WorldWideScience

Sample records for aberrant human cancer

  1. miRNA gene promoters are frequent targets of aberrant DNA methylation in human breast cancer.

    Science.gov (United States)

    Vrba, Lukas; Muñoz-Rodríguez, José L; Stampfer, Martha R; Futscher, Bernard W

    2013-01-01

    miRNAs are important regulators of gene expression that are frequently deregulated in cancer, with aberrant DNA methylation being an epigenetic mechanism involved in this process. We previously identified miRNA promoter regions active in normal mammary cell types and here we analyzed which of these promoters are targets of aberrant DNA methylation in human breast cancer cell lines and breast tumor specimens. Using 5-methylcytosine immunoprecipitation coupled to miRNA tiling microarray hybridization, we performed comprehensive evaluation of DNA methylation of miRNA gene promoters in breast cancer. We found almost one third (55/167) of miRNA promoters were targets for aberrant methylation in breast cancer cell lines. Breast tumor specimens displayed DNA methylation of majority of these miRNA promoters, indicating that these changes in DNA methylation might be clinically relevant. Aberrantly methylated miRNA promoters were, similar to protein coding genes, enriched for promoters targeted by polycomb in normal cells. Detailed analysis of selected miRNA promoters revealed decreased expression of miRNA linked to increased promoter methylation for mir-31, mir-130a, let-7a-3/let-7b, mir-155, mir-137 and mir-34b/mir-34c genes. The proportion of miRNA promoters we found aberrantly methylated in breast cancer is several fold larger than that observed for protein coding genes, indicating an important role of DNA methylation in miRNA deregulation in cancer.

  2. Aberrant rel/nfkb genes and activity in human cancer.

    Science.gov (United States)

    Rayet, B; Gélinas, C

    1999-11-22

    Rel/NF-kappaB transcription factors are key regulators of immune, inflammatory and acute phase responses and are also implicated in the control of cell proliferation and apoptosis. Remarkable progress has been made in understanding the signal transduction pathways that lead to the activation of Rel/NF-kappaB factors and the consequent induction of gene expression. Evidence linking deregulated Rel/NF-kappaB activity to oncogenesis in mammalian systems has emerged in recent years, consistent with the acute oncogenicity of the viral oncoprotein v-Rel in animal models. Chromosomal amplification, overexpression and rearrangement of genes coding for Rel/NF-kappaB factors have been noted in many human hematopoietic and solid tumors. Persistent nuclear NF-kappaB activity was also described in several human cancer cell types, as a result of constitutive activation of upstream signaling kinases or mutations inactivating inhibitory IkappaB subunits. Studies point to a correlation between the activation of cellular gene expression by Rel/NF-kappaB factors and their participation in the malignant process. Experiments implicating NF-kappaB in the control of the apoptotic response also support a role in oncogenesis and in the resistance of tumor cells to chemotherapy. This review focuses on the status of the rel, nfkb and ikb genes and their activity in human tumors and their association with the onset or progression of malignancies.

  3. Impact of types of lymphocyte chromosomal aberrations on human cancer risk

    DEFF Research Database (Denmark)

    Hagmar, Lars; Strömberg, Ulf; Bonassi, Stefano

    2004-01-01

    The frequency of cells with structural chromosomal aberrations (CAs) in peripheral blood lymphocytes is the first genotoxicity biomarker that has shown an association with cancer risk. CAs are usually divided into chromosome-type (CSAs) and chromatid-type aberrations (CTAs), with different...... blood lymphocytes, using Nordic (1981 subjects with CA data, 1871 subjects with CSA/CTA data) and Italian (1573 subjects with CA data, 877 subjects with CTA/CSA data) cohorts, with a median follow-up of 17 years. High levels of CAs at test were clearly associated with increased total cancer incidence...

  4. A DNA methylation signature associated with aberrant promoter DNA hypermethylation of DNMT3B in human colorectal cancer.

    Science.gov (United States)

    Huidobro, Covadonga; Urdinguio, Rocío G; Rodríguez, Ramón María; Mangas, Cristina; Calvanese, Vincenzo; Martínez-Camblor, Pablo; Ferrero, Cecilia; Parra-Blanco, Adolfo; Rodrigo, Luis; Obaya, Alvaro J; Suárez-Fernández, Laura; Astudillo, Aurora; Hernando, Henar; Ballestar, Esteban; Fernández, Agustín F; Fraga, Mario F

    2012-09-01

    Altered promoter DNA methylation, one of the most important molecular alterations in cancer, is proposed to correlate with deregulation of DNA methyltransferases, although the molecular mechanisms implicated are still poorly understood. Here we show that the de novo DNA methyltransferase DNMT3B is frequently repressed in human colorectal cancer cell lines (CCL) and primary tumours by aberrant DNA hypermethylation of its distal promoter. At the epigenome level, DNMT3B promoter hypermethylation was associated with the hypomethylation of gene promoters usually hypermethylated in the healthy colon. Forced DNMT3B overexpression in cancer cells restored the methylation levels of these promoters in the healthy colon. Our results show a new molecular mechanism of aberrant DNMT3B regulation in colon cancer and suggest that its expression is associated with the methylation of constitutively hypermethylated promoters in the healthy colon. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. Chromosomal aberrations in lymphocytes predict human cancer: a report from the European Study Group on Cytogenetic Biomarkers and Health (ESCH)

    DEFF Research Database (Denmark)

    Hagmar, L; Bonassi, S; Strömberg, U

    1998-01-01

    Chromosomal aberrations (CAs), sister chromatid exchanges (SCEs), and micronuclei (MN) in peripheral blood lymphocytes have for decades been used as cytogenetic biomarkers to survey genotoxic risks in the work environment. The conceptual basis for this application has been the idea that increased...... similar within each national cohort. This result suggests that the frequency of CAs in peripheral blood lymphocytes is a relevant biomarker for cancer risk in humans, reflecting either early biological effects of genotoxic carcinogens or individual cancer susceptibility........ No association was seen between the SCEs or the MN frequencies and subsequent cancer incidence/mortality. The present study further supports our previous observation on the cancer predictivity of the CA biomarker, which seems to be independent of age at test, gender, and time since test. The risk patterns were...

  6. Aberrant expression of zinc transporter ZIP4 (SLC39A4) significantly contributes to human pancreatic cancer pathogenesis and progression.

    Science.gov (United States)

    Li, Min; Zhang, Yuqing; Liu, Zijuan; Bharadwaj, Uddalak; Wang, Hao; Wang, Xinwen; Zhang, Sheng; Liuzzi, Juan P; Chang, Shou-Mei; Cousins, Robert J; Fisher, William E; Brunicardi, F Charles; Logsdon, Craig D; Chen, Changyi; Yao, Qizhi

    2007-11-20

    Zinc is an essential trace element and catalytic/structural component used by many metalloenzymes and transcription factors. Recent studies indicate a possible correlation of zinc levels with the cancer risk; however, the exact role of zinc and zinc transporters in cancer progression is unknown. We have observed that a zinc transporter, ZIP4 (SLC39A4), was substantially overexpressed in 16 of 17 (94%) clinical pancreatic adenocarcinoma specimens compared with the surrounding normal tissues, and ZIP4 mRNA expression was significantly higher in human pancreatic cancer cells than human pancreatic ductal epithelium (HPDE) cells. This indicates that aberrant ZIP4 up-regulation may contribute to the pancreatic cancer pathogenesis and progression. We studied the effects of ZIP4 overexpression in pancreatic cancer cell proliferation in vitro and pancreatic cancer progression in vivo. We found that forced expression of ZIP4 increased intracellular zinc levels, increased cell proliferation by 2-fold in vitro, and significantly increased tumor volume by 13-fold in the nude mice model with s.c. xenograft compared with the control cells. In the orthotopic nude mice model, overexpression of ZIP4 not only increased the primary tumor weight (7.2-fold), it also increased the peritoneal dissemination and ascites incidence. Moreover, increased cell proliferation and higher zinc content were also observed in the tumor tissues that overexpressed ZIP4. These data reveal an important outcome of aberrant ZIP4 expression in contributing to pancreatic cancer pathogenesis and progression. It may suggest a therapeutic strategy whereby ZIP4 is targeted to control pancreatic cancer growth.

  7. Aberrant hypomethylation-mediated CD147 overexpression promotes aggressive tumor progression in human prostate cancer.

    Science.gov (United States)

    Liang, Yu-Xiang; Mo, Ru-Jun; He, Hui-Chan; Chen, Jia-Hong; Zou, Jun; Han, Zhao-Dong; Lu, Jian-Ming; Cai, Chao; Zeng, Yan-Ru; Zhong, Wei-De; Wu, Chin-Lee

    2015-05-01

    Our previous study revealed the potential role of CD147 in human prostate cancer (PCa). Here, we investigated the CD147 promoter methylation status and the correlation with tumorigenicity in human PCa. CD147 mRNA and protein expression levels were both significantly higher in the 4 PCa cell lines, than in the 2 non-tumorigenic benign human prostatic epithelial cell lines (all PCD147 in PCa cell lines with significant CD147 expression as compared to non-tumorigenic benign human prostatic epithelial cell lines slowly expressing CD147. Additionally, the treatment of methylated cell lines with 5-aza-2'-deoxycytidine increased CD147 expression significantly in low-expressing cell lines and also activated the expression of matrix metalloproteinase (MMP)-2, which may be one of the most important downstream targets of CD147. Furthermore, PCa tissues displayed decreased DNA methylation in the promoter region of CD147 compared to the corresponding non-cancerous prostate tissues, and methylation intensity correlated inversely with the CD147 mRNA levels. There was a significant negative correlation between CD147 mRNA levels and the number of methylated sites in PCa tissues (r=-0.467, PCD147 may be one of the regulatory mechanisms involved in the cancer-related overexpression of CD147 and may play a crucial role in the tumorigenesis of PCa.

  8. Clinical significance of aberrant Wnt7a promoter methylation in human non-small cell lung cancer in Koreans.

    Science.gov (United States)

    Kim, Tae-Hyung; Moon, Ji-Yong; Kim, Sang-Heon; Paik, Seung Sam; Yoon, Ho Joo; Shin, Dong Ho; Park, Sung Soo; Sohn, Jang Won

    2015-02-01

    The Wnt signaling pathway has regulatory roles in cell proliferation, differentiation, and polarity. Aberrant Wnt pathway regulation can lead to abnormal cell proliferation and cancer, and loss of Wnt7a expression has been demonstrated in lung cancer cell lines. E-cadherin keeps intercellular integrity and prevents metastasis. Therefore, E-cadherin has been known as a prognostic factor in cancer. In the present study, we investigated the E-cadherin expression status by immunohistochemical stain and the Wnt7a promoter methylation status in human non-small cell lung carcinoma (NSCLC) by methylation-specific PCR. We also analyzed their correlations with clinicopathological factors. Methylation of the Wnt7a gene promoter was detected in the lung tissues of 32 of 121 (26.4%) patients with NSCLC. Wnt7a promoter methylation was correlated with advanced tumor stage (P = 0.036) and distant metastasis (P = 0.037). In addition, Wnt7a promoter methylation showed correlation with loss of E-cadherin expression (P promoter methylation was not closely related with gender, age, histological type, or smoking habit. Even though Wnt7a methylation could not show significant correlation with the long term survival of the patients with limited follow up data, these findings suggest that loss of the Wnt7a gene induced by promoter methylation might be another prognostic factor for NSCLC and that restoration of Wnt7a may be a promising treatment for NSCLC.

  9. Aberrant regulation of the LIN28A/LIN28B and let-7 loop in human malignant tumors and its effects on the hallmarks of cancer.

    Science.gov (United States)

    Wang, Tianzhen; Wang, Guangyu; Hao, Dapeng; Liu, Xi; Wang, Dong; Ning, Ning; Li, Xiaobo

    2015-06-30

    RNA binding proteins (RBPs) and microRNAs (miRNAs) are two of the most important post-transcriptional regulators of gene expression, and their aberrant expression contributes to the development of human malignancies. Let-7, one of the most well-known tumor suppressors, is frequently down-regulated in a variety of human cancers. The RBP LIN28A/LIN28B, a direct target of the let-7 family of miRNAs, is an inhibitor of let-7 biogenesis and is frequently up-regulated in cancers. Aberrant regulation of the LIN28A/LIN28B and let-7 loop in human malignant tumors is reportedly involved in cancer development, contributing to cellular proliferation, cell death resistance, angiogenesis, metastasis, metabolism reprogramming, tumor-associated inflammation, genome instability, acquiring immortality and evading immune destruction. In this review, we summarized the mechanisms of LIN28A/LIN28B and let-7 loop aberrant regulation in human cancer and discussed the roles and potential mechanisms of the LIN28A/LIN28B and let-7 loop in regulating the hallmarks of cancer. The crosstalk between LIN28A/LIN28B and let-7 loop and certain oncogenes (such as MYC, RAS, PI3K/AKT, NF-κB and β-catenin) in regulating hallmarks of cancer has also been discussed.

  10. Chromosomal aberrations in lymphocytes predict human cancer independently of exposure to carcinogens. European Study Group on Cytogenetic Biomarkers and Health

    DEFF Research Database (Denmark)

    Bonassi, S; Hagmar, L; Strömberg, U

    2000-01-01

    An increased risk of cancer in healthy individuals with high levels of chromosomal aberrations (CAs) in peripheral blood lymphocytes has been described in recent epidemiological studies. This association did not appear to be modified by sex, age, country, or time since CA test, whereas the role p...

  11. Aberrant expression of Arpin in human breast cancer and its clinical significance.

    Science.gov (United States)

    Liu, Xiangping; Zhao, Bin; Wang, Haibo; Wang, Yu; Niu, Mengdi; Sun, Ming; Zhao, Yang; Yao, Ruyong; Qu, Zhiqiang

    2016-03-01

    Arpin (Arp2/3 complex inhibitor), a novel protein found in 2013, plays a pivotal role in cell motility and migration. However, the precise role of Arpin in cancer is unclear. This study investigated the expression of Arpin in breast cancer and evaluated its correlation with the characteristics of clinical pathology and prognosis of breast cancer patients. Immunohistochemistry (IHC) for Arpin protein was performed on formalin-fixed, paraffin-embedded 176 breast cancer tissues and 43 normal breast tissues while qRT-PCR for Arpin mRNA with 104 paired tumour and paratumoural tissues from breast cancer patients respectively. The association of Arpin expression with clinical pathological features and survival was assessed in a retrospective cohort analysis of patients. The results showed that the expression of Arpin protein in cancer tissues was lower compared to that in normal breast and the expression of Arpin mRNA was also lower in cancer tissues than that in the matched paratumoural tissues. Among the 176 breast cancer patients, the lower expression of Arpin was significantly associated with advanced tumour, nodes and metastasis system stage, and the reduced Arpin expression was strongly associated with axillary lymph node metastasis using univariate and multivariate logistic regression analysis [odds ratio: 3.242; 95% confidence interval (CI): 1.526, 6.888; P breast cancer tissues with qRT-PCR and IHC, our results suggest that Arpin downregulation may contribute to the initiation and development of breast cancer metastasis. Therefore, as a potential predictive marker, Arpin deserves future studies.

  12. Aberrant Glycosylation as Biomarker for Cancer: Focus on CD43

    Directory of Open Access Journals (Sweden)

    Franca Maria Tuccillo

    2014-01-01

    Full Text Available Glycosylation is a posttranslational modification of proteins playing a major role in cell signalling, immune recognition, and cell-cell interaction because of their glycan branches conferring structure variability and binding specificity to lectin ligands. Aberrant expression of glycan structures as well as occurrence of truncated structures, precursors, or novel structures of glycan may affect ligand-receptor interactions and thus interfere with regulation of cell adhesion, migration, and proliferation. Indeed, aberrant glycosylation represents a hallmark of cancer, reflecting cancer-specific changes in glycan biosynthesis pathways such as the altered expression of glycosyltransferases and glycosidases. Most studies have been carried out to identify changes in serum glycan structures. In most cancers, fucosylation and sialylation are significantly modified. Thus, aberrations in glycan structures can be used as targets to improve existing serum cancer biomarkers. The ability to distinguish differences in the glycosylation of proteins between cancer and control patients emphasizes glycobiology as a promising field for potential biomarker identification. In this review, we discuss the aberrant protein glycosylation associated with human cancer and the identification of protein glycoforms as cancer biomarkers. In particular, we will focus on the aberrant CD43 glycosylation as cancer biomarker and the potential to exploit the UN1 monoclonal antibody (UN1 mAb to identify aberrant CD43 glycoforms.

  13. Pan-cancer analysis of ROS1 genomic aberrations

    OpenAIRE

    Wang, Yidan; 王奕丹

    2015-01-01

    The ROS proto-oncogene 1 (ROS1) encodes the ROS1 receptor kinase. ROS1 rearrangements are known to be oncogenic in glioblastoma, non–small-cell lung carcinoma (NSCLC) and cholangiocarcinoma. The clinical relevance of ROS1 genomic aberrations in other human cancers is largely unexamined. Here, we performed a pan-cancer analysis of ROS1 genomic aberrations across 20 cancer sites by interrogating the whole-exome sequencing data of the Cancer Genome Atlas (TCGA) via the cBioportal (www.cbioportal...

  14. Cancer risk in humans predicted by increased levels of chromosomal aberrations in lymphocytes: Nordic study group on the health risk of chromosome damage

    DEFF Research Database (Denmark)

    Hagmar, L; Brøgger, A; Hansteen, I L;

    1994-01-01

    Cytogenetic assays in peripheral blood lymphocytes (PBL) have been used extensively to survey the exposure of humans to genotoxic agents. The conceptual basis for this has been the hypothesis that the extent of genetic damage in PBL reflects critical events for carcinogenic processes in target...... tissues. Until now, no follow-up studies have been performed to assess the predictive value of these methods for subsequent cancer risk. In an ongoing Nordic cohort study of cancer incidence, 3182 subjects were examined between 1970 and 1988 for chromosomal aberrations (CA), sister chromatid exchange.......0009) in CA strata with regard to subsequent cancer risk. The point estimates of the standardized incidence ratio in the three CA strata were 0.9, 0.7, and 2.1, respectively. Thus, an increased level of chromosome breakage appears to be a relevant biomarker of future cancer risk....

  15. Aberrantly methylated DNA as a biomarker in breast cancer

    DEFF Research Database (Denmark)

    Kristiansen, Søren; Jørgensen, Lars Mønster; Guldberg, Per;

    2013-01-01

    hypermethylation events, their use as tumor biomarkers is usually not hampered by analytical signals from normal cells, which is a general problem for existing protein tumor markers used for clinical assessment of breast cancer. There is accumulating evidence that DNA-methylation changes in breast cancer patients......Aberrant DNA hypermethylation at gene promoters is a frequent event in human breast cancer. Recent genome-wide studies have identified hundreds of genes that exhibit differential methylation between breast cancer cells and normal breast tissue. Due to the tumor-specific nature of DNA...... into subgroups based on DNA biomarkers may improve prognosis. Serial monitoring of DNA-methylation markers in blood during treatment may be useful, particularly when the cancer burden is below the detection level for standard imaging techniques. Overall, aberrant DNA methylation has a great potential...

  16. Anti-carcinogenic properties of omeprazole against human colon cancer cells and azoxymethane-induced colonic aberrant crypt foci formation in rats.

    Science.gov (United States)

    Patlolla, Jagan M R; Zhang, Yuting; Li, Qian; Steele, Vernon E; Rao, Chinthalapally V

    2012-01-01

    Omeprazole is a proton pump inhibitor, a widely used drug to treat ulcers and gastroesophageal refluxdisease. We have evaluated colon cancer chemopreventive properties of omeprazole using azoxymethane (AOM)-induced colonic aberrant crypt foci (ACF) in male F344 rats and analyzed cell growth inhibition and apoptosis induction in human colon cancer cells. Five-week-old male F344 rats were fed a control or experimental diet containing two doses of omeprazole (200 and 400 ppm). After one week, all animals were s.c. injected with AOM (15 mg/kg body weight, once weekly for two weeks). Rats continued on experimental diets for seven more weeks before being sacrificed. Colons were histopathologically evaluated for ACF. Human colon cancer HCT-116 and HCA-7 cells treated with omeprazole were evaluated for different markers associated with proliferation and apoptotic markers using Western blot technique. Rats fed with 200 and 400 ppm of omeprazole significantly suppressed total colonic ACF formation (~30%, Pcancer cell lines HCT-116 and HCA-7 cells resulted in induction of p21waf1/cip1 and decreased the expression of anti-apoptotic proteins Bcl-2, Bcl-XL and survivin in a dose-dependent manner. Anticancer properties observed in colon cancer cell lines suggest that omeprazole may induce key signaling molecules of antiproliferation and inhibition of anti-apoptotic proteins.

  17. Radiotherapeutical chromosomal aberrations in laryngeal cancer patients

    Directory of Open Access Journals (Sweden)

    Stošić-Divjak Svetlana L.

    2009-01-01

    Full Text Available Introduction. The authors present the results of cytogenetic analysis of 21 patients with laryngeal carcinomas diagnosed and treated in the period 1995-2000 at the Institute of Otorhinolaryngology and Maxillofacial Surgery, Clinical Center of Serbia and Clinical Center of Novi Sad. Material and methods. The patients were specially monitored and the material was analyzed at the Institute of Human Genetics of the School of Medicine in Belgrade as well as in the Laboratory for Radiological Protection of the Institute of Occupational and Radiological Health 'Dr Dragomir Karajovic' in Belgrade. Results. The incidence of chromosomal aberrations and incidence of exchange of material between sister chromatids were observed in the preparation of the metaphasic lymphocyte chromosomes of the peripheral blood obtained in the culture. Structural aberrations were found on the chromosomes in the form of breakups, rings, translocations and dicentrics as early as after a single exposure of patients to tumor radiation dose of 2 Gy in the field sized 5x7. Out of the total number of 35 cultivated blood samples obtained from 13 patients, 21 were successfully cultivated and they were proved to contain chromosomal aberrations. Some of the peripheral blood samples failed to show cell growth in vitro due to the lethal cell damages in vivo. Discussion.. We have consluded that the number of structural aberrations cannot be used as a biological measure of the absorbed ionizing radiation dose. The presence of aberrations per se is indicative of the mutagenic effect of the ionizing radiation, which was also confirmed in our series on the original model by cultivation of the peripheral blood lymphocytes in the culture of the cells of the volunteer donors upon in vitro radiation. Using the method of bromdeoxyuridylreductase, the increased incidence of SCE as a mutagenic effect was registered. Conclusion. It has been concluded that the increase of absorbed radiation dose in

  18. Genome-wide identification of significant aberrations in cancer genome

    Directory of Open Access Journals (Sweden)

    Yuan Xiguo

    2012-07-01

    Full Text Available Abstract Background Somatic Copy Number Alterations (CNAs in human genomes are present in almost all human cancers. Systematic efforts to characterize such structural variants must effectively distinguish significant consensus events from random background aberrations. Here we introduce Significant Aberration in Cancer (SAIC, a new method for characterizing and assessing the statistical significance of recurrent CNA units. Three main features of SAIC include: (1 exploiting the intrinsic correlation among consecutive probes to assign a score to each CNA unit instead of single probes; (2 performing permutations on CNA units that preserve correlations inherent in the copy number data; and (3 iteratively detecting Significant Copy Number Aberrations (SCAs and estimating an unbiased null distribution by applying an SCA-exclusive permutation scheme. Results We test and compare the performance of SAIC against four peer methods (GISTIC, STAC, KC-SMART, CMDS on a large number of simulation datasets. Experimental results show that SAIC outperforms peer methods in terms of larger area under the Receiver Operating Characteristics curve and increased detection power. We then apply SAIC to analyze structural genomic aberrations acquired in four real cancer genome-wide copy number data sets (ovarian cancer, metastatic prostate cancer, lung adenocarcinoma, glioblastoma. When compared with previously reported results, SAIC successfully identifies most SCAs known to be of biological significance and associated with oncogenes (e.g., KRAS, CCNE1, and MYC or tumor suppressor genes (e.g., CDKN2A/B. Furthermore, SAIC identifies a number of novel SCAs in these copy number data that encompass tumor related genes and may warrant further studies. Conclusions Supported by a well-grounded theoretical framework, SAIC has been developed and used to identify SCAs in various cancer copy number data sets, providing useful information to study the landscape of cancer genomes

  19. Aberrant DNA methylation occurs in colon neoplasms arising in the azoxymethane colon cancer model

    Science.gov (United States)

    Borinstein, Scott C.; Conerly, Melissa; Dzieciatkowski, Slavomir; Biswas, Swati; Washington, M. Kay; Trobridge, Patty; Henikoff, Steve; Grady, William M.

    2010-01-01

    Mouse models of intestinal tumors have advanced our understanding of the role of gene mutations in colorectal malignancy. However, the utility of these systems for studying the role of epigenetic alterations in intestinal neoplasms remains to be defined. Consequently, we assessed the role of aberrant DNA methylation in the azoxymethane (AOM) rodent model of colon cancer. AOM induced tumors display global DNA hypomethylation, which is similar to human colorectal cancer. We next assessed the methylation status of a panel of candidate genes previously shown to be aberrantly methylated in human cancer or in mouse models of malignant neoplasms. This analysis revealed different patterns of DNA methylation that were gene specific. Zik1 and Gja9 demonstrated cancer-specific aberrant DNA methylation, whereas, Cdkn2a/p16, Igfbp3, Mgmt, Id4, and Cxcr4 were methylated in both the AOM tumors and normal colon mucosa. No aberrant methylation of Dapk1 or Mlt1 was detected in the neoplasms, but normal colon mucosa samples displayed methylation of these genes. Finally, p19Arf, Tslc1, Hltf, and Mlh1 were unmethylated in both the AOM tumors and normal colon mucosa. Thus, aberrant DNA methylation does occur in AOM tumors, although the frequency of aberrantly methylated genes appears to be less common than in human colorectal cancer. Additional studies are necessary to further characterize the patterns of aberrantly methylated genes in AOM tumors. PMID:19777566

  20. Aberrant DNA methylation occurs in colon neoplasms arising in the azoxymethane colon cancer model.

    Science.gov (United States)

    Borinstein, Scott C; Conerly, Melissa; Dzieciatkowski, Slavomir; Biswas, Swati; Washington, M Kay; Trobridge, Patty; Henikoff, Steve; Grady, William M

    2010-01-01

    Mouse models of intestinal tumors have advanced our understanding of the role of gene mutations in colorectal malignancy. However, the utility of these systems for studying the role of epigenetic alterations in intestinal neoplasms remains to be defined. Consequently, we assessed the role of aberrant DNA methylation in the azoxymethane (AOM) rodent model of colon cancer. AOM induced tumors display global DNA hypomethylation, which is similar to human colorectal cancer. We next assessed the methylation status of a panel of candidate genes previously shown to be aberrantly methylated in human cancer or in mouse models of malignant neoplasms. This analysis revealed different patterns of DNA methylation that were gene specific. Zik1 and Gja9 demonstrated cancer-specific aberrant DNA methylation, whereas, Cdkn2a/p16, Igfbp3, Mgmt, Id4, and Cxcr4 were methylated in both the AOM tumors and normal colon mucosa. No aberrant methylation of Dapk1 or Mlt1 was detected in the neoplasms, but normal colon mucosa samples displayed methylation of these genes. Finally, p19(Arf), Tslc1, Hltf, and Mlh1 were unmethylated in both the AOM tumors and normal colon mucosa. Thus, aberrant DNA methylation does occur in AOM tumors, although the frequency of aberrantly methylated genes appears to be less common than in human colorectal cancer. Additional studies are necessary to further characterize the patterns of aberrantly methylated genes in AOM tumors.

  1. Aberrant Cytoplasm Localization and Protein Stability of SIRT1 is Regulated by PI3K/IGF-1R Signaling in Human Cancer Cells

    Directory of Open Access Journals (Sweden)

    Vanessa Byles, Laura K. Chmilewski, Joyce Wang, Lijia Zhu, Lora W. Forman, Douglas V. Faller, Yan Dai

    2010-01-01

    Full Text Available SIRT1, an NAD-dependent histone/protein deacetylase, has classically been thought of as a nuclear protein. In this study, we demonstrate that SIRT1 is mainly localized in the nucleus of normal cells, but is predominantly localized in the cytoplasm of the cancer / transformed cells we tested. We found this predominant cytoplasmic localization of SIRT1 is regulated by elevated mitotic activity and PI3K/IGF-1R signaling in cancer cells. We show that aberrant cytoplasmic localization of SIRT1 is due to increased protein stability and is regulated by PI3K/IGF-1R signaling. In addition, we determined that SIRT1 is required for PI3K-mediated cancer cell growth. Our study represents the first identification that aberrant cytoplasm localization is one of the specific alternations to SIRT1 that occur in cancer cells, and PI3K/IGF-1R signaling plays an important role in the regulation of cytoplasmic SIRT1 stability. Our findings suggest that the over-expressed cytoplasmic SIRT1 in cancer cells may greatly contribute to its cancer-specific function by working downstream of the PI3K/IGF-1R signaling pathway.

  2. Increased risk of cancer in radon-exposed miners with elevated frequency of chromosomal aberrations.

    Science.gov (United States)

    Smerhovsky, Zdenek; Landa, Karel; Rössner, Pavel; Juzova, Dagmar; Brabec, Marek; Zudova, Zdena; Hola, Nora; Zarska, Hana; Nevsimalova, Emilie

    2002-02-15

    In spite of the extensive use of cytogenetic analysis of human peripheral blood lymphocytes in the biomonitoring of exposure to various mutagens and carcinogens, the long-term effects of an increased frequency of chromosomal aberrations in individuals are still uncertain. Few epidemiologic studies have addressed this issue, and a moderate risk of cancer in individuals with an elevated frequency of chromosomal aberrations has been observed. In the present study, we analyzed data on 1323 cytogenetic assays and 225 subjects examined because of occupational exposures to radon (range of exposure from 1.7 to 662.3 working level month (WLM)). Seventy-five subjects were non-smokers. We found 36 cases of cancer in this cohort. Chromatid breaks were the most frequently observed type of aberrations (mean frequency 1.2 per 100 cells), which statistically significantly correlated with radon exposure (Spearman's correlation coefficient R=0.22, P<0.001). Also, the frequency of aberrant cells (median of 2.5%) correlated with radon exposure (Spearman's correlation coefficient R=0.16, P<0.02). Smoking and silicosis were not associated with results of cytogenetic analyses. The Cox regression models, which accounted for the age at time of first cytogenetic assay, radon exposure, and smoking showed strong and statistically significant associations between cancer incidence and frequency of chromatid breaks and frequency of aberrant cells, respectively. A 1% increase in the frequency of aberrant cells was paralleled by a 62% increase in risk of cancer (P<0.000). An increase in frequency of chromatid breaks by 1 per 100 cells was followed by a 99% increase in risk of cancer (P<0.000). We obtained similar results when we analyzed the incidence of lung cancer and the incidence other than lung cancer separately. Contrary to frequency of chromatid breaks and frequency of aberrant cells, the frequency of chromatid exchanges, and chromosome-type aberrations were not predictive of cancer.

  3. Chromosomal aberrations related to metastasis of human solid tumors

    Institute of Scientific and Technical Information of China (English)

    Lun-Xiu Qin

    2002-01-01

    The central role of sequential accumulation of genetic alterations during the development of cancer has been firmly established since the pioneering cytogenetic studies successfully defined recurrent chromosome changes in spedfic types of tumor. In the course of carcinogenesis, cells experience several genetic alterations that are associated with the transition from a preneoplastic lesion to an invasive tumor and finally to the metastatic state. Tumor progression is characterized by stepwise accumulation of genetic alterations.So does the dominant metastatic clone. Modern molecular genetic analyses have clarified that genomic changes accumulate during the development and progression of cancers. In comparison with the corresponding primary tumor,additional events of chromosomal aberrations (including gains or allelic losses) are frequently found in metastases, and the incidence of combined chromosomal alterations in the primary tumor, plus the occurrence of additional aberrations inthe distant metastases, correlated significantly with decreased postmetastatic survival. The deletions at 3p, 4p, 6q, 8p, 10q,11p, 11q, 12p, 13q, 16q, 17p, 18q, 21q, and 22q, as well as the over-representations at 1q, 8q, 9q, 14q and 15q, have been found to associate preferentially with the metastatic phenotype of human cancers. Among of them, the deletions on chromosomes 8p, 17p, 11p and 13p seem to be more significant, and more detail fine regions of them, including 8p11, 8p21-12, 8p22, 8p23, 17p13.3, 11p15.5, and 13q12-13 have been suggested harboring metastasis-suppressor genes.During the past decade, several human chromosomes have been functionally tested through the use of microcell-mediated chromosome transfer (MMCT), and metastasis-suppressor activities have been reported on chromosomes 1, 6, 7, 8, 10,11, 12, 16, and 17. However, it is not actually known at what stage of the metastatic cascade these alterations have occurred.There is still controversial with the association

  4. Aberrant crypt foci as microscopic precursors of colorectal cancer

    Institute of Scientific and Technical Information of China (English)

    Lei Cheng; Mao-De Lai

    2003-01-01

    Since the first detection of aberrant crypt foci (ACF) in carcinogen-treated mice, there have been numerous studies focusing on these microscopically visible lesions both in rodents and in humans. ACF have been generally accepted as precancerous lesions in regard to histopathological characteristics, biochemical and immunohistochemical alterations, and genetic and epigenetic alterations. ACF show variable histological features, ranging from hyperplasia to dysplasia. ACF in human colon are more frequently located in the distal parts than in the proximal parts, which is in accordance with those in colorectal cancer (CRC). The immunohistochemical expressions of carcinoembryonic antigen (CEA), β-catenin, placental cadherin (P-cadherin),epithelial cadherin (E-cadherin), inducible nitric oxide synthase (iNOS), cyclooxygenase (COX-2), and P16INK4a are found to be altered. Genetic mutations of K-ras, APC and p53, and the epigenetic alterations of CpG island methylation of ACF have also been demonstrated. Genomic instabilities due to the defect of mismatch repair (MMR) system are detectable in ACF Two hypotheses have been proposed.One is the "dysplasia ACF-adenoma-carcinoma sequence",the other is "heteroplastic ACF-adenoma-carcinoma sequence". The malignant potential of ACF, especially dyspiastic ACF, makes it necessary to reveal the nature of these lesions, and to prevent CRC from the earliest possible stage. The technique of magnifying chromoscope makes it possible to detect "in vivo' ACF, which is beneficial to colon cancer research, identifying high-risk populations for CRC,and developing preventive procedures.

  5. Wide-angle chromatic aberration corrector for the human eye.

    Science.gov (United States)

    Benny, Yael; Manzanera, Silvestre; Prieto, Pedro M; Ribak, Erez N; Artal, Pablo

    2007-06-01

    The human eye is affected by large chromatic aberration. This may limit vision and makes it difficult to see fine retinal details in ophthalmoscopy. We designed and built a two-triplet system for correcting the average longitudinal chromatic aberration of the eye while keeping a reasonably wide field of view. Measurements in real eyes were conducted to examine the level and optical quality of the correction. We also performed some tests to evaluate the effect of the corrector on visual performance.

  6. Involvement of Aberrant Glycosylation in Thyroid Cancer

    Directory of Open Access Journals (Sweden)

    Eiji Miyoshi

    2010-01-01

    Full Text Available Glycosylation is one of the most common posttranslational modification reactions and nearly half of all known proteins in eukaryotes are glycosylated. In fact, changes in oligosaccharides structures are associated with many physiological and pathological events, including cell growth, migration and differentiation, and tumor invasion. Therefore, functional glycomics, which is a comprehensive study of the structures and functions of glycans, is attracting the increasing attention of scientists in various fields of life science. In cases of thyroid cancer, the biological characters and prognosis are completely different in each type of histopathology, and their oligosaccharide structures as well as the expression of glycosyltransferases are also different. In this review, we summarized our previous papers on oligosaccharides and thyroid cancers and discussed a possible function of oligosaccharides in the carcinogenesis in thyroid cancer.

  7. Aberrant promoter CpG methylation and its translational applications in breast cancer

    Institute of Scientific and Technical Information of China (English)

    Ting-Xiu Xiang; Ying Yuan; Li-Li Li; Zhao-Hui Wang; Liang-Ying Dan; Yan Chen; Guo-Sheng Ren; Qian Tao

    2013-01-01

    Breast cancer is a complex disease driven by multiple factors including both genetic and epigenetic alterations.Recent studies revealed that abnormal gene expression induced by epigenetic changes,including aberrant promoter methylation and histone modification,plays a critical role in human breast carcinogenesis.Silencing of tumor suppressor genes (TSGs) by promoter CpG methylation facilitates cells growth and survival advantages and further results in tumor initiation and progression,thus directly contributing to breast tumorigenesis.Usually,aberrant promoter methylation of TSGs,which can be reversed by pharmacological reagents,occurs at the early stage of tumorigenesis and therefore may serve as a potential tumor marker for early diagnosis and therapeutic targeting of breast cancer.In this review,we summarize the epigenetic changes of multiple TSGs involved in breast pathogenesis and their potential clinical applications as tumor markers for early detection and treatment of breast cancer.

  8. Cancer biomarkers defined by autoantibody signatures to aberrant O-glycopeptide epitopes

    DEFF Research Database (Denmark)

    Wandall, Hans H; Blixt, Ola; Tarp, Mads A

    2010-01-01

    Autoantibodies to cancer antigens hold promise as biomarkers for early detection of cancer. Proteins that are aberrantly processed in cancer cells are likely to present autoantibody targets. The extracellular mucin MUC1 is overexpressed and aberrantly glycosylated in many cancers; thus, we evalua...

  9. Pancreatic cancer genomes reveal aberrations in axon guidance pathway genes.

    Science.gov (United States)

    Biankin, Andrew V; Waddell, Nicola; Kassahn, Karin S; Gingras, Marie-Claude; Muthuswamy, Lakshmi B; Johns, Amber L; Miller, David K; Wilson, Peter J; Patch, Ann-Marie; Wu, Jianmin; Chang, David K; Cowley, Mark J; Gardiner, Brooke B; Song, Sarah; Harliwong, Ivon; Idrisoglu, Senel; Nourse, Craig; Nourbakhsh, Ehsan; Manning, Suzanne; Wani, Shivangi; Gongora, Milena; Pajic, Marina; Scarlett, Christopher J; Gill, Anthony J; Pinho, Andreia V; Rooman, Ilse; Anderson, Matthew; Holmes, Oliver; Leonard, Conrad; Taylor, Darrin; Wood, Scott; Xu, Qinying; Nones, Katia; Fink, J Lynn; Christ, Angelika; Bruxner, Tim; Cloonan, Nicole; Kolle, Gabriel; Newell, Felicity; Pinese, Mark; Mead, R Scott; Humphris, Jeremy L; Kaplan, Warren; Jones, Marc D; Colvin, Emily K; Nagrial, Adnan M; Humphrey, Emily S; Chou, Angela; Chin, Venessa T; Chantrill, Lorraine A; Mawson, Amanda; Samra, Jaswinder S; Kench, James G; Lovell, Jessica A; Daly, Roger J; Merrett, Neil D; Toon, Christopher; Epari, Krishna; Nguyen, Nam Q; Barbour, Andrew; Zeps, Nikolajs; Kakkar, Nipun; Zhao, Fengmei; Wu, Yuan Qing; Wang, Min; Muzny, Donna M; Fisher, William E; Brunicardi, F Charles; Hodges, Sally E; Reid, Jeffrey G; Drummond, Jennifer; Chang, Kyle; Han, Yi; Lewis, Lora R; Dinh, Huyen; Buhay, Christian J; Beck, Timothy; Timms, Lee; Sam, Michelle; Begley, Kimberly; Brown, Andrew; Pai, Deepa; Panchal, Ami; Buchner, Nicholas; De Borja, Richard; Denroche, Robert E; Yung, Christina K; Serra, Stefano; Onetto, Nicole; Mukhopadhyay, Debabrata; Tsao, Ming-Sound; Shaw, Patricia A; Petersen, Gloria M; Gallinger, Steven; Hruban, Ralph H; Maitra, Anirban; Iacobuzio-Donahue, Christine A; Schulick, Richard D; Wolfgang, Christopher L; Morgan, Richard A; Lawlor, Rita T; Capelli, Paola; Corbo, Vincenzo; Scardoni, Maria; Tortora, Giampaolo; Tempero, Margaret A; Mann, Karen M; Jenkins, Nancy A; Perez-Mancera, Pedro A; Adams, David J; Largaespada, David A; Wessels, Lodewyk F A; Rust, Alistair G; Stein, Lincoln D; Tuveson, David A; Copeland, Neal G; Musgrove, Elizabeth A; Scarpa, Aldo; Eshleman, James R; Hudson, Thomas J; Sutherland, Robert L; Wheeler, David A; Pearson, John V; McPherson, John D; Gibbs, Richard A; Grimmond, Sean M

    2012-11-15

    Pancreatic cancer is a highly lethal malignancy with few effective therapies. We performed exome sequencing and copy number analysis to define genomic aberrations in a prospectively accrued clinical cohort (n = 142) of early (stage I and II) sporadic pancreatic ductal adenocarcinoma. Detailed analysis of 99 informative tumours identified substantial heterogeneity with 2,016 non-silent mutations and 1,628 copy-number variations. We define 16 significantly mutated genes, reaffirming known mutations (KRAS, TP53, CDKN2A, SMAD4, MLL3, TGFBR2, ARID1A and SF3B1), and uncover novel mutated genes including additional genes involved in chromatin modification (EPC1 and ARID2), DNA damage repair (ATM) and other mechanisms (ZIM2, MAP2K4, NALCN, SLC16A4 and MAGEA6). Integrative analysis with in vitro functional data and animal models provided supportive evidence for potential roles for these genetic aberrations in carcinogenesis. Pathway-based analysis of recurrently mutated genes recapitulated clustering in core signalling pathways in pancreatic ductal adenocarcinoma, and identified new mutated genes in each pathway. We also identified frequent and diverse somatic aberrations in genes described traditionally as embryonic regulators of axon guidance, particularly SLIT/ROBO signalling, which was also evident in murine Sleeping Beauty transposon-mediated somatic mutagenesis models of pancreatic cancer, providing further supportive evidence for the potential involvement of axon guidance genes in pancreatic carcinogenesis.

  10. Induction of chromosomal aberrations in human lymphocytes by fission neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Marcia Augusta da; Coelho, Paulo Rogerio Pinto; Bartolini, Paolo; Okazaki, Kayo [Instituto de Pesquisas Energeticas e Nucleares (IPEN-CNEN/SP), Sao Paulo, SP (Brazil)], e-mail: kokazaki@ipen.br

    2009-07-01

    Chromosome aberrations induced by sparsely ionizing radiation (low-LET) are well known and cytogenetic analyses of irradiated human lymphocytes have been widely applied to biological dosimetry. However, much less is known about chromosome aberrations induced by densely ionizing radiation (high LET), such as that of alpha particles or neutrons. Such particles induce DNA strand breaks, as well as chromosome breakage and rearrangements of high complexity. This damage is more localized and less efficiently repaired than after X- or {gamma}-ray irradiation. This preferential production of complex aberrations by densely ionizing radiation is related to the unique energy deposition patterns, which produces highly localized multiple DNA damage at the chromosomal level. A better knowledge of the interactions between different types of radiation and cellular DNA is of importance, not only from the radiobiological viewpoint but also for dosimetric and therapeutic purposes. The objective of the present study was to analyse the cytogenetic effects of fission neutrons on peripheral blood lymphocytes in order to evaluate structural and numerical aberrations and number of cells in the different mitotic cycles. So, blood samples from five healthy donors, 22-25 years old, of both sexes, were irradiated in the Research Reactor IEA-R1 of our Institute (IPEN/CNEN-SP) with thermal and fast neutrons at doses of 0.2; 0.3; 0.5 and 1.0 Gy. The {gamma} contribution to the total absorbed dose was about 30%. These doses were monitored by thermoluminescent dosemeters: LiF-600 (for neutrons) and LiF-700 (for {gamma}-rays). The data concerning structural aberrations were evaluated with regard to three parameters: percentage of cells with aberrations, number of aberrations/cell and number of dicentric/cell. The cytogenetic results showed an increase in the three parameters after irradiation with neutrons, as a function of radiation dose. Apparently, there was no influence of neutrons on the

  11. Heterogeneity of aberrant immunoglobulin expression in cancer cells

    Institute of Scientific and Technical Information of China (English)

    Duosha Hu; Ya Cao; Zhi Duan; Ming Li; Yiqun Jiang; Haidan Liu; Hui Zheng; Lili Li; Ann M Bode; Zigang Dong

    2011-01-01

    Accumulating evidence has shown that immunoglobulin (Ig) is 'unexpectedly' expressed by epithelial cancer cells and that it can promote tumor growth.The main purpose of this study was to explore the components of the cancerous Ig and its possible function.The presence of cancerous Ig in the Golgi apparatus was confirmed by immunofluorescence,indirectly suggesting that the cancerous Ig was processed and packaged in cancer cells.Western blot analysis and ELISA results indicated that cancer cells produced membrane Ig and secreted Ig into the supernatant fraction.The cancerous Ig consists of an α heavy chain and a κ light chain.Finally,by analyzing the Ig components pulled down by protein A beads,the cancerous Ig was found to be structurally distinct from normal Ig.The cancerous Ig was truncated or aberrant.Although the underlying mechanism that causes the abnormalities has not been determined,our current discoveries strengthen our previous findings and promise fruitful future explorations.

  12. Aberrant expression of nuclear matrix proteins during HMBA-induced differentiation of gastric cancer cells

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    AIM: To investigate the aberrant expression of nuclear matrix proteins in human gastric cancer cells before and after hexamethylene bisacetamide (HMBA) treatment.METHODS: Proteomics analysis of differential nuclear matrix proteins was performed by two dimensional electrophoresis polyacrylamide gel electrophoresis and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry.The expression levels of three nuclear matrix proteins were further confirmed by Western blotting and their location...

  13. Prognostic significance of aberrantly silenced ANPEP expression in prostate cancer

    DEFF Research Database (Denmark)

    Sørensen, Karina Dalsgaard; Abildgaard, Mette Opstrup; Haldrup, Christa

    2013-01-01

    Background:Novel biomarkers for prostate cancer (PC) are urgently needed. This study investigates the expression, epigenetic regulation, and prognostic potential of ANPEP in PC.Methods:Aminopeptidase N (APN; encoded by ANPEP) expression was analysed by immunohistochemistry using tissue microarrays...... representing 267 radical prostatectomy (RP) and 111 conservatively treated (CT) PC patients. Clinical end points were recurrence-free survival (RFS) and cancer-specific survival (CSS), respectively. The ANPEP promoter methylation levels were determined by bisulphite sequencing or MethyLight analysis in 278...... nonmalignant and PC tissue samples, and in cell lines.Results:The APN expression was significantly downregulated in PC compared with nonmalignant prostate tissue samples. Aberrant promoter hypermethylation was frequently observed in PC tissue samples, and 5-aza-2'-deoxycytidine induced ANPEP expression...

  14. Aberrant DNA methylation of cancer-associated genes in gastric cancer in the European Prospective Investigation into Cancer and Nutrition (EPIC-EURGAST)

    NARCIS (Netherlands)

    Balassiano, Karen; Lima, Sheila; Jenab, Mazda; Overvad, Kim; Tjonneland, Anne; Boutron-Ruault, Marie Christine; Clavel-Chapelon, Francoise; Canzian, Federico; Kaaks, Rudolf; Boeing, Heiner; Meidtner, Karina; Trichopoulou, Antonia; Laglou, Pagona; Vineis, Paolo; Panico, Salvatore; Palli, Domenico; Grioni, Sara; Tumino, Rosario; Lund, Eiliv; Bueno-de-Mesquita, H. Bas; Numans, Mattjis E.; Peeters, Petra H. M.; Ramon Quiros, J.; Sanchez, Maria-Jose; Navarro, Carmen; Ardanaz, Eva; Dorronsoro, Miren; Hallmans, Goran; Stenling, Roger; Ehrnstrom, Roy; Regner, Sara; Allen, Naomi E.; Travis, Ruth C.; Khaw, Kay-Tee; Offerhaus, G. Johan A.; Sala, Nuria; Riboli, Elio; Hainaut, Pierre; Scoazec, Jean-Yves; Sylla, Bakary S.; Gonzalez, Carlos A.; Herceg, Zdenko

    2011-01-01

    Epigenetic events have emerged as key mechanisms in the regulation of critical biological processes and in the development of a wide variety of human malignancies, including gastric cancer (GC), however precise gene targets of aberrant DNA methylation in GC remain largely unknown. Here, we have comb

  15. SiRNA and epigenetic aberrations in ovarian cancer

    Directory of Open Access Journals (Sweden)

    Hamed Mirzaei

    2016-01-01

    Full Text Available Ovarian cancer has the most noteworthy lethal rate around gynecologic malignancies, and it is also considered as the fourth most frequent cancer in the woman in world. Two most critical barriers to treatment of ovarian malignancy are absence of early diagnostic markers and advancement of drug resistance after therapy, especially in advanced stages. Various epigenetic changes have been recognized in ovarian cancer. Recent progresses in our understanding of molecular pathogenesis of ovarian malignancy have dramatically provided potential new targets for molecularly targeted therapies. In very recent years, small interfering RNA (siRNA-mediated gene silencing has been emerging as a novel treatment modality in preclinical studies in the light of its strong gene-specific silencing. Gene suppression mediated by RNA interference (RNAi significantly suppressed gene expression at the messenger RNA (mRNA and protein levels. SiRNAs have therapeutic potential for ovarian cancer through various mechanisms. In this review, we not only provide an overview of siRNA designing for epigenetic silencing of genes aberrantly expressed in ovarian cancer but also we will highlight that the epigenetically silenced genes offer new targets for therapeutic approaches based on re-expression of tumor suppressor genes via demethylating and deacetylating drugs.

  16. Aberrant splicing of the DMP1-ARF-MDM2-p53 pathway in cancer.

    Science.gov (United States)

    Inoue, Kazushi; Fry, Elizabeth A

    2016-07-01

    Alternative splicing (AS) of mRNA precursors is a ubiquitous mechanism for generating numerous transcripts with different activities from one genomic locus in mammalian cells. The gene products from a single locus can thus have similar, dominant-negative or even opposing functions. Aberrant AS has been found in cancer to express proteins that promote cell growth, local invasion and metastasis. This review will focus on the aberrant splicing of tumor suppressor/oncogenes that belong to the DMP1-ARF-MDM2-p53 pathway. Our recent study shows that the DMP1 locus generates both tumor-suppressive DMP1α (p53-dependent) and oncogenic DMP1β (p53-independent) splice variants, and the DMP1β/α ratio increases with neoplastic transformation of breast epithelial cells. This process is associated with high DMP1β protein expression and shorter survival of breast cancer (BC) patients. Accumulating pieces of evidence show that ARF is frequently inactivated by aberrant splicing in human cancers, demonstrating its involvement in human malignancies. Splice variants from the MDM2 locus promote cell growth in culture and accelerate tumorigenesis in vivo. Human cancers expressing these splice variants are associated with advanced stage/metastasis, and thus have negative clinical impacts. Although they lack most of the p53-binding domain, their activities are mostly dependent on p53 since they bind to wild-type MDM2. The p53 locus produces splice isoforms that have either favorable (β/γ at the C-terminus) or negative impact (Δ40, Δ133 at the N-terminus) on patients' survival. As the oncogenic AS products from these loci are expressed only in cancer cells, they may eventually become targets for molecular therapies.

  17. A genome-wide map of aberrantly expressed chromosomal islands in colorectal cancer

    Directory of Open Access Journals (Sweden)

    Castanos-Velez Esmeralda

    2006-09-01

    Full Text Available Abstract Background Cancer development is accompanied by genetic phenomena like deletion and amplification of chromosome parts or alterations of chromatin structure. It is expected that these mechanisms have a strong effect on regional gene expression. Results We investigated genome-wide gene expression in colorectal carcinoma (CRC and normal epithelial tissues from 25 patients using oligonucleotide arrays. This allowed us to identify 81 distinct chromosomal islands with aberrant gene expression. Of these, 38 islands show a gain in expression and 43 a loss of expression. In total, 7.892 genes (25.3% of all human genes are located in aberrantly expressed islands. Many chromosomal regions that are linked to hereditary colorectal cancer show deregulated expression. Also, many known tumor genes localize to chromosomal islands of misregulated expression in CRC. Conclusion An extensive comparison with published CGH data suggests that chromosomal regions known for frequent deletions in colon cancer tend to show reduced expression. In contrast, regions that are often amplified in colorectal tumors exhibit heterogeneous expression patterns: even show a decrease of mRNA expression. Because for several islands of deregulated expression chromosomal aberrations have never been observed, we speculate that additional mechanisms (like abnormal states of regional chromatin also have a substantial impact on the formation of co-expression islands in colorectal carcinoma.

  18. Mechanisms for the induction of gastric cancer by Helicobacter pylori infection: aberrant DNA methylation pathway.

    Science.gov (United States)

    Maeda, Masahiro; Moro, Hiroshi; Ushijima, Toshikazu

    2017-03-01

    Multiple pathogenic mechanisms by which Helicobacter pylori infection induces gastric cancer have been established in the last two decades. In particular, aberrant DNA methylation is induced in multiple driver genes, which inactivates them. Methylation profiles in gastric cancer are associated with specific subtypes, such as microsatellite instability. Recent comprehensive and integrated analyses showed that many cancer-related pathways are more frequently altered by aberrant DNA methylation than by mutations. Aberrant DNA methylation can even be present in noncancerous gastric mucosae, producing an "epigenetic field for cancerization." Mechanistically, H. pylori-induced chronic inflammation, but not H. pylori itself, plays a direct role in the induction of aberrant DNA methylation. The expression of three inflammation-related genes, Il1b, Nos2, and Tnf, is highly associated with the induction of aberrant DNA methylation. Importantly, the degree of accumulated aberrant DNA methylation is strongly correlated with gastric cancer risk. A recent multicenter prospective cohort study demonstrated the utility of epigenetic cancer risk diagnosis for metachronous gastric cancer. Suppression of aberrant DNA methylation by a demethylating agent was shown to inhibit gastric cancer development in an animal model. Induction of aberrant DNA methylation is the major pathway by which H. pylori infection induces gastric cancer, and this can be utilized for translational opportunities.

  19. Chromosomal Aberrations in Humans Induced by Urban Air Pollution

    DEFF Research Database (Denmark)

    Knudsen, Lisbeth E.; Norppa, Hannu; Gamborg, Michael O.

    1999-01-01

    We have studied the influence of individual susceptibility factors on the genotoxic effects of urban air pollution in 106 nonsmoking bus drivers and 101 postal workers in the Copenhagen metropolitan area. We used the frequency of chromosomal aberrations in peripheral blood lymphocytes...... that long-term exposure to urban air pollution (with traffic as the main contributor) induces chromosome damage in human somatic cells. Low DNA repair capacity and GSTM1 and NAT2 variants associated with reduced detoxification ability increase susceptibility to such damage. The effect of the GSTM1 genotype......, which was observed only in the bus drivers, appears to be associated with air pollution, whereas the NAT2 genotype effect, which affected all subjects, may influence the individual response to some other common exposure or the baseline level of chromosomal aberrations....

  20. Mechanistic modeling of aberrant energy metabolism in human disease

    Directory of Open Access Journals (Sweden)

    Vineet eSangar

    2012-10-01

    Full Text Available Dysfunction in energy metabolism—including in pathways localized to the mitochondria—has been implicated in the pathogenesis of a wide array of disorders, ranging from cancer to neurodegenerative diseases to type II diabetes. The inherent complexities of energy and mitochondrial metabolism present a significant obstacle in the effort to understand the role that these molecular processes play in the development of disease. To help unravel these complexities, systems biology methods have been applied to develop an array of computational metabolic models, ranging from mitochondria-specific processes to genome-scale cellular networks. These constraint-based models can efficiently simulate aspects of normal and aberrant metabolism in various genetic and environmental conditions. Development of these models leverages—and also provides a powerful means to integrate and interpret—information from a wide range of sources including genomics, proteomics, metabolomics, and enzyme kinetics. Here, we review a variety of mechanistic modeling studies that explore metabolic functions, deficiency disorders, and aberrant biochemical pathways in mitochondria and related regions in the cell.

  1. Spherical aberration and other higher-order aberrations in the human eye : from summary wave-front analysis data to optical variables relevant to visual perception

    NARCIS (Netherlands)

    Jansonius, Nomdo M.

    2010-01-01

    Wave-front analysis data from the human eye are commonly presented using the aberration coefficient c(4)(0) (primary spherical aberration) together with an overall measure of all higher-order aberrations. If groups of subjects are compared, however, the relevance of an observed difference cannot eas

  2. Longitudinal chromatic aberration of the human infant eye.

    Science.gov (United States)

    Wang, Jingyun; Candy, T Rowan; Teel, Danielle F W; Jacobs, Robert J

    2008-09-01

    Although the longitudinal chromatic aberration (LCA) of the adult eye has been studied, there are no data collected from the human infant eye. A chromatic retinoscope was used to measure cyclopleged infant and adult refractions with four pseudomonochromatic sources (centered at 472, 538, 589, and 652 nm) and with polychromatic light. The LCA of the infant eyes between 472 and 652 nm was a factor of 1.7 greater than the LCA found in the adult group: infant mean=1.62 D, SD+/- 0.14 D; adult mean=0.96 D, SD+/- 0.17 D. The elevated level of LCA in infant eyes is consistent with the greater optical power of the immature eye and indicates similar chromatic dispersion in infant and adult eyes. The implications for visual performance, defocus detection, and measurement of refraction are discussed.

  3. Aberrant Expression of Posterior HOX Genes in Well Differentiated Histotypes of Thyroid Cancers

    Directory of Open Access Journals (Sweden)

    Gerardo Botti

    2013-11-01

    Full Text Available Molecular etiology of thyroid cancers has been widely studied, and several molecular alterations have been identified mainly associated with follicular and papillary histotypes. However, the molecular bases of the complex pathogenesis of thyroid carcinomas remain poorly understood. HOX genes regulate normal embryonic development, cell differentiation and other critical processes in eukaryotic cell life. Several studies have shown that HOX genes play a role in neoplastic transformation of several human tissues. In particular, the genes belonging to HOX paralogous group 13 seem to hold a relevant role in both tumor development and progression. We have identified a significant prognostic role of HOX D13 in pancreatic cancer and we have recently showed the strong and progressive over-expression of HOX C13 in melanoma metastases and deregulation of HOX B13 expression in bladder cancers. In this study we have investigated, by immunohistochemisty and quantitative Real Time PCR, the HOX paralogous group 13 genes/proteins expression in thyroid cancer evolution and progression, also evaluating its ability to discriminate between main histotypes. Our results showed an aberrant expression, both at gene and protein level, of all members belonging to paralogous group 13 (HOX A13, HOX B13, HOX C13 and HOX D13 in adenoma, papillary and follicular thyroid cancers samples. The data suggest a potential role of HOX paralogous group 13 genes in pathogenesis and differential diagnosis of thyroid cancers.

  4. Aberrant expression of nuclear HDAC3 and cytoplasmic CDH1 predict a poor prognosis for patients with pancreatic cancer.

    Science.gov (United States)

    Jiao, Feng; Hu, Hai; Han, Ting; Zhuo, Meng; Yuan, Cuncun; Yang, Haiyan; Wang, Lei; Wang, Liwei

    2016-03-29

    Previous studies showed that aberrant CDH1 or/and HDAC3 localization is essential for the progression of some human cancers. Here, we investigate the prognostic significance of aberrant CDH1 and HDAC3 localization in 84 pancreatic cancer patients. Our results show that increases in both membrane and cytoplasmic CDH1 correlate with lymph node metastasis (P = 0.026 and P 0.05). Multivariate analysis showed that nuclear HDAC3 and cytoplasmic CDH1 (P = 0.001 and P = 0.010, respectively), as well as tumor differentiation (P = 0.009) are independent prognostic factors. Most importantly, patients with high co-expression of nuclear HDAC3 and cytoplasmic CDH1 had shorter survival times (P CDH1 have independent prognostic value in pancreatic cancer and provide novel targets for prognostic therapeutics.

  5. Micro-Scale Genomic DNA Copy Number Aberrations as Another Means of Mutagenesis in Breast Cancer

    Science.gov (United States)

    Chao, Hann-Hsiang; He, Xiaping; Parker, Joel S.; Zhao, Wei; Perou, Charles M.

    2012-01-01

    Introduction In breast cancer, the basal-like subtype has high levels of genomic instability relative to other breast cancer subtypes with many basal-like-specific regions of aberration. There is evidence that this genomic instability extends to smaller scale genomic aberrations, as shown by a previously described micro-deletion event in the PTEN gene in the Basal-like SUM149 breast cancer cell line. Methods We sought to identify if small regions of genomic DNA copy number changes exist by using a high density, gene-centric Comparative Genomic Hybridizations (CGH) array on cell lines and primary tumors. A custom tiling array for CGH (244,000 probes, 200 bp tiling resolution) was created to identify small regions of genomic change, which was focused on previously identified basal-like-specific, and general cancer genes. Tumor genomic DNA from 94 patients and 2 breast cancer cell lines was labeled and hybridized to these arrays. Aberrations were called using SWITCHdna and the smallest 25% of SWITCHdna-defined genomic segments were called micro-aberrations (micro-aberrations, most of which are undetectable using typical-density genome-wide aCGH arrays. The basal-like subtype exhibited the highest incidence of these events. These micro-aberrations sometimes altered expression of the involved gene. We confirmed the presence of the PTEN micro-amplification in SUM149 and by mRNA-seq showed that this resulted in loss of expression of all exons downstream of this event. Micro-aberrations disproportionately affected the 5′ regions of the affected genes, including the promoter region, and high frequency of micro-aberrations was associated with poor survival. Conclusion Using a high-probe-density, gene-centric aCGH microarray, we present evidence of small-scale genomic aberrations that can contribute to gene inactivation. These events may contribute to tumor formation through mechanisms not detected using conventional DNA copy number analyses. PMID:23284754

  6. Aberrant gene promoter methylation associated with sporadic multiple colorectal cancer.

    Directory of Open Access Journals (Sweden)

    Victoria Gonzalo

    Full Text Available BACKGROUND: Colorectal cancer (CRC multiplicity has been mainly related to polyposis and non-polyposis hereditary syndromes. In sporadic CRC, aberrant gene promoter methylation has been shown to play a key role in carcinogenesis, although little is known about its involvement in multiplicity. To assess the effect of methylation in tumor multiplicity in sporadic CRC, hypermethylation of key tumor suppressor genes was evaluated in patients with both multiple and solitary tumors, as a proof-of-concept of an underlying epigenetic defect. METHODOLOGY/PRINCIPAL FINDINGS: We examined a total of 47 synchronous/metachronous primary CRC from 41 patients, and 41 gender, age (5-year intervals and tumor location-paired patients with solitary tumors. Exclusion criteria were polyposis syndromes, Lynch syndrome and inflammatory bowel disease. DNA methylation at the promoter region of the MGMT, CDKN2A, SFRP1, TMEFF2, HS3ST2 (3OST2, RASSF1A and GATA4 genes was evaluated by quantitative methylation specific PCR in both tumor and corresponding normal appearing colorectal mucosa samples. Overall, patients with multiple lesions exhibited a higher degree of methylation in tumor samples than those with solitary tumors regarding all evaluated genes. After adjusting for age and gender, binomial logistic regression analysis identified methylation of MGMT2 (OR, 1.48; 95% CI, 1.10 to 1.97; p = 0.008 and RASSF1A (OR, 2.04; 95% CI, 1.01 to 4.13; p = 0.047 as variables independently associated with tumor multiplicity, being the risk related to methylation of any of these two genes 4.57 (95% CI, 1.53 to 13.61; p = 0.006. Moreover, in six patients in whom both tumors were available, we found a correlation in the methylation levels of MGMT2 (r = 0.64, p = 0.17, SFRP1 (r = 0.83, 0.06, HPP1 (r = 0.64, p = 0.17, 3OST2 (r = 0.83, p = 0.06 and GATA4 (r = 0.6, p = 0.24. Methylation in normal appearing colorectal mucosa from patients with multiple and solitary CRC showed no relevant

  7. Prediction of Breast Cancer Risk by Aberrant Methylation in Mammary Duct Lavage

    Science.gov (United States)

    2006-07-01

    DNA was extracted from two aneuploid tumor cells lines ( cervical cancer cell line HeLa [13] and breast cancer cell line HCC1806 [14]), two diploid...Breast Cancer Res Treat 2000;61:139–43. [4] Kersting M, Friedl C, Kraus A, Behn M, Pankow W, Schuermann M. Differential frequencies of p16 (INK4a) promoter...DAMD17-01-1-0421 TITLE: Prediction of Breast Cancer Risk by Aberrant Methylation in Mammary Duct Lavage PRINCIPAL INVESTIGATOR

  8. Aberrant Crypt Foci: The Case for Inclusion as a Biomarker for Colon Cancer

    OpenAIRE

    Jay Morris; Michael J. Wargovich; Brown, Vondina R.

    2010-01-01

    Aberrant crypt foci (ACF) are one of the earliest histopathological manifestations of colon cancer. In this review, we critically present the molecular, cellular, histopathological, and chemopreventive evidence that ACF are relevant biomarkers for colon cancer. The laboratory and clinical evidence are highly suggestive that ACF are in the pathway leading to colon cancer, but not all ACF will do so. The possible fate and outcome of ACF in the progression toward colon cancer may be dependent on...

  9. Influence of Misalignment on High-Order Aberration Correction for Normal Human Eyes

    Institute of Scientific and Technical Information of China (English)

    ZHAO Hao-Xin; XU Bing; XUE Li-Xia; DAI Yun; LIU Qian; RAO Xue-Jun

    2008-01-01

    @@ Although a compensation device can correct aberrations of human eyes, the effect will be degraded by its misalignment, especially for high-order aberration correction. We caJculate the positioning tolerance of correction device for high-order aberrations, and within what degree the correcting effect is better than low-order aberration (defocus and astigmatism) correction. With fixed certain misalignment within the positioning tolerance, we calculate the residual wavefront rms aberration of the first-6 to first-35 terms along with the 3rd-5th terms of aberrations corrected, and the combined first-13 terms of aberrations are also studied under the same quantity of misalignment. However, the correction effect of high-order aberrations does not meliorate along with the increase of the high-order terms under some misalignment, moreover, some simple combined terms correction can achieve similar result as complex combinations. These results suggest that it is unnecessary to correct too much the terms of high-order aberrations which are diffcult to accomplish in practice, and gives confdence to correct high-order aberrations out of the laboratory.

  10. Anterior corneal and internal contributions to peripheral aberrations of human eyes

    Science.gov (United States)

    Atchison, David A.

    2004-03-01

    Anterior corneal and internal component contributions to overall peripheral aberrations of five human eyes were determined, based on corneal topography and overall aberration measurements. Anterior corneal position and orientation (tilt) were referenced to the line of sight. Ray tracing was performed through the anterior cornea for 6-mm-diameter pupils at angles out to 40° in both the temporal and the nasal visual fields. In general, both component and overall Zernike aberrations were greater for the nasal than for the temporal visual field. In general, the anterior corneal aberration components were considerably higher than the overall aberrations across the visual field and were balanced to a considerable degree by the internal ocular aberration components. The component and overall levels of Zernike third-order aberrations showed linear trends away from the fixation axis, and the component levels of Zernike fourth-order aberrations showed quadratic trends away from the fixation axis. The second-order, but not higher-order, aberration components were susceptible to the choice of image radius of curvature, while disregarding corneal position and orientation affected second- and higher-order aberration components.

  11. Azoxymethane-induced rat aberrant crypt foci: Relevance in studying chemoprevention of colon cancer

    Institute of Scientific and Technical Information of China (English)

    Jayadev Raju

    2008-01-01

    The pathogenesis of colon cancer involves sequential and multistep progression of epithelial cells initiated to a cancerous state with defined precancerous intermediaries.Aberrant crypt foci (ACF) represent the earliest identifiable intermediate precancerous lesions during colon carcinogenesis in both laboratory animals and humans.ACF are easily induced by colon-specific carcinogens in rodents and can be used to learn more about the process of colon carcinogenesis.For over two decades,since its first discovery,azoxymethane(AOM)-induced rodent ACF have served as surrogate biomarkers in the screening of various anticarcinogens and carcinogens.Several dietary constituents and phytochemicals have been tested for their colon cancer chemopreventive efficacy using the ACF system.There has been substantial effort in defining and refining ACF in terms of understanding their molecular make-up,and extensive research in this field is currently in progress.In chemoprevention studies,AOM-induced rat ACF have been very successful as biomarkers,and have provided several standardized analyses of data.There have been several studies that have reported that ACF data do not correlate to actual colon tumor outcome,however,and hence there has been an ambiguity about their role as biomarkers.The scope of this mini-review is to provide valuable insights and limitations of AOM-induced rat ACF as biomarkers in colon cancer chemoprevention studies.The role of the dynamics and biological heterogeneity of ACF is critical in understanding them as biomarkers in chemoprevention studies.

  12. Structural chromosomal aberrations as potential risk markers in incident cancer patients.

    Science.gov (United States)

    Vodenkova, Sona; Polivkova, Zdenka; Musak, Ludovit; Smerhovsky, Zdenek; Zoubkova, Hana; Sytarova, Sylvie; Kavcova, Elena; Halasova, Erika; Vodickova, Ludmila; Jiraskova, Katerina; Svoboda, Miroslav; Ambrus, Miloslav; Hemminki, Kari; Vodicka, Pavel

    2015-07-01

    Epidemiological prospective studies have shown that increased chromosomal aberrations (CAs) in peripheral blood lymphocytes may predict cancer risk. Here, we report CAs in newly diagnosed 101 colorectal, 87 lung and 158 breast cancer patients and corresponding healthy controls. Strong differences in distributions of aberrant cells (ACs), CAs, chromatid-type aberrations (CTAs) and chromosome-type aberrations (CSAs) were observed in lung and breast cancer patients as compared to healthy controls. In colorectal cancer (CRC) patients, only CTAs were significantly elevated. Binary logistic regression, adjusted for main confounders, indicates that all the analysed cytogenetic parameters along with smoking were significantly associated with breast and lung cancer risks. Significant differences in terminal deletions between breast cancer patients and corresponding female controls were recorded (0.39 vs. 0.18; P ≤ 0.05). We did not find any association of CAs with TNM (tumor nodus metastasis) stages or histopathological grade in either cancer type. CAs were neither associated with additional tumor characteristics-invasivity, ductal and lobular character, estrogene/progesterone receptors in breast tumors nor with non-small/small cell and bronchogenic/pulmonary types of lung tumors. Our study demonstrates that CAs serve as a predictive marker for breast and lung cancer, whereas only CTAs were elevated in incident CRC patients. © The Author 2015. Published by Oxford University Press on behalf of the UK Environmental Mutagen Society. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  13. Prioritizing cancer-related genes with aberrant methylation based on a weighted protein-protein interaction network

    Directory of Open Access Journals (Sweden)

    Lv Jie

    2011-10-01

    Full Text Available Abstract Background As an important epigenetic modification, DNA methylation plays a crucial role in the development of mammals and in the occurrence of complex diseases. Genes that interact directly or indirectly may have the same or similar functions in the biological processes in which they are involved and together contribute to the related disease phenotypes. The complicated relations between genes can be clearly represented using network theory. A protein-protein interaction (PPI network offers a platform from which to systematically identify disease-related genes from the relations between genes with similar functions. Results We constructed a weighted human PPI network (WHPN using DNA methylation correlations based on human protein-protein interactions. WHPN represents the relationships of DNA methylation levels in gene pairs for four cancer types. A cancer-associated subnetwork (CASN was obtained from WHPN by selecting genes associated with seed genes which were known to be methylated in the four cancers. We found that CASN had a more densely connected network community than WHPN, indicating that the genes in CASN were much closer to seed genes. We prioritized 154 potential cancer-related genes with aberrant methylation in CASN by neighborhood-weighting decision rule. A function enrichment analysis for GO and KEGG indicated that the optimized genes were mainly involved in the biological processes of regulating cell apoptosis and programmed cell death. An analysis of expression profiling data revealed that many of the optimized genes were expressed differentially in the four cancers. By examining the PubMed co-citations, we found 43 optimized genes were related with cancers and aberrant methylation, and 10 genes were validated to be methylated aberrantly in cancers. Of 154 optimized genes, 27 were as diagnostic markers and 20 as prognostic markers previously identified in literature for cancers and other complex diseases by searching Pub

  14. Adaptive and aberrant reward prediction signals in the human brain

    Science.gov (United States)

    Roiser, Jonathan P.; Stephan, Klaas E.; den Ouden, Hanneke E.M.; Friston, Karl J.; Joyce, Eileen M.

    2010-01-01

    Theories of the positive symptoms of schizophrenia hypothesize a role for aberrant reinforcement signaling driven by dysregulated dopamine transmission. Recently, we provided evidence of aberrant reward learning in symptomatic, but not asymptomatic patients with schizophrenia, using a novel paradigm, the Salience Attribution Test (SAT). The SAT is a probabilistic reward learning game that employs cues that vary across task-relevant and task-irrelevant dimensions; it provides behavioral indices of adaptive and aberrant reward learning. As an initial step prior to future clinical studies, here we used functional magnetic resonance imaging to examine the neural basis of adaptive and aberrant reward learning during the SAT in healthy volunteers. As expected, cues associated with high relative to low reward probabilities elicited robust hemodynamic responses in a network of structures previously implicated in motivational salience; the midbrain, in the vicinity of the ventral tegmental area, and regions targeted by its dopaminergic projections, i.e. medial dorsal thalamus, ventral striatum and prefrontal cortex (PFC). Responses in the medial dorsal thalamus and polar PFC were strongly correlated with the degree of adaptive reward learning across participants. Finally, and most importantly, differential dorsolateral PFC and middle temporal gyrus (MTG) responses to cues with identical reward probabilities were very strongly correlated with the degree of aberrant reward learning. Participants who showed greater aberrant learning exhibited greater dorsolateral PFC responses, and reduced MTG responses, to cues erroneously inferred to be less strongly associated with reward. The results are discussed in terms of their implications for different theories of associative learning. PMID:19969090

  15. Mechanisms underlying aberrant glycosylation of MUC1 mucin in breast cancer cells.

    Science.gov (United States)

    Brockhausen, I; Yang, J M; Burchell, J; Whitehouse, C; Taylor-Papadimitriou, J

    1995-10-15

    The product of the MUC1 gene, the polymorphic epithelial mucin (PEM) is aberrantly glycosylated in breast and other carcinomas, resulting in exposure of normally cryptic peptide epitopes. PEM expressed by breast cancer cells contains more sialylated O-glycans and has a lower GlcNAc content than that expressed by normal cells. The exposure of peptide epitopes is thus thought to be due to the sugar side chains being shorter on the tumour-associated mucin. To investigate possible mechanisms underlying the different pattern of glycosylation in breast cancer cells, we analysed the pathways involved in the biosynthesis of O-glycan chains of mucins in normal and cancerous mammary epithelial cells. An immortalized mammary epithelial cells line originating from normal human milk. MTSV1-7, and three human breast cancer cell lines, BT20, MCF-7 and T47D, were studied. Glycosyltransferase activities assembling, elongating and terminating O-glycan core-1 [Gal beta 1-3GalNAc alpha-R] and core-2 [GlcNac beta 1-6 (Gal beta 1-3) GalNAc alpha-R] were present in the normal mammary cell line. Many of the glycosyltransferase activities were also expressed at variable levels in breast cancer cells. However, a sialyltransferase activity (CMP-sialic acid Gal beta 1-3GalNAc alpha 3-sialyltransferase) was increased several fold in all three cancer cell lines. Moreover, mammary cancer cell lines BT20 and T47D have lost the ability to synthesize core-2, as shown by the lack of UDP-GlcNAc: Gal beta 1-3GalNAc (GlcNAc to GalNAc) beta 6-GlcNAc-transferase activity, which corresponded to the absence of the mRNA transcript. However, MCF-7 breast cancer cells expressed this enzyme. Thus, the mechanism for the exposure of peptide epitopes in BT20 and T47D cells is proposed to be the loss of core-2 branching leading to shorter, sialylated O-glycan chains. A different mechanism is proposed for MCF-7 breast cancer cells.

  16. Integrated analysis of whole genome and transcriptome sequencing reveals diverse transcriptomic aberrations driven by somatic genomic changes in liver cancers.

    Directory of Open Access Journals (Sweden)

    Yuichi Shiraishi

    Full Text Available Recent studies applying high-throughput sequencing technologies have identified several recurrently mutated genes and pathways in multiple cancer genomes. However, transcriptional consequences from these genomic alterations in cancer genome remain unclear. In this study, we performed integrated and comparative analyses of whole genomes and transcriptomes of 22 hepatitis B virus (HBV-related hepatocellular carcinomas (HCCs and their matched controls. Comparison of whole genome sequence (WGS and RNA-Seq revealed much evidence that various types of genomic mutations triggered diverse transcriptional changes. Not only splice-site mutations, but also silent mutations in coding regions, deep intronic mutations and structural changes caused splicing aberrations. HBV integrations generated diverse patterns of virus-human fusion transcripts depending on affected gene, such as TERT, CDK15, FN1 and MLL4. Structural variations could drive over-expression of genes such as WNT ligands, with/without creating gene fusions. Furthermore, by taking account of genomic mutations causing transcriptional aberrations, we could improve the sensitivity of deleterious mutation detection in known cancer driver genes (TP53, AXIN1, ARID2, RPS6KA3, and identified recurrent disruptions in putative cancer driver genes such as HNF4A, CPS1, TSC1 and THRAP3 in HCCs. These findings indicate genomic alterations in cancer genome have diverse transcriptomic effects, and integrated analysis of WGS and RNA-Seq can facilitate the interpretation of a large number of genomic alterations detected in cancer genome.

  17. Aberrant expression of connexin 26 is associated with lung metastasis of colorectal cancer.

    Science.gov (United States)

    Ezumi, Koji; Yamamoto, Hirofumi; Murata, Kohei; Higashiyama, Masahiko; Damdinsuren, Bazarragchaa; Nakamura, Yurika; Kyo, Naganori; Okami, Jiro; Ngan, Chew Yee; Takemasa, Ichiro; Ikeda, Masataka; Sekimoto, Mitsugu; Matsuura, Nariaki; Nojima, Hiroshi; Monden, Morito

    2008-02-01

    Connexin 26 (Cx26) is one of the gap junction-forming family members classically considered to be tumor suppressors. However, recent studies show association of elevated expression of Cx26 with poor prognosis in several human malignancies. Furthermore, Cx26 has been observed to be indispensable to spontaneous metastasis of melanoma cells. Here, we assessed Cx26 expression in primary colorectal cancer (CRC) and the metastatic lesions to elucidate its role in metastasis. Cx26 expression was assessed in 25 adenomas, 167 CRCs, and normal mucosa, together with the metastatic lesions. Normal mucosa and adenomatous tissue expressed Cx26 mainly in the plasma membrane, whereas cancer cells mostly contained Cx26 in the cytoplasm. The incidence of aberrant Cx26 expression varied widely in CRC (mean, 49.5 +/- 35.5%), and the expression levels were confirmed by Western blot and quantitative reverse transcription-PCR. Clinicopathologic survey revealed association of high expression with less differentiated histology and venous invasion (P = 0.0053 and P = 0.0084, respectively). Notably, high Cx26 expression was associated with shorter disease-free survival and shorter lung metastasis-free survival in 154 curatively resected CRC sets (P = 0.041 and P = 0.028, respectively). Survey of metastatic lesions revealed that lung metastasis, but not liver and lymph nodes metastases, expressed higher Cx26 than the CRC series or corresponding primary CRCs (P < 0.0001 and P = 0.0001, respectively). These findings suggest that aberrant expression of Cx26 plays an essential role in lung metastasis. Thus, Cx26 is a promising therapeutic target, particularly for CRC patients who develop lung metastasis.

  18. Dysregulation of microRNA expression drives aberrant DNA hypermethylation in basal-like breast cancer.

    Science.gov (United States)

    Sandhu, Rupninder; Rivenbark, Ashley G; Mackler, Randi M; Livasy, Chad A; Coleman, William B

    2014-02-01

    Basal-like breast cancers frequently express aberrant DNA hypermethylation associated with concurrent silencing of specific genes secondary to DNMT3b overexpression and DNMT hyperactivity. DNMT3b is known to be post-transcriptionally regulated by microRNAs. The objective of the current study was to determine the role of microRNA dysregulation in the molecular mechanism governing DNMT3b overexpression in primary breast cancers that express aberrant DNA hypermethylation. The expression of microRNAs (miRs) that regulate (miR-29a, miR-29b, miR-29c, miR-148a and miR-148b) or are predicted to regulate DNMT3b (miR‑26a, miR-26b, miR-203 and miR-222) were evaluated among 70 primary breast cancers (36 luminal A-like, 13 luminal B-like, 5 HER2‑enriched, 16 basal-like) and 18 normal mammoplasty tissues. Significantly reduced expression of miR-29c distinguished basal-like breast cancers from other breast cancer molecular subtypes. The expression of aberrant DNA hypermethylation was determined in a subset of 33 breast cancers (6 luminal A-like, 6 luminal B-like, 5 HER2-enriched and 16 basal-like) through examination of methylation‑sensitive biomarker gene expression (CEACAM6, CDH1, CST6, ESR1, GNA11, MUC1, MYB, TFF3 and SCNN1A), 11/33 (33%) cancers exhibited aberrant DNA hypermethylation including 9/16 (56%) basal-like cancers, but only 2/17 (12%) non-basal-like cancers (luminal A-like, n=1; HER2-enriched, n=1). Breast cancers with aberrant DNA hypermethylation express diminished levels of miR-29a, miR-29b, miR-26a, miR-26b, miR-148a and miR-148b compared to cancers lacking aberrant DNA hypermethylation. A total of 7/9 (78%) basal-like breast cancers with aberrant DNA hypermethylation exhibit diminished levels of ≥6 regulatory miRs. The results show that i) reduced expression of miR-29c is characteristic of basal-like breast cancers, ii) miR and methylation-sensitive gene expression patterns identify two subsets of basal-like breast cancers, and iii) the subset of basal

  19. Chromosomal aberration frequency in lymphocytes predicts the risk of cancer

    DEFF Research Database (Denmark)

    Bonassi, Stefano; Norppa, Hannu; Ceppi, Marcello

    2008-01-01

    studies and to evaluate the strength of this association, a pooled analysis was carried out. The pooled database included 11 national cohorts and a total of 22 358 cancer-free individuals who underwent genetic screening with CA for biomonitoring purposes during 1965-2002 and were followed up for cancer...... for stomach cancer [RR(medium) = 1.17 (95% CI = 0.37-3.70), RR(high) = 3.13 (95% CI = 1.17-8.39)]. Exposure to carcinogens did not modify the effect of CA levels on overall cancer risk. These results reinforce the evidence of a link between CA frequency and cancer risk and provide novel information...

  20. Aberrant expression of Wnt antagonist SFRP1 in pancreatic cancer

    Institute of Scientific and Technical Information of China (English)

    BU Xian-min; ZHAO Cheng-hai; DAI Xian-wei

    2008-01-01

    @@ Pancreatic cancer is one of the malignant tumor with a very poor prognosis. Both genetic and epigenetic alterations are involved in the pathogenetic mechanisms of pancreatic cancer. Hypermethylation and subsequent loss of expression of some tumor suppressor genes and tumor-related genes occur frequently in pancreatic cancer, such as loss of expression of pl6,1 RASSF1A,2 SOCS-1,3 and hMLH14 genes were repoted.

  1. Chromosomal aberrations and SCEs as biomarkers of cancer risk

    DEFF Research Database (Denmark)

    Norppa, H; Bonassi, S; Hansteen, I-L

    2006-01-01

    between CA analysis and cancer detection, i.e., is obviously not explained by undetected cancer. The present evidence indicates that both chromatid-type and chromosome-type CAs predict cancer, even though some data suggest that chromosome-type CAs may have a more pronounced predictive value than chromatid...... species. Although the association between CA level and cancer is seen at the group level, an association probably also exists for the individual, although it is not known if an individual approach could be feasible. However, group level evidence should be enough to support the use of CA analysis as a tool...

  2. [239Pu and chromosomal aberrations in human peripheral blood lymphocytes].

    Science.gov (United States)

    Okladnikova, N D; Osovets, S V; Kudriavtseva, T I

    2009-01-01

    The genome status in somatic cells was assessed using the chromosomal aberration (CA) test in peripheral blood lymphocytes from 194 plutonium workers exposed to occupational radiation mainly from low-transportable compounds of airborne 230Pu. Pu body burden at the time of cytogenetic study varied from values close to the method sensitivity to values multiply exceeding the permissible level. Standard (routine) methods of peripheral blood lymphocytes cultivation were applied. Chromatid- and chromosomal-type structural changes were estimated. Aberrations were estimated per 100 examined metaphase cells. The quantitative relationship between the CA frequency and Pu body burden and the absorbed dose to the lung was found. Mathematical processing of results was carried out based on the phenomenological model. The results were shown as theoretical and experimental curves. The threshold of the CA yield was 0.43 +/- 0.03 kBq (Pu body burden) and 6.12 +/- 1.20 cGy (absorbed dose to the lung).

  3. Chromosome Aberrations in Human Lymphocytes Irradiated with Ionizing Radiation

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Tae Ho; Kim, Jin Hong; Kim, Jin Kyu [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    The purpose of the present experiment was to provide data on the dose-dependent production of chromosome aberrations such as dicentrics, centric rings, and excess acentrics. Radiation is one of the more dangerous clastogens in the environment. Ionizing radiation causes chromosome breakages and various cytogenetic aberrations in exposed cells. In an investigation into radiation emergencies, it is important to estimate the dose to exposed persons for several reasons. Physical dosimeters (e. g., film badges) may misrepresent the actual radiation dose and may not be available in a radiological accident or terrorism incident. Biological dosimetry is suitable for estimating the radiation dose during such accidents. The dicentric chromosome assay is very sensitive and a reliable bio-indicator in cases of accidental overexposure.

  4. [HPV-associated head and neck cancer : mutational signature and genomic aberrations].

    Science.gov (United States)

    Wagner, S; Würdemann, N; Hübbers, C; Reuschenbach, M; Prigge, E-S; Wichmann, G; Hess, J; Dietz, A; Dürst, M; Tinhofer, I; von Knebel-Döberitz, M; Wittekindt, C; Klussmann, J P

    2015-11-01

    A significantly increasing proportion of oropharyngeal head and neck carcinomas (OSCC) in North America and Europe are associated with human papillomavirus (HPV) infections. HPV-related OSCC is regarded as a distinct tumor type with regard to its cellular, biologic, and clinical characteristics. Patients with HPV-related OSCC have significantly better local control, but higher rates of regional lymph node and distant metastases as compared to patients with HPV-negative OSCC. Classical molecular genetic investigations demonstrated specific chromosomal aberration signatures in HPV-related OSCC, and recent developments in next generation sequencing (NGS) technology have rendered possible the sequencing of entire genomes, and thus detection of specific mutations, in just a few days. Initial data from The Cancer Genome Atlas (TCGA) project obtained by using genome-wide high throughput methods have confirmed that HPV-related OSCC contain fewer, albeit more specific mutations than HPV-negative tumors. Additionally, these data revealed the presence of specific-potentially therapeutically targetable-activating driver mutations in subgroups of HPV-positive OSCC, some of which have a prognostic impact. Specific targeted NGS technologies provide new possibilities for identification of diagnostic, prognostic, and predictive biomarkers and the development of personalized cancer treatment. Patients with HPV-positive tumors are likely to profit from these developments in the future, since the genetic alterations are relatively homogenous and frequently lead to signal pathway activation. There is an urgent need for network research activities to carry out the necessary basic research in prospective cohort studies.

  5. Combining Chromosomal Arm Status and Significantly Aberrant Genomic Locations Reveals New Cancer Subtypes

    Directory of Open Access Journals (Sweden)

    Tal Shay

    2009-01-01

    Full Text Available Many types of tumors exhibit characteristic chromosomal losses or gains, as well as local amplifications and deletions. Within any given tumor type, sample specific amplifications and deletions are also observed. Typically, a region that is aberrant in more tumors, or whose copy number change is stronger, would be considered as a more promising candidate to be biologically relevant to cancer. We sought for an intuitive method to define such aberrations and prioritize them. We define V, the “volume” associated with an aberration, as the product of three factors: (a fraction of patients with the aberration, (b the aberration’s length and (c its amplitude. Our algorithm compares the values of V derived from the real data to a null distribution obtained by permutations, and yields the statistical significance (p-value of the measured value of V. We detected genetic locations that were significantly aberrant, and combine them with chromosomal arm status (gain/loss to create a succinct fingerprint of the tumor genome. This genomic fingerprint is used to visualize the tumors, highlighting events that are co-occurring or mutually exclusive. We apply the method on three different public array CGH datasets of Medulloblastoma and Neuroblastoma, and demonstrate its ability to detect chromosomal regions that were known to be altered in the tested cancer types, as well as to suggest new genomic locations to be tested. We identified a potential new subtype of Medulloblastoma, which is analogous to Neuroblastoma type 1.

  6. High- and low-LET Radiation-induced Chromosome Aberrations in Human Epithelial Cells Cultured in 3-dimensional Matrices

    Science.gov (United States)

    Hada, M.; George K.; Cucinotta, F. A.; Wu, H.

    2008-01-01

    Energetic heavy ions pose a great health risk to astronauts who participate in extended ISS missions and will be an even greater concern for future manned lunar and Mars missions. High-LET heavy ions are particularly effective in causing various biological effects, including cell inactivation, genetic mutations, cataracts and cancer induction. Most of these biological endpoints are closely related to chromosomal damage, which can be utilized as a biomarker for radiation insults. Previously, we had studied low- and high-LET radiation-induced chromosome aberrations in human epithelial cells cultured in 2-dimension (2D) using the multicolor banding fluorescence in situ hybridization (mBAND) technique. However, it has been realized that the biological response to radiation insult in a 2D in vitro cellular environment can differ significantly from the response in 3-dimension (3D) or at the actual tissue level. In this study, we cultured human epithelial cells in 3D to provide a more suitable model for human tissue. Human mammary epithelial cells (CH184B5F5/M10) were grown in Matrigel to form 3D structures, and exposed to Fe-ions at NASA Space Radiation Laboratory (NSRL) at the Brookhaven National Laboratory or 137Cs-gamma radiation source at the University of Texas MD Anderson Cancer Center. After exposure, cells were allowed to repair for 16hr before dissociation and subcultured at low density in 2D. G2 and metaphase chromosomes in the first cell cycle were collected in the first cell cycle after irradiation using a chemical-induced premature chromosome condensation (PCC) technique, and chromosome aberrations were analyzed using mBAND technique. With this technique, individually painted chromosomal bands on one chromosome allowed the identification of interchromosomal aberrations (translocation to unpainted chromosomes) and intrachromosomal aberrations (inversions and deletions within a single painted chromosome). Our data indicate a significant difference in the

  7. High- and low-LET Radiation-induced Chromosome Aberrations in Human Epithelial Cells Cultured in 3-dimensional Matrices

    Science.gov (United States)

    Hada, M.; George K.; Cucinotta, F. A.; Wu, H.

    2008-01-01

    Energetic heavy ions pose a great health risk to astronauts who participate in extended ISS missions and will be an even greater concern for future manned lunar and Mars missions. High-LET heavy ions are particularly effective in causing various biological effects, including cell inactivation, genetic mutations, cataracts and cancer induction. Most of these biological endpoints are closely related to chromosomal damage, which can be utilized as a biomarker for radiation insults. Previously, we had studied low- and high-LET radiation-induced chromosome aberrations in human epithelial cells cultured in 2-dimension (2D) using the multicolor banding fluorescence in situ hybridization (mBAND) technique. However, it has been realized that the biological response to radiation insult in a 2D in vitro cellular environment can differ significantly from the response in 3-dimension (3D) or at the actual tissue level. In this study, we cultured human epithelial cells in 3D to provide a more suitable model for human tissue. Human mammary epithelial cells (CH184B5F5/M10) were grown in Matrigel to form 3D structures, and exposed to Fe-ions at NASA Space Radiation Laboratory (NSRL) at the Brookhaven National Laboratory or 137Cs-gamma radiation source at the University of Texas MD Anderson Cancer Center. After exposure, cells were allowed to repair for 16hr before dissociation and subcultured at low density in 2D. G2 and metaphase chromosomes in the first cell cycle were collected in the first cell cycle after irradiation using a chemical-induced premature chromosome condensation (PCC) technique, and chromosome aberrations were analyzed using mBAND technique. With this technique, individually painted chromosomal bands on one chromosome allowed the identification of interchromosomal aberrations (translocation to unpainted chromosomes) and intrachromosomal aberrations (inversions and deletions within a single painted chromosome). Our data indicate a significant difference in the

  8. Targeting Androgen Receptor Aberrations in Castration-Resistant Prostate Cancer.

    Science.gov (United States)

    Sharp, Adam; Welti, Jonathan; Blagg, Julian; de Bono, Johann S

    2016-09-01

    Androgen receptor (AR) splice variants (SV) have been implicated in the development of metastatic castration-resistant prostate cancer and resistance to AR targeting therapies, including abiraterone and enzalutamide. Agents targeting AR-SV are urgently needed to test this hypothesis and further improve the outcome of patients suffering from this lethal disease. Clin Cancer Res; 22(17); 4280-2. ©2016 AACRSee related article by Yang et al., p. 4466.

  9. Aberrant Expression of Notch1 in Cervical Cancer

    Institute of Scientific and Technical Information of China (English)

    Li Sun; Qimin Zhan; Wenhua Zhang; Yongmei Song; Tong Tong

    2007-01-01

    OBJECTIVE To investigate the putative role of the Notch1 receptor in cervical cancer carcinogenesis and progression.METHODS The expression of the Notch1 protein was analyzed by a Western-blotting approach in 40 cervical cancer and 30 normal cervical tissues.Some tissues were examined using RT-PCR To determine Mrna levels.Celluar localization of the Notch1 protein in the paraffin-embedded cervical tissues was also analyzed by immunohistochemistry.RESULTS The Notch1 protein was detected in all 30 normal cervical tissues.In contrast.only 6 samples of 40 cervical cancer tissues showed Notch1 expression.The level of the Notch1 protein expression was significantly lower in cervical cancer tissues than that in normal tissue samples.In agreement with these observations.levels of Notch1 Mrna were found to be substantially down-regulated in cervical cancer tissues.In the immunohistochemistry staining assay,the Notch1 protein was shown to localize predominantly in the cytoplasm and nucleoli of the normal cervical squamous epithelium of the cervix,but no staining was observed in the cervical cancer cells.Notch1 expression was observed to correlate with the clinical disease stage.but there were no correlations with age,tumor size,grade or lymph node metastasis (P>0.05).The levels of Notchl protein expression were significantly higher in early stages(I~lla,66.7%) compared to those in the advanced stages (Iib~IV,12.6%)(P=0.001).CONCLUSION Notch1 may play a role as a tumor suppressor in cervical tumorigenesis.Determination of Notch1 expression may be helpful for preoperative diagnosis and accuracy of staging.But its clinical use for cervical cancer requires further investigation.

  10. Metastatic suppressor genes inactivated by aberrant methylation in gastric cancer

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    AIM: To screen out the differentially methylated DNA sequences between gastric primary tumor and metastatic lymph nodes, test the methylation difference of gene PTPRG between primary gastric tumor and metastatic lymph nodes, and test the regulatory function of 5-aza-2-deoxycytidine which is an agent with suppression on methylation and the level of methylation in gastric cancer cell line.METHODS: Methylated DNA sequences in genome were enriched with methylated CpG islands amplification (MCA)to undergo representational difference analysis (RDA),with MCA production of metastatic lymph nodes as tester and that of primary tumor as driver. The obtained differentially methylated fragments were cloned and sequenced to acquire the base sequence, which was analyzed with bioinformatics. With methylation-specific PCR (MSP) and RT-PCR, methylation difference of gene PTPRG was detected between primary tumor and metastatic lymph nodes in 36 cases of gastric cancer.Methylation of gene PTPRG and its regulated expression were observed in gastric cancer cell line before and after being treated with methylation-suppressive agent.RESULTS: Nineteen differentially methylated sequences were obtained and located at 5' end, exons, introns and 3' end, in which KL59 was observed to be located at 9p21 as the first exon of gene p16 and KL22 to be located at promoter region of PRPRG. KL22, aS the probes, was hybridized with driver, tester and 3-round RDA products respectively with all positive signals except with the driver. Significant difference was observed in both methylation rate of gene PTPRG and PTPRG mRNA expression rate between primary tumor and metastatic lymph nodes. Demethylation of gene PTPRG, with recovered expression of PTPRG mRNA, was observed after gastric cancer cell line being treated with methylation-suppressive agent.CONCLUSION: Difference exists in DNA methylation between primary tumor and metastatic lymph nodes of gastric cancer, with MCA-RDA as one of the good analytical

  11. EFFECT OF SHORT-TERM SOFT CONTACT LENS WEAR ON HUMAN OCULAR ABERRATIONS

    Institute of Scientific and Technical Information of China (English)

    YU Jing; CHEN Yi-hui; CHEN Hui; SHENG Min-jie

    2009-01-01

    Objective To evaluate the effect of short-term soft contact lens (SCLs) wearing on human ocular aberrations (HOA).Methods This prospective study included 50 eyes of 50 young volunteers wearing SCLs for 1month. The ocular aberrations were measured by Allegretto Wavefront Analyzer. The root-mean-square (RMS) values of the general (RMSG), higher-order (RMSH), first to sixth order (RMS1 to RMS6) and aberration coefficients were analyzed.Results There were no significant differences in the mean values of RMSG, RMSH, RMS1 to RMS6 (P>0.05) and changes of absolute values of aberration coefficients between baseline and various visits after SCLs discontinuation. However, at d1 after the discontinuation of SCLs, changes in coefficient values of the third-order aberrations (C6 to C9) were slightly higher than others, and C7 was the highest. The increase factors of RMS values were higher at 1 week and lower at the 2 week visit after SCLs discontinuation. The uniformity of dominating type in HOA and the corneal topography form was both about 60% after discontinuation of SCLs. The corneal thickness increased after SCLs wear and gradually decreased to baseline until 1month discontinuation of SCLs.Conclusion The effect of short-term SCLs wear on human ocular aberrations is slight but profound. A month or more wait should be allowed before the short-term SCLs wearers are scheduled for wavefronted-guided LASIK.

  12. Cancer associated aberrant protein o-glycosylation can modify antigen processing and immune response

    DEFF Research Database (Denmark)

    Madsen, Caroline B; Petersen, Cecilie; Lavrsen, Kirstine

    2012-01-01

    Aberrant glycosylation of mucins and other extracellular proteins is an important event in carcinogenesis and the resulting cancer associated glycans have been suggested as targets in cancer immunotherapy. We assessed the role of O-linked GalNAc glycosylation on antigen uptake, processing...... response to a cancer related tumor antigen, Balb/c or B6.Cg(CB)-Tg(HLA-A/H2-D)2Enge/J (HLA-A2 transgenic) mice were immunized with a non-glycosylated or GalNAc-glycosylated MUC1 derived peptide followed by comparison of T cell proliferation, IFN-¿ release, and antibody induction. Gal...

  13. Myc Expression Drives Aberrant Lipid Metabolism in Lung Cancer

    OpenAIRE

    Hall, Z.; Ament, Z; Wilson, CH; Burkhart, DL; Ashmore, T; Koulman, A.; Littlewood, T; Evan, GI; Griffin, JL

    2016-01-01

    MYC-mediated pathogenesis in lung cancer continues to attract interest for new therapeutic strategies. In this study, we describe a transgenic mouse model of KRAS-driven lung adenocarcinoma that affords reversible activation of MYC, used here as a tool for lipidomic profiling of MYC-dependent lung tumors formed in this model. Advanced mass spectrometric imaging and surface analysis techniques were used to characterize the spatial and temporal changes in lipid composition in lung tissue. We fo...

  14. Adaptive Optics Analysis of Visual Benefit with Higher-order Aberrations Correction of Human Eye - Poster Paper

    Science.gov (United States)

    Xue, Lixia; Dai, Yun; Rao, Xuejun; Wang, Cheng; Hu, Yiyun; Liu, Qian; Jiang, Wenhan

    2008-01-01

    Higher-order aberrations correction can improve visual performance of human eye to some extent. To evaluate how much visual benefit can be obtained with higher-order aberrations correction we developed an adaptive optics vision simulator (AOVS). Dynamic real time optimized modal compensation was used to implement various customized higher-order ocular aberrations correction strategies. The experimental results indicate that higher-order aberrations correction can improve visual performance of human eye comparing with only lower-order aberration correction but the improvement degree and higher-order aberration correction strategy are different from each individual. Some subjects can acquire great visual benefit when higher-order aberrations were corrected but some subjects acquire little visual benefit even though all higher-order aberrations were corrected. Therefore, relative to general lower-order aberrations correction strategy, customized higher-order aberrations correction strategy is needed to obtain optimal visual improvement for each individual. AOVS provides an effective tool for higher-order ocular aberrations optometry for customized ocular aberrations correction.

  15. Regulation of MYC gene expression by aberrant Wnt/β-catenin signaling in colorectal cancer

    Institute of Scientific and Technical Information of China (English)

    Sherri; Rennoll; Gregory; Yochum

    2015-01-01

    The Wnt/β-catenin signaling pathway controls intestinal homeostasis and mutations in components of this pathway are prevalent in human colorectal cancers(CRCs).These mutations lead to inappropriate expression of genes controlled by Wnt responsive DNA elements(WREs). T-cell factor/Lymphoid enhancer factor transcription factors bind WREs and recruit the β-catenin transcriptional co-activator to activate target gene expression. Deregulated expression of the c-MYC proto-oncogene(MYC) by aberrant Wnt/β-catenin signaling drives colorectal carcinogenesis. In this review,we discuss the current literature pertaining to the identification and characterization of WREs that control oncogenic MYC expression in CRCs. A common theme has emerged whereby these WREs often map distally to the MYC genomic locus and control MYC gene expression through long-range chromatin loops with the MYC proximal promoter. We propose that by determining which of these WREs is critical for CRC pathogenesis,novel strategies can be developed to treat individuals suffering from this disease.

  16. RET Aberrations in Diverse Cancers: Next-Generation Sequencing of 4,871 Patients.

    Science.gov (United States)

    Kato, Shumei; Subbiah, Vivek; Marchlik, Erica; Elkin, Sheryl K; Carter, Jennifer L; Kurzrock, Razelle

    2017-04-15

    Purpose: Aberrations in genetic sequences encoding the tyrosine kinase receptor RET lead to oncogenic signaling that is targetable with anti-RET multikinase inhibitors. Understanding the comprehensive genomic landscape of RET aberrations across multiple cancers may facilitate clinical trial development targeting RETExperimental Design: We interrogated the molecular portfolio of 4,871 patients with diverse malignancies for the presence of RET aberrations using Clinical Laboratory Improvement Amendments-certified targeted next-generation sequencing of 182 or 236 gene panels.Results: Among diverse cancers, RET aberrations were identified in 88 cases [1.8% (88/4, 871)], with mutations being the most common alteration [38.6% (34/88)], followed by fusions [30.7% (27/88), including a novel SQSTM1-RET] and amplifications [25% (22/88)]. Most patients had coexisting aberrations in addition to RET anomalies [81.8% (72/88)], with the most common being in TP53-associated genes [59.1% (52/88)], cell cycle-associated genes [39.8% (35/88)], the PI3K signaling pathway [30.7% (27/88)], MAPK effectors [22.7% (20/88)], or other tyrosine kinase families [21.6% (19/88)]. RET fusions were mutually exclusive with MAPK signaling pathway alterations. All 72 patients harboring coaberrations had distinct genomic portfolios, and most [98.6% (71/72)] had potentially targetable coaberrations with either an FDA-approved or an investigational agent. Two cases with lung (KIF5B-RET) and medullary thyroid carcinoma (RET M918T) that responded to a vandetanib (multikinase RET inhibitor)-containing regimen are shown.Conclusions:RET aberrations were seen in 1.8% of diverse cancers, with most cases harboring actionable, albeit distinct, coexisting alterations. The current report suggests that optimal targeting of patients with RET anomalies will require customized combination strategies. Clin Cancer Res; 23(8); 1988-97. ©2016 AACR. ©2016 American Association for Cancer Research.

  17. Biosynthetic Machinery Involved in Aberrant Glycosylation: Promising Targets for Development Drugs Against Cancer

    Directory of Open Access Journals (Sweden)

    Andreia eVasconcelos-dos-Santos

    2015-06-01

    Full Text Available Cancer cells depend on altered metabolism and nutrient uptake to generate and keep the malignant phenotype. The hexosamine biosynthetic pathway (HBP is a branch of glucose metabolism that produces UDP-GlcNAc, and its derivatives, UDP-GalNAc and CMP-Neu5Ac, donor substrates used in the production of glycoproteins and glycolipids. Growing evidence demonstrates that alteration of the pool of activated substrates might lead to different glycosylation and cell signaling. It is already well established that aberrant glycosylation can modulate tumor growth and malignant transformation in different cancer types. Therefore, biosynthetic machinery involved in the assembly of aberrant glycans are becoming prominent targets for anti-tumor drugs. This review describes three classes of glycosylation, O-GlcNAcylation, N-linked and mucin type O-linked glycosylation, involved in tumor progression, their biosynthesis and highlights the available inhibitors as potential anti-tumor drugs.

  18. Dose-Response Curve of Chromosome Aberrations in Human Lymphocytes Induced by Gamma-Rays

    Directory of Open Access Journals (Sweden)

    Y. Lusiyanti

    2013-12-01

    Full Text Available Chromosome aberration is a biomarker to predict the level of cell damage caused by exposure to ionizing radiation on human body. Dicentric chromosome is a specific chromosome aberration caused by ionizing radiation and is used as a gold standard biodosimetry of individuals over exposed to ionizing radiation. In radiation accident the dicentric assays has been applied as biological dosimetry to estimate radiation absorbed dose and also to confirm the radiation dose received to radiation workers.The purpose of this study was to generate a dose response curve of chromosome aberration (dicentric in human lymphocyte induced by gamma radiation. Peripheral blood samples from three non smoking healthy volunteers aged between 25-48 years old with informed consent were irradiated with dose between 0.1-4.0 Gy and a control using gamma teletherapy source. The culture procedure was conducted following the IAEA standard procedures with slight modifications. Analysis of dose-response curves used was LQ model Y = a + αD + βD2. The result showed that α and β values of the curve obtained were 0.018 ± 0.006 and 0.013 ± 0.002, respectively. Dose response calibration curve for dicentric chromosome aberrations in human lymphocytes induced by gamma-radiation fitted to linear quadratic model. In order to apply the dose response curve of chromosome aberration disentric for biodosimetry, this standar curve still need to be validated.

  19. Increased expression and aberrant localization of mucin 13 in metastatic colon cancer.

    Science.gov (United States)

    Gupta, Brij K; Maher, Diane M; Ebeling, Mara C; Sundram, Vasudha; Koch, Michael D; Lynch, Douglas W; Bohlmeyer, Teresa; Watanabe, Akira; Aburatani, Hiroyuki; Puumala, Susan E; Jaggi, Meena; Chauhan, Subhash C

    2012-11-01

    MUC13 is a newly identified transmembrane mucin. Although MUC13 is known to be overexpressed in ovarian and gastric cancers, limited information is available regarding the expression of MUC13 in metastatic colon cancer. Herein, we investigated the expression profile of MUC13 in colon cancer using a novel anti-MUC13 monoclonal antibody (MAb, clone ppz0020) by immunohistochemical (IHC) analysis. A cohort of colon cancer samples and tissue microarrays containing adjacent normal, non-metastatic colon cancer, metastatic colon cancer, and liver metastasis tissues was used in this study to investigate the expression pattern of MUC13. IHC analysis revealed significantly higher (pcolon cancer samples compared with faint or very low expression in adjacent normal tissues. Interestingly, metastatic colon cancer and liver metastasis tissue samples demonstrated significantly (pcolon cancer and adjacent normal colon samples. Moreover, cytoplasmic and nuclear MUC13 expression correlated with larger and poorly differentiated tumors. Four of six tested colon cancer cell lines also expressed MUC13 at RNA and protein levels. These studies demonstrate a significant increase in MUC13 expression in metastatic colon cancer and suggest a correlation between aberrant MUC13 localization (cytoplasmic and nuclear expression) and metastatic colon cancer.

  20. Replication stress, a source of epigenetic aberrations in cancer?

    DEFF Research Database (Denmark)

    Jasencakova, Zusana; Groth, Anja

    2010-01-01

    . Chromatin organization is transiently disrupted during DNA replication and maintenance of epigenetic information thus relies on faithful restoration of chromatin on the new daughter strands. Acute replication stress challenges proper chromatin restoration by deregulating histone H3 lysine 9 mono......-methylation on new histones and impairing parental histone recycling. This could facilitate stochastic epigenetic silencing by laying down repressive histone marks at sites of fork stalling. Deregulation of replication in response to oncogenes and other tumor-promoting insults is recognized as a significant source...... of genome instability in cancer. We propose that replication stress not only presents a threat to genome stability, but also jeopardizes chromatin integrity and increases epigenetic plasticity during tumorigenesis....

  1. Chromatic aberration correction of the human eye for retinal imaging in the near infrared.

    Science.gov (United States)

    Fernández, Enrique J; Unterhuber, Angelika; Povazay, Boris; Hermann, Boris; Artal, Pablo; Drexler, Woflgang

    2006-06-26

    An achromatizing lens has been designed for the human eye in the near infrared range, from 700 to 900 nm, for retinal imaging purposes. Analysis of the performance of the lens, including tolerance to misalignments, has been mathematically accomplished by using an existing eye model. The calculations have shown a virtually perfect correction of the ocular longitudinal chromatic aberration, while still keeping a high optical quality. Ocular aberrations in five subjects have been measured with and without the achromatizing lens by using a Hartmann-Shack wavefront sensor and a broad bandwidth femtosecond Ti:sapphire laser in the spectral range of interest with a set of interference filters, studying the benefits and limits in the use of the achromatizing lens. Ocular longitudinal chromatic aberration has been experimentally demonstrated to be fully corrected by the proposed lens, with no induction of any other parasitic aberration. The practical implementation of the achromatizing lens for Ophthalmoscopy, specifically for optical coherence tomography where the use of polychromatic light sources in the near infrared portion of the spectrum is mandatory, has been considered. The potential benefits of using this lens in combination with adaptive optics to achieve a full aberration correction of the human eye for retinal imaging have also been discussed.

  2. Pathway Implications of Aberrant Global Methylation in Adrenocortical Cancer.

    Directory of Open Access Journals (Sweden)

    Christophe R Legendre

    Full Text Available Adrenocortical carcinomas (ACC are a rare tumor type with a poor five-year survival rate and limited treatment options.Understanding of the molecular pathogenesis of this disease has been aided by genomic analyses highlighting alterations in TP53, WNT, and IGF signaling pathways. Further elucidation is needed to reveal therapeutically actionable targets in ACC.In this study, global DNA methylation levels were assessed by the Infinium HumanMethylation450 BeadChip Array on 18 ACC tumors and 6 normal adrenal tissues. A new, non-linear correlation approach, the discretization method, assessed the relationship between DNA methylation/gene expression across ACC tumors.This correlation analysis revealed epigenetic regulation of genes known to modulate TP53, WNT, and IGF signaling, as well as silencing of the tumor suppressor MARCKS, previously unreported in ACC.DNA methylation may regulate genes known to play a role in ACC pathogenesis as well as known tumor suppressors.

  3. Inhibition of aberrant proliferation and induction of apoptosis in pre-neoplastic human mammary epithelial cells by natural phytochemicals.

    Science.gov (United States)

    Katdare, M; Osborne, M P; Telang, N T

    1998-01-01

    Aberrant proliferation and modulated apoptosis leading to impaired cellular homeostasis represent crucial early events in the multi-step carcinogenic process. Regulation of these perturbed biomarkers may predict efficacious prevention of cancer development. Present experiments on non-cancerous human mammary epithelial 184-B5 cells were designed to examine whether i) exposure to suspect environmental human carcinogen Benzo (a) pyrene (BP) alters the status of cell proliferation and apoptosis and ii) BP-induced alterations are modulated in response to select natural phytochemicals that inhibit rodent mammary tumorigenesis. Flow cytometric analysis, cellular immunoreactivity to proliferation specific and apoptosis specific gene products and anchorage-dependent colony formation represented quantitative endpoints. Cruciferous glucosinolate indole-3-carbinol (I3C), tea polyphenol (-) epigallo catechin gallate (EGCC) and soy isoflavone genistein (GEN) represented the chemopreventive test compounds. A single 24 h exposure to 39 lM BP resulted in a 50% decrease (P=0.02) in the ratio of quiescent (Q=G0) to proliferative (P=S + M) population in part due to increase in aberrantly proliferative cells. The BP-initiated cells also exhibited an 87.8% inhibition (P=0. 0001) in confluency-associated apoptosis and a concomitant decrease in cellular immunoreactivity to wild-type p53. Simultaneous treatment of cultures with BP + I3C, BP + EGCG and BP + GEN resulted in a 1.8- to 3.4-fold increase (Pp53 immunoreactivity (Pp53 dependent apoptosis.

  4. Specific genomic aberrations in primary colorectal cancer are associated with liver metastases

    Directory of Open Access Journals (Sweden)

    Wessels Lodewyk F

    2010-12-01

    Full Text Available Abstract Background Accurate staging of colorectal cancer (CRC with clinicopathological parameters is important for predicting prognosis and guiding treatment but provides no information about organ site of metastases. Patterns of genomic aberrations in primary colorectal tumors may reveal a chromosomal signature for organ specific metastases. Methods Array Comparative Genomic Hybridization (aCGH was employed to asses DNA copy number changes in primary colorectal tumors of three distinctive patient groups. This included formalin-fixed, paraffin-embedded tissue of patients who developed liver metastases (LM; n = 36, metastases (PM; n = 37 and a group that remained metastases-free (M0; n = 25. A novel statistical method for identifying recurrent copy number changes, KC-SMART, was used to find specific locations of genomic aberrations specific for various groups. We created a classifier for organ specific metastases based on the aCGH data using Prediction Analysis for Microarrays (PAM. Results Specifically in the tumors of primary CRC patients who subsequently developed liver metastasis, KC-SMART analysis identified genomic aberrations on chromosome 20q. LM-PAM, a shrunken centroids classifier for liver metastases occurrence, was able to distinguish the LM group from the other groups (M0&PM with 80% accuracy (78% sensitivity and 86% specificity. The classification is predominantly based on chromosome 20q aberrations. Conclusion Liver specific CRC metastases may be predicted with a high accuracy based on specific genomic aberrations in the primary CRC tumor. The ability to predict the site of metastases is important for improvement of personalized patient management.

  5. Prediction of human cell radiosensitivity: Comparison of clonogenic assay with chromosome aberrations scored using premature chromosome condensation with fluorescence in situ hybridization

    Energy Technology Data Exchange (ETDEWEB)

    Sasai, K.; Evans, J.W.; Kovacs, M.S. [Stanford Univ. School of Medicine, CA (United States)] [and others

    1994-12-01

    The purpose of the present investigation was to determine whether chromosome aberrations scored by premature chromosome condensation (PCC) and fluorescence in situ hybridization (FISH) can predict the radiosensitivity of human cell lines, thereby providing a possible means of assessing the in situ radiosensitivity of normal tissues and the radiocurability of individual human cancers. We used four cells lines of different radiosensitivity: normal human fibroblasts (AG1522), ataxia-telangiectasia fibroblasts (AT2052), a human fibrosarcoma cell line (HT1080), and a human melanoma cell line (melanoma 903). These were irradiated in plateau phase with a range of doses and assessed both for clonogenic cell survival and for aberrations in a single chromosome (number 4) immediately after, and 24 h after irradiation. The initial number of breaks in chromosome 4 was proportional to irradiation dose and was identical for all the different human cell lines, irrespective of radiosensitivity. On the other hand, the number of chromosome 4 breaks remaining 24 h after irradiation reflected the radiosensitivity of the cells such that the relationship between residual chromosome aberrations and cell survival was the same for the different cell lines. These results suggest that the scoring of chromosome aberrations in interphase using FISH with PCC holds considerable promise for predicting the radiosensitivity of normal and tumor tissues in situ. 28 refs., 4 figs.

  6. Adaptive correction of human-eye aberrations in a subjective feedback loop.

    Science.gov (United States)

    Vdovin, G; Loktev, M; Simonov, A; Kijko, V; Volkov, S

    2005-04-01

    An adaptive optical system with a subjective feedback loop is used to improve the visual acuity and to determine the aberrations of the human eye. Corrections of as many as 12 low-order aberration modes were made, based on the perceived sharpness of the test object observed through the adaptive optical system. The acuity of vision was improved by adjustment of the weights of the orthogonal modes produced by a deformable mirror. Objective measurements of the correcting aspherical figures, obtained in independent subjective correction cycles for one person, demonstrated good repeatability. Participants in the study with strong ocular aberrations reported moderate to significant improvement of their visual acuity, estimated with the U.S. Air Force 1951 acuity chart.

  7. The effects of biological and life-style factors on baseline frequencies of chromosome aberrations in human lymphocytes

    Directory of Open Access Journals (Sweden)

    Hilada Nefic

    2014-01-01

    Full Text Available Objective: This study investigated the influence of sex and ageing on chromosomal damage and the role of life-style habits on the frequency of chromosomal aberrations (CAs in peripheral blood lymphocytes (PBLs of healthy Bosnian subjects. Materials and Methods: Peripheral blood samples were obtained from 100 healthy, unrelated individuals in Bosnia and Herzegovina during 2010 and 2011. Chromosome preparations were made by dropping and air drying and slides were stained with 10% Giemsa solution (pH 6.8. The cytogenetic analysis was carried out in a cytogenetic laboratory in the Department of Biology of the Faculty of Science in Sarajevo. The category of total structural CAs was sub classified as chromosome-type aberrations (CSAs and chromatid-type aberrations (CTAs while the category of total numerical CAs was sub classified as aneuploid and polyploid mitoses. All statistical analyses were carried out using Microsoft Excel 2010 (Microsoft Corporation and the Windows Kwikstat Winks SDA 7.0.2 statistical software package (Texa Soft Cedar Hill, Texas. Results: Cytogenetic analysis revealed the average number of structural CAs was 2.84 and of numerical CAs was 9.56. There was a significant increase in the frequency of chromosome-type aberrations (1.92 compared with chromatid-type aberrations (CTAs (0.92 and a significant increase in the frequency of aneuploid (8.83 compared with polyploid (0.73 mitoses. Significant positive correlations between age and CTAs in human PBLs were also demonstrated. Additional statistical analysis showed that ageing increase number of numerical CAs in lymphocytes of drinkers. The frequency of structural CAs of females exposed to radiation was significantly greater than in males. Analysis indicates the presence of a positive association between CAs and smoking in younger subjects but a negative correlation between aberrant cells frequencies and alcohol in older drinkers. Conclusion: The results of the study support the

  8. Aberrant RNA splicing in cancer; expression changes and driver mutations of splicing factor genes.

    Science.gov (United States)

    Sveen, A; Kilpinen, S; Ruusulehto, A; Lothe, R A; Skotheim, R I

    2016-05-12

    Alternative splicing is a widespread process contributing to structural transcript variation and proteome diversity. In cancer, the splicing process is commonly disrupted, resulting in both functional and non-functional end-products. Cancer-specific splicing events are known to contribute to disease progression; however, the dysregulated splicing patterns found on a genome-wide scale have until recently been less well-studied. In this review, we provide an overview of aberrant RNA splicing and its regulation in cancer. We then focus on the executors of the splicing process. Based on a comprehensive catalog of splicing factor encoding genes and analyses of available gene expression and somatic mutation data, we identify cancer-associated patterns of dysregulation. Splicing factor genes are shown to be significantly differentially expressed between cancer and corresponding normal samples, and to have reduced inter-individual expression variation in cancer. Furthermore, we identify enrichment of predicted cancer-critical genes among the splicing factors. In addition to previously described oncogenic splicing factor genes, we propose 24 novel cancer-critical splicing factors predicted from somatic mutations.

  9. The genes of interferons and interferon-related factors: localization and relationships with chromosome aberrations in cancer.

    Science.gov (United States)

    Haus, O

    2000-01-01

    The paper presents a review of data on the localization of interferons (IFNs) and IFN system genes and their relationship with human diseases, mainly cancer. Genes of interferon system proteins are located at the sites of breakpoints of the structural chromosome aberrations in cancer. Thus, any of them are rearranged or translocated in various tumor types. As the activity of these genes plays a role in cancer development, their rearrangements may be one of the crucial points in the pathogenesis of some cancer types. Besides, they also take part in organism immunity against viral infections. Transfection experiments with IFN system genes have proved the influence of these genes on cancer behavior and may serve as a basis for clinical gene therapy. IFN-alpha and IFN-beta genes are located at 9p21-22, the site of frequent homozygotic deletions in cancer. Their loss sensitizes cells to the growth inhibitory actions of exogenous IFNs. The IFN-gamma gene, a representative of class II genes, is located at 12q24.1. Transfection of class II IFNs genes to cancer cell lines causes cell proliferation arrest and augments the expression of HLA antigens, which may be clinically useful in stimulating the immune destruction of tumor cells. The interferon regulatory factor 1 (IRF-1) gene is located at 5q31, the site of common deletions in myelodysplastic syndromes (MDS) and secondary leukemias. The loss of heterozygosity of this gene was found in MDS, which proves that IRF-1 may be a tumor suppressor. A transfection of its gene causes neoplastic transformation arrest. The double-stranded RNA-activated protein kinase (PKR) gene is located at 2p21-22, a region which is frequently rearranged in leukemia. Transfection of a wild type PKR gene reverses neoplastic transformation caused by transfection of a mutated PKR gene, proving that PKR acts as a dominant negative cancer suppressor.

  10. Measuring higher order optical aberrations of the human eye: techniques and applications

    Directory of Open Access Journals (Sweden)

    L. Alberto V. Carvalho

    2002-11-01

    Full Text Available In the present paper we discuss the development of "wave-front", an instrument for determining the lower and higher optical aberrations of the human eye. We also discuss the advantages that such instrumentation and techniques might bring to the ophthalmology professional of the 21st century. By shining a small light spot on the retina of subjects and observing the light that is reflected back from within the eye, we are able to quantitatively determine the amount of lower order aberrations (astigmatism, myopia, hyperopia and higher order aberrations (coma, spherical aberration, etc.. We have measured artificial eyes with calibrated ametropia ranging from +5 to -5 D, with and without 2 D astigmatism with axis at 45º and 90º. We used a device known as the Hartmann-Shack (HS sensor, originally developed for measuring the optical aberrations of optical instruments and general refracting surfaces in astronomical telescopes. The HS sensor sends information to a computer software for decomposition of wave-front aberrations into a set of Zernike polynomials. These polynomials have special mathematical properties and are more suitable in this case than the traditional Seidel polynomials. We have demonstrated that this technique is more precise than conventional autorefraction, with a root mean square error (RMSE of less than 0.1 µm for a 4-mm diameter pupil. In terms of dioptric power this represents an RMSE error of less than 0.04 D and 5º for the axis. This precision is sufficient for customized corneal ablations, among other applications.

  11. Aberrations of ERBB2 and TOP2A Genes in Breast Cancer

    DEFF Research Database (Denmark)

    Nielsen, Kirsten Vang; Müller, Sven; Møller, Susanne;

    2009-01-01

    Copy number changes in TOP2A have frequently been linked to ERBB2 (HER2) amplified breast cancers. To study this relationship, copy number changes of ERBB2 and TOP2A were investigated by fluorescence in situ hybridization (FISH) in two cell lines; one characterized by having amplification of both...... genes and the other by having amplification of ERBB2 and deletion of TOP2A. The characteristics are compared to findings on paired ERBB2 and TOP2A data from 649 patients with invasive breast cancer from a previously published biomarker study. The physical localization of FISH signals in metaphase...... compared to TOP2A. In the majority of breast cancer patients, simultaneous aberration of ERBB2 and TOP2A is not explained by simple co-amplification....

  12. Aberrant DNA methylation of cancer-related genes in giant breast fibroadenoma: a case report

    Directory of Open Access Journals (Sweden)

    Orozco Javier I

    2011-10-01

    Full Text Available Abstract Introduction Giant fibroadenoma is an uncommon variant of benign breast lesions. Aberrant methylation of CpG islands in promoter regions is known to be involved in the silencing of genes (for example, tumor-suppressor genes and appears to be an early event in the etiology of breast carcinogenesis. Only hypermethylation of p16INK4a has been reported in non-giant breast fibroadenoma. In this particular case, there are no previously published data on epigenetic alterations in giant fibroadenomas. Our previous results, based on the analysis of 49 cancer-related CpG islands have confirmed that the aberrant methylation is specific to malignant breast tumors and that it is completely absent in normal breast tissue and breast fibroadenomas. Case presentation A 13-year-old Hispanic girl was referred after she had noted a progressive development of a mass in her left breast. On physical examination, a 10 × 10 cm lump was detected and axillary lymph nodes were not enlarged. After surgical removal the lump was diagnosed as a giant fibroadenoma. Because of the high growth rate of this benign tumor, we decided to analyze the methylation status of 49 CpG islands related to cell growth control. We have identified the methylation of five cancer-related CpG islands in the giant fibroadenoma tissue: ESR1, MGMT, WT-1, BRCA2 and CD44. Conclusion In this case report we show for the first time the methylation analysis of a giant fibroadenoma. The detection of methylation of these five cancer-related regions indicates substantial epigenomic differences with non-giant fibroadenomas. Epigenetic alterations could explain the higher growth rate of this tumor. Our data contribute to the growing knowledge of aberrant methylation in breast diseases. In this particular case, there exist no previous data regarding the role of methylation in giant fibroadenomas, considered by definition as a benign breast lesion.

  13. Hypermethylation and aberrant expression of secreted fizzled-related protein genes in pancreatic cancer

    Institute of Scientific and Technical Information of China (English)

    Xian-Min Bu; Cheng-Hai Zhao; Ning Zhang; Feng Gao; Shuai Lin; Xian-Wei Dai

    2008-01-01

    AIM:To determine the methylation status and aberrant expression of some secreted frizzled-related protein (SFRP) genes in pancreatic cancer and explore their role in pancreatic carcinogenesis. METHODS:Methylation status and expression of SFRP genes were detected by methylation-specific PCR (MSPCR) and reverse-transcription PCR (RT-PCR) respectively. RESULTS:The frequencies of methylation for SFRP genes 1,2,4,5 were 70%, 48.3%,60% and 76.7% in pancreatic cancer samples, and 21.7%, 20%,10% and 36.7% in matched cancer adjacent normal tissue samples,respectively (χ2=28.23,P<0.0001 for SFRP gene 1; χ2=10.71,P=0.001 for SFRP gene 2;χ2=32.97,P<0.0001 for SFRP gene 4;χ2=19.55,P<0.0001 for SFRP gene 5). Expression loss of SFRP genes 1,2,4 and 5 was found in 65%,40%,55% and 71.7% of 60 pancreatic cancer samples, and 25%,15%,18.3% and 31.7% of matched cancer adjacent normal tissue samples,respectively (χ2=19.39,P<0.0001 for SFRP gene 1;χ2=9.40,P=0.002 for SFRP gene 2;χ2=17.37,P<0.0001 for SFRP gene 4;χ2=19.22,P<0.0001 for SFRP gene 5).SFRP gene 1 was methylated but not expressed in PC-3 and PANC-1,SFRP gene 2 was methylated but not expressed in PANC-1 and CFPAC-1,SFRP gene 4 was methylated but not expressed in PC-3,and SFRP gene 5 was methylated but not expressed in CFPAC-1. CONCLUSION:Hypermethylation and aberrant expression of SFRP genes are common in pancreatic cancer,which may be involved in pancreatic carcinogenesis.

  14. Association of aberrations in one-carbon metabolism with molecular phenotype and grade of breast cancer.

    Science.gov (United States)

    Naushad, Shaik Mohammad; Pavani, Addepalli; Rupasree, Yedluri; Divyya, Shree; Deepti, Sripurna; Digumarti, Raghunadha Rao; Gottumukkala, Suryanarayana Raju; Prayaga, Aruna; Kutala, Vijay Kumar

    2012-10-01

    We have earlier demonstrated the role of aberrant one-carbon metabolism in the etiology of breast cancer. In the current study, we examine the clinical utility of these factors in predicting the subtype of breast cancer and as indicators of disease progression. Polymerase chain reaction (PCR)-restriction fragment length polymorphism (RFLP) and PCR-amplified fragment length polymorphism (AFLP) approaches were used for genetic analysis. Plasma folate and homocysteine were measured using Axsym folate kit and reverse phase HPLC, respectively. Multiple linear regression models were used to test the predictability of disease progression. Luminal A subtype was associated with late age of onset, higher body mass index and lack of family history of breast cancer. Thymidylate synthase (TYMS) 5'-UTR 28 bp tandem repeat (OR: 2.09, 95% CI: 1.05-4.16) and methylene tetrahydrofolate reductase (MTHFR) C677T (OR: 4.10, 95% CI: 1.40-11.95) were strongly associated with Luminal B. Reduced folate carrier (RFC1) G80A (OR: 2.92, 95% CI: 1.22-6.97) and methionine synthase (MTR) A2756G (OR: 4.71, 95% CI: 1.66-13.31) polymorphisms were associated with LuminA-HH subtype while MTHFR C677T showed association with HER-enriched (OR: 30.41, 95% CI: 6.47-142.91). Cytosolic serine hydroxymethyltransferase (cSHMT) conferred protection against basal-like breast cancer (OR: 0.47, 95% CI: 0.22-0.98). HER-enriched and basal-like subtypes showed positive association with familial breast cancer and inverse association with plasma folate. Hyperhomocysteinemia was observed in Luminal B and basal-like subtypes. Multiple linear regression models of aberrant one-carbon metabolism were found to be moderate predictors of breast cancer grade (area under the receiver operating characteristic curve, C = 0.72, 95% CI: 0.58-0.87, P = 0.008). To conclude, aberrations in one-carbon metabolism predict the subtype of breast cancer and disease progression.

  15. Aberrant O-GlcNAcylated proteins: New perspectives in breast and colorectal cancer

    Directory of Open Access Journals (Sweden)

    Parunya eChaiyawat

    2014-11-01

    Full Text Available Increasing glucose consumption is thought to provide an evolutionary advantage to cancer cells. Alteration of glucose metabolism in cancer influences various important metabolic pathways including the hexosamine biosynthesis pathway (HBP, a relatively minor branch of glycolysis. Uridine diphosphate N-acetylglucosamine (UDP-GlcNAc, an end product of HBP, is a sugar substrate used for classical glycosylation and O-GlcNAcylation, a post-translational protein modification implicated in a wide range of effects on cellular functions. Emerging evidence reveals that certain cellular proteins are abnormally O-GlcNAc modified in many kinds of cancers, indicating O-GlcNAcylation is associated with malignancy. Since O-GlcNAc rapidly on and off modifies in a similar time scale as in phosphorylation and these modifications may occur on proteins at either on the same or adjacent sites, it suggests that both modifications can work to regulate the cellular signaling pathways. This review describes the metabolic shifts related to the HBP which are commonly found in most cancers. It also describes O-GlcNAc modified proteins identified in primary breast and colorectal cancer, as well as in the related cancer cell lines. Moreover, we also discuss the potential use of aberrant O-GlcNAcylated proteins as novel biomarkers of cancer. + P. Chaiyawat and P. Netsirisawan contributed equally to this study

  16. DETECTION OF CHROMOSOME ABERRATIONS IN TWELVE PRIMARY GASTRIC CANCERS BY DIRECT CHROMOSOME ANALYSIS AND FISH

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    Direct chromosome analysis and FISH were performed on twelve primary gastric carcinomas. Two of them had simple chromosome changes: 48,XX, +8, +20, and 49, XY, +2, +8, +9, and the others had complicated chromosome changes, which includes much more numerical and structural chromosome aberrations. Frequent structural changes in the complicated types involved chromosome 7, 3, 1, 5 and 12 etc. The del 7q was noted in eight cases. The del (3p) and del (1p) were noted in six and five cases, respectively. The results provide some important clues for isolation of the genes related to gastric cancer.

  17. Aberrant phenotypes of transgenic mice expressing dimeric human erythropoietin

    Directory of Open Access Journals (Sweden)

    Yun Seong-Jo

    2012-01-01

    Full Text Available Abstract Background Dimeric human erythropoietin (dHuEPO peptides are reported to exhibit significantly higher biological activity than the monomeric form of recombinant EPO. The objective of this study was to produce transgenic (tg mice expressing dHuEPO and to investigate the characteristics of these mice. Methods A dHuEPO-expressing vector under the control of the goat beta-casein promoter, which produced a dimer of human EPO molecules linked by a 2-amino acid peptide linker (Asp-Ile, was constructed and injected into 1-cell fertilized embryos by microinjection. Mice were screened using genomic DNA samples obtained from tail biopsies. Blood samples were obtained by heart puncture using heparinized tubes, and hematologic parameters were assessed. Using the microarray analysis tool, we analyzed differences in gene expression in the spleens of tg and control mice. Results A high rate of spontaneous abortion or death of the offspring was observed in the recipients of dHuEPO embryos. We obtained 3 founder lines (#4, #11, and #47 of tg mice expressing the dHuEPO gene. However, only one founder line showed stable germline integration and transmission, subsequently establishing the only transgenic line (#11. We obtained 2 F1 mice and 3 F2 mice from line #11. The dHuEPO protein could not be obtained because of repeated spontaneous abortions in the tg mice. Tg mice exhibited symptoms such as short lifespan and abnormal blood composition. The red blood cell count, white blood cell count, and hematocrit levels in the tg mice were remarkably higher than those in the control mice. The spleens of the tg mice (F1 and F2 females were 11- and -21-fold larger than those of the control mice. Microarray analysis revealed 2,672 spleen-derived candidate genes; more genes were downregulated than upregulated (849/764. Reverse transcriptase-polymerase chain reaction (RT-PCR and quantitative real-time PCR (qRT-PCR were used for validating the results of the microarray

  18. Chromosome aberrations in human blood lymphocytes exposed to energetic protons

    Science.gov (United States)

    Hada, Megumi; George, Ms Kerry; Cucinotta, Francis A.

    During space flight, astronauts are exposed to space radiation consisting of high-energy protons, high charge and energy (HZE) nuclei, as well as secondary particles that are generated when the primary particles penetrate the spacecraft shielding. Secondary particles have a higher LET value than primary protons and are therefore expected to have a higher relative biological effectiveness (RBE). To investigate this theory, we exposed human peripheral blood lymphocytes to protons with energies of 250 MeV, 800MeV, 2 GeV, or 2.5 GeV. LET values for these protons ranged from 0.4 to 0.2 keV/µm. and doses ranged from 0.2 to 3 Gy. Over this energy range the probability of nuclear reaction leading to secondary radiation, and the multiplicity of reaction products such as neutrons and mesons increases substantially. The effect of aluminum and polyethylene shielding was also assessed using the 2 GeV and 2.5GeV proton beams. After exposure lymphocytes were stimulated to divide and chromosomes were collected from cells in the first G2 and metaphase cell cycle after exposure using a chemical induced premature chromosome condensation (PCC) technique. Dose response data for chromosome damage was analyzed using the fluorescence in situ hybridization (FISH) chromosome painting technique. Selected samples were also analyzed with multicolor FISH (mFISH) and multicolor banding FISH (mBAND) techniques. Data indicates that the dose response for simple-type exchanges is similar for proton and gamma exposure, whereas protons induce higher yields of complex exchanges that are energy dependent. RBE values will be presented for each proton energy, and the effects of shielding and possible cytogenetic signatures of proton exposure will be discussed.

  19. Chromosome Aberration in Human Blood Lymphocytes Exposed to Energetic Protons

    Science.gov (United States)

    Hada, M.; George, Kerry A.; Cucinotta, F. A.

    2008-01-01

    During space flight, astronauts are exposed to a space radiation consisting of high-energy protons, high charge and energy (HZE) nuclei, as well as secondary particles that are generated when the primary particles penetrate the spacecraft shielding. Secondary particles have a higher LET value than primary protons and therefore expected to have a higher relative biological effectiveness (RBE). To investigate this theory, we exposed human peripheral blood lymphocytes to protons with energies of 250 MeV, 800MeV, 2 GeV, or 2.5 GeV. LET values for these protons ranged from 0.4 to 0.2 keV/micrometer. and doses ranged from 0.2 to 3 Gy. Over this energy the probability of nuclear reaction leading to secondary radiation, and the multiplicity of reaction produces such as neutrons and mesons increases substantially. The effect of aluminum and polyethylene shielding was also assessed using the 2 GeV and 2.5GeV proton beams. After exposure lymphocytes were stimulated to divide and chromosomes were collected from cells in the first G2 and metaphase cell cycle after exposure using a chemical induced premature chromosome condensation (PCC) technique. Dose response data for chromosome damage was analyzed using the fluorescence in situ hybridization (FISH) chromosome painting technique. Selected samples were also analyzed with multicolor FISH (mFISH) and multicolor banding FISH (mBAND) techniques. Data indicates that the dose response for simple-type exchanges is similar for proton and gamma exposure, whereas protons induce higher yields of complex exchanges that are LET dependent. RBE values will be presented for each proton energy, and the effects of shielding and possible cytogenetic signatures of proton exposure will be discussed.

  20. [The dependence of the level of chromosome aberrations in human lymphocytes on the duration of their cultivation under ultraviolet irradiation].

    Science.gov (United States)

    Rushkovskiĭ, S R; Bezrukov, V F; Bariliak, I R

    1998-01-01

    The effect of duration of cultivation of lymphocytes of human UV-irradiated peripheral blood on the chromosomal aberration rate was studied. Under prolonged cultivation the more irradiated blood samples revealed higher level of chromosomal aberrations. The existence of UV-induced delayed chromosomal instability is supposed that may be found under prolonged cultivation. The mechanisms of this phenomenon are discussed.

  1. Bleomycin-induced chromosome aberrations in head and neck cancer patients analyzed by classical cytogenetics and FISH.

    Science.gov (United States)

    Zych, M; Schlade-Bartusiak, K; Chorostkowska, A; Stembalska, A; Krêcicki, T; Sasiadek, M

    2000-05-01

    Individual sensitivity to mutagens has been considered to play an important role in head-and-neck squamous cells carcinoma (HNSCC) development. The bleomycin test was introduced for establishing constitutional susceptibility to mutagens (T.C. Hsu, D.A. Johnston, L.M. Cherry, D. Ramkisson, S.P. Schantz, J.M. Jessup, R.J. Winn, L. Shirley, C. Furlong, Sensitivity to genotoxic effects of bleomycin in humans: possible relationship to environmental carcinogenesis, Int. J. Cancer 43 (1989) 403-409). Its criteria are based on scoring of chromosome aberrations (CAs, mainly breaks) in Giemsa-stained chromosomes. Fluorescence in situ hybridization (FISH) offers an easy method for analysis of translocations, acentric fragments and dicentrics. In the present study FISH was applied in the analysis of bleomycin-induced CAs of the HNSCC patients and controls. The results proved that FISH is a complementary method to the classical staining in monitoring of bleomycin-induced CAs.

  2. STRADalpha deficiency results in aberrant mTORC1 signaling during corticogenesis in humans and mice.

    Science.gov (United States)

    Orlova, Ksenia A; Parker, Whitney E; Heuer, Gregory G; Tsai, Victoria; Yoon, Jason; Baybis, Marianna; Fenning, Robert S; Strauss, Kevin; Crino, Peter B

    2010-05-01

    Polyhydramnios, megalencephaly, and symptomatic epilepsy syndrome (PMSE) is a rare human autosomal-recessive disorder characterized by abnormal brain development, cognitive disability, and intractable epilepsy. It is caused by homozygous deletions of STE20-related kinase adaptor alpha (STRADA). The underlying pathogenic mechanisms of PMSE and the role of STRADA in cortical development remain unknown. Here, we found that a human PMSE brain exhibits cytomegaly, neuronal heterotopia, and aberrant activation of mammalian target of rapamycin complex 1 (mTORC1) signaling. STRADalpha normally binds and exports the protein kinase LKB1 out of the nucleus, leading to suppression of the mTORC1 pathway. We found that neurons in human PMSE cortex exhibited abnormal nuclear localization of LKB1. To investigate this further, we modeled PMSE in mouse neural progenitor cells (mNPCs) in vitro and in developing mouse cortex in vivo by knocking down STRADalpha expression. STRADalpha-deficient mNPCs were cytomegalic and showed aberrant rapamycin-dependent activation of mTORC1 in association with abnormal nuclear localization of LKB1. Consistent with the observations in human PMSE brain, knockdown of STRADalpha in vivo resulted in cortical malformation, enhanced mTORC1 activation, and abnormal nuclear localization of LKB1. Thus, we suggest that the aberrant nuclear accumulation of LKB1 caused by STRADalpha deficiency contributes to hyperactivation of mTORC1 signaling and disruption of neuronal lamination during corticogenesis, and thereby the neurological features associated with PMSE.

  3. STRADα deficiency results in aberrant mTORC1 signaling during corticogenesis in humans and mice

    Science.gov (United States)

    Orlova, Ksenia A.; Parker, Whitney E.; Heuer, Gregory G.; Tsai, Victoria; Yoon, Jason; Baybis, Marianna; Fenning, Robert S.; Strauss, Kevin; Crino, Peter B.

    2010-01-01

    Polyhydramnios, megalencephaly, and symptomatic epilepsy syndrome (PMSE) is a rare human autosomal-recessive disorder characterized by abnormal brain development, cognitive disability, and intractable epilepsy. It is caused by homozygous deletions of STE20-related kinase adaptor α (STRADA). The underlying pathogenic mechanisms of PMSE and the role of STRADA in cortical development remain unknown. Here, we found that a human PMSE brain exhibits cytomegaly, neuronal heterotopia, and aberrant activation of mammalian target of rapamycin complex 1 (mTORC1) signaling. STRADα normally binds and exports the protein kinase LKB1 out of the nucleus, leading to suppression of the mTORC1 pathway. We found that neurons in human PMSE cortex exhibited abnormal nuclear localization of LKB1. To investigate this further, we modeled PMSE in mouse neural progenitor cells (mNPCs) in vitro and in developing mouse cortex in vivo by knocking down STRADα expression. STRADα-deficient mNPCs were cytomegalic and showed aberrant rapamycin-dependent activation of mTORC1 in association with abnormal nuclear localization of LKB1. Consistent with the observations in human PMSE brain, knockdown of STRADα in vivo resulted in cortical malformation, enhanced mTORC1 activation, and abnormal nuclear localization of LKB1. Thus, we suggest that the aberrant nuclear accumulation of LKB1 caused by STRADα deficiency contributes to hyperactivation of mTORC1 signaling and disruption of neuronal lamination during corticogenesis, and thereby the neurological features associated with PMSE. PMID:20424326

  4. Persistence of unstable and stable chromosome aberrations in lymphocytes of cancer patients treated with radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Di Giorgio, M.; Vallerga, M.B.; Taja, M.R. [Autoridad Regulatoria Nuclear, Buenos Aires (Argentina); Sardi, M. [Hospital Italiano - Mevaterapia, Buenos Aires (Argentina)

    2006-07-01

    Background: Radiation-induced DNA damage in human lymphocytes has equal probability of producing both stable or unstable chromosome aberrations (C.A.). Reports of its in vivo persistence show considerable variations. The quantification of unstable C.A. (dicentrics) in peripheral blood lymphocytes (P.B.L.) is the most reliable biological method for estimating whole-body doses of recent overexposures to ionizing radiation. Given that during the division of T cell precursors, proliferative death of cells containing dicentrics reduces the number of such lymphocytes in peripheral blood, dicentric methodology should be modified to account for past exposures. Micronuclei (M.N.) in cytokinesis-blocked human P.B.L. are well established bio markers for assessing radiation damage in vivo. However, persistence of radiation induced M.N. is limited. Unlike dicentrics and M.N., stable C.A. (translocations) identified at present by the FISH technique, seem to be an adequate indicator for the dosimetric evaluation of past exposures, since translocations are not selected against during mitotic division in the haematopoietic stem cells compartment. Nevertheless, for partial -body exposures with high dose there is some evidence that the decline with time of dicentrics causes some reduction in the yield of translocations. Purpose: To assess the persistence along time of dicentrics, M.N. and translocations in lymphocytes of cancer patients after radiotherapy in order to model changes in C.A. frequencies with partial-body exposures. Materials and methods: 22 cancer patients with different tumor sites, treated with radiotherapy, were evaluated through dicentric chromosome, M.N. and FISH techniques with a follow-up time of up to 90 months after the end of radiotherapy. Regression analysis were performed: 1) for dicentric and for M.N. frequencies in relation to time after the end of radiotherapy and total tumor dose; 2) for the percentage of uns table cells in relation to time after the end

  5. Dose Assessment using Chromosome Aberration Analyses in Human Peripheral Blood Lymphocytes

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Tae Ho; Kim, Jin-Hong; Kim, Jin Kyu [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    The healthy five donors were recruited to establish the dose-response calibration curve for chromosomal aberrations by ionizing radiation exposure. Our cytogenetic results revealed that the mean frequency of chromosome aberration increased with increasing radiation dose. In this study, dicentric assay and CBMN assay were compared considering the sensitivity and accuracy of dose estimation. Therefore, these chromosome aberration analyses will be the foundation for biological dosimetric analysis with additional research methods such as translocation and PCC assay. The conventional analysis of dicentric chromosomes in HPBL was suggested by Bender and Gooch in 1962. This assay has been for many years, the golden standard and the most specific method for ionizing radiation damage. The dicentric assay technique in HPBL has been shown as the most sensitive biological method and reliable bio-indicator of quantifying the radiation dose. In contrast, the micronucleus assay has advantages over the dicentric assay since it is rapid and requires less specialized expertise, and accordingly it can be applied to monitor a big population. The cytokinesis-block micronucleus (CBMN) assay is a suitable method for micronuceli measurement in cultured human as well as mammalian cells. The aim of our study was to establish the dose response curve of radiation-induced chromosome aberrations in HPBL by analyzing the frequency of dicentrics and micronuclei.

  6. COPD and squamous cell lung cancer: aberrant inflammation and immunity is the common link.

    Science.gov (United States)

    Bozinovski, Steven; Vlahos, Ross; Anthony, Desiree; McQualter, Jonathan; Anderson, Gary; Irving, Louis; Steinfort, Daniel

    2016-02-01

    Cigarette smoking has reached epidemic proportions within many regions of the world and remains the highest risk factor for chronic obstructive pulmonary disease (COPD) and lung cancer. Squamous cell lung cancer is commonly detected in heavy smokers, where the risk of developing lung cancer is not solely defined by tobacco consumption. Although therapies that target common driver mutations in adenocarcinomas are showing some promise, they are proving ineffective in smoking-related squamous cell lung cancer. Since COPD is characterized by an excessive inflammatory and oxidative stress response, this review details how aberrant innate, adaptive and systemic inflammatory processes can contribute to lung cancer susceptibility in COPD. Activated leukocytes release increasing levels of proteases and free radicals as COPD progresses and tertiary lymphoid aggregates accumulate with increasing severity. Reactive oxygen species promote formation of reactive carbonyls that are not only tumourigenic through initiating DNA damage, but can directly alter the function of regulatory proteins involved in host immunity and tumour suppressor functions. Systemic inflammation is also markedly increased during infective exacerbations in COPD and the interplay between tumour-promoting serum amyloid A (SAA) and IL-17A is discussed. SAA is also an endogenous allosteric modifier of FPR2 expressed on immune and epithelial cells, and the therapeutic potential of targeting this receptor is proposed as a novel strategy for COPD-lung cancer overlap.

  7. High levels of genomic aberrations in serous ovarian cancers are associated with better survival.

    Directory of Open Access Journals (Sweden)

    Lars O Baumbusch

    Full Text Available Genomic instability and copy number alterations in cancer are generally associated with poor prognosis; however, recent studies have suggested that extreme levels of genomic aberrations may be beneficial for the survival outcome for patients with specific tumour types. We investigated the extent of genomic instability in predominantly high-grade serous ovarian cancers (SOC using two independent datasets, generated in Norway (n = 74 and Australia (n = 70, respectively. Genomic instability was quantified by the Total Aberration Index (TAI, a measure of the abundance and genomic size of copy number changes in a tumour. In the Norwegian cohort, patients with TAI above the median revealed significantly prolonged overall survival (p<0.001 and progression-free survival (p<0.05. In the Australian cohort, patients with above median TAI showed prolonged overall survival (p<0.05 and moderately, but not significantly, prolonged progression-free survival. Results were confirmed by univariate and multivariate Cox regression analyses with TAI as a continuous variable. Our results provide further evidence supporting an association between high level of genomic instability and prolonged survival of high-grade SOC patients, possibly as disturbed genome integrity may lead to increased sensitivity to chemotherapeutic agents.

  8. Space Radiation Effects on Human Cells: Modeling DNA Breakage, DNA Damage Foci Distribution, Chromosomal Aberrations and Tissue Effects

    Science.gov (United States)

    Ponomarev, A. L.; Huff, J. L.; Cucinotta, F. A.

    2011-01-01

    Future long-tem space travel will face challenges from radiation concerns as the space environment poses health risk to humans in space from radiations with high biological efficiency and adverse post-flight long-term effects. Solar particles events may dramatically affect the crew performance, while Galactic Cosmic Rays will induce a chronic exposure to high-linear-energy-transfer (LET) particles. These types of radiation, not present on the ground level, can increase the probability of a fatal cancer later in astronaut life. No feasible shielding is possible from radiation in space, especially for the heavy ion component, as suggested solutions will require a dramatic increase in the mass of the mission. Our research group focuses on fundamental research and strategic analysis leading to better shielding design and to better understanding of the biological mechanisms of radiation damage. We present our recent effort to model DNA damage and tissue damage using computational models based on the physics of heavy ion radiation, DNA structure and DNA damage and repair in human cells. Our particular area of expertise include the clustered DNA damage from high-LET radiation, the visualization of DSBs (DNA double strand breaks) via DNA damage foci, image analysis and the statistics of the foci for different experimental situations, chromosomal aberration formation through DSB misrepair, the kinetics of DSB repair leading to a model-derived spectrum of chromosomal aberrations, and, finally, the simulation of human tissue and the pattern of apoptotic cell damage. This compendium of theoretical and experimental data sheds light on the complex nature of radiation interacting with human DNA, cells and tissues, which can lead to mutagenesis and carcinogenesis later in human life after the space mission.

  9. Phosphatidylinositol-3-kinase pathway aberrations in gastric and colorectal cancer: meta-analysis, co-occurrence and ethnic variation.

    Science.gov (United States)

    Chong, Mei-Ling; Loh, Marie; Thakkar, Bhavin; Pang, Brendan; Iacopetta, Barry; Soong, Richie

    2014-03-01

    Inhibition of the phosphatidylinositol-3-kinase (PI3K) signaling pathway is a cancer treatment strategy that has entered into clinical trials. We performed a meta-analysis on the frequency of prominent genetic (PIK3CA mutation, PIK3CA amplification and PTEN deletion) and protein expression (high PI3K, PTEN loss and high pAkt) aberrations in the PI3K pathway in gastric cancer (GC) and colorectal cancer (CRC). We also performed laboratory analysis to investigate the co-occurrence of these aberrations. The meta-analysis indicated that East Asian and Caucasian GC patients differ significantly for the frequencies of PIK3CA Exon 9 and 20 mutations (7% vs. 15%, respectively), PTEN deletion (21% vs. 4%) and PTEN loss (47% vs. 78%), while CRC patients differed for PTEN loss (57% vs. 26%). High study heterogeneity (I(2) > 80) was observed for all aberrations except PIK3CA mutations. Laboratory analysis of tumors from East Asian patients revealed significant differences between GC (n = 79) and CRC (n = 116) for the frequencies of PIK3CA amplification (46% vs. 4%) and PTEN loss (54% vs. 78%). The incidence of GC cases with 0, 1, 2 and 3 concurrent aberrations was 14%, 52%, 27% and 8%, respectively, while for CRC it was 10%, 60%, 25% and 4%, respectively. Our study consolidates knowledge on the frequency, co-occurrence and clinical relevance of PI3K pathway aberrations in GC and CRC. Up to 86% of GC and 90% of CRC have at least one aberration in the PI3K pathway, and there are significant differences in the frequencies of these aberrations according to cancer type and ethnicity.

  10. Mouse Lymphoblastic Leukemias Induced by Aberrant Prdm14 Expression Demonstrate Widespread Copy Number Alterations Also Found in Human ALL

    Directory of Open Access Journals (Sweden)

    Stephen J. Simko

    2012-10-01

    Full Text Available Aberrant expression and activation of oncogenes in somatic cells has been associated with cancer initiation. Required for reacquisition of pluripotency in the developing germ cell, PRDM14 initiates lymphoblastic leukemia when misexpressed in murine bone marrow. Activation of pluripotency in somatic cells can lead to aneuploidy and copy number alterations during iPS cell generation, and we hypothesized that PRDM14-induced lymphoblastic leukemias would demonstrate significant chromosomal damage. High-resolution oligo array comparative genomic hybridization demonstrated infrequent aneuploidy but frequent amplification and deletion, with amplifications occurring in a 5:1 ratio with deletions. Many deletions (i.e., Cdkn2a, Ebf1, Pax5, Ikzf1 involved B-cell development genes and tumor suppressor genes, recapitulating deletions occurring in human leukemia. Pathways opposing senescence were frequently deactivated via Cdkn2a deletion or Tbx2 amplification, with corollary gene expression. Additionally, gene expression studies of abnormal pre-leukemic B-precursors showed downregulation of genes involved in chromosomal stability (i.e., Xrcc6 and failure to upregulate DNA repair pathways. We propose a model of leukemogenesis, triggered by pluripotency genes like Prdm14, which involves ongoing DNA damage and failure to activate non-homologous end-joining secondary to aberrant gene expression.

  11. Preventing E-cadherin aberrant N-glycosylation at Asn-554 improves its critical function in gastric cancer.

    Science.gov (United States)

    Carvalho, S; Catarino, T A; Dias, A M; Kato, M; Almeida, A; Hessling, B; Figueiredo, J; Gärtner, F; Sanches, J M; Ruppert, T; Miyoshi, E; Pierce, M; Carneiro, F; Kolarich, D; Seruca, R; Yamaguchi, Y; Taniguchi, N; Reis, C A; Pinho, S S

    2016-03-31

    E-cadherin is a central molecule in the process of gastric carcinogenesis and its posttranslational modifications by N-glycosylation have been described to induce a deleterious effect on cell adhesion associated with tumor cell invasion. However, the role that site-specific glycosylation of E-cadherin has in its defective function in gastric cancer cells needs to be determined. Using transgenic mice models and human clinical samples, we demonstrated that N-acetylglucosaminyltransferase V (GnT-V)-mediated glycosylation causes an abnormal pattern of E-cadherin expression in the gastric mucosa. In vitro models further indicated that, among the four potential N-glycosylation sites of E-cadherin, Asn-554 is the key site that is selectively modified with β1,6 GlcNAc-branched N-glycans catalyzed by GnT-V. This aberrant glycan modification on this specific asparagine site of E-cadherin was demonstrated to affect its critical functions in gastric cancer cells by affecting E-cadherin cellular localization, cis-dimer formation, molecular assembly and stability of the adherens junctions and cell-cell aggregation, which was further observed in human gastric carcinomas. Interestingly, manipulating this site-specific glycosylation, by preventing Asn-554 from receiving the deleterious branched structures, either by a mutation or by silencing GnT-V, resulted in a protective effect on E-cadherin, precluding its functional dysregulation and contributing to tumor suppression.

  12. [Chromosome aberrations in human lymphocytes at a various duration of cultivation after irradiation].

    Science.gov (United States)

    Riabchenko, N I; Antoshchina, M M; Nasonova, V A; Fesenko, E V; Gotlib, V Ia

    2004-01-01

    Human peripheral blood lymphocytes were exposed to 60Co gamma-rays (a dose of 3 Gy) and cultivated during seven days in the presence of PHA and BrdU. It was shown that the metaphases of the first and second mitosises occurred during cultivation of the irradiated and unirradiated lymphocytes, being evidence about of irregularity of the coming into division of various fractions of lymphocytes. The time of cultivation did not influence a rate of aberrations in metaphases of the first and second mitosises of the irradiated lymphocytes. During the first and the subsequent mitosises the number of exchange chromosome aberrations decreased and reached a control level in metaphases of the fourth and fifth mitosises. The number of paired fragments at second and third mitosises increased a little and started to decrease only in metaphases of the fourth and fifth mitosises. The decrease in chromosome aberrations with prolongation of the cultivation of lymphocytes after irradiating is a consequence of elimination of cells with chromosome damages during sequential mitotic divisions.

  13. Chromosomal Aberrations in Human Peripheral Blood Lymphocytes after Exposure to Ionizing Radiation

    Science.gov (United States)

    Ryu, Tae Ho; Kim, Jin-Hong; Kim, Jin Kyu

    2016-01-01

    Biological dosimetry using chromosome aberration analyses in human peripheral blood lymphocytes is suitable and useful tool for estimating the dose when a nuclear or radiological emergency is investigated. Blood samples from five healthy donors were obtained to establish dose-response calibration curves for chromosomal aberrations after exposure to ionizing radiation. In this work, dicentric assay and CBMN assay were compared considering the sensitivity and accuracy of dose estimation. In a total of 21,688 analyzed metaphase spreads, 10,969 dicentric chromosomes, 563 centric rings and 11,364 acentric chromosomes were found. The number of metaphase cells decreased with increasing radiation dose. The centric rings were not found in the non-irradiated control. There was no relationship between radiation dose and acentric ring induction. The frequency of total MN increased in a dose-dependent manner. In comparison with the control value, MN increased about 9, 32, 75, 87, and 52 fold higher after treatment with 1, 2, 3, 4, and 5 Gy, respectively. The results revealed that the mean frequency of chromosomal aberrations, both in dicentric and in micronuclei analyses increased with increasing radiation dose. PMID:28217281

  14. Drinking beer reduces radiation-induced chromosome aberrations in human lymphocytes

    Energy Technology Data Exchange (ETDEWEB)

    Monobe, Manami [Chiba Univ. (Japan). Graduate School of Science and Technology; Ando, Koichi [National Inst. of Radiological Sciences, Chiba (Japan)

    2002-09-01

    We here investigated and reported the effects of beer drinking on radiation-induced chromosome aberrations in blood lymphocytes. Human blood that was collected either before or after drinking a 700 ml beer was in vitro irradiated with 200 kVp X rays or 50 keV/{mu}m carbon ions. The relation between the radiation dose and the aberration frequencies (fragments and dicentrics) was significantly (P<0.05) lower for lymphocytes collected 3 h after beer drinking than those before drinking. Fitting the dose response to a linear quadratic model showed that the alpha term of carbon ions was significantly (P<0.05) decreased by beer drinking. A decrease of dicentric formation was detected as early as 0.5 h after beer drinking, and lasted not shorter than 4.5 h. The mitotic index of lymphocytes was higher after beer drinking than before, indicating that a division delay would not be responsible for the low aberrations induced by beer drinking. An in vitro treatment of normal lymphocytes with 0.1 M ethanol, which corresponded to a concentration of 6-times higher than the maximum ethanol concentration in the blood after beer drinking, reduced the dicentric formation caused by X-ray irradiation, but not by carbon-ion irradiation. The beer-induced reduction of dicentric formation was not affected by serum. It is concluded that beer could contain non-ethanol elements that reduce the chromosome damage of lymphocytes induced by high-LET radiation. (author)

  15. Germline DNA copy number aberrations identified as potential prognostic factors for breast cancer recurrence.

    Directory of Open Access Journals (Sweden)

    Yadav Sapkota

    Full Text Available Breast cancer recurrence (BCR is a common treatment outcome despite curative-intent primary treatment of non-metastatic breast cancer. Currently used prognostic and predictive factors utilize tumor-based markers, and are not optimal determinants of risk of BCR. Germline-based copy number aberrations (CNAs have not been evaluated as determinants of predisposition to experience BCR. In this study, we accessed germline DNA from 369 female breast cancer subjects who received curative-intent primary treatment following diagnosis. Of these, 155 experienced BCR and 214 did not, after a median duration of follow up after breast cancer diagnosis of 6.35 years (range = 0.60-21.78 and 8.60 years (range = 3.08-13.57, respectively. Whole genome CNA genotyping was performed on the Affymetrix SNP array 6.0 platform. CNAs were identified using the SNP-Fast Adaptive States Segmentation Technique 2 algorithm implemented in Nexus Copy Number 6.0. Six samples were removed due to poor quality scores, leaving 363 samples for further analysis. We identified 18,561 CNAs with ≥1 kb as a predefined cut-off for observed aberrations. Univariate survival analyses (log-rank tests identified seven CNAs (two copy number gains and five copy neutral-loss of heterozygosities, CN-LOHs showing significant differences (P<2.01×10(-5 in recurrence-free survival (RFS probabilities with and without CNAs.We also observed three additional but distinct CN-LOHs showing significant differences in RFS probabilities (P<2.86×10(-5 when analyses were restricted to stratified cases (luminal A, n = 208 only. After adjusting for tumor stage and grade in multivariate analyses (Cox proportional hazards models, all the CNAs remained strongly associated with the phenotype of BCR. Of these, we confirmed three CNAs at 17q11.2, 11q13.1 and 6q24.1 in representative samples using independent genotyping platforms. Our results suggest further investigations on the potential use of germline DNA

  16. Combined resection of aberrant right hepatic artery without anastomosis in panceaticoduodenectomy for pancreatic head cancer: A case report

    Directory of Open Access Journals (Sweden)

    Atsushi Nanashima

    2016-01-01

    Conclusion: By the preoperative and intraoperative imaging managements conducted, combined resection of the aberrant right hepatic artery without anastomosis was achieved by pancreaticoduodenectomy for pancreas head cancer. However, improvements in imaging diagnosis and careful management of R0 resection are important.

  17. mBAND Analysis of Late Chromosome Aberrations in Human Lymphocytes Induced by Gamma Rays and Fe Ions

    Science.gov (United States)

    Sunagawa, Mayumi; Zhang, Ye; Yeshitla, Samrawit; Kadhim, Munira; Wilson, Bobby; Wu, Honglu

    2014-01-01

    Chromosomal translocations and inversions are considered stable, and cells containing these types of chromosome aberrations can survive multiple cell divisions. An efficient method to detect an inversion is multi-color banding fluorescent in situ hybridization (mBAND) which allows identification of both inter- and intrachromosome aberrations simultaneously. Post irradiation, chromosome aberrations may also arise after multiple cell divisions as a result of genomic instability. To investigate the stable or late-arising chromosome aberrations induced after radiation exposure, we exposed human lymphocytes to gamma rays and Fe ions ex vivo, and cultured the cells for multiple generations. Chromosome aberrations were analyzed in cells collected at first mitosis and at several time intervals during the culture period post irradiation. With gamma irradiation, about half of the damages observed at first mitosis remained after 7 day- and 14 day- culture, suggesting the transmissibility of damages to the surviving progeny. Detailed analysis of chromosome break ends participating in exchanges revealed a greater fraction of break ends involved in intrachromosome aberrations in the 7- and 14-day samples in comparison to the fraction at first mitosis. In particular, simple inversions were found at 7 and 14 days, but not at the first mitosis, suggesting that some of the aberrations might be formed days post irradiation. In contrast, at the doses that produced similar frequencies of gamma-induced chromosome aberrations as observed at first mitosis, a significantly lower yield of aberrations remained at the same population doublings after Fe ion exposure. At these equitoxic doses, more complex type aberrations were observed for Fe ions, indicating that Fe ion-induced initial chromosome damages are more severe and may lead to cell death. Comparison between low and high doses of Fe ion irradiation in the induction of late damages will also be discussed.

  18. M-BAND Analysis of Chromosome Aberration Induced by Fe-Ions in Human Epithelial Cells Cultured in 3-Dimensional Matrices

    Science.gov (United States)

    Hada, M.; Cucinotta, F. A.; Wu, H.

    2008-01-01

    Energetic heavy ions pose a great health risk to astronauts in extended ISS and future lunar and Mars missions. High-LET heavy ions are particularly effective in causing various biological effects, including cell inactivation, genetic mutations, cataracts and cancer induction. Most of these biological endpoints are closely related to chromosomal damage, which can be utilized as a biomarker for radiation insults. Previously, we had studied low- and high-LET radiation-induced chromosome aberrations in human epithelial cells cultured in 2-dimension (2D) using the multicolor banding fluorescence in situ hybridization (mBAND) technique. However, it has been realized that the biological response to radiation insult in a 2D cellular environment in vitro can differ significantly from the response in 3-dimension (3D) or at the actual tissue level. In this study, we cultured human epithelial cells in 3D to provide a more suitable model for human tissue. Human mammary epithelia cells (CH184B5F5/M10) were grown in Matrigel to form 3D structures, and exposed to Fe-ions at NASA Space Radiation Laboratory (NSRL) at the Brookhaven National Laboratory or 137Cs-gamma radiation source at the University of Texas MD Anderson Cancer Center. After exposure, cells were allowed to repair for 16hr before dissociation and subcultued at low density in 2D. G2 and metaphase chromosomes in the first cell cycle were collected using a chemical-induced premature chromosome condensation (PCC) technique, and chromosome aberrations were analyzed using mBAND technique. With this technique, individually painted chromosomal bands on one chromosome allowed the identification of interchromosomal aberrations (translocation to unpainted chromosomes) and intrachromosomal aberrations (inversions and deletions within a single painted chromosome). Our data indicate a significant difference of the chromosome aberration yield between 2D and 3D cell cultures for gamma exposures, but not for Fe ion exposures

  19. M-BAND analysis of chromosome aberration induced by Fe-ions in human epithelial cells cultured in 3-dimensional matrices

    Science.gov (United States)

    Hada, Megumi; Cucinotta, Francis A.; Wu, Honglu

    Energetic heavy ions pose a great health risk to astronauts in extended ISS and future lunar and Mars missions. High-LET heavy ions are particularly effective in causing various biological effects, including cell inactivation, genetic mutations, cataracts and cancer induction. Most of these biological endpoints are closely related to chromosomal damage, which can be utilized as a biomarker for radiation insults. Previously, we had studied lowand high-LET radiationinduced chromosome aberrations in human epithelial cells cultured in 2-dimension (2D) using the multicolor banding fluorescence in situ hybridization (mBAND) technique. However, it has been realized that the biological response to radiation insult in a 2D cellular environment in vitro can differ significantly from the response in 3-dimension (3D) or at the actual tissue level. In this study, we cultured human epithelial cells in 3D to provide a more suitable model for human tissue. Human mammary epithelial cells (CH184B5F5/M10) were grown in Matrigel to form 3D structures, and exposed to Fe-ions at NASA Space Radiation Laboratory (NSRL) at the Brookhaven National Laboratory or 137 Cs-gamma radiation source at the University of Texas MD Anderson Cancer Center. After exposure, cells were allowed to repair for 16hr before dissociation and subcultured at low density in 2D. G2 and metaphase chromosomes in the first cell cycle were collected using a chemical-induced premature chromosome condensation (PCC) technique, and chromosome aberrations were analyzed using mBAND technique. With this technique, individually painted chromosomal bands on one chromosome allowed the identification of interchromosomal aberrations (translocation to unpainted chromosomes) and intrachromosomal aberrations (inversions and deletions within a single painted chromosome). Our data indicate a significant difference of the chromosome aberration yield between 2D and 3D cell cultures for gamma exposures, but not for Fe ion exposures

  20. M-BAND Analysis of Chromosome Aberration Induced by Fe-Ions in Human Epithelial Cells Cultured in 3-Dimensional Matrices

    Science.gov (United States)

    Hada, M.; Cucinotta, F. A.; Wu, H.

    2008-01-01

    Energetic heavy ions pose a great health risk to astronauts in extended ISS and future lunar and Mars missions. High-LET heavy ions are particularly effective in causing various biological effects, including cell inactivation, genetic mutations, cataracts and cancer induction. Most of these biological endpoints are closely related to chromosomal damage, which can be utilized as a biomarker for radiation insults. Previously, we had studied low- and high-LET radiation-induced chromosome aberrations in human epithelial cells cultured in 2-dimension (2D) using the multicolor banding fluorescence in situ hybridization (mBAND) technique. However, it has been realized that the biological response to radiation insult in a 2D cellular environment in vitro can differ significantly from the response in 3-dimension (3D) or at the actual tissue level. In this study, we cultured human epithelial cells in 3D to provide a more suitable model for human tissue. Human mammary epithelia cells (CH184B5F5/M10) were grown in Matrigel to form 3D structures, and exposed to Fe-ions at NASA Space Radiation Laboratory (NSRL) at the Brookhaven National Laboratory or 137Cs-gamma radiation source at the University of Texas MD Anderson Cancer Center. After exposure, cells were allowed to repair for 16hr before dissociation and subcultued at low density in 2D. G2 and metaphase chromosomes in the first cell cycle were collected using a chemical-induced premature chromosome condensation (PCC) technique, and chromosome aberrations were analyzed using mBAND technique. With this technique, individually painted chromosomal bands on one chromosome allowed the identification of interchromosomal aberrations (translocation to unpainted chromosomes) and intrachromosomal aberrations (inversions and deletions within a single painted chromosome). Our data indicate a significant difference of the chromosome aberration yield between 2D and 3D cell cultures for gamma exposures, but not for Fe ion exposures

  1. FBXW7-mutated colorectal cancer cells exhibit aberrant expression of phosphorylated-p53 at Serine-15

    Science.gov (United States)

    Normatova, Makhliyo; Babaei-Jadidi, Roya; Tomlinson, Ian; Nateri, Abdolrahman S.

    2015-01-01

    FBXW7 mutations occur in a variety of human cancers including colorectal cancer (CRC). Elucidating its mechanism of action has become crucial for cancer therapy; however, it is also complicated by the fact that FBXW7 can influence many pathways due to its role as an E3-ubiquitin ligase in proteasome degradation. FBXW7 and TP53 are tumour suppressors intensively implicated in colorectal carcinogenesis. Deletion mutations in these two genes in animal models mark the progression from adenoma to carcinoma. Although still largely unknown, the last defense mechanism against CRC at the molecular level could be through a synergistic effect of the two genes. The underlying mechanism requires further investigation. In our laboratory, we have used a phospho-kinase profiler array to illustrate a potential molecular link between FBXW7 and p53 in CRC cells. In vitro and in vivo assessments demonstrated aberrant induction of phosphorylated p53 at Serine 15 [phospho-p53(Ser15)] in human FBXW7-deficient CRC cells as compared to their FBXW7-wild-type counterparts. FBXW7 loss in HCT116 cells promoted resistance to oxaliplatin. Immunoblotting data further confirmed that reduction of phospho-p53(Ser15) may contribute to the decreased efficacy of therapy in FBXW7-mutated CRC cells. The findings may suggest the applicability of phospho-p53(Ser15) as an indicative marker of FBXW7-mutations. Phospho-p53(Ser15) regulation by FBXW7 E3-ligase activity could provide important clues for understanding FBXW7 behavior in tumour progression and grounds for its clinical applicability thereafter. PMID:25860929

  2. In silico analysis and DHPLC screening strategy identifies novel apoptotic gene targets of aberrant promoter hypermethylation in prostate cancer.

    LENUS (Irish Health Repository)

    Murphy, Therese M

    2011-01-01

    Aberrant DNA methylation has been implicated as a key survival mechanism in cancer, whereby promoter hypermethylation silences genes essential for many cellular processes including apoptosis. Limited data is available on the methylation profile of apoptotic genes in prostate cancer (CaP). The aim of this study was to profile methylation of apoptotic-related genes in CaP using denaturing high performance liquid chromatography (DHPLC).

  3. Aberrant Expression of proPTPRN2 in Cancer Cells Confers Resistance to Apoptosis.

    Science.gov (United States)

    Sorokin, Alexey V; Nair, Binoj C; Wei, Yongkun; Aziz, Kathryn E; Evdokimova, Valentina; Hung, Mien-Chie; Chen, Junjie

    2015-05-01

    The protein tyrosine phosphatase receptor PTPRN2 is expressed predominantly in endocrine and neuronal cells, where it functions in exocytosis. We found that its immature isoform proPTPRN2 is overexpressed in various cancers, including breast cancer. High proPTPRN2 expression was associated strongly with lymph node-positive breast cancer and poor clinical outcome. Loss of proPTPRN2 in breast cancer cells promoted apoptosis and blocked tumor formation in mice, whereas enforced expression of proPTPRN2 in nontransformed human mammary epithelial cells exerted a converse effect. Mechanistic investigations suggested that ProPTPRN2 elicited these effects through direct interaction with TRAF2, a hub scaffold protein for multiple kinase cascades, including ones that activate NF-κB. Overall, our results suggest PTPRN2 as a novel candidate biomarker and therapeutic target in breast cancer. ©2015 American Association for Cancer Research.

  4. The aberrant asynchronous replication — characterizing lymphocytes of cancer patients — is erased following stem cell transplantation

    Directory of Open Access Journals (Sweden)

    Korenstein-Ilan Avital

    2010-05-01

    Full Text Available Abstract Background Aberrations of allelic replication timing are epigenetic markers observed in peripheral blood cells of cancer patients. The aberrant markers are non-cancer-type-specific and are accompanied by increased levels of sporadic aneuploidy. The study aimed at following the epigenetic markers and aneuploidy levels in cells of patients with haematological malignancies from diagnosis to full remission, as achieved by allogeneic stem cell transplantation (alloSCT. Methods TP53 (a tumor suppressor gene assigned to chromosome 17, AML1 (a gene assigned to chromosome 21 and involved in the leukaemia-abundant 8;21 translocation and the pericentomeric satellite sequence of chromosome 17 (CEN17 were used for replication timing assessments. Aneuploidy was monitored by enumerating the copy numbers of chromosomes 17 and 21. Replication timing and aneuploidy were detected cytogenetically using fluorescence in situ hybridization (FISH technology applied to phytohemagglutinin (PHA-stimulated lymphocytes. Results We show that aberrant epigenetic markers are detected in patients with hematological malignancies from the time of diagnosis through to when they are scheduled to undergo alloSCT. These aberrations are unaffected by the clinical status of the disease and are displayed both during accelerated stages as well as in remission. Yet, these markers are eradicated completely following stem cell transplantation. In contrast, the increased levels of aneuploidy (irreversible genetic alterations displayed in blood lymphocytes at various stages of disease are not eliminated following transplantation. However, they do not elevate and remain unchanged (stable state. A demethylating anti-cancer drug, 5-azacytidine, applied in vitro to lymphocytes of patients prior to transplantation mimics the effect of transplantation: the epigenetic aberrations disappear while aneuploidy stays unchanged. Conclusions The reversible nature of the replication aberrations may

  5. Nuclear anomalies, chromosomal aberrations and proliferation rates in cultured lymphocytes of head and neck cancer patients.

    Science.gov (United States)

    George, Alex; Dey, Rupraj; Bhuria, Vikas; Banerjee, Shouvik; Ethirajan, Sivakumar; Siluvaimuthu, Ashok; Saraswathy, Radha

    2014-01-01

    Head and neck cancers (HNC) are extremely complex disease types and it is likely that chromosomal instability is involved in the genetic mechanisms of its genesis. However, there is little information regarding the background levels of chromosome instability in these patients. In this pilot study, we examined spontaneous chromosome instability in short-term lymphocyte cultures (72 hours) from 72 study subjects - 36 newly diagnosed HNC squamous cell carcinoma patients and 36 healthy ethnic controls. We estimated chromosome instability (CIN) using chromosomal aberration (CA) analysis and nuclear level anomalies using the Cytokinesis Block Micronucleus Cytome Assay (CBMN Cyt Assay). The proliferation rates in cultures of peripheral blood lymphocytes (PBL) were assessed by calculating the Cytokinesis Block Proliferation Index (CBPI). Our results showed a significantly higher mean level of spontaneous chromosome type aberrations (CSAs), chromatid type aberration (CTAs) dicentric chromosomes (DIC) and chromosome aneuploidy (CANEUP) in patients (CSAs, 0.0294±0.0038; CTAs, 0.0925±0.0060; DICs, 0.0213±0.0028; and CANEUPs, 0.0308±0.0035) compared to controls (CSAs, 0.0005±0.0003; CTAs, 0.0058±0.0015; DICs, 0.0005±0.0003; and CANEUPs, 0.0052±0.0013) where pnuclear anomalies showed significantly higher mean level of micronuclei (MNi), nucleoplasmic bridges (NPBs) and nuclear buds (NBUDs) among cases (MNi, 0.01867±0.00108; NPBs, 0.01561±0.00234; NBUDs, 0.00658±0.00068) compared with controls (MNi, 0.00027±0.00009; NPBs, 0.00002±0.00002; NBUDs, 0.00011±0.00007).The evaluation of CBPI supported genomic instability in the peripheral blood lymphocytes showing a significantly lower proliferation rate in HNC patients (1.525±0.005552) compared to healthy subjects (1.686±0.009520 ) (pproliferation in the cultured peripheral lymphocytes of solid tumors could be biomarkers to predict malignancy in early stages.

  6. Aberrant expression of krüppel-like factor 6 protein in colorectal cancers

    Institute of Scientific and Technical Information of China (English)

    Yong-Gu Cho; Byung-Jun Choi; Jae-Whie Song; Su-Young Kim; Suk-Woo Nam; Sug-Hyung Lee; Nam-Jin Yoo; Jung-Young Lee; Won-Sang Park

    2006-01-01

    AIM: To investigate whether kr(U)ppel-like factor 6 (KLF6)plays an important role in the development and/or progression of colorectal cancer.METHODS: A total of 123 formalin-fixed and paraffinembedded colorectal cancer specimens were analyzed by immunohistochemistry using tissue microarray for the expression of KLF6 protein. The specimens were collected over a 3-year period in the laboratories at our large teaching hospital in Seoul, Republic of Korea. The correlation of KLF6 expression with clinicopathologic parameters was analyzed by x2 test and Bartholomew test.RESULTS: Normal colonic epithelium showed weak to moderate expression of KLF6, whereas reduced KLF 6expression or loss of KLF6 expression was seen in 45(36.6%) of the 123 colorectal carcinoma specimens.Interestingly, aberrant expression of KLF6 was detected in 25 (43.1%) of 58 cases with metastasis to regional lymph node and in 31 (47.0%) of 66 tumors more than 5 cm in size. Statistically, loss of KLF6 expression was significantly associated with tumor size (P<0.05).However, there was no significant correlation between KLF6 expression and Dukes' stage (Bartholomew test,P> 0.05), tumor location and lymph node metastasis (x2test, P> 0.05).CONCLUSION: Loss of KLF6 expression may be a common and early event in colorectal carcinogenesis.

  7. Analysis of molecular aberrations of Wnt pathway gladiators in colorectal cancer in the Kashmiri population

    Directory of Open Access Journals (Sweden)

    Sameer A

    2011-07-01

    Full Text Available Abstract The development and progression of colorectal cancer (CRC is a multi-step process, and the Wnt pathways with its two molecular gladiators adenomatous polyposis coli (APC and β-catenin plays an important role in transforming a normal tissue into a malignant one. In this study, we aimed to investigate the role of aberrations in the APC and β-catenin genes in the pathogenesis of CRC in the Kashmir valley, and to correlate it with various clinicopathological variables. We examined the paired tumour and normal-tissue specimens of 86 CRC patients for the occurrence of aberrations in the mutation cluster region (MCR of the APC gene and exon 3 of the β-catenin gene by polymerase chain reaction-single-strand conformation polymorphism (PCR-SSCP and/or PCR-direct sequencing. Analysis of promoter hypermethylation of the APC gene was also carried out using methylation-specific PCR (MS-PCR. The overall mutation rate of the MCR of the APC gene among 86 CRC cases was 12.8 per cent (11 of 86. Promoter hypermethylation of APC was observed in 54.65 per cent (47 of 86 of cases. Furthermore, we found a significant association between tumour location, tumour grade and node status and the methylation status of the APC gene (p ≤ 0.05. Although the number of mutations in the APC and β-catenin genes in our CRC cases was very low, the study confirms the role of epigenetic gene silencing of the pivotal molecular gladiator, APC, of the Wnt pathway in the development of CRC in the Kashmiri population.

  8. Clinical Omics Analysis of Colorectal Cancer Incorporating Copy Number Aberrations and Gene Expression Data

    Directory of Open Access Journals (Sweden)

    Tsuyoshi Yoshida

    2010-07-01

    Full Text Available Background: Colorectal cancer (CRC is one of the most frequently occurring cancers in Japan, and thus a wide range of methods have been deployed to study the molecular mechanisms of CRC. In this study, we performed a comprehensive analysis of CRC, incorporating copy number aberration (CRC and gene expression data. For the last four years, we have been collecting data from CRC cases and organizing the information as an “omics” study by integrating many kinds of analysis into a single comprehensive investigation. In our previous studies, we had experienced difficulty in finding genes related to CRC, as we observed higher noise levels in the expression data than in the data for other cancers. Because chromosomal aberrations are often observed in CRC, here, we have performed a combination of CNA analysis and expression analysis in order to identify some new genes responsible for CRC. This study was performed as part of the Clinical Omics Database Project at Tokyo Medical and Dental University. The purpose of this study was to investigate the mechanism of genetic instability in CRC by this combination of expression analysis and CNA, and to establish a new method for the diagnosis and treatment of CRC. Materials and methods: Comprehensive gene expression analysis was performed on 79 CRC cases using an Affymetrix Gene Chip, and comprehensive CNA analysis was performed using an Affymetrix DNA Sty array. To avoid the contamination of cancer tissue with normal cells, laser micro-dissection was performed before DNA/RNA extraction. Data analysis was performed using original software written in the R language. Result: We observed a high percentage of CNA in colorectal cancer, including copy number gains at 7, 8q, 13 and 20q, and copy number losses at 8p, 17p and 18. Gene expression analysis provided many candidates for CRC-related genes, but their association with CRC did not reach the level of statistical significance. The combination of CNA and gene

  9. Functional annotation of rare gene aberration drivers of pancreatic cancer | Office of Cancer Genomics

    Science.gov (United States)

    As we enter the era of precision medicine, characterization of cancer genomes will directly influence therapeutic decisions in the clinic. Here we describe a platform enabling functionalization of rare gene mutations through their high-throughput construction, molecular barcoding and delivery to cancer models for in vivo tumour driver screens. We apply these technologies to identify oncogenic drivers of pancreatic ductal adenocarcinoma (PDAC).

  10. Chromosome aberration yields and apoptosis in human lymphocytes irradiated with Fe-ions of differing LET

    Science.gov (United States)

    Lee, R.; Nasonova, E.; Ritter, S.

    In the present paper the relationship between cell cycle delays induced by Fe-ions of differing LET and the aberration yield observable in human lymphocytes at mitosis was examined. Cells of the same donor were irradiated with 990 MeV/n Fe-ions (LET = 155 keV/μm), 200 MeV/n Fe-ions (LET = 440 keV/μm) and X-rays and aberrations were measured in first cycle mitoses harvested at different times after 48 84 h in culture and in prematurely condensed G2-cells (PCCs) collected at 48 h using calyculin A. Analysis of the time-course of chromosomal damage in first cycle metaphases revealed that the aberration frequency was similar after X-ray irradiation, but increased two and seven fold after exposure to 990 and 200 MeV/n Fe-ions, respectively. Consequently, RBEs derived from late sampling times were significantly higher than those obtained at early times. The PCC-data suggest that the delayed entry of heavily damaged cells into mitosis results especially from a prolonged arrest in G2. Preliminary data obtained for 4.1 MeV/n Cr-ions (LET = 3160 keV/μm) revealed, that these delays are even more pronounced for low energy Fe-like particles. Additionally, for the different radiation qualities, BrdU-labeling indices and apoptotic indices were determined at several time-points. Only the exposure to low energy Fe-like particles affected the entry of lymphocytes into S-phase and generated a significant apoptotic response indicating that under this particular exposure condition a large proportion of heavily damaged cells is rapidly eliminated from the cell population. The significance of this observation for the estimation of the health risk associated with space radiation remains to be elucidated.

  11. Noninvasive detection of cancer-associated genome-wide hypomethylation and copy number aberrations by plasma DNA bisulfite sequencing

    Science.gov (United States)

    Chan, K. C. Allen; Jiang, Peiyong; Chan, Carol W. M.; Sun, Kun; Wong, John; Hui, Edwin P.; Chan, Stephen L.; Chan, Wing Cheong; Hui, David S. C.; Ng, Simon S. M.; Chan, Henry L. Y.; Wong, Cesar S. C.; Ma, Brigette B. Y.; Chan, Anthony T. C.; Lai, Paul B. S.; Sun, Hao; Chiu, Rossa W. K.; Lo, Y. M. Dennis

    2013-01-01

    We explored the detection of genome-wide hypomethylation in plasma using shotgun massively parallel bisulfite sequencing as a marker for cancer. Tumor-associated copy number aberrations (CNAs) could also be observed from the bisulfite DNA sequencing data. Hypomethylation and CNAs were detected in the plasma DNA of patients with hepatocellular carcinoma, breast cancer, lung cancer, nasopharyngeal cancer, smooth muscle sarcoma, and neuroendocrine tumor. For the detection of nonmetastatic cancer cases, plasma hypomethylation gave a sensitivity and specificity of 74% and 94%, respectively, when a mean of 93 million reads per case were obtained. Reducing the sequencing depth to 10 million reads per case was found to have no adverse effect on the sensitivity and specificity for cancer detection, giving respective figures of 68% and 94%. This characteristic thus indicates that analysis of plasma hypomethylation by this sequencing-based method may be a relatively cost-effective approach for cancer detection. We also demonstrated that plasma hypomethylation had utility for monitoring hepatocellular carcinoma patients following tumor resection and for detecting residual disease. Plasma hypomethylation can be combined with plasma CNA analysis for further enhancement of the detection sensitivity or specificity using different diagnostic algorithms. Using the detection of at least one type of aberration to define an abnormality, a sensitivity of 87% could be achieved with a specificity of 88%. These developments have thus expanded the applications of plasma DNA analysis for cancer detection and monitoring. PMID:24191000

  12. Cancer associated aberrant protein O-glycosylation can modify antigen processing and immune response.

    Directory of Open Access Journals (Sweden)

    Caroline B Madsen

    Full Text Available Aberrant glycosylation of mucins and other extracellular proteins is an important event in carcinogenesis and the resulting cancer associated glycans have been suggested as targets in cancer immunotherapy. We assessed the role of O-linked GalNAc glycosylation on antigen uptake, processing, and presentation on MHC class I and II molecules. The effect of GalNAc O-glycosylation was monitored with a model system based on ovalbumin (OVA-MUC1 fusion peptides (+/- glycosylation loaded onto dendritic cells co-cultured with IL-2 secreting OVA peptide-specific T cell hybridomas. To evaluate the in vivo response to a cancer related tumor antigen, Balb/c or B6.Cg(CB-Tg(HLA-A/H2-D2Enge/J (HLA-A2 transgenic mice were immunized with a non-glycosylated or GalNAc-glycosylated MUC1 derived peptide followed by comparison of T cell proliferation, IFN-γ release, and antibody induction. GalNAc-glycosylation promoted presentation of OVA-MUC1 fusion peptides by MHC class II molecules and the MUC1 antigen elicited specific Ab production and T cell proliferation in both Balb/c and HLA-A2 transgenic mice. In contrast, GalNAc-glycosylation inhibited the presentation of OVA-MUC1 fusion peptides by MHC class I and abolished MUC1 specific CD8+ T cell responses in HLA-A2 transgenic mice. GalNAc glycosylation of MUC1 antigen therefore facilitates uptake, MHC class II presentation, and antibody response but might block the antigen presentation to CD8+ T cells.

  13. Cytotoxicity and chromosome aberrations in normal human oral keratinocytes induced by chemical carcinogens: Comparison of inter-individual variations.

    Science.gov (United States)

    Tsutsui, T; Kawamoto, Y; Suzuki, N; Gladen, B C; Barrett, J C

    1991-01-01

    Normal human keratinocytes from the oral cavity were cultured in vitro in serum-free medium. Cultures from different individuals were established, and the responses of the cells to different chemicals were compared. The cells, grown at clonal densities, were treated separately with an alkylating agent (N-methyl-N'-nitro-N-nitrosoguanidine; MNNG), two arsenical salts (sodium arsenate or sodium arsenite), sodium fluoride or two polyaromatic hydrocarbons (benzo[a]pyrene or 7,12-dimethylbenz[a]-anthracene). There were no significant differences in the colony-forming efficiencies (22.8 +/- 4.2%) of control (untreated) cells from five different individuals. At selected doses, each of the chemicals reduced the colony-forming efficiencies of the treated cells. The cytotoxicity of most of the chemicals did not differ significantly among cells derived from different individuals, with the exception of sodium arsenate at two doses and sodium fluoride at the highest dose tested. Induction of chromosome aberrations by MNNG, sodium arsenite, sodium arsenate and sodium flouride was analysed with cells derived from up to nine individuals. There was little difference in the inducibilities of chromosome aberrations among cultured keratinocytes from different donors. Treatment of cells from nine donors with one dose of sodium fluoride revealed a statistically significant inter-individual variation. These findings provide a model system to study the effects of carcinogens on the target cells for oral cancers. The results can be compared with findings for cells from other epithelial tissues, since the culture conditions support the growth of keratinocytes regardless of origin. Little inter-individual variation was observed in the response of oral keratinocytes to the chemicals examined.

  14. Targeting aberrant expression of Notch-1 in ALDH(+) cancer stem cells in breast cancer.

    Science.gov (United States)

    Pal, Deeksha; Kolluru, Venkatesh; Chandrasekaran, Balaji; Baby, Becca V; Aman, Masarath; Suman, Suman; Sirimulla, Suman; Sanders, Mary Ann; Alatassi, Houda; Ankem, Murali K; Damodaran, Chendil

    2017-03-01

    We have previously reported that high aldehyde dehydrogenase (ALDH) enzyme activity in breast cancer cells results in breast cancer stem cell (BCSC) properties by upregualting Notch-1 and epithelial mesenchymal markers. This results in chemoresistance in breast cancer. Here, we examined the functional and clinical significance of ALDH expression by measuring the ALDH levels in breast cancer tissues by immunohistochemistry. There was a significantly higher ALDH expression in higher grade breast cancer tumor tissues (Grade- II and III) versus normal breast tissues. Injection of BCSC (ALDH(+) and CD44(+) /CD22(-) ) cells resulted in aggressive tumor growth in athymic mice versus ALDH(-) cells. The ALDH(+) and CD44(+) /CD22(-) tumors grow rapidly and are larger than ALDH(-) tumors which were slow growing and smaller. Molecularly, ALDH(+) tumors expressed higher expression of Notch-1 and EMT markers than ALDH(-) tumors. Oral administration of the naturally occurring Psoralidin (Pso, 25 mg/kg of body weight) significantly inhibited the growth in ALDH(+) and ALDH(-) tumors as well. Psoralidin inhibited Notch-1 mediated EMT activation in ALDH(+) and ALDH(-) tumors-this confirms our in vitro findings. Our results suggest that Notch-1 could be an attractive target and inhibition of Notch-1 by Psoralidin may prevent pathogenesis of breast cancer as well as metastasis. © 2016 Wiley Periodicals, Inc.

  15. Human Viruses and Cancer

    Directory of Open Access Journals (Sweden)

    Abigail Morales-Sánchez

    2014-10-01

    Full Text Available The first human tumor virus was discovered in the middle of the last century by Anthony Epstein, Bert Achong and Yvonne Barr in African pediatric patients with Burkitt’s lymphoma. To date, seven viruses -EBV, KSHV, high-risk HPV, MCPV, HBV, HCV and HTLV1- have been consistently linked to different types of human cancer, and infections are estimated to account for up to 20% of all cancer cases worldwide. Viral oncogenic mechanisms generally include: generation of genomic instability, increase in the rate of cell proliferation, resistance to apoptosis, alterations in DNA repair mechanisms and cell polarity changes, which often coexist with evasion mechanisms of the antiviral immune response. Viral agents also indirectly contribute to the development of cancer mainly through immunosuppression or chronic inflammation, but also through chronic antigenic stimulation. There is also evidence that viruses can modulate the malignant properties of an established tumor. In the present work, causation criteria for viruses and cancer will be described, as well as the viral agents that comply with these criteria in human tumors, their epidemiological and biological characteristics, the molecular mechanisms by which they induce cellular transformation and their associated cancers.

  16. M-BAND Study of Radiation-Induced Chromosome Aberrations in Human Epithelial Cells: Radiation Quality and Dose Rate Effects

    Science.gov (United States)

    Hada, Megumi; Cucinotta, Francis; Wu, Honglu

    2009-01-01

    The advantage of the multicolor banding in situ hybridization (mBAND) technique is its ability to identify both inter- (translocation to unpainted chromosomes) and intra- (inversions and deletions within a single painted chromosome) chromosome aberrations simultaneously. To study the detailed rearrangement of low- and high-LET radiation induced chromosome aberrations in human epithelial cells (CH184B5F5/M10) in vitro, we performed a series of experiments with Cs-137 gamma rays of both low and high dose rates, neutrons of low dose rate and 600 MeV/u Fe ions of high dose rate, with chromosome 3 painted with multi-binding colors. We also compared the chromosome aberrations in both 2- and 3-dimensional cell cultures. Results of these experiments revealed the highest chromosome aberration frequencies after low dose rate neutron exposures. However, detailed analysis of the radiation induced inversions revealed that all three radiation types induced a low incidence of simple inversions. Most of the inversions in gamma-ray irradiated samples were accompanied by other types of intra-chromosomal aberrations but few inversions were accompanied by inter-chromosomal aberrations. In contrast, neutrons and Fe ions induced a significant fraction of inversions that involved complex rearrangements of both inter- and intrachromosomal exchanges. The location of the breaks involved in chromosome exchanges was analyzed along the painted chromosome. The breakpoint distribution was found to be randomly localized on chromosome 3 after neutron or Fe ion exposure, whereas non-random distribution with clustering breakpoints was observed after -ray exposure. Our comparison of chromosome aberration yields between 2- and 3-dimensional cell cultures indicated a significant difference for gamma exposures, but not for Fe ion exposures. These experimental results indicated that the track structure of the radiation and the cellular/chromosome structure can both affect radiation-induced chromosome

  17. Human papillomaviruses and cancer.

    Science.gov (United States)

    Haedicke, Juliane; Iftner, Thomas

    2013-09-01

    Human papillomaviruses (HPV) are small oncogenic DNA viruses of which more than 200 types have been identified to date. A small subset of these is etiologically linked to the development of anogenital malignancies such as cervical cancer. In addition, recent studies established a causative relationship between these high-risk HPV types and tonsillar and oropharyngeal cancer. Clinical management of cervical cancer and head and neck squamous cell carcinomas (HNSCCs) is largely standardized and involves surgical removal of the tumor tissue as well as adjuvant chemoradiation therapy. Notably, the response to therapeutic intervention of HPV-positive HNSCCs has been found to be better as compared to HPV-negative tumors. Although the existing HPV vaccine is solely licensed for the prevention of cervical cancer, it might also have prophylactic potential for the development of high-risk HPV-associated HNSCCs. Another group of viruses, which belongs to the beta-HPV subgroup, has been implicated in nonmelanoma skin cancer, however, the etiology remains to be established. Treatment of HPV-induced nonmelanoma skin cancer is based on local excision. However, topically applied immune-modulating substances represent non-surgical alternatives for the management of smaller cutaneous tumors. In this review we present the current knowledge of the role of HPV in cancer development and discuss clinical management options as well as targets for the development of future intervention therapies. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  18. Nonhomologous DNA end joining and chromosome aberrations in human embryonic lung fibroblasts treated with environmental pollutants

    Energy Technology Data Exchange (ETDEWEB)

    Rossner, Pavel, E-mail: prossner@biomed.cas.cz; Rossnerova, Andrea; Beskid, Olena; Tabashidze, Nana; Libalova, Helena; Uhlirova, Katerina; Topinka, Jan; Sram, Radim J.

    2014-05-15

    Highlights: • We analyzed the effect of air pollutants on NHEJ and chromosome aberrations. • In HEL12469 cells B[a]P and extractable organic matter induced DSBs. • The compounds induced XRCC4 expression and a weak Ku70/80 response. • We found increased frequency of aberrations of chromosomes 1, 2, 4, 5, 7 and 17. • The tested compounds preferentially affected chromosome 7. - Abstract: In order to evaluate the ability of a representative polycyclic aromatic hydrocarbon (PAH) and PAH-containing complex mixtures to induce double strand DNA breaks (DSBs) and repair of damaged DNA in human embryonic lung fibroblasts (HEL12469 cells), we investigated the effect of benzo[a]pyrene (B[a]P) and extractable organic matter (EOM) from ambient air particles <2.5 μm (PM2.5) on nonhomologous DNA end joining (NHEJ) and induction of stable chromosome aberrations (CAs). PM2.5 was collected in winter and summer 2011 in two Czech cities differing in levels and sources of air pollutants. The cells were treated for 24 h with the following concentrations of tested chemicals: B[a]P: 1 μM, 10 μM, 25 μM; EOMs: 1 μg/ml, 10 μg/ml, 25 μg/ml. We tested several endpoints representing key steps leading from DSBs to the formation of CAs including histone H2AX phosphorylation, levels of proteins Ku70, Ku80 and XRCC4 participating in NHEJ, in vitro ligation activity of nuclear extracts of the HEL12469 cells and the frequency of stable CAs assessed by whole chromosome painting of chromosomes 1, 2, 4, 5, 7 and 17 using fluorescence in situ hybridization. Our results show that 25 μM of B[a]P and most of the tested doses of EOMs induced DSBs as indicated by H2AX phosphorylation. DNA damage was accompanied by induction of XRCC4 expression and an increased frequency of CAs. Translocations most frequently affected chromosome 7. We observed only a weak induction of Ku70/80 expression as well as ligation activity of nuclear extracts. In summary, our data suggest the induction of DSBs and

  19. Molecular profiling of ETS and non-ETS aberrations in prostate cancer patients from northern India.

    Science.gov (United States)

    Ateeq, Bushra; Kunju, Lakshmi P; Carskadon, Shannon L; Pandey, Swaroop K; Singh, Geetika; Pradeep, Immanuel; Tandon, Vini; Singhai, Atin; Goel, Apul; Amit, Sonal; Agarwal, Asha; Dinda, Amit K; Seth, Amlesh; Tsodikov, Alexander; Chinnaiyan, Arul M; Palanisamy, Nallasivam

    2015-07-01

    Molecular stratification of prostate cancer (PCa) based on genetic aberrations including ETS or RAF gene-rearrangements, PTEN deletion, and SPINK1 over-expression show clear prognostic and diagnostic utility. Gene rearrangements involving ETS transcription factors are frequent pathogenetic somatic events observed in PCa. Incidence of ETS rearrangements in Caucasian PCa patients has been reported, however, occurrence in Indian population is largely unknown. The aim of this study was to determine the prevalence of the ETS and RAF kinase gene rearrangements, SPINK1 over-expression, and PTEN deletion in this cohort. In this multi-center study, formalin-fixed paraffin embedded (FFPE) PCa specimens (n = 121) were procured from four major medical institutions in India. The tissues were sectioned and molecular profiling was done using immunohistochemistry (IHC), RNA in situ hybridization (RNA-ISH) and/or fluorescence in situ hybridization (FISH). ERG over-expression was detected in 48.9% (46/94) PCa specimens by IHC, which was confirmed in a subset of cases by FISH. Among other ETS family members, while ETV1 transcript was detected in one case by RNA-ISH, no alteration in ETV4 was observed. SPINK1 over-expression was observed in 12.5% (12/96) and PTEN deletion in 21.52% (17/79) of the total PCa cases. Interestingly, PTEN deletion was found in 30% of the ERG-positive cases (P = 0.017) but in only one case with SPINK1 over-expression (P = 0.67). BRAF and RAF1 gene rearrangements were detected in ∼1% and ∼4.5% of the PCa cases, respectively. This is the first report on comprehensive molecular profiling of the major spectrum of the causal aberrations in Indian men with PCa. Our findings suggest that ETS gene rearrangement and SPINK1 over-expression patterns in North Indian population largely resembled those observed in Caucasian population but differed from Japanese and Chinese PCa patients. The molecular profiling data presented in this study could help in

  20. Aberrant JAK/STAT Signaling Suppresses TFF1 and TFF2 through Epigenetic Silencing of GATA6 in Gastric Cancer

    Directory of Open Access Journals (Sweden)

    Cheng-Shyong Wu

    2016-09-01

    Full Text Available Aberrant Janus kinase (JAK/signal transducer and activator of transcription (STAT signaling is crucial to the development of gastric cancer. In this study, we examined the role of STAT3 in the expression and methylation of its targets in gastric cancer patients. Results from RNA sequencing identified an inverse correlation between the expression of STAT3 and GATA6 in 23 pairs of gastric cancer patient samples. We discovered that the expression of GATA6 is epigenetically silenced through promoter methylation in gastric cancer cell lines. Interestingly, the inhibition of STAT3 using a novel STAT3 inhibitor restored the expression of GATA6 and its targets, trefoil factors 1 and 2 (TFF1/2. Moreover, disruption of STAT3 binding to GATA6 promoter by small hairpin RNA restored GATA6 expression in AGS cells. A clinically significant correlation was also observed between the expression of GATA6 and TFF1/2 among tissue samples from 60 gastric cancer patients. Finally, bisulfite pyrosequencing revealed GATA6 methylation in 65% (39/60 of the patients, and those with higher GATA6 methylation tended to have shorter overall survival. In conclusion, we demonstrated that aberrant JAK/STAT signaling suppresses TFF1/2 partially through the epigenetic silencing of GATA6. Therapeutic intervention of STAT3 in reversing the epigenetic status of GATA6 could benefit the treatment of gastric cancer and is worthy of further investigation.

  1. Cancer stem cells in human gastrointestinal cancer.

    Science.gov (United States)

    Taniguchi, Hiroaki; Moriya, Chiharu; Igarashi, Hisayoshi; Saitoh, Anri; Yamamoto, Hiroyuki; Adachi, Yasushi; Imai, Kohzoh

    2016-11-01

    Cancer stem cells (CSCs) are thought to be responsible for tumor initiation, drug and radiation resistance, invasive growth, metastasis, and tumor relapse, which are the main causes of cancer-related deaths. Gastrointestinal cancers are the most common malignancies and still the most frequent cause of cancer-related mortality worldwide. Because gastrointestinal CSCs are also thought to be resistant to conventional therapies, an effective and novel cancer treatment is imperative. The first reported CSCs in a gastrointestinal tumor were found in colorectal cancer in 2007. Subsequently, CSCs were reported in other gastrointestinal cancers, such as esophagus, stomach, liver, and pancreas. Specific phenotypes could be used to distinguish CSCs from non-CSCs. For example, gastrointestinal CSCs express unique surface markers, exist in a side-population fraction, show high aldehyde dehydrogenase-1 activity, form tumorspheres when cultured in non-adherent conditions, and demonstrate high tumorigenic potential in immunocompromised mice. The signal transduction pathways in gastrointestinal CSCs are similar to those involved in normal embryonic development. Moreover, CSCs are modified by the aberrant expression of several microRNAs. Thus, it is very difficult to target gastrointestinal CSCs. This review focuses on the current research on gastrointestinal CSCs and future strategies to abolish the gastrointestinal CSC phenotype.

  2. Chromosomal aberrations and DNA damage in human populations exposed to the processing of electronics waste.

    Science.gov (United States)

    Liu, Qiang; Cao, Jia; Li, Ke Qiu; Miao, Xu Hong; Li, Guang; Fan, Fei Yue; Zhao, Yong Cheng

    2009-05-01

    It has been known that the pollutants of electronic wastes (E-wastes) can lead to severe pollution to the environment. It has been reported that about 50% to 80% of E-wastes from developed countries are exported to Asia and Africa. It has become a major global environmental problem to deal with 'E-wastes'. E-waste recycling has remained primitive in Jinghai, China. This not only produces enormous environmental pollution but also can bring about toxic or genotoxic effects on the human body, threatening the health of both current residents and future generations living in the local environment. The concentration of lead in the blood of children in the E-waste polluted area in China is higher than that of the control area. But little is known about the cytogenetic effect to human beings caused by the pollution of E-wastes. In the present study, experiments have been performed to investigate the genetics of permanent residents of three villages with numerous E-waste disposal sites and to analyze the harmful effects of exposure to E-wastes. In total, 171 villagers (exposed group) were randomly selected from permanent residents of three villages located in Jinghai County of Tianjin, China, where there has been massive disposal of E-wastes. Thirty villagers were selected from the neighboring towns without E-waste disposal sites to serve as controls. Chromosomal aberrations and cytokinesis blocking micronucleus were performed to detect the cytogenetic effect, dic + r (dicentric and ring chromosome), monomer, fragments (acentric fragments, minute chromosomes, and acentric rings), translocation, satellite, quadriradial, total aberrations, and micronuclear rate were scored for each subject. DNA damage was detected using comet assay; the DNA percentage in the comet tail (TDNA%), tail moment (TM), and Olive tail moment (OTM) were recorded to describe DNA damage to lymphocytes. The total chromosome aberration rates (5.50%) and micronuclear rates (16.99%) of the exposure group

  3. Targeting Aberrant Glutathione Metabolism to Eradicate Human Acute Myelogenous Leukemia Cells*

    Science.gov (United States)

    Pei, Shanshan; Minhajuddin, Mohammad; Callahan, Kevin P.; Balys, Marlene; Ashton, John M.; Neering, Sarah J.; Lagadinou, Eleni D.; Corbett, Cheryl; Ye, Haobin; Liesveld, Jane L.; O'Dwyer, Kristen M.; Li, Zheng; Shi, Lei; Greninger, Patricia; Settleman, Jeffrey; Benes, Cyril; Hagen, Fred K.; Munger, Joshua; Crooks, Peter A.; Becker, Michael W.; Jordan, Craig T.

    2013-01-01

    The development of strategies to eradicate primary human acute myelogenous leukemia (AML) cells is a major challenge to the leukemia research field. In particular, primitive leukemia cells, often termed leukemia stem cells, are typically refractory to many forms of therapy. To investigate improved strategies for targeting of human AML cells we compared the molecular mechanisms regulating oxidative state in primitive (CD34+) leukemic versus normal specimens. Our data indicate that CD34+ AML cells have elevated expression of multiple glutathione pathway regulatory proteins, presumably as a mechanism to compensate for increased oxidative stress in leukemic cells. Consistent with this observation, CD34+ AML cells have lower levels of reduced glutathione and increased levels of oxidized glutathione compared with normal CD34+ cells. These findings led us to hypothesize that AML cells will be hypersensitive to inhibition of glutathione metabolism. To test this premise, we identified compounds such as parthenolide (PTL) or piperlongumine that induce almost complete glutathione depletion and severe cell death in CD34+ AML cells. Importantly, these compounds only induce limited and transient glutathione depletion as well as significantly less toxicity in normal CD34+ cells. We further determined that PTL perturbs glutathione homeostasis by a multifactorial mechanism, which includes inhibiting key glutathione metabolic enzymes (GCLC and GPX1), as well as direct depletion of glutathione. These findings demonstrate that primitive leukemia cells are uniquely sensitive to agents that target aberrant glutathione metabolism, an intrinsic property of primary human AML cells. PMID:24089526

  4. Serglycin in human cancers

    Institute of Scientific and Technical Information of China (English)

    Xin-Jian Li; Chao-Nan Qian

    2011-01-01

    Serglycin belongs to a family of small proteoglycans with Ser-Gly dipeptide repeats,and it is modified with different types of glycosaminoglycan side chains.Intracellular serglycin affects the retention and secretion of proteases,chemokines,or other cytokines by physically binding to these factors in secretory granules.Extracellular serglycin has been found to be released by several types of human cancer cells,and it is able to promote the metastasis of nasopharyngeal carcinoma cells.Serglycin can bind to CD44,which is another glycoprotein located in cellular membrane.Serglycin's function of promoting cancer cell metastasis depends on glycosylation of its core protein,which can be achieved by autocrine as well as paracrine secretion mechanisms.Further investigations are warranted to elucidate serglycin signaling mechanisms with the goal of targeting them to prevent cancer cell metastasis.

  5. Karyotypic instability and centrosome aberrations in the progeny of finite life-span human mammary epithelial cells exposed to sparsely or densely ionizing radiation.

    Science.gov (United States)

    Sudo, Hiroko; Garbe, James; Stampfer, Martha R; Barcellos-Hoff, Mary Helen; Kronenberg, Amy

    2008-07-01

    The human breast is sensitive to radiation carcinogenesis, and genomic instability occurs early in breast cancer development. This study tests the hypothesis that ionizing radiation elicits genomic instability in finite life-span human mammary epithelial cells (HMEC) and asks whether densely ionizing radiation is a more potent inducer of instability. HMEC in a non-proliferative state were exposed to X rays or 1 GeV/nucleon iron ions followed by delayed plating. Karyotypic instability and centrosome aberrations were monitored in expanded clonal isolates. Severe karyotypic instability was common in the progeny of cells that survived X-ray or iron-ion exposure. There was a lower dose threshold for severe karyotypic instability after iron-ion exposure. More than 90% of X-irradiated colonies and >60% of iron-ion-irradiated colonies showed supernumerary centrosomes at levels above the 95% upper confidence limit of the mean for unirradiated clones. A dose response was observed for centrosome aberrations for each radiation type. There was a statistically significant association between the incidence of karyotypic instability and supernumerary centrosomes for iron-ion-exposed colonies and a weaker association for X-irradiated colonies. Thus genomic instability occurs frequently in finite life-span HMEC exposed to sparsely or densely ionizing radiation and may contribute to radiation-induced breast cancer.

  6. Relationship between radiation induced dicentric chromosome aberrations and micronucleus formation in human lymphocytes.

    Science.gov (United States)

    Hatayoglu, S E; Orta, T

    2007-06-01

    Chromosome damage measured by the chromosome aberration technique is a reliable method to assess the radiation dose absorbed by cells. However, this technique has some disadvantages. Scoring is difficult and requires skill and experience which of these lead low number of cell counts. The micronucleus (MN) technique which also measures chromosome losses has easy scoring criteria leading high numbers of cell counts and therefore holds more statistical power. In this study, the relationship between the results of the micronucleus technique and those obtained by the chromosome aberration technique was investigated after radiation doses of 1Gy, 2Gy, 3Gy and 4Gy to peripheral blood lymphocytes of 3 healthy individuals. Increases in the chromosome damage after radiation were observed in both techniques. When the dicentric aberration frequencies that were measured in the chromosome aberration technique and the micronucleus frequencies were compared, no difference (p > 0.05) between these two independent measures of radiation damage was reported. The relationship between the micronuclei and the free acentric chromosome aberrations measured in the chromosome aberration technique was not significant as well as that between the dicentrics and micronuclei. On the basis of the relationship between the dicentric aberrations and the micronucleus frequencies, the micronucleus technique with an easy and short-term application and with an easy scoring can be used as an alternative to the chromosome aberration technique.

  7. Cancer genes hypermethylated in human embryonic stem cells.

    Directory of Open Access Journals (Sweden)

    Vincenzo Calvanese

    Full Text Available Developmental genes are silenced in embryonic stem cells by a bivalent histone-based chromatin mark. It has been proposed that this mark also confers a predisposition to aberrant DNA promoter hypermethylation of tumor suppressor genes (TSGs in cancer. We report here that silencing of a significant proportion of these TSGs in human embryonic and adult stem cells is associated with promoter DNA hypermethylation. Our results indicate a role for DNA methylation in the control of gene expression in human stem cells and suggest that, for genes repressed by promoter hypermethylation in stem cells in vivo, the aberrant process in cancer could be understood as a defect in establishing an unmethylated promoter during differentiation, rather than as an anomalous process of de novo hypermethylation.

  8. Transverse chromatic aberration across the visual field of the human eye.

    Science.gov (United States)

    Winter, Simon; Sabesan, Ramkumar; Tiruveedhula, Pavan; Privitera, Claudio; Unsbo, Peter; Lundström, Linda; Roorda, Austin

    2016-11-01

    The purpose of this study was to measure the transverse chromatic aberration (TCA) across the visual field of the human eye objectively. TCA was measured at horizontal and vertical field angles out to ±15° from foveal fixation in the right eye of four subjects. Interleaved retinal images were taken at wavelengths 543 nm and 842 nm in an adaptive optics scanning laser ophthalmoscope (AOSLO). To obtain true measures of the human eye's TCA, the contributions of the AOSLO system's TCA were measured using an on-axis aligned model eye and subtracted from the ocular data. The increase in TCA was found to be linear with eccentricity, with an average slope of 0.21 arcmin/degree of visual field angle (corresponding to 0.41 arcmin/degree for 430 nm to 770 nm). The absolute magnitude of ocular TCA varied between subjects, but was similar to the resolution acuity at 10° in the nasal visual field, encompassing three to four cones. Therefore, TCA can be visually significant. Furthermore, for high-resolution imaging applications, whether visualizing or stimulating cellular features in the retina, it is important to consider the lateral displacements between wavelengths and the variation in blur over the visual field.

  9. Evaluation of radiosensitivity of human tumor cells after irradiation of γ-rays based on G2-chromosome aberrations

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The aim of the present investigation is to determine initial G2-chromosome aberrations and to validate whether the G2-chromosome aberrations can predict the cellular clonogenic survival in human tumor cell lines. Cell lines of human ovary carcinoma cells (HO8910) and human hepatoma cells (HepG2) were irradiated with a range of doses and assessed both for initial G2-chromosome aberrations and for cell survival after γ-irradiation. The initial G2-chromosome aberrations were measured by counting the number of G2-chromatid breaks after irradiation, detected by the premature chromosome condensation technique, and the G2-assay method. Cell survival was documented by a colony formation assay. A linear-quadratic survival curve was observed in both cell lines. The dose-response results show that the numbers of G2-chromatid breaks increase with the increase in dose in the two cell lines. At higher doses (higher than 4 Gy) of irradiation, the number of G2-chromatid breaks for the G2-assay method cannot be determined because too few cells reach mitosis, and hence their detection is difficult. A good correlation is found between the clonogenic survival and the radiation-induced initial G2-chromatid breaks per cell (r=0.9616). The present results suggest that the premature chromosome condensation technique may be useful for determining chromatid breaks in G2 cells, and the number of initial G2-chromatid breaks holds promise for predicting the radiosensitivity of tumor cells.

  10. No significant level of inheritable interchromosomal aberrations in the progeny of bystander primary human fibroblasts after alpha particle irradiation

    Science.gov (United States)

    Hu, Burong; Zhu, Jiayun; Zhou, Hongning; Hei, Tom K.

    2013-02-01

    A major concern for bystander effects is the probability that normal healthy cells adjacent to the irradiated cells become genomically unstable and undergo further carcinogenesis after therapeutic irradiation or space mission where astronauts are exposed to low dose of heavy ions. Genomic instability is a hallmark of cancer cells. In the present study, two irradiation protocols were performed in order to ensure pure populations of bystander cells and the genomic instability in their progeny were investigated. After irradiation, chromosomal aberrations of cells were analyzed at designated time points using G2 phase premature chromosome condensation (G2-PCC) coupled with Giemsa staining and with multiplex fluorescent in situ hybridization (mFISH). Our Giemsa staining assay demonstrated that elevated yields of chromatid breaks were induced in the progeny of pure bystander primary fibroblasts up to 20 days after irradiation. mFISH assay showed no significant level of inheritable interchromosomal aberrations were induced in the progeny of the bystander cell groups, while the fractions of gross aberrations (chromatid breaks or chromosomal breaks) significantly increased in some bystander cell groups. These results suggest that genomic instability occurred in the progeny of the irradiation associated bystander normal fibroblasts exclude the inheritable interchromosomal aberration.

  11. No significant level of inheritable interchromosomal aberrations in the progeny of bystander primary human fibroblast after alpha particle irradiation

    Science.gov (United States)

    Hu, Burong; Zhu, Jiayun; Zhou, Hongning; Hei, Tom K.

    2012-01-01

    A major concern for bystander effects is the probability that normal healthy cells adjacent to the irradiated cells become genomically unstable and undergo further carcinogenesis after therapeutic irradiation or space mission where astronauts are exposed to low dose of heavy ions. Genomic instability is a hallmark of cancer cells. In the present study, two irradiation protocols were performed in order to ensure pure populations of bystander cells and the genomic instability in their progeny were investigated. After irradiation, chromosomal aberrations of cells were analyzed at designated time points using G2 phase premature chromosome condensation (G2-PCC) coupled with Giemsa staining and with multiplex fluorescent in situ hybridization (mFISH). Our Giemsa staining assay demonstrated that elevated yields of chromatid breaks were induced in the progeny of pure bystander primary fibroblasts up to 20 days after irradiation. MFISH assay showed no significant level of inheritable interchromosomal aberrations were induced in the progeny of the bystander cell groups, while the fractions of gross aberrations (chromatid breaks or chromosomal breaks) significantly increased in some bystander cell groups. These results suggest that genomic instability occurred in the progeny of the irradiation associated bystander normal fibroblasts exclude the inheritable interchromosomal aberration. PMID:23503090

  12. Aberrant DNA hypermethylation-silenced SOX21-AS1 gene expression and its clinical importance in oral cancer.

    Science.gov (United States)

    Yang, Cheng-Mei; Wang, Tsung-Han; Chen, Hung-Chih; Li, Sung-Chou; Lee, Ming-Chien; Liou, Huei-Han; Liu, Pei-Feng; Tseng, Yu-Kai; Shiue, Yow-Ling; Ger, Luo-Ping; Tsai, Kuo-Wang

    2016-01-01

    Long noncoding RNAs (lncRNAs) are more than 200 nucleotides in length and lack transcriptional ability. The biological function of lncRNAs in oral squamous cell carcinoma (OSCC) remains unclear. The aim of this study was to identify the dysfunction of lncRNA in OSCC. We analyzed the transcriptome profiles of human OSCC tissues and paired adjacent normal tissues from two patients through a next-generation sequencing approach. A total of 14 lncRNAs were upregulated (fold change ≥3) and 13 were downregulated (fold change ≤-3) in OSCC tissues compared with the adjacent normal tissues. SOX21-AS1 was subjected to further analysis, revealing that the expression levels of SOX21-AS1 significantly decreased in OSCC compared with the adjacent normal tissue. The promoter activity of SOX21-AS1 was obviously suppressed by in vitro methylation. The DNA methylation status of the SOX21-AS1 promoter was analyzed using combined bisulfite restriction analysis, revealing that the aberrant promoter hypermethylation of SOX21-AS1 was observed frequently in OSCC tissues. The effects of SOX21-AS1 on cell proliferation and invasion were examined through transient transfection. Our data showed that SOX21-AS1 could significantly suppress oral cancer cell growth and invasion. Furthermore, the low expression level of SOX21-AS1 was significantly correlated with an advanced stage (P = 0.047), large tumor size (P = 0.033), and poor disease-specific survival in OSCC patients (P = 0.002). SOX21-AS1 was identified as susceptible dysfunction correlated with promoter hypermethylation in OSCC. Low SOX21-AS1 expression may be an adverse prognostic biomarker for OSCC.

  13. Optical study on the vision correction and supernormal vision based on the wave-front aberrations of human eye

    Institute of Scientific and Technical Information of China (English)

    MU GuoGuang; WANG ZhaoQi; LIU YongJi; QUAN Wei; WANG Yang; WANG Wei

    2007-01-01

    In this paper we present the recent research results in the field of vision correction and supernormal vision according to the actual measurements of the wave-front aberrations and the corneal surface topography, the clinical detection of the visual function and the laser corneal refractive surgery, and the optimization of the optical system. These include the features of the aberrations of human eye with different pupil sizes, different fields of view and temporal accommodation, the influence of the polychromatic illumination of the visible wavelength on the supernormal vision,and the effect of the existing laser corneal refractive surgery on the wave-front aberrations of the eye. It is shown that the wave-front aberration of human eye is of temporal variation and of synthesis with multi impact factors. To achieve supernormal vision, an optimum engineering data for the customized laser corneal surgery should be firstly acquired, which may involve the dynamic free-form optical surface. Although the myopia can be corrected by the laser in situ keratomileusis (LASlK) in a certain degree, it brings about negative effects under scotopic conditions.

  14. Optical study on the vision correction and supernormal vision based on the wave-front aberrations of human eye

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    In this paper we present the recent research results in the field of vision correction and supernormal vision according to the actual measurements of the wave-front aberrations and the corneal surface topography,the clinical detection of the visual function and the laser corneal refractive surgery,and the optimization of the optical system. These include the features of the aberrations of human eye with different pupil sizes,different fields of view and temporal accommodation,the influence of the polychromatic illumination of the visible wavelength on the supernormal vision,and the effect of the existing laser corneal refractive surgery on the wave-front ab-errations of the eye. It is shown that the wave-front aberration of human eye is of temporal variation and of synthesis with multi impact factors. To achieve super-normal vision,an optimum engineering data for the customized laser corneal sur-gery should be firstly acquired,which may involve the dynamic free-form optical surface. Although the myopia can be corrected by the laser in situ keratomileusis(LASIK) in a certain degree,it brings about negative effects under scotopic condi-tions.

  15. Epigenetic changes in virus-associated human cancers

    Institute of Scientific and Technical Information of China (English)

    Hsin Pai LI; Yu Wei LEU; Yu Sun CHANG

    2005-01-01

    Epigenetics of human cancer becomes an area of emerging research direction due to a growing understanding of specific epigenetic pathways and rapid development of detection technologies. Aberrant promoter hypermethylation is a prevalent phenonmena in human cancers. Tumor suppressor genes are often hypermethylated due to the increased activity or deregulation of DNMTs. Increasing evidence also reveals that viral genes are one of the key players in regulating DNA methylation. In this review, we will focus on hypermethylation and tumor suppressor gene silencing and the signal pathways that are involved, particularly in cancers closely associated with the hepatitis B virus, simian virus 40 (SV40), and Epstein-Barr virus. In addition, we will discuss current technologies for genome-wide detection of epigenetically regulated targets, which allow for systematic DNA hypermethylation analysis. The study of epigenetic changes should provide a global view of gene profile in cancer, and epigenetic markers could be used for early detection,prognosis, and therapy of cancer.

  16. Aberrant Phenotype in Human Endothelial Cells of Diabetic Origin: Implications for Saphenous Vein Graft Failure?

    Directory of Open Access Journals (Sweden)

    Anna C. Roberts

    2015-01-01

    Full Text Available Type 2 diabetes (T2DM confers increased risk of endothelial dysfunction, coronary heart disease, and vulnerability to vein graft failure after bypass grafting, despite glycaemic control. This study explored the concept that endothelial cells (EC cultured from T2DM and nondiabetic (ND patients are phenotypically and functionally distinct. Cultured human saphenous vein- (SV- EC were compared between T2DM and ND patients in parallel. Proliferation, migration, and in vitro angiogenesis assays were performed; western blotting was used to quantify phosphorylation of Akt, ERK, and eNOS. The ability of diabetic stimuli (hyperglycaemia, TNF-α, and palmitate to modulate angiogenic potential of ND-EC was also explored. T2DM-EC displayed reduced migration (~30% and angiogenesis (~40% compared with ND-EC and a modest, nonsignificant trend to reduced proliferation. Significant inhibition of Akt and eNOS, but not ERK phosphorylation, was observed in T2DM cells. Hyperglycaemia did not modify ND-EC function, but TNF-α and palmitate significantly reduced angiogenic capacity (by 27% and 43%, resp., effects mimicked by Akt inhibition. Aberrancies of EC function may help to explain the increased risk of SV graft failure in T2DM patients. This study highlights the importance of other potentially contributing factors in addition to hyperglycaemia that may inflict injury and long-term dysfunction to the homeostatic capacity of the endothelium.

  17. Aberrant phenotype in human endothelial cells of diabetic origin: implications for saphenous vein graft failure?

    Science.gov (United States)

    Roberts, Anna C; Gohil, Jai; Hudson, Laura; Connolly, Kyle; Warburton, Philip; Suman, Rakesh; O'Toole, Peter; O'Regan, David J; Turner, Neil A; Riches, Kirsten; Porter, Karen E

    2015-01-01

    Type 2 diabetes (T2DM) confers increased risk of endothelial dysfunction, coronary heart disease, and vulnerability to vein graft failure after bypass grafting, despite glycaemic control. This study explored the concept that endothelial cells (EC) cultured from T2DM and nondiabetic (ND) patients are phenotypically and functionally distinct. Cultured human saphenous vein- (SV-) EC were compared between T2DM and ND patients in parallel. Proliferation, migration, and in vitro angiogenesis assays were performed; western blotting was used to quantify phosphorylation of Akt, ERK, and eNOS. The ability of diabetic stimuli (hyperglycaemia, TNF-α, and palmitate) to modulate angiogenic potential of ND-EC was also explored. T2DM-EC displayed reduced migration (~30%) and angiogenesis (~40%) compared with ND-EC and a modest, nonsignificant trend to reduced proliferation. Significant inhibition of Akt and eNOS, but not ERK phosphorylation, was observed in T2DM cells. Hyperglycaemia did not modify ND-EC function, but TNF-α and palmitate significantly reduced angiogenic capacity (by 27% and 43%, resp.), effects mimicked by Akt inhibition. Aberrancies of EC function may help to explain the increased risk of SV graft failure in T2DM patients. This study highlights the importance of other potentially contributing factors in addition to hyperglycaemia that may inflict injury and long-term dysfunction to the homeostatic capacity of the endothelium.

  18. Aberrant and unstable expression of immunoglobulin genes in persons infected with human immunodeficiency virus.

    Science.gov (United States)

    Bessudo, A; Rassenti, L; Havlir, D; Richman, D; Feigal, E; Kipps, T J

    1998-08-15

    We examined the IgM VH gene subgroup use-distribution in serial blood samples of 37 human immunodeficiency virus (HIV)-infected patients and a group of HIV-seronegative healthy adults. The IgM VH gene repertoires of healthy adults were relatively similar to one another and were stable over time. In contrast, individuals infected with HIV had IgM VH gene repertoires that were significantly more heterogeneous and unstable. Persons at early stages of HIV infection generally had abnormal expression levels of Ig VH3 genes and frequently displayed marked fluctuations in the relative expression levels of this VH gene subgroup over time. In contrast, persons with established acquired immunodeficiency syndrome (AIDS) had a significantly lower incidence of abnormalities in Ig VH3 expression levels, although continued to display abnormalities and instability in the expression levels of the smaller Ig VH gene subgroups. Moreover, the skewing and/or fluctuations in the expressed-IgM VH gene repertoire appeared greatest for persons at earlier stages of HIV infection. These studies show that persons infected with HIV have aberrant and unstable expression of immunoglobulin genes suggestive of a high degree humoral immune dysregulation and ongoing humoral immune responses to HIV-associated antigens and superantigens.

  19. Characteristics of the aberrant pyramidal tract in comparison with the pyramidal tract in the human brain

    Directory of Open Access Journals (Sweden)

    Kwon Yong

    2011-11-01

    Full Text Available Abstract Background The aberrant pyramidal tract (APT refers to the collateral pathway of the pyramidal tract (PT through the medial lemniscus in the midbrain and pons. Using diffusion tensor tractography (DTT, we investigated the characteristics of the APT in comparison with the PT in the normal human brain. Results In thirty-four (18.3%, right hemisphere: 20, left hemisphere: 14 of the 186 hemispheres, the APTs separated from the PT at the upper midbrain level, descended through the medial lemniscus from the midbrain to the pons, and then rejoined with the PT at the upper medulla. Nine (26.5% of the 34 APTs were found to originate from the primary somatosensory cortex without a primary motor cortex origin. Values of fractional anisotropy (FA and tract volume of the APT were lower than those of the PT (P P >0.05. Conclusion We found that the APT has different characteristics, including less directionality, fewer neural fibers, and less origin from the primary motor cortex than the PT.

  20. The effect of spherical and other aberrations upon the modulation transfer of the defocussed human eye

    NARCIS (Netherlands)

    Jansonius, NM; Kooijman, AC

    1998-01-01

    Relative modulation transfer is defined as contrast sensitivity under blur normalised to contrast sensitivity at optimum focus. Measured relative modulation transfer exceeds relative modulation transfer as calculated for aberration free optics at higher spatial frequencies (>2 cpd). The contribution

  1. Oral 5-fluorouracil colon-specific delivery through in vivo pellet coating for colon cancer and aberrant crypt foci treatment.

    Science.gov (United States)

    Bose, A; Elyagoby, A; Wong, T W

    2014-07-01

    In situ coating of 5-fluorouracil pellets by ethylcellulose and pectin powder mixture (8:3 weight ratio) in capsule at simulated gastrointestinal media provides colon-specific drug release in vitro. This study probes into pharmacodynamic and pharmacokinetic profiles of intra-capsular pellets coated in vivo in rats with reference to their site-specific drug release outcomes. The pellets were prepared by extrusion-spheronization technique. In vitro drug content, drug release, in vivo pharmacokinetics, local colonic drug content, tumor, aberrant crypt foci, systemic hematology and clinical chemistry profiles of coated and uncoated pellets were examined against unprocessed drug. In vivo pellet coating led to reduced drug bioavailability and enhanced drug accumulation at colon (179.13 μg 5-FU/g rat colon content vs 4.66 μg/g of conventional in vitro film-coated pellets at 15 mg/kg dose). The in vivo coated pellets reduced tumor number and size, through reforming tubular epithelium with basement membrane and restricting expression of cancer from adenoma to adenocarcinoma. Unlike uncoated pellets and unprocessed drug, the coated pellets eliminated aberrant crypt foci which represented a putative preneoplastic lesion in colon cancer. They did not inflict additional systemic toxicity. In vivo pellet coating to orally target 5-fluorouracil delivery at cancerous colon is a feasible therapeutic treatment approach.

  2. Dietary Ziziphus jujuba Fruit Influence on Aberrant Crypt Formation and Blood Cells in Colitis-Associated Colorectal Cancer in Mice.

    Science.gov (United States)

    Periasamy, Srinivasan; Liu, Chung-Teng; Wu, Wang-Hung; Chien, Se-Ping; Liu, Ming-Yie

    2015-01-01

    Ziziphus jujuba (ZJ) fruit is rich in bioactive functional components such as polysaccharides, triterpenoid acid, flavonoids and oleamide. It has been commonly used in the treatment of various diseases including diabetes, digestive disorders, diarrhea, skin infections, liver and urinary complaints. However, dietary effects with regard to chemoprevention of colon cancer have not been studied. The present study was performed to evaluate the protective effects of dietary ZJ against colitis-associated colon carcinogenesis in azoxymethane (AOM)-dextran sodium sulphate (DSS)-treated mice. AOM was injected (10 mg/kg b.wt., i.p.) and three cycles of 2% DSS in drinking water for 7 days with 14 days of normal drinking water in-between were administered to induce colitis-associated colon cancer. ZJ fruit was supplemented into feed at levels of 5 and 10%. Dietary ZJ significantly attenuated aberrant crypt foci (ACF) formation and also decreased the progression of hyperplasia to dysplasia. In addition, it significantly reduced circulating white blood cells, lymphocytes, neutrophils, monocytes, eosinophils, basophils and platelets compared to colon cancer mice. We conclude that ZJ supplementation may delay the progression of colon cancer from hyperplasia to dysplasia and ultimately adenocarcinoma and cancer. In addition, it decreased circulating tumor-related leukocytes, main regulators of cancer inflammation. Dietary consumption of ZJ fruit attenuated the formation of ACF and delayed the progression of colon cancer.

  3. Genotoxic and antigenotoxic effects of Fucus vesiculosus extract on cultured human lymphocytes using the chromosome aberration and Comet assays

    Directory of Open Access Journals (Sweden)

    Cleide Leite-Silva

    2007-01-01

    Full Text Available The brown seaweed Fucus vesiculosus (Fucales, Fucaceae was screened for its protective activity using doxorubicin-induced DNA damage in human lymphocytes. In this study, we assessed the genotoxic and antigenotoxic potential of three different concentrations (0.25, 0.5 and 1.0 mg mL-1 of F. vesiculosus aqueous extract using the chromosome aberration and Comet assays. Treatment of human lymphocyte cultures with 0.25, 0.5 and 1.0 mg mL-1 F. vesiculosus aqueous extract had no effect on the chromosome aberration frequency or on the extent of DNA damage detected by the Comet assay. The antigenotoxic effects of the extract were tested in human lymphocyte cultures treated with 15 µg mL-1 of doxorubicin, either alone or combined with the different concentrations of the extract, which was added to the cultures before, simultaneously with or after the doxorubicin. Only when lymphocytes were pre-treated with extract there was a reduction in doxorubicin-induced chromosome aberrations and DNA damage as detected by the Comet assay. These results demonstrate that F. vesiculosus aqueous extract is not genotoxic in cultured human lymphocytes and indicate that when added to lymphocyte cultures before doxorubicin it has antigenotoxic activity against doxorubicin-induced DNA damage.

  4. Phytochemicals attenuating aberrant activation of ß-catenin in cancer cells

    Science.gov (United States)

    Phytochemicals are a rich source of chemoprevention agents but their effects on modulating the Wnt/ß-catenin signaling pathway have remained largely uninvestigated. Aberrantly activated Wnt signaling can result in the abnormal stabilization of ß-catenin, a key causative step in a broad spectrum of c...

  5. An integrative multi-dimensional genetic and epigenetic strategy to identify aberrant genes and pathways in cancer

    Directory of Open Access Journals (Sweden)

    Lockwood William W

    2010-05-01

    Full Text Available Abstract Background Genomics has substantially changed our approach to cancer research. Gene expression profiling, for example, has been utilized to delineate subtypes of cancer, and facilitated derivation of predictive and prognostic signatures. The emergence of technologies for the high resolution and genome-wide description of genetic and epigenetic features has enabled the identification of a multitude of causal DNA events in tumors. This has afforded the potential for large scale integration of genome and transcriptome data generated from a variety of technology platforms to acquire a better understanding of cancer. Results Here we show how multi-dimensional genomics data analysis would enable the deciphering of mechanisms that disrupt regulatory/signaling cascades and downstream effects. Since not all gene expression changes observed in a tumor are causal to cancer development, we demonstrate an approach based on multiple concerted disruption (MCD analysis of genes that facilitates the rational deduction of aberrant genes and pathways, which otherwise would be overlooked in single genomic dimension investigations. Conclusions Notably, this is the first comprehensive study of breast cancer cells by parallel integrative genome wide analyses of DNA copy number, LOH, and DNA methylation status to interpret changes in gene expression pattern. Our findings demonstrate the power of a multi-dimensional approach to elucidate events which would escape conventional single dimensional analysis and as such, reduce the cohort sample size for cancer gene discovery.

  6. Cytoplasmic Drosha Is Aberrant in Precancerous Lesions of Gastric Carcinoma and Its Loss Predicts Worse Outcome for Gastric Cancer Patients.

    Science.gov (United States)

    Zhang, Hailong; Hou, Yixuan; Xu, Liyun; Zeng, Zongyue; Wen, Siyang; Du, Yan-E; Sun, Kexin; Yin, Jiali; Lang, Lei; Tang, Xiaoli; Liu, Manran

    2016-04-01

    The nuclear localization of Drosha is critical for its function as a microRNA maturation regulator. Dephosphorylation of Drosha at serine 300 and serine 302 disrupts its nuclear localization, and aberrant distribution of Drosha has been detected in some tumors. The purpose of the present study was to assess cytoplasmic/nuclear Drosha expression in gastric cancer carcinogenesis and progression. Drosha expression and its subcellular location was investigated by immunohistochemical staining of a set of tissue microarrays composed of normal adjacent tissues (374), chronic gastritis (137), precancerous lesions (94), and gastric adenocarcinoma (829) samples, and in gastric cancer cell lines with varying differentiation by immunofluorescence and western blot assay. Gradual loss of cytoplasmic Drosha was accompanied by tumor progression in both gastric cancer tissues and cell lines, and was inversely associated with tumor volume (P = 0.002), tumor grade (P gastric cancer. High levels of cytoplasmic Drosha predicted longer survival (LR = 7.088, P = 0.008) in gastric cancer patients. Our data provide novel insights into gastric cancer that cytoplasmic Drosha potentially plays a role in preventing carcinogenesis and tumor progression, and may be an independent predictor of patient outcome.

  7. Chromosomal aberration in peripheral lymphocytes and doses to the active bone marrow in radiotherapy of prostate cancer

    Energy Technology Data Exchange (ETDEWEB)

    Gershkevitsh, E. [Clinicum of the University of Tartu (Estonia). Dept. of Radiotherapy; Hildebrandt, G.; Wolf, U.; Kamprad, F. [Leipzig Univ. (Germany). Klinik und Poliklinik fuer Strahlentherapie; Realo, E. [Lab. of Nuclear Spectroscopy, Inst. of Physics, Tartu (Estonia); Trott, K.R. [Queen Mary and Westfield Coll., London (United Kingdom). St. Bartholomew' s and the Royal London School of Medicine and Dentistry

    2002-01-01

    Purpose: Radiotherapy plays an important role in the management of prostate cancer. Epidemiological data indicate a small but significant risk of radiation-induced leukemia after radiotherapy which might be related to the high mean bone marrow dose associated with radiotherapy of prostate cancer. The purpose of the study was to investigate the relation between the mean bone marrow dose and unstable chromosome aberrations in peripheral blood lymphocytes in patients undergoing conformal radiotherapy for prostate cancer as a possible indicator of risk. Endometrial cancer patients were also included for comparison. Patients and Methods: Nine patients, six with prostate cancer (60-73 years old) and three with endometrial cancer (61-81 years old) treated with radiotherapy were included in the study. The non-bony spaces inside the pelvic bones were outlined on every CT slice using the treatment planning system and mean doses to the bone marrow calculated. Blood samples of the patients were obtained at different times before, during and at the end of treatment. Lymphocytes were cultured in the usual way and metaphases scored for dicentric aberrations. Results: 46 samples from nine patients were obtained. The mean number of metaphases analyzed per sample was 180 with a range from 52 to 435. The mean bone marrow doses for prostate cancer patients ranged from 2.8 to 4.2 Gy and for endometrial cancer patients from 12.8 to 14.8 Gy. The aberration yield increased with the planning target volume and the mean bone marrow dose. Conclusion: The yield of dicentric aberrations for prostate cancer patients correlated closely with the mean bone marrow dose albeit the induction of dicentrics occurred in mature T lymphocytes most of which were probably in transit through the irradiated volumes. Therefore, the observed relationship between dicentrics and mean bone marrow doses are indirect. (orig.) [German] Hintergrund: Bei der kurativen Behandlung des Prostatakarzinoms besitzt die

  8. Colon cancer associated transcripts in human cancers.

    Science.gov (United States)

    Chen, Yincong; Xie, Haibiao; Gao, Qunjun; Zhan, Hengji; Xiao, Huizhong; Zou, Yifan; Zhang, Fuyou; Liu, Yuchen; Li, Jianfa

    2017-08-02

    Long non-coding RNAs serve as important regulators in complicated cellular activities, including cell differentiation, proliferation and death. Dysregulation of long non-coding RNAs occurs in the formation and progression of cancers. The family of colon cancer associated transcripts, long non-coding RNAs colon cancer associated transcript-1 and colon cancer associated transcript-2 are known as oncogenes involved in various cancers. Colon cancer associated transcript-1 is a novel lncRNA located in 8q24.2, and colon cancer associated transcript-2 maps to the 8q24.21 region encompassing rs6983267. Colon cancer associated transcripts have close associations with clinical characteristics, such as lymph node metastasis, high TNM stage and short overall survival. Knockdown of them can reverse the malignant phenotypes of cancer cells, including proliferation, migration, invasion and apoptosis. Moreover, they can increase the expression level of c-MYC and oncogenic microRNAs via activating a series of complex mechanisms. In brief, the family of colon cancer associated transcripts may serve as potential biomarkers or therapeutic targets for human cancers. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  9. An estrogen-induced endometrial hyperplasia mouse model recapitulating human disease progression and genetic aberrations.

    Science.gov (United States)

    Yang, Chieh-Hsiang; Almomen, Aliyah; Wee, Yin Shen; Jarboe, Elke A; Peterson, C Matthew; Janát-Amsbury, Margit M

    2015-07-01

    Endometrial hyperplasia (EH) is a condition originating from uterine endometrial glands undergoing disordered proliferation including the risk to progress to endometrial adenocarcinoma. In recent years, a steady increase in EH cases among younger women of reproductive age accentuates the demand of therapeutic alternatives, which emphasizes that an improved disease model for therapeutic agents evaluation is concurrently desired. Here, a new hormone-induced EH mouse model was developed using a subcutaneous estradiol (E2)-sustained releasing pellet, which elevates the serum E2 level in mice, closely mimicking the effect known as estrogen dominance with underlying, pathological E2 levels in patients. The onset and progression of EH generated within this model recapitulate a clinically relevant, pathological transformation, beginning with disordered proliferation developing to simple EH, advancing to atypical EH, and then progressing to precancerous stages, all following a chronologic manner. Although a general increase in nuclear progesterone receptor (PR) expression occurred after E2 expression, a total loss in PR was noted in some endometrial glands as disease advanced to simple EH. Furthermore, estrogen receptor (ER) expression in the nucleus of endometrial cells was reduced in disordered proliferation and increased when EH progressed to atypical EH and precancerous stages. This EH model also resembles other pathological patterns found in human disease such as leukocytic infiltration, genetic aberrations in β-catenin, and joint phosphatase and tensin homolog/paired box gene 2 (PTEN/PAX2) silencing. In summary, this new and comprehensively characterized EH model is cost-effective, easily reproducible, and may serve as a tool for preclinical testing of therapeutic agents and facilitate further investigation of EH.

  10. Unstable chromosome aberrations on peripheral blood lymphocytes from patients with cervical uterine cancer following radiotherapy; Aberracoes cromossomicas instaveis em linfocitos de pacientes com cancer de colo de utero

    Energy Technology Data Exchange (ETDEWEB)

    Magnata, Simey de Souza Leao Pereira

    2002-09-01

    Absorbed dose determination is an important step for risk assessment related to an exposure to ionizing radiation. However, physical dosimetry cannot be always performed, principally in the case of retrospective estimates. In this context, the use of bioindicators (biological effects) has been proposed, which defines the so-called biological dosimetry. In particular, scoring of unstable chromosomes aberrations (dicentrics, centric rings and fragments) of peripheral blood lymphocytes, while is the most reliable biological method for estimating individual exposure to ionizing radiation. In this work, blood samples from 5 patients, with cervical uterine cancer, were evaluated after partial-body radiotherapy with a source of {sup 69} Co. For this, conventional cytogenetic method was employed, based on Giemsa coloration and fluorescence in situ hybridization, in order to correlate the frequency of unstable chromosome aberrations of blood lymphocytes with absorbed dose, as a result of the radiotherapy. A good agreement was observed between the frequency of chromosome aberrations scored and the values of dose previously calculated by physical dosimetry during patient's radiotherapy. The results presented in this work point out the importance of concerning analyses of unstable chromosome aberrations as biological dosimeter in the investigation of partial-body exposure to ionizing radiation. (author)

  11. Dose Response for Chromosome Aberrations in Human Lymphocytes and Fibroblasts After Exposure to Very Low Dose of High Let Radiation

    Science.gov (United States)

    Hada, M.; George, K.; Chappell, L.; Cucinotta, F. A.

    2011-01-01

    The relationship between biological effects and low doses of absorbed radiation is still uncertain, especially for high LET radiation exposure. Estimates of risks from low-dose and low-dose-rates are often extrapolated using data from Japanese atomic bomb survivor with either linear or linear quadratic models of fit. In this study, chromosome aberrations were measured in human peripheral blood lymphocytes and normal skin fibroblasts cells after exposure to very low dose (0.01 - 0.20 Gy) of 170 MeV/u Si-28 ions or 600 MeV/u Fe-56 ions, including doses where on average less than one direct ion traversal per cell nucleus occurs. Chromosomes were analyzed using the whole-chromosome fluorescence in situ hybridization (FISH) technique during the first cell division after irradiation, and chromosome aberrations were identified as either simple exchanges (translocations and dicentrics) or complex exchanges (involving >2 breaks in 2 or more chromosomes). The responses for doses above 0.1 Gy (more than one ion traverses a cell) showed linear dose responses. However, for doses less than 0.1 Gy, both Si-28 ions and Fe-56 ions showed a dose independent response above background chromosome aberrations frequencies. Possible explanations for our results are non-targeted effects due to aberrant cell signaling [1], or delta-ray dose fluctuations [2] where a fraction of cells receive significant delta-ray doses due to the contributions of multiple ion tracks that do not directly traverse cell nuclei where chromosome aberrations are scored.

  12. Chromosome Aberrations in Human Epithelial Cells Exposed Los Alamos High-Energy Secondary Neutrons: M-BAND Analysis

    Science.gov (United States)

    Hada, M.; Saganti, P. B.; Gersey, B.; Wilkins, R.; Cucinotta, F. A.; Wu, H.

    2007-01-01

    High-energy secondary neutrons, produced by the interaction of galactic cosmic rays (GCR) with the atmosphere, spacecraft structure and planetary surfaces, contribute a significant fraction to the dose equivalent radiation measurement in crew members and passengers of commercial aviation travel as well as astronauts in space missions. The Los Alamos Nuclear Science Center (LANSCE) neutron facility's 30L beam line (4FP30L-A/ICE House) is known to generate neutrons that simulate the secondary neutron spectrum of the Earth's atmosphere at high altitude. The neutron spectrum is also similar to that measured onboard spacecrafts like the MIR and the International Space Station (ISS). To evaluate the biological damage, we exposed human epithelial cells in vitro to the LANSCE neutron beams with an entrance dose rate of 2.5 cGy/hr, and studied the induction of chromosome aberrations that were identified with multicolor-banding in situ hybridization (mBAND) technique. With this technique, individually painted chromosomal bands on one chromosome allowed the identification of inter-chromosomal aberrations (translocation to unpainted chromosomes) and intra-chromosomal aberrations (inversions and deletions within a single painted chromosome). Compared to our previous results with gamma-rays and 600 MeV/nucleon Fe ions of high dose rate at NSRL (NASA Space Radiation Laboratory at Brookhaven National Laboratory), the neutron data from the LANSCE experiments showed significantly higher frequency of chromosome aberrations. However, detailed analysis of the inversion type revealed that all of the three radiation types in the study induced a low incidence of simple inversions. Most of the inversions in gamma-ray irradiated samples were accompanied by other types of intrachromosomal aberrations but few inversions were accompanied by interchromosomal aberrations. In contrast, neutrons and Fe ions induced a significant fraction of inversions that involved complex rearrangements of both

  13. Prognostic significance of numeric aberrations of genes for thymidylate synthase, thymidine phosphorylase and dihydrofolate reductase in colorectal cancer

    DEFF Research Database (Denmark)

    Jensen, Søren Astrup; Vainer, B.; Witton, C.J.

    2008-01-01

    ) in colorectal cancer, and to evaluate its prognostic significance following adjuvant chemotherapy, since these enzymes are closely related to efficacy of 5-fluorouracil (5FU). PATIENTS AND METHODS: Consecutive patients (n = 314), who were completely resected for colorectal cancer stages II-IV and adjuvantly...... treated with 5-FU were retrospectively evaluated. Paraffin embedded tumor specimens were assessed for gene copies per nucleus of TYMS, TP and DHFR by fluorescence in situ hybridisation (FISH) using specific peptide nucleic acid probes. Outcome according to gene copies per nucleus above and below...... 1.1-2.2; p = 0.02) and death (HR = 1.6; 95%CI 1.1-2.3; p = 0.01). No significant differences in outcome appeared according to TP and DHFR gene ratios. CONCLUSION: Aberration of TYMS gene is of significance to expression of TYMS, which may influence the biology and 5-FU sensitivity of colorectal...

  14. Aberrant corticosteroid metabolism in tumor cells enables GR takeover in enzalutamide resistant prostate cancer

    Science.gov (United States)

    Li, Jianneng; Alyamani, Mohammad; Zhang, Ao; Chang, Kai-Hsiung; Berk, Michael; Li, Zhenfei; Zhu, Ziqi; Petro, Marianne; Magi-Galluzzi, Cristina; Taplin, Mary-Ellen; Garcia, Jorge A; Courtney, Kevin; Klein, Eric A; Sharifi, Nima

    2017-01-01

    Prostate cancer is driven by androgen stimulation of the androgen receptor (AR). The next-generation AR antagonist, enzalutamide, prolongs survival, but resistance and lethal disease eventually prevail. Emerging data suggest that the glucocorticoid receptor (GR) is upregulated in this context, stimulating expression of AR-target genes that permit continued growth despite AR blockade. However, countering this mechanism by administration of GR antagonists is problematic because GR is essential for life. We show that enzalutamide treatment in human models of prostate cancer and patient tissues is accompanied by a ubiquitin E3-ligase, AMFR, mediating loss of 11β-hydroxysteroid dehydrogenase-2 (11β-HSD2), which otherwise inactivates cortisol, sustaining tumor cortisol concentrations to stimulate GR and enzalutamide resistance. Remarkably, reinstatement of 11β-HSD2 expression, or AMFR loss, reverses enzalutamide resistance in mouse xenograft tumors. Together, these findings reveal a surprising metabolic mechanism of enzalutamide resistance that may be targeted with a strategy that circumvents a requirement for systemic GR ablation. DOI: http://dx.doi.org/10.7554/eLife.20183.001 PMID:28191869

  15. Aberrant corticosteroid metabolism in tumor cells enables GR takeover in enzalutamide resistant prostate cancer.

    Science.gov (United States)

    Li, Jianneng; Alyamani, Mohammad; Zhang, Ao; Chang, Kai-Hsiung; Berk, Michael; Li, Zhenfei; Zhu, Ziqi; Petro, Marianne; Magi-Galluzzi, Cristina; Taplin, Mary-Ellen; Garcia, Jorge A; Courtney, Kevin; Klein, Eric A; Sharifi, Nima

    2017-02-13

    Prostate cancer is driven by androgen stimulation of the androgen receptor (AR). The next-generation AR antagonist, enzalutamide, prolongs survival, but resistance and lethal disease eventually prevail. Emerging data suggest that the glucocorticoid receptor (GR) is upregulated in this context, stimulating expression of AR-target genes that permit continued growth despite AR blockade. However, countering this mechanism by administration of GR antagonists is problematic because GR is essential for life. We show that enzalutamide treatment in human models of prostate cancer and patient tissues is accompanied by a ubiquitin E3-ligase, AMFR, mediating loss of 11β-hydroxysteroid dehydrogenase-2 (11β-HSD2), which otherwise inactivates cortisol, sustaining tumor cortisol concentrations to stimulate GR and enzalutamide resistance. Remarkably, reinstatement of 11β-HSD2 expression, or AMFR loss, reverses enzalutamide resistance in mouse xenograft tumors. Together, these findings reveal a surprising metabolic mechanism of enzalutamide resistance that may be targeted with a strategy that circumvents a requirement for systemic GR ablation.

  16. Analysis of Chromosomal Aberrations after Low and High Dose Rate Gamma Irradiation in ATM or NBS Suppressed Human Fibroblast Cells

    Science.gov (United States)

    Hada, M.; Huff, J. L.; Patel, Z.; Pluth, J. M.; George, K. A.; Cucinotta, F. A.

    2009-01-01

    A detailed understanding of the biological effects of heavy nuclei is needed for space radiation protection and for cancer therapy. High-LET radiation produces more complex DNA lesions that may be non-repairable or that may require additional processing steps compared to endogenous DSBs, increasing the possibility of misrepair. Interplay between radiation sensitivity, dose, and radiation quality has not been studied extensively. Previously we studied chromosome aberrations induced by low- and high- LET radiation in several cell lines deficient in ATM (ataxia telangactasia mutated; product of the gene that is mutated in ataxia telangiectasia patients) or NBS (nibrin; product of the gene mutated in the Nijmegen breakage syndrome), and gliomablastoma cells that are proficient or lacking in DNA-dependent protein kinase (DNA-PK) activity. We found that the yields of both simple and complex chromosomal aberrations were significantly increased in the DSB repair defective cells compared to normal cells. The increased aberrations observed for the ATM and NBS defective lines was due to a significantly larger quadratic dose-response term compared to normal fibroblasts for both simple and complex aberrations, while the linear dose-response term was significantly higher in NBS cells only for simple exchanges. These results point to the importance of the functions of ATM and NBS in chromatin modifications that function to facilitate correct DSB repair and minimize aberration formation. To further understand the sensitivity differences that were observed in ATM and NBS deficient cells, in this study, chromosomal aberration analysis was performed in normal lung fibroblast cells treated with KU-55933, a specific ATM kinase inhibitor, or Mirin, an MRN complex inhibitor involved in activation of ATM. We are also testing siRNA knockdown of these proteins. Normal and ATM or NBS suppressed cells were irradiated with gamma-rays and chromosomes were collected with a premature chromosome

  17. The effect of nanoparticle size and NLS density on nuclear targeting in cancer and normal cells; impaired nuclear import and aberrant nanoparticle intracellular trafficking in glioma.

    Science.gov (United States)

    Tammam, Salma N; Azzazy, Hassan M E; Lamprecht, Alf

    2017-02-27

    The cell nucleus is an interesting target in many diseases with particular interest in cancer. Previously, nuclear targeted small and large chitosan nanoparticles (S-NPs≈25nm, and L-NPs≈150nm respectively), modified with low, intermediate and high densities of NLS (L-NLS, I-NLS and H-NLS) were developed and assessed in L929 fibroblasts. However, to evade apoptosis and stimulate tumor growth cancer cells are capable of manipulating the nuclear-cytoplasmic transport on many levels, making NPs that are capable of nuclear targeting in normal cells incapable of doing so in cancer. For such reason, here, the nuclear delivery efficiency of S-NPs and L-NPs was assessed as a function of their NLS density in cancer and non-cancer cells. For S-NPs, in all cells tested, NLS was unnecessary for nuclear delivery; unmodified S-NPs showed higher nuclear delivery than NLS-S-NPs due to their ability to gain nuclear entry in a passive manner. For L-NPs, L-NLS-L-NPs showed ≈ 8.5, 33, 1.8 and 7.2 fold higher nuclear deliveries than H-NLS-L-NPs in L929 fibroblasts, primary human fibroblasts, HEK 293 and lung cancer cells, respectively. In glioma however, unmodified L-NPs showed highest nuclear delivery, whereas NLS-L-NPs were retained in the cytoplasm. Experiments conducted in the presence of inhibitors of the classical nuclear import pathway indicated that due to overexpression of importin α, classical nuclear import in glioma is impaired leading to aberrant NP intracellular trafficking and nuclear import.

  18. Report: Human cancer genetics

    Institute of Scientific and Technical Information of China (English)

    LI Marilyn; ALBERTSON Donna

    2006-01-01

    The short report will be focused on the genetic basis and possible mechanisms of tumorigenesis, common types of cancer, the importance of genetic diagnosis of cancer, and the methodology of cancer genetic diagnosis. They will also review presymptomatic testing of hereditary cancers, and the application of expression profiling to identify patients likely to benefit from particular therapeutic approaches.

  19. Human cancer genetics*

    OpenAIRE

    2006-01-01

    The short report will be focused on the genetic basis and possible mechanisms of tumorigenesis, common types of cancer, the importance of genetic diagnosis of cancer, and the methodology of cancer genetic diagnosis. They will also review presymptomatic testing of hereditary cancers, and the application of expression profiling to identify patients likely to benefit from particular therapeutic approaches.

  20. Cancer Grafted in Aberrant Breast Tissue Cáncer injertado en tejido mamario aberrante

    Directory of Open Access Journals (Sweden)

    Lidia Torres Ajá

    2012-03-01

    Full Text Available Among the anomalies during embryonic development of the breasts we may find supernumerary breasts and aberrant ectopic tissue. In both of them, malignant tumors of the breast can proliferate, mostly in aberrant tissue. We present the case of a female patient aged 73, who refers to have always had a "little mammary gland in the left submammary that never caused discomfort to the last two months when its volume increased and the skin retracted". Excisional biopsy allowed diagnosing an infiltrating ductal carcinoma, the first case of carcinoma grafted in aberrant breast tissue diagnosed in the province.

    Entre las anomalías del desarrollo embrionario de las mamas se encuentran las mamas supernumerarias y el tejido ectópico aberrante. Ambas pueden ser asiento de tumores malignos de la mama, en mayor número  el tejido aberrante. Se presenta el caso de una paciente femenina de 73 años, que refiere tiene desde siempre una “mamita pequeña en el surco submamario izquierdo la cual nunca le ocasiono molestias hasta hace 2 meses en que aumentó de volumen y se le retrajo la piel". Mediante biopsia escisional se le diagnostica un carcinoma ductal infiltrante, siendo así  el primer caso de carcinoma injertado en tejido mamario aberrante diagnosticado en nuestra provincia.

  1. Dose-response calibration curves of {sup 137}Cs gamma rays for dicentric chromosome aberrations in human lymphocytes

    Energy Technology Data Exchange (ETDEWEB)

    Jo, Wol Soon; Oh, Su Jung; Jeong, Soo Kyun; Yang, Kwang Mo [Dept. of Research center, Dong Nam Institute of Radiological and Medical Sciences, Busan (Korea, Republic of); Jeong, Min Ho [Dept. of Microbiology, Dong A University College of Medicine, Busan (Korea, Republic of)

    2012-11-15

    Recently, the increased threat of radiologically industrial accident such as radiation nondestructive inspection or destruction of nuclear accident by natural disaster such as Fukushima accident requires a greater capacity for cytogenetic biodosimetry, which is critical for clinical triage of potentially thousands of radiation-exposed individuals. Dicentric chromosome aberration analysis is the conventional means of assessing radiation exposure. Dose–response calibration curves for {sup 13}'7Cs gamma rays have been established for unstable chromosome aberrations in human peripheral blood lymphocytes in many laboratories of international biodosimetry network. In this study, therefore, we established dose– response calibration curves of our laboratory for {sup 137}Cs gamma raysaccording to the IAEA protocols for conducting the dicentric chromosome assay We established in vitro dose–response calibration curves for dicentric chromosome aberrations in human lymphocytes for{sup 13}'7Cs gamma rays in the 0 to 5 Gy range, using the maximum likelihood linear-quadratic model, Y = c+αD+βD2. The estimated coefficients of the fitted curves were within the 95% confidence intervals (CIs) and the curve fitting of dose–effect relationship data indicated a good fit to the linear-quadratic model. Hence, meaningful dose estimation from unknown sample can be determined accurately by using our laboratory’s calibration curve according to standard protocol.

  2. Ability of root canal antiseptics used in dental practice to induce chromosome aberrations in human dental pulp cells.

    Science.gov (United States)

    Nishimura, Hiroyuki; Higo, Yukari; Ohno, Maki; Tsutsui, Takeo W; Tsutsui, Takeki

    2008-01-08

    Root canal antiseptics are topically applied to root canals within the pulpless teeth to treat the root canal and periapical infections. Because the antiseptics that are applied to root canals can penetrate through dentin or leak out through an apical foramen into the periodontium and distribute by the systemic circulation, it is important to study the safety of these antiseptics. In the present study, we examined the ability to induce chromosome aberrations in human dental pulp cells of five root canal antiseptics, namely, carbol camphor (CC), camphorated p-monochlorophenol (CMCP), formocresol (FC), calcium hydroxide, and iodoform which are most commonly used in dental practice. Statistically significant increases in the levels of chromosome aberrations were induced by CC, FC, or iodoform in a concentration-dependent manner. Conversely, CMCP and calcium hydroxide failed to induce chromosome aberrations in the absence or presence of exogenous metabolic activation. The percentages of cells with polyploid or endoreduplication were enhanced by FC or iodoform. Our results indicate that the root canal antiseptics that exhibited a positive response are potentially genotoxic to human cells.

  3. Aberrant free radical biology is a unifying theme in the etiology and pathogenesis of major human diseases.

    Science.gov (United States)

    Domann, Frederick E

    2013-04-17

    The seemingly disparate areas of oxygen toxicity, radiation exposure, and aging are now recognized to share a common feature-the aberrant production and/or removal of biologically derived free radicals and other reactive oxygen and nitrogen species (ROS/RNS). Advances in our understanding of the effects of free radicals in biology and medicine have been, and continue to be, actively translated into clinically tractable diagnostic and therapeutic applications. This issue is dedicated to recent advances, both basic discoveries and clinical applications, in the field of free radicals in biology and medicine. As more is understood about the proximal biological targets of aberrantly produced or removed reactive species, their sensors, and effectors of compensatory response, a great deal more will be learned about the commonalities in mechanisms underlying seemingly disparate disease states. Together with this deeper understanding, opportunities will arise to devise rational therapeutic interventions to decrease the incidence and severity of these diseases and positively impact the human healthspan.

  4. Low doses of UVB or UVA induce chromosomal aberrations in cultured human skin cells

    NARCIS (Netherlands)

    Emri, G.; Wenczl, E.; Erp, P. van; Jans, J.; Roza, L.; Horkay, I.; Schothorst, A.A.

    2000-01-01

    Chromosomal defects are frequently present in malignant and premalignant skin disorders; however, it is not known whether ultraviolet radiation from sunlight plays a role in their induction. To obtain information on the ability of ultraviolet A and ultraviolet B to induce chromosomal aberrations,

  5. Low doses of UVB or UVA induce chromosomal aberrations in cultured human skin cells

    NARCIS (Netherlands)

    Emri, G.; Wenczl, E.; Erp, P. van; Jans, J.; Roza, L.; Horkay, I.; Schothorst, A.A.

    2000-01-01

    Chromosomal defects are frequently present in malignant and premalignant skin disorders; however, it is not known whether ultraviolet radiation from sunlight plays a role in their induction. To obtain information on the ability of ultraviolet A and ultraviolet B to induce chromosomal aberrations, cu

  6. Endogenous retroviral promoter exaptation in human cancer

    Directory of Open Access Journals (Sweden)

    Artem Babaian

    2016-12-01

    Full Text Available Abstract Cancer arises from a series of genetic and epigenetic changes, which result in abnormal expression or mutational activation of oncogenes, as well as suppression/inactivation of tumor suppressor genes. Aberrant expression of coding genes or long non-coding RNAs (lncRNAs with oncogenic properties can be caused by translocations, gene amplifications, point mutations or other less characterized mechanisms. One such mechanism is the inappropriate usage of normally dormant, tissue-restricted or cryptic enhancers or promoters that serve to drive oncogenic gene expression. Dispersed across the human genome, endogenous retroviruses (ERVs provide an enormous reservoir of autonomous gene regulatory modules, some of which have been co-opted by the host during evolution to play important roles in normal regulation of genes and gene networks. This review focuses on the “dark side” of such ERV regulatory capacity. Specifically, we discuss a growing number of examples of normally dormant or epigenetically repressed ERVs that have been harnessed to drive oncogenes in human cancer, a process we term onco-exaptation, and we propose potential mechanisms that may underlie this phenomenon.

  7. Association of Smoking, Alcohol Use, and Betel Quid Chewing with Epigenetic Aberrations in Cancers

    Directory of Open Access Journals (Sweden)

    Tong-Hong Wang

    2017-06-01

    Full Text Available Numerous environmental factors such as diet, alcohol use, stress, and environmental chemicals are known to elicit epigenetic changes, leading to increased rates of cancers and other diseases. The incidence of head and neck cancer, one of the most common cancers in Taiwanese males, is increasing: oral cancer and nasopharyngeal carcinoma are ranked fourth and tenth respectively, among the top ten cancers in this group, and a major cause of cancer-related deaths in Taiwanese males. Previous studies have identified smoking, alcohol use, and betel quid chewing as the three major causes of head and neck cancers; these three social habits are commonly observed in Taiwanese males, resulting in an increasing morbidity rate of head and neck cancers in this population. In this literature review, we discuss the association between specific components of betel quid, alcohol, and tobacco, and the occurrence of head and neck cancers, lung cancer, gastrointestinal cancers, and urethral cancer. We focus on regulatory mechanisms at the epigenetic level and their oncogenic effects. The review further discusses the application of FDA-approved epigenetic drugs as therapeutic strategies against cancer.

  8. Comparative study of chromosome aberrations yield induced by cesium and cobalt sources in human lymphocytes

    Energy Technology Data Exchange (ETDEWEB)

    Mendes, Mariana E.; Mendonca, Julyanne C.G.; Souza, Priscilla L.G.; Santos, Neide; Lima, Fabiana F., E-mail: mendes_sb@hotmail.com [Centro Regional de Ciencias Nucleares do Nordeste (CRCN-NE/CNEN-PE), Recife, PE (Brazil)

    2013-07-01

    Analysis of chromosome aberrations is the most developed method for biological monitoring. From the frequency of these aberrations it is possible to evaluate the absorbed dose. This technique can ve used to support physical dosimetry or when it is impossible to achieve it. The aim of this research is to compare frequencies of unstable chromosome alterations induce by a gamma beam with two different sources: {sup 137}Cs and {sup 60}Co. The first sample was exposed to {sup 137}Cs resulting in absorbed dose 0.45 Gy, 0.726 Gy and 1.375 Gy and the second one was exposed to {sup 60}Co (Gammacel 220) resulting in absorbed doses 0.51 Gy, 0.77 Gy and 1.5 Gy. Mitotic metaphase cells were obtained by Iymphocyte culture for chromosomal analysis and slides were stained with Giemsa 5%. Among the unstable chromosome aberrations were analyzed dicentrics, ring centric and acentric. These results showed a statistical similarity in the frequencies of dicentrics and acentric per cell, except the frequencies of acentric when irradiated with the lowest dose. However, the dose rate of {sup 137}Cs source is lower than the dose rate of {sup 60}Co source (30.78 mGy/h and 3.277 Gy/h, respectively). This would be a factor to be considered in the analysis of unstable chromosome aberrations once prolonged irradiation time reduces the number of produced aberrations by low LET radiation doses, however further studies with other absorbed doses are necessary in the search for more reliable results for that statement. (author)

  9. A comprehensive characterization of genome-wide copy number aberrations in colorectal cancer reveals novel oncogenes and patterns of alterations.

    Directory of Open Access Journals (Sweden)

    Tao Xie

    Full Text Available To develop a comprehensive overview of copy number aberrations (CNAs in stage-II/III colorectal cancer (CRC, we characterized 302 tumors from the PETACC-3 clinical trial. Microsatellite-stable (MSS samples (n = 269 had 66 minimal common CNA regions, with frequent gains on 20 q (72.5%, 7 (41.8%, 8 q (33.1% and 13 q (51.0% and losses on 18 (58.6%, 4 q (26% and 21 q (21.6%. MSS tumors have significantly more CNAs than microsatellite-instable (MSI tumors: within the MSI tumors a novel deletion of the tumor suppressor WWOX at 16 q23.1 was identified (p<0.01. Focal aberrations identified by the GISTIC method confirmed amplifications of oncogenes including EGFR, ERBB2, CCND1, MET, and MYC, and deletions of tumor suppressors including TP53, APC, and SMAD4, and gene expression was highly concordant with copy number aberration for these genes. Novel amplicons included putative oncogenes such as WNK1 and HNF4A, which also showed high concordance between copy number and expression. Survival analysis associated a specific patient segment featured by chromosome 20 q gains to an improved overall survival, which might be due to higher expression of genes such as EEF1B2 and PTK6. The CNA clustering also grouped tumors characterized by a poor prognosis BRAF-mutant-like signature derived from mRNA data from this cohort. We further revealed non-random correlation between CNAs among unlinked loci, including positive correlation between 20 q gain and 8 q gain, and 20 q gain and chromosome 18 loss, consistent with co-selection of these CNAs. These results reinforce the non-random nature of somatic CNAs in stage-II/III CRC and highlight loci and genes that may play an important role in driving the development and outcome of this disease.

  10. Aberrant expression of ether à go-go potassium channel in colorectal cancer patients and cell lines

    Institute of Scientific and Technical Information of China (English)

    Xiang-Wu Ding; Juan-Juan Yan; Ping An; Peng Lü; He-Sheng Luo

    2007-01-01

    AIM: To study the expression of ether à go-go (Eag1) potassium channel in colorectal cancer and the relation ship between their expression and clinico-pathological features.METHODS: The expression levels of Eag1 protein were determined in 76 cancer tissues with paired noncancerous matched tissues as well as 9 colorectal adenoma tissues by immunohistochemistry. Eag1 mRNA expression was detected in 13 colorectal cancer tissues with paired non-cancerous matched tissues and 4 colorectal adenoma tissues as well as two colorectal cancer cell lines (LoVo and HT-29) by reverse transcription PCR.RESULTS: The frequency of positive expression of Eag1 protein was 76.3% (58/76) and Eag1 mRNA was 76.9% (10/13) in colorectal cancer tissue. Expression level of Eag1 protein was dependent on the tumor size,lymphatic node metastasis, other organ metastases and Dukes' stage (P < 0.05), while not dependent on age,sex, site and degree of differentiation. Eag1 protein and mRNA were negative in normal colorectal tissue, and absolutely negative in colorectal adenomas except that one case was positively stained for Eag1 protein.CONCLUSION: Eag1 protein and mRNA are aberrantly expressed in colorectal cancer and occasionally expressed in colorectal adenoma. The high frequency of expression of Eag1 in tumors and the restriction of normal expression to the brain suggest the potential of this protein for diagnostic, prognostic and therapeutic purposes.

  11. Chromosome aberrations in human lymphocytes from the plateau region of the Bragg curve for a carbon-ion beam

    Science.gov (United States)

    Manti, L.; Durante, M.; Grossi, G.; Pugliese, M.; Scampoli, P.; Gialanella, G.

    2007-06-01

    Radiotherapy with high-energy carbon ion beams can be more advantageous compared to photons because of better physical dose distribution and higher biological efficiency in tumour cell sterilization. Despite enhanced normal tissue sparing, damage incurred by normal cells at the beam entrance is unavoidable and may affect the progeny of surviving cells in the form of inheritable cytogenetic alterations. Furthermore, the quality of the beam along the Bragg curve is modified by nuclear fragmentation of projectile and target nuclei in the body. We present an experimental approach based on the use of a polymethylmethacrylate (PMMA) phantom that allows the simultaneous exposure to a particle beam of several biological samples positioned at various depths along the beam path. The device was used to measure the biological effectiveness of a 60 MeV/amu carbon-ion beam at inducing chromosomal aberrations in G0-human peripheral blood lymphocytes. Chromosome spreads were obtained from prematurely condensed cells and all structural aberration types were scored in Fluorescence in situ Hybridization (FISH)-painted chromosomes 1 and 2. Our results show a marked increase with depth in the aberration frequency prior to the Bragg peak, which is consistent with a linear energy transfer (LET)-dependent increase in biological effectiveness.

  12. Small-molecule MDM2 antagonists reveal aberrant p53 signaling in cancer: implications for therapy.

    Science.gov (United States)

    Tovar, Christian; Rosinski, James; Filipovic, Zoran; Higgins, Brian; Kolinsky, Kenneth; Hilton, Holly; Zhao, Xiaolan; Vu, Binh T; Qing, Weiguo; Packman, Kathryn; Myklebost, Ola; Heimbrook, David C; Vassilev, Lyubomir T

    2006-02-07

    The p53 tumor suppressor retains its wild-type conformation and transcriptional activity in half of all human tumors, and its activation may offer a therapeutic benefit. However, p53 function could be compromised by defective signaling in the p53 pathway. Using a small-molecule MDM2 antagonist, nutlin-3, to probe downstream p53 signaling we find that the cell-cycle arrest function of the p53 pathway is preserved in multiple tumor-derived cell lines expressing wild-type p53, but many have a reduced ability to undergo p53-dependent apoptosis. Gene array analysis revealed attenuated expression of multiple apoptosis-related genes. Cancer cells with mdm2 gene amplification were most sensitive to nutlin-3 in vitro and in vivo, suggesting that MDM2 overexpression may be the only abnormality in the p53 pathway of these cells. Nutlin-3 also showed good efficacy against tumors with normal MDM2 expression, suggesting that many of the patients with wild-type p53 tumors may benefit from antagonists of the p53-MDM2 interaction.

  13. Lectins in human cancer: both a devil and an angel?

    Science.gov (United States)

    Dan, Xiu Li; Ng, Tzi Bun

    2013-09-01

    Lectins are a group of proteins which could recognize different sugar structures and specifically initiate reversible binding with them. Lectins are universally expressed in different organisms and undertake important biological roles. Understanding of their inherent roles and mechanisms that they employ has inspired researches with new ideas and applications. For example, along with the revelation of their anti-insect function, plant lectins exhibit great potential in agriculture. In human beings, lectins shoulder great missions in cell communication, differentiation and vesicle trafficking etc., aberrant expression of lectins is always associated with diseases. Mannan-binding lectin deficiency leads to immune disorder and liver sinusoidal endothelial cell lectin is involved in colorectal carcinoma liver metastasis. In this review, we present two contradictory roles of lectins in human cancer: the promotive roles of homologous lectins and suppressive roles of heterologous lectins in cancer development. Hopefully, this review will facilitate a better understanding of tumorigenesis and provide references for cancer treatment.

  14. Status of human chromosome aberrations as a biological radiation dosimeter in the nuclear industry

    Energy Technology Data Exchange (ETDEWEB)

    Bender, M.A.

    1978-01-01

    It seems that the determination of peripheral lymphocyte chriomosome aberration levels is now firmly established as a means of biological dosimetry of great value in many phases of the nuclear industry. In the case of large external exposure it can provide valuable quantitative estimates, as well as information on dose distribution and radiation quality. In the case of routine occupational exposures the technique is more qualitative, but is of value particularly in resolving uncertainties as to whether suspected overexposures did in fact occur. Where workers accumulate burdens of internal emitters, aberration analysis provides a valuable, though at present quite qualitative indicator. In spite of the expense of cytogenetic analyses, they are of sufficient value to justify much more widespread application, particularly in high risk situations.

  15. HUMAN PROSTATE CANCER RISK FACTORS

    Science.gov (United States)

    Prostate cancer has the highest prevalence of any non-skin cancer in the human body, with similar likelihood of neoplastic foci found within the prostates of men around the world regardless of diet, occupation, lifestyle, or other factors. Essentially all men with circulating an...

  16. [Assessment of relative biological effectiveness of tritium using chromosome aberration frequency in human blood lymphocytes].

    Science.gov (United States)

    Snigireva, G P; Khaĭmovich, T I; Nagiba, V I

    2010-01-01

    The aim of this work is to determine Relative Biological Effectiveness (RBE) of tritium beta-irradiation using chromosome aberration frequency in peripheral blood lymphocytes after radiation exposure in vitro and in vivo. The results of the experimental estimation of tritium beta-irradiation RBE in comparison with 60Co gamma-irradiation using analysis of unstable chromosome aberration frequencies in peripheral blood lymphocytes in reference to concrete conditions of the investigation were presented. It was demonstrated that tritium beta-irradiation is in total more effective than gamma-irradiation up to 1 Gy. RBE of tritium beta-irradiation was determined as 2.2 at minimum doses and decreased at higher doses (1 Gy) up to 1.25. For the first time results of the comparative analysis of frequencies of stable chromosome aberrations in two groups of professional nuclear workers (town Sarov) exposed to chronic tritium beta- and gamma-irradiation in remote period were presented. The grater RBE of tritium beta-irradiation was demonstrated. It has been estimated as 2.5.

  17. Array CGH demonstrates characteristic aberration signatures in human papillary thyroid carcinomas governed by RET/PTC.

    Science.gov (United States)

    Unger, K; Malisch, E; Thomas, G; Braselmann, H; Walch, A; Jackl, G; Lewis, P; Lengfelder, E; Bogdanova, T; Wienberg, J; Zitzelsberger, H

    2008-07-31

    The aim of this study is to investigate additional genetic alterations in papillary thyroid carcinomas (PTCs) with known RET/PTC rearrangements. We applied array-based comparative genomic hybridization (array CGH) to 33 PTC (20 PTC from adults, 13 post-Chernobyl PTC from children) with known RET/PTC status. Principal component analysis and hierarchical cluster analysis identified cases with similar aberration patterns. Significant deviations between tumour-groups were obtained by statistical testing (Fisher's exact test in combination with Benjamini-Hochberg FDR-controlling procedure). FISH analysis on FFPE sections was applied to validate the array CGH data. Deletions were found more frequently in RET/PTC-positive and RET/PTC-negative tumours than amplifications. Specific aberration signatures were identified that discriminated between RET/PTC-positive and RET/PTC-negative cases (aberrations on chromosomes 1p, 3q, 4p, 7p, 9p/q, 10q, 12q, 13q and 21q). In addition, childhood and adult RET/PTC-positive cases differ significantly for a deletion on the distal part of chromosome 1p. There are additional alterations in RET/PTC-positive tumours, which may act as modifiers of RET activation. In contrast, alterations in RET/PTC-negative tumours indicate alternative routes of tumour development. The data presented serve as a starting point for further studies on gene expression and function of genes identified in this study.

  18. A tumor DNA complex aberration index is an independent predictor of survival in breast and ovarian cancer.

    Science.gov (United States)

    Vollan, Hans Kristian Moen; Rueda, Oscar M; Chin, Suet-Feung; Curtis, Christina; Turashvili, Gulisa; Shah, Sohrab; Lingjærde, Ole Christian; Yuan, Yinyin; Ng, Charlotte K; Dunning, Mark J; Dicks, Ed; Provenzano, Elena; Sammut, Stephen; McKinney, Steven; Ellis, Ian O; Pinder, Sarah; Purushotham, Arnie; Murphy, Leigh C; Kristensen, Vessela N; Brenton, James D; Pharoah, Paul D P; Børresen-Dale, Anne-Lise; Aparicio, Samuel; Caldas, Carlos

    2015-01-01

    Complex focal chromosomal rearrangements in cancer genomes, also called "firestorms", can be scored from DNA copy number data. The complex arm-wise aberration index (CAAI) is a score that captures DNA copy number alterations that appear as focal complex events in tumors, and has potential prognostic value in breast cancer. This study aimed to validate this DNA-based prognostic index in breast cancer and test for the first time its potential prognostic value in ovarian cancer. Copy number alteration (CNA) data from 1950 breast carcinomas (METABRIC cohort) and 508 high-grade serous ovarian carcinomas (TCGA dataset) were analyzed. Cases were classified as CAAI positive if at least one complex focal event was scored. Complex alterations were frequently localized on chromosome 8p (n = 159), 17q (n = 176) and 11q (n = 251). CAAI events on 11q were most frequent in estrogen receptor positive (ER+) cases and on 17q in estrogen receptor negative (ER-) cases. We found only a modest correlation between CAAI and the overall rate of genomic instability (GII) and number of breakpoints (r = 0.27 and r = 0.42, p cancer specific survival (BCSS), overall survival (OS) and ovarian cancer progression free survival (PFS) were used as clinical end points in Cox proportional hazard model survival analyses. CAAI positive breast cancers (43%) had higher mortality: hazard ratio (HR) of 1.94 (95%CI, 1.62-2.32) for BCSS, and of 1.49 (95%CI, 1.30-1.71) for OS. Representations of the 70-gene and the 21-gene predictors were compared with CAAI in multivariable models and CAAI was independently significant with a Cox adjusted HR of 1.56 (95%CI, 1.23-1.99) for ER+ and 1.55 (95%CI, 1.11-2.18) for ER- disease. None of the expression-based predictors were prognostic in the ER- subset. We found that a model including CAAI and the two expression-based prognostic signatures outperformed a model including the 21-gene and 70-gene signatures but excluding CAAI. Inclusion of CAAI in the clinical

  19. Human cancer long non-coding RNA transcriptomes.

    Directory of Open Access Journals (Sweden)

    Ewan A Gibb

    Full Text Available Once thought to be a part of the 'dark matter' of the genome, long non-coding RNAs (lncRNAs are emerging as an integral functional component of the mammalian transcriptome. LncRNAs are a novel class of mRNA-like transcripts which, despite no known protein-coding potential, demonstrate a wide range of structural and functional roles in cellular biology. However, the magnitude of the contribution of lncRNA expression to normal human tissues and cancers has not been investigated in a comprehensive manner. In this study, we compiled 272 human serial analysis of gene expression (SAGE libraries to delineate lncRNA transcription patterns across a broad spectrum of normal human tissues and cancers. Using a novel lncRNA discovery pipeline we parsed over 24 million SAGE tags and report lncRNA expression profiles across a panel of 26 different normal human tissues and 19 human cancers. Our findings show extensive, tissue-specific lncRNA expression in normal tissues and highly aberrant lncRNA expression in human cancers. Here, we present a first generation atlas for lncRNA profiling in cancer.

  20. Chromosome aberrations and sister chromatid exchanges in cultured human lymphocytes treated with sodium metabisulfite, a food preservative.

    Science.gov (United States)

    Rencüzogullari, E; Ila, H B; Kayraldiz, A; Topaktaş, M

    2001-02-20

    The aim of this study was to investigate the ability of sodium metabisulfite (SMB) which is used as an antimicrobial substance in food, to induce chromosome aberrations (CA) and sister chromatid exchanges (SCE) in human lymphocytes. SMB-induced CAs and SCEs at all concentrations (75, 150 and 300 microg/ml) and treatment periods (24 and 48h) dose-dependently. However, SMB decreased the replication index (RI) and the mitotic index (MI) at the concentrations of 150 and 300 microg/ml for 24 and 48h treatment periods. This decrease was dose-dependent as well.

  1. DNA copy number aberrations in breast cancer by array comparative genomic hybridization

    DEFF Research Database (Denmark)

    Li, J.; Wang, K.; Li, S.;

    2009-01-01

    Array comparative genomic hybridization (CGH) has been popularly used for analyzing DNA copy number variations in diseases like cancer. In this study, we investigated 82 sporadic samples from 49 breast cancer patients using 1-Mb resolution bacterial artificial chromosome CGH arrays. A number of h...

  2. Overexpression of human sperm protein 17 increases migration and decreases the chemosensitivity of human epithelial ovarian cancer cells

    Directory of Open Access Journals (Sweden)

    Huang Wen-bin

    2009-09-01

    Full Text Available Abstract Background Most deaths from ovarian cancer are due to metastases that are resistant to conventional therapies. But the factors that regulate the metastatic process and chemoresistance of ovarian cancer are poorly understood. In the current study, we investigated the aberrant expression of human sperm protein 17 (HSp17 in human epithelial ovarian cancer cells and tried to analyze its influences on the cell behaviors like migration and chemoresistance. Methods Immunohistochemistry and immunocytochemistry were used to identify HSp17 in paraffin embedded ovarian malignant tumor specimens and peritoneal metastatic malignant cells. Then we examined the effect of HSp17 overexpression on the proliferation, migration, and chemoresistance of ovarian cancer cells to carboplatin and cisplatin in a human ovarian carcinoma cell line, HO8910. Results We found that HSp17 was aberrantly expressed in 43% (30/70 of the patients with primary epithelial ovarian carcinomas, and in all of the metastatic cancer cells of ascites from 8 patients. The Sp17 expression was also detected in the metastatic lesions the same as in ovarian lesions. None of the 7 non-epithelial tumors primarily developed in the ovaries was immunopositive for HSp17. Overexpression of HSp17 increased the migration but decreased the chemosensitivity of ovarian carcinoma cells to carboplatin and cisplatin. Conclusion HSp17 is aberrantly expressed in a significant proportion of epithelial ovarian carcinomas. Our results strongly suggest that HSp17 plays a role in metastatic disease and resistance of epithelial ovarian carcinoma to chemotherapy.

  3. Structural Aberrations of Cellular Sialic Acids and TheirFunctions in Cancer Metastases

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Sialic acids (neuraminic acids) are a special series of 9-carbon ring negatively charged carbohydrates, which has been found to be selectively changed in malignant cells from structures (both synthesis and structure modifications) to functions (up and down regulation in cells). Sialic acids, in single forms or conjugates, have been systematically studied both in lab and in clinics by GC, GCMS, NMR, HPTLC, HPLC and other modern analytical means. Sialic acids and related conjugates are predicted to be used in cancer diagnosis, cancer prognostic forecasting, designing of cancer chemotherapy regimens, uncovering carcinogenetic processes and neoplasm metastasis. Tumor cell regulative systems and pathways are correlated with sialic acids, which can be applied to prognostic evaluation of cancer patients, and antimetastatic chemotherapy by sialic acid derivatives and analogues. Searching for new biological characteristics of sialic acids in cells have also been extensively studied these days. In this paper, main stream discoveries and advancements are provided , also discussions of possible mechanisms and hypotheses are invoked.

  4. Metaplastic breast cancer: clinical overview and molecular aberrations for potential targeted therapy.

    Science.gov (United States)

    Abouharb, Sausan; Moulder, Stacy

    2015-03-01

    Metaplastic breast cancer is a rare subtype of invasive mammary carcinoma, with an aggressive behavior and usually poor outcome. Responses to systemic chemotherapy are suboptimal compared to patients with standard invasive ductal carcinoma. Limited data are available in regards to best treatment modalities, including chemotherapy. This review gives an overview of metaplastic breast cancer and its clinical and pathologic characteristics, in addition to treatment strategies, clinical trials, and future directions.

  5. Induction of chromosome aberration in human lymphocytes and its dependence on X ray energy

    Energy Technology Data Exchange (ETDEWEB)

    Guerrero-Carbajal, C.; Edwards, A.A.; Lloyd, D.C

    2003-07-01

    The variations of dose response with X ray energy observed with the human lymphocyte dicentric assay is examined. In order to determine reliably the initial slopes (RBE{sub m}) many cells need to be analysed at low doses. Insufficient analysis may explain some reported interlaboratory differences in fitted dose-response coefficients. One such discrepancy at 150 kV{sub p}, E(mean) = 70 keV is examined. Data are also presented for an X ray spectrum of 80 kV{sub p}, E(mean) = 58 keV. Over the photon energy range 20 keV X rays to 1.25 MeV gamma rays RBE{sub m} varies by about a factor of 5, with the lower energies being more effective. This is consistent with microdosimetric theory. By contrast, in radiological protection a radiation weighting factor of 1.0 is assumed for all photons when assessing the risk of inducing cancer at low doses. The measured variations of biological effect with photon energy have led to suggestions that the lower energies, as used for some diagnostic radiology, carry a greater risk per unit dose than is normally assumed by those involved in radiological protection. Interpretation of the data reported in this paper does not support this view. (author)

  6. Unstable chromosome aberrations do not accumulate in normal human fibroblast after fractionated x-irradiation.

    Directory of Open Access Journals (Sweden)

    Mitsuaki Ojima

    Full Text Available We determined the frequencies of dicentric chromosomes per cell in non-dividing confluent normal human fibroblasts (MRC-5 irradiated with a single 1 Gy dose or a fractionated 1 Gy dose (10X0.1 Gy, 5X0.2 Gy, and 2X0.5 Gy. The interval between fractions was between 1 min to 1440 min. After the completion of X-irradiation, the cells were incubated for 24 hours before re-plating at a low density. Then, demecolcine was administrated at 6 hours, and the first mitotic cells were collected for 42 hours. Our study demonstrated that frequencies of dicentric chromosomes in cells irradiated with a 1 Gy dose at different fractions were significantly reduced if the fraction interval was increased from 1 min to 5 min (p<0.05, χ2-test. Further increasing the fraction interval from 5 up to 1440 min did not significantly affect the frequency of dicentric chromosomes. Since misrejoining of two independent chromosome breaks introduced in close proximity gives rise to dicentric chromosome, our results indicated that such circumstances might be quite infrequent in cells exposed to fractionated X-irradiation with prolonged fraction intervals. Our findings should contribute to improve current estimation of cancer risk from chronic low-dose-rate exposure, or intermittent exposure of low-dose radiation by medical exposure.

  7. Loss of MAFB Function in Humans and Mice Causes Duane Syndrome, Aberrant Extraocular Muscle Innervation, and Inner-Ear Defects.

    Science.gov (United States)

    Park, Jong G; Tischfield, Max A; Nugent, Alicia A; Cheng, Long; Di Gioia, Silvio Alessandro; Chan, Wai-Man; Maconachie, Gail; Bosley, Thomas M; Summers, C Gail; Hunter, David G; Robson, Caroline D; Gottlob, Irene; Engle, Elizabeth C

    2016-06-02

    Duane retraction syndrome (DRS) is a congenital eye-movement disorder defined by limited outward gaze and retraction of the eye on attempted inward gaze. Here, we report on three heterozygous loss-of-function MAFB mutations causing DRS and a dominant-negative MAFB mutation causing DRS and deafness. Using genotype-phenotype correlations in humans and Mafb-knockout mice, we propose a threshold model for variable loss of MAFB function. Postmortem studies of DRS have reported abducens nerve hypoplasia and aberrant innervation of the lateral rectus muscle by the oculomotor nerve. Our studies in mice now confirm this human DRS pathology. Moreover, we demonstrate that selectively disrupting abducens nerve development is sufficient to cause secondary innervation of the lateral rectus muscle by aberrant oculomotor nerve branches, which form at developmental decision regions close to target extraocular muscles. Thus, we present evidence that the primary cause of DRS is failure of the abducens nerve to fully innervate the lateral rectus muscle in early development.

  8. Aberrant DNA methylation of WNT pathway genes in the development and progression of CIMP-negative colorectal cancer.

    Science.gov (United States)

    Galamb, Orsolya; Kalmár, Alexandra; Péterfia, Bálint; Csabai, István; Bodor, András; Ribli, Dezső; Krenács, Tibor; Patai, Árpád V; Wichmann, Barnabás; Barták, Barbara Kinga; Tóth, Kinga; Valcz, Gábor; Spisák, Sándor; Tulassay, Zsolt; Molnár, Béla

    2016-08-02

    The WNT signaling pathway has an essential role in colorectal carcinogenesis and progression, which involves a cascade of genetic and epigenetic changes. We aimed to analyze DNA methylation affecting the WNT pathway genes in colorectal carcinogenesis in promoter and gene body regions using whole methylome analysis in 9 colorectal cancer, 15 adenoma, and 6 normal tumor adjacent tissue (NAT) samples by methyl capture sequencing. Functional methylation was confirmed on 5-aza-2'-deoxycytidine-treated colorectal cancer cell line datasets. In parallel with the DNA methylation analysis, mutations of WNT pathway genes (APC, β-catenin/CTNNB1) were analyzed by 454 sequencing on GS Junior platform. Most differentially methylated CpG sites were localized in gene body regions (95% of WNT pathway genes). In the promoter regions, 33 of the 160 analyzed WNT pathway genes were differentially methylated in colorectal cancer vs. normal, including hypermethylated AXIN2, CHP1, PRICKLE1, SFRP1, SFRP2, SOX17, and hypomethylated CACYBP, CTNNB1, MYC; 44 genes in adenoma vs. NAT; and 41 genes in colorectal cancer vs. adenoma comparisons. Hypermethylation of AXIN2, DKK1, VANGL1, and WNT5A gene promoters was higher, while those of SOX17, PRICKLE1, DAAM2, and MYC was lower in colon carcinoma compared to adenoma. Inverse correlation between expression and methylation was confirmed in 23 genes, including APC, CHP1, PRICKLE1, PSEN1, and SFRP1. Differential methylation affected both canonical and noncanonical WNT pathway genes in colorectal normal-adenoma-carcinoma sequence. Aberrant DNA methylation appears already in adenomas as an early event of colorectal carcinogenesis.

  9. Intratubular Germ Cell Neoplasia of the Testis, Bilateral Testicular Cancer, and Aberrant Histologies.

    Science.gov (United States)

    Sharma, Pranav; Dhillon, Jasreman; Sexton, Wade J

    2015-08-01

    Intratubular germ cell neoplasia (ITGCN) is a precursor lesion for testicular germ cell tumors, most of which are early stage. ITGCN is also associated with testicular cancer or ITGCN in the contralateral testis, leading to a risk of bilateral testicular malignancy. Testicular biopsy detects most cases, and orchiectomy is the treatment of choice in patients with unilateral ITGCN. Low-dose radiation therapy is recommended in patients with bilateral ITGCN or ITGCN in the solitary testis, but the long-term risks of infertility and hypogonadism need to be discussed with the patient. Rare histologies of primary testicular cancer are also discussed.

  10. Aberrant expression and potency as a cancer immunotherapy target of alpha-methylacyl-coenzyme A racemase in prostate cancer

    Directory of Open Access Journals (Sweden)

    Masumori Naoya

    2009-12-01

    Full Text Available Abstract Alpha-methylacyl-CoA racemase (AMACR is an enzyme playing an important role in the beta-oxidation of branched-chain fatty acids and fatty acid derivatives. High expression levels of AMACR have been described in various cancers, including prostate cancer, colorectal cancer and kidney cancer. Because of its cancer-specific and frequent expression, AMACR could be an attractive target for cytotoxic T-lymphocyte (CTL-based immunotherapy for cancer. In the present study, we examined the induction of AMACR-specific CTLs from prostate cancer patients' peripheral blood mononuclear cells (PBMCs and determined HLA-A24-restricted CTL epitopes. RT-PCR and immunohistochemical analysis revealed that AMACR was strongly expressed in prostate cancer cell lines and tissues as compared with benign or normal prostate tissues. Four AMACR-derived peptides carrying the HLA-A24-binding motif were synthesized from the amino acid sequence of this protein and analyzed to determine their binding affinities to HLA-A24. By stimulating patient's PBMCs with the peptides, specific CTLs were successfully induced in 6 of 11 patients. The peptide-specific CTLs exerted significant cytotoxic activity against AMACR-expressing prostate cancer cells in the context of HLA-A24. Our study demonstrates that AMACR could become a target antigen for prostate cancer immunotherapy, and that the AMACR-derived peptides might be good peptide vaccine candidates for HLA-A24-positive AMACR-expressing cancer patients.

  11. Identification of new cancer biomarkers based on aberrant mucin glycoforms by in situ proximity ligation

    DEFF Research Database (Denmark)

    Pinto, Rita; Carvalho, Ana S; Conze, Tim

    2012-01-01

    Mucin glycoproteins are major secreted or membrane-bound molecules that, in cancer, show modifications in both the mucin proteins expression and in the O-glycosylation profile, generating some of the most relevant tumour markers in clinical use for decades. Thus far, the identification of these b...

  12. Downregulation of ZNF132 in prostate cancer is associated with aberrant promoter hypermethylation and poor prognosis

    DEFF Research Database (Denmark)

    Abildgaard, Mette Opstrup; Borre, Michael; Mørck Mortensen, Martin;

    2012-01-01

    immunoreactivity was significantly associated with high Gleason score and advanced T stage in both PC patient cohorts. By univariate analysis, no/weak ZNF132 staining was a significant adverse predictor of PSA recurrence after RP (p = 0.024) and cancer-specific death following conservative treatment (p = 0...

  13. Aberrant Splicing in Cancer: Mediators of Malignant Progression through an Imperfect Splice Program Shift.

    Science.gov (United States)

    Luz, Felipe Andrés Cordero; Brígido, Paula Cristina; Moraes, Alberto Silva; Silva, Marcelo José Barbosa

    2017-01-01

    Although the efforts to understand the genetic basis of cancer allowed advances in diagnosis and therapy, little is known about other molecular bases. Splicing is a key event in gene expression, controlling the excision of introns decoded inside genes and being responsible for 80% of the proteome amplification through events of alternative splicing. Growing data from the last decade point to deregulation of splicing events as crucial in carcinogenesis and tumor progression. Several alterations in splicing events were observed in cancer, caused by either missexpression of or detrimental mutations in some splicing factors, and appear to be critical in carcinogenesis and key events during tumor progression. Notwithstanding, it is difficult to determine whether it is a cause or consequence of cancer and/or tumorigenesis. Most reviews focus on the generated isoforms of deregulated splicing pattern, while others mainly summarize deregulated splicing factors observed in cancer. In this review, events associated with carcinogenesis and tumor progression mainly, and epithelial-to-mesenchymal transition, which is also implicated in alternative splicing regulation, will be progressively discussed in the light of a new perspective, suggesting that splicing deregulation mediates cell reprogramming in tumor progression by an imperfect shift of the splice program. © 2016 S. Karger AG, Basel.

  14. Role of PSMA in Aberrant Cell Cycle Progression in Prostate Cancer

    Science.gov (United States)

    2009-11-01

    development and progression. While a high- fat diet has 10 been linked to prostate cancer the identity of other food products contributing to...m etastatic PCa. One of the critical ingredients of processed m eat is the high level of sodium from salt, food preservatives, and flavoring

  15. The association between DNA copy number aberrations at chromosome 5q22 and gastric cancer.

    Directory of Open Access Journals (Sweden)

    Pei-Chien Tsai

    Full Text Available BACKGROUND: Gastric cancer is common cancer. Discovering novel genetic biomarkers might help to identify high-risk individuals. Copy number variation (CNV has recently been shown to influence risk for several cancers. The aim of the present study was sought to test the association between copy number at a variant region and GC. METHODS: A total of 110 gastric cancer patients and 325 healthy volunteers were enrolled in this study. We searched for a CNV and found a CNV (Variation 7468 containing part of the APC gene, the SRP19 gene and the REEP5 gene. We chose four probes targeting at APC-intron8, APC-exon9, SRP19 and REEP5 to interrogate this CNV. Specific Taqman probes labeled by different reporter fluorophores were used in a real-time PCR platform to obtain copy number. Both the original non-integer data and transformed integer data on copy number were used for analyses. RESULTS: Gastric caner patients had a lower non-integer copy number than controls for the APC-exon9 probe (Adjusted p = 0.026 and SRP19 probe (Adjusted p = 0.002. The analysis of integer copy number yielded a similar pattern although less significant (Adjusted p = 0.07 for APC-exon9 probe and Adjusted p = 0.02 for SRP19 probe. CONCLUSIONS: Losses of a CNV at 5q22, especially in the DNA region surrounding APC-exon 9, may be associated with a higher risk of gastric cancer.

  16. MIR-9-1 ABERRANT METHYLATION IS A FREQUENT EVENT IN BREAST CANCER AND IS ASSOCIATED WITH BONE METASTASES

    Directory of Open Access Journals (Sweden)

    Anca Florescu

    2012-03-01

    Full Text Available Abstract:Background. Aberrant promoter methylation of classical tumor suppressor genes occurs frequently during carcinogenesis. Several lines of evidences suggest that this epigenetic change also regulates microRNAs expression and may represent a potential molecular marker for cancer.Methods. We examined the methylation status at the hsa-miR-9-1 gene promoter in a series of 66 breast cancer cases by methylation sensitive PCR (MSP analysis. For 43 of the 66 patients paired normal breast tissue and/or pre invasive (ADH, DCIS lesions were also available. As control methylation status was determined on 6 normal breast tissues obtained from reductive mammoplasty.  Results. Methylation at mir-9-1 gene was detected in 32 out of 66 breast tumours (49% and in none of the 6 normal breast tissues derived from reductive mammoplasty (P=0.02 χ2- Test. In all cases the same methylation status was demonstrated in tumour specimen, paired normal breast tissues and/or pre-invasive (ADH and DCIS lesions. An higher frequency of methylation was found in patients showing metastases at diagnosis as compared with non metastatic patients (P=0.03 χ2-Test. Moreover, methylation at mir-9-1 gene was more frequent in patients showing bone metastases as first metastatic sites (P=0.04 χ2-Test, and in the subgroup of patients developing only bone metastases as compared with patients developing metastases  to visceral organs (P=0.03 χ2-Test.Conclusions. This study give further evidence of epigenetic mechanisms as regulators of miR-9 expression in breast cancer. Moreover, our results suggest an association between hypermethylation  at the miR-9-1 gene and metastatic site.

  17. Oncogenes and human cancer

    NARCIS (Netherlands)

    E.C.P. Heisterkamp (Nora); J.H.C. Groffen (John)

    1984-01-01

    textabstractThe first demonstrations that cancer could have an infectious nature was by Ellerman and Bang (1) ~ who showed that leukemia in chickens was transmissible with cell-free extracts and by Rous (2), who found in a similar fashion that naturally occurring chicken sarcomas were transmissible.

  18. Chromosome aberrations in human lymphocytes induced by 250 MeV protons: effects of dose, dose rate and shielding

    Science.gov (United States)

    George, K.; Willingham, V.; Wu, H.; Gridley, D.; Nelson, G.; Cucinotta, F. A.

    2002-01-01

    Although the space radiation environment consists predominantly of energetic protons, astronauts inside a spacecraft are chronically exposed to both primary particles as well as secondary particles that are generated when the primary particles penetrate the spacecraft shielding. Secondary neutrons and secondary charged particles can have an LET value that is greater than the primary protons and, therefore, produce a higher relative biological effectiveness (RBE). Using the accelerator facility at Loma Linda University, we exposed human lymphocytes in vitro to 250 MeV protons with doses ranging from 0 to 60 cGy at three different dose rates: a low dose rate of 7.5 cGy/h, an intermediate dose rate of 30 cGy/h and a high dose rate of 70 cGy/min. The effect of 15 g/cm2 aluminum shielding on the induction of chromosome aberrations was investigated for each dose rate. After exposure, lymphocytes were incubated in growth medium containing phytohemagglutinin (PHA) and chromosome spreads were collected using a chemical-induced premature chromosome condensation (PCC) technique. Aberrations were analyzed using the fluorescence in situ hybridization (FISH) technique with three different colored chromosome-painting probes. The frequency of reciprocal and complex-type chromosome exchanges were compared in shielded and unshielded samples. c2002 COSPAR. Published by Elsevier Science Ltd. All rights reserved.

  19. Aberrant Free Radical Biology Is a Unifying Theme in the Etiology and Pathogenesis of Major Human Diseases

    Directory of Open Access Journals (Sweden)

    Frederick E. Domann

    2013-04-01

    Full Text Available The seemingly disparate areas of oxygen toxicity, radiation exposure, and aging are now recognized to share a common feature—the aberrant production and/or removal of biologically derived free radicals and other reactive oxygen and nitrogen species (ROS/RNS. Advances in our understanding of the effects of free radicals in biology and medicine have been, and continue to be, actively translated into clinically tractable diagnostic and therapeutic applications. This issue is dedicated to recent advances, both basic discoveries and clinical applications, in the field of free radicals in biology and medicine. As more is understood about the proximal biological targets of aberrantly produced or removed reactive species, their sensors, and effectors of compensatory response, a great deal more will be learned about the commonalities in mechanisms underlying seemingly disparate disease states. Together with this deeper understanding, opportunities will arise to devise rational therapeutic interventions to decrease the incidence and severity of these diseases and positively impact the human healthspan.

  20. Dose Response for Chromosome Aberrations in Human Lymphocytes and Fibroblasts after Exposure to Very Low Doses of High LET Radiation

    Science.gov (United States)

    Hada, M.; George, Kerry; Cucinotta, Francis A.

    2011-01-01

    The relationship between biological effects and low doses of absorbed radiation is still uncertain, especially for high LET radiation exposure. Estimates of risks from low-dose and low-dose-rates are often extrapolated using data from Japanese atomic bomb survivors with either linear or linear quadratic models of fit. In this study, chromosome aberrations were measured in human peripheral blood lymphocytes and normal skin fibroblasts cells after exposure to very low dose (1-20 cGy) of 170 MeV/u Si-28- ions or 600 MeV/u Fe-56-ions. Chromosomes were analyzed using the whole chromosome fluorescence in situ hybridization (FISH) technique during the first cell division after irradiation, and chromosome aberrations were identified as either simple exchanges (translocations and dicentrics) or complex exchanges (involving greater than 2 breaks in 2 or more chromosomes). The curves for doses above 10 cGy were fitted with linear or linear-quadratic functions. For Si-28- ions no dose response was observed in the 2-10 cGy dose range, suggesting a non-target effect in this range.

  1. Chromosome aberrations induced in human lymphocytes by U-235 fission neutrons: I. Irradiation of human blood samples in the "dry cell" of the TRIGA Mark II nuclear reactor.

    Science.gov (United States)

    Fajgelj, A; Lakoski, A; Horvat, D; Remec, I; Skrk, J; Stegnar, P

    1991-11-01

    A set-up for irradiation of biological samples in the TRIGA Mark II research reactor in Ljubljana is described. Threshold activation detectors were used for characterisation of the neutron flux, and the accompanying gamma dose was measured by TLDs. Human peripheral blood samples were irradiated "in vitro" and biological effects evaluated according to the unstable chromosomal aberrations induced. Biological effects of two types of cultivation of irradiated blood samples, the first immediately after irradiation and the second after 96 h storage, were studied. A significant difference in the incidence of chromosomal aberrations between these two types of samples was obtained, while our dose-response curve fitting coefficients alpha 1 = (7.71 +/- 0.09) x 10(-2) Gy-1 (immediate cultivation) and alpha 2 = (11.03 +/- 0.08) x 10(-2) Gy-1 (96 h delayed cultivation) are in both cases lower than could be found in the literature.

  2. Viruses and human cancer

    Energy Technology Data Exchange (ETDEWEB)

    Gallo, R.C.; Haseltine, W.; Klein, G.; Zur Hausen, H.

    1987-01-01

    This book contains papers on the following topics: Immunology and Epidemiology, Biology and Pathogenesis, Models of Pathogenesis and Treatment, Simian and Bovine Retroviruses, Human Papilloma Viruses, EBV and Herpesvirus, and Hepatitis B Virus.

  3. Apoptosis-Like Cell Death Induction and Aberrant Fibroblast Properties in Human Incisional Hernia Fascia

    Science.gov (United States)

    Diaz, Ramon; Quiles, Maria T.; Guillem-Marti, Jordi; Lopez-Cano, Manuel; Huguet, Pere; Ramon-y-Cajal, Santiago; Reventos, Jaume; Armengol, Manel; Arbos, Maria A.

    2011-01-01

    Incisional hernia often occurs following laparotomy and can be a source of serious problems. Although there is evidence that a biological cause may underlie its development, the mechanistic link between the local tissue microenvironment and tissue rupture is lacking. In this study, we used matched tissue-based and in vitro primary cell culture systems to examine the possible involvement of fascia fibroblasts in incisional hernia pathogenesis. Fascia biopsies were collected at surgery from incisional hernia patients and non-incisional hernia controls. Tissue samples were analyzed by histology and immunoblotting methods. Fascia primary fibroblast cultures were assessed at morphological, ultrastructural, and functional levels. We document tissue and fibroblast loss coupled to caspase-3 activation and induction of apoptosis-like cell-death mechanisms in incisional hernia fascia. Alterations in cytoskeleton organization and solubility were also observed. Incisional hernia fibroblasts showed a consistent phenotype throughout early passages in vitro, which was characterized by significantly enhanced cell proliferation and migration, reduced adhesion, and altered cytoskeleton properties, as compared to non-incisional hernia fibroblasts. Moreover, incisional hernia fibroblasts displayed morphological and ultrastructural alterations compatible with autophagic processes or lysosomal dysfunction, together with enhanced sensitivity to proapoptotic challenges. Overall, these data suggest an ongoing complex interplay of cell death induction, aberrant fibroblast function, and tissue loss in incisional hernia fascia, which may significantly contribute to altered matrix maintenance and tissue rupture in vivo. PMID:21641387

  4. Human papillomavirus and cervical cancer.

    Science.gov (United States)

    Crosbie, Emma J; Einstein, Mark H; Franceschi, Silvia; Kitchener, Henry C

    2013-09-07

    Cervical cancer is caused by human papillomavirus infection. Most human papillomavirus infection is harmless and clears spontaneously but persistent infection with high-risk human papillomavirus (especially type 16) can cause cancer of the cervix, vulva, vagina, anus, penis, and oropharynx. The virus exclusively infects epithelium and produces new viral particles only in fully mature epithelial cells. Human papillomavirus disrupts normal cell-cycle control, promoting uncontrolled cell division and the accumulation of genetic damage. Two effective prophylactic vaccines composed of human papillomavirus type 16 and 18, and human papillomavirus type 16, 18, 6, and 11 virus-like particles have been introduced in many developed countries as a primary prevention strategy. Human papillomavirus testing is clinically valuable for secondary prevention in triaging low-grade cytology and as a test of cure after treatment. More sensitive than cytology, primary screening by human papillomavirus testing could enable screening intervals to be extended. If these prevention strategies can be implemented in developing countries, many thousands of lives could be saved.

  5. The normal breast epithelium of women with breast cancer displays an aberrant response to estradiol.

    Science.gov (United States)

    Khan, S A; Sachdeva, A; Naim, S; Meguid, M M; Marx, W; Simon, H; Halverson, J D; Numann, P J

    1999-10-01

    Breast epithelial response to estradiol may play an important role in breast cancer etiology. We have examined the relationship between serum estradiol and progesterone levels and normal breast epithelial expression of estrogen receptor (ER) alpha, progesterone receptor (PgR), and epithelial proliferation (as reflected by the Ki-67 labeling index) in 121 women (50 newly diagnosed breast cancer cases and 71 benign breast disease controls). Simultaneous samples of grossly normal breast tissue and venous blood were obtained from women undergoing breast surgery. Serum estradiol and progesterone levels were measured by radioimmunoassay; breast epithelial ER, PgR, and Ki-67 expression was measured by immunohistochemistry. Linear regression, controlled for patient age and ductal and lobular composition of the tissue, showed that the breast epithelium of control women displayed an inverse correlation between serum estradiol and ER-alpha, which was not seen in case women (P for the difference in regression slopes = 0.001). PgR expression displayed a significant positive correlation with serum estradiol in cases, but not in controls. Epithelial proliferation had no relationship to either estradiol or progesterone in both cases and controls but showed an inverse relationship with ER in controls and a direct relationship in cases (P for the difference in regression slopes = 0.066). These results suggest a dysregulation of hormonal response in the normal breast epithelium of high-risk women, with lack of regulation of ER by estradiol, increased estrogen responsiveness as reflected by PgR expression, and a dissociation of ER expression and proliferative response.

  6. Septin mutations in human cancers

    Directory of Open Access Journals (Sweden)

    Elias T Spiliotis

    2016-11-01

    Full Text Available Septins are GTP-binding proteins that are evolutionarily and structurally related to the RAS oncogenes. Septin expression levels are altered in many cancers and new advances point to how abnormal septin expression may contribute to the progression of cancer. In contrast to the RAS GTPases, which are frequently mutated and actively promote tumorigenesis, little is known about the occurrence and role of septin mutations in human cancers. Here, we review septin missense mutations that are currently in the Catalog of Somatic Mutations in Cancer (COSMIC database. The majority of septin mutations occur in tumors of the large intestine, skin, endometrium and stomach. Over 25% of the annotated mutations in SEPT2, SEPT4 and SEPT9 belong to large intestine tumors. From all septins, SEPT9 and SEPT14 exhibit the highest mutation frequencies in skin, stomach and large intestine cancers. While septin mutations occur with frequencies lower than 3%, recurring mutations in several invariant and highly conserved amino acids are found across different septin paralogs and tumor types. Interestingly, a significant number of these mutations occur in the GTP-binding pocket and septin dimerization interfaces. Future studies may determine how these somatic mutations affect septin structure and function, whether they contribute to the progression of specific cancers and if they could serve as tumor-specific biomarkers.

  7. DBGC: A Database of Human Gastric Cancer.

    Science.gov (United States)

    Wang, Chao; Zhang, Jun; Cai, Mingdeng; Zhu, Zhenggang; Gu, Wenjie; Yu, Yingyan; Zhang, Xiaoyan

    2015-01-01

    The Database of Human Gastric Cancer (DBGC) is a comprehensive database that integrates various human gastric cancer-related data resources. Human gastric cancer-related transcriptomics projects, proteomics projects, mutations, biomarkers and drug-sensitive genes from different sources were collected and unified in this database. Moreover, epidemiological statistics of gastric cancer patients in China and clinicopathological information annotated with gastric cancer cases were also integrated into the DBGC. We believe that this database will greatly facilitate research regarding human gastric cancer in many fields. DBGC is freely available at http://bminfor.tongji.edu.cn/dbgc/index.do.

  8. Hyper-reactive human ventral tegmental area and aberrant mesocorticolimbic connectivity in overgeneralization of fear in generalized anxiety disorder.

    Science.gov (United States)

    Cha, Jiook; Carlson, Joshua M; Dedora, Daniel J; Greenberg, Tsafrir; Proudfit, Greg H; Mujica-Parodi, Lilianne R

    2014-04-23

    The ventral tegmental area (VTA) has been primarily implicated in reward-motivated behavior. Recently, aberrant dopaminergic VTA signaling has also been implicated in anxiety-like behaviors in animal models. These findings, however, have yet to be extended to anxiety in humans. Here we hypothesized that clinical anxiety is linked to dysfunction of the mesocorticolimbic circuit during threat processing in humans; specifically, excessive or dysregulated activity of the mesocorticolimbic aversion circuit may be etiologically related to errors in distinguishing cues of threat versus safety, also known as "overgeneralization of fear." To test this, we recruited 32 females with generalized anxiety disorder and 25 age-matched healthy control females. We measured brain activity using fMRI while participants underwent a fear generalization task consisting of pseudo-randomly presented rectangles with systematically varying widths. A mid-sized rectangle served as a conditioned stimulus (CS; 50% electric shock probability) and rectangles with widths of CS ±20%, ±40%, and ±60% served as generalization stimuli (GS; never paired with electric shock). Healthy controls showed VTA reactivity proportional to the cue's perceptual similarity to CS (threat). In contrast, patients with generalized anxiety disorder showed heightened and less discriminating VTA reactivity to GS, a feature that was positively correlated with trait anxiety, as well as increased mesocortical and decreased mesohippocampal coupling. Our results suggest that the human VTA and the mesocorticolimbic system play a crucial role in threat processing, and that abnormalities in this system are implicated in maladaptive threat processing in clinical anxiety.

  9. Potassium Channel Ether à go-go1 Is Aberrantly Expressed in Human Liposarcoma and Promotes Tumorigenesis

    Directory of Open Access Journals (Sweden)

    Jin Wu

    2014-01-01

    Full Text Available The ether à go-go1 (Eag1 channel is overexpressed in a variety of cancers. However, the expression and function of Eag1 in liposarcoma are poorly understood. In the present study, the mRNA expression of Eag1 in different adipose tissue samples was examined by real-time PCR. Then, the protein expression of Eag1 in 131 different adipose tissues from 109 patients was detected by immunohistochemistry. Next, the associations between Eag1 expression and clinicopathological features of liposarcoma were analyzed. In addition, the effects of Eag1 on liposarcoma cell proliferation and cycle were evaluated by CCK-8, colony formation, xenograft mouse model, and flow cytometry, respectively. Finally, the activation of p38 mitogen-activated protein kinase (MAPK was detected by Western blot analysis to explain the detailed mechanisms of oncogenic potential of Eag1 in liposarcoma. It was found that Eag1 was aberrantly expressed in over 67% liposarcomas, with a higher frequency than in lipoma, hyperplasia, inflammation, and normal adipose tissues. However, Eag1 expression was not correlated with clinicopathological features of liposarcoma. Eag1 inhibitor imipramine or Eag1-shRNA significantly suppressed the proliferation of liposarcoma cells in vitro and in vivo, accompanying with accumulation of cells in the G1 phase. These results suggest that Eag1 plays an important role in regulating the proliferation and cell cycle of liposarcoma cells and might be a potential therapeutic target for liposarcoma.

  10. Chromosomal aberrations in human hepatocellular carcinomas associated with hepatitis C virus infection detected by comparative genomic hybridization

    Science.gov (United States)

    Sakakura, C; Hagiwara, A; Taniguchi, H; Yamaguchi, T; Yamagishi, H; Takahashi, T; Koyama, K; Nakamura, Y; Abe, T; Inazawa, J

    1999-01-01

    Thirty-five hepatocellular carcinomas (HCCs) associated with hepatitis C virus (HCV) were analysed by comparative genomic hybridization (CGH), to screen for changes in copy-number of DNA sequences. Chromosomal losses were noted in 1p34–36 (37%), 4q12–21 (48%), 5q13–21 (35%), 6q13–16 (23%), 8p21–23 (28%), 13q (20%), 16q (33%) and 17p13 (37%). Gains were noted in 1q (46%), 6p (20%), 8q21–24 (31%) and 17q (43%). High level gains indicative of gene amplifications were found in 7q31 (3%), 11q13 (3%), 14q12 (6%) and 17q12 (3%); amplification at 14q12 may be characteristic for HCCs. No significant difference in chromosomal aberrations was noted between carcinomas associated with HCV-infection in our study and those reported earlier in HCCs infected with hepatitis B virus (HBV), indicating that both HBV- and HCV-related carcinomas may progress through a similar cascade of molecular events. © 1999 Cancer Research Campaign PMID:10471057

  11. Impact of MET inhibition on small-cell lung cancer cells showing aberrant activation of the hepatocyte growth factor/MET pathway.

    Science.gov (United States)

    Taniguchi, Hirokazu; Yamada, Tadaaki; Takeuchi, Shinji; Arai, Sachiko; Fukuda, Koji; Sakamoto, Shuichi; Kawada, Manabu; Yamaguchi, Hiroyuki; Mukae, Hiroshi; Yano, Seiji

    2017-07-01

    Small-cell lung cancer (SCLC) accounts for approximately 15% of all lung cancers, and is characterized as extremely aggressive, often displaying rapid tumor growth and multiple organ metastases. In addition, the clinical outcome of SCLC patients is poor due to early relapse and acquired resistance to standard chemotherapy treatments. Hence, novel therapeutic strategies for the treatment of SCLC are urgently required. Accordingly, several molecular targeted therapies were evaluated in SCLC; however, they failed to improve the clinical outcome. The receptor tyrosine kinase MET is a receptor for hepatocyte growth factor (HGF), and aberrant activation of HGF/MET signaling is known as one of the crucial mechanisms enabling cancer progression and invasion. Here, we found that the HGF/MET signaling was aberrantly activated in chemoresistant or chemorelapsed SCLC cell lines (SBC-5, DMS273, and DMS273-G3H) by the secretion of HGF and/or MET copy number gain. A cell-based in vitro assay revealed that HGF/MET inhibition, induced either by MET inhibitors (crizotinib and golvatinib), or by siRNA-mediated knockdown of HGF or MET, constrained growth of chemoresistant SCLC cells through the inhibition of ERK and AKT signals. Furthermore, treatment with either crizotinib or golvatinib suppressed the systemic metastasis of SBC-5 cell tumors in natural killer cell-depleted SCID mice, predominantly through cell cycle arrest. These findings reveal the therapeutic potential of targeting the HGF/MET pathway for inhibition, to constrain tumor progression of SCLC cells showing aberrant activation of HGF/MET signaling. We suggest that it would be clinically valuable to further investigate HGF/MET-mediated signaling in SCLC cells. © 2017 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.

  12. Aberrant SSEA-4 upregulation mediates myofibroblast activity to promote pre-cancerous oral submucous fibrosis

    Science.gov (United States)

    Yu, Cheng-Chia; Yu, Chuan-Hang; Chang, Yu-Chao

    2016-11-01

    Oral submucous fibrosis (OSF), regarded as a precancerous condition, is characterized by juxta-epithelial inflammatory reaction followed by fibro-elastic change in the lamina properia and epithelial atrophy. The pathologic mechanisms of OSF still need to be further clarified. In the study, we investigated the functional expression of SSEA-4, which is a well-known stemness marker, in myofibroblast activity and the clinical significance in OSF tissues. The expression of SSEA-4 in OSF was evaluated by immunohistochemical staining. Functional analysis of SSEA-4 on myofibroblast activity of OSF was achieved by lentiviral silencing ST3GAL2. Immunohisitochemistry demonstrated that SSEA-4 expression was significantly higher expression in areca quid chewing-associated OSF tissues than those of normal oral mucosa tissues. From flow cytometry analysis, arecoline dose-dependently activated SSEA-4 expression in primary human normal buccal mucosal fibroblasts (BMFs). Sorted SSEA-4-positive cells from fibrotic BMFs (fBMFs) have higher colony-forming unit, collagen gel contraction, and α-smooth muscle actin (α-SMA) expression than SSEA-4-negative subset. Knockdown of ST3GAL2 in fBMFs suppressed SSEA-4 expression, collagen contraction, migration, invasiveness, and wound healing capability. Consistently, silencing ST3GAL2 was found to repress arecoline-induced myofibroblast activity in BMFs. The study highlights SSEA-4 as a critical marker for therapeutic intervention to mediate myofibroblast transdifferentiation in areca quid chewing-associated OSF.

  13. Aberrant DNA damage response pathways may predict the outcome of platinum chemotherapy in ovarian cancer.

    Directory of Open Access Journals (Sweden)

    Dimitra T Stefanou

    Full Text Available Ovarian carcinoma (OC is the most lethal gynecological malignancy. Despite the advances in the treatment of OC with combinatorial regimens, including surgery and platinum-based chemotherapy, patients generally exhibit poor prognosis due to high chemotherapy resistance. Herein, we tested the hypothesis that DNA damage response (DDR pathways are involved in resistance of OC patients to platinum chemotherapy. Selected DDR signals were evaluated in two human ovarian carcinoma cell lines, one sensitive (A2780 and one resistant (A2780/C30 to platinum treatment as well as in peripheral blood mononuclear cells (PBMCs from OC patients, sensitive (n = 7 or resistant (n = 4 to subsequent chemotherapy. PBMCs from healthy volunteers (n = 9 were studied in parallel. DNA damage was evaluated by immunofluorescence γH2AX staining and comet assay. Higher levels of intrinsic DNA damage were found in A2780 than in A2780/C30 cells. Moreover, the intrinsic DNA damage levels were significantly higher in OC patients relative to healthy volunteers, as well as in platinum-sensitive patients relative to platinum-resistant ones (all P<0.05. Following carboplatin treatment, A2780 cells showed lower DNA repair efficiency than A2780/C30 cells. Also, following carboplatin treatment of PBMCs ex vivo, the DNA repair efficiency was significantly higher in healthy volunteers than in platinum-resistant patients and lowest in platinum-sensitive ones (t1/2 for loss of γH2AX foci: 2.7±0.5h, 8.8±1.9h and 15.4±3.2h, respectively; using comet assay, t1/2 of platinum-induced damage repair: 4.8±1.4h, 12.9±1.9h and 21.4±2.6h, respectively; all P<0.03. Additionally, the carboplatin-induced apoptosis rate was higher in A2780 than in A2780/C30 cells. In PBMCs, apoptosis rates were inversely correlated with DNA repair efficiencies of these cells, being significantly higher in platinum-sensitive than in platinum-resistant patients and lowest in healthy volunteers (all P<0.05. We conclude

  14. Catalog of genetic progression of human cancers: breast cancer.

    Science.gov (United States)

    Desmedt, Christine; Yates, Lucy; Kulka, Janina

    2016-03-01

    With the rapid development of next-generation sequencing, deeper insights are being gained into the molecular evolution that underlies the development and clinical progression of breast cancer. It is apparent that during evolution, breast cancers acquire thousands of mutations including single base pair substitutions, insertions, deletions, copy number aberrations, and structural rearrangements. As a consequence, at the whole genome level, no two cancers are identical and few cancers even share the same complement of "driver" mutations. Indeed, two samples from the same cancer may also exhibit extensive differences due to constant remodeling of the genome over time. In this review, we summarize recent studies that extend our understanding of the genomic basis of cancer progression. Key biological insights include the following: subclonal diversification begins early in cancer evolution, being detectable even in in situ lesions; geographical stratification of subclonal structure is frequent in primary tumors and can include therapeutically targetable alterations; multiple distant metastases typically arise from a common metastatic ancestor following a "metastatic cascade" model; systemic therapy can unmask preexisting resistant subclones or influence further treatment sensitivity and disease progression. We conclude the review by describing novel approaches such as the analysis of circulating DNA and patient-derived xenografts that promise to further our understanding of the genomic changes occurring during cancer evolution and guide treatment decision making.

  15. DNA methylation signature in peripheral blood reveals distinct characteristics of human X chromosome numerical aberrations

    OpenAIRE

    2015-01-01

    Background Abnormal sex chromosome numbers in humans are observed in Turner (45,X) and Klinefelter (47,XXY) syndromes. Both syndromes are associated with several clinical phenotypes, whose molecular mechanisms are obscure, and show a range of inter-individual penetrance. In order to understand the effect of abnormal numbers of X chromosome on the methylome and its correlation to the variable clinical phenotype, we performed a genome-wide methylation analysis using MeDIP and Illumina’s Infiniu...

  16. Optical Aberrations and Wavefront

    Directory of Open Access Journals (Sweden)

    Nihat Polat

    2014-08-01

    Full Text Available The deviation of light to create normal retinal image in the optical system is called aberration. Aberrations are divided two subgroup: low-order aberrations (defocus: spherical and cylindrical refractive errors and high-order aberrations (coma, spherical, trefoil, tetrafoil, quadrifoil, pentafoil, secondary astigmatism. Aberrations increase with aging. Spherical aberrations are compensated by positive corneal and negative lenticular spherical aberrations in youth. Total aberrations are elevated by positive corneal and positive lenticular spherical aberrations in elderly. In this study, we aimed to analyze the basic terms regarding optic aberrations which have gained significance recently. (Turk J Ophthalmol 2014; 44: 306-11

  17. Effect of phenylhexyl isothiocyanate on aberrant histone H3 methylation in primary human acute leukemia

    Directory of Open Access Journals (Sweden)

    Zou Yong

    2012-07-01

    Full Text Available Abstract Background We have previously studied the histone acetylation in primary human leukemia cells. However, histone H3 methylation in these cells has not been characterized. Methods This study examined the methylation status at histone H3 lysine 4 (H3K4 and histone H3 lysine 9 (H3K9 in primary acute leukemia cells obtained from patients and compared with those in the non-leukemia and healthy cells. We further characterized the effect of phenylhexyl isothiocyanate (PHI, Trichostatin A (TSA, and 5-aza-2’-deoxycytidine (5-Aza on the cells. Results We found that methylation of histone H3K4 was virtually undetectable, while methylation at H3K9 was significantly higher in primary human leukemia cells. The histone H3K9 hypermethylation and histone H3K4 hypomethylation were observed in both myeloid and lymphoid leukemia cells. PHI was found to be able to normalize the methylation level in the primary leukemia cells. We further showed that PHI was able to enhance the methyltransferase activity of H3K4 and decrease the activity of H3K9 methyltransferase. 5-Aza had similar effect on H3K4, but minimal effect on H3K9, whereas TSA had no effect on H3K4 and H3K9 methyltransferases. Conclusions This study revealed opposite methylation level of H3K4 and H3K9 in primary human leukemia cells and demonstrated for the first time that PHI has different effects on the methyltransferases for H3K4 and H3K9.

  18. Aberrant recombination and repair during immunoglobulin class switching in BRCA1-deficient human B cells

    DEFF Research Database (Denmark)

    Björkman, Andrea; Qvist, Per; Du, Likun

    2015-01-01

    machinery. A shift to the use of microhomology-based, alternative end-joining (A-EJ) and increased frequencies of intra-S region deletions as well as insertions of inverted S sequences were observed at the recombination junctions amplified from BRCA1-deficient human B cells. Furthermore, increased use...... underlying BRCA1’s function in maintaining genome stability and tumor suppression but may also point to a previously unrecognized role of BRCA1 in B-cell lymphomagenesis....... of long microhomologies was found at recombination junctions derived from E3 ubiquitin-protein ligase RNF168-deficient, Fanconi anemia group J protein (FACJ, BRIP1)-deficient, or DNA endonuclease RBBP8 (CtIP)-compromised cells, whereas an increased frequency of S-region inversions was observed in breast...

  19. Aberrant post-translational modifications compromise human myosin motor function in old age.

    Science.gov (United States)

    Li, Meishan; Ogilvie, Hannah; Ochala, Julien; Artemenko, Konstantin; Iwamoto, Hiroyuki; Yagi, Naoto; Bergquist, Jonas; Larsson, Lars

    2015-04-01

    Novel experimental methods, including a modified single fiber in vitro motility assay, X-ray diffraction experiments, and mass spectrometry analyses, have been performed to unravel the molecular events underlying the aging-related impairment in human skeletal muscle function at the motor protein level. The effects of old age on the function of specific myosin isoforms extracted from single human muscle fiber segments, demonstrated a significant slowing of motility speed (P old age in both type I and IIa myosin heavy chain (MyHC) isoforms. The force-generating capacity of the type I and IIa MyHC isoforms was, on the other hand, not affected by old age. Similar effects were also observed when the myosin molecules extracted from muscle fibers were exposed to oxidative stress. X-ray diffraction experiments did not show any myofilament lattice spacing changes, but unraveled a more disordered filament organization in old age as shown by the greater widths of the 1, 0 equatorial reflections. Mass spectrometry (MS) analyses revealed eight age-specific myosin post-translational modifications (PTMs), in which two were located in the motor domain (carbonylation of Pro79 and Asn81) and six in the tail region (carbonylation of Asp900, Asp904, and Arg908; methylation of Glu1166; deamidation of Gln1164 and Asn1168). However, PTMs in the motor domain were only observed in the IIx MyHC isoform, suggesting PTMs in the rod region contributed to the observed disordering of myosin filaments and the slowing of motility speed. Hence, interventions that would specifically target these PTMs are warranted to reverse myosin dysfunction in old age.

  20. Oncogenic KRAS activates an embryonic stem cell-like program in human colon cancer initiation.

    Science.gov (United States)

    Le Rolle, Anne-France; Chiu, Thang K; Zeng, Zhaoshi; Shia, Jinru; Weiser, Martin R; Paty, Philip B; Chiu, Vi K

    2016-01-19

    Colorectal cancer is the third most frequently diagnosed cancer worldwide. Prevention of colorectal cancer initiation represents the most effective overall strategy to reduce its associated morbidity and mortality. Activating KRAS mutation (KRASmut) is the most prevalent oncogenic driver in colorectal cancer development, and KRASmut inhibition represents an unmet clinical need. We apply a systems-level approach to study the impact of KRASmut on stem cell signaling during human colon cancer initiation by performing gene set enrichment analysis on gene expression from human colon tissues. We find that KRASmut imposes the embryonic stem cell-like program during human colon cancer initiation from colon adenoma to stage I carcinoma. Expression of miR145, an embryonic SC program inhibitor, promotes cell lineage differentiation marker expression in KRASmut colon cancer cells and significantly suppresses their tumorigenicity. Our data support an in vivo plasticity model of human colon cancer initiation that merges the intrinsic stem cell properties of aberrant colon stem cells with the embryonic stem cell-like program induced by KRASmut to optimize malignant transformation. Inhibition of the embryonic SC-like program in KRASmut colon cancer cells reveals a novel therapeutic strategy to programmatically inhibit KRASmut tumors and prevent colon cancer.

  1. Quercetin induces human colon cancer cells apoptosis by inhibiting the nuclear factor-kappa B Pathway.

    Science.gov (United States)

    Zhang, Xiang-An; Zhang, Shuangxi; Yin, Qing; Zhang, Jing

    2015-01-01

    Quercetin can inhibit the growth of cancer cells with the ability to act as chemopreventers. Its cancer-preventive effect has been attributed to various mechanisms, including the induction of cell-cycle arrest and/or apoptosis as well as the antioxidant functions. Nuclear factor kappa-B (NF-κB) is a signaling pathway that controls transcriptional activation of genes important for tight regulation of many cellular processes and is aberrantly expressed in many types of cancer. Inhibitors of NF-κB pathway have shown potential anti-tumor activities. However, it is not fully elucidated in colon cancer. In this study, we demonstrate that quercetin induces apoptosis in human colon cancer CACO-2 and SW-620 cells through inhibiting NF-κB pathway, as well as down-regulation of B-cell lymphoma 2 and up-regulation of Bax, thus providing basis for clinical application of quercetin in colon cancer cases.

  2. Cytogenetics and genetics of human cancer: methods and accomplishments.

    Science.gov (United States)

    Sandberg, Avery A; Meloni-Ehrig, Aurelia M

    2010-12-01

    Cytogenetic and related changes in human cancer constitute part of a constantly developing and enlarging continuum of known genetic alterations associated with cancer development and biology. The cytogenetic component of this continuum has fulfilled much of its pioneering role and now constitutes a small but dynamic segment of the vast literature on cancer genetics, in which it has played an important if not initiating role. The goals of this article are (a) to address historical and methodological aspects of cancer cytogenetics; (b) to present information on diagnostic translocations in leukemias, lymphomas, bone and soft tissue tumors, and carcinomas; (c) to connect some of these chromosomal aberrations with their molecular equivalents; and (d) to describe anomalies in some solid tumors indicative of the complexity of the genomic alterations in cancer. We also look at a few of the more recent genomic developments in cancer and offer an opinion as to what all these findings add up to.

  3. Induction of complete and incomplete chromosome aberrations by bleomycin in human lymphocytes

    Energy Technology Data Exchange (ETDEWEB)

    Benkhaled, L.; Xuncla, M.; Caballin, M.R. [Universitat Autonoma de Barcelona, Unitat d' Antropologia Biologica, Departament de Biologia Animal, Biologia Vegetal i Ecologia, E-08193 Bellaterra (Spain); Barrios, L. [Universitat Autonoma de Barcelona, Unitat de Biologia Cel.lular, Departament de Biologia Cel.lular, Fisiologia i Immunologia (Spain); Barquinero, J.F. [Universitat Autonoma de Barcelona, Unitat d' Antropologia Biologica, Departament de Biologia Animal, Biologia Vegetal i Ecologia, E-08193 Bellaterra (Spain)], E-mail: Francesc.Barquinero@uab.es

    2008-01-01

    Bleomycin (BLM) is a clastogenic compound, which due to the overdispersion in the cell distribution of induced dicentrics has been compared to the effect of high-LET radiation. Recently, it has been described that in fibroblast derived cell lines BLM induces incomplete chromosome elements more efficiently than any type of ionizing radiation. The objective of the present study was to evaluate in human lymphocytes the induction of dicentrics and incomplete chromosome elements by BLM. Peripheral blood samples have been treated with different concentrations of BLM. Two cytogenetic techniques were applied, fluorescence plus Giemsa (FPG) and FISH using pan-centromeric and pan-telomeric probes. The observed frequency of dicentric equivalents increases linearly with the BLM concentration, and for all BLM concentrations the distribution of dicentric equivalents was overdispersed. In the FISH study the ratio between total incomplete elements and multicentrics was 0.27. The overdispersion in the dicentric cell distribution, and the linear BLM-concentration dependence of dicentrics can be compared to the effect of high-LET radiation, on the contrary the ratio of incomplete elements and multicentrics is similar to the one induced by low-LET radiation ({approx}0.40). The elevated proportion of interstitial deletions in relation to total acentric fragments, higher than any type of ionizing radiation could be a characteristic signature of the clastogenic effect of BLM.

  4. High-LET radiation-induced aberrations in prematurely condensed G2 chromosomes of human fibroblasts

    Science.gov (United States)

    Kawata, T.; Gotoh, E.; Durante, M.; Wu, H.; George, K.; Furusawa, Y.; Cucinotta, F. A.; Dicello, J. F. (Principal Investigator)

    2000-01-01

    PURPOSE: To determine the number of initial chromatid breaks induced by low- or high-LET irradiations, and to compare the kinetics of chromatid break rejoining for radiations of different quality. MATERIAL AND METHODS: Exponentially growing human fibroblast cells AG1522 were irradiated with gamma-rays, energetic carbon (290MeV/u), silicon (490MeV/u) and iron (200 and 600 MeV/u). Chromosomes were prematurely condensed using calyculin A. Chromatid breaks and exchanges in G2 cells were scored. PCC were collected after several post-irradiation incubation times, ranging from 5 to 600 min. RESULTS: The kinetics of chromatid break rejoining following low- or high-LET irradiation consisted of two exponential components representing a rapid and a slow time constant. Chromatid breaks decreased rapidly during the first 10min after exposure, then continued to decrease at a slower rate. The rejoining kinetics were similar for exposure to each type of radiation. Chromatid exchanges were also formed quickly. Compared to low-LET radiation, isochromatid breaks were produced more frequently and the proportion of unrejoined breaks was higher for high-LET radiation. CONCLUSIONS: Compared with gamma-rays, isochromatid breaks were observed more frequently in high-LET irradiated samples, suggesting that an increase in isochromatid breaks is a signature of high-LET radiation exposure.

  5. Aberrant α-Adrenergic Hypertrophic Response in Cardiomyocytes from Human Induced Pluripotent Cells

    Directory of Open Access Journals (Sweden)

    Gabor Földes

    2014-11-01

    Full Text Available Cardiomyocytes from human embryonic stem cells (hESC-CMs and induced pluripotent stem cells (hiPSC-CMs represent new models for drug discovery. Although hypertrophy is a high-priority target, we found that hiPSC-CMs were systematically unresponsive to hypertrophic signals such as the α-adrenoceptor (αAR agonist phenylephrine (PE compared to hESC-CMs. We investigated signaling at multiple levels to understand the underlying mechanism of this differential responsiveness. The expression of the normal α1AR gene, ADRA1A, was reversibly silenced during differentiation, accompanied by ADRA1B upregulation in either cell type. ADRA1B signaling was intact in hESC-CMs, but not in hiPSC-CMs. We observed an increased tonic activity of inhibitory kinase pathways in hiPSC-CMs, and inhibition of antihypertrophic kinases revealed hypertrophic increases. There is tonic suppression of cell growth in hiPSC-CMs, but not hESC-CMs, limiting their use in investigation of hypertrophic signaling. These data raise questions regarding the hiPSC-CM as a valid model for certain aspects of cardiac disease.

  6. Epigenetic silencing of the NR4A3 tumor suppressor, by aberrant JAK/STAT signaling, predicts prognosis in gastric cancer

    Science.gov (United States)

    Yeh, Chung-Min; Chang, Liang-Yu; Lin, Shu-Hui; Chou, Jian-Liang; Hsieh, Hsiao-Yen; Zeng, Li-Han; Chuang, Sheng-Yu; Wang, Hsiao-Wen; Dittner, Claudia; Lin, Cheng-Yu; Lin, Jora M. J.; Huang, Yao-Ting; Ng, Enders K. W.; Cheng, Alfred S. L.; Wu, Shu-Fen; Lin, Jiayuh; Yeh, Kun-Tu; Chan, Michael W. Y.

    2016-08-01

    While aberrant JAK/STAT signaling is crucial to the development of gastric cancer (GC), its effects on epigenetic alterations of its transcriptional targets remains unclear. In this study, by expression microarrays coupled with bioinformatic analyses, we identified a putative STAT3 target gene, NR4A3 that was downregulated in MKN28 GC daughter cells overexpressing a constitutively activated STAT3 mutant (S16), as compared to an empty vector control (C9). Bisulphite pyrosequencing and demethylation treatment showed that NR4A3 was epigenetically silenced by promoter DNA methylation in S16 and other GC cell lines including AGS cells, showing constitutive activation of STAT3. Subsequent experiments revealed that NR4A3 promoter binding by STAT3 might repress its transcription. Long-term depletion of STAT3 derepressed NR4A3 expression, by promoter demethylation, in AGS GC cells. NR4A3 re-expression in GC cell lines sensitized the cells to cisplatin, and inhibited tumor growth in vitro and in vivo, in an animal model. Clinically, GC patients with high NR4A3 methylation, or lower NR4A3 protein expression, had significantly shorter overall survival. Intriguingly, STAT3 activation significantly associated only with NR4A3 methylation in low-stage patient samples. Taken together, aberrant JAK/STAT3 signaling epigenetically silences a potential tumor suppressor, NR4A3, in gastric cancer, plausibly representing a reliable biomarker for gastric cancer prognosis.

  7. Aberrantly Over-Expressed TRPM8 Channels in Pancreatic Adenocarcinoma: Correlation with Tumor Size/Stage and Requirement for Cancer Cells Invasion

    Directory of Open Access Journals (Sweden)

    Nelson S. Yee

    2014-05-01

    Full Text Available The transient receptor potential melastatin-subfamily member 8 (TRPM8 channels control Ca2+ homeostasis. Recent studies indicate that TRPM8 channels are aberrantly expressed and required for cellular proliferation in pancreatic adenocarcinoma. However, the functional significance of TRPM8 in pancreatic tissues is mostly unknown. The objectives of this study are to examine the expression of TRPM8 in various histopathological types of pancreatic tissues, determine its clinical significance in pancreatic adenocarcinoma, and investigate its functional role in cancer cells invasion. We present evidence that, in normal pancreatic tissues, anti-TRPM8 immunoreactivity is detected in the centroacinar cells and the islet endocrine cells. In pre-malignant pancreatic tissues and malignant neoplasms, TRPM8 is aberrantly expressed to variable extents. In the majority of pancreatic adenocarcinoma, TRPM8 is expressed at moderate or high levels, and anti-TRPM8 immunoreactivity positively correlates with the primary tumor size and stage. In the pancreatic adenocarcinoma cell lines that express relatively high levels of TRPM8, short hairpin RNA-mediated interference of TRPM8 expression impaired their ability of invasion. These data suggest that aberrantly expressed TRPM8 channels play contributory roles in pancreatic tumor growth and metastasis, and support exploration of TRPM8 as a biomarker and target of pancreatic adenocarcinoma.

  8. HCSD: the human cancer secretome database

    Science.gov (United States)

    Feizi, Amir; Banaei-Esfahani, Amir; Nielsen, Jens

    2015-01-01

    The human cancer secretome database (HCSD) is a comprehensive database for human cancer secretome data. The cancer secretome describes proteins secreted by cancer cells and structuring information about the cancer secretome will enable further analysis of how this is related with tumor biology. The secreted proteins from cancer cells are believed to play a deterministic role in cancer progression and therefore may be the key to find novel therapeutic targets and biomarkers for many cancers. Consequently, huge data on cancer secretome have been generated in recent years and the lack of a coherent database is limiting the ability to query the increasing community knowledge. We therefore developed the Human Cancer Secretome Database (HCSD) to fulfil this gap. HCSD contains >80 000 measurements for about 7000 nonredundant human proteins collected from up to 35 high-throughput studies on 17 cancer types. It has a simple and user friendly query system for basic and advanced search based on gene name, cancer type and data type as the three main query options. The results are visualized in an explicit and interactive manner. An example of a result page includes annotations, cross references, cancer secretome data and secretory features for each identified protein. Database URL: www.cancersecretome.org. PMID:26078477

  9. Relationship between aberration yield and mitotic delay in human lymphocytes exposed to 200 MeV/u Fe-ions or X-rays

    Energy Technology Data Exchange (ETDEWEB)

    Ritter, S.; Nasonova, E. [Gesellschaft fuer Schwerionenforschung mbH, Darmstadt (Germany). Biophysik; Furusawa, Yoshiya; Ando, Koichi [National Inst. of Radiological Sciences, Chiba (Japan)

    2002-12-01

    The time-course of Fe-ion (200 MeV/u, 440 keV/{mu}m) and X-ray induced chromosomal damage was investigated in human lymphocytes. After cells were exposed in G{sub 0} and stimulated to grow, aberrations were measured in first-cycle metaphases harvested 48, 60 and 72 h post-irradiation. Additionally, lesions were analysed in G{sub 2} and mitotic (M) cells collected at 48 h using calyculin A-induced premature chromosome condensation (PCC). Following X-irradiation, similar aberration yields were found in all of the samples scored. In contrast, after Fe-ion exposure a drastic increase in the aberration frequency with sampling time was observed, i.e. cells arriving late at the first mitosis carried more aberrations than those arriving at earlier times. The PCC data indicate that the delayed entry of heavily damaged cells into mitosis observed after Fe-ion irradiation resulted from a prolonged arrest in G{sub 2}. Altogether these experiments provide further evidence that in the case of high-linear energy transfer (LET) exposure cell-cycle delays of severely damaged cells have to be taken into account for any meaningful quantification of chromosomal damage and, consequently, for an accurate estimate of the relative biological effectiveness (RBE). (author)

  10. Hornerin, an S100 family protein, is functional in breast cells and aberrantly expressed in breast cancer

    Directory of Open Access Journals (Sweden)

    Fleming Jodie M

    2012-06-01

    Full Text Available Abstract Background Recent evidence suggests an emerging role for S100 protein in breast cancer and tumor progression. These ubiquitous proteins are involved in numerous normal and pathological cell functions including inflammatory and immune responses, Ca2+ homeostasis, the dynamics of cytoskeleton constituents, as well as cell proliferation, differentiation, and death. Our previous proteomic analysis demonstrated the presence of hornerin, an S100 family member, in breast tissue and extracellular matrix. Hornerin has been reported in healthy skin as well as psoriatic and regenerating skin after wound healing, suggesting a role in inflammatory/immune response or proliferation. In the present study we investigated hornerin’s potential role in normal breast cells and breast cancer. Methods The expression levels and localization of hornerin in human breast tissue, breast tumor biopsies, primary breast cells and breast cancer cell lines, as well as murine mammary tissue were measured via immunohistochemistry, western blot analysis and PCR. Antibodies were developed against the N- and C-terminus of the protein for detection of proteolytic fragments and their specific subcellular localization via fluorescent immunocytochemisty. Lastly, cells were treated with H2O2 to detect changes in hornerin expression during induction of apoptosis/necrosis. Results Breast epithelial cells and stromal fibroblasts and macrophages express hornerin and show unique regulation of expression during distinct phases of mammary development. Furthermore, hornerin expression is decreased in invasive ductal carcinomas compared to invasive lobular carcinomas and less aggressive breast carcinoma phenotypes, and cellular expression of hornerin is altered during induction of apoptosis. Finally, we demonstrate the presence of post-translational fragments that display differential subcellular localization. Conclusions Our data opens new possibilities for hornerin and its

  11. Alterations of p63 and p73 in human cancers.

    Science.gov (United States)

    Inoue, Kazushi; Fry, Elizabeth A

    2014-01-01

    p53 and its related genes, p63 and p73 constitute the p53 gene family. While p53 is the most frequently mutated gene in human tumors, p63 and p73 are rarely mutated or deleted in cancers. Many studies have reported p63/p73 overexpression in human cancers while others showed that a loss of p63/p73 is associated with tumor progression and metastasis. Thus, whether p63 or p73 is a tumor suppressor gene or an oncogene has been a matter of debate. This controversy has been attributed to the existence of multiple splicing isoforms with distinct functions; the full-length TA isoform of p63 has structural and functional similarity to wild-type p53, whereas the ΔNp63 acts primarily in dominant-negative fashion against all family members of p53. Differential activities of TA and ΔN isoforms have been shown in vivo by creating isform-specific gene knockout mice. All p53, p63, p73 proteins bind to and activate target genes with p53-response elements; p63 also binds to distinct p63-response elements and regulate expression of specific target genes involved in skin, limb, and craniofacial development. Interestingly, several studies have shown that both p63 and p73 are involved in cellular response to cancer therapy and others have indicated that both of these molecules are required for p53-induced apoptosis, suggesting functional interplay among p53 family proteins. Consistent with these findings, aberrant splicing that result in ΔNp63 or ΔNp73 overexpression are frequently found in human cancers, and is associated with poor clinical outcomes of patients in the latter. Thus immunohistochemical staining of tumor specimen with ΔNp73-specific antibody might have diagnostic values in cancer clinics.

  12. Human Cancer Models Initiative | Office of Cancer Genomics

    Science.gov (United States)

    The Human Cancer Models Initiative (HCMI) is an international consortium that is generating novel human tumor-derived culture models, which are annotated with genomic and clinical data. In an effort to advance cancer research and more fully understand how in vitro findings are related to clinical biology, HCMI-developed models and related data will be available as a community resource for cancer research.

  13. Effect of dietary galacto-oligosaccharides on azoxymethane-induced aberrant crypt foci and colorectal cancer in Fischer 344 rats

    NARCIS (Netherlands)

    Wijnands, M.V.W.; Schoterman, H.C.; Bruijntjes, J.P.; Hollanders, V.M.H.; Woutersen, R.A.

    2001-01-01

    The aim of the present study was to investigate the effects of galacto-oligosaccharides (GOS, Elix'or) on the development of aberrant crypt foci (ACF) and colorectal tumours in rats treated with azoxymethane (AOM). Two groups of 102 male Fischer 344 rats were injected twice with AOM to induce colore

  14. In Vitro genotoxic and antigenotoxic studies of Thai Noni fruit juice by chromosomal aberration and sister chromatid exchange assays in human lymphocytes

    Directory of Open Access Journals (Sweden)

    Treetip Ratanavalachai

    2008-09-01

    Full Text Available The genotoxic and antigenotoxic effects of Noni fruit juice produced in Thailand have been studied in human lymphocytes for chromosome aberration assay and sister chromatid exchange (SCE assay in vitro. Treatment of Noni fruit juice(3.1-50 mg/ml alone for 3 h did not significantly induce chromosomal aberration or SCE (p<0.05. Noni fruit juice at 6.2 mg/ml is the optimum dose for cell survival and cell replication as demonstrated by the highest value of mitotic index and proliferation index (P.I.. Interestingly, pretreatment of Noni fruit juice at the same concentration of 6.2 mg/ml for 2 hfollowed by mitomycin C treatment at 3 μg/ml for 2 h significantly reduced SCE level induced by mitomycin C (p<0.05. However, these treatments did not show significant decrease in chromatid-type aberrations. Our data indicate that Thai Noni fruit juice is not genotoxic against human lymphocytes in vitro. In addition, pretreatment of Noni fruit juice at 6.2 mg/ml demonstrated no anticlastogenic effect while had some antigenotoxic effects as demonstrated by significant decrease in the SCE level induced by mitomycin C (p<0.05. Therefore, the optimum dose of Noni fruit juice used as a traditional medicine is required and needs to be studied further for the benefit of human health.

  15. Telomerase activity in human cancer

    Energy Technology Data Exchange (ETDEWEB)

    Griffith, J.

    2000-10-01

    The overall goal of this collaborative project was to investigate the role in malignant cells of both chromosome telomeres, and telomerase, the enzyme that replicates telomeres. Telomeres are highly conserved nucleoprotein complexes located at the ends of eucaryotic chromosomes. Telomere length in somatic cells is reduced by 40--50 nucleotide pairs with every cell division due to incomplete replication of terminal DNA sequences and the absence of telomerase, the ribonucleoprotein that adds telomere DNA to chromosome ends. Although telomerase is active in cells with extended proliferative capacities, including more than 85% of tumors, work performed under this contract demonstrated that the telomeres of human cancer cells are shorter than those of paired normal cells, and that the length of the telomeres is characteristic of particular types of cancers. The extent of telomere shortening ostensibly is related to the number of cell divisions the tumor has undergone. It is believed that ongoing cell proliferation leads to the accumulation and fixation of new mutations in tumor cell lineages.Therefore, it is not unreasonable to assume that the degree of phenotypic variability is related to the proliferative history of the tumor, and therefore to telomere length, implying a correlation with prognosis. In some human tumors, short telomeres are also correlated with genomic instabilities, including interstitial chromosome translocation, loss of heterozygosity, and aneuoploidy. Moreover, unprotected chromosome ends are highly recombinogenic and telomere shortening in cultured human cells correlates with the formation of dicentric chromosomes, suggesting that critically short telomeres not only identify, but also predispose, cells to genomic instability, again implying a correlation with prognosis. Therefore, telomere length or content could be an important predictor of metastatic potential or responsiveness to various therapeutic modalities.

  16. Production and distribution of aberrations in resting or cycling human lymphocytes following Fe-ion or Cr-ion irradiation: Emphasis on single track effects

    Science.gov (United States)

    Deperas-Standylo, Joanna; Lee, Ryonfa; Nasonova, Elena; Ritter, Sylvia; Gudowska-Nowak, Ewa

    2012-09-01

    In the present study we examined the cytogenetic effects of 177 MeV/u Fe-ions (LET = 335 keV/μm) and 4.1 MeV/u Cr-ions (LET = 3160 keV/μm) in human lymphocytes under exposure conditions that result on average in one particle hit per cell nucleus. In non-cycling (G0-phase) lymphocytes the induction and the repair of excess fragments was measured by means of the premature chromosome condensation (PCC) technique and the distribution of breaks among cells was analysed. The PCC-data were further compared with those reported recently for stimulated lymphocytes at the first post-irradiation mitosis. Our experiments show that a single nuclear traversal by a Fe-ion produced more initial chromatin breakage than one Cr-ion, but after 24 h of repair the number of excess fragments/cell was similar for both ion species. All distributions of aberrations were overdispersed. For low energy Cr-ions, where the track radius is smaller than the radius of the cell nucleus, the data could be well described by a Neyman type A distribution. In contrast, the data obtained for high energy Fe-ions were fitted with a convoluted Poisson-Neyman distribution to account for the fact that the dose is deposited not only in the cell actually traversed but also in neighbouring cells. By applying metaphase analysis a different picture emerged with respect to the aberration yield, i.e. more aberrations were detected in cells exposed to Fe-ions than in those irradiated with Cr-ions. Yet, as observed for non-cycling lymphocytes all aberration distributions generated for metaphase cells were overdispersed. The obtained results are discussed with respect to differences in particle track structure. Additionally, the impact of confounding factors such as apoptosis that affect the number of aberrations expressed in a cell population is addressed.

  17. Mathematical Modeling of Carcinogenesis Based on Chromosome Aberration Data

    Institute of Scientific and Technical Information of China (English)

    Xiao-bo Li

    2009-01-01

    Objective: The progression of human cancer is characterized by the accumulation of genetic instability. An increasing number of experimental genetic molecular techniques have been used to detect chromosome aberrations. Previous studies on chromosome abnormalities often focused on identifying the frequent loci of chromosome alterations, but rarely addressed the issue of interrelationship of chromosomal abnormalities. In the last few years, several mathematical models have been employed to construct models of carcinogenesis, in an attempt to identify the time order and cause-and-effect relationship of chromosome aberrations. The principles and applications of these models are reviewed and compared in this paper. Mathematical modeling of carcinogenesis can contribute to our understanding of the molecular genetics of tumor development, and identification of cancer related genes, thus leading to improved clinical practice of cancer.

  18. Gene aberrations of RRM1 and RRM2B and outcome of advanced breast cancer after treatment with docetaxel with or without gemcitabine

    DEFF Research Database (Denmark)

    Jørgensen, Charlotte Lt; Ejlertsen, Bent; Bjerre, Karsten D

    2013-01-01

    of the hypothesis that aberrations of RRM1 or RRM2B, neither individually nor in combination, are associated with an altered clinical outcome following chemotherapy with gemcitabine in combination with docetaxel compared to docetaxel alone in advanced breast cancer patients....... agent docetaxel in advanced breast cancer patients. Methods Primary tumor samples from patients randomly assigned to gemcitabine plus docetaxel or docetaxel alone were analyzed for RRM1 and RRM2B copy number changes using Fluorescence In Situ Hybridization (FISH) technology with probes covering...... endpoint. Overall survival (OS) and response rate (RR) were secondary endpoints. Associations between RRM1/CEN-11 and/or RRM2B/CEN-8 ratios and time-to-event endpoints were analyzed by unadjusted and adjusted Cox proportional hazards regression models. Heterogeneity of treatment effects on TTP and OS...

  19. Replication stress and oxidative damage contribute to aberrant constitutive activation of DNA damage signalling in human gliomas

    DEFF Research Database (Denmark)

    Bartkova, J; Hamerlik, P; Stockhausen, Marie

    2010-01-01

    brain and grade II astrocytomas, despite the degree of DDR activation was higher in grade II tumors. Markers indicative of ongoing DNA replication stress (Chk1 activation, Rad17 phosphorylation, replication protein A foci and single-stranded DNA) were present in GBM cells under high- or low...... and indicate that replication stress, rather than oxidative stress, fuels the DNA damage signalling in early stages of astrocytoma development.......Malignant gliomas, the deadliest of brain neoplasms, show rampant genetic instability and resistance to genotoxic therapies, implicating potentially aberrant DNA damage response (DDR) in glioma pathogenesis and treatment failure. Here, we report on gross, aberrant constitutive activation of DNA...

  20. Mining the Wnt pathway for cancer therapeutics.

    NARCIS (Netherlands)

    Barker, N.; Clevers, J.C.

    2006-01-01

    Aberrant activation of the Wnt pathway is implicated in driving the formation of various human cancers, particularly those of the digestive tract. Inhibition of aberrant Wnt pathway activity in cancer cell lines efficiently blocks their growth, highlighting the great potential of therapeutics design

  1. Human papillomaviruses and skin cancer.

    Science.gov (United States)

    Smola, Sigrun

    2014-01-01

    Human papillomaviruses (HPVs) infect squamous epithelia and can induce hyperproliferative lesions. More than 120 different HPV types have been characterized and classified into five different genera. While mucosal high-risk HPVs have a well-established causal role in anogenital carcinogenesis, the biology of cutaneous HPVs is less well understood. The clinical relevance of genus beta-PV infection has clearly been demonstrated in patients suffering from epidermodysplasia verruciformis (EV), a rare inherited disease associated with ahigh rate of skin cancer. In the normal population genus beta-PV are suspected to have an etiologic role in skin carcinogenesis as well but this is still controversially discussed. Their oncogenic potency has been investigated in mouse models and in vitro. In 2009, the International Agency for Research on Cancer (IARC) classified the genus beta HPV types 5 and 8 as "possible carcinogenic" biological agents (group 2B) in EV disease. This chapter will give an overview on the knowns and unknowns of infections with genus beta-PV and discuss their potential impact on skin carcinogenesis in the general population.

  2. Psoralen/UVA treatment and chromosomes. I. Aberrations and sister chromatid exchange in human lymphocytes in vitro and synergism with caffeine

    Energy Technology Data Exchange (ETDEWEB)

    Waksvik, H.; Brogger, A.; Stene, J.

    1977-09-22

    Treatment of human lymphocytes in vitro with trimethylpsoralen or 8-methoxypsoralen and UVA irradiation (PUVA) induced chromosome damage, mainly constrictions and gaps, but also breaks and exchanges, and increased the frequency of sister chromatid exchange (SCE). The localization of the chromosome aberrations was nonrandom. The coincidence of many PUVA hits with mercaptoenthanol hits suggests that PUVA may have other targets in the cell than the DNA, perhaps the folding proteins of the chromosomes and the nuclear membrane/chromatin attachment organelles. Caffeine increased in a synergistic way the chromosome aberration yield if added after PUVA treatment, but there was no effect when caffeine was present before and during PUVA treatment. The SCE frequency was increased in the presence of caffeine.

  3. mBAND analysis of chromosome aberrations in human epithelial cells induced by gamma-rays and secondary neutrons of low dose rate.

    Science.gov (United States)

    Hada, M; Gersey, B; Saganti, P B; Wilkins, R; Cucinotta, F A; Wu, H

    2010-08-14

    Human risks from chronic exposures to both low- and high-LET radiation are of intensive research interest in recent years. In the present study, human epithelial cells were exposed in vitro to gamma-rays at a dose rate of 17 mGy/h or secondary neutrons of 25 mGy/h. The secondary neutrons have a broad energy spectrum that simulates the Earth's atmosphere at high altitude, as well as the environment inside spacecrafts like the Russian MIR station and the International Space Station (ISS). Chromosome aberrations in the exposed cells were analyzed using the multicolor banding in situ hybridization (mBAND) technique with chromosome 3 painted in 23 colored bands that allows identification of both inter- and intrachromosome exchanges including inversions. Comparison of present dose responses between gamma-rays and neutron irradiations for the fraction of cells with damaged chromosome 3 yielded a relative biological effectiveness (RBE) value of 26+/-4 for the secondary neutrons. Our results also revealed that secondary neutrons of low dose rate induced a higher fraction of intrachromosome exchanges than gamma-rays, but the fractions of inversions observed between these two radiation types were indistinguishable. Similar to the previous findings after acute radiation exposures, most of the inversions observed in the present study were accompanied by other aberrations. The fractions of complex type aberrations and of unrejoined chromosomal breakages were also found to be higher in the neutron-exposed cells than after gamma-rays. We further analyzed the location of the breaks involved in chromosome aberrations along chromosome 3, and observed hot spots after gamma-ray, but not neutron, exposures.

  4. Characterization of a new aberration of the human Y chromosome by banding methods and DNA restriction endonuclease analysis.

    Science.gov (United States)

    Schmid, M; Gall, H; Schempp, W; Weber, L; Schmidtke, J

    1981-01-01

    Comparative cytogenetic analyses were performed with ten different banding methods on a previously undescribed, inherited structural aberration of a Y chromosome, and the results compared with those of normal Y chromosomes occurring in the same family. The value of the individual staining techniques in investigations of Y chromosomal aberrations is emphasized. The aberrant Y chromosome analyzed can be formally derived from an isodicentric Y chromosome for the short arm with a very terminal long-arm breakpoint, in which the centromere, an entire short arm, and the proximal region on one long arm was lost. This interpretation was confirmed by determining the amount of the two Y-specific DNA sequences (2.1 and 3.4 kb in length) by means of Hae III restriction endonuclease analysis. The karyotype-phenotype correlations in the men with this aberrant Y chromosome, especially the fertility dysfunctions (oligoasthenoteratozoospermia, cryptozoospermia), are discussed. The possibility of the existence of fertility factors involved in the control of spermatogenesis within the quinacrine-bright heterochromatic region of the Y long arm is presented.

  5. Absolute quantification of somatic DNA alterations in human cancer.

    Science.gov (United States)

    Carter, Scott L; Cibulskis, Kristian; Helman, Elena; McKenna, Aaron; Shen, Hui; Zack, Travis; Laird, Peter W; Onofrio, Robert C; Winckler, Wendy; Weir, Barbara A; Beroukhim, Rameen; Pellman, David; Levine, Douglas A; Lander, Eric S; Meyerson, Matthew; Getz, Gad

    2012-05-01

    We describe a computational method that infers tumor purity and malignant cell ploidy directly from analysis of somatic DNA alterations. The method, named ABSOLUTE, can detect subclonal heterogeneity and somatic homozygosity, and it can calculate statistical sensitivity for detection of specific aberrations. We used ABSOLUTE to analyze exome sequencing data from 214 ovarian carcinoma tumor-normal pairs. This analysis identified both pervasive subclonal somatic point-mutations and a small subset of predominantly clonal and homozygous mutations, which were overrepresented in the tumor suppressor genes TP53 and NF1 and in a candidate tumor suppressor gene CDK12. We also used ABSOLUTE to infer absolute allelic copy-number profiles from 3,155 diverse cancer specimens, revealing that genome-doubling events are common in human cancer, likely occur in cells that are already aneuploid, and influence pathways of tumor progression (for example, with recessive inactivation of NF1 being less common after genome doubling). ABSOLUTE will facilitate the design of clinical sequencing studies and studies of cancer genome evolution and intra-tumor heterogeneity.

  6. Optimization of human cancer radiotherapy

    CERN Document Server

    Swan, George W

    1981-01-01

    The mathematical models in this book are concerned with a variety of approaches to the manner in which the clinical radiologic treatment of human neoplasms can be improved. These improvements comprise ways of delivering radiation to the malignan­ cies so as to create considerable damage to tumor cells while sparing neighboring normal tissues. There is no unique way of dealing with these improvements. Accord­ ingly, in this book a number of different presentations are given. Each presentation has as its goal some aspect of the improvement, or optimization, of radiotherapy. This book is a collection of current ideas concerned with the optimization of human cancer radiotherapy. It is hoped that readers will build on this collection and develop superior approaches for the understanding of the ways to improve therapy. The author owes a special debt of thanks to Kathy Prindle who breezed through the typing of this book with considerable dexterity. TABLE OF CONTENTS Chapter GENERAL INTRODUCTION 1. 1 Introduction 1...

  7. Prevalence of Human Papillomavirus in endometrial cancer

    DEFF Research Database (Denmark)

    Olesen, Tina Bech; Svahn, Malene Frøsig; Faber, Mette Tuxen

    2014-01-01

    HPV is a common sexually transmitted infection and is considered to be a necessary cause of cervical cancer. The anatomical proximity to the cervix has led researchers to investigate whether Human Papillomavirus (HPV) has a role in the etiology of endometrial cancer.......HPV is a common sexually transmitted infection and is considered to be a necessary cause of cervical cancer. The anatomical proximity to the cervix has led researchers to investigate whether Human Papillomavirus (HPV) has a role in the etiology of endometrial cancer....

  8. HCSD: the human cancer secretome database

    DEFF Research Database (Denmark)

    Feizi, Amir; Banaei-Esfahani, Amir; Nielsen, Jens

    2015-01-01

    database is limiting the ability to query the increasing community knowledge. We therefore developed the Human Cancer Secretome Database (HCSD) to fulfil this gap. HCSD contains >80 000 measurements for about 7000 nonredundant human proteins collected from up to 35 high-throughput studies on 17 cancer...... types. It has a simple and user friendly query system for basic and advanced search based on gene name, cancer type and data type as the three main query options. The results are visualized in an explicit and interactive manner. An example of a result page includes annotations, cross references, cancer...

  9. Aberrant p63 and WT-1 expression in myoepithelial cells of pregnancy-associated breast cancer: implications for tumor aggressiveness and invasiveness

    Directory of Open Access Journals (Sweden)

    Zheli Xu, Wan Wang, Chu-Xia Deng, Yan-gao Man

    2009-01-01

    Full Text Available Our recent studies revealed that focal alterations in breast myoepithelial cell layers significantly impact the biological presentation of associated epithelial cells. As pregnancy-associated breast cancer (PABC has a significantly more aggressive clinical course and mortality rate than other forms of breast malignancies, our current study compared tumor suppressor expression in myoepithelial cells of PABC and non-PABC, to determine whether myoepithelial cells of PABC may have aberrant expression of tumor suppressors. Tissue sections from 20 cases of PABC and 20 cases of stage, grade, and age matched non-PABC were subjected to immunohistochemistry, and the expression of tumor suppressor maspin, p63, and Wilms' tumor 1 (WT-1 in calponin positive myoepithelial cells were statistically compared. The expression profiles of maspin, p63, and WT-1 in myoepithelial cells of all ducts encountered were similar between PABC and non-PABC. PABC, however, displayed several unique alterations in terminal duct and lobular units (TDLU, acini, and associated tumor tissues that were not seen in those of non-PABC, which included the absence of p63 and WT-1 expression in a vast majority of the myoepithelial cells, cytoplasmic localization of p63 in the entire epithelial cell population of some lobules, and substantially increasing WT-1 expression in vascular structures of the invasive cancer component. All or nearly all epithelial cells with aberrant p63 and WT-1 expression lacked the expression of estrogen receptor and progesterone receptor, whereas they had a substantially higher proliferation index than their counterparts with p63 and WT-1 expression. Hyperplastic cells with cytoplasmic p63 expression often adjacent to, and share a similar immunohistochemical and cytological profile with, invasive cancer cells. To our best knowledge, our main finings have not been previously reported. Our findings suggest that the functional status of myoepithelial cells may be

  10. Aberrant p63 and WT-1 expression in myoepithelial cells of pregnancy-associated breast cancer: implications for tumor aggressiveness and invasiveness.

    Science.gov (United States)

    Xu, Zheli; Wang, Wan; Deng, Chu-Xia; Man, Yan-Gao

    2009-01-01

    Our recent studies revealed that focal alterations in breast myoepithelial cell layers significantly impact the biological presentation of associated epithelial cells. As pregnancy-associated breast cancer (PABC) has a significantly more aggressive clinical course and mortality rate than other forms of breast malignancies, our current study compared tumor suppressor expression in myoepithelial cells of PABC and non-PABC, to determine whether myoepithelial cells of PABC may have aberrant expression of tumor suppressors. Tissue sections from 20 cases of PABC and 20 cases of stage, grade, and age matched non-PABC were subjected to immunohistochemistry, and the expression of tumor suppressor maspin, p63, and Wilms' tumor 1 (WT-1) in calponin positive myoepithelial cells were statistically compared. The expression profiles of maspin, p63, and WT-1 in myoepithelial cells of all ducts encountered were similar between PABC and non-PABC. PABC, however, displayed several unique alterations in terminal duct and lobular units (TDLU), acini, and associated tumor tissues that were not seen in those of non-PABC, which included the absence of p63 and WT-1 expression in a vast majority of the myoepithelial cells, cytoplasmic localization of p63 in the entire epithelial cell population of some lobules, and substantially increasing WT-1 expression in vascular structures of the invasive cancer component. All or nearly all epithelial cells with aberrant p63 and WT-1 expression lacked the expression of estrogen receptor and progesterone receptor, whereas they had a substantially higher proliferation index than their counterparts with p63 and WT-1 expression. Hyperplastic cells with cytoplasmic p63 expression often adjacent to, and share a similar immunohistochemical and cytological profile with, invasive cancer cells. To our best knowledge, our main finings have not been previously reported. Our findings suggest that the functional status of myoepithelial cells may be significantly

  11. Analyses of numerical aberrations of chromosome 17 and tp53 gene deletion/amplification in human oral squamous cell carcinoma using dual-color fluorescence in situ hybridization

    Directory of Open Access Journals (Sweden)

    Noemi MESZAROS

    2010-05-01

    Full Text Available In Romania, oral and facial cancers represent approximately 5% of all cancers. Deactivation and unregulated expression of oncogenes and tumor suppressor genes may be involved in the pathogenesis of oral squamous cell carcinoma. The genomic change results in numerical and structural chromosomal alterations, particularly in chromosomes 3, 9, 11 and 17. The aim of our study was to identify numerical aberrations of chromosome 17, deletion or amplification of p53 gene and to reveal correlations between abnormalities of chromosome 17and of p53 gene with TNM status and grading in 15 subjects with oral squamous cell carcinoma. 80 % of cases presented chromosome 17 polysomy and only 20% of cases had chromosome 17 monosomy. 46.6 % of samples revealed p53 gene amplification and 33.3 % of them p53 deletion. Polysomy of chromosome 17 was also detected in tumor-adjacent epithelia. The degree of the cytogenetic abnormality did not correlate with the stage of the disease, the histological differentiation of oral squamous cell carcinoma and lymph node metastasis. Molecular cytogenetic techniques, using fluorescence in situ hybridization with chromosome-specific DNA probes, facilitate the confirmation of presumed chromosomal aberrations with high sensitivity and specificity.

  12. Aberrant p16 promoter hypermethylation in bronchial mucosae as a biomarker for the early detection of lung cancer

    Institute of Scientific and Technical Information of China (English)

    XIE Guang-shun; HOU Ai-rong; LI Long-yun; GAO Yan-ning; CHENG Shu-jun

    2006-01-01

    @@ Lung cancer is the leading cause of cancer related death in the world and its mortality could be greatly reduced by diagnosis and treatment in its early stages. Effective tools for the early detection of lung cancer and its high risk factors remain a major challenge. Biomarkers that detect lung cancer in its early stages or identify its pretumour lesions,enabling early therapeutic intervention, would be invaluable to improve its dismal prognosis.

  13. Correlations between corneal and total wavefront aberrations

    Science.gov (United States)

    Mrochen, Michael; Jankov, Mirko; Bueeler, Michael; Seiler, Theo

    2002-06-01

    Purpose: Corneal topography data expressed as corneal aberrations are frequently used to report corneal laser surgery results. However, the optical image quality at the retina depends on all optical elements of the eye such as the human lens. Thus, the aim of this study was to investigate the correlations between the corneal and total wavefront aberrations and to discuss the importance of corneal aberrations for representing corneal laser surgery results. Methods: Thirty three eyes of 22 myopic subjects were measured with a corneal topography system and a Tschernig-type wavefront analyzer after the pupils were dilated to at least 6 mm in diameter. All measurements were centered with respect to the line of sight. Corneal and total wavefront aberrations were calculated up to the 6th Zernike order in the same reference plane. Results: Statistically significant correlations (p corneal and total wavefront aberrations were found for the astigmatism (C3,C5) and all 3rd Zernike order coefficients such as coma (C7,C8). No statistically significant correlations were found for all 4th to 6th order Zernike coefficients except for the 5th order horizontal coma C18 (p equals 0.003). On average, all Zernike coefficients for the corneal aberrations were found to be larger compared to Zernike coefficients for the total wavefront aberrations. Conclusions: Corneal aberrations are only of limited use for representing the optical quality of the human eye after corneal laser surgery. This is due to the lack of correlation between corneal and total wavefront aberrations in most of the higher order aberrations. Besides this, the data present in this study yield towards an aberration balancing between corneal aberrations and the optical elements within the eye that reduces the aberration from the cornea by a certain degree. Consequently, ideal customized ablations have to take both, corneal and total wavefront aberrations, into consideration.

  14. Aberrant expression of proteins involved in signal transduction and DNA repair pathways in lung cancer and their association with clinical parameters.

    Directory of Open Access Journals (Sweden)

    Yong He

    Full Text Available BACKGROUND: Because cell signaling and cell metabolic pathways are executed through proteins, protein signatures in primary tumors are useful for identifying key nodes in signaling networks whose alteration is associated with malignancy and/or clinical outcomes. This study aimed to determine protein signatures in primary lung cancer tissues. METHODOLOGY/ PRINCIPAL FINDINGS: We analyzed 126 proteins and/or protein phosphorylation sites in case-matched normal and tumor samples from 101 lung cancer patients with reverse-phase protein array (RPPA assay. The results showed that 18 molecules were significantly different (p<0.05 by at least 30% between normal and tumor tissues. Most of those molecules play roles in cell proliferation, DNA repair, signal transduction and lipid metabolism, or function as cell surface/matrix proteins. We also validated RPPA results by Western blot and/or immunohistochemical analyses for some of those molecules. Statistical analyses showed that Ku80 levels were significantly higher in tumors of nonsmokers than in those of smokers. Cyclin B1 levels were significantly overexpressed in poorly differentiated tumors while Cox2 levels were significantly overexpressed in neuroendocrinal tumors. A high level of Stat5 is associated with favorable survival outcome for patients treated with surgery. CONCLUSIONS/ SIGNIFICANCE: Our results revealed that some molecules involved in DNA damage/repair, signal transductions, lipid metabolism, and cell proliferation were drastically aberrant in lung cancer tissues, and Stat5 may serve a molecular marker for prognosis of lung cancers.

  15. Human mammary microenvironment better regulates the biology of human breast cancer in humanized mouse model.

    Science.gov (United States)

    Zheng, Ming-Jie; Wang, Jue; Xu, Lu; Zha, Xiao-Ming; Zhao, Yi; Ling, Li-Jun; Wang, Shui

    2015-02-01

    During the past decades, many efforts have been made in mimicking the clinical progress of human cancer in mouse models. Previously, we developed a human breast tissue-derived (HB) mouse model. Theoretically, it may mimic the interactions between "species-specific" mammary microenvironment of human origin and human breast cancer cells. However, detailed evidences are absent. The present study (in vivo, cellular, and molecular experiments) was designed to explore the regulatory role of human mammary microenvironment in the progress of human breast cancer cells. Subcutaneous (SUB), mammary fat pad (MFP), and HB mouse models were developed for in vivo comparisons. Then, the orthotopic tumor masses from three different mouse models were collected for primary culture. Finally, the biology of primary cultured human breast cancer cells was compared by cellular and molecular experiments. Results of in vivo mouse models indicated that human breast cancer cells grew better in human mammary microenvironment. Cellular and molecular experiments confirmed that primary cultured human breast cancer cells from HB mouse model showed a better proliferative and anti-apoptotic biology than those from SUB to MFP mouse models. Meanwhile, primary cultured human breast cancer cells from HB mouse model also obtained the migratory and invasive biology for "species-specific" tissue metastasis to human tissues. Comprehensive analyses suggest that "species-specific" mammary microenvironment of human origin better regulates the biology of human breast cancer cells in our humanized mouse model of breast cancer, which is more consistent with the clinical progress of human breast cancer.

  16. Expression of polarity genes in human cancer.

    Science.gov (United States)

    Lin, Wan-Hsin; Asmann, Yan W; Anastasiadis, Panos Z

    2015-01-01

    Polarity protein complexes are crucial for epithelial apical-basal polarity and directed cell migration. Since alterations of these processes are common in cancer, polarity proteins have been proposed to function as tumor suppressors or oncogenic promoters. Here, we review the current understanding of polarity protein functions in epithelial homeostasis, as well as tumor formation and progression. As most previous studies focused on the function of single polarity proteins in simplified model systems, we used a genomics approach to systematically examine and identify the expression profiles of polarity genes in human cancer. The expression profiles of polarity genes were distinct in different human tissues and classified cancer types. Additionally, polarity expression profiles correlated with disease progression and aggressiveness, as well as with identified cancer types, where specific polarity genes were commonly altered. In the case of Scribble, gene expression analysis indicated its common amplification and upregulation in human cancer, suggesting a tumor promoting function.

  17. Aberrant Free Radical Biology Is a Unifying Theme in the Etiology and Pathogenesis of Major Human Diseases

    OpenAIRE

    2013-01-01

    The seemingly disparate areas of oxygen toxicity, radiation exposure, and aging are now recognized to share a common feature—the aberrant production and/or removal of biologically derived free radicals and other reactive oxygen and nitrogen species (ROS/RNS). Advances in our understanding of the effects of free radicals in biology and medicine have been, and continue to be, actively translated into clinically tractable diagnostic and therapeutic applications. This issue is dedicated to recent...

  18. Antiangiogenic Steroids in Human Cancer Therapy

    OpenAIRE

    2005-01-01

    Despite advances in the early detection of tumors and in the use of chemotherapy, radiotherapy and surgery for disease management, the worldwide mortality from human cancer remains unacceptably high. The treatment of cancer may benefit from the introduction of novel therapies derived from natural products. Natural products have served to provide a basis for many of the pharmaceutical agents in current use in cancer therapy. Emerging research indicates that progressive growth and spread of ...

  19. The inhibition of Wnt/β-catenin signaling pathway in human colon cancer cells by sulindac.

    Science.gov (United States)

    Tai, Wei-Ping; Hu, Pin-Jin; Wu, Jing; Lin, Xiang-Chun

    2014-01-01

    The aberrant activation of Wnt/β-catenin signaling plays important roles in the initial development of colon cancer. Sulindac is a commonly used non-steroidal anti-inflammatory drug. We demonstrated the effects of sulindac on growth inhibition, apoptosis induction, and Wnt/β-catenin signaling suppression in human colon cancer cells. Sulindac significantly inhibited proliferation of HT-29 colon cancer cells in a dose- and time-dependent manner. Sulindac was found to induce the apoptosis of HT-29 cells and inhibit the Wnt/β-catenin pathway. The inhibition was further confirmed by the decreased protein levels of β-catenin. The results indicate that sulindac may play a beneficial role in the comprehensive treatment of colon cancer.

  20. The Induction of Chromosome Aberrations and Micronuclei in Human Peripheral Blood Lymphocytes at Low Doses of Radiation

    CERN Document Server

    Shmakova, N L; Krasavin, E A; Melnikova, L A; Fadeeva, T A

    2003-01-01

    The chromosome damage induced by the low doses of gamma-irradiation with ^{60}Co and X-rays in peripheral blood lymphocytes has been studied using different cytogenetic assays. Isolated lymphocytes were exposed to 0.01-1.0 Gy, simulated by PHA, and analysed for chromosome aberrations by the metaphase and the anaphase methods, by the micronucleus assay. Despite the quantitative differences in the amount of chromosome damage revealed by different methods, all of them demonstrated complex nonlinear dose dependence of the frequency of aberrant cells and aberrations. At the dose range of 0.01-0.05 Gy the cells showed the highest radiosensitivity; at 0.05-0.5 Gy the dose-independent induction of chromosome damage was revealed. At the doses of 0.5-1.0 Gy the dose-effect curves became linear with the decreased slope compared with the initial one (by a factor of 5 to 10 for different criteria) reflecting a higher radioresistance of the cells. These data confirm the idea that the direct linear extrapolation of high-dos...

  1. Nicotine derived genotoxic effects in human primary parotid gland cells as assessed in vitro by comet assay, cytokinesis-block micronucleus test and chromosome aberrations test.

    Science.gov (United States)

    Ginzkey, Christian; Steussloff, Gudrun; Koehler, Christian; Burghartz, Marc; Scherzed, Agmal; Hackenberg, Stephan; Hagen, Rudolf; Kleinsasser, Norbert H

    2014-08-01

    Genotoxic effects of nicotine were described in different human cells including salivary gland cells. Based on the high nicotine concentration in saliva of smokers or patients using therapeutic nicotine patches, the current study was performed to evaluate the genotoxic potential of nicotine in human salivary gland cells. Therefore, primary salivary gland cells from 10 patients undergoing parotid gland surgery were exposed to nicotine concentrations between 1 μM and 1000 μM for 1 h in the absence of exogenous metabolic activation. The acinar phenotype was proven by immunofluorescent staining of alpha-amylase. Genotoxic effects were evaluated using the Comet assay, the micronucleus test and the chromosome aberration test. Cytotoxicity and apoptosis were determined by trypan blue exclusion test and Caspase-3 assay. Nicotine was able to induce genotoxic effects in all three assays. The chromosome aberration test was the most sensitive and increases in numerical and structural (chromatid-type and chromosome-type) aberrations were seen at ≥1 μM, whereas increases in micronuclei frequency were detected at 10 μM and DNA damage as measured in the Comet assay was noted at >100 μM. No cytotoxic damage or influence of apoptosis could be demonstrated. Nicotine as a possible risk factor for tumor initiation in salivary glands is still discussed controversially. Our results demonstrated the potential of nicotine to induce genotoxic effects in salivary gland cells. These results were observed at saliva nicotine levels similar to those found after oral or transdermal exposure to nicotine and suggest the necessity of careful monitoring of the use of nicotine in humans.

  2. HUMAN PAPILLOMAVIRUS INFECTIONS IN LARYNGEAL CANCER

    NARCIS (Netherlands)

    Torrente, Mariela C.; Rodrigo, Juan P.; Haigentz, Missak; Dikkers, Frederik G.; Rinaldo, Alessandra; Takes, Robert P.; Olofsson, Jan; Ferlito, Alfio

    2011-01-01

    Although the association and clinical significance of human papillomavirus (HPV) infections with a subset of head and neck cancers, particularly for oropharyngeal carcinoma, has recently been well documented, the involvement of HPV in laryngeal cancer has been inadequately evaluated. Herein we revie

  3. HUMAN PAPILLOMAVIRUS INFECTIONS IN LARYNGEAL CANCER

    NARCIS (Netherlands)

    Torrente, Mariela C.; Rodrigo, Juan P.; Haigentz, Missak; Dikkers, Frederik G.; Rinaldo, Alessandra; Takes, Robert P.; Olofsson, Jan; Ferlito, Alfio

    2011-01-01

    Although the association and clinical significance of human papillomavirus (HPV) infections with a subset of head and neck cancers, particularly for oropharyngeal carcinoma, has recently been well documented, the involvement of HPV in laryngeal cancer has been inadequately evaluated. Herein we revie

  4. Human papillomavirus infections in laryngeal cancer

    NARCIS (Netherlands)

    Torrente, M.C.; Rodrigo, J.P.; Haigentz Jr., M.; Dikkers, F.G.; Rinaldo, A.; Takes, R.P.; Olofsson, J.; Ferlito, A.

    2011-01-01

    Although the association and clinical significance of human papillomavirus (HPV) infections with a subset of head and neck cancers, particularly for oropharyngeal carcinoma, has recently been well documented, the involvement of HPV in laryngeal cancer has been inadequately evaluated. Herein we revie

  5. Human papillomavirus infections in laryngeal cancer

    NARCIS (Netherlands)

    Torrente, M.C.; Rodrigo, J.P.; Haigentz Jr., M.; Dikkers, F.G.; Rinaldo, A.; Takes, R.P.; Olofsson, J.; Ferlito, A.

    2011-01-01

    Although the association and clinical significance of human papillomavirus (HPV) infections with a subset of head and neck cancers, particularly for oropharyngeal carcinoma, has recently been well documented, the involvement of HPV in laryngeal cancer has been inadequately evaluated. Herein we

  6. HUMAN PAPILLOMAVIRUS INFECTIONS IN LARYNGEAL CANCER

    NARCIS (Netherlands)

    Torrente, Mariela C.; Rodrigo, Juan P.; Haigentz, Missak; Dikkers, Frederik G.; Rinaldo, Alessandra; Takes, Robert P.; Olofsson, Jan; Ferlito, Alfio

    Although the association and clinical significance of human papillomavirus (HPV) infections with a subset of head and neck cancers, particularly for oropharyngeal carcinoma, has recently been well documented, the involvement of HPV in laryngeal cancer has been inadequately evaluated. Herein we

  7. Gene Expression Meta-Analysis identifies Cytokine Pathways and 5q Aberrations involved in Metastasis of ERBB2 Amplified and Basal Breast Cancer

    DEFF Research Database (Denmark)

    Thomassen, Mads; Tan, Qihua; Burton, Mark

    2013-01-01

    Background: Breast tumors have been described by molecular subtypes characterized by pervasively different gene expression profiles. The subtypes are associated with different clinical parameters and origin of precursor cells. However, the biological pathways and chromosomal aberrations that differ...... the subgroups impact metastasis. Results: We have scrutinized publicly available gene expression datasets and identified molecular subtypes in 1,394 breast tumors with outcome data. By analysis of chromosomal regions and pathways using “Gene set enrichment analysis” followed by a meta-analysis, we identified...... show that high expression of 5q14 genes and low levels of TNFR2 pathway genes were associated with poor survival in basal-like cancers. Furthermore, low expression of 5q33 genes and interleukin-12 pathway genes were associated with poor outcome exclusively in ERBB2-like tumors. Conclusion...

  8. Comprehensive genomic characterization defines human glioblastoma genes and core pathways

    NARCIS (Netherlands)

    Chin, L.; Meyerson, M.; Aldape, K.; Bigner, D.; Mikkelsen, T.; VandenBerg, S.; Kahn, A.; Penny, R.; Gerhard, D. S.; Getz, G.; Brennan, C.; Taylor, B. S.; Winckler, W.; Park, P.; Ladanyi, M.; Hoadley, K. A.; Verhaak, R. G. W.; Hayes, D. N.; Spellman, Paul T.; Absher, D.; Weir, B. A.; Ding, L.; Wheeler, D.; Lawrence, M. S.; Cibulskis, K.; Mardis, E.; Zhang, Jinghui; Wilson, R. K.; Donehower, L.; Wheeler, D. A.; Purdom, E.; Wallis, J.; Laird, P. W.; Herman, J. G.; Schuebel, K. E.; Weisenberger, D. J.; Baylin, S. B.; Schultz, N.; Yao, Jun; Wiedemeyer, R.; Weinstein, J.; Sander, C.; Gibbs, R. A.; Gray, J.; Kucherlapati, R.; Lander, E. S.; Myers, R. M.; Perou, C. M.; McLendon, Roger; Friedman, Allan; Van Meir, Erwin G; Brat, Daniel J; Mastrogianakis, Gena Marie; Olson, Jeffrey J; Lehman, Norman; Yung, W. K. Alfred; Bogler, Oliver; Berger, Mitchel; Prados, Michael; Muzny, Donna; Morgan, Margaret; Scherer, Steve; Sabo, Aniko; Nazareth, Lynn; Lewis, Lora; Hall, Otis; Zhu, Yiming; Ren, Yanru; Alvi, Omar; Yao, Jiqiang; Hawes, Alicia; Jhangiani, Shalini; Fowler, Gerald; San Lucas, Anthony; Kovar, Christie; Cree, Andrew; Dinh, Huyen; Santibanez, Jireh; Joshi, Vandita; Gonzalez-Garay, Manuel L.; Miller, Christopher A.; Milosavljevic, Aleksandar; Sougnez, Carrie; Fennell, Tim; Mahan, Scott; Wilkinson, Jane; Ziaugra, Liuda; Onofrio, Robert; Bloom, Toby; Nicol, Rob; Ardlie, Kristin; Baldwin, Jennifer; Gabriel, Stacey; Fulton, Robert S.; McLellan, Michael D.; Larson, David E.; Shi, Xiaoqi; Abbott, Rachel; Fulton, Lucinda; Chen, Ken; Koboldt, Daniel C.; Wendl, Michael C.; Meyer, Rick; Tang, Yuzhu; Lin, Ling; Osborne, John R.; Dunford-Shore, Brian H.; Miner, Tracie L.; Delehaunty, Kim; Markovic, Chris; Swift, Gary; Courtney, William; Pohl, Craig; Abbott, Scott; Hawkins, Amy; Leong, Shin; Haipek, Carrie; Schmidt, Heather; Wiechert, Maddy; Vickery, Tammi; Scott, Sacha; Dooling, David J.; Chinwalla, Asif; Weinstock, George M.; O'Kelly, Michael; Robinson, Jim; Alexe, Gabriele; Beroukhim, Rameen; Carter, Scott; Chiang, Derek; Gould, Josh; Gupta, Supriya; Korn, Josh; Mermel, Craig; Mesirov, Jill; Monti, Stefano; Nguyen, Huy; Parkin, Melissa; Reich, Michael; Stransky, Nicolas; Garraway, Levi; Golub, Todd; Protopopov, Alexei; Perna, Ilana; Aronson, Sandy; Sathiamoorthy, Narayan; Ren, Georgia; Kim, Hyunsoo; Kong, Sek Won; Xiao, Yonghong; Kohane, Isaac S.; Seidman, Jon; Cope, Leslie; Pan, Fei; Van Den Berg, David; Van Neste, Leander; Yi, Joo Mi; Li, Jun Z.; Southwick, Audrey; Brady, Shannon; Aggarwal, Amita; Chung, Tisha; Sherlock, Gavin; Brooks, James D.; Jakkula, Lakshmi R.; Lapuk, Anna V.; Marr, Henry; Dorton, Shannon; Choi, Yoon Gi; Han, Ju; Ray, Amrita; Wang, Victoria; Durinck, Steffen; Robinson, Mark; Wang, Nicholas J.; Vranizan, Karen; Peng, Vivian; Van Name, Eric; Fontenay, Gerald V.; Ngai, John; Conboy, John G.; Parvin, Bahram; Feiler, Heidi S.; Speed, Terence P.; Socci, Nicholas D.; Olshen, Adam; Lash, Alex; Reva, Boris; Antipin, Yevgeniy; Stukalov, Alexey; Gross, Benjamin; Cerami, Ethan; Wang, Wei Qing; Qin, Li-Xuan; Seshan, Venkatraman E.; Villafania, Liliana; Cavatore, Magali; Borsu, Laetitia; Viale, Agnes; Gerald, William; Topal, Michael D.; Qi, Yuan; Balu, Sai; Shi, Yan; Wu, George; Bittner, Michael; Shelton, Troy; Lenkiewicz, Elizabeth; Morris, Scott; Beasley, Debbie; Sanders, Sheri; Sfeir, Robert; Chen, Jessica; Nassau, David; Feng, Larry; Hickey, Erin; Schaefer, Carl; Madhavan, Subha; Buetow, Ken; Barker, Anna; Vockley, Joseph; Compton, Carolyn; Vaught, Jim; Fielding, Peter; Collins, Francis; Good, Peter; Guyer, Mark; Ozenberger, Brad; Peterson, Jane; Thomson, Elizabeth

    2008-01-01

    Human cancer cells typically harbour multiple chromosomal aberrations, nucleotide substitutions and epigenetic modifications that drive malignant transformation. The Cancer Genome Atlas ( TCGA) pilot project aims to assess the value of large- scale multi- dimensional analysis of these molecular

  9. Comprehensive genomic characterization defines human glioblastoma genes and core pathways

    NARCIS (Netherlands)

    Chin, L.; Meyerson, M.; Aldape, K.; Bigner, D.; Mikkelsen, T.; VandenBerg, S.; Kahn, A.; Penny, R.; Gerhard, D. S.; Getz, G.; Brennan, C.; Taylor, B. S.; Winckler, W.; Park, P.; Ladanyi, M.; Hoadley, K. A.; Verhaak, R. G. W.; Hayes, D. N.; Spellman, Paul T.; Absher, D.; Weir, B. A.; Ding, L.; Wheeler, D.; Lawrence, M. S.; Cibulskis, K.; Mardis, E.; Zhang, Jinghui; Wilson, R. K.; Donehower, L.; Wheeler, D. A.; Purdom, E.; Wallis, J.; Laird, P. W.; Herman, J. G.; Schuebel, K. E.; Weisenberger, D. J.; Baylin, S. B.; Schultz, N.; Yao, Jun; Wiedemeyer, R.; Weinstein, J.; Sander, C.; Gibbs, R. A.; Gray, J.; Kucherlapati, R.; Lander, E. S.; Myers, R. M.; Perou, C. M.; McLendon, Roger; Friedman, Allan; Van Meir, Erwin G; Brat, Daniel J; Mastrogianakis, Gena Marie; Olson, Jeffrey J; Lehman, Norman; Yung, W. K. Alfred; Bogler, Oliver; Berger, Mitchel; Prados, Michael; Muzny, Donna; Morgan, Margaret; Scherer, Steve; Sabo, Aniko; Nazareth, Lynn; Lewis, Lora; Hall, Otis; Zhu, Yiming; Ren, Yanru; Alvi, Omar; Yao, Jiqiang; Hawes, Alicia; Jhangiani, Shalini; Fowler, Gerald; San Lucas, Anthony; Kovar, Christie; Cree, Andrew; Dinh, Huyen; Santibanez, Jireh; Joshi, Vandita; Gonzalez-Garay, Manuel L.; Miller, Christopher A.; Milosavljevic, Aleksandar; Sougnez, Carrie; Fennell, Tim; Mahan, Scott; Wilkinson, Jane; Ziaugra, Liuda; Onofrio, Robert; Bloom, Toby; Nicol, Rob; Ardlie, Kristin; Baldwin, Jennifer; Gabriel, Stacey; Fulton, Robert S.; McLellan, Michael D.; Larson, David E.; Shi, Xiaoqi; Abbott, Rachel; Fulton, Lucinda; Chen, Ken; Koboldt, Daniel C.; Wendl, Michael C.; Meyer, Rick; Tang, Yuzhu; Lin, Ling; Osborne, John R.; Dunford-Shore, Brian H.; Miner, Tracie L.; Delehaunty, Kim; Markovic, Chris; Swift, Gary; Courtney, William; Pohl, Craig; Abbott, Scott; Hawkins, Amy; Leong, Shin; Haipek, Carrie; Schmidt, Heather; Wiechert, Maddy; Vickery, Tammi; Scott, Sacha; Dooling, David J.; Chinwalla, Asif; Weinstock, George M.; O'Kelly, Michael; Robinson, Jim; Alexe, Gabriele; Beroukhim, Rameen; Carter, Scott; Chiang, Derek; Gould, Josh; Gupta, Supriya; Korn, Josh; Mermel, Craig; Mesirov, Jill; Monti, Stefano; Nguyen, Huy; Parkin, Melissa; Reich, Michael; Stransky, Nicolas; Garraway, Levi; Golub, Todd; Protopopov, Alexei; Perna, Ilana; Aronson, Sandy; Sathiamoorthy, Narayan; Ren, Georgia; Kim, Hyunsoo; Kong, Sek Won; Xiao, Yonghong; Kohane, Isaac S.; Seidman, Jon; Cope, Leslie; Pan, Fei; Van Den Berg, David; Van Neste, Leander; Yi, Joo Mi; Li, Jun Z.; Southwick, Audrey; Brady, Shannon; Aggarwal, Amita; Chung, Tisha; Sherlock, Gavin; Brooks, James D.; Jakkula, Lakshmi R.; Lapuk, Anna V.; Marr, Henry; Dorton, Shannon; Choi, Yoon Gi; Han, Ju; Ray, Amrita; Wang, Victoria; Durinck, Steffen; Robinson, Mark; Wang, Nicholas J.; Vranizan, Karen; Peng, Vivian; Van Name, Eric; Fontenay, Gerald V.; Ngai, John; Conboy, John G.; Parvin, Bahram; Feiler, Heidi S.; Speed, Terence P.; Socci, Nicholas D.; Olshen, Adam; Lash, Alex; Reva, Boris; Antipin, Yevgeniy; Stukalov, Alexey; Gross, Benjamin; Cerami, Ethan; Wang, Wei Qing; Qin, Li-Xuan; Seshan, Venkatraman E.; Villafania, Liliana; Cavatore, Magali; Borsu, Laetitia; Viale, Agnes; Gerald, William; Topal, Michael D.; Qi, Yuan; Balu, Sai; Shi, Yan; Wu, George; Bittner, Michael; Shelton, Troy; Lenkiewicz, Elizabeth; Morris, Scott; Beasley, Debbie; Sanders, Sheri; Sfeir, Robert; Chen, Jessica; Nassau, David; Feng, Larry; Hickey, Erin; Schaefer, Carl; Madhavan, Subha; Buetow, Ken; Barker, Anna; Vockley, Joseph; Compton, Carolyn; Vaught, Jim; Fielding, Peter; Collins, Francis; Good, Peter; Guyer, Mark; Ozenberger, Brad; Peterson, Jane; Thomson, Elizabeth

    2008-01-01

    Human cancer cells typically harbour multiple chromosomal aberrations, nucleotide substitutions and epigenetic modifications that drive malignant transformation. The Cancer Genome Atlas ( TCGA) pilot project aims to assess the value of large- scale multi- dimensional analysis of these molecular char

  10. Potential Prognostic Markers for Human Prostate Cancer

    Science.gov (United States)

    2001-03-01

    Prostate 35: 185-192, 1998 osteoblasts on prostate carcinoma proliferation and chemo- 32. Trikha M, Cai Y, Grignon D, Honn KV: Identification taxis ...Markers for Human Prostate Cancer PRINCIPAL INVESTIGATOR: Bruce R. Zetter, Ph.D. CONTRACTING ORGANIZATION: Children’s Hospital Boston, Massachusetts...March 2001 Final (1 Sep 98 - 28 Feb 01) 4. TITLE AND SUBTITLE 5. FUNDING NUMBERS Potential Prognostic Markers for Human Prostate Cancer DAMD17-98-1

  11. The first rib hypoplasia and the aberrant pulmonary artery branch detected by three-dimensional computed tomography in a surgical case with apical lung cancer, a case report.

    Science.gov (United States)

    Sugiura, Yasoo; Fujimoto, Hiroyuki; Naruke, Masao; Hashizume, Toshinori; Kaseda, Shizuka; Nemoto, Etsuo

    2017-01-11

    The complete resection is one of the most crucial requirements to achieve favorable outcomes in oncologic surgery. The apex of the lung is surrounded complicatedly by the clavicle, the first rib, the subclavian artery and vein, and the brachial plexus. Therefore, the image information especially about the infiltration of adjacent anatomic structures, facilitates the surgery in the apical lung cancer. A 70-year-old man presented at our hospital with a computed tomography (CT) scan showing a tumor at the left lung apex that infiltrated the chest wall. Two anatomical anomalies were found, which were the first rib hypoplasia and the aberrant pulmonary artery branch. The three-dimensional (3D) CT enhanced with using bolus tracking method, simultaneously revealed that the subclavian vessels existed between the clavicle and the second rib, and the left lingual pulmonary artery and the ventrobasal pulmonary artery diverged from the left main pulmonary artery as the first branch. We diagnosed the tumor as a primary lung squamous cell carcinoma that infiltrated the second rib, because sputum cytology suggested squamous cell carcinoma. Left lung upper lobectomy with lymph node dissection and chest wall resection (the second and third ribs) were performed with caution for the anatomical anomalies. The pathological diagnosis was pleomorphic carcinoma (5.0 × 3.0 × 1.9 cm) that invaded the second costal bone, and the pathological stage was confirmed to be pT3N0M0. Pathologically curative resection was accomplished. The patient was discharged from the hospital on 10 days after surgery. The 3D-CT precisely detected the anomalous structure consisted with the clavicle, the second rib, the subclavian artery and vein, the aberrant pulmonary artery branch. In the present case with the apical lung cancer, the evaluation of the anatomical structure via 3D-CT facilitated to achieve a pathological complete resection.

  12. Frequency of Early and Late Chromosome Aberrations in Different Types of Cells After Proton and Fe Ion Irradiation

    Science.gov (United States)

    Lu, Tao; Zhang, Ye; Yeshitla, Samrawit; Bowler, Deborah; Kadhim, Munira; Wilson, Bobby; Wu, Honglu

    2016-01-01

    DNA damages induced by space radiation, consisting of protons and high-LET charged particles, can be complex in nature, which are often left unrepaired and cause chromosomal aberrations. Increased level of genomic instability is attributed to tumorigenesis and increased cancer risks. To investigate genomic instability induced by charged particles, human lymphocytes ex vivo, human fibroblasts, and human mammary epithelial cells, as well as mouse bone marrow stem cells isolated from CBA/CaH and C57BL/6 strains were exposed to high energy protons and Fe ions. Metaphase chromosome spreads at different cell divisions after radiation exposure were collected and, chromosome aberrations were analyzed with fluorescence in situ hybridization with whole chromosome-specific probes for human cells. With proton irradiation, levels of chromosome aberrations decreased by about 50% in both lymphocytes and epithelial cells after multiple cell divisions, compared to initial chromosome aberrations at 48 hours post irradiation in both cell types. With Fe ion irradiation, however, the frequency of chromosome aberrations in lymphocytes after multiple cell divisions was significantly lower than that in epithelial cells at comparable cell divisions, while their initial chromosome aberrations were at similar levels. Similar to the human cells, after Fe ion irradiation, the frequency of late chromosome aberrations was similar to that of the early damages for radio-sensitive CBA cells, but different for radio-resistant C57 cells. Our results suggest that relative biological effectiveness (RBE) values are dependent not only on radiation sources, but also on cell types and cell divisions.

  13. Frequency of Early and Late Chromosome Aberrations in Different Types of Cells After Proton and Fe Ion Irradiation

    Science.gov (United States)

    Lu, Tao; Wu, Honglu; Zhang, Ye; Yeshitla, Samrawit; Kadhim, Munira; Wilson, Bobby; Bowler, Deborah

    2016-07-01

    DNA damages induced by space radiation, consisting of protons and high-LET charged particles, can be complex in nature, which are often left unrepaired and cause chromosomal aberrations. Increased level of genomic instability is attributed to tumorigenesis and increased cancer risks. To investigate genomic instability induced by charged particles, human lymphocytes ex vivo, human fibroblasts, and human mammary epithelial cells, as well as mouse bone marrow stem cells isolated from CBA/CaH and C57BL/6 strains were exposed to high energy protons and Fe ions. Metaphase chromosome spreads at different cell divisions after radiation exposure were collected and, chromosome aberrations were analyzed with fluorescence in situ hybridization with whole chromosome-specific probes for human cells. With proton irradiation, levels of chromosome aberrations decreased by about 50% in both lymphocytes and epithelial cells after multiple cell divisions, compared to initial chromosome aberrations at 48 hours post irradiation in both cell types. With Fe ion irradiation, however, the frequency of chromosome aberrations in lymphocytes after multiple cell divisions was significantly lower than that in epithelial cells at comparable cell divisions, while their initial chromosome aberrations were at similar levels. Similar to the human cells, after Fe ion irradiation, the frequency of late chromosome aberrations was similar to that of the early damages for radio-sensitive CBA cells, but different for radio-resistant C57 cells. Our results suggest that relative biological effectiveness (RBE) values are dependent not only on radiation sources, but also on cell types and cell divisions.

  14. Identification of chromosome aberrations in sporadic microsatellite stable and unstable colorectal cancers using array comparative genomic hybridization

    DEFF Research Database (Denmark)

    Jensen, Thomas Dyrsø; Li, Jian; Wang, Kai;

    2011-01-01

    Colorectal cancer (CRC) is one of the most common cancers in Denmark and in the western world in general, and the prognosis is generally poor. According to the traditional molecular classification of sporadic colorectal cancer, microsatellite stable (MSS)/chromosome unstable (CIN) colorectal...... cancers constitute approximately 85% of sporadic cases, whereas microsatellite unstable (MSI) cases constitute the remaining 15%. In this study, we used array comparative genomic hybridization (aCGH) to identify genomic hotspot regions that harbor recurrent copy number changes. The study material...

  15. Aberrant over-expression of TRPM7 ion channels in pancreatic cancer: required for cancer cell invasion and implicated in tumor growth and metastasis

    Directory of Open Access Journals (Sweden)

    Nelson S. Yee

    2015-03-01

    Full Text Available Our previous studies in zebrafish development have led to identification of the novel roles of the transient receptor potential melastatin-subfamily member 7 (TRPM7 ion channels in human pancreatic cancer. However, the biological significance of TRPM7 channels in pancreatic neoplasms was mostly unexplored. In this study, we determined the expression levels of TRPM7 in pancreatic tissue microarrays and correlated these measurements in pancreatic adenocarcinoma with the clinicopathological features. We also investigated the role of TRPM7 channels in pancreatic cancer cell invasion using the MatrigelTM-coated transwell assay. In normal pancreas, TRPM7 is expressed at a discernable level in the ductal cells and centroacinar cells and at a relatively high level in the islet endocrine cells. In chronic pancreatitis, pre-malignant tissues, and malignant neoplasms, there is variable expression of TRPM7. In the majority of pancreatic adenocarcinoma specimens examined, TRPM7 is expressed at either moderate-level or high-level. Anti-TRPM7 immunoreactivity in pancreatic adenocarcinoma significantly correlates with the size and stages of tumors. In human pancreatic adenocarcinoma cells in which TRPM7 is highly expressed, short hairpin RNA-mediated suppression of TRPM7 impairs cell invasion. The results demonstrate that TRPM7 channels are over-expressed in a proportion of the pre-malignant lesions and malignant tumors of the pancreas, and they are necessary for invasion by pancreatic cancer cells. We propose that TRPM7 channels play important roles in development and progression of pancreatic neoplasm, and they may be explored as clinical biomarkers and targets for its prevention and treatment.

  16. Biological stoichiometry in human cancer.

    Directory of Open Access Journals (Sweden)

    James J Elser

    Full Text Available BACKGROUND: A growing tumor in the body can be considered a complex ecological and evolutionary system. A new eco-evolutionary hypothesis (the "Growth Rate Hypothesis", GRH proposes that tumors have elevated phosphorus (P demands due to increased allocation to P-rich nucleic acids, especially ribosomal RNA, to meet the protein synthesis demands of accelerated proliferation. METHODOLOGY/PRINCIPAL FINDINGS: We determined the elemental (C, N, P and nucleic acid contents of paired malignant and normal tissues from colon, lung, liver, or kidney for 121 patients. Consistent with the GRH, lung and colon tumors were significantly higher (by approximately two-fold in P content (fraction of dry weight and RNA content and lower in nitrogen (N:P ratio than paired normal tissue, and P in RNA contributed a significantly larger fraction of total biomass P in malignant relative to normal tissues. Furthermore, patient-specific differences for %P between malignant and normal tissues were positively correlated with such differences for %RNA, both for the overall data and within three of the four organ sites. However, significant differences in %P and %RNA between malignant and normal tissues were not seen in liver and kidney and, overall, RNA contributed only approximately 11% of total tissue P content. CONCLUSIONS/SIGNIFICANCE: Data for lung and colon tumors provide support for the GRH in human cancer. The two-fold amplification of P content in colon and lung tumors may set the stage for potential P-limitation of their proliferation, as such differences often do for rapidly growing biota in ecosystems. However, data for kidney and liver do not support the GRH. To account for these conflicting observations, we suggest that local environments in some organs select for neoplastic cells bearing mutations increasing cell division rate ("r-selected," as in colon and lung while conditions elsewhere may select for reduced mortality rate ("K-selected," as in liver and

  17. Aberrantly glycosylated MUC1 is expressed on the surface of breast cancer cells and a target for antibody-dependent cell-mediated cytotoxicity

    DEFF Research Database (Denmark)

    Lavrsen, Kirstine; Madsen, Caroline B; Rasch, Morten G

    2013-01-01

    not covered by immunological tolerance in MUC1 humanized mice and man. The objective of this study was to determine if mouse antibodies to this Tn-MUC1 epitope induce antibody-dependent cellular cytotoxicity (ADCC) pivotal for their potential use in cancer immunotherapy. Binding affinity of mAb 5E5 directed...... is expressed on the surface of breast cancer cells and a target for antibody-dependent cell-mediated cytotoxicity suggesting that antibodies targeting glycopeptide epitopes on mucins are strong candidates for cancer-specific immunotherapies.......Protein glycosylation often changes during cancer development, resulting in the expression of cancer-associated carbohydrate antigens. In particular mucins such as MUC1 are subject to these changes. We previously identified an immunodominant Tn-MUC1 (GalNAc-α-MUC1) cancer-specific epitope...

  18. MicroRNAs and their therapeutic potential for human diseases: aberrant microRNA expression in Alzheimer's disease brains.

    Science.gov (United States)

    Satoh, Jun-ichi

    2010-01-01

    MicroRNAs (miRNAs) are a group of small noncoding RNAs that regulate translational repression of multiple target mRNAs. The miRNAs in a whole cell regulate greater than 30% of all protein-coding genes. The vast majority of presently identified miRNAs are expressed in the brain in a spatially and temporally controlled manner. They play a key role in neuronal development, differentiation, and synaptic plasticity. However, at present, the pathological implications of deregulated miRNA expression in neurodegenerative diseases remain largely unknown. This review will briefly summarize recent studies that focus attention on aberrant miRNA expression in Alzheimer's disease brains.

  19. Aberrant methylation of the X-linked ribosomal S6 kinase RPS6KA6 (RSK4) in endometrial cancers.

    Science.gov (United States)

    Dewdney, Summer B; Rimel, B J; Thaker, Premal H; Thompson, Dominic M; Schmidt, Amy; Huettner, Phyllis; Mutch, David G; Gao, Feng; Goodfellow, Paul J

    2011-04-15

    Effective treatments for advanced endometrial cancer are lacking. Novel therapies that target specific pathways hold promise for better treatment outcomes with less toxicity. Mutation activation of the FGFR2/RAS/ERK pathway is important in endometrial tumorigenesis. RPS6KA6 (RSK4) is a putative tumor suppressor gene and is a target of the ERK signaling pathway. We explored the role of RSK4 in endometrial cancer. We showed that RSK4 is expressed in normal endometrial tissue and is absent or much reduced in endometrial cancer. On the basis of previous reports on methylation in other cancers, we hypothesized that the absence of RSK4 transcript is associated with epigenetic silencing rather than mutation. We determined the methylation and expression status of RSK4 in primary endometrial cancers and cell lines and the effects of treatment with a demethylating agent. The relationship between RSK4 methylation and clinicopathologic features was assessed. RSK4 is frequently hypermethylated in endometrial cancer cells lines and in primary endometrial cancer compared with normal endometrial tissue. RSK4 methylation was significantly associated with tumor grade, with higher grade tumors having lower levels of methylation (P = 0.03). RSK4 methylation levels were not associated with other clinical variables. We did find that RSK4 methylation was significantly correlated with expression in primary endometrial tumors and in cell lines. Reactivation of RSK4 by 5-azacytidine was successfully performed showing 8- to more than 1,200-fold increases in transcript levels. RSK4 appears to be epigenetically silenced in endometrial cancer as evidenced by hypermethylation. Its role as a suppressor in endometrial cancer, however, remains uncertain. ©2011 AACR.

  20. Vibration Induces BAFF Overexpression and Aberrant O-Glycosylation of IgA1 in Cultured Human Tonsillar Mononuclear Cells in IgA Nephropathy

    Directory of Open Access Journals (Sweden)

    Muyao Ye

    2016-01-01

    Full Text Available Objective. To investigate the influence of in vitro vibratory stimulation of human tonsillar mononuclear cells (TMCs. Methods. Fourteen IgA nephropathy (IgAN patients with chronic tonsillitis (CT and 12 CT patients with no renal pathology were enrolled. Group A TMCs were collected after 24 hours of culture and used to determine baseline levels. TMCs in groups B, C, D, E, and F were exposed to vibratory stimulation (60 Hz for 0 (as the control group, 1, 3, 5, and 10 minutes, respectively. Results. Baseline concentrations of B-cell-activation factor (BAFF and IgA1, BAFF mRNA expression, and aberrant O-glycosylation IgA1 level were higher in the IgAN group as compared to that in the CT group, and all increased after vibratory stimulation. Baseline mRNA expressions of core β1,3-galactosyltransferase (C1GALT1 and core β1,3GalT-specific molecular chaperone (Cosmc were lower in the IgAN group; the levels decreased further after vibratory stimulation. Conclusion. In patients with IgAN, vibratory stimulation of TMCs appears to induce IgA1 secretion through activation of BAFF release and to aberrant O-glycosylation IgA1 by suppressing C1GALT1 and Cosmc expression. In vitro vibratory stimulation of human TMCs mimics the vibratory simulation of palatine tonsils produced by vocal cords during phonation.

  1. Aberrant methylation of NPY, PENK, and WIF1 as a promising marker for blood-based diagnosis of colorectal cancer

    National Research Council Canada - National Science Library

    Roperch, Jean-Pierre; Incitti, Roberto; Forbin, Solène; Bard, Floriane; Mansour, Hicham; Mesli, Farida; Baumgaertner, Isabelle; Brunetti, Francesco; Sobhani, Iradj

    2013-01-01

    ... differentially methylated candidate epigenetic genes (NPY, PENK). To this gene panel we added WIF, on the basis of being reported in literature as silenced by promoter hypermethylation in several cancers, including CRC...

  2. Aberrant Promoter Methylation of the Tumour Suppressor RASSF10 and Its Growth Inhibitory Function in Breast Cancer

    Directory of Open Access Journals (Sweden)

    Antje M. Richter

    2016-02-01

    Full Text Available Breast cancer is the most common cancer in women, with 1.7 million new cases each year. As early diagnosis and prognosis are crucial factors in cancer treatment, we investigated potential DNA methylation biomarkers of the tumour suppressor family Ras-association domain family (RASSF. Promoter hypermethylation of tumour suppressors leads to their inactivation and thereby promotes cancer development and progression. In this study we analysed the tumour suppressors RASSF1A and RASSF10. Our study shows that RASSF10 is expressed in normal breast but inactivated by methylation in breast cancer. We observed a significant inactivating promoter methylation of RASSF10 in primary breast tumours. RASSF10 is inactivated in 63% of primary breast cancer samples but only 4% of normal control breast tissue is methylated (p < 0.005. RASSF1A also shows high promoter methylation levels in breast cancer of 56% vs. 8% of normal tissue (p < 0.005. Interestingly more than 80% of breast cancer samples harboured a hypermethylation of RASSF10 and/or RASSF1A promoter. Matching samples exhibited a strong tumour specific promoter methylation of RASSF10 in comparison to the normal control breast tissue. Demethylation treatment of breast cancer cell lines MCF7 and T47D reversed RASSF10 promoter hypermethylation and re-established RASSF10 expression. In addition, we could show the growth inhibitory potential of RASSF10 in breast cancer cell lines MCF7 and T47D upon exogenous expression of RASSF10 by colony formation. We could further show, that RASSF10 induced apoptotic changes in MCF7 and T47D cells, which was verified by a significant increase in the apoptotic sub G1 fraction by 50% using flow cytometry for MCF7 cells. In summary, our study shows the breast tumour specific inactivation of RASSF10 and RASSF1A due to DNA methylation of their CpG island promoters. Furthermore RASSF10 was characterised by the ability to block growth of breast cancer cell lines by apoptosis

  3. Molecular gate keepers succumb to gene aberrations in colorectal cancer in Kashmiri population, revealing a high incidence area

    Directory of Open Access Journals (Sweden)

    Sameer A

    2009-01-01

    Full Text Available Background/Aim: Colorectal cancer (CRC is one of the leading malignancies worldwide and has been reported to show geographical variation in its incidence, even within areas of ethnic homogeneity. The aim of this study was to identify p53 and K-ras gene mutations in CRC patients in a Kashmiri population, and to assess whether these mutations are linked with clinicopathological parameters. Materials and Methods: Paired tumor and normal tissue samples from a consecutive series of 53 patients undergoing resective surgery for CRC were prospectively studied for p53 and K-ras gene mutations by PCR/single strand conformation polymorphism (SSCP. Results: Less than half (45%, 19/42 of the patients presented mutations in the p53 gene. Twenty eight mutations were found in the p53 gene, which comprised of 23 substitutions (17 transitions + 6 transversions, and five insertions. The 23 substitutions constituted 18 missense mutations, two nonsense mutations, and three silent mutations. Of the 28 mutations (7.14% observed in this study, 2 were not previously reported for CRC samples and were identified as novel p53 mutations. A few patients (22.64%, 12/53 presented with mutations in K-ras, constituting 13 missense mutations, out of which 11 were G→A transitions, one was a G→C transversion, and one a G→T transversion. More than half (61.5% of the mutations occurred in codon 12 whereas a few (38.5% occurred in codon 13. One tumor contained missense mutations in both codons. Comparison of the mutation profiles of our patients with those of other ethnic populations and regions reflected both differences and similarities, indicating co-exposure to a unique set of risk factors. Conclusion: Mutations of the p53 and K-ras genes are some of the most common genetic changes in the development of human CRC. The high frequency of p53 gene mutations implicates p53 as a predominant factor for CRC in the high-risk ethnic Kashmiri population.

  4. RBE of Energetic Iron Ions for the Induction of Early and Late Chromosome Aberrations in Different Cell Types

    Science.gov (United States)

    Zhang, Ye; Yeshitla, Samrawit; Hada, Megumi; Kadhim, Munira; Wilson, Bobby; Wu, Honglu

    2014-01-01

    Numerous published studies have reported the RBE values for chromosome chromosomes induced by charged particles of different LET. The RBE for chromosome aberrations in human lymphocytes exposed ex vivo showed a similar relationship as the quality factor for cancer induction. Consequently, increased chromosome aberrations in the astronauts' white blood cells post long-duration missions are used to determine the biological doses from exposures to space radiation. The RBE value is known to be very different for different types of cancer. Previously, we reported that the RBE for initial chromosome damages was high in human lymphocytes exposed to Fe ions. After multiple cell divisions post irradiation, the RBE was significantly smaller. To test the hypothesis that the RBE values for chromosome aberrations are different between early and late damages and also different between different cell types, we exposed human lymphocytes ex vivo, and human fibroblast cells and human mammary epithelial cells in vitro to 600 MeV/u Fe ions. Post irradiation, the cells were collected at first mitosis, or cultured for multiple generations for collections of remaining or late arising chromosome aberrations. The chromosome aberrations were quantified using fluorescent in situ hybridization (FISH) with whole chromosome specific probes. This study attempts to offer an explanation for the varying RBE values for different cancer types.

  5. Novel innate cancer killing activity in humans

    Directory of Open Access Journals (Sweden)

    Lovato James

    2011-08-01

    Full Text Available Abstract Background In this study, we pilot tested an in vitro assay of cancer killing activity (CKA in circulating leukocytes of 22 cancer cases and 25 healthy controls. Methods Using a human cervical cancer cell line, HeLa, as target cells, we compared the CKA in circulating leukocytes, as effector cells, of cancer cases and controls. The CKA was normalized as percentages of total target cells during selected periods of incubation time and at selected effector/target cell ratios in comparison to no-effector-cell controls. Results Our results showed that CKA similar to that of our previous study of SR/CR mice was present in human circulating leukocytes but at profoundly different levels in individuals. Overall, males have a significantly higher CKA than females. The CKA levels in cancer cases were lower than that in healthy controls (mean ± SD: 36.97 ± 21.39 vs. 46.28 ± 27.22. Below-median CKA was significantly associated with case status (odds ratio = 4.36; 95% Confidence Interval = 1.06, 17.88 after adjustment of gender and race. Conclusions In freshly isolated human leukocytes, we were able to detect an apparent CKA in a similar manner to that of cancer-resistant SR/CR mice. The finding of CKA at lower levels in cancer patients suggests the possibility that it may be of a consequence of genetic, physiological, or pathological conditions, pending future studies with larger sample size.

  6. Chicago aberration correction work.

    Science.gov (United States)

    Beck, V D

    2012-12-01

    The author describes from his personal involvement the many improvements to electron microscopy Albert Crewe and his group brought by minimizing the effects of aberrations. The Butler gun was developed to minimize aperture aberrations in a field emission electron gun. In the 1960s, Crewe anticipated using a spherical aberration corrector based on Scherzer's design. Since the tolerances could not be met mechanically, a method of moving the center of the octopoles electrically was developed by adding lower order multipole fields. Because the corrector was located about 15 cm ahead of the objective lens, combination aberrations would arise with the objective lens. This fifth order aberration would then limit the aperture of the microscope. The transformation of the off axis aberration coefficients of a round lens was developed and a means to cancel anisotropic coma was developed. A new method of generating negative spherical aberration was invented using the combination aberrations of hexapoles. Extensions of this technique to higher order aberrations were developed. An electrostatic electron mirror was invented, which allows the cancellation of primary spherical aberration and first order chromatic aberration. A reduction of chromatic aberration by two orders of magnitude was demonstrated using such a system.

  7. Cross-cancer profiling of molecular alterations within the human autophagy interaction network.

    Science.gov (United States)

    Lebovitz, Chandra B; Robertson, A Gordon; Goya, Rodrigo; Jones, Steven J; Morin, Ryan D; Marra, Marco A; Gorski, Sharon M

    2015-01-01

    Aberrant activation or disruption of autophagy promotes tumorigenesis in various preclinical models of cancer, but whether the autophagy pathway is a target for recurrent molecular alteration in human cancer patient samples is unknown. To address this outstanding question, we surveyed 211 human autophagy-associated genes for tumor-related alterations to DNA sequence and RNA expression levels and examined their association with patient survival outcomes in multiple cancer types with sequence data from The Cancer Genome Atlas consortium. We found 3 (RB1CC1/FIP200, ULK4, WDR45/WIPI4) and one (ATG7) core autophagy genes to be under positive selection for somatic mutations in endometrial carcinoma and clear cell renal carcinoma, respectively, while 29 autophagy regulators and pathway interactors, including previously identified KEAP1, NFE2L2, and MTOR, were significantly mutated in 6 of the 11 cancer types examined. Gene expression analyses revealed that GABARAPL1 and MAP1LC3C/LC3C transcripts were less abundant in breast cancer and non-small cell lung cancers than in matched normal tissue controls; ATG4D transcripts were increased in lung squamous cell carcinoma, as were ATG16L2 transcripts in kidney cancer. Unsupervised clustering of autophagy-associated mRNA levels in tumors stratified patient overall survival in 3 of 9 cancer types (acute myeloid leukemia, clear cell renal carcinoma, and head and neck cancer). These analyses provide the first comprehensive resource of recurrently altered autophagy-associated genes in human tumors, and highlight cancer types and subtypes where perturbed autophagy may be relevant to patient overall survival.

  8. Expression of PPARγ and PTEN in human colorectal cancer: An immunohistochemical study using tissue microarray methodology.

    Science.gov (United States)

    Lin, Mao Song; Huang, Jun Xing; Chen, Wei Chang; Zhang, Bao Feng; Fang, Jing; Zhou, Qiong; Hu, Ying; Gao, Heng Jun

    2011-11-01

    Although aberrations of peroxisome proliferator-activated receptor γ (PPARγ) and phosphatase and tensin homolog (PTEN) expression have been identified in several other cancer types, certain previous studies have revealed that PPARγ is abundant in normal and malignant tissue in the colon. The question of whether aberrant PTEN is involved in the initial stage or is a later event during colorectal carcinogenesis remains controversial. Relatively few studies have focused on the correlation of expression of PPARγ and PTEN in various tissues. In the present study, paraffin-embedded blocks from 139 patients with CRC, 18 adenomatous polyps and 50 paired paracancerous benign mucosas were selected and analysed in 4 tissue microarray (TMA) blocks comprising 104, 72, 130 and 54 cores, respectively. Expression of PPARγ and PTEN was examined using immunohistochemical staining on TMAs. There were no significant differences in the expression of PPARγ (P=0.055) and PTEN (P=0.100) between the colorectal cancers, adenomas and paracancerous mucosas. However, correlations of PPARγ expression with clinical stage (P=0.004) and PTEN expression with histological grade (P=0.006) and distant metastasis (P=0.015) were demonstrated in the CRC specimens. Although the differences in PPARγ and PTEN protein expression in human colorectal cancer may not be considered as early diagnostic markers, our results indicate that CRCs with a low expression or deletion of PTEN may progress towards invasion and even metastasis; thus, PTEN may have potential as a prognostic marker in human CRC.

  9. Novel Combination of Prebiotics Galacto-Oligosaccharides and Inulin-Inhibited Aberrant Crypt Foci Formation and Biomarkers of Colon Cancer in Wistar Rats

    Science.gov (United States)

    Qamar, Tahir Rasool; Syed, Fatima; Nasir, Muhammad; Rehman, Habib; Zahid, Muhammad Nauman; Liu, Rui Hai; Iqbal, Sanaullah

    2016-01-01

    The selectivity and beneficial effects of prebiotics are mainly dependent on composition and glycosidic linkage among monosaccharide units. This is the first study to use prebiotic galacto-oligosaccharides (GOS) that contains β-1,6 and β-1,3 glycosidic linkages and the novel combination of GOS and inulin in cancer prevention. The objective of the present study is to explore the role of novel GOS and inulin against various biomarkers of colorectal cancer (CRC) and the incidence of aberrant crypt foci (ACF) in a 1,2-dimethyl hydrazine dihydrochloride (DMH)-induced rodent model. Prebiotic treatments of combined GOS and inulin (57 mg each), as well as individual doses (GOS: 76–151 mg; inulin 114 mg), were given to DMH-treated animals for 16 weeks. Our data reveal the significant preventive effect of the GOS and inulin combination against the development of CRC. It was observed that inhibition of ACF formation (55.8%) was significantly (p ≤ 0.05) higher using the GOS and inulin combination than GOS (41.4%) and inulin (51.2%) treatments alone. This combination also rendered better results on short-chain fatty acids (SCFA) and bacterial enzymatic activities. Dose-dependent effects of prebiotic treatments were also observed on cecum and fecal bacterial enzymes and on SCFA. Thus, this study demonstrated that novel combination of GOS and inulin exhibited stronger preventive activity than their individual treatments alone, and can be a promising strategy for CRC chemoprevention. PMID:27490566

  10. Novel Combination of Prebiotics Galacto-Oligosaccharides and Inulin-Inhibited Aberrant Crypt Foci Formation and Biomarkers of Colon Cancer in Wistar Rats.

    Science.gov (United States)

    Qamar, Tahir Rasool; Syed, Fatima; Nasir, Muhammad; Rehman, Habib; Zahid, Muhammad Nauman; Liu, Rui Hai; Iqbal, Sanaullah

    2016-08-01

    The selectivity and beneficial effects of prebiotics are mainly dependent on composition and glycosidic linkage among monosaccharide units. This is the first study to use prebiotic galacto-oligosaccharides (GOS) that contains β-1,6 and β-1,3 glycosidic linkages and the novel combination of GOS and inulin in cancer prevention. The objective of the present study is to explore the role of novel GOS and inulin against various biomarkers of colorectal cancer (CRC) and the incidence of aberrant crypt foci (ACF) in a 1,2-dimethyl hydrazine dihydrochloride (DMH)-induced rodent model. Prebiotic treatments of combined GOS and inulin (57 mg each), as well as individual doses (GOS: 76-151 mg; inulin 114 mg), were given to DMH-treated animals for 16 weeks. Our data reveal the significant preventive effect of the GOS and inulin combination against the development of CRC. It was observed that inhibition of ACF formation (55.8%) was significantly (p ≤ 0.05) higher using the GOS and inulin combination than GOS (41.4%) and inulin (51.2%) treatments alone. This combination also rendered better results on short-chain fatty acids (SCFA) and bacterial enzymatic activities. Dose-dependent effects of prebiotic treatments were also observed on cecum and fecal bacterial enzymes and on SCFA. Thus, this study demonstrated that novel combination of GOS and inulin exhibited stronger preventive activity than their individual treatments alone, and can be a promising strategy for CRC chemoprevention.

  11. Canine Mammary Tumours Are Affected by Frequent Copy Number Aberrations, including Amplification of MYC and Loss of PTEN.

    Directory of Open Access Journals (Sweden)

    Kaja S Borge

    Full Text Available Copy number aberrations frequently occur during the development of many cancers. Such events affect dosage of involved genes and may cause further genomic instability and progression of cancer. In this survey, canine SNP microarrays were used to study 117 canine mammary tumours from 69 dogs.We found a high occurrence of copy number aberrations in canine mammary tumours, losses being more frequent than gains. Increased frequency of aberrations and loss of heterozygosity were positively correlated with increased malignancy in terms of histopathological diagnosis. One of the most highly recurrently amplified regions harbored the MYC gene. PTEN was located to a frequently lost region and also homozygously deleted in five tumours. Thus, deregulation of these genes due to copy number aberrations appears to be an important event in canine mammary tumour development. Other potential contributors to canine mammary tumour pathogenesis are COL9A3, INPP5A, CYP2E1 and RB1. The present study also shows that a more detailed analysis of chromosomal aberrations associated with histopathological parameters may aid in identifying specific genes associated with canine mammary tumour progression.The high frequency of copy number aberrations is a prominent feature of canine mammary tumours as seen in other canine and human cancers. Our findings share several features with corresponding studies in human breast tumours and strengthen the dog as a suitable model organism for this disease.

  12. Bionutrition and oral cancer in humans.

    Science.gov (United States)

    Enwonwu, C O; Meeks, V I

    1995-01-01

    Tobacco (smoking and smokeless) use and excessive consumption of alcohol are considered the main risk factors for oral cancer (ICD9 140-149). Conspicuous national and international variations in oral cancer incidence and mortality rates, as well as observations in migrant populations, raise the possibility that diet and nutritional status could be an important etiologic factor in oral carcinogenesis. As shown in this report, abuse of alcohol and tobacco has serious nutritional implications for the host, and generates increased production of reactive free radicals as well as eliciting immunosuppression. Maintenance of optimal competence of the immune system is critical for cancer surveillance. Active oxygen species and other reactive free radicals mediate phenotypic and genotypic alterations that lead from mutation to neoplasia. Consequently, the most widely used chemopreventive agents against oral cancer (e.g., vitamins A, E, C, and beta-carotene) are anti-oxidants/free radical scavengers. These anti-oxidants, both natural and synthetic, neutralize metabolic products (including reactive oxygen species), interfere with activation of procarcinogens, prevent binding of carcinogens to DNA, inhibit chromosome aberrations, restrain replication of the transformed cell, suppress actions of cancer promoters, and may even induce regression of precancerous oral lesions such as leukoplakia and erythroplakia. Malnutrition is characterized by marked tissue depletion of anti-oxidant nutrients, including GSH (gamma-glutamyl-cysteinyl-glycine), a key cellular anti-oxidant as well as a modulator of T-cell activation. GSH or its precursor cysteine inhibits activation of the nuclear transcription factor kB(NFkB), and has been shown to be protective against chemically induced oral cancer and leukoplakia. Alcohol-, tobacco-, and/or malnutrition-induced immunosuppression promotes impaired salivary gland function and oral mucosal immunity, a prominent reduction in the number of helper CD4

  13. Human papilloma viruses (HPV and breast cancer.

    Directory of Open Access Journals (Sweden)

    James Sutherland Lawson

    2015-12-01

    Full Text Available Purpose: Human papillomaviruses (HPV may have a role in some breast cancers. The purpose of this study is to fill important gaps in the evidence. These gaps are: (i confirmation of the presence of high risk for cancer HPVs in breast cancers, (ii evidence of HPV infections in benign breast tissues prior to the development of HPV positive breast cancer in the same patients, (iii evidence that HPVs are biologically active and not harmless passengers in breast cancer.Methods: RNA-seq data from The Cancer Genome Atlas (TCGA was used to identify HPV RNA sequences in breast cancers. We also conducted a retrospective cohort study based on polymerase chain reaction (PCR analyses to identify HPVs in archival specimens from Australian women with benign breast biopsies who later developed breast cancer. To assess whether HPVs in breast cancer were biologically active, the expression of the oncogenic protein HPV E7 was assessed by immunohistochemistry (IHC.Results: Thirty (3.5% low risk and 20 (2.3% high risk HPV types were identified in 855 breast cancers from the TCGA data base. The high risk types were HPV 18 (48%, HPV 113 (24%, HPV 16 (10%, HPV 52 (10%. Data from the PCR cohort study, indicated that HPV type 18 was the most common type identified in breast cancer specimens (55% of 40 breast cancer specimens followed by HPV 16 (13%. The same HPV type was identified in both the benign and subsequent breast cancer in 15 patients. HPV E7 proteins were identified in 72% of benign breast specimens and 59% of invasive breast cancer specimens.Conclusions: There were 4 observations of particular interest: (i confirmation by both NGS and PCR of the presence of high risk HPV gene sequences in breast cancers, (ii a correlation between high risk HPV in benign breast specimens and subsequent HPV positive breast cancer in the same patient, (iii HPVs in breast cancer are likely to be biologically active (as shown by transcription of HPV DNA to RNA plus the expression of

  14. Chicago aberration correction work

    Energy Technology Data Exchange (ETDEWEB)

    Beck, V.D., E-mail: vnlbeck@earthlink.net [1 Hobby Drive, Ridgefield, CT 06877-01922 (United States)

    2012-12-15

    The author describes from his personal involvement the many improvements to electron microscopy Albert Crewe and his group brought by minimizing the effects of aberrations. The Butler gun was developed to minimize aperture aberrations in a field emission electron gun. In the 1960s, Crewe anticipated using a spherical aberration corrector based on Scherzer's design. Since the tolerances could not be met mechanically, a method of moving the center of the octopoles electrically was developed by adding lower order multipole fields. Because the corrector was located about 15 cm ahead of the objective lens, combination aberrations would arise with the objective lens. This fifth order aberration would then limit the aperture of the microscope. The transformation of the off axis aberration coefficients of a round lens was developed and a means to cancel anisotropic coma was developed. A new method of generating negative spherical aberration was invented using the combination aberrations of hexapoles. Extensions of this technique to higher order aberrations were developed. An electrostatic electron mirror was invented, which allows the cancellation of primary spherical aberration and first order chromatic aberration. A reduction of chromatic aberration by two orders of magnitude was demonstrated using such a system. -- Highlights: Black-Right-Pointing-Pointer Crewe and his group made significant advances in aberration correction and reduction. Black-Right-Pointing-Pointer A deeper understanding of the quadrupole octopole corrector was developed. Black-Right-Pointing-Pointer A scheme to correct spherical aberration using hexapoles was developed. Black-Right-Pointing-Pointer Chromatic aberration was corrected using a uniform field mirror.

  15. Prevalence of Telomerase Activity in Human Cancer

    Directory of Open Access Journals (Sweden)

    Chi-Hau Chen

    2011-05-01

    Full Text Available Telomerase activity has been measured in a wide variety of cancerous and non-cancerous tissue types, and the vast majority of clinical studies have shown a direct correlation between it and the presence of cancerous cells. Telomerase plays a key role in cellular immortality and tumorigenesis. Telomerase is activated in 80–90% of human carcinomas, but not in normal somatic cells, therefore, its detection holds promise as a diagnostic marker for cancer. Measurable levels of telomerase have been detected in malignant cells from various samples: tissue from gestational trophoblastic neoplasms; squamous carcinoma cells from oral rinses; lung carcinoma cells from bronchial washings; colorectal carcinoma cells from colonic luminal washings; bladder carcinoma cells from urine or bladder washings; and breast carcinoma or thyroid cancer cells from fine needle aspirations. Such clinical tests for telomerase can be useful as non-invasive and cost-effective methods for early detection and monitoring of cancer. In addition, telomerase activity has been shown to correlate with poor clinical outcome in late-stage diseases such as non-small cell lung cancer, colorectal cancer, and soft tissue sarcomas. In such cases, testing for telomerase activity can be used to identify patients with a poor prognosis and to select those who might benefit from adjuvant treatment. Our review of the latest medical advances in this field reveals that telomerase holds great promise as a biomarker for early cancer detection and monitoring, and has considerable potential as the basis for developing new anticancer therapies.

  16. Cancer Metabolomics and the Human Metabolome Database

    Directory of Open Access Journals (Sweden)

    David S. Wishart

    2016-03-01

    Full Text Available The application of metabolomics towards cancer research has led to a renewed appreciation of metabolism in cancer development and progression. It has also led to the discovery of metabolite cancer biomarkers and the identification of a number of novel cancer causing metabolites. The rapid growth of metabolomics in cancer research is also leading to challenges. In particular, with so many cancer-associate metabolites being identified, it is often difficult to keep track of which compounds are associated with which cancers. It is also challenging to track down information on the specific pathways that particular metabolites, drugs or drug metabolites may be affecting. Even more frustrating are the difficulties associated with identifying metabolites from NMR or MS spectra. Fortunately, a number of metabolomics databases are emerging that are designed to address these challenges. One such database is the Human Metabolome Database (HMDB. The HMDB is currently the world’s largest and most comprehensive, organism-specific metabolomics database. It contains more than 40,000 metabolite entries, thousands of metabolite concentrations, >700 metabolic and disease-associated pathways, as well as information on dozens of cancer biomarkers. This review is intended to provide a brief summary of the HMDB and to offer some guidance on how it can be used in metabolomic studies of cancer.

  17. Aberrant activation of the androgen receptor by NF-kappaB2/p52 in prostate cancer cells.

    Science.gov (United States)

    Nadiminty, Nagalakshmi; Lou, Wei; Sun, Meng; Chen, Jun; Yue, Jiao; Kung, Hsing-Jien; Evans, Christopher P; Zhou, Qinghua; Gao, Allen C

    2010-04-15

    Prostate cancer initiation and progression are uniquely dependent on the androgen receptor (AR). Even when the cancer progresses to a castration-resistant stage, AR signaling remains active via a variety of mechanisms. In the present study, we showed that NF-kappaB/p52 can activate the AR, resulting in increased transactivation of AR-responsive genes, such as PSA and NKX3.1, in a ligand-independent manner. NF-kappaB2/p52 enhances nuclear translocation and activation of AR by interacting with its NH(2)-terminal domain and enhances the recruitment of coactivators such as p300 to the promoters of AR-dependent genes. These results were confirmed in three different prostate cancer cell lines: LAPC-4 (wild-type AR), LNCaP (mutant AR), and C4-2 (castration resistant). Transfection of p52 into LAPC-4 and LNCaP cells (which express low levels of p52) showed increased activation of the endogenous AR. Downregulation of endogenous p52 in C4-2 cells resulted in abrogation of AR constitutive activation. Comparison of the relative effects of p52 and p65 (RelA) showed that p52, but not p65, could activate the AR. Collectively, these findings, together with previous reports that the levels of NF-kappaB2/p52 are elevated in prostate cancer cells and that active NF-kappaB2/p52 promotes prostate cancer cell growth in vitro and in vivo, suggest that NF-kappaB2/p52 may play a critical role in the progression of castration-resistant prostate cancer.

  18. Human Papillomavirus in Head and Neck Cancer

    Directory of Open Access Journals (Sweden)

    Anna Rosa Garbuglia

    2014-08-01

    Full Text Available Human papillomavirus (HPV is currently considered to be a major etiologic factor, in addition to tobacco and alcohol, for oropharyngeal cancer (OPC development. HPV positive OPCs are epidemiologically distinct from HPV negative ones, and are characterized by younger age at onset, male predominance, and strong association with sexual behaviors. HPV16 is the most prevalent types in oral cavity cancer (OCC, moreover the prevalence of beta, and gamma HPV types is higher than that of alpha HPV in oral cavity.

  19. Oral contraceptives, human papillomavirus and cervical cancer.

    Science.gov (United States)

    La Vecchia, Carlo; Boccia, Stefania

    2014-03-01

    Oncogenic human papillomavirus is the key determinant of cervical cancer, but other risk factors interact with it to define individual risk. Among these, there is oral contraceptive (OC) use. A quantitative review of the link between OCs and cervical cancer was performed. Long-term (>5 year) current or recent OC use has been related to an about two-fold excess risk of cervical cancer. Such an excess risk, however, levels off after stopping use, and approaches unity 10 or more years after stopping. The public health implications of OC use for cervical cancer are limited. In any case, such implications are greater in middle-income and low-income countries, as well as in central and eastern Europe and Latin America, where cervical cancer screening and control remain inadequate.

  20. Radiobiology of human cancer radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Andrews, J.R.

    1978-01-01

    The author has systematically collected and collated the scientific literature correlating the basic and clinical sciences in this field in order to produce a definitive treatise. The book thoroughly reviews the biology and biochemistry relevant to radiobiology and describes the critical locus for the extinction of cell reproductive capacity. Extensive coverage is given to oxygen effect, hyperthermia, high linear energy transfer, cell populations, and similar topics. Separate sections cover time, dose, and fractionation; radiation hematology; cancer chemotherapy; and cancer immunology. The book also contains invaluable discussions of techniques for optimizing radiotherapy alone and in combination with other therapies.

  1. Water pipe smoking and human oral cancers.

    Science.gov (United States)

    Rastam, Samer; Li, Fu-Min; Fouad, Fouad M; Al Kamal, Haysam M; Akil, Nizar; Al Moustafa, Ala-Eddin

    2010-03-01

    While cigarette smoking is recognized as an important risk factor in human oral cancers, the effect of water pipe smoking (WPS) on these cancers is not known. WPS is very common in the young adult population, especially in the Middle East, and has been associated with several respiratory problems. However, to date, there have been no studies examining the association between WPS and the progression of human oral cancers. Currently, the role of WPS in human oral cancers remains uncertain because of the limited number of investigations. This raises the question of whether WPS plays a significant role in the development of human oral carcinomas. In this paper, we propose the hypothesis that human oral normal epithelial cells are vulnerable to persistent WPS; moreover, WPS could play an important role in the initiation of a neoplastic transformation of human normal oral epithelial cells. Therefore, we believe that an international collaboration of epidemiological and clinical studies as well as cellular and molecular biology investigations is necessary to answer this important question.

  2. Non-Target Effect for Chromosome Aberrations in Human Lymphocytes and Fibroblasts After Exposure to Very Low Doses of High LET Radiation

    Science.gov (United States)

    Hada, Megumi; George, Kerry A.; Cucinotta, F. A.

    2011-01-01

    The relationship between biological effects and low doses of absorbed radiation is still uncertain, especially for high LET radiation exposure. Estimates of risks from low-dose and low-dose-rates are often extrapolated using data from Japanese atomic bomb survivor with either linear or linear quadratic models of fit. In this study, chromosome aberrations were measured in human peripheral blood lymphocytes and normal skin fibroblasts cells after exposure to very low dose (.01 - 0.2 Gy) of 170 MeV/u Si-28-ions or 600 MeV/u Fe-56-ions. Chromosomes were analyzed using the whole chromosome fluorescence in situ hybridization (FISH) technique during the first cell division after irradiation, and chromosome aberrations were identified as either simple exchanges (translocations and dicentrics) or complex exchanges (involving >2 breaks in 2 or more chromosomes). The curves for doses above 0.1 Gy were more than one ion traverses a cell showed linear dose responses. However, for doses less than 0.1 Gy, Si-28-ions showed no dose response, suggesting a non-targeted effect when less than one ion traversal occurs. Additional findings for Fe-56 will be discussed.

  3. Autoantibodies to aberrantly glycosylated MUC1 in early stage breast cancer are associated with a better prognosis

    DEFF Research Database (Denmark)

    Blixt, Ola; Bueti, Deanna; Burford, Brian;

    2011-01-01

    associated glycoforms of MUC1 in a proportion of early breast cancer patients (54/198). Five positive sera were selected for detailed definition of the reactive epitopes using on chip glycosylation technology and a panel of glycopeptides based on a single MUC1 tandem repeat carrying specific glycans...

  4. Aberrant expression of mucin core proteins and o-linked glycans associated with progression of pancreatic cancer

    DEFF Research Database (Denmark)

    Remmers, Neeley; Anderson, Judy M; Linde, Erin M;

    2013-01-01

    Mucin expression is a common feature of most adenocarcinomas and features prominently in current attempts to improve diagnosis and therapy for pancreatic cancer and other adenocarcinomas. We investigated the expression of a number of mucin core proteins and associated O-linked glycans expressed...

  5. ADAM15 Is Functionally Associated with the Metastatic Progression of Human Bladder Cancer.

    Directory of Open Access Journals (Sweden)

    Guadalupe Lorenzatti Hiles

    Full Text Available ADAM15 is a member of a family of catalytically active disintegrin membrane metalloproteinases that function as molecular signaling switches, shed membrane bound growth factors and/or cleave and inactivate cell adhesion molecules. Aberrant metalloproteinase function of ADAM15 may contribute to tumor progression through the release of growth factors or disruption of cell adhesion. In this study, we utilized human bladder cancer tissues and cell lines to evaluate the expression and function of ADAM15 in the progression of human bladder cancer. Examination of genome and transcriptome databases revealed that ADAM15 ranked in the top 5% of amplified genes and its mRNA was significantly overexpressed in invasive and metastatic bladder cancer compared to noninvasive disease. Immunostaining of a bladder tumor tissue array designed to evaluate disease progression revealed increased ADAM15 immunoreactivity associated with increasing cancer stage and exhibited significantly stronger staining in metastatic samples. About half of the invasive tumors and the majority of the metastatic cases exhibited high ADAM15 staining index, while all low grade and noninvasive cases exhibited negative or low staining. The knockdown of ADAM15 mRNA expression significantly inhibited bladder tumor cell migration and reduced the invasive capacity of bladder tumor cells through MatrigelTM and monolayers of vascular endothelium. The knockdown of ADAM15 in a human xenograft model of bladder cancer inhibited tumor growth by 45% compared to controls. Structural modeling of the catalytic domain led to the design of a novel ADAM15-specific sulfonamide inhibitor that demonstrated bioactivity and significantly reduced the viability of bladder cancer cells in vitro and in human bladder cancer xenografts. Taken together, the results revealed an undescribed role of ADAM15 in the invasion of human bladder cancer and suggested that the ADAM15 catalytic domain may represent a viable

  6. Comparison of the micronucleus and chromosome aberration techniques for the documentation of cytogenetic damage in radiochemotherapy-treated patients with rectal cancer

    Energy Technology Data Exchange (ETDEWEB)

    Wolff, Henrik Andreas; Hennies, Steffen; Herrmann, Markus Karl Alfred [Goettingen Univ. Medicine (DE). Dept. of Radiotherapy and Radiooncology] (and others)

    2011-01-15

    Purpose: The goal of the interdisciplinary Clinical Research Unit KFO179 (Biological Basis of Individual Tumor Response in Patients with Rectal Cancer) is to develop an individual Response and Toxicity Score for patients with locally advanced rectal cancer treated with neoadjuvant radiochemotherapy. The aim of the present study was to find a reliable and sensitive method with easy scoring criteria and high numbers of cell counts in a short period of time in order to analyze DNA damage in peripheral blood lymphocytes. Thus, the cytokinesis-block micronucleus (CBMN) assay and the chromosome aberration technique (CAT) were tested. Materials and Methods: Peripheral blood lymphocytes obtained from 22 patients with rectal cancer before (0 Gy), during (21.6 Gy), and after (50.4 Gy) radiochemotherapy were stimulated in vitro by phytohemagglutinin (PHA); the cultures were then processed for the CBMN assay and the CAT to compare the two methods. Results: A significant increase of chromosomal damage was observed in the course of radiochemotherapy parallel to increasing radiation doses, but independent of the chemotherapy applied. The equivalence of both methods was shown by Westlake's equivalence test. Conclusion: The results show that the CBMN assay and the CAT are equivalent. For further investigations, we prefer the CBMN assay, because it is simpler through easy scoring criteria, allows high numbers of cell counts in less time, is reliable, sensitive, and has higher statistical power. In the future, we plan to integrate cytogenetic damage during radiochemotherapy into the planned Response and Toxicity Score within our interdisciplinary Clinical Research Unit. (orig.)

  7. Aberrant intracellular metabolism of T-DM1 confers T-DM1 resistance in HER2-positive gastric cancer cells.

    Science.gov (United States)

    Wang, Hongbin; Wang, Wenqian; Xu, Yongping; Yang, Yong; Chen, Xiaoyan; Quan, Haitian; Lou, Liguang

    2017-04-07

    T-DM1 (Kadcyla), an antibody-drug conjugate (ADC) consisting of HER2-targeted monoclonal antibody trastuzumab linked to anti-microtubule agent mertansine (DM1), has been approved for the treatment of HER2-positive metastatic breast cancer. To date, acquired resistance arises to be a major obstacle to T-DM1 treatment, and mechanisms remain incompletely understood. In the present study, we established a T-DM1-resistant N87-KR cell line from HER2-positive N87 gastric cancer cells to investigate mechanisms of acquired resistance and develop strategies for overcoming it. Although the kinetics of binding, internalization, and externalization of T-DM1 were the same in N87-KR cells and N87 cells, N87-KR was strongly resistant to T-DM1, but remained sensitive to both trastuzumab and DM1. T-DM1 failed to inhibit microtubule polymerization in N87-KR cells. Consistently, lysine-MCC-DM1, the active T-DM1 metabolite that inhibits microtubule polymerization, accumulated much lesser in N87-KR cells. Furthermore, lysosome acidification, achieved by V-ATPase, was much diminished in N87-KR cells. Notably, treatment of sensitive N87 cells with the V-ATPase-selective inhibitor Baf-A1 induced T-DM1 resistance, suggesting that aberrant V-ATPase activity decreases T-DM1 metabolism, leading to T-DM1 resistance in N87-KR cells. Interestingly, HER2-targeted ADCs containing a protease-cleavable linker, such as hertuzumab-vc-MMAE, were capable of efficiently overcoming this resistance. Our results demonstrate for the first time that a decrease in T-DM1 metabolites induced by aberrant V-ATPase activity contributes to T-DM1 resistance, which could be overcome by HER2-targeted ADC containing different linkers, including a protease-cleavable linker. Accordingly, we propose that V-ATPase activity in lysosomes is a novel biomarker for predicting T-DM1 resistance. This article is protected by copyright. All rights reserved.

  8. Aberrant methylation of NPY, PENK, and WIF1 as a promising marker for blood-based diagnosis of colorectal cancer

    KAUST Repository

    Roperch, J.-P.

    2013-12-01

    Background: DNA methylation is a well-known epigenetic mechanism involved in epigenetic gene regulation. Several genes were reported hypermethylated in CRC, althought no gene marker was proven to be individually of sufficient sensitivity or specificity in routine clinical practice. Here, we identified novel epigenetic markers and assessed their combined use for diagnostic accuracy.Methods: We used methylation arrays on samples from several effluents to characterize methylation profiles in CRC samples and controls, as established by colonoscopy and pathology findings, and selected two differentially methylated candidate epigenetic genes (NPY, PENK). To this gene panel we added WIF, on the basis of being reported in literature as silenced by promoter hypermethylation in several cancers, including CRC. We measured their methylation degrees by quantitative multiplex-methylation specific PCR (QM-MSP) on 15 paired carcinomas and adjacent non-cancerous colorectal tissues and we subsequently performed a clinical validation on two different series of 266 serums, subdivided in 32 CRC, 26 polyps, 47 other cancers and 161 with normal colonoscopy. We assessed the results by receiver operating characteristic curve (ROC), using cumulative methylation index (CMI) as variable threshold.Results: We obtained CRC detection on tissues with both sensitivity and specificity of 100%. On serum CRC samples, we obtained sensitivity/specificity values of, e.g., 87%/80%, 78%/90% and 59%/95%, and negative predictive value/positive predictive value figures of 97%/47%, 95%/61% and 92%/70%. On serum samples from other cancers we obtained sensitivity/specificity of, e.g, 89%/25%, 43%/80% and 28%/91%.Conclusions: We showed the potential of NPY, PENK, and WIF1 as combined epigenetic markers for CRC diagnosis, both in tissue and serum and tested their use as serum biomarkers in other cancers. We optimized a QM-MSP for simultaneously quantifying their methylation levels. Our assay can be an effective

  9. Epigenetic aberrations and therapeutic implications in gliomas.

    Science.gov (United States)

    Natsume, Atsushi; Kondo, Yutaka; Ito, Motokazu; Motomura, Kazuya; Wakabayashi, Toshihiko; Yoshida, Jun

    2010-06-01

    Almost all cancer cells have multiple epigenetic abnormalities, which combine with genetic changes to affect many cellular processes, including cell proliferation and invasion, by silencing tumor-suppressor genes. In this review, we focus on the epigenetic mechanisms of DNA hypomethylation and CpG island hypermethylation in gliomas. Aberrant hypermethylation in promoter CpG islands has been recognized as a key mechanism involved in the silencing of cancer-associated genes and occurs at genes with diverse functions related to tumorigenesis and tumor progression. Such promoter hypermethylation can modulate the sensitivity of glioblastomas to drugs and radiotherapy. As an example, the methylation of the O6-methylguanine DNA methyltransferase (MGMT) promoter is a specific predictive biomarker of tumor responsiveness to chemotherapy with alkylating agents. Further, we reviewed reports on pyrosequencing - a simple technique for the accurate and quantitative analysis of DNA methylation. We believe that the quantification of MGMT methylation by pyrosequencing might enable the selection of patients who are most likely to benefit from chemotherapy. Finally, we also evaluated the potential of de novo NY-ESO-1, the most immunogenic cancer/testis antigen (CTA) discovered thus far, as an immunotherapy target. The use of potent epigenetics-based therapy for cancer cells might restore the abnormally regulated epigenomes to a more normal state through epigenetic reprogramming. Thus, epigenetic therapy may be a promising and potent treatment for human neoplasia.

  10. Aberrant Gene Expression in Acute Myeloid Leukaemia

    DEFF Research Database (Denmark)

    Bagger, Frederik Otzen

    model to investigate the role of telomerase in AML, we were able to translate the observed effect into human AML patients and identify specific genes involved, which also predict survival patterns in AML patients. During these studies we have applied methods for investigating differentially expressed......Summary Acute Myeloid Leukaemia (AML) is an aggressive cancer of the bone marrow, affecting formation of blood cells during haematopoiesis. This thesis presents investigation of AML using mRNA gene expression profiles (GEP) of samples extracted from the bone marrow of healthy and diseased subjects....... Here GEPs from purified healthy haematopoietic populations, with different levels of differentiation, form the basis for comparison with diseased samples. We present a mathematical transformation of mRNA microarray data to make it possible to compare AML samples, carrying expanded aberrant...

  11. Temporal Dependence of Chromosomal Aberration on Radiation Quality and Cellular Genetic Background

    Science.gov (United States)

    Lu, Tao; Zhang, Ye; Krieger, Stephanie; Yeshitla, Samrawit; Goss, Rosalin; Bowler, Deborah; Kadhim, Munira; Wilson, Bobby; Wu, Honglu

    2017-01-01

    Radiation induced cancer risks are driven by genetic instability. It is not well understood how different radiation sources induce genetic instability in cells with different genetic background. Here we report our studies on genetic instability, particularly chromosome instability using fluorescence in situ hybridization (FISH), in human primary lymphocytes, normal human fibroblasts, and transformed human mammary epithelial cells in a temporal manner after exposure to high energy protons and Fe ions. The chromosome spread was prepared 48 hours, 1 week, 2 week, and 1 month after radiation exposure. Chromosome aberrations were analyzed with whole chromosome specific probes (chr. 3 and chr. 6). After exposure to protons and Fe ions of similar cumulative energy (??), Fe ions induced more chromosomal aberrations at early time point (48 hours) in all three types of cells. Over time (after 1 month), more chromosome aberrations were observed in cells exposed to Fe ions than in the same type of cells exposed to protons. While the mammary epithelial cells have higher intrinsic genetic instability and higher rate of initial chromosome aberrations than the fibroblasts, the fibroblasts retained more chromosomal aberration after long term cell culture (1 month) in comparison to their initial frequency of chromosome aberration. In lymphocytes, the chromosome aberration frequency at 1 month after exposure to Fe ions was close to unexposed background, and the chromosome aberration frequency at 1 month after exposure to proton was much higher. In addition to human cells, mouse bone marrow cells isolated from strains CBA/CaH and C57BL/6 were irradiated with proton or Fe ions and were analyzed for chromosome aberration at different time points. Cells from CBA mice showed similar frequency of chromosome aberration at early and late time points, while cells from C57 mice showed very different chromosome aberration rate at early and late time points. Our results suggest that relative

  12. Isolation of Cancer Stem Cells From Human Prostate Cancer Samples

    Science.gov (United States)

    Vidal, Samuel J.; Quinn, S. Aidan; de la Iglesia-Vicente, Janis; Bonal, Dennis M.; Rodriguez-Bravo, Veronica; Firpo-Betancourt, Adolfo; Cordon-Cardo, Carlos; Domingo-Domenech, Josep

    2014-01-01

    The cancer stem cell (CSC) model has been considerably revisited over the last two decades. During this time CSCs have been identified and directly isolated from human tissues and serially propagated in immunodeficient mice, typically through antibody labeling of subpopulations of cells and fractionation by flow cytometry. However, the unique clinical features of prostate cancer have considerably limited the study of prostate CSCs from fresh human tumor samples. We recently reported the isolation of prostate CSCs directly from human tissues by virtue of their HLA class I (HLAI)-negative phenotype. Prostate cancer cells are harvested from surgical specimens and mechanically dissociated. A cell suspension is generated and labeled with fluorescently conjugated HLAI and stromal antibodies. Subpopulations of HLAI-negative cells are finally isolated using a flow cytometer. The principal limitation of this protocol is the frequently microscopic and multifocal nature of primary cancer in prostatectomy specimens. Nonetheless, isolated live prostate CSCs are suitable for molecular characterization and functional validation by transplantation in immunodeficient mice. PMID:24686446

  13. Aberrant gene methylation in the peritoneal fluid is a risk factor predicting peritoneal recurrence in gastric cancer

    Institute of Scientific and Technical Information of China (English)

    Masatsugu; Hiraki; Yoshihiko; Kitajima; Seiji; Sato; Jun; Nakamura; Kazuyoshi; Hashiguchi; Hirokazu; Noshiro; Kohji; Miyazaki

    2010-01-01

    AIM:To investigate whether gene methylation in the peritoneal fluid (PF) predicts peritoneal recurrence in gastric cancer patients.METHODS: The gene methylation of CHFR (checkpoint with forkhead and ring finger domains), p16, RUNX3 (runt-related transcription factor 3), E-cadherin, hMLH1 (mutL homolog 1), ABCG2 (ATP-binding cassette, sub-family G, member 2) and BNIP3 (BCL2/adenovirus E1B 19 kDa interacting protein 3) were analyzed in 80 specimens of PF by quantitative methylation-specific polymerase chain r...

  14. The tumor-selective over-expression of the human Hsp 70 gene is attributed to the aberrant controls at both initiation and elongation levels of transcription

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The tumor selective over-expression of the human Hsp70 gene has been well documented in human tumors, linked to the poor prognosis, being refractory to chemo- and radio-therapies as well as the advanced stage of tumorous lesions in particular. However, both the nature and details of aberrations in the control of the Hsp70 expression in tumor remain enigmatic. By comparing various upstream segments of the Hsp70gene for each's ability to drive the luciferase reporter genes in the context of the tumor cell lines varying in their p53 status and an immortal normal liver cell line, we demonstrated in a great detail the defects in the control mechanisms at the both initiation and elongation levels of transcription being instrumental to the tumor selective profile of its expression. Our data should not only offer new insights into our understanding of the tumor specific over-expression of the human Hsp70 gene, but also paved the way for the rational utilization of the tumor selective mechanism with the Hsp70 at the central stage for targeting the therapeutic gene expression to human tumors.

  15. Concerted actions of ameliorated colitis, aberrant crypt foci inhibition and 15-hydroxyprostaglandin dehydrogenase induction by sonic hedgehog inhibitor led to prevention of colitis-associated cancer.

    Science.gov (United States)

    Kangwan, Napapan; Kim, Yoon-Jae; Han, Young-Min; Jeong, Migyeong; Park, Jong-Min; Hahm, Ki-Baik

    2016-03-15

    The sonic hedgehog (Shh) signaling has been known to contribute to carcinogenesis in organ, where hedgehog exerted organogenesis and in cancers, which are developed based on mutagenic inflammation. Therefore, colitis-associated cancer (CAC) can be a good model to prove whether Shh inhibitors can be applied to prevent, as the efforts to discover potent anti-inflammatory agent are active to prevent CAC. Here, under the hypothesis that Shh inhibitors can prevent CAC, mouse model was generated to develop CAC by azoxymethane (AOM)-initiated, dextran sodium sulfate-promoted carcinogenesis. Shh inhibitors, cerulenin and itraconazole were treated by oral gavage and the mice were sacrificed at early phase of 3 weeks and late phase of 16 weeks. Compared to control group, the number of aberrant crypt foci at 3 weeks and tumor incidence at 16 weeks were all significantly decreased with Shh inhibitor. Significant attenuations of macrophage infiltration accompanied with significant decreases of IL-6, COX-2, STAT3 and NF-κB as well as significant ameliorations of β-catenin nuclear translocation, cyclin D1 and CDK4 were imposed with Shh inhibitors. Especially, CAC was accompanied with significant cancellation of 15-hydroxyprostaglandin dehydrogenase (15-PGDH), but their levels were significantly preserved with Shh inhibitors. Among inflammatory mediators, significantly decreased levels of IL-6 and TNF-α, regulated with repressed NF-κb and STAT3, were prominent with Shh inhibitor, whereas significant inductions of apoptosis were noted with Shh inhibitors. In conclusion, Shh inhibitors significantly prevented CAC covering either ameliorating oncogenic inflammation or suppressing tumor proliferation, especially supported with significant inhibition of IL-6 and STAT3 signaling, 15-PGDH preservation and apoptosis induction.

  16. Absolute quantification of somatic DNA alterations in human cancer

    OpenAIRE

    Carter, Scott L.; Cibulskis, Kristian; Helman, Elena; McKenna, Aaron; Shen, Hui; Zack, Travis; Laird, Peter W.; Onofrio, Robert C.; Winckler, Wendy; Weir, Barbara A; Beroukhim, Rameen; Pellman, David; Levine, Douglas A.; Lander, Eric S.; Meyerson, Matthew

    2012-01-01

    We developed a computational method (ABSOLUTE) that infers tumor purity and malignant cell ploidy directly from analysis of somatic DNA alterations. ABSOLUTE can detect subclonal heterogeneity, somatic homozygosity, and calculate statistical sensitivity to detect specific aberrations. We used ABSOLUTE to analyze ovarian cancer data and identified pervasive subclonal somatic point mutations. In contrast, mutations occurring in key tumor suppressor genes, TP53 and NF1 were predominantly clonal ...

  17. Absolute quantification of somatic DNA alterations in human cancer

    OpenAIRE

    Carter, Scott L.; Cibulskis, Kristian; Helman, Elena; McKenna, Aaron; Shen, Hui; Zack, Travis; Laird, Peter W.; Onofrio, Robert C.; Winckler, Wendy; Weir, Barbara A; Beroukhim, Rameen; Pellman, David; Levine, Douglas A.; Lander, Eric S.; Meyerson, Matthew

    2015-01-01

    We developed a computational method (ABSOLUTE) that infers tumor purity and malignant cell ploidy directly from analysis of somatic DNA alterations. ABSOLUTE can detect subclonal heterogeneity, somatic homozygosity, and calculate statistical sensitivity to detect specific aberrations. We used ABSOLUTE to analyze ovarian cancer data and identified pervasive subclonal somatic point mutations. In contrast, mutations occurring in key tumor suppressor genes, TP53 and NF1 were predominantly clonal ...

  18. Aberrant expression of VEGF-C is related to grade of cervical intraepithelial neoplasia (CIN) and high risk HPV, but does not predict virus clearance after treatment of CIN or prognosis of cervical cancer.

    Science.gov (United States)

    Branca, M; Giorgi, C; Santini, D; Di Bonito, L; Ciotti, M; Benedetto, A; Paba, P; Costa, S; Bonifacio, D; Di Bonito, P; Accardi, L; Favalli, C; Syrjänen, K

    2006-01-01

    Increased angiogenesis leads to invasion in cervical cancer. Vascular endothelial growth factors (VEGFs) are involved in angiogenesis, but molecular links to the most important aetiological agent, human papillomavirus (HPV), need clarifying. Archival samples-150 squamous cell carcinomas (SCCs) and 152 cervical intraepithelial neoplasia (CIN) lesions-were examined immunohistochemically for anti-VEGF-C antibody and for HPV by polymerase chain reaction (PCR). Follow up data were available for all SCC cases, and 67 CIN lesions were monitored with serial PCR to assess HPV clearance/persistence after treatment. High risk (HR) HPV types were closely associated with CIN (odds ratio, 19.12; 95% confidence interval, 2.31 to 157.81) and SCC (27.25; 3.28 to 226.09). There was a linear increase of VEGF-C expression-weak in CIN1 and intense in CIN3 and SCC (20.49; 8.69 to 48.26). VEGF-C upregulation was a sensitive (93.5%; 95% CI, 90.1% to 96.9%) marker of HR-HPV type (4.70; 2.17 to 10.21), but lost its significance in multivariate regression-p16(INK4a) and survivin were equally strong independent predictors of HR-HPV. Aberrant expression of VEGF-C did not predict clearance/persistence of HR-HPV after treatment of CIN. In cervical cancer, VEGF-C had no prognostic value in univariate or multivariate survival analysis. After adjustment for HR-HPV, FIGO stage, age, and tumour grade, only FIGO stage and age remained independent prognostic predictors. VEGF-C is an early marker of cervical carcinogenesis, with linearly increasing expression starting from low grade CIN. VEGF-C expression is closely related to HR-HPV in cervical lesions, probably because of its p53 independent upregulation by the E6 oncoprotein of HR-HPV.

  19. Altered regulation of DNA ligase IV activity by aberrant promoter DNA methylation and gene amplification in colorectal cancer.

    Science.gov (United States)

    Kuhmann, Christine; Li, Carmen; Kloor, Matthias; Salou, Mariam; Weigel, Christoph; Schmidt, Christopher R; Ng, Linda W C; Tsui, Wendy W Y; Leung, Suet Y; Yuen, Siu T; Becker, Natalia; Weichenhan, Dieter; Plass, Christoph; Schmezer, Peter; Chan, Tsun L; Popanda, Odilia

    2014-04-15

    Colorectal cancer (CRC) presents as a very heterogeneous disease which cannot sufficiently be characterized with the currently known genetic and epigenetic markers. To identify new markers for CRC we scrutinized the methylation status of 231 DNA repair-related genes by methyl-CpG immunoprecipitation followed by global methylation profiling on a CpG island microarray, as altered expression of these genes could drive genomic and chromosomal instability observed in these tumors. We show for the first time hypermethylation of MMP9, DNMT3A and LIG4 in CRC which was confirmed in two CRC patient groups with different ethnicity. DNA ligase IV (LIG4) showed strong differential promoter methylation (up to 60%) which coincided with downregulation of mRNA in 51% of cases. This functional association of LIG4 methylation and gene expression was supported by LIG4 re-expression in 5-aza-2'-deoxycytidine-treated colon cancer cell lines, and reduced ligase IV amounts and end-joining activity in extracts of tumors with hypermethylation. Methylation of LIG4 was not associated with other genetic and epigenetic markers of CRC in our study. As LIG4 is located on chromosome 13 which is frequently amplified in CRC, two loci were tested for gene amplification in a subset of 47 cases. Comparison of amplification, methylation and expression data revealed that, in 30% of samples, the LIG4 gene was amplified and methylated, but expression was not changed. In conclusion, hypermethylation of the LIG4 promoter is a new mechanism to control ligase IV expression. It may represent a new epigenetic marker for CRC independent of known markers.

  20. ABT-737 Synergizes with Cisplatin Bypassing Aberration of Apoptotic Pathway in Non-small Cell Lung Cancer

    Directory of Open Access Journals (Sweden)

    Eun Young Kim

    2017-04-01

    Full Text Available A subset of non-small cell lung cancer (NSCLC, which does not have a druggable driver mutation, is treated with platinum-based cytotoxic chemotherapy, but it develops resistance triggered by DNA damage responses. Here, we investigated the effect of activation of STAT3 by cisplatin on anti-apoptotic proteins and the effectiveness of a co-treatment with cisplatin and a BH3 mimetic, ABT-737. We analyzed the relationship between cisplatin and STAT3 pathway and effect of ABT-737, when combined with cisplatin in NSCLC cells and K-ras mutant mouse models. The synergism of this combination was evaluated by the Chou-Talalay Combination Index method. In vivo activity was evaluated by micro-CT. In NSCLC cells, there was a time and dose-dependent phosphorylation of SRC-JAK2-STAT3 by cisplatin, followed by increased expression of anti-apoptotic molecules. When the expression of the BCL-2 protein family members was evaluated in clinical samples, BCL-xL was most frequently overexpressed. Dominant negative STAT3 suppressed their expression, suggesting that STAT3 mediates cisplatin mediated overexpression of the anti-apoptotic molecules. ABT-737 displaced BCL-xL from mitochondria and induced oligomerization of BAK. ABT-737 itself showed cytotoxic effects and a combination of ABT-737 with cisplatin showed strong synergistic cytotoxicity. In a murine lung cancer model, co-treatment with ABT-737 and cisplatin induced significant tumor regression. These findings reveal a synergistic cytotoxic and anti-tumor activity of ABT-737 and cisplatin co-treatment in preclinical models, and suggest that clinical trials using this strategy may be beneficial in advanced NSCLC.

  1. Oncogene-initiated aberrant signaling engenders the metastatic phenotype: synergistic transcription factor interactions are targets for cancer therapy.

    Science.gov (United States)

    Denhardt, D T

    1996-01-01

    Certain p21GTPases (notably Ras) and some of their guanine nucleotide exchange factors (e.g., Ost, Dbl, Tiam) and downstream mediators (e.g., Raf, Myc) have the potential to promote the development of malignancies because they can enhance the transcription of genes that foster the tumorigenic and metastatic phenotype. Among these are genes that stimulate cell proliferation, confer immortality, and facilitate the invasion of normal tissues. Oncogenes upstream of Ras-cell surface receptors such as ErbB2/Neu, Met, or Trk (and their ligands), and nonreceptor cytoplasmic protein tyrosine kinases such as Src and Abl-not only can act through Ras but also contribute additional signals. This review presents a synopsis of our understanding of signaling pathways controlled by the p21GTPases, with a focus on transcription factors regulated by the pathways. Mutations in one or more of the elements in these signaling pathways are invariably found in cancer cells. Crosstalk among the pathways may explain how some forms of stress can contribute to the development of a malignancy. Abnormal signaling leads to modified cytoskeletal structures and permanently altered (i.e., self-sustaining or epigenetic) transcription of target genes. A common therne is that genes whose transcription is elevated to the greatest extent by Ras often have in their promoters juxtaposed binding sites for two different transcription factors (particularly those in the Fos/Jun, CREB/ATF, NFkB, and Ets families) each of which is activated and such that together they synergize to augment transcription substantially. Some of these transcription factors can also act as oncogenes in certain cell types when appropriately modified and expressed. This unifying theme among many different cancers suggests that strategies to restore the balance among the signaling pathways or to suppress synergistic interactions between transcription factors may prove broadly useful in reversing the malignant phenotype.

  2. Aberrant nuclear localization of β-catenin without genetic alterations in β-catenin or Axin genes in esophageal cancer

    Directory of Open Access Journals (Sweden)

    Shinoda Noriyuki

    2007-02-01

    Full Text Available Abstract Background β-catenin is a multifunctional protein involved in two apparently independent processes: cell-cell adhesion and signal transduction. β-catenin is involved in Wnt signaling pathway that regulates cellular differentiation and proliferation. In this study, we investigated the expression pattern of β-catenin and cyclin D1 using immunohistochemistry and searched for mutations in exon 3 of the β-catenin gene and Axin gene in esophageal squamous cell carcinoma. Materials and methods Samples were obtained from 50 esophageal cancer patients. Immunohistochemical staining for β-catenin and cyclin D1 was done. Mutational analyses of the exon3 of the β-catenin gene and Axin gene were performed on tumors with nuclear β-catenin expression. Results Four (8% esophageal cancer tissues showed high nuclear β-catenin staining. Overexpression of cyclin D1 was observed in 27 out of 50 (54% patients. All four cases that showed nuclear β-catenin staining overexpressed cyclin D1. No relationship was observed between the expression pattern of β-catenin and cyclin D1 and age, sex, tumor size, stage, differentiation grade, lymph node metastasis, response to chemotherapy, or survival. No mutational change was found in β-catenin exon 3 in the four cases with nuclear β-catenin staining. Sequencing analysis of the Axin cDNA revealed only a splicing variant (108 bp deletion, position 2302–2409 which was present in the paired normal mucosa. Conclusion A fraction of esophageal squamous cell carcinomas have abnormal nuclear accumulation of β-catenin accompanied with increased cyclin D1 expression. Mutations in β-catenin or axin genes are not responsible for this abnormal localization of β-catenin.

  3. Aberrant methylation of LINE-1, SLIT2, MAL and IGFBP7 in non-small cell lung cancer.

    Science.gov (United States)

    Suzuki, Makoto; Shiraishi, Kenji; Eguchi, Ayami; Ikeda, Koei; Mori, Takeshi; Yoshimoto, Kentaro; Ohba, Yasuomi; Yamada, Tatsuya; Ito, Takaaki; Baba, Yoshifumi; Baba, Hideo

    2013-04-01

    Genome-wide DNA hypomethylation and gene hypermethylation play important roles in instability and carcino-genesis. Methylation in long interspersed nucleotide element 1 (LINE-1) is a good indicator of the global DNA methylation level within a cell. Slit homolog 2 (SLIT2), myelin and lymphocyte protein gene (MAL) and insulin-like growth factor binding protein 7 (IGFBP7) are known to be hypermethylated in various malignancies. The aim of the present study was to assess the precise methylation levels of LINE-1, SLIT2, MAL and IGFBP7 in non-small cell lung cancer (NSCLC) using a pyrosequencing assay. Methylation of all regions was examined in 56 primary NSCLCs using a pyrosequencing assay. Changes in mRNA expression levels of SLIT2, MAL and IGFBP7 were measured before and after treatment with a demethylating agent. Methylation of these genes was also examined in 9 lung cancer cell lines using RT-PCR and a pyrosequencing assay. Frequencies of hypomethylation of LINE-1 and hypermethylation of SLIT2, MAL and IGFBP7, defined by predetermined cut off values, were 55, 64, 46 and 54% in NSCLCs, respectively and exhibited tumor-specific features. The hypermethylation of all genes was well correlated with changes in expression. The methylation level and frequency of MAL were significantly higher in smokers and in patients without EGFR mutations. Through accurate measurement of methylation levels using pyrosequencing, hypomethylation of LINE-1 and hypermethylation of SLIT2, MAL and IGFBP7 were frequently detected in NSCLCs and associated with various clinical features. Analysis of the methylation profiles of these genes may, therefore, provide novel opportunities for the therapy of NSCLCs.

  4. Regulatory T Cells in Human Ovarian Cancer

    Directory of Open Access Journals (Sweden)

    Dong-Jun Peng

    2012-01-01

    Full Text Available Multiple layers of suppressive components including regulatory T (TReg cells, suppressive antigen-presenting cells, and inhibitory cytokines form suppressive networks in the ovarian cancer microenvironment. It has been demonstrated that as a major suppressive element, TReg cells infiltrate tumor, interact with several types of immune cells, and mediate immune suppression through different molecular and cellular mechanisms. In this paper, we focus on human ovarian cancer and will discuss the nature of TReg cells including their subsets, trafficking, expansion, and function. We will briefly review the development of manipulation of TReg cells in preclinical and clinical settings.

  5. Ubiquitin Ligase RNF138 Promotes Episodic Ataxia Type 2-Associated Aberrant Degradation of Human Cav2.1 (P/Q-Type) Calcium Channels.

    Science.gov (United States)

    Fu, Ssu-Ju; Jeng, Chung-Jiuan; Ma, Chia-Hao; Peng, Yi-Jheng; Lee, Chi-Ming; Fang, Ya-Ching; Lee, Yi-Ching; Tang, Sung-Chun; Hu, Meng-Chun; Tang, Chih-Yung

    2017-03-01

    Voltage-gated CaV2.1 channels comprise a pore-forming α1A subunit with auxiliary α2δ and β subunits. CaV2.1 channels play an essential role in regulating synaptic signaling. Mutations in the human gene encoding the CaV2.1 subunit are associated with the cerebellar disease episodic ataxia type 2 (EA2). Several EA2-causing mutants exhibit impaired protein stability and exert dominant-negative suppression of CaV2.1 wild-type (WT) protein expression via aberrant proteasomal degradation. Here, we set out to delineate the protein degradation mechanism of human CaV2.1 subunit by identifying RNF138, an E3 ubiquitin ligase, as a novel CaV2.1-binding partner. In neurons, RNF138 and CaV2.1 coexist in the same protein complex and display notable subcellular colocalization at presynaptic and postsynaptic regions. Overexpression of RNF138 promotes polyubiquitination and accelerates protein turnover of CaV2.1. Disrupting endogenous RNF138 function with a mutant (RNF138-H36E) or shRNA infection significantly upregulates the CaV2.1 protein level and enhances CaV2.1 protein stability. Disrupting endogenous RNF138 function also effectively rescues the defective protein expression of EA2 mutants, as well as fully reversing EA2 mutant-induced excessive proteasomal degradation of CaV2.1 WT subunits. RNF138-H36E coexpression only partially restores the dominant-negative effect of EA2 mutants on CaV2.1 WT functional expression, which can be attributed to defective membrane trafficking of CaV2.1 WT in the presence of EA2 mutants. We propose that RNF138 plays a critical role in the homeostatic regulation of CaV2.1 protein level and functional expression and that RNF138 serves as the primary E3 ubiquitin ligase promoting EA2-associated aberrant degradation of human CaV2.1 subunits.SIGNIFICANCE STATEMENT Loss-of-function mutations in the human CaV2.1 subunit are linked to episodic ataxia type 2 (EA2), a dominantly inherited disease characterized by paroxysmal attacks of ataxia and

  6. Aberration Corrected Emittance Exchange

    CERN Document Server

    Nanni, Emilio A

    2015-01-01

    Full exploitation of emittance exchange (EEX) requires aberration-free performance of a complex imaging system including active radio-frequency (RF) elements which can add temporal distortions. We investigate the performance of an EEX line where the exchange occurs between two dimensions with normalized emittances which differ by orders of magnitude. The transverse emittance is exchanged into the longitudinal dimension using a double dog-leg emittance exchange setup with a 5 cell RF deflector cavity. Aberration correction is performed on the four most dominant aberrations. These include temporal aberrations that are corrected with higher order magnetic optical elements located where longitudinal and transverse emittance are coupled. We demonstrate aberration-free performance of emittances differing by 4 orders of magnitude, i.e. an initial transverse emittance of $\\epsilon_x=1$ pm-rad is exchanged with a longitudinal emittance of $\\epsilon_z=10$ nm-rad.

  7. Human papillomavirus and gastrointestinal cancer: A review

    Science.gov (United States)

    Bucchi, Dania; Stracci, Fabrizio; Buonora, Nicola; Masanotti, Giuseppe

    2016-01-01

    Human papillomavirus (HPV) is one of the most common sexually transmitted infections worldwide. Exposure to HPV is very common, and an estimated 65%-100% of sexually active adults are exposed to HPV in their lifetime. The majority of HPV infections are asymptomatic, but there is a 10% chance that individuals will develop a persistent infection and have an increased risk of developing a carcinoma. The International Agency for Research on Cancer has found that the following cancer sites have a strong causal relationship with HPV: cervix uteri, penis, vulva, vagina, anus and oropharynx, including the base of the tongue and the tonsils. However, studies of the aetiological role of HPV in colorectal and esophageal malignancies have conflicting results. The aim of this review was to organize recent evidence and issues about the association between HPV infection and gastrointestinal tumours with a focus on esophageal, colorectal and anal cancers. The ultimate goal was to highlight possible implications for prognosis and prevention. PMID:27672265

  8. Genome-wide analysis of alternative transcripts in human breast cancer

    Science.gov (United States)

    Wen, Ji; Toomer, Kevin H.

    2016-01-01

    Transcript variants play a critical role in diversifying gene expression. Alternative splicing is a major mechanism for generating transcript variants. A number of genes have been implicated in breast cancer pathogenesis with their aberrant expression of alternative transcripts. In this study, we performed genome-wide analyses of transcript variant expression in breast cancer. With RNA-Seq data from 105 patients, we characterized the transcriptome of breast tumors, by pairwise comparison of gene expression in the breast tumor versus matched healthy tissue from each patient. We identified 2839 genes, ~10 % of protein-coding genes in the human genome, that had differential expression of transcript variants between tumors and healthy tissues. The validity of the computational analysis was confirmed by quantitative RT-PCR assessment of transcript variant expression from four top candidate genes. The alternative transcript profiling led to classification of breast cancer into two subgroups and yielded a novel molecular signature that could be prognostic of patients’ tumor burden and survival. We uncovered nine splicing factors (FOX2, MBNL1, QKI, PTBP1, ELAVL1, HNRNPC, KHDRBS1, SFRS2, and TIAR) that were involved in aberrant splicing in breast cancer. Network analyses for the coordinative patterns of transcript variant expression identified twelve “hub” genes that differentiated the cancerous and normal transcriptomes. Dysregulated expression of alternative transcripts may reveal novel biomarkers for tumor development. It may also suggest new therapeutic targets, such as the “hub” genes identified through the network analyses of transcript variant expression, or splicing factors implicated in the formation of the tumor transcriptome. PMID:25913416

  9. BAD-mediated apoptotic pathway is associated with human cancer development.

    Science.gov (United States)

    Stickles, Xiaomang B; Marchion, Douglas C; Bicaku, Elona; Al Sawah, Entidhar; Abbasi, Forough; Xiong, Yin; Bou Zgheib, Nadim; Boac, Bernadette M; Orr, Brian C; Judson, Patricia L; Berry, Amy; Hakam, Ardeshir; Wenham, Robert M; Apte, Sachin M; Berglund, Anders E; Lancaster, Johnathan M

    2015-04-01

    The malignant transformation of normal cells is caused in part by aberrant gene expression disrupting the regulation of cell proliferation, apoptosis, senescence and DNA repair. Evidence suggests that the Bcl-2 antagonist of cell death (BAD)-mediated apoptotic pathway influences cancer chemoresistance. In the present study, we explored the role of the BAD-mediated apoptotic pathway in the development and progression of cancer. Using principal component analysis to derive a numeric score representing pathway expression, we evaluated clinico-genomic datasets (n=427) from corresponding normal, pre-invasive and invasive cancers of different types, such as ovarian, endometrial, breast and colon cancers in order to determine the associations between the BAD-mediated apoptotic pathway and cancer development. Immunofluorescence was used to compare the expression levels of phosphorylated BAD [pBAD (serine-112, -136 and -155)] in immortalized normal and invasive ovarian, colon and breast cancer cells. The expression of the BAD-mediated apoptotic pathway phosphatase, PP2C, was evaluated by RT-qPCR in the normal and ovarian cancer tissue samples. The growth-promoting effects of pBAD protein levels in the immortalized normal and cancer cells were assessed using siRNA depletion experiments with MTS assays. The expression of the BAD-mediated apoptotic pathway was associated with the development and/or progression of ovarian (n=106, pcancers, as well as with ovarian endometriosis (n=20, pcancer cells compared to the immortalized normal cells, whereas PP2C gene expression was lower in the cancer compared to the ovarian tumor tissue samples (n=76, pcancer cells. The BAD-mediated apoptotic pathway is thus associated with the development of human cancers likely influenced by the protein levels of pBAD.

  10. Alternative splicing variants of human Fbx4 disturb cyclin D1 proteolysis in human cancer

    Energy Technology Data Exchange (ETDEWEB)

    Chu, Xiufeng; Zhang, Ting; Wang, Jie; Li, Meng; Zhang, Xiaolei; Tu, Jing [Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191 (China); Sun, Shiqin [College of Pharmacy, Harbin Medical University-Daqing, Daqing, Heilongjiang 163319 (China); Chen, Xiangmei, E-mail: xm_chen6176@bjmu.edu.cn [Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191 (China); Lu, Fengmin [Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191 (China)

    2014-04-25

    Highlights: • The expression of Fbx4 was significantly lower in HCC tissues. • Novel splicing variants of Fbx4 were identified. • These novel variants are much more abundant in human cancer tissues and cells. • The novel Fbx4 isoforms could promote cell proliferation and migration in vitro. • These isoforms showed less capability for cyclin D1 binding and degradation. - Abstract: Fbx4 is a specific substrate recognition component of SCF ubiquitin ligases that catalyzes the ubiquitination and subsequent degradation of cyclin D1 and Trx1. Two isoforms of human Fbx4 protein, the full length Fbx4α and the C-terminal truncated Fbx4β have been identified, but their functions remain elusive. In this study, we demonstrated that the mRNA level of Fbx4 was significantly lower in hepatocellular carcinoma tissues than that in the corresponding non-tumor tissues. More importantly, we identified three novel splicing variants of Fbx4: Fbx4γ (missing 168–245nt of exon1), Fbx4δ (missing exon6) and a N-terminal reading frame shift variant (missing exon2). Using cloning sequencing and RT-PCR, we demonstrated these novel splice variants are much more abundant in human cancer tissues and cell lines than that in normal tissues. When expressed in Sk-Hep1 and NIH3T3 cell lines, Fbx4β, Fbx4γ and Fbx4δ could promote cell proliferation and migration in vitro. Concordantly, these isoforms could disrupt cyclin D1 degradation and therefore increase cyclin D1 expression. Moreover, unlike the full-length isoform Fbx4α that mainly exists in cytoplasm, Fbx4β, Fbx4γ, and Fbx4δ locate in both cytoplasm and nucleus. Since cyclin D1 degradation takes place in cytoplasm, the nuclear distribution of these Fbx4 isoforms may not be involved in the down-regulation of cytoplasmic cyclin D1. These results define the impact of alternative splicing on Fbx4 function, and suggest that the attenuated cyclin D1 degradation by these novel Fbx4 isoforms provides a new insight for aberrant

  11. A Mouse Model of Hyperproliferative Human Epithelium Validated by Keratin Profiling Shows an Aberrant Cytoskeletal Response to Injury

    Directory of Open Access Journals (Sweden)

    Samal Zhussupbekova

    2016-07-01

    Full Text Available A validated animal model would assist with research on the immunological consequences of the chronic expression of stress keratins KRT6, KRT16, and KRT17, as observed in human pre-malignant hyperproliferative epithelium. Here we examine keratin gene expression profile in skin from mice expressing the E7 oncoprotein of HPV16 (K14E7 demonstrating persistently hyperproliferative epithelium, in nontransgenic mouse skin, and in hyperproliferative actinic keratosis lesions from human skin. We demonstrate that K14E7 mouse skin overexpresses stress keratins in a similar manner to human actinic keratoses, that overexpression is a consequence of epithelial hyperproliferation induced by E7, and that overexpression further increases in response to injury. As stress keratins modify local immunity and epithelial cell function and differentiation, the K14E7 mouse model should permit study of how continued overexpression of stress keratins impacts on epithelial tumor development and on local innate and adaptive immunity.

  12. Comparative proteomics analysis of human gastric cancer

    Institute of Scientific and Technical Information of China (English)

    Wei Li; Jian-Fang Li; Ying Qu; Xue-Hua Chen; Jian-Min Qin; Qin-Long Gu; Min Yan; Zheng-Gang Zhu; Bing-Ya Liu

    2008-01-01

    AIM: To isolate and identify differentially expressed proteins between cancer and normal tissues of gastric cancer by two-dimensional electrophoresis (2-DE) and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS).METHODS: Soluble fraction proteins of gastric cancer tissues and paired normal tissues were separated by 2-DE.The differentially expressed proteins were selected and identified by MALDI-TOF-MS and database search.RESULTS: 2-DE profiles with high resolution and reproducibility were obtained.Twenty-three protein spots were excised from sliver staining gel and digested in gel by trypsin,in which fifteen protein spots were identified successfully.Among the identified proteins,there were ten over-expressed and five under-expressed proteins in stomach cancer tissues compared with normal tissues.CONCLUSION: In this study,the well-resolved,reproducible 2-DE patterns of human gastric cancer tissue and paired normal tissue were established and optimized and certain differentially-expressed proteins were identified.The combined use of 2-DE and MS provides an effective approach to screen for potential tumor markers.

  13. Human Colon Cancer Cells Cultivated in Space

    Science.gov (United States)

    1995-01-01

    Within five days, bioreactor cultivated human colon cancer cells (shown) grown in Microgravity on the STS-70 mission in 1995, had grown 30 times the volume of the control specimens on Earth. The samples grown in space had a higher level of cellular organization and specialization. Because they more closely resemble tumors found in the body, microgravity grown cell cultures are ideal for research purposes.

  14. Analysis of miRNA profiles identified miR-196a as a crucial mediator of aberrant PI3K/AKT signaling in lung cancer cells.

    Science.gov (United States)

    Guerriero, Ilaria; D'Angelo, Daniela; Pallante, Pierlorenzo; Santos, Mafalda; Scrima, Marianna; Malanga, Donatella; De Marco, Carmela; Ravo, Maria; Weisz, Alessandro; Laudanna, Carmelo; Ceccarelli, Michele; Falco, Geppino; Rizzuto, Antonia; Viglietto, Giuseppe

    2016-11-17

    Hyperactivation of the PI3K/AKT pathway is observed in most human cancer including lung carcinomas. Here we have investigated the role of miRNAs as downstream targets of activated PI3K/AKT signaling in Non Small Cell Lung Cancer (NSCLC). To this aim, miRNA profiling was performed in human lung epithelial cells (BEAS-2B) expressing active AKT1 (BEAS-AKT1-E17K), active PI3KCA (BEAS-PIK3CA-E545K) or with silenced PTEN (BEAS-shPTEN).Twenty-four differentially expressed miRNAs common to BEAS-AKT1-E17K, BEAS-PIK3CA-E545K and BEAS-shPTEN cells were identified through this analysis, with miR-196a being the most consistently up-regulated miRNA. Interestingly, miR-196a was significantly overexpressed also in human NSCLC-derived cell lines (n=11) and primary lung cancer samples (n=28).By manipulating the expression of miR-196a in BEAS-2B and NCI-H460 cells, we obtained compelling evidence that this miRNA acts downstream the PI3K/AKT pathway, mediating some of the proliferative, pro-migratory and tumorigenic activity that this pathway exerts in lung epithelial cells, possibly through the regulation of FoxO1, CDKN1B (hereafter p27) and HOXA9.

  15. Aspartame bioassay findings portend human cancer hazards.

    Science.gov (United States)

    Huff, James; LaDou, Joseph

    2007-01-01

    The U.S. Food and Drug Administration (FDA) should reevaluate its position on aspartame as being safe under all conditions. Animal bioassay results predict human cancer risks, and a recent animal study confirms that there is a potential aspartame risk to humans. Aspartame is produced and packaged in China for domestic use and global distribution. Japan, France, and the United States are also major producers. No study of long-term adverse occupational health effects on aspartame workers have been conducted. The FDA should consider sponsoring a prospective epidemiologic study of aspartame workers.

  16. 1. HUMAN POPULATION MONITORING FOR CANCER PREVENTION

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    @@Most of the chemicals classified by the International Agency for Research on Cancer (IARC) as human carcinogens are mutagenic across test systems, cf. [www.epa.gov/gapdb ] and induce tumors at multiple sites in rodent species. They are therefore readity detected in short term tests for gene-tic and related effects (GRE), in animal carcinogenesis bioassays and in human monitoring studies. Carcinogens that are not genotoxic may be studied using new toxicogenomic approaches as will be discussed. A Chemical Effects in Biological Systems (CEBS) database is planned by the National Center for Toxicogenomics to contain information on such compounds. The 1992 Preamble to the IARC Monographs

  17. Cytogenetic heterogeneity and their serial dynamic changes during acquisition of cytogenetic aberrations in cultured mesenchymal stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jung-Ah [Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul (Korea, Republic of); Im, Kyong Ok; Park, Si Nae; Kwon, Ji Seok [Cancer Research Institute, Seoul National University College of Medicine, Seoul (Korea, Republic of); Kim, Seon Young [Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul (Korea, Republic of); Oh, Keunhee; Lee, Dong-Sup [Laboratory of Immunology and Cancer Biology, Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul (Korea, Republic of); Transplantation Research Institute, Seoul National University College of Medicine, Seoul National University College of Medicine, Seoul (Korea, Republic of); Kim, Min Kyung; Kim, Seong Who [Department of Biochemistry and Molecular Biology, Asan Medical Center, University of Ulsan College of Medicine, Seoul (Korea, Republic of); Jang, Mi; Lee, Gene [Lab of Molecular Genetics, School of Dentistry and Dental Research Institute, Seoul National University, Seoul (Korea, Republic of); Oh, Yeon-Mok; Lee, Sang Do [Department of Pulmonary and Critical Care Medicine, Asthma Center and Clinical Research Center for Chronic Obstructive Airway Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul (Korea, Republic of); Lee, Dong Soon, E-mail: soonlee@snu.ac.kr [Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul (Korea, Republic of); Cancer Research Institute, Seoul National University College of Medicine, Seoul (Korea, Republic of)

    2015-07-15

    Highlights: • We evaluated cytogenetic aberrations of MSC during culture using G-banding and FISH. • We tracked the quantitative changes of each clone among heterogeneity upon passages. • The changes of cytogenetic profile upon passages were similar to cancer stem cell. - Abstract: To minimize the risk of tumorigenesis in mesenchymal stem cells (MSCs), G-banding analysis is widely used to detect chromosomal aberrations in MSCs. However, a critical limitation of G-banding is that it only reflects the status of metaphase cells, which can represent as few as 0.01% of tested cells. During routine cytogenetic testing in MSCs, we often detect chromosomal aberrations in minor cell populations. Therefore, we aimed to investigate whether such a minority of cells can expand over time or if they ultimately disappear during MSC passaging. We passaged MSCs serially while monitoring quantitative changes for each aberrant clone among heterogeneous MSCs. To investigate the cytogenetic status of interphase cells, which represent the main population, we also performed interphase FISH analysis, in combination with G-banding and telomere length determination. In human adipose tissue-derived MSCs, 4 types of chromosomal aberrations were found during culturing, and in umbilical cord MSCs, 2 types of chromosomal aberrations were observed. Sequential dynamic changes among heterogeneous aberrant clones during passaging were similar to the dynamic changes observed in cancer stem cells during disease progression. Throughout all passages, the quantitative G-banding results were inconsistent with those of the interphase FISH analysis. Interphase FISH revealed hidden aberrations in stem cell populations with normal karyotypes by G-banding analysis. We found that telomere length gradually decreased during passaging until the point at which cytogenetic aberrations appeared. The present study demonstrates that rare aberrant clones at earlier passages can become predominant clones during

  18. Optical properties of the human cornea : Shape and wave aberration measurements using the VU topographer and Scheimpflug photography

    NARCIS (Netherlands)

    Sicam, V.A.D.P.

    2007-01-01

    In this study, the optical properties of the human cornea was investigated. Two major developments were made because current measurement techniques need improvement First, the VU topographer, which uses a color coded pattern, was validated with real eye data showing better performance compare to co

  19. Effects of different contact lens correction on Zernike aberrations of human eye%不同角膜接触镜对人眼Zernike像差的影响

    Institute of Scientific and Technical Information of China (English)

    保金华; 贺极苍; 毛欣杰; 吕帆

    2013-01-01

    Background Even though the change in wavefront aberrations with correction modality is well documented in the literature,little is known about the underlying mechanism.Complete understanding of the causes responsible for the wavefront change in the combined lens-eye system is important since it provides basic knowledge for further improving the technique to correct refractive error by correcting lenses.Objective The aim of this study was to investigate the influence of refractive correction lens on optical property of the eye by analyzing Zernike aberrations in myopic eyes with contact lens correction.Methods This study was approved by the Ethic Committee of Wenzhou Medical College.Written informed consent was obtained from each subject before entering this study.Zernike aberrations of 52 myopic eyes of 26 subjects with the spherical equivalent-1.75 to-8.50 D were measured using a Hartmann-Shock wavefront sensor.The human eye aberrations were examined at the uncorrected condition,rigid-gas-permeable contact lens (RGP-CL) corrected condition and soft contact lens (Soft-CL) corrected condition.The differences of wavefront aberrations and Zernike coefficients were compared by repeated measurement of single factor variance analysis,and correlation of the aberration changes between uncorrected condition and RGP-CL corrected condition or Sofi-CL corrected condition,between the right eyes and left eyes in different conditions were analyzed by Pearson linear correlation.Results Mean total root-mean-square (tRMS) was (0.71 ± 0.30)μm,(0.54±0.19)μm and (0.74±0.32)μm in the uncorrected condition,RGP-CL corrected condition and Soft-CL corrected condition,with a significant difference (F =8.758,P<0.001),and tRMS was significant declined under the RGP-CL corrected condition compared with uncorrected condition (t =2.746,P =0.008),and tRMS in RGP-CL corrected condition was significantly lower than that in Soft-CL corrected condition (t =3.428,P =0.001).The high RMS (h

  20. Recapitulating Human Gastric Cancer Pathogenesis: Experimental Models of Gastric Cancer

    Science.gov (United States)

    Ding, Lin; El Zaatari, Mohamad

    2017-01-01

    Overview Gastric cancer has been traditionally defined by the Correa paradigm as a progression of sequential pathological events that begins with chronic inflammation [1]. Infection with Helicobacter pylori (H. pylori) is the typical explanation for why the stomach becomes chronically inflamed. Acute gastric inflammation then leads to chronic gastritis, atrophy particularly of acid-secreting parietal cells, metaplasia due to mucous neck cell expansion from trans-differentiation of zymogenic cells to dysplasia and eventually carcinoma [2]. The chapter contains an overview of gastric anatomy and physiology to set the stage for signaling pathways that play a role in gastric tumorigenesis. Finally, the major known mouse models of gastric transformation are critiqued in terms of the rationale behind their generation and contribution to our understanding of human cancer subtypes. PMID:27573785

  1. HUMAN CANCER IS A PARASITE SPREAD VIA INTRUSION IN GENOME

    Directory of Open Access Journals (Sweden)

    Sergey N. Rumyantsev

    2013-03-01

    Full Text Available The present article is devoted to further development of new paradigm about the biology of human cancer: the hypothesis of parasitic nature, origin and evolution of the phenomenon. The study included integrative reconsidering, and reinterpretation of the make-ups, traits and processes existing both in human and animal cancers. It was demonstrated that human cancer possesses nearly analogous set of traits characteristic of transmissible animal cancer. Undoubted analogies are seen in the prevalence, clinical exposure, progression of disease, origin of causative agents, immune response against invasion and especially in the intrinsic deviations of the leading traits of cancerous cells. Both human and animal cancers are highly exceptional pathogens. But in contrast to contagious animal cancers the cells of of human cancer can not pass between individuals as usual infectious agents. Exhaustive evidence of the parasitic nature and evolutionary origin of human cancer was revealed and interpreted. In contrast to animal cancer formed of solitary cell lineage, human cancer consists of a couple of lineages constructed under different genetic regulations and performed different structural and physiological functions. The complex make-up of cancer composition remains stable over sequential propagation. The subsistence of human cancer regularly includes obligatory interchange of its successive forms. Human cancer possesses its own biological watch and the ability to gobble its victim, transmit via the intrusion of the genome, perform intercommunications within the tumor components and between the dispersed subunits of cancer. Such intrinsic traits characterize human cancer as a primitively structured parasite that can be classified in Class Mammalians, Species Genomeintruder malevolent (G.malevolent.

  2. Replication stress and oxidative damage contribute to aberrant constitutive activation of DNA damage signalling in human gliomas

    DEFF Research Database (Denmark)

    Bartkova, J; Hamerlik, P; Stockhausen, Marie;

    2010-01-01

    damage signalling in low- and high-grade human gliomas, and analyze the sources of such endogenous genotoxic stress. Based on analyses of human glioblastoma multiforme (GBM) cell lines, normal astrocytes and clinical specimens from grade II astrocytomas (n=41) and grade IV GBM (n=60), we conclude......, initially limiting cell proliferation (low Ki-67 index) and selecting for mutations of p53 and likely other genes that allow escape (higher Ki-67 index) from the checkpoint and facilitate tumor progression. Overall, these results support the potential role of the DDR machinery as a barrier to gliomagenesis...... and indicate that replication stress, rather than oxidative stress, fuels the DNA damage signalling in early stages of astrocytoma development....

  3. 骨肉瘤重要信号通路的遗传学研究%Genetic aberrations of key signaling pathways in human osteosarcoma

    Institute of Scientific and Technical Information of China (English)

    周文雅; 王国文; 郝梦泽; 杜晓玲; 杨蕴; 杨吉龙

    2015-01-01

    number change pattern,then the samples were further subjected to the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis to identify the altered pathways in the osteosarcoma.To validate the aberrations of these key pathways,the alterations of VEGF pathway were selected to confirm by the methods of fluorescence in situ hybridization (FISH) and immunohistochemistry (IHC) in formalin-fixed and paraffin-embedded (FFPE) osteosarcoma archival tissues.Results The KEEG analysis of aCGH data identified 33 genetically altered pathways in osteosarcomas.Among them 20 pathways were identified genetic amplifications,such as VEGF and mTOR signaling pathways.Thirteen pathways were genetic deletions,such as Wnt and Hedgehog signaling pathways.The genetic aberrations of cell-cell-matrix pathway such as CAMs,Adherens junction and Tight junction pathways implied the genetically alterations of these pathways which are associated with the tumor invasion and metastasis.Validation the aberrations of VEGF pathway showed that VEGFA gene was significantly amplified.The positive protein expression of VEGFA had a significant association with microvessel density (MVD).Conclusion There are genetic aberrations which involved the component genes of VEGF,mTOR,CAMs,Adherens junction,Wnt,Hedgehog and other 26 signaling pathways.The alterations of these pathways which are significantly associated with tumor invasion,metastasis and progression suggest that the genetic aberrations of these key pathways might contribute to the tumorigenesis and progression in human osteosarcoma,and provide molecular genetic evidence for targeted therapy.

  4. Genotoxic effects of a particular mixture of acetamiprid and alpha-cypermethrin on chromosome aberration, sister chromatid exchange, and micronucleus formation in human peripheral blood lymphocytes.

    Science.gov (United States)

    Kocaman, Ayşe Yavuz; Topaktaş, Mehmet

    2010-04-01

    The genotoxic effects of a particular mixture of acetamiprid (Acm, neonicotinoid insecticide) and alpha-cypermethrin (alpha-cyp, pyrethroid insecticide) on human peripheral lymphocytes were examined in vitro by chromosomal aberrations (CAs), sister chromatid exchange (SCE), and micronucleus (MN) tests. The human peripheral lymphocytes were treated with 12.5 + 2.5, 15 + 5, 17.5 + 7.5, and 20 + 10 microg/mL of Acm+alpha-cyp, respectively, for 24 and 48 h. The mixture of Acm+alpha-cyp induced the CAs and SCEs at all concentrations and treatment times when compared with both the control and solvent control and these increases were concentration-dependent in both treatment times. MN formation was significantly induced at 12.5 + 2.5, 15 + 5, 17.5 + 7.5, microg/mL of Acm+alpha-cyp when compared with both controls although these increases were not concentration-dependent. Binuclear cells could not be detected sufficiently in the highest concentration of the mixture (20 + 10 microg/mL) for both the 24- and 48-h treatment times. Mitotic index (MI), proliferation index (PI) and nuclear division index (NDI) significantly decreased because of the cytotoxic and cytostatic effects of the mixture, at all concentrations for two treatment periods. Significant decreases in MI and PI were concentration dependent at both treatment times. The decrease in NDI was also concentration-dependent at 48-h treatment period. In general, Acm+alpha-cyp inhibited nuclear division more than positive control, mitomycin C (MMC) and showed a higher cytostatic effect than MMC. Furthermore, in this article, the results of combined effects of Acm+alpha-cyp were compared with the results of single effects of Acm or alpha-cyp (Kocaman and Topaktas,2007,2009, respectively). In conclusion, the particular mixture of Acm+alpha-cyp synergistically induced the genotoxicity/cytotoxicity in human peripheral blood lymphocytes.

  5. Antiangiogenic Steroids in Human Cancer Therapy

    Directory of Open Access Journals (Sweden)

    Richard J. Pietras

    2005-01-01

    Full Text Available Despite advances in the early detection of tumors and in the use of chemotherapy, radiotherapy and surgery for disease management, the worldwide mortality from human cancer remains unacceptably high. The treatment of cancer may benefit from the introduction of novel therapies derived from natural products. Natural products have served to provide a basis for many of the pharmaceutical agents in current use in cancer therapy. Emerging research indicates that progressive growth and spread of many solid tumors depends, in part, on the formation of an adequate blood supply, and this process of tumor-associated angiogenesis is reported to have prognostic significance in several human cancers. This review focuses on the potential application in antitumor therapy of naturally-occurring steroids that target tumor-associated angiogenesis. Squalamine, a 7,24 dihydroxylated 24-sulfated cholestane steroid conjugated to a spermidine at position C-3, is known to have strong antiangiogenic activity in vitro, and it significantly disrupts tumor proliferation and progression in laboratory studies. Work on the interactions of squalamine with vascular endothelial cells indicate that it binds with cell membranes, inhibits the membrane Na+/H+ exchanger and may further function as a calmodulin chaperone. These primary actions appear to promote inhibition of several vital steps in angiogenesis, such as blockade of mitogen-induced actin polymerization, cell–cell adhesion and cell migration, leading to suppression of endothelial cell proliferation. Preclinical studies with squalamine have shown additive benefits in tumor growth delay when squalamine is combined with cisplatin, paclitaxel, cyclophosphamide, genistein or radiation therapy. This compound has also been assessed in early phase clinical trials in cancer; squalamine was found to exhibit little systemic toxicity and was generally well tolerated by treated patients with various solid tumor malignancies

  6. Antiangiogenic Steroids in Human Cancer Therapy.

    Science.gov (United States)

    Pietras, Richard J; Weinberg, Olga K

    2005-03-01

    Despite advances in the early detection of tumors and in the use of chemotherapy, radiotherapy and surgery for disease management, the worldwide mortality from human cancer remains unacceptably high. The treatment of cancer may benefit from the introduction of novel therapies derived from natural products. Natural products have served to provide a basis for many of the pharmaceutical agents in current use in cancer therapy. Emerging research indicates that progressive growth and spread of many solid tumors depends, in part, on the formation of an adequate blood supply, and this process of tumor-associated angiogenesis is reported to have prognostic significance in several human cancers. This review focuses on the potential application in antitumor therapy of naturally-occurring steroids that target tumor-associated angiogenesis. Squalamine, a 7,24 dihydroxylated 24-sulfated cholestane steroid conjugated to a spermidine at position C-3, is known to have strong antiangiogenic activity in vitro, and it significantly disrupts tumor proliferation and progression in laboratory studies. Work on the interactions of squalamine with vascular endothelial cells indicate that it binds with cell membranes, inhibits the membrane Na(+)/H(+) exchanger and may further function as a calmodulin chaperone. These primary actions appear to promote inhibition of several vital steps in angiogenesis, such as blockade of mitogen-induced actin polymerization, cell-cell adhesion and cell migration, leading to suppression of endothelial cell proliferation. Preclinical studies with squalamine have shown additive benefits in tumor growth delay when squalamine is combined with cisplatin, paclitaxel, cyclophosphamide, genistein or radiation therapy. This compound has also been assessed in early phase clinical trials in cancer; squalamine was found to exhibit little systemic toxicity and was generally well tolerated by treated patients with various solid tumor malignancies, including ovarian, non

  7. RNA-seq analysis of prostate cancer in the Chinese population identifies recurrent gene fusions,cancer-associated long noncoding RNAs and aberrant alternative splicings

    Institute of Scientific and Technical Information of China (English)

    Shancheng Ren; Weidong Xu; Chao Chen; Fubo Wang; Xinwu Guo; Ji Lu; Jun Yang; Min Wei; Zhijian Tian; Yinghui Guan; Liang Tang; Zhiyu Peng; Chuanliang Xu; Linhui Wang; Xu Gao; Wei Tian; Jian Wang; Huanming Yang; Jun Wang; Yinghao Sun; Jian-Hua Mao; Yongwei Yu; Changjun Yin; Xin Gao; Zilian Cui; Jibin Zhang; Kang Yi

    2012-01-01

    There are remarkable disparities among patients of different races with prostate cancer; however,the mechanism underlying this difference remains unclear.Here,we present a comprehensive landscape of the transcriptome profiles of 14 primary prostate cancers and their paired normal counterparts from the Chinese population using RNA-seq,revealing tremendous diversity across prostate cancer transcriptomes with respect to gene fusions,long noneoding RNAs (long ncRNA),alternative splicing and somatic mutations.Three of the 14 tumors (21.4%) harbored a TMPRSS2-ERG fusion,and the low prevalence of this fusion in Chinese patients was further confirmed in an additional tumor set (10/54=18.5%).Notably,two novel gene fusions,CTAGE5-KHDRBS3 (20/54=37%) and USP9Y-TTTY15(19/54=35.2%),occurred frequently in our patient cohort.Further systematic transcriptional profiling identified numerous long ncRNAs that were differentially expressed in the tumors.An analysis of the correlation between expression of long ncRNA and genes suggested that long ncRNAs may have functions beyond transcriptional regulation.This study yielded new insights into the pathogenesis of prostate cancer in the Chinese population.

  8. Longitudinal chromatic aberration of the human eye in the visible and near infrared from wavefront sensing, double-pass and psychophysics.

    Science.gov (United States)

    Vinas, Maria; Dorronsoro, Carlos; Cortes, Daniel; Pascual, Daniel; Marcos, Susana

    2015-03-01

    Longitudinal Chromatic Aberration (LCA) influences the optical quality of the eye. However, the reported LCA varies across studies, likely associated to differences in the measurement techniques. We present LCA measured in subjects using wavefront sensing, double-pass retinal images, and psychophysical methods with a custom-developed polychromatic Adaptive Optics system in a wide spectral range (450-950 nm), with control of subjects' natural aberrations. LCA measured psychophysically was significantly higher than that from reflectometric techniques (1.51 D vs 1.00 D in the 488-700 nm range). Ours results indicate that the presence of natural aberrations is not the cause for the discrepancies across techniques.

  9. Aberrant methylation of the 3q25 tumor suppressor gene PTX3 in human esophageal squamous cell carcinoma

    Institute of Scientific and Technical Information of China (English)

    Jun-Xiong Wang; Yuan-Long He; Sheng-Tao Zhu; Shuo Yang; Shu-Tian Zhang

    2011-01-01

    AIM: To identify the novel methylation-silenced gene pentraxin 3 (PTX3) in esophageal squamous cell carcinoma (ESCC). METHODS: PTX3 mRNA expression was examined in six human ESCC cell lines, one human immortalized normal esophageal epithelial cell line, primary ESCC tumor tissue, and paired adjacent nontumor tissue using reverse transcription polymerase chain reaction (RT-PCR). Semi-quantitative immunohistochemistry was used to examine cellular localisation and protein levels. Methylation specific PCR and bisulphite genomic sequencing were employed to investigate the methylation of the candidate gene. RESULTS: In the majority of ESCC cell lines, we found that PTX3 expression was down-regulated due to gene promoter hypermethylation, which was further confirmed by bisulphite genomic sequencing. Demethyl-ation treatment with 5-aza-2'-deoxycytidine restored PTX3 mRNA expression in ESCC cell lines. Methylation was more common in tumor tissues (85%) than in adjacent nontumor tissues (25%) (P < 0 .01). CONCLUSION: PTX3 is down-regulated through promoter hypermethylation in ESCC, and could potentially serve as a biomarker of ESCC.

  10. Oncogenic intra-p53 family member interactions in human cancers

    Directory of Open Access Journals (Sweden)

    Maria eFerraiuolo

    2016-03-01

    Full Text Available The p53 gene family members p53, p73 and p63 display several isoforms derived from the presence of internal promoters and alternative splicing events. They are structural homologues but hold peculiar functional properties. p53, p73 and p63 are tumor suppressor genes that promote differentiation, senescence and apoptosis. p53, unlike p73 and p63, is frequently mutated in cancer often displaying oncogenic gain of function (GOF activities correlated with the induction of proliferation, invasion, chemoresistance and genomic instability in cancer cells. These oncogenic functions are promoted either by the aberrant transcriptional cooperation of mutant p53 (mutp53 with transcription cofactors (e.g., NF-Y, E2F1, Vitamin D Receptor (VDR, Ets-1, NF-kB and YAP or by the interaction with the p53 family members, p73 and p63, determining their functional inactivation. The instauration of these aberrant transcriptional networks leads to increased cell growth, low activation of DNA damage response pathways (DNA damage response (DDR, DNA double-strand breaks (DSBs response, enhanced invasion and high chemoresistance to different conventional chemotherapeutic treatments. Several studies have clearly shown that different cancers harboring mutant p53 proteins exhibit a poor prognosis when compared to those carrying wild type p53 (wt-p53 protein. The interference of mutantp53/p73 and/or mutantp53/p63 interactions, thereby restoring p53, p73 and p63 tumor suppression functions, could be among the potential therapeutic strategies for the treatment of mutant p53 human cancers.

  11. Epidemiologic studies of the human microbiome and cancer

    National Research Council Canada - National Science Library

    Vogtmann, Emily; Goedert, James J

    2016-01-01

    .... Previously detected associations of individual bacteria (e.g., Helicobacter pylori), periodontal disease, and inflammation with specific cancers have motivated studies considering the association between the human microbiome and cancer risk...

  12. Tacrolimus increases Nox4 expression in human renal fibroblasts and induces fibrosis-related genes by aberrant TGF-beta receptor signalling.

    Science.gov (United States)

    Kern, Georg; Mair, Sabine M; Noppert, Susie-Jane; Jennings, Paul; Schramek, Herbert; Rudnicki, Michael; Mueller, Gerhard A; Mayer, Gert; Koppelstaetter, Christian

    2014-01-01

    Chronic nephrotoxicity of immunosuppressives is one of the main limiting factors in the long-term outcome of kidney transplants, leading to tissue fibrosis and ultimate organ failure. The cytokine TGF-β is considered a key factor in this process. In the human renal fibroblast cell line TK-173, the macrolide calcineurin inhibitor tacrolimus (FK-506) induced TGF-β-like effects, manifested by increased expression of NAD(P)H-oxidase 4 (Nox4), transgelin, tropomyosin 1, and procollagen α1(V) mRNA after three days. The macrolide mTOR inhibitor rapamycin had similar effects, while cyclosporine A did not induce fibrose-related genes. Concentration dependence curves were sigmoid, where mRNA expression was induced already at low nanomolar levels of tacrolimus, and reached saturation at 100-300 nM. The effects were independent of extracellular TGF-β as confirmed by the use of neutralizing antibodies, and thus most likely caused by aberrant TGF-β receptor signaling, where binding of tacrolimus to the regulatory FKBP12 protein results in a "leaky" TGF-β receptor. The myofibroblast marker α-smooth muscle actin was neither induced by tacrolimus nor by TGF-β1, indicating an incomplete activation of TK-173 fibroblasts under culture conditions. Tacrolimus- and TGF-β1-induced Nox4 protein upregulation was confirmed by Western blotting, and was accompanied by a rise in intracellular H2O2 concentration. Si-RNA mediated knock-down of Nox4 expression prevented up-regulation of procollagen α1(V) mRNA in tacrolimus-treated cells, but induced procollagen α1(V) expression in control cells. Nox4 knock-down had no significant effect on the other genes tested. TGF-β is a key molecule in fibrosis, and the constant activation of aberrant receptor signaling by tacrolimus might contribute to the long-term development of interstitial kidney fibrosis in immunosuppressed patients. Nox4 levels possibly play a regulatory role in these processes.

  13. Tacrolimus increases Nox4 expression in human renal fibroblasts and induces fibrosis-related genes by aberrant TGF-beta receptor signalling.

    Directory of Open Access Journals (Sweden)

    Georg Kern

    Full Text Available Chronic nephrotoxicity of immunosuppressives is one of the main limiting factors in the long-term outcome of kidney transplants, leading to tissue fibrosis and ultimate organ failure. The cytokine TGF-β is considered a key factor in this process. In the human renal fibroblast cell line TK-173, the macrolide calcineurin inhibitor tacrolimus (FK-506 induced TGF-β-like effects, manifested by increased expression of NAD(PH-oxidase 4 (Nox4, transgelin, tropomyosin 1, and procollagen α1(V mRNA after three days. The macrolide mTOR inhibitor rapamycin had similar effects, while cyclosporine A did not induce fibrose-related genes. Concentration dependence curves were sigmoid, where mRNA expression was induced already at low nanomolar levels of tacrolimus, and reached saturation at 100-300 nM. The effects were independent of extracellular TGF-β as confirmed by the use of neutralizing antibodies, and thus most likely caused by aberrant TGF-β receptor signaling, where binding of tacrolimus to the regulatory FKBP12 protein results in a "leaky" TGF-β receptor. The myofibroblast marker α-smooth muscle actin was neither induced by tacrolimus nor by TGF-β1, indicating an incomplete activation of TK-173 fibroblasts under culture conditions. Tacrolimus- and TGF-β1-induced Nox4 protein upregulation was confirmed by Western blotting, and was accompanied by a rise in intracellular H2O2 concentration. Si-RNA mediated knock-down of Nox4 expression prevented up-regulation of procollagen α1(V mRNA in tacrolimus-treated cells, but induced procollagen α1(V expression in control cells. Nox4 knock-down had no significant effect on the other genes tested. TGF-β is a key molecule in fibrosis, and the constant activation of aberrant receptor signaling by tacrolimus might contribute to the long-term development of interstitial kidney fibrosis in immunosuppressed patients. Nox4 levels possibly play a regulatory role in these processes.

  14. Aberrant plasma IL-7 and soluble IL-7 receptor levels indicate impaired T-cell response to IL-7 in human tuberculosis.

    Directory of Open Access Journals (Sweden)

    Christian Lundtoft

    2017-06-01

    Full Text Available T-cell proliferation and generation of protective memory during chronic infections depend on Interleukin-7 (IL-7 availability and receptivity. Regulation of IL-7 receptor (IL-7R expression and signalling are key for IL-7-modulated T-cell functions. Aberrant expression of soluble (s and membrane-associated (m IL-7R molecules is associated with development of autoimmunity and immune failure in acquired immune deficiency syndrome (AIDS patients. Here we investigated the role of IL-7/IL-7R on T-cell immunity in human tuberculosis. We performed two independent case-control studies comparing tuberculosis patients and healthy contacts. This was combined with follow-up examinations for a subgroup of tuberculosis patients under therapy and recovery. Blood plasma and T cells were characterised for IL-7/sIL-7R and mIL-7R expression, respectively. IL-7-dependent T-cell functions were determined by analysing STAT5 phosphorylation, antigen-specific cytokine release and by analysing markers of T-cell exhaustion and inflammation. Tuberculosis patients had lower soluble IL-7R (p < 0.001 and higher IL-7 (p < 0.001 plasma concentrations as compared to healthy contacts. Both markers were largely independent and aberrant expression normalised during therapy and recovery. Furthermore, tuberculosis patients had lower levels of mIL-7R in T cells caused by post-transcriptional mechanisms. Functional in vitro tests indicated diminished IL-7-induced STAT5 phosphorylation and impaired IL-7-promoted cytokine release of Mycobacterium tuberculosis-specific CD4+ T cells from tuberculosis patients. Finally, we determined T-cell exhaustion markers PD-1 and SOCS3 and detected increased SOCS3 expression during therapy. Only moderate correlation of PD-1 and SOCS3 with IL-7 expression was observed. We conclude that diminished soluble IL-7R and increased IL-7 plasma concentrations, as well as decreased membrane-associated IL-7R expression in T cells, reflect impaired T

  15. Prevention of the Angiogenic Switch in Human Breast Cancer

    Science.gov (United States)

    2009-03-01

    chronic myeloid leukaemia | colorectal cancer | Down syndrome | infantile haemangiomas | multiple myeloma | non-small-cell lung cancer | rheumatoid...Human Breast Cancer PRINCIPAL INVESTIGATOR: Donald Ingber, M.D., Ph.D. CONTRACTING ORGANIZATION: Children’s Hospital...From - To) 15 FEB 2004 - 14 FEB 2009 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Prevention of the Angiogenic Switch in Human Breast Cancer 5b

  16. Flow cytometric detection of aberrant chromosomes

    Energy Technology Data Exchange (ETDEWEB)

    Gray, J.W.; Lucas, J.; Yu, L.C.; Langlois, R.

    1983-05-11

    This report describes the quantification of chromosomal aberrations by flow cytometry. Both homogeneously and heterogeneously occurring chromosome aberrations were studied. Homogeneously occurring aberrations were noted in chromosomes isolated from human colon carcinoma (LoVo) cells, stained with Hoechst 33258 and chromomycin A3 and analyzed using dual beam flow cytometry. The resulting bivariate flow karyotype showed a homogeneously occurring marker chromosome of intermediate size. Heterogeneously occurring aberrations were quantified by slit-scan flow cytometry in chromosomes isolated from control and irradiated Chinese hamster cells and stained with propidium iodide. Heterogeneously occurring dicentric chromosomes were detected by their shapes (two centrometers). The frequencies of such chromosomes estimated by slit-scan flow cytometry correlated well with the frequencies determined by visual microscopy.

  17. Characterization of gene rearrangements resulted from genomic structural aberrations in human esophageal squamous cell carcinoma KYSE150 cells.

    Science.gov (United States)

    Hao, Jia-Jie; Gong, Ting; Zhang, Yu; Shi, Zhi-Zhou; Xu, Xin; Dong, Jin-Tang; Zhan, Qi-Min; Fu, Song-Bin; Wang, Ming-Rong

    2013-01-15

    Chromosomal rearrangements and involved genes have been reported to play important roles in the development and progression of human malignancies. But the gene rearrangements in esophageal squamous cell carcinoma (ESCC) remain to be identified. In the present study, array-based comparative genomic hybridization (array-CGH) was performed on the ESCC cell line KYSE150. Eight disrupted genes were detected according to the obviously distinct unbalanced breakpoints. The splitting of these genes was validated by dual-color fluorescence in-situ hybridization (FISH). By using rapid amplification of cDNA ends (RACE), genome walking and sequencing analysis, we further identified gene disruptions and rearrangements. A fusion transcript DTL-1q42.2 was derived from an intrachromosomal rearrangement of chromosome 1. Highly amplified segments of DTL and PTPRD were self-rearranged. The sequences on either side of the junctions possess micro-homology with each other. FISH results indicated that the split DTL and PTPRD were also involved in comprising parts of the derivative chromosomes resulted from t(1q;9p;12p) and t(9;1;9). Further, we found that regions harboring DTL (1q32.3) and PTPRD (9p23) were also splitting in ESCC tumors. The data supplement significant information on the existing genetic background of KYSE150, which may be used as a model for studying these gene rearrangements.

  18. Gene profile identifies zinc transporters differentially expressed in normal human organs and human pancreatic cancer.

    Science.gov (United States)

    Yang, J; Zhang, Y; Cui, X; Yao, W; Yu, X; Cen, P; Hodges, S E; Fisher, W E; Brunicardi, F C; Chen, C; Yao, Q; Li, M

    2013-03-01

    Deregulated expression of zinc transporters was linked to several cancers. However, the detailed expression profile of all human zinc transporters in normal human organs and in human cancer, especially in pancreatic cancer is not available. The objectives of this study are to investigate the complete expression patterns of 14 ZIP and 10 ZnT transporters in a large number of normal human organs and in human pancreatic cancer tissues and cell lines. We examined the expression patterns of ZIP and ZnT transporters in 22 different human organs and tissues, 11 pairs of clinical human pancreatic cancer specimens and surrounding normal/benign tissues, as well as 10 established human pancreatic cancer cell lines plus normal human pancreatic ductal epithelium (HPDE) cells, using real time RT-PCR and immunohistochemistry. The results indicate that human zinc transporters have tissue specific expression patterns, and may play different roles in different organs or tissues. Almost all the ZIPs except for ZIP4, and most ZnTs were down-regulated in human pancreatic cancer tissues compared to the surrounding benign tissues. The expression patterns of individual ZIPs and ZnTs are similar among different pancreatic cancer lines. Those results and our previous studies suggest that ZIP4 is the only zinc transporter that is significantly up-regulated in human pancreatic cancer and might be the major zinc transporter that plays an important role in pancreatic cancer growth. ZIP4 might serve as a novel molecular target for pancreatic cancer diagnosis and therapy.

  19. Bioinformatic analysis reveals a pattern of STAT3-associated gene expression specific to basal-like breast cancers in human tumors.

    Science.gov (United States)

    Tell, Robert W; Horvath, Curt M

    2014-09-02

    Signal transducer and activator of transcription 3 (STAT3), a latent transcription factor associated with inflammatory signaling and innate and adaptive immune responses, is known to be aberrantly activated in a wide variety of cancers. In vitro analysis of STAT3 in human cancer cell lines has elucidated a number of specific targets associated with poor prognosis in breast cancer. However, to date, no comparison of cancer subtype and gene expression associated with STAT3 signaling in human patients has been reported. In silico analysis of human breast cancer microarray and reverse-phase protein array data was performed to identify expression patterns associated with STAT3 in basal-like and luminal breast cancers. Results indicate clearly identifiable STAT3-regulated signatures common to basal-like breast cancers but not to luminal A or luminal B cancers. Furthermore, these differentially expressed genes are associated with immune signaling and inflammation, a known phenotype of basal-like cancers. These findings demonstrate a distinct role for STAT3 signaling in basal breast cancers, and underscore the importance of considering subtype-specific molecular pathways that contribute to tissue-specific cancers.

  20. Linear and non-linear dependencies between copy number aberrations and mRNA expression reveal distinct molecular pathways in breast cancer

    Directory of Open Access Journals (Sweden)

    Frigessi Arnoldo

    2011-05-01

    Full Text Available Abstract Background Elucidating the exact relationship between gene copy number and expression would enable identification of regulatory mechanisms of abnormal gene expression and biological pathways of regulation. Most current approaches either depend on linear correlation or on nonparametric tests of association that are insensitive to the exact shape of the relationship. Based on knowledge of enzyme kinetics and gene regulation, we would expect the functional shape of the relationship to be gene dependent and to be related to the gene regulatory mechanisms involved. Here, we propose a statistical approach to investigate and distinguish between linear and nonlinear dependences between DNA copy number alteration and mRNA expression. Results We applied the proposed method to DNA copy numbers derived from Illumina 109 K SNP-CGH arrays (using the log R values and expression data from Agilent 44 K mRNA arrays, focusing on commonly aberrated genomic loci in a collection of 102 breast tumors. Regression analysis was used to identify the type of relationship (linear or nonlinear, and subsequent pathway analysis revealed that genes displaying a linear relationship were overall associated with substantially different biological processes than genes displaying a nonlinear relationship. In the group of genes with a linear relationship, we found significant association to canonical pathways, including purine and pyrimidine metabolism (for both deletions and amplifications as well as estrogen metabolism (linear amplification and BRCA-related response to damage (linear deletion. In the group of genes displaying a nonlinear relationship, the top canonical pathways were specific pathways like PTEN and PI13K/AKT (nonlinear amplification and Wnt(B and IL-2 signalling (nonlinear deletion. Both amplifications and deletions pointed to the same affected pathways and identified cancer as the top significant disease and cell cycle, cell signaling and cellular

  1. Alterations of 5-Hydroxymethylcytosine in Human Cancers

    Directory of Open Access Journals (Sweden)

    Ali Yesilkanal

    2013-06-01

    Full Text Available Prior to 2009, 5-methylcytosine (5-mC was thought to be the only biologically significant cytosine modification in mammalian DNA. With the discovery of the TET enzymes, which convert 5-methylcytosine (5-mC to 5-hydroxymethylcytosine (5-hmC, however, intense interest has emerged in determining the biological function of 5-hmC. Here, we review the techniques used to study 5-hmC and evidence that alterations to 5-hmC physiology play a functional role in the molecular pathogenesis of human cancers.

  2. Human papillomavirus-associated diseases and cancers

    Institute of Scientific and Technical Information of China (English)

    Lan Yang; Jianbo Zhu Co-first author; Xiaoyue Song; Yan Qi; Xiaobin Cui; Feng Li 

    2015-01-01

    Human papilomaviruses (HPVs) have been detected in cervical cancer cels and skin papiloma cels, which have a variety of types, including low-risk and high-risk types. HPV genome replication requires the host cel’s DNA synthesis machinery, and HPVs encode proteins that maintain diferentiated epithelial cels in a replication-competent state. HPV types are tissue-specific and generaly produce diferent types of le-sions, either benign or malignant. This review examines diferent HPV types and their associated diseases and presents therapeutic options for the treatment of HPV-positive diseases.

  3. Construction of special eye models for investigation of chromatic and higher-order aberrations of eyes.

    Science.gov (United States)

    Zhai, Yi; Wang, Yan; Wang, Zhaoqi; Liu, Yongji; Zhang, Lin; He, Yuanqing; Chang, Shengjiang

    2014-01-01

    An achromatic element eliminating only longitudinal chromatic aberration (LCA) while maintaining transverse chromatic aberration (TCA) is established for the eye model, which involves the angle formed by the visual and optical axis. To investigate the impacts of higher-order aberrations on vision, the actual data of higher-order aberrations of human eyes with three typical levels are introduced into the eye model along visual axis. Moreover, three kinds of individual eye models are established to investigate the impacts of higher-order aberrations, chromatic aberration (LCA+TCA), LCA and TCA on vision under the photopic condition, respectively. Results show that for most human eyes, the impact of chromatic aberration on vision is much stronger than that of higher-order aberrations, and the impact of LCA in chromatic aberration dominates. The impact of TCA is approximately equal to that of normal level higher-order aberrations and it can be ignored when LCA exists.

  4. Assessing global transitions in human development and colorectal cancer incidence.

    Science.gov (United States)

    Fidler, Miranda M; Bray, Freddie; Vaccarella, Salvatore; Soerjomataram, Isabelle

    2017-06-15

    Colorectal cancer incidence has paralleled increases in human development across most countries. Yet, marked decreases in incidence are now observed in countries that have attained very high human development. Thus, in this study, we explored the relationship between human development and colorectal cancer incidence, and in particular assessed whether national transitions to very high human development are linked to temporal patterns in colorectal cancer incidence. For these analyses, we utilized the Human Development Index (HDI) and annual incidence data from regional and national cancer registries. Truncated (30-74 years) age-standardized incidence rates were calculated. Yearly incidence rate ratios and HDI ratios, before and after transitioning to very high human development, were also estimated. Among the 29 countries investigated, colorectal cancer incidence was observed to decrease after reaching the very high human development threshold for 12 countries; decreases were also observed in a further five countries, but the age-standardized incidence rates remained higher than that observed at the threshold. Such declines or stabilizations are likely due to colorectal cancer screening in some populations, as well as varying levels of exposure to protective factors. In summary, it appears that there is a threshold at which human development predicts a stabilization or decline in colorectal cancer incidence, though this pattern was not observed for all countries assessed. Future cancer planning must consider the increasing colorectal cancer burden expected in countries transitioning towards higher levels of human development, as well as possible declines in incidence among countries reaching the highest development level. © 2017 UICC.

  5. Complex aberrations in lymphocytes exposed to mixed beams of (241)Am alpha particles and X-rays.

    Science.gov (United States)

    Staaf, Elina; Deperas-Kaminska, Marta; Brehwens, Karl; Haghdoost, Siamak; Czub, Joanna; Wojcik, Andrzej

    2013-08-30

    Modern radiotherapy treatment modalities are associated with undesired out-of-field exposure to complex mixed beams of high and low energy transfer (LET) radiation that can give rise to secondary cancers. The biological effectiveness of mixed beams is not known. The aim of the investigation was the analysis of chromosomal damage in human peripheral blood lymphocytes (PBL) exposed to a mixed beam of X-rays and alpha particles. Using a dedicated exposure facility PBL were exposed to increasing doses of alpha particles (from (241)Am), X-rays and a mixture of both. Chromosomal aberrations were analysed in chromosomes 2, 8 and 14 using fluorescence in situ hybridisation. The found and expected frequencies of simple and complex aberrations were compared. Simple aberrations showed linear dose-response relationships with doses. A higher than expected frequency of simple aberrations was only observed after the highest mixed beam dose. A linear-quadratic dose response curve for complex aberrations was observed after mixed-beam exposure. Higher than expected frequencies of complex aberrations were observed for the two highest doses. Both the linear-quadratic dose-response relationship and the calculation of expected frequencies show that exposure of PBL to mixed beams of high and low LET radiation leads to a higher than expected frequency of complex-type aberrations. Because chromosomal changes are associated with cancer induction this result may imply that the cancer risk of exposure to mixed beams in radiation oncology may be higher than expected based on the additive action of the individual dose components.

  6. Promoter histone H3 lysine 9 di-methylation is associated with DNA methylation and aberrant expression of p16 in gastric cancer cells.

    Science.gov (United States)

    Meng, Chun-Feng; Zhu, Xin-Jiang; Peng, Guo; Dai, Dong-Qiu

    2009-11-01

    In the course of gastric cancer development, gene silencing by DNA hypermethylation is an important mechanism. While DNA methylation often co-exists with histone modifications to regulate gene expression, the function of histone modifications in gene silencing in gastric cancer has not been evaluated in detail. p16, a well-known tumor suppressor gene, is frequently silenced in DNA hypermethylation manner in gastric cancer. Accordingly, we chose p16 to clarify whether there is a correlation among histone H3 lysine 9 (H3-K9) di-methylation, H3-K9 acetylation, DNA methylation and p16 expression in human gastric cancer. Three gastric cancer cells, MKN-45, SGC-7901 and BGC-823, were treated with 5-aza-2'-deoxycytidine (5-Aza-dC) and/or trichostatin A (TSA). We investigated p16 promoter DNA methylation status, p16 mRNA levels, regional and global levels of di-methyl-H3-K9 and acetyl-H3-K9 in four groups: i) 5-Aza-dC, ii) TSA, iii) the combination of 5-Aza-dC and TSA and iv) control group with no treatments. p16 silencing is characterized by DNA hypermethylation, H3-K9 hypoacetylation and H3-K9 hypermethylation at the promoter region. Treatment with TSA, increased H3-K9 acetylation at the hypermethylated promoter, but did not affect H3-K9 di-methylation or p16 expression. By contrast, treatment with 5-Aza-dC, reduced H3-K9 di-methylation, increased H3-K9 acetylation at the hypermethylated promoter and reactivated the expression of p16. Combined treatment restored the expression of p16 synergistically. In addition, 5-Aza-dC and the combined treatment did not result in global alteration of H3-K9 di-methylation. These results suggest that H3-K9 di-methylation, H3-K9 acetylation and DNA methylation work in combination to silence p16 in gastric cancer. The decreased H3-K9 di-methylation correlates with DNA demethylation and reactivation of p16. H3-K9 di-methylation as well as DNA methylation related to p16 silencing is limited to the promoter region. In addition to its effect

  7. Aberrant DNA methylation reprogramming during induced pluripotent stem cell generation is dependent on the choice of reprogramming factors

    Directory of Open Access Journals (Sweden)

    Aline C Planello

    2014-01-01

    Full Text Available The conversion of somatic cells into pluripotent stem cells via overexpression of reprogramming factors involves epigenetic remodeling. DNA methylation at a significant proportion of CpG sites in induced pluripotent stem cells (iPSCs differs from that of embryonic stem cells (ESCs. Whether different sets of reprogramming factors influence the type and extent of aberrant DNA methylation in iPSCs differently remains unknown. In order to help resolve this critical question, we generated human iPSCs from a common fibroblast cell source using either the Yamanaka factors (OCT4, SOX2, KLF4 and cMYC or the Thomson factors (OCT4, SOX2, NANOG and LIN28, and determined their genome-wide DNA methylation profiles. In addition to shared DNA methylation aberrations present in all our iPSCs, we identified Yamanaka-iPSC (Y-iPSC-specific and Thomson-iPSC (T-iPSC-specific recurrent aberrations. Strikingly, not only were the genomic locations of the aberrations different but also their types: reprogramming with Yamanaka factors mainly resulted in failure to demethylate CpGs, whereas reprogramming with Thomson factors mainly resulted in failure to methylate CpGs. Differences in the level of transcripts encoding DNMT3b and TET3 between Y-iPSCs and T-iPSCs may contribute partially to the distinct types of aberrations. Finally, de novo aberrantly methylated genes in Y-iPSCs were enriched for NANOG targets that are also aberrantly methylated in some cancers. Our study thus reveals that the choice of reprogramming factors influences the amount, location, and class of DNA methylation aberrations in iPSCs. These findings may provide clues into how to produce human iPSCs with fewer DNA methylation abnormalities.

  8. The Impact of Hedgehog Signaling Pathway on DNA Repair Mechanisms in Human Cancer

    Directory of Open Access Journals (Sweden)

    Erhong Meng

    2015-07-01

    Full Text Available Defined cellular mechanisms have evolved that recognize and repair DNA to protect the integrity of its structure and sequence when encountering assaults from endogenous and exogenous sources. There are five major DNA repair pathways: mismatch repair, nucleotide excision repair, direct repair, base excision repair and DNA double strand break repair (including non-homologous end joining and homologous recombination repair. Aberrant activation of the Hedgehog (Hh signaling pathway is a feature of many cancer types. The Hh pathway has been documented to be indispensable for epithelial-mesenchymal transition, invasion and metastasis, cancer stemness, and chemoresistance. The functional transcription activators of the Hh pathway include the GLI proteins. Inhibition of the activity of GLI can interfere with almost all DNA repair types in human cancer, indicating that Hh/GLI functions may play an important role in enabling tumor cells to survive lethal types of DNA damage induced by chemotherapy and radiotherapy. Thus, Hh signaling presents an important therapeutic target to overcome DNA repair-enabled multi-drug resistance and consequently increase chemotherapeutic response in the treatment of cancer.

  9. The Impact of Hedgehog Signaling Pathway on DNA Repair Mechanisms in Human Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Erhong; Hanna, Ann; Samant, Rajeev S.; Shevde, Lalita A., E-mail: lsamant@uab.edu [Department of Pathology, Comprehensive Cancer Center, University of Alabama at Birmingham, WTI320D, 1824 6th Avenue South, Birmingham, AL 35233 (United States)

    2015-07-21

    Defined cellular mechanisms have evolved that recognize and repair DNA to protect the integrity of its structure and sequence when encountering assaults from endogenous and exogenous sources. There are five major DNA repair pathways: mismatch repair, nucleotide excision repair, direct repair, base excision repair and DNA double strand break repair (including non-homologous end joining and homologous recombination repair). Aberrant activation of the Hedgehog (Hh) signaling pathway is a feature of many cancer types. The Hh pathway has been documented to be indispensable for epithelial-mesenchymal transition, invasion and metastasis, cancer stemness, and chemoresistance. The functional transcription activators of the Hh pathway include the GLI proteins. Inhibition of the activity of GLI can interfere with almost all DNA repair types in human cancer, indicating that Hh/GLI functions may play an important role in enabling tumor cells to survive lethal types of DNA damage induced by chemotherapy and radiotherapy. Thus, Hh signaling presents an important therapeutic target to overcome DNA repair-enabled multi-drug resistance and consequently increase chemotherapeutic response in the treatment of cancer.

  10. Microenvironment promotes tumor cell reprogramming in human breast cancer cell lines.

    Directory of Open Access Journals (Sweden)

    Fabrizio D'Anselmi

    Full Text Available The microenvironment drives mammary gland development and function, and may influence significantly both malignant behavior and cell growth of mammary cancer cells. By restoring context, and forcing cells to properly interpret native signals from the microenvironment, the cancer cell aberrant behavior can be quelled, and organization re-established. In order to restore functional and morphological differentiation, human mammary MCF-7 and MDA-MB-231 cancer cells were allowed to grow in a culture medium filled with a 10% of the albumen (EW, Egg White from unfertilized chicken egg. That unique microenvironment behaves akin a 3D culture and induces MCF-7 cells to produce acini and branching duct-like structures, distinctive of mammary gland differentiation. EW-treated MDA-MB-231 cells developed buds of acini and duct-like structures. Both MCF-7 and MDA-MB-231 cells produced β-casein, a key milk component. Furthermore, E-cadherin expression was reactivated in MDA-MB-231 cells, as a consequence of the increased cdh1 expression; meanwhile β-catenin - a key cytoskeleton component - was displaced behind the inner cell membrane. Such modification hinders the epithelial-mesenchymal transition in MDA-MB-231 cells. This differentiating pathway is supported by the contemporary down-regulation of canonical pluripotency markers (Klf4, Nanog. Given that egg-conditioned medium behaves as a 3D-medium, it is likely that cancer phenotype reversion could be ascribed to the changed interactions between cells and their microenvironment.

  11. Translating discovery in zebrafish pancreatic development to human pancreatic cancer: biomarkers, targets, pathogenesis, and therapeutics.

    Science.gov (United States)

    Yee, Nelson S; Kazi, Abid A; Yee, Rosemary K

    2013-06-01

    Abstract Experimental studies in the zebrafish have greatly facilitated understanding of genetic regulation of the early developmental events in the pancreas. Various approaches using forward and reverse genetics, chemical genetics, and transgenesis in zebrafish have demonstrated generally conserved regulatory roles of mammalian genes and discovered novel genetic pathways in exocrine pancreatic development. Accumulating evidence has supported the use of zebrafish as a model of human malignant diseases, including pancreatic cancer. Studies have shown that the genetic regulators of exocrine pancreatic development in zebrafish can be translated into potential clinical biomarkers and therapeutic targets in human pancreatic adenocarcinoma. Transgenic zebrafish expressing oncogenic K-ras and zebrafish tumor xenograft model have emerged as valuable tools for dissecting the pathogenetic mechanisms of pancreatic cancer and for drug discovery and toxicology. Future analysis of the pancreas in zebrafish will continue to advance understanding of the genetic regulation and biological mechanisms during organogenesis. Results of those studies are expected to provide new insights into how aberrant developmental pathways contribute to formation and growth of pancreatic neoplasia, and hopefully generate valid biomarkers and targets as well as effective and safe therapeutics in pancreatic cancer.

  12. Modern criteria to establish human cancer etiology.

    Science.gov (United States)

    Carbone, Michele; Klein, George; Gruber, Jack; Wong, May

    2004-08-01

    The Cancer Etiology Branch of the National Cancer Institute hosted a workshop, "Validation of a causal relationship: criteria to establish etiology," to determine whether recent technological advances now make it possible to delineate improved or novel criteria for the rapid establishment for cancer causation. The workshop was held in Washington, D.C., December 11-12, 2003, and participants were among the international leaders in the fields of epidemiology, chemistry, biochemistry, microbiology, virology, environmental and chemical carcinogenesis, immunology, pathology, molecular pathology, genetics, oncology, and surgical oncology. There was a general consensus that the rapid identification of human carcinogens and their removal (when possible) or the establishment of specific preventive and therapeutic measures was the most desirable and effective way to have a rapid and positive impact in the fight against cancer. From a clinical perspective, it may be as important to target initiators, cocarcinogens and promoters, if by removing any one of them tumor growth can be prevented. Future studies should focus on interactions among and between different biological, chemical, and physical agents. Analyses of single agents can at times miss their carcinogenic potential when such agents are carcinogenic only in subgroups of individuals because of their genetic background, diet, exposure to other carcinogens, or microbial infection. Epidemiology, molecular pathology (including chemistry, biochemistry, molecular biology, molecular virology, molecular genetics, epigenetics, genomics, proteomics, and other molecular-based approaches), and animal and tissue culture experiments should all be seen as important integrating evidence in the determination of human carcinogenicity. Concerning the respective roles of epidemiology and molecular pathology, it was noted that epidemiology allows the determination of the overall effect of a given carcinogen in the human population (e

  13. Individual eye model based on wavefront aberration

    Science.gov (United States)

    Guo, Huanqing; Wang, Zhaoqi; Zhao, Qiuling; Quan, Wei; Wang, Yan

    2005-03-01

    Based on the widely used Gullstrand-Le Grand eye model, the individual human eye model has been established here, which has individual corneal data, anterior chamber depth and the eyeball depth. Furthermore, the foremost thing is that the wavefront aberration calculated from the individual eye model is equal to the eye's wavefront aberration measured with the Hartmann-shack wavefront sensor. There are four main steps to build the model. Firstly, the corneal topography instrument was used to measure the corneal surfaces and depth. And in order to input cornea into the optical model, high-order aspheric surface-Zernike Fringe Sag surface was chosen to fit the corneal surfaces. Secondly, the Hartmann-shack wavefront sensor, which can offer the Zernike polynomials to describe the wavefront aberration, was built to measure the wavefront aberration of the eye. Thirdly, the eye's axial lengths among every part were measured with A-ultrasonic technology. Then the data were input into the optical design software-ZEMAX and the crystalline lens's shapes were optimized with the aberration as the merit function. The individual eye model, which has the same wavefront aberrations with the real eye, is established.

  14. Epigenetic characterization of the FMR1 gene and aberrant neurodevelopment in human induced pluripotent stem cell models of fragile X syndrome.

    Directory of Open Access Journals (Sweden)

    Steven D Sheridan

    Full Text Available Fragile X syndrome (FXS is the most common inherited cause of intellectual disability. In addition to cognitive deficits, FXS patients exhibit hyperactivity, attention deficits, social difficulties, anxiety, and other autistic-like behaviors. FXS is caused by an expanded CGG trinucleotide repeat in the 5' untranslated region of the Fragile X Mental Retardation (FMR1 gene leading to epigenetic silencing and loss of expression of the Fragile X Mental Retardation protein (FMRP. Despite the known relationship between FMR1 CGG repeat expansion and FMR1 silencing, the epigenetic modifications observed at the FMR1 locus, and the consequences of the loss of FMRP on human neurodevelopment and neuronal function remain poorly understood. To address these limitations, we report on the generation of induced pluripotent stem cell (iPSC lines from multiple patients with FXS and the characterization of their differentiation into post-mitotic neurons and glia. We show that clones from reprogrammed FXS patient fibroblast lines exhibit variation with respect to the predominant CGG-repeat length in the FMR1 gene. In two cases, iPSC clones contained predominant CGG-repeat lengths shorter than measured in corresponding input population of fibroblasts. In another instance, reprogramming a mosaic patient having both normal and pre-mutation length CGG repeats resulted in genetically matched iPSC clonal lines differing in FMR1 promoter CpG methylation and FMRP expression. Using this panel of patient-specific, FXS iPSC models, we demonstrate aberrant neuronal differentiation from FXS iPSCs that is directly correlated with epigenetic modification of the FMR1 gene and a loss of FMRP expression. Overall, these findings provide evidence for a key role for FMRP early in human neurodevelopment prior to synaptogenesis and have implications for modeling of FXS using iPSC technology. By revealing disease-associated cellular phenotypes in human neurons, these iPSC models will aid

  15. Modelling mutational landscapes of human cancers in vitro

    Science.gov (United States)

    Olivier, Magali; Weninger, Annette; Ardin, Maude; Huskova, Hana; Castells, Xavier; Vallée, Maxime P.; McKay, James; Nedelko, Tatiana; Muehlbauer, Karl-Rudolf; Marusawa, Hiroyuki; Alexander, John; Hazelwood, Lee; Byrnes, Graham; Hollstein, Monica; Zavadil, Jiri

    2014-03-01

    Experimental models that recapitulate mutational landscapes of human cancers are needed to decipher the rapidly expanding data on human somatic mutations. We demonstrate that mutation patterns in immortalised cell lines derived from primary murine embryonic fibroblasts (MEFs) exposed in vitro to carcinogens recapitulate key features of mutational signatures observed in human cancers. In experiments with several cancer-causing agents we obtained high genome-wide concordance between human tumour mutation data and in vitro data with respect to predominant substitution types, strand bias and sequence context. Moreover, we found signature mutations in well-studied human cancer driver genes. To explore endogenous mutagenesis, we used MEFs ectopically expressing activation-induced cytidine deaminase (AID) and observed an excess of AID signature mutations in immortalised cell lines compared to their non-transgenic counterparts. MEF immortalisation is thus a simple and powerful strategy for modelling cancer mutation landscapes that facilitates the interpretation of human tumour genome-wide sequencing data.

  16. Germinated brown rice (GBR) reduces the incidence of aberrant crypt foci with the involvement of beta-catenin and COX-2 in azoxymethane-induced colon cancer in rats.

    Science.gov (United States)

    Latifah, Saiful Yazan; Armania, Nurdin; Tze, Tan Hern; Azhar, Yaacob; Nordiana, Abdul Hadi; Norazalina, Saad; Hairuszah, Ithnin; Saidi, Moin; Maznah, Ismail

    2010-03-26

    Chemoprevention has become an important area in cancer research due to the failure of current therapeutic modalities. Epidemiological and preclinical studies have demonstrated that nutrition plays a vital role in the etiology of cancer. This study was conducted to determine the chemopreventive effects of germinated brown rice (GBR) in rats induced with colon cancer. GBR is brown rice that has been claimed to be richer in nutrients compared to the common white rice. The male Sprague Dawley rats (6 weeks of age) were randomly divided into 5 groups: (G1) positive control (with colon cancer, unfed with GBR), (G2) fed with 2.5 g/kg of GBR (GBR (g)/weight of rat (kg)), (G3) fed with 5 g/kg of GBR, (G4) fed with 10 g/kg of GBR and (G5) negative control (without colon cancer, unfed with GBR). GBR was administered orally once daily via gavage after injection of 15 mg/kg of body weight of azoxymethane (AOM) once a week for two weeks, intraperitonially. After 8 weeks of treatment, animals were sacrificed and colons were removed. Colonic aberrant crypt foci (ACF) were evaluated histopathologically. Total number of ACF and AC, and multicrypt of ACF, and the expression of beta-catenin and COX-2 reduced significantly (p cancer.

  17. Apoptosis of human pancreatic cancer cells induced by Triptolide

    Institute of Scientific and Technical Information of China (English)

    Guo-Xiong Zhou; Xiao-Ling Ding; Jie-Fei Huang; Hong Zhang; Sheng-Bao Wu; Jian-Ping Cheng; Qun Wei

    2008-01-01

    AIM:To investigate apoptosis in human pancreatic cancer ceils induced by Triptolide (TL),and the relationship between this apoptosis and expression of caspase-3' bcl-2 and bax.METHODS:Human pancreatic cancer cell line SW1990 was cultured in DIEM media for this study.MTT assay was used to determine the cell growth inhibitory rate in vitro.Flow cytometry and TUNEL assay were used to detect the apoptosis of human pancreatic cancer cells before and after TL treatment.RT-PCR was used to detect the expression of apoptosis-associated gene caspase-3' bcl-2 and bax.RESULTS:TL inhibited the growth of human pancreatic cancer cells in a dose-and time-dependent manner.TL induced human pancreatic cancer cells to undergo apoptosis with typically apoptotic characteristics.TUNEL assay showed that after the treatment of human pancreatic cancer cells with 40 ng/mL TL for 12 h and 24 h,the apoptotic rates of human pancreatic cancer cells increased significantly.RT-PCR demonstrated that caspase-3 and bax were significantly up-regulated in SW1990 cells treated with TL while bcl-2 mRNA was not.CONCLUSION:TL is able to induce the apoptosis in human pancreatic cancer cells.This apoptosis may be mediated by up-regulating the expression of apoptosisassociated caspase-3 and bax gene.

  18. The Isolation and Characterization of Human Prostate Cancer Stem Cells

    Science.gov (United States)

    2015-05-01

    IGF1, SOX15, BMPR1B, TGFBR1, etc), which fall into distinct GO categories including SC, development, stress response, and wound healing (unpublished...prostate cancer through the elucidation of the role of cancer stem cells in the pathogenesis of the disease. During the past year, we have made the...studies, ii) in vitro co-culture of human prostate cancer cells (established cell lines and primary patient samples) with human prostate fibroblasts

  19. Gene promoter methylation and protein expression of BRMS1 in uterine cervix in relation to high-risk human papilloma virus infection and cancer.

    Science.gov (United States)

    Panagopoulou, Maria; Lambropoulou, Maria; Balgkouranidou, Ioanna; Nena, Evangelia; Karaglani, Makrina; Nicolaidou, Christina; Asimaki, Anthi; Konstantinidis, Theocharis; Constantinidis, Theodoros C; Kolios, George; Kakolyris, Stylianos; Agorastos, Theodoros; Chatzaki, Ekaterini

    2017-04-01

    Cervical cancer is strongly related to certain high-risk types of human papilloma virus infection. Breast cancer metastasis suppressor 1 (BRMS1) is a tumor suppressor gene, its expression being regulated by DNA promoter methylation in several types of cancers. This study aims to evaluate the methylation status of BRMS1 promoter in relation to high-risk types of human papilloma virus infection and the development of pre-cancerous lesions and describe the pattern of BRMS1 protein expression in normal, high-risk types of human papilloma virus-infected pre-cancerous and malignant cervical epithelium. We compared the methylation status of BRMS1 in cervical smears of 64 women with no infection by high-risk types of human papilloma virus to 70 women with proven high-risk types of human papilloma virus infection, using real-time methylation-specific polymerase chain reaction. The expression of BRMS1 protein was described by immunohistochemistry in biopsies from cervical cancer, pre-cancerous lesions, and normal cervices. Methylation of BRMS1 promoter was detected in 37.5% of women with no high-risk types of human papilloma virus infection and was less frequent in smears with high-risk types of human papilloma virus (11.4%) and in women with pathological histology (cervical intraepithelial neoplasia) (11.9%). Methylation was detected also in HeLa cervical cancer cells. Immunohistochemistry revealed nuclear BRMS1 protein staining in normal high-risk types of human papilloma virus-free cervix, in cervical intraepithelial neoplasias, and in malignant tissues, where staining was occasionally also cytoplasmic. In cancer, expression was stronger in the more differentiated cancer blasts. In conclusion, BRMS1 promoter methylation and aberrant protein expression seem to be related to high-risk types of human papilloma virus-induced carcinogenesis in uterine cervix and is worthy of further investigation.

  20. Adult stromal cells derived from human adipose tissue provoke pancreatic cancer cell death both in vitro and in vivo.

    Directory of Open Access Journals (Sweden)

    Beatrice Cousin

    Full Text Available BACKGROUND: Normal tissue homeostasis is maintained by dynamic interactions between epithelial cells and their microenvironment. Disrupting this homeostasis can induce aberrant cell proliferation, adhesion, function and migration that might promote malignant behavior. Indeed, aberrant stromal-epithelial interactions contribute to pancreatic ductal adenocarcinoma (PDAC spread and metastasis, and this raises the possibility that novel stroma-targeted therapies represent additional approaches for combating this malignant disease. The aim of the present study was to determine the effect of human stromal cells derived from adipose tissue (ADSC on pancreatic tumor cell proliferation. PRINCIPAL FINDINGS: Co-culturing pancreatic tumor cells with ADSC and ADSC-conditioned medium sampled from different donors inhibited cancer cell viability and proliferation. ADSC-mediated inhibitory effect was further extended to other epithelial cancer-derived cell lines (liver, colon, prostate. ADSC conditioned medium induced cancer cell necrosis following G1-phase arrest, without evidence of apoptosis. In vivo, a single intra-tumoral injection of ADSC in a model of pancreatic adenocarcinoma induced a strong and long-lasting inhibition of tumor growth. CONCLUSION: These data indicate that ADSC strongly inhibit PDAC proliferation, both in vitro and in vivo and induce tumor cell death by altering cell cycle progression. Therefore, ADSC may constitute a potential cell-based therapeutic alternative for the treatment of PDAC for which no effective cure is available.

  1. Bacterial protein toxins in human cancers.

    Science.gov (United States)

    Rosadi, Francesca; Fiorentini, Carla; Fabbri, Alessia

    2016-02-01

    Many bacteria causing persistent infections produce toxins whose mechanisms of action indicate that they could have a role in carcinogenesis. Some toxins, like CDT and colibactin, directly attack the genome by damaging DNA whereas others, as for example CNF1, CagA and BFT, impinge on key eukaryotic processes, such as cellular signalling and cell death. These bacterial toxins, together with other less known toxins, mimic carcinogens and tumour promoters. The aim of this review is to fulfil an up-to-date analysis of toxins with carcinogenic potential that have been already correlated to human cancers. Bacterial toxins-induced carcinogenesis represents an emerging aspect in bacteriology, and its significance is increasingly recognized.

  2. Characterizing metabolic changes in human colorectal cancer.

    Science.gov (United States)

    Williams, Michael D; Zhang, Xing; Park, Jeong-Jin; Siems, William F; Gang, David R; Resar, Linda M S; Reeves, Raymond; Hill, Herbert H

    2015-06-01

    Colorectal cancer (CRC) remains a leading cause of cancer death worldwide, despite the fact that it is a curable disease when diagnosed early. The development of new screening methods to aid in early diagnosis or identify precursor lesions at risk for progressing to CRC will be vital to improving the survival rate of individuals predisposed to CRC. Metabolomics is an advancing area that has recently seen numerous applications to the field of cancer research. Altered metabolism has been studied for many years as a means to understand and characterize cancer. However, further work is required to establish standard procedures and improve our ability to identify distinct metabolomic profiles that can be used to diagnose CRC or predict disease progression. The present study demonstrates the use of direct infusion traveling wave ion mobility mass spectrometry to distinguish metabolic profiles from CRC samples and matched non-neoplastic epithelium as well as metastatic and primary tumors at different stages of disease (T1-T4). By directly infusing our samples, the analysis time was reduced significantly, thus increasing the speed and efficiency of this method compared to traditional metabolomics platforms. Partial least squares discriminant analysis was used to visualize differences between the metabolic profiles of sample types and to identify the specific m/z features that led to this differentiation. Identification of the distinct m/z features was made using the human metabolome database. We discovered alterations in fatty acid biosynthesis and oxidative, glycolytic, and polyamine pathways that distinguish tumors from non-malignant colonic epithelium as well as various stages of CRC. Although further studies are needed, our results indicate that colonic epithelial cells undergo metabolic reprogramming during their evolution to CRC, and the distinct metabolites could serve as diagnostic tools or potential targets in therapy or primary prevention. Graphical Abstract

  3. Chromosomal aberrations in humans induced by urban air pollution: influence of DNA repair and polymorphisms of glutathione S-transferase M1 and N-acetyltransferase 2

    DEFF Research Database (Denmark)

    Knudsen, Lisbeth E.; Norppa, H; Gamborg, M O

    1999-01-01

    We have studied the influence of individual susceptibility factors on the genotoxic effects of urban air pollution in 106 nonsmoking bus drivers and 101 postal workers in the Copenhagen metropolitan area. We used the frequency of chromosomal aberrations in peripheral blood lymphocytes as a biomar...

  4. Radiochemical and radioecological studies on Brazilian areas of high natural background. Progress report, October 30, 1974--October 30, 1975. [Etiology of radioinduced chromosomal aberrations in human lymphocytes

    Energy Technology Data Exchange (ETDEWEB)

    Costa-Ribeiro, C.; Penna-Franca, E.; Rocha-Nogueira, A.; Christian-Pfeiffer, W.

    1975-11-01

    The absorption of /sup 212/Pb and/or /sup 212/Bi by ertythrocytes was investigated in an attempt to explain the in vivo genesis of somatic chromosomal aberrations of the type detected in peripheral blood lymphocytes of workers professionally exposed to /sup 220/Rn and its decay products, as well as in dwellers of Brazilian areas of high natural radioactivity. (auth)

  5. TMPRSS2-ERG and PTEN loss in prostate cancer.

    Science.gov (United States)

    Squire, Jeremy A

    2009-05-01

    Two studies show that the common recurrent gene fusion between TMPRSS2 and ERG promotes prostate cancer in both mouse and humans when PTEN is concurrently lost. In human prostate cancer, the presence of both these aberrations may be indicative of poor prognosis, suggesting that preclinical therapeutic research should target both of these pathways.

  6. The stem cell factor SOX2 regulates the tumorigenic potential in human gastric cancer cells.

    Science.gov (United States)

    Hütz, Katharina; Mejías-Luque, Raquel; Farsakova, Katarina; Ogris, Manfred; Krebs, Stefan; Anton, Martina; Vieth, Michael; Schüller, Ulrich; Schneider, Marlon R; Blum, Helmut; Wagner, Ernst; Jung, Andreas; Gerhard, Markus

    2014-04-01

    Gastric cancer (GC) is still one of the most common causes of cancer-related death worldwide, which is mainly attributable to late diagnosis and poor treatment options. Infection with Helicobacter pylori, different environmental factors and genetic alterations are known to influence the risk of developing gastric tumors. However, the molecular mechanisms involved in gastric carcinogenesis are still not fully understood, making it difficult to design targeted therapeutic approaches. Aberrant expression of the specific gastric differentiation marker SOX2 has been observed in stomach cancer. However, the role of SOX2 in gastric tumors has not been well established to date. To elucidate the role of SOX2 in gastric tumorigenesis, SOX2 transcriptional activity was blocked in AZ-521 cells. Interestingly, inhibition of SOX2 reduced cell proliferation and migration, increased apoptosis and induced changes in cell cycle. Blocking of SOX2 also reduced the tumorigenic potential of AZ-521 cells in vivo. In addition, correlation of SOX2 expression and proliferation was observed in a subset of human gastric tumors. Finally, target genes of SOX2 were for the first time identified by RNA microarray in GC cells. Taken together, the results presented here indicate that SOX2 controls several aspects related to GC development and progression by regulating the expression of members of important signaling pathways. These findings could provide new therapeutic options for a subset of GCs exhibiting SOX2 deregulation.

  7. Reprogramming of human cancer cells to pluripotency for models of cancer progression

    Science.gov (United States)

    Kim, Jungsun; Zaret, Kenneth S

    2015-01-01

    The ability to study live cells as they progress through the stages of cancer provides the opportunity to discover dynamic networks underlying pathology, markers of early stages, and ways to assess therapeutics. Genetically engineered animal models of cancer, where it is possible to study the consequences of temporal-specific induction of oncogenes or deletion of tumor suppressors, have yielded major insights into cancer progression. Yet differences exist between animal and human cancers, such as in markers of progression and response to therapeutics. Thus, there is a need for human cell models of cancer progression. Most human cell models of cancer are based on tumor cell lines and xenografts of primary tumor cells that resemble the advanced tumor state, from which the cells were derived, and thus do not recapitulate disease progression. Yet a subset of cancer types have been reprogrammed to pluripotency or near-pluripotency by blastocyst injection, by somatic cell nuclear transfer and by induced pluripotent stem cell (iPS) technology. The reprogrammed cancer cells show that pluripotency can transiently dominate over the cancer phenotype. Diverse studies show that reprogrammed cancer cells can, in some cases, exhibit early-stage phenotypes reflective of only partial expression of the cancer genome. In one case, reprogrammed human pancreatic cancer cells have been shown to recapitulate stages of cancer progression, from early to late stages, thus providing a model for studying pancreatic cancer development in human cells where previously such could only be discerned from mouse models. We discuss these findings, the challenges in developing such models and their current limitations, and ways that iPS reprogramming may be enhanced to develop human cell models of cancer progression. PMID:25712212

  8. CONSTRUCTION AND EXPRESSION OF A HUMAN-MOUSE CHIMERIC ANTIBODY AGAINST HUMAN BLADDER CANCER

    Institute of Scientific and Technical Information of China (English)

    白银; 王琰; 周丽君; 俞莉章

    2001-01-01

    To construct and express a human-mouse chimeric antibody against human bladder cancer. Method: The variable region genes of anti-human bladder cancer monoclonal antibody BDI-1 were cloned by RT-PCR. A human-mouse chimeric antibody expression vector was constructed and transfected into CHO cells. The chimeric antibody against bladder cancer was expressed and characterized. Result: Eukaryotic expression vector of the chimeric antibody against human bladder carcinoma was successfully constructed, and was expressed in eukaryotic cells; the expressed chimeric antibody ch-BDI showed same specificity as its parent McAb against human bladder cancer cells. Conclusion: The constructed chimeric antibody was expressed successfully in eukaryotic cells, and the chimeric antibody had desired affinity against human bladder cancer cells.

  9. Qualitative analysis of cancer patients' experiences using donated human milk.

    Science.gov (United States)

    Rough, Susanne M; Sakamoto, Pauline; Fee, Caroline H; Hollenbeck, Clarie B

    2009-05-01

    This represents the first published account from the patient's perspective of the use of human milk as cancer therapy. Purposive sampling was used to select a sample of 10 participants. Five were patients and 5 were family proxies. Individual interviews were conducted using confirmatory interviewing technique to obtain individual perspectives on the motivation for cancer patients to take donated human milk. Human milk therapy improved the quality of life (QOL) measures in the physical, psychological, and spiritual domains for most patients interviewed. The patients continued their use of human milk despite cost, taste, and discouragement from the conventional medical community. The study results support the theory that QOL may be more important to cancer patients than cancer outcomes and may improve patient medical care overall. These interviews offer information to cancer patients, their practitioners, and donor milk banks on outcomes and symptom relief from this therapy.

  10. The global cancer burden and human development: A review.

    Science.gov (United States)

    Fidler, Miranda M; Bray, Freddie; Soerjomataram, Isabelle

    2017-06-01

    This review examines the links between human development and cancer overall and for specific types of cancer, as well as cancer-related risk-factors and outcomes, such as disability and life expectancy. To assess human development, the Human Development Index was utilized continuously and according to four levels (low, medium, high, very high), where the low and very high categories include the least and most developed countries, respectively. All studies that assessed aspects of the global cancer burden using this measure were reviewed. Although the present cancer incidence burden is greater in higher Human Development Index countries, a greater proportion of the global mortality burden is observed in less developed countries, with a higher mean fatality rate in the latter countries. Further, the future cancer burden is expected to disproportionally affect less developed regions; in particular, it has been estimated that low and medium Human Development Index countries will experience a 100% and 81% increase in cancer incidence from 2008 to 2030, respectively. Disparities were also observed in risk factors and average health outcomes, such as a greater number of years of life lost prematurely and fewer cancer-related gains in life expectancy observed in lower versus higher Human Development Index settings. From a global perspective, there remain clear disparities in the cancer burden according to national Human Development Index scores. International efforts are needed to aid countries in social and economic transition in order to efficiently plan, implement and evaluate cancer control initiatives as a means to reduce the widening gap in cancer occurrence and survival worldwide.

  11. Potential Diagnostic, Prognostic and Therapeutic Targets of MicroRNAs in Human Gastric Cancer

    Directory of Open Access Journals (Sweden)

    Ming-Ming Tsai

    2016-06-01

    Full Text Available Human gastric cancer (GC is characterized by a high incidence and mortality rate, largely because it is normally not identified until a relatively advanced stage owing to a lack of early diagnostic biomarkers. Gastroscopy with biopsy is the routine method for screening, and gastrectomy is the major therapeutic strategy for GC. However, in more than 30% of GC surgical patients, cancer has progressed too far for effective medical resection. Thus, useful biomarkers for early screening or detection of GC are essential for improving patients’ survival rate. MicroRNAs (miRNAs play an important role in tumorigenesis. They contribute to gastric carcinogenesis by altering the expression of oncogenes and tumor suppressors. Because of their stability in tissues, serum/plasma and other body fluids, miRNAs have been suggested as novel tumor biomarkers with suitable clinical potential. Recently, aberrantly expressed miRNAs have been identified and tested for clinical application in the management of GC. Aberrant miRNA expression profiles determined with miRNA microarrays, quantitative reverse transcription-polymerase chain reaction and next-generation sequencing approaches could be used to establish sample specificity and to identify tumor type. Here, we provide an up-to-date summary of tissue-based GC-associated miRNAs, describing their involvement and that of their downstream targets in tumorigenic and biological processes. We examine correlations among significant clinical parameters and prognostic indicators, and discuss recurrence monitoring and therapeutic options in GC. We also review plasma/serum-based, GC-associated, circulating miRNAs and their clinical applications, focusing especially on early diagnosis. By providing insights into the mechanisms of miRNA-related tumor progression, this review will hopefully aid in the identification of novel potential therapeutic targets.

  12. T Cell Coinhibition and Immunotherapy in Human Breast Cancer

    OpenAIRE

    Janakiram, Murali; Abadi, Yael M.; Sparano, Joseph A.; Zang, Xingxing

    2012-01-01

    Costimulation and coinhibition generated by the B7 family and their receptor CD28 family have key roles in regulating T lymphocyte activation and tolerance. These pathways are very attractive therapeutic targets for human cancers including breast cancer. Gene polymorphisms of B7x (B7-H4/B7S1), PD-1 (CD279), and CTLA-4 (CD152) are associated with increased risk of developing breast cancer although the underlying mechanisms are unclear. In human breast cancer microenvironment, up-regulation of ...

  13. A systematic experimental evaluation of microRNA markers of human bladder cancer

    Directory of Open Access Journals (Sweden)

    Anastasia eZabolotneva

    2013-11-01

    Full Text Available Background: MicroRNAs (miRNAs are a class of small RNAs that regulate gene expression. They are aberrantly expressed in many human cancers and are potential therapeutic targets and molecular biomarkers. Methods: In this study, we for the first time validated the reported data on the entire set of published differential miRNAs (102 in total through a series of transcriptome-wide experiments. We have conducted genome-wide miRNA profiling in 17 urothelial carcinoma bladder tissues and in nine normal urothelial mucosa samples using three methods: 1 An Illumina HT-12 microarray hybridization (MA analysis 2 a suppression-subtractive hybridization (SSH assay followed by deep sequencing (DS and 3 DS alone. Results: We show that DS data correlate with previously published information in 87% of cases, whereas MA and SSH data have far smaller correlations with the published information (6% and 9% of cases, respectively. qRT-PCR tests confirmed reliability of the DS data.Conclusions: Based on our data, MA and SSH data appear to be inadequate for studying differential miRNA expression in the bladder. Impact: We report the first comprehensive validated database of miRNA markers of human bladder cancer.

  14. LC-MS Based Sphingolipidomic Study on A2780 Human Ovarian Cancer Cell Line and its Taxol-resistant Strain

    Science.gov (United States)

    Huang, Hao; Tong, Tian-Tian; Yau, Lee-Fong; Chen, Cheng-Yu; Mi, Jia-Ning; Wang, Jing-Rong; Jiang, Zhi-Hong

    2016-01-01

    Drug resistance elicited by cancer cells continue to cause huge problems world-wide, for example, tens of thousands of patients are suffering from taxol-resistant human ovarian cancer. However, its biochemical mechanisms remain unclear. Sphingolipid metabolic dysregulation has been increasingly regarded as one of the drug-resistant mechanisms for various cancers, which in turn provides potential targets for overcoming the resistance. In the current study, a well-established LC-MS based sphingolipidomic approach was applied to investigate the sphingolipid metabolism of A2780 and taxol-resistant A2780 (A2780T) human ovarian cancer cell lines. 102 sphingolipids (SPLs) were identified based on accurate mass and characteristic fragment ions, among which 12 species have not been reported previously. 89 were further quantitatively analyzed by using multiple reaction monitoring technique. Multivariate analysis revealed that the levels of 52 sphingolipids significantly altered in A2780T cells comparing to those of A2780 cells. These alterations revealed an overall increase of sphingomyelin levels and significant decrease of ceramides, hexosylceramides and lactosylceramides, which concomitantly indicated a deviated SPL metabolism in A2780T. This is the most comprehensive sphingolipidomic analysis of A2780 and A2780T, which investigated significantly changed sphingolipid profile in taxol-resistant cancer cells. The aberrant sphingolipid metabolism in A2780T could be one of the mechanisms of taxol-resistance. PMID:27703266

  15. Differential network analysis in human cancer research.

    Science.gov (United States)

    Gill, Ryan; Datta, Somnath; Datta, Susmita

    2014-01-01

    A complex disease like cancer is hardly caused by one gene or one protein singly. It is usually caused by the perturbation of the network formed by several genes or proteins. In the last decade several research teams have attempted to construct interaction maps of genes and proteins either experimentally or reverse engineer interaction maps using computational techniques. These networks were usually created under a certain condition such as an environmental condition, a particular disease, or a specific tissue type. Lately, however, there has been greater emphasis on finding the differential structure of the existing network topology under a novel condition or disease status to elucidate the perturbation in a biological system. In this review/tutorial article we briefly mention some of the research done in this area; we mainly illustrate the computational/statistical methods developed by our team in recent years for differential network analysis using publicly available gene expression data collected from a well known cancer study. This data includes a group of patients with acute lymphoblastic leukemia and a group with acute myeloid leukemia. In particular, we describe the statistical tests to detect the change in the network topology based on connectivity scores which measure the association or interaction between pairs of genes. The tests under various scores are applied to this data set to perform a differential network analysis on gene expression for human leukemia. We believe that, in the future, differential network analysis will be a standard way to view the changes in gene expression and protein expression data globally and these types of tests could be useful in analyzing the complex differential signatures.

  16. Assessment of individual radiosensitivity in human lymphocytes of cancer patients and its correlation with adverse side effects to radiation therapy

    CERN Document Server

    Di Giorgio, M; Busto, E; Mairal, L; Menendez, P; Roth, B; Sardi, M; Taja, M R; Vallerga, M B

    2003-01-01

    Background and purpose: Individual radiosensitivity is an inherent characteristic, associated with an increased reaction to ionizing radiation on the human body. Biological endpoints such as clonogenic survival, chromosome aberration formation and repair capacity of radiation-induced damage have been applied to evaluate individual radiosensitivity in vitro. 5%-7% of cancer patients develop adverse side effects to radiation therapy in normal tissues within the treatment field, which are referred as 'clinical radiation reactions' and include acute effects, late effects and cancer induction. It has been hypothesized that the occurrence and severity of these reactions are mainly influenced by genetic susceptibility to radiation. Additionally, the nature of the genetic disorders associated with hypersensitivity to radiotherapy suggests that DNA repair mechanisms are involved. Consequently, the characterization of DNA repair in lymphocytes through cytokinesis blocked micronucleus (MN) and alkaline single-cell micro...

  17. DNMT3b overexpression contributes to a hypermethylator phenotype in human breast cancer cell lines

    Directory of Open Access Journals (Sweden)

    Rivenbark Ashley G

    2008-01-01

    Full Text Available Abstract Background DNA hypermethylation events and other epimutations occur in many neoplasms, producing gene expression changes that contribute to neoplastic transformation, tumorigenesis, and tumor behavior. Some human cancers exhibit a hypermethylator phenotype, characterized by concurrent DNA methylation-dependent silencing of multiple genes. To determine if a hypermethylation defect occurs in breast cancer, the expression profile and promoter methylation status of methylation-sensitive genes were evaluated among breast cancer cell lines. Results The relationship between gene expression (assessed by RT-PCR and quantitative real-time PCR, promoter methylation (assessed by methylation-specific PCR, bisulfite sequencing, and 5-aza-2'deoxycytidine treatment, and the DNA methyltransferase machinery (total DNMT activity and expression of DNMT1, DNMT3a, and DNMT3b proteins were examined in 12 breast cancer cell lines. Unsupervised cluster analysis of the expression of 64 methylation-sensitive genes revealed two groups of cell lines that possess distinct methylation signatures: (i hypermethylator cell lines, and (ii low-frequency methylator cell lines. The hypermethylator cell lines are characterized by high rates of concurrent methylation of six genes (CDH1, CEACAM6, CST6, ESR1, LCN2, SCNN1A, whereas the low-frequency methylator cell lines do not methylate these genes. Hypermethylator cell lines coordinately overexpress total DNMT activity and DNMT3b protein levels compared to normal breast epithelial cells. In contrast, most low-frequency methylator cell lines possess DNMT activity and protein levels that are indistinguishable from normal. Microarray data mining identified a strong cluster of primary breast tumors that express the hypermethylation signature defined by CDH1, CEACAM6, CST6, ESR1, LCN2, and SCNN1A. This subset of breast cancers represents 18/88 (20% tumors in the dataset analyzed, and 100% of these tumors were classified as basal

  18. EXPRESSION OF Fas LIGAND IN HUMAN COLON CANCER CELL LINES

    Institute of Scientific and Technical Information of China (English)

    张建军; 丁尔迅; 王强; 陈学云; 付志仁

    2001-01-01

    To investigate the expression of Fas ligand in human colon carcinoma cell lines. Methods: A total of six human colon cancer cell lines were examined for the expression of Fas ligand mRNA and cell surface protein by using RT-PCR and flow cytometry respectively. Results: The results showed that Fas ligand mRNA was expressed in all of the six cancer cell lines and Fas ligand cell surface protein was expressed in part of them. Conclusion: These data suggest that Fas ligand was expressed, at least in part, in human colon cancer cell lines and might facilitate to escape from immune surveillance of the host.

  19. One Health and cancer: A comparative study of human and canine cancers in Nairobi

    Directory of Open Access Journals (Sweden)

    Nyariaro Kelvin Momanyi

    2016-11-01

    Full Text Available Aim: Recent trends in comparative animal and human research inform us that collaborative research plays a key role in deciphering and solving cancer challenges. Globally, cancer is a devastating diagnosis with an increasing burden in both humans and dogs and ranks as the number three killer among humans in Kenya. This study aimed to provide comparative information on cancers affecting humans and dogs in Nairobi, Kenya. Materials and Methods: Dog data collection was by cancer case finding from five veterinary clinics and two diagnostic laboratories, whereas the human dataset was from the Nairobi Cancer Registry covering the period 2002-2012. The analysis was achieved using IBM SPSS Statistics® v.20 (Dog data and CanReg5 (human data. The human population was estimated from the Kenya National Census, whereas the dog population was estimated from the human using a human:dog ratio of 4.1:1. Results: A total of 15,558 human and 367 dog cancer cases were identified. In humans, females had higher cancer cases 8993 (an age-standardized rate of 179.3 per 100,000 compared to 6565 in males (122.1 per 100,000. This order was reversed in dogs where males had higher cases 198 (14.9 per 100,000 compared to 169 (17.5 per 100,000 in females. The incident cancer cases increased over the 11-year study period in both species. Common cancers affecting both humans and dogs were: Prostate (30.4, 0.8, the respiratory tract (8.3, 1.3, lymphoma (5.6, 1.4, and liver and biliary tract (6.3, 0.5, whereas, in females, they were: Breast (44.5, 3.6, lip, oral cavity, and pharynx (8.8, 0.6, liver and biliary tract (6.5, 1.2, and lymphoma (6.0, 0.6, respectively, per 100,000. Conclusion: The commonality of some of the cancers in both humans and dogs fortifies that it may be possible to use dogs as models and sentinels in studying human cancers in Kenya and Africa. We further infer that developing joint animalhuman cancer registries and integrated cancer surveillance systems may

  20. Detection of choromosomal aberration in sporadic colorectal cancer with comparative genomic hybridization%比较基因组杂交检测散发性结直肠癌染色体变异的临床意义

    Institute of Scientific and Technical Information of China (English)

    陈寅波; 鞠海星; 张苏展; 彭佳萍; 李德川

    2009-01-01

    目的 了解散发性结直肠癌(SCRC)的染色体变异及其与SCRC临床病理特征的关系.方法 采用比较基因组杂交(CGH)技术检测40 例SCRC的染色体变异情况,分析其与临床病理特征的关系.结果 40 例SCRC患者CGH检测结果显示,所有病例均有不同程度的染色体臂发生扩增或丢失.平均每例变异数为7.55,扩增数为4.73,丢失数为2.83.染色体扩增区域有20 q、12 q、13 q、7 P、7 q和16 q;缺失区域有18 q、5 q、4 q、8 P和17 P.结直肠癌TNM分期中Ⅲ、Ⅳ期患者的染色体总变异数和扩增数、缺失数均高于Ⅰ、Ⅱ期患者.本组患者染色体总变异数、扩增数和丢失数在不同的肿瘤部位、组织学类型和分化程度间比较,差异均无统计学意义.20 q的扩增与TNM分期有关.结论 染色体变异在SCRC中普遍存在,SCRC的染色体变异数及20 q的扩增与TNM分期有关.%Objective To investigate the choromosomal aberration in sporadic colorectal carcinoma and its association with clinieopathologieal features. Methods Comparative genomic hybridization(CGH) was used to screen the changes in the number of DNA sequence copies in 40 sporadic coloreetal cancer patients in order to identify regions that contain genes important for the development and progression of colorectal cancer. Results In 40 sporadic colorectal cancer, frequent gain at 20 q, 12 q, 13 q, 7 p, 7 q and 16 q were found, while loss was also found at 18 q, 5 q, 4 q, 8 pand 17 p. The number of choromosomal aberration was closely associated with tumor stage (P<0.05).No significant association was found between the number of choromosomal aberration and tumor site, histopathologic type and histologic grade. Conclusions Choromosomal aberration exists generally in sporadic colorectal carcinoma. The number of choremosomal aberration and gain of 20q are closely associated with tumor stage.

  1. Phospholipase C-beta 2 promotes mitosis and migration of human breast cancer-derived cells.

    Science.gov (United States)

    Bertagnolo, Valeria; Benedusi, Mascia; Brugnoli, Federica; Lanuti, Paola; Marchisio, Marco; Querzoli, Patrizia; Capitani, Silvano

    2007-08-01

    Like most human neoplasm, breast cancer has aberrations in signal transduction elements that can lead to increased proliferative potential, apoptosis inhibition, tissue invasion and metastasis. Due to the high heterogeneity of this tumor, currently, no markers are clearly associated with the insurgence of breast cancer, as well as with its progression from in situ lesion to invasive carcinoma. We have recently demonstrated an altered expression of the beta2 isoform of the phosphoinositide-dependent phospholipase C (PLC) in invasive breast tumors with different histopathological features. In primary breast tumor cells, elevated amounts of this protein are closely correlated with a poor prognosis of patients with mammary carcinoma, suggesting that PLC-beta2 may be involved in the development and worsening of the malignant phenotype. Here we demonstrate that PLC-beta2 may improve some malignant characteristics of tumor cells, like motility and invasion capability, but it fails to induce tumorigenesis in non-transformed breast-derived cells. We also report that, compared with the G(0)/G(1) phases of the cell cycle, the cells in S/G(2)/M phases show high PLC-beta2 expressions that reach the greatest levels during the late mitotic stages. In addition, even if unable to modify the proliferation rate and the expression of cell cycle-related enzymes of malignant cells, PLC-beta2 may promote the G(2)/M progression, a critical event in cancer evolution. Since phosphoinositides, substrates of PLC, are involved in regulating cytoskeleton architecture, PLC-beta2 in breast tumor cells may mediate the modification of cell shape that characterizes cell division, motility and invasion. On the basis of these data, PLC-beta2 may constitute a molecular marker of breast tumor cells able to monitor the progression to invasive cancers and a target for novel therapeutic breast cancer strategies.

  2. MUC1-C ONCOPROTEIN INDUCES TAMOXIFEN RESISTANCE IN HUMAN BREAST CANCER CELLS

    Science.gov (United States)

    Kharbanda, Akriti; Rajabi, Hasan; Jin, Caining; Raina, Deepak; Kufe, Donald

    2013-01-01

    Resistance of estrogen receptor positive (ER+) breast cancer cells to tamoxifen has been linked in part to activation of (i) certain receptor tyrosine kinases, such as HER2, and (ii) the PI3K→AKT pathway. Mucin 1 (MUC1) is aberrantly overexpressed in about 90% of human breast cancers and the oncogenic MUC1-C subunit associates with ERα. The present studies using HER2 overexpressing BT-474 breast cancer cells, which are constitutively resistant to tamoxifen, demonstrate that silencing MUC1-C is associated with (i) downregulation of p-HER2 levels, and (ii) sensitivity to tamoxifen-induced growth inhibition and loss of clonogenic survival. The results also demonstate that overexpression of MUC1-C in tamoxifen-sensitive MCF-7 breast cancer cells results in upregulation of p-AKT and tamoxifen resistance. We show that MUC1-C forms complexes with ERα on the estrogen-responsive promoter of the Rab31 gene and that MUC1-C blocks tamoxifen-induced decreases in ERα occupancy. MUC1-C also attenuated tamoxifen-induced decreases in (i) recruitment of the coactivator CREB binding protein, (ii) Rab31 promoter activation, and (ii) Rab31 mRNA and protein levels. The importance of MUC1-C is further supported by the demonstration that targeting MUC1-C with the cell-penetrating peptide inhibitor, GO-203, sensitizes tamoxifen-resistant cells to tamoxifen treatment. Moreover, we show that targeting MUC1-C in combination with tamoxifen is highly synergistic in the treatment of tamoxifen-resistant breast cancer cells. These findings indicate that MUC1-C contributes to tamoxifen resistance and provide support for the investigation of MUC1-C inhibitors in the setting of tamoxifen refractory disease. PMID:23538857

  3. [Human papillomavirus detection in cervical cancer prevention].

    Science.gov (United States)

    Picconi, María Alejandra

    2013-01-01

    Cervical cancer (CC), which is strongly associated to high-risk human papillomavirus (hr-HPV) infection, continues being a significant health problem in Latin America. The use of conventional cytology to detect precancerous cervical lesions has had no major impact on reducing CC incidence and mortality rates, which are still high in the region. New screening tools to detect precancerous lesions became available, which provide great opportunities for CC prevention, as do highly efficacious HPV vaccines able to prevent nearly all lesions associated with HPV-16 and -18 when applied before viral exposure. Currently, hr-HPV testing represents an invaluable component of clinical guidelines for screening, management and treatment of CC and their precursor lesions. Many testing strategies have been developed that can detect a broad spectrum of hr-HPV types in a single assay; however, only a small subset of them has documented clinical performance for any of the standard HPV testing indications. HPV tests that have not been validated and lack proof of reliability, reproducibility and accuracy should not be used in clinical management. Once incorporated into the lab, it is essential to submit the whole procedure of HPV testing to continuous and rigorous quality assurance to avoid sub-optimal, potentially harmful practices. Recent progress and current status of these methods are discussed in this article.

  4. Towards the human colorectal cancer microbiome.

    Directory of Open Access Journals (Sweden)

    Julian R Marchesi

    Full Text Available Multiple factors drive the progression from healthy mucosa towards sporadic colorectal carcinomas and accumulating evidence associates intestinal bacteria with disease initiation and progression. Therefore, the aim of this study was to provide a first high-resolution map of colonic dysbiosis that is associated with human colorectal cancer (CRC. To this purpose, the microbiomes colonizing colon tumor tissue and adjacent non-malignant mucosa were compared by deep rRNA sequencing. The results revealed striking differences in microbial colonization patterns between these two sites. Although inter-individual colonization in CRC patients was variable, tumors consistently formed a niche for Coriobacteria and other proposed probiotic bacterial species, while potentially pathogenic Enterobacteria were underrepresented in tumor tissue. As the intestinal microbiota is generally stable during adult life, these findings suggest that CRC-associated physiological and metabolic changes recruit tumor-foraging commensal-like bacteria. These microbes thus have an apparent competitive advantage in the tumor microenvironment and thereby seem to replace pathogenic bacteria that may be implicated in CRC etiology. This first glimpse of the CRC microbiome provides an important step towards full understanding of the dynamic interplay between intestinal microbial ecology and sporadic CRC, which may provide important leads towards novel microbiome-related diagnostic tools and therapeutic interventions.

  5. Aptamer-Assisted Detection of the Altered Expression of Estrogen Receptor Alpha in Human Breast Cancer.

    Directory of Open Access Journals (Sweden)

    Rajesh Ahirwar

    Full Text Available An increase in the expression of estrogen receptors (ER and the expanded population of ER-positive cells are two common phenotypes of breast cancer. Detection of the aberrantly expressed ERα in breast cancer is carried out using ERα-antibodies and radiolabelled ligands to make decisions about cancer treatment and targeted therapy. Capitalizing on the beneficial advantages of aptamer over the conventional antibody or radiolabelled ligand, we have identified a DNA aptamer that selectively binds and facilitates the detection of ERα in human breast cancer tissue sections. The aptamer is identified using the high throughput sequencing assisted SELEX screening. Biophysical characterization confirms the binding and formation of a thermodynamically stable complex between the identified DNA aptamer (ERaptD4 and ERα (Ka = 1.55±0.298×108 M(-1; ΔH = 4.32×104±801.1 cal/mol; ΔS = -108 cal/mol/deg. Interestingly, the specificity measurements suggest that the ERaptD4 internalizes into ERα-positive breast cancer cells in a target-selective manner and localizes specifically in the nuclear region. To harness these characteristics of ERaptD4 for detection of ERα expression in breast cancer samples, we performed the aptamer-assisted histochemical analysis of ERα in tissue samples from breast cancer patients. The results were validated by performing the immunohistochemistry on same samples with an ERα-antibody. We found that the two methods agree strongly in assay output (kappa value = 0.930, p-value <0.05 for strong ERα positive and the ERα negative samples; kappa value = 0.823, p-value <0.05 for the weak/moderate ER+ve samples, n = 20. Further, the aptamer stain the ERα-positive cells in breast tissues without cross-reacting to ERα-deficient fibroblasts, adipocytes, or the inflammatory cells. Our results demonstrate a significant consistency in the aptamer-assisted detection of ERα in strong ERα positive, moderate ERα positive and ERα negative

  6. Role of ARPC2 in Human Gastric Cancer

    Directory of Open Access Journals (Sweden)

    Jun Zhang

    2017-01-01

    Full Text Available Gastric cancer continues to be the second most frequent cause of cancer deaths worldwide. However, the exact molecular mechanisms are still unclear. Further research to find potential targets for therapy is critical and urgent. In this study, we found that ARPC2 promoted cell proliferation and invasion in the human cancer cell line MKN-28 using a cell total number assay, MTT (3-(4,5-dimethyl-2-thiazolyl-2,5-diphenyl-2-H-tetrazolium bromide assay, cell colony formation assay, migration assay, invasion assay, and wound healing assay. For downstream pathways, CTNND1, EZH2, BCL2L2, CDH2, VIM, and EGFR were upregulated by ARPC2, whereas PTEN, BAK, and CDH1 were downregulated by ARPC2. In a clinical study, we examined the expression of ARPC2 in 110 cases of normal human gastric tissues and 110 cases of human gastric cancer tissues. ARPC2 showed higher expression in gastric cancer tissues than in normal gastric tissues. In the association analysis of 110 gastric cancer tissues, ARPC2 showed significant associations with large tumor size, lymph node invasion, and high tumor stage. In addition, ARPC2-positive patients exhibited lower RFS and OS rates compared with ARPC2-negative patients. We thus identify that ARPC2 plays an aneretic role in human gastric cancer and provided a new target for gastric cancer therapy.

  7. Human Papillomavirus and the Development of Different Cancers.

    Science.gov (United States)

    Gao, Ge; Smith, David I

    2017-03-01

    Human papillomaviruses (HPV) are responsible for the development of almost all cervical cancers. HPV is also found in 85% of anal cancer and in 50% of penile, vulvar, and vaginal cancers, and they are increasingly found in a subset of head and neck cancers, i.e., oropharyngeal squamous cell carcinomas (OPSCC). The model for how HPV causes cancer is derived from several decades of study on cervical cancer, and it is just presumed that this model is not only completely valid for cervical cancer but for all other HPV-driven cancers as well. Next-generation sequencing (NGS) has now provided the necessary tools to characterize genomic alterations in cancer cells and can precisely determine the physical status of HPV in those cells as well. We discuss recent discoveries from different applications of NGS in both cervical cancer and OPSCCs, including whole-genome sequencing and mate-pair NGS. We also discuss what NGS studies have revealed about the different ways that HPV can be involved in cancer formation, specifically comparing cervical cancer and OPSCC.

  8. Aberrant cervical thymus mimicking thyroid on ultrasonography: A case report

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jeong Sub; Park, Ju Hyun; Kim, Bong Soo; Park, Ji Kang; Choi, Jae Hyuck [Jeju National Univ. Hospital/Jeju National Univ. School of Medicine, Jeju (Korea, Republic of)

    2012-10-15

    Aberrant cervical thymus is rarely reported in adults. We report a case of solid aberrant cervical thymus in a 27 year old female, which was found incidentally on ultrasonography for the evaluation of the thyroid cancer. On ultrasonography, the lesion was found between the left thyroid and common carotid artery without any remarkable interface echo, and had similar echogenicity to the thyroid. The lesion extended to the upper pole of the left thyroid.

  9. Calorimetric signatures of human cancer cells and their nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Todinova, S. [Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 21, Sofia 1113 (Bulgaria); Stoyanova, E. [Department of Molecular Immunology, Institute of Biology and Immunology of Reproduction, Bulgarian Academy of Sciences, Tzarigradsko shose Blvd. 73, Sofia 1113 (Bulgaria); Krumova, S., E-mail: sakrumo@gmail.com [Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 21, Sofia 1113 (Bulgaria); Iliev, I. [Institute of Experimental Morphology, Pathology and Anthropology with Museum, Acad. G. Bonchev Str., Bl. 25, Sofia 1113 (Bulgaria); Taneva, S.G. [Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 21, Sofia 1113 (Bulgaria)

    2016-01-10

    Graphical abstract: - Highlights: • Two temperature ranges are distinguished in the thermograms of cells/nuclei. • Different thermodynamic properties of cancer and normal human cells/nuclei. • Dramatic reduction of the enthalpy of the low-temperature range in cancer cells. • Oxaliplatin and 5-FU affect the nuclear matrix proteins and the DNA stability. - Abstract: The human cancer cell lines HeLa, JEG-3, Hep G2, SSC-9, PC-3, HT-29, MCF7 and their isolated nuclei were characterized by differential scanning calorimetry. The calorimetric profiles differed from normal human fibroblast (BJ) cells in the two well distinguished temperature ranges—the high-temperature range (H{sub T}, due to DNA-containing structures) and the low-temperature range (L{sub T}, assigned to the nuclear matrix and cellular proteins). The enthalpy of the L{sub T} range, and, respectively the ratio of the enthalpies of the L{sub T}- vs. H{sub T}-range, ΔH{sub L}/ΔH{sub H}, is strongly reduced for all cancer cells compared to normal fibroblasts. On the contrary, for most of the cancer nuclei this ratio is higher compared to normal nuclei. The HT-29 human colorectal cancer cells/nuclei differed most drastically from normal human fibroblast cells/nuclei. Our data also reveal that the treatment of HT-29 cancer cells with cytostatic drugs affects not only the DNA replication but also the cellular proteome.

  10. TP53 mutations, expression and interaction networks in human cancers.

    Science.gov (United States)

    Wang, Xiaosheng; Sun, Qingrong

    2017-01-03

    Although the associations of p53 dysfunction, p53 interaction networks and oncogenesis have been widely explored, a systematic analysis of TP53 mutations and its related interaction networks in various types of human cancers is lacking. Our study explored the associations of TP53 mutations, gene expression, clinical outcomes, and TP53 interaction networks across 33 cancer types using data from The Cancer Genome Atlas (TCGA). We show that TP53 is the most frequently mutated gene in a number of cancers, and its mutations appear to be early events in cancer initiation. We identified genes potentially repressed by p53, and genes whose expression correlates significantly with TP53 expression. These gene products may be especially important nodes in p53 interaction networks in human cancers. This study shows that while TP53-truncating mutations often result in decreased TP53 expression, other non-truncating TP53 mutations result in increased TP53 expression in some cancers. Survival analyses in a number of cancers show that patients with TP53 mutations are more likely to have worse prognoses than TP53-wildtype patients, and that elevated TP53 expression often leads to poor clinical outcomes. We identified a set of candidate synthetic lethal (SL) genes for TP53, and validated some of these SL interactions using data from the Cancer Cell Line Project. These predicted SL genes are promising candidates for experimental validation and the development of personalized therapeutics for patients with TP53-mutated cancers.

  11. Telmisartan inhibits human urological cancer cell growth through early apoptosis

    Science.gov (United States)

    MATSUYAMA, MASAHIDE; FUNAO, KIYOAKI; KURATSUKURI, KATSUYUKI; TANAKA, TOMOAKI; KAWAHITO, YUTAKA; SANO, HAJIME; CHARGUI, JAMEL; TOURAINE, JEAN-LOUIS; YOSHIMURA, NORIO; YOSHIMURA, RIKIO

    2010-01-01

    Angiotensin II receptor blockers (ARBs) are widely used as hypertensive therapeutic agents. In addition, studies have provided evidence that ARBs have the potential to inhibit the growth of several types of cancer cells. It was reported that telmisartan (a type of ARB) has peroxisome proliferator-activated receptor (PPAR)-γ activation activity. We previously reported that the PPAR-γ ligand induces growth arrest in human urological cancer cells through apoptosis. In this study, we evaluated the effects of telmisartan and other ARBs on cell proliferation in renal cell carcinoma (RCC), bladder cancer (BC), prostate cancer (PC) and testicular cancer (TC) cell lines. The inhibitory effects of telmisartan and other ARBs (candesartan, valsartan, irbesartan and losartan) on the growth of the RCC, BC, PC and TC cell lines was investigated using an MTT assay. Flow cytometry and Hoechst staining were used to determine whether the ARBs induced apoptosis. Telmisartan caused marked growth inhibition in the urological cancer cells in a dose- and time-dependent manner. Urological cancer cells treated with 100 μM telmisartan underwent early apoptosis and DNA fragmentation. However, the other ARBs had no effect on cell proliferation in any of the urological cancer cell lines. Telmisartan may mediate potent anti-proliferative effects in urological cancer cells through PPAR-γ. Thus, telmisartan is a potent target for the prevention and treatment of human urological cancer. PMID:22993542

  12. Development of a Novel Prognostic Marker to Link a Potential Tumor Suppressor Gene at Chromosome 6q to Aberrant Signal Transduction Pathway in Breast Cancer

    Science.gov (United States)

    2005-08-01

    Pan Zhengl* 1Division of Cancer Immunology , Department of Pathology and Comprehensive Cancer Center, Ohio State University Medical Center, Columbus, OH...address: 289 Merrill Ave, Fremont, CA 94539. *Correspondence and requests for materials should be addressed to: Pan Zheng and Yang Liu Division of Cancer ... Immunology , Department of Pathology, Ohio State University Medical Center, 129 Hamilton Hall, 1645 Neil Avenue, Columbus, OH 43210. PH: 614-292-2003

  13. A novel SCID mouse model for studying spontaneous metastasis of human lung cancer to human tissue.

    Science.gov (United States)

    Teraoka, S; Kyoizumi, S; Seyama, T; Yamakido, M; Akiyama, M

    1995-05-01

    We established a novel severe combined immunodeficient (SCID) mouse model for the study of human lung cancer metastasis to human lung. Implantation of both human fetal and adult lung tissue into mammary fat pads of SCID mice showed a 100% rate of engraftment, but only fetal lung implants revealed normal morphology of human lung tissue. Using these chimeric mice, we analyzed human lung cancer metastasis to both mouse and human lungs by subcutaneous inoculation of human squamous cell carcinoma and adenocarcinoma cell lines into the mice. In 60 to 70% of SCID mice injected with human-lung squamous-cell carcinoma, RERF-LC-AI, cancer cells were found to have metastasized to both mouse lungs and human fetal lung implants but not to human adult lung implants 80 days after cancer inoculation. Furthermore, human-lung adenocarcinoma cells, RERF-LC-KJ, metastasized to the human lung implants within 90 days in about 40% of SCID mice, whereas there were no metastases to the lungs of the mice. These results demonstrate the potential of this model for the in vivo study of human lung cancer metastasis.

  14. Chemoprevention of Colonic Aberrant Crypt Foci by Novel Schiff Based Dichlorido(4-Methoxy-2-{[2-(Piperazin-4-Ium-1-Yl)Ethyl]Iminomethyl}Phenolate)Cd Complex in Azoxymethane-Induced Colorectal Cancer in Rats.

    Science.gov (United States)

    Hajrezaie, Maryam; Shams, Keivan; Moghadamtousi, Soheil Zorofchian; Karimian, Hamed; Hassandarvish, Pouya; Emtyazjoo, Mozhgan; Zahedifard, Maryam; Majid, Nazia Abdul; Mohd Ali, Hapipah; Abdulla, Mahmood Ameen

    2015-07-23

    Schiff-based complexes as a source of cancer chemotherapeutic compounds have been subjected to the variety of anticancer studies. The in-vitro analysis confirmed the CdCl2(C14H21N3O2) complex possess cytotoxicity and apoptosis induction properties in colon cancer cells, so lead to investigate the inhibitory efficiency of the compound on colonic aberrant crypt foci (ACF). Five groups of adult male rats were used in this study: Vehicle, cancer control, positive control groups and the groups treated with 25 and 50 mg/kg of complex for 10 weeks. The rats in vehicle group were injected subcutaneously with 15 mg/kg of sterile normal saline once a week for 2 weeks and orally administered with 5% Tween-20 (5 ml/kg) for 10 weeks, other groups were injected subcutaneously with 15 mg/kg azoxymethane once a week for 2 weeks. The rats in positive groups were injected intra-peritoneally with 35 mg/kg 5-Flourouracil four times in a month. Administration of the complex suppressed total colonic ACF formation up to 73.4% (P < 0.05). The results also showed that treatment with the complex significantly reduced the level of malondialdehyde while increasing superoxide dismutase and catalase activities. Furthermore, the down-regulation of PCNA and Bcl2 and the up-regulation of Bax was confirmed by immunohistochemical staining.

  15. High expression of miR-21 in tumor stroma correlates with increased cancer cell proliferation in human breast cancer

    DEFF Research Database (Denmark)

    Rask, Lene; Balslev, Eva; Jørgensen, Stine

    2011-01-01

    Low-risk and high-risk breast cancer patients are stratified primarily according to their lymph node (LN) status and grading. However, some low-risk patients relapse, and some high-risk patients have a favorable clinical outcome, implying a need for better prognostic and predictive tests. Micro...... RNAs are often aberrantly expressed in cancer and microRNA-21 is upregulated in a variety of cancers, including breast cancer. High miR-21 levels have been associated with poor prognosis. To determine the cellular localization of miR-21 and to compare its expression levels with histopathological...... features, we performed in situ hybridization and semi-quantitative assessment of the miR-21 signal on 12 LN negative grade I (assumed low risk), and 12 LN positive grade II (high risk) breast cancers. miR-21 was predominantly seen in cancer associated fibroblast-like cells, with no difference in expression...

  16. Integrated epigenetics of human breast cancer: synoptic investigation of targeted genes, microRNAs and proteins upon demethylation treatment.

    Directory of Open Access Journals (Sweden)

    Ramin Radpour

    Full Text Available BACKGROUND: The contribution of aberrant DNA methylation in silencing of tumor suppressor genes (TSGs and microRNAs has been investigated. Since these epigenetic alterations are reversible, it became of interest to determine the effects of the 5-aza-2'-deoxycytidine (DAC demethylation therapy in breast cancer at different molecular levels. METHODS AND FINDINGS: Here we investigate a synoptic model to predict complete DAC treatment effects at the level of genes, microRNAs and proteins for several human breast cancer lines. The present study assessed an effective treatment dosage based on the cell viability, cytotoxicity, apoptosis and methylation assays for the investigated cell lines. A highly aggressive and a non-aggressive cell line were investigated using omics approaches such as MALDI-TOF MS, mRNA- and microRNA expression arrays, 2-D gel electrophoresis and LC-MS-MS. Complete molecular profiles including the biological interaction and possible early and late systematic stable or transient effects of the methylation inhibition were determined. Beside the activation of several epigenetically suppressed TSGs, we also showed significant dysregulation of some important oncogenes, oncomiRs and oncosuppressors miRNAs as well as drug tolerance genes/miRNAs/proteins. CONCLUSIONS: In the present study, the results denote some new molecular DAC targets and pathways based on the chemical modification of DNA methylation in breast cancer. The outlined approach might prove to be useful as an epigenetic treatment model also for other human solid tumors in the management of cancer patients.

  17. Human Papilloma Viruses and Breast Cancer – Assessment of Causality

    Science.gov (United States)

    Lawson, James Sutherland; Glenn, Wendy K.; Whitaker, Noel James

    2016-01-01

    High risk human papilloma viruses (HPVs) may have a causal role in some breast cancers. Case–control studies, conducted in many different countries, consistently indicate that HPVs are more frequently present in breast cancers as compared to benign breast and normal breast controls (odds ratio 4.02). The assessment of causality of HPVs in breast cancer is difficult because (i) the HPV viral load is extremely low, (ii) HPV infections are common but HPV associated breast cancers are uncommon, and (iii) HPV infections may precede the development of breast and other cancers by years or even decades. Further, HPV oncogenesis can be indirect. Despite these difficulties, the emergence of new evidence has made the assessment of HPV causality, in breast cancer, a practical proposition. With one exception, the evidence meets all the conventional criteria for a causal role of HPVs in breast cancer. The exception is “specificity.” HPVs are ubiquitous, which is the exact opposite of specificity. An additional reservation is that the prevalence of breast cancer is not increased in immunocompromised patients as is the case with respect to HPV-associated cervical cancer. This indicates that HPVs may have an indirect causal influence in breast cancer. Based on the overall evidence, high-risk HPVs may have a causal role in some breast cancers. PMID:27747193

  18. Targeting Cyclin-Dependent Kinases in Human Cancers: From Small Molecules to Peptide Inhibitors

    Directory of Open Access Journals (Sweden)

    Marion Peyressatre

    2015-01-01

    Full Text Available Cyclin-dependent kinases (CDK/Cyclins form a family of heterodimeric kinases that play central roles in regulation of cell cycle progression, transcription and other major biological processes including neuronal differentiation and metabolism. Constitutive or deregulated hyperactivity of these kinases due to amplification, overexpression or mutation of cyclins or CDK, contributes to proliferation of cancer cells, and aberrant activity of these kinases has been reported in a wide variety of human cancers. These kinases therefore constitute biomarkers of proliferation and attractive pharmacological targets for development of anticancer therapeutics. The structural features of several of these kinases have been elucidated and their molecular mechanisms of regulation characterized in depth, providing clues for development of drugs and inhibitors to disrupt their function. However, like most other kinases, they constitute a challenging class of therapeutic targets due to their highly conserved structural features and ATP-binding pocket. Notwithstanding, several classes of inhibitors have been discovered from natural sources, and small molecule derivatives have been synthesized through rational, structure-guided approaches or identified in high throughput screens. The larger part of these inhibitors target ATP pockets, but a growing number of peptides targeting protein/protein interfaces are being proposed, and a small number of compounds targeting allosteric sites have been reported.

  19. Simulations of DSB Yields and Radiation-induced Chromosomal Aberrations in Human Cells Based on the Stochastic Track Structure iIduced by HZE Particles

    Science.gov (United States)

    Ponomarev, Artem; Plante, Ianik; George, Kerry; Wu, Honglu

    2014-01-01

    The formation of double-strand breaks (DSBs) and chromosomal aberrations (CAs) is of great importance in radiation research and, specifically, in space applications. We are presenting a new particle track and DNA damage model, in which the particle stochastic track structure is combined with the random walk (RW) structure of chromosomes in a cell nucleus. The motivation for this effort stems from the fact that the model with the RW chromosomes, NASARTI (NASA radiation track image) previously relied on amorphous track structure, while the stochastic track structure model RITRACKS (Relativistic Ion Tracks) was focused on more microscopic targets than the entire genome. We have combined chromosomes simulated by RWs with stochastic track structure, which uses nanoscopic dose calculations performed with the Monte-Carlo simulation by RITRACKS in a voxelized space. The new simulations produce the number of DSBs as function of dose and particle fluence for high-energy particles, including iron, carbon and protons, using voxels of 20 nm dimension. The combined model also calculates yields of radiation-induced CAs and unrejoined chromosome breaks in normal and repair deficient cells. The joined computational model is calibrated using the relative frequencies and distributions of chromosomal aberrations reported in the literature. The model considers fractionated deposition of energy to approximate dose rates of the space flight environment. The joined model also predicts of the yields and sizes of translocations, dicentrics, rings, and more complex-type aberrations formed in the G0/G1 cell cycle phase during the first cell division after irradiation. We found that the main advantage of the joined model is our ability to simulate small doses: 0.05-0.5 Gy. At such low doses, the stochastic track structure proved to be indispensable, as the action of individual delta-rays becomes more important.

  20. Simulations of DSB Yields and Radiation-induced Chromosomal Aberrations in Human Cells Based on the Stochastic Track Structure Induced by HZE Particles

    Science.gov (United States)

    Ponomarev, Artem; Plante, Ianik; George, Kerry; Wu, Honglu

    2014-01-01

    The formation of double-strand breaks (DSBs) and chromosomal aberrations (CAs) is of great importance in radiation research and, specifically, in space applications. We are presenting a new particle track and DNA damage model, in which the particle stochastic track structure is combined with the random walk (RW) structure of chromosomes in a cell nucleus. The motivation for this effort stems from the fact that the model with the RW chromosomes, NASARTI (NASA radiation track image) previously relied on amorphous track structure, while the stochastic track structure model RITRACKS (Relativistic Ion Tracks) was focused on more microscopic targets than the entire genome. We have combined chromosomes simulated by RWs with stochastic track structure, which uses nanoscopic dose calculations performed with the Monte-Carlo simulation by RITRACKS in a voxelized space. The new simulations produce the number of DSBs as function of dose and particle fluence for high-energy particles, including iron, carbon and protons, using voxels of 20 nm dimension. The combined model also calculates yields of radiation-induced CAs and unrejoined chromosome breaks in normal and repair deficient cells. The joined computational model is calibrated using the relative frequencies and distributions of chromosomal aberrations reported in the literature. The model considers fractionated deposition of energy to approximate dose rates of the space flight environment. The joined model also predicts of the yields and sizes of translocations, dicentrics, rings, and more complex-type aberrations formed in the G0/G1 cell cycle phase during the first cell division after irradiation. We found that the main advantage of the joined model is our ability to simulate small doses: 0.05-0.5 Gy. At such low doses, the stochastic track structure proved to be indispensable, as the action of individual delta-rays becomes more important.

  1. Influence of GSTM1, GSTT1, GSTP1, NAT1, NAT2, EPHX1, MTR and MTHFR polymorphism on chromosomal aberration frequencies in human lymphocytes.

    Science.gov (United States)

    Skjelbred, Camilla Furu; Svendsen, Marit; Haugan, Vera; Eek, Anette Kildal; Clausen, Kjell Oskar; Kure, Elin H; Tuimala, Jarno T; Svendsen, Martin Veel; Norppa, Hannu; Hansteen, Inger-Lise

    2011-03-01

    We have studied the influence of genetic polymorphisms in the xenobiotic-metabolizing genes GSTM1, GSTP1, GSTT1, EPHX1, NAT1 and NAT2 and the folate-metabolizing genes MTR and MTHFR on the frequencies of cells with chromosomal aberrations (CAs) in peripheral lymphocytes of Norwegian men. Log-linear Poisson regression models were applied on 357 subjects of whom data on all the polymorphisms examined were available. Total CAs and chromosome-type aberrations (CSAs) were significantly increased by higher age alone, whereas chromatid-type aberrations (CTAs) were elevated by the GSTT1-null genotype and MTHFR codon 222 variant allele and chromatid gaps (CTGs) by EPHX1 high activity genotype and occupational exposure. Stratification by smoking and age (<40 and ≥40 years) showed that the effect of the GSTT1 null and EPHX1 high activity genotypes only concerned (older) smokers, in agreement with the roles of the respective enzymes in detoxification and metabolic activation. The MTHFR codon 222 variant allele was associated with high CTGs in smokers, the MTR codon 919 variant allele with high CTAs in older smokers and the NAT2 fast acetylator genotype with high CTGs in older subjects. Among younger nonsmokers, however, carriers of the MTHFR codon 222 and MTR codon 919 variant alleles showed a decrease in the level of CTGs and total CAs, respectively. In conclusion, polymorphisms of GSTT1, EPHX1, MTHFR, MTR and NAT2 differentially affect the frequency of CTAs, CSAs and CTGs, showing interaction with smoking and age. It appears that CA subtypes rather than total CAs should be considered in this type of studies.

  2. Epigenetics modifications and therapeutic prospects in human thyroid cancer

    Directory of Open Access Journals (Sweden)

    Maria Graziella eCatalano

    2012-03-01

    Full Text Available At present no successful treatment is available for advanced thyroid cancer, which comprises poorly differentiated, anaplastic, and metastatic or recurrent differentiated thyroid cancer not responding to radioiodine. In the last few years, biologically targeted therapies for advanced thyroid carcinomas have been proposed on the basis of the recognition of key oncogenic mutations. Although the results of several phase II trials look promising, none of the patients treated had a complete response, and only a minority of them had a partial response, suggesting that the treatment is, at best, effective in stabilizing patients with progressive disease. Epigenetic refers to the study of heritable changes in gene expression that occur without any alteration in the primary DNA sequence. The epigenetic processes establish and maintain the global and local chroma¬tin states that determine gene expression. Epigenetic abnormalities are present in almost all cancers and, together with genetic changes, drive tumour progression. Various genes involved in the control of cell proliferation and invasion (p16INK4A, RASSF1A,PTEN, Rap1GAP, TIMP3, DAPK, RARβ2, E-cadherin, and CITED1 as well as genes specific of thyroid differentiation (Na+/I- symport, TSH receptor, pendrin, SL5A8, and TTF-1 present aberrant methylation in thyroid cancer.This review deals with the most frequent epigenetic alterations in thyroid cancer and focuses on epigenetic therapy, whose goal is to target the chromatin in rapidly dividing tumour cells and potentially restore normal cell functions. Experimental data and clinical trials, especially using deacetylase inhibitors and demethylating agents, are discussed.

  3. The structural complexity of the human BORIS gene in gametogenesis and cancer.

    Directory of Open Access Journals (Sweden)

    Elena M Pugacheva

    Full Text Available BACKGROUND: BORIS/CTCFL is a paralogue of CTCF, the major epigenetic regulator of vertebrate genomes. BORIS is normally expressed only in germ cells but is aberrantly activated in numerous cancers. While recent studies demonstrated that BORIS is a transcriptional activator of testis-specific genes, little is generally known about its biological and molecular functions. METHODOLOGY/PRINCIPAL FINDINGS: Here we show that BORIS is expressed as 23 isoforms in germline and cancer cells. The isoforms are comprised of alternative N- and C-termini combined with varying numbers of zinc fingers (ZF in the DNA binding domain. The patterns of BORIS isoform expression are distinct in germ and cancer cells. Isoform expression is activated by downregulation of CTCF, upregulated by reduction in CpG methylation caused by inactivation of DNMT1 or DNMT3b, and repressed by activation of p53. Studies of ectopically expressed isoforms showed that all are translated and localized to the nucleus. Using the testis-specific cerebroside sulfotransferase (CST promoter and the IGF2/H19 imprinting control region (ICR, it was shown that binding of BORIS isoforms to DNA targets in vitro is methylation-sensitive and depends on the number and specific composition of ZF. The ability to bind target DNA and the presence of a specific long amino terminus (N258 in different isoforms are necessary and sufficient to activate CST transcription. Comparative sequence analyses revealed an evolutionary burst in mammals with strong conservation of BORIS isoproteins among primates. CONCLUSIONS: The extensive repertoire of spliced BORIS variants in humans that confer distinct DNA binding and transcriptional activation properties, and their differential patterns of expression among germ cells and neoplastic cells suggest that the gene is involved in a range of functionally important aspects of both normal gametogenesis and cancer development. In addition, a burst in isoform diversification may

  4. Common molecular pathways involved in human CD133+/CD34+ progenitor cell expansion and cancer

    Directory of Open Access Journals (Sweden)

    Vêncio Ricardo Z

    2007-06-01

    Full Text Available Abstract Background Uncovering the molecular mechanism underlying expansion of hematopoietic stem and progenitor cells is critical to extend current therapeutic applications and to understand how its deregulation relates to leukemia. The characterization of genes commonly relevant to stem/progenitor cell expansion and tumor development should facilitate the identification of novel therapeutic targets in cancer. Methods CD34+/CD133+ progenitor cells were purified from human umbilical cord blood and expanded in vitro. Correlated molecular changes were analyzed by gene expression profiling using microarrays covering up to 55,000 transcripts. Genes regulated during progenitor cell expansion were identified and functionally classified. Aberrant expression of such genes in cancer was indicated by in silico SAGE. Differential expression of selected genes was assessed by real-time PCR in hematopoietic cells from chronic myeloid leukemia patients and healthy individuals. Results Several genes and signaling pathways not previously associated with ex vivo expansion of CD133+/CD34+ cells were identified, most of which associated with cancer. Regulation of MEK/ERK and Hedgehog signaling genes in addition to numerous proto-oncogenes was detected during conditions of enhanced progenitor cell expansion. Quantitative real-time PCR analysis confirmed down-regulation of several newly described cancer-associated genes in CD133+/CD34+ cells, including DOCK4 and SPARCL1 tumor suppressors, and parallel results were verified when comparing their expression in cells from chronic myeloid leukemia patients Conclusion Our findings reveal potential molecular targets for oncogenic transformation in CD133+/CD34+ cells and strengthen the link between deregulation of stem/progenitor cell expansion and the malignant process.

  5. Tea and cancer prevention: studies in animals and humans.

    Science.gov (United States)

    Chung, Fung-Lung; Schwartz, Joel; Herzog, Christopher R; Yang, Yang-Ming

    2003-10-01

    The role of tea in protection against cancer has been supported by ample evidence from studies in cell culture and animal models. However, epidemiological studies have generated inconsistent results, some of which associated tea with reduced risk of cancer, whereas others found that tea lacks protective activity against certain human cancers. These results raise questions about the actual role of tea in human cancer that needs to be addressed. This article is intended to provide a better perspective on this controversy by summarizing the laboratory studies in animals and humans with emphasis on animal tumor bioassays on skin, lung, mammary glands and colon, and the molecular and cellular mechanisms affected by tea. Finally, a recent small pilot intervention study with green tea in smokers is presented.

  6. Defining the cellular precursors to human breast cancer

    Science.gov (United States)

    Keller, Patricia J.; Arendt, Lisa M.; Skibinski, Adam; Logvinenko, Tanya; Klebba, Ina; Dong, Shumin; Smith, Avi E.; Prat, Aleix; Perou, Charles M.; Gilmore, Hannah; Schnitt, Stuart; Naber, Stephen P.; Garlick, Jonathan A.; Kuperwasser, Charlotte

    2012-01-01

    Human breast cancers are broadly classified based on their gene-expression profiles into luminal- and basal-type tumors. These two major tumor subtypes express markers corresponding to the major differentiation states of epithelial cells in the breast: luminal (EpCAM+) and basal/myoepithelial (CD10+). However, there are also rare types of breast cancers, such as metaplastic carcinomas, where tumor cells exhibit features of alternate cell types that no longer resemble breast epithelium. Until now, it has been difficult to identify the cell type(s) in the human breast that gives rise to these various forms of breast cancer. Here we report that transformation of EpCAM+ epithelial cells results in the formation of common forms of human breast cancer, including estrogen receptor-positive and estrogen receptor-negative tumors with luminal and basal-like characteristics, respectively, whereas transformation of CD10+ cells results in the development of rare metaplastic tumors reminiscent of the claudin-low subtype. We also demonstrate the existence of CD10+ breast cells with metaplastic traits that can give rise to skin and epidermal tissues. Furthermore, we show that the development of metaplastic breast cancer is attributable, in part, to the transformation of these metaplastic breast epithelial cells. These findings identify normal cellular precursors to human breast cancers and reveal the existence of a population of cells with epidermal progenitor activity within adult human breast tissues. PMID:21940501

  7. Endocrine therapy of human breast cancer grown in nude mice

    DEFF Research Database (Denmark)

    Brünner, N; Osborne, C K; Spang-Thomsen, M

    1987-01-01

    mice bearing transplanted human breast tumors have been proposed as such a model. This review therefore discusses the use of the athymic nude mouse model of the study of human breast cancer biology, and focuses on four subjects: 1. biological characteristics of heterotransplanted breast tumors; 2...

  8. Association between frequency of chromosomal aberrations and cancer risk is not influenced by genetic polymorphisms in GSTM1 and GSTT1

    DEFF Research Database (Denmark)

    Rossi, Anna Maria; Hansteen, Inger-Lise; Skjelbred, Camilla Furu;

    2009-01-01

    information about cancer risk by CA frequency. RESULTS: The association between CA frequency and cancer risk was confirmed [OR(medium) (odds ratio)(medium) = 1.5, 95% credibility interval (CrI), 0.9-2.5; OR(high) = 2.8, 95% CrI, 1.6-4.6], whereas no effect of the genetic polymorphism was observed. A much...

  9. Human Papillomavirus (HPV) and Oropharyngeal Cancer

    Science.gov (United States)

    ... HPV? People get HPV from another person during intimate sexual contact. Most of the time, people get ... 17, 2017 Page last updated: July 17, 2017 Content source: Division of Cancer Prevention and Control, Centers ...

  10. Study of apoptosis in human liver cancers

    Institute of Scientific and Technical Information of China (English)

    Chang-Min Shan; Juan Li

    2002-01-01

    AIM: To investigate the action of apoptosis in occurrence ofliver cacinornas in vivo and the biological effect of Solanumlyratum Thumb on BEL-7404 cell line inducing apoptosis invitro.METHODS: The apoptosis in the liver carcinoma wasdetected with terminal deoxynucl neotidyl transferasemediated dUTP nick end labelling (TUNEL); the cancer cellscultured in DMED medium were treated with extract ofSolanum lyratum Thumb and observed under microscope,and their DNA was assayed by gel electrophoresis.RESULTS: In vivo apoptotic cells in the cancer adjacenttissues inceased; in vitro treatment of liver cancers withextract of Solanum lyratum Thumb could induce the cells tomanifest a typical apoptotic morphology. Their DNA wasfractured and a characteristic ladder pattem could be foundusing electrophoresis.CONCLUSION: In vivo the apoptosis of carcinomas waslower; maybe the cells divided quickly and then the cancersoccurred. In the cancer adjacent tissues, the apoptosispricked up, and in vitro Solarium lyratum Thumb couldinduce the apoptosis of BEL-7404 cells.

  11. Comparison of breast cancer mucin (BCM) and CA 15-3 in human breast cancer

    NARCIS (Netherlands)

    Garcia, M.B.; Blankenstein, M.A.; Wall, E. van der; Nortier, J.W.R.; Schornagel, J.H.; Thijssen, J.H.H.

    1990-01-01

    The Breast Cancer Mucin (BCM) enzyme immunoassay utilizes two monoclonal antibodies (Mab), M85/34 and F36/22, for the identification of a mucin-like glycoprotein in serum of breast cancer patients. We have compared BCM with CA 15-3, another member of the human mammary epithelial antigen

  12. The human ovarian cancer cell line CABA I: A peculiar genetic evolution.

    Science.gov (United States)

    Giusti, Ilaria; Cervelli, Carla; D'Ascenzo, Sandra; Di Francesco, Marianna; Ligas, Claudio; D'Alessandro, Elvira; Papola, Franco; Dolo, Vincenza

    2016-04-01

    The objective of this study was to study the human ovarian cancer cell line CABA I by means of short tandem repeats (STR) profiling and cytogenetic analysis in order to prevent future misidentification or cross-contamination and verify its stability during in vitro cultivation. To this end, cells at passages 18 and 38 were analyzed using cytogenetic techniques in order to verify possible chromosomal aberrations and the karyotypic evolution of this cell line; GTG-banding and FISH were also performed. For STR analysis, DNA was extracted using the automated extractor MagNA pure and analyzed by means of PowerPlex 16 HS. STR profiles were analyzed by GeneMapper 3.2.1 software. Whereas comparative cytogenetic analysis of CABA I cells at passage 18 and 38 has demonstrated considerable genetic instability, we found that STR profiles were essentially unaltered in both analyzed passages, suggesting that the STR profile is reliable and could be used for the regular authentication of CABA I over time. It should be emphasized, however, that of the 16 loci generally used in human STR profiles, only 3 were properly detectable in CABA I. The data highlight that the CABA I cell line demonstrates an anomalous STR profile that does not fully adjust the criteria currently used for the identification of human cells; in spite of this, it remains stable during the in vitro maintainance. Moreover, the genetic instability of the CABA I cell line overlaps with those observed in vivo in tumor cells, making it a suitable candidate to analyze, in vitro, the peculiar genetic evolution of ovarian cancer cells.

  13. The human ovarian cancer cell line CABA I: A peculiar genetic evolution

    Science.gov (United States)

    GIUSTI, ILARIA; CERVELLI, CARLA; D'ASCENZO, SANDRA; DI FRANCESCO, MARIANNA; LIGAS, CLAUDIO; D'ALESSANDRO, ELVIRA; PAPOLA, FRANCO; DOLO, VINCENZA

    2016-01-01

    The objective of this study was to study the human ovarian cancer cell line CABA I by means of short tandem repeats (STR) profiling and cytogenetic analysis in order to prevent future misidentification or cross-contamination and verify its stability during in vitro cultivation. To this end, cells at passages 18 and 38 were analyzed using cytogenetic techniques in order to verify possible chromosomal aberrations and the karyotypic evolution of this cell line; GTG-banding and FISH were also performed. For STR analysis, DNA was extracted using the automated extractor MagNA pure and analyzed by means of PowerPlex 16 HS. STR profiles were analyzed by GeneMapper 3.2.1 software. Whereas comparative cytogenetic analysis of CABA I cells at passage 18 and 38 has demonstrated considerable genetic instability, we found that STR profiles were essentially unaltered in both analyzed passages, suggesting that the STR profile is reliable and could be used for the regular authentication of CABA I over time. It should be emphasized, however, that of the 16 loci generally used in human STR profiles, only 3 were properly detectable in CABA I. The data highlight that the CABA I cell line demonstrates an anomalous STR profile that does not fully adjust the criteria currently used for the identification of human cells; in spite of this, it remains stable during the in vitro maintainance. Moreover, the genetic instability of the CABA I cell line overlaps with those observed in vivo in tumor cells, making it a suitable candidate to analyze, in vitro, the peculiar genetic evolution of ovarian canc