mothers displayed short-term memory impairment, decreased hippocampal size and decreased thickness of the dentate gyrus. MTHFR protein levels were reduced in FASD pup livers, with lower concentrations of phosphocholine and glycerophosphocholine in liver and hippocampus, respectively. FASD pup brains showed evidence of altered acetylcholine availability and Dnmt3a mRNA was reduced in cortex and hippocampus. E17.5 embryos and placentas from FASD dams were smaller. MTHFR protein and mRNA were reduced in embryonic liver, with lower concentrations of choline, betaine and phosphocholine. Embryonic brain displayed altered development of cortical layers. In summary, high folate intake during pregnancy leads to pseudo-MTHFR deficiency, disturbed choline/methyl metabolism, embryonic growth delay and memory impairment in offspring. These findings highlight the unintended negative consequences of supplemental folic acid. © The Author 2017. Published by Oxford University Press.

  13. ROLE OF DNA METHYLATION AS A DIAGNOSTIC BIOMARKER OF SPORADIC BREAST CANCER

    Directory of Open Access Journals (Sweden)

    Wirsma Arif Harahap

    2017-02-01

    Full Text Available The initiation and progression of breast cancer have been recognized for many years to be secondary to the accumulation of genetic mutations which lead to aberrant cellular function. Genetic mutations, either inherited or sporadic, may result in the activation of oncogenes and the inactivation of tumor suppressor genes. The more recent discovery that reversible alterations in histone proteins and deoxyribonucleic acid (DNA can also lead to tumorigenesis has introduced a novel term to the field of cancer research: epigenetics.  Epigenetics refers to the study of heritable changes in gene regulation that do not involve a change in the DNA sequence. The most often studied in epigenetics of breast cancer is DNA methylation. That a promoter methylation result in transcription blockade supports the notion that cellular inhibition takes place. Compared to normal tissues, hypermethylation occurs from double to triple in cancerous ones. DNA methylation plays a crucial role in oncogenesis and is one of the hallmarks of cancer. Detection of aberrantly methylated CpG islands in promoter region of several genes in DNA sample derived from nipple aspirates, serum, or cancer tissue associated with down regulation of expression or loss of function of these genes has been associated with early stages of breast cancer, where  hypermethylation of CpG island points to poorer prognosis in breast cancer.  DNA methylation has been identified as signature for TNBC. Methylation of BRCA1 gene is frequently demonstrated in young, estrogen receptor-negative breast cancer patients. Methylation of specific genes is known to differ across race and socioeconomic status. BRCA1 methylation in premenopausal women with sporadic breast cancer in West Sumatra region has been higher than in Western women. DNA methylation may be used to enhance current breast cancer classification. There is such a distinction between methylation and gene expression profiles of breast cancer that not

  14. Deep sequencing reveals distinct patterns of DNA methylation in prostate cancer.

    Science.gov (United States)

    Kim, Jung H; Dhanasekaran, Saravana M; Prensner, John R; Cao, Xuhong; Robinson, Daniel; Kalyana-Sundaram, Shanker; Huang, Christina; Shankar, Sunita; Jing, Xiaojun; Iyer, Matthew; Hu, Ming; Sam, Lee; Grasso, Catherine; Maher, Christopher A; Palanisamy, Nallasivam; Mehra, Rohit; Kominsky, Hal D; Siddiqui, Javed; Yu, Jindan; Qin, Zhaohui S; Chinnaiyan, Arul M

    2011-07-01

    Beginning with precursor lesions, aberrant DNA methylation marks the entire spectrum of prostate cancer progression. We mapped the global DNA methylation patterns in select prostate tissues and cell lines using MethylPlex-next-generation sequencing (M-NGS). Hidden Markov model-based next-generation sequence analysis identified ∼68,000 methylated regions per sample. While global CpG island (CGI) methylation was not differential between benign adjacent and cancer samples, overall promoter CGI methylation significantly increased from ~12.6% in benign samples to 19.3% and 21.8% in localized and metastatic cancer tissues, respectively (P-value prostate tissues, 2481 differentially methylated regions (DMRs) are cancer-specific, including numerous novel DMRs. A novel cancer-specific DMR in the WFDC2 promoter showed frequent methylation in cancer (17/22 tissues, 6/6 cell lines), but not in the benign tissues (0/10) and normal PrEC cells. Integration of LNCaP DNA methylation and H3K4me3 data suggested an epigenetic mechanism for alternate transcription start site utilization, and these modifications segregated into distinct regions when present on the same promoter. Finally, we observed differences in repeat element methylation, particularly LINE-1, between ERG gene fusion-positive and -negative cancers, and we confirmed this observation using pyrosequencing on a tissue panel. This comprehensive methylome map will further our understanding of epigenetic regulation in prostate cancer progression.

  15. Lung function discordance in monozygotic twins and associated differences in blood DNA methylation

    DEFF Research Database (Denmark)

    Bolund, Anneli C S; Starnawska, Anna; Miller, Martin R

    2017-01-01

    Background: Lung function is an important predictor of morbidity and mortality, with accelerated lung function decline reported to have immense consequences for the world's healthcare systems. The lung function decline across individual's lifetime is a consequence of age-related changes in lung...... as TGF-β-receptor-related genes, may be involved in the cross-sectional level and longitudinal change in lung function in middle-aged monozygotic twins....... and genetic factors. DNA methylation plays a crucial role in regulation of gene expression, with increasing evidence linking aberrant DNA methylation levels with a number of common human diseases. In this study, we investigated possible associations between genome-wide DNA methylation levels and lung function...

  16. Genome-wide DNA methylation profiling identifies ALDH1A3 promoter methylation as a prognostic predictor in G-CIMP- primary glioblastoma.

    Science.gov (United States)

    Zhang, Wei; Yan, Wei; You, Gan; Bao, Zhaoshi; Wang, Yongzhi; Liu, Yanwei; You, Yongping; Jiang, Tao

    2013-01-01

    To date, the aberrations in the DNA methylation patterns that are associated with different prognoses of G-CIMP- primary GBMs remain to be elucidated. Here, DNA methylation profiling of primary GBM tissues from 13 long-term survivors (LTS; overall survival ⩾18months) and 20 short-term survivors (STS; overall survival ⩽9months) was performed. Then G-CIMP+ samples were excluded. The differentially expressed CpG loci were identified between residual 18 STS and 9 LTS G-CIMP- samples. Methylation levels of 11 CpG loci (10genes) were statistically significantly lower, and 43 CpG loci (40genes) were statistically significantly higher in the tumor tissues of LTS than those of STS G-CIMP- samples (PCIMP- samples, 3 CpG loci localized in the promoter of ALDH1A3. Furthermore, using an independent validation cohort containing 37 primary GBM samples without IDH1 mutation and MGMT promoter methylation, the hypermethylation status of ALDH1A3 promoter predicted a better prognosis with an accompanied low expression of ALDH1A3 protein. Taken together, our results defined prognosis-related methylation signatures systematically for the first time in G-CIMP- primary GBMs. ALDH1A3 promoter methylation conferred a favorable prognosis in G-CIMP- primary GBMs. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  17. Genome-wide DNA methylation maps in follicular lymphoma cells determined by methylation-enriched bisulfite sequencing.

    Directory of Open Access Journals (Sweden)

    Jeong-Hyeon Choi

    Full Text Available BACKGROUND: Follicular lymphoma (FL is a form of non-Hodgkin's lymphoma (NHL that arises from germinal center (GC B-cells. Despite the significant advances in immunotherapy, FL is still not curable. Beyond transcriptional profiling and genomics datasets, there currently is no epigenome-scale dataset or integrative biology approach that can adequately model this disease and therefore identify novel mechanisms and targets for successful prevention and treatment of FL. METHODOLOGY/PRINCIPAL FINDINGS: We performed methylation-enriched genome-wide bisulfite sequencing of FL cells and normal CD19(+ B-cells using 454 sequencing technology. The methylated DNA fragments were enriched with methyl-binding proteins, treated with bisulfite, and sequenced using the Roche-454 GS FLX sequencer. The total number of bases covered in the human genome was 18.2 and 49.3 million including 726,003 and 1.3 million CpGs in FL and CD19(+ B-cells, respectively. 11,971 and 7,882 methylated regions of interest (MRIs were identified respectively. The genome-wide distribution of these MRIs displayed significant differences between FL and normal B-cells. A reverse trend in the distribution of MRIs between the promoter and the gene body was observed in FL and CD19(+ B-cells. The MRIs identified in FL cells also correlated well with transcriptomic data and ChIP-on-Chip analyses of genome-wide histone modifications such as tri-methyl-H3K27, and tri-methyl-H3K4, indicating a concerted epigenetic alteration in FL cells. CONCLUSIONS/SIGNIFICANCE: This study is the first to provide a large scale and comprehensive analysis of the DNA methylation sequence composition and distribution in the FL epigenome. These integrated approaches have led to the discovery of novel and frequent targets of aberrant epigenetic alterations. The genome-wide bisulfite sequencing approach developed here can be a useful tool for profiling DNA methylation in clinical samples.

  18. Aberrant GSTP1 promoter methylation predicts short-term prognosis in acute-on-chronic hepatitis B liver failure.

    Science.gov (United States)

    Gao, S; Sun, F-K; Fan, Y-C; Shi, C-H; Zhang, Z-H; Wang, L-Y; Wang, K

    2015-08-01

    Glutathione-S-transferase P1 (GSTP1) methylation has been demonstrated to be associated with oxidative stress induced liver damage in acute-on-chronic hepatitis B liver failure (ACHBLF). To evaluate the methylation level of GSTP1 promoter in acute-on-chronic hepatitis B liver failure and determine its predictive value for prognosis. One hundred and five patients with acute-on-chronic hepatitis B liver failure, 86 with chronic hepatitis B (CHB) and 30 healthy controls (HC) were retrospectively enrolled. GSTP1 methylation level in peripheral mononuclear cells (PBMC) was detected by MethyLight. Clinical and laboratory parameters were obtained. GSTP1 methylation levels were significantly higher in patients with acute-on-chronic hepatitis B liver failure (median 16.84%, interquartile range 1.83-59.05%) than those with CHB (median 1.25%, interquartile range 0.48-2.47%; P chronic hepatitis B liver failure group, nonsurvivors showed significantly higher GSTP1 methylation levels (P chronic hepatitis B liver failure, GSTP1 methylation showed significantly better predictive value than MELD score [area under the receiver operating characteristic curve (AUC) 0.89 vs. 0.72, P chronic hepatitis B liver failure and shows high predictive value for short-term mortality. It might serve as a potential prognostic marker for acute-on-chronic hepatitis B liver failure. © 2015 John Wiley & Sons Ltd.

  19. Association between aberrant APC promoter methylation and breast cancer pathogenesis: a meta-analysis of 35 observational studies.

    Science.gov (United States)

    Zhou, Dan; Tang, Weiwei; Wang, Wenyi; Pan, Xiaoyan; An, Han-Xiang; Zhang, Yun

    2016-01-01

    Background. Adenomatous polyposis coli (APC) is widely known as an antagonist of the Wnt signaling pathway via the inactivation of β-catenin. An increasing number of studies have reported that APC methylation contributes to the predisposition to breast cancer (BC). However, recent studies have yielded conflicting results. Methods. Herein, we systematically carried out a meta-analysis to assess the correlation between APC methylation and BC risk. Based on searches of the Cochrane Library, PubMed, Web of Science and Embase databases, the odds ratio (OR) with 95% confidence interval (CI) values were pooled and summarized. Results. A total of 31 articles involving 35 observational studies with 2,483 cases and 1,218 controls met the inclusion criteria. The results demonstrated that the frequency of APC methylation was significantly higher in BC cases than controls under a random effect model (OR = 8.92, 95% CI [5.12-15.52]). Subgroup analysis further confirmed the reliable results, regardless of the sample types detected, methylation detection methods applied and different regions included. Interestingly, our results also showed that the frequency of APC methylation was significantly lower in early-stage BC patients than late-stage ones (OR = 0.62, 95% CI [0.42-0.93]). Conclusion. APC methylation might play an indispensable role in the pathogenesis of BC and could be regarded as a potential biomarker for the diagnosis of BC.

  20. Screening individuals with intellectual disability, autism and Tourette's syndrome for KCNK9 mutations and aberrant DNA methylation within the 8q24 imprinted cluster.

    Science.gov (United States)

    Sánchez Delgado, Marta; Camprubí, Cristina; Tümer, Zeynep; Martínez, Francisco; Milà, Montserrat; Monk, David

    2014-09-01

    The phenotype overlap between autism spectrum disorders (ASD) & intellectual disabilities (ID) is mirrored at the genetic level, with common genes being reported mutated in variety of developmental disabilities. However despite widespread genetic screening for mutations, in approximately 40-60% of childhood developmental disorders the genetic cause remains unknown. Several genome-wide linkage screens in ASD have identified a locus mapping to distal 8q. We have recently identified a novel brain-specific imprinted cluster at this location, which contains the reciprocally expressed maternal KCNK9 and paternally expressed non-coding PEG13 transcripts, the latter located within an intron of TRAPPC9. Interestingly, mutations of KCNK9 and TRAPPC9 have been reported in Birk-Barel mental retardation and non-syndromic familial forms of ID, respectively. Here, we report a genetic screen for KCNK9 coding mutations and potential epigenetic aberrations that could result in deregulated imprinting in a cohort of 120 ID, 86 ASD and 86 Tourette syndrome patients. Fifteen of the ID patients had clinical characteristics overlapping with Birk-Barel syndrome. Sequencing of the two coding exons of KCNK9 failed to identify pathologic mutations, with only one variant, rs2615374, being present with allele frequencies similar to those described in dbSNP database. DNA methylation profiling of the KCNK9 and TRAPPC9 promoters, the maternally methylated PEG13 DMR and a long-range enhancer region were normal in all patients. Our findings suggest that mutations of KCNK9 or epigenetic disturbances within the PEG13 imprinted cluster do not significantly contribute to the cause of the developmental disabilities tested in this study. © 2014 Wiley Periodicals, Inc.

  1. Impaired mTORC2 signaling in catecholaminergic neurons exaggerates high fat diet-induced hyperphagia

    Directory of Open Access Journals (Sweden)

    Olga I. Dadalko

    2015-09-01

    Conclusions: Our data support a model in which mTORC2 signaling within catecholaminergic neurons constrains consumption of a high-fat diet, while disruption causes high-fat diet-specific exaggerated hyperphagia. In parallel, impaired mTORC2 signaling leads to aberrant striatal DA neurotransmission, which has been associated with obesity in human and animal models, as well as with escalating substance abuse. These data suggest that defects localized to the catecholaminergic pathways are capable of overriding homeostatic circuits, leading to obesity, metabolic impairment, and aberrant DA-dependent behaviors.

  2. A Rare Case of Esophageal Dysphagia in Children: Aberrant Right Subclavian Artery

    Directory of Open Access Journals (Sweden)

    Claudia Barone

    2016-01-01

    Full Text Available Dysphagia is an impairment of swallowing that may involve any structures from the mouth to the stomach. Esophageal dysphagia presents with the sensation of food sticking, pain with swallowing, substernal pressure, or chronic heartburn. There are many causes of esophageal dysphagia, such as motility disorders and mechanical and inflammatory diseases. Infrequently dysphagia arises from extrinsic compression of the esophagus from any vascular anomaly of the aortic arch. The most common embryologic abnormality of the aortic arch is aberrant right subclavian artery, clinically known as arteria lusoria. This abnormality is usually silent. Here, we report a case of six-year-old child presenting to us with a history of progressive dysphagia without respiratory symptoms. A barium esophagogram showed an increase of the physiological esophageal narrowing at the level of aortic arch, while at esophagogastroduodenoscopy there was an extrinsic pulsatile compression of the posterior portion of the esophagus suggesting an extrinsic compression by an aberrant vessel. Angio-CT (computed tomography scan confirmed the presence of an aberrant right subclavian artery.

  3. Gain of DNA methylation is enhanced in the absence of CTCF at the human retinoblastoma gene promoter

    International Nuclear Information System (INIS)

    Dávalos-Salas, Mercedes; Furlan-Magaril, Mayra; González-Buendía, Edgar; Valdes-Quezada, Christian; Ayala-Ortega, Erandi; Recillas-Targa, Félix

    2011-01-01

    Long-term gene silencing throughout cell division is generally achieved by DNA methylation and other epigenetic processes. Aberrant DNA methylation is now widely recognized to be associated with cancer and other human diseases. Here we addressed the contribution of the multifunctional nuclear factor CTCF to the epigenetic regulation of the human retinoblastoma (Rb) gene promoter in different tumoral cell lines. To assess the DNA methylation status of the Rb promoter, genomic DNA from stably transfected human erythroleukemic K562 cells expressing a GFP reporter transgene was transformed with sodium bisulfite, and then PCR-amplified with modified primers and sequenced. Single- and multi-copy integrants with the CTCF binding site mutated were isolated and characterized by Southern blotting. Silenced transgenes were reactivated using 5-aza-2'-deoxycytidine and Trichostatin-A, and their expression was monitored by fluorescent cytometry. Rb gene expression and protein abundance were assessed by RT-PCR and Western blotting in three different glioma cell lines, and DNA methylation of the promoter region was determined by sodium bisulfite sequencing, together with CTCF dissociation and methyl-CpG-binding protein incorporation by chromatin immunoprecipitation assays. We found that the inability of CTCF to bind to the Rb promoter causes a dramatic loss of gene expression and a progressive gain of DNA methylation. This study indicates that CTCF plays an important role in maintaining the Rb promoter in an optimal chromatin configuration. The absence of CTCF induces a rapid epigenetic silencing through a progressive gain of DNA methylation. Consequently, CTCF can now be seen as one of the epigenetic components that allows the proper configuration of tumor suppressor gene promoters. Its aberrant dissociation can then predispose key genes in cancer cells to acquire DNA methylation and epigenetic silencing

  4. Histone methylations in heart development, congenital and adult heart diseases.

    Science.gov (United States)

    Zhang, Qing-Jun; Liu, Zhi-Ping

    2015-01-01

    Heart development comprises myocyte specification, differentiation and cardiac morphogenesis. These processes are regulated by a group of core cardiac transcription factors in a coordinated temporal and spatial manner. Histone methylation is an emerging epigenetic mechanism for regulating gene transcription. Interplay among cardiac transcription factors and histone lysine modifiers plays important role in heart development. Aberrant expression and mutation of the histone lysine modifiers during development and in adult life can cause either embryonic lethality or congenital heart diseases, and influences the response of adult hearts to pathological stresses. In this review, we describe current body of literature on the role of several common histone methylations and their modifying enzymes in heart development, congenital and adult heart diseases.

  5. TET1 and hydroxymethylcytosine in transcription and DNA methylation fidelity

    DEFF Research Database (Denmark)

    Williams, Kristine; Christensen, Jesper; Pedersen, Marianne Terndrup

    2011-01-01

    a role in transcriptional repression. TET1 binds a significant proportion of Polycomb group target genes. Furthermore, TET1 associates and colocalizes with the SIN3A co-repressor complex. We propose that TET1 fine-tunes transcription, opposes aberrant DNA methylation at CpG-rich sequences and thereby...... throughout the genome of embryonic stem cells, with the majority of binding sites located at transcription start sites (TSSs) of CpG-rich promoters and within genes. The hmC modification is found in gene bodies and in contrast to mC is also enriched at CpG-rich TSSs. We provide evidence further that TET1 has...... contributes to the regulation of DNA methylation fidelity....

  6. Potential of DNA methylation in rectal cancer as diagnostic and prognostic biomarkers

    Science.gov (United States)

    Exner, Ruth; Pulverer, Walter; Diem, Martina; Spaller, Lisa; Woltering, Laura; Schreiber, Martin; Wolf, Brigitte; Sonntagbauer, Markus; Schröder, Fabian; Stift, Judith; Wrba, Fritz; Bergmann, Michael; Weinhäusel, Andreas; Egger, Gerda

    2015-01-01

    Background: Aberrant DNA methylation is more prominent in proximal compared with distal colorectal cancers. Although a number of methylation markers were identified for colon cancer, yet few are available for rectal cancer. Methods: DNA methylation differences were assessed by a targeted DNA microarray for 360 marker candidates between 22 fresh frozen rectal tumour samples and 8 controls and validated by microfluidic high-throughput and methylation-sensitive qPCR in fresh frozen and formalin-fixed paraffin-embedded (FFPE) samples, respectively. The CpG island methylator phenotype (CIMP) was assessed by MethyLight in FFPE material from 78 patients with pT2 and pT3 rectal adenocarcinoma. Results: We identified and confirmed two novel three-gene signatures in fresh frozen samples that can distinguish tumours from adjacent tissue as well as from blood with a high sensitivity and specificity of up to 1 and an AUC of 1. In addition, methylation of individual CIMP markers was associated with specific clinical parameters such as tumour stage, therapy or patients' age. Methylation of CDKN2A was a negative prognostic factor for overall survival of patients. Conclusions: The newly defined methylation markers will be suitable for early disease detection and monitoring of rectal cancer. PMID:26335606

  7. DNA methylation abnormalities in congenital heart disease.

    Science.gov (United States)

    Serra-Juhé, Clara; Cuscó, Ivon; Homs, Aïda; Flores, Raquel; Torán, Núria; Pérez-Jurado, Luis A

    2015-01-01

    Congenital heart defects represent the most common malformation at birth, occurring also in ∼50% of individuals with Down syndrome. Congenital heart defects are thought to have multifactorial etiology, but the main causes are largely unknown. We have explored the global methylation profile of fetal heart DNA in comparison to blood DNA from control subjects: an absolute correlation with the type of tissue was detected. Pathway analysis revealed a significant enrichment of differential methylation at genes related to muscle contraction and cardiomyopathies in the developing heart DNA. We have also searched for abnormal methylation profiles on developing heart-tissue DNA of syndromic and non-syndromic congenital heart defects. On average, 3 regions with aberrant methylation were detected per sample and 18 regions were found differentially methylated between groups. Several epimutations were detected in candidate genes involved in growth regulation, apoptosis and folate pathway. A likely pathogenic hypermethylation of several intragenic sites at the MSX1 gene, involved in outflow tract morphogenesis, was found in a fetus with isolated heart malformation. In addition, hypermethylation of the GATA4 gene was present in fetuses with Down syndrome with or without congenital heart defects, as well as in fetuses with isolated heart malformations. Expression deregulation of the abnormally methylated genes was detected. Our data indicate that epigenetic alterations of relevant genes are present in developing heart DNA in fetuses with both isolated and syndromic heart malformations. These epimutations likely contribute to the pathogenesis of the malformation by cis-acting effects on gene expression.

  8. Whole blood DNA aberrant methylation in pancreatic adenocarcinoma shows association with the course of the disease: a pilot study.

    Directory of Open Access Journals (Sweden)

    Albertas Dauksa

    Full Text Available Pancreatic tumors are usually diagnosed at an advanced stage in the progression of the disease, thus reducing the survival chances of the patients. Non-invasive early detection would greatly enhance therapy and survival rates. Toward this aim, we investigated in a pilot study the power of methylation changes in whole blood as predictive markers for the detection of pancreatic tumors. We investigated methylation levels at selected CpG sites in the CpG rich regions at the promoter regions of p16, RARbeta, TNFRSF10C, APC, ACIN1, DAPK1, 3OST2, BCL2 and CD44 in the blood of 30 pancreatic tumor patients and in the blood of 49 matching controls. In addition, we studied LINE-1 and Alu repeats using degenerate amplification approach as a surrogate marker for genome-wide methylation. The site-specific methylation measurements at selected CpG sites were done by the SIRPH method. Our results show that in the patient's blood, tumor suppressor genes were slightly but significantly higher methylated at several CpG sites, while repeats were slightly less methylated compared to control blood. This was found to be significantly associated with higher risk for pancreatic ductal adenocarcinoma. Additionally, high methylation levels at TNFRSCF10C were associated with positive perineural spread of tumor cells, while higher methylation levels of TNFRSF10C and ACIN1 were significantly associated with shorter survival. This pilot study shows that methylation changes in blood could provide a promising method for early detection of pancreatic tumors. However, larger studies must be carried out to explore the clinical usefulness of a whole blood methylation based test for non-invasive early detection of pancreatic tumors.

  9. Insights into the Pathogenesis of Anaplastic Large-Cell Lymphoma through Genome-wide DNA Methylation Profiling

    Directory of Open Access Journals (Sweden)

    Melanie R. Hassler

    2016-10-01

    Full Text Available Aberrant DNA methylation patterns in malignant cells allow insight into tumor evolution and development and can be used for disease classification. Here, we describe the genome-wide DNA methylation signatures of NPM-ALK-positive (ALK+ and NPM-ALK-negative (ALK− anaplastic large-cell lymphoma (ALCL. We find that ALK+ and ALK− ALCL share common DNA methylation changes for genes involved in T cell differentiation and immune response, including TCR and CTLA-4, without an ALK-specific impact on tumor DNA methylation in gene promoters. Furthermore, we uncover a close relationship between global ALCL DNA methylation patterns and those in distinct thymic developmental stages and observe tumor-specific DNA hypomethylation in regulatory regions that are enriched for conserved transcription factor binding motifs such as AP1. Our results indicate similarity between ALCL tumor cells and thymic T cell subsets and a direct relationship between ALCL oncogenic signaling and DNA methylation through transcription factor induction and occupancy.

  10. The enemy within: propagation of aberrant corticostriatal learning to cortical function in Parkinson's disease

    Directory of Open Access Journals (Sweden)

    Jeff A Beeler

    2013-09-01

    Full Text Available Motor dysfunction in Parkinson’s disease is believed to arise primarily from pathophysiology in the dorsal striatum and its related corticostriatal and thalamostriatal circuits during progressive dopamine denervation. One function of these circuits is to provide a filter that selectively facilitates or inhibits cortical activity to optimize cortical processing, making motor responses rapid and efficient. Corticostriatal synaptic plasticity mediates the learning that underlies this performance-optimizing filter. Under dopamine denervation, corticostriatal plasticity is altered, resulting in aberrant learning that induces inappropriate basal ganglia filtering that impedes rather than optimizes cortical processing. Human imaging suggests that increased cortical activity may compensate for striatal dysfunction in PD patients. In this Perspective article, we consider how aberrant learning at corticostriatal synapses may impair cortical processing and learning and undermine potential cortical compensatory mechanisms. Blocking or remediating aberrant corticostriatal plasticity may protect cortical function and support cortical compensatory mechanisms mitigating the functional decline associated with progressive dopamine denervation.

  11. Optical traps with geometric aberrations

    International Nuclear Information System (INIS)

    Roichman, Yael; Waldron, Alex; Gardel, Emily; Grier, David G.

    2006-01-01

    We assess the influence of geometric aberrations on the in-plane performance of optical traps by studying the dynamics of trapped colloidal spheres in deliberately distorted holographic optical tweezers. The lateral stiffness of the traps turns out to be insensitive to moderate amounts of coma, astigmatism, and spherical aberration. Moreover holographic aberration correction enables us to compensate inherent shortcomings in the optical train, thereby adaptively improving its performance. We also demonstrate the effects of geometric aberrations on the intensity profiles of optical vortices, whose readily measured deformations suggest a method for rapidly estimating and correcting geometric aberrations in holographic trapping systems

  12. Epigenetically Aberrant Stroma in MDS Propagates Disease via Wnt/β-Catenin Activation.

    Science.gov (United States)

    Bhagat, Tushar D; Chen, Si; Bartenstein, Matthias; Barlowe, A Trevor; Von Ahrens, Dagny; Choudhary, Gaurav S; Tivnan, Patrick; Amin, Elianna; Marcondes, A Mario; Sanders, Mathijs A; Hoogenboezem, Remco M; Kambhampati, Suman; Ramachandra, Nandini; Mantzaris, Iaonnis; Sukrithan, Vineeth; Laurence, Remi; Lopez, Robert; Bhagat, Prafullla; Giricz, Orsi; Sohal, Davendra; Wickrema, Amittha; Yeung, Cecilia; Gritsman, Kira; Aplan, Peter; Hochedlinger, Konrad; Yu, Yiting; Pradhan, Kith; Zhang, Jinghang; Greally, John M; Mukherjee, Siddhartha; Pellagatti, Andrea; Boultwood, Jacqueline; Will, Britta; Steidl, Ulrich; Raaijmakers, Marc H G P; Deeg, H Joachim; Kharas, Michael G; Verma, Amit

    2017-09-15

    The bone marrow microenvironment influences malignant hematopoiesis, but how it promotes leukemogenesis has not been elucidated. In addition, the role of the bone marrow stroma in regulating clinical responses to DNA methyltransferase inhibitors (DNMTi) is also poorly understood. In this study, we conducted a DNA methylome analysis of bone marrow-derived stromal cells from myelodysplastic syndrome (MDS) patients and observed widespread aberrant cytosine hypermethylation occurring preferentially outside CpG islands. Stroma derived from 5-azacytidine-treated patients lacked aberrant methylation and DNMTi treatment of primary MDS stroma enhanced its ability to support erythroid differentiation. An integrative expression analysis revealed that the WNT pathway antagonist FRZB was aberrantly hypermethylated and underexpressed in MDS stroma. This result was confirmed in an independent set of sorted, primary MDS-derived mesenchymal cells. We documented a WNT/β-catenin activation signature in CD34 + cells from advanced cases of MDS, where it associated with adverse prognosis. Constitutive activation of β-catenin in hematopoietic cells yielded lethal myeloid disease in a NUP98-HOXD13 mouse model of MDS, confirming its role in disease progression. Our results define novel epigenetic changes in the bone marrow microenvironment, which lead to β-catenin activation and disease progression of MDS. Cancer Res; 77(18); 4846-57. ©2017 AACR . ©2017 American Association for Cancer Research.

  13. The N-Methyl d-Aspartate Glutamate Receptor Antagonist Ketamine Disrupts the Functional State of the Corticothalamic Pathway

    NARCIS (Netherlands)

    Anderson, P.M.; Jones, N.C.; O'Brien, T.J.; Pinault, D.

    2017-01-01

    The non-competitive N-methyl d-aspartate glutamate receptor (NMDAR) antagonist ketamine elicits a brain state resembling high-risk states for developing psychosis and early stages of schizophrenia characterized by sensory and cognitive deficits and aberrant ongoing gamma (30-80 Hz) oscillations in

  14. Cocaine Directly Impairs Memory Extinction and Alters Brain DNA Methylation Dynamics in Honey Bees.

    Science.gov (United States)

    Søvik, Eirik; Berthier, Pauline; Klare, William P; Helliwell, Paul; Buckle, Edwina L S; Plath, Jenny A; Barron, Andrew B; Maleszka, Ryszard

    2018-01-01

    Drug addiction is a chronic relapsing behavioral disorder. The high relapse rate has often been attributed to the perseverance of drug-associated memories due to high incentive salience of stimuli learnt under the influence of drugs. Drug addiction has also been interpreted as a memory disorder since drug associated memories are unusually enduring and some drugs, such as cocaine, interfere with neuroepigenetic machinery known to be involved in memory processing. Here we used the honey bee (an established invertebrate model for epigenomics and behavioral studies) to examine whether or not cocaine affects memory processing independently of its effect on incentive salience. Using the proboscis extension reflex training paradigm we found that cocaine strongly impairs consolidation of extinction memory. Based on correlation between the observed effect of cocaine on learning and expression of epigenetic processes, we propose that cocaine interferes with memory processing independently of incentive salience by directly altering DNA methylation dynamics. Our findings emphasize the impact of cocaine on memory systems, with relevance for understanding how cocaine can have such an enduring impact on behavior.

  15. Cocaine Directly Impairs Memory Extinction and Alters Brain DNA Methylation Dynamics in Honey Bees

    Directory of Open Access Journals (Sweden)

    Eirik Søvik

    2018-02-01

    Full Text Available Drug addiction is a chronic relapsing behavioral disorder. The high relapse rate has often been attributed to the perseverance of drug-associated memories due to high incentive salience of stimuli learnt under the influence of drugs. Drug addiction has also been interpreted as a memory disorder since drug associated memories are unusually enduring and some drugs, such as cocaine, interfere with neuroepigenetic machinery known to be involved in memory processing. Here we used the honey bee (an established invertebrate model for epigenomics and behavioral studies to examine whether or not cocaine affects memory processing independently of its effect on incentive salience. Using the proboscis extension reflex training paradigm we found that cocaine strongly impairs consolidation of extinction memory. Based on correlation between the observed effect of cocaine on learning and expression of epigenetic processes, we propose that cocaine interferes with memory processing independently of incentive salience by directly altering DNA methylation dynamics. Our findings emphasize the impact of cocaine on memory systems, with relevance for understanding how cocaine can have such an enduring impact on behavior.

  16. Structural insight into maintenance methylation by mouse DNA methyltransferase 1 (Dnmt1)

    Science.gov (United States)

    Takeshita, Kohei; Suetake, Isao; Yamashita, Eiki; Suga, Michihiro; Narita, Hirotaka; Nakagawa, Atsushi; Tajima, Shoji

    2011-01-01

    Methylation of cytosine in DNA plays a crucial role in development through inheritable gene silencing. The DNA methyltransferase Dnmt1 is responsible for the propagation of methylation patterns to the next generation via its preferential methylation of hemimethylated CpG sites in the genome; however, how Dnmt1 maintains methylation patterns is not fully understood. Here we report the crystal structure of the large fragment (291–1620) of mouse Dnmt1 and its complexes with cofactor S-adenosyl-L-methionine and its product S-adenosyl-L-homocystein. Notably, in the absence of DNA, the N-terminal domain responsible for targeting Dnmt1 to replication foci is inserted into the DNA-binding pocket, indicating that this domain must be removed for methylation to occur. Upon binding of S-adenosyl-L-methionine, the catalytic cysteine residue undergoes a conformation transition to a catalytically competent position. For the recognition of hemimethylated DNA, Dnmt1 is expected to utilize a target recognition domain that overhangs the putative DNA-binding pocket. Taking into considerations the recent report of a shorter fragment structure of Dnmt1 that the CXXC motif positions itself in the catalytic pocket and prevents aberrant de novo methylation, we propose that maintenance methylation is a multistep process accompanied by structural changes. PMID:21518897

  17. Mask-induced aberration in EUV lithography

    Science.gov (United States)

    Nakajima, Yumi; Sato, Takashi; Inanami, Ryoichi; Nakasugi, Tetsuro; Higashiki, Tatsuhiko

    2009-04-01

    We estimated aberrations using Zernike sensitivity analysis. We found the difference of the tolerated aberration with line direction for illumination. The tolerated aberration of perpendicular line for illumination is much smaller than that of parallel line. We consider this difference to be attributable to the mask 3D effect. We call it mask-induced aberration. In the case of the perpendicular line for illumination, there was a difference in CD between right line and left line without aberration. In this report, we discuss the possibility of pattern formation in NA 0.25 generation EUV lithography tool. In perpendicular pattern for EUV light, the dominant part of aberration is mask-induced aberration. In EUV lithography, pattern correction based on the mask topography effect will be more important.

  18. Recommendations for a nomenclature system for reporting methylation aberrations in imprinted domains

    DEFF Research Database (Denmark)

    Monk, David; Morales, Joannella; den Dunnen, Johan T

    2018-01-01

    Disorders we have discussed these issues and designed a nomenclature for naming imprinted DMRs as well as for reporting methylation values. We apply these recommendations for imprinted DMRs that are commonly assayed in clinical laboratories and show how they support standardized database submission....... The recommendations are in line with existing recommendations, most importantly the Human Genome Variation Society nomenclature, and should facilitate accurate reporting and data exchange among laboratories and thereby help to avoid future confusion....

  19. Prenatal NMDA Receptor Antagonism Impaired Proliferation of Neuronal Progenitor, Leading to Fewer Glutamatergic Neurons in the Prefrontal Cortex

    Science.gov (United States)

    Toriumi, Kazuya; Mouri, Akihiro; Narusawa, Shiho; Aoyama, Yuki; Ikawa, Natsumi; Lu, Lingling; Nagai, Taku; Mamiya, Takayoshi; Kim, Hyoung-Chun; Nabeshima, Toshitaka

    2012-01-01

    N-methyl--aspartate (NMDA) receptor is a glutamate receptor which has an important role on mammalian brain development. We have reported that prenatal treatment with phencyclidine (PCP), a NMDA receptor antagonist, induces long-lasting behavioral deficits and neurochemical changes. However, the mechanism by which the prenatal antagonism of NMDA receptor affects neurodevelopment, resulting in behavioral deficits, has remained unclear. Here, we report that prenatal NMDA receptor antagonism impaired the proliferation of neuronal progenitors, leading to a decrease in the progenitor pool in the ventricular and the subventricular zone. Furthermore, using a PCR array focused on neurogenesis and neuronal stem cells, we evaluated changes in gene expression causing the impairment of neuronal progenitor proliferation and found aberrant gene expression, such as Notch2 and Ntn1, in prenatal PCP-treated mice. Consequently, the density of glutamatergic neurons in the prefrontal cortex was decreased, probably resulting in glutamatergic hypofunction. Prenatal PCP-treated mice displayed behavioral deficits in cognitive memory and sensorimotor gating until adulthood. These findings suggest that NMDA receptors regulate the proliferation and maturation of progenitor cells for glutamatergic neuron during neurodevelopment, probably via the regulation of gene expression. PMID:22257896

  20. A CpG island methylator phenotype of colorectal cancer that is contiguous with conventional adenomas, but not serrated polyps

    OpenAIRE

    HOKAZONO, KOJI; UEKI, TAKASHI; NAGAYOSHI, KINUKO; NISHIOKA, YASUNOBU; HATAE, TATSUNOBU; KOGA, YUTAKA; HIRAHASHI, MINAKO; ODA, YOSHINAO; TANAKA, MASAO

    2014-01-01

    A subset of colorectal cancers (CRCs) harbor the CpG island methylator phenotype (CIMP), with concurrent multiple promoter hypermethylation of tumor-related genes. A serrated pathway in which CIMP is developed from serrated polyps is proposed. The present study characterized CIMP and morphologically examined precursor lesions of CIMP. In total, 104 CRCs treated between January 1996 and December 2004 were examined. Aberrant promoter methylation of 15 cancer-related genes was analyzed. CIMP sta...

  1. Aberrant functional connectivity between motor and language networks in rolandic epilepsy.

    Science.gov (United States)

    Besseling, René M H; Overvliet, Geke M; Jansen, Jacobus F A; van der Kruijs, Sylvie J M; Vles, Johannes S H; Ebus, Saskia C M; Hofman, Paul A M; de Louw, Anton J A; Aldenkamp, Albert P; Backes, Walter H

    2013-12-01

    Rolandic epilepsy (RE) is an idiopathic focal childhood epilepsy with a well-established neuropsychological profile of language impairment. The aim of this study is to provide a functional correlate that links rolandic (sensorimotor) pathology to language problems using functional MRI. Twenty-three children with RE (8-14 years old) and 21 matched controls underwent extensive language assessment (Clinical Evaluation of Language Fundamentals). fMRI was performed at rest and using word generation, reading, and finger tapping paradigms. Since no activation group differences were found, regions of interest (ROIs) were defined at pooled (patients and controls combined) activation maxima and in contralateral homotopic cortex, and used to assess language lateralization as well as for a resting-state connectivity analysis. Furthermore, the association between connection strength and language performance was investigated. Reduced language performance was found in the children with RE. Bilateral activation was found for both language tasks with some predominance of the left hemisphere in both groups. Compared to controls, patient connectivity was decreased between the left sensorimotor area and right inferior frontal gyrus (planguage scores in the patient group (r=0.49, p=0.02), but not in the controls. Language laterality analysis revealed bilateral language representation in the age range under study (8-14 years). As a consequence, the connection of reduced functional connectivity we found represents an impaired interplay between motor and language networks, and aberrant functional connectivity associated with poorer language performance. These findings provide a first neuronal correlate in terms of aberrant resting-state functional connectivity for language impairment in RE. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Promoter DNA methylation pattern identifies prognostic subgroups in childhood T-cell acute lymphoblastic leukemia.

    Directory of Open Access Journals (Sweden)

    Magnus Borssén

    Full Text Available BACKGROUND: Treatment of pediatric T-cell acute lymphoblastic leukemia (T-ALL has improved, but there is a considerable fraction of patients experiencing a poor outcome. There is a need for better prognostic markers and aberrant DNA methylation is a candidate in other malignancies, but its potential prognostic significance in T-ALL is hitherto undecided. DESIGN AND METHODS: Genome wide promoter DNA methylation analysis was performed in pediatric T-ALL samples (n = 43 using arrays covering >27000 CpG sites. Clinical outcome was evaluated in relation to methylation status and compared with a contemporary T-ALL group not tested for methylation (n = 32. RESULTS: Based on CpG island methylator phenotype (CIMP, T-ALL samples were subgrouped as CIMP+ (high methylation and CIMP- (low methylation. CIMP- T-ALL patients had significantly worse overall and event free survival (p = 0.02 and p = 0.001, respectively compared to CIMP+ cases. CIMP status was an independent factor for survival in multivariate analysis including age, gender and white blood cell count. Analysis of differently methylated genes in the CIMP subgroups showed an overrepresentation of transcription factors, ligands and polycomb target genes. CONCLUSIONS: We identified global promoter methylation profiling as being of relevance for subgrouping and prognostication of pediatric T-ALL.

  3. Quantitative analysis of DNA methylation in chronic lymphocytic leukemia patients.

    Science.gov (United States)

    Lyko, Frank; Stach, Dirk; Brenner, Axel; Stilgenbauer, Stephan; Döhner, Hartmut; Wirtz, Michaela; Wiessler, Manfred; Schmitz, Oliver J

    2004-06-01

    Changes in the genomic DNA methylation level have been found to be closely associated with tumorigenesis. In order to analyze the relation of aberrant DNA methylation to clinical and biological risk factors, we have determined the cytosine methylation level of 81 patients diagnosed with chronic lymphocytic leukemia (CLL). The analysis was based on DNA hydrolysis followed by derivatization of the 2'-desoxyribonucleoside-3'-monophosphates with BODIPY FL EDA. Derivatives were separated by micellar electrokinetic chromatography, and laser-induced fluorescence was used for detection. We analyzed potential correlations between DNA methylation levels and numerous patient parameters, including clinical observations and biological data. As a result, we observed a significant correlation with the immunoglobulin variable heavy chain gene (VH) mutation status. This factor has been repeatedly proposed as a reliable prognostic marker for CLL, which suggests that the methylation level might be a valuable factor in determining the prognostic outcome of CLL. We are now in the process of refining our method to broaden its application potential. In this context, we show here that the oxidation of the fluorescence marker in the samples and the evaporation of methanol in the electrolytes can be prevented by a film of paraffin oil. In summary, our results thus establish capillary electrophoresis as a valuable tool for analyzing the DNA methylation status of clinical samples.

  4. Camera processing with chromatic aberration.

    Science.gov (United States)

    Korneliussen, Jan Tore; Hirakawa, Keigo

    2014-10-01

    Since the refractive index of materials commonly used for lens depends on the wavelengths of light, practical camera optics fail to converge light to a single point on an image plane. Known as chromatic aberration, this phenomenon distorts image details by introducing magnification error, defocus blur, and color fringes. Though achromatic and apochromatic lens designs reduce chromatic aberration to a degree, they are complex and expensive and they do not offer a perfect correction. In this paper, we propose a new postcapture processing scheme designed to overcome these problems computationally. Specifically, the proposed solution is comprised of chromatic aberration-tolerant demosaicking algorithm and post-demosaicking chromatic aberration correction. Experiments with simulated and real sensor data verify that the chromatic aberration is effectively corrected.

  5. Neuronal DNA Methylation Profiling of Blast-Related Traumatic Brain Injury.

    Science.gov (United States)

    Haghighi, Fatemeh; Ge, Yongchao; Chen, Sean; Xin, Yurong; Umali, Michelle U; De Gasperi, Rita; Gama Sosa, Miguel A; Ahlers, Stephen T; Elder, Gregory A

    2015-08-15

    Long-term molecular changes in the brain resulting from blast exposure may be mediated by epigenetic changes, such as deoxyribonucleic acid (DNA) methylation, that regulate gene expression. Aberrant regulation of gene expression is associated with behavioral abnormalities, where DNA methylation bridges environmental signals to sustained changes in gene expression. We assessed DNA methylation changes in the brains of rats exposed to three 74.5 kPa blast overpressure events, conditions that have been associated with long-term anxiogenic manifestations weeks or months following the initial exposures. Rat frontal cortex eight months post-exposure was used for cell sorting of whole brain tissue into neurons and glia. We interrogated DNA methylation profiles in these cells using Expanded Reduced Representation Bisulfite Sequencing. We obtained data for millions of cytosines, showing distinct methylation profiles for neurons and glia and an increase in global methylation in neuronal versus glial cells (pDNA methylation perturbations in blast overpressure-exposed animals, compared with sham blast controls, within 458 and 379 genes in neurons and glia, respectively. Differentially methylated neuronal genes showed enrichment in cell death and survival and nervous system development and function, including genes involved in transforming growth factor β and nitric oxide signaling. Functional validation via gene expression analysis of 30 differentially methylated neuronal and glial genes showed a 1.2 fold change in gene expression of the serotonin N-acetyltransferase gene (Aanat) in blast animals (pDNA methylation induced in response to multiple blast overpressure exposures. In particular, increased methylation and decreased gene expression were observed in the Aanat gene, which is involved in converting serotonin to the circadian hormone melatonin and is implicated in sleep disturbance and depression associated with traumatic brain injury.

  6. Genome-wide placental DNA methylation analysis of severely growth-discordant monochorionic twins reveals novel epigenetic targets for intrauterine growth restriction.

    Science.gov (United States)

    Roifman, Maian; Choufani, Sanaa; Turinsky, Andrei L; Drewlo, Sascha; Keating, Sarah; Brudno, Michael; Kingdom, John; Weksberg, Rosanna

    2016-01-01

    Intrauterine growth restriction (IUGR), which refers to reduced fetal growth in the context of placental insufficiency, is etiologically heterogeneous. IUGR is associated not only with perinatal morbidity and mortality but also with adult-onset disorders, such as cardiovascular disease and diabetes, posing a major health burden. Placental epigenetic dysregulation has been proposed as one mechanism that causes IUGR; however, the spectrum of epigenetic pathophysiological mechanisms leading to IUGR remains to be elucidated. Monozygotic monochorionic twins are particularly affected by IUGR, in the setting of severe discordant growth. Because monozygotic twins have the same genotype at conception and a shared maternal environment, they provide an ideal model system for studying epigenetic dysregulation of the placenta. We compared genome-wide placental DNA methylation patterns of severely growth-discordant twins to identify novel candidate genes for IUGR. Snap-frozen placental samples for eight severely growth-discordant monozygotic monochorionic twin pairs were obtained at delivery from each twin. A high-resolution DNA methylation array platform was used to identify methylation differences between IUGR and normal twins. Our analysis revealed differentially methylated regions in the promoters of eight genes: DECR1, ZNF300, DNAJA4, CCL28, LEPR, HSPA1A/L, GSTO1, and GNE. The largest methylation differences between the two groups were in the promoters of DECR1 and ZNF300. The significance of these group differences was independently validated by bisulfite pyrosequencing, implicating aberrations in fatty acid beta oxidation and transcriptional regulation, respectively. Further analysis of the array data identified methylation changes most prominently affecting the Wnt and cadherin pathways in the IUGR cohort. Our results suggest that IUGR in monozygotic twins is associated with impairments in lipid metabolism and transcriptional regulation as well as cadherin and Wnt

  7. The cognitive impairment induced by zinc deficiency in rats aged 0∼2 months related to BDNF DNA methylation changes in the hippocampus.

    Science.gov (United States)

    Hu, Yan-Dan; Pang, Wei; He, Cong-Cong; Lu, Hao; Liu, Wei; Wang, Zi-Yu; Liu, Yan-Qiang; Huang, Cheng-Yu; Jiang, Yu-Gang

    2017-11-01

    This study was carried out to understand the effects of zinc deficiency in rats aged 0∼2 months on learning and memory, and the brain-derived neurotrophic factor (BDNF) gene methylation status in the hippocampus. The lactating mother rats were randomly divided into three groups (n = 12): zinc-adequate group (ZA: zinc 30 mg/kg diet), zinc-deprived group (ZD: zinc 1 mg/kg diet), and a pair-fed group (PF: zinc 30 mg/kg diet), in which the rats were pair-fed to those in the ZD group. After weaning (on day 23), offspring were fed the same diets as their mothers. After 37 days, the zinc concentrations in the plasma and hippocampus were measured, and the behavioral function of the offspring rats was measured using the passive avoidance performance test. We then assessed the DNA methylation patterns of the exon IX of BDNF by methylation-specific quantitative real-time PCR and the mRNA expression of BDNF in the hippocampus by RT-PCR. Compared with the ZA and PF groups, rats in the ZD group had shorter latency period, lower zinc concentrations in the plasma and hippocampus (P zinc-deficient diet during 0∼2 month period. Furthermore, this work supports the speculative notion that altered DNA methylation of BDNF in the hippocampus is one of the main causes of cognitive impairment by zinc deficiency.

  8. The ectopic expression of a pectin methyl esterase inhibitor increases pectin methyl esterification and limits fungal diseases in wheat.

    Science.gov (United States)

    Volpi, Chiara; Janni, Michela; Lionetti, Vincenzo; Bellincampi, Daniela; Favaron, Francesco; D'Ovidio, Renato

    2011-09-01

    Cell wall pectin methyl esterification can influence plant resistance because highly methyl-esterified pectin can be less susceptible to the hydrolysis by pectic enzymes such as fungal endopolygalacturonases (PG). Pectin is secreted into the cell wall in a highly methyl-esterified form and, here, is de-methyl esterified by pectin methyl esterase (PME). The activity of PME is controlled by specific protein inhibitors called PMEI; consequently, an increased inhibition of PME by PMEI might modify the pectin methyl esterification. In order to test the possibility of improving wheat resistance by modifying the methyl esterification of pectin cell wall, we have produced durum wheat transgenic lines expressing the PMEI from Actinidia chinensis (AcPMEI). The expression of AcPMEI endows wheat with a reduced endogenous PME activity, and transgenic lines expressing a high level of the inhibitor showed a significant increase in the degree of methyl esterification. These lines showed a significant reduction of disease symptoms caused by the fungal pathogens Bipolaris sorokiniana or Fusarium graminearum. This increased resistance was related to the impaired ability of these fungal pathogens to grow on methyl-esterified pectin and to a reduced activity of the fungal PG to hydrolyze methyl-esterified pectin. In addition to their importance for wheat improvement, these results highlight the primary role of pectin despite its low content in the wheat cell wall.

  9. Epigenetic editing using programmable zinc ginger proteins : inherited silencing of endogenous gene expression by targeted DNA methylation

    NARCIS (Netherlands)

    Stolzenburg, Sabine

    2014-01-01

    Cancer development is not only the result of genetic mutations but also stems from modifications in the epigenetic code leading to an aberrant expression of genes relevant for cancer. The most studied epigenetic mark is DNA methylation of cytosines in the promoters of genes, which is associated with

  10. Aberrant epigenetic reprogramming of imprinted microRNA-127 and Rtl1 in cloned mouse embryos

    International Nuclear Information System (INIS)

    Cui Xiangshun; Zhang Dingxiao; Ko, Yoeung-Gyu; Kim, Nam-Hyung

    2009-01-01

    The microRNA (miRNA) genes mir-127 and mir-136 are located near two CpG islands in the imprinted mouse retrotransposon-like gene Rtl1, a key gene involved in placenta formation. These miRNAs appear to be involved in regulating the imprinting of Rtl1. To obtain insights into the epigenetic reprogramming of cloned embryos, we compared the expression levels of mir-127 and mir-136 in fertilized mouse embryos, parthenotes, androgenotes and cloned embryos developing in vitro. We also examined the DNA methylation status of the promoter regions of Rtl1 and mir-127 in these embryos. Our data showed that mir-127 and mir-136 were highly expressed in parthenotes, but rarely expressed in androgenotes. Interestingly, the expression levels of mir-127 and mir-136 in parthenotes were almost twice that seen in the fertilized embryos, but were much lower in the cloned embryos. The Rtl1 promoter region was hyper-methylated in blastocyst stage parthenotes (75.0%), moderately methylated (32.4%) in the fertilized embryos and methylated to a much lower extent (∼10%) in the cloned embryos. Conversely, the promoter region of mir-127 was hypo-methylated in parthenogenetically activated embryos (0.4%), moderately methylated (30.0%) in fertilized embryos and heavily methylated in cloned blastocysts (63-70%). These data support a role for mir-127 and mir-136 in the epigenetic reprogramming of the Rtl1 imprinting process. Analysis of the aberrant epigenetic reprogramming of mir-127 and Rtl1 in cloned embryos may help to explain the nuclear reprogramming procedures that occur in donor cells following somatic cell nuclear transfer (SCNT).

  11. Fragile X mental retardation 1 (FMR1) intron 1 methylation in blood predicts verbal cognitive impairment in female carriers of expanded FMR1 alleles: evidence from a pilot study.

    Science.gov (United States)

    Godler, David E; Slater, Howard R; Bui, Quang M; Storey, Elsdon; Ono, Michele Y; Gehling, Freya; Inaba, Yoshimi; Francis, David; Hopper, John L; Kinsella, Glynda; Amor, David J; Hagerman, Randi J; Loesch, Danuta Z

    2012-03-01

    Cognitive status in females with mutations in the FMR1 (fragile X mental retardation 1) gene is highly variable. A biomarker would be of value for predicting which individuals were liable to develop cognitive impairment and could benefit from early intervention. A detailed analysis of CpG sites bridging exon 1 and intron 1 of FMR1, known as fragile X-related epigenetic element 2 (FREE2), suggests that a simple blood test could identify these individuals. Study participants included 74 control females (Wechsler intelligence quotient (IQ) tests. We used MALDI-TOF mass spectrometry to determine the methylation status of FREE2 CpG sites that best identified low-functioning (IQ 200 CGG repeats), compared the results with those for Southern blot FMR1 activation ratios, and related these assessments to the level of production of the FMR1 protein product in blood. A methylation analysis of intron 1 CpG sites 10-12 showed the highest diagnostic sensitivity (100%) and specificity (98%) of all the molecular measures tested for detecting females with a standardized verbal IQ of <70 among the study participants. In the group consisting of only FM females, methylation of these sites was significantly correlated with full-scale IQ, verbal IQ, and performance IQ. Several verbal subtest scores showed strong correlation with the methylation of these sites (P = 1.2 × 10(-5)) after adjustment for multiple measures. The data suggest that hypermethylation of the FMR1 intron 1 sites in blood is predictive of cognitive impairment in FM females, with implications for improved fragile X syndrome diagnostics in young children and screening of the newborn population.

  12. CpG methylation of APC promoter 1A in sporadic and familial breast cancer patients.

    Science.gov (United States)

    Debouki-Joudi, Saoussen; Trifa, Fatma; Khabir, Abdelmajid; Sellami-Boudawara, Tahia; Frikha, Mounir; Daoud, Jamel; Mokdad-Gargouri, Raja

    2017-01-01

    Tumour suppressor gene (TSG) silencing through promoter hypermethylation plays an important role in cancer initiation. The aim of this study was to assess the extent of methylation of APC gene promoter in 91 sporadic and 44 familial cases of Tunisian patients with breast cancer (BC) in. The frequency of APC promoter methylation is somewhat similar for sporadic and familial breast cancer cases, (52.1%, and 54.5% respectively). For sporadic breast cancer patients, there was a significant correlation of APC promoter hypermethylation with TNM stage (p = 0.024) and 3-year survival (p = 0.025). Regarding the hormonal status (HR), we found significant association between negativity to PR and unmethylated APC (p= 0.005) while ER and Her2/neu are not correlated. Moreover, unmethylated APC promoter is more frequent in tumours expressing at least one out the 3 proteins compared to triple negative cases (p= 0.053). On the other hand, aberrant methylation of APC was associated with tumour size (p = 0.036), lymph node (p = 0.028), distant metastasis (p = 0.031), and 3-year survival (p = 0.046) in the group of patients with familial breast cancer. Moreover, patients with sporadic breast cancer displaying the unmethylated profile have a significant prolonged overall survival compared to those with the methylated pattern of APC promoter (p log rank = 0.008). Epigenetic change at the CpG islands in the APC promoter was associated with the silence of its transcript and the loss of protein expression suggesting that this event is the main mechanism regulating the APC expression in breast cancer. In conclusion, our data showed that the loss of APC through aberrant methylation is associated with the aggressive behavior of both sporadic and familial breast cancer in Tunisian patients.

  13. Altered DNA methylation: a secondary mechanism involved in carcinogenesis.

    Science.gov (United States)

    Goodman, Jay I; Watson, Rebecca E

    2002-01-01

    This review focuses on the role that DNA methylation plays in the regulation of normal and aberrant gene expression and on how, in a hypothesis-driven fashion, altered DNA methylation may be viewed as a secondary mechanism involved in carcinogenesis. Research aimed at discerning the mechanisms by which chemicals can transform normal cells into frank carcinomas has both theoretical and practical implications. Through an increased understanding of the mechanisms by which chemicals affect the carcinogenic process, we learn more about basic biology while, at the same time, providing the type of information required to make more rational safety assessment decisions concerning their actual potential to cause cancer under particular conditions of exposure. One key question is: does the mechanism of action of the chemical in question involve a secondary mechanism and, if so, what dose may be below its threshold?

  14. Correlations between corneal and total wavefront aberrations

    Science.gov (United States)

    Mrochen, Michael; Jankov, Mirko; Bueeler, Michael; Seiler, Theo

    2002-06-01

    Purpose: Corneal topography data expressed as corneal aberrations are frequently used to report corneal laser surgery results. However, the optical image quality at the retina depends on all optical elements of the eye such as the human lens. Thus, the aim of this study was to investigate the correlations between the corneal and total wavefront aberrations and to discuss the importance of corneal aberrations for representing corneal laser surgery results. Methods: Thirty three eyes of 22 myopic subjects were measured with a corneal topography system and a Tschernig-type wavefront analyzer after the pupils were dilated to at least 6 mm in diameter. All measurements were centered with respect to the line of sight. Corneal and total wavefront aberrations were calculated up to the 6th Zernike order in the same reference plane. Results: Statistically significant correlations (p the corneal and total wavefront aberrations were found for the astigmatism (C3,C5) and all 3rd Zernike order coefficients such as coma (C7,C8). No statistically significant correlations were found for all 4th to 6th order Zernike coefficients except for the 5th order horizontal coma C18 (p equals 0.003). On average, all Zernike coefficients for the corneal aberrations were found to be larger compared to Zernike coefficients for the total wavefront aberrations. Conclusions: Corneal aberrations are only of limited use for representing the optical quality of the human eye after corneal laser surgery. This is due to the lack of correlation between corneal and total wavefront aberrations in most of the higher order aberrations. Besides this, the data present in this study yield towards an aberration balancing between corneal aberrations and the optical elements within the eye that reduces the aberration from the cornea by a certain degree. Consequently, ideal customized ablations have to take both, corneal and total wavefront aberrations, into consideration.

  15. Methylation-Sensitive Amplification Length Polymorphism (MS-AFLP) Microarrays for Epigenetic Analysis of Human Genomes.

    Science.gov (United States)

    Alonso, Sergio; Suzuki, Koichi; Yamamoto, Fumiichiro; Perucho, Manuel

    2018-01-01

    Somatic, and in a minor scale also germ line, epigenetic aberrations are fundamental to carcinogenesis, cancer progression, and tumor phenotype. DNA methylation is the most extensively studied and arguably the best understood epigenetic mechanisms that become altered in cancer. Both somatic loss of methylation (hypomethylation) and gain of methylation (hypermethylation) are found in the genome of malignant cells. In general, the cancer cell epigenome is globally hypomethylated, while some regions-typically gene-associated CpG islands-become hypermethylated. Given the profound impact that DNA methylation exerts on the transcriptional profile and genomic stability of cancer cells, its characterization is essential to fully understand the complexity of cancer biology, improve tumor classification, and ultimately advance cancer patient management and treatment. A plethora of methods have been devised to analyze and quantify DNA methylation alterations. Several of the early-developed methods relied on the use of methylation-sensitive restriction enzymes, whose activity depends on the methylation status of their recognition sequences. Among these techniques, methylation-sensitive amplification length polymorphism (MS-AFLP) was developed in the early 2000s, and successfully adapted from its original gel electrophoresis fingerprinting format to a microarray format that notably increased its throughput and allowed the quantification of the methylation changes. This array-based platform interrogates over 9500 independent loci putatively amplified by the MS-AFLP technique, corresponding to the NotI sites mapped throughout the human genome.

  16. Exposure of E. coli to DNA-methylating agents impairs biofilm formation and invasion of eukaryotic cells via down regulation of the N-acetylneuraminate lyase NanA

    Directory of Open Access Journals (Sweden)

    Pamela eDi Pasquale

    2016-02-01

    Full Text Available DNA methylation damage can be induced by endogenous and exogenous chemical agents, which has led every living organism to develop suitable response strategies. We investigated protein expression profiles of Escherichia coli upon exposure to the alkylating agent methyl-methane sulfonate (MMS by differential proteomics. Quantitative proteomic data showed a massive downregulation of enzymes belonging to the glycolytic pathway and fatty acids degradation, strongly suggesting a decrease of energy production. A strong reduction in the expression of the N-acetylneuraminate lyases (NanA involved in the sialic acid metabolism was also observed. Using a null NanA mutant and DANA, a substrate analogue acting as competitive inhibitor, we demonstrated that down regulation of NanA affects biofilm formation and adhesion properties of E. coli MV1161. Exposure to alkylating agents also decreased biofilm formation and bacterial adhesion to Caco-2 eukaryotic cell line by the adherent invasive E. coli (AIEC strain LF82. Our data showed that methylation stress impairs E. coli adhesion properties and suggest a possible role of NanA in biofilm formation and bacteria host interactions.

  17. Non-random intrachromosomal distribution of radiation-induced chromatid aberrations in Vicia faba. [Aberration clustering

    Energy Technology Data Exchange (ETDEWEB)

    Schubert, I; Rieger, R [Akademie der Wissenschaften der DDR, Gatersleben. Zentralinst. fuer Genetik und Kulturpflanzenforschung

    1976-04-01

    A reconstructed karyotype of Vicia faba, with all chromosomes individually distinguishable, was treated with X-rays, fast neutrons, (/sup 3/H) uridine (/sup 3/HU). The distribution within metaphase chromosomes of induced chromatid aberrations was non-random for all agents used. Aberration clustering, in part agent specific, occurred in chromosome segments containing heterochromatin as defined by the presence of G bands. The pattern of aberration clustering found after treatment with /sup 3/HU did not allow the recognition of chromosome regions active in transcription during treatment. Furthermore, it was impossible to obtain unambiguous indications of the presence of AT- and GC-base clusters from the patterns of /sup 3/HT- and /sup 3/HC-induced chromatid aberrations, respectively. Possible reasons underlying these observations are discussed.

  18. Integration of CpG-free DNA induces de novo methylation of CpG islands in pluripotent stem cells

    KAUST Repository

    Takahashi, Yuta

    2017-05-05

    CpG islands (CGIs) are primarily promoter-associated genomic regions and are mostly unmethylated within highly methylated mammalian genomes. The mechanisms by which CGIs are protected from de novo methylation remain elusive. Here we show that insertion of CpG-free DNA into targeted CGIs induces de novo methylation of the entire CGI in human pluripotent stem cells (PSCs). The methylation status is stably maintained even after CpG-free DNA removal, extensive passaging, and differentiation. By targeting the DNA mismatch repair gene MLH1 CGI, we could generate a PSC model of a cancer-related epimutation. Furthermore, we successfully corrected aberrant imprinting in induced PSCs derived from an Angelman syndrome patient. Our results provide insights into how CpG-free DNA induces de novo CGI methylation and broaden the application of targeted epigenome editing for a better understanding of human development and disease.

  19. Loss of maintenance DNA methylation results in abnormal DNA origin firing during DNA replication

    Energy Technology Data Exchange (ETDEWEB)

    Haruta, Mayumi [Department of Cell Biology, Graduate School of Medical Sciences, Nagoya City University, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601 (Japan); Shimada, Midori, E-mail: midorism@med.nagoya-cu.ac.jp [Department of Cell Biology, Graduate School of Medical Sciences, Nagoya City University, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601 (Japan); Nishiyama, Atsuya; Johmura, Yoshikazu [Department of Cell Biology, Graduate School of Medical Sciences, Nagoya City University, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601 (Japan); Le Tallec, Benoît; Debatisse, Michelle [Institut Curie, Centre de Recherche, 26 rue d’Ulm, CNRS UMR 3244, 75248 ParisCedex 05 (France); Nakanishi, Makoto, E-mail: mkt-naka@med.nagoya-cu.ac.jp [Department of Cell Biology, Graduate School of Medical Sciences, Nagoya City University, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601 (Japan)

    2016-01-22

    The mammalian maintenance methyltransferase DNMT1 [DNA (cytosine-5-)-methyltransferase 1] mediates the inheritance of the DNA methylation pattern during replication. Previous studies have shown that depletion of DNMT1 causes a severe growth defect and apoptosis in differentiated cells. However, the detailed mechanisms behind this phenomenon remain poorly understood. Here we show that conditional ablation of Dnmt1 in murine embryonic fibroblasts (MEFs) resulted in an aberrant DNA replication program showing an accumulation of late-S phase replication and causing severely defective growth. Furthermore, we found that the catalytic activity and replication focus targeting sequence of DNMT1 are required for a proper DNA replication program. Taken together, our findings suggest that the maintenance of DNA methylation by DNMT1 plays a critical role in proper regulation of DNA replication in mammalian cells. - Highlights: • DNMT1 depletion results in an abnormal DNA replication program. • Aberrant DNA replication is independent of the DNA damage checkpoint in DNMT1cKO. • DNMT1 catalytic activity and RFT domain are required for proper DNA replication. • DNMT1 catalytic activity and RFT domain are required for cell proliferation.

  20. Loss of maintenance DNA methylation results in abnormal DNA origin firing during DNA replication

    International Nuclear Information System (INIS)

    Haruta, Mayumi; Shimada, Midori; Nishiyama, Atsuya; Johmura, Yoshikazu; Le Tallec, Benoît; Debatisse, Michelle; Nakanishi, Makoto

    2016-01-01

    The mammalian maintenance methyltransferase DNMT1 [DNA (cytosine-5-)-methyltransferase 1] mediates the inheritance of the DNA methylation pattern during replication. Previous studies have shown that depletion of DNMT1 causes a severe growth defect and apoptosis in differentiated cells. However, the detailed mechanisms behind this phenomenon remain poorly understood. Here we show that conditional ablation of Dnmt1 in murine embryonic fibroblasts (MEFs) resulted in an aberrant DNA replication program showing an accumulation of late-S phase replication and causing severely defective growth. Furthermore, we found that the catalytic activity and replication focus targeting sequence of DNMT1 are required for a proper DNA replication program. Taken together, our findings suggest that the maintenance of DNA methylation by DNMT1 plays a critical role in proper regulation of DNA replication in mammalian cells. - Highlights: • DNMT1 depletion results in an abnormal DNA replication program. • Aberrant DNA replication is independent of the DNA damage checkpoint in DNMT1cKO. • DNMT1 catalytic activity and RFT domain are required for proper DNA replication. • DNMT1 catalytic activity and RFT domain are required for cell proliferation.

  1. Redox/methylation mediated abnormal DNA methylation as regulators of ambient fine particulate matter-induced neurodevelopment related impairment in human neuronal cells

    Science.gov (United States)

    Wei, Hongying; Liang, Fan; Meng, Ge; Nie, Zhiqing; Zhou, Ren; Cheng, Wei; Wu, Xiaomeng; Feng, Yan; Wang, Yan

    2016-09-01

    Fine particulate matter (PM2.5) has been implicated as a risk factor for neurodevelopmental disorders including autism in children. However, the underlying biological mechanism remains unclear. DNA methylation is suggested to be a fundamental mechanism for the neuronal responses to environmental cues. We prepared whole particle of PM2.5 (PM2.5), water-soluble extracts (Pw), organic extracts (Po) and carbon core component (Pc) and characterized their chemical constitutes. We found that PM2.5 induced significant redox imbalance, decreased the levels of intercellular methyl donor S-adenosylmethionine and caused global DNA hypomethylation. Furthermore, PM2.5 exposure triggered gene-specific promoter DNA hypo- or hypermethylation and abnormal mRNA expression of autism candidate genes. PM2.5-induced DNA hypermethylation in promoter regions of synapse related genes were associated with the decreases in their mRNA and protein expression. The inhibiting effects of antioxidative reagents, a methylation-supporting agent and a DNA methyltransferase inhibitor demonstrated the involvement of redox/methylation mechanism in PM2.5-induced abnormal DNA methylation patterns and synaptic protein expression. The biological effects above generally followed a sequence of PM2.5 ≥ Pwo > Po > Pw > Pc. Our results implicated a novel epigenetic mechanism for the neurodevelopmental toxicity of particulate air pollution, and that eliminating the chemical components could mitigate the neurotoxicity of PM2.5.

  2. Aberrant methylation of NPY, PENK, and WIF1 as a promising marker for blood-based diagnosis of colorectal cancer

    KAUST Repository

    Roperch, J.-P.; Incitti, R.; Forbin, S.; Bard, F.; Mansour, H.; Mesli, F.; Baumgaertner, I.; Brunetti, F.; Sobhani, I.

    2013-01-01

    Background: DNA methylation is a well-known epigenetic mechanism involved in epigenetic gene regulation. Several genes were reported hypermethylated in CRC, althought no gene marker was proven to be individually of sufficient sensitivity or specificity in routine clinical practice. Here, we identified novel epigenetic markers and assessed their combined use for diagnostic accuracy.Methods: We used methylation arrays on samples from several effluents to characterize methylation profiles in CRC samples and controls, as established by colonoscopy and pathology findings, and selected two differentially methylated candidate epigenetic genes (NPY, PENK). To this gene panel we added WIF, on the basis of being reported in literature as silenced by promoter hypermethylation in several cancers, including CRC. We measured their methylation degrees by quantitative multiplex-methylation specific PCR (QM-MSP) on 15 paired carcinomas and adjacent non-cancerous colorectal tissues and we subsequently performed a clinical validation on two different series of 266 serums, subdivided in 32 CRC, 26 polyps, 47 other cancers and 161 with normal colonoscopy. We assessed the results by receiver operating characteristic curve (ROC), using cumulative methylation index (CMI) as variable threshold.Results: We obtained CRC detection on tissues with both sensitivity and specificity of 100%. On serum CRC samples, we obtained sensitivity/specificity values of, e.g., 87%/80%, 78%/90% and 59%/95%, and negative predictive value/positive predictive value figures of 97%/47%, 95%/61% and 92%/70%. On serum samples from other cancers we obtained sensitivity/specificity of, e.g, 89%/25%, 43%/80% and 28%/91%.Conclusions: We showed the potential of NPY, PENK, and WIF1 as combined epigenetic markers for CRC diagnosis, both in tissue and serum and tested their use as serum biomarkers in other cancers. We optimized a QM-MSP for simultaneously quantifying their methylation levels. Our assay can be an effective

  3. Aberrant methylation of NPY, PENK, and WIF1 as a promising marker for blood-based diagnosis of colorectal cancer

    KAUST Repository

    Roperch, J.-P.

    2013-12-01

    Background: DNA methylation is a well-known epigenetic mechanism involved in epigenetic gene regulation. Several genes were reported hypermethylated in CRC, althought no gene marker was proven to be individually of sufficient sensitivity or specificity in routine clinical practice. Here, we identified novel epigenetic markers and assessed their combined use for diagnostic accuracy.Methods: We used methylation arrays on samples from several effluents to characterize methylation profiles in CRC samples and controls, as established by colonoscopy and pathology findings, and selected two differentially methylated candidate epigenetic genes (NPY, PENK). To this gene panel we added WIF, on the basis of being reported in literature as silenced by promoter hypermethylation in several cancers, including CRC. We measured their methylation degrees by quantitative multiplex-methylation specific PCR (QM-MSP) on 15 paired carcinomas and adjacent non-cancerous colorectal tissues and we subsequently performed a clinical validation on two different series of 266 serums, subdivided in 32 CRC, 26 polyps, 47 other cancers and 161 with normal colonoscopy. We assessed the results by receiver operating characteristic curve (ROC), using cumulative methylation index (CMI) as variable threshold.Results: We obtained CRC detection on tissues with both sensitivity and specificity of 100%. On serum CRC samples, we obtained sensitivity/specificity values of, e.g., 87%/80%, 78%/90% and 59%/95%, and negative predictive value/positive predictive value figures of 97%/47%, 95%/61% and 92%/70%. On serum samples from other cancers we obtained sensitivity/specificity of, e.g, 89%/25%, 43%/80% and 28%/91%.Conclusions: We showed the potential of NPY, PENK, and WIF1 as combined epigenetic markers for CRC diagnosis, both in tissue and serum and tested their use as serum biomarkers in other cancers. We optimized a QM-MSP for simultaneously quantifying their methylation levels. Our assay can be an effective

  4. Circulating tumour DNA methylation markers for diagnosis and prognosis of hepatocellular carcinoma

    Science.gov (United States)

    Xu, Rui-Hua; Wei, Wei; Krawczyk, Michal; Wang, Wenqiu; Luo, Huiyan; Flagg, Ken; Yi, Shaohua; Shi, William; Quan, Qingli; Li, Kang; Zheng, Lianghong; Zhang, Heng; Caughey, Bennett A.; Zhao, Qi; Hou, Jiayi; Zhang, Runze; Xu, Yanxin; Cai, Huimin; Li, Gen; Hou, Rui; Zhong, Zheng; Lin, Danni; Fu, Xin; Zhu, Jie; Duan, Yaou; Yu, Meixing; Ying, Binwu; Zhang, Wengeng; Wang, Juan; Zhang, Edward; Zhang, Charlotte; Li, Oulan; Guo, Rongping; Carter, Hannah; Zhu, Jian-Kang; Hao, Xiaoke; Zhang, Kang

    2017-11-01

    An effective blood-based method for the diagnosis and prognosis of hepatocellular carcinoma (HCC) has not yet been developed. Circulating tumour DNA (ctDNA) carrying cancer-specific genetic and epigenetic aberrations may enable a noninvasive `liquid biopsy' for diagnosis and monitoring of cancer. Here, we identified an HCC-specific methylation marker panel by comparing HCC tissue and normal blood leukocytes and showed that methylation profiles of HCC tumour DNA and matched plasma ctDNA are highly correlated. Using cfDNA samples from a large cohort of 1,098 HCC patients and 835 normal controls, we constructed a diagnostic prediction model that showed high diagnostic specificity and sensitivity (P < 0.001) and was highly correlated with tumour burden, treatment response, and stage. Additionally, we constructed a prognostic prediction model that effectively predicted prognosis and survival (P < 0.001). Together, these findings demonstrate in a large clinical cohort the utility of ctDNA methylation markers in the diagnosis, surveillance, and prognosis of HCC.

  5. DNA methylation and gene expression changes derived from assisted reproductive technologies can be decreased by reproductive fluids

    Science.gov (United States)

    Canovas, Sebastian; Ivanova, Elena; Romar, Raquel; García-Martínez, Soledad; Soriano-Úbeda, Cristina; García-Vázquez, Francisco A; Saadeh, Heba; Andrews, Simon; Kelsey, Gavin; Coy, Pilar

    2017-01-01

    The number of children born since the origin of Assisted Reproductive Technologies (ART) exceeds 5 million. The majority seem healthy, but a higher frequency of defects has been reported among ART-conceived infants, suggesting an epigenetic cost. We report the first whole-genome DNA methylation datasets from single pig blastocysts showing differences between in vivo and in vitro produced embryos. Blastocysts were produced in vitro either without (C-IVF) or in the presence of natural reproductive fluids (Natur-IVF). Natur-IVF embryos were of higher quality than C-IVF in terms of cell number and hatching ability. RNA-Seq and DNA methylation analyses showed that Natur-IVF embryos have expression and methylation patterns closer to in vivo blastocysts. Genes involved in reprogramming, imprinting and development were affected by culture, with fewer aberrations in Natur-IVF embryos. Methylation analysis detected methylated changes in C-IVF, but not in Natur-IVF, at genes whose methylation could be critical, such as IGF2R and NNAT. DOI: http://dx.doi.org/10.7554/eLife.23670.001 PMID:28134613

  6. Hepatocellular carcinoma displays distinct DNA methylation signatures with potential as clinical predictors.

    Directory of Open Access Journals (Sweden)

    Hector Hernandez-Vargas

    Full Text Available BACKGROUND: Hepatocellular carcinoma (HCC is characterized by late detection and fast progression, and it is believed that epigenetic disruption may be the cause of its molecular and clinicopathological heterogeneity. A better understanding of the global deregulation of methylation states and how they correlate with disease progression will aid in the design of strategies for earlier detection and better therapeutic decisions. METHODS AND FINDINGS: We characterized the changes in promoter methylation in a series of 30 HCC tumors and their respective surrounding tissue and identified methylation signatures associated with major risk factors and clinical correlates. A wide panel of cancer-related gene promoters was analyzed using Illumina bead array technology, and CpG sites were then selected according to their ability to classify clinicopathological parameters. An independent series of HCC tumors and matched surrounding tissue was used for validation of the signatures. We were able to develop and validate a signature of methylation in HCC. This signature distinguished HCC from surrounding tissue and from other tumor types, and was independent of risk factors. However, aberrant methylation of an independent subset of promoters was associated with tumor progression and etiological risk factors (HBV or HCV infection and alcohol consumption. Interestingly, distinct methylation of an independent panel of gene promoters was strongly correlated with survival after cancer therapy. CONCLUSION: Our study shows that HCC tumors exhibit specific DNA methylation signatures associated with major risk factors and tumor progression stage, with potential clinical applications in diagnosis and prognosis.

  7. Iteration of ultrasound aberration correction methods

    Science.gov (United States)

    Maasoey, Svein-Erik; Angelsen, Bjoern; Varslot, Trond

    2004-05-01

    Aberration in ultrasound medical imaging is usually modeled by time-delay and amplitude variations concentrated on the transmitting/receiving array. This filter process is here denoted a TDA filter. The TDA filter is an approximation to the physical aberration process, which occurs over an extended part of the human body wall. Estimation of the TDA filter, and performing correction on transmit and receive, has proven difficult. It has yet to be shown that this method works adequately for severe aberration. Estimation of the TDA filter can be iterated by retransmitting a corrected signal and re-estimate until a convergence criterion is fulfilled (adaptive imaging). Two methods for estimating time-delay and amplitude variations in receive signals from random scatterers have been developed. One method correlates each element signal with a reference signal. The other method use eigenvalue decomposition of the receive cross-spectrum matrix, based upon a receive energy-maximizing criterion. Simulations of iterating aberration correction with a TDA filter have been investigated to study its convergence properties. A weak and strong human-body wall model generated aberration. Both emulated the human abdominal wall. Results after iteration improve aberration correction substantially, and both estimation methods converge, even for the case of strong aberration.

  8. Role of methionine on epigenetic modification of DNA methylation and gene expression in animals

    Directory of Open Access Journals (Sweden)

    Naifeng Zhang

    2018-03-01

    Full Text Available DNA methylation is one of the main epigenetic phenomena affecting gene expression. It is an important mechanism for the development of embryo, growth and health of animals. As a key nutritional factor limiting the synthesis of protein, methionine serves as the precursor of S-adenosylmethionine (SAM in the hepatic one-carbon metabolism. The dietary fluctuation of methionine content can alter the levels of metabolic substrates in one-carbon metabolism, e.g., the SAM, S-adenosylhomocysteine (SAH, and change the expression of genes related to the growth and health of animals by DNA methylation reactions. The ratio of SAM to SAH is called ‘methylation index’ but it should be carefully explained because the complexity of methylation reaction. Alterations of methylation in a specific cytosine-guanine (CpG site, rather than the whole promoter region, might be enough to change gene expression. Aberrant methionine cycle may provoke molecular changes of one-carbon metabolism that results in deregulation of cellular hemostasis and health problems. The importance of DNA methylation has been underscored but the mechanisms of methionine affecting DNA methylation are poorly understood. Nutritional epigenomics provides a promising insight into the targeting epigenetic changes in animals from a nutritional standpoint, which will deepen and expand our understanding of genes, molecules, tissues, and animals in which methionine alteration influences DNA methylation and gene expression. Keywords: Epigenetics, Methionine, DNA methylation, Gene expression, Epigenetic modification

  9. Female human pluripotent stem cells rapidly lose X chromosome inactivation marks and progress to a skewed methylation pattern during culture.

    Science.gov (United States)

    Geens, M; Seriola, A; Barbé, L; Santalo, J; Veiga, A; Dée, K; Van Haute, L; Sermon, K; Spits, C

    2016-04-01

    Does a preferential X chromosome inactivation (XCI) pattern exist in female human pluripotent stem cells (hPSCs) and does the pattern change during long-term culture or upon differentiation? We identified two independent phenomena that lead to aberrant XCI patterns in female hPSC: a rapid loss of histone H3 lysine 27 trimethylation (H3K27me3) and long non-coding X-inactive specific transcript (XIST) expression during culture, often accompanied by erosion of XCI-specific methylation, and a frequent loss of random XCI in the cultures. Variable XCI patterns have been reported in female hPSC, not only between different hPSC lines, but also between sub-passages of the same cell line, however the reasons for this variability remain unknown. Moreover, while non-random XCI-linked DNA methylation patterns have been previously reported, their origin and extent have not been investigated. We investigated the XCI patterns in 23 human pluripotent stem cell (hPSC) lines, during long-term culture and after differentiation, by gene expression analysis, histone modification assessment and study of DNA methylation. The presence and location of H3K27me3 was studied by immunofluorescence, XIST expression by real-time PCR, and mono- or bi-allelic expression of X-linked genes was studied by sequencing of cDNA. XCI-specific DNA methylation was analysed using methylation-sensitive restriction and PCR, and more in depth by massive parallel bisulphite sequencing. All hPSC lines showed XCI, but we found a rapid loss of XCI marks during the early stages of in vitro culture. While this loss of XCI marks was accompanied in several cases by an extensive erosion of XCI-specific methylation, it did not result in X chromosome reactivation. Moreover, lines without strong erosion of methylation frequently displayed non-random DNA methylation, which occurred independently from the loss of XCI marks. This bias in X chromosome DNA methylation did not appear as a passenger event driven by clonal culture

  10. Integrated analysis of epigenomic and genomic changes by DNA methylation dependent mechanisms provides potential novel biomarkers for prostate cancer.

    Science.gov (United States)

    White-Al Habeeb, Nicole M A; Ho, Linh T; Olkhov-Mitsel, Ekaterina; Kron, Ken; Pethe, Vaijayanti; Lehman, Melanie; Jovanovic, Lidija; Fleshner, Neil; van der Kwast, Theodorus; Nelson, Colleen C; Bapat, Bharati

    2014-09-15

    Epigenetic silencing mediated by CpG methylation is a common feature of many cancers. Characterizing aberrant DNA methylation changes associated with tumor progression may identify potential prognostic markers for prostate cancer (PCa). We treated two PCa cell lines, 22Rv1 and DU-145 with the demethylating agent 5-Aza 2'-deoxycitidine (DAC) and global methylation status was analyzed by performing methylation-sensitive restriction enzyme based differential methylation hybridization strategy followed by genome-wide CpG methylation array profiling. In addition, we examined gene expression changes using a custom microarray. Gene Set Enrichment Analysis (GSEA) identified the most significantly dysregulated pathways. In addition, we assessed methylation status of candidate genes that showed reduced CpG methylation and increased gene expression after DAC treatment, in Gleason score (GS) 8 vs. GS6 patients using three independent cohorts of patients; the publically available The Cancer Genome Atlas (TCGA) dataset, and two separate patient cohorts. Our analysis, by integrating methylation and gene expression in PCa cell lines, combined with patient tumor data, identified novel potential biomarkers for PCa patients. These markers may help elucidate the pathogenesis of PCa and represent potential prognostic markers for PCa patients.

  11. Chronic Administration of Benzo(apyrene Induces Memory Impairment and Anxiety-Like Behavior and Increases of NR2B DNA Methylation.

    Directory of Open Access Journals (Sweden)

    Wenping Zhang

    Full Text Available Recently, an increasing number of human and animal studies have reported that exposure to benzo(apyrene (BaP induces neurological abnormalities and is also associated with adverse effects, such as tumor formation, immunosuppression, teratogenicity, and hormonal disorders. However, the exact mechanisms underlying BaP-induced impairment of neurological function remain unclear. The aim of this study was to examine the regulating mechanisms underlying the impact of chronic BaP exposure on neurobehavioral performance.C57BL mice received either BaP in different doses (1.0, 2.5, 6.25 mg/kg or olive oil twice a week for 90 days. Memory and emotional behaviors were evaluated using Y-maze and open-field tests, respectively. Furthermore, levels of mRNA expression were measured by using qPCR, and DNA methylation of NMDA receptor 2B subunit (NR2B was examined using bisulfate pyrosequencing in the prefrontal cortex and hippocampus.Compared to controls, mice that received BaP (2.5, 6.25 mg/kg showed deficits in short-term memory and an anxiety-like behavior. These behavioral alterations were associated with a down-regulation of the NR2B gene and a concomitant increase in the level of DNA methylation in the NR2B promoter in the two brain regions.Chronic BaP exposure induces an increase in DNA methylation in the NR2B gene promoter and down-regulates NR2B expression, which may contribute to its neurotoxic effects on behavioral performance. The results suggest that NR2B vulnerability represents a target for environmental toxicants in the brain.

  12. Methylation-Dependent Activation of CDX1 through NF-κB

    Science.gov (United States)

    Rau, Tilman T.; Rogler, Anja; Frischauf, Myrjam; Jung, Andreas; Konturek, Peter C.; Dimmler, Arno; Faller, Gerhard; Sehnert, Bettina; El-Rifai, Wael; Hartmann, Arndt; Voll, Reinhard E.; Schneider-Stock, Regine

    2013-01-01

    The caudal homeobox factor 1 (CDX1) is an essential transcription factor for intestinal differentiation. Its aberrant expression in intestinal metaplasia of the upper gastrointestinal tract is a hallmark within the gastritis-metaplasia-carcinoma sequence. CDX1 expression is influenced by certain pathways, such as Wnt, Ras, or NF-κB signaling; however, these pathways alone cannot explain the transient expression of CDX1 in intestinal metaplasia or the molecular inactivation mechanism of its loss in cases of advanced gastric cancer. In this study, we investigated the epigenetic inactivation of CDX1 by promoter methylation, as well as the functional link of CDX1 promoter methylation to the inflammatory NF-κB signaling pathway. We identified methylation-dependent NF-κB binding to the CDX1 promoter and quantified it using competitive electrophoretic mobility shift assays and chromatin immunoprecipitation. A methylated CDX1 promoter was associated with closed chromatin structure, reduced NF-κB binding, and transcriptional silencing. Along the gastritis-metaplasia-carcinoma sequence, we observed a biphasic pattern of tumor necrosis factor-α (TNF-α) protein expression and an inverse biphasic pattern of CDX1 promoter methylation; both are highly consistent with CDX1 protein expression. The stages of hyper-, hypo-, and hyper-methylation patterns of the CDX1 promoter were inversely correlated with the NF-κB signaling activity along this sequence. In conclusion, these functionally interacting events drive CDX1 expression and contribute to intestinal metaplasia, epithelial dedifferentiation, and carcinogenesis in the human stomach. PMID:22749770

  13. Androgen receptor function links human sexual dimorphism to DNA methylation.

    Directory of Open Access Journals (Sweden)

    Ole Ammerpohl

    Full Text Available Sex differences are well known to be determinants of development, health and disease. Epigenetic mechanisms are also known to differ between men and women through X-inactivation in females. We hypothesized that epigenetic sex differences may also result from sex hormone functions, in particular from long-lasting androgen programming. We aimed at investigating whether inactivation of the androgen receptor, the key regulator of normal male sex development, is associated with differences of the patterns of DNA methylation marks in genital tissues. To this end, we performed large scale array-based analysis of gene methylation profiles on genomic DNA from labioscrotal skin fibroblasts of 8 males and 26 individuals with androgen insensitivity syndrome (AIS due to inactivating androgen receptor gene mutations. By this approach we identified differential methylation of 167 CpG loci representing 162 unique human genes. These were significantly enriched for androgen target genes and low CpG content promoter genes. Additional 75 genes showed a significant increase of heterogeneity of methylation in AIS compared to a high homogeneity in normal male controls. Our data show that normal and aberrant androgen receptor function is associated with distinct patterns of DNA-methylation marks in genital tissues. These findings support the concept that transcription factor binding to the DNA has an impact on the shape of the DNA methylome. These data which derived from a rare human model suggest that androgen programming of methylation marks contributes to sexual dimorphism in the human which might have considerable impact on the manifestation of sex-associated phenotypes and diseases.

  14. Experimental vapor pressures (from 1 Pa to 100 kPa) of six saturated Fatty Acid Methyl Esters (FAMEs): Methyl hexanoate, methyl octanoate, methyl decanoate, methyl dodecanoate, methyl tetradecanoate and methyl hexadecanoate

    International Nuclear Information System (INIS)

    Sahraoui, Lakhdar; Khimeche, Kamel; Dahmani, Abdallah; Mokbel, Ilham; Jose, Jacques

    2016-01-01

    Highlight: • Vapor-liquid equilibria, Enthalpy of Vaporization, saturated Fatty Acid Methyl Ester. - Abstract: Vapor pressures of six saturated Fatty Acid Methyl Esters (FAMEs), methyl hexanoate (or methyl caproate), methyl octanoate (or methyl caprylate), Methyl decanoate (or methyl caprate), methyl dodecanoate (or methyl laurate), methyl tetradecanoate (or methyl myristate), and methyl hexadecanoate (or methyl palmitate) were measured from 1 Pa to 100 kPa and at temperature range between 262 and 453 K using a static apparatus. The experimental data (P-T) were compared with the available literature data.

  15. Inter- and intra-individual variation in allele-specific DNA methylation and gene expression in children conceived using assisted reproductive technology.

    Directory of Open Access Journals (Sweden)

    Nahid Turan

    2010-07-01

    Full Text Available Epidemiological studies have reported a higher incidence of rare disorders involving imprinted genes among children conceived using assisted reproductive technology (ART, suggesting that ART procedures may be disruptive to imprinted gene methylation patterns. We examined intra- and inter-individual variation in DNA methylation at the differentially methylated regions (DMRs of the IGF2/H19 and IGF2R loci in a population of children conceived in vitro or in vivo. We found substantial variation in allele-specific methylation at both loci in both groups. Aberrant methylation of the maternal IGF2/H19 DMR was more common in the in vitro group, and the overall variance was also significantly greater in the in vitro group. We estimated the number of trophoblast stem cells in each group based on approximation of the variance of the binomial distribution of IGF2/H19 methylation ratios, as well as the distribution of X chromosome inactivation scores in placenta. Both of these independent measures indicated that placentas of the in vitro group were derived from fewer stem cells than the in vivo conceived group. Both IGF2 and H19 mRNAs were significantly lower in placenta from the in vitro group. Although average birth weight was lower in the in vitro group, we found no correlation between birth weight and IGF2 or IGF2R transcript levels or the ratio of IGF2/IGF2R transcript levels. Our results show that in vitro conception is associated with aberrant methylation patterns at the IGF2/H19 locus. However, very little of the inter- or intra-individual variation in H19 or IGF2 mRNA levels can be explained by differences in maternal DMR DNA methylation, in contrast to the expectations of current transcriptional imprinting models. Extraembryonic tissues of embryos cultured in vitro appear to be derived from fewer trophoblast stem cells. It is possible that this developmental difference has an effect on placental and fetal growth.

  16. [Monochromatic aberration in accommodation. Dynamic wavefront analysis].

    Science.gov (United States)

    Fritzsch, M; Dawczynski, J; Jurkutat, S; Vollandt, R; Strobel, J

    2011-06-01

    Monochromatic aberrations may influence the visual acuity of the eye. They are not stable and can be affected by different factors. The subject of the following paper is the dynamic investigation of the changes in wavefront aberration with accommodation. Dynamic measurement of higher and lower order aberrations was performed with a WASCA Wavefront Analyzer (Carl-Zeiss-Meditec) and a specially constructed target device for aligning objects in far and near distances on 25 subjects aged from 15 to 27 years old. Wavefront aberrations showed some significant changes in accommodation. In addition to the characteristic sphere reaction accompanying miosis and changes in horizontal prism (Z(1) (1)) in the sense of a convergence movement of the eyeball also occurred. Furthermore defocus rose (Z(2) (0)) and astigmatism (Z(2) (-2)) changed. In higher-order aberrations a decrease in coma-like Zernike polynomials (Z(3) (-1), Z(3) (1)) was found. The most obvious change appeared in spherical aberration (Z(4) (0)) which increased and changed from positive to negative. In addition the secondary astigmatism (Z(4) (-2)) and quadrafoil (Z(4) (4)) rise also increased. The total root mean square (RMS), as well as the higher-order aberrations (RMS-HO) significantly increased in accommodation which is associated with a theoretical reduction of visual acuity. An analysis of the influence of pupil size on aberrations showed significant increases in defocus, spherical aberration, quadrafoil, RMS and RMS HO by increasing pupil diameter. By accommodation-associated miosis, the growing aberrations are partially compensated by focusing on near objects. Temporal analysis of the accommodation process with dynamic wavefront analysis revealed significant delays in pupil response and changing of prism in relation to the sphere reaction. In accommodation to near objects a discrete time ahead of third order aberrations in relation to the sphere response was found. Using dynamic wavefront measurement

  17. Aberrant neural networks for the recognition memory of socially relevant information in patients with schizophrenia.

    Science.gov (United States)

    Oh, Jooyoung; Chun, Ji-Won; Kim, Eunseong; Park, Hae-Jeong; Lee, Boreom; Kim, Jae-Jin

    2017-01-01

    Patients with schizophrenia exhibit several cognitive deficits, including memory impairment. Problems with recognition memory can hinder socially adaptive behavior. Previous investigations have suggested that altered activation of the frontotemporal area plays an important role in recognition memory impairment. However, the cerebral networks related to these deficits are not known. The aim of this study was to elucidate the brain networks required for recognizing socially relevant information in patients with schizophrenia performing an old-new recognition task. Sixteen patients with schizophrenia and 16 controls participated in this study. First, the subjects performed the theme-identification task during functional magnetic resonance imaging. In this task, pictures depicting social situations were presented with three words, and the subjects were asked to select the best theme word for each picture. The subjects then performed an old-new recognition task in which they were asked to discriminate whether the presented words were old or new. Task performance and neural responses in the old-new recognition task were compared between the subject groups. An independent component analysis of the functional connectivity was performed. The patients with schizophrenia exhibited decreased discriminability and increased activation of the right superior temporal gyrus compared with the controls during correct responses. Furthermore, aberrant network activities were found in the frontopolar and language comprehension networks in the patients. The functional connectivity analysis showed aberrant connectivity in the frontopolar and language comprehension networks in the patients with schizophrenia, and these aberrations possibly contribute to their low recognition performance and social dysfunction. These results suggest that the frontopolar and language comprehension networks are potential therapeutic targets in patients with schizophrenia.

  18. A robust internal control for high-precision DNA methylation analyses by droplet digital PCR.

    Science.gov (United States)

    Pharo, Heidi D; Andresen, Kim; Berg, Kaja C G; Lothe, Ragnhild A; Jeanmougin, Marine; Lind, Guro E

    2018-01-01

    Droplet digital PCR (ddPCR) allows absolute quantification of nucleic acids and has potential for improved non-invasive detection of DNA methylation. For increased precision of the methylation analysis, we aimed to develop a robust internal control for use in methylation-specific ddPCR. Two control design approaches were tested: (a) targeting a genomic region shared across members of a gene family and (b) combining multiple assays targeting different pericentromeric loci on different chromosomes. Through analyses of 34 colorectal cancer cell lines, the performance of the control assay candidates was optimized and evaluated, both individually and in various combinations, using the QX200™ droplet digital PCR platform (Bio-Rad). The best-performing control was tested in combination with assays targeting methylated CDO1 , SEPT9 , and VIM . A 4Plex panel consisting of EPHA3 , KBTBD4 , PLEKHF1 , and SYT10 was identified as the best-performing control. The use of the 4Plex for normalization reduced the variability in methylation values, corrected for differences in template amount, and diminished the effect of chromosomal aberrations. Positive Droplet Calling (PoDCall), an R-based algorithm for standardized threshold determination, was developed, ensuring consistency of the ddPCR results. Implementation of a robust internal control, i.e., the 4Plex, and an algorithm for automated threshold determination, PoDCall, in methylation-specific ddPCR increase the precision of DNA methylation analysis.

  19. An Image Processing Approach to Pre-compensation for Higher-Order Aberrations in the Eye

    Directory of Open Access Journals (Sweden)

    Miguel Alonso Jr

    2004-06-01

    Full Text Available Human beings rely heavily on vision for almost all of the tasks that are required in daily life. Because of this dependence on vision, humans with visual limitations, caused by genetic inheritance, disease, or age, will have difficulty in completing many of the tasks required of them. Some individuals with severe visual impairments, known as high-order aberrations, may have difficulty in interacting with computers, even when using a traditional means of visual correction (e.g., spectacles, contact lenses. This is, in part, because these correction mechanisms can only compensate for the most regular (low-order distortions or aberrations of the image in the eye. This paper presents an image processing approach that will pre-compensate the images displayed on the computer screen, so as to counter the effect of the eye's aberrations on the image. The characterization of the eye required to perform this customized pre-compensation is the eye's Point Spread Function (PSF. Ophthalmic instruments generically called "Wavefront Analyzers" can now measure this description of the eye's optical properties. The characterization provided by these instruments also includes the "higher-order aberration components" and could, therefore, lead to a more comprehensive vision correction than traditional mechanisms. This paper explains the theoretical foundation of the methods proposed and illustrates them with experiments involving the emulation of a known and constant PSF by interposing a lens in the field of view of normally sighted test subjects.

  20. Drosophila mutants of the autism candidate gene neurobeachin (rugose) exhibit neuro-developmental disorders, aberrant synaptic properties, altered locomotion, and impaired adult social behavior and activity patterns.

    Science.gov (United States)

    Wise, Alexandria; Tenezaca, Luis; Fernandez, Robert W; Schatoff, Emma; Flores, Julian; Ueda, Atsushi; Zhong, Xiaotian; Wu, Chun-Fang; Simon, Anne F; Venkatesh, Tadmiri

    2015-01-01

    Autism spectrum disorder (ASD) is a neurodevelopmental disorder in humans characterized by complex behavioral deficits, including intellectual disability, impaired social interactions, and hyperactivity. ASD exhibits a strong genetic component with underlying multigene interactions. Candidate gene studies have shown that the neurobeachin (NBEA) gene is disrupted in human patients with idiopathic autism ( Castermans et al., 2003 ). The NBEA gene spans the common fragile site FRA 13A and encodes a signal scaffold protein ( Savelyeva et al., 2006 ). In mice, NBEA has been shown to be involved in the trafficking and function of a specific subset of synaptic vesicles. ( Medrihan et al., 2009 ; Savelyeva et al., 2006 ). Rugose (rg) is the Drosophila homolog of the mammalian and human NBEA. Our previous genetic and molecular analyses have shown that rg encodes an A kinase anchor protein (DAKAP 550), which interacts with components of the epidermal growth factor receptor or EGFR and Notch-mediated signaling pathways, facilitating cross talk between these and other pathways ( Shamloula et al., 2002 ). We now present functional data from studies on the larval neuromuscular junction that reveal abnormal synaptic architecture and physiology. In addition, adult rg loss-of-function mutants exhibit defective social interactions, impaired habituation, aberrant locomotion, and hyperactivity. These results demonstrate that Drosophila NBEA (rg) mutants exhibit phenotypic characteristics reminiscent of human ASD and thus could serve as a genetic model for studying ASDs.

  1. Cross talk between poly(ADP-ribose) polymerase 1 methylation and oxidative stress involved in the toxic effect of anatase titanium dioxide nanoparticles

    Science.gov (United States)

    Bai, Wenlin; Chen, Yujiao; Gao, Ai

    2015-01-01

    Given the tremendous growth in the application of titanium dioxide nanoparticles (TNPs), concerns about the potential health hazards of TNPs to humans have been raised. Poly(ADP-ribose) polymerase 1 (PARP-1), a highly conserved DNA-binding protein, is involved in many molecular and cellular processes. Limited data demonstrated that certain nanomaterials induced the aberrant hypermethylation of PARP-1. However, the mechanism involved in TNP-induced PARP-1 abnormal methylation has not been studied. A549 cells were incubated with anatase TNPs (22.1 nm) for 24 hours pretreatment with or without methyltransferase inhibitor 5-aza-2′-deoxycytidine and the reactive oxygen species (ROS) scavenger α-lipoic acid to assess the possible role of methylation and ROS in the toxic effect of TNPs. After TNPs characterization, a battery of assays was performed to evaluate the toxic effect of TNPs, PARP-1 methylation status, and oxidative damage. Results showed that TNPs decreased the cell viability in a dose-dependent manner, in accordance with the increase of lactate dehydrogenase activity, which indicated membrane damage of cells. Similar to the high level of PARP-1 methylation, the generation of ROS was significantly increased after exposure to TNPs for 24 hours. Furthermore, α-lipoic acid decreased TNP-induced ROS generation and then attenuated TNP-triggered PARP-1 hypermethylation. Meanwhile, 5-aza-2′-deoxycytidine simultaneously decreased the ROS generation induced by TNPs, resulting in the decline of PARP-1 methylation. In summary, TNPs triggered the aberrant hypermethylation of the PARP-1 promoter and there was a cross talk between oxidative stress and PARP-1 methylation in the toxic effect of TNPs. PMID:26366077

  2. Genome-Wide DNA Methylation Patterns of Bovine Blastocysts Developed In Vivo from Embryos Completed Different Stages of Development In Vitro.

    Directory of Open Access Journals (Sweden)

    Dessie Salilew-Wondim

    Full Text Available Early embryonic loss and altered gene expression in in vitro produced blastocysts are believed to be partly caused by aberrant DNA methylation. However, specific embryonic stage which is sensitive to in vitro culture conditions to alter the DNA methylation profile of the resulting blastocysts remained unclear. Therefore, the aim of this study was to investigate the stage specific effect of in vitro culture environment on the DNA methylation response of the resulting blastocysts. For this, embryos cultured in vitro until zygote (ZY, 4-cell (4C or 16-cell (16C were transferred to recipients and the blastocysts were recovery at day 7 of the estrous cycle. Another embryo group was cultured in vitro until blastocyst stage (IVP. Genome-wide DNA methylation profiles of ZY, 4C, 16C and IVP blastocyst groups were then determined with reference to blastocysts developed completely under in vivo condition (VO using EmbryoGENE DNA Methylation Array. To assess the contribution of methylation changes on gene expression patterns, the DNA methylation data was superimposed to the transcriptome profile data. The degree of DNA methylation dysregulation in the promoter and/or gene body regions of the resulting blastocysts was correlated with successive stages of development the embryos advanced under in vitro culture before transfer to the in vivo condition. Genomic enrichment analysis revealed that in 4C and 16C blastocyst groups, hypermethylated loci were outpacing the hypomethylated ones in intronic, exonic, promoter and proximal promoter regions, whereas the reverse was observed in ZY blastocyst group. However, in the IVP group, as much hypermethylated as hypomethylated probes were detected in gene body and promoter regions. In addition, gene ontology analysis indicated that differentially methylated regions were found to affected several biological functions including ATP binding in the ZY group, programmed cell death in the 4C, glycolysis in 16C and genetic

  3. The prediction of spherical aberration with schematic eyes.

    Science.gov (United States)

    Liou, H L; Brennan, N A

    1996-07-01

    Many model eyes have been proposed; they differ in optical characteristics and therefore have different aberrations and image quality. In predicting the visual performance of the eye, we are most concerned with the central foveal vision. Spherical aberration is the only on-axis monochromatic aberration and can be used as a criterion to assess the degree of resemblance of eye models to the human eye. We reviewed and compiled experimental values of the spherical aberration of the eye, calculated the spherical aberration of several different categories of model eyes and compared the calculated results to the experimental data. Results show an over-estimation of spherical aberration by all models, the finite schematic eyes predicting values of spherical aberration closest to the experimental data. Current model eyes do not predict the average experimental values of the spherical aberration of the eye. A new model eye satisfying this assessment criterion is required for investigations of the visual performance of the eye.

  4. CpG island methylator phenotype (CIMP) in cancer: causes and implications.

    Science.gov (United States)

    Teodoridis, Jens M; Hardie, Catriona; Brown, Robert

    2008-09-18

    Strong evidence exists for a subgroup of tumours, from a variety of tissue types, exhibiting concordant tumour specific DNA methylation: the "CpG island methylator phenotype" (CIMP). Occurrence of CIMP is associated with a range of genetic and environmental factors, although the molecular causes are not well-understood. Both increased expression and aberrant targeting of DNA methyltransferases (DNMTs) could contribute to the occurrence of CIMP. One under-explored area is the possibility that DNA damage may induce or select for CIMP during carcinogenesis or treatment of tumours with chemotherapy. DNA damaging agents can induce DNA damage at guanine rich regions throughout the genome, including CpG islands. This DNA damage can result in stalled DNA synthesis, which will lead to localised increased DNMT1 concentration and therefore potentially increased DNA methylation at these sites. Chemotherapy can select for cells which have increased tolerance to DNA damage due to increased lesion bypass, in some cases by mechanisms which involve inactivation of genes by CpG island methylation. CIMP has been associated with worse patient prognosis, probably due to increased epigenetic plasticity. Therefore, further clinical testing of the diagnostic and prognostic value of the current CIMP markers, as well as increasing our understanding of the molecular causes underlying CIMP are required.

  5. Imaging characteristics of Zernike and annular polynomial aberrations.

    Science.gov (United States)

    Mahajan, Virendra N; Díaz, José Antonio

    2013-04-01

    The general equations for the point-spread function (PSF) and optical transfer function (OTF) are given for any pupil shape, and they are applied to optical imaging systems with circular and annular pupils. The symmetry properties of the PSF, the real and imaginary parts of the OTF, and the modulation transfer function (MTF) of a system with a circular pupil aberrated by a Zernike circle polynomial aberration are derived. The interferograms and PSFs are illustrated for some typical polynomial aberrations with a sigma value of one wave, and 3D PSFs and MTFs are shown for 0.1 wave. The Strehl ratio is also calculated for polynomial aberrations with a sigma value of 0.1 wave, and shown to be well estimated from the sigma value. The numerical results are compared with the corresponding results in the literature. Because of the same angular dependence of the corresponding annular and circle polynomial aberrations, the symmetry properties of systems with annular pupils aberrated by an annular polynomial aberration are the same as those for a circular pupil aberrated by a corresponding circle polynomial aberration. They are also illustrated with numerical examples.

  6. Geometric characteristics of aberrations of plane-symmetric optical systems

    International Nuclear Information System (INIS)

    Lu Lijun; Deng Zhiyong

    2009-01-01

    The geometric characteristics of aberrations of plane-symmetric optical systems are studied in detail with a wave-aberration theory. It is dealt with as an extension of the Seidel aberrations to realize a consistent aberration theory from axially symmetric to plane-symmetric systems. The aberration distribution is analyzed with the spot diagram of a ray and an aberration curve. Moreover, the root-mean-square value and the centroid of aberration distribution are discussed. The numerical results are obtained with the focusing optics of a toroidal mirror at grazing incidence.

  7. Nodal aberration theory applied to freeform surfaces

    Science.gov (United States)

    Fuerschbach, Kyle; Rolland, Jannick P.; Thompson, Kevin P.

    2014-12-01

    When new three-dimensional packages are developed for imaging optical systems, the rotational symmetry of the optical system is often broken, changing its imaging behavior and making the optical performance worse. A method to restore the performance is to use freeform optical surfaces that compensate directly the aberrations introduced from tilting and decentering the optical surfaces. In order to effectively optimize the shape of a freeform surface to restore optical functionality, it is helpful to understand the aberration effect the surface may induce. Using nodal aberration theory the aberration fields induced by a freeform surface in an optical system are explored. These theoretical predications are experimentally validated with the design and implementation of an aberration generating telescope.

  8. Impairing DNA methylation obstructs memory enhancement for at least 24?hours in Lymnaea

    OpenAIRE

    Rothwell, Cailin M.; Lukowiak, Ken D.

    2017-01-01

    ABSTRACT Stressor-induced memory enhancement has previously been shown to involve DNA methylation in the mollusc Lymnaea stagnalis. Specifically, injection of the DNA methylation inhibitor 5-AZA one hour before exposure to a memory-enhancing stressor obstructs memory augmentation. However, the duration of the influence of 5-AZA on this memory enhancement has not yet been examined. In this study, 2 memory-enhancing stressors (a thermal stress and exposure to the scent of a predator) were used ...

  9. Hierarchical clustering of breast cancer methylomes revealed differentially methylated and expressed breast cancer genes.

    Directory of Open Access Journals (Sweden)

    I-Hsuan Lin

    Full Text Available Oncogenic transformation of normal cells often involves epigenetic alterations, including histone modification and DNA methylation. We conducted whole-genome bisulfite sequencing to determine the DNA methylomes of normal breast, fibroadenoma, invasive ductal carcinomas and MCF7. The emergence, disappearance, expansion and contraction of kilobase-sized hypomethylated regions (HMRs and the hypomethylation of the megabase-sized partially methylated domains (PMDs are the major forms of methylation changes observed in breast tumor samples. Hierarchical clustering of HMR revealed tumor-specific hypermethylated clusters and differential methylated enhancers specific to normal or breast cancer cell lines. Joint analysis of gene expression and DNA methylation data of normal breast and breast cancer cells identified differentially methylated and expressed genes associated with breast and/or ovarian cancers in cancer-specific HMR clusters. Furthermore, aberrant patterns of X-chromosome inactivation (XCI was found in breast cancer cell lines as well as breast tumor samples in the TCGA BRCA (breast invasive carcinoma dataset. They were characterized with differentially hypermethylated XIST promoter, reduced expression of XIST, and over-expression of hypomethylated X-linked genes. High expressions of these genes were significantly associated with lower survival rates in breast cancer patients. Comprehensive analysis of the normal and breast tumor methylomes suggests selective targeting of DNA methylation changes during breast cancer progression. The weak causal relationship between DNA methylation and gene expression observed in this study is evident of more complex role of DNA methylation in the regulation of gene expression in human epigenetics that deserves further investigation.

  10. High frequency of p 16 promoter methylation in non-small cell lung carcinomas from Chile

    Directory of Open Access Journals (Sweden)

    LEDA M GUZMAN

    2007-01-01

    Full Text Available The inactivation of tumour suppressor genes by aberrant methylation of promoter regions has been described as a frequent event in neoplasia development, including lung cancer. The p16 gene is a tumour suppressor gene involved in the regulation of cell cycle progression that has been reported to be inactivated by promoter methylation in lung carcinomas at variable frequencies around the world in a smoking habit dependent manner. The purpose of this study was to investigate the methylation status of the promoter region of the p16 gene in 74 non-small cell lung carcinomas from Chile. The frequency of p16 gene inactivation by promoter methylation was determined as 79.7% (59/74. When we considered histological type, we observed that p16 promoter methylation was significantly higher in squamous cell carcinomas (30/33, 91% compared with adenocarcinomas (21/30, 70% (p=0.029. In addition, no association between p16 promoter methylation and gender, age or smoking habit was found (p=0.202, 0.202 and 0.147 respectively. Our results suggest that p16 promoter hypermethylation is a very frequent event in non-small cell lung carcinomas from Chile and could be smoking habit-independent

  11. Identifying DNA Methylation Biomarkers for Non-Endoscopic Detection of Barrett’s Esophagus

    Science.gov (United States)

    Moinova, Helen R.; LaFramboise, Thomas; Lutterbaugh, James D.; Chandar, Apoorva Krishna; Dumot, John; Faulx, Ashley; Brock, Wendy; De la Cruz Cabrera, Omar; Guda, Kishore; Barnholtz-Sloan, Jill S.; Iyer, Prasad G.; Canto, Marcia I.; Wang, Jean S.; Shaheen, Nicholas J.; Thota, Prashanti N.; Willis, Joseph E.; Chak, Amitabh; Markowitz, Sanford D.

    2018-01-01

    We report a biomarker-based non-endoscopic method for detecting Barrett’s esophagus (BE), based on detecting methylated DNAs retrieved via a swallowable balloon-based esophageal sampling device. BE is the precursor of, and a major recognized risk factor for, developing esophageal adenocarcinoma (EAC). Endoscopy, the current standard for BE detection, is not cost-effective for population screening. We performed genome-wide screening to ascertain regions targeted for recurrent aberrant cytosine methylation in BE, identifying high-frequency methylation within the CCNA1 locus. We tested CCNA1 DNA methylation as a BE biomarker in cytology brushings of the distal esophagus from 173 individuals with or without BE. CCNA1 DNA methylation demonstrated an area under the curve (AUC)=0.95 for discriminating BE-related metaplasia and neoplasia cases versus normal individuals, performing identically to methylation of VIM DNA, an established BE biomarker. When combined, the resulting two biomarker panel was 95% sensitive and 91% specific. These results were replicated in an independent validation cohort of 149 individuals, who were assayed using the same cutoff values for test positivity established in the training population. To progress toward non-endoscopic esophageal screening, we engineered a well-tolerated, swallowable, encapsulated balloon device able to selectively sample the distal esophagus within 5 minutes. In balloon samples from 86 individuals, tests of CCNA1 plus VIM DNA methylation detected BE metaplasia with 90.3% sensitivity and 91.7% specificity. Combining the balloon sampling device with molecular assays of CCNA1 plus VIM DNA methylation enables an efficient, well-tolerated, sensitive, and specific method of screening at-risk populations for BE. PMID:29343623

  12. Altered expression of MGMT in high-grade gliomas results from the combined effect of epigenetic and genetic aberrations.

    Directory of Open Access Journals (Sweden)

    João Ramalho-Carvalho

    Full Text Available MGMT downregulation in high-grade gliomas (HGG has been mostly attributed to aberrant promoter methylation and is associated with increased sensitivity to alkylating agent-based chemotherapy. However, HGG harboring 10q deletions also benefit from treatment with alkylating agents. Because the MGMT gene is mapped at 10q26, we hypothesized that both epigenetic and genetic alterations might affect its expression and predict response to chemotherapy. To test this hypothesis, promoter methylation and mRNA levels of MGMT were determined by quantitative methylation-specific PCR (qMSP or methylation-specific multiplex ligation dependent probe amplification (MS-MLPA and quantitative RT-PCR, respectively, in a retrospective series of 61 HGG. MGMT/chromosome 10 copy number variations were determined by FISH or MS-MLPA analysis. Molecular findings were correlated with clinical parameters to assess their predictive value. Overall, MGMT methylation ratios assessed by qMSP and MS-MLPA were inversely correlated with mRNA expression levels (best coefficient value obtained with MS-MLPA. By FISH analysis in 68.3% of the cases there was loss of 10q26.1 and in 15% of the cases polysomy was demonstrated; the latter displayed the highest levels of transcript. When genetic and epigenetic data were combined, cases with MGMT promoter methylation and MGMT loss depicted the lowest transcript levels, although an impact in response to alkylating agent chemotherapy was not apparent. Cooperation between epigenetic (promoter methylation and genetic (monosomy, locus deletion changes affecting MGMT in HGG is required for effective MGMT silencing. Hence, evaluation of copy number alterations might add relevant prognostic and predictive information concerning response to alkylating agent-based chemotherapy.

  13. Aberration characteristics of immersion lenses for LVSEM

    International Nuclear Information System (INIS)

    Khursheed, Anjam

    2002-01-01

    This paper investigates the on-axis aberration characteristics of various immersion objective lenses for low voltage scanning electron microscopy (LVSEM). A simple aperture lens model is used to generate smooth axial field distributions. The simulation results show that mixed field electric-magnetic immersion lenses are predicted to have between 1.5 and 2 times smaller aberration limited probe diameters than their pure-field counterparts. At a landing energy of 1 keV, mixed field immersion lenses operating at the vacuum electrical field breakdown limit are predicted to have on-axis aberration coefficients between 50 and 60 μm, yielding an ultimate image resolution of below 1 nm. These aberrations lie in the same range as those for LVSEM systems that employ aberration correctors

  14. DOT1L and H3K79 Methylation in Transcription and Genomic Stability.

    Science.gov (United States)

    Wood, Katherine; Tellier, Michael; Murphy, Shona

    2018-02-27

    The organization of eukaryotic genomes into chromatin provides challenges for the cell to accomplish basic cellular functions, such as transcription, DNA replication and repair of DNA damage. Accordingly, a range of proteins modify and/or read chromatin states to regulate access to chromosomal DNA. Yeast Dot1 and the mammalian homologue DOT1L are methyltransferases that can add up to three methyl groups to histone H3 lysine 79 (H3K79). H3K79 methylation is implicated in several processes, including transcription elongation by RNA polymerase II, the DNA damage response and cell cycle checkpoint activation. DOT1L is also an important drug target for treatment of mixed lineage leukemia (MLL)-rearranged leukemia where aberrant transcriptional activation is promoted by DOT1L mislocalisation. This review summarizes what is currently known about the role of Dot1/DOT1L and H3K79 methylation in transcription and genomic stability.

  15. DOT1L and H3K79 Methylation in Transcription and Genomic Stability

    Directory of Open Access Journals (Sweden)

    Katherine Wood

    2018-02-01

    Full Text Available The organization of eukaryotic genomes into chromatin provides challenges for the cell to accomplish basic cellular functions, such as transcription, DNA replication and repair of DNA damage. Accordingly, a range of proteins modify and/or read chromatin states to regulate access to chromosomal DNA. Yeast Dot1 and the mammalian homologue DOT1L are methyltransferases that can add up to three methyl groups to histone H3 lysine 79 (H3K79. H3K79 methylation is implicated in several processes, including transcription elongation by RNA polymerase II, the DNA damage response and cell cycle checkpoint activation. DOT1L is also an important drug target for treatment of mixed lineage leukemia (MLL-rearranged leukemia where aberrant transcriptional activation is promoted by DOT1L mislocalisation. This review summarizes what is currently known about the role of Dot1/DOT1L and H3K79 methylation in transcription and genomic stability.

  16. Chromosomal analysis in mouse eggs fertilized in vitro with sperm exposed to ultraviolet light (UV) and methyl and ethyl methanesulfonate (MMS and EMS)

    International Nuclear Information System (INIS)

    Matsuda, Y.; Tobari, I.

    1988-01-01

    Chromosome aberrations were analyzed at the first-cleavage metaphase of mouse eggs fertilized in vitro with sperm exposed to ultraviolet light (UV) as well as to methyl and ethyl methanesulfonate (MMS and EMS). The frequencies of chromosome aberrations markedly increased with dose of UV as well as with concentration of MMS and EMS. In the UV-irradiation group, the frequency of chromosome-type aberrations was much higher than that of chromatid-type aberrations. About 90% of chromosome aberrations observed in the eggs following MMS and EMS treatment to sperm were chromosome type in which the frequency of chromosome fragments was the highest. The effects of UV on the induction of chromosome aberrations were clearly potentiated by post-treatment incubation of fertilized eggs in the presence of Ara-C or caffeine, but the effects of MMS and EMS were not pronounced by post-treatment of Ara-C or caffeine. The results indicate a possibility that UV damage induced in mouse sperm DNA is reparable in the eggs during the period between the entry of sperm into the egg cytoplasm and the first-cleavage metaphase. 35 refs.; 5 figs.; 4 tabs

  17. New radioiodinated methyl-branched fatty acids for cardiac studies

    International Nuclear Information System (INIS)

    Knapp, F.F. Jr.; Ambrose, K.R.; Goodman, M.M.

    1986-01-01

    The effects of 3-methyl substitution on the heart retention and metabolism of 3-R,S-methyl-(BMIPP) and 3,3-dimethyl-(DMIPP) analogues of 15-(p-iodophenyl)-pentadecanoic acid (IPP) were studied in rats. Methyl substitution considerably increased the myocardial half-time values in fasted rats: IPP, 5-10 min; BMIPP, 30-45 min; DMIPP, 6-7 h. Because of the observed differences in the relative myocardial uptake and retention of these agents, an evaluation of the subcellular distribution profiles and the distribution of radioactivity within various lipid pools extracted from cell components was performed. Studies with DMIPP in food-deprived rats have shown high levels of the free fatty acid and only slow conversion to triglycerides. These data are in contrast to the rapid clearance of the straight chain IPP analogue and rapid incorporation into triglycerides, and suggest that the prolonged myocardial retention observed with DMIPP in vivo may result from inhibition of β oxidation. Subcellular distribution studies have shown predominant association of DMIPP and BMIPP with the mitochondrial and microsomal fractions, while IPP was primarily found in the cytoplasm. Because of the unique ''trapping'' properties and the high heart: blood ratios, [ 123 I]DMIPP should be useful for evaluation of aberrations in regional myocardial uptake. (orig.)

  18. Freeform aberrations in phase space: an example.

    Science.gov (United States)

    Babington, James

    2017-06-01

    We consider how optical propagation and aberrations of freeform systems can be formulated in phase space. As an example system, a freeform prism is analyzed and discussed. Symmetry considerations and their group theory descriptions are given some importance. Numerical aberrations are also highlighted and put into the context of the underlying aberration theory.

  19. Spherical aberrations of human astigmatic corneas.

    Science.gov (United States)

    Zhao, Huawei; Dai, Guang-Ming; Chen, Li; Weeber, Henk A; Piers, Patricia A

    2011-11-01

    To evaluate whether the average spherical aberration of human astigmatic corneas is statistically equivalent to human nonastigmatic corneas. Spherical aberrations of 445 astigmatic corneas prior to laser vision correction were retrospectively investigated to determine Zernike coefficients for central corneal areas 6 mm in diameter using CTView (Sarver and Associates). Data were divided into groups according to cylinder power (0.01 to 0.25 diopters [D], 0.26 to 0.75 D, 0.76 to 1.06 D, 1.07 to 1.53 D, 1.54 to 2.00 D, and >2.00 D) and according to age by decade. Spherical aberrations were correlated with age and astigmatic power among groups and the entire population. Statistical analyses were conducted, and P.05 for all tested groups). Mean spherical aberration of astigmatic corneas was not correlated significantly with cylinder power or age (P>.05). Spherical aberrations are similar to those of nonastigmatic corneas, permitting the use of these additional data in the design of aspheric toric intra-ocular lenses. Copyright 2011, SLACK Incorporated.

  20. Histone modification alteration coordinated with acquisition of promoter DNA methylation during Epstein-Barr virus infection.

    Science.gov (United States)

    Funata, Sayaka; Matsusaka, Keisuke; Yamanaka, Ryota; Yamamoto, Shogo; Okabe, Atsushi; Fukuyo, Masaki; Aburatani, Hiroyuki; Fukayama, Masashi; Kaneda, Atsushi

    2017-08-15

    Aberrant DNA hypermethylation is a major epigenetic mechanism to inactivate tumor suppressor genes in cancer. Epstein-Barr virus positive gastric cancer is the most frequently hypermethylated tumor among human malignancies. Herein, we performed comprehensive analysis of epigenomic alteration during EBV infection, by Infinium HumanMethylation 450K BeadChip for DNA methylation and ChIP-sequencing for histone modification alteration during EBV infection into gastric cancer cell line MKN7. Among 7,775 genes with increased DNA methylation in promoter regions, roughly half were "DNA methylation-sensitive" genes, which acquired DNA methylation in the whole promoter regions and thus were repressed. These included anti-oncogenic genes, e.g. CDKN2A . The other half were "DNA methylation-resistant" genes, where DNA methylation is acquired in the surrounding of promoter regions, but unmethylated status is protected in the vicinity of transcription start site. These genes thereby retained gene expression, and included DNA repair genes. Histone modification was altered dynamically and coordinately with DNA methylation alteration. DNA methylation-sensitive genes significantly correlated with loss of H3K27me3 pre-marks or decrease of active histone marks, H3K4me3 and H3K27ac. Apoptosis-related genes were significantly enriched in these epigenetically repressed genes. Gain of active histone marks significantly correlated with DNA methylation-resistant genes. Genes related to mitotic cell cycle and DNA repair were significantly enriched in these epigenetically activated genes. Our data show that orchestrated epigenetic alterations are important in gene regulation during EBV infection, and histone modification status in promoter regions significantly associated with acquisition of de novo DNA methylation or protection of unmethylated status at transcription start site.

  1. LINE-1 methylation status in prostate cancer and non-neoplastic tissue adjacent to tumor in association with mortality.

    Science.gov (United States)

    Fiano, Valentina; Zugna, Daniela; Grasso, Chiara; Trevisan, Morena; Delsedime, Luisa; Molinaro, Luca; Gillio-Tos, Anna; Merletti, Franco; Richiardi, Lorenzo

    2017-01-02

    Aberrant DNA methylation seems to be associated with prostate cancer behavior. We investigated LINE-1 methylation in prostate cancer and non-neoplastic tissue adjacent to tumor (NTAT) in association with mortality from prostate cancer. We selected 157 prostate cancer patients with available NTAT from 2 cohorts of patients diagnosed between 1982-1988 and 1993-1996, followed up until 2010. An association between LINE-1 hypomethylation and prostate cancer mortality in tumor was suggested [hazard ratio per 5% decrease in LINE-1 methylation levels: 1.40, 95% confidence interval (CI): 0.95-2.01]. After stratification of the patients for Gleason score, the association was present only for those with a Gleason score of at least 8. Among these, low (80%) LINE-1 methylation was associated with a hazard ratio of 4.68 (95% CI: 1.03-21.34). LINE-1 methylation in the NTAT was not associated with prostate cancer mortality. Our results are consistent with the hypothesis that tumor tissue global hypomethylation may be a late event in prostate cancerogenesis and is associated with tumor progression.

  2. Whole eye wavefront aberrations in Mexican male subjects.

    Science.gov (United States)

    Cantú, Roberto; Rosales, Marco A; Tepichín, Eduardo; Curioca, Andrée; Montes, Victor; Bonilla, Julio

    2004-01-01

    To analyze the characteristics, incidence, and appearance of wavefront aberrations in undilated, normal, unoperated eyes. Eighty-eight eyes of 44 healthy male Mexican subjects (mean age 25.32 years, range 18 to 36 yr) were divided into three groups based on uncorrected visual acuity of greater than or equal to 20/20, 20/30, or 20/40. UCVA measurements were obtained using an Acuity Max computer screen chart. Wavefront aberrations were measured with the Nidek OPD-Scan ARK 10000, Ver. 1.11b. All measurements were carried out at the same center by the same technician during a single session, following manufacturer instructions. Background illumination was 3 Lux. Wavefront aberration measurements for each group were statistically analyzed using StatView; an average eye was characterized and the resulting aberrations were simulated using MATLAB. We obtained wavefront aberration maps for the 20/20 undilated normal unoperated eyes for total, low, and high order aberration coefficients. Wavefront maps for right eyes were practically the same as those for left eyes. Higher aberrations did not contribute substantially to total wavefront analysis. Average aberrations of this "normal eye" will be used as criteria to decide the necessity of wavefront-guided ablation in our facilities. We will focus on the nearly zero average of high order aberrations in this normal whole eye as a reference to be matched.

  3. Measuring and correcting aberrations of a cathode objective lens

    International Nuclear Information System (INIS)

    Tromp, R.M.

    2011-01-01

    In this paper I discuss several theoretical and practical aspects related to measuring and correcting the chromatic and spherical aberrations of a cathode objective lens as used in Low Energy Electron Microscopy (LEEM) and Photo Electron Emission Microscopy (PEEM) experiments. Special attention is paid to the various components of the cathode objective lens as they contribute to chromatic and spherical aberrations, and affect practical methods for aberration correction. This analysis has enabled us to correct a LEEM instrument for the spherical and chromatic aberrations of the objective lens. -- Research highlights: → Presents a comprehensive theory of the relation between chromatic aberration and lens current in a cathode objective lens. → Presents practical methods for measuring both spherical and chromatic aberrations of a cathode objective lens. → Presents measurements of these aberrations in good agreement with theory. → Presents practical methods for measuring and correcting these aberrations with an electron mirror.

  4. Chromosomal aberrations in ore miners of Slovakia

    International Nuclear Information System (INIS)

    Beno, M.; Vladar, M.; Nikodemova, D.; Vicanova, M.; Durcik, M.

    1998-01-01

    A pilot study was performed in which the incidence of chromosomal aberrations in lymphocytes of miners in ore mines located in Central Slovakia was monitored and related to lifetime underground radon exposure and to lifetime smoking. The conclusions drawn from the results of the study were as follows: the counts of chromosomal aberrations in lymphocytes of miners were significantly higher than in an age matched control group of white-collar staff; the higher counts of chromosomal aberrations could be ascribed to underground exposure of miners and to smoking; a dependence of chromosomal aberration counts on the exposure to radon could not be assessed. (A.K.)

  5. Common DNA methylation alterations in multiple brain regions in autism.

    Science.gov (United States)

    Ladd-Acosta, C; Hansen, K D; Briem, E; Fallin, M D; Kaufmann, W E; Feinberg, A P

    2014-08-01

    Autism spectrum disorders (ASD) are increasingly common neurodevelopmental disorders defined clinically by a triad of features including impairment in social interaction, impairment in communication in social situations and restricted and repetitive patterns of behavior and interests, with considerable phenotypic heterogeneity among individuals. Although heritability estimates for ASD are high, conventional genetic-based efforts to identify genes involved in ASD have yielded only few reproducible candidate genes that account for only a small proportion of ASDs. There is mounting evidence to suggest environmental and epigenetic factors play a stronger role in the etiology of ASD than previously thought. To begin to understand the contribution of epigenetics to ASD, we have examined DNA methylation (DNAm) in a pilot study of postmortem brain tissue from 19 autism cases and 21 unrelated controls, among three brain regions including dorsolateral prefrontal cortex, temporal cortex and cerebellum. We measured over 485,000 CpG loci across a diverse set of functionally relevant genomic regions using the Infinium HumanMethylation450 BeadChip and identified four genome-wide significant differentially methylated regions (DMRs) using a bump hunting approach and a permutation-based multiple testing correction method. We replicated 3/4 DMRs identified in our genome-wide screen in a different set of samples and across different brain regions. The DMRs identified in this study represent suggestive evidence for commonly altered methylation sites in ASD and provide several promising new candidate genes.

  6. Aberration studies and computer algebra

    International Nuclear Information System (INIS)

    Hawkes, P.W.

    1981-01-01

    The labour of calculating expressions for aberration coefficients is considerably lightened if a computer algebra language is used to perform the various substitutions and expansions involved. After a brief discussion of matrix representations of aberration coefficients, a particular language, which has shown itself to be well adapted to particle optics, is described and applied to the study of high frequency cavity lenses. (orig.)

  7. Theoretical investigation of aberrations upon ametropic human eyes

    Science.gov (United States)

    Tan, Bo; Chen, Ying-Ling; Lewis, J. W. L.; Baker, Kevin

    2003-11-01

    The human eye aberrations are important for visual acuity and ophthalmic diagnostics and surgical procedures. Reported monochromatic aberration data of the normal 20/20 human eyes are scarce. There exist even fewer reports of the relation between ametropic conditions and aberrations. We theoretically investigate the monochromatic and chromatic aberrations of human eyes for refractive errors of -10 to +10 diopters. Schematic human eye models are employed using optical design software for axial, index, and refractive types of ametropia.

  8. Highly frequent promoter methylation and PIK3CA amplification in non-small cell lung cancer (NSCLC)

    International Nuclear Information System (INIS)

    Ji, Meiju; Guan, Haixia; Gao, Cuixia; Shi, Bingyin; Hou, Peng

    2011-01-01

    Lung cancer is the leading cause of cancer-related death worldwide. Genetic and epigenetic alterations have been identified frequently in lung cancer, such as promoter methylation, gene mutations and genomic amplification. However, the interaction between genetic and epigenetic events and their significance in lung tumorigenesis remains poorly understood. We determined the promoter methylation of 6 genes and PIK3CA amplification using quantitative methylation-specific PCR (Q-MSP) and real-time quantitative PCR, respectively, and explore the association of promoter methylation with PIK3CA amplification in a large cohort of clinically well-characterized non-small cell lung cancer (NSCLC). Highly frequent promoter methylation was observed in NSCLC. With 100% diagnostic specificity, excellent sensitivity, ranging from 45.8 to 84.1%, was found for each of the 6 genes. The promoter methylation was associated with histologic type. Methylation of CALCA, CDH1, DAPK1, and EVX2 was more common in squamous cell carcinomas (SCC) compared to adenocarcinomas (ADC). Conversely, there was a trend toward a higher frequency of RASSF1A methylation in ADC than SCC. In addition, PIK3CA amplification was frequently found in NSCLC, and was associated with certain clinicopathologic features, such as smoking history, histologic type and pleural indentation. Importantly, aberrant promoter methylation of certain genes was significantly associated with PIK3CA amplification. Our data showed highly frequent promoter methylation and PIK3CA amplification in Chinese NSCLC population, and first demonstrated the associations of gene methylation with PIK3CA amplification, suggesting that these epigenetic events may be a consequence of overactivation of PI3K/Akt pathway

  9. Flow cytogenetics: progress toward chromosomal aberration detection

    International Nuclear Information System (INIS)

    Carrano, A.V.; Gray, J.W.; Van Dilla, M.A.

    1977-01-01

    Using clonal derivatives of the Chinese hamster M3-1 cell line, we demonstrate the potential of flow systems to karyotype homogeneous aberrations (aberrations which are identical and present in every cell) and to detect heterogeneous aberrations (aberrations which occur randomly in a population and are not identical in every cell). Flow cytometry (FCM) of ethidium bromide stained isolated chromosomes from clone 650A of the M3-1 cells distinguishes nine chromosome types from the fourteen present in the actual karyotype. X-irradiation of this parent 650A clone produced two sub-clones with an altered flow karyotype, that is, their FCM distributions were characterized by the addition of new peaks and alterations in area under existing peaks. From the relative DNA content and area for each peak, as determined by computer analysis, we predicted that each clone had undergone a reciprocal translocation involving chromosomes from two peaks. This prediction was confirmed by Giemsa-banding the metaphase cells. Heterogeneous aberrations are reflected in the flow karyotype as an increase in background, that is, an increase in area underlying the chromosome peaks. This increase is dose dependent but, as yet, the sample variability has been too large for quantitative analysis. Flow sorting of the valleys between chromosome peaks produces enriched fractions of aberrant chromosomes for visual analysis. These approaches are potentially applicable to the analysis of chromsomal aberrations induced by environmental contaminants

  10. Aberration-corrected STEM: current performance and future directions

    Energy Technology Data Exchange (ETDEWEB)

    Nellist, P D [Department of Physics, University of Dublin, Trinity College, Dublin 2 (Ireland); Chisholm, M F [Condensed Matter Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6030 (United States); Lupini, A R [Condensed Matter Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6030 (United States); Borisevich, A [Condensed Matter Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6030 (United States); Jr, W H Sides [Condensed Matter Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6030 (United States); Pennycook, S J [Condensed Matter Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6030 (United States); Dellby, N [Nion Co., 1102 8th St., Kirkland, WA 98033 (United States); Keyse, R [Nion Co., 1102 8th St., Kirkland, WA 98033 (United States); Krivanek, O L [Nion Co., 1102 8th St., Kirkland, WA 98033 (United States); Murfitt, M F [Nion Co., 1102 8th St., Kirkland, WA 98033 (United States); Szilagyi, Z S [Nion Co., 1102 8th St., Kirkland, WA 98033 (United States)

    2006-02-22

    Through the correction of spherical aberration in the scanning transmission electron microscope (STEM), the resolving of a 78 pm atomic column spacing has been demonstrated along with information transfer to 61 pm. The achievement of this resolution required careful control of microscope instabilities, parasitic aberrations and the compensation of uncorrected, higher order aberrations. Many of these issues are improved in a next generation STEM fitted with a new design of aberration corrector, and an initial result demonstrating aberration correction to a convergence semi-angle of 40 mrad is shown. The improved spatial resolution and beam convergence allowed for by such correction has implications for the way in which experiments are performed and how STEM data should be interpreted.

  11. Aberrant DNA methylation associated with MTHFR C677T genetic polymorphism in cutaneous squamous cell carcinoma in renal transplant patients.

    LENUS (Irish Health Repository)

    Laing, M E

    2010-08-01

    Changes in genomic DNA methylation associated with cancer include global DNA hypomethylation and gene-specific hyper- or hypomethylation. We have previously identified a genetic variant in the MTHFR gene involved in the methylation pathway which confers risk for the development of squamous cell carcinoma (SCC) in renal transplant patients. This genetic variant has also been discovered to confer SCC risk in nontransplant patients with low folate status.

  12. Nodal aberration theory for wild-filed asymmetric optical systems

    Science.gov (United States)

    Chen, Yang; Cheng, Xuemin; Hao, Qun

    2016-10-01

    Nodal Aberration Theory (NAT) was used to calculate the zero field position in Full Field Display (FFD) for the given aberration term. Aiming at wide-filed non-rotational symmetric decentered optical systems, we have presented the nodal geography behavior of the family of third-order and fifth-order aberrations. Meanwhile, we have calculated the wavefront aberration expressions when one optical element in the system is tilted, which was not at the entrance pupil. By using a three-piece-cellphone lens example in optical design software CodeV, the nodal geography is testified under several situations; and the wavefront aberrations are calculated when the optical element is tilted. The properties of the nodal aberrations are analyzed by using Fringe Zernike coefficients, which are directly related with the wavefront aberration terms and usually obtained by real ray trace and wavefront surface fitting.

  13. γ-aminobutyric acidA (GABAA) receptor regulates ERK1/2 phosphorylation in rat hippocampus in high doses of Methyl Tert-Butyl Ether (MTBE)-induced impairment of spatial memory

    International Nuclear Information System (INIS)

    Zheng Gang; Zhang Wenbin; Zhang Yun; Chen Yaoming; Liu Mingchao; Yao Ting; Yang Yanxia; Zhao Fang; Li Jingxia; Huang Chuanshu; Luo Wenjing; Chen Jingyuan

    2009-01-01

    Experimental and occupational exposure to Methyl Tert-Butyl Ether (MTBE) has been reported to induce neurotoxicological and neurobehavioral effects, such as headache, nausea, dizziness, and disorientation, etc. However, the molecular mechanisms involved in MTBE-induced neurotoxicity are still not well understood. In the present study, we investigated the effects of MTBE on spatial memory and the expression and function of GABA A receptor in the hippocampus. Our results demonstrated that intraventricular injection of MTBE impaired the performance of the rats in a Morris water maze task, and significantly increased the expression of GABA A receptor α1 subunit in the hippocampus. The phosphorylation of ERK1/2 decreased after the MTBE injection. Furthermore, the decreased ability of learning and the reduction of phosphorylated ERK1/2 level of the MTBE-treated rats was partly reversed by bicuculline injected 30 min before the training. These results suggested that MTBE exposure could result in impaired spatial memory. GABA A receptor may play an important role in the MTBE-induced impairment of learning and memory by regulating the phosphorylation of ERK in the hippocampus.

  14. No difference in the frequency of locus-specific methylation in the peripheral blood DNA of women diagnosed with breast cancer and age-matched controls

    DEFF Research Database (Denmark)

    Wojdacz, Tomasz K; Thestrup, Britta Boserup; Cold, Søren

    2011-01-01

    with no signs of breast cancer. No significant differences in the frequency of methylation of the above genes were found between cases and controls in our study. Hence, testing for the presence of methylation of cancer-related genes in PBL DNA from women diagnosed with sporadic breast cancer and classified...... might predispose for cancer development. Here, we have used the methlyation-sensitive high-resolution melting approach to examine the methylation status of the BRCA1, BRCA2, APC, RASSF1A and RARβ2 genes in PBLs of a group of women diagnosed with breast cancer, and an age-matched control group......, to the pathology of different diseases, remains open. Recently, a number of studies addressed the question of the prevalence of aberrant methylation of cancer-related genes in peripheral blood leukocyte (PBL) DNA and indicated a strong possibility that the presence of constitutional methylation of different genes...

  15. Regulation of the DNA Methylation Landscape in Human Somatic Cell Reprogramming by the miR-29 Family

    Directory of Open Access Journals (Sweden)

    Eriona Hysolli

    2016-07-01

    Full Text Available Reprogramming to pluripotency after overexpression of OCT4, SOX2, KLF4, and MYC is accompanied by global genomic and epigenomic changes. Histone modification and DNA methylation states in induced pluripotent stem cells (iPSCs have been shown to be highly similar to embryonic stem cells (ESCs. However, epigenetic differences still exist between iPSCs and ESCs. In particular, aberrant DNA methylation states found in iPSCs are a major concern when using iPSCs in a clinical setting. Thus, it is critical to find factors that regulate DNA methylation states in reprogramming. Here, we found that the miR-29 family is an important epigenetic regulator during human somatic cell reprogramming. Our global DNA methylation and hydroxymethylation analysis shows that DNA demethylation is a major event mediated by miR-29a depletion during early reprogramming, and that iPSCs derived from miR-29a depletion are epigenetically closer to ESCs. Our findings uncover an important miRNA-based approach to generate clinically robust iPSCs.

  16. Investigation of HOXA9 promoter methylation as a biomarker to distinguish oral cancer patients at low risk of neck metastasis

    International Nuclear Information System (INIS)

    Uchida, Kenichiro; Veeramachaneni, Ratna; Huey, Bing; Bhattacharya, Aditi; Schmidt, Brian L; Albertson, Donna G

    2014-01-01

    Metastasis to the cervical (neck) lymph nodes is one of the most significant clinical factors responsible for death from oral squamous cell carcinoma (SCC). Therefore, the lymph nodes are frequently removed when the tumor is excised (neck dissection), even though the majority of patients will not benefit from the extra surgery. Two subtypes of oral SCC distinguished by the presence of tumor genomic aberrations +3q, -8p, +8q and/or +20 differ in risk for metastasis – high for the 3q8pq20 subtype, harboring one or more of the aberrations and low for the non-3q8pq20 subtype, lacking these alterations. A prior analysis of the literature suggested genes differentially methylated in the two subtypes. Therefore, the goal of this study was to further investigate the methylation status of candidate biomarkers of the non-3q8pq20 subtype, and evaluate their utility for identifying patients at low risk for metastasis. Methylation status of genes in a cohort of 52 oral SCC patients with at least five year follow up was determined by pyrosequencing. Gene expression levels were determined by quantitative RT-PCR. Growth following re-expression of HOXA9 in cultured oral SCC cells was assessed by proliferation and colony formation assays. A pilot study evaluating methylation levels of HOXA9, MT1A and HOXA11 promoters in DNA from 12 tumors (six each of the 3q8pq20 and non-3q8pq20 subtypes) revealed that only HOXA9 was differentially methylated. Significant differences in methylation levels of HOXA9 were observed amongst the 52 oral SCCs with respect to genomic subtype and nodal status (p = 0.014, and p = 0.024, respectively, Wilcoxon rank sum test). High levels of HOXA9 methylation and low levels of expression in oral SCC cell lines were observed compared to HaCaT, a non-tumorigenic keratinocyte cell line. Re-expression of HOXA9 in the SCC4 oral cancer cell line resulted in diminished proliferation and colony formation. HOXA9 methylation is frequent in oral cancers and levels are

  17. Analysis of the expression level and methylation of tumor protein p53, phosphatase and tensin homolog and mutS homolog 2 in N-methyl-N-nitrosourea-induced thymic lymphoma in C57BL/6 mice.

    Science.gov (United States)

    Huo, Xueyun; Li, Zhenkun; Zhang, Shuangyue; Li, Changlong; Guo, Meng; Lu, Jing; Lv, Jianyi; Du, Xiaoyan; Chen, Zhenwen

    2017-10-01

    Tumorigenesis is often caused by somatic mutation or epigenetic changes in genes that regulate aspects of cell death, proliferation and survival. Although the functions of multiple tumor suppressor genes have been well studied in isolation, how these genes cooperate during the progression of a single tumor remains unclear in numerous cases. The present study used N-methyl-N-nitrosourea (MNU), one of the most potent mutagenic nitrosourea compounds, to induce thymic lymphoma in C57BL/6J mice. Subsequently, the protein expression levels of phosphatase and tensin homolog (PTEN), transformation protein 53 and mutS homolog 2 (MSH2) were evaluated concomitantly in the thymus, liver, kidney and spleen of MNU-treated mice by western blotting. To determine whether changes in expression level were due to aberrant epigenetic regulation, the present study further examined the methylation status of each gene by MassARRAY analysis. During the tumorigenesis process of an MNU-induced single thymic lymphoma, the expression level of PTEN was revealed to be reduced in thymic lymphoma samples but not in normal or non-tumor thymus tissue samples. Furthermore, a marked reduction of P53 expression levels were demonstrated in thymic lymphomas and spleens with a metastatic tumor. Conversely, MSH2 upregulation was identified only in liver, kidney, and spleen samples that were infiltrated by thymic lymphoma cells. Furthermore, the present study revealed that a number of 5'-C-phosphate-G-3' sites located in the promoter of aberrantly expressed genes had significantly altered methylation statuses. These results improve the understanding of the course of mutagen-induced cancer, and highlight that epigenetic regulation may serve an important function in cancer.

  18. Adaptive aberration correction using a triode hyperbolic electron mirror

    International Nuclear Information System (INIS)

    Fitzgerald, J.P.S.; Word, R.C.; Koenenkamp, R.

    2011-01-01

    A converging electron mirror can be used to compensate spherical and chromatic aberrations in an electron microscope. This paper presents an analytical solution to a novel triode (three electrode) hyperbolic mirror as an improvement to the well-known diode (two electrode) hyperbolic mirror for aberration correction. A weakness of the diode mirror is a lack of flexibility in changing the chromatic and spherical aberration coefficients independently without changes in the mirror geometry. In order to remove this limitation, a third electrode can be added. We calculate the optical properties of the resulting triode mirror analytically on the basis of a simple model field distribution. We present the optical properties-the object/image distance, z 0 , and the coefficients of spherical and chromatic aberration, C s and C c , of both mirror types from an analysis of electron trajectories in the mirror field. From this analysis, we demonstrate that while the properties of both designs are similar, the additional parameters in the triode mirror improve the range of aberration that can be corrected. The triode mirror is also able to provide a dynamic adjustment range of chromatic aberration for fixed spherical aberration and focal length, or any permutation of these three parameters. While the dynamic range depends on the values of aberration correction needed, a nominal 10% tuning range is possible for most configurations accompanied by less than 1% change in the other two properties. -- Highlights: → Electrostatic aberration correction for chromatic and spherical aberration in electron optics. → Simultaneous correction of spherical and chromatic aberrations over a wide, adjustable range. → Analytic and quantitative description of correction parameters.

  19. Rooting Out Aberrant Behavior in Training.

    Science.gov (United States)

    Kokalis, Jerry, Jr.; Paquin, Dave

    1989-01-01

    Discusses aberrant, or disruptive, behavior in an industrial/business, classroom-based, instructor-led training setting. Three examples of aberrant behavior are described, typical case studies are provided for each, and preventive (long-term) and corrective (on-the-spot) strategies for dealing with the problems are discussed. (LRW)

  20. New radioiodinated methyl-branched fatty acids for cardiac studies

    International Nuclear Information System (INIS)

    Knapp, F.F. Jr.; Ambrose, K.R.; Goodman, M.M.

    1985-01-01

    The effects of 3-methyl-substitution on the heart retention and metabolism of 3-R,S-methyl-(BMIPP) and 3,3-dimethyl-(DMIPP) analogues of 15-(p-iodophenyl)-pentadecanoic acid (IPP) have been studied in rats. Methyl-substitution considerably increased the myocardial half-time values in fasted rats: IPP, 5 to 10 min; BMIPP, 30 to 45 min; DMIPP, 6 to 7 h. Because of the observed differences in the relative myocardial uptake and retention of these agents, an evaluation of the subcellular distribution profiles and the distribution of radioactivity within various lipid pools extracted from cell components was performed. Studies with DMIPP in fasted rats have shown high levels of the free fatty acid and only slow conversion to triglycerides. These data are in contrast to the rapid clearance of the straight chain IPP analogue and rapid incorporation into triglycerides. These data suggest that the prolonged myocardial retention observed with DMIPP in vivo may result from inhibition of β-oxidation. Subcellular distribution studies have shown predominate association of DMIPP and BMIPP with the mitochondrial and microsomal fractions, while IPP was primarily found in the cytoplasm. Because of the unique ''trapping'' properties and the high heart:blood ratios, [ 123 I]DMIPP should be useful for evaluation of aberrations in regional myocardial uptake. 7 refs., 9 figs., 1 tab

  1. The correction of electron lens aberrations

    Energy Technology Data Exchange (ETDEWEB)

    Hawkes, P.W., E-mail: peter.hawkes@cemes.fr

    2015-09-15

    The progress of electron lens aberration correction from about 1990 onwards is chronicled. Reasonably complete lists of publications on this and related topics are appended. A present for Max Haider and Ondrej Krivanek in the year of their 65th birthdays. By a happy coincidence, this review was completed in the year that both Max Haider and Ondrej Krivanek reached the age of 65. It is a pleasure to dedicate it to the two leading actors in the saga of aberration corrector design and construction. They would both wish to associate their colleagues with such a tribute but it is the names of Haider and Krivanek (not forgetting Joachim Zach) that will remain in the annals of electron optics, next to that of Harald Rose. I am proud to know that both regard me as a friend as well as a colleague. - Highlights: • Geometrical aberration correction. • Chromatic aberration correction. • 50 pm resolution. • High-resolution electron energy-loss spectroscopy. • Extensive bibliographies.

  2. The correction of electron lens aberrations

    International Nuclear Information System (INIS)

    Hawkes, P.W.

    2015-01-01

    The progress of electron lens aberration correction from about 1990 onwards is chronicled. Reasonably complete lists of publications on this and related topics are appended. A present for Max Haider and Ondrej Krivanek in the year of their 65th birthdays. By a happy coincidence, this review was completed in the year that both Max Haider and Ondrej Krivanek reached the age of 65. It is a pleasure to dedicate it to the two leading actors in the saga of aberration corrector design and construction. They would both wish to associate their colleagues with such a tribute but it is the names of Haider and Krivanek (not forgetting Joachim Zach) that will remain in the annals of electron optics, next to that of Harald Rose. I am proud to know that both regard me as a friend as well as a colleague. - Highlights: • Geometrical aberration correction. • Chromatic aberration correction. • 50 pm resolution. • High-resolution electron energy-loss spectroscopy. • Extensive bibliographies

  3. The Oncoprotein BRD4-NUT Generates Aberrant Histone Modification Patterns.

    Directory of Open Access Journals (Sweden)

    Barry M Zee

    Full Text Available Defects in chromatin proteins frequently manifest in diseases. A striking case of a chromatin-centric disease is NUT-midline carcinoma (NMC, which is characterized by expression of NUT as a fusion partner most frequently with BRD4. ChIP-sequencing studies from NMC patients revealed that BRD4-NUT (B4N covers large genomic regions and elevates transcription within these domains. To investigate how B4N modulates chromatin, we performed affinity purification of B4N when ectopically expressed in 293-TREx cells and quantified the associated histone posttranslational modifications (PTM using proteomics. We observed significant enrichment of acetylation particularly on H3 K18 and of combinatorial patterns such as H3 K27 acetylation paired with K36 methylation. We postulate that B4N complexes override the preexisting histone code with new PTM patterns that reflect aberrant transcription and that epigenetically modulate the nucleosome environment toward the NMC state.

  4. Chronic consumption of a western diet modifies the DNA methylation profile in the frontal cortex of mice.

    Science.gov (United States)

    Yokoyama, Amy S; Dunaway, Keith; Rutkowsky, Jennifer; Rutledge, John C; Milenkovic, Dragan

    2018-02-21

    In our previous work in mice, we have shown that chronic consumption of a Western diet (WD; 42% kcal fat, 0.2% total cholesterol and 34% sucrose) is correlated with impaired cognitive function. Cognitive decline has also been associated with alterations in DNA methylation. Additionally, although there have been many studies analyzing the effect of maternal consumption of a WD on DNA methylation in the offspring, few studies have analyzed how an individual's consumption of a WD can impact his/her DNA methylation. Since the frontal cortex is involved in the regulation of cognitive function and is often affected in cases of cognitive decline, this study aimed to examine how chronic consumption of a WD affects DNA methylation in the frontal cortex of mice. Eight-week-old male mice were fed either a control diet (CD) or a WD for 12 weeks, after which time alterations in DNA methylation were analyzed. Assessment of global DNA methylation in the frontal cortex using dot blot analysis revealed that there was a decrease in global DNA methylation in the WD-fed mice compared with the CD-fed mice. Bioinformatic analysis identified several networks and pathways containing genes displaying differential methylation, particularly those involved in metabolism, cell adhesion and cytoskeleton integrity, inflammation and neurological function. In conclusion, the results from this study suggest that consumption of a WD alters DNA methylation in the frontal cortex of mice and could provide one of the mechanisms by which consumption of a WD impairs cognitive function.

  5. Methyl-Analyzer--whole genome DNA methylation profiling.

    Science.gov (United States)

    Xin, Yurong; Ge, Yongchao; Haghighi, Fatemeh G

    2011-08-15

    Methyl-Analyzer is a python package that analyzes genome-wide DNA methylation data produced by the Methyl-MAPS (methylation mapping analysis by paired-end sequencing) method. Methyl-MAPS is an enzymatic-based method that uses both methylation-sensitive and -dependent enzymes covering >80% of CpG dinucleotides within mammalian genomes. It combines enzymatic-based approaches with high-throughput next-generation sequencing technology to provide whole genome DNA methylation profiles. Methyl-Analyzer processes and integrates sequencing reads from methylated and unmethylated compartments and estimates CpG methylation probabilities at single base resolution. Methyl-Analyzer is available at http://github.com/epigenomics/methylmaps. Sample dataset is available for download at http://epigenomicspub.columbia.edu/methylanalyzer_data.html. fgh3@columbia.edu Supplementary data are available at Bioinformatics online.

  6. Third-rank chromatic aberrations of electron lenses.

    Science.gov (United States)

    Liu, Zhixiong

    2018-02-01

    In this paper the third-rank chromatic aberration coefficients of round electron lenses are analytically derived and numerically calculated by Mathematica. Furthermore, the numerical results are cross-checked by the differential algebraic (DA) method, which verifies that all the formulas for the third-rank chromatic aberration coefficients are completely correct. It is hoped that this work would be helpful for further chromatic aberration correction in electron microscopy. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. The Distribution of Chromosomal Aberrations in Human Cells Predicted by a Generalized Time-Dependent Model of Radiation-Induced Formation of Aberrations

    Science.gov (United States)

    Ponomarev, Artem L.; George, K.; Cucinotta, F. A.

    2011-01-01

    New experimental data show how chromosomal aberrations for low- and high-LET radiation are dependent on DSB repair deficiencies in wild-type, AT and NBS cells. We simulated the development of chromosomal aberrations in these cells lines in a stochastic track-structure-dependent model, in which different cells have different kinetics of DSB repair. We updated a previously formulated model of chromosomal aberrations, which was based on a stochastic Monte Carlo approach, to consider the time-dependence of DSB rejoining. The previous version of the model had an assumption that all DSBs would rejoin, and therefore we called it a time-independent model. The chromosomal-aberrations model takes into account the DNA and track structure for low- and high-LET radiations, and provides an explanation and prediction of the statistics of rare and more complex aberrations. We compared the program-simulated kinetics of DSB rejoining to the experimentally-derived bimodal exponential curves of the DSB kinetics. We scored the formation of translocations, dicentrics, acentric and centric rings, deletions, and inversions. The fraction of DSBs participating in aberrations was studied in relation to the rejoining time. Comparisons of simulated dose dependence for simple aberrations to the experimental dose-dependence for HF19, AT and NBS cells will be made.

  8. Prenatal stress down-regulates Reelin expression by methylation of its promoter and induces adult behavioral impairments in rats.

    Directory of Open Access Journals (Sweden)

    Ismael Palacios-García

    Full Text Available Prenatal stress causes predisposition to cognitive and emotional disturbances and is a risk factor towards the development of neuropsychiatric conditions like depression, bipolar disorders and schizophrenia. The extracellular protein Reelin, expressed by Cajal-Retzius cells during cortical development, plays critical roles on cortical lamination and synaptic maturation, and its deregulation has been associated with maladaptive conditions. In the present study, we address the effect of prenatal restraint stress (PNS upon Reelin expression and signaling in pregnant rats during the last 10 days of pregnancy. Animals from one group, including control and PNS exposed fetuses, were sacrificed and analyzed using immunohistochemical, biochemical, cell biology and molecular biology approaches. We scored changes in the expression of Reelin, its signaling pathway and in the methylation of its promoter. A second group included control and PNS exposed animals maintained until young adulthood for behavioral studies. Using the optical dissector, we show decreased numbers of Reelin-positive neurons in cortical layer I of PNS exposed animals. In addition, neurons from PNS exposed animals display decreased Reelin expression that is paralleled by changes in components of the Reelin-signaling cascade, both in vivo and in vitro. Furthermore, PNS induced changes in the DNA methylation levels of the Reelin promoter in culture and in histological samples. PNS adult rats display excessive spontaneous locomotor activity, high anxiety levels and problems of learning and memory consolidation. No significant visuo-spatial memory impairment was detected on the Morris water maze. These results highlight the effects of prenatal stress on the Cajal-Retzius neuronal population, and the persistence of behavioral consequences using this treatment in adults, thereby supporting a relevant role of PNS in the genesis of neuropsychiatric diseases. We also propose an in vitro model that

  9. Expression and promoter DNA methylation of MLH1 in colorectal cancer and lung cancer.

    Science.gov (United States)

    Ma, Yunxia; Chen, Yuan; Petersen, Iver

    2017-04-01

    Aberrant DNA methylation is a common molecular feature in human cancer. The aims of this study were to analyze the methylation status of MLH1, one of the DNA mismatch repair (MMR) genes, in human colorectal and lung cancer and to evaluate its clinical relevance. The expression of MLH1 was analyzed in 8 colorectal cancer (CRC) and 8 lung cancer cell lines by real-time RT-PCR and western blotting. The MLH1 protein expression was evaluated by immunohistochemistry on tissue microarrays including 121 primary CRC and 90 lung cancer patient samples. In cancer cell lines, the methylation status of MLH1 promoter and exon 2 was investigated by bisulfite sequencing (BS). Methylation-specific-PCR (MSP) was used to evaluate methylation status of MLH1. The expression of MLH1 mRNA was detected in 8 CRC cell lines as well as normal colonic fibroblast cells CCD-33Co. At protein levels, MLH1 was lost in one CRC cell line HCT-116 and normal cells CCD-33Co. No methylation was found in the promoter and exon 2 of MLH1 in CRC cell lines. MLH1 was expressed in 8 lung cancer cell lines at both mRNA and protein levels. Compared to cancer cells, normal bronchial epithelial cells (HBEC) had lower expression of MLH1 protein. In primary CRC, 54.5% of cases exhibited positive staining, while 47.8% of lung tumors were positive for MLH1 protein. MSP analysis showed that 58 out of 92 (63.0%) CRC and 41 out of 73 (56.2%) lung cancer exhibited MLH1 methylation. In CRC, the MLH1 methylation was significantly associated with tumor invasion in veins (P=0.012). However, no significant links were found between MLH1 expression and promoter methylation in both tumor entities. MLH1 methylation is a frequent molecular event in CRC and lung cancer patients. In CRC, methylation of MLH1 could be linked to vascular invasiveness. Copyright © 2017 Elsevier GmbH. All rights reserved.

  10. Chromosome aberrations in pesticide-exposed greenhouse workers

    DEFF Research Database (Denmark)

    Lander, B F; Knudsen, Lisbeth E.; Gamborg, M O

    2000-01-01

    OBJECTIVES: The aim of this study was to investigate the possibility of subtoxic exposure to pesticides causing chromosome aberrations in greenhouse workers. METHODS: In a cross-sectional and prospective study design chromosome aberration frequencies in cultured lymphocytes were examined for 116...... greenhouse workers exposed to a complex mixture of almost 50 insecticides, fungicides, and growth regulators and also for 29 nonsmoking, nonpesticide-exposed referents. RESULTS: The preseason frequencies of chromosome aberrations were slightly but not statistically significantly elevated for the greenhouse...... workers when they were compared with the referents. After a summer season of pesticide spraying in the greenhouses, the total frequencies of cells with chromosome aberrations were significantly higher than in the preseason samples (P=0.02) and also higher than for the referents (P=0.05). This finding...

  11. Aberration-free intraocular lenses - What does this really mean?

    Science.gov (United States)

    Langenbucher, Achim; Schröder, Simon; Cayless, Alan; Eppig, Timo

    2017-09-01

    So-called aberration-free intraocular lenses (IOLs) are well established in modern cataract surgery. Usually, they are designed to perfectly refract a collimated light beam onto the focal point. We show how much aberration can be expected with such an IOL in a convergent light beam such as that found anterior to the human cornea. Additionally, the aberration in a collimated beam is estimated for an IOL that has no aberrations in the convergent beam. The convergent beam is modelled as the pencil of rays corresponding to the spherical wavefront resulting from a typical corneal power of 43m -1 . The IOLs are modelled as infinitely thin phase plates with 20m -1 optical power placed 5mm behind the cornea. Their aberrations are reported in terms of optical path length difference and longitudinal spherical aberration (LSA) of the marginal rays, as well as nominal spherical aberration (SA) calculated based on a Zernike representation of the wavefront-error at the corneal plane within a 6mm aperture. The IOL designed to have no aberrations in a collimated light beam has an optical path length difference of -1.8μm, and LSA of 0.15m -1 in the convergent beam of a typical eye. The corresponding nominal SA is 0.065μm. The IOL designed to have no aberrations in a convergent light beam has an optical path length difference of 1.8μm, and LSA of -0.15m -1 in the collimated beam. An IOL designed to have no aberrations in a collimated light beam will increase the SA of a patient's eye after implantation. Copyright © 2017. Published by Elsevier GmbH.

  12. Loss of maintenance DNA methylation results in abnormal DNA origin firing during DNA replication.

    Science.gov (United States)

    Haruta, Mayumi; Shimada, Midori; Nishiyama, Atsuya; Johmura, Yoshikazu; Le Tallec, Benoît; Debatisse, Michelle; Nakanishi, Makoto

    2016-01-22

    The mammalian maintenance methyltransferase DNMT1 [DNA (cytosine-5-)-methyltransferase 1] mediates the inheritance of the DNA methylation pattern during replication. Previous studies have shown that depletion of DNMT1 causes a severe growth defect and apoptosis in differentiated cells. However, the detailed mechanisms behind this phenomenon remain poorly understood. Here we show that conditional ablation of Dnmt1 in murine embryonic fibroblasts (MEFs) resulted in an aberrant DNA replication program showing an accumulation of late-S phase replication and causing severely defective growth. Furthermore, we found that the catalytic activity and replication focus targeting sequence of DNMT1 are required for a proper DNA replication program. Taken together, our findings suggest that the maintenance of DNA methylation by DNMT1 plays a critical role in proper regulation of DNA replication in mammalian cells. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Reasons of carcinogenesis indicate a big-bang inside: a hypothesis for the aberration of DNA methylation.

    Science.gov (United States)

    Roy, A; Roy Chattopadhyay, N

    2013-07-01

    Cancer involves various sets of altered gene functions which embrace all the three basic mechanisms of regulation of gene expression. However, no common mechanism is inferred till date for this versatile disease and thus no full proof remedy can be offered. Here we show that the basic mechanisms are interlinked and indicate towards one of those mechanisms as being the superior one; the methylation of cytosines in specific DNA sequences, for the initiation and maintenance of carcinogenesis. The analyses of the previous reports and the nucleotide sequences of the DNA methyltransferases strongly support the assumption that the mutation(s) in the DNA-binding site(s) of DNA-methyltransferases acts as a master regulator; though it continues the cycle from mutation to repair to methylation. We anticipate that our hypothesis will start a line of study for the proposal of a treatment regime for cancers by introducing wild type methyltransferases in the diseased cells and/or germ cells, and/or by targeting ligands to the altered binding domain(s) where a mutation in the concerned enzyme(s) is seen. Copyright © 2013. Published by Elsevier Ltd.

  14. Digital quantification of gene methylation in stool DNA by emulsion-PCR coupled with hydrogel immobilized bead-array.

    Science.gov (United States)

    Liu, Yunlong; Wu, Haiping; Zhou, Qiang; Song, Qinxin; Rui, Jianzhong; Zou, Bingjie; Zhou, Guohua

    2017-06-15

    Aberrations of gene methylation in stool DNA (sDNA) is an effective biomarker for non-invasive colorectal cancer diagnosis. However, it is challenging to accurately quantitate the gene methylation levels in sDNA due to the low abundance and degradation of sDNA. In this study, a digital quantification strategy was proposed by combining emulsion PCR (emPCR) with hydrogel immobilized bead-array. The assay includes following steps: bisulfite conversion of sDNA, pre-amplification by PCR with specific primers containing 5' universal sequences, emPCR of pre-amplicons with beaded primers to achieve single-molecular amplification and identification of hydrogel embedding beads coated with amplicons. The sensitivity and the specificity of the method are high enough to pick up 0.05% methylated targets from unmethylated DNA background. The successful detection of hypermethylated vimentin gene in clinical stool samples suggests that the proposed method should be a potential tool for non-invasive colorectal cancer screening. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Relationship between promoter methylation & tissue expression of MGMT gene in ovarian cancer

    Directory of Open Access Journals (Sweden)

    V Shilpa

    2014-01-01

    Full Text Available Background & objectives: Epigenetic alterations, in addition to multiple gene abnormalities, are involved in the genesis and progression of human cancers. Aberrant methylation of CpG islands within promoter regions is associated with transcriptional inactivation of various tumour suppressor genes. O 6 -methyguanine-DNA methyltransferase (MGMT is a DNA repair gene that removes mutagenic and cytotoxic adducts from the O 6 -position of guanine induced by alkylating agents. MGMT promoter hypermethylation and reduced expression has been found in some primary human carcinomas. We studied DNA methylation of CpG islands of the MGMT gene and its relation with MGMT protein expression in human epithelial ovarian carcinoma. Methods: A total of 88 epithelial ovarian cancer (EOC tissue samples, 14 low malignant potential (LMP tumours and 20 benign ovarian tissue samples were analysed for MGMT promoter methylation by nested methylation-specific polymerase chain reaction (MSP after bisulphite modification of DNA. A subset of 64 EOC samples, 10 LMP and benign tumours and five normal ovarian tissue samples were analysed for protein expression by immunohistochemistry. Results: The methylation frequencies of the MGMT gene promoter were found to be 29.5, 28.6 and 20 per cent for EOC samples, LMP tumours and benign cases, respectively. Positive protein expression was observed in 93.8 per cent of EOC and 100 per cent in LMP, benign tumours and normal ovarian tissue samples. Promoter hypermethylation with loss of protein expression was seen only in one case of EOC. Interpretation & conclusions: Our results suggest that MGMT promoter hypermethylation does not always reflect gene expression.

  16. Image transfer with spatial coherence for aberration corrected transmission electron microscopes

    International Nuclear Information System (INIS)

    Hosokawa, Fumio; Sawada, Hidetaka; Shinkawa, Takao; Sannomiya, Takumi

    2016-01-01

    The formula of spatial coherence involving an aberration up to six-fold astigmatism is derived for aberration-corrected transmission electron microscopy. Transfer functions for linear imaging are calculated using the newly derived formula with several residual aberrations. Depending on the symmetry and origin of an aberration, the calculated transfer function shows characteristic symmetries. The aberrations that originate from the field’s components, having uniformity along the z direction, namely, the n-fold astigmatism, show rotational symmetric damping of the coherence. The aberrations that originate from the field’s derivatives with respect to z, such as coma, star, and three lobe, show non-rotational symmetric damping. It is confirmed that the odd-symmetric wave aberrations have influences on the attenuation of an image via spatial coherence. Examples of image simulations of haemoglobin and Si [211] are shown by using the spatial coherence for an aberration-corrected electron microscope. - Highlights: • The formula of partial coherence for aberration corrected TEM is derived. • Transfer functions are calculated with several residual aberrations. • The calculated transfer function shows the characteristic damping. • The odd-symmetric wave aberrations can cause the attenuation of image via coherence. • The examples of aberration corrected TEM image simulations are shown.

  17. Image transfer with spatial coherence for aberration corrected transmission electron microscopes

    Energy Technology Data Exchange (ETDEWEB)

    Hosokawa, Fumio, E-mail: hosokawa@bio-net.co.jp [BioNet Ltd., 2-3-28 Nishikityo, Tachikwa, Tokyo (Japan); Tokyo Institute of Technology, 4259 Nagatsuta, Midoriku, Yokohama 226-8503 (Japan); Sawada, Hidetaka [JEOL (UK) Ltd., JEOL House, Silver Court, Watchmead, Welwyn Garden City, Herts AL7 1LT (United Kingdom); Shinkawa, Takao [BioNet Ltd., 2-3-28 Nishikityo, Tachikwa, Tokyo (Japan); Sannomiya, Takumi [Tokyo Institute of Technology, 4259 Nagatsuta, Midoriku, Yokohama 226-8503 (Japan)

    2016-08-15

    The formula of spatial coherence involving an aberration up to six-fold astigmatism is derived for aberration-corrected transmission electron microscopy. Transfer functions for linear imaging are calculated using the newly derived formula with several residual aberrations. Depending on the symmetry and origin of an aberration, the calculated transfer function shows characteristic symmetries. The aberrations that originate from the field’s components, having uniformity along the z direction, namely, the n-fold astigmatism, show rotational symmetric damping of the coherence. The aberrations that originate from the field’s derivatives with respect to z, such as coma, star, and three lobe, show non-rotational symmetric damping. It is confirmed that the odd-symmetric wave aberrations have influences on the attenuation of an image via spatial coherence. Examples of image simulations of haemoglobin and Si [211] are shown by using the spatial coherence for an aberration-corrected electron microscope. - Highlights: • The formula of partial coherence for aberration corrected TEM is derived. • Transfer functions are calculated with several residual aberrations. • The calculated transfer function shows the characteristic damping. • The odd-symmetric wave aberrations can cause the attenuation of image via coherence. • The examples of aberration corrected TEM image simulations are shown.

  18. Effect of aberrations in human eye on contrast sensitivity function

    Science.gov (United States)

    Quan, Wei; Wang, Feng-lin; Wang, Zhao-qi

    2011-06-01

    The quantitative analysis of the effect of aberrations in human eye on vision has important clinical value in the correction of aberrations. The wave-front aberrations of human eyes were measured with the Hartmann-Shack wave-front sensor and modulation transfer function (MTF) was computed from the wave-front aberrations. Contrast sensitivity function (CSF) was obtained from MTF and the retinal aerial image modulation (AIM). It is shown that the 2nd, 3rd, 4th, 5th, 6th Zernike aberrations deteriorate contrast sensitivity function. When the 2nd, 3rd, 4th, 5th, 6th Zernike aberrations are corrected high contrast sensitivity function can be obtained.

  19. Promoter methylation of APC and RAR-β genes as prognostic markers in non-small cell lung cancer (NSCLC).

    Science.gov (United States)

    Feng, Hongxiang; Zhang, Zhenrong; Qing, Xin; Wang, Xiaowei; Liang, Chaoyang; Liu, Deruo

    2016-02-01

    Aberrant promoter hypermethylations of tumor suppressor genes are promising markers for lung cancer diagnosis and prognosis. The purpose of this study was to determine methylation status at APC and RAR-β promoters in primary NSCLC, and whether they have any relationship with survival. APC and RAR-β promoter methylation status were determined in 41 NSCLC patients using methylation specific PCR. APC promoter methylation was detectable in 9 (22.0%) tumor samples and 6 (14.6%) corresponding non-tumor samples (P=0.391). RAR-β promoter methylation was detectable in 13 (31.7%) tumor samples and 4 (9.8%) corresponding non-tumor samples (P=0.049) in the NSCLC patients. APC promoter methylation was found to be associated with T stage (P=0.046) and nodal status (P=0.019) in non-tumor samples, and with smoking (P=0.004) in tumor samples. RAR-β promoter methylation was found associated with age (P=0.031) in non-tumor samples and with primary tumor site in tumor samples. Patients with APC promoter methylation in tumor samples showed significantly longer survival than patients without it (Log-rank P=0.014). In a multivariate analysis of prognostic factors, APC methylation in tumor samples was an independent prognostic factor (P=0.012), as were N1 positive lymph node number (P=0.025) and N2 positive lymph node number (P=0.06). Our study shows that RAR-β methylation detected in lung tissue may be used as a predictive marker for NSCLC diagnosis and that APC methylation in tumor sample may be a useful marker for superior survival in NSCLC patients. Copyright © 2015. Published by Elsevier Inc.

  20. Chromosome aberration analysis for biological dosimetry: a review

    International Nuclear Information System (INIS)

    Paul, S.F.D.; Venkatachalam, P.; Jeevanram, R.K.

    1996-01-01

    Among various biological dosimetry techniques, dicentric chromosome aberration method appears to be the method of choice in analysing accidental radiation exposure in most of the laboratories. The major advantage of this method is its sensitivity as the number of dicentric chromosomes present in control population is too small and more importantly radiation induces mainly dicentric chromosome aberration among unstable aberration. This report brings out the historical development of various cytogenetic methods, the basic structure of DNA, chromosomes and different forms of chromosome aberrations. It also highlights the construction of dose-response curve for dicentric chromosome and its use in the estimation of radiation dose. (author)

  1. Wave aberrations in rhesus monkeys with vision-induced ametropias

    Science.gov (United States)

    Ramamirtham, Ramkumar; Kee, Chea-su; Hung, Li-Fang; Qiao-Grider, Ying; Huang, Juan; Roorda, Austin; Smith, Earl L.

    2007-01-01

    The purpose of this study was to investigate the relationship between refractive errors and high-order aberrations in infant rhesus monkeys. Specifically, we compared the monochromatic wave aberrations measured with a Shack-Hartman wavefront sensor between normal monkeys and monkeys with vision-induced refractive errors. Shortly after birth, both normal monkeys and treated monkeys reared with optically induced defocus or form deprivation showed a decrease in the magnitude of high-order aberrations with age. However, the decrease in aberrations was typically smaller in the treated animals. Thus, at the end of the lens-rearing period, higher than normal amounts of aberrations were observed in treated eyes, both hyperopic and myopic eyes and treated eyes that developed astigmatism, but not spherical ametropias. The total RMS wavefront error increased with the degree of spherical refractive error, but was not correlated with the degree of astigmatism. Both myopic and hyperopic treated eyes showed elevated amounts of coma and trefoil and the degree of trefoil increased with the degree of spherical ametropia. Myopic eyes also exhibited a much higher prevalence of positive spherical aberration than normal or treated hyperopic eyes. Following the onset of unrestricted vision, the amount of high-order aberrations decreased in the treated monkeys that also recovered from the experimentally induced refractive errors. Our results demonstrate that high-order aberrations are influenced by visual experience in young primates and that the increase in high-order aberrations in our treated monkeys appears to be an optical byproduct of the vision-induced alterations in ocular growth that underlie changes in refractive error. The results from our study suggest that the higher amounts of wave aberrations observed in ametropic humans are likely to be a consequence, rather than a cause, of abnormal refractive development. PMID:17825347

  2. EXTRACELLULAR DNA AND THE LEVEL OF ITS METHYLATION IN DIFFERENT RHEUMATIC DISEASES

    Directory of Open Access Journals (Sweden)

    N O Shubayeva

    2012-01-01

    Conclusion. RDs are characterized by the higher concentration of apoptotic and necrotic DNA, impaired exDNA methylation, varying complexification of exDNA with monometinic proteins, which is associated with the hyperproduction of autoantibodies (including anti-exDNA antibodies and inflammatory markers.

  3. The Art of Optical Aberrations

    Science.gov (United States)

    Wylde, Clarissa Eileen Kenney

    Art and optics are inseparable. Though seemingly opposite disciplines, the combination of art and optics has significantly impacted both culture and science as they are now known. As history has run its course, in the sciences, arts, and their fruitful combinations, optical aberrations have proved to be a problematic hindrance to progress. In an effort to eradicate aberrations the simple beauty of these aberrational forms has been labeled as undesirable and discarded. Here, rather than approach aberrations as erroneous, these beautiful forms are elevated to be the photographic subject in a new body of work, On the Bright Side. Though many recording methods could be utilized, this work was composed on classic, medium-format, photographic film using white-light, Michelson interferometry. The resulting images are both a representation of the true light rays that interacted on the distorted mirror surfaces (data) and the artist's compositional eye for what parts of the interferogram are chosen and displayed. A detailed description of the captivating interdisciplinary procedure is documented and presented alongside the final artwork, CCD digital reference images, and deformable mirror contour maps. This alluring marriage between the arts and sciences opens up a heretofore minimally explored aspect of the inextricable art-optics connection. It additionally provides a fascinating new conversation on the importance of light and optics in photographic composition.

  4. In vitro analysis of integrated global high-resolution DNA methylation profiling with genomic imbalance and gene expression in osteosarcoma.

    Directory of Open Access Journals (Sweden)

    Bekim Sadikovic

    Full Text Available Genetic and epigenetic changes contribute to deregulation of gene expression and development of human cancer. Changes in DNA methylation are key epigenetic factors regulating gene expression and genomic stability. Recent progress in microarray technologies resulted in developments of high resolution platforms for profiling of genetic, epigenetic and gene expression changes. OS is a pediatric bone tumor with characteristically high level of numerical and structural chromosomal changes. Furthermore, little is known about DNA methylation changes in OS. Our objective was to develop an integrative approach for analysis of high-resolution epigenomic, genomic, and gene expression profiles in order to identify functional epi/genomic differences between OS cell lines and normal human osteoblasts. A combination of Affymetrix Promoter Tilling Arrays for DNA methylation, Agilent array-CGH platform for genomic imbalance and Affymetrix Gene 1.0 platform for gene expression analysis was used. As a result, an integrative high-resolution approach for interrogation of genome-wide tumour-specific changes in DNA methylation was developed. This approach was used to provide the first genomic DNA methylation maps, and to identify and validate genes with aberrant DNA methylation in OS cell lines. This first integrative analysis of global cancer-related changes in DNA methylation, genomic imbalance, and gene expression has provided comprehensive evidence of the cumulative roles of epigenetic and genetic mechanisms in deregulation of gene expression networks.

  5. Aberration design of zoom lens systems using thick lens modules.

    Science.gov (United States)

    Zhang, Jinkai; Chen, Xiaobo; Xi, Juntong; Wu, Zhuoqi

    2014-12-20

    A systematic approach for the aberration design of a zoom lens system using a thick lens module is presented. Each component is treated as a thick lens module at the beginning of the design. A thick lens module refers to a thick lens component with a real lens structure, like lens materials, lens curvatures, lens thicknesses, and lens interval distances. All nine third-order aberrations of a thick lens component are considered during the design. The relationship of component aberrations in different zoom positions can be approximated from the aberration shift. After minimizing the aberrations of the zoom lens system, the nine third-order aberrations of every lens component can be determined. Then the thick lens structure of every lens component can be determined after optimization according to their first-order properties and third-order aberration targets. After a third optimization for minimum practical third-order aberrations of a zoom lens system, the aberration design using the thick lens module is complete, which provides a practical zoom lens system with thick lens structures. A double-sided telecentric zoom lens system is designed using the thick lens module in this paper, which shows that this method is practical for zoom lens design.

  6. Third-order monochromatic aberrations via Fermat's principle

    International Nuclear Information System (INIS)

    Marasco, A.; Romano, A.

    2006-01-01

    By Fermat's principle and particular optical paths, which are not rays, a new aberration function is introduced. This function allows to derive, without resorting to the whole Hamiltonian formalism, the third-order geometrical aberrations of an optical system with a symmetry of revolution

  7. Catadioptric aberration correction in cathode lens microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Tromp, R.M. [IBM T.J. Watson Research Center, PO Box 218, Yorktown Heights, NY 10598 (United States); Kamerlingh Onnes Laboratory, Leiden Institute of Physics, Niels Bohrweg 2, 2333 CA Leiden (Netherlands)

    2015-04-15

    In this paper I briefly review the use of electrostatic electron mirrors to correct the aberrations of the cathode lens objective lens in low energy electron microscope (LEEM) and photo electron emission microscope (PEEM) instruments. These catadioptric systems, combining electrostatic lens elements with a reflecting mirror, offer a compact solution, allowing simultaneous and independent correction of both spherical and chromatic aberrations. A comparison with catadioptric systems in light optics informs our understanding of the working principles behind aberration correction with electron mirrors, and may point the way to further improvements in the latter. With additional developments in detector technology, 1 nm spatial resolution in LEEM appears to be within reach. - Highlights: • The use of electron mirrors for aberration correction in LEEM/PEEM is reviewed. • A comparison is made with similar systems in light optics. • Conditions for 1 nm spatial resolution are discussed.

  8. Radiation-induced chromosome aberrations in the rat peripheral blood

    International Nuclear Information System (INIS)

    Ziemba-Zoltowska, B.; Bocian, E.; Radwan, I.; Rosiek, O.; Sablinski, J.

    1978-01-01

    Chromosome aberrations in rat lymphocytes of peripheral blood after X (in vitro and in vivo) and 3 H tritiated water (in vivo) irradiations were studied. The yield of chromosome aberrations after in vivo and in vitro exposure to X-rays was similar. The frequency of chromosome aberrations three weeks after exposure to X-rays and soon after irradiation was practically on the same level. The yield of chromosome aberrations determined three weeks after injection with tritiated water or X-rays exposure was similar. (author)

  9. Chromosomal aberrations in bone marrow of continuously irradiated rats

    Energy Technology Data Exchange (ETDEWEB)

    Chlebosky, O; Praslicka, M; Chlebovska, K [Univerzita P.J. Safarika, Kosice (Czechoslovakia). Prirodovedecka Fakulta

    1975-01-01

    Research on chromosomal aberrations of the bone marrow in continuously irradiated rats showed that chromosomal aberrations are a highly sensitive indicator of radiation injury. An increase in the chromosomal aberration frequency was already found on the 5th day at daily doses of 0.5 R, i.e. a 12% increase at a total dose of 25 R. In the steady-state stage at daily doses of 0.5; 1; 2.5 R, the number of chromosomal aberrations stabilized at values of about 20%; at daily doses of 5 and 10 R at values of 30.=., at daily doses of 53 R at 45%, at a daily dose of 82.5 R, the number of chromosomal aberrations increased to 55%.

  10. Aberration-corrected STEM/TEM imaging at 15 kV

    International Nuclear Information System (INIS)

    Sasaki, Takeo; Sawada, Hidetaka; Hosokawa, Fumio; Sato, Yuta; Suenaga, Kazu

    2014-01-01

    The performance of aberration-corrected (scanning) transmission electron microscopy (S/TEM) at an accelerating voltage of 15 kV was evaluated in a low-voltage microscope equipped with a cold-field emission gun and a higher-order aberration corrector. Aberrations up to the fifth order were corrected by the aberration measurement and auto-correction system using the diffractogram tableau method in TEM and Ronchigram analysis in STEM. TEM observation of nanometer-sized particles demonstrated that aberrations up to an angle of 50 mrad were compensated. A TEM image of Si[110] exhibited lattice fringes with a spacing of 0.192 nm, and the power spectrum of the image showed spots corresponding to distances of 0.111 nm. An annular dark-field STEM image of Si[110] showed lattice fringes of (111) and (22¯0) planes corresponding to lattice distances of 0.314 nm and 0.192 nm, respectively. At an accelerating voltage of 15 kV, the developed low-voltage microscope achieved atomic-resolution imaging with a small chromatic aberration and a large uniform phase. - Highlights: • Aberration-corrected STEM/TEM imaging at 15 kV demonstrated lattice fringes of Si[110] single crystal with a spacing of 0.192 nm. • To achieve this performance at a lower accelerating voltage, uniform phase area over 50 mrad is mandatory in Ronchigram and Diffractogram tableau. • This means a higher-order aberration of six-fold astigmatism should be compensated. • In addition, decreasing the effect of chromatic aberration plays an important role for improving the performance of linear scattering component at 15 kV TEM

  11. Blockade of N-methyl-D-aspartate induced convulsions by 1-aminocyclopropanecarboxylates

    International Nuclear Information System (INIS)

    Skolnick, P.; Marvizon, J.C.G.; Jackson, B.W.; Monn, J.A.; Rice, K.C.; Lewin, A.H.

    1989-01-01

    1-Aminocyclopropanecarboxylic acid is a potent and selective ligand for the glycine modulatory site on the N-methyl-D-aspartate receptor complex. This compound blocks the convulsions and deaths produced by N-methyl-D-aspartate in a dose dependent fashion. In contrast, 1-aminocyclopropanecarboxylic acid does not protect mice against convulsions induced by pentylenetetrazole, strychnine, bicuculline, or maximal electroshock, and does not impair motor performance on either a rotarod or horizontal wire at doses of up to 2 g/kg. The methyl- and ethyl- esters of 1-aminocyclopropanecarboxylic acid are 5- and 2.3-fold more potent, respectively, than the parent compound in blocking the convulsant and lethal effects of N-methyl-D-aspartate. However, these esters are several orders of magnitude less potent than 1-aminocyclopropanecarboxylic acid as inhibitors of strychnine-insensitive [ 3 H]glycine binding, indicating that conversion to the parent compound may be required to elicit an anticonvulsant action

  12. Estimation of dose from chromosome aberration rate

    International Nuclear Information System (INIS)

    Li Deping

    1990-01-01

    The methods and skills of evaluating dose from correctly scored shromsome aberration rate are presented, and supplemented with corresponding BASIC computer code. The possibility and preventive measures of excessive probability of missing score of the aberrations in some of the current routine score methods are discussed. The use of dose-effect relationship with exposure time correction factor G in evaluating doses and their confidence intervals, dose estimation in mixed n-γ exposure, and identification of high by nonuniform acute exposure to low LET radiation and its dose estimation are discussed in more detail. The difference of estimated dose due to whether the interaction between subleisoms produced by n and γ have been taken into account is examined. In fitting the standard dose-aberration rate curve, proper weighing of experiment points and comparison with commonly accepted values are emphasised, and the coefficient of variation σ y √y of the aberration rate y as a function of dose and exposure time is given. In appendix I and II, the dose-aberration rate formula is derived from dual action theory, and the time variation of subleisom is illustrated and in appendix III, the estimation of dose from scores of two different types of aberrations (of other related score) is illustrated. Two computer codes are given in appendix IV, one is a simple code, the other a complete code, including the fitting of standard curve. the skills of using compressed data storage, and the production of simulated 'data ' for testing the curve fitting procedure are also given

  13. Aberration of a negative ion beam caused by space charge effect

    International Nuclear Information System (INIS)

    Miyamoto, K.; Wada, S.; Hatayama, A.

    2010-01-01

    Aberrations are inevitable when the charged particle beams are extracted, accelerated, transmitted, and focused with electrostatic and magnetic fields. In this study, we investigate the aberration of a negative ion accelerator for a neutral beam injector theoretically, especially the spherical aberration caused by the negative ion beam expansion due to the space charge effect. The negative ion current density profiles with the spherical aberration are compared with those without the spherical aberration. It is found that the negative ion current density profiles in a log scale are tailed due to the spherical aberration.

  14. Aberration of a negative ion beam caused by space charge effect

    Energy Technology Data Exchange (ETDEWEB)

    Miyamoto, K. [Naruto University of Education, 748 Nakashima, Takashima, Naruto-cho, Naruto-shi, Tokushima 772-8502 (Japan); Wada, S.; Hatayama, A. [Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522 (Japan)

    2010-02-15

    Aberrations are inevitable when the charged particle beams are extracted, accelerated, transmitted, and focused with electrostatic and magnetic fields. In this study, we investigate the aberration of a negative ion accelerator for a neutral beam injector theoretically, especially the spherical aberration caused by the negative ion beam expansion due to the space charge effect. The negative ion current density profiles with the spherical aberration are compared with those without the spherical aberration. It is found that the negative ion current density profiles in a log scale are tailed due to the spherical aberration.

  15. Aberration of a negative ion beam caused by space charge effect.

    Science.gov (United States)

    Miyamoto, K; Wada, S; Hatayama, A

    2010-02-01

    Aberrations are inevitable when the charged particle beams are extracted, accelerated, transmitted, and focused with electrostatic and magnetic fields. In this study, we investigate the aberration of a negative ion accelerator for a neutral beam injector theoretically, especially the spherical aberration caused by the negative ion beam expansion due to the space charge effect. The negative ion current density profiles with the spherical aberration are compared with those without the spherical aberration. It is found that the negative ion current density profiles in a log scale are tailed due to the spherical aberration.

  16. Alteration of Gene Expression, DNA Methylation, and Histone Methylation in Free Radical Scavenging Networks in Adult Mouse Hippocampus following Fetal Alcohol Exposure.

    Directory of Open Access Journals (Sweden)

    Eric J Chater-Diehl

    Full Text Available The molecular basis of Fetal Alcohol Spectrum Disorders (FASD is poorly understood; however, epigenetic and gene expression changes have been implicated. We have developed a mouse model of FASD characterized by learning and memory impairment and persistent gene expression changes. Epigenetic marks may maintain expression changes over a mouse's lifetime, an area few have explored. Here, mice were injected with saline or ethanol on postnatal days four and seven. At 70 days of age gene expression microarray, methylated DNA immunoprecipitation microarray, H3K4me3 and H3K27me3 chromatin immunoprecipitation microarray were performed. Following extensive pathway analysis of the affected genes, we identified the top affected gene expression pathway as "Free radical scavenging". We confirmed six of these changes by droplet digital PCR including the caspase Casp3 and Wnt transcription factor Tcf7l2. The top pathway for all methylation-affected genes was "Peroxisome biogenesis"; we confirmed differential DNA methylation in the Acca1 thiolase promoter. Altered methylation and gene expression in oxidative stress pathways in the adult hippocampus suggests a novel interface between epigenetic and oxidative stress mechanisms in FASD.

  17. Alteration of Gene Expression, DNA Methylation, and Histone Methylation in Free Radical Scavenging Networks in Adult Mouse Hippocampus following Fetal Alcohol Exposure.

    Science.gov (United States)

    Chater-Diehl, Eric J; Laufer, Benjamin I; Castellani, Christina A; Alberry, Bonnie L; Singh, Shiva M

    2016-01-01

    The molecular basis of Fetal Alcohol Spectrum Disorders (FASD) is poorly understood; however, epigenetic and gene expression changes have been implicated. We have developed a mouse model of FASD characterized by learning and memory impairment and persistent gene expression changes. Epigenetic marks may maintain expression changes over a mouse's lifetime, an area few have explored. Here, mice were injected with saline or ethanol on postnatal days four and seven. At 70 days of age gene expression microarray, methylated DNA immunoprecipitation microarray, H3K4me3 and H3K27me3 chromatin immunoprecipitation microarray were performed. Following extensive pathway analysis of the affected genes, we identified the top affected gene expression pathway as "Free radical scavenging". We confirmed six of these changes by droplet digital PCR including the caspase Casp3 and Wnt transcription factor Tcf7l2. The top pathway for all methylation-affected genes was "Peroxisome biogenesis"; we confirmed differential DNA methylation in the Acca1 thiolase promoter. Altered methylation and gene expression in oxidative stress pathways in the adult hippocampus suggests a novel interface between epigenetic and oxidative stress mechanisms in FASD.

  18. Aberrant regeneration of the third cranial nerve.

    Science.gov (United States)

    Shrestha, U D; Adhikari, S

    2012-01-01

    Aberrant regeneration of the third cranial nerve is most commonly due to its damage by trauma. A ten-month old child presented with the history of a fall from a four-storey building. She developed traumatic third nerve palsy and eventually the clinical features of aberrant regeneration of the third cranial nerve. The adduction of the eye improved over time. She was advised for patching for the strabismic amblyopia as well. Traumatic third nerve palsy may result in aberrant regeneration of the third cranial nerve. In younger patients, motility of the eye in different gazes may improve over time. © NEPjOPH.

  19. Transverse correlation vanishing due to phase aberrations

    CSIR Research Space (South Africa)

    Godin, T

    2011-06-01

    Full Text Available of the effects of each aberration on the ratio Sp ?? / , the following condition are imposed: 0max3max2max1 )()()( ??????? === . (9) It is assumed that the phase aberration is set in the beam-waist plane of radius mmW 5.10 = . Arbitrarily, the value... of max? is fixed to twice the incident beam width, 0max 2W=? , where the intensity is only 0.03% of the on-axis value. In the following we will express the aberration 0? in number of equivalent wavelengths given by the ratio )2/(00 pi...

  20. Frequencies of chromosome aberration on radiation workers

    International Nuclear Information System (INIS)

    Yanti Lusiyanti; Zubaidah Alatas

    2016-01-01

    Radiation exposure of the body can cause damage to the genetic material in cells (cytogenetic) in the form of changes in the structure or chromosomal aberrations in peripheral blood lymphocytes. Chromosomal aberrations can be unstable as dicentric and ring chromosomes, and is stable as translocation. Dicentric chromosome is the gold standard biomarker due to radiation exposure, and chromosome translocation is a biomarker for retrospective biodosimetry. The aim of this studi is to conduct examination of chromosomal aberrations in the radiation worker to determine the potential damage of cell that may arise due to occupational radiation exposure. The examination have been carried out on blood samples from 55 radiation workers in the range of 5-30 year of service. Chromosome aberration frequency measurement starts with blood sampling, culturing, harvesting, slide preparations, and lymphocyte chromosome staining with Giemsa and painting with Fluorescence In Situ Hybridization (FISH) technique. The results showed that chromosomal translocations are not found in blood samples radiation workers and dicentric chromosomes found only on 2 blood samples of radiation workers with a frequency of 0.001/cell. The frequency of chromosomal aberrations in the blood cells such workers within normal limits and this means that the workers have been implemented a radiation safety aspects very well. (author)

  1. Ocular higher-order aberrations in a school children population

    Directory of Open Access Journals (Sweden)

    George Papamastorakis

    2015-04-01

    Conclusions: Differences in the low levels of ocular spherical aberration in young children possibly reflect differences in lenticular spherical aberration and relate to the gradient refractive index of the lens. The evaluation of spherical aberration at certain stages of eye growth may help to better understand the underlying mechanisms of myopia development.

  2. Genome-wide methylation analysis identifies a core set of hypermethylated genes in CIMP-H colorectal cancer.

    Science.gov (United States)

    McInnes, Tyler; Zou, Donghui; Rao, Dasari S; Munro, Francesca M; Phillips, Vicky L; McCall, John L; Black, Michael A; Reeve, Anthony E; Guilford, Parry J

    2017-03-28

    Aberrant DNA methylation profiles are a characteristic of all known cancer types, epitomized by the CpG island methylator phenotype (CIMP) in colorectal cancer (CRC). Hypermethylation has been observed at CpG islands throughout the genome, but it is unclear which factors determine whether an individual island becomes methylated in cancer. DNA methylation in CRC was analysed using the Illumina HumanMethylation450K array. Differentially methylated loci were identified using Significance Analysis of Microarrays (SAM) and the Wilcoxon Signed Rank (WSR) test. Unsupervised hierarchical clustering was used to identify methylation subtypes in CRC. In this study we characterized the DNA methylation profiles of 94 CRC tissues and their matched normal counterparts. Consistent with previous studies, unsupervized hierarchical clustering of genome-wide methylation data identified three subtypes within the tumour samples, designated CIMP-H, CIMP-L and CIMP-N, that showed high, low and very low methylation levels, respectively. Differential methylation between normal and tumour samples was analysed at the individual CpG level, and at the gene level. The distribution of hypermethylation in CIMP-N tumours showed high inter-tumour variability and appeared to be highly stochastic in nature, whereas CIMP-H tumours exhibited consistent hypermethylation at a subset of genes, in addition to a highly variable background of hypermethylated genes. EYA4, TFPI2 and TLX1 were hypermethylated in more than 90% of all tumours examined. One-hundred thirty-two genes were hypermethylated in 100% of CIMP-H tumours studied and these were highly enriched for functions relating to skeletal system development (Bonferroni adjusted p value =2.88E-15), segment specification (adjusted p value =9.62E-11), embryonic development (adjusted p value =1.52E-04), mesoderm development (adjusted p value =1.14E-20), and ectoderm development (adjusted p value =7.94E-16). Our genome-wide characterization of DNA

  3. DNA methylation analysis of the angiotensin converting enzyme (ACE gene in major depression.

    Directory of Open Access Journals (Sweden)

    Peter Zill

    Full Text Available BACKGROUND: The angiotensin converting enzyme (ACE has been repeatedly discussed as susceptibility factor for major depression (MD and the bi-directional relation between MD and cardiovascular disorders (CVD. In this context, functional polymorphisms of the ACE gene have been linked to depression, to antidepressant treatment response, to ACE serum concentrations, as well as to hypertension, myocardial infarction and CVD risk markers. The mostly investigated ACE Ins/Del polymorphism accounts for ~40%-50% of the ACE serum concentration variance, the remaining half is probably determined by other genetic, environmental or epigenetic factors, but these are poorly understood. MATERIALS AND METHODS: The main aim of the present study was the analysis of the DNA methylation pattern in the regulatory region of the ACE gene in peripheral leukocytes of 81 MD patients and 81 healthy controls. RESULTS: We detected intensive DNA methylation within a recently described, functional important region of the ACE gene promoter including hypermethylation in depressed patients (p = 0.008 and a significant inverse correlation between the ACE serum concentration and ACE promoter methylation frequency in the total sample (p = 0.02. Furthermore, a significant inverse correlation between the concentrations of the inflammatory CVD risk markers ICAM-1, E-selectin and P-selectin and the degree of ACE promoter methylation in MD patients could be demonstrated (p = 0.01 - 0.04. CONCLUSION: The results of the present study suggest that aberrations in ACE promoter DNA methylation may be an underlying cause of MD and probably a common pathogenic factor for the bi-directional relationship between MD and cardiovascular disorders.

  4. Fifth-order canonical geometric aberration analysis of electrostatic round lenses

    CERN Document Server

    Liu Zhi Xiong

    2002-01-01

    In this paper the fifth-order canonical geometric aberration patterns are analyzed and a numerical example is given on the basis of the analytical expressions of fifth-order aberration coefficients derived in the present work. The fifth-order spherical aberration, astigmatism and field curvature, and distortion are similar to the third-order ones and the fifth-order coma is slightly different. Besides, there are two more aberrations which do not exist in the third-order aberration: they are peanut aberration and elliptical coma in accordance with their shapes. In the numerical example, by using a cross-check of the calculated coefficients with those computed through the differential algebraic method, it has been verified that all the expressions are correct and the computational results are reliable with high precision.

  5. Chromosomal aberrations induced by alpha particles

    International Nuclear Information System (INIS)

    Guerrero C, C.; Brena V, M.

    2005-01-01

    The chromosomal aberrations produced by the ionizing radiation are commonly used when it is necessary to establish the exposure dose of an individual, it is a study that is used like complement of the traditional physical systems and its application is only in cases in that there is doubt about what indicates the conventional dosimetry. The biological dosimetry is based on the frequency of aberrations in the chromosomes of the lymphocytes of the individual in study and the dose is calculated taking like reference to the dose-response curves previously generated In vitro. A case of apparent over-exposure to alpha particles to which is practiced analysis of chromosomal aberrations to settle down if in fact there was exposure and as much as possible, to determine the presumed dose is presented. (Author)

  6. Late-occurring chromosome aberrations and global DNA methylation in hematopoietic stem/progenitor cells of CBA/CaJ mice exposed to silicon ({sup 28}Si) ions

    Energy Technology Data Exchange (ETDEWEB)

    Rithidech, Kanokporn Noy, E-mail: kanokporn.rithidech@stonybrookmedicine.edu [Pathology Department, Stony Brook University, Stony Brook, NY 11794-8691 (United States); Honikel, Louise M. [Pathology Department, Stony Brook University, Stony Brook, NY 11794-8691 (United States); Reungpathanaphong, Paiboon [Pathology Department, Stony Brook University, Stony Brook, NY 11794-8691 (United States); Department of Applied Radiation and Isotopes, Faculty of Sciences, Kasetsart University, Chatuchuck, Bangkok 10900 (Thailand); Tungjai, Montree [Pathology Department, Stony Brook University, Stony Brook, NY 11794-8691 (United States); Department of Radiologic Technology, Faculty of Associated Medical Sciences, Center of Excellence for Molecular Imaging, Chiang Mai University, Chiang Mai 50200 (Thailand); Jangiam, Witawat [Pathology Department, Stony Brook University, Stony Brook, NY 11794-8691 (United States); Department of Chemical Engineering, Faculty of Engineering, Burapha University, Chonburi 20131 (Thailand); Whorton, Elbert B. [StatCom, PO Box 3041, Galveston, TX 77551 (United States)

    2015-11-15

    Highlights: • Late-occurring chromosome aberrations were found in HSPCs of exposed CBA/CaJ mice. • A dose-dependent reduction in the level of global 5hmC was detected in HSPCs. • There is a link between reduced global 5hmC levels and genomic instability in vivo. • The level of global 5hmC is a better marker of radiation exposure than that of 5mC. - Abstract: Although myeloid leukemia (ML) is one of the major health concerns from exposure to space radiation, the risk prediction for developing ML is unsatisfactory. To increase the reliability of predicting ML risk, a much improved understanding of space radiation-induced changes in the target cells, i.e. hematopoietic stem/progenitor cells (HSPCs), is important. We focused on the in vivo induction of late-occurring damage in HSPCs of mice exposed to {sup 28}Si ions since such damage is associated with radiation-induced genomic instability (a key event of carcinogenesis). We gave adult male CBA/CaJ mice, known to be sensitive to radiation-induced ML, a whole-body exposure (2 fractionated exposures, 15 days apart, that totaled each selected dose, delivered at the dose-rate of 1 cGy/min) to various doses of 300 MeV/n {sup 28}Si ions, i.e. 0 (sham controls), 0.1, 0.25, or 0.5 Gy. At 6 months post-irradiation, we collected bone marrow cells from each mouse (five mice per treatment-group) for obtaining the myeloid-lineage of HSPC-derived clones for analyses. We measured the frequencies of late-occurring chromosome aberrations (CAs), using the genome-wide multicolor fluorescence in situ hybridization method. The measurement of CAs was coupled with the characterization of the global DNA methylation patterns, i.e. 5-methylcytosine (5mC) and 5-hydroxymethylcytosine (5hmC). A dose-dependent increase in the frequencies of CAs was detected (Analysis of Variance or ANOVA, p < 0.01), indicating the induction of genomic instability after exposure of mice to 300 MeV/n {sup 28}Si ions. Slight increases in the levels of 5m

  7. Isocitrate dehydrogenase 1 and 2 genes mutations and MGMT methylation in gliomas

    Directory of Open Access Journals (Sweden)

    D. V. Tabakov

    2017-01-01

    Full Text Available Gliomas are the most common brain tumors. It is difficult to detect them at early stages of disease and there is a few available therapies providing significant improvement in survival. Mutations of isocitrate dehydrogenase 1 and 2 genes (IDH1 and IDH2 play significant role in gliomogenesis, diagnostics and selection of patient therapy. We tested the distribution of IDH1 and IDH2 mutations in gliomas of different histological types and grades of malignancy by DNA melting analysis using our protocol with a sensitivity of 5 %. The results of this assay were confirmed by conventional Sanger sequencing. IDH1/2 mutations were detected in 74 % of lower grade gliomas (II and III, World Health Organization and in 14 % of glioblastomas (IV, World Health Organization. Mutation rate in gliomas with oligodendroglioma component were significantly higher then in other glioma types (р = 0.014. The IDH1 mutations was the most common (79 % of general mutation number. IDH1/2 mutations can induce aberrant gene methylation. Detection of methylation rate of the gene encoding for O6-methylguanine-DNA-methyltransferase (MGMT, predictive biomarker for treatment of gliomas with the alkylating agents, has demonstrated a partial association with IDH1/2 mutations. In 73 % of IDH1/2-mutant tumors MGMT promoter methylation were observed. At the same time IDH1/2 mutations were not revealed in 67 % tumors with MGMT promoter methylation. These results indicate existence of another mechanism of MGMT methylation in gliomas. Our data strong support for necessity of both markers testing when patient therapy is selected.

  8. Spherical aberration and other higher-order aberrations in the human eye : from summary wave-front analysis data to optical variables relevant to visual perception

    NARCIS (Netherlands)

    Jansonius, Nomdo M.

    Wave-front analysis data from the human eye are commonly presented using the aberration coefficient c(4)(0) (primary spherical aberration) together with an overall measure of all higher-order aberrations. If groups of subjects are compared, however, the relevance of an observed difference cannot

  9. BDNF rs6265 methylation and genotype interact on risk for schizophrenia.

    Science.gov (United States)

    Ursini, Gianluca; Cavalleri, Tommaso; Fazio, Leonardo; Angrisano, Tiziana; Iacovelli, Luisa; Porcelli, Annamaria; Maddalena, Giancarlo; Punzi, Giovanna; Mancini, Marina; Gelao, Barbara; Romano, Raffaella; Masellis, Rita; Calabrese, Francesca; Rampino, Antonio; Taurisano, Paolo; Di Giorgio, Annabella; Keller, Simona; Tarantini, Letizia; Sinibaldi, Lorenzo; Quarto, Tiziana; Popolizio, Teresa; Caforio, Grazia; Blasi, Giuseppe; Riva, Marco A; De Blasi, Antonio; Chiariotti, Lorenzo; Bollati, Valentina; Bertolino, Alessandro

    2016-01-01

    Epigenetic mechanisms can mediate gene-environment interactions relevant for complex disorders. The BDNF gene is crucial for development and brain plasticity, is sensitive to environmental stressors, such as hypoxia, and harbors the functional SNP rs6265 (Val(66)Met), which creates or abolishes a CpG dinucleotide for DNA methylation. We found that methylation at the BDNF rs6265 Val allele in peripheral blood of healthy subjects is associated with hypoxia-related early life events (hOCs) and intermediate phenotypes for schizophrenia in a distinctive manner, depending on rs6265 genotype: in ValVal individuals increased methylation is associated with exposure to hOCs and impaired working memory (WM) accuracy, while the opposite is true for ValMet subjects. Also, rs6265 methylation and hOCs interact in modulating WM-related prefrontal activity, another intermediate phenotype for schizophrenia, with an analogous opposite direction in the 2 genotypes. Consistently, rs6265 methylation has a different association with schizophrenia risk in ValVals and ValMets. The relationships of methylation with BDNF levels and of genotype with BHLHB2 binding likely contribute to these opposite effects of methylation. We conclude that BDNF rs6265 methylation interacts with genotype to bridge early environmental exposures to adult phenotypes, relevant for schizophrenia. The study of epigenetic changes in regions containing genetic variation relevant for human diseases may have beneficial implications for the understanding of how genes are actually translated into phenotypes.

  10. Aberrant Hypermethylation of SALL3 with HPV Involvement Contributes to the Carcinogenesis of Cervical Cancer.

    Directory of Open Access Journals (Sweden)

    Xing Wei

    Full Text Available This study aimed to investigate the methylation status of the promoter region of spalt-like transcription factor 3 (SALL3 and the expression of SALL3 in cervical cancer to explore the function of this gene in cervical cancer carcinogenesis.The methylation status of SALL3 was detected by methylation-specific PCR, and SALL3 gene expression was assessed by real-time quantitative PCR in the cervical cancer cell lines, SiHa, HeLa and C33A, as well as in cervical cancer tissue samples (n = 23, matched pericarcinomatous tissue samples (n = 23 and normal cervix tissue samples (n = 17. MTT was used to measure the cell viability and proliferation capacity of SiHa and HeLa cells.The SALL3 promoter was completely methylated in SiHa cells, unmethylated in C33A cells and partially methylated in HeLa cells. After treatment of SiHa and HeLa cells with 5 μM and 10 μM of 5-Azacytidine (5-Aza, respectively, the methylation level of the SALL3 promoter decreased and observed increase in the degree of unmethylation in a dose-dependent manner. Moreover, the relative expression of SALL3 mRNA increased as the concentration of 5-Aza increased in SiHa (p<0.05 and HeLa (p<0.05 cells. This above-mentioned increase in SALL3 mRNA in SiHa cells was more remarkable than that observed in HeLa cells. Cell proliferation capacity also decreased after administration of 5-Aza to SiHa and HeLa cells (p<0.05. Methylation of the SALL3 promoter was observed in 15 of 23 (65.21% cervical cancer tissue samples, 15 of 23 (65.21% matched pericarcinomatous tissue samples and 5 of 17 (29.41% normal cervical tissue samples (p<0.05. SALL3 mRNA expression was significantly lower in cervical cancer and pericarcinomatous tissues compared with normal cervical tissues (p<0.05. In all cervix tissue samples, HPV infection was positively associated with hypermethylation of the promoter region of SALL3 (p<0.05, r = 0.408, and the expression of SALL3 mRNA in HPV-positive tissues was lower than that in

  11. Statistical estimation of ultrasonic propagation path parameters for aberration correction.

    Science.gov (United States)

    Waag, Robert C; Astheimer, Jeffrey P

    2005-05-01

    Parameters in a linear filter model for ultrasonic propagation are found using statistical estimation. The model uses an inhomogeneous-medium Green's function that is decomposed into a homogeneous-transmission term and a path-dependent aberration term. Power and cross-power spectra of random-medium scattering are estimated over the frequency band of the transmit-receive system by using closely situated scattering volumes. The frequency-domain magnitude of the aberration is obtained from a normalization of the power spectrum. The corresponding phase is reconstructed from cross-power spectra of subaperture signals at adjacent receive positions by a recursion. The subapertures constrain the receive sensitivity pattern to eliminate measurement system phase contributions. The recursion uses a Laplacian-based algorithm to obtain phase from phase differences. Pulse-echo waveforms were acquired from a point reflector and a tissue-like scattering phantom through a tissue-mimicking aberration path from neighboring volumes having essentially the same aberration path. Propagation path aberration parameters calculated from the measurements of random scattering through the aberration phantom agree with corresponding parameters calculated for the same aberrator and array position by using echoes from the point reflector. The results indicate the approach describes, in addition to time shifts, waveform amplitude and shape changes produced by propagation through distributed aberration under realistic conditions.

  12. Higher order aberrations of the eye: Part one

    Directory of Open Access Journals (Sweden)

    Marsha Oberholzer

    2016-06-01

    Full Text Available This article is the first in a series of two articles that provide a comprehensive literature review of higher order aberrations (HOAs of the eye. The present article mainly explains the general principles of such HOAs as well as HOAs of importance, and the measuring apparatus used to measure HOAs of the eye. The second article in the series discusses factors contributing to variable results in measurements of HOAs of the eye. Keywords: Higher order aberrations; wavefront aberrations; aberrometer

  13. Blood as a surrogate marker for tissue-specific DNA methylation and changes due to folate depletion in post-partum female mice.

    Science.gov (United States)

    McKay, Jill A; Xie, Long; Harris, Sarah; Wong, Yi K; Ford, Dianne; Mathers, John C

    2011-07-01

    DNA methylation patterns are tissue specific and may influence tissue-specific gene regulation. Human studies investigating DNA methylation in relation to environmental factors primarily use blood-derived DNA as a surrogate for DNA from target tissues. It is therefore important to know if DNA methylation changes in blood in response to environmental changes reflect those in target tissues. Folate intake can influence DNA methylation, via altered methyl donor supply. Previously, manipulations of maternal folate intake during pregnancy altered the patterns of DNA methylation in offspring but, to our knowledge, the consequences for maternal DNA methylation are unknown. Given the increased requirement for folate during pregnancy, mothers may be susceptible to aberrant DNA methylation due to folate depletion. Female mice were fed folate-adequate (2 mg folic acid/kg diet) or folate-deplete (0.4 mg folic acid/kg diet) diets prior to mating and during pregnancy and lactation. Following weaning, dams were killed and DNA methylation was assessed by pyrosequencing® in blood, liver, and kidney at the Esr1, Igf2 differentially methylated region (DMR)1, Igf2 DMR2, Slc39a4CGI1, and Slc39a4CGI2 loci. We observed tissue-specific differences in methylation at all loci. Folate depletion reduced Igf2 DMR1 and Slc39a4CGI1 methylation across all tissues and altered Igf2 DMR2 methylation in a tissue-specific manner (pmethylation measurements may not always reflect methylation within other tissues. Further measurements of blood-derived and tissue-specific methylation patterns are warranted to understand the complexity of tissue-specific responses to altered nutritional exposure. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. DNA Tumor Virus Regulation of Host DNA Methylation and Its Implications for Immune Evasion and Oncogenesis.

    Science.gov (United States)

    Kuss-Duerkop, Sharon K; Westrich, Joseph A; Pyeon, Dohun

    2018-02-13

    Viruses have evolved various mechanisms to evade host immunity and ensure efficient viral replication and persistence. Several DNA tumor viruses modulate host DNA methyltransferases for epigenetic dysregulation of immune-related gene expression in host cells. The host immune responses suppressed by virus-induced aberrant DNA methylation are also frequently involved in antitumor immune responses. Here, we describe viral mechanisms and virus-host interactions by which DNA tumor viruses regulate host DNA methylation to evade antiviral immunity, which may contribute to the generation of an immunosuppressive microenvironment during cancer development. Recent trials of immunotherapies have shown promising results to treat multiple cancers; however, a significant number of non-responders necessitate identifying additional targets for cancer immunotherapies. Thus, understanding immune evasion mechanisms of cancer-causing viruses may provide great insights for reversing immune suppression to prevent and treat associated cancers.

  15. DNA Tumor Virus Regulation of Host DNA Methylation and Its Implications for Immune Evasion and Oncogenesis

    Directory of Open Access Journals (Sweden)

    Sharon K. Kuss-Duerkop

    2018-02-01

    Full Text Available Viruses have evolved various mechanisms to evade host immunity and ensure efficient viral replication and persistence. Several DNA tumor viruses modulate host DNA methyltransferases for epigenetic dysregulation of immune-related gene expression in host cells. The host immune responses suppressed by virus-induced aberrant DNA methylation are also frequently involved in antitumor immune responses. Here, we describe viral mechanisms and virus–host interactions by which DNA tumor viruses regulate host DNA methylation to evade antiviral immunity, which may contribute to the generation of an immunosuppressive microenvironment during cancer development. Recent trials of immunotherapies have shown promising results to treat multiple cancers; however, a significant number of non-responders necessitate identifying additional targets for cancer immunotherapies. Thus, understanding immune evasion mechanisms of cancer-causing viruses may provide great insights for reversing immune suppression to prevent and treat associated cancers.

  16. Effect of spherical aberration on scintillations of Gaussian beams in atmospheric turbulence

    International Nuclear Information System (INIS)

    Ji, Xiaoling; Deng, Jinping

    2014-01-01

    The effect of spherical aberration on scintillations of Gaussian beams in weak, moderate and strong turbulence is studied using numerical simulation method. It is found that the effect of the negative spherical aberration on the on-axis scintillation index is quite different from that of the positive spherical aberration. In weak turbulence, the positive spherical aberration results in a decrease of the on-axis scintillation index on propagation, but the negative spherical aberration results in an increase of the on-axis scintillation index when the propagation distance is not large. In particular, in weak turbulence the negative spherical aberration may cause peaks of the on-axis scintillation index, and the peaks disappear in moderate and strong turbulence, which is explained in physics. The strong turbulence leads to less discrepancy among scintillations of Gaussian beams with and without spherical aberration. - Highlights: • In weak turbulence scintillations can be suppressed using positive spherical aberration. • In weak turbulence scintillations may be very large due to negative spherical aberration. • The effect of spherical aberration on scintillations is less with increasing of turbulence

  17. Effect of spherical aberration on scintillations of Gaussian beams in atmospheric turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Ji, Xiaoling, E-mail: jiXL100@163.com; Deng, Jinping

    2014-07-18

    The effect of spherical aberration on scintillations of Gaussian beams in weak, moderate and strong turbulence is studied using numerical simulation method. It is found that the effect of the negative spherical aberration on the on-axis scintillation index is quite different from that of the positive spherical aberration. In weak turbulence, the positive spherical aberration results in a decrease of the on-axis scintillation index on propagation, but the negative spherical aberration results in an increase of the on-axis scintillation index when the propagation distance is not large. In particular, in weak turbulence the negative spherical aberration may cause peaks of the on-axis scintillation index, and the peaks disappear in moderate and strong turbulence, which is explained in physics. The strong turbulence leads to less discrepancy among scintillations of Gaussian beams with and without spherical aberration. - Highlights: • In weak turbulence scintillations can be suppressed using positive spherical aberration. • In weak turbulence scintillations may be very large due to negative spherical aberration. • The effect of spherical aberration on scintillations is less with increasing of turbulence.

  18. Influence of Misalignment on High-Order Aberration Correction for Normal Human Eyes

    Science.gov (United States)

    Zhao, Hao-Xin; Xu, Bing; Xue, Li-Xia; Dai, Yun; Liu, Qian; Rao, Xue-Jun

    2008-04-01

    Although a compensation device can correct aberrations of human eyes, the effect will be degraded by its misalignment, especially for high-order aberration correction. We calculate the positioning tolerance of correction device for high-order aberrations, and within what degree the correcting effect is better than low-order aberration (defocus and astigmatism) correction. With fixed certain misalignment within the positioning tolerance, we calculate the residual wavefront rms aberration of the first-6 to first-35 terms along with the 3rd-5th terms of aberrations corrected, and the combined first-13 terms of aberrations are also studied under the same quantity of misalignment. However, the correction effect of high-order aberrations does not meliorate along with the increase of the high-order terms under some misalignment, moreover, some simple combined terms correction can achieve similar result as complex combinations. These results suggest that it is unnecessary to correct too much the terms of high-order aberrations which are difficult to accomplish in practice, and gives confidence to correct high-order aberrations out of the laboratory.

  19. Influence of Misalignment on High-Order Aberration Correction for Normal Human Eyes

    International Nuclear Information System (INIS)

    Hao-Xin, Zhao; Bing, Xu; Li-Xia, Xue; Yun, Dai; Qian, Liu; Xue-Jun, Rao

    2008-01-01

    Although a compensation device can correct aberrations of human eyes, the effect will be degraded by its misalignment, especially for high-order aberration correction. We calculate the positioning tolerance of correction device for high-order aberrations, and within what degree the correcting effect is better than low-order aberration (defocus and astigmatism) correction. With fixed certain misalignment within the positioning tolerance, we calculate the residual wavefront rms aberration of the first-6 to first-35 terms along with the 3rd-5th terms of aberrations corrected, and the combined first-13 terms of aberrations are also studied under the same quantity of misalignment. However, the correction effect of high-order aberrations does not meliorate along with the increase of the high-order terms under some misalignment, moreover, some simple combined terms correction can achieve similar result as complex combinations. These results suggest that it is unnecessary to correct too much the terms of high-order aberrations which are difficult to accomplish in practice, and gives confidence to correct high-order aberrations out of the laboratory

  20. Possible mechanisms of chromosomal aberrations: VII. Comparative dynamics of sister chromatid disjunction and realization of radiation-induced chromosomal aberrations during mitosis

    International Nuclear Information System (INIS)

    Lebedeva, L.I.; Akhmamet'eva, E.M.

    1994-01-01

    An increase in radiation-induced chromosomal aberrations during c-metaphase sister chromatid disjunction was demonstrated in murine bone marrow cells exposed to a total γ-irradiation at 0.5 Gy. Caffeine (Cf) treatment during mitosis partially suppressed the chromatid disjunction rate and increased the number of radiation-induced aberrations in this mitosis. Nalidixic acid (NA) treatment of c-metaphase cells completely suppressed chromatid disjunction and the realization of induced aberrations. Topoisomerase 2 was assumed to be involved during mitosis in both processes

  1. Replication stress, a source of epigenetic aberrations in cancer?

    DEFF Research Database (Denmark)

    Jasencakova, Zusana; Groth, Anja

    2010-01-01

    . Chromatin organization is transiently disrupted during DNA replication and maintenance of epigenetic information thus relies on faithful restoration of chromatin on the new daughter strands. Acute replication stress challenges proper chromatin restoration by deregulating histone H3 lysine 9 mono......-methylation on new histones and impairing parental histone recycling. This could facilitate stochastic epigenetic silencing by laying down repressive histone marks at sites of fork stalling. Deregulation of replication in response to oncogenes and other tumor-promoting insults is recognized as a significant source...... of genome instability in cancer. We propose that replication stress not only presents a threat to genome stability, but also jeopardizes chromatin integrity and increases epigenetic plasticity during tumorigenesis....

  2. [The Role of 5-Aza-CdR on Methylation of Promoter in RASSF1A Gene in Endometrial Carcinoma].

    Science.gov (United States)

    Huang, Li-ping; Chen, Chen; Wang, Xue-ping; Liu, Hui

    2015-05-01

    To explore the effect of demethylating drug 5-Aza-2'-deoxycytidine (5-Aza-CdR) on methtylation status of the Ras-association domain familylA gene (RASSF1A) in human endometrial carcinoma. Randomly'assign the human endometrial carcinoma cell line HEC-1-B into groups and use demethylating drug 5-Aza-CdR of different concentration to treat them. Then Methylation-specific polymerase chain reaction (MSP), real-time PCR, Western blot, TUNEL technology were used to analyze methylation status of RASSF1A promoter CpG islands, RASSF1A mRNA expression, RASSF1A protein expression and apoptosis of HEC-1-B cell. High DNA methylation in RASSF1A gene promoter region, low RASSF1A mRNA level and protein expression and out of control of human endometrial carcinoma cell HEC-1-B apoptosis were observed. 5-Aza-CdR of different concentration could reverse RASSF1A gene's methylation status, recover the expression of mRNA and protein, and control the growth of HEC-1-B by inducing apoptosis. Aberrant methylation of RASSF1A in endometrial cancer as a therapeutic target, demethylating agent 5-Aza-CdR could be an effective way of gene therapy.

  3. Chromosome aberration analysis based on a beta-binomial distribution

    International Nuclear Information System (INIS)

    Otake, Masanori; Prentice, R.L.

    1983-10-01

    Analyses carried out here generalized on earlier studies of chromosomal aberrations in the populations of Hiroshima and Nagasaki, by allowing extra-binomial variation in aberrant cell counts corresponding to within-subject correlations in cell aberrations. Strong within-subject correlations were detected with corresponding standard errors for the average number of aberrant cells that were often substantially larger than was previously assumed. The extra-binomial variation is accomodated in the analysis in the present report, as described in the section on dose-response models, by using a beta-binomial (B-B) variance structure. It is emphasized that we have generally satisfactory agreement between the observed and the B-B fitted frequencies by city-dose category. The chromosomal aberration data considered here are not extensive enough to allow a precise discrimination between competing dose-response models. A quadratic gamma ray and linear neutron model, however, most closely fits the chromosome data. (author)

  4. DNA Methylation in Embryo Development: Epigenetic Impact of ART (Assisted Reproductive Technologies).

    Science.gov (United States)

    Canovas, Sebastian; Ross, Pablo J; Kelsey, Gavin; Coy, Pilar

    2017-11-01

    DNA methylation can be considered a component of epigenetic memory with a critical role during embryo development, and which undergoes dramatic reprogramming after fertilization. Though it has been a focus of research for many years, the reprogramming mechanism is still not fully understood. Recent results suggest that absence of maintenance at DNA replication is a major factor, and that there is an unexpected role for TET3-mediated oxidation of 5mC to 5hmC in guarding against de novo methylation. Base-resolution and genome-wide profiling methods are enabling more comprehensive assessments of the extent to which ART might impair DNA methylation reprogramming, and which sequence elements are most vulnerable. Indeed, as we also review here, studies showing the effect of culture media, ovarian stimulation or embryo transfer on the methylation pattern of embryos emphasize the need to face ART-associated defects and search for strategies to mitigate adverse effects on the health of ART-derived children. © 2017 WILEY Periodicals, Inc.

  5. Chromosome aberrations: plants to human and Feulgen to FISH

    International Nuclear Information System (INIS)

    Natarajan, A.T.

    2005-01-01

    Chromosome aberrations and their impact on human health have been recognized for a long time. In the 1950s, in India, studies on induced chromosome aberrations in plants were initiated by Swaminathan and his students. I trace here the impact of these initial studies on further developments in this field. The studies which were started in plants have been extended to mammals (including human) and the simple squash and solid staining have been improved by molecular cytogenetic techniques, thus enabling accurate identification and quantification of different types of chromosome aberrations. These studies have also thrown light on the mechanisms of chromosome aberration formation, especially following exposure to ionizing radiation. (author)

  6. Obesity-related DNA methylation at imprinted genes in human sperm: Results from the TIEGER study.

    Science.gov (United States)

    Soubry, Adelheid; Guo, Lisa; Huang, Zhiqing; Hoyo, Cathrine; Romanus, Stephanie; Price, Thomas; Murphy, Susan K

    2016-01-01

    overweight/obese men. Together with our earlier reports on paternal obesity and epigenetic shifts in the offspring, our studies set the groundwork for future studies investigating male gametic methylation aberrations due to paternal lifestyle factors such as obesity.

  7. Radiation-induced cellular reproductive death and chromosome aberrations

    International Nuclear Information System (INIS)

    Bedford, J.S.; Mitchell, J.B.; Griggs, H.G.; Bender, M.A.

    1978-01-01

    If a major mode of cell killing by ionizing radiation is the death of cells containing visible chromosomal aberrations, as for example from anaphase-bridge formation at mitosis, then cells bearing such aberrations should be selectively eliminated from the population, resulting in an increased survival potential for the population remaining at each succeeding cell generation. Using synchronized V79B Chinese hamster cells, we measured the aberration frequency and the colony-forming ability of mitotic cells at each of the first three generations following irradiation in G1. Cells were resynchronized by mechanial harvest at each succeeding mitosis after irradiation in order to avoid mixing of generations in the cell population at later sampling times. As anticipated, the chromosome aberration frequencies decreased markedly from the first to the second and from the second to the third mitosis. The surviving fraction, however, was virtually the same for plating assays carried out immediately after irradiation, at the first, or at the second mitosis. The surviving fraction was significantly higher for cells reaching the third postirradiation mitosis. Survival and aberration frequencies were assayed again at approximately the fourteenth postirradiation division, by which time the irradiated and control populations were not significantly different

  8. Theory of aberration fields for general optical systems with freeform surfaces.

    Science.gov (United States)

    Fuerschbach, Kyle; Rolland, Jannick P; Thompson, Kevin P

    2014-11-03

    This paper utilizes the framework of nodal aberration theory to describe the aberration field behavior that emerges in optical systems with freeform optical surfaces, particularly φ-polynomial surfaces, including Zernike polynomial surfaces, that lie anywhere in the optical system. If the freeform surface is located at the stop or pupil, the net aberration contribution of the freeform surface is field constant. As the freeform optical surface is displaced longitudinally away from the stop or pupil of the optical system, the net aberration contribution becomes field dependent. It is demonstrated that there are no new aberration types when describing the aberration fields that arise with the introduction of freeform optical surfaces. Significantly it is shown that the aberration fields that emerge with the inclusion of freeform surfaces in an optical system are exactly those that have been described by nodal aberration theory for tilted and decentered optical systems. The key contribution here lies in establishing the field dependence and nodal behavior of each freeform term that is essential knowledge for effective application to optical system design. With this development, the nodes that are distributed throughout the field of view for each aberration type can be anticipated and targeted during optimization for the correction or control of the aberrations in an optical system with freeform surfaces. This work does not place any symmetry constraints on the optical system, which could be packaged in a fully three dimensional geometry, without fold mirrors.

  9. Aberrant internal carotid artery in the middle ear

    Energy Technology Data Exchange (ETDEWEB)

    Roh, Keun Tak; Kang, Hyun Koo [Dept. of Radiology, Seoul Veterans Hospital, Seoul (Korea, Republic of)

    2014-10-15

    The knowledge about the aberrant internal carotid artery (ICA) in the middle ear is essential for clinicians, because a misdiagnosis of the aberrant ICA could have serious consequences such as excessive aural bleeding during a middle ear surgery. A 38-year-old woman presented with tinnitus and hearing difficulties of the left ear that had started 5 years ago. During otoscopy, an anteroinferior bluish mass was seen in the tympanic space. Computed tomography and magnetic resonance imaging demonstrated a left-side aberrant ICA with bony dehiscence of the carotid canal in the middle ear and a reduced diameter of the tympanic ICA. Herein we report a case of an aberrant ICA in the middle ear. We also review the literature regarding this important vascular anomaly of the temporal bone which may lead to disastrous surgical complications.

  10. Aberrant internal carotid artery in the middle ear

    International Nuclear Information System (INIS)

    Roh, Keun Tak; Kang, Hyun Koo

    2014-01-01

    The knowledge about the aberrant internal carotid artery (ICA) in the middle ear is essential for clinicians, because a misdiagnosis of the aberrant ICA could have serious consequences such as excessive aural bleeding during a middle ear surgery. A 38-year-old woman presented with tinnitus and hearing difficulties of the left ear that had started 5 years ago. During otoscopy, an anteroinferior bluish mass was seen in the tympanic space. Computed tomography and magnetic resonance imaging demonstrated a left-side aberrant ICA with bony dehiscence of the carotid canal in the middle ear and a reduced diameter of the tympanic ICA. Herein we report a case of an aberrant ICA in the middle ear. We also review the literature regarding this important vascular anomaly of the temporal bone which may lead to disastrous surgical complications.

  11. The Role of DNA Methylation in the Development and Progression of Lung Adenocarcinoma

    Directory of Open Access Journals (Sweden)

    Keith M. Kerr

    2007-01-01

    Full Text Available Lung cancer, caused by smoking in ∼87% of cases, is the leading cause of cancer death in the United States and Western Europe. Adenocarcinoma is now the most common type of lung cancer in men and women in the United States, and the histological subtype most frequently seen in never-smokers and former smokers. The increasing frequency of adenocarcinoma, which occurs more peripherally in the lung, is thought to be at least partially related to modifications in cigarette manufacturing that have led to a change in the depth of smoke inhalation. The rising incidence of lung adenocarcinoma and its lethal nature underline the importance of understanding the development and progression of this disease. Alterations in DNA methylation are recognized as key epigenetic changes in cancer, contributing to chromosomal instability through global hypomethylation, and aberrant gene expression through alterations in the methylation levels at promoter CpG islands. The identification of sequential changes in DNA methylation during progression and metastasis of lung adenocarcinoma, and the elucidation of their interplay with genetic changes, will broaden our molecular understanding of this disease, providing insights that may be applicable to the development of targeted drugs, as well as powerful markers for early detection and patient classification.

  12. CopyNumber450kCancer: baseline correction for accurate copy number calling from the 450k methylation array.

    Science.gov (United States)

    Marzouka, Nour-Al-Dain; Nordlund, Jessica; Bäcklin, Christofer L; Lönnerholm, Gudmar; Syvänen, Ann-Christine; Carlsson Almlöf, Jonas

    2016-04-01

    The Illumina Infinium HumanMethylation450 BeadChip (450k) is widely used for the evaluation of DNA methylation levels in large-scale datasets, particularly in cancer. The 450k design allows copy number variant (CNV) calling using existing bioinformatics tools. However, in cancer samples, numerous large-scale aberrations cause shifting in the probe intensities and thereby may result in erroneous CNV calling. Therefore, a baseline correction process is needed. We suggest the maximum peak of probe segment density to correct the shift in the intensities in cancer samples. CopyNumber450kCancer is implemented as an R package. The package with examples can be downloaded at http://cran.r-project.org nour.marzouka@medsci.uu.se Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press.

  13. An aberrant precision account of autism.

    Directory of Open Access Journals (Sweden)

    Rebecca P Lawson

    2014-05-01

    Full Text Available Autism is a neurodevelopmental disorder characterised by problems with social-communication, restricted interests and repetitive behaviour. A recent and controversial article presented a compelling normative explanation for the perceptual symptoms of autism in terms of a failure of Bayesian inference (Pellicano and Burr, 2012. In response, we suggested that when Bayesian interference is grounded in its neural instantiation – namely, predictive coding – many features of autistic perception can be attributed to aberrant precision (or beliefs about precision within the context of hierarchical message passing in the brain (Friston et al., 2013. Here, we unpack the aberrant precision account of autism. Specifically, we consider how empirical findings – that speak directly or indirectly to neurobiological mechanisms – are consistent with the aberrant encoding of precision in autism; in particular, an imbalance of the precision ascribed to sensory evidence relative to prior beliefs.

  14. Image based method for aberration measurement of lithographic tools

    Science.gov (United States)

    Xu, Shuang; Tao, Bo; Guo, Yongxing; Li, Gongfa

    2018-01-01

    Information of lens aberration of lithographic tools is important as it directly affects the intensity distribution in the image plane. Zernike polynomials are commonly used for a mathematical description of lens aberrations. Due to the advantage of lower cost and easier implementation of tools, image based measurement techniques have been widely used. Lithographic tools are typically partially coherent systems that can be described by a bilinear model, which entails time consuming calculations and does not lend a simple and intuitive relationship between lens aberrations and the resulted images. Previous methods for retrieving lens aberrations in such partially coherent systems involve through-focus image measurements and time-consuming iterative algorithms. In this work, we propose a method for aberration measurement in lithographic tools, which only requires measuring two images of intensity distribution. Two linear formulations are derived in matrix forms that directly relate the measured images to the unknown Zernike coefficients. Consequently, an efficient non-iterative solution is obtained.

  15. Cell survival and radiation induced chromosome aberrations. Pt. 2

    International Nuclear Information System (INIS)

    Bauchinger, M.; Schmid, E.; Braselmann, H.

    1986-01-01

    Human peripheral lymphocytes were irradiated in whole blood with 0.5-4.0 Gy of 220 kVp X-rays and the frequency of chromosome aberrations was determined in 1st or 2nd division metaphases discriminated by fluorescence plus giemsa staining. Using the empirical distributions of aberrations among cells, cell survival and transmission of aberrations were investigated. Considering both daughter cells, we found that 20% of fragments and 55% of dicentrics or ring chromosomes are lost during the 1st cell division; i.e. cell survival rate from 1st to 2nd generation is mainly influenced by anaphase bridging of these two-hit aberrations. Cell survival to 2nd mitosis was calculated considering this situation and compared with the survival derived from the fraction of M1 cells without unstable aberrations. The resulting shouldered survival curves showed significantly different slopes, indicating that cell reproductive death is overestimated in the latter approach. (orig.)

  16. Revisiting Cross-Channel Information Transfer for Chromatic Aberration Correction

    KAUST Repository

    Sun, Tiancheng; Peng, Yifan; Heidrich, Wolfgang

    2017-01-01

    Image aberrations can cause severe degradation in image quality for consumer-level cameras, especially under the current tendency to reduce the complexity of lens designs in order to shrink the overall size of modules. In simplified optical designs, chromatic aberration can be one of the most significant causes for degraded image quality, and it can be quite difficult to remove in post-processing, since it results in strong blurs in at least some of the color channels. In this work, we revisit the pixel-wise similarity between different color channels of the image and accordingly propose a novel algorithm for correcting chromatic aberration based on this cross-channel correlation. In contrast to recent weak prior-based models, ours uses strong pixel-wise fitting and transfer, which lead to significant quality improvements for large chromatic aberrations. Experimental results on both synthetic and real world images captured by different optical systems demonstrate that the chromatic aberration can be significantly reduced using our approach.

  17. Revisiting Cross-Channel Information Transfer for Chromatic Aberration Correction

    KAUST Repository

    Sun, Tiancheng

    2017-12-25

    Image aberrations can cause severe degradation in image quality for consumer-level cameras, especially under the current tendency to reduce the complexity of lens designs in order to shrink the overall size of modules. In simplified optical designs, chromatic aberration can be one of the most significant causes for degraded image quality, and it can be quite difficult to remove in post-processing, since it results in strong blurs in at least some of the color channels. In this work, we revisit the pixel-wise similarity between different color channels of the image and accordingly propose a novel algorithm for correcting chromatic aberration based on this cross-channel correlation. In contrast to recent weak prior-based models, ours uses strong pixel-wise fitting and transfer, which lead to significant quality improvements for large chromatic aberrations. Experimental results on both synthetic and real world images captured by different optical systems demonstrate that the chromatic aberration can be significantly reduced using our approach.

  18. Higher-Order Wavefront Aberrations for Populations of Young Emmetropes and Myopes

    Directory of Open Access Journals (Sweden)

    Jinhua Bao

    2009-01-01

    Conclusions: Human eyes have systematical higher order aberrations in population, and factors that cause bilateral symmetry of wavefront aberrations between the right and left eyes made important contribution to the systematical aberrations.

  19. DNA Methylation Analysis of the Angiotensin Converting Enzyme (ACE) Gene in Major Depression

    Science.gov (United States)

    Zill, Peter; Baghai, Thomas C.; Schüle, Cornelius; Born, Christoph; Früstück, Clemens; Büttner, Andreas; Eisenmenger, Wolfgang; Varallo-Bedarida, Gabriella; Rupprecht, Rainer; Möller, Hans-Jürgen; Bondy, Brigitta

    2012-01-01

    Background The angiotensin converting enzyme (ACE) has been repeatedly discussed as susceptibility factor for major depression (MD) and the bi-directional relation between MD and cardiovascular disorders (CVD). In this context, functional polymorphisms of the ACE gene have been linked to depression, to antidepressant treatment response, to ACE serum concentrations, as well as to hypertension, myocardial infarction and CVD risk markers. The mostly investigated ACE Ins/Del polymorphism accounts for ∼40%–50% of the ACE serum concentration variance, the remaining half is probably determined by other genetic, environmental or epigenetic factors, but these are poorly understood. Materials and Methods The main aim of the present study was the analysis of the DNA methylation pattern in the regulatory region of the ACE gene in peripheral leukocytes of 81 MD patients and 81 healthy controls. Results We detected intensive DNA methylation within a recently described, functional important region of the ACE gene promoter including hypermethylation in depressed patients (p = 0.008) and a significant inverse correlation between the ACE serum concentration and ACE promoter methylation frequency in the total sample (p = 0.02). Furthermore, a significant inverse correlation between the concentrations of the inflammatory CVD risk markers ICAM-1, E-selectin and P-selectin and the degree of ACE promoter methylation in MD patients could be demonstrated (p = 0.01 - 0.04). Conclusion The results of the present study suggest that aberrations in ACE promoter DNA methylation may be an underlying cause of MD and probably a common pathogenic factor for the bi-directional relationship between MD and cardiovascular disorders. PMID:22808171

  20. DNA Methylation and Gene Expression Profiling of Ewing Sarcoma Primary Tumors Reveal Genes That Are Potential Targets of Epigenetic Inactivation

    Directory of Open Access Journals (Sweden)

    Nikul Patel

    2012-01-01

    Full Text Available The role of aberrant DNA methylation in Ewing sarcoma is not completely understood. The methylation status of 503 genes in 52 formalin-fixed paraffin-embedded EWS tumors and 3 EWS cell lines was compared to human mesenchymal stem cell primary cultures (hMSCs using bead chip methylation analysis. Relative expression of methylated genes was assessed in 5-Aza-2-deoxycytidine-(5-AZA-treated EWS cell lines and in a cohort of primary EWS samples and hMSCs by gene expression and quantitative RT-PCR. 129 genes demonstrated statistically significant hypermethylation in EWS tumors compared to hMSCs. Thirty-six genes were profoundly methylated in EWS and unmethylated in hMSCs. 5-AZA treatment of EWS cell lines resulted in upregulation of expression of hundreds of genes including 162 that were increased by at least 2-fold. The expression of 19 of 36 candidate hypermethylated genes was increased following 5-AZA. Analysis of gene expression from an independent cohort of tumors confirmed decreased expression of six of nineteen hypermethylated genes (AXL, COL1A1, CYP1B1, LYN, SERPINE1, and VCAN. Comparing gene expression and DNA methylation analyses proved to be an effective way to identify genes epigenetically regulated in EWS. Further investigation is ongoing to elucidate the role of these epigenetic alterations in EWS pathogenesis.

  1. Analysis of the 'dilemma effect' in fifth-order deflection aberration

    International Nuclear Information System (INIS)

    Zhang Xiaobing; Yin Hanchun; Lei Wei; Xue Kunxing; Tong Linsu

    1999-01-01

    In this paper, the coma of the fifth-order aberration at a large deflection angle has been analyzed by using multipole field theory. The dilemma effect exists in the comas of fifth-order aberration. The dilemma effect, whose value D r is constant and independent of the 10-pole field, is the linear combination of coma aberrations. The coma of the fifth-order aberration is corrected by adjusting the 10-pole field distribution when D r is zero or small. The factors that influence the dilemma effect have been calculated and analyzed

  2. Chromatic aberrations of two-electrode transaxial mirrors

    International Nuclear Information System (INIS)

    Bejzina, L.G.; Karetskaya, S.P.

    1991-01-01

    Second order chromatic aberrations of electrostatic two-electrode transaxial mirrors in case the beam axial trajectory of charged particles is curvilinear are considered. Interrelations between coefficients of linear and angular chromatic aberrations are determined. Values of these coefficients for concave and convex transaxial mirrors with plane electrodes in dependence on potential ratio on electrodes by different onnular clearance radii are presented

  3. Subjective face recognition difficulties, aberrant sensibility, sleeping disturbances and aberrant eating habits in families with Asperger syndrome

    Directory of Open Access Journals (Sweden)

    Källman Tiia

    2005-04-01

    Full Text Available Abstract Background The present study was undertaken in order to determine whether a set of clinical features, which are not included in the DSM-IV or ICD-10 for Asperger Syndrome (AS, are associated with AS in particular or whether they are merely a familial trait that is not related to the diagnosis. Methods Ten large families, a total of 138 persons, of whom 58 individuals fulfilled the diagnostic criteria for AS and another 56 did not to fulfill these criteria, were studied using a structured interview focusing on the possible presence of face recognition difficulties, aberrant sensibility and eating habits and sleeping disturbances. Results The prevalence for face recognition difficulties was 46.6% in individuals with AS compared with 10.7% in the control group. The corresponding figures for subjectively reported presence of aberrant sensibilities were 91.4% and 46.6%, for sleeping disturbances 48.3% and 23.2% and for aberrant eating habits 60.3% and 14.3%, respectively. Conclusion An aberrant processing of sensory information appears to be a common feature in AS. The impact of these and other clinical features that are not incorporated in the ICD-10 and DSM-IV on our understanding of AS may hitherto have been underestimated. These associated clinical traits may well be reflected by the behavioural characteristics of these individuals.

  4. Brown's TRANSPORT up to third order aberration by artificial intelligence

    International Nuclear Information System (INIS)

    Xia Jiawen; Xie Xi; Qiao Qingwen

    1991-01-01

    Brown's TRANSPORT is a first and second order matrix multiplication computer program intended for the design of accelerator beam transport systems, neglecting the third order aberration. Recently a new method was developed to derive analytically any order aberration coefficients of general charged particle optic system, applicable to any practical systems, such as accelerators, electron microscopes, lithographs, etc., including those unknown systems yet to be invented. An artificial intelligence program in Turbo Prolog was implemented on IBM-PC 286 or 386 machine to generate automatically the analytical expression of any order aberration coefficients of general charged particle optic system. Based on this new method and technique, Brown's TRANSPORT is extended beyond the second order aberration effects by artificial intelligence, outputing automatically all the analytical expressions up to the third order aberration coefficients

  5. Brown's transport up to third order aberration by artificial intelligence

    International Nuclear Information System (INIS)

    Xia Jiawen; Xie Xi; Qiao Qingwen

    1992-01-01

    Brown's TRANSPORT is a first and second order matrix multiplication computer program intended for the design of accelerator beam transport systems, neglecting the third order aberration. Recently a new method was developed to derive analytically any order aberration coefficients of general charged particle optic system, applicable to any practical systems, such as accelerators, electron microscopes, lithographs, including those unknown systems yet to be invented. An artificial intelligence program in Turbo Prolog was implemented on IBM-PC 286 or 386 machine to generate automatically the analytical expression of any order aberration coefficients of general charged particle optic system. Based on this new method and technique, Brown's TRANSPORT is extended beyond the second order aberration effect by artificial intelligence, outputting automatically all the analytical expressions up to the third order aberration coefficients

  6. Pancreatic mitochondrial complex I exhibits aberrant hyperactivity in diabetes

    Directory of Open Access Journals (Sweden)

    Jinzi Wu

    2017-09-01

    Full Text Available It is well established that NADH/NAD+ redox balance is heavily perturbed in diabetes, and the NADH/NAD+ redox imbalance is a major source of oxidative stress in diabetic tissues. In mitochondria, complex I is the only site for NADH oxidation and NAD+ regeneration and is also a major site for production of mitochondrial reactive oxygen species (ROS. Yet how complex I responds to the NADH/NAD+ redox imbalance and any potential consequences of such response in diabetic pancreas have not been investigated. We report here that pancreatic mitochondrial complex I showed aberrant hyperactivity in either type 1 or type 2 diabetes. Further studies focusing on streptozotocin (STZ-induced diabetes indicate that complex I hyperactivity could be attenuated by metformin. Moreover, complex I hyperactivity was accompanied by increased activities of complexes II to IV, but not complex V, suggesting that overflow of NADH via complex I in diabetes could be diverted to ROS production. Indeed in diabetic pancreas, ROS production and oxidative stress increased and mitochondrial ATP production decreased, which can be attributed to impaired pancreatic mitochondrial membrane potential that is responsible for increased cell death. Additionally, cellular defense systems such as glucose 6-phosphate dehydrogenase, sirtuin 3, and NQO1 were found to be compromised in diabetic pancreas. Our findings point to the direction that complex I aberrant hyperactivity in pancreas could be a major source of oxidative stress and β cell failure in diabetes. Therefore, inhibiting pancreatic complex I hyperactivity and attenuating its ROS production by various means in diabetes might serve as a promising approach for anti-diabetic therapies.

  7. Chromosomal aberrations in subjects exposed to ionizing radiation

    International Nuclear Information System (INIS)

    Jovicic, D.; Milacic, S.; Kovacevic, R.; Tanaskovic, I.

    2006-01-01

    Occupational exposure is particularly delicate because of chronic exposure to low doses of ionizing radiation and its cumulative effect, where it is important to consider the biological response of body to given conditions of exposure. The objective of this study was the observation of the recovery of the DNA damages in subjects working in the radiation area in two different intervals.Group I, consisting of 30 subjects, was exposed to ionizing radiation and unstable chromosomal aberrations were identified. Group II included the same, re-examined subjects (30) 9 months later. It was verified that 5 (16.67%) subjects still had unstable chromosomal aberrations, although they had been excluded from radiation area Controls groups (C) consisted of 64 subjects that were not exposed to mutagenic agents.The comparison of the control group with the two studied groups revealed the reduction of the unstable aberrations (p<0.05). The total effective doses, which increased with the years spent in radiation area, reflected the yield of chromosomal aberrations. The presence of chromosomal aberrations in some subjects, after the exclusion from the ionising radiation exposure, suggests that the time needed for the recovery of the DNA damages is different, which indicates the individual differences in radiosensitivity as well as different of the reparatory cellular response. (author)

  8. Spectral estimation for characterization of acoustic aberration.

    Science.gov (United States)

    Varslot, Trond; Angelsen, Bjørn; Waag, Robert C

    2004-07-01

    Spectral estimation based on acoustic backscatter from a motionless stochastic medium is described for characterization of aberration in ultrasonic imaging. The underlying assumptions for the estimation are: The correlation length of the medium is short compared to the length of the transmitted acoustic pulse, an isoplanatic region of sufficient size exists around the focal point, and the backscatter can be modeled as an ergodic stochastic process. The motivation for this work is ultrasonic imaging with aberration correction. Measurements were performed using a two-dimensional array system with 80 x 80 transducer elements and an element pitch of 0.6 mm. The f number for the measurements was 1.2 and the center frequency was 3.0 MHz with a 53% bandwidth. Relative phase of aberration was extracted from estimated cross spectra using a robust least-mean-square-error method based on an orthogonal expansion of the phase differences of neighboring wave forms as a function of frequency. Estimates of cross-spectrum phase from measurements of random scattering through a tissue-mimicking aberrator have confidence bands approximately +/- 5 degrees wide. Both phase and magnitude are in good agreement with a reference characterization obtained from a point scatterer.

  9. Gene expression and epigenetic discovery screen reveal methylation of SFRP2 in prostate cancer.

    LENUS (Irish Health Repository)

    Perry, Antoinette S

    2013-04-15

    Aberrant activation of Wnts is common in human cancers, including prostate. Hypermethylation associated transcriptional silencing of Wnt antagonist genes SFRPs (Secreted Frizzled-Related Proteins) is a frequent oncogenic event. The significance of this is not known in prostate cancer. The objectives of our study were to (i) profile Wnt signaling related gene expression and (ii) investigate methylation of Wnt antagonist genes in prostate cancer. Using TaqMan Low Density Arrays, we identified 15 Wnt signaling related genes with significantly altered expression in prostate cancer; the majority of which were upregulated in tumors. Notably, histologically benign tissue from men with prostate cancer appeared more similar to tumor (r = 0.76) than to benign prostatic hyperplasia (BPH; r = 0.57, p < 0.001). Overall, the expression profile was highly similar between tumors of high (≥ 7) and low (≤ 6) Gleason scores. Pharmacological demethylation of PC-3 cells with 5-Aza-CdR reactivated 39 genes (≥ 2-fold); 40% of which inhibit Wnt signaling. Methylation frequencies in prostate cancer were 10% (2\\/20) (SFRP1), 64.86% (48\\/74) (SFRP2), 0% (0\\/20) (SFRP4) and 60% (12\\/20) (SFRP5). SFRP2 methylation was detected at significantly lower frequencies in high-grade prostatic intraepithelial neoplasia (HGPIN; 30%, (6\\/20), p = 0.0096), tumor adjacent benign areas (8.82%, (7\\/69), p < 0.0001) and BPH (11.43% (4\\/35), p < 0.0001). The quantitative level of SFRP2 methylation (normalized index of methylation) was also significantly higher in tumors (116) than in the other samples (HGPIN = 7.45, HB = 0.47, and BPH = 0.12). We show that SFRP2 hypermethylation is a common event in prostate cancer. SFRP2 methylation in combination with other epigenetic markers may be a useful biomarker of prostate cancer.

  10. GABA from reactive astrocytes impairs memory in mouse models of Alzheimer's disease.

    Science.gov (United States)

    Jo, Seonmi; Yarishkin, Oleg; Hwang, Yu Jin; Chun, Ye Eun; Park, Mijeong; Woo, Dong Ho; Bae, Jin Young; Kim, Taekeun; Lee, Jaekwang; Chun, Heejung; Park, Hyun Jung; Lee, Da Yong; Hong, Jinpyo; Kim, Hye Yun; Oh, Soo-Jin; Park, Seung Ju; Lee, Hyo; Yoon, Bo-Eun; Kim, YoungSoo; Jeong, Yong; Shim, Insop; Bae, Yong Chul; Cho, Jeiwon; Kowall, Neil W; Ryu, Hoon; Hwang, Eunmi; Kim, Daesoo; Lee, C Justin

    2014-08-01

    In Alzheimer's disease (AD), memory impairment is the most prominent feature that afflicts patients and their families. Although reactive astrocytes have been observed around amyloid plaques since the disease was first described, their role in memory impairment has been poorly understood. Here, we show that reactive astrocytes aberrantly and abundantly produce the inhibitory gliotransmitter GABA by monoamine oxidase-B (Maob) and abnormally release GABA through the bestrophin 1 channel. In the dentate gyrus of mouse models of AD, the released GABA reduces spike probability of granule cells by acting on presynaptic GABA receptors. Suppressing GABA production or release from reactive astrocytes fully restores the impaired spike probability, synaptic plasticity, and learning and memory in the mice. In the postmortem brain of individuals with AD, astrocytic GABA and MAOB are significantly upregulated. We propose that selective inhibition of astrocytic GABA synthesis or release may serve as an effective therapeutic strategy for treating memory impairment in AD.

  11. Biodosimetry for medical diagnostic X-ray workers using stable chromosome aberration

    International Nuclear Information System (INIS)

    Wang Zhiquan; Liu Xuping; Li Jin

    1996-01-01

    The stable chromosome aberrations of medical diagnostic X-ray workers were analyzed using G-banding and their accumulative doses were evaluated. The results showed that the frequencies of reciprocal translocation, stable aberration and total aberration among the 4417 metaphase spread from 44 cases of medical diagnostic X-ray workers were distinctly higher than control values (P<0.05∼0.005). The stable aberration predominated strikingly in total aberration and reciprocal translocation was 57% in the stable aberrations. The medical diagnostic X-ray workers were divided into 3 groups according to calendar year of entry. The data showed that the frequencies of total aberration, stable aberration and reciprocal translocation increased with working years, especially in two groups who started working before 1970, there are statistically significant differences between the calendar year of entry before 1960 and 1960∼1969 in X-ray workers and control group. According to the equation recommended by Straume, linear coefficient (α) in linear quadratic model recommended by Schmid and the transformation coefficient by Lucas, the accumulative doses calculated are 0.58, 0.37 and 0.07 Gy for calendar year of entry before 1960, 1960∼1969 and after 1970 in X-ray workers, respectively

  12. Higher order monochromatic aberrations of the human infant eye

    OpenAIRE

    Wang, Jingyun; Candy, T. Rowan

    2005-01-01

    The monochromatic optical aberrations of the eye degrade retinal image quality. Any significant aberrations during postnatal development could contribute to infants’ immature visual performance and provide signals for the control of eye growth. Aberrations of human infant eyes from 5 to 7 weeks old were compared with those of adult subjects using a model of an adultlike infant eye that accounted for differences in both eye and pupil size. Data were collected using the COAS Shack-Hartmann wave...

  13. Chromosomal aberrations in children exposed to diagnostic x-rays

    International Nuclear Information System (INIS)

    Nordenson, I.; Beckman, G.; Beckman, L.; Lemperg, R.

    1980-01-01

    Among children who have received high x-ray doses congenital dislocation of the hip joint is the predominating diagnosis. In a series of 9 children who had received high x-ray doses (8 with luxation of the hip joint and one with achondroplasia) a significant increase of chromosomal aberrations was found. The increase concerned mainly chromosome type aberrations. The shorter the time since the last x-ray investigation the higher was the frequency of chromosome type aberrations. (author)

  14. Identification of Differentially Methylated Sites with Weak Methylation Effects

    Directory of Open Access Journals (Sweden)

    Hong Tran

    2018-02-01

    Full Text Available Deoxyribonucleic acid (DNA methylation is an epigenetic alteration crucial for regulating stress responses. Identifying large-scale DNA methylation at single nucleotide resolution is made possible by whole genome bisulfite sequencing. An essential task following the generation of bisulfite sequencing data is to detect differentially methylated cytosines (DMCs among treatments. Most statistical methods for DMC detection do not consider the dependency of methylation patterns across the genome, thus possibly inflating type I error. Furthermore, small sample sizes and weak methylation effects among different phenotype categories make it difficult for these statistical methods to accurately detect DMCs. To address these issues, the wavelet-based functional mixed model (WFMM was introduced to detect DMCs. To further examine the performance of WFMM in detecting weak differential methylation events, we used both simulated and empirical data and compare WFMM performance to a popular DMC detection tool methylKit. Analyses of simulated data that replicated the effects of the herbicide glyphosate on DNA methylation in Arabidopsis thaliana show that WFMM results in higher sensitivity and specificity in detecting DMCs compared to methylKit, especially when the methylation differences among phenotype groups are small. Moreover, the performance of WFMM is robust with respect to small sample sizes, making it particularly attractive considering the current high costs of bisulfite sequencing. Analysis of empirical Arabidopsis thaliana data under varying glyphosate dosages, and the analysis of monozygotic (MZ twins who have different pain sensitivities—both datasets have weak methylation effects of <1%—show that WFMM can identify more relevant DMCs related to the phenotype of interest than methylKit. Differentially methylated regions (DMRs are genomic regions with different DNA methylation status across biological samples. DMRs and DMCs are essentially the same

  15. Genome-Wide Methylome Analyses Reveal Novel Epigenetic Regulation Patterns in Schizophrenia and Bipolar Disorder

    Science.gov (United States)

    Li, Yongsheng; Camarillo, Cynthia; Xu, Juan; Arana, Tania Bedard; Xiao, Yun; Zhao, Zheng; Chen, Hong; Ramirez, Mercedes; Zavala, Juan; Escamilla, Michael A.; Armas, Regina; Mendoza, Ricardo; Ontiveros, Alfonso; Nicolini, Humberto; Jerez Magaña, Alvaro Antonio; Rubin, Lewis P.; Li, Xia; Xu, Chun

    2015-01-01

    Schizophrenia (SZ) and bipolar disorder (BP) are complex genetic disorders. Their appearance is also likely informed by as yet only partially described epigenetic contributions. Using a sequencing-based method for genome-wide analysis, we quantitatively compared the blood DNA methylation landscapes in SZ and BP subjects to control, both in an understudied population, Hispanics along the US-Mexico border. Remarkably, we identified thousands of differentially methylated regions for SZ and BP preferentially located in promoters 3′-UTRs and 5′-UTRs of genes. Distinct patterns of aberrant methylation of promoter sequences were located surrounding transcription start sites. In these instances, aberrant methylation occurred in CpG islands (CGIs) as well as in flanking regions as well as in CGI sparse promoters. Pathway analysis of genes displaying these distinct aberrant promoter methylation patterns showed enhancement of epigenetic changes in numerous genes previously related to psychiatric disorders and neurodevelopment. Integration of gene expression data further suggests that in SZ aberrant promoter methylation is significantly associated with altered gene transcription. In particular, we found significant associations between (1) promoter CGIs hypermethylation with gene repression and (2) CGI 3′-shore hypomethylation with increased gene expression. Finally, we constructed a specific methylation analysis platform that facilitates viewing and comparing aberrant genome methylation in human neuropsychiatric disorders. PMID:25734057

  16. Cognitive impairment in folate-deficient rats corresponds to depleted brain phosphatidylcholine and is prevented by methionine without lowering homocysteine

    Science.gov (United States)

    Poor folate status is associated with cognitive decline and dementia in older adults. Although impaired brain methylation activity and homocysteine toxicity are widely believed to account for this association, how folate deficiency impairs cognition is uncertain. To better define the role of folate ...

  17. In vivo longitudinal chromatic aberration of pseudophakic eyes.

    Science.gov (United States)

    Siedlecki, Damian; Jóźwik, Agnieszka; Zając, Marek; Hill-Bator, Aneta; Turno-Kręcicka, Anna

    2014-02-01

    To present the results of longitudinal chromatic aberration measurements on two groups of pseudophakic eyes in comparison to healthy eyes. The longitudinal chromatic aberration of the eye, defined as chromatic difference of refraction with disabled accommodation, was measured with the use of a visual refractometer with a custom-designed target illuminator consisting of a narrow-band RGB diode (blue λb = 470 ± 15 nm; green λg = 525 ± 18 nm; red λr = 660 ± 10 nm). The measurements were performed on nine eyes implanted with AcrySof IQ SN60WF, 14 eyes implanted with AcrySof SA60AT, and 10 phakic eyes under cycloplegia. The mean values of the longitudinal chromatic aberration between 470 and 660 nm for the control group was 1.12 ± 0.14 D. For SA60AT group, it was 1.45 ± 0.42 D whereas for SN60WF it was 1.17 ± 0.52 D. The statistical test showed significant difference between SA60AT and the control group (p chromatic aberration in vivo can be easily and reliably estimated with an adapted visual refractometer. The two groups of pseudophakic eyes measured in this study showed different values of chromatic aberration. Its magnitude for SA60AT group was significantly larger than for the control group whereas for SN60WF the difference was not significant. The optical material used for intraocular lens design may have significant influence on the magnitude of the chromatic aberration of the pseudophakic eye, and therefore on its optical and visual performance in polychromatic light.

  18. Evaluation of markers for CpG island methylator phenotype (CIMP) in colorectal cancer by a large population-based sample.

    Science.gov (United States)

    Ogino, Shuji; Kawasaki, Takako; Kirkner, Gregory J; Kraft, Peter; Loda, Massimo; Fuchs, Charles S

    2007-07-01

    The CpG island methylator phenotype (CIMP or CIMP-high) with extensive promoter methylation is a distinct phenotype in colorectal cancer. However, a choice of markers for CIMP has been controversial. A recent extensive investigation has selected five methylation markers (CACNA1G, IGF2, NEUROG1, RUNX3, and SOCS1) as surrogate markers for epigenomic aberrations in tumor. The use of these markers as a CIMP-specific panel needs to be validated by an independent, large dataset. Using MethyLight assays on 920 colorectal cancers from two large prospective cohort studies, we quantified DNA methylation in eight CIMP-specific markers [the above five plus CDKN2A (p16), CRABP1, and MLH1]. A CIMP-high cutoff was set at > or = 6/8 or > or = 5/8 methylated promoters, based on tumor distribution and BRAF/KRAS mutation frequencies. All but two very specific markers [MLH1 (98% specific) and SOCS1 (93% specific)] demonstrated > or = 85% sensitivity and > or = 80% specificity, indicating overall good concordance in methylation patterns and good performance of these markers. Based on sensitivity, specificity, and false positives and negatives, the eight markers were ranked in order as: RUNX3, CACNA1G, IGF2, MLH1, NEUROG1, CRABP1, SOCS1, and CDKN2A. In conclusion, a panel of markers including at least RUNX3, CACNA1G, IGF2, and MLH1 can serve as a sensitive and specific marker panel for CIMP-high.

  19. DNA methylation patterns in bladder cancer and washing cell sediments: a perspective for tumor recurrence detection

    International Nuclear Information System (INIS)

    Negraes, Priscilla D; Favaro, Francine P; Camargo, João Lauro V; Oliveira, Maria Luiza CS; Goldberg, José; Rainho, Cláudia A; Salvadori, Daisy MF

    2008-01-01

    Epigenetic alterations are a hallmark of human cancer. In this study, we aimed to investigate whether aberrant DNA methylation of cancer-associated genes is related to urinary bladder cancer recurrence. A set of 4 genes, including CDH1 (E-cadherin), SFN (stratifin), RARB (retinoic acid receptor, beta) and RASSF1A (Ras association (RalGDS/AF-6) domain family 1), had their methylation patterns evaluated by MSP (Methylation-Specific Polymerase Chain Reaction) analysis in 49 fresh urinary bladder carcinoma tissues (including 14 cases paired with adjacent normal bladder epithelium, 3 squamous cell carcinomas and 2 adenocarcinomas) and 24 cell sediment samples from bladder washings of patients classified as cancer-free by cytological analysis (control group). A third set of samples included 39 archived tumor fragments and 23 matched washouts from 20 urinary bladder cancer patients in post-surgical monitoring. After genomic DNA isolation and sodium bisulfite modification, methylation patterns were determined and correlated with standard clinic-histopathological parameters. CDH1 and SFN genes were methylated at high frequencies in bladder cancer as well as in paired normal adjacent tissue and exfoliated cells from cancer-free patients. Although no statistically significant differences were found between RARB and RASSF1A methylation and the clinical and histopathological parameters in bladder cancer, a sensitivity of 95% and a specificity of 71% were observed for RARB methylation (Fisher's Exact test (p < 0.0001; OR = 48.89) and, 58% and 17% (p < 0.05; OR = 0.29) for RASSF1A gene, respectively, in relation to the control group. Indistinct DNA hypermethylation of CDH1 and SFN genes between tumoral and normal urinary bladder samples suggests that these epigenetic features are not suitable biomarkers for urinary bladder cancer. However, RARB and RASSF1A gene methylation appears to be an initial event in urinary bladder carcinogenesis and should be considered as defining a

  20. DNA methylation patterns in bladder cancer and washing cell sediments: a perspective for tumor recurrence detection

    Directory of Open Access Journals (Sweden)

    Goldberg José

    2008-08-01

    Full Text Available Abstract Background Epigenetic alterations are a hallmark of human cancer. In this study, we aimed to investigate whether aberrant DNA methylation of cancer-associated genes is related to urinary bladder cancer recurrence. Methods A set of 4 genes, including CDH1 (E-cadherin, SFN (stratifin, RARB (retinoic acid receptor, beta and RASSF1A (Ras association (RalGDS/AF-6 domain family 1, had their methylation patterns evaluated by MSP (Methylation-Specific Polymerase Chain Reaction analysis in 49 fresh urinary bladder carcinoma tissues (including 14 cases paired with adjacent normal bladder epithelium, 3 squamous cell carcinomas and 2 adenocarcinomas and 24 cell sediment samples from bladder washings of patients classified as cancer-free by cytological analysis (control group. A third set of samples included 39 archived tumor fragments and 23 matched washouts from 20 urinary bladder cancer patients in post-surgical monitoring. After genomic DNA isolation and sodium bisulfite modification, methylation patterns were determined and correlated with standard clinic-histopathological parameters. Results CDH1 and SFN genes were methylated at high frequencies in bladder cancer as well as in paired normal adjacent tissue and exfoliated cells from cancer-free patients. Although no statistically significant differences were found between RARB and RASSF1A methylation and the clinical and histopathological parameters in bladder cancer, a sensitivity of 95% and a specificity of 71% were observed for RARB methylation (Fisher's Exact test (p RASSF1A gene, respectively, in relation to the control group. Conclusion Indistinct DNA hypermethylation of CDH1 and SFN genes between tumoral and normal urinary bladder samples suggests that these epigenetic features are not suitable biomarkers for urinary bladder cancer. However, RARB and RASSF1A gene methylation appears to be an initial event in urinary bladder carcinogenesis and should be considered as defining a panel of

  1. Amyloid protein-mediated differential DNA methylation status regulates gene expression in Alzheimer’s disease model cell line

    International Nuclear Information System (INIS)

    Sung, Hye Youn; Choi, Eun Nam; Ahn Jo, Sangmee; Oh, Seikwan; Ahn, Jung-Hyuck

    2011-01-01

    Highlights: ► Genome-wide DNA methylation pattern in Alzheimer’s disease model cell line. ► Integrated analysis of CpG methylation and mRNA expression profiles. ► Identify three Swedish mutant target genes; CTIF, NXT2 and DDR2 gene. ► The effect of Swedish mutation on alteration of DNA methylation and gene expression. -- Abstract: The Swedish mutation of amyloid precursor protein (APP-sw) has been reported to dramatically increase beta amyloid production through aberrant cleavage at the beta secretase site, causing early-onset Alzheimer’s disease (AD). DNA methylation has been reported to be associated with AD pathogenesis, but the underlying molecular mechanism of APP-sw-mediated epigenetic alterations in AD pathogenesis remains largely unknown. We analyzed genome-wide interplay between promoter CpG DNA methylation and gene expression in an APP-sw-expressing AD model cell line. To identify genes whose expression was regulated by DNA methylation status, we performed integrated analysis of CpG methylation and mRNA expression profiles, and identified three target genes of the APP-sw mutant; hypomethylated CTIF (CBP80/CBP20-dependent translation initiation factor) and NXT2 (nuclear exporting factor 2), and hypermethylated DDR2 (discoidin domain receptor 2). Treatment with the demethylating agent 5-aza-2′-deoxycytidine restored mRNA expression of these three genes, implying methylation-dependent transcriptional regulation. The profound alteration in the methylation status was detected at the −435, −295, and −271 CpG sites of CTIF, and at the −505 to −341 region in the promoter of DDR2. In the promoter region of NXT2, only one CpG site located at −432 was differentially unmethylated in APP-sw cells. Thus, we demonstrated the effect of the APP-sw mutation on alteration of DNA methylation and subsequent gene expression. This epigenetic regulatory mechanism may contribute to the pathogenesis of AD.

  2. Cellular origin of prognostic chromosomal aberrations in AML patients

    DEFF Research Database (Denmark)

    Mora-Jensen, H.; Jendholm, J.; Rapin, N.

    2015-01-01

    chromosomal structural rearrangements and single nucleotide variants (SNVs). Conventional AML diagnostics and recent seminal next-generation sequencing (NGS) studies have identified more than 200 recurrent genetic aberrations presenting in various combinations in individual patients. Significantly, many...... of these aberrations occur in normal hematopoietic stem and progenitor cells (HSCs/HPCs) before definitive leukemic transformation through additional acquisition of a few (that is, mostly 1 or 2) leukemia-promoting driver aberrations. NGS studies on sorted bone marrow (BM) populations of AML patients with a normal...

  3. Folic Acid Supplementation Delays Atherosclerotic Lesion Development by Modulating MCP1 and VEGF DNA Methylation Levels In Vivo and In Vitro

    Science.gov (United States)

    Cui, Shanshan; Li, Wen; Lv, Xin; Wang, Pengyan; Gao, Yuxia; Huang, Guowei

    2017-01-01

    The pathogenesis of atherosclerosis has been partly acknowledged to result from aberrant epigenetic mechanisms. Accordingly, low folate levels are considered to be a contributing factor to promoting vascular disease because of deregulation of DNA methylation. We hypothesized that increasing the levels of folic acid may act via an epigenetic gene silencing mechanism to ameliorate atherosclerosis. Here, we investigated the atheroprotective effects of folic acid and the resultant methylation status in high-fat diet-fed ApoE knockout mice and in oxidized low-density lipoprotein-treated human umbilical vein endothelial cells. We analyzed atherosclerotic lesion histology, folate concentration, homocysteine concentration, S-adenosylmethionine (SAM) and S-adenosylhomocysteine (SAH), and DNA methyltransferase activity, as well as monocyte chemotactic protein-1 (MCP1) and vascular endothelial growth factor (VEGF) expression and promoter methylation. Folic acid reduced atherosclerotic lesion size in ApoE knockout mice. The underlying folic acid protective mechanism appears to operate through regulating the normal homocysteine state, upregulating the SAM: SAH ratio, elevating DNA methyltransferase activity and expression, altering MCP1 and VEGF promoter methylation, and inhibiting MCP1 and VEGF expression. We conclude that folic acid supplementation effectively prevented atherosclerosis by modifying DNA methylation through the methionine cycle, improving DNA methyltransferase activity and expression, and thus changing the expression of atherosclerosis-related genes. PMID:28475147

  4. Aberration Correction in the Brewer Spectrophotometer

    International Nuclear Information System (INIS)

    Johnston, J.E.; Kerr, J.B.; McElroy, C.T.; Wardle, D.I.

    2000-01-01

    The optical design of the Brewer Spectrophotometer has been optimised for measurements in the 300-320 nm wavelength range. An aberration resolution limit that is much less than the 0.6 nm FWHM (full width at half maximum) is achieved by using an Ebert-Fastie spectrometer design, modified by the inclusion tilted lens that optimises performance at 310 nm. The small contribution of the remaining aberration to the measured instrument function is critical to radiometric measurement quality. Ramifications of this design to the development of instrumentation with enhanced scanning abilities are discussed. (author)

  5. Dimensions of driving anger and their relationships with aberrant driving.

    Science.gov (United States)

    Zhang, Tingru; Chan, Alan H S; Zhang, Wei

    2015-08-01

    The purpose of this study was to investigate the relationship between driving anger and aberrant driving behaviours. An internet-based questionnaire survey was administered to a sample of Chinese drivers, with driving anger measured by a 14-item short Driving Anger Scale (DAS) and the aberrant driving behaviours measured by a 23-item Driver Behaviour Questionnaire (DBQ). The results of Confirmatory Factor Analysis demonstrated that the three-factor model (hostile gesture, arrival-blocking and safety-blocking) of the DAS fitted the driving anger data well. The Exploratory Factor Analysis on DBQ data differentiated four types of aberrant driving, viz. emotional violation, error, deliberate violation and maintaining progress violation. For the anger-aberration relation, it was found that only "arrival-blocking" anger was a significant positive predictor for all four types of aberrant driving behaviours. The "safety-blocking" anger revealed a negative impact on deliberate violations, a finding different from previously established positive anger-aberration relation. These results suggest that drivers with different patterns of driving anger would show different behavioural tendencies and as a result intervention strategies may be differentially effective for drivers of different profiles. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Ocular wavefront aberration and refractive error in pre-school children

    Science.gov (United States)

    Thapa, Damber; Fleck, Andre; Lakshminarayanan, Vasudevan; Bobier, William R.

    2011-11-01

    Hartmann-Shack images taken from an archived collection of SureSight refractive measurements of pre-school children in Oxford County, Ontario, Canada were retrieved and re-analyzed. Higher-order aberrations were calculated over the age range of 3 to 6 years. These higher-order aberrations were compared with respect to magnitudes of ametropia. Subjects were classified as emmetropic (range -0.5 to + 0.5D), low hyperopic (+ 0.5 to +2D) and high hyperopic (+2D or more) based upon the resulting spherical equivalent. Higher-order aberrations were found to increase with higher levels of hyperopia (p < 0.01). The strongest effect was for children showing more than +2.00D of hyperopia. The correlation coefficients were small in all of the higher-order aberrations; however, they were significant (p < 0.01). These analyses indicate a weak association between refractive error and higher-order aberrations in pre-school children.

  7. Prospects for electron beam aberration correction using sculpted phase masks

    Energy Technology Data Exchange (ETDEWEB)

    Shiloh, Roy, E-mail: royshilo@post.tau.ac.il; Remez, Roei; Arie, Ady

    2016-04-15

    Technological advances in fabrication methods allowed the microscopy community to take incremental steps towards perfecting the electron microscope, and magnetic lens design in particular. Still, state of the art aberration-corrected microscopes are yet 20–30 times shy of the theoretical electron diffraction limit. Moreover, these microscopes consume significant physical space and are very expensive. Here, we show how a thin, sculpted membrane is used as a phase-mask to induce specific aberrations into an electron beam probe in a standard high resolution TEM. In particular, we experimentally demonstrate beam splitting, two-fold astigmatism, three-fold astigmatism, and spherical aberration. - Highlights: • Thin membranes can be used as aberration correctors in electron columns. • We demonstrate tilt, twofold-, threefold-astigmatism, and spherical aberrations. • Experimental and physical-optics simulation results are in good agreement. • Advantages in cost, size, nonmagnetism, and nearly-arbitrary correction.

  8. Comparison of wavefront aberrations under cycloplegic, scotopic and photopic conditions using WaveScan

    Directory of Open Access Journals (Sweden)

    Rong Fan

    2012-04-01

    Full Text Available PURPOSE: To evaluate the differences of wavefront aberrations under cycloplegic, scotopic and photopic conditions. METHODS: A total of 174 eyes of 105 patients were measured using the wavefront sensor (WaveScan® 3.62 under different pupil conditions: cycloplegic 8.58 ± 0.54 mm (6.4 mm - 9.5 mm, scotopic 7.53 ± 0.69 mm (5.7 mm - 9.1 mm and photopic 6.08 ± 1.14 mm (4.1 mm - 8.8 mm. The pupil diameter, standard Zernike coefficients, root mean square of higher-order aberrations and dominant aberrations were compared between cycloplegic and scotopic conditions, and between scotopic and photopic conditions. RESULTS: The pupil diameter was 7.53 ± 0.69 mm under the scotopic condition, which reached the requirement of about 6.5 mm optical zone design in the wavefront-guided surgery and prevented measurement error due to the pupil centroid shift caused by mydriatics. Pharmacological pupil dilation induced increase of standard Zernike coefficients Z3-3, Z4(0 and Z5-5. The higher-order aberrations, third-order aberration, fourth-order aberration, fifth-order aberration, sixth-order aberration, and spherical aberration increased statistically significantly, compared to the scotopic condition (P<0.010. When the scotopic condition shifted to the photopic condition, the standard Zernike coefficients Z4(0, Z4², Z6-4, Z6-2, Z6² decreased and all the higher-order aberrations decreased statistically significantly (P<0.010, demonstrating that accommodative miosis can significantly improve vision under the photopic condition. Under the three conditions, the vertical coma aberration appears the most frequently within the dominant aberrations without significant effect by pupil size variance, and the proportion of spherical aberrations decreased with the decrease of the pupil size. CONCLUSIONS: The wavefront aberrations are significantly different under cycloplegic, scotopic and photopic conditions. Using the wavefront sensor (VISX WaveScan to measure scotopic

  9. Aberrant salience, self-concept clarity, and interview-rated psychotic-like experiences.

    Science.gov (United States)

    Cicero, David C; Docherty, Anna R; Becker, Theresa M; Martin, Elizabeth A; Kerns, John G

    2015-02-01

    Many social-cognitive models of psychotic-like symptoms posit a role for self-concept and aberrant salience. Previous work has shown that the interaction between aberrant salience and self-concept clarity is associated with self-reported psychotic-like experiences. In the current research with two structured interviews, the interaction between aberrant salience and self-concept clarity was found to be associated with interview-rated psychotic-like experiences. The interaction was associated with psychotic-like experiences composite scores, delusional ideation, grandiosity, and perceptual anomalies. In all cases, self-concept clarity was negatively associated with psychotic-like experiences at high levels of aberrant salience, but unassociated with psychotic-like experiences at low levels of aberrant salience. The interaction was specific to positive psychotic-like experiences and not present for negative or disorganized ratings. The interaction was not mediated by self-esteem levels. These results provide further evidence that aberrant salience and self-concept clarity play an important role in the generation of psychotic-like experiences.

  10. [Epigenome: what we learned from Rett syndrome, a neurological disease caused by mutation of a methyl-CpG binding protein].

    Science.gov (United States)

    Kubota, Takeo

    2013-01-01

    Epigenome is defined as DNA and histone modification-dependent gene regulation system. Abnormalities in this system are known to cause various neuro-developmental diseases. We recently reported that neurological symptoms of Rett syndrome, which is an autistic disorder caused by mutations in methyl-CpG binding protein 2 (MeCP2), was associated with failure of epigenomic gene regulation in neuronal cells, and that clinical differences in the identical twins with Rett syndrome in the differences in DNA methylation in neuronal genes, but not caused by DNA sequence differences. Since central nervus system requires precise gene regulation, neurological diseases including Alzheimer and Parkinson diseases may be caused by acquired DNA modification (epigenomic) changes that results in aberrant gene regulation as well as DNA sequence changes congenitally occurred (mutation).

  11. Recurrent branchial sinus tract with aberrant extension.

    Science.gov (United States)

    Barret, J P

    2004-01-01

    Second branchial cysts are the commonest lesions among congenital lateral neck anomalies. Good knowledge of anatomy and embryology are necessary for proper treatment. Surgical treatment involves resection of all branchial remnants, which extend laterally in the neck, medial to the sternocleidomastoid muscle with cranial extension to the pharynx and ipsilateral tonsillar fosa. However, infections and previous surgery can distort anatomy, making the approach to branchial anomalies more difficult. We present a case of a 17-year-old patient who presented with a second branchial tract anomaly with an aberrant extension to the midline and part of the contralateral neck. Previous surgical interventions and chronic infections may have been the primary cause for this aberrant tract. All head and neck surgeons should bear in mind that aberrant presentations may exist when reoperating on chronic branchial cysts fistulas.

  12. Study of radiation-induced chromosomal aberrations

    International Nuclear Information System (INIS)

    Wolfring, E.

    2004-06-01

    A method for determining chromosomal aberrations was established for the purpose of examining the relative biological effectiveness (RBE) of photon radiation with respect to mammary epithelium cells. Cells were exposed to 25 kV X-radiation and to 200 kV X-radiation for comparison and the resulting concentrations of chromosomal aberrations were compared. The RBE M value for radiation-induced fragmentation was found to be 4.2 ± 2.4, while the RBE M value for radiation-induced generation of dicentric chromosomes was found to be 0.5 ± 0.5. In addition to the evaluation of chromosomal aberrations the number of cell cycles undergone by the cells was monitored by means of BrDU staining. As expected, the proportion of cells which underwent more than one cell cycle following exposure to 5 Gy was very low in both cases, amounting to 1.9% (25 kV) and 3.2 (200 kV). Non-radiated cells yielded control values of 26.0% and 12.6%, suggesting variations in external conditions from day to day

  13. IGFBP3 methylation is a novel diagnostic and predictive biomarker in colorectal cancer.

    Directory of Open Access Journals (Sweden)

    Lucia Perez-Carbonell

    Full Text Available Aberrant hypermethylation of cancer-related genes has emerged as a promising strategy for the development of diagnostic, prognostic and predictive biomarkers in human cancer, including colorectal cancer (CRC. The aim of this study was to perform a systematic and comprehensive analysis of a panel of CRC-specific genes as potential diagnostic, prognostic and predictive biomarkers in a large, population-based CRC cohort.Methylation status of the SEPT9, TWIST1, IGFBP3, GAS7, ALX4 and miR137 genes was studied by quantitative bisulfite pyrosequencing in a population-based cohort of 425 CRC patients.Methylation levels of all genes analyzed were significantly higher in tumor tissues compared to normal mucosa (p<0.0001; however, cancer-associated hypermethylation was most frequently observed for miR137 (86.7% and IGFBP3 (83% in CRC patients. Methylation analysis using the combination of these two genes demonstrated greatest accuracy for the identification of colonic tumors (sensitivity 95.5%; specificity 90.5%. Low levels of IGFBP3 promoter methylation emerged as an independent risk factor for predicting poor disease free survival in stage II and III CRC patients (HR = 0.49, 95% CI: 0.28-0.85, p = 0.01. Our results also suggest that stage II & III CRC patients with high levels of IGFBP3 methylation do not benefit from adjuvant 5FU-based chemotherapy.By analyzing a large, population-based CRC cohort, we demonstrate the potential clinical significance of miR137 and IGFBP3 hypermethylation as promising diagnostic biomarkers in CRC. Our data also revealed that IGFBP3 hypermethylation may serve as an independent prognostic and predictive biomarker in stage II and III CRC patients.

  14. Sextupole system for the correction of spherical aberration

    Science.gov (United States)

    Crewe, A.V.; Kopf, D.A.

    In an electron beam device in which an electron beam is developed and then focused by a lens to a particular spot, there is provided a means for eliminating spherical aberration. A sextupole electromagnetic lens is positioned between two focusing lenses. The interaction of the sextupole with the beam compensates for spherical aberration. (GHT)

  15. Brillouin micro-spectroscopy through aberrations via sensorless adaptive optics

    Science.gov (United States)

    Edrei, Eitan; Scarcelli, Giuliano

    2018-04-01

    Brillouin spectroscopy is a powerful optical technique for non-contact viscoelastic characterizations which has recently found applications in three-dimensional mapping of biological samples. Brillouin spectroscopy performances are rapidly degraded by optical aberrations and have therefore been limited to homogenous transparent samples. In this work, we developed an adaptive optics (AO) configuration designed for Brillouin scattering spectroscopy to engineer the incident wavefront and correct for aberrations. Our configuration does not require direct wavefront sensing and the injection of a "guide-star"; hence, it can be implemented without the need for sample pre-treatment. We used our AO-Brillouin spectrometer in aberrated phantoms and biological samples and obtained improved precision and resolution of Brillouin spectral analysis; we demonstrated 2.5-fold enhancement in Brillouin signal strength and 1.4-fold improvement in axial resolution because of the correction of optical aberrations.

  16. Whole-genome methylation caller designed for methyl- DNA ...

    African Journals Online (AJOL)

    etchie

    2013-02-20

    Feb 20, 2013 ... Our method uses a single-CpG-resolution, whole-genome methylation ... Key words: Methyl-DNA immunoprecipitation, next-generation sequencing, ...... methylation is prevalent in embryonic stem cells andmaybe mediated.

  17. Glucose Tolerance, MTHFR C677T and NOS3 G894T Polymorphisms, and Global DNA Methylation in Mixed Ancestry African Individuals

    Directory of Open Access Journals (Sweden)

    Tandi E. Matsha

    2016-01-01

    Full Text Available The aim of this study is to quantify global DNA methylation and investigate the relationship with diabetes status and polymorphisms in MTHFR C677T and NOS3 G894T genes in mixed ancestry subjects from South Africa. Global DNA methylation was measured, and MTHFR rs1801133 and NOS3 rs1799983 polymorphisms were genotyped using high throughput real-time polymerase chain reaction and direct DNA sequencing. Of the 564 participants, 158 (28% individuals had T2DM of which 97 (17.2% were screen-detected cases. Another 119 (21.1% had prediabetes, that is, impaired fasting glucose, impaired glucose tolerance, or the combination of both, and the remainder 287 (50.9% had normal glucose tolerance. Global DNA methylation was significantly higher in prediabetes and screen-detected diabetes than in normal glucose tolerance (both p≤0.033 and in screen-detected diabetes compared to known diabetes on treatment (p=0.019. There was no difference in global DNA methylation between known diabetes on treatment and normal glucose tolerance (p>0.999. In multivariable linear regression analysis, only NOS3 was associated with increasing global DNA methylation (β=0.943; 95% CI: 0.286 to 1.560. The association of global DNA methylation with screen-detected diabetes but not treated diabetes suggests that glucose control agents to some extent may be reversing DNA methylation. The association between NOS3 rs1799983 polymorphisms and DNA methylation suggests gene-epigenetic mechanisms through which vascular diabetes complications develop despite adequate metabolic control.

  18. Glucose Tolerance, MTHFR C677T and NOS3 G894T Polymorphisms, and Global DNA Methylation in Mixed Ancestry African Individuals

    Science.gov (United States)

    Mutize, Tinashe; Erasmus, Rajiv T.

    2016-01-01

    The aim of this study is to quantify global DNA methylation and investigate the relationship with diabetes status and polymorphisms in MTHFR C677T and NOS3 G894T genes in mixed ancestry subjects from South Africa. Global DNA methylation was measured, and MTHFR rs1801133 and NOS3 rs1799983 polymorphisms were genotyped using high throughput real-time polymerase chain reaction and direct DNA sequencing. Of the 564 participants, 158 (28%) individuals had T2DM of which 97 (17.2%) were screen-detected cases. Another 119 (21.1%) had prediabetes, that is, impaired fasting glucose, impaired glucose tolerance, or the combination of both, and the remainder 287 (50.9%) had normal glucose tolerance. Global DNA methylation was significantly higher in prediabetes and screen-detected diabetes than in normal glucose tolerance (both p ≤ 0.033) and in screen-detected diabetes compared to known diabetes on treatment (p = 0.019). There was no difference in global DNA methylation between known diabetes on treatment and normal glucose tolerance (p > 0.999). In multivariable linear regression analysis, only NOS3 was associated with increasing global DNA methylation (β = 0.943; 95% CI: 0.286 to 1.560). The association of global DNA methylation with screen-detected diabetes but not treated diabetes suggests that glucose control agents to some extent may be reversing DNA methylation. The association between NOS3 rs1799983 polymorphisms and DNA methylation suggests gene-epigenetic mechanisms through which vascular diabetes complications develop despite adequate metabolic control. PMID:27990443

  19. Theoretical estimates of spherical and chromatic aberration in photoemission electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Fitzgerald, J.P.S., E-mail: fit@pdx.edu; Word, R.C.; Könenkamp, R.

    2016-01-15

    We present theoretical estimates of the mean coefficients of spherical and chromatic aberration for low energy photoemission electron microscopy (PEEM). Using simple analytic models, we find that the aberration coefficients depend primarily on the difference between the photon energy and the photoemission threshold, as expected. However, the shape of the photoelectron spectral distribution impacts the coefficients by up to 30%. These estimates should allow more precise correction of aberration in PEEM in experimental situations where the aberration coefficients and precise electron energy distribution cannot be readily measured. - Highlights: • Spherical and chromatic aberration coefficients of the accelerating field in PEEM. • Compact, analytic expressions for coefficients depending on two emission parameters. • Effect of an aperture stop on the distribution is also considered.

  20. A model of distributed phase aberration for deblurring phase estimated from scattering.

    Science.gov (United States)

    Tillett, Jason C; Astheimer, Jeffrey P; Waag, Robert C

    2010-01-01

    Correction of aberration in ultrasound imaging uses the response of a point reflector or its equivalent to characterize the aberration. Because a point reflector is usually unavailable, its equivalent is obtained using statistical methods, such as processing reflections from multiple focal regions in a random medium. However, the validity of methods that use reflections from multiple points is limited to isoplanatic patches for which the aberration is essentially the same. In this study, aberration is modeled by an offset phase screen to relax the isoplanatic restriction. Methods are developed to determine the depth and phase of the screen and to use the model for compensation of aberration as the beam is steered. Use of the model to enhance the performance of the noted statistical estimation procedure is also described. Experimental results obtained with tissue-mimicking phantoms that implement different models and produce different amounts of aberration are presented to show the efficacy of these methods. The improvement in b-scan resolution realized with the model is illustrated. The results show that the isoplanatic patch assumption for estimation of aberration can be relaxed and that propagation-path characteristics and aberration estimation are closely related.

  1. Mutations and chromosomal aberrations

    International Nuclear Information System (INIS)

    Kihlman, B.A.

    1977-01-01

    The genetic changes of mutations and chromosomal aberrations are discussed. The consequences of both depend not only on the type of genetic change produced but also on the type of cell that is affected and on the development stage of the organism. (C.F.)

  2. Effects of residual aberrations explored on single-walled carbon nanotubes

    International Nuclear Information System (INIS)

    Biskupek, Johannes; Hartel, Peter; Haider, Maximilian; Kaiser, Ute

    2012-01-01

    The effects of geometric residual aberrations such as coma B 2 and two-fold astigmatism A 1 on the contrast in aberration corrected high resolution transmission electron microscopy (HRTEM) images are investigated on single-walled carbon nanotubes (SWNT). The individual aberrations are adjusted and set up manually using an imaging C S -corrector. We demonstrate how coma B 2 can be recognized by an experienced user directly in the image and how it blurs the contrast. Even with uncorrected (resolution limiting) spherical aberration C S the coma B 2 has to be considered and must be minimized. Limits for a tolerable coma are given. The experiments are confirmed by image simulations. -- Highlights: ► Individual effects of residual aberrations such as B 2 , A 1 , and C S are demonstrated. ► Experimental HRTEM and simulated images of carbon nanotubes are compared. ► A detection limit of 50 nm B 2 in a single HRTEM image is determined.

  3. Correlation between Post-LASIK Starburst Symptom and Ocular Wavefront Aberrations

    Science.gov (United States)

    Liu, Yong-Ji; Mu, Guo-Guang; Wang, Zhao-Qi; Wang-Yan

    2006-06-01

    Monochromatic aberrations in post laser in-situ keratomileusis (LASIK) eyes are measured. The data are categorized into reference group and starburst group according to the visual symptoms. Statistic analysis has been made to find the correlation between the ocular wavefront aberrations and the starburst symptom. The rms aberrations of the 3rd and 4th orders for the starburst group are significantly larger than those for the reference group. The starburst symptom shows a strong correlation with vertical coma, total coma, spherical aberrations. For 3-mm pupil size and 5.8-mm pupil size, the modulation transfer function (MTF) of the starburst group are lower than those of the reference group, but their visual acuities are close. MTF and PSF analyses are made for two groups, and the results are consistent with the statistical analysis, which means the difference between the two groups is mainly due to the third- and fourth-order Zernike aberrations.

  4. MIWI2 as an Effector of DNA Methylation and Gene Silencing in Embryonic Male Germ Cells

    Directory of Open Access Journals (Sweden)

    Kanako Kojima-Kita

    2016-09-01

    Full Text Available During the development of mammalian embryonic germ cells, global demethylation and de novo DNA methylation take place. In mouse embryonic germ cells, two PIWI family proteins, MILI and MIWI2, are essential for the de novo DNA methylation of retrotransposons, presumably through PIWI-interacting RNAs (piRNAs. Although piRNA-associated MIWI2 has been reported to play critical roles in the process, its molecular mechanisms have remained unclear. To identify the mechanism, transgenic mice were produced; they contained a fusion protein of MIWI2 and a zinc finger (ZF that recognized the promoter region of a type A LINE-1 gene. The ZF-MIWI2 fusion protein brought about DNA methylation, suppression of the type A LINE-1 gene, and a partial rescue of the impaired spermatogenesis of MILI-null mice. In addition, ZF-MIWI2 was associated with the proteins involved in DNA methylation. These data indicate that MIWI2 functions as an effector of de novo DNA methylation of the retrotransposon.

  5. Split-plot fractional designs: Is minimum aberration enough?

    DEFF Research Database (Denmark)

    Kulahci, Murat; Ramirez, Jose; Tobias, Randy

    2006-01-01

    Split-plot experiments are commonly used in industry for product and process improvement. Recent articles on designing split-plot experiments concentrate on minimum aberration as the design criterion. Minimum aberration has been criticized as a design criterion for completely randomized fractional...... factorial design and alternative criteria, such as the maximum number of clear two-factor interactions, are suggested (Wu and Hamada (2000)). The need for alternatives to minimum aberration is even more acute for split-plot designs. In a standard split-plot design, there are several types of two...... for completely randomized designs. Consequently, we provide a modified version of the maximum number of clear two-factor interactions design criterion to be used for split-plot designs....

  6. Biological dosimetry: chromosomal aberration analysis for dose assessment

    International Nuclear Information System (INIS)

    1986-01-01

    In view of the growing importance of chromosomal aberration analysis as a biological dosimeter, the present report provides a concise summary of the scientific background of the subject and a comprehensive source of information at the technical level. After a review of the basic principles of radiation dosimetry and radiation biology basic information on the biology of lymphocytes, the structure of chromosomes and the classification of chromosomal aberrations are presented. This is followed by a presentation of techniques for collecting blood, storing, transporting, culturing, making chromosomal preparations and scaring of aberrations. The physical and statistical parameters involved in dose assessment are discussed and examples of actual dose assessments taken from the scientific literature are given

  7. Differential algebraic method for arbitrary order curvilinear-axis combined geometric-chromatic aberration analysis

    International Nuclear Information System (INIS)

    Cheng Min; Tang Tiantong; Lu Yilong; Yao Zhenhua

    2003-01-01

    The principle of differential algebra is applied to analyse and calculate arbitrary order curvilinear-axis combined geometric-chromatic aberrations of electron optical systems. Expressions of differential algebraic form of high order combined aberrations are obtained and arbitrary order combined aberrations can be calculated numerically. As an example, a typical wide electron beam focusing system with curved optical axes named magnetic immersion lens has been studied. All the second-order and third-order combined geometric-chromatic aberrations of the lens have been calculated, and the patterns of the corresponding geometric aberrations and combined aberrations have been given as well

  8. The fetal programming effect of prenatal smoking on Igf1r and Igf1 methylation is organ- and sex-specific.

    Science.gov (United States)

    Meyer, Karolin F; Verkaik-Schakel, Rikst Nynke; Timens, Wim; Kobzik, Lester; Plösch, Torsten; Hylkema, Machteld N

    2017-01-01

    The impact of prenatal smoke exposure (PSE) on DNA methylation has been demonstrated in blood samples from children of smoking mothers, but evidence for sex-dependent smoke-induced effects is limited. As the identified differentially methylated genes can be associated with developmental processes, and insulin-like growth factors (IGFs) play a critical role in prenatal tissue growth, we hypothesized that PSE induces fetal programming of Igf1r and Igf1. Using a mouse model of smoking during pregnancy, we show that PSE alters promoter methylation of Igf1r and Igf1 and deregulates their gene expression in lung and liver of fetal (E17.5) and neonatal (D3) mouse offspring. By further comparing female versus male, lung versus liver, or fetal versus neonatal time point, our results demonstrate that CpG site-specific aberrant methylation patterns sex-dependently vary per organ and time point. Moreover, PSE reduces gene expression of Igf1r and Igf1, dependent on organ, sex, and offspring's age. Our results indicate that PSE may be a source of organ-specific rather than general systemic fetal programming. This is exemplified here by gene promoter methylation and mRNA levels of Igf1r and Igf1, together with a sex- and organ-specific naturally established correlation of both parameters that is affected by prenatal smoke exposure. Moreover, the comparison of fetuses with neonates suggests a CpG site-dependent reversibility/persistence of PSE-induced differential methylation patterns.

  9. A review of reward processing and motivational impairment in schizophrenia.

    Science.gov (United States)

    Strauss, Gregory P; Waltz, James A; Gold, James M

    2014-03-01

    This article reviews and synthesizes research on reward processing in schizophrenia, which has begun to provide important insights into the cognitive and neural mechanisms associated with motivational impairments. Aberrant cortical-striatal interactions may be involved with multiple reward processing abnormalities, including: (1) dopamine-mediated basal ganglia systems that support reinforcement learning and the ability to predict cues that lead to rewarding outcomes; (2) orbitofrontal cortex-driven deficits in generating, updating, and maintaining value representations; (3) aberrant effort-value computations, which may be mediated by disrupted anterior cingulate cortex and midbrain dopamine functioning; and (4) altered activation of the prefrontal cortex, which is important for generating exploratory behaviors in environments where reward outcomes are uncertain. It will be important for psychosocial interventions targeting negative symptoms to account for abnormalities in each of these reward processes, which may also have important interactions; suggestions for novel behavioral intervention strategies that make use of external cues, reinforcers, and mobile technology are discussed.

  10. Population spherical aberration: associations with ametropia, age, corneal curvature, and image quality

    Directory of Open Access Journals (Sweden)

    Kingston AC

    2013-05-01

    Full Text Available Amanda C Kingston,1,2 Ian G Cox11Bausch + Lomb, Rochester, NY, USA; 2Department of Biomedical Engineering, University of Rochester, Rochester, NY, USAPurpose: The aim of this analysis was to determine the total ocular wavefront aberration values of a large phakic population of physiologically normal, ametropic eyes, gathered under the same clinical protocol using the same diagnostic wavefront sensor.Materials and methods: Studies were conducted at multiple sites in Asia, North America, Europe, and Australia. A Bausch + Lomb Zywave II Wavefront Aberrometer (Rochester, NY, USA was used to measure the lower and higher order aberrations of each eye. Data analysis was conducted using linear regression analysis to determine the relationship between total spherical aberration, ametropia, age, corneal curvature, and image quality.Results: Linear regression analysis showed no correlation (r = 0.0207, P = 0.4874 between degree of ametropia and the amount of spherical aberration. There was also no correlation when the population was stratified into myopic and hyperopic refractive groups (rm = 0.0529, Pm = 0.0804 and rh = 0.1572, Ph = 0.2754. There was a statistically significant and weak positive correlation (r = 0.1962, P < 0.001 between age and the amount of spherical aberration measured in the eye; spherical aberration became more positive with increasing age. Also, there was a statistically significant and moderately positive correlation (r = 0.3611, P < 0.001 with steepness of corneal curvature; spherical aberration became more positive with increasing power of the anterior corneal surface. Assessment of image quality using optical design software (Zemax™, Bellevue, WA, USA showed that there was an overall benefit in correcting the average spherical aberration of this population.Conclusion: Analysis of this dataset provides insights into the inherent spherical aberration of a typical phakic, pre-presbyopic, population and provides the ability to

  11. Aberration analysis calculations for synchrotron radiation beamline design

    International Nuclear Information System (INIS)

    McKinney, W.R.; Howells, M.; Padmore, H.A.

    1997-09-01

    The application of ray deviation calculations based on aberration coefficients for a single optical surface for the design of beamline optical systems is reviewed. A systematic development is presented which allows insight into which aberration may be causing the rays to deviate from perfect focus. A new development allowing analytical calculation of line shape is presented

  12. Fifth-order aberrations in magnetic quadrupole-octupole systems

    International Nuclear Information System (INIS)

    Ling, K.M.

    1990-01-01

    Explicit integral expressions are given for the fifth-order geometrical aberration coefficients in rectilinear magnetic quadrupole-octupole systems used for the transport of nonrelativistic charged particle beams. The numerical values of the fifth-order geometrical aberration coefficients for a rare earth cobalt (REC) quadrupole doublet are given as an example. 26 refs., 5 figs., 4 tabs

  13. Identification of endometrial cancer methylation features using combined methylation analysis methods.

    Directory of Open Access Journals (Sweden)

    Michael P Trimarchi

    Full Text Available DNA methylation is a stable epigenetic mark that is frequently altered in tumors. DNA methylation features are attractive biomarkers for disease states given the stability of DNA methylation in living cells and in biologic specimens typically available for analysis. Widespread accumulation of methylation in regulatory elements in some cancers (specifically the CpG island methylator phenotype, CIMP can play an important role in tumorigenesis. High resolution assessment of CIMP for the entire genome, however, remains cost prohibitive and requires quantities of DNA not available for many tissue samples of interest. Genome-wide scans of methylation have been undertaken for large numbers of tumors, and higher resolution analyses for a limited number of cancer specimens. Methods for analyzing such large datasets and integrating findings from different studies continue to evolve. An approach for comparison of findings from a genome-wide assessment of the methylated component of tumor DNA and more widely applied methylation scans was developed.Methylomes for 76 primary endometrial cancer and 12 normal endometrial samples were generated using methylated fragment capture and second generation sequencing, MethylCap-seq. Publically available Infinium HumanMethylation 450 data from The Cancer Genome Atlas (TCGA were compared to MethylCap-seq data.Analysis of methylation in promoter CpG islands (CGIs identified a subset of tumors with a methylator phenotype. We used a two-stage approach to develop a 13-region methylation signature associated with a "hypermethylator state." High level methylation for the 13-region methylation signatures was associated with mismatch repair deficiency, high mutation rate, and low somatic copy number alteration in the TCGA test set. In addition, the signature devised showed good agreement with previously described methylation clusters devised by TCGA.We identified a methylation signature for a "hypermethylator phenotype" in

  14. Lethality of radiation-induced chromosome aberrations in human tumour cell lines with different radiosensitivities.

    Science.gov (United States)

    Coco-Martin, J M; Ottenheim, C P; Bartelink, H; Begg, A C

    1996-03-01

    In order to find an explanation for the eventual disappearance of all chromosome aberrations in two radiosensitive human tumour cell lines, the type and stability of different aberration types was investigated in more detail. To classify the aberrations into unstable and stable types, three-colour fluorescence in situ hybridization was performed, including a whole-chromosome probe, a pancentromere probe, and a stain for total DNA. This technique enables the appropriate classification of the aberrations principally by the presence (stable) or not (unstable) of a single centromere per chromosome. Unstable-type aberrations were found to disappear within 7 days (several divisions) in the two radiosensitive and the two radioresistant tumour lines investigated. Stable-type aberrations were found to remain at an approximately constant level over the duration of the experiment (14 days; 8-10 divisions) in the two radioresistant lines. In contrast, the majority of these stable-type aberrations had disappeared by 14 days in the two radiosensitive lines. The previous findings of disappearance of total aberrations in radiosensitive cells was therefore not due to a reduced induction of stable-type aberrations, but the complete disappearance of cells with this aberration type. These results could not be explained by differences in apoptosis or G1 blocks. Two possible explanations for these unexpected findings involve non-random induction of unstable-type aberrations, or lethality of stable-type aberrations. The results suggest caution in the use of stable-type aberration numbers as a predictor for radiosensitivity.

  15. Influence of coma aberration on aperture averaged scintillations in oceanic turbulence

    Science.gov (United States)

    Luo, Yujuan; Ji, Xiaoling; Yu, Hong

    2018-01-01

    The influence of coma aberration on aperture averaged scintillations in oceanic turbulence is studied in detail by using the numerical simulation method. In general, in weak oceanic turbulence, the aperture averaged scintillation can be effectively suppressed by means of the coma aberration, and the aperture averaged scintillation decreases as the coma aberration coefficient increases. However, in moderate and strong oceanic turbulence the influence of coma aberration on aperture averaged scintillations can be ignored. In addition, the aperture averaged scintillation dominated by salinity-induced turbulence is larger than that dominated by temperature-induced turbulence. In particular, it is shown that for coma-aberrated Gaussian beams, the behavior of aperture averaged scintillation index is quite different from the behavior of point scintillation index, and the aperture averaged scintillation index is more suitable for characterizing scintillations in practice.

  16. Insufficient DNA methylation affects healthy aging and promotes age-related health problems.

    Science.gov (United States)

    Liu, Liang; van Groen, Thomas; Kadish, Inga; Li, Yuanyuan; Wang, Deli; James, Smitha R; Karpf, Adam R; Tollefsbol, Trygve O

    2011-08-01

    DNA methylation plays an integral role in development and aging through epigenetic regulation of genome function. DNA methyltransferase 1 (Dnmt1) is the most prevalent DNA methyltransferase that maintains genomic methylation stability. To further elucidate the function of Dnmt1 in aging and age-related diseases, we exploited the Dnmt1+/- mouse model to investigate how Dnmt1 haploinsufficiency impacts the aging process by assessing the changes of several major aging phenotypes. We confirmed that Dnmt1 haploinsufficiency indeed decreases DNA methylation as a result of reduced Dnmt1 expression. To assess the effect of Dnmt1 haploinsufficiency on general body composition, we performed dual-energy X-ray absorptiometry analysis and showed that reduced Dnmt1 activity decreased bone mineral density and body weight, but with no significant impact on mortality or body fat content. Using behavioral tests, we demonstrated that Dnmt1 haploinsufficiency impairs learning and memory functions in an age-dependent manner. Taken together, our findings point to the interesting likelihood that reduced genomic methylation activity adversely affects the healthy aging process without altering survival and mortality. Our studies demonstrated that cognitive functions of the central nervous system are modulated by Dnmt1 activity and genomic methylation, highlighting the significance of the original epigenetic hypothesis underlying memory coding and function.

  17. Acute cannabinoids impair working memory through astroglial CB1 receptor modulation of hippocampal LTD.

    Science.gov (United States)

    Han, Jing; Kesner, Philip; Metna-Laurent, Mathilde; Duan, Tingting; Xu, Lin; Georges, Francois; Koehl, Muriel; Abrous, Djoher Nora; Mendizabal-Zubiaga, Juan; Grandes, Pedro; Liu, Qingsong; Bai, Guang; Wang, Wei; Xiong, Lize; Ren, Wei; Marsicano, Giovanni; Zhang, Xia

    2012-03-02

    Impairment of working memory is one of the most important deleterious effects of marijuana intoxication in humans, but its underlying mechanisms are presently unknown. Here, we demonstrate that the impairment of spatial working memory (SWM) and in vivo long-term depression (LTD) of synaptic strength at hippocampal CA3-CA1 synapses, induced by an acute exposure of exogenous cannabinoids, is fully abolished in conditional mutant mice lacking type-1 cannabinoid receptors (CB(1)R) in brain astroglial cells but is conserved in mice lacking CB(1)R in glutamatergic or GABAergic neurons. Blockade of neuronal glutamate N-methyl-D-aspartate receptors (NMDAR) and of synaptic trafficking of glutamate α-amino-3-hydroxy-5-methyl-isoxazole propionic acid receptors (AMPAR) also abolishes cannabinoid effects on SWM and LTD induction and expression. We conclude that the impairment of working memory by marijuana and cannabinoids is due to the activation of astroglial CB(1)R and is associated with astroglia-dependent hippocampal LTD in vivo. Copyright © 2012 Elsevier Inc. All rights reserved.

  18. BDNF Methylation and Maternal Brain Activity in a Violence-Related Sample.

    Directory of Open Access Journals (Sweden)

    Dominik A Moser

    Full Text Available It is known that increased circulating glucocorticoids in the wake of excessive, chronic, repetitive stress increases anxiety and impairs Brain-Derived Neurotrophic Factor (BDNF signaling. Recent studies of BDNF gene methylation in relation to maternal care have linked high BDNF methylation levels in the blood of adults to lower quality of received maternal care measured via self-report. Yet the specific mechanisms by which these phenomena occur remain to be established. The present study examines the link between methylation of the BDNF gene promoter region and patterns of neural activity that are associated with maternal response to stressful versus non-stressful child stimuli within a sample that includes mothers with interpersonal violence-related PTSD (IPV-PTSD. 46 mothers underwent fMRI. The contrast of neural activity when watching children-including their own-was then correlated to BDNF methylation. Consistent with the existing literature, the present study found that maternal BDNF methylation was associated with higher levels of maternal anxiety and greater childhood exposure to domestic violence. fMRI results showed a positive correlation of BDNF methylation with maternal brain activity in the anterior cingulate (ACC, and ventromedial prefrontal cortex (vmPFC, regions generally credited with a regulatory function toward brain areas that are generating emotions. Furthermore we found a negative correlation of BDNF methylation with the activity of the right hippocampus. Since our stimuli focus on stressful parenting conditions, these data suggest that the correlation between vmPFC/ACC activity and BDNF methylation may be linked to mothers who are at a disadvantage with respect to emotion regulation when facing stressful parenting situations. Overall, this study provides evidence that epigenetic signatures of stress-related genes can be linked to functional brain regions regulating parenting stress, thus advancing our understanding of

  19. Associations between methylation of paternally expressed gene 3 (PEG3, cervical intraepithelial neoplasia and invasive cervical cancer.

    Directory of Open Access Journals (Sweden)

    Monica D Nye

    Full Text Available Cytology-based screening for invasive cervical cancer (ICC lacks sensitivity and specificity to discriminate between cervical intraepithelial neoplasia (CIN likely to persist or progress from cases likely to resolve. Genome-wide approaches have been used to identify DNA methylation marks associated with CIN persistence or progression. However, associations between DNA methylation marks and CIN or ICC remain weak and inconsistent. Between 2008-2009, we conducted a hospital-based, case-control study among 213 Tanzania women with CIN 1/2/3 or ICC. We collected questionnaire data, biopsies, peripheral blood, cervical scrapes, Human papillomavirus (HPV and HIV-1 infection status. We assessed PEG3 methylation status by bisulfite pyrosequencing. Multinomial logistic regression was used to estimate odds ratios (OR and confidence intervals (CI 95% for associations between PEG3 methylation status and CIN or ICC. After adjusting for age, gravidity, hormonal contraceptive use and HPV infection, a 5% increase in PEG3 DNA methylation was associated with increased risk for ICC (OR = 1.6; 95% CI 1.2-2.1. HPV infection was associated with a higher risk of CIN1-3 (OR = 15.7; 95% CI 5.7-48.6 and ICC (OR = 29.5, 95% CI 6.3-38.4. Infection with high risk HPV was correlated with mean PEG3 differentially methylated regions (DMRs methylation (r = 0.34 p<0.0001, while the correlation with low risk HPV infection was weaker (r = 0.16 p = 0.047. Although small sample size limits inference, these data support that PEG3 methylation status has potential as a molecular target for inclusion in CIN screening to improve prediction of progression. Impact statement: We present the first evidence that aberrant methylation of the PEG3 DMR is an important co-factor in the development of Invasive cervical carcinoma (ICC, especially among women infected with high risk HPV. Our results show that a five percent increase in DNA methylation of PEG3 is associated with

  20. Screening for aberrant behavior in the nuclear industry

    International Nuclear Information System (INIS)

    Borofsky, G.L.

    1987-01-01

    This paper attempts to promote a fuller understanding of how psychological assessment procedures can be used to reduce the threat from aberrant behavior in the nuclear industry. It begins with a discussion of the scientifically based methods that are used by psychologists in constructing, scoring, and interpreting these procedures. This discussion includes an emphasis on the concepts of validity and reliability and their central importance when one is choosing specific psychological screening tools. Criteria for selecting and using psychological assessment procedures when screening for aberrant behavior are also provided. Some commonly used assessment procedures that satisfy these criteria are discussed. A number a psychological assessment procedures specifically recommended for use in screening for aberrant behavior in the nuclear industry are described

  1. Detecting Aberrant Response Patterns in the Rasch Model. Rapport 87-3.

    Science.gov (United States)

    Kogut, Jan

    In this paper, the detection of response patterns aberrant from the Rasch model is considered. For this purpose, a new person fit index, recently developed by I. W. Molenaar (1987) and an iterative estimation procedure are used in a simulation study of Rasch model data mixed with aberrant data. Three kinds of aberrant response behavior are…

  2. Promoter methylation of MLH1, PMS2, MSH2 and p16 is a phenomenon of advanced-stage HCCs.

    Science.gov (United States)

    Hinrichsen, Inga; Kemp, Matthias; Peveling-Oberhag, Jan; Passmann, Sandra; Plotz, Guido; Zeuzem, Stefan; Brieger, Angela

    2014-01-01

    Epigenetic silencing of tumour suppressor genes has been observed in various cancers. Looking at hepatocellular carcinoma (HCC) specific protein silencing was previously demonstrated to be associated with the Hepatitis C virus (HCV). However, the proposed HCV dependent promoter methylation of DNA mismatch repair (MMR) genes and thereby enhanced progression of hepatocarcinogenesis has been the subject of controversial discussion. We investigated promoter methylation pattern of the MMR genes MLH1, MSH2 and PMS2 as well as the cyclin-dependent kinase inhibitor 2A gene (p16) in 61 well characterized patients with HCCs associated with HCV, Hepatitis B virus infection or alcoholic liver disease. DNA was isolated from formalin-fixed, paraffin-embedded tumour and non-tumour adjacent tissue and analysed by methylation-specific PCR. Moreover, microsatellite analysis was performed in tissues showing methylation in MMR gene promoters. Our data demonstrated that promoter methylation of MLH1, MSH2, PMS2 and p16 is present among all considered HCCs. Hereby, promoter silencing was detectable more frequently in advanced-stage HCCs than in low-stage ones. However, there was no significant correlation between aberrant DNA methylation of MMR genes or p16 and HCV infection in related HCC specimens. In summary, we show that promoter methylation of essential MMR genes and p16 is detectable in HCCs most dominantly in pT3 stage tumour cases. Since loss of MMR proteins was previously described to be not only responsible for tumour development but also for chemotherapy resistance, the knowledge of mechanisms jointly responsible for HCC progression might enable significant improvement of individual HCC therapy in the future.

  3. Promoter methylation of MLH1, PMS2, MSH2 and p16 is a phenomenon of advanced-stage HCCs.

    Directory of Open Access Journals (Sweden)

    Inga Hinrichsen

    Full Text Available Epigenetic silencing of tumour suppressor genes has been observed in various cancers. Looking at hepatocellular carcinoma (HCC specific protein silencing was previously demonstrated to be associated with the Hepatitis C virus (HCV. However, the proposed HCV dependent promoter methylation of DNA mismatch repair (MMR genes and thereby enhanced progression of hepatocarcinogenesis has been the subject of controversial discussion. We investigated promoter methylation pattern of the MMR genes MLH1, MSH2 and PMS2 as well as the cyclin-dependent kinase inhibitor 2A gene (p16 in 61 well characterized patients with HCCs associated with HCV, Hepatitis B virus infection or alcoholic liver disease. DNA was isolated from formalin-fixed, paraffin-embedded tumour and non-tumour adjacent tissue and analysed by methylation-specific PCR. Moreover, microsatellite analysis was performed in tissues showing methylation in MMR gene promoters. Our data demonstrated that promoter methylation of MLH1, MSH2, PMS2 and p16 is present among all considered HCCs. Hereby, promoter silencing was detectable more frequently in advanced-stage HCCs than in low-stage ones. However, there was no significant correlation between aberrant DNA methylation of MMR genes or p16 and HCV infection in related HCC specimens. In summary, we show that promoter methylation of essential MMR genes and p16 is detectable in HCCs most dominantly in pT3 stage tumour cases. Since loss of MMR proteins was previously described to be not only responsible for tumour development but also for chemotherapy resistance, the knowledge of mechanisms jointly responsible for HCC progression might enable significant improvement of individual HCC therapy in the future.

  4. ATM Mediates pRB Function To Control DNMT1 Protein Stability and DNA Methylation

    Science.gov (United States)

    Suzuki, Misa; Hayashi, Naoyuki; Kobayashi, Masahiko; Sasaki, Nobunari; Nishiuchi, Takumi; Doki, Yuichiro; Okamoto, Takahiro; Kohno, Susumu; Muranaka, Hayato; Kitajima, Shunsuke; Yamamoto, Ken-ichi

    2013-01-01

    The retinoblastoma tumor suppressor gene (RB) product has been implicated in epigenetic control of gene expression owing to its ability to physically bind to many chromatin modifiers. However, the biological and clinical significance of this activity was not well elucidated. To address this, we performed genetic and epigenetic analyses in an Rb-deficient mouse thyroid C cell tumor model. Here we report that the genetic interaction of Rb and ATM regulates DNMT1 protein stability and hence controls the DNA methylation status in the promoters of at least the Ink4a, Shc2, FoxO6, and Noggin genes. Furthermore, we demonstrate that inactivation of pRB promotes Tip60 (acetyltransferase)-dependent ATM activation; allows activated ATM to physically bind to DNMT1, forming a complex with Tip60 and UHRF1 (E3 ligase); and consequently accelerates DNMT1 ubiquitination driven by Tip60-dependent acetylation. Our results indicate that inactivation of the pRB pathway in coordination with aberration in the DNA damage response deregulates DNMT1 stability, leading to an abnormal DNA methylation pattern and malignant progression. PMID:23754744

  5. Methylation of food commodities during fumigation with methyl bromide

    International Nuclear Information System (INIS)

    Starratt, A.N.; Bond, E.J.

    1990-01-01

    Sites of methylation in several commodities (wheat, oatmeal, peanuts, almonds, apples, oranges, maize, alfalfa and potatoes) during fumigation with 14 C-methyl bromide were studied. Differences were observed in levels of the major volatiles: methanol, dimethyl sulphide and methyl mercaptan, products of O- and S-methylation, resulting from treatment of the fumigated materials with 1N sodium hydroxide. In studies of maize and wheat, histidine was the amino acid which underwent the highest level of N-methylation. (author). 24 refs, 3 tabs

  6. Effects of ocular aberrations on contrast detection in noise.

    Science.gov (United States)

    Liang, Bo; Liu, Rong; Dai, Yun; Zhou, Jiawei; Zhou, Yifeng; Zhang, Yudong

    2012-08-06

    We use adaptive optics (AO) techniques to manipulate the ocular aberrations and elucidate the effects of these ocular aberrations on contrast detection in a noisy background. The detectability of sine wave gratings at frequencies of 4, 8, and 16 circles per degree (cpd) was measured in a standard two-interval force-choice staircase procedure against backgrounds of various levels of white noise. The observer's ocular aberrations were either corrected with AO or left uncorrected. In low levels of external noise, contrast detection thresholds are always lowered by AO correction, whereas in high levels of external noise, they are generally elevated by AO correction. Higher levels of external noise are required to make this threshold elevation observable when signal spatial frequencies increase from 4 to 16 cpd. The linear-amplifier-model fit shows that mostly sampling efficiency and equivalent noise both decrease with AO correction. Our findings indicate that ocular aberrations could be beneficial for contrast detection in high-level noises. The implications of these findings are discussed.

  7. Chromosome aberrations and cell survival in irradiated mammalian cells

    International Nuclear Information System (INIS)

    Tremp, J.

    1981-01-01

    A possible correlation between chromosome aberrations and reduced proliferation capacity or cell death was investigated. Synchronized Chinese hamster fibroblast cells were irradiated with 300 rad of x rays in early G 1 . Despite synchronization the cells reached the subsequent mitosis at different times. The frequency of chromosome aberrations was determined in the postirradiation division at 2-h intervals. The highest frequency occurred in cells with a first cell cycle of medium length. The colony-forming ability of mitotic cells was measured in parallel samples by following the progress of individual mitoses. The proportion of cells forming macrocolonies decreased with increasing cell cycle length, and the number of non-colony-forming cells increased. Irrespective of various first cell cycle lengths and different frequencies of chromosome aberrations, the number of cells forming microcolonies remained constant. A correlation was found between the absence of chromosome aberrations and the ability of cells to form macrocolonies. However, cells with a long first cell cycle formed fewer macrocolonies than expected

  8. Copper induces expression and methylation changes of early development genes in Crassostrea gigas embryos.

    Science.gov (United States)

    Sussarellu, Rossana; Lebreton, Morgane; Rouxel, Julien; Akcha, Farida; Rivière, Guillaume

    2018-03-01

    Copper contamination is widespread along coastal areas and exerts adverse effects on marine organisms such as mollusks. In the Pacific oyster, copper induces severe developmental abnormalities during early life stages; however, the underlying molecular mechanisms are largely unknown. This study aims to better understand whether the embryotoxic effects of copper in Crassostrea gigas could be mediated by alterations in gene expression, and the putative role of DNA methylation, which is known to contribute to gene regulation in early embryo development. For that purpose, oyster embryos were exposed to 4 nominal copper concentrations (0.1, 1, 10 and 20 μg L -1 Cu 2+ ) during early development assays. Embryotoxicity was monitored through the oyster embryo-larval bioassay at the D-larva stage 24 h post fertilization (hpf) and genotoxicity at gastrulation 7 hpf. In parallel, the relative expression of 15 genes encoding putative homeotic, biomineralization and DNA methylation proteins was measured at three developmental stages (3 hpf morula stage, 7 hpf gastrula stage, 24 hpf D-larvae stage) using RT-qPCR. Global DNA content in methylcytosine and hydroxymethylcytosine were measured by HPLC and gene-specific DNA methylation levels were monitored using MeDIP-qPCR. A significant increase in larval abnormalities was observed from copper concentrations of 10 μg L -1 , while significant genotoxic effects were detected at 1 μg L -1 and above. All the selected genes presented a stage-dependent expression pattern, which was impaired for some homeobox and DNA methylation genes (Notochord, HOXA1, HOX2, Lox5, DNMT3b and CXXC-1) after copper exposure. While global DNA methylation (5-methylcytosine) at gastrula stage didn't show significant changes between experimental conditions, 5-hydroxymethylcytosine, its degradation product, decreased upon copper treatment. The DNA methylation of exons and the transcript levels were correlated in control samples for HOXA1 but such

  9. Design for an aberration corrected scanning electron microscope using miniature electron mirrors.

    Science.gov (United States)

    Dohi, Hideto; Kruit, Pieter

    2018-06-01

    Resolution of scanning electron microscopes (SEMs) is determined by aberrations of the objective lens. It is well known that both spherical and chromatic aberrations can be compensated by placing a 90-degree bending magnet and an electron mirror in the beam path before the objective lens. Nevertheless, this approach has not led to wide use of these aberration correctors, partly because aberrations of the bending magnet can be a serious problem. A mirror corrector with two mirrors placed perpendicularly to the optic axis of an SEM and facing each other is proposed. As a result, only small-angle magnetic deflection is necessary to guide the electron beam around the top mirror to the bottom mirror and around the bottom mirror to the objective lens. The deflection angle, in the order of 50 mrad, is sufficiently small to avoid deflection aberrations. In addition, lateral dispersion at the sample plane can be avoided by making the deflection fields symmetric. Such a corrector system is only possible if the incoming beam can pass the top mirror at a distance in the order of millimeters, without being disturbed by the electric fields of electrodes of the mirror. It is proposed that condition can be satisfied with micro-scale electron optical elements fabricated by using MEMS technology. In the proposed corrector system, the micro-mirrors have to provide the exact negative spherical and chromatic aberrations for correcting the aberration of the objective lens. This exact tuning is accomplished by variable magnification between the micro-mirrors and the objective lens using an additional transfer lens. Extensive optical calculations are reported. Aberrations of the micro-mirrors were analyzed by numerical calculation. Dispersion and aberrations of the deflectors were calculated by using an analytical field model. Combination aberrations caused by the off-axis position of dispersive rays in the mirrors and objective lens were also analyzed. It is concluded that the proposed

  10. Electrostatic axisymmetric mirror with removable spherical aberration

    International Nuclear Information System (INIS)

    Birmuzaev, S.B.; Serikbaeva, G.S.; Hizirova, M.A.

    1999-01-01

    The electrostatic axisymmetric mirror, assembled from three coaxial cylinders with an equal diameter d and under the potential v1, v2 and v3, was computed. The proportions of geometrical and electric parameters of the mirror, with which the spherical 3-order aberration may be eliminated, were determined. The computation outcomes of the case, when the focal power of the mirror is enough large and the object plane in the focus is out of its field, are presented (Fig. 1 - potentials proportion that makes elimination of the spherical aberration possible; Fig. 2 - the focus coordinates when the spherical aberration is eliminated). The geometrical values are presented by d, and the electric ones are presented by v1. The figures on the curves present a length of the second (middle) electrode. The zero point is located in the middle of the gap between the first and second electrodes The investigated mirror may be used as a lens for the transmission electron microscope

  11. An accurate optical design method for synchrotron radiation beamlines with wave-front aberration theory

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Xiaojiang, E-mail: slsyxj@nus.edu.sg; Diao, Caozheng; Breese, Mark B. H. [Singapore Synchrotron Light Source, National University of Singapore, Singapore 117603 (Singapore)

    2016-07-27

    An aberration calculation method which was developed by Lu [1] can treat individual aberration term precisely. Spectral aberration is the linear sum of these aberration terms, and the aberrations of multi-element systems also can be calculated correctly when the stretching ratio, defined herein, is unity. Evaluation of focusing mirror-grating systems which are optimized according to Lu’s method, along with the Light Path Function (LPF) and the Spot Diagram method (SD) are discussed to confirm the advantage of Lu’s methodology. Lu’s aberration terms are derived from a precise wave-front treatment, whereas the terms of the power series expansion of the light path function do not yield an accurate sum of the aberrations. Moreover, Lu’s aberration terms can be individually optimized. This is not possible with the analytical spot diagram formulae.

  12. Construction of special eye models for investigation of chromatic and higher-order aberrations of eyes.

    Science.gov (United States)

    Zhai, Yi; Wang, Yan; Wang, Zhaoqi; Liu, Yongji; Zhang, Lin; He, Yuanqing; Chang, Shengjiang

    2014-01-01

    An achromatic element eliminating only longitudinal chromatic aberration (LCA) while maintaining transverse chromatic aberration (TCA) is established for the eye model, which involves the angle formed by the visual and optical axis. To investigate the impacts of higher-order aberrations on vision, the actual data of higher-order aberrations of human eyes with three typical levels are introduced into the eye model along visual axis. Moreover, three kinds of individual eye models are established to investigate the impacts of higher-order aberrations, chromatic aberration (LCA+TCA), LCA and TCA on vision under the photopic condition, respectively. Results show that for most human eyes, the impact of chromatic aberration on vision is much stronger than that of higher-order aberrations, and the impact of LCA in chromatic aberration dominates. The impact of TCA is approximately equal to that of normal level higher-order aberrations and it can be ignored when LCA exists.

  13. Aberrant alternative splicing is another hallmark of cancer.

    Science.gov (United States)

    Ladomery, Michael

    2013-01-01

    The vast majority of human genes are alternatively spliced. Not surprisingly, aberrant alternative splicing is increasingly linked to cancer. Splice isoforms often encode proteins that have distinct and even antagonistic properties. The abnormal expression of splice factors and splice factor kinases in cancer changes the alternative splicing of critically important pre-mRNAs. Aberrant alternative splicing should be added to the growing list of cancer hallmarks.

  14. Aberrant Alternative Splicing Is Another Hallmark of Cancer

    OpenAIRE

    Ladomery, Michael

    2013-01-01

    The vast majority of human genes are alternatively spliced. Not surprisingly, aberrant alternative splicing is increasingly linked to cancer. Splice isoforms often encode proteins that have distinct and even antagonistic properties. The abnormal expression of splice factors and splice factor kinases in cancer changes the alternative splicing of critically important pre-mRNAs. Aberrant alternative splicing should be added to the growing list of cancer hallmarks.

  15. Reduced DNA methylation of FKBP5 in Cushing's syndrome.

    Science.gov (United States)

    Resmini, Eugenia; Santos, Alicia; Aulinas, Anna; Webb, Susan M; Vives-Gilabert, Yolanda; Cox, Olivia; Wand, Gary; Lee, Richard S

    2016-12-01

    FKBP5 encodes a co-chaperone of HSP90 protein that regulates intracellular glucocorticoid receptor sensitivity. When it is bound to the glucocorticoid receptor complex, cortisol binds with lower affinity to glucocorticoid receptor. Cushing's syndrome is associated with memory deficits, smaller hippocampal volumes, and wide range of cognitive impairments. We aimed at evaluating blood DNA methylation of FKBP5 and its relationship with memory and hippocampal volumes in Cushing's syndrome patients. Polymorphism rs1360780 in FKBP5 has also been assessed to determine whether genetic variations can also govern CpG methylation. Thirty-two Cushing's syndrome patients and 32 matched controls underwent memory tests, 3-Tesla MRI of the brain, and DNA extraction from total leukocytes. DNA samples were bisulfite treated, PCR amplified, and pyrosequenced to assess a total of 41CpG-dinucleotides in the introns 1, 2, 5, and 7 of FKBP5. Significantly lower intronic FKBP5 DNA methylation in CS patients compared to controls was observed in ten CpG-dinucleotides. DNA methylation at these CpGs correlated with left and right HV (Intron-2-Region-2-CpG-3: LHV, r = 0.73, p = 0.02; RHV, r = 0.58, p = 0.03). Cured and active CS patients showed both lower methylation of intron 2 (92.37, 91.8, and 93.34 %, respectively, p = 0.03 for both) and of intron 7 (77.08, 73.74, and 79.71 %, respectively, p = 0.02 and p < 0.01) than controls. Twenty-two subjects had the CC genotype, 34 had the TC genotype, and eight had the TT genotype. Lower average DNA methylation in intron 7 was observed in the TT subjects compared to CC (72.5vs. 79.5 %, p = 0.02) and to TC (72.5 vs. 79.0 %, p = 0.03). Our data demonstrate, for the first time, a reduction of intronic DNA methylation of FKBP5 in CS patients.

  16. Screening of clonal chromosome aberrations present in A-bomb survivors by FISH method

    International Nuclear Information System (INIS)

    Nakano, Mimako; Kodama, Yoshiaki; Ito, Masahiro; Otaki, Kazuo; Nakamura, Nori

    1997-01-01

    Significance of FISH method for detection of clonal chromosome aberration was reviewed. A clonal chromosome aberration is derived from one abnormal cell clone and gives the influence on the frequency of the aberration. As well, the size and frequency of the aberration give an important information concerning lymphocyte kinetics. FISH method is meaningful for detection of the clonal aberration. Fifteen kinds of clonal aberrations were detected in A-bomb survivors, of which 10 were specifically detected by the method, indicating that its detection rate was 2-3 time as high as the ordinary method. The results were those on the DNA probe on no.1, no.2 and no.3 chromosomes, which consisting of about 23% of the genome. (K.H.)

  17. EG-05COMBINATION OF GENE COPY GAIN AND EPIGENETIC DEREGULATION ARE ASSOCIATED WITH THE ABERRANT EXPRESSION OF A STEM CELL RELATED HOX-SIGNATURE IN GLIOBLASTOMA

    Science.gov (United States)

    Kurscheid, Sebastian; Bady, Pierre; Sciuscio, Davide; Samarzija, Ivana; Shay, Tal; Vassallo, Irene; Van Criekinge, Wim; Domany, Eytan; Stupp, Roger; Delorenzi, Mauro; Hegi, Monika

    2014-01-01

    We previously reported a stem cell related HOX gene signature associated with resistance to chemo-radiotherapy (TMZ/RT- > TMZ) in glioblastoma. However, underlying mechanisms triggering overexpression remain mostly elusive. Interestingly, HOX genes are neither involved in the developing brain, nor expressed in normal brain, suggestive of an acquired gene expression signature during gliomagenesis. HOXA genes are located on CHR 7 that displays trisomy in most glioblastoma which strongly impacts gene expression on this chromosome, modulated by local regulatory elements. Furthermore we observed more pronounced DNA methylation across the HOXA locus as compared to non-tumoral brain (Human methylation 450K BeadChip Illumina; 59 glioblastoma, 5 non-tumoral brain sampes). CpG probes annotated for HOX-signature genes, contributing most to the variability, served as input into the analysis of DNA methylation and expression to identify key regulatory regions. The structural similarity of the observed correlation matrices between DNA methylation and gene expression in our cohort and an independent data-set from TCGA (106 glioblastoma) was remarkable (RV-coefficient, 0.84; p-value < 0.0001). We identified a CpG located in the promoter region of the HOXA10 locus exerting the strongest mean negative correlation between methylation and expression of the whole HOX-signature. Applying this analysis the same CpG emerged in the external set. We then determined the contribution of both, gene copy aberration (CNA) and methylation at the selected probe to explain expression of the HOX-signature using a linear model. Statistically significant results suggested an additive effect between gene dosage and methylation at the key CpG identified. Similarly, such an additive effect was also observed in the external data-set. Taken together, we hypothesize that overexpression of the stem-cell related HOX signature is triggered by gain of trisomy 7 and escape from compensatory DNA methylation at

  18. Modulation of DNA methylation by human papillomavirus E6 and E7 oncoproteins in cervical cancer

    Science.gov (United States)

    Sen, Prakriti; Ganguly, Pooja; Ganguly, Niladri

    2018-01-01

    Human papillomaviruses (HPVs) are double stranded circular DNA viruses that infect cutaneous and mucosal epithelial cells. Almost 99% of cervical cancer has a HPV infection. The early oncoproteins E6 and E7 are important in this cellular transformation process. Epigenetic mechanisms have long been known to result in decisive alterations in DNA, leading to alterations in DNA-protein interactions, alterations in chromatin structure and compaction and significant alterations in gene expression. The enzymes responsible for these epigenetic modifications are DNA methyl transferases (DNMTs), histone acetylases and deacetylases. Epigenetics has an important role in cancer development by modifying the cellular micro environment. In this review, the authors discuss the role of HPV oncoproteins E6 and E7 in modulating the epigenetic mechanisms inside the host cell. The oncoproteins induce the expression of DNMTs which lead to aberrant DNA methylations and disruption of the normal epigenetic processes. The E7 oncoprotein may additionally directly bind and induce methyl transferase activity of the enzyme. These modulations lead to altered gene expression levels, particularly the genes involved in apoptosis, cell cycle and cell adhesion. In addition, the present review discusses how epigenetic mechanisms may be targeted for possible therapeutic interventions for HPV mediated cervical cancer. PMID:29285184

  19. CpG promoter methylation of the ALKBH3 alkylation repair gene in breast cancer.

    Science.gov (United States)

    Stefansson, Olafur Andri; Hermanowicz, Stefan; van der Horst, Jasper; Hilmarsdottir, Holmfridur; Staszczak, Zuzanna; Jonasson, Jon Gunnlaugur; Tryggvadottir, Laufey; Gudjonsson, Thorkell; Sigurdsson, Stefan

    2017-07-05

    DNA repair of alkylation damage is defective in various cancers. This occurs through somatically acquired inactivation of the MGMT gene in various cancer types, including breast cancers. In addition to MGMT, the two E. coli AlkB homologs ALKBH2 and ALKBH3 have also been linked to direct reversal of alkylation damage. However, it is currently unknown whether ALKBH2 or ALKBH3 are found inactivated in cancer. Methylome datasets (GSE52865, GSE20713, GSE69914), available through Omnibus, were used to determine whether ALKBH2 or ALKBH3 are found inactivated by CpG promoter methylation. TCGA dataset enabled us to then assess the impact of CpG promoter methylation on mRNA expression for both ALKBH2 and ALKBH3. DNA methylation analysis for the ALKBH3 promoter region was carried out by pyrosequencing (PyroMark Q24) in 265 primary breast tumours and 30 proximal normal breast tissue samples along with 8 breast-derived cell lines. ALKBH3 mRNA and protein expression were analysed in cell lines using RT-PCR and Western blotting, respectively. DNA alkylation damage assay was carried out in cell lines based on immunofluorescence and confocal imaging. Data on clinical parameters and survival outcomes in patients were obtained and assessed in relation to ALKBH3 promoter methylation. The ALKBH3 gene, but not ALKBH2, undergoes CpG promoter methylation and transcriptional silencing in breast cancer. We developed a quantitative alkylation DNA damage assay based on immunofluorescence and confocal imaging revealing higher levels of alkylation damage in association with epigenetic inactivation of the ALKBH3 gene (P = 0.029). In our cohort of 265 primary breast cancer, we found 72 cases showing aberrantly high CpG promoter methylation over the ALKBH3 promoter (27%; 72 out of 265). We further show that increasingly higher degree of ALKBH3 promoter methylation is associated with reduced breast-cancer specific survival times in patients. In this analysis, ALKBH3 promoter methylation at >20

  20. Risk score predicts high-grade prostate cancer in DNA-methylation positive, histopathologically negative biopsies.

    Science.gov (United States)

    Van Neste, Leander; Partin, Alan W; Stewart, Grant D; Epstein, Jonathan I; Harrison, David J; Van Criekinge, Wim

    2016-09-01

    Prostate cancer (PCa) diagnosis is challenging because efforts for effective, timely treatment of men with significant cancer typically result in over-diagnosis and repeat biopsies. The presence or absence of epigenetic aberrations, more specifically DNA-methylation of GSTP1, RASSF1, and APC in histopathologically negative prostate core biopsies has resulted in an increased negative predictive value (NPV) of ∼90% and thus could lead to a reduction of unnecessary repeat biopsies. Here, it is investigated whether, in methylation-positive men, DNA-methylation intensities could help to identify those men harboring high-grade (Gleason score ≥7) PCa, resulting in an improved positive predictive value. Two cohorts, consisting of men with histopathologically negative index biopsies, followed by a positive or negative repeat biopsy, were combined. EpiScore, a methylation intensity algorithm was developed in methylation-positive men, using area under the curve of the receiver operating characteristic as metric for performance. Next, a risk score was developed combining EpiScore with traditional clinical risk factors to further improve the identification of high-grade (Gleason Score ≥7) cancer. Compared to other risk factors, detection of DNA-methylation in histopathologically negative biopsies was the most significant and important predictor of high-grade cancer, resulting in a NPV of 96%. In methylation-positive men, EpiScore was significantly higher for those with high-grade cancer detected upon repeat biopsy, compared to those with either no or low-grade cancer. The risk score resulted in further improvement of patient risk stratification and was a significantly better predictor compared to currently used metrics as PSA and the prostate cancer prevention trial (PCPT) risk calculator (RC). A decision curve analysis indicated strong clinical utility for the risk score as decision-making tool for repeat biopsy. Low DNA-methylation levels in PCa-negative biopsies led

  1. Study of wavefront aberration in DR patients with different degree of dry eye

    Directory of Open Access Journals (Sweden)

    Jin-Ran Fang

    2018-05-01

    Full Text Available AIM: To compare the changes of wavefront aberrations in patients with diabetic retinopathy(DRand with different degrees of dry eye and to explore the reasons of visual quality decline in them. METHODS: We randomly selected 40 eyes in our hospital for treatment with DR and varying degrees of dry eye, and 40 eyes of normal control group. Topcon KR-1W visual quality analyzer was used to record the mean square the total high order corneal aberration, spherical aberration, comatic aberration and trefoil aberration of cornea with pupil diameters of 4mm and 6mm. Analysis of variance were used to compare the wavefront aberrations and the aberration values in the control group and in patients with diabetic retinopathy and with different degrees of dry eye. RESULTS: For 4mm and 6mm pupil diameters, nondiabetic retinopathy(NDRwith dry eye group, the nonproliferative diabetic retinopathy(NPDRwith dry eye group and proliferative diabetic retinopathy(PDRdry eye group had significantly increased tHOA, coma and trefoil compared with the contrast group(PPCONCLUSION: Dry eye of diabetic retinopathy with different degrees is closely related to the increase of wavefront aberration. Increased wavefront aberration may be one of the reasons to reduced visual quality in patients with diabetic retinopathy and with dry eye, and provide the basis for the decline of visual function of diabetic patients with dry eye.

  2. MethylMix 2.0: an R package for identifying DNA methylation genes.

    Science.gov (United States)

    Cedoz, Pierre-Louis; Prunello, Marcos; Brennan, Kevin; Gevaert, Olivier

    2018-04-14

    DNA methylation is an important mechanism regulating gene transcription, and its role in carcinogenesis has been extensively studied. Hyper and hypomethylation of genes is a major mechanism of gene expression deregulation in a wide range of diseases. At the same time, high-throughput DNA methylation assays have been developed generating vast amounts of genome wide DNA methylation measurements. We developed MethylMix, an algorithm implemented in R to identify disease specific hyper and hypomethylated genes. Here we present a new version of MethylMix that automates the construction of DNA-methylation and gene expression datasets from The Cancer Genome Atlas (TCGA). More precisely, MethylMix 2.0 incorporates two major updates: the automated downloading of DNA methylation and gene expression datasets from TCGA and the automated preprocessing of such datasets: value imputation, batch correction and CpG sites clustering within each gene. The resulting datasets can subsequently be analyzed with MethylMix to identify transcriptionally predictive methylation states. We show that the Differential Methylation Values created by MethylMix can be used for cancer subtyping. olivier.gevaert@stanford.edu. https://bioconductor.org/packages/release/bioc/manuals/MethylMix/man/MethylMix.pdf. MethylMix 2.0 was implemented as an R package and is available in bioconductor.

  3. Global DNA methylation analysis using methyl-sensitive amplification polymorphism (MSAP).

    Science.gov (United States)

    Yaish, Mahmoud W; Peng, Mingsheng; Rothstein, Steven J

    2014-01-01

    DNA methylation is a crucial epigenetic process which helps control gene transcription activity in eukaryotes. Information regarding the methylation status of a regulatory sequence of a particular gene provides important knowledge of this transcriptional control. DNA methylation can be detected using several methods, including sodium bisulfite sequencing and restriction digestion using methylation-sensitive endonucleases. Methyl-Sensitive Amplification Polymorphism (MSAP) is a technique used to study the global DNA methylation status of an organism and hence to distinguish between two individuals based on the DNA methylation status determined by the differential digestion pattern. Therefore, this technique is a useful method for DNA methylation mapping and positional cloning of differentially methylated genes. In this technique, genomic DNA is first digested with a methylation-sensitive restriction enzyme such as HpaII, and then the DNA fragments are ligated to adaptors in order to facilitate their amplification. Digestion using a methylation-insensitive isoschizomer of HpaII, MspI is used in a parallel digestion reaction as a loading control in the experiment. Subsequently, these fragments are selectively amplified by fluorescently labeled primers. PCR products from different individuals are compared, and once an interesting polymorphic locus is recognized, the desired DNA fragment can be isolated from a denaturing polyacrylamide gel, sequenced and identified based on DNA sequence similarity to other sequences available in the database. We will use analysis of met1, ddm1, and atmbd9 mutants and wild-type plants treated with a cytidine analogue, 5-azaC, or zebularine to demonstrate how to assess the genetic modulation of DNA methylation in Arabidopsis. It should be noted that despite the fact that MSAP is a reliable technique used to fish for polymorphic methylated loci, its power is limited to the restriction recognition sites of the enzymes used in the genomic

  4. Aberrant hepatic artery

    International Nuclear Information System (INIS)

    Konstam, M.A.; Novelline, R.A.; Athanasoulis, C.A.

    1979-01-01

    In a patient undergoing selective hepatic arteriography for suspected liver trauma, a nonopacified area of the liver, initially thought to represent a hepatic hematoma, was later discovered to be due to the presence of an accessory right hepatic artery arising from the superior mesenteric artery. This case illustrates the need for a search for aberrant vasculature whenever a liver hematoma is suspected on the basis of a selective hepatic arteriogram. (orig.) [de

  5. Clinical and prognosis value of the CIMP status combined with MLH1 or p16 INK4a methylation in colorectal cancer.

    Science.gov (United States)

    Saadallah-Kallel, Amana; Abdelmaksoud-Dammak, Rania; Triki, Mouna; Charfi, Slim; Khabir, Abdelmajid; Sallemi-Boudawara, Tahia; Mokdad-Gargouri, Raja

    2017-08-01

    Aberrant DNA methylation of CpG islands occurred frequently in CRC and associated with transcriptional silencing of key genes. In this study, the CIMP combined with MLH1 or p16 INK4a methylation status was determined in CRC patients and correlated with clinicopathological parameters and overall survival. Our data showed that CIMP+ CRCs were identified in 32.9% of cases and that CACNAG1 is the most frequently methylated promoter. When we combined the CIMP with the MLH1 or the p16 INK4a methylation status, we found that CIMP-/MLH1-U (37.8%) and CIMP-/p16 INK4a -U (35.4%) tumors were the most frequent among the four subtypes. Statistical analysis showed that tumor location, lymphovascular invasion, TNM stage, and MSI differed among the group of patients. Kaplan-Meier analyses revealed differences in overall survival according to the CIMP combined with MLH1 or p16 INK4a methylation status. In a multivariate analysis, CIMP/MLH1 and CIMP/p16 INK4a methylation statuses were predictive of prognosis, and the OS was longer for patients with tumors CIMP-/MLH1-M, as well as CIMP-/p16 INK4a -M. Furthermore, DNMT1 is significantly overexpressed in tumors than in normal tissues as well as in CIMP+ than CIMP- tumors. Our results suggest that tumor classification based on the CIMP status combined with MLH1 or p16 INK4a methylation is useful to predict prognosis in CRC patients.

  6. Pathophysiology of MDS: genomic aberrations.

    Science.gov (United States)

    Ichikawa, Motoshi

    2016-01-01

    Myelodysplastic syndromes (MDS) are characterized by clonal proliferation of hematopoietic stem/progenitor cells and their apoptosis, and show a propensity to progress to acute myelogenous leukemia (AML). Although MDS are recognized as neoplastic diseases caused by genomic aberrations of hematopoietic cells, the details of the genetic abnormalities underlying disease development have not as yet been fully elucidated due to difficulties in analyzing chromosomal abnormalities. Recent advances in comprehensive analyses of disease genomes including whole-genome sequencing technologies have revealed the genomic abnormalities in MDS. Surprisingly, gene mutations were found in approximately 80-90% of cases with MDS, and the novel mutations discovered with these technologies included previously unknown, MDS-specific, mutations such as those of the genes in the RNA-splicing machinery. It is anticipated that these recent studies will shed new light on the pathophysiology of MDS due to genomic aberrations.

  7. Thrombospondin-4 is a putative tumour-suppressor gene in colorectal cancer that exhibits age-related methylation

    International Nuclear Information System (INIS)

    Greco, Sonia A; Leggett, Barbara A; Whitehall, Vicki LJ; Chia, June; Inglis, Kelly J; Cozzi, Sarah-Jane; Ramsnes, Ingunn; Buttenshaw, Ronald L; Spring, Kevin J; Boyle, Glen M; Worthley, Daniel L

    2010-01-01

    Thrombospondin-4 (THBS4) is a member of the extracellular calcium-binding protein family and is involved in cell adhesion and migration. The aim of this study was to evaluate the potential role of deregulation of THBS4 expression in colorectal carcinogenesis. Of particular interest was the possible silencing of expression by methylation of the CpG island in the gene promoter. Fifty-five sporadic colorectal tumours stratified for the CpG Island Methylator Phenotype (CIMP) were studied. Immunohistochemical staining of THBS4 protein was assessed in normal and tumour specimens. Relative levels of THBS4 transcript expression in matched tumours and normal mucosa were also determined by quantitative RT-PCR. Colony forming ability was examined in 8 cell lines made to overexpress THBS4. Aberrant promoter hypermethylation was investigated as a possible mechanism of gene disruption using MethyLight. Methylation was also assessed in the normal colonic tissue of 99 patients, with samples biopsied from four regions along the length of the colon. THBS4 expression was significantly lower in tumour tissue than in matched normal tissue. Immunohistochemical examination demonstrated that THBS4 protein was generally absent from normal epithelial cells and tumours, but was occasionally expressed at low levels in the cytoplasm towards the luminal surface in vesicular structures. Forced THBS4 over-expression caused a 50-60% repression of tumour colony growth in all eight cell lines examined compared to control cell lines. Tumours exhibited significantly higher levels of methylation than matched normal mucosa, and THBS4 methylation correlated with the CpG island methylator phenotype. There was a trend towards decreased gene expression in tumours exhibiting high THBS4 methylation, but the correlation was not significant. THBS4 methylation was detectable in normal mucosal biopsies where it correlated with increasing patient age and negatively with the occurrence of adenomas elsewhere in the

  8. Thrombospondin-4 is a putative tumour-suppressor gene in colorectal cancer that exhibits age-related methylation

    Directory of Open Access Journals (Sweden)

    Greco Sonia A

    2010-09-01

    Full Text Available Abstract Background Thrombospondin-4 (THBS4 is a member of the extracellular calcium-binding protein family and is involved in cell adhesion and migration. The aim of this study was to evaluate the potential role of deregulation of THBS4 expression in colorectal carcinogenesis. Of particular interest was the possible silencing of expression by methylation of the CpG island in the gene promoter. Methods Fifty-five sporadic colorectal tumours stratified for the CpG Island Methylator Phenotype (CIMP were studied. Immunohistochemical staining of THBS4 protein was assessed in normal and tumour specimens. Relative levels of THBS4 transcript expression in matched tumours and normal mucosa were also determined by quantitative RT-PCR. Colony forming ability was examined in 8 cell lines made to overexpress THBS4. Aberrant promoter hypermethylation was investigated as a possible mechanism of gene disruption using MethyLight. Methylation was also assessed in the normal colonic tissue of 99 patients, with samples biopsied from four regions along the length of the colon. Results THBS4 expression was significantly lower in tumour tissue than in matched normal tissue. Immunohistochemical examination demonstrated that THBS4 protein was generally absent from normal epithelial cells and tumours, but was occasionally expressed at low levels in the cytoplasm towards the luminal surface in vesicular structures. Forced THBS4 over-expression caused a 50-60% repression of tumour colony growth in all eight cell lines examined compared to control cell lines. Tumours exhibited significantly higher levels of methylation than matched normal mucosa, and THBS4 methylation correlated with the CpG island methylator phenotype. There was a trend towards decreased gene expression in tumours exhibiting high THBS4 methylation, but the correlation was not significant. THBS4 methylation was detectable in normal mucosal biopsies where it correlated with increasing patient age and

  9. RASSF1A promoter is highly methylated in primitive neuroectodermal tumors of the central nervous system.

    Science.gov (United States)

    Inda, María-del-Mar; Castresana, Javier S

    2007-08-01

    Although cancer is rare in children, primary brain tumors constitute the most frequent location of solid tumors in childhood. Primitive neuroectodermal tumors (PNET) of the central nervous system can be divided into infratentorial PNET or medulloblastoma (MB), and supratentorial (sPNET) tumors. Although MB and sPNET are histologically similar, clinical evolution differs, sPNET being more aggressive than MB. Some studies have suggested that MB and sPNET present different molecular genetic aberrations. The RASSF1A (Ras Association Domain Family Protein 1) gene, located at 3p21.3, is highly methylated in multiple primary tumor samples, including neuroblastoma. In order to define whether there are genetic differences in the methylation frequency of RASSF1A between MB and sPNET, we analyzed 32 PNET paraffin-embedded samples (23 MB and 9 sPNET) by methylation specific polymerase chain reaction (MSP). We also analyzed RASSF1A expression by reverse transcription polymerase chain reaction in five PNET cell lines. All PNET cell lines showed lack of RASSF1A expression that was correlated with RASSF1A promoter hypermethylation. RASSF1A methylation was detected in 19 of 21 MB cases (91%) and in five of six sPNET samples (83%). Although the methylation frequency found in MB was slightly higher than in sPNET, no statistical differences were found for the RASSF1A hypermethylation frequency (P > 0.05) presented at MB versus sPNET. Therefore, the inactivation of the RASSF1A gene seems to be an important step in the tumorigenesis of PNET of the central nervous sytem. More studies should be performed in order to determine genetic differences between MB and sPNET.

  10. Addiction-like Synaptic Impairments in Diet-Induced Obesity.

    Science.gov (United States)

    Brown, Robyn Mary; Kupchik, Yonatan Michael; Spencer, Sade; Garcia-Keller, Constanza; Spanswick, David C; Lawrence, Andrew John; Simonds, Stephanie Elise; Schwartz, Danielle Joy; Jordan, Kelsey Ann; Jhou, Thomas Clayton; Kalivas, Peter William

    2017-05-01

    There is increasing evidence that the pathological overeating underlying some forms of obesity is compulsive in nature and therefore contains elements of an addictive disorder. However, direct physiological evidence linking obesity to synaptic plasticity akin to that occurring in addiction is lacking. We sought to establish whether the propensity to diet-induced obesity (DIO) is associated with addictive-like behavior, as well as synaptic impairments in the nucleus accumbens core considered hallmarks of addiction. Sprague Dawley rats were allowed free access to a palatable diet for 8 weeks then separated by weight gain into DIO-prone and DIO-resistant subgroups. Access to palatable food was then restricted to daily operant self-administration sessions using fixed ratio 1, 3, and 5 and progressive ratio schedules. Subsequently, nucleus accumbens brain slices were prepared, and we tested for changes in the ratio between α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) and N-methyl-D-aspartate currents and the ability to exhibit long-term depression. We found that propensity to develop DIO is linked to deficits in the ability to induce long-term depression in the nucleus accumbens, as well as increased potentiation at these synapses as measured by AMPA/N-methyl-D-aspartate currents. Consistent with these impairments, we observed addictive-like behavior in DIO-prone rats, including 1) heightened motivation for palatable food; 2) excessive intake; and 3) increased food seeking when food was unavailable. Our results show overlap between the propensity for DIO and the synaptic changes associated with facets of addictive behavior, supporting partial coincident neurological underpinnings for compulsive overeating and drug addiction. Copyright © 2016 Society of Biological Psychiatry. All rights reserved.

  11. Frequency of primary amenorrhea due to chromosomal aberration

    International Nuclear Information System (INIS)

    Jabbar, S.

    2004-01-01

    Objective: To find out the frequency of primary amenorrhea due to chromosomal aberration and the different options available for management. Subjects and Methods: All patients with primary amenorrhea due to chromosomal aberrations were included in study. Patient's detailed history, general physical examination, presence or absence of secondary sexual characteristics, abdominal and pelvic examination finding were noted. Targeted investigations, including ultrasound, hormonal assay, buccal smear and karyotyping results were recorded. The management options were individually tailored with focus n psychological management. Results: Eighteen patients out of 30,000 patients were diagnosed as having primary amenorrhea. Six had primary amenorrhea due to chromosomal aberrations with the frequency of 0.02%. The age at presentation was 20 years and above in 50%. The most common cause was Turner's syndrome seen in 4 out of 6. The presenting symptoms were delay in onset of menstruation in 05 patients and primary infertility in 01 patient. Conclusion: Primary amenorrhea due to chromosomal aberration is an uncommon condition requiring an early and accurate diagnosis. Turner's syndrome is a relatively common cause of this condition. Management should be multi-disciplinary and individualized according to the patient's age and symptom at presentation. Psychological management is very important and counselling throughout treatment is recommended. (author)

  12. An aberrant uterus: Case report | Ondieki | East African Medical ...

    African Journals Online (AJOL)

    A case of an aberrant uterus is presented and literature reviewed. The patient presented with abnormal uterine bleeding, left iliac fossa pain and was managed by excising the aberrant uterus. This case was an enigma as it didn't present in the classical way one with anomalies of the uterus would present. Despite ...

  13. Related research on corneal higher-order aberrations after different ways refractive surgery

    Directory of Open Access Journals (Sweden)

    Shu-Xi He

    2015-08-01

    Full Text Available AIM:To evaluate the changes of corneal high-order aberration(including Coma, Spab, RMShafter laser in situ keratomileusis(LASIKwith femtosecond laser, sub-Bowman keratomileusis(SBKand laser epithelial keratomileusis(LASEK.METHODS: Of 82 myopic patients(164 eyes, 31 patients(62 eyeswere treated by FS-LASIK, 31 patients(62 eyeswere treated by SBK, 20 patients(40 eyeswere treated by LASEK. Sirius system was used for measuring the coma aberration, spherical aberration, and high order aberration at 1, 15d,1, 3mo after surgery.RESULTS: 1Vision: The uncorrected visual acuity of the three groups had no differences(P>0.05. 2Corneal aberrations: Three kinds of surgical procedure for patients with corneal aberration had significant impact. The C7, C8, C12 and RMSh of three groups were increased significantly(P0.05. The C7, C8, C12 and RMSh were not recovered to preoperative levels after 3mo. But the increase of patients after FS-LASIK was smaller than the other two groups, with statistical significance(P0.05.CONCLUSION: Compared with SBK and LASEK,FS-LASIK has better visual acuity in the early postoperative and corneal higher-order aberrations increase is relatively small.

  14. Chromosome aberrations in Norwegian reindeer following the Chernobyl accident

    International Nuclear Information System (INIS)

    Røed, K.H.; Jacobsen, M.

    1995-01-01

    Chromosome analyses were carried out on peripheral blood lymphocytes of semi-domestic reindeer in Norway which had been exposed to varying amounts of radiocesium emanating from the Chernobyl accident. The sampling was done in the period 1987-1990. The material included 192 reindeer, originating from four herds in central Norway, an area considerably affected by fallout from the Chernobyl accident, and from three herds in northern Norway which was unaffected by fallout from the accident. Significant heterogeneity in the distribution of chromosome aberrations between herds was observed. The pattern of chromosome aberration frequencies between herds was not related to the variation in radiocesium exposure from the Chernobyl accident. Other factors than the Chernobyl accident appear therefore to be of importance for the distribution of aberration frequencies found among present herds. Within the most contaminated area the reindeer born in 1986 showed significantly more chromosome aberrations than those born both before and after 1986. This could suggest that the Chernobyl accident fallout created an effect particularly among calves, during the immediate post-accident period in the most exposed areas

  15. Novel plumage aberrations in Paraguayan non-Passerine Birds, and the definition of a new plumage aberration unique to Psittacidae

    Directory of Open Access Journals (Sweden)

    Paul Smith

    2017-07-01

    Full Text Available Anomalous plumage colourations are reported for three species of non-passerine birds from Paraguay, Limpkin (Aramaus guarauna; Aramidae, Nanday Parakeet (Nandayus nenday; Psittacidae, and the Little Woodpecker (Veniliornis passerinus; Picidae. A leucistic Limpkin is the first published report of a colour anomaly for the family Aramidae. The colour aberration in N. nenday is hypothesised to be a result of an excess of red psittacofulvin pigments, which are unique to the Psittacidae. Although the mechanisms causing this colour aberration remain unknown, we suggest the term psittacofulvism for the phenotypic effect observed.

  16. Demethylation by 5-aza-2'-deoxycytidine in colorectal cancer cells targets genomic DNA whilst promoter CpG island methylation persists

    International Nuclear Information System (INIS)

    Mossman, David; Kim, Kyu-Tae; Scott, Rodney J

    2010-01-01

    DNA methylation and histone acetylation are epigenetic modifications that act as regulators of gene expression. Aberrant epigenetic gene silencing in tumours is a frequent event, yet the factors which dictate which genes are targeted for inactivation are unknown. DNA methylation and histone acetylation can be modified with the chemical agents 5-aza-2'-deoxycytidine (5-aza-dC) and Trichostatin A (TSA) respectively. The aim of this study was to analyse de-methylation and re-methylation and its affect on gene expression in colorectal cancer cell lines treated with 5-aza-dC alone and in combination with TSA. We also sought to identify methylation patterns associated with long term reactivation of previously silenced genes. Colorectal cancer cell lines were treated with 5-aza-dC, with and without TSA, to analyse global methylation decreases by High Performance Liquid Chromatography (HPLC). Re-methylation was observed with removal of drug treatments. Expression arrays identified silenced genes with differing patterns of expression after treatment, such as short term reactivation or long term reactivation. Sodium bisulfite sequencing was performed on the CpG island associated with these genes and expression was verified with real time PCR. Treatment with 5-aza-dC was found to affect genomic methylation and to a lesser extent gene specific methylation. Reactivated genes which remained expressed 10 days post 5-aza-dC treatment featured hypomethylated CpG sites adjacent to the transcription start site (TSS). In contrast, genes with uniformly hypermethylated CpG islands were only temporarily reactivated. These results imply that 5-aza-dC induces strong de-methylation of the genome and initiates reactivation of transcriptionally inactive genes, but this does not require gene associated CpG island de-methylation to occur. In addition, for three of our selected genes, hypomethylation at the TSS of an epigenetically silenced gene is associated with the long term reversion of

  17. Zernike phase spatial filter for measuring the aberrations

    OpenAIRE

    Svetlana N. Khonina; Victor V. Kotlyar; Dmitriy V. Kirsh

    2015-01-01

    To measure directly the wavefront aberration coefficients, we propose to use the multi8order diffractive element fitted with the set of Zernike polynomials. Polynomials of lowest degree describe defocusing (ametropy) and astigmatism. Coefficients of highest degree correspond to the spherical aberration of oblique rays that occurs as a consequence of misalignment of the crystalline lens and foveola, as well as deflection at the periphery of the crystalline lens. Mul^order elements allow severa...

  18. Aberration compensation of an ultrasound imaging instrument with a reduced number of channels.

    Science.gov (United States)

    Jiang, Wei; Astheimer, Jeffrey P; Waag, Robert C

    2012-10-01

    Focusing and imaging qualities of an ultrasound imaging system that uses aberration correction were experimentally investigated as functions of the number of parallel channels. Front-end electronics that consolidate signals from multiple physical elements can be used to lower hardware and computational costs by reducing the number of parallel channels. However, the signals from sparse arrays of synthetic elements yield poorer aberration estimates. In this study, aberration estimates derived from synthetic arrays of varying element sizes are evaluated by comparing compensated receive focuses, compensated transmit focuses, and compensated b-scan images of a point target and a cyst phantom. An array of 80 x 80 physical elements with a pitch of 0.6 x 0.6 mm was used for all of the experiments and the aberration was produced by a phantom selected to mimic propagation through abdominal wall. The results show that aberration correction derived from synthetic arrays with pitches that have a diagonal length smaller than 70% of the correlation length of the aberration yield focuses and images of approximately the same quality. This connection between correlation length of the aberration and synthetic element size provides a guideline for determining the number of parallel channels that are required when designing imaging systems that employ aberration correction.

  19. Defining differentially methylated regions specific for the acquisition of pluripotency and maintenance in human pluripotent stem cells via microarray.

    Directory of Open Access Journals (Sweden)

    WenYin He

    Full Text Available Epigenetic regulation is critical for the maintenance of human pluripotent stem cells. It has been shown that pluripotent stem cells, such as embryonic stem cells and induced pluripotent stem cells, appear to have a hypermethylated status compared with differentiated cells. However, the epigenetic differences in genes that maintain stemness and regulate reprogramming between embryonic stem cells and induced pluripotent stem cells remain unclear. Additionally, differential methylation patterns of induced pluripotent stem cells generated using diverse methods require further study.Here, we determined the DNA methylation profiles of 10 human cell lines, including 2 ESC lines, 4 virally derived iPSC lines, 2 episomally derived iPSC lines, and the 2 parental cell lines from which the iPSCs were derived using Illumina's Infinium HumanMethylation450 BeadChip. The iPSCs exhibited a hypermethylation status similar to that of ESCs but with distinct differences from the parental cells. Genes with a common methylation pattern between iPSCs and ESCs were classified as critical factors for stemness, whereas differences between iPSCs and ESCs suggested that iPSCs partly retained the parental characteristics and gained de novo methylation aberrances during cellular reprogramming. No significant differences were identified between virally and episomally derived iPSCs. This study determined in detail the de novo differential methylation signatures of particular stem cell lines.This study describes the DNA methylation profiles of human iPSCs generated using both viral and episomal methods, the corresponding somatic cells, and hESCs. Series of ss-DMRs and ES-iPS-DMRs were defined with high resolution. Knowledge of this type of epigenetic information could be used as a signature for stemness and self-renewal and provides a potential method for selecting optimal pluripotent stem cells for human regenerative medicine.

  20. Systemic effects of chronically administered methyl prednisolonate and methyl 17-deoxyprednisolonate.

    Science.gov (United States)

    Olejniczak, E; Lee, H J

    1984-06-01

    The systemic activities of methyl prednisolonate and methyl 17-deoxyprednisolonate (1) were studied in rats. Methyl 17-deoxyprednisolonate produced significant changes in the amount of sodium ion (decreased) and potassium ion (increased) in urine; however, methyl prednisolonate had no effect on electrolyte balance. Both methyl prednisolonate and methyl 17-deoxyprednisolonate had no effect on liver glycogen content, plasma corticosterone level and relative adrenal weight. In contrast, the parent compound prednisolone caused a significant decrease in liver glycogen content, plasma corticosterone level and relative adrenal weight.

  1. Aberrant Expression of Xist in Aborted Porcine Fetuses Derived from Somatic Cell Nuclear Transfer Embryos

    Directory of Open Access Journals (Sweden)

    Lin Yuan

    2014-11-01

    Full Text Available Cloned pigs generated by somatic cell nuclear transfer (SCNT show a greater ratio of early abortion during mid-gestation than normal controls. X-linked genes have been demonstrated to be important for the development of cloned embryos. To determine the relationship between the expression of X-linked genes and abortion of cloned porcine fetuses, the expression of X-linked genes were investigated by quantitative real-time polymerase chain reaction (q-PCR and the methylation status of Xist DMR was performed by bisulfate-specific PCR (BSP. q-PCR analysis indicated that there was aberrant expression of X-linked genes, especially the upregulated expression of Xist in both female and male aborted fetuses compared to control fetuses. Results of BSP suggested that hypomethylation of Xist occurred in aborted fetuses, whether male or female. These results suggest that the abnormal expression of Xist may be associated with the abortion of fetuses derived from somatic cell nuclear transfer embryos.

  2. Aberrant Expression of Xist in Aborted Porcine Fetuses Derived from Somatic Cell Nuclear Transfer Embryos

    Science.gov (United States)

    Yuan, Lin; Wang, Anfeng; Yao, Chaogang; Huang, Yongye; Duan, Feifei; Lv, Qinyan; Wang, Dongxu; Ouyang, Hongsheng; Li, Zhanjun; Lai, Liangxue

    2014-01-01

    Cloned pigs generated by somatic cell nuclear transfer (SCNT) show a greater ratio of early abortion during mid-gestation than normal controls. X-linked genes have been demonstrated to be important for the development of cloned embryos. To determine the relationship between the expression of X-linked genes and abortion of cloned porcine fetuses, the expression of X-linked genes were investigated by quantitative real-time polymerase chain reaction (q-PCR) and the methylation status of Xist DMR was performed by bisulfate-specific PCR (BSP). q-PCR analysis indicated that there was aberrant expression of X-linked genes, especially the upregulated expression of Xist in both female and male aborted fetuses compared to control fetuses. Results of BSP suggested that hypomethylation of Xist occurred in aborted fetuses, whether male or female. These results suggest that the abnormal expression of Xist may be associated with the abortion of fetuses derived from somatic cell nuclear transfer embryos. PMID:25429426

  3. Aberrant Intrinsic Activity and Connectivity in Cognitively Normal Parkinson's Disease.

    Science.gov (United States)

    Harrington, Deborah L; Shen, Qian; Castillo, Gabriel N; Filoteo, J Vincent; Litvan, Irene; Takahashi, Colleen; French, Chelsea

    2017-01-01

    , rather than compensatory influence on cognitive abilities tested in this study. Receiver operating curve analyses demonstrated excellent sensitivity (≥90%) of rsfMRI variables in distinguishing patients from controls, but poor accuracy for brain volume and cognitive variables. Altogether these results provide new insights into the topology, cognitive relevance, and sensitivity of aberrant intrinsic activity and connectivity that precedes clinically significant cognitive impairment. Longitudinal studies are needed to determine if these neurocognitive associations presage the development of future mild cognitive impairment or dementia.

  4. Chromosome aberration studies and microdosimetry with radiations of varying quality

    International Nuclear Information System (INIS)

    Grillmaier, R.E.; Bihy, L.; Menzel, H.G.; Schuhmacher, H.

    1978-01-01

    To investigate the biological effectivity of complex irradiation fields encountered in radiation protection and high LET radiation therapy and to find meaningful specification of radiation quality closely related to the biological effectivity, correlated chromosome aberration studies and microdosimetric investigations have been carried out using cyclotron produced collimated fast neutrons. Human lymphocytes have been irradiated at different dose levels in the direct beam and in different positions in the penumbra and the rates of acentric fragments and dicentrics have been determined. In identical positions microdosimetric measurements have been performed. The dose relationship of aberration rates after irradiation in the direct beam, the aberration rates observed in the penumbra and the microdosimetric quantities ysub(D), ysub(F) and y* are presented and their relations are discussed. Furthermore the dose relationship of chromosome aberrations induced by 60 Co-γ-rays has been investigated and used to establish the RBE dose relationship of cyclotron neutrons

  5. Assessing the construct validity of aberrant salience

    Directory of Open Access Journals (Sweden)

    Kristin Schmidt

    2009-12-01

    Full Text Available We sought to validate the psychometric properties of a recently developed paradigm that aims to measure salience attribution processes proposed to contribute to positive psychotic symptoms, the Salience Attribution Test (SAT. The “aberrant salience” measure from the SAT showed good face validity in previous results, with elevated scores both in high-schizotypy individuals, and in patients with schizophrenia suffering from delusions. Exploring the construct validity of salience attribution variables derived from the SAT is important, since other factors, including latent inhibition/learned irrelevance, attention, probabilistic reward learning, sensitivity to probability, general cognitive ability and working memory could influence these measures. Fifty healthy participants completed schizotypy scales, the SAT, a learned irrelevance task, and a number of other cognitive tasks tapping into potentially confounding processes. Behavioural measures of interest from each task were entered into a principal components analysis, which yielded a five-factor structure accounting for ~75% percent of the variance in behaviour. Implicit aberrant salience was found to load onto its own factor, which was associated with elevated “Introvertive Anhedonia” schizotypy, replicating our previous finding. Learned irrelevance loaded onto a separate factor, which also included implicit adaptive salience, but was not associated with schizotypy. Explicit adaptive and aberrant salience, along with a measure of probabilistic learning, loaded onto a further factor, though this also did not correlate with schizotypy. These results suggest that the measures of learned irrelevance and implicit adaptive salience might be based on similar underlying processes, which are dissociable both from implicit aberrant salience and explicit measures of salience.

  6. Retrospective Dose Reconstruction for Medical Diagnostic X Ray Workers in China using Stable Chromosome Aberrations

    International Nuclear Information System (INIS)

    Wang, Q.; Liu, P.; Li, J.; Wang, Q.; Tang, S.; Sun, M.; Wang, L.; Aoyama, T.; Sugahara, T.

    1998-01-01

    The chromosome rearrangements in medical diagnostic X ray workers were analysed using the G-banding technique and evaluated collectively in accumulated doses. A total of 9102 metaphase spreads from 84 medical diagnostic X ray workers and 17 controls were scored. The results showed that: (1) the frequencies of translocation, stable chromosome aberration and total aberration in X ray workers were significantly higher than those of controls (P < 0.05 γ 0.005), unstable chromosome aberrations (including dicentric and acentric aberration) tended upwards; (2) the main aberration in stable aberrations was reciprocal translocation; (3) the stable aberration predominated strikingly in total aberrations. The medical diagnostic X ray workers were divided into three groups according to calendar year of entry. The data showed that the frequencies of translocation, stable aberration and total aberration increased with earlier year of entry, especially in two groups who started working before 1970. According to the equation recommended by Straume et al, linear coefficient (α) in the linear quadratic model provided by Fernandez's experiment, their collective accumulation doses calculated were 0.53, 0.26 and 0.06 Gy for calendar year of entry before 1960, 1960-1969, and after 1970, in X ray workers, respectively. (author)

  7. Relationship of DNA lesions and their repair to chromosomal aberration production

    International Nuclear Information System (INIS)

    Bender, M.A.

    1979-01-01

    Recent work on the roles of specific kinds of DNA lesions and their enzymatic repair systems in the production of chromosomal aberrations seems consistent with a simple molecular model of chromosomal aberrations formation. Evidence from experiments with the human repair-deficient genetic diseases xeroderma pigmentosom, ataxia telangiectasia, and Fanconi's anemia is reviewed in the light of the contributions to aberration production of single and double polynucleotide strand breaks, base damage, polynucleotide strand crosslinks, and pyrimidine cyclobutane dimers

  8. Relationship of DNA lesions and their repair to chromosomal aberration production

    Energy Technology Data Exchange (ETDEWEB)

    Bender, M.A.

    1979-01-01

    Recent work on the roles of specific kinds of DNA lesions and their enzymatic repair systems in the production of chromosomal aberrations seems consistent with a simple molecular model of chromosomal aberrations formation. Evidence from experiments with the human repair-deficient genetic diseases xeroderma pigmentosom, ataxia telangiectasia, and Fanconi's anemia is reviewed in the light of the contributions to aberration production of single and double polynucleotide strand breaks, base damage, polynucleotide strand crosslinks, and pyrimidine cyclobutane dimers.

  9. Low chromatic aberration hexapole for molecular state selection

    International Nuclear Information System (INIS)

    Ke, Yi; Deng, Xiao-Bing; Hu, Zhong-Kun

    2016-01-01

    In molecular beam state-selection experiments, the electrostatic hexapole acts as an optical lens, imaging molecules from the source to the focus. The molecular longitudinal velocity spread induces the phenomenon of chromatic aberration, which will reduce the state-selection purity. We propose a scheme which can effectively reduce the chromatic aberration by changing the hexapole voltage operating manner. The hexapole is already charged before molecules arrive at the entrance of the hexapole. When molecules are completely inside the hexapole, the voltage is switched off rapidly at an appropriate time. In this manner, faster molecules travel a longer hexapole focusing region than slower molecules. Therefore the focusing positions of molecules with different velocities become close. Numerical trajectory simulations of molecular state selection are carried out, and the results show that this low chromatic aberration hexapole can significantly improve the state purity from 46.2% to 87.0%. (paper)

  10. An electron microscope for the aberration-corrected era

    Energy Technology Data Exchange (ETDEWEB)

    Krivanek, O.L. [Nion Co., 1102 8th Street, Kirkland, WA 98033 (United States)], E-mail: krivanek.ondrej@gmail.com; Corbin, G.J.; Dellby, N.; Elston, B.F.; Keyse, R.J.; Murfitt, M.F.; Own, C.S.; Szilagyi, Z.S.; Woodruff, J.W. [Nion Co., 1102 8th Street, Kirkland, WA 98033 (United States)

    2008-02-15

    Improved resolution made possible by aberration correction has greatly increased the demands on the performance of all parts of high-end electron microscopes. In order to meet these demands, we have designed and built an entirely new scanning transmission electron microscope (STEM). The microscope includes a flexible illumination system that allows the properties of its probe to be changed on-the-fly, a third-generation aberration corrector which corrects all geometric aberrations up to fifth order, an ultra-responsive yet stable five-axis sample stage, and a flexible configuration of optimized detectors. The microscope features many innovations, such as a modular column assembled from building blocks that can be stacked in almost any order, in situ storage and cleaning facilities for up to five samples, computer-controlled loading of samples into the column, and self-diagnosing electronics. The microscope construction is described, and examples of its capabilities are shown.

  11. An electron microscope for the aberration-corrected era

    International Nuclear Information System (INIS)

    Krivanek, O.L.; Corbin, G.J.; Dellby, N.; Elston, B.F.; Keyse, R.J.; Murfitt, M.F.; Own, C.S.; Szilagyi, Z.S.; Woodruff, J.W.

    2008-01-01

    Improved resolution made possible by aberration correction has greatly increased the demands on the performance of all parts of high-end electron microscopes. In order to meet these demands, we have designed and built an entirely new scanning transmission electron microscope (STEM). The microscope includes a flexible illumination system that allows the properties of its probe to be changed on-the-fly, a third-generation aberration corrector which corrects all geometric aberrations up to fifth order, an ultra-responsive yet stable five-axis sample stage, and a flexible configuration of optimized detectors. The microscope features many innovations, such as a modular column assembled from building blocks that can be stacked in almost any order, in situ storage and cleaning facilities for up to five samples, computer-controlled loading of samples into the column, and self-diagnosing electronics. The microscope construction is described, and examples of its capabilities are shown

  12. γ-ray induced chromosome aberration in rabbit peripheral blood lymphocytes irradiated in partial and whole body and decline of aberration rate with time post-exposure

    International Nuclear Information System (INIS)

    Zhang Lianzhen; Deng Zhicheng; Wang Haiyan

    1997-01-01

    Te author presents the results of study on 60 Co γ-ray induced chromosome aberration in rabbits peripheral blood lymphocytes irradiated in partial and whole body and the aberration rate decrease with the time of post-exposure. The experiments included 5 groups, it was whole-body exposure group, partial-body exposure (abdomen and pelvic cavity) group, blood irradiation group in vitro and control group respectively. Radiation dose was 3.0 Gy delivered at rate of 0.5 Gy/min. The results show that it was no significant differences between whole body and in blood irradiation group. The chromosome aberration yield in whole body exposure group was higher than that in partial-body group and in the abdomen exposure group was higher than in that in the pelvic cavity irradiation; The chromosome aberration rate decreased with the time of post-exposure in partial and whole body by γ-ray irradiation

  13. Effects of SMILE and Trans-PRK on corneal higher order aberrations after myopic correction

    Directory of Open Access Journals (Sweden)

    Jiao Zhao

    2018-02-01

    Full Text Available AIM:To observe the effects of small incision lenticule extraction(SMILEand trans-epithelial photorefractive keratectomy(Trans-PRKon corneal horizontal coma, vertical coma, and spherical aberration and total higher order aberrations after refractive correction for myopia. METHODS: This was a prospective non-randomized cohort study. The cohort included 40 patients(80 eyeswith myopia, who received refraction correction surgery from December 2016 to February 2017 in Leshan Ophthalmic Center. Twenty patients(40 eyesreceived SMILE surgery and the other 20 patients(40 eyesreceived Trans-PRK surgery. Corneal aberrations were determined by a high-resolution Pentacam Scheimpflug camera before the surgery and at 1 and 3mo after the operation. Statistical analyses were performed using analysis of variance of repeated measures. RESULTS: At 1 and 3mo post-operation, the uncorrected visual acuity in both groups was better than or equal to the preoperative best corrected visual acuity. The preoperative corneal aberrations showed no significant difference between the two groups(P>0.05. Significantly higher aberration was found after the surgery in both groups(PP>0.05. Post-operation, horizontal and vertical coma had no significant difference between the two groups(P>0.05, while SMILE group showed lower spherical aberration and lower total higher order aberration than Trans-PRK group(PCONCLUSION: Both SMILE and Trans-PRK increase corneal aberration and their effects on horizontal and vertical coma are similar. However, SMILE has a minor influence on spherical aberration and total high order aberration than Trans-PRK.

  14. Estimation and Compensation of aberrations in Spatial Light Modulators

    International Nuclear Information System (INIS)

    Arias, Augusto; Castaneda, Roman

    2011-01-01

    The spatial light modulator (SLM) Holoeye LC-R720 is based on LCoS (Liquid Crystal on Silicon) technology. Due to the induced curvatures on the silicon plate by the production process, there are static aberrations in the wave-fronts modified by the SLM. In order to calculate the aberrated wave-front we used phase-shifting interferometry, an optimization algorithm for far field propagation, and the geometric characterization of the focal spot along the caustic. Zernike polynomials were used for expanding and comparing the wave-fronts. The aberration compensation was carried out by displaying the conjugated transmittance on the SLM. The complexity of the experimental setup and the requirements of the digital processing of each estimation method were comparatively analyzed.

  15. Nodular Hyperplasia Arising from the Lateral Aberrant Thyroid Tissue: A Case Report

    International Nuclear Information System (INIS)

    Jeong, Min Hye; Park, Jeong Seon; Lee, Young Jun

    2012-01-01

    The presence of aberrant thyroid tissue in the lateral neck is very rare. In addition, nodular hyperplasia in ectopic thyroid has rarely been reported. Due to the unusual location, the presence of lateral aberrant thyroid tissue could be misdiagnosed as a lymphadenopathy, neurogenic tumor, etc. We report on a case of nodular hyperplasia arising from the right lateral aberrant thyroid tissue.

  16. Trichloroethylene-induced gene expression and DNA methylation changes in B6C3F1 mouse liver.

    Directory of Open Access Journals (Sweden)

    Yan Jiang

    Full Text Available Trichloroethylene (TCE, widely used as an organic solvent in the industry, is a common contaminant in air, soil, and water. Chronic TCE exposure induced hepatocellular carcinoma in mice, and occupational exposure in humans was suggested to be associated with liver cancer. To understand the role of non-genotoxic mechanism(s for TCE action, we examined the gene expression and DNA methylation changes in the liver of B6C3F1 mice orally administered with TCE (0, 100, 500 and 1000 mg/kg b.w. per day for 5 days. After 5 days TCE treatment at a dose level of 1000 mg/kg b.w., a total of 431 differentially expressed genes were identified in mouse liver by microarray, of which 291 were up-regulated and 140 down-regulated. The expression changed genes were involved in key signal pathways including PPAR, proliferation, apoptosis and homologous recombination. Notably, the expression level of a number of vital genes involved in the regulation of DNA methylation, such as Utrf1, Tet2, DNMT1, DNMT3a and DNMT3b, were dysregulated. Although global DNA methylation change was not detected in the liver of mice exposed to TCE, the promoter regions of Cdkn1a and Ihh were found to be hypo- and hypermethylated respectively, which correlated negatively with their mRNA expression changes. Furthermore, the gene expression and DNA methylation changes induced by TCE were dose dependent. The overall data indicate that TCE exposure leads to aberrant DNA methylation changes, which might alter the expression of genes involved in the TCE-induced liver tumorgenesis.

  17. Aberrant TAL1 activation is mediated by an interchromosomal interaction in human T-cell acute lymphoblastic leukemia.

    Science.gov (United States)

    Patel, B; Kang, Y; Cui, K; Litt, M; Riberio, M S J; Deng, C; Salz, T; Casada, S; Fu, X; Qiu, Y; Zhao, K; Huang, S

    2014-02-01

    Long-range chromatin interactions control metazoan gene transcription. However, the involvement of intra- and interchromosomal interactions in development and oncogenesis remains unclear. TAL1/SCL is a critical transcription factor required for the development of all hematopoietic lineages; yet, aberrant TAL1 transcription often occurs in T-cell acute lymphoblastic leukemia (T-ALL). Here, we report that oncogenic TAL1 expression is regulated by different intra- and interchromosomal loops in normal hematopoietic and leukemic cells, respectively. These intra- and interchromosomal loops alter the cell-type-specific enhancers that interact with the TAL1 promoter. We show that human SET1 (hSET1)-mediated H3K4 methylations promote a long-range chromatin loop, which brings the +51 enhancer in close proximity to TAL1 promoter 1 in erythroid cells. The CCCTC-binding factor (CTCF) facilitates this long-range enhancer/promoter interaction of the TAL1 locus in erythroid cells while blocking the same enhancer/promoter interaction of the TAL1 locus in human T-cell leukemia. In human T-ALL, a T-cell-specific transcription factor c-Maf-mediated interchromosomal interaction brings the TAL1 promoter into close proximity with a T-cell-specific regulatory element located on chromosome 16, activating aberrant TAL1 oncogene expression. Thus, our study reveals a novel molecular mechanism involving changes in three-dimensional chromatin interactions that activate the TAL1 oncogene in human T-cell leukemia.

  18. Chromosomal aberrations in Cynomolgus peripheral lymphocytes during and after fractionated whole-body γ-irradiation

    International Nuclear Information System (INIS)

    Guedeney, G.; Malarbet, J.L.; Doloy, M.T.

    1989-01-01

    Cynomolgus monkeys (Macaca fascicularis) were exposed to fractionated whole-body γ-irradiation at high and low dose rates for 4 or 5 weeks. The time-dependence of chromosomal aberrations was studied in relation to the number of lymphocytes during irradiation and after exposure for periods of up to about 600 days for chromosomal aberrations and 200 days for lymphocyte counts. Additivity of the daily effects on the number of chromosomal aberrations was observed during the exposures. Immediately after the end of the exposures the number of chromosomal aberrations decreased to reach low values. The disappearance of chromosomal aberrations seemed to be related to recovery of the lymphocyte counts. The data presented here emphasize the different kinetic patterns of chromosomal aberrations after fractionated and acute irradiation. (author)

  19. Angstrom analysis with dynamic in-situ aberration corrected electron microscopy

    International Nuclear Information System (INIS)

    Gai, P L; Boyes, E D

    2010-01-01

    Following the pioneering development of atomic resolution in-situ environmental TEM (ETEM) for direct probing of gas-solid reactions, recent developments are presented of dynamic real time in-situ studies at the Angstrom level in an aberration corrected electron microscope. The in-situ data from Pt-Pd nanoparticles on carbon with the corresponding FFT/optical diffractogram (OD) illustrate an achieved resolution of 0 C and higher, in a double aberration corrected JEOL 2200 FS TEM/STEM employing a wider gap objective pole piece and gas tolerant TMP column pumping system. Direct observations of dynamic biofuel catalysts under controlled calcinations conditions and quantified with catalytic reactivity and physico-chemical studies show the benefits in-situ aberration correction in unveiling the evolution of surface active sites necessary for the development efficient heterogeneous catalysts. The new results open up opportunities for dynamic studies of materials in an aberration corrected environment and direct future development activities.

  20. Establishing working standards of chromosome aberrations analysis for biological dosimetry

    International Nuclear Information System (INIS)

    Bui Thi Kim Luyen; Tran Que; Pham Ngoc Duy; Nguyen Thi Kim Anh; Ha Thi Ngoc Lien

    2015-01-01

    Biological dosimetry is an dose assessment method using specify bio markers of radiation. IAEA (International Atomic Energy Agency) and ISO (International Organization for Standardization) defined that dicentric chromosome is specify for radiation, it is a gold standard for biodosimetry. Along with the documents published by IAEA, WHO, ISO and OECD, our results of study on the chromosome aberrations induced by radiation were organized systematically in nine standards that dealing with chromosome aberration test and micronucleus test in human peripheral blood lymphocytes in vitro. This standard addresses: the reference dose-effect for dose estimation, the minimum detection levels, cell culture, slide preparation, scoring procedure for chromosome aberrations use for biodosimetry, the criteria for converting aberration frequency into absorbed dose, reporting of results. Following these standards, the automatic analysis devices were calibrated for improving biological dosimetry method. This standard will be used to acquire and maintain accreditation of the Biological Dosimetry laboratory in Nuclear Research Institute. (author)

  1. Low level dose induced chromosome aberrations in human blood lymphocytes

    International Nuclear Information System (INIS)

    Pohl-Rueling, J.

    1992-01-01

    Unstable structural aberrations in chromosomes of human blood lymphocytes cannot be used as biological dosemeters in the low dose range, when extrapolating from high doses using a linear dose response, as required by the original formula of the dual radiation action theory. A survey is given of experimental dose-response curves of chromosome aberrations, obtained in investigations not only by this institute, in cooperation with many other laboratories, but also by various authors in different areas of the world. The results are not compatible with the predicted linear dose relationships at in vivo dose ranges up to 30 mGy.y -1 . The aberration frequencies rise sharply with dose within the normal environmental exposure up to about twice that level. At higher doses, aberration frequencies increase less rapidly and reach a plateau. Some in vitro experiments of various authors with higher doses of low LET radiations, up to about 400 mGy have found dose responses with steps. (author)

  2. Is methylation analysis of SFRP2, TFPI2, NDRG4, and BMP3 promoters suitable for colorectal cancer screening in the Korean population?

    Directory of Open Access Journals (Sweden)

    Soo-Kyung Park

    2017-10-01

    Full Text Available Background/Aims: Colorectal cancer (CRC screening using stool DNA was recently found to yield good detection rates. A multi-target stool DNA test (Cologuard®, Exact Sciences, including methylated genes has been recently approved by the U.S. Food and Drug Administration. The aim of this study was to validate these aberrantly methylated genes as stool-based DNA markers for detecting CRC and colorectal advanced adenoma (AA in the Korean population.Methods: A single-center study was conducted in 36 patients with AA; 35 patients with CRC; and 40 endoscopically diagnosed healthy controls using CRC screening colonoscopy. The methylation status of the SFRP2, TFPI2, NDRG4, and BMP3 promoters was investigated blindly using bisulfate-modified stool DNA obtained from 111 participants. Methylation status was investigated by methylation-specific polymerase chain reaction.Results: Methylated SFRP2, TFPI2, NDRG4, and BMP3 promoters were detected in 60.0%, 31.4%, 68.8%, and 40.0% of CRC samples and in 27.8%, 27.8%, 27.8%, and 33.3% of AA samples, respectively. The sensitivities obtained using 4 markers to detect CRC and AA were 94.3% and 72.2%, respectively. The specificity was 55.0%.Conclusions: Our results demonstrate that the SFRP2, TFPI2, NDRG4, and BMP3 promoter methylation analysis of stool sample DNA showed high sensitivity but low specificity for detecting CRC and AA. Because of the low specificity, 4 methylated markers might not be sufficient for CRC screening in the Korean population. Further large-scale studies are required to validate the methylation of these markers in the Asian population and to find new markers for the Asian population.

  3. Induction of chromosomal aberrations in human lymphocytes by fission neutrons

    International Nuclear Information System (INIS)

    Silva, Marcia Augusta da; Coelho, Paulo Rogerio Pinto; Bartolini, Paolo; Okazaki, Kayo

    2009-01-01

    Chromosome aberrations induced by sparsely ionizing radiation (low-LET) are well known and cytogenetic analyses of irradiated human lymphocytes have been widely applied to biological dosimetry. However, much less is known about chromosome aberrations induced by densely ionizing radiation (high LET), such as that of alpha particles or neutrons. Such particles induce DNA strand breaks, as well as chromosome breakage and rearrangements of high complexity. This damage is more localized and less efficiently repaired than after X- or γ-ray irradiation. This preferential production of complex aberrations by densely ionizing radiation is related to the unique energy deposition patterns, which produces highly localized multiple DNA damage at the chromosomal level. A better knowledge of the interactions between different types of radiation and cellular DNA is of importance, not only from the radiobiological viewpoint but also for dosimetric and therapeutic purposes. The objective of the present study was to analyse the cytogenetic effects of fission neutrons on peripheral blood lymphocytes in order to evaluate structural and numerical aberrations and number of cells in the different mitotic cycles. So, blood samples from five healthy donors, 22-25 years old, of both sexes, were irradiated in the Research Reactor IEA-R1 of our Institute (IPEN/CNEN-SP) with thermal and fast neutrons at doses of 0.2; 0.3; 0.5 and 1.0 Gy. The γ contribution to the total absorbed dose was about 30%. These doses were monitored by thermoluminescent dosemeters: LiF-600 (for neutrons) and LiF-700 (for γ-rays). The data concerning structural aberrations were evaluated with regard to three parameters: percentage of cells with aberrations, number of aberrations/cell and number of dicentric/cell. The cytogenetic results showed an increase in the three parameters after irradiation with neutrons, as a function of radiation dose. Apparently, there was no influence of neutrons on the kinetics of cellular

  4. Aberrations of chromosome 8 in myelodysplastic syndromes: Clinical and biological significance

    Directory of Open Access Journals (Sweden)

    Marisavljević Dragomir

    2006-01-01

    Full Text Available Introduction: Rearrangements of any single chromosome in human karyotype have been reported in patients with pMDS. Objective: To examine the role of aberrations of chromosome 8 in pathogenesis, clinical presentation and progression of myelodysplastic syndromes. Method: Cytogenetic analysis of bone marrow cells was carried out by direct method and by means of 24- and/or 48-hour unstimulated cell culture. Chromosomes were obtained by modified method of HG-bands. Results: On presentation, 109 out of 271 successfully karyotyped patients (40,2% had abnormal karyotypes. Among them, 22 patients (10.9% had aberrations of chromosome 8. Ten patients had trisomy 8 as "simple" aberration whilst additional three cases had trisomy 8 included in "complex" karyotypes (≥3 chromosomes. Cases with constitutional trisomy 8 mosaicism (CT8M were excluded using the chromosome analyses of PHA-stimulated blood cultures. On the contrary, monosomy (seven patients or deletion of chromosome 8 (two patients were exclusively found in "complex" karyotypes. During prolonged cytogenetic follow-up, trisomy 8 was not recorded in evolving karyotypes. In contrast, trisomy 8 disappeared in two cases during subsequent cytogenetic studies, i.e. 23 and 72 months from diagnosis, accompanied in one patient with complete hematological remission. No difference regarding age, sex, cytopenia, blood and marrow blast count or response to treatment was found between patients with trisomy 8 as the sole aberration compared to those with normal cytogenetics. Median survival of patients with trisomy 8 as the sole aberration was 27 months, as compared to 32 months in patients with normal cytogenetics (p=0.468, whilst median survival of patients with aberrations of chromosome 8 included in "complex" karyotypes was only 4 months. Conclusion: Aberrations of chromosome 8 are common in patients with pMDS. The presence of a clone with trisomy 8 is not always the sign of disease progression or poor

  5. Corneal Aberrations in Former Preterm Infants: Results From The Wiesbaden Prematurity Study.

    Science.gov (United States)

    Fieß, Achim; Schuster, Alexander K; Kölb-Keerl, Ruth; Knuf, Markus; Kirchhof, Bernd; Muether, Philipp S; Bauer, Jacqueline

    2017-12-01

    To compare corneal aberrations in former preterm infants to that of full-term infants. A prospective cross-sectional study was carried out measuring the corneal shape with Scheimpflug imaging in former preterm infants of gestational age (GA) ≤32 weeks and full-term infants with GA ≥37 weeks now being aged between 4 to 10 years. The main outcome measures were corneal aberrations including astigmatism (Zernike: Z2-2; Z22), coma (Z3-1; Z31), trefoil (Z3-3; Z33), spherical aberration (Z40) and root-mean square of higher-order aberrations (RMS HOA). Multivariable analysis was performed to assess independent associations of gestational age groups and of retinopathy of prematurity (ROP) occurrence with corneal aberrations adjusting for sex and age at examination. A total of 259 former full-term and 226 preterm infants with a mean age of 7.2 ± 2.0 years were included in this study. Statistical analysis revealed an association of extreme prematurity (GA ≤28 weeks) with higher-order and lower-order aberrations of the total cornea. Vertical coma was higher in extreme prematurity (P prematurity rather than with ROP occurrence.

  6. Measurement of specimen-induced aberrations of biological samples using phase stepping interferometry.

    Science.gov (United States)

    Schwertner, M; Booth, M J; Neil, M A A; Wilson, T

    2004-01-01

    Confocal or multiphoton microscopes, which deliver optical sections and three-dimensional (3D) images of thick specimens, are widely used in biology. These techniques, however, are sensitive to aberrations that may originate from the refractive index structure of the specimen itself. The aberrations cause reduced signal intensity and the 3D resolution of the instrument is compromised. It has been suggested to correct for aberrations in confocal microscopes using adaptive optics. In order to define the design specifications for such adaptive optics systems, one has to know the amount of aberrations present for typical applications such as with biological samples. We have built a phase stepping interferometer microscope that directly measures the aberration of the wavefront. The modal content of the wavefront is extracted by employing Zernike mode decomposition. Results for typical biological specimens are presented. It was found for all samples investigated that higher order Zernike modes give only a small contribution to the overall aberration. Therefore, these higher order modes can be neglected in future adaptive optics sensing and correction schemes implemented into confocal or multiphoton microscopes, leading to more efficient designs.

  7. Effects of long-term radiation exposure on chromosomal aberrations in radiological technologists

    International Nuclear Information System (INIS)

    Kumagai, Etsuko; Onomichi, Mitsukazu; Tanaka, Ryuji; Kumagai, Takashi; Sawada, Shozo.

    1990-01-01

    Chromosomal aberrations in the lymphocytes of radiation technologists (RT) were analyzed by the trypsin G-banding method to study the late effects of long-term exposure to low doses of radiation. Structural aberrations were identified in 384 (2.5%) of 15442 cells analyzed from 53 RT as compared to 177 (1.6%) of 11136 cells from 36 healthy controls. Stable aberrations were the most frequent in both groups and were either translocations or deletions. Unstable aberrations were mainly acentric fragments in both groups. The frequency of translocations and acentric fragments was significantly higher in the RT than in the controls and was highest in the RT over 50 years. The highest frequency observed in the >50 age group was attributed to the unknown for cumulative dose prior to introduction of film badges. Frequency of chromosomal aberrations correlated with the estimated dose from the film badges and years of experience of each RT based on the equation y=0.22+0.37D+4.35D 2 , where y is overall frequency of chromosomal aberrations and D is the estimated radiation dose in Sv. (author)

  8. Aberration analysis for freeform surface terms overlay on general decentered and tilted optical surfaces.

    Science.gov (United States)

    Yang, Tong; Cheng, Dewen; Wang, Yongtian

    2018-03-19

    Aberration theory helps designers to better understand the nature of imaging systems. However, the existing aberration theory of freeform surfaces has many limitations. For example, it only works in the special case when the central area of the freeform surface is used. In addition, the light footprint is limited to a circle, which does not match the case of an elliptical footprint for general systems. In this paper, aberrations generated by freeform surface term overlay on general decentered and tilted optical surfaces are analyzed. For the case when the off-axis section of a freeform surface is used, the aberration equation for using stop and nonstop surfaces is discussed, and the aberrations generated by Zernike terms up to Z 17/18 are analyzed in detail. To solve the problem of the elliptical light footprint for tilted freeform surfaces, the scaled pupil vector is used in the aberration analysis. The mechanism of aberration transformation is discovered, and the aberrations generated by different Zernike terms in this case are calculated. Finally we proposed aberration equations for freeform terms on general decentered and tilted freeform surfaces. The research result given in this paper offers an important reference for optical designers and engineers, and it is of great importance in developing analytical methods for general freeform system design, tolerance analysis, and system assembly.

  9. The role of ethnic identity, self-concept, and aberrant salience in psychotic-like experiences.

    Science.gov (United States)

    Cicero, David C; Cohn, Jonathan R

    2018-01-01

    Social-cognitive models of psychosis suggest that aberrant salience and self-concept clarity are related to the development and maintenance of psychoticlike experiences (PLEs). People with high aberrant salience but low self-concept clarity tend to have the highest levels of PLEs. Ethnic identity may also be related to PLEs. The current research aimed to (a) replicate the interaction between aberrant salience and self-concept clarity in their association with PLEs in an ethnically diverse sample, (b) examine whether ethnic identity and aberrant salience interact in their association with PLEs, and (c) determine if self-concept clarity and ethnic identity independently interact with aberrant salience in their association with PLEs. An ethnically diverse group of undergraduates (n = 663) completed self-report measures of aberrant salience, self-concept clarity, ethnic identity, and PLEs. There was an interaction between aberrant salience and self-concept clarity such that people with high levels of aberrant salience and low levels of self-concept clarity had the highest levels of PLEs. Similarly, there was an interaction between aberrant salience and ethnic identity such that people with high aberrant salience but low ethnic identity had the highest PLEs. These interactions independently contributed to explaining variance in PLEs. This interaction was present for the Exploration but not Commitment subscales of ethnic identity. These results suggest that, in addition to low self-concept clarity, low ethnic identity may be a risk factor for the development of psychosis. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  10. Hartmann characterization of the PEEM-3 aberration-corrected X-ray photoemission electron microscope.

    Science.gov (United States)

    Scholl, A; Marcus, M A; Doran, A; Nasiatka, J R; Young, A T; MacDowell, A A; Streubel, R; Kent, N; Feng, J; Wan, W; Padmore, H A

    2018-05-01

    Aberration correction by an electron mirror dramatically improves the spatial resolution and transmission of photoemission electron microscopes. We will review the performance of the recently installed aberration corrector of the X-ray Photoemission Electron Microscope PEEM-3 and show a large improvement in the efficiency of the electron optics. Hartmann testing is introduced as a quantitative method to measure the geometrical aberrations of a cathode lens electron microscope. We find that aberration correction leads to an order of magnitude reduction of the spherical aberrations, suggesting that a spatial resolution of below 100 nm is possible at 100% transmission of the optics when using x-rays. We demonstrate this improved performance by imaging test patterns employing element and magnetic contrast. Published by Elsevier B.V.

  11. Circumflex coronary artery with aberrant origin and atherosclerosis

    International Nuclear Information System (INIS)

    Ozcan, E.; Bozlar, U.; Celik, T.; Tasar, M.

    2012-01-01

    Full text: Introduction: Circumflex (Cx) coronary artery congenital anomaly is reported to be less than 1% incidence. Coronary arteries with aberrant origin are more likely to have atherosclerosis according to some published literatures. Objectives and tasks: In this study we aim to present computed tomography (CT) angiography findings of a patient, who has Cx artery with aberrant origin and atherosclerotic. Materials and methods: 57-year-old woman without any symptoms who has risk factors to atherosclerosis was referred to our clinic for coronary CT angiography. Results: In CT angiography; we detected Cx coronary artery with aberrant origin (right sinus of valsalva) and retroaortic course. Also we saw intimal irregularities and calcified plaque causing severe narrowing in the proximal segment of artery. Right coronary and left anterior descendant arteries had mild atherosclerosis. Conclusion: Coroner CT angiography, which allows multiplanar imaging with high resolution, is an effective diagnostic tool for coronary artery disease, like not only congenital anomalies but also acquired atherosclerotic disease

  12. Spherical aberration correction with threefold symmetric line currents.

    Science.gov (United States)

    Hoque, Shahedul; Ito, Hiroyuki; Nishi, Ryuji; Takaoka, Akio; Munro, Eric

    2016-02-01

    It has been shown that N-fold symmetric line current (henceforth denoted as N-SYLC) produces 2N-pole magnetic fields. In this paper, a threefold symmetric line current (N3-SYLC in short) is proposed for correcting 3rd order spherical aberration of round lenses. N3-SYLC can be realized without using magnetic materials, which makes it free of the problems of hysteresis, inhomogeneity and saturation. We investigate theoretically the basic properties of an N3-SYLC configuration which can in principle be realized by simple wires. By optimizing the parameters of a system with beam energy of 5.5keV, the required excitation current for correcting 3rd order spherical aberration coefficient of 400 mm is less than 1AT, and the residual higher order aberrations can be kept sufficiently small to obtain beam size of less than 1 nm for initial slopes up to 5 mrad. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Aberrant PO2 values in proficiency testing.

    Science.gov (United States)

    Fonzi, C E; Clausen, J L; Mahoney, J

    1993-03-01

    We prospectively determined the frequency of aberrant vials of fluorocarbon/buffer used for proficiency testing of measurements of pH, PCO2, and PO2, using 20 duplicate vials from 12 lots of fluorocarbon/buffer and two arterial blood gas analyzers in eight reference laboratories. We defined aberrant vials as vials for which both duplicate measurements differed from the mean value of repeated measurements for the specific instrument (for each lot of testing materials) by > 0.04 for pH, > 10% of the mean or 3.0 mm Hg, whichever was greater, for PCO2; or > 10% of the mean or 6 mm Hg, whichever was greater, for PO2. Four of 1620 vials (0.25%) were aberrant, all based on PO2 measurements (range of mean values: pH, 7.181-7.631; PCO2, 12.7-65.9; PO2, 32.5-150.1) were 0.0055 for pH, 0.67 mm Hg for PCO2, and 1.65 mm Hg for PO2. Deliberate contamination of the fluorocarbon emulsion with room air, as might occur during sampling from the vial, indicated that only minor increases in PO2 (e.g., 1.0 mm Hg at PO2 of 56 mm Hg) occur when samples are aspirated. Larger increases in PO2 (mean 7.1 mm Hg at a PO2 of 66 mm Hg) occurred when the syringe samples were contaminated with room air. We conclude that isolated aberrant measurements of PO2 in blood gas proficiency testing attributable to vial contents can occur, but the frequency is very low.

  14. Chromosome aberrations analysis of Serbia population from 1985 to 1995

    International Nuclear Information System (INIS)

    Jovicic, D.; Markovic, B.; Milacic, S.; Joksic, G.

    1996-01-01

    After the accident of NE Chernobyl in May 1986, Chernobyl's fallout with unhomogeneous dispersion of radioactive material in atmosphere caused the difference in contamination of the Serbia territory. The highest contamination was found to be in region Uzice, and the lowest in the region Nis. Two groups of population from these regions were undergone chromosome aberration analysis during 1987, 1988 and 1989. year. The results of our examination show increased frequency of structural chromosome aberrations/dicentrics, rings, peri centric inversions and acentric/ in the Uzice population, especially in the 1987. year. In 1985 and 1995 year have not been found chromosome aberrations. 2 refs.; 1 figs.; 2 tabs

  15. Correlation of MLH1 and MGMT expression and promoter methylation with genomic instability in patients with thyroid carcinoma

    International Nuclear Information System (INIS)

    Santos, Juliana Carvalho; Bastos, André Uchimura; Cerutti, Janete Maria; Ribeiro, Marcelo Lima

    2013-01-01

    Gene silencing of the repair genes MLH1 and MGMT was shown to be a mechanism underlying the development of microsatellite instability (MSI), a phenotype frequently associated with various human malignancies. Recently, aberrant methylation of MLH1, MGMT and MSI were shown to be associated with mutations in genes such as BRAF, RAS and IDH1 in colon and brain tumours. Little is known about the methylation status of MLH1 and MGMT in thyroid tumours and its association with MSI and mutational status. In a series of 96 thyroid tumours whose mutational profiles of BRAF, IDH1 and NRAS mutations and RET/PTC were previously determined, we investigated MLH1 and MGMT expression and methylation status by qPCR and methylation-specific PCR after bisulphite treatment, respectively. MSI was determined by PCR using seven standard microsatellite markers. Samples with point mutations (BRAF, IDH1 and NRAS) show a decrease in MLH1 expression when compared to negative samples. Additionally, malignant lesions show a higher MSI pattern than benign lesions. The MSI phenotype was also associated with down-regulation of MLH1. The results of this study allow us to conclude that low expression of MLH1 is associated with BRAF V600E mutations, RET/PTC rearrangements and transitions (IDH1 and NRAS) in patients with thyroid carcinoma. In addition, a significant relationship between MSI status and histological subtypes was found

  16. Aberrant phenotypes in peripheral T cell lymphomas.

    Science.gov (United States)

    Hastrup, N; Ralfkiaer, E; Pallesen, G

    1989-01-01

    Seventy six peripheral T cell lymphomas were examined immunohistologically to test their reactivity with a panel of monoclonal antibodies against 11 T cell associated antigens (CD1-8, CD27, UCHL1, and the T cell antigen receptor). Sixty two (82%) lymphomas showed aberrant phenotypes, and four main categories were distinguished as follows: (i) lack of one or several pan-T cell antigens (49, 64% of the cases); (ii) loss of both the CD4 and CD8 antigens (11, 15% of the cases); (iii) coexpression of the CD4 and CD8 antigens (13, 17% of the cases); and (iv) expression of the CD1 antigen (eight, 11% of the cases). No correlation was seen between the occurrence of aberrant phenotypes and the histological subtype. It is concluded that the demonstration of an aberrant phenotype is a valuable supplement to histological assessment in the diagnosis of peripheral T cell lymphomas. It is recommended that the panel of monoclonal antibodies against T cell differentiation antigens should be fairly large, as apparently any antigen may be lost in the process of malignant transformation. Images Figure PMID:2469701

  17. The Role of Aberrant Salience and Self-Concept Clarity in Psychotic-Like Experiences

    Science.gov (United States)

    Cicero, David C.; Becker, Theresa M.; Martin, Elizabeth A.; Docherty, Anna R.; Kerns, John G.

    2013-01-01

    Most theories of psychotic-like experiences posit the involvement of social-cognitive mechanisms. The current research examined the relations between psychotic-like experiences and two social-cognitive mechanisms, high aberrant salience and low self-concept clarity. In particular, we examined whether aberrant salience, or the incorrect assignment of importance to neutral stimuli, and low self-concept clarity interacted to predict psychotic-like experiences. The current research included three large samples (n = 667, 724, 744) of participants and over-sampled for increased schizotypal personality traits. In all three studies, an interaction between aberrant salience and self-concept clarity was found such that participants with high aberrant salience and low self-concept clarity had the highest levels of psychotic-like experiences. In addition, aberrant salience and self-concept clarity interacted to predict a supplemental measure of delusions in Study 2. In Study 3, in contrast to low self-concept clarity, neuroticism did not interact with aberrant salience to predict psychotic-like experiences, suggesting that the relation between low self-concept clarity and psychosis may not be due to neuroticism. Additionally, aberrant salience and self-concept clarity did not interact to predict to other schizotypal personality disorder criteria, social anhedonia or trait paranoia, which suggests the interaction is specific to psychotic-like experiences. Overall, our results are consistent with several social-cognitive models of psychosis suggesting that aberrant salience and self-concept clarity might be important mechanisms in the occurrence of psychotic-like symptoms. PMID:22452775

  18. Integrated analysis of DNA methylation and gene expression reveals specific signaling pathways associated with platinum resistance in ovarian cancer

    Directory of Open Access Journals (Sweden)

    Chung Jae

    2009-06-01

    Full Text Available Abstract Background Cisplatin and carboplatin are the primary first-line therapies for the treatment of ovarian cancer. However, resistance to these platinum-based drugs occurs in the large majority of initially responsive tumors, resulting in fully chemoresistant, fatal disease. Although the precise mechanism(s underlying the development of platinum resistance in late-stage ovarian cancer patients currently remains unknown, CpG-island (CGI methylation, a phenomenon strongly associated with aberrant gene silencing and ovarian tumorigenesis, may contribute to this devastating condition. Methods To model the onset of drug resistance, and investigate DNA methylation and gene expression alterations associated with platinum resistance, we treated clonally derived, drug-sensitive A2780 epithelial ovarian cancer cells with increasing concentrations of cisplatin. After several cycles of drug selection, the isogenic drug-sensitive and -resistant pairs were subjected to global CGI methylation and mRNA expression microarray analyses. To identify chemoresistance-associated, biological pathways likely impacted by DNA methylation, promoter CGI methylation and mRNA expression profiles were integrated and subjected to pathway enrichment analysis. Results Promoter CGI methylation revealed a positive association (Spearman correlation of 0.99 between the total number of hypermethylated CGIs and GI50 values (i.e., increased drug resistance following successive cisplatin treatment cycles. In accord with that result, chemoresistance was reversible by DNA methylation inhibitors. Pathway enrichment analysis revealed hypermethylation-mediated repression of cell adhesion and tight junction pathways and hypomethylation-mediated activation of the cell growth-promoting pathways PI3K/Akt, TGF-beta, and cell cycle progression, which may contribute to the onset of chemoresistance in ovarian cancer cells. Conclusion Selective epigenetic disruption of distinct biological

  19. Primary chromatic aberration elimination via optimization work with genetic algorithm

    Science.gov (United States)

    Wu, Bo-Wen; Liu, Tung-Kuan; Fang, Yi-Chin; Chou, Jyh-Horng; Tsai, Hsien-Lin; Chang, En-Hao

    2008-09-01

    Chromatic Aberration plays a part in modern optical systems, especially in digitalized and smart optical systems. Much effort has been devoted to eliminating specific chromatic aberration in order to match the demand for advanced digitalized optical products. Basically, the elimination of axial chromatic and lateral color aberration of an optical lens and system depends on the selection of optical glass. According to reports from glass companies all over the world, the number of various newly developed optical glasses in the market exceeds three hundred. However, due to the complexity of a practical optical system, optical designers have so far had difficulty in finding the right solution to eliminate small axial and lateral chromatic aberration except by the Damped Least Squares (DLS) method, which is limited in so far as the DLS method has not yet managed to find a better optical system configuration. In the present research, genetic algorithms are used to replace traditional DLS so as to eliminate axial and lateral chromatic, by combining the theories of geometric optics in Tessar type lenses and a technique involving Binary/Real Encoding, Multiple Dynamic Crossover and Random Gene Mutation to find a much better configuration for optical glasses. By implementing the algorithms outlined in this paper, satisfactory results can be achieved in eliminating axial and lateral color aberration.

  20. DNA Repair Defects and Chromosomal Aberrations

    Science.gov (United States)

    Hada, Megumi; George, K. A.; Huff, J. L.; Pluth, J. M.; Cucinotta, F. A.

    2009-01-01

    Yields of chromosome aberrations were assessed in cells deficient in DNA doublestrand break (DSB) repair, after exposure to acute or to low-dose-rate (0.018 Gy/hr) gamma rays or acute high LET iron nuclei. We studied several cell lines including fibroblasts deficient in ATM (ataxia telangiectasia mutated; product of the gene that is mutated in ataxia telangiectasia patients) or NBS (nibrin; product of the gene mutated in the Nijmegen breakage syndrome), and gliomablastoma cells that are proficient or lacking in DNA-dependent protein kinase (DNA-PK) activity. Chromosomes were analyzed using the fluorescence in situ hybridization (FISH) chromosome painting method in cells at the first division post irradiation, and chromosome aberrations were identified as either simple exchanges (translocations and dicentrics) or complex exchanges (involving >2 breaks in 2 or more chromosomes). Gamma irradiation induced greater yields of both simple and complex exchanges in the DSB repair-defective cells than in the normal cells. The quadratic dose-response terms for both simple and complex chromosome exchanges were significantly higher for the ATM- and NBS-deficient lines than for normal fibroblasts. However, in the NBS cells the linear dose-response term was significantly higher only for simple exchanges. The large increases in the quadratic dose-response terms in these repair-defective cell lines points the importance of the functions of ATM and NBS in chromatin modifications to facilitate correct DSB repair and minimize the formation of aberrations. The differences found between ATM- and NBS-deficient cells at low doses suggest that important questions should with regard to applying observations of radiation sensitivity at high dose to low-dose exposures. For aberrations induced by iron nuclei, regression models preferred purely linear dose responses for simple exchanges and quadratic dose responses for complex exchanges. Relative biological effectiveness (RBE) factors of all of

  1. Aberration compensation using a spatial light modulator LCD

    International Nuclear Information System (INIS)

    Amezquita, R; Rincon, O; Torres, Y M

    2011-01-01

    The dynamic correction of aberrations introduced in optical systems have been a widely discussed topic in the past 10 years. Adaptive optics is the most important developed field where the Shack-Hartmann sensors and deformable mirrors are used for the measurement and correction of wavefronts. In this paper, an interferometric set-up which uses a Spatial Light Modulator (SLM) as an active element is proposed. Using this SLM a procedure for the compensation of all phase aberrations present in the experimental setup is shown.

  2. Comparison of the neuropsychological mechanisms of 2,6-diisopropylphenol and N-methyl-D-aspartate receptor antagonist against electroconvulsive therapy-induced learning and memory impairment in depressed rats.

    Science.gov (United States)

    Liu, Gang; Liu, Chao; Zhang, Xue-Ning

    2015-09-01

    The present study aimed to examine the neurophysiological mechanisms of the 2,6-diisopropylphenol and N-methyl-D-aspartate (NMDA) receptor antagonist against learning and memory impairment, induced by electroconvulsive therapy (ECT). A total of 48 adult depressed rats without olfactory bulbs were randomly divided into six experimental groups: i) saline; ii) 10 mg/kg MK‑801; iii) 10 mg/kg MK‑801 and a course of ECT; iv) 200 mg/kg 2,6‑diisopropylphenol; v) 200 mg/kg 2,6‑diisopropylphenol and a course of ECT; and vi) saline and a course of ECT. The learning and memory abilities of the rats were assessed using a Morris water maze 1 day after a course of ECT. The hippocampus was removed 1 day after assessment using the Morris water maze assessment. The content of glutamate in the hippocampus was detected using high‑performance liquid chromatography. The expression levels of p‑AT8Ser202 and GSK‑3β1H8 in the hippocampus were determined using immunohistochemical staining and western blot analysis. The results demonstrated that the 2,6‑diisopropylphenol NMDA receptor antagonist, MK‑801 and ECT induced learning and memory impairment in the depressed rats. The glutamate content was significantly upregulated by ECT, reduced by 2,6‑diisopropylphenol, and was unaffected by the NMDA receptor antagonist in the hippocampus of the depressed rats. Tau protein hyperphosphorylation in the hippocampus was upregulated by ECT, but was reduced by 2,6‑diisopropylphenol and the MK‑801 NMDA receptor antagonist. It was also demonstrated that 2,6‑diisopropylphenol prevented learning and memory impairment and reduced the hyperphosphorylation of the Tau protein, which was induced by eECT. GSK‑3β was found to be the key protein involved in this signaling pathway. The ECT reduced the learning and memory impairment, caused by hyperphosphorylation of the Tau protein, in the depressed rats by upregulating the glutamate content.

  3. Ionizing radiation and frequency of chromosomal aberrations in exposed personnel

    International Nuclear Information System (INIS)

    Spasojevic-Tisma, Vera; Pavlovic, Snezana

    2008-01-01

    Full text: Frequencies of chromosomal aberrations in lymphocytes of peripheral blood were investigated among the observed groups of subjects who were exposed to low radiation doses (external exposure) in comparison with the control group. The first group of subjects is involved in the production of radioisotope technetium, whose accumulated work exposure time ranges between 3 and 30 years. The second group works on inspection of the medical X-ray equipment, whose accumulated work exposure time is between 2 and 34 years. The third group worked on decontamination of the terrain from depleted uranium radioactive ammunition. These workers were involved in mechanical removal of the surface soil layer to a depth of 50 cm. They were selected out of a group of professionals otherwise exposed to radiation from confined sources in their daily work. The accumulated work exposure of this group ranged from 2 to 34 years. The control group consisted of individuals not working in the ionizing radiation zone. The average yearly absorbed dose measured by TL dosimeters for all three observed groups did not exceed 2 mSv. The chromosomal aberrations were analyzed by a modified Moorhead method. The objective of the study was to establish the existence of differences in the frequencies of chromosomal aberrations change with respect to the source type, i.e. type of radioactive emission. Comparisons of the chromosomal changes in the observed groups revealed that the group working on technetium production had an increase in the frequency of chromosomal aberrations with respect to control. The aberrations found were of the acentric fragment and chromosomal break types. A comparison of the exposed groups between each other, no statistically significant differences in the numbers of chromosomal aberrations were found. Soil decontamination from depleted uranium did not contribute to the relative radiation risk, since it lasted only a few months, and was done by the professionals fully clothed

  4. Chromosome aberrations in cultured skin cells obtained from atomic bomb survivors

    International Nuclear Information System (INIS)

    Honda, Takeo; Sadamori, Naoki.

    1989-01-01

    Skin specimens were obtained from 11 A-bomb survivors, 10 of whom had been exposed at ≤2300 m from the hypocenter, and 7 non-exposed controls. There was a higher frequency (12%, 147/1222 cells) of chromosome aberrations in the exposed group compared with 1.2% (4/341 cells) in the control group. This suggests that aberrant cells are still present in the skin tissue 40 years or more after the bombing. Of 147 cells, 136 cells (91.3%) showed translocation of chromosome. Other aberrations, such as inversion, deletion, dicentric chromosome and acentric fragment, were observed in only 3.8%. These aberrant cells tended to be observed in A-bomb survivors exposed to high doses and with a history of severe acute symptoms. One hundred and twenty two (83%) of 136 aberrant cells were obtained from 3 A-bomb survivors, which has important implications for marked proliferation of specific clone cells. In an analysis by B-band staining technique for the 122 cells, band sites of break point were found to correspond to loci of protooncogenes, suggesting the involvement in aggressive proliferation of clone cells. (Namekawa, K)

  5. An RNA polymerase II-and AGO4-associated protein acts in RNA-directed DNA methylation

    KAUST Repository

    Gao, Zhihuan

    2010-04-21

    DNA methylation is an important epigenetic mark in many eukaryotes. In plants, 24-nucleotide small interfering RNAs (siRNAs) bound to the effector protein, Argonaute 4 (AGO4), can direct de novo DNA methylation by the methyltransferase DRM2 (refs 2, 4-6). Here we report a new regulator of RNA-directed DNA methylation (RdDM) in Arabidopsis: RDM1. Loss-of-function mutations in the RDM1 gene impair the accumulation of 24-nucleotide siRNAs, reduce DNA methylation, and release transcriptional gene silencing at RdDM target loci. RDM1 encodes a small protein that seems to bind single-stranded methyl DNA, and associates and co-localizes with RNA polymerase II (Pol II, also known as NRPB), AGO4 and DRM2 in the nucleus. Our results indicate that RDM1 is a component of the RdDM effector complex and may have a role in linking siRNA production with pre-existing or de novo cytosine methylation. Our results also indicate that, although RDM1 and Pol V (also known as NRPE) may function together at some RdDM target sites in the peri-nucleolar siRNA processing centre, Pol II rather than Pol V is associated with the RdDM effector complex at target sites in the nucleoplasm. © 2010 Macmillan Publishers Limited. All rights reserved.

  6. Aberrant Recapitulation of Developmental Program: Novel Target in Scleroderma

    Science.gov (United States)

    2015-12-01

    AWARD NUMBER: W81XWH-12-1-0472 TITLE: “Aberrant Recapitulation of Developmental Program: Novel Target in Scleroderma ” PRINCIPAL INVESTIGATOR...SUBTITLE Aberrant Recapitulation of Developmental Program: Novel Target in Scleroderma 5a. CONTRACT NUMBER W81XWH-12-1-0472 5b. GRANT NUMBER 5c. PROGRAM...SPONSOR/MONITOR’S REPORT NUMBER(S) 12. DISTRIBUTION / AVAILABILITY STATEMENT 13. SUPPLEMENTARY NOTES 14. ABSTRACT Fibrosis in scleroderma is associated

  7. DNA Methylation Signatures of Early Childhood Malnutrition Associated With Impairments in Attention and Cognition.

    Science.gov (United States)

    Peter, Cyril J; Fischer, Laura K; Kundakovic, Marija; Garg, Paras; Jakovcevski, Mira; Dincer, Aslihan; Amaral, Ana C; Ginns, Edward I; Galdzicka, Marzena; Bryce, Cyralene P; Ratner, Chana; Waber, Deborah P; Mokler, David; Medford, Gayle; Champagne, Frances A; Rosene, Douglas L; McGaughy, Jill A; Sharp, Andrew J; Galler, Janina R; Akbarian, Schahram

    2016-11-15

    Early childhood malnutrition affects 113 million children worldwide, impacting health and increasing vulnerability for cognitive and behavioral disorders later in life. Molecular signatures after childhood malnutrition, including the potential for intergenerational transmission, remain unexplored. We surveyed blood DNA methylomes (~483,000 individual CpG sites) in 168 subjects across two generations, including 50 generation 1 individuals hospitalized during the first year of life for moderate to severe protein-energy malnutrition, then followed up to 48 years in the Barbados Nutrition Study. Attention deficits and cognitive performance were evaluated with the Connors Adult Attention Rating Scale and Wechsler Abbreviated Scale of Intelligence. Expression of nutrition-sensitive genes was explored by quantitative reverse transcriptase polymerase chain reaction in rat prefrontal cortex. We identified 134 nutrition-sensitive, differentially methylated genomic regions, with most (87%) specific for generation 1. Multiple neuropsychiatric risk genes, including COMT, IFNG, MIR200B, SYNGAP1, and VIPR2 showed associations of specific methyl-CpGs with attention and IQ. IFNG expression was decreased in prefrontal cortex of rats showing attention deficits after developmental malnutrition. Early childhood malnutrition entails long-lasting epigenetic signatures associated with liability for attention and cognition, and limited potential for intergenerational transmission. Copyright © 2016 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  8. Spherical aberration of an optical system and its influence on depth of focus.

    Science.gov (United States)

    Mikš, Antonín; Pokorný, Petr

    2017-06-10

    This paper analyzes the influence of spherical aberration on the depth of focus of symmetrical optical systems for imaging of axial points. A calculation of a beam's caustics is discussed using ray equations in the image plane and considering longitudinal spherical aberration as well. Concurrently, the influence of aberration coefficients on extremes of such a curve is presented. Afterwards, conditions for aberration coefficients are derived if the Strehl definition should be the same in two symmetrically placed planes with respect to the paraxial image plane. Such conditions for optical systems with large aberrations are derived with the use of geometric-optical approximation where the gyration diameter of the beam in given planes of the optical system is evaluated. Therefore, one can calculate aberration coefficients in such a way that the optical system generates a beam of rays that has the gyration radius in a given interval smaller than the defined limit value. Moreover, one can calculate the maximal depth of focus of the optical system respecting the aforementioned conditions.

  9. Outline of an ultracorrector compensating for all primary chromatic and geometrical aberrations of charged-particle lenses

    International Nuclear Information System (INIS)

    Rose, Harald

    2004-01-01

    A novel ultracorrector is outlined which compensates for the primary and secondary first-order chromatic aberrations and all third-order geometrical aberrations of electron optical systems with a straight axis. Owing to the imposed symmetry conditions on the fields and the paraxial fundamental rays, the corrector does not introduce aberrations with 2-fold symmetry. The chromatic aberrations are corrected by means of crossed electric magnetic quadrupoles while the third-order geometrical aberrations are eliminated by octopoles. By placing these elements at distinct positions within the corrector, it is possible to successively eliminate the third-order aberrations in such a way that each subsequent correction does not affect the aberrations corrected in the preceding correction steps

  10. Measurement of eye aberrations in a speckle field

    International Nuclear Information System (INIS)

    Larichev, A V; Ivanov, P V; Iroshnikov, N G; Shmalgauzen, V I

    2001-01-01

    The influence of speckles on the performance of a Shark-Hartmann wavefront sensor is investigated in the eye aberration studies. The dependence of the phase distortion measurement error on the characteristic speckle size is determined experimentally. Scanning of the reference source was used to suppress the speckle structure of the laser beam scattered by the retina. The technique developed by us made it possible to study the time dependence of the human eye aberrations with a resolution of 30 ms. (laser applications and other topics in quantum electronics)

  11. CpG island methylation phenotype (CIMP) in oral cancer: associated with a marked inflammatory response and less aggressive tumour biology.

    Science.gov (United States)

    Shaw, Richard J; Hall, Gillian L; Lowe, Derek; Bowers, Naomi L; Liloglou, Triantafillos; Field, John K; Woolgar, Julia A; Risk, Janet M

    2007-10-01

    Studies in several tumour sites highlight the significance of the CpG island methylation phenotype (CIMP), with distinct features of histology, biological aggression and outcome. We utilise pyrosequencing techniques of quantitative methylation analysis to investigate the presence of CIMP in oral squamous cell carcinoma (OSCC) for the first time, and evaluate its correlation with allelic imbalance, pathology and clinical behaviour. Tumour tissue, control tissue and PBLs were obtained from 74 patients with oral squamous cell carcinoma. Pyrosequencing was used to analyse methylation patterns in 75-200 bp regions of the CpG rich gene promoters of 10 genes with a broad range of cellular functions. Allelic imbalance was investigated using a multiplexed panel of 11 microsatellite markers. Corresponding variables, histopathological staging and grading were correlated with these genetic and epigenetic aberrations. A cluster of tumours with a greater degree of promoter methylation than would be predicted by chance alone (P=0.001) were designated CIMP+ve. This group had less aggressive tumour biology in terms of tumour thickness (p=0.015) and nodal metastasis (P=0.012), this being apparently independent of tumour diameter. Further, it seems that these CIMP+ve tumours excited a greater host inflammatory response (P=0.019). The exact mechanisms underlying CIMP remain obscure but the association with a greater inflammatory host response supports existing theories relating these features in other tumour sites. As CIMP has significant associations with other well documented prognostic indicators, it may prove beneficial to include methylation analyses in molecular risk modelling of tumours.

  12. Modeling of the oxidation of methyl esters—Validation for methyl hexanoate, methyl heptanoate, and methyl decanoate in a jet-stirred reactor

    Science.gov (United States)

    Glaude, Pierre Alexandre; Herbinet, Olivier; Bax, Sarah; Biet, Joffrey; Warth, Valérie; Battin-Leclerc, Frédérique

    2013-01-01

    The modeling of the oxidation of methyl esters was investigated and the specific chemistry, which is due to the presence of the ester group in this class of molecules, is described. New reactions and rate parameters were defined and included in the software EXGAS for the automatic generation of kinetic mechanisms. Models generated with EXGAS were successfully validated against data from the literature (oxidation of methyl hexanoate and methyl heptanoate in a jet-stirred reactor) and a new set of experimental results for methyl decanoate. The oxidation of this last species was investigated in a jet-stirred reactor at temperatures from 500 to 1100 K, including the negative temperature coefficient region, under stoichiometric conditions, at a pressure of 1.06 bar and for a residence time of 1.5 s: more than 30 reaction products, including olefins, unsaturated esters, and cyclic ethers, were quantified and successfully simulated. Flow rate analysis showed that reactions pathways for the oxidation of methyl esters in the low-temperature range are similar to that of alkanes. PMID:23710076

  13. Modeling of the oxidation of methyl esters-Validation for methyl hexanoate, methyl heptanoate, and methyl decanoate in a jet-stirred reactor.

    Science.gov (United States)

    Glaude, Pierre Alexandre; Herbinet, Olivier; Bax, Sarah; Biet, Joffrey; Warth, Valérie; Battin-Leclerc, Frédérique

    2010-11-01

    The modeling of the oxidation of methyl esters was investigated and the specific chemistry, which is due to the presence of the ester group in this class of molecules, is described. New reactions and rate parameters were defined and included in the software EXGAS for the automatic generation of kinetic mechanisms. Models generated with EXGAS were successfully validated against data from the literature (oxidation of methyl hexanoate and methyl heptanoate in a jet-stirred reactor) and a new set of experimental results for methyl decanoate. The oxidation of this last species was investigated in a jet-stirred reactor at temperatures from 500 to 1100 K, including the negative temperature coefficient region, under stoichiometric conditions, at a pressure of 1.06 bar and for a residence time of 1.5 s: more than 30 reaction products, including olefins, unsaturated esters, and cyclic ethers, were quantified and successfully simulated. Flow rate analysis showed that reactions pathways for the oxidation of methyl esters in the low-temperature range are similar to that of alkanes.

  14. Phase Aberration and Attenuation Effects on Acoustic Radiation Force-Based Shear Wave Generation.

    Science.gov (United States)

    Carrascal, Carolina Amador; Aristizabal, Sara; Greenleaf, James F; Urban, Matthew W

    2016-02-01

    Elasticity is measured by shear wave elasticity imaging (SWEI) methods using acoustic radiation force to create the shear waves. Phase aberration and tissue attenuation can hamper the generation of shear waves for in vivo applications. In this study, the effects of phase aberration and attenuation in ultrasound focusing for creating shear waves were explored. This includes the effects of phase shifts and amplitude attenuation on shear wave characteristics such as shear wave amplitude, shear wave speed, shear wave center frequency, and bandwidth. Two samples of swine belly tissue were used to create phase aberration and attenuation experimentally. To explore the phase aberration and attenuation effects individually, tissue experiments were complemented with ultrasound beam simulations using fast object-oriented C++ ultrasound simulator (FOCUS) and shear wave simulations using finite-element-model (FEM) analysis. The ultrasound frequency used to generate shear waves was varied from 3.0 to 4.5 MHz. Results: The measured acoustic pressure and resulting shear wave amplitude decreased approximately 40%-90% with the introduction of the tissue samples. Acoustic intensity and shear wave displacement were correlated for both tissue samples, and the resulting Pearson's correlation coefficients were 0.99 and 0.97. Analysis of shear wave generation with tissue samples (phase aberration and attenuation case), measured phase screen, (only phase aberration case), and FOCUS/FEM model (only attenuation case) showed that tissue attenuation affected the shear wave generation more than tissue aberration. Decreasing the ultrasound frequency helped maintain a focused beam for creation of shear waves in the presence of both phase aberration and attenuation.

  15. [Frequency of chromosome aberrations in residents of the Semipalatinsk Oblast].

    Science.gov (United States)

    Gubitskaia, E G; Akhmatullina, N B; Vsevolodov, E B; Bishnevskaia, S S; Sharipov, I K; Cherednichenko, O G

    1999-06-01

    Cytogenetic analysis of the population of the Beskaragai district of the Semipalatinsk oblast adjacent to the territory of the nuclear test site was conducted by means of an ecological genetic questionnaire and cytogenetic examination of metaphase chromosomes. An increase in the total mutation level in the region was observed. The frequency of chromosome aberrations among the population of the Beskaragai district (3.2%) was statistically significantly (about 1.5 times) higher than the background levels in the clear regions (from 1 to 2%). Furthermore, the frequency of aberrations in adolescents was comparable with that in the adults. The spectrum of chromosome aberrations pointed to a significant contribution of radiation component to the mutagenesis.

  16. Canine urothelial carcinoma: genomically aberrant and comparatively relevant.

    Science.gov (United States)

    Shapiro, S G; Raghunath, S; Williams, C; Motsinger-Reif, A A; Cullen, J M; Liu, T; Albertson, D; Ruvolo, M; Bergstrom Lucas, A; Jin, J; Knapp, D W; Schiffman, J D; Breen, M

    2015-06-01

    Urothelial carcinoma (UC), also referred to as transitional cell carcinoma (TCC), is the most common bladder malignancy in both human and canine populations. In human UC, numerous studies have demonstrated the prevalence of chromosomal imbalances. Although the histopathology of the disease is similar in both species, studies evaluating the genomic profile of canine UC are lacking, limiting the discovery of key comparative molecular markers associated with driving UC pathogenesis. In the present study, we evaluated 31 primary canine UC biopsies by oligonucleotide array comparative genomic hybridization (oaCGH). Results highlighted the presence of three highly recurrent numerical aberrations: gain of dog chromosome (CFA) 13 and 36 and loss of CFA 19. Regional gains of CFA 13 and 36 were present in 97 % and 84 % of cases, respectively, and losses on CFA 19 were present in 77 % of cases. Fluorescence in situ hybridization (FISH), using targeted bacterial artificial chromosome (BAC) clones and custom Agilent SureFISH probes, was performed to detect and quantify these regions in paraffin-embedded biopsy sections and urine-derived urothelial cells. The data indicate that these three aberrations are potentially diagnostic of UC. Comparison of our canine oaCGH data with that of 285 human cases identified a series of shared copy number aberrations. Using an informatics approach to interrogate the frequency of copy number aberrations across both species, we identified those that had the highest joint probability of association with UC. The most significant joint region contained the gene PABPC1, which should be considered further for its role in UC progression. In addition, cross-species filtering of genome-wide copy number data highlighted several genes as high-profile candidates for further analysis, including CDKN2A, S100A8/9, and LRP1B. We propose that these common aberrations are indicative of an evolutionarily conserved mechanism of pathogenesis and harbor genes

  17. Cancer biomarkers defined by autoantibody signatures to aberrant O-glycopeptide epitopes

    DEFF Research Database (Denmark)

    Wandall, Hans H; Blixt, Ola; Tarp, Mads A

    2010-01-01

    Autoantibodies to cancer antigens hold promise as biomarkers for early detection of cancer. Proteins that are aberrantly processed in cancer cells are likely to present autoantibody targets. The extracellular mucin MUC1 is overexpressed and aberrantly glycosylated in many cancers; thus, we evalua...

  18. Impact of types of lymphocyte chromosomal aberrations on human cancer risk

    DEFF Research Database (Denmark)

    Hagmar, Lars; Strömberg, Ulf; Bonassi, Stefano

    2004-01-01

    The frequency of cells with structural chromosomal aberrations (CAs) in peripheral blood lymphocytes is the first genotoxicity biomarker that has shown an association with cancer risk. CAs are usually divided into chromosome-type (CSAs) and chromatid-type aberrations (CTAs), with different mechan...

  19. Aberrant Intrinsic Activity and Connectivity in Cognitively Normal Parkinson’s Disease

    Directory of Open Access Journals (Sweden)

    Deborah L. Harrington

    2017-06-01

    pathological, rather than compensatory influence on cognitive abilities tested in this study. Receiver operating curve analyses demonstrated excellent sensitivity (≥90% of rsfMRI variables in distinguishing patients from controls, but poor accuracy for brain volume and cognitive variables. Altogether these results provide new insights into the topology, cognitive relevance, and sensitivity of aberrant intrinsic activity and connectivity that precedes clinically significant cognitive impairment. Longitudinal studies are needed to determine if these neurocognitive associations presage the development of future mild cognitive impairment or dementia.

  20. Three-dimensional optical transfer functions in the aberration-corrected scanning transmission electron microscope.

    Science.gov (United States)

    Jones, L; Nellist, P D

    2014-05-01

    In the scanning transmission electron microscope, hardware aberration correctors can now correct for the positive spherical aberration of round electron lenses. These correctors make use of nonround optics such as hexapoles or octupoles, leading to the limiting aberrations often being of a nonround type. Here we explore the effect of a number of potential limiting aberrations on the imaging performance of the scanning transmission electron microscope through their resulting optical transfer functions. In particular, the response of the optical transfer function to changes in defocus are examined, given that this is the final aberration to be tuned just before image acquisition. The resulting three-dimensional optical transfer functions also allow an assessment of the performance of a system for focal-series experiments or optical sectioning applications. © 2014 The Authors Journal of Microscopy © 2014 Royal Microscopical Society.

  1. Stable and unstable chromosomal aberrations in workers at nuclear waste repository

    International Nuclear Information System (INIS)

    Hadjidekova, V.; Atanasova, P.; Iovchev, M.; Agova, S.

    2004-01-01

    A cytogenetic analysis of chromosomal aberrations was performed on 15 workers from final nuclear waste repository 'Novi Han'. The frequency of chromosomal aberrations were estimated in peripheral blood lymphocytes by conventional staining with Giemza and fluorescent in situ hybridization staining (FISH) using DNA specific probes. The results are compared with a control group from the administrative staff of the radioactive storage. All persons were interviewed by a special questionnaire list for professional, medical, and social status. The comparison of the results does not show increase of the frequency of unstable chromosomal aberrations detected by conventional staining. The frequency of stable chromosomal aberrations detected by FISH were significantly higher in workers group than in controls, although the statistical significance is low. The results show that FISH test is found to be more sensitive than conventional chromosomal analysis as a cytogenetic monitor test of the occupationally exposed subjects. (authors)

  2. Effects of scallop shell extract on scopolamine-induced memory impairment and MK801-induced locomotor activity

    OpenAIRE

    HASEGAWA, Yasushi; INOUE, Tatsuro; KAWAMINAMI, Satoshi; FUJITA, Miho

    2016-01-01

    ObjectiveTo evaluate the neuroprotective effects of the organic components of scallop shells (scallop shell extract) on memory impairment and locomotor activity induced by scopolamine or 5-methyl-10,11-dihydro-5H-dibenzo (a,d) cyclohepten-5,10-imine (MK801).MethodsEffect of the scallop shell extract on memory impairment and locomotor activity was investigated using the Y-maze test, the Morris water maze test, and the open field test.ResultsScallop shell extract significantly reduced scopolami...

  3. Long-term exposure to noise impairs cortical sound processing and attention control.

    Science.gov (United States)

    Kujala, Teija; Shtyrov, Yury; Winkler, Istvan; Saher, Marieke; Tervaniemi, Mari; Sallinen, Mikael; Teder-Sälejärvi, Wolfgang; Alho, Kimmo; Reinikainen, Kalevi; Näätänen, Risto

    2004-11-01

    Long-term exposure to noise impairs human health, causing pathological changes in the inner ear as well as other anatomical and physiological deficits. Numerous individuals are daily exposed to excessive noise. However, there is a lack of systematic research on the effects of noise on cortical function. Here we report data showing that long-term exposure to noise has a persistent effect on central auditory processing and leads to concurrent behavioral deficits. We found that speech-sound discrimination was impaired in noise-exposed individuals, as indicated by behavioral responses and the mismatch negativity brain response. Furthermore, irrelevant sounds increased the distractibility of the noise-exposed subjects, which was shown by increased interference in task performance and aberrant brain responses. These results demonstrate that long-term exposure to noise has long-lasting detrimental effects on central auditory processing and attention control.

  4. Aberrant expression of CKLF-like MARVEL transmembrane member 5 (CMTM5) by promoter methylation in myeloid leukemia.

    Science.gov (United States)

    Niu, Jihong; Li, Henan; Zhang, Yao; Li, Jinlan; Xie, Min; Li, Lingdi; Qin, Xiaoying; Qin, Yazhen; Guo, Xiaohuan; Jiang, Qian; Liu, Yanrong; Chen, Shanshan; Huang, Xiaojun; Han, Wenling; Ruan, Guorui

    2011-06-01

    CMTM5 has been shown to exhibit tumor suppressor activities, however, its role in leukemia is unclear. Herein we firstly reported the expression and function of CMTM5 in myeloid leukemia. CMTM5 was down-regulated, or undetectable, in leukemia cell lines and bone marrow cells from leukemia patients with promoter methylation. Ectopic expression of CMTM5-v1 strongly inhibited the proliferation of K562 and MEG-01 cells. In addition, significant negative correlations were observed between CMTM5 and three leukemia-specific fusion genes (AML1-ETO, PML-RARα and BCR/ABL1). CMTM5 expression was up-regulated in patients who had undergone treatment. Therefore, CMTM5 may be involved in the pathomechanism of myeloid leukemias. Copyright © 2010 Elsevier Ltd. All rights reserved.

  5. Non-linear character of dose dependences of chromosome aberration frequency in radiation-damaged root

    International Nuclear Information System (INIS)

    Kravets, E.A.; Berezhnaya, V.V.; Sakada, V.I.; Rashidov, N.M.; Grodzinskij, D.M.; Kravets, E.A.; Berezhnaya, V.V.; Sakada, V.I.; Rashidov, N.M.; Grodzinskij, D.M.

    2012-01-01

    The dose dependences of the aberrant anaphases in the root meristem in 48 hours after the irradiation have non-linear character and a plateau in the region about 6-8 Gy. The plateau indicates the activation of recovery processes. In the plateau range, the level of damages for this genotype is 33% for aberrant anaphases (FAA), 2.3 aberrations per aberrant anaphase (A/AC), and 0.74 aberrations for the total number of anaphases. At 10 Gy, the dose curve forms the exponential region caused by the involvement of the large number of new cells with unrepaired damages in the mutation process. The increase of A/AC to 1.1 indicate the ''criticality'' of the meristem radiation damage.

  6. Descriptive evaluation of chromosome aberrations in blood lymphocytes due to gamma-irradiation

    International Nuclear Information System (INIS)

    Medina III, F.S.; Gregorio, J.S.; Vinoya, P.C.; Panlaque, C.A.

    1983-01-01

    To induce and evaluate the effect of radiation among Filipinos, frequencies and types of ν-ray induced chromosome aberrations were studied with peripheral lymphocytes from 19 donors. Peripheral blood samples were irradiated at 0 Gray, 500 mGy, 1 Gy, 2 Gy, 3 Gy and 4 Gy. Irradiated blood samples were cultured by the same standard technique as that commonly used for human blood lymphocytes. Our observations showed that irradiation causes chromosomal aberration similar to effects observed in Caucasians. Our study confirm that irradiation causes an increase of the chromosome aberrations types normally found in the control (gaps, chromatid breaks and chromosome fragments) and can induce aberrations which are rarely observed in non-exposed individual (deletions, translocations, polycentrics, rings, and despiralizations). (author)

  7. Chromosome aberration frequency in blood lymphocytes of animals with 239Pu lung burdens

    International Nuclear Information System (INIS)

    Brooks, A.L.; LaBauve, R.J.; McClellan, R.O.; Jensen, D.A.

    1976-01-01

    Other investigators have suggested a causal relationship between accidental 239 Pu exposures in man and the presence of chromosome aberrations in blood lymphocytes. For experimental assessment of this relationship, 16 rhesus monkeys and 171 Chinese hamsters were exposed to 239 PuO 2 aerosols and an additional five hamsters were injected with 239 Pu citrate, and the frequency of aberrations in blood lymphocyte was determined. Hamsters with the highest lung burden had a median survival time of about 80 days. No deaths occurred in any of the other treated hamsters or monkeys by 250 days after 239 Pu inhalation. Hamsters sacrificed at 30 days showed an increase in chromosome aberration frequency with increasing dose to lungs. By 120 days after inhalation, the aberration frequency in the controls was 0.012. The frequency in animals with doses that produced significant life shortening had decreased to 0.018 and to 0.032 aberration/cell in animals with lower doses. At 380 days after injection of 2 nCi of 239 Pu citrate per gram of body weight, hamster lymphocytes had an aberration frequency of 0.048 aberration/cell. The level of chromosome damage in the 239 PuO 2 -exposed monkeys at 30 and 90 days after inhalation was not different from that observed in controls. Possible reasons for differences between the experimental animal observations and findings in man are discussed

  8. Explanation of test and assessment of chromosomal aberrations on occupational health examinations for radiation workers

    International Nuclear Information System (INIS)

    Lu Yumin; Fu Baohua; Han Lin; Wang Xi'ai; Zhao Fengling

    2012-01-01

    Test and Assessment of Chromosomal Aberrations on Occupational Health Examinations for Radiation Workers was formulated for standardizing analysis and outcome assessment of chromosomal aberrations on occupational health examinations for radiation workers. In order to provide experimental and theoretical basis for implementation and extension of this standard, this paper interpreted the standard comprehensively, including some existed problems that methods on detection and outcome assessment of chromosomal aberrations is not unified in different laboratories in China, and related criteria,laws and regulations at home and abroad are not fit for the detection of chromosomal aberrations for radiation workers very well; some introduction on methods of chromosomal slide preparation, discriminant analysis and outcome assessment of chromosomal aberration; and some influencing factors in the quality of chromosomal aberration detection. (authors)

  9. DNA methyltransferase 1 mutations and mitochondrial pathology: is mtDNA methylated?

    Directory of Open Access Journals (Sweden)

    Alessandra eMaresca

    2015-03-01

    Full Text Available Autosomal dominant cerebellar ataxia, deafness and narcolepsy (ADCA-DN and Hereditary sensory neuropathy with dementia and hearing loss (HSN1E are two rare, overlapping neurodegenerative syndromes that have been recently linked to allelic dominant pathogenic mutations in the DNMT1 gene, coding for DNA (cytosine-5-methyltransferase 1. DNMT1 is the enzyme responsible for maintaining the nuclear genome methylation patterns during the DNA replication and repair, thus regulating gene expression. The mutations responsible for ADCA-DN and HSN1E affect the replication foci targeting sequence domain, which regulates DNMT1 binding to chromatin. DNMT1 dysfunction is anticipated to lead to a global alteration of the DNA methylation pattern with predictable downstream consequences on gene expression. Interestingly, ADCA-DN and HSN1E phenotypes share some clinical features typical of mitochondrial diseases, such as optic atrophy, peripheral neuropathy and deafness, and some biochemical evidence of mitochondrial dysfunction. The recent discovery of a mitochondrial isoform of DNMT1 and its proposed role in methylating mitochondrial DNA (mtDNA suggests that DNMT1 mutations may directly affect mtDNA and mitochondrial physiology. On the basis of this latter finding the link between DNMT1 abnormal activity and mitochondrial dysfunction in ADCA-DN and HSN1E appears intuitive, however mtDNA methylation remains highly debated. In the last years several groups demonstrated the presence of 5-methylcytosine in mtDNA by different approaches, but, on the other end, the opposite evidence that mtDNA is not methylated has also been published. Since over 1500 mitochondrial proteins are encoded by the nuclear genome, the altered methylation of these genes may well have a critical role in leading to the mitochondrial impairment observed in ADCA-DN and HSN1E. Thus, many open questions still remain unanswered, such as why mtDNA should be methylated, and how this process is

  10. Integrated analysis of gene expression, CpG island methylation, and gene copy number in breast cancer cells by deep sequencing.

    Directory of Open Access Journals (Sweden)

    Zhifu Sun

    Full Text Available We used deep sequencing technology to profile the transcriptome, gene copy number, and CpG island methylation status simultaneously in eight commonly used breast cell lines to develop a model for how these genomic features are integrated in estrogen receptor positive (ER+ and negative breast cancer. Total mRNA sequence, gene copy number, and genomic CpG island methylation were carried out using the Illumina Genome Analyzer. Sequences were mapped to the human genome to obtain digitized gene expression data, DNA copy number in reference to the non-tumor cell line (MCF10A, and methylation status of 21,570 CpG islands to identify differentially expressed genes that were correlated with methylation or copy number changes. These were evaluated in a dataset from 129 primary breast tumors. Gene expression in cell lines was dominated by ER-associated genes. ER+ and ER- cell lines formed two distinct, stable clusters, and 1,873 genes were differentially expressed in the two groups. Part of chromosome 8 was deleted in all ER- cells and part of chromosome 17 amplified in all ER+ cells. These loci encoded 30 genes that were overexpressed in ER+ cells; 9 of these genes were overexpressed in ER+ tumors. We identified 149 differentially expressed genes that exhibited differential methylation of one or more CpG islands within 5 kb of the 5' end of the gene and for which mRNA abundance was inversely correlated with CpG island methylation status. In primary tumors we identified 84 genes that appear to be robust components of the methylation signature that we identified in ER+ cell lines. Our analyses reveal a global pattern of differential CpG island methylation that contributes to the transcriptome landscape of ER+ and ER- breast cancer cells and tumors. The role of gene amplification/deletion appears to more modest, although several potentially significant genes appear to be regulated by copy number aberrations.

  11. Automatic phase aberration compensation for digital holographic microscopy based on deep learning background detection.

    Science.gov (United States)

    Nguyen, Thanh; Bui, Vy; Lam, Van; Raub, Christopher B; Chang, Lin-Ching; Nehmetallah, George

    2017-06-26

    We propose a fully automatic technique to obtain aberration free quantitative phase imaging in digital holographic microscopy (DHM) based on deep learning. The traditional DHM solves the phase aberration compensation problem by manually detecting the background for quantitative measurement. This would be a drawback in real time implementation and for dynamic processes such as cell migration phenomena. A recent automatic aberration compensation approach using principle component analysis (PCA) in DHM avoids human intervention regardless of the cells' motion. However, it corrects spherical/elliptical aberration only and disregards the higher order aberrations. Traditional image segmentation techniques can be employed to spatially detect cell locations. Ideally, automatic image segmentation techniques make real time measurement possible. However, existing automatic unsupervised segmentation techniques have poor performance when applied to DHM phase images because of aberrations and speckle noise. In this paper, we propose a novel method that combines a supervised deep learning technique with convolutional neural network (CNN) and Zernike polynomial fitting (ZPF). The deep learning CNN is implemented to perform automatic background region detection that allows for ZPF to compute the self-conjugated phase to compensate for most aberrations.

  12. Chromosome aberrations induced by 135 MeV of carbon and neon beams by PRC

    International Nuclear Information System (INIS)

    Ohara, Hiroshi; Minamihisamatu, Masako; Kanai, Tatsuaki; Eguchi-Kasai, Kiyomi; Itsukaichi, Hiromi; Fukutsu, Kumiko; Yatagai, Fumio; Sato, Kohki.

    1993-01-01

    Radiation-induced chromosome aberration can be an indicator of the radiation lesions in irradiated cells. Many studies on chromosome aberration induced by X-ray and γ - ray have indicated that the dose response of the aberration can be fitted to a quadratic equation, Y = αD + βD 2 , and it becomes linear as the LET of beams increases. The main subject of this study was some quantification of chromosomal aberration induced by 135 MeV/n carbon and neon beams produced by the RRC, the operation of which increasingly became useful for the studies on heavy ion biology. The results will meet with some of the radiobiological features connected to the specific action of charged particles. The materials used, the experimental method and the results are reported. Four curves of the dose response for the production of dicentric and ring types of aberration induced by carbon and neon beams and four different dose average LETs are given. Aberration production rate became higher as LET increased. Chromosome aberration can be quantified as an indicator of radiation lesions in the case of high LET particle radiation. (K.I.)

  13. Influence of atmospheric turbulence on the energy focusability of Gaussian beams with spherical aberration

    International Nuclear Information System (INIS)

    Deng, Jinping; Ji, Xiaoling

    2014-01-01

    By using the four-dimensional (4D) computer code of the time-dependent propagation of laser beams through atmospheric turbulence, the influence of atmospheric turbulence on the energy focusability of Gaussian beams with spherical aberration is studied in detail, where the mean-squared beam width, the power in the bucket (PIB), the β parameter and the energy Strehl ratio are taken as the characteristic parameters. It is shown that turbulence results in beam spreading, and the effect of spherical aberration on the beam spreading decreases due to turbulence. Gaussian beams with negative spherical aberration are more affected by turbulence than those with positive spherical aberration. For the negative spherical aberration case, the focus position moves to the source plane due to turbulence. It is mentioned that the influence of turbulence on the energy focusability defined by a certain energy (i.e. PIB = 63%) is very heavy when the negative spherical aberration is very heavy. On the other hand, the influence of turbulence on the energy focusability defined by the energy within a given bucket radius (i.e. mean-squared beam width) is heaviest when a certain negative spherical aberration coefficient is adopted. (papers)

  14. Chromosome aberrations as a biological dosimeter in Thorotrast patients: dosimetric problems

    International Nuclear Information System (INIS)

    Kemmer, W.; Steinstraesser, A.; Muth, H.

    1979-01-01

    The results of chromosome aberration analyses in 68 Thorotrast patients are discussed. In all patients dicentric chromosome aberrations were found but the chromosome aberration rate neither corresponds with the calculated whole body activity or the estimated absorbed dose in the organs of the RHS nor with the radium-224-equivalent value calculated from the radon-220 activity measured in the expired air. From x-ray examinations and histologic studies of lymph nodes the conclusion is drawn that the microdose absorbed from one lymphocyte is not in relation to the mean absorbed RHS dose, calculated from biophysical measurements

  15. Aberrant behavior and cognitive ability in preschool children

    Directory of Open Access Journals (Sweden)

    Bala Gustav

    2007-01-01

    Full Text Available The sample included 712 preschool boys and girls at the age of 4 to 7 years (mean 5.96 decimal years and standard deviation .96 from preschool institutions in Novi Sad, Sombor, Sremska Mitrovica and Bačka Palanka. Information concerning 36 indicators of aberrant behavior of the children were supplied by their parents, whereas their cognitive ability was tested by Raven’s progressive colored matrices. Based on factor analysis (promax method, four factors i.e. generators of aberrant behavior in children were singled out: aggression, anxiousness, dissociation, and hysteria, whose relations with cognitive functioning and age were also analyzed by factor analysis. Aberrant behavior and cognitive abilities show significant interrelatedness. Owing to orderly developed cognitive abilities, a child understands essence and reality of problems, realizes possibilities and manners of solving them, and succeeds in realizing successful psycho-social functioning. Developed cognitive abilities enable a child to recognize and understand her/his own reactions in different situations and develop manners of reacting, which leads to strengthening psycho-social safety and adapting behavior in accordance with her/his age and abilities.

  16. DNA methylation and gene expression of TXNIP in adult offspring of women with diabetes in pregnancy.

    Directory of Open Access Journals (Sweden)

    Azadeh Houshmand-Oeregaard

    Full Text Available Fetal exposure to maternal diabetes increases the risk of type 2 diabetes (T2DM, possibly mediated by epigenetic mechanisms. Low blood TXNIP DNA methylation has been associated with elevated glucose levels and risk of T2DM, and increased skeletal muscle TXNIP gene expression was reported in subjects with impaired glucose metabolism or T2DM. Subcutaneous adipose tissue (SAT and skeletal muscle play a key role in the control of whole body glucose metabolism and insulin action. The extent to which TXNIP DNA methylation levels are decreased and/or gene expression levels increased in SAT or skeletal muscle of a developmentally programmed at-risk population is unknown.The objective of this study was to investigate TXNIP DNA methylation and gene expression in SAT and skeletal muscle, and DNA methylation in blood, from adult offspring of women with gestational diabetes (O-GDM, n = 82 or type 1 diabetes (O-T1DM, n = 67 in pregnancy compared with offspring of women from the background population (O-BP, n = 57.SAT TXNIP DNA methylation was increased (p = 0.032 and gene expression decreased (p = 0.001 in O-GDM, but these differences were attenuated after adjustment for confounders. Neither blood/muscle TXNIP DNA methylation nor muscle gene expression differed between groups.We found no evidence of decreased TXNIP DNA methylation or increased gene expression in metabolic target tissues of offspring exposed to maternal diabetes. Further studies are needed to confirm and understand the paradoxical SAT TXNIP DNA methylation and gene expression changes in O-GDM subjects.

  17. Chromosome aberration assays in barley (Hordeum vulgare)

    Energy Technology Data Exchange (ETDEWEB)

    Constantin, M J [Univ. of Tennessee, Knoxville; Nilan, R A

    1982-01-01

    Barley is an exceellent organism for studies of induced chromosome aberrations because of its few (2n = 2x = 14) relatively large chromosomes. Root-tip and shoot-tip cells have been used extensively for the study of ionizing radiation-induced chromosome aberrations. The general procedures are well known, the technology is simple and easy to learn, and the assays are relatively quick and inexpensive. Both root tips and shoot tips can be used for the study of chemical mutagens as well as ionizing radiations. Pollen mother cells are well suited for studying the effects of mutagens on meiotic chromosomes. The literature review for the Gene-Tox Program reported on 61 chemicals tested for their effects on barley chromosomes. Of these, 90% were reported to be either positive or positive dose-related, while 7% were negative and 3% were questionable. Barley assays based on chromosomal aberrations are useful to detect the clastogenic potency of chemicals under laboratory conditions. Indications are that the data from barley can be used to corroborate data obtained from other organisms. Among the classes of chemicals assayed were: alcohols and phenols; alkaloids; epoxides; alkyl sulfates; amides and sulfonamides; aromatic amines; aryl halides; aziridines; alkenes; carbamates; hydroazides; nitroaromatics; nitrosamides; nitrosources; phenothiazines; and polycyclic aromatic hydrocarbons.

  18. Study of chromosome aberrations on the workers occupationally exposed to thorium and rare earth mixed dust

    International Nuclear Information System (INIS)

    Zhang Wei; Wang Chunyan; Lv Huiming; Zhang Cuilan; Hao Shuxia; Su Xu; Jia Kejun; Liu Yufei

    2008-01-01

    Objective: To study the effect of thorium and rare earth mixed dust on chromosome aberrations in the lymphocytes of occupational exposed workers. Methods: Analyses of unstable chromosome aberrations on 53 occupational exposed workers and 58 control workers were carried out by the conventional Giemsa staining method. Fluorescence in situ hybridization method was performed to analyze the chromosome stable aberrations on 10 occupational exposed workers and l0 control workers. Results: The frequencies of chromosomal aberration cells, dicentrics plus rings, total aberrations in exposed workers were significantly higher than those in controls. No significant difference was found in the frequency of acentric aberrations between exposed and non-exposed workers. No significant difference was found in the frequency of translocations between exposed and non-exposed workers. Conclusions: Chronically occupational exposure to thorium and rare earth mixed dust can increase the induction of unstable chromosome aberration, but the increase of stable chromosome aberrations (translocation) can not be observed. (authors)

  19. Stress-induced gene expression and behavior are controlled by DNA methylation and methyl donor availability in the dentate gyrus

    Science.gov (United States)

    Saunderson, Emily A.; Spiers, Helen; Gutierrez-Mecinas, Maria; Trollope, Alexandra F.; Shaikh, Abeera; Mill, Jonathan; Reul, Johannes M. H. M.

    2016-01-01

    Stressful events evoke long-term changes in behavioral responses; however, the underlying mechanisms in the brain are not well understood. Previous work has shown that epigenetic changes and immediate-early gene (IEG) induction in stress-activated dentate gyrus (DG) granule neurons play a crucial role in these behavioral responses. Here, we show that an acute stressful challenge [i.e., forced swimming (FS)] results in DNA demethylation at specific CpG (5′-cytosine–phosphate–guanine-3′) sites close to the c-Fos (FBJ murine osteosarcoma viral oncogene homolog) transcriptional start site and within the gene promoter region of Egr-1 (early growth response protein 1) specifically in the DG. Administration of the (endogenous) methyl donor S-adenosyl methionine (SAM) did not affect CpG methylation and IEG gene expression at baseline. However, administration of SAM before the FS challenge resulted in an enhanced CpG methylation at the IEG loci and suppression of IEG induction specifically in the DG and an impaired behavioral immobility response 24 h later. The stressor also specifically increased the expression of the de novo DNA methyltransferase Dnmt3a [DNA (cytosine-5-)-methyltransferase 3 alpha] in this hippocampus region. Moreover, stress resulted in an increased association of Dnmt3a enzyme with the affected CpG loci within the IEG genes. No effects of SAM were observed on stress-evoked histone modifications, including H3S10p-K14ac (histone H3, phosphorylated serine 10 and acetylated lysine-14), H3K4me3 (histone H3, trimethylated lysine-4), H3K9me3 (histone H3, trimethylated lysine-9), and H3K27me3 (histone H3, trimethylated lysine-27). We conclude that the DNA methylation status of IEGs plays a crucial role in FS-induced IEG induction in DG granule neurons and associated behavioral responses. In addition, the concentration of available methyl donor, possibly in conjunction with Dnmt3a, is critical for the responsiveness of dentate neurons to environmental

  20. Delayed formation of chromosome aberrations in mouse pachytebne spermatocytes treated with triethylenemelamine (TEM)

    International Nuclear Information System (INIS)

    Generoso, W.M.; Krishna, M.; Sotomayor, R.E.; Cacheiro, N.L.A.

    1977-01-01

    Induction of chromosome aberrations in pachytene spermatocytes of mice by 2 mg/kg TEM was compared with induction by 400 R x rays. These doses induced comparably high dominant lethal effects in pachytene spermatocytes of mice. Cytological analysis at diakinesis-metaphase I stage showed that whereas 76.4% of the cells treated with x rays at pachytene stage had aberrations, the frequencies observed in two TEM experiments were only 0.8 and 2.2%. On the other hand, 5% of the progeny from TEM-treated pachytene spermatocytes were found to be translocation heterozygotes. This is the first report on the recovery of heritable translocations from treated spermatocytes of mice. The aberration frequencies observed for TEM in diakinesis-metaphase I were much too low to account for all the lethal mutations and heritable translocations. Thus, the formation of the bulk of aberrations induced by TEM in pachytene spermatocytes was delayed--a marked contrast to the more immediate formation of x-ray-induced aberrations. It is postulated that the formation of the bulk of TEM-induced aberrations in pachytene spermatocytes and in certain postmeiotic stages occurs sometime during spermiogenesis, and not through the operation of postfertilization pronuclear DNA synthesis