WorldWideScience

Sample records for aberrant cell morphology

  1. Chromosome aberrations and cell survival in irradiated mammalian cells

    International Nuclear Information System (INIS)

    Tremp, J.

    1981-01-01

    A possible correlation between chromosome aberrations and reduced proliferation capacity or cell death was investigated. Synchronized Chinese hamster fibroblast cells were irradiated with 300 rad of x rays in early G 1 . Despite synchronization the cells reached the subsequent mitosis at different times. The frequency of chromosome aberrations was determined in the postirradiation division at 2-h intervals. The highest frequency occurred in cells with a first cell cycle of medium length. The colony-forming ability of mitotic cells was measured in parallel samples by following the progress of individual mitoses. The proportion of cells forming macrocolonies decreased with increasing cell cycle length, and the number of non-colony-forming cells increased. Irrespective of various first cell cycle lengths and different frequencies of chromosome aberrations, the number of cells forming microcolonies remained constant. A correlation was found between the absence of chromosome aberrations and the ability of cells to form macrocolonies. However, cells with a long first cell cycle formed fewer macrocolonies than expected

  2. Morphological and metric aberrations of the hand-bones in patients with mongolism

    International Nuclear Information System (INIS)

    Rochels, R.; Schmid, F.

    1980-01-01

    The evaluation of 2758 X-rays of the hands of 1047 patients with mongolism showed some morphological and metric aberrations: We discovered pseudoepiphyses in 82,4%, a brachymesophalangia in 67%, a dysmesophalangia in 4,6% and clinodactyly in 56,4%. The length of the hands of the patients with mongolism is in all ages shorter than in controls; there is also a distinct acromicria. These alterations are interpreted as a sign of the cerebral affection as well as a general aberration of the mesenchyma. (orig.) [de

  3. Cell survival and radiation induced chromosome aberrations. Pt. 2

    International Nuclear Information System (INIS)

    Bauchinger, M.; Schmid, E.; Braselmann, H.

    1986-01-01

    Human peripheral lymphocytes were irradiated in whole blood with 0.5-4.0 Gy of 220 kVp X-rays and the frequency of chromosome aberrations was determined in 1st or 2nd division metaphases discriminated by fluorescence plus giemsa staining. Using the empirical distributions of aberrations among cells, cell survival and transmission of aberrations were investigated. Considering both daughter cells, we found that 20% of fragments and 55% of dicentrics or ring chromosomes are lost during the 1st cell division; i.e. cell survival rate from 1st to 2nd generation is mainly influenced by anaphase bridging of these two-hit aberrations. Cell survival to 2nd mitosis was calculated considering this situation and compared with the survival derived from the fraction of M1 cells without unstable aberrations. The resulting shouldered survival curves showed significantly different slopes, indicating that cell reproductive death is overestimated in the latter approach. (orig.)

  4. Aberrant phenotypes in peripheral T cell lymphomas.

    Science.gov (United States)

    Hastrup, N; Ralfkiaer, E; Pallesen, G

    1989-01-01

    Seventy six peripheral T cell lymphomas were examined immunohistologically to test their reactivity with a panel of monoclonal antibodies against 11 T cell associated antigens (CD1-8, CD27, UCHL1, and the T cell antigen receptor). Sixty two (82%) lymphomas showed aberrant phenotypes, and four main categories were distinguished as follows: (i) lack of one or several pan-T cell antigens (49, 64% of the cases); (ii) loss of both the CD4 and CD8 antigens (11, 15% of the cases); (iii) coexpression of the CD4 and CD8 antigens (13, 17% of the cases); and (iv) expression of the CD1 antigen (eight, 11% of the cases). No correlation was seen between the occurrence of aberrant phenotypes and the histological subtype. It is concluded that the demonstration of an aberrant phenotype is a valuable supplement to histological assessment in the diagnosis of peripheral T cell lymphomas. It is recommended that the panel of monoclonal antibodies against T cell differentiation antigens should be fairly large, as apparently any antigen may be lost in the process of malignant transformation. Images Figure PMID:2469701

  5. Chromosome aberrations in cultured skin cells obtained from atomic bomb survivors

    International Nuclear Information System (INIS)

    Honda, Takeo; Sadamori, Naoki.

    1989-01-01

    Skin specimens were obtained from 11 A-bomb survivors, 10 of whom had been exposed at ≤2300 m from the hypocenter, and 7 non-exposed controls. There was a higher frequency (12%, 147/1222 cells) of chromosome aberrations in the exposed group compared with 1.2% (4/341 cells) in the control group. This suggests that aberrant cells are still present in the skin tissue 40 years or more after the bombing. Of 147 cells, 136 cells (91.3%) showed translocation of chromosome. Other aberrations, such as inversion, deletion, dicentric chromosome and acentric fragment, were observed in only 3.8%. These aberrant cells tended to be observed in A-bomb survivors exposed to high doses and with a history of severe acute symptoms. One hundred and twenty two (83%) of 136 aberrant cells were obtained from 3 A-bomb survivors, which has important implications for marked proliferation of specific clone cells. In an analysis by B-band staining technique for the 122 cells, band sites of break point were found to correspond to loci of protooncogenes, suggesting the involvement in aggressive proliferation of clone cells. (Namekawa, K)

  6. The Distribution of Chromosomal Aberrations in Human Cells Predicted by a Generalized Time-Dependent Model of Radiation-Induced Formation of Aberrations

    Science.gov (United States)

    Ponomarev, Artem L.; George, K.; Cucinotta, F. A.

    2011-01-01

    New experimental data show how chromosomal aberrations for low- and high-LET radiation are dependent on DSB repair deficiencies in wild-type, AT and NBS cells. We simulated the development of chromosomal aberrations in these cells lines in a stochastic track-structure-dependent model, in which different cells have different kinetics of DSB repair. We updated a previously formulated model of chromosomal aberrations, which was based on a stochastic Monte Carlo approach, to consider the time-dependence of DSB rejoining. The previous version of the model had an assumption that all DSBs would rejoin, and therefore we called it a time-independent model. The chromosomal-aberrations model takes into account the DNA and track structure for low- and high-LET radiations, and provides an explanation and prediction of the statistics of rare and more complex aberrations. We compared the program-simulated kinetics of DSB rejoining to the experimentally-derived bimodal exponential curves of the DSB kinetics. We scored the formation of translocations, dicentrics, acentric and centric rings, deletions, and inversions. The fraction of DSBs participating in aberrations was studied in relation to the rejoining time. Comparisons of simulated dose dependence for simple aberrations to the experimental dose-dependence for HF19, AT and NBS cells will be made.

  7. TGF-β-stimulated aberrant expression of class III β-tubulin via the ERK signaling pathway in cultured retinal pigment epithelial cells

    International Nuclear Information System (INIS)

    Chung, Eun Jee; Chun, Ji Na; Jung, Sun-Ah; Cho, Jin Won; Lee, Joon H.

    2011-01-01

    Highlights: ► TGF-β induces aberrant expression of βIII in RPE cells via the ERK pathway. ► TGF-β increases O-GlcNAc modification of βIII in RPE cells. ► Mature RPE cells have the capacity to express a neuron-associated gene by TGF-β. -- Abstract: The class III β-tubulin isotype (β III ) is expressed exclusively by neurons within the normal human retina and is not present in normal retinal pigment epithelial (RPE) cells in situ or in the early phase of primary cultures. However, aberrant expression of class III β-tubulin has been observed in passaged RPE cells and RPE cells with dedifferentiated morphology in pathologic epiretinal membranes from idiopathic macular pucker, proliferative vitreoretinopathy (PVR) and proliferative diabetic retinopathy (PDR). Transforming growth factor-β (TGF-β) has been implicated in dedifferentiation of RPE cells and has a critical role in the development of proliferative vitreoretinal diseases. Here, we investigated the potential effects of TGF-β on the aberrant expression of class III β-tubulin and the intracellular signaling pathway mediating these changes. TGF-β-induced aberrant expression and O-linked-β-N-acetylglucosamine (O-GlcNac) modification of class III β-tubulin in cultured RPE cells as determined using Western blotting, RT-PCR and immunocytochemistry. TGF-β also stimulated phosphorylation of ERK. TGF-β-induced aberrant expression of class III β-tubulin was significantly reduced by pretreatment with U0126, an inhibitor of ERK phosphorylation. Our findings indicate that TGF-β stimulated aberrant expression of class III β-tubulin via activation of the ERK signaling pathway. These data demonstrate that mature RPE cells have the capacity to express a neuron-associated gene in response to TGF-β stimulation and provide useful information towards understanding the pathogenesis of proliferative vitreoretinal diseases.

  8. TGF-{beta}-stimulated aberrant expression of class III {beta}-tubulin via the ERK signaling pathway in cultured retinal pigment epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Eun Jee [Department of Ophthalmology, National Health Insurance Corporation Ilsan Hospital, Gyeonggi-do (Korea, Republic of); Chun, Ji Na; Jung, Sun-Ah [Konyang University Myunggok Medical Research Institute, Kim' s Eye Hospital, Konyang University College of Medicine, Seoul (Korea, Republic of); Cho, Jin Won [Department of Biology, Yonsei University, 134 Shinchon-dong, Seodaemun-gu, Seoul 120-749 (Korea, Republic of); Lee, Joon H., E-mail: joonhlee@konyang.ac.kr [Konyang University Myunggok Medical Research Institute, Kim' s Eye Hospital, Konyang University College of Medicine, Seoul (Korea, Republic of)

    2011-11-18

    Highlights: Black-Right-Pointing-Pointer TGF-{beta} induces aberrant expression of {beta}III in RPE cells via the ERK pathway. Black-Right-Pointing-Pointer TGF-{beta} increases O-GlcNAc modification of {beta}III in RPE cells. Black-Right-Pointing-Pointer Mature RPE cells have the capacity to express a neuron-associated gene by TGF-{beta}. -- Abstract: The class III {beta}-tubulin isotype ({beta}{sub III}) is expressed exclusively by neurons within the normal human retina and is not present in normal retinal pigment epithelial (RPE) cells in situ or in the early phase of primary cultures. However, aberrant expression of class III {beta}-tubulin has been observed in passaged RPE cells and RPE cells with dedifferentiated morphology in pathologic epiretinal membranes from idiopathic macular pucker, proliferative vitreoretinopathy (PVR) and proliferative diabetic retinopathy (PDR). Transforming growth factor-{beta} (TGF-{beta}) has been implicated in dedifferentiation of RPE cells and has a critical role in the development of proliferative vitreoretinal diseases. Here, we investigated the potential effects of TGF-{beta} on the aberrant expression of class III {beta}-tubulin and the intracellular signaling pathway mediating these changes. TGF-{beta}-induced aberrant expression and O-linked-{beta}-N-acetylglucosamine (O-GlcNac) modification of class III {beta}-tubulin in cultured RPE cells as determined using Western blotting, RT-PCR and immunocytochemistry. TGF-{beta} also stimulated phosphorylation of ERK. TGF-{beta}-induced aberrant expression of class III {beta}-tubulin was significantly reduced by pretreatment with U0126, an inhibitor of ERK phosphorylation. Our findings indicate that TGF-{beta} stimulated aberrant expression of class III {beta}-tubulin via activation of the ERK signaling pathway. These data demonstrate that mature RPE cells have the capacity to express a neuron-associated gene in response to TGF-{beta} stimulation and provide useful information

  9. Cell survival and chromosomal aberrations in CHO-K1 cells irradiated by carbon ions

    Energy Technology Data Exchange (ETDEWEB)

    Czub, J. [Institute of Physics, Swietokrzyska Academy, ul. Swietokrzyska 15, 25-406 Kielce (Poland); Banas, D. [Institute of Physics, Swietokrzyska Academy, ul. Swietokrzyska 15, 25-406 Kielce (Poland); Holycross Cancer Center, ul. Swietokrzyska 15, 25-406 Kielce (Poland); Blaszczyk, A. [Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Grudziadzka 5, 87-100 Torun (Poland); Braziewicz, J. [Institute of Physics, Swietokrzyska Academy, ul. Swietokrzyska 15, 25-406 Kielce (Poland); Holycross Cancer Center, ul. Swietokrzyska 15, 25-406 Kielce (Poland); Buraczewska, I. [Institute of Nuclear Chemistry and Technology, ul. Dorodna 16, 03-195 Warsaw (Poland); Choinski, J. [Heavy Ion Laboratory, Warsaw University, ul. Pasteura 5A, 02-093 Warsaw (Poland); Gorak, U. [Institute of Experimental Physics, Warsaw University, ul. Hoza 69, 00-681 Warsaw (Poland); Jaskola, M.; Korman, A. [Andrzej Soltan Institute for Nuclear Studies, 05-400 Otwock-Swierk (Poland); Lankoff, A.; Lisowska, H. [Institute of Biology, Swietokrzyska Academy, ul. Swietokrzyska 15, 25-406 Kielce (Poland); Lukaszek, A. [Institute of Experimental Physics, Warsaw University, ul. Hoza 69, 00-681 Warsaw (Poland); Main School of Fire Service, ul. Slowackiego 52/54, 01-629 Warsaw (Poland); Szeflinski, Z. [Institute of Experimental Physics, Warsaw University, ul. Hoza 69, 00-681 Warsaw (Poland)], E-mail: szef@fuw.edu.pl; Wojcik, A. [Institute of Nuclear Chemistry and Technology, ul. Dorodna 16, 03-195 Warsaw (Poland); Institute of Biology, Swietokrzyska Academy, ul. Swietokrzyska 15, 25-406 Kielce (Poland)

    2009-03-15

    Chinese hamster ovary CHO-K1 cells were exposed to high LET {sup 12}C-beam (LET: 830 keV/{mu}m) in the dose range of 0-6 Gy and to {sup 60}Co irradiation and the RBE value was obtained. Effects of {sup 12}C-beam exposure on cell survival and chromosomal aberrations were calculated. The chromosomal aberration data were fitted with linear equation. The distribution of aberration in cells was examined with a standard u-test and used to evaluate the data according to Poisson probabilities. The variance to the mean ratio {sigma}{sup 2}/Y and the dispersion index (u) were determined. Overdispersion was significant (p<0.05) when the value of u exceeded 1.96.

  10. Morphological images analysis and chromosomic aberrations classification based on fuzzy logic

    International Nuclear Information System (INIS)

    Souza, Leonardo Peres

    2011-01-01

    This work has implemented a methodology for automation of images analysis of chromosomes of human cells irradiated at IEA-R1 nuclear reactor (located at IPEN, Sao Paulo, Brazil), and therefore subject to morphological aberrations. This methodology intends to be a tool for helping cytogeneticists on identification, characterization and classification of chromosomal metaphasic analysis. The methodology development has included the creation of a software application based on artificial intelligence techniques using Fuzzy Logic combined with image processing techniques. The developed application was named CHRIMAN and is composed of modules that contain the methodological steps which are important requirements in order to achieve an automated analysis. The first step is the standardization of the bi-dimensional digital image acquisition procedure through coupling a simple digital camera to the ocular of the conventional metaphasic analysis microscope. Second step is related to the image treatment achieved through digital filters application; storing and organization of information obtained both from image content itself, and from selected extracted features, for further use on pattern recognition algorithms. The third step consists on characterizing, counting and classification of stored digital images and extracted features information. The accuracy in the recognition of chromosome images is 93.9%. This classification is based on classical standards obtained at Buckton [1973], and enables support to geneticist on chromosomic analysis procedure, decreasing analysis time, and creating conditions to include this method on a broader evaluation system on human cell damage due to ionizing radiation exposure. (author)

  11. Chromosome aberration induction in human diploid fibroblast and epithelial cells

    International Nuclear Information System (INIS)

    Scott, D.

    1986-01-01

    The relative sensitivity of cultured human fibroblasts and epithelial cells to radiation-induced chromosomal aberrations was investigated. Lung fibroblast and kidney epithelial cells from the same fetus were compared, as were skin fibroblasts and epithelial keratinocytes from the same foreskin sample. After exposure of proliferating fetal cells to 1.5 Gy X-rays there was a very similar aberration yield in the fibroblasts and epithelial cells. Observations of either little or no difference in chromosomal sensitivity between human fibroblasts and epithelial cells give added confidence that quantitative cytogenetic data obtained from cultured fibroblasts are relevant to the question of sensitivity of epithelial cells which are the predominant cell type in human cancers. (author)

  12. Hyperthermic radiosensitization of synchronous Chinese hamster cells: relationship between lethality and chromosomal aberrations

    International Nuclear Information System (INIS)

    Dewey, W.C.; Sapareto, S.A.; Betten, D.A.

    1978-01-01

    Synchronous Chinese hamster cells in vitro were obtained by mitotic selection. The cells were heated at 45.5 0 C for 4 min in mitosis, 11 min in G 1 , or 7 min in S sphase and then x-irradiated immediately thereafter. Colony survival from heat alone was 0.30 to 0.45, and the frequency of chromosomal aberrations induced by heat was 0.00, 0.14, or 0.97 for heat treatments during M, G 1 , or S, respectively. As shown previously, lethality from hyperthermia alone is due to chromosomal aberrations only when the cells are heated during S phase. The log survival (D 0 /sup approximately/ = 80 rad) and aberration frequency curves for cells irradiated during mitosis were linear, and the only effect of hyperthermia was to shift the curves in accord with the effect from heat alone. Thus, hyperthermia did not radiosensitize the mitotic cells. The cells irradiated in G 1 were more resistant (D 0 /sup approximately/ = 100 rad) than those irradiated in mitosis, and the survival and aberration frequency curves both had shoulders. The primary effect of hyperthermia was to greatly reduce the shoulders of the curves and to increase the slopes by about 23%. The cells irradiated in S were the most resistant (D 0 /sup approximately/ = 140 rad), and the survival and aberration frequency curves both had large shoulders. For both end points of lethality and chromosomal aberrations, heat selectively radiosensitized S-phase cells relative to G 1 cells by removing most of the shoulder and increasing the slope by about 45%. For cells treated in G 1 or S, the increase in radiosensitization following hyperthermia can be accounted for by an increase in the frequency of chromosomal aberrations

  13. Chromosome aberrations of bone marrow cells in heavily exposed atomic bomb survivors

    International Nuclear Information System (INIS)

    Tanaka, Kimio; Kamada, Nanao; Kuramoto, Atsushi; Ohkita, Takeshi

    1986-01-01

    Seven hundred and ten bone marrow cells from 13 A-bomb survivors, who were heavily exposed to atomic radiation, were examined using chromosome banding method. An average frequency of chromosome aberrations was 17 %. The most common structural abnormality was translocation (47 %), followed by complex aberrations involving three or more chromosomes (32 %). These abnormalities were frequently seen in A-bomb survivors exposed to estimated doses of 3.5 - 4.0 Gy. Eighty two percent of the structural aberrations were stable. Diploid cells were seen in 0.4 % and tetraploid cells were seen in 0.7 %. The frequency of breakpoint sites was high in chromosomes 1 and 17; while it was low in chromosomes 3, 6, 9, and 11. Abnormal clones were seen in one of the 13 survivors. Chromosome aberrations common to the bone marrow cells and peripheral lymphocytes were not seen in the same individual. (Namekawa, K.)

  14. Phenotypic characterization of aberrant stem and progenitor cell populations in myelodysplastic syndromes.

    Science.gov (United States)

    Ostendorf, Benjamin N; Flenner, Eva; Flörcken, Anne; Westermann, Jörg

    2018-01-01

    Recent reports have revealed myelodysplastic syndromes (MDS) to arise from cancer stem cells phenotypically similar to physiological hematopoietic stem cells. Myelodysplastic hematopoiesis maintains a hierarchical organization, but the proportion of several hematopoietic compartments is skewed and multiple surface markers are aberrantly expressed. These aberrant antigen expression patterns hold diagnostic and therapeutic promise. However, eradication of MDS requires targeting of early myelodysplasia propagating stem cells. This warrants an exact assessment of the differentiation stage at which aberrant expression occurs in transformed hematopoiesis. Here, we report results on the prospective and extensive dissection of the hematopoietic hierarchy in 20 patients with either low-risk MDS or MDS with excess blasts and compare it to hematopoiesis in patients with non-malignancy-associated cytopenia or B cell lymphoma without bone marrow infiltration. We found patients with MDS with excess blasts to exhibit characteristic expansions of specific immature progenitor compartments. We also identified the aberrant expression of several markers including ALDH, CLL-1, CD44, and CD47 to be specific features of hematopoiesis in MDS with excess blasts. We show that amongst these, aberrant CLL-1 expression manifested at the early uncommitted hematopoietic stem cell level, suggesting a potential role as a therapeutic target.

  15. Phenotypic characterization of aberrant stem and progenitor cell populations in myelodysplastic syndromes.

    Directory of Open Access Journals (Sweden)

    Benjamin N Ostendorf

    Full Text Available Recent reports have revealed myelodysplastic syndromes (MDS to arise from cancer stem cells phenotypically similar to physiological hematopoietic stem cells. Myelodysplastic hematopoiesis maintains a hierarchical organization, but the proportion of several hematopoietic compartments is skewed and multiple surface markers are aberrantly expressed. These aberrant antigen expression patterns hold diagnostic and therapeutic promise. However, eradication of MDS requires targeting of early myelodysplasia propagating stem cells. This warrants an exact assessment of the differentiation stage at which aberrant expression occurs in transformed hematopoiesis. Here, we report results on the prospective and extensive dissection of the hematopoietic hierarchy in 20 patients with either low-risk MDS or MDS with excess blasts and compare it to hematopoiesis in patients with non-malignancy-associated cytopenia or B cell lymphoma without bone marrow infiltration. We found patients with MDS with excess blasts to exhibit characteristic expansions of specific immature progenitor compartments. We also identified the aberrant expression of several markers including ALDH, CLL-1, CD44, and CD47 to be specific features of hematopoiesis in MDS with excess blasts. We show that amongst these, aberrant CLL-1 expression manifested at the early uncommitted hematopoietic stem cell level, suggesting a potential role as a therapeutic target.

  16. Lethality of radiation-induced chromosome aberrations in human tumour cell lines with different radiosensitivities.

    Science.gov (United States)

    Coco-Martin, J M; Ottenheim, C P; Bartelink, H; Begg, A C

    1996-03-01

    In order to find an explanation for the eventual disappearance of all chromosome aberrations in two radiosensitive human tumour cell lines, the type and stability of different aberration types was investigated in more detail. To classify the aberrations into unstable and stable types, three-colour fluorescence in situ hybridization was performed, including a whole-chromosome probe, a pancentromere probe, and a stain for total DNA. This technique enables the appropriate classification of the aberrations principally by the presence (stable) or not (unstable) of a single centromere per chromosome. Unstable-type aberrations were found to disappear within 7 days (several divisions) in the two radiosensitive and the two radioresistant tumour lines investigated. Stable-type aberrations were found to remain at an approximately constant level over the duration of the experiment (14 days; 8-10 divisions) in the two radioresistant lines. In contrast, the majority of these stable-type aberrations had disappeared by 14 days in the two radiosensitive lines. The previous findings of disappearance of total aberrations in radiosensitive cells was therefore not due to a reduced induction of stable-type aberrations, but the complete disappearance of cells with this aberration type. These results could not be explained by differences in apoptosis or G1 blocks. Two possible explanations for these unexpected findings involve non-random induction of unstable-type aberrations, or lethality of stable-type aberrations. The results suggest caution in the use of stable-type aberration numbers as a predictor for radiosensitivity.

  17. Chromosome painting analysis of radiation-induced aberrant cell clones in the mouse

    International Nuclear Information System (INIS)

    Spruill, M.D.; Nath, J.; Tucker, J.D.

    1997-01-01

    In a study of the persistence of radiation-induced translocations over the life span of the mouse, we observed a number of clonal cells in peripheral blood lymphocytes. The presence of clones caused the mean frequency of aberrations at various time points to be elevated which interfered with biodosimetry. For this reason, we have corrected our data for the presence of clones. Mice were given an acute dose of 0, 1, 2, 3 or 4 Gy 137 Cs at 8 weeks of age. Aberrations were measured by painting chromosomes 2 and 8 and cells were examined for clones at 3 months and every 3 months thereafter until 21 months. Clones were identified by comparing the color photographic slides of all abnormal cells from each animal. Determination of clonality was made on the basis of similar breakpoint locations or the presence of other identifying characteristics such as unusual aberrations. To correct the frequency of translocations for the presence of clones, each clone, regardless of how many cells it contained, was counted only once. This reflects the original aberration frequency since each clone originated as only one cell. Among mice exposed to 4 Gy, the mean frequencies of aberrant cell clones ranged from 3-29% of the total number of metaphase cells scored with the highest frequency being 1 year post exposure. 32-70% of reciprocal and 19-92% of non-reciprocal translocations were clonal. A dose response relationship for clones was evident until 21 months when the unexposed animals exhibited a mean frequency of aberrant cell clones >10% of the total number of cells scored. Almost 75% of reciprocal and 95% of non-reciprocal translocations in these unexposed control animals were of clonal origin. Correction for clonal expansion greatly reduced the means and their standard errors at most time points where clonal expansion was prevalent. The biodosimetry was much improved suggesting that correction is beneficial in long-term studies

  18. Investigation of an Aberrant Cell Voltage During the Filling of a Large Lithium Thionyl Chloride Cell

    Science.gov (United States)

    Thaller, Lawrence H.; Quinzio, Michael V.

    1997-01-01

    The investigation of an aberrant cell voltage during the filling of a large lithium thionyl chloride cell summary is at: an aberrant voltage trace was noted during the review of cell filling data; incident was traced to an interruption during filling; experimentation suggested oxidizable sites within the carbon electrode were responsible for the drop in voltage; the voltage anomaly could be reproduced by interrupting the filling of similar cells; and anomalous voltage dip was not due to a short.

  19. Radiation-induced chromosome aberrations and cell killing in normal human fibroblasts and ataxia telangiectasia fibroblasts

    International Nuclear Information System (INIS)

    Kawata, T.; Saito, M.; Uno, T.; Ito, H.; Shigematsu, N.

    2003-01-01

    Full text: When cells are held in a non-dividing state (G0) after irradiation, an enhanced survival can be observed compared to that of immediate plating. A change of survival depending on post irradiation condition is known to be repair of potentially lethal damage (RPLD). The effects of confluent holding recovery (24-h incubation following irradiation) on chromosome aberrations in normal human fibroblasts (AG1522) and ataxia telangiectasia fibroblasts (GM02052C) were examined. A chemical-induced premature chromosome condensation (PCC) technique with fluorescent in situ hybridization (FISH) was applied to study chromosome aberrations in G2 and M-phase. Results from cell survival showed that the capacity for potentially lethal damage repair was normal in AG1522 cells but very little in GM02052C cells. The frequency of chromosome aberrations in AG1522 cells decreased when cells were allowed to repair for 24-h. Especially complex type exchanges were found to decrease markedly at high doses (4Gy and 6Gy). However, the frequency of chromosome aberrations including complex type exchanges showed little decrease in GM02052C cells. Confluent holding can effectively reduce chromosome aberrations, especially complex type exchanges in normal cells

  20. Induction of chromosome aberrations and mitotic arrest by cytomegalovirus in human cells

    International Nuclear Information System (INIS)

    AbuBakar, S.; Au, W.W.; Legator, M.S.; Albrecht, T.

    1988-01-01

    Human cytomegalovirus (CMV) is potentially an effective but often overlooked genotoxic agent in humans. We report here evidence that indicates that infection by CMV can induce chromosome alterations and mitotic inhibition. The frequency of chromosome aberrations induced was dependent on the input multiplicity of infection (m.o.i.) for human lung fibroblasts (LU), but not for human peripheral blood lymphocytes (PBLs) when both cell types were infected at the GO phase of the cell cycle. The aberrations induced by CMV were mostly chromatid breaks and chromosome pulverizations that resembled prematurely condensed S-phase chromatin. Pulverized chromosomes were not observed in LU cells infected with virus stocks that had been rendered nonlytic by UV-irradiation at 24,000 ergs/mm2 or from infection of human lymphocytes. In LU cells infected with UV-irradiated CMV, the frequency of aberrations induced was inversely dependent on the extent of the exposure of the CMV stock to the UV-light. In permissive CMV infection of proliferating LU cells at 24 hr after subculture, a high percentage (greater than 40%) of the metaphase cells were arrested at their first metaphase and displayed severely condensed chromosomes when harvested 48 hr later. A significant increase (p less than 0.05) in the chromosome aberration frequency was also observed. Our study shows that CMV infection is genotoxic to host cells. The types and extent of damage are dependent on the viral genome expression and on the cell cycle stage of the cells at the time of infection. The possible mechanisms for induction of chromosome damage by CMV are discussed

  1. Cytogenetic heterogeneity and their serial dynamic changes during acquisition of cytogenetic aberrations in cultured mesenchymal stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jung-Ah [Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul (Korea, Republic of); Im, Kyong Ok; Park, Si Nae; Kwon, Ji Seok [Cancer Research Institute, Seoul National University College of Medicine, Seoul (Korea, Republic of); Kim, Seon Young [Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul (Korea, Republic of); Oh, Keunhee; Lee, Dong-Sup [Laboratory of Immunology and Cancer Biology, Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul (Korea, Republic of); Transplantation Research Institute, Seoul National University College of Medicine, Seoul National University College of Medicine, Seoul (Korea, Republic of); Kim, Min Kyung; Kim, Seong Who [Department of Biochemistry and Molecular Biology, Asan Medical Center, University of Ulsan College of Medicine, Seoul (Korea, Republic of); Jang, Mi; Lee, Gene [Lab of Molecular Genetics, School of Dentistry and Dental Research Institute, Seoul National University, Seoul (Korea, Republic of); Oh, Yeon-Mok; Lee, Sang Do [Department of Pulmonary and Critical Care Medicine, Asthma Center and Clinical Research Center for Chronic Obstructive Airway Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul (Korea, Republic of); Lee, Dong Soon, E-mail: soonlee@snu.ac.kr [Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul (Korea, Republic of); Cancer Research Institute, Seoul National University College of Medicine, Seoul (Korea, Republic of)

    2015-07-15

    Highlights: • We evaluated cytogenetic aberrations of MSC during culture using G-banding and FISH. • We tracked the quantitative changes of each clone among heterogeneity upon passages. • The changes of cytogenetic profile upon passages were similar to cancer stem cell. - Abstract: To minimize the risk of tumorigenesis in mesenchymal stem cells (MSCs), G-banding analysis is widely used to detect chromosomal aberrations in MSCs. However, a critical limitation of G-banding is that it only reflects the status of metaphase cells, which can represent as few as 0.01% of tested cells. During routine cytogenetic testing in MSCs, we often detect chromosomal aberrations in minor cell populations. Therefore, we aimed to investigate whether such a minority of cells can expand over time or if they ultimately disappear during MSC passaging. We passaged MSCs serially while monitoring quantitative changes for each aberrant clone among heterogeneous MSCs. To investigate the cytogenetic status of interphase cells, which represent the main population, we also performed interphase FISH analysis, in combination with G-banding and telomere length determination. In human adipose tissue-derived MSCs, 4 types of chromosomal aberrations were found during culturing, and in umbilical cord MSCs, 2 types of chromosomal aberrations were observed. Sequential dynamic changes among heterogeneous aberrant clones during passaging were similar to the dynamic changes observed in cancer stem cells during disease progression. Throughout all passages, the quantitative G-banding results were inconsistent with those of the interphase FISH analysis. Interphase FISH revealed hidden aberrations in stem cell populations with normal karyotypes by G-banding analysis. We found that telomere length gradually decreased during passaging until the point at which cytogenetic aberrations appeared. The present study demonstrates that rare aberrant clones at earlier passages can become predominant clones during

  2. Cytogenetic heterogeneity and their serial dynamic changes during acquisition of cytogenetic aberrations in cultured mesenchymal stem cells

    International Nuclear Information System (INIS)

    Kim, Jung-Ah; Im, Kyong Ok; Park, Si Nae; Kwon, Ji Seok; Kim, Seon Young; Oh, Keunhee; Lee, Dong-Sup; Kim, Min Kyung; Kim, Seong Who; Jang, Mi; Lee, Gene; Oh, Yeon-Mok; Lee, Sang Do; Lee, Dong Soon

    2015-01-01

    Highlights: • We evaluated cytogenetic aberrations of MSC during culture using G-banding and FISH. • We tracked the quantitative changes of each clone among heterogeneity upon passages. • The changes of cytogenetic profile upon passages were similar to cancer stem cell. - Abstract: To minimize the risk of tumorigenesis in mesenchymal stem cells (MSCs), G-banding analysis is widely used to detect chromosomal aberrations in MSCs. However, a critical limitation of G-banding is that it only reflects the status of metaphase cells, which can represent as few as 0.01% of tested cells. During routine cytogenetic testing in MSCs, we often detect chromosomal aberrations in minor cell populations. Therefore, we aimed to investigate whether such a minority of cells can expand over time or if they ultimately disappear during MSC passaging. We passaged MSCs serially while monitoring quantitative changes for each aberrant clone among heterogeneous MSCs. To investigate the cytogenetic status of interphase cells, which represent the main population, we also performed interphase FISH analysis, in combination with G-banding and telomere length determination. In human adipose tissue-derived MSCs, 4 types of chromosomal aberrations were found during culturing, and in umbilical cord MSCs, 2 types of chromosomal aberrations were observed. Sequential dynamic changes among heterogeneous aberrant clones during passaging were similar to the dynamic changes observed in cancer stem cells during disease progression. Throughout all passages, the quantitative G-banding results were inconsistent with those of the interphase FISH analysis. Interphase FISH revealed hidden aberrations in stem cell populations with normal karyotypes by G-banding analysis. We found that telomere length gradually decreased during passaging until the point at which cytogenetic aberrations appeared. The present study demonstrates that rare aberrant clones at earlier passages can become predominant clones during

  3. TNFRSF14 aberrations in follicular lymphoma increase clinically significant allogeneic T-cell responses.

    Science.gov (United States)

    Kotsiou, Eleni; Okosun, Jessica; Besley, Caroline; Iqbal, Sameena; Matthews, Janet; Fitzgibbon, Jude; Gribben, John G; Davies, Jeffrey K

    2016-07-07

    Donor T-cell immune responses can eradicate lymphomas after allogeneic hematopoietic stem cell transplantation (AHSCT), but can also damage healthy tissues resulting in harmful graft-versus-host disease (GVHD). Next-generation sequencing has recently identified many new genetic lesions in follicular lymphoma (FL). One such gene, tumor necrosis factor receptor superfamily 14 (TNFRSF14), abnormal in 40% of FL patients, encodes the herpes virus entry mediator (HVEM) which limits T-cell activation via ligation of the B- and T-lymphocyte attenuator. As lymphoma B cells can act as antigen-presenting cells, we hypothesized that TNFRSF14 aberrations that reduce HVEM expression could alter the capacity of FL B cells to stimulate allogeneic T-cell responses and impact the outcome of AHSCT. In an in vitro model of alloreactivity, human lymphoma B cells with TNFRSF14 aberrations had reduced HVEM expression and greater alloantigen-presenting capacity than wild-type lymphoma B cells. The increased immune-stimulatory capacity of lymphoma B cells with TNFRSF14 aberrations had clinical relevance, associating with higher incidence of acute GVHD in patients undergoing AHSCT. FL patients with TNFRSF14 aberrations may benefit from more aggressive immunosuppression to reduce harmful GVHD after transplantation. Importantly, this study is the first to demonstrate the impact of an acquired genetic lesion on the capacity of tumor cells to stimulate allogeneic T-cell immune responses which may have wider consequences for adoptive immunotherapy strategies. © 2016 by The American Society of Hematology.

  4. Aberrant methylation of cell-free circulating DNA in plasma predicts poor outcome in diffuse large B cell lymphoma

    DEFF Research Database (Denmark)

    Sommer Kristensen, Lasse; Hansen, Jakob Werner; Kristensen, Søren Sommer

    2016-01-01

    BACKGROUND: The prognostic value of aberrant DNA methylation of cell-free circulating DNA in plasma has not previously been evaluated in diffuse large B cell lymphoma (DLBCL). The aim of this study was to investigate if aberrant promoter DNA methylation can be detected in plasma from DLBCL patients...

  5. Time course of photoreactivation of UV-induced chromosomal aberrations and lethal damage in interphase Xenopus cells

    International Nuclear Information System (INIS)

    Griggs, H.G.; Payne, J.D.

    1981-01-01

    Sets of G1, S, and G2 phase Xenopus cells were exposed to 15.0 Jm -2 UV and their ability to photoreactivate the induced cell killing and chromosomal aberrations was determined. Most of the lesions induced in G1 cells leading to cell death were converted to a non-photoreactivable state before the cells entered the S phase, while lesions leading to chromosomal aberrations were converted to a non-photoreactivable state as the cells entered the S phase. In S phase cells the UV-induced lesions leading to aberrations appeared to be converted to a non-photoreactivable state at a much faster rate than those leading to cell death. A significant fraction of the lesions induced in G2 cells, leading to cell death, were converted to a non-photoreactivable state before the progeny of the exposed cells reach the next S phase. Few, if any, lesions were induced in G2 cells that were expressed as aberrations at the first mitosis following exposure. The results suggest that the intracellular mechanism which expresses photoreactivable UV-induced lesions as cell death is not identical to the mechanism which expresses such lesions as chromosomal aberrations, and the two mechanisms operate with different efficiencies in different phases of the cell cycle. (author)

  6. A study of chromosomal aberrations in amniotic fluid cell cultures.

    Science.gov (United States)

    Wolstenholme, J; Crocker, M; Jonasson, J

    1988-06-01

    This paper represents the analysis of 1916 routine amniotic fluid specimens harvested by an in situ fixation technique in a prospective study with regard to cultural chromosome anomalies. Excluding constitutional abnormalities, 2.9 per cent of 19,432 cells analysed showed some form of chromosome anomaly, terminal deletions (57 per cent) and chromatid/chromosome breaks and gaps (18 per cent) being the most frequent, followed by interchange aberrations (13 per cent) and trisomy (5 per cent). No case was found of more than one colony from the same culture showing the same anomaly without it being present in other cultures from the same fluid. The wholly abnormal colonies had a surplus of trisomies and from the mathematical considerations presented one may infer that these are likely to reflect the presence of abnormal cells in the amniotic fluid. Partly abnormal colonies appeared at a frequency that would correspond to virtual absence of selection against chromosomally abnormal cells when cultured in vitro. The aberrations found were similar to those seen as single cell anomalies, except for chromatid breaks and exchanges. The data suggest a basic preferential induction of trisomy for chromosomes 2, 18, 21, and the Y-chromosome. Structural aberrations showed a marked clustering of breakpoints around the centromeres. The frequency of mutant cells was low (1.4 X 10(-3)) before culture was initiated. At harvest, the frequency of abnormal cells was much higher (3 X 10(-2)) corresponding to 3 X 10(-3) mutations per cell per generation accumulating over approximately ten generations in vitro.

  7. Effects of cisplatin and γ-irradiation on cell survival, the induction of chromosomal aberrations and apoptosis in SW-1573 cells

    International Nuclear Information System (INIS)

    Bergs, J.W.J.; Franken, N.A.P.; Cate, R. ten; Bree, C. van; Haveman, J.

    2006-01-01

    Purpose: Cisplatin was found to radiosensitize SW-1573 cells by inhibition of PLDR. Therefore, it was investigated whether cisplatin combined with γ-radiation leads to an increase in the number of chromosomal aberrations or apoptotic cells compared with radiation alone. Methods: Confluent cultures of the human lung carcinoma cell line SW-1573 were treated with 1 μM cisplatin for 1 h, 4 Gy γ-radiation, or a combination of both. Cell survival was studied by the clonogenic assay. Aberrations were analysed by FISH in prematurely condensed chromosomes (PCC) and the induction of apoptosis by counting fragmented nuclei. Results: A radiosensitizing effect of cisplatin on cell survival was observed if time for PLDR was allowed. An increased number of chromosomal fragments were observed immediately after irradiation compared with 24 h after irradiation whereas color junctions are only formed 24 h after irradiation. No increase in chromosomal aberrations was found after combined treatment, but a significantly enhanced number of fragmented nuclei were observed when confluent cultures were replated after allowing PLDR. Conclusion: The inhibition of PLDR by cisplatin in delayed plated SW-1573 cells did not increase chromosomal aberrations, but increased the induction of apoptosis

  8. Detection of chromosome aberrations in tumors lineage after irradiation process

    International Nuclear Information System (INIS)

    Silva, Luciana Maria Silva; Campos, Tarcisio

    2002-01-01

    When radioresistant cancerous cells are irradiated at level of few Gys, the interactions may not generate visible observations in the morphology of the cells or effects so intense such as death after few hours. The changes that will be observed depend on the combination of many factors that define the probability of cell surviving in response to the physical dose applied. Genetic factors may affect the cell response such as the cell sensitivity to irradiation, cancerous cell is studied when irradiated with Co-60 gamma rays. Besides the evaluation of the radiosensitivity of this cells when exposed to gamma irradiation, possible chromosomic aberrations and apoptosis were detected. (author)

  9. Aberrant DNA Methylation in Chronic Myeloid Leukemia: Cell Fate Control, Prognosis, and Therapeutic Response.

    Science.gov (United States)

    Behzad, Masumeh Maleki; Shahrabi, Saeid; Jaseb, Kaveh; Bertacchini, Jessika; Ketabchi, Neda; Saki, Najmaldin

    2018-01-31

    Chronic myeloid leukemia (CML) is a hematopoietic stem cell malignancy characterized by the expression of the BCR-ABL1 fusion gene with different chimeric transcripts. Despite the crucial impact of constitutively active tyrosine kinase in CML pathogenesis, aberrant DNA methylation of certain genes plays an important role in disease progression and the development of drug resistance. This article reviews recent findings relevant to the effect of DNA methylation pattern of regulatory genes on various cellular activities such as cell proliferation and survival, as well as cell-signaling molecules in CML. These data might contribute to defining the role of aberrant DNA methylation in disease initiation and progression. However, further studies are needed on the validation of specific aberrant methylation markers regarding the prognosis and prediction of response among the CML patients.

  10. Possible mechanisms of chromosome aberrations. 2. Formation of aberrations after UV-irradiation

    International Nuclear Information System (INIS)

    Lebedeva, L.I.

    1982-01-01

    One of mechanisms of chromosome aberrations after UV-radiation of animal cells initiated by thymine dimerization from different dna threads (by cross joints) and finished in mitosis metaphase is discussed. The model of aberration formation, taking a count of peculiarities of chromosome ansate structure and predicting the important role of chromosome isolation during mitosis in realization of structural aberrations, is suggested. An attempt to present aberration formation under conditions of exact repair is the distinguishing feature of the model

  11. Inner Leaf Gel of Aloe striata Induces Adhesion-Reducing Morphological Hyphal Aberrations

    Directory of Open Access Journals (Sweden)

    Gloria Wada

    2018-02-01

    Full Text Available Fungi, particularly molds that are cosmopolitan in soils, are frequent etiologic agents of opportunistic mycoses. Members of the Fusarium solani and Fusarium oxysporum species complexes are the most commonly implicated etiologic agents of opportunistic fusarial infections in mammals, while Paecilomyces variotii is one of the most frequently encountered Paecilomyces species in human infections. Prevention and treatment of these mycoses are problematic because available antimycotics are limited and often have toxic side effects. Popular folk medicines, such as the inner leaf gel from Aloe spp., offer potential sources for novel antimycotic compounds. To screen for antifungal properties of Aloe striata, we treated conidia of three strains each of F. solani, F. oxysporum, and P. variotii with homogenized and filtered inner leaf gel. Exposure to gel homogenates caused minimal inhibition of conidial germination in tested strains. However, it significantly increased the frequency of hyphal aberrations characterized by increased hyphal diameters that resulted in intervals of non-parallel cell walls. Non-parallel cell walls ostensibly reduce total hyphal surface area available for adhesion. We found a significant decrease in the ability of aberrated P. variotii hyphae to remain adhered to microscope slides after repeated washing with reverse osmosis water. Our results suggest that treatment with A. striata contributes to a decrease in the adhesion frequency of tested P. variotii strains.

  12. Some characteristics and its influence factors of chromosome aberrations of germ cells induced by ionizing radiation in mice

    International Nuclear Information System (INIS)

    Jin Yuke; Cai Lu; Wang Xianli

    1995-01-01

    The chromosome aberrations of germ cells in mice by low LET ionizing radiation were systematically studied. The study demonstrated that the chromosome aberrations were linear or linearly square correlated with X-ray doses in large doses; that was linear correlated with X-ray doses in low doses. In addition, there were many factors directly influencing chromosome aberrations. The aberrations of the germ cells in males were 4.4 times of that in females. The aberrations in the germ cells were significantly higher after meiosis than before. The aberrations in secondary spermatocytes were 3.6 times of that in spermatogonia and 10 times of that in primary spermatocytes, respectively. In different phases of meiosis, the amount of chromosome aberrations in leptotene was the least, that in diaknesis was the most. The spermatogonic translocation rate receiving a whole body X-irradiation was 1.74 times of that receiving a local testis X-irradiation. The spermatogonic translocation rate of acute X-irradiation was 4.6∼6.3 times of that of chronic γ-irradiation

  13. Chromosomal aberrations in bone marrow cells of rats irradiated with different gamma-doses and protected with adeturon

    International Nuclear Information System (INIS)

    Ivanov, B.; Mileva, M.; Bulanova, M.; Pantev, T.

    1982-01-01

    Sexually mature wistor rats were irradiated on cesium gamma source ''IGUR-1'' with emissive power 3.25 mA/kg. The animals were divided in five groups of 10 rats each. They were irradiated respectively with 0.0129 C/kg, O, 0.0258 C/kg, 0.0516 C/kg, 0.1032 C/kg and control group. Five animals of each group received 300 meg/g weight Adeturone 15 minutes before exposure. The animals were sacrifices 20 hours after irradiation and preparations made from bone-marrow cells for chromosomal analysis. The number of structural chromosomal aberrations, aberrant cells and total number of aberrations in protected and in nonprotected cells were read under high-power microscope. The results were statistically processed by variation and regression analysis. It was found that Adeturone displays strong protective effect on the hereditary cell structures in all animals exposed to doses higher than 0.0129 C/kg, with the exception of chromatid fragments at a dose of 0.0258 C/kg. Mathematical models of the curves of the yields of chromatid and chromosomal fragments, aberrant cells and total number of aberrations in protected and nonprotected animals were described. (authors)

  14. Effects of alpha-particles on survival and chromosomal aberrations in human mammary epithelial cells

    Science.gov (United States)

    Durante, M.; Grossi, G. F.; Gialanella, G.; Pugliese, M.; Nappo, M.; Yang, T. C.

    1995-01-01

    We have studied the radiation responses of a human mammary epithelial cell line, H184B5 F5-1 M/10. This cell line was derived from primary mammary cells after treatment with chemicals and heavy ions. The F5-1 M/10 cells are immortal, density-inhibited in growth, and non-tumorigenic in athymic nude mice and represent an in vitro model of the human epithelium for radiation studies. Because epithelial cells are the target of alpha-particles emitted from radon daughters, we concentrated our studies on the efficiency of alpha-particles. Confluent cultures of M/10 cells were exposed to accelerated alpha-particles [beam energy incident at the cell monolayer = 3.85 MeV, incident linear energy transfer (LET) in cell = 109 keV/microns] and, for comparison, to 80 kVp x-rays. The following endpoints were studied: (1) survival, (2) chromosome aberrations at the first postirradiation mitosis, and (3) chromosome alterations at later passages following irradiation. The survival curve was exponential for alpha-particles (D0 = 0.73 +/- 0.04 Gy), while a shoulder was observed for x-rays (alpha/beta = 2.9 Gy; D0 = 2.5 Gy, extrapolation number 1.6). The relative biological effectiveness (RBE) of high-LET alpha-particles for human epithelial cell killing was 3.3 at 37% survival. Dose-response curves for the induction of chromosome aberrations were linear for alpha-particles and linearquadratic for x-rays. The RBE for the induction of chromosome aberrations varied with the type of aberration scored and was high (about 5) for chromosome breaks and low (about 2) for chromosome exchanges.(ABSTRACT TRUNCATED AT 250 WORDS).

  15. Influence of DMSO on Carbon K ultrasoft X-rays induced chromosome aberrations in V79 Chinese hamster cells

    Energy Technology Data Exchange (ETDEWEB)

    Natarajan, Adayapalam T., E-mail: natarajan@live.nl [University of Tuscia, Viterbo (Italy); Palitti, Fabrizio [University of Tuscia, Viterbo (Italy); Hill, Mark A. [CRUK/MRC Gray Institute for Radiation Oncology and Biology, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ (United Kingdom); MRC Radiation and Genome Stability Unit, Harwell, Oxfordshire OX11 0RD (United Kingdom); Stevens, David L. [MRC Radiation and Genome Stability Unit, Harwell, Oxfordshire OX11 0RD (United Kingdom); Ahnstroem, Gunnar [Department of Microbiology and Genetic Toxicology, Stockholm University, Stockholm (Sweden)

    2010-09-10

    Ultrasoft X-rays have been shown to be very efficient in inducing chromosomal aberrations in mammalian cells. The present study was aimed to evaluate the modifying effects of DMSO (a potent scavenger of free radicals) on the frequencies of chromosome aberrations induced by soft X-rays. Confluent held G1 Chinese hamster cells (V79) were irradiated with Carbon K ultrasoft X-rays in the presence and absence of 1 M DMSO and frequencies of chromosome aberrations in the first division cells were determined. DMSO reduced the frequencies of exchange types of aberrations (dicentrics and centric rings) by a factor of 2.1-3.5. The results indicate that free radicals induced by ultrasoft X-rays contribute to a great extent to the induction of chromosome aberrations. The possible implications of these results in interpreting the mechanisms involved in the high efficiency of ultrasoft X-rays in the induction of chromosome aberrations are discussed.

  16. Cell inactivation and chromosomal aberrations induced by X-rays and fast neutrons in cells of the Chinese hamster. 1

    International Nuclear Information System (INIS)

    Tolkendorf, E.

    1979-01-01

    Asynchronously grown cultures of Chinese hamster cells V79-4 were irradiated in suspension with 180 kV X-rays and fast neutrons (average energy of 6.2 MeV). The damage was assessed by measuring cell survival and frequencies of chromosome aberrations in the first post-irradiation metaphases. The experimental data for survival and chromosome aberrations were fitted by computer programmes. From the fitted curves the relative biological effectiveness (RBE) of fast neutrons was calculated. The RBE shows a similar dose dependence for killed and aberrant cells. The RBE decreases with increasing dose and amounts to approximately 5 for both effects for small neutron doses. The highest RBE is found for asymmetrical chromosomal exchanges and is dependent on the neutron dose, too. However, for isochromatid deletions the RBE is dose independent with a value of 3.6. (author)

  17. X-ray induction of mitotic and meiotic chromosome aberrations

    International Nuclear Information System (INIS)

    Yao, K.T.S.

    1980-01-01

    In 1964 six pairs of rat kangaroo (Potorous tridactylis) were obtained from Australia. The tissues of these animals were used to initiate cell lines. Since this species has a low chromosome number of six pairs, each pair with its own distinctive morphology, it is particularly favorable for cytogenetic research. In cell cultures derived from the corneal endothelial tissues of one animal there emerged a number of haploid cells. The number of haploid cells in the cultures reached as high as 20% of the total mitotic configurations. The in vitro diploid and haploid mixture cell cultures could be a resemblance or a coincidence to the mixture existence of the diploid primary spermatocytes and the haploid secondary spermatocytes (gametes) in the in vivo testicular tissues of the male animals. It would be interesting to compare reactions of the haploid and diploid cell mixture, either in the cultures or in the testes, to x-ray exposure. Two other studies involving x-ray effects on Chinese hamster oocyte maturation and meiotic chromosomes and the x-ray induction of Chinese hamster spermatocyte meiotic chromosome aberrations have been done in this laboratory. A review of these three studies involving diploid and haploid chromosomes may lead to further research in the x-ray induction of chromosome aberrations

  18. Chromosome aberrations and rogue cells in lymphocytes of Chernobyl clean-up workers

    International Nuclear Information System (INIS)

    Lazutka, J.R.

    1996-01-01

    A cytogenetic analysis was performed on peripheral blood lymphocytes from 183 Chernobyl clean-up workers and 27 control individuals. Increased frequencies of chromosome aberrations were associated with exposure to radiation at Chernobyl, alcohol abuse and a history of recent influenza infection. However, only approximately 20% of Chernobyl clean-up workers had an increased frequency of dicentric and ring chromosomes. At the same time, an increased frequency of acentric fragments in lymphocytes of clean-up workers was characteristic. The use of multivitamins as dietary supplement significantly decreased the frequency of chromosome aberrations, especially of chromatid breaks. Rogue cells were found in lymphocytes of 28 clean-up workers and 3 control individuals. The appearance of rogue cells was associated with a recent history of acute respiratory disease (presumably caused by adenoviral infection) and, probably, alcohol abuse. Dicentric chromosomes in rogue cells were distributed according to a negative binomial distribution. Occurrence of rogue cells due to a perturbation of cell cycle control and abnormal apoptosis is suggested

  19. HOIP Deficiency Causes Embryonic Lethality by Aberrant TNFR1-Mediated Endothelial Cell Death

    Directory of Open Access Journals (Sweden)

    Nieves Peltzer

    2014-10-01

    Full Text Available Summary: Linear ubiquitination is crucial for innate and adaptive immunity. The linear ubiquitin chain assembly complex (LUBAC, consisting of HOIL-1, HOIP, and SHARPIN, is the only known ubiquitin ligase that generates linear ubiquitin linkages. HOIP is the catalytically active LUBAC component. Here, we show that both constitutive and Tie2-Cre-driven HOIP deletion lead to aberrant endothelial cell death, resulting in defective vascularization and embryonic lethality at midgestation. Ablation of tumor necrosis factor receptor 1 (TNFR1 prevents cell death, vascularization defects, and death at midgestation. HOIP-deficient cells are more sensitive to death induction by both tumor necrosis factor (TNF and lymphotoxin-α (LT-α, and aberrant complex-II formation is responsible for sensitization to TNFR1-mediated cell death in the absence of HOIP. Finally, we show that HOIP’s catalytic activity is necessary for preventing TNF-induced cell death. Hence, LUBAC and its linear-ubiquitin-forming activity are required for maintaining vascular integrity during embryogenesis by preventing TNFR1-mediated endothelial cell death. : HOIP is the main catalytic subunit of the linear ubiquitin chain assembly complex (LUBAC, a crucial regulator of TNF and other immune signaling pathways. Peltzer et al. find that HOIP deficiency results in embryonic lethality at midgestation due to endothelial cell death mediated by TNFR1. Aberrant formation of a TNF-mediated cell-death-inducing complex in HOIP-deficient (but not -proficient cells underlies the phenotype, with the catalytic activity of HOIP required for the control of cell death in response to TNF.

  20. Spontaneous chromosome aberrations in cancer cells. Evidence of existence of hidden genetic lesions in genetic structures

    International Nuclear Information System (INIS)

    Poryadkova-Luchnik, N.A.; Kuz'mina, E.G.

    1996-01-01

    Chromosome aberrations spontaneously observed in cancer cells were quantitively studied under the effect of non-mutagenic (suboptimal temperature, low content of propilgallate and caffeine) and mutagenic (ionizing radiation) factors. Human larynx cancer cells during several years or gamma-irradiation were used to carry out experiments. The experiments linked with cloning of the initial population and investigation into chromosome aberrations in 22 clones demonstrated persuasively the occurrence of latent genetic lesions in cancer cells

  1. Transfer of unstable chromosomal aberrations in human peripheral lymphocytes at cell division and their significance for the aberration frequency

    International Nuclear Information System (INIS)

    Stephan, G.; Chang Tsangpi.

    1986-04-01

    In 48 h cultures, the fraction of human lymphocytes in 2nd mitosis was found to be between 0 and 42.5% (mean value 8.7%). The X-ray exposure from irradiating with 2 Gy resulted in a cell cycle delay which varied from donor to donor. A loss of nearly 50% of dicentric chromosomes and acentric fragments from unstable chromosomes occurred at cell division, while centric rings were not impeded. When dicentric chromosomes, or acentric fragments are found in 2nd mitosis, they show a characteristic differential staining, which means that chromatides at cell division fall free and are replicated in daughter cells. When plotting dose effect curves of dicentric chromosomes, up to 20% of 2nd mitosis fractions have little influence on the aberration rate. This may be additionally verified as part of the 'biological dosimetry' in a person with 24% of 2nd mitosis. When the rates of dicentric chromosomes exclusively evaluated from 1st mitosis after irradiation with 2.0 Gy were related to the donors age, no age-dependent sensitivity to radiation could be observed. Aberration rates which deviate from person to person are comparable to the results achieved by conventional staining methods. (orig./MG) [de

  2. Analysis of structural and numerical chromosomal aberrations at the first and second mitosis after X irradiation of two-cell mouse embryos

    International Nuclear Information System (INIS)

    Weissenborn, U.; Streffer, C.

    1989-01-01

    Two-cell mouse embryos were X-irradiated in the late G2 phase in vivo. The first and second postradiation mitoses were analyzed for chromosomal anomalies. The majority of structural aberrations visible at the first mitosis after irradiation were chromatid breaks and chromatid gaps; only a few interchanges and dicentrics were observed. The aberration frequency resulted in a dose-effect relationship which was well described by a linear model. At the second mitosis 29% of the structural aberrations of the first mitosis were counted; the aberration quality changed only slightly. It is discussed whether these aberrations are to be considered new, derived, or unchanged transmitted aberrations. Contrary to the results obtained after irradiation of one-cell embryos, little chromosome loss was induced by radiation in two-cell embryos

  3. Chromosomal aberrations and deoxyribonucleic acid single-strand breaks in adipose-derived stem cells during long-term expansion in vitro.

    Science.gov (United States)

    Froelich, Katrin; Mickler, Johannes; Steusloff, Gudrun; Technau, Antje; Ramos Tirado, Mario; Scherzed, Agmal; Hackenberg, Stephan; Radeloff, Andreas; Hagen, Rudolf; Kleinsasser, Norbert

    2013-07-01

    Adipose-derived stem cells (ASCs) are a promising mesenchymal cell source for tissue engineering approaches. To obtain an adequate cell amount, in vitro expansion of the cells may be required in some cases. To monitor potential contraindications for therapeutic applications in humans, DNA strand breaks and chromosomal aberrations in ASCs during in vitro expansion were examined. After isolation of ASC from human lipoaspirates of seven patients, in vitro expansion over 10 passages was performed. Cells from passages 1, 2, 3, 5 and 10 were used for the alkaline single-cell microgel electrophoresis (comet) assay to detect DNA single-strand breaks and alkali labile as well as incomplete excision repair sites. Chromosomal changes were examined by means of the chromosomal aberration test. During in vitro expansion, ASC showed no DNA single-strand breaks in the comet assay. With the chromosomal aberration test, however, a significant increase in chromosomal aberrations were detected. The study showed that although no DNA fragmentation could be determined, the safety of ASC cannot be ensured with respect to chromosome stability during in vitro expansion. Thus, reliable analyses for detecting ASC populations, which accumulate chromosomal aberrations or even undergo malignant transformation during extensive in vitro expansion, must be implemented as part of the safety evaluation of these cells for stem cell-based therapy. Copyright © 2013 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  4. Effects of X-irradiation on cell-cycle progression, induction of chromosomal aberrations and cell killing in ataxia telangiectasia (AT) fibroblasts

    International Nuclear Information System (INIS)

    Nagasawa, H.; Little, J.B.; Latt, S.A.; Lalande, M.E.

    1985-01-01

    Survival, cumulative labeling indices, chromosomal aberrations and cell-cycle distribution by flow microfluorometry (FMF) were studied in fibroblasts from normal and three ataxia telangiectasia (AT) families after X-irradiation during density-inhibition of growth and immediate release by subculture to low density. Homozygotic AT (proband) fibroblasts were very hypersensitive to cell killing by X-irradiation. Fibroblasts from AT heterozygotes (parents) were minimally hypersensitive, with D 0 's slightly lower than those for normal fibroblasts. There were three different response groups for a G 1 phase block induced by 400 rad of X-rays: (1) minimal or no G 1 block was observed in AT homozygote cell strains; (2) 10-20% of the cells were blocked in G 1 in normal cell strains; and (3) 50% or more of the cells were blocked in AT heterozygote strains. FMF profiles and cumulative labeling indices showed that homozygotic AT cells irradiated in plateau phase moved into the S-phase following subculture with no additional delay over non-irradiated controls. Homozygotic AT cells showed not only a 4-5 times higher frequency of X-ray-induced chromosomal aberrations than normal strains, but approximately 30% of these were of the chromatid-type. There were no differences in the frequency or type of X-ray-induced chromosomal aberrations between normal and heterozygotic AT cells. (orig.)

  5. Persistence of radiation-induced chromosome aberrations in a long-term cell culture.

    Science.gov (United States)

    Duran, Assumpta; Barquinero, Joan Francesc; Caballín, María Rosa; Ribas, Montserrat; Barrios, Leonardo

    2009-04-01

    The aim of the present study was to evaluate the persistence of chromosome aberrations induced by X rays. FISH painting and mFISH techniques were applied to long-term cultures of irradiated cells. With painting, at 2 Gy the frequency of apparently simple translocations remained almost invariable during all the culture, whereas at 4 Gy a rapid decline was observed between the first and the second samples, followed by a slight decrease until the end of the culture. Apparently simple dicentrics and complex aberrations disappeared after the first sample at 2 and 4 Gy. By mFISH, at 2 Gy the frequency of complete plus one-way translocations remained invariable between the first and last sample, but at 4 Gy a 60% decline was observed. True incomplete simple translocations disappeared at 2 and 4 Gy, indicating that incompleteness could be a factor to consider when the persistence of translocations is analyzed. The analysis by mFISH showed that the frequency of complex aberrations and their complexity increased with dose and tended to disappear in the last sample. Our results indicate that the influence of dose on the decrease in the frequency of simple translocations with time postirradiation cannot be fully explained by the disappearance of true incomplete translocations and complex aberrations. The chromosome involvement was random for radiation-induced exchange aberrations and non-random for total aberrations. Chromosome 7 showed the highest deviations from expected, being less and more involved than expected in the first and last samples, respectively. Some preferential chromosome-chromosome associations were observed, including a coincidence with a cluster from radiogenic chromosome aberrations described in other studies.

  6. Flow cytogenetics: progress toward chromosomal aberration detection

    International Nuclear Information System (INIS)

    Carrano, A.V.; Gray, J.W.; Van Dilla, M.A.

    1977-01-01

    Using clonal derivatives of the Chinese hamster M3-1 cell line, we demonstrate the potential of flow systems to karyotype homogeneous aberrations (aberrations which are identical and present in every cell) and to detect heterogeneous aberrations (aberrations which occur randomly in a population and are not identical in every cell). Flow cytometry (FCM) of ethidium bromide stained isolated chromosomes from clone 650A of the M3-1 cells distinguishes nine chromosome types from the fourteen present in the actual karyotype. X-irradiation of this parent 650A clone produced two sub-clones with an altered flow karyotype, that is, their FCM distributions were characterized by the addition of new peaks and alterations in area under existing peaks. From the relative DNA content and area for each peak, as determined by computer analysis, we predicted that each clone had undergone a reciprocal translocation involving chromosomes from two peaks. This prediction was confirmed by Giemsa-banding the metaphase cells. Heterogeneous aberrations are reflected in the flow karyotype as an increase in background, that is, an increase in area underlying the chromosome peaks. This increase is dose dependent but, as yet, the sample variability has been too large for quantitative analysis. Flow sorting of the valleys between chromosome peaks produces enriched fractions of aberrant chromosomes for visual analysis. These approaches are potentially applicable to the analysis of chromsomal aberrations induced by environmental contaminants

  7. Introduction of chromosome aberrations in mammalian cells after heavy ion exposure

    International Nuclear Information System (INIS)

    Ritter, S.; Kraft-Weyrather, W.; Scholz, M.; Kraft, G.

    1991-01-01

    The induction of chromosome aberrations by heavy charged particles was studied in V79 Chinese hamster cells over a wide range of energies (3-100 MeV/u) and LET (20-16000 keV/μm). For comparison, X-ray experiments were performed. Our data indicate quantitative and qualitative differences in the response of cells to particle and x-ray irradiation. For the same level of cell survival the amount of damaged cells which can be observed is smaller in heavy ion (11.4 MeV/u Ar) irradiated samples. The highest yield of damaged cells is found 8 to 12 hours after particle irradiation and 4 hours after x-irradiation. Differences in the amounts of damaged cells are attributed to cell cycle perturbations which interfere with the expression of damage. After heavy ion exposure the amount of cells reaching mitosis (mitotic index) decreases drastically and not all damaged cells reach mitosis with 48 hours after exposure. A portion of cells die in interphase. Cell cycle delays induced by x-ray irradiation are less pronounced and all cells reach the first post-irradiation mitosis within 24 hours after irradiation. Additionally, the damage produced by charged particles seems to be more severe. The disintegration of chromosomes was only observed after high LET radiation; an indication of the high and local energy deposition in the particle track. Only cross sections for the induction of chromosome aberrations in mitotic cells were reported in this paper because of the problems arising from the drastic cell cycle perturbations. In this case, cells were irradiated in mitosis and assayed immediately. (orig.)

  8. Radiation-induced cellular reproductive death and chromosome aberrations

    International Nuclear Information System (INIS)

    Bedford, J.S.; Mitchell, J.B.; Griggs, H.G.; Bender, M.A.

    1978-01-01

    If a major mode of cell killing by ionizing radiation is the death of cells containing visible chromosomal aberrations, as for example from anaphase-bridge formation at mitosis, then cells bearing such aberrations should be selectively eliminated from the population, resulting in an increased survival potential for the population remaining at each succeeding cell generation. Using synchronized V79B Chinese hamster cells, we measured the aberration frequency and the colony-forming ability of mitotic cells at each of the first three generations following irradiation in G1. Cells were resynchronized by mechanial harvest at each succeeding mitosis after irradiation in order to avoid mixing of generations in the cell population at later sampling times. As anticipated, the chromosome aberration frequencies decreased markedly from the first to the second and from the second to the third mitosis. The surviving fraction, however, was virtually the same for plating assays carried out immediately after irradiation, at the first, or at the second mitosis. The surviving fraction was significantly higher for cells reaching the third postirradiation mitosis. Survival and aberration frequencies were assayed again at approximately the fourteenth postirradiation division, by which time the irradiated and control populations were not significantly different

  9. Molecular mechanisms involved in the production of chromosomal aberrations. I. Utilization of Neurospora endonuclease for the study of aberration production in G2 stage of the cell cycle

    Energy Technology Data Exchange (ETDEWEB)

    Natarajan, A T; Obe, G [Rijksuniversiteit Leiden (Netherlands). J.A. Cohen Inst. voor Radiopathologie en Stralingsbescherming

    1978-10-01

    Chinese hamster ovary cells (CHO) were X-irradiated in G2 stage of the cell cycle and immediately treated, in the presence of inactivated Sendai virus, with Neurospora endonuclease (E.C. 3.1.4.), an enzyme which is specific for cleaving single-stranded DNA. With this treatment, the frequencies of all types of chromosome aberrations increased when compared to X-irradiated controls. These results are interpreted as due to the conversion of some of the X-ray induced single-stranded DNA breaks into double-strand breaks by this enzyme. Similar enhancement due to this enzyme was found following treatment with methyl methanesulfonate (MMS) and bleomycin, but not following UV and mitomycin C. Addition of Micrococcus endonuclease and Neurospora endonuclease to the cells did not alter the frequencies of aberrations induced by UV. The introduction of enzymes with specific DNA-repair function offers possibilities to probe into the molecular events involved in the formation of structural chromosome aberrations induced by different classes of physical and chemical mutagens.

  10. The significance of PTEN and AKT aberrations in pediatric T-cell acute lymphoblastic leukemia

    Science.gov (United States)

    Zuurbier, Linda; Petricoin, Emanuel F.; Vuerhard, Maartje J.; Calvert, Valerie; Kooi, Clarissa; Buijs-Gladdines, Jessica G.C.A.M.; Smits, Willem K.; Sonneveld, Edwin; Veerman, Anjo J.P.; Kamps, Willem A.; Horstmann, Martin; Pieters, Rob; Meijerink, Jules P.P.

    2012-01-01

    Background PI3K/AKT pathway mutations are found in T-cell acute lymphoblastic leukemia, but their overall impact and associations with other genetic aberrations is unknown. PTEN mutations have been proposed as secondary mutations that follow NOTCH1-activating mutations and cause cellular resistance to γ-secretase inhibitors. Design and Methods The impact of PTEN, PI3K and AKT aberrations was studied in a genetically well-characterized pediatric T-cell leukemia patient cohort (n=146) treated on DCOG or COALL protocols. Results PTEN and AKT E17K aberrations were detected in 13% and 2% of patients, respectively. Defective PTEN-splicing was identified in incidental cases. Patients without PTEN protein but lacking exon-, splice-, promoter mutations or promoter hypermethylation were present. PTEN/AKT mutations were especially abundant in TAL- or LMO-rearranged leukemia but nearly absent in TLX3-rearranged patients (P=0.03), the opposite to that observed for NOTCH1-activating mutations. Most PTEN/AKT mutant patients either lacked NOTCH1-activating mutations (P=0.006) or had weak NOTCH1-activating mutations (P=0.011), and consequently expressed low intracellular NOTCH1, cMYC and MUSASHI levels. T-cell leukemia patients without PTEN/AKT and NOTCH1-activating mutations fared well, with a cumulative incidence of relapse of only 8% versus 35% for PTEN/AKT and/or NOTCH1-activated patients (P=0.005). Conclusions PI3K/AKT pathway aberrations are present in 18% of pediatric T-cell acute lymphoblastic leukemia patients. Absence of strong NOTCH1-activating mutations in these cases may explain cellular insensitivity to γ-secretase inhibitors. PMID:22491738

  11. Genomic and Epigenomic Aberrations in Esophageal Squamous Cell Carcinoma and Implications for Patients

    Science.gov (United States)

    Lin, De-Chen; Wang, Ming-Rong; Koeffler, H. Phillip

    2018-01-01

    Esophageal squamous cell carcinoma (ESCC) is a common malignancy without effective therapy. The exomes of more than 600 ESCCs have been sequenced in the past 4 years, and numerous key aberrations have been identified. Recently, researchers reported both inter- and intratumor heterogeneity. Although these are interesting observations, their clinical implications are unclear due to the limited number of samples profiled. Epigenomic alterations, such as changes in DNA methylation, histone acetylation, and RNA editing, also have been observed in ESCCs. However, it is not clear what proportion of ESCC cells carry these epigenomic aberrations or how they contribute to tumor development. We review the genomic and epigenomic characteristics of ESCCs, with a focus on emerging themes. We discuss their clinical implications and future research directions. PMID:28757263

  12. The aberrant asynchronous replication — characterizing lymphocytes of cancer patients — is erased following stem cell transplantation

    International Nuclear Information System (INIS)

    Nagler, Arnon; Cytron, Samuel; Mashevich, Maya; Korenstein-Ilan, Avital; Avivi, Lydia

    2010-01-01

    Aberrations of allelic replication timing are epigenetic markers observed in peripheral blood cells of cancer patients. The aberrant markers are non-cancer-type-specific and are accompanied by increased levels of sporadic aneuploidy. The study aimed at following the epigenetic markers and aneuploidy levels in cells of patients with haematological malignancies from diagnosis to full remission, as achieved by allogeneic stem cell transplantation (alloSCT). TP53 (a tumor suppressor gene assigned to chromosome 17), AML1 (a gene assigned to chromosome 21 and involved in the leukaemia-abundant 8;21 translocation) and the pericentomeric satellite sequence of chromosome 17 (CEN17) were used for replication timing assessments. Aneuploidy was monitored by enumerating the copy numbers of chromosomes 17 and 21. Replication timing and aneuploidy were detected cytogenetically using fluorescence in situ hybridization (FISH) technology applied to phytohemagglutinin (PHA)-stimulated lymphocytes. We show that aberrant epigenetic markers are detected in patients with hematological malignancies from the time of diagnosis through to when they are scheduled to undergo alloSCT. These aberrations are unaffected by the clinical status of the disease and are displayed both during accelerated stages as well as in remission. Yet, these markers are eradicated completely following stem cell transplantation. In contrast, the increased levels of aneuploidy (irreversible genetic alterations) displayed in blood lymphocytes at various stages of disease are not eliminated following transplantation. However, they do not elevate and remain unchanged (stable state). A demethylating anti-cancer drug, 5-azacytidine, applied in vitro to lymphocytes of patients prior to transplantation mimics the effect of transplantation: the epigenetic aberrations disappear while aneuploidy stays unchanged. The reversible nature of the replication aberrations may serve as potential epigenetic blood markers for evaluating

  13. The relationship between cell killing, chromosome aberrations, spindle defects, and mitotic delay in mouse lymphoma cells of differential sensitivity to X-rays

    International Nuclear Information System (INIS)

    Scott, D.; Zampetti-Bosseler, F.

    1980-01-01

    A study has been made of the effects of x radiation on an ultrasensitive subline of L5178Y mouse lymphoma cells. It has been shown that at survival levels above about 20 per cent, chromosome structural aberrations which lead to bridges and fragments at anaphase are about four times more frequent than spindle defects. The results demonstrated the higher frequency of structural aberrations and spindle defects, and the greater mitotic delay in the X-ray-sensitive than in the X-ray-resistant cell line. A model is proposed which causally relates these end-points to cell killing and DNA repair. (author)

  14. Induction of chromosome aberrations in two lines of cultured cells using different types of radiation

    International Nuclear Information System (INIS)

    Zoetelief, J.; Dingjan-Hirschi, E.S.; Hasper, J.; Janse, H.C.; Barendsen, G.W.

    The induction of chromosome aberrations has been investigated in two lines of cultured cells for different types of radiation. The obtained results are compared with information on induction of cell reproductive death and malignant transformation. (Auth.)

  15. Chromosomal Aberrations in DNA Repair Defective Cell Lines: Comparisons of Dose Rate and Radiation Quality

    Science.gov (United States)

    George, K. A.; Hada, M.; Patel, Z.; Huff, J.; Pluth, J. M.; Cucinotta, F. A.

    2009-01-01

    Chromosome aberration yields were assessed in DNA double-strand break repair (DSB) deficient cells after acute doses of gamma-rays or high-LET iron nuclei, or low dose-rate (0.018 Gy/hr) gamma-rays. We studied several cell lines including fibroblasts deficient in ATM (product of the gene that is mutated in ataxia telangiectasia patients) or NBS (product of the gene mutated in the Nijmegen breakage syndrome), and gliomablastoma cells that are proficient or lacking in DNA-dependent protein kinase, DNA-PK activity. Chromosomes were analyzed using the fluorescence in-situ hybridization (FISH) chromosome painting method in cells at the first division post-irradiation and chromosome aberrations were identified as either simple exchanges (translocations and dicentrics) or complex exchanges (involving >2 breaks in 2 or more chromosomes). Gamma radiation induced higher yields of both simple and complex exchanges in the DSB repair defective cells than in the normal cells. The quadratic dose-response terms for both chromosome exchange types were significantly higher for the ATM and NBS defective lines than for normal fibroblasts. However, the linear dose-response term was significantly higher only for simple exchanges in the NBS cells. Large increases in the quadratic dose response terms indicate the important roles of ATM and NBS in chromatin modifications that facilitate correct DSB repair and minimize aberration formation. Differences in the response of AT and NBS deficient cells at lower doses suggests important questions about the applicability of observations of radiation sensitivity at high dose to low dose exposures. For all iron nuclei irradiated cells, regression models preferred purely linear and quadratic dose responses for simple and complex exchanges, respectively. All the DNA repair defective cell lines had lower Relative biological effectiveness (RBE) values than normal cells, the lowest being for the DNA-PK-deficient cells, which was near unity. To further

  16. Chromosomal aberrations induced by caffeine, 3H-thymidine and by X-rays in two L5178Y sublines of different radiosensitivity. Part 1. Chromosomal aberrations in cells treated with 2mM caffeine and tritiated thymidine

    International Nuclear Information System (INIS)

    Bocian, E.; Bouzyk, E.; Rosiek, O.; Ziemba-Zoltowska, B.

    1982-01-01

    Chromosomal aberrations were studied in two sublines of L5178Y cells with different sensitivity to X-rays. Cells were treated with 2 mM caffeine for 12 h. Then they were examined at various time intervals from 5 to 24 h. Caffeine caused over three times more aberrations, mainly chromatid breaks and gaps, in radiation-sensitive L5178Y-S than in radiation-resistant L5178Y-R cells. The maximum frequency of chromatid breaks in both sublines was found at 8 h and that of chromatid exchanges and isochromatid breaks at 12 h after treatment. A dramatic decrease of the frequency of all types of aberrations at 24 h was observed. In the pulse labelled experiments caffeine enhanced the frequency of aberrations that were induced by 3 H-thymidine at a concentration of 1 μCi/ml. This effect of caffeine was greater in L5178Y-R than in L5178Y-S cells. (author)

  17. Study of radiation-induced chromosomal aberrations

    International Nuclear Information System (INIS)

    Wolfring, E.

    2004-06-01

    A method for determining chromosomal aberrations was established for the purpose of examining the relative biological effectiveness (RBE) of photon radiation with respect to mammary epithelium cells. Cells were exposed to 25 kV X-radiation and to 200 kV X-radiation for comparison and the resulting concentrations of chromosomal aberrations were compared. The RBE M value for radiation-induced fragmentation was found to be 4.2 ± 2.4, while the RBE M value for radiation-induced generation of dicentric chromosomes was found to be 0.5 ± 0.5. In addition to the evaluation of chromosomal aberrations the number of cell cycles undergone by the cells was monitored by means of BrDU staining. As expected, the proportion of cells which underwent more than one cell cycle following exposure to 5 Gy was very low in both cases, amounting to 1.9% (25 kV) and 3.2 (200 kV). Non-radiated cells yielded control values of 26.0% and 12.6%, suggesting variations in external conditions from day to day

  18. Chromosomal Aberrations in Normal and AT Cells Exposed to High Dose of Low Dose Rate Irradiation

    Science.gov (United States)

    Kawata, T.; Shigematsu, N.; Kawaguchi, O.; Liu, C.; Furusawa, Y.; Hirayama, R.; George, K.; Cucinotta, F.

    2011-01-01

    Ataxia telangiectasia (A-T) is a human autosomally recessive syndrome characterized by cerebellar ataxia, telangiectases, immune dysfunction, and genomic instability, and high rate of cancer incidence. A-T cell lines are abnormally sensitive to agents that induce DNA double strand breaks, including ionizing radiation. The diverse clinical features in individuals affected by A-T and the complex cellular phenotypes are all linked to the functional inactivation of a single gene (AT mutated). It is well known that cells deficient in ATM show increased yields of both simple and complex chromosomal aberrations after high-dose-rate irradiation, but, less is known on how cells respond to low-dose-rate irradiation. It has been shown that AT cells contain a large number of unrejoined breaks after both low-dose-rate irradiation and high-dose-rate irradiation, however sensitivity for chromosomal aberrations at low-dose-rate are less often studied. To study how AT cells respond to low-dose-rate irradiation, we exposed confluent normal and AT fibroblast cells to up to 3 Gy of gamma-irradiation at a dose rate of 0.5 Gy/day and analyzed chromosomal aberrations in G0 using fusion PCC (Premature Chromosomal Condensation) technique. Giemsa staining showed that 1 Gy induces around 0.36 unrejoined fragments per cell in normal cells and around 1.35 fragments in AT cells, whereas 3Gy induces around 0.65 fragments in normal cells and around 3.3 fragments in AT cells. This result indicates that AT cells can rejoin breaks less effectively in G0 phase of the cell cycle? compared to normal cells. We also analyzed chromosomal exchanges in normal and AT cells after exposure to 3 Gy of low-dose-rate rays using a combination of G0 PCC and FISH techniques. Misrejoining was detected in the AT cells only? When cells irradiated with 3 Gy were subcultured and G2 chromosomal aberrations were analyzed using calyculin-A induced PCC technique, the yield of unrejoined breaks decreased in both normal and AT

  19. Frequencies of chromosome aberration on radiation workers

    International Nuclear Information System (INIS)

    Yanti Lusiyanti; Zubaidah Alatas

    2016-01-01

    Radiation exposure of the body can cause damage to the genetic material in cells (cytogenetic) in the form of changes in the structure or chromosomal aberrations in peripheral blood lymphocytes. Chromosomal aberrations can be unstable as dicentric and ring chromosomes, and is stable as translocation. Dicentric chromosome is the gold standard biomarker due to radiation exposure, and chromosome translocation is a biomarker for retrospective biodosimetry. The aim of this studi is to conduct examination of chromosomal aberrations in the radiation worker to determine the potential damage of cell that may arise due to occupational radiation exposure. The examination have been carried out on blood samples from 55 radiation workers in the range of 5-30 year of service. Chromosome aberration frequency measurement starts with blood sampling, culturing, harvesting, slide preparations, and lymphocyte chromosome staining with Giemsa and painting with Fluorescence In Situ Hybridization (FISH) technique. The results showed that chromosomal translocations are not found in blood samples radiation workers and dicentric chromosomes found only on 2 blood samples of radiation workers with a frequency of 0.001/cell. The frequency of chromosomal aberrations in the blood cells such workers within normal limits and this means that the workers have been implemented a radiation safety aspects very well. (author)

  20. Cell killing and chromosomal aberration induced by heavy-ion beams in cultured human tumor cells

    International Nuclear Information System (INIS)

    Takakura, K.; Funada, A.; Mohri, M.; Lee, R.; Aoki, M.; Furusawa, Y.; Gotoh, E.

    2003-01-01

    Full text: To clarify the relation between cell death and chromosomal aberration in cultured human tumor cells irradaited with heavy-ion beams. The analyses were carried out on the basis of the linear energy transfer (LET) values of heavy ion beams as radiation source. Exponentially growing human tumor cells, Human Salivary Gland Tumor cells (HSG cells), were irradiated with various high energy heavy ions, such as 13 keV/micrometer carbon (C) ions as low LET charged particle radiation source, 120 keV/ micrometer carbon (C) ions and 440 keV/micrometer iron (Fe) ions as high LET charged particle radiation sources.The cell death was analysed by the colony formation method, and the chromosomal aberration and its repairing kinetics was analysed by prematurely chromosome condensation method (PCC method) using calyculin A. Chromatid-type breaks, isochromatid breaks and exchanges were scored for the samples from the cells keeping with various incubation time after irradiation. The LET dependence of the cell death was similar to that of the chromosome exchange formation after 12 hours incubation. A maximum peak was around 120 keV/micrometer. However it was not similar to the LET dependence of isochromatid breaks or chromatid breaks after 12 hours incubation. These results suggest that the exchanges formed in chromosome after irradiation should be one of essential causes to lead the cell death. The different quality of induced chromosome damage between high-LET and low-LET radiation was also shown. About 89 % and 88 % chromatid breaks induced by X rays and 13 keV/micrometer C ions were rejoined within 12 hours of post-irradiation, though only 71% and 58 % of chromatid breaks induced by 120 keV/micrometer C ions and 440 keV/micrometer Fe ions were rejoined within 12 hours of post-irradiation

  1. Comparative retention of fission fragment 147Pm in regenerated and fetal liver on induction of chromosome aberrations in these cells

    International Nuclear Information System (INIS)

    Zhu Shoupeng; Zheng Siying; Wang Liuyi; Yang Shujin

    1989-01-01

    The purpose of the present study is to ascertain comparative retention of fission fragment 147 Pm in regenerated and fetal liver on induction of chromosome aberrations in these cells. The results indicated that retention of 147 Pm in regenerated liver was about 700 times than in fetal liver. The cumulative absorption dose in regenerated liver was about 2.87 Gy, while in fetal liver-only 0.004 Gy. Under the same conditions, the incidence rate of chromosome aberrations in regenerated liver cells induced by 147 Pm was 50.2%, and in fetal liver cells-about 28.3%. It should be concluded that the radiosensitivity to 147 Pm was not uniform among the regenerated and fetal liver cells. The study suggested that fetal liver cells show to be more radiosensitive to 147 Pm than regenerated liver cells. Among the type of aberrations in both cells induced by 147 Pm, chromatid breakages were predominant, accompanied with a few chromosome breakages

  2. Suppressing effect of antimutagenic flavorings on chromosome aberrations induced by UV-light or X-rays in cultured Chinese hamster cells

    International Nuclear Information System (INIS)

    Sasaki, Yu.F.; Imanishi, Hisako; Watanabe, Mie; Ohta, Toshihiro; Shirasu

    1990-01-01

    Chromosome aberrations induces by UV-light or X-rays were suppressed by the post-treatment with antimutagenic flavorings, such as anisaldehyde, cinnamaldehyde, coumarin, and vanillin. UV- or X-ray-irradiated surviving cells increased in the presence of each flavouring. X-ray-induced breakage-type and exchange-type chromosome aberrations were suppressed by the vanillin treatment in the G 1 phase of the cell cycle and a greater decrease in the number of X-ray-induced chromosome aberrations during G 1 holding was observed in the presence of vanillin. Furthermore, a greater decrease in the number of X-ray-induced DNA single-strand breaks was observed in the presence of vanillin. Treatment with vanillin in the G 2 phase suppressed UV-and X-ray-induced breakage-type but not exchange-type chromosome aberrations. The suppression of breakage-type aberrations was assumed to be due to a modification of the capability of the post-replicational repair of DNA double-strand breaks. (author). 28 refs.; 5 figs.; 6 tabs

  3. Gene mutations, chromosome aberrations and survival after X-ray irradiation of cultured Chinese hamster cells at cysteamine protection

    International Nuclear Information System (INIS)

    Elisova, I.V.; Feoktistova, I.P.

    1983-01-01

    The culture of Chinese hamster cells (clone 431) has been used to study cysteamine action on mutagenous effect of X-rays, determined by the induction of resistance of gene mutations to 6-thioguanine and chromosomal abberations, as well as on the reproductive form of death of irradiated cells. Dose--- effect curves are obtained under conditions of irradiation with and without protector. The factor of dose alteration is 2.0 for chromosomal aberrations and cell survival, and 2.8 for gene mutations. It is sUpposed that cysteamine affects the general mechanisms, which take part in the realis zation of injuries that bring about gene mutations, chromosomal aberrations and cell lethality

  4. Analysis of Chromosomal Aberrations after Low and High Dose Rate Gamma Irradiation in ATM or NBS Suppressed Human Fibroblast Cells

    Science.gov (United States)

    Hada, M.; Huff, J. L.; Patel, Z.; Pluth, J. M.; George, K. A.; Cucinotta, F. A.

    2009-01-01

    A detailed understanding of the biological effects of heavy nuclei is needed for space radiation protection and for cancer therapy. High-LET radiation produces more complex DNA lesions that may be non-repairable or that may require additional processing steps compared to endogenous DSBs, increasing the possibility of misrepair. Interplay between radiation sensitivity, dose, and radiation quality has not been studied extensively. Previously we studied chromosome aberrations induced by low- and high- LET radiation in several cell lines deficient in ATM (ataxia telangactasia mutated; product of the gene that is mutated in ataxia telangiectasia patients) or NBS (nibrin; product of the gene mutated in the Nijmegen breakage syndrome), and gliomablastoma cells that are proficient or lacking in DNA-dependent protein kinase (DNA-PK) activity. We found that the yields of both simple and complex chromosomal aberrations were significantly increased in the DSB repair defective cells compared to normal cells. The increased aberrations observed for the ATM and NBS defective lines was due to a significantly larger quadratic dose-response term compared to normal fibroblasts for both simple and complex aberrations, while the linear dose-response term was significantly higher in NBS cells only for simple exchanges. These results point to the importance of the functions of ATM and NBS in chromatin modifications that function to facilitate correct DSB repair and minimize aberration formation. To further understand the sensitivity differences that were observed in ATM and NBS deficient cells, in this study, chromosomal aberration analysis was performed in normal lung fibroblast cells treated with KU-55933, a specific ATM kinase inhibitor, or Mirin, an MRN complex inhibitor involved in activation of ATM. We are also testing siRNA knockdown of these proteins. Normal and ATM or NBS suppressed cells were irradiated with gamma-rays and chromosomes were collected with a premature chromosome

  5. Frequent induction of chromosomal aberrations in in vivo skin fibroblasts after allogeneic stem cell transplantation: hints to chromosomal instability after irradiation

    International Nuclear Information System (INIS)

    Massenkeil, G.; Zschieschang, P.; Thiel, G.; Hemmati, P. G.; Budach, V.; Dörken, B.; Pross, J.; Arnold, R.

    2015-01-01

    Total body irradiation (TBI) has been part of standard conditioning regimens before allogeneic stem cell transplantation for many years. Its effect on normal tissue in these patients has not been studied extensively. We studied the in vivo cytogenetic effects of TBI and high-dose chemotherapy on skin fibroblasts from 35 allogeneic stem cell transplantation (SCT) patients. Biopsies were obtained prospectively (n = 18 patients) before, 3 and 12 months after allogeneic SCT and retrospectively (n = 17 patients) 23–65 months after SCT for G-banded chromosome analysis. Chromosomal aberrations were detected in 2/18 patients (11 %) before allogeneic SCT, in 12/13 patients (92 %) after 3 months, in all patients after 12 months and in all patients in the retrospective group after allogeneic SCT. The percentage of aberrant cells was significantly higher at all times after allogeneic SCT compared to baseline analysis. Reciprocal translocations were the most common aberrations, but all other types of stable, structural chromosomal aberrations were also observed. Clonal aberrations were observed, but only in three cases they were detected in independently cultured flasks. A tendency to non-random clustering throughout the genome was observed. The percentage of aberrant cells was not different between patients with and without secondary malignancies in this study group. High-dose chemotherapy and TBI leads to severe chromosomal damage in skin fibroblasts of patients after SCT. Our long-term data suggest that this damage increases with time, possibly due to in vivo radiation-induced chromosomal instability

  6. Aberrant allele-specific replication, independent of parental origin, in blood cells of cancer patients

    International Nuclear Information System (INIS)

    Dotan, Zohar A; Dotan, Aviva; Ramon, Jacob; Avivi, Lydia

    2008-01-01

    Allelic counterparts of biallelically expressed genes display an epigenetic symmetry normally manifested by synchronous replication, different from genes subjected to monoallelic expression, which normally are characterized by an asynchronous mode of replication (well exemplified by the SNRPN imprinted locus). Malignancy was documented to be associated with gross modifications in the inherent replication-timing coordination between allelic counterparts of imprinted genes as well as of biallelically expressed loci. The cancer-related allelic replication timing aberrations are non-disease specific and appear in peripheral blood cells of cancer patients, including those with solid tumors. As such they offer potential blood markers for non-invasive cancer test. The present study was aimed to gain some insight into the mechanism leading to the replication timing alterations of genes in blood lymphocytes of cancer patients. Peripheral blood samples derived from patients with prostate cancer were chosen to represent the cancerous status, and samples taken from patients with no cancer but with benign prostate hyperplasia were used to portray the normal status. Fluorescence In Situ Hybridization (FISH) replication assay, applied to phytohemagglutinin (PHA)-stimulated blood lymphocytes, was used to evaluate the temporal order (either synchronous or asynchronous) of genes in the patients' cells. We demonstrated that: (i) the aberrant epigenetic profile, as delineated by the cancer status, is a reversible modification, evidenced by our ability to restore the normal patterns of replication in three unrelated loci (CEN15, SNRPN and RB1) by introducing an archetypical demethylating agent, 5-azacytidine; (ii) following the rehabilitating effect of demethylation, an imprinted gene (SNRPN) retains its original parental imprint; and (iii) the choice of an allele between early or late replication in the aberrant asynchronous replication, delineated by the cancer status, is not

  7. Dependence of Early and Late Chromosomal Aberrations on Radiation Quality and Cell Types

    Science.gov (United States)

    Lu, Tao; Zhang, Ye; Krieger, Stephanie; Yeshitla, Samrawit; Goss, Rosalin; Bowler, Deborah; Kadhim, Munira; Wilson, Bobby; Rohde, Larry; Wu, Honglu

    2017-01-01

    Exposure to radiation induces different types of DNA damage, increases mutation and chromosome aberration rates, and increases cellular transformation in vitro and in vivo. The susceptibility of cells to radiation depends on genetic background and growth condition of cells, as well as types of radiation. Mammalian cells of different tissue types and with different genetic background are known to have different survival rate and different mutation rate after cytogenetic insults. Genomic instability, induced by various genetic, metabolic, and environmental factors including radiation, is the driving force of tumorigenesis. Accurate measurements of the relative biological effectiveness (RBE) is important for estimating radiation-related risks. To further understand genomic instability induced by charged particles and their RBE, we exposed human lymphocytes ex vivo, human fibroblast AG1522, human mammary epithelial cells (CH184B5F5/M10), and bone marrow cells isolated from CBA/CaH(CBA) and C57BL/6 (C57) mice to high energy protons and Fe ions. Normal human fibroblasts AG1522 have apparently normal DNA damage response and repair mechanisms, while mammary epithelial cells (M10) are deficient in the repair of DNA DSBs. Mouse strain CBA is radio-sensitive while C57 is radio-resistant. Metaphase chromosomes at different cell divisions after radiation exposure were collected and chromosome aberrations were analyzed as RBE for different cell lines exposed to different radiations at various time points up to one month post irradiation.

  8. Chromosome aberration analysis based on a beta-binomial distribution

    International Nuclear Information System (INIS)

    Otake, Masanori; Prentice, R.L.

    1983-10-01

    Analyses carried out here generalized on earlier studies of chromosomal aberrations in the populations of Hiroshima and Nagasaki, by allowing extra-binomial variation in aberrant cell counts corresponding to within-subject correlations in cell aberrations. Strong within-subject correlations were detected with corresponding standard errors for the average number of aberrant cells that were often substantially larger than was previously assumed. The extra-binomial variation is accomodated in the analysis in the present report, as described in the section on dose-response models, by using a beta-binomial (B-B) variance structure. It is emphasized that we have generally satisfactory agreement between the observed and the B-B fitted frequencies by city-dose category. The chromosomal aberration data considered here are not extensive enough to allow a precise discrimination between competing dose-response models. A quadratic gamma ray and linear neutron model, however, most closely fits the chromosome data. (author)

  9. Possible mechanisms of chromosomal aberrations: VII. Comparative dynamics of sister chromatid disjunction and realization of radiation-induced chromosomal aberrations during mitosis

    International Nuclear Information System (INIS)

    Lebedeva, L.I.; Akhmamet'eva, E.M.

    1994-01-01

    An increase in radiation-induced chromosomal aberrations during c-metaphase sister chromatid disjunction was demonstrated in murine bone marrow cells exposed to a total γ-irradiation at 0.5 Gy. Caffeine (Cf) treatment during mitosis partially suppressed the chromatid disjunction rate and increased the number of radiation-induced aberrations in this mitosis. Nalidixic acid (NA) treatment of c-metaphase cells completely suppressed chromatid disjunction and the realization of induced aberrations. Topoisomerase 2 was assumed to be involved during mitosis in both processes

  10. Induction of chromosomal aberrations in human primary fibroblasts and immortalized cancer cells exposed to extremely-low-frequency electromagnetic fields

    International Nuclear Information System (INIS)

    Seyyedi, S. S.; Mozdarani, H.; Rezaei Tavirani, M.; Heydari, S.

    2010-01-01

    Rapidly increasing possibilities of exposure to environmental extremely low-frequency electromagnetic fields have become a topic of worldwide investigation. Epidemiological and laboratory studies suggest that exposure to extremely low-frequency electromagnetic fields may increase cancer risk therefore assessment of chromosomal damage in various cell lines might be of predictive value for future risk estimation. Materials and Methods: Primary cultures of fibroblasts from human skin biopsy were exposed to continuous extremely low-frequency electromagnetic fields (3, 50 and 60 Hz, sinusoidal, 3h, and 4 m T). Also immortalized cell lines, SW480, MCF-7 and 1321N1 were exposed to continuous extremely low-frequency electromagnetic fields (50 Hz, sinusoidal, 3 h, 4 m T). Metaphase plates Were prepared according to standard methods and stained in 5% Giemsa solution. Chromosomal aberrations of both chromosome and chromatid types were scored to evaluate the effects of extremely low-frequency electromagnetic fields on primary or established cell lines. Results: Results indicate that by increasing the frequency of extremely low-frequency electromagnetic fields, chromosomal aberrations were increased up to 7-fold above background levels in primary human fibroblast cells. In addition, continuous exposure to a 50 Hz electromagnetic field led to a significant increase in chromosomal aberrations in SW480, MCF-7 and 1321N1 cell lines compared to sham control. Conclusion: Results obtained indicate that extremely low-frequency electromagnetic fields has the potential for induction of chromosomal aberrations in all cell types.

  11. Relationship of DNA repair and chromosome aberrations to potentially lethal damage repair in X-irradiated mammalian cells

    International Nuclear Information System (INIS)

    Fornace, A.J. Jr.; Nagasawa, H.; Little, J.B.

    1980-01-01

    By the alkaline elution technique, the repair of x-ray-induced DNA single strand breaks and DNA-protein cross-links was investigated in stationary phase, contact-inhibited mouse cells. During the first hour of repair, approximately 90% of x-ray induced single strand breaks were rejoined whereas most of the remaining breaks were rejoined more slowly during the next 5 h. The number of residual non-rejoined single strand breaks was approximately proportional to the x-ray dose at early repair times. DNA-protein cross-links were removed at a slower rate - T 1/2 approximately 10 to 12 h. Cells were subcultured at low density at various times after irradiation and scored for colony survival, and chromosome aberrations in the first mitosis after sub-culture. Both cell lethality and the frequency of chromosome aberrations decreased during the first several hours of repair, reaching a minimum level by 6 h; this decrease correlated temporally with the repair of the slowly rejoining DNA strand breaks. The possible relationship of DNA repair to changes in survival and chromosome aberrations is discussed

  12. A comparative study on the frequencies of radiation-induced chromosome aberrations in the somatic and germ cells in mouse and monkey

    International Nuclear Information System (INIS)

    Sobels, F.H.

    1976-06-01

    Two systems were mainly used for studying the relationship between radiation induced chromosome aberration frequencies in somatic and germ cells. The first consists of reciprocal translocation induced in bone-marrow cells of mice compared to reciprocal translocation induced spermatogonia (scored in descending spermatocytes) of the same mice. Dose-response curves for induced aberrations in both cell types (0-100-200-300-400-500 and 600 R X-rays) and dose rate effects indicated that (130-1.92-0.0287 R/min) of a 400 R γ-ray exposure of the two cell types mitotically dividing germ cells respond to radiation similarly to mitotic dividing germ cells. Clonal proliferation or selective elimination of aberration-carrying cells, and other post-irradiation factors can, however, cause great differences in absolute aberration frequencies. A similar study was attempted, using the rhesus monkey as a second system. Its bone-marrow cells were proved unsuitable for induced reciprocal translocations. Stimulated peripheral blood lymphocytes were studied instead. Following 100, 200 and 300 R of X-rays, the frequencies of induced dicentric chromosomes were compared to those of induced reciprocal translocations in spermatogonia. Human peripheral blood was studied similarly. It was concluded that: (a) The absolute frequencies of chromosome aberrations in somatic and germ cells of the rhesus monkey are low compared to most other mammalian species. (b) The ratio between dicentric frequencies and reciprocal translocation frequencies at 100 R and 200 R differed significantly from 4:1 reported for mouse and Chinese hamster and 2:1 for marmoset and man. (c) Although the numbers of 'effective chromosome arms' in man and rhesus monkey are similar (81 vs 83), the rhesus monkey showed at all doses a lower rate of induction of dicentrics in blood lymphocytes than man, reaching statistical significance at the 300 R level

  13. Chromosomal aberrations of the Chinese hamster cell line V79 after irradiation with X-rays and heavy ions

    International Nuclear Information System (INIS)

    Mueller, W.

    1985-02-01

    The study on hand examines chromosomal aberrations in Chinese hamster 79 cells. Irradiation involved a number of heavy ions ranging from neon to uranium with an energy variation between 0.3 and 20 MeV/u. Linear energy transfer ranged from 270 to 16,300 keV/μm. X-ray tests were run for reasons of comparison. Experiments showed the following results: 1) Aberration rate increases in dependence of nuclear charge number or LET resp. 2) The distribution of the chromosome-damage instances found differed markedly from corresponding measurements following irradiation with thinly ionizing radiation. In contrast to x-irradiation, it is possible, therefore, to obtain high aberration yields in preparations made immediately after irradiation. 3) The maximum of aberration yield after heavy-ion irradiation could be shown to occur as early as 4h after irradiation. This is true in x-irradiation for but small doses. 4) The radiation-sensitizing effect of caffeine and its action on the repair system of the cell could be confirmed for x-irradiation and could be described for heavy ions for the first time. 5) The radiation-protection effect of cysteamine could be re-affirmed for thinly ionizing radiation, however, it could not be verified for heavy ions. 6) Irradiation of cells by means of particles of a defined range supports the hypothesis that the particularly radiation-sensitive regions of the nucleus membrane constitute the cell's crucial target. (orig./MG) [de

  14. DNA Repair Defects and Chromosomal Aberrations

    Science.gov (United States)

    Hada, Megumi; George, K. A.; Huff, J. L.; Pluth, J. M.; Cucinotta, F. A.

    2009-01-01

    Yields of chromosome aberrations were assessed in cells deficient in DNA doublestrand break (DSB) repair, after exposure to acute or to low-dose-rate (0.018 Gy/hr) gamma rays or acute high LET iron nuclei. We studied several cell lines including fibroblasts deficient in ATM (ataxia telangiectasia mutated; product of the gene that is mutated in ataxia telangiectasia patients) or NBS (nibrin; product of the gene mutated in the Nijmegen breakage syndrome), and gliomablastoma cells that are proficient or lacking in DNA-dependent protein kinase (DNA-PK) activity. Chromosomes were analyzed using the fluorescence in situ hybridization (FISH) chromosome painting method in cells at the first division post irradiation, and chromosome aberrations were identified as either simple exchanges (translocations and dicentrics) or complex exchanges (involving >2 breaks in 2 or more chromosomes). Gamma irradiation induced greater yields of both simple and complex exchanges in the DSB repair-defective cells than in the normal cells. The quadratic dose-response terms for both simple and complex chromosome exchanges were significantly higher for the ATM- and NBS-deficient lines than for normal fibroblasts. However, in the NBS cells the linear dose-response term was significantly higher only for simple exchanges. The large increases in the quadratic dose-response terms in these repair-defective cell lines points the importance of the functions of ATM and NBS in chromatin modifications to facilitate correct DSB repair and minimize the formation of aberrations. The differences found between ATM- and NBS-deficient cells at low doses suggest that important questions should with regard to applying observations of radiation sensitivity at high dose to low-dose exposures. For aberrations induced by iron nuclei, regression models preferred purely linear dose responses for simple exchanges and quadratic dose responses for complex exchanges. Relative biological effectiveness (RBE) factors of all of

  15. Antioxidant Supplementation Reduces Genomic Aberrations in Human Induced Pluripotent Stem Cells

    Directory of Open Access Journals (Sweden)

    Junfeng Ji

    2014-01-01

    Full Text Available Somatic cells can be reprogrammed to induced pluripotent stem cells (iPSCs using oncogenic transcription factors. However, this method leads to genetic aberrations in iPSCs via unknown mechanisms, which may limit their clinical use. Here, we demonstrate that the supplementation of growth media with antioxidants reduces the genome instability of cells transduced with the reprogramming factors. Antioxidant supplementation did not affect transgene expression level or silencing kinetics. Importantly, iPSCs made with antioxidants had significantly fewer de novo copy number variations, but not fewer coding point mutations, than iPSCs made without antioxidants. Our results suggest that the quality and safety of human iPSCs might be enhanced by using antioxidants in the growth media during the generation and maintenance of iPSCs.

  16. Chromosomal aberrations in the bone marrow cells of mice induced by accelerated {sup 12}C{sup 6+} ions

    Energy Technology Data Exchange (ETDEWEB)

    Ma Xiaofei [Department of Heavy Ion Radiation Biology and Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000 (China); Key Laboratory of Heavy Ion Radiation Medicine of Chinese Academy of Sciences, Lanzhou 730000 (China); Key Laboratory of Heavy Ion Radiation Medicine of Gansu Province, Lanzhou 730000 (China); Graduate University of Chinese Academy of Sciences, Beijing 100049 (China); Zhang Hong, E-mail: zhangh@impac.ac.cn [Department of Heavy Ion Radiation Biology and Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Key Laboratory of Heavy Ion Radiation Medicine of Chinese Academy of Sciences, Lanzhou 730000 (China); Key Laboratory of Heavy Ion Radiation Medicine of Gansu Province, Lanzhou 730000 (China); Wang Zhenhua; Min Xianhua; Liu Yang; Wu Zhenhua [Department of Heavy Ion Radiation Biology and Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Key Laboratory of Heavy Ion Radiation Medicine of Chinese Academy of Sciences, Lanzhou 730000 (China); Key Laboratory of Heavy Ion Radiation Medicine of Gansu Province, Lanzhou 730000 (China); Sun Chao [Department of Heavy Ion Radiation Biology and Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Key Laboratory of Heavy Ion Radiation Medicine of Chinese Academy of Sciences, Lanzhou 730000 (China); Key Laboratory of Heavy Ion Radiation Medicine of Gansu Province, Lanzhou 730000 (China); Graduate University of Chinese Academy of Sciences, Beijing 100049 (China); Hu Bitao [School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000 (China)

    2011-11-01

    Highlights: {yields} 220 MeV/u {sup 12}C{sup 6+} ions is 1.5 times more effective than X-rays in inducing chromosomal aberration in bone marrow cell. {yields} The ratio of dose averaged liner energy transfer is approach the RBE. {yields} {sup 12}C{sup 6+} ions could induce severe mitosis delay. {yields} The cell cycle is not recovered 72 h following irradiation. - Abstract: The whole bodies of 6-week-old male Kun-Ming mice were exposed to different doses of {sup 12}C{sup 6+} ions or X-rays. Chromosomal aberrations of the bone marrow (gaps, terminal deletions and breaks, fragments, inter-chromosomal fusions and sister-chromatid union) were scored in metaphase 9 h after exposure, corresponding to cells exposed in the G{sub 2}-phase of the first mitosis cycle. Dose-response relationships for the frequency of chromosomal aberrations were plotted both by linear and linear-quadratic equations. The data showed that there was a dose-related increase in the frequency of chromosomal aberrations in all treated groups compared to controls. Linear-quadratic equations were a good fit for both radiation types. The compound theory of dual radiation action was applied to decipher the bigger curvature (D{sup 2}) of the dose-response curves of X-rays compared to those of {sup 12}C{sup 6+} ions. Different distributions of the five types of aberrations and different degrees of homogeneity were found between {sup 12}C{sup 6+} ion and X-ray irradiation and the possible underlying mechanism for these phenomena were analyzed according to the differences in the spatial energy deposition of both types of radiation.

  17. Test for Chemical Induction of Chromosome Aberration in Cultured Chinese Hamster Ovary (CHO) Cells With and Without Metabolic Activation. Test Article: N,N,N’,N’-tetramethyl Ethanediamine (TMEDA)

    Science.gov (United States)

    2008-06-13

    the RCG and/or RMI: ill addition, the percentage of polyploid and endoreduplicated cells was also determined at each concentration. Both the solvent...percentage of polyploid and endoreduplicated cells was also determined at each concentration. The types of chromosome aberrations scored and the...not decipherable. Considered as a single aberration. Severely damaged cell - cell with 10 or more aberrations. Polyploid cells - metaphases with

  18. NOTCH1 Is Aberrantly Activated in Chronic Lymphocytic Leukemia Hematopoietic Stem Cells

    Directory of Open Access Journals (Sweden)

    Mauro Di Ianni

    2018-04-01

    Full Text Available To investigate chronic lymphocytic leukemia (CLL-initiating cells, we assessed NOTCH1 mutation/expression in hematopoietic stem cells (HSCs. In NOTCH1-mutated CLL, we detected subclonal mutations in 57% CD34+/CD38− HSCs. NOTCH1 mutation was present in 66% CD34+/CD38+ progenitor cells displaying an increased mutational burden compared to HSCs. Flow cytometric analysis revealed significantly higher NOTCH1 activation in CD34+/CD38− and CD34+/CD38+ cells from CLL patients, regardless NOTCH1 mutation compared to healthy donors. Activated NOTCH1 resulted in overexpression of the NOTCH1 target c-MYC. We conclude that activated NOTCH1 is an early event in CLL that may contribute to aberrant HSCs in this disease.

  19. NOTCH1 Is Aberrantly Activated in Chronic Lymphocytic Leukemia Hematopoietic Stem Cells.

    Science.gov (United States)

    Di Ianni, Mauro; Baldoni, Stefano; Del Papa, Beatrice; Aureli, Patrizia; Dorillo, Erica; De Falco, Filomena; Albi, Elisa; Varasano, Emanuela; Di Tommaso, Ambra; Giancola, Raffaella; Accorsi, Patrizia; Rotta, Gianluca; Rompietti, Chiara; Silva Barcelos, Estevão Carlos; Campese, Antonio Francesco; Di Bartolomeo, Paolo; Screpanti, Isabella; Rosati, Emanuela; Falzetti, Franca; Sportoletti, Paolo

    2018-01-01

    To investigate chronic lymphocytic leukemia (CLL)-initiating cells, we assessed NOTCH1 mutation/expression in hematopoietic stem cells (HSCs). In NOTCH1- mutated CLL, we detected subclonal mutations in 57% CD34+/CD38- HSCs. NOTCH1 mutation was present in 66% CD34+/CD38+ progenitor cells displaying an increased mutational burden compared to HSCs. Flow cytometric analysis revealed significantly higher NOTCH1 activation in CD34+/CD38- and CD34+/CD38+ cells from CLL patients, regardless NOTCH1 mutation compared to healthy donors. Activated NOTCH1 resulted in overexpression of the NOTCH1 target c-MYC. We conclude that activated NOTCH1 is an early event in CLL that may contribute to aberrant HSCs in this disease.

  20. Generalized concept of the LET-RBE relationship of radiation-induced chromosome aberration and cell death

    International Nuclear Information System (INIS)

    Takatsuji, Toshihiro; Yoshikawa, Isao; Sasaki, Masao S.

    1999-01-01

    The frequency of chromosome aberrations per traversal of a nucleus by a charged particle at the low dose limit increases proportionally to the square of the linear energy transfer (LET), peaks at about 100 keV/μm and then decreases with further increase of LET. This has long been interpreted as an excessive energy deposition over the necessary energy required to produce a biologically effective event. Here, we present an alternative interpretation. Cell traversed by a charged particle has certain probability to receive lethal damage leading to direct death. Such events may increase with an increase of LET and the number of charged particles traversing the cell. Assuming that the lethal damage is distributed according to a Poisson distribution, the probability that a cell has no such damage is expressed by e -cLx , where c is a constant, L is LET, and x is the number of charged particles traversing the cell. From these assumptions, the frequency of chromosome aberration in surviving cells can be described by Y=αSD+βS 2 D 2 with the empirical relation Y=αD+βD 2 in the low LET region, where S=e -cL , α is a value proportional to LET, β is a constant, and D is the absorbed dose. This model readily explains the empirically established relationship between LET and relative biological effectiveness (RBE). The model can also be applied to clonogenic survival. If cells can survive and they have neither unstable chromosome aberrations nor other lethal damage, the LET-RBE relationship for clonogenic survival forms a humped curve. The relationship between LET and inactivation cross-section becomes proportional to the square of LET in the low LET region when the frequency of a directly lethal events is sufficiently smaller than unity, and the inactivation cross-section saturates to the cell nucleus cross-sectional area with an increase in LET in the high LET region. (author)

  1. Chromosomal aberration

    International Nuclear Information System (INIS)

    Ishii, Yutaka

    1988-01-01

    Chromosomal aberrations are classified into two types, chromosome-type and chromatid-type. Chromosom-type aberrations include terminal deletion, dicentric, ring and interstitial deletion, and chromatid-type aberrations include achromatic lesion, chromatid deletion, isochromatid deletion and chromatid exchange. Clastogens which induce chromosomal aberration are divided into ''S-dependent'' agents and ''S-independent''. It might mean whether they can induce double strand breaks independent of the S phase or not. Double strand breaks may be the ultimate lesions to induce chromosomal aberrations. Caffeine added even in the G 2 phase appeared to modify the frequency of chromatid aberrations induced by X-rays and mitomycin C. Those might suggest that the G 2 phase involves in the chromatid aberration formation. The double strand breaks might be repaired by ''G 2 repair system'', the error of which might yield breakage types of chromatid aberrations and the by-pass of which might yield chromatid exchanges. Chromosome-type aberrations might be formed in the G 1 phase. (author)

  2. RBE of neutrons for induction of cell reproductive death and chromosome aberrations in three cell lines

    International Nuclear Information System (INIS)

    Zoetelief, J.; Kuijpers, W.C.; Baten-Wittwer, A.; Barendsen, G.W.

    1983-01-01

    The authors have compared the RBE values for induction of dicentrics and centric rings with those for cell inactivation and with the mean or effective quality factors (Q) recommended for radiation protection. The induction of cell reproductive death and chromosome aberrations has been investigated in plateau phase cultures of established lines of a rat rhabdomyosarcoma, a rat ureter carcinoma and Chinese hamster cells for single doses of 300 kV X-rays and 0.5, 4.2 and 15 MeV neutrons. The different cell lines show considerable variations in sensitivity and the RBE values obtained are presented in tabular form. The mean RBE values for the rat rhabdomyosarcoma cells are lower than those for the other two relatively resistant cell lines. Those for the Chinese hamster cells extrapolated to levels according to low doses of X-rays are in good agreement with the quoted Q values. (Auth./C.F.)

  3. Bariatric surgery, gut morphology and enteroendocrine cells

    DEFF Research Database (Denmark)

    Hansen, Carl Frederik

    40 hormones. In this PhD study, gut morphology and the population of endocrine cells have been examined in three rodent animal models using stereological techniques. First, in a rodent model of type-2 diabetes (T2DM), the Zucker diabetic fatty rat (ZDF), the population of endocrine L-cells...... to contribute to the positive effects of bariatic surgery but the mechanisms remain largely unknown. The endocrine cells of the gastrointestinal tract that produce and secrete hormones are difficult to examine as they are distributed as single cells. Several types of endocrine cells together produce more than...... and the gut morphology were quantified. The number of Lcells was 4.8 million in the normal rat and the L-cells were found to double in number in the diabetic ZDF rat model. Second, the L-cell population, gut morphology and endocrine cell gene expression were examined in a rodent model of Roux-en-Y gastric...

  4. The effect of defective DNA double-strand break repair on mutations and chromosome aberrations in the Chinese hamster cell mutant XR-V15B

    International Nuclear Information System (INIS)

    Helbig, R.; Speit, G.; Zdzienicka, M.Z.

    1995-01-01

    The radiosensitive Chinese hamster cell line XR-V15B was used to study the effect of decreased rejoining of DNA double-strand breaks (DSBs) on gene mutations and chromosome aberrations. XR-V15B cells are hypersensitive to the cytotoxic effects of neocarzinostatin (NCS) and methyl methanesulfonate (MMS). Both mutagens induced more chromosome aberrations in XR-V15B cells than in the parental cell strain. The clastogenic action of NCS was characterized by the induction of predominantly chromosome-type aberrations in cells of both strains, whereas MMS induced mainly chromatid aberrations. The frequency of induced gene mutations at the hprt locus was not increased compared to the parental V79 cells when considering the same survival level. Molecular analysis by multiplex polymerase chain reaction (PCR) of mutants induced by NCS revealed a high frequency of deletions in cells of both cell lines. Methyl methane-sulfonate induced mainly mutations without visible change in the PCR pattern, which probably represent point mutations. Our findings suggest a link between a defect in DNA DSB repair and increased cytotoxic and clastogenic effects. However, a decreased ability to rejoin DNA DSBs does not seem to influence the incidence and types of gene mutations at the hprt locus induced by NCS and MMS. 28 refs., 4 figs., 3 tabs

  5. X-ray-induced chromosome aberrations in Down lymphocytes: an explanation of their increased sensitivity

    International Nuclear Information System (INIS)

    Preston, R.J.

    1981-01-01

    Unstimulated lymphocytes from individuals with Down Syndrome (trisomy 21) are more sensitive to the induction of dicentric and ring aberrations by X rays than normal lymphocytes. Several explanations involving the more rapid rejoining of X-ray--induced lesions in Down cells have been offered. It is shown here that the repair of the DNA damage converted into chromosome aberrations is more rapid in Down cells than normal cells. This more rapid repair results in a higher probability of producing chromosomes aberrations, and hence higher aberration frequencies in Down than normal cells

  6. X-ray-induced chromosome aberrations in Down lymphocytes: an explanation of their increased sensitivity

    International Nuclear Information System (INIS)

    Preston, R.J.

    1981-01-01

    Unstimulated lymphocytes from individuals with Down Syndrome (trisomy 21) are more sensitive to the induction of dicentric and ring aberrations by X rays than normal lymphocytes. Several explanations involving the more rapid rejoining of X-ray-induced lesions in Down cells have been offered. It is shown here that the repair of the DNA damage converted into chromosome aberrations is more rapid in Down cells than normal cells. This more rapid repair results in a higher probability of producing chromosome aberrations, and hence higher aberration frequencies in Down than normal cells

  7. Clinically relevant morphological structures in breast cancer represent transcriptionally distinct tumor cell populations with varied degrees of epithelial-mesenchymal transition and CD44+CD24- stemness.

    Science.gov (United States)

    Denisov, Evgeny V; Skryabin, Nikolay A; Gerashchenko, Tatiana S; Tashireva, Lubov A; Wilhelm, Jochen; Buldakov, Mikhail A; Sleptcov, Aleksei A; Lebedev, Igor N; Vtorushin, Sergey V; Zavyalova, Marina V; Cherdyntseva, Nadezhda V; Perelmuter, Vladimir M

    2017-09-22

    Intratumor morphological heterogeneity in breast cancer is represented by different morphological structures (tubular, alveolar, solid, trabecular, and discrete) and contributes to poor prognosis; however, the mechanisms involved remain unclear. In this study, we performed 3D imaging, laser microdissection-assisted array comparative genomic hybridization and gene expression microarray analysis of different morphological structures and examined their association with the standard immunohistochemistry scorings and CD44 + CD24 - cancer stem cells. We found that the intratumor morphological heterogeneity is not associated with chromosomal aberrations. By contrast, morphological structures were characterized by specific gene expression profiles and signaling pathways and significantly differed in progesterone receptor and Ki-67 expression. Most importantly, we observed significant differences between structures in the number of expressed genes of the epithelial and mesenchymal phenotypes and the association with cancer invasion pathways. Tubular (tube-shaped) and alveolar (spheroid-shaped) structures were transcriptionally similar and demonstrated co-expression of epithelial and mesenchymal markers. Solid (large shapeless) structures retained epithelial features but demonstrated an increase in mesenchymal traits and collective cell migration hallmarks. Mesenchymal genes and cancer invasion pathways, as well as Ki-67 expression, were enriched in trabecular (one/two rows of tumor cells) and discrete groups (single cells and/or arrangements of 2-5 cells). Surprisingly, the number of CD44 + CD24 - cells was found to be the lowest in discrete groups and the highest in alveolar and solid structures. Overall, our findings indicate the association of intratumor morphological heterogeneity in breast cancer with the epithelial-mesenchymal transition and CD44 + CD24 - stemness and the appeal of this heterogeneity as a model for the study of cancer invasion.

  8. Menstruum induces changes in mesothelial cell morphology.

    Science.gov (United States)

    Koks, C A; Demir Weusten, A Y; Groothuis, P G; Dunselman, G A; de Goeij, A F; Evers, J L

    2000-01-01

    In previous studies, we have shown that menstrual endometrium preferentially adheres to the subepithelial lining of the peritoneum. It remains to be elucidated, however, whether this damage is preexisting or inflicted by the menstrual tissue itself. We hypothesized that the menstrual tissue itself damages the peritoneum. To investigate this, the viability of menstrual endometrial tissue in peritoneal fluid (PF) was evaluated and the morphologic changes in the mesothelial cells were studied by in vitro cocultures of menstruum with mesothelial cell monolayers. Menstruum was collected with a menstrual cup. Endometrial tissue was isolated from the menstruum, resuspended in culture medium or in the cell-free fraction of PF and cultured for 24, 48 or 72 h. A 3(4, 5-dimethylthiazolyl-2)-2,5-diphenyl tetrazolium bromide (MTT) assay was performed to obtain a relative measure of viable adhered endometrial cells. Mesothelial cells isolated from human omental tissue were cultured on Matrigel or uncoated plastic. At confluence, overnight cocultures were performed and scanning electron microscopy was used to evaluate the morphologic changes. The viability of endometrial fragments was 84% (n = 36, p Menstrual endometrial fragments or menstrual serum added to and cocultured with mesothelial cells induced severe morphologic alterations of the latter, including retraction, shrinking and gap formation. Similar morphologic changes were observed when mesothelial cells were cocultured with menstrual endometrial fragments in PF or in culture inserts. Incubation with conditioned medium from cultured menstrual endometrium induced similar but less pronounced changes in morphology. In conclusion, menstrual endometrial fragments remain viable in PF in vitro for at least 72 h. Antegradely shed menstruum induces changes in mesothelial cell morphology, including retraction and shrinking with exposure of the underlying surface. These findings suggest that menstruum is harmful to the peritoneal

  9. Growth rate of late passage sarcoma cells is independent of epigenetic events but dependent on the amount of chromosomal aberrations

    International Nuclear Information System (INIS)

    Becerikli, Mustafa; Jacobsen, Frank; Rittig, Andrea; Köhne, Wiebke; Nambiar, Sandeep; Mirmohammadsadegh, Alireza; Stricker, Ingo; Tannapfel, Andrea; Wieczorek, Stefan; Epplen, Joerg Thomas; Tilkorn, Daniel; Steinstraesser, Lars

    2013-01-01

    Soft tissue sarcomas (STS) are characterized by co-participation of several epigenetic and genetic events during tumorigenesis. Having bypassed cellular senescence barriers during oncogenic transformation, the factors further affecting growth rate of STS cells remain poorly understood. Therefore, we investigated the role of gene silencing (DNA promoter methylation of LINE-1, PTEN), genetic aberrations (karyotype, KRAS and BRAF mutations) as well as their contribution to the proliferation rate and migratory potential that underlies “initial” and “final” passage sarcoma cells. Three different cell lines were used, SW982 (synovial sarcoma), U2197 (malignant fibrous histiocytoma (MFH)) and HT1080 (fibrosarcoma). Increased proliferative potential of final passage STS cells was not associated with significant differences in methylation (LINE-1, PTEN) and mutation status (KRAS, BRAF), but it was dependent on the amount of chromosomal aberrations. Collectively, our data demonstrate that these fairly differentiated/advanced cancer cell lines have still the potential to gain an additional spontaneous growth benefit without external influences and that maintenance of increased proliferative potential towards longevity of STS cells (having crossed senescence barriers) may be independent of overt epigenetic alterations. -- Highlights: Increased proliferative potential of late passage STS cells was: • Not associated with epigenetic changes (methylation changes at LINE-1, PTEN). • Not associated with mutation status of KRAS, BRAF. • Dependent on presence/absence of chromosomal aberrations

  10. The effect of track structure on the induction of chromosomal aberrations in murine cells

    Science.gov (United States)

    Durante, M.; Cella, L.; Furusawa, Y.; George, K.; Gialanella, G.; Grossi, G.; Pugliese, M.; Saito, M.; Yang, T. C.

    1998-01-01

    PURPOSE: To measure chromosome aberrations in C3H 10T1/2 mouse fibroblasts using FISH painting at the first mitosis following exposure to 30 keV/microm hydrogen or neon ions. MATERIALS AND METHODS: Cells in plateau-phase were irradiated with 0.86 MeV protons at the TTT-3 Tandem accelerator in Naples (Italy), or with 400 MeV/n Ne ions at the HIMAC accelerator in Chiba (Japan). Colcemid-blocked cells were harvested at the first mitosis following exposure, and chromosome spreads were hybridized in situ with a fluorescein-labelled composite mouse DNA probe specific for chromosomes 2 and 8. RESULTS: Protons were more efficient than neon ions at the same LET in the induction of chromosome interchanges and breaks. Yields of complex exchanges were similar for both particles at the same dose, but protons produced mostly insertions, while with Ne exposure non-reciprocal exchanges were the most frequent complex-type exchange. CONCLUSIONS: Charged particles with the same LET produce different yields of chromosome aberrations, and some observed differences can be explained based on the available track-structure models.

  11. Chromatin structure and ionizing-radiation-induced chromosome aberrations

    International Nuclear Information System (INIS)

    Muehlmann-Diaz, M.C.

    1993-01-01

    The possible influence of chromatic structure or activity on chromosomal radiosensitivity was studied. A cell line was isolated which contained some 10 5 copies of an amplified plasmid in a single large mosquito artificial chromosome (MAC). This chromosome was hypersensitive to DNase I. Its radiosensitivity was some three fold greater than normal mosquito chromosomes in the same cell. In cultured human cells irradiated during G 0 , the initial breakage frequency in chromosome 4, 19 and the euchromatic and heterochromatic portions of the Y chromosome were measured over a wide range of doses by inducing Premature Chromosome Condensation (PCC) immediately after irradiation with Cs-137 gamma rays. No evidence was seen that Y heterochromatin or large fragments of it remained unbroken. The only significant deviation from the expected initial breakage frequency per Gy per unit length of chromosome was that observed for the euchromatic portion of the Y chromosome, with breakage nearly twice that expected. The development of aberrations involving X and Y chromosomes at the first mitosis after irradation was also studied. Normal female cells sustained about twice the frequency of aberrations involving X chromosomes for a dose of 7.3 Gy than the corresponding male cells. Fibroblasts from individuals with supernumerary X chromosomes did not show any further increase in X aberrations for this dos. The frequency of aberrations involving the heterochromatic portion of the long arm of the Y chromosome was about what would be expected for a similar length of autosome, but the euchromatic portion of the Y was about 3 times more radiosensitive per unit length. 5-Azacytidine treatment of cultured human female fibroblasts or fibroblasts from a 49,XXXXY individual, reduced the methylation of cytosine residues in DNA, and resulted in an increased chromosomal radiosensitivity in general, but it did not increase the frequency of aberrations involving the X chromosomes

  12. Aberrant T Cell Signaling and Subsets in Systemic Lupus Erythematosus

    Directory of Open Access Journals (Sweden)

    Takayuki Katsuyama

    2018-05-01

    Full Text Available Systemic lupus erythematosus (SLE is a chronic multi-organ debilitating autoimmune disease, which mainly afflicts women in the reproductive years. A complex interaction of genetics, environmental factors and hormones result in the breakdown of immune tolerance to “self” leading to damage and destruction of multiple organs, such as the skin, joints, kidneys, heart and brain. Both innate and adaptive immune systems are critically involved in the misguided immune response against self-antigens. Dendritic cells, neutrophils, and innate lymphoid cells are important in initiating antigen presentation and propagating inflammation at lymphoid and peripheral tissue sites. Autoantibodies produced by B lymphocytes and immune complex deposition in vital organs contribute to tissue damage. T lymphocytes are increasingly being recognized as key contributors to disease pathogenesis. CD4 T follicular helper cells enable autoantibody production, inflammatory Th17 subsets promote inflammation, while defects in regulatory T cells lead to unchecked immune responses. A better understanding of the molecular defects including signaling events and gene regulation underlying the dysfunctional T cells in SLE is necessary to pave the path for better management, therapy, and perhaps prevention of this complex disease. In this review, we focus on the aberrations in T cell signaling in SLE and highlight therapeutic advances in this field.

  13. Aberrant T Cell Signaling and Subsets in Systemic Lupus Erythematosus

    Science.gov (United States)

    Katsuyama, Takayuki; Tsokos, George C.; Moulton, Vaishali R.

    2018-01-01

    Systemic lupus erythematosus (SLE) is a chronic multi-organ debilitating autoimmune disease, which mainly afflicts women in the reproductive years. A complex interaction of genetics, environmental factors and hormones result in the breakdown of immune tolerance to “self” leading to damage and destruction of multiple organs, such as the skin, joints, kidneys, heart and brain. Both innate and adaptive immune systems are critically involved in the misguided immune response against self-antigens. Dendritic cells, neutrophils, and innate lymphoid cells are important in initiating antigen presentation and propagating inflammation at lymphoid and peripheral tissue sites. Autoantibodies produced by B lymphocytes and immune complex deposition in vital organs contribute to tissue damage. T lymphocytes are increasingly being recognized as key contributors to disease pathogenesis. CD4 T follicular helper cells enable autoantibody production, inflammatory Th17 subsets promote inflammation, while defects in regulatory T cells lead to unchecked immune responses. A better understanding of the molecular defects including signaling events and gene regulation underlying the dysfunctional T cells in SLE is necessary to pave the path for better management, therapy, and perhaps prevention of this complex disease. In this review, we focus on the aberrations in T cell signaling in SLE and highlight therapeutic advances in this field. PMID:29868033

  14. Frequencies of chromosomal aberrations and sister chromatid exchanges in the benthic worm Neanthes arenaceodentata exposed to ionizing radiation

    International Nuclear Information System (INIS)

    Harrison, F.L.; Rice, D.W. Jr.; Moore, D.H.

    1984-07-01

    Traditional bioassays are unsuitable for assessing sublethal effects from ocean disposal of low-level radioactive waste because mortality and phenotypic responses are not anticipated. We compared the usefulness of chromosomal aberration and sister chromatid exchange (SCE) induction as measures of low-level radiation effects in a sediment-dwelling marine worm, Neanthes arenaceodentata. The SCEs, in contrast to chromosomal aberrations, do not alter the overall chromosome morphology and in mammalian cells appear to be a more sensitive indicator of DNA alterations caused by environmental mutagens. Newly hatched larvae were exposed to two radiation-exposure regimes of either x rays at a high dose rate of 0.7 Gy (70 rad)/min for as long as 5.5 min or to 60 Co gamma rays at a low dose rate of from 4.8 x 10 -5 to 1.2 x 10 -1 Gy (0.0048 to 12 rad)/h for 24 h. After irradiation, the larvae were exposed to 3 x 10 -5 M bromodeoxyuridine (BrdUrd) for 28 h (x-ray-irradiated larvae) or for 54 h ( 60 Co-irradiated larvae). Larval cells were examined for the proportion of cells in first, second, and third or greater division. Frequencies of chromosomal aberrations and SCEs were determined in first and second division cells, respectively. Results from x-ray irradiation indicated that dose-related increases occur in chromosome and chromatid deletions, but a dose of equal or greater 2 Gy (equal to or greater than 200 rad) was required to observe a significant increase. Worm larvae receiving 60 Co irradiation showed elevated SCE frequencies with a significant increase of 0.6 Gy (60 rad). We suggest that both SCEs and chromosomal aberrations may be useful for measuring effects on genetic material induced by radiation. 56 references, 7 figures, 9 tables

  15. Prediction for the occurrence of clonal chromosome aberrations in human blood lymphocytes

    International Nuclear Information System (INIS)

    Nakano, M.; Kadama, Y.; Ohtaki, K.; Itoh, M.; Awa, A.; Cologne, J.; Nakamura, N.

    2003-01-01

    Full text: Identical chromosome aberrations among multiple blood lymphocytes in a blood sample (clonal aberrations) are encountered occasionally during cytogenetic examination of radiation-exposed people. Clonal aberrations are found primarily among high-dose exposed people but no systematic surveys were ever conducted. Therefore, the underlying mechanism is unknown. Here we conducted a large-scale screening for detecting clonal aberrations using FISH followed by Q-banding. Examinations of 500 cells from each of 513 A-bomb survivors led us to detect 96 clones. The clonal cell fraction (Cf) varied from 0.6% to 20% among the 500 cells. As the number of clonal event was inversely proportional to Cf, we hypothesized that the progenitor cells vary extensively in the number of offspring that they can produce and relative number of progenitor cells decreases as the increase of treatment, while other genes such as DNA repair proteinsnumber of progenitor cells capable to form clones (Cf >=0.6%) to be 2 (1 to 3) in non-exposed individuals. The number increased to up to 7 among the high-dose exposed survivors. Further, our preliminary results for the origins of 10 clones indicated that both hematopoietic stem cells (HSCs) and mature T cells contributed to the clone formation roughly equally. Thus, the estimated number of 2 in non-exposed individuals is shared as one HSC and one mature T cells. The model could neatly explain the frequency of clones in two reports. Our model predicts that clonal aberrations are rarely found but clonal expansion of T lymphocytes occurs commonly. In fact, clonal expansions of non-aberrant cells are reported using TCR gene rearrangement patterns as a marker. We now understand the rough structure of lymphocyte pool in humans and can predict the probability of detecting a clone if the individual frequency of non-clonal translocations and the number of cells scored are given

  16. Mutations and chromosomal aberrations

    International Nuclear Information System (INIS)

    Kihlman, B.A.

    1977-01-01

    The genetic changes of mutations and chromosomal aberrations are discussed. The consequences of both depend not only on the type of genetic change produced but also on the type of cell that is affected and on the development stage of the organism. (C.F.)

  17. Chromosome aberrations in pesticide-exposed greenhouse workers

    DEFF Research Database (Denmark)

    Lander, B F; Knudsen, Lisbeth E.; Gamborg, M O

    2000-01-01

    OBJECTIVES: The aim of this study was to investigate the possibility of subtoxic exposure to pesticides causing chromosome aberrations in greenhouse workers. METHODS: In a cross-sectional and prospective study design chromosome aberration frequencies in cultured lymphocytes were examined for 116...... greenhouse workers exposed to a complex mixture of almost 50 insecticides, fungicides, and growth regulators and also for 29 nonsmoking, nonpesticide-exposed referents. RESULTS: The preseason frequencies of chromosome aberrations were slightly but not statistically significantly elevated for the greenhouse...... workers when they were compared with the referents. After a summer season of pesticide spraying in the greenhouses, the total frequencies of cells with chromosome aberrations were significantly higher than in the preseason samples (P=0.02) and also higher than for the referents (P=0.05). This finding...

  18. Chromosome aberrations in T lymphocytes carrying adult T-cell leukemia-associated antigens (ATLA) from healthy adults.

    Science.gov (United States)

    Fukuhara, S; Hinuma, Y; Gotoh, Y I; Uchino, H

    1983-01-01

    Chromosomes were studied in cultured T lymphocytes carrying adult T-cell leukemia-associated antigens (ATLA) that were obtained from five Japanese anti-ATLA seropositive healthy adults. Chromosomally abnormal cells were observed in three of the five healthy adults, and these cells were clonal in two subjects. All cells examined in one subject had rearrangements of chromosome nos. 7 and 14. Clonal cells from the second had a minute chromosome of unknown origin. A few cells in the third had nonclonal rearrangements of chromosomes. Thus, ATLA-positive T lymphocytes in some anti-ATLA seropositive healthy people have chromosome aberrations.

  19. High resistance of fibroblasts from Mongolian gerbil embryos to cell killing and chromosome aberrations by X-irradiation

    International Nuclear Information System (INIS)

    Suzuki, F.; Nakao, N.; Nikaido, O.; Kondo, S.

    1992-01-01

    Mongolian gerbil (Meriones unguiculatus) is known to be one of the most radioresistant animal species. In order to determine whether there is any correlation between mortality of mammals exposed to γ- or X-rays and radiation sensitivity of culture cells derived from different mammalian species, we have examined the X-ray survival curves of normal diploid fibroblasts from Mongolian gerbil embryos and compared with those of other cultured embryo cells from various laboratory animals and normal human. There was a big difference in cell survival to X-rays among different mammalian species. The D 0 values of Mongolian gerbil cells ranged from 2.3 to 2.6 Gy which are twice as high as those of human cells. The mean D 0 value of human cells was 1.1 Gy. Mouse, rat, Chinese hamster and Syrian/golden hamster cells showed similar D 0 values ranging from 1.7 to 2.0 Gy. When cells were irradiated with 2 Gy of X-rays, three times longer mitotic delay was observed in human cells than in Mongolian gerbil cells. At this X-ray dose, furthermore, ten times more chromosome aberrations were detected in human cells than in Mongolian gerbil cells, and the frequencies of other rodent cells lay between the values for the two cell strains. These data indicate that the Mongolian gerbil cells are resistant to X-ray-induced cell killing and chromosome aberrations, and that radiation sensitivity of primarily cultured mammalian cells may be reflected by their radioresistance in vivo. (author)

  20. Optical Aberrations and Wavefront

    Directory of Open Access Journals (Sweden)

    Nihat Polat

    2014-08-01

    Full Text Available The deviation of light to create normal retinal image in the optical system is called aberration. Aberrations are divided two subgroup: low-order aberrations (defocus: spherical and cylindrical refractive errors and high-order aberrations (coma, spherical, trefoil, tetrafoil, quadrifoil, pentafoil, secondary astigmatism. Aberrations increase with aging. Spherical aberrations are compensated by positive corneal and negative lenticular spherical aberrations in youth. Total aberrations are elevated by positive corneal and positive lenticular spherical aberrations in elderly. In this study, we aimed to analyze the basic terms regarding optic aberrations which have gained significance recently. (Turk J Ophthalmol 2014; 44: 306-11

  1. Cell behavior on microparticles with different surface morphology

    International Nuclear Information System (INIS)

    Huang Sha; Fu Xiaobing

    2010-01-01

    Microparticles can serve as substrates for cell amplification and deliver the cell aggregation to the site of the defect for tissue regeneration. To develop favorable microparticles for cell delivery application, we fabricated and evaluated three types of microparticles that differ in surface properties. The microparticles with varied surface morphology (smooth, pitted and multicavity) were created from chemically crosslinked gelatin particles that underwent various drying treatments. Three types of microparticles were characterized and assessed in terms of the cell behavior of human keratinocytes and fibroblasts seeded on them. The cells could attach, spread and proliferate on all types of microparticles but spread and populated more slowly on the microparticles with smooth surfaces than on those with pitted or multicavity surfaces. Microparticles with a multicavity surface demonstrated the highest cell attachment and growth rate. Furthermore, cells tested on microparticles with a multicavity surface exhibited better morphology and induced the earlier formation of extracellular-based cell-microparticle aggregation than those on microparticles with other surface morphology (smooth and pitted). Thus, microparticles with a multicavity surface show promise for attachment and proliferation of cells in tissue engineering.

  2. Pathophysiology of MDS: genomic aberrations.

    Science.gov (United States)

    Ichikawa, Motoshi

    2016-01-01

    Myelodysplastic syndromes (MDS) are characterized by clonal proliferation of hematopoietic stem/progenitor cells and their apoptosis, and show a propensity to progress to acute myelogenous leukemia (AML). Although MDS are recognized as neoplastic diseases caused by genomic aberrations of hematopoietic cells, the details of the genetic abnormalities underlying disease development have not as yet been fully elucidated due to difficulties in analyzing chromosomal abnormalities. Recent advances in comprehensive analyses of disease genomes including whole-genome sequencing technologies have revealed the genomic abnormalities in MDS. Surprisingly, gene mutations were found in approximately 80-90% of cases with MDS, and the novel mutations discovered with these technologies included previously unknown, MDS-specific, mutations such as those of the genes in the RNA-splicing machinery. It is anticipated that these recent studies will shed new light on the pathophysiology of MDS due to genomic aberrations.

  3. Endogenous sterol biosynthesis is important for mitochondrial function and cell morphology in procyclic forms of Trypanosoma brucei.

    Science.gov (United States)

    Pérez-Moreno, Guiomar; Sealey-Cardona, Marco; Rodrigues-Poveda, Carlos; Gelb, Michael H; Ruiz-Pérez, Luis Miguel; Castillo-Acosta, Víctor; Urbina, Julio A; González-Pacanowska, Dolores

    2012-10-01

    Sterol biosynthesis inhibitors are promising entities for the treatment of trypanosomal diseases. Insect forms of Trypanosoma brucei, the causative agent of sleeping sickness, synthesize ergosterol and other 24-alkylated sterols, yet also incorporate cholesterol from the medium. While sterol function has been investigated by pharmacological manipulation of sterol biosynthesis, molecular mechanisms by which endogenous sterols influence cellular processes remain largely unknown in trypanosomes. Here we analyse by RNA interference, the effects of a perturbation of three specific steps of endogenous sterol biosynthesis in order to dissect the role of specific intermediates in proliferation, mitochondrial function and cellular morphology in procyclic cells. A decrease in the levels of squalene synthase and squalene epoxidase resulted in a depletion of cellular sterol intermediates and end products, impaired cell growth and led to aberrant morphologies, DNA fragmentation and a profound modification of mitochondrial structure and function. In contrast, cells deficient in sterol methyl transferase, the enzyme involved in 24-alkylation, exhibited a normal growth phenotype in spite of a complete abolition of the synthesis and content of 24-alkyl sterols. Thus, the data provided indicates that while the depletion of squalene and post-squalene endogenous sterol metabolites results in profound cellular defects, bulk 24-alkyl sterols are not strictly required to support growth in insect forms of T. brucei in vitro. Copyright © 2012 Australian Society for Parasitology Inc. Published by Elsevier Ltd. All rights reserved.

  4. Targeting Aberrant Glutathione Metabolism to Eradicate Human Acute Myelogenous Leukemia Cells*

    Science.gov (United States)

    Pei, Shanshan; Minhajuddin, Mohammad; Callahan, Kevin P.; Balys, Marlene; Ashton, John M.; Neering, Sarah J.; Lagadinou, Eleni D.; Corbett, Cheryl; Ye, Haobin; Liesveld, Jane L.; O'Dwyer, Kristen M.; Li, Zheng; Shi, Lei; Greninger, Patricia; Settleman, Jeffrey; Benes, Cyril; Hagen, Fred K.; Munger, Joshua; Crooks, Peter A.; Becker, Michael W.; Jordan, Craig T.

    2013-01-01

    The development of strategies to eradicate primary human acute myelogenous leukemia (AML) cells is a major challenge to the leukemia research field. In particular, primitive leukemia cells, often termed leukemia stem cells, are typically refractory to many forms of therapy. To investigate improved strategies for targeting of human AML cells we compared the molecular mechanisms regulating oxidative state in primitive (CD34+) leukemic versus normal specimens. Our data indicate that CD34+ AML cells have elevated expression of multiple glutathione pathway regulatory proteins, presumably as a mechanism to compensate for increased oxidative stress in leukemic cells. Consistent with this observation, CD34+ AML cells have lower levels of reduced glutathione and increased levels of oxidized glutathione compared with normal CD34+ cells. These findings led us to hypothesize that AML cells will be hypersensitive to inhibition of glutathione metabolism. To test this premise, we identified compounds such as parthenolide (PTL) or piperlongumine that induce almost complete glutathione depletion and severe cell death in CD34+ AML cells. Importantly, these compounds only induce limited and transient glutathione depletion as well as significantly less toxicity in normal CD34+ cells. We further determined that PTL perturbs glutathione homeostasis by a multifactorial mechanism, which includes inhibiting key glutathione metabolic enzymes (GCLC and GPX1), as well as direct depletion of glutathione. These findings demonstrate that primitive leukemia cells are uniquely sensitive to agents that target aberrant glutathione metabolism, an intrinsic property of primary human AML cells. PMID:24089526

  5. Gender differences in the induction of chromosomal aberrations and gene mutations in rodent germ cells

    International Nuclear Information System (INIS)

    Adler, Ilse-Dore; Carere, Angelo; Eichenlaub-Ritter, Ursula; Pacchierotti, Francesca

    2007-01-01

    Germ cell mutagenicity testing provides experimental data to quantify genetic risk for exposed human populations. The majority of tests are performed with exposure of males, and female data are relatively rare. The reason for this paucity lies in the differences between male and female germ cell biology. Male germ cells are produced throughout reproductive life and all developmental stages can be ascertained by appropriate breeding schemes. In contrast, the female germ cell pool is limited, meiosis begins during embryogenesis and oocytes are arrested over long periods of time until maturation processes start for small numbers of oocytes during the oestrus cycle in mature females. The literature data are reviewed to point out possible gender differences of germ cells to exogenous agents such as chemicals or ionizing radiation. From the limited information, it can be concluded that male germ cells are more sensitive than female germ cells to the induction of chromosomal aberrations and gene mutations. However, exceptions are described which shed doubt on the extrapolation of experimental data from male rodents to the genetic risk of the human population. Furthermore, the female genome may be more sensitive to mutation induction during peri-conceptional stages compared to the male genome of the zygote. With few exceptions, germ cell experiments have been carried out under high acute exposure to optimize the effects and to compensate for the limited sample size in animal experiments. Human exposure to environmental agents, on the other hand, is usually chronic and involves low doses. Under these conditions, gender differences may become apparent that have not been studied so far. Additionally, data are reviewed that suggest a false impression of safety when responses are negative under high acute exposure of male rodents while a mutational response is induced by low chronic exposure. The classical (morphological) germ cell mutation tests are not performed anymore

  6. Cellular origin of prognostic chromosomal aberrations in AML patients

    DEFF Research Database (Denmark)

    Mora-Jensen, H.; Jendholm, J.; Rapin, N.

    2015-01-01

    chromosomal structural rearrangements and single nucleotide variants (SNVs). Conventional AML diagnostics and recent seminal next-generation sequencing (NGS) studies have identified more than 200 recurrent genetic aberrations presenting in various combinations in individual patients. Significantly, many...... of these aberrations occur in normal hematopoietic stem and progenitor cells (HSCs/HPCs) before definitive leukemic transformation through additional acquisition of a few (that is, mostly 1 or 2) leukemia-promoting driver aberrations. NGS studies on sorted bone marrow (BM) populations of AML patients with a normal...

  7. Long-term gene therapy causes transgene-specific changes in the morphology of regenerating retinal ganglion cells.

    Directory of Open Access Journals (Sweden)

    Jennifer Rodger

    Full Text Available Recombinant adeno-associated viral (rAAV vectors can be used to introduce neurotrophic genes into injured CNS neurons, promoting survival and axonal regeneration. Gene therapy holds much promise for the treatment of neurotrauma and neurodegenerative diseases; however, neurotrophic factors are known to alter dendritic architecture, and thus we set out to determine whether such transgenes also change the morphology of transduced neurons. We compared changes in dendritic morphology of regenerating adult rat retinal ganglion cells (RGCs after long-term transduction with rAAV2 encoding: (i green fluorescent protein (GFP, or (ii bi-cistronic vectors encoding GFP and ciliary neurotrophic factor (CNTF, brain-derived neurotrophic factor (BDNF or growth-associated protein-43 (GAP43. To enhance regeneration, rats received an autologous peripheral nerve graft onto the cut optic nerve of each rAAV2 injected eye. After 5-8 months, RGCs with regenerated axons were retrogradely labeled with fluorogold (FG. Live retinal wholemounts were prepared and GFP positive (transduced or GFP negative (non-transduced RGCs injected iontophoretically with 2% lucifer yellow. Dendritic morphology was analyzed using Neurolucida software. Significant changes in dendritic architecture were found, in both transduced and non-transduced populations. Multivariate analysis revealed that transgenic BDNF increased dendritic field area whereas GAP43 increased dendritic complexity. CNTF decreased complexity but only in a subset of RGCs. Sholl analysis showed changes in dendritic branching in rAAV2-BDNF-GFP and rAAV2-CNTF-GFP groups and the proportion of FG positive RGCs with aberrant morphology tripled in these groups compared to controls. RGCs in all transgene groups displayed abnormal stratification. Thus in addition to promoting cell survival and axonal regeneration, vector-mediated expression of neurotrophic factors has measurable, gene-specific effects on the morphology of injured

  8. Analysis of chromosomal aberrations, micronuclei and hematological disorders among workers of wireless communication instruments and cell phone (Mobile) users

    International Nuclear Information System (INIS)

    Eldawy, H.A.; Khattab, F.I.; Hassan, N.H.A.; Amin, Y.M.; Mahmoud, M.M.A.

    2003-01-01

    This study was carried out to investigate the hazardous effect of electromagnetic radiation (EMR) such as chromosomal aberration, disturbed micronucleus formation and hematological disorders that may detected among workers of wireless communication instruments and mobile phone users. Seven individuals ( 3 males and 4 females) of a central workers in the microwave unit of the wireless station and 7 users of Mobil phone (4 males and 3 females ) were volunteered to give blood samples. Chromosomes and micronucleus were prepared for cytogenetic analysis as well as blood film for differential count. The results obtained in the microwave group indicated that, the total summation of all types of aberrations (chromosomes and chromatid aberrations) had a frequency of 6. 14% for the exposed group, whereas, the frequency in the control group amounted to 1.57%. In Mobil phone users, the total summation of all types of aberrations(chromosome and chromatid aberrations) had a frequency of 4.43% for the exposed group and 1.71% for the control group. The incidence of the total number of micronuclei in the exposed microwave group was increased 4.3 folds as compared with those of the control group The incidence of the total number of micronuclei in the exposed mobile phone group was increased 2 fold as compared with those in the control group. On the other hand, normal ranges of total white blood cells counts were determined for mobile phone users but abnormalities in the differential counts of the different types of the white blood cells such as neutropenia, eosinophilia and lymphocytosis were observed in the individuals number 1,2,3,7 in microwave group

  9. Aberrant TAL1 activation is mediated by an interchromosomal interaction in human T-cell acute lymphoblastic leukemia.

    Science.gov (United States)

    Patel, B; Kang, Y; Cui, K; Litt, M; Riberio, M S J; Deng, C; Salz, T; Casada, S; Fu, X; Qiu, Y; Zhao, K; Huang, S

    2014-02-01

    Long-range chromatin interactions control metazoan gene transcription. However, the involvement of intra- and interchromosomal interactions in development and oncogenesis remains unclear. TAL1/SCL is a critical transcription factor required for the development of all hematopoietic lineages; yet, aberrant TAL1 transcription often occurs in T-cell acute lymphoblastic leukemia (T-ALL). Here, we report that oncogenic TAL1 expression is regulated by different intra- and interchromosomal loops in normal hematopoietic and leukemic cells, respectively. These intra- and interchromosomal loops alter the cell-type-specific enhancers that interact with the TAL1 promoter. We show that human SET1 (hSET1)-mediated H3K4 methylations promote a long-range chromatin loop, which brings the +51 enhancer in close proximity to TAL1 promoter 1 in erythroid cells. The CCCTC-binding factor (CTCF) facilitates this long-range enhancer/promoter interaction of the TAL1 locus in erythroid cells while blocking the same enhancer/promoter interaction of the TAL1 locus in human T-cell leukemia. In human T-ALL, a T-cell-specific transcription factor c-Maf-mediated interchromosomal interaction brings the TAL1 promoter into close proximity with a T-cell-specific regulatory element located on chromosome 16, activating aberrant TAL1 oncogene expression. Thus, our study reveals a novel molecular mechanism involving changes in three-dimensional chromatin interactions that activate the TAL1 oncogene in human T-cell leukemia.

  10. Radiation-induced chromosome aberrations in bone marrow cells leading to acute myeloid leukemia in mouse

    International Nuclear Information System (INIS)

    Nobuhiko Ban; Tomoko Kusama

    1996-01-01

    It is well known that radiation-induced acute myeloid leukemia (RI-AML) in mice is charaterized by deletion and/or rearrangement of chromosome 2. While chromosome 2 has been suspected to be a target of RI-AML, radiation-sensitive site of the chromosome might be implicated in the leukemogenesis. There were few cytogenetical studies, however, focusing on chromosomal rearrangements shortly after irradiation, and little was known about the frequency and pattern of chromosome 2 aberrations during the early period. In this study, metaphase samples were prepared from whole-body irradiated mice 24 hours after irradiation, most of the cells considered to be in the first mitotic stage. Distribution of chromosomal breakpoints on the metaphase samples were analyzed to study the relationship between chromosome aberrations and RI-AML. (author)

  11. Cell dynamic morphology classification using deep convolutional neural networks.

    Science.gov (United States)

    Li, Heng; Pang, Fengqian; Shi, Yonggang; Liu, Zhiwen

    2018-05-15

    Cell morphology is often used as a proxy measurement of cell status to understand cell physiology. Hence, interpretation of cell dynamic morphology is a meaningful task in biomedical research. Inspired by the recent success of deep learning, we here explore the application of convolutional neural networks (CNNs) to cell dynamic morphology classification. An innovative strategy for the implementation of CNNs is introduced in this study. Mouse lymphocytes were collected to observe the dynamic morphology, and two datasets were thus set up to investigate the performances of CNNs. Considering the installation of deep learning, the classification problem was simplified from video data to image data, and was then solved by CNNs in a self-taught manner with the generated image data. CNNs were separately performed in three installation scenarios and compared with existing methods. Experimental results demonstrated the potential of CNNs in cell dynamic morphology classification, and validated the effectiveness of the proposed strategy. CNNs were successfully applied to the classification problem, and outperformed the existing methods in the classification accuracy. For the installation of CNNs, transfer learning was proved to be a promising scheme. © 2018 International Society for Advancement of Cytometry. © 2018 International Society for Advancement of Cytometry.

  12. Induction of chromosomal aberrations in human lymphocytes by fission neutrons

    International Nuclear Information System (INIS)

    Silva, Marcia Augusta da; Coelho, Paulo Rogerio Pinto; Bartolini, Paolo; Okazaki, Kayo

    2009-01-01

    Chromosome aberrations induced by sparsely ionizing radiation (low-LET) are well known and cytogenetic analyses of irradiated human lymphocytes have been widely applied to biological dosimetry. However, much less is known about chromosome aberrations induced by densely ionizing radiation (high LET), such as that of alpha particles or neutrons. Such particles induce DNA strand breaks, as well as chromosome breakage and rearrangements of high complexity. This damage is more localized and less efficiently repaired than after X- or γ-ray irradiation. This preferential production of complex aberrations by densely ionizing radiation is related to the unique energy deposition patterns, which produces highly localized multiple DNA damage at the chromosomal level. A better knowledge of the interactions between different types of radiation and cellular DNA is of importance, not only from the radiobiological viewpoint but also for dosimetric and therapeutic purposes. The objective of the present study was to analyse the cytogenetic effects of fission neutrons on peripheral blood lymphocytes in order to evaluate structural and numerical aberrations and number of cells in the different mitotic cycles. So, blood samples from five healthy donors, 22-25 years old, of both sexes, were irradiated in the Research Reactor IEA-R1 of our Institute (IPEN/CNEN-SP) with thermal and fast neutrons at doses of 0.2; 0.3; 0.5 and 1.0 Gy. The γ contribution to the total absorbed dose was about 30%. These doses were monitored by thermoluminescent dosemeters: LiF-600 (for neutrons) and LiF-700 (for γ-rays). The data concerning structural aberrations were evaluated with regard to three parameters: percentage of cells with aberrations, number of aberrations/cell and number of dicentric/cell. The cytogenetic results showed an increase in the three parameters after irradiation with neutrons, as a function of radiation dose. Apparently, there was no influence of neutrons on the kinetics of cellular

  13. Phyllanthus emblica Fruit Extract Activates Spindle Assembly Checkpoint, Prevents Mitotic Aberrations and Genomic Instability in Human Colon Epithelial NCM460 Cells

    Directory of Open Access Journals (Sweden)

    Xihan Guo

    2016-09-01

    Full Text Available The fruit of Phyllanthus emblica Linn. (PE has been widely consumed as a functional food and folk medicine in Southeast Asia due to its remarkable nutritional and pharmacological effects. Previous research showed PE delays mitotic progress and increases genomic instability (GIN in human colorectal cancer cells. This study aimed to investigate the similar effects of PE by the biomarkers related to spindle assembly checkpoint (SAC, mitotic aberrations and GIN in human NCM460 normal colon epithelial cells. Cells were treated with PE and harvested differently according to the biomarkers observed. Frequencies of micronuclei (MN, nucleoplasmic bridge (NPB and nuclear bud (NB in cytokinesis-block micronucleus assay were used as indicators of GIN. Mitotic aberrations were assessed by the biomarkers of chromosome misalignment, multipolar division, chromosome lagging and chromatin bridge. SAC activity was determined by anaphase-to- metaphase ratio (AMR and the expression of core SAC gene budding uninhibited by benzimidazoles related 1 (BubR1. Compared with the control, PE-treated cells showed (1 decreased incidences of MN, NPB and NB (p < 0.01; (2 decreased frequencies of all mitotic aberration biomarkers (p < 0.01; and (3 decreased AMR (p < 0.01 and increased BubR1 expression (p < 0.001. The results revealed PE has the potential to protect human normal colon epithelial cells from mitotic and genomic damages partially by enhancing the function of SAC.

  14. Automatic phase aberration compensation for digital holographic microscopy based on deep learning background detection.

    Science.gov (United States)

    Nguyen, Thanh; Bui, Vy; Lam, Van; Raub, Christopher B; Chang, Lin-Ching; Nehmetallah, George

    2017-06-26

    We propose a fully automatic technique to obtain aberration free quantitative phase imaging in digital holographic microscopy (DHM) based on deep learning. The traditional DHM solves the phase aberration compensation problem by manually detecting the background for quantitative measurement. This would be a drawback in real time implementation and for dynamic processes such as cell migration phenomena. A recent automatic aberration compensation approach using principle component analysis (PCA) in DHM avoids human intervention regardless of the cells' motion. However, it corrects spherical/elliptical aberration only and disregards the higher order aberrations. Traditional image segmentation techniques can be employed to spatially detect cell locations. Ideally, automatic image segmentation techniques make real time measurement possible. However, existing automatic unsupervised segmentation techniques have poor performance when applied to DHM phase images because of aberrations and speckle noise. In this paper, we propose a novel method that combines a supervised deep learning technique with convolutional neural network (CNN) and Zernike polynomial fitting (ZPF). The deep learning CNN is implemented to perform automatic background region detection that allows for ZPF to compute the self-conjugated phase to compensate for most aberrations.

  15. Relationship between chromosomal aberration of germ cells and dominant lethal mutation in male mice after low dosage of X-irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Mingdong, Wang; Baochen, Yang; Yuke, Jin [Bethune (N.) Medical Univ., Changchun, JL (China). Dept. of Gentics

    1989-01-01

    The relationship between chromosomal aberration adn dominant mutation in spermatocytes of late pachytene phase in male mice after a single X-irridiation was reported. It was found that the frequency of aberrant cells was correlative to the rate of fetal death, the latter was being about 2.5 times as high as the former. The frequency of dominant lethal mutation induced by X-irradiation is 2.1995x10{sup -3} gamete {center dot} 10 mGy.

  16. Survival and transmission of symmetrical chromosomal aberrations

    International Nuclear Information System (INIS)

    Savage, J.R.K.

    1979-01-01

    The interaction between the lesions to produce chromosomal structural changes may be either asymmetrical (A) or symmetrical (S). In A, one or more acentric fragments are always produced, and there may also be the mechanical separation problems resulting from bridges at anaphase, while S-changes never produce fragment, and pose no mechanical problem in cell division. If A and S events occur with equal frequency, it might be an indication that they are truly the alternative modes of lesion interaction. Unstimulated lymphocytes were irradiated with 2.68 Gy 250 kV X-ray, and metaphases were sampled at 50 h after the stimulation. Preparations were complete diploid cells, and any obvious second division cells were rejected. So far as dermal repair and fibroblast functions are concerned, aberration burden seems to have little consequence from the view-point of the long-term survival in vivo. Large numbers of aberrations (mainly S translocation and terminal deletion) were found in the samples taken up to 60 years after therapy. Skin biopsies were removed 1 day and 6 months after irradiation and cultured. In irradiated cells, reciprocal translocations dominated, followed by terminal deletions, then inversions, while no chromosome-type aberration was seen in the control cells. a) The relative occurrence of A : S changes, b) long-term survival in vivo, c) the possibility of in vivo repair, and d) some unusual features of translocation found in Syrian hamsters are reviewed. The relevance or importance of major S events is clearly dependent upon the cells, the tissues or the organisms in which they occur. (Yamashita, S.)

  17. Aberration-corrected transmission electron microscopy analyses of GaAs/Si interfaces in wafer-bonded multi-junction solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Häussler, Dietrich [Institute for Materials Science, Christian-Albrechts-University Kiel, Kaiserstraße 2, 24143 Kiel (Germany); Houben, Lothar [Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons, Research Centre Juelich GmbH, 52425 Juelich (Germany); Essig, Stephanie [Fraunhofer Institute for Solar Energy Systems ISE, Heidenhofstraße 2, 79110 Freiburg (Germany); Kurttepeli, Mert [Institute for Materials Science, Christian-Albrechts-University Kiel, Kaiserstraße 2, 24143 Kiel (Germany); Dimroth, Frank [Fraunhofer Institute for Solar Energy Systems ISE, Heidenhofstraße 2, 79110 Freiburg (Germany); Dunin-Borkowski, Rafal E. [Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons, Research Centre Juelich GmbH, 52425 Juelich (Germany); Jäger, Wolfgang, E-mail: wolfgang.jaeger@tf.uni-kiel.de [Institute for Materials Science, Christian-Albrechts-University Kiel, Kaiserstraße 2, 24143 Kiel (Germany)

    2013-11-15

    Aberration-corrected scanning transmission electron microscopy (STEM) and electron energy loss spectroscopy (EELS) investigations have been applied to investigate the structure and composition fluctuations near interfaces in wafer-bonded multi-junction solar cells. Multi-junction solar cells are of particular interest since efficiencies well above 40% have been obtained for concentrator solar cells which are based on III-V compound semiconductors. In this methodologically oriented investigation, we explore the potential of combining aberration-corrected high-angle annular dark-field STEM imaging (HAADF-STEM) with spectroscopic techniques, such as EELS and energy-dispersive X-ray spectroscopy (EDXS), and with high-resolution transmission electron microscopy (HR-TEM), in order to analyze the effects of fast atom beam (FAB) and ion beam bombardment (IB) activation treatments on the structure and composition of bonding interfaces of wafer-bonded solar cells on Si substrates. Investigations using STEM/EELS are able to measure quantitatively and with high precision the widths and the fluctuations in element distributions within amorphous interface layers of nanometer extensions, including those of light elements. Such measurements allow the control of the activation treatments and thus support assessing electrical conductivity phenomena connected with impurity and dopant distributions near interfaces for optimized performance of the solar cells. - Highlights: • Aberration-corrected TEM and EELS reveal structural and elemental profiles across GaAs/Si bond interfaces in wafer-bonded GaInP/GaAs/Si - multi-junction solar cells. • Fluctuations in elemental concentration in nanometer-thick amorphous interface layers, including the disrubutions of light elements, are measured using EELS. • The projected widths of the interface layers are determined on the atomic scale from STEM-HAADF measurements. • The effects of atom and ion beam activation treatment on the bonding

  18. Morphological changes in human melanoma cells following irradiation with thermal neutrons.

    Science.gov (United States)

    Barkla, D H; Allen, B J; Brown, J K; Mountford, M; Mishima, Y; Ichihashi, M

    1989-01-01

    Morphological changes in two human melanoma cell lines, MM96 and MM418, following irradiation with thermal neutrons, were studied using light and electron microscopy. The results show that the response of human malignant melanoma cells to neutron irradiation is both cell line dependent and dose dependent, and that in any given cell line, some cells are more resistant to irradiation than others, thus demonstrating heterogeneity in respect to radiosensitivity. Cells repopulating MM96 flasks after irradiation were morphologically similar to the cells of origin whereas in MM418 flasks cells differentiated into five morphologically distinct subgroups and showed increased melanization. The results also show that radiation causes distinctive morphological patterns of damage although ultrastructural changes unique to the high LET particles released from boron 10 neutron capture are yet to be identified.

  19. Morphological changes in human melanoma cells following irradiation with thermal neutrons

    International Nuclear Information System (INIS)

    Barkla, D.H.; Allen, B.J.; Brown, J.K.; Mountford, M.; Mishima, Y.; Ichihashi, M.

    1989-01-01

    Morphological changes in two human melanoma cell lines, MM96 and MM418, following irradiation with thermal neutrons, were studied using light and electron microscopy. The results show that the response of human malignant melanoma cells to neutron irradiation is both cell line dependent and dose dependent, and that in any given cell line, some cells are more resistant to irradiation than others, thus demonstrating heterogeneity in respect to radiosensitivity. Cells repopulating MM96 flasks after irradiation were morphologically similar to the cells of origin whereas in MM418 flasks cells differentiated into five morphologically distinct subgroups and showed increased melanization. The results also show that radiation causes distinctive morphological patterns of damage although ultrastructural changes unique to the high LET particles released from boron 10 neutron capture are yet to be identified

  20. Aberrant Promoter Hypermethylation of RASSF Family Members in Merkel Cell Carcinoma

    Science.gov (United States)

    Richter, Antje M.; Haag, Tanja; Walesch, Sara; Herrmann-Trost, Peter; Marsch, Wolfgang C.; Kutzner, Heinz; Helmbold, Peter; Dammann, Reinhard H.

    2013-01-01

    Merkel cell carcinoma (MCC) is one of the most aggressive cancers of the skin. RASSFs are a family of tumor suppressors that are frequently inactivated by promoter hypermethylation in various cancers. We studied CpG island promoter hypermethylation in MCC of RASSF2, RASSF5A, RASSF5C and RASSF10 by combined bisulfite restriction analysis (COBRA) in MCC samples and control tissue. We found RASSF2 to be methylated in three out of 43 (7%), RASSF5A in 17 out of 39 (44%, but also 43% in normal tissue), RASSF5C in two out of 26 (8%) and RASSF10 in 19 out of 84 (23%) of the cancer samples. No correlation between the methylation status of the analyzed RASSFs or between RASSF methylation and MCC characteristics (primary versus metastatic, Merkel cell polyoma virus infection, age, sex) was found. Our results show that RASSF2, RASSF5C and RASSF10 are aberrantly hypermethylated in MCC to a varying degree and this might contribute to Merkel cell carcinogenesis. PMID:24252868

  1. Aberrant Promoter Hypermethylation of RASSF Family Members in Merkel Cell Carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Richter, Antje M.; Haag, Tanja; Walesch, Sara [Institute for Genetics, University of Giessen, Giessen D-35392 (Germany); Herrmann-Trost, Peter [Institute of Pathology, Halle D-06097 (Germany); Marsch, Wolfgang C. [Department of Dermatology, University of Halle, Halle D-06120 (Germany); Kutzner, Heinz [DermPath, Friedrichshafen D-88048 (Germany); Helmbold, Peter [Department of Dermatology, University of Heidelberg, Heidelberg D-69120 (Germany); Dammann, Reinhard H., E-mail: Reinhard.Dammann@gen.bio.uni-giessen.de [Institute for Genetics, University of Giessen, Giessen D-35392 (Germany)

    2013-11-18

    Merkel cell carcinoma (MCC) is one of the most aggressive cancers of the skin. RASSFs are a family of tumor suppressors that are frequently inactivated by promoter hypermethylation in various cancers. We studied CpG island promoter hypermethylation in MCC of RASSF2, RASSF5A, RASSF5C and RASSF10 by combined bisulfite restriction analysis (COBRA) in MCC samples and control tissue. We found RASSF2 to be methylated in three out of 43 (7%), RASSF5A in 17 out of 39 (44%, but also 43% in normal tissue), RASSF5C in two out of 26 (8%) and RASSF10 in 19 out of 84 (23%) of the cancer samples. No correlation between the methylation status of the analyzed RASSFs or between RASSF methylation and MCC characteristics (primary versus metastatic, Merkel cell polyoma virus infection, age, sex) was found. Our results show that RASSF2, RASSF5C and RASSF10 are aberrantly hypermethylated in MCC to a varying degree and this might contribute to Merkel cell carcinogenesis.

  2. Aberrant Promoter Hypermethylation of RASSF Family Members in Merkel Cell Carcinoma

    International Nuclear Information System (INIS)

    Richter, Antje M.; Haag, Tanja; Walesch, Sara; Herrmann-Trost, Peter; Marsch, Wolfgang C.; Kutzner, Heinz; Helmbold, Peter; Dammann, Reinhard H.

    2013-01-01

    Merkel cell carcinoma (MCC) is one of the most aggressive cancers of the skin. RASSFs are a family of tumor suppressors that are frequently inactivated by promoter hypermethylation in various cancers. We studied CpG island promoter hypermethylation in MCC of RASSF2, RASSF5A, RASSF5C and RASSF10 by combined bisulfite restriction analysis (COBRA) in MCC samples and control tissue. We found RASSF2 to be methylated in three out of 43 (7%), RASSF5A in 17 out of 39 (44%, but also 43% in normal tissue), RASSF5C in two out of 26 (8%) and RASSF10 in 19 out of 84 (23%) of the cancer samples. No correlation between the methylation status of the analyzed RASSFs or between RASSF methylation and MCC characteristics (primary versus metastatic, Merkel cell polyoma virus infection, age, sex) was found. Our results show that RASSF2, RASSF5C and RASSF10 are aberrantly hypermethylated in MCC to a varying degree and this might contribute to Merkel cell carcinogenesis

  3. Incidence of chromosomal aberrations and micronuclei in cave tour guides.

    Science.gov (United States)

    Bilban, M; Bilban-Jakopin, C; Vrhovec, S

    2001-01-01

    An analysis of structural chromosomal aberrations (SCA) and micronucleus tests (MN) were performed in 38 subjects, cave tour guides and in appropriate control group. The dominant type of chromosomal aberrations in tourist guides were chromosomal breaks (0.013 per cell) and acentric fragments (0.011 per cell). In the control group, these aberrations were present up to 0.008 on cells. Considering the analysed cells of the guides in total (33,556), the incidence of dicentric and rings range is below 0.0008 on cells, even though three dicentric and ring chromosoms were found already in the first 1000 in vitro metaphases of some guides. Only 0.0003 dicentrics and neither other translocations were found in control group (ambiental exposure). The incidence of micronuclei in cytokinesis blocked lymphocytes ranged from 12-32 per 500 CB cells in the cave tour guides and from 4-11 per 500 CB cells in control group. Measurements of radon and its daughters were performed at different locations in the cave. Annual doses from 40-60 mSv were estimated per 2000 work hours for cave guides. The changes found in the genome of somatic cells may be related to the exposure doses of radon and its daughters, although smoking should not be ignored.

  4. A correlative study on the frequencies of radiation-induced chromosome aberrations in somatic and germ cells of mammals

    International Nuclear Information System (INIS)

    Buul, P.P.W. van

    1976-01-01

    A series of investigations on the correlation between the frequencies of radiation-induced chromosome aberrations in somatic and germ cells of mouse and rhesus monkey is described. In the mouse the induction of reciprocal translocations in bone-marrow cells was compared with that in spermatogonia (as scored in the descending spermatocytes). In the rhesus monkey frequencies of radiation-induced chromosome aberrations in spermatogonia and peripheral blood lymphocytes were studied. Furthermore the effect of multigeneration irradiation (69 generations with 200 rads X-rays) on the sensitivity for translocation induction in spermatogonia of male mice was studied. Frequencies of dicentric chromosomes and chromosomal deletions in cultured peripheral blood lymphocytes of 5 different types of mice were determined following in vitro irradiation with doses of 100 and/or 200 rad X-rays. To obtain more insight into the processes underlying translocation induction in spermatogonia of the mouse, fractionation experiments were conducted

  5. Studies on the chromosome aberrations and isozyme patterns in cancer patients treated with therapeutic radiation

    International Nuclear Information System (INIS)

    Kim, J.J.

    1979-09-01

    The chromosome aberration yield of peripheral blood lymphocytes obtained from cancer patients who had been locally irradiated with therapeutic radiation seems to be largely influenced by total dose, loss of cell with aberration, irradiation interval and dose per day. When treatment period from 7 to 21 days and total dose range from 1000 to 3000 rad, the aberration yield is considered to change according to total dose and accumulated effect by continued existence of damaged chromosomes. However, loss of cell with aberration might play important role in chromosome aberration yield of peripheral blood lymphocytes obtained from those who had received radiation above 3000 rad. In case that other conditions make little difference, dose per day and irradiation interval are looked upon as important factors in aberration yield of lymphocyte chromosomes

  6. Cancer biomarkers defined by autoantibody signatures to aberrant O-glycopeptide epitopes

    DEFF Research Database (Denmark)

    Wandall, Hans H; Blixt, Ola; Tarp, Mads A

    2010-01-01

    Autoantibodies to cancer antigens hold promise as biomarkers for early detection of cancer. Proteins that are aberrantly processed in cancer cells are likely to present autoantibody targets. The extracellular mucin MUC1 is overexpressed and aberrantly glycosylated in many cancers; thus, we evalua...

  7. Impact of types of lymphocyte chromosomal aberrations on human cancer risk

    DEFF Research Database (Denmark)

    Hagmar, Lars; Strömberg, Ulf; Bonassi, Stefano

    2004-01-01

    The frequency of cells with structural chromosomal aberrations (CAs) in peripheral blood lymphocytes is the first genotoxicity biomarker that has shown an association with cancer risk. CAs are usually divided into chromosome-type (CSAs) and chromatid-type aberrations (CTAs), with different mechan...

  8. Organic Based Solar Cells with Morphology Control

    DEFF Research Database (Denmark)

    Andersen, Thomas Rieks

    The field of organic solar cells has in the last years gone through an impressive development with efficiencies reported up to 12 %. For organic solar cells to take the leap from primarily being a laboratory scale technology to being utilized as renewable energy source, several issues need...... Microscopy and as solar cells in a blend with PCBM. It was concluded that these particles did not show a potential large enough for continuous work due to a high material loss and low efficiency when applied in solar cells. The second method to achieve was preparation of pre-arranged morphology organic...... nanoparticles consisting of a blend of donor and acceptor in an aqueous dispersion, thereby addressing two of the issues remaining in the field of organic solar cells. This approach was used on six different polymers, which all had the ability to prepare aqueous nanoparticle inks. The morphology...

  9. The relationship between radiation load and chromosome aberrations in permanent staff of nuclear facilities

    International Nuclear Information System (INIS)

    Heubisch, W.

    1982-01-01

    Employees of nuclear power stations can be exposed to an increased risk. Using chromosome analytical methods an attempt is made to establish a dose-response relationship for relatively low radiation dose levels. Chromosome aberrations in lymphocytes at the stage of mitosis were classified according to morphological structure and gaps. Correlation and regression analysis produced a positive relationship compared to the previous year's dose and aberrations, whereas no dependence could be proved for the actual age dose and age. (DG) [de

  10. [Effects of oil-refining microbes (genus Acinetobacter) on cytogenetical structures of human lymphocytes in cell cultures].

    Science.gov (United States)

    Il'inskikh, N N; Il'inskikh, E N; Il'inskikh, I N

    2012-01-01

    The objective of this study was to assess ability of oil-refining bacteria Acinetobacter calcoaceticus and A. valentis to induce karyopathological abnormalities and chromosomal aberrations in human lymphocyte cultures. It was found that the cultures infected with A. calcoaceticus showed significantly high frequencies of cytogenetical effects and chromosomal aberrant cells as compared to the intact cultures and cultures infected with A. valentis. The most of chromosomal aberrations, mainly chromatid aberrations, were located in 1 and 2 chromosomes. Moreover, the aberrations were detected in some specific chromosome areas. Abnormalities of mitotic cell division and nucleus morphology were determined in lymphocyte cultures infected with A. calcoaceticus. There were found significantly high frequencies of cells with micronuclei, nucleus protrusions, anaphase or metaphase chromosome and chromosomal fragments lagging as well as multipolar and C-mitoses. Thus, the oil-refining bacteria A. calcoaceticus in contrast to A. valentis demonstrated strong genotoxic effects in human lymphocyte cultures in vitro.

  11. Molecular mechanisms involved in the production of chromosomal aberrations. I

    International Nuclear Information System (INIS)

    Natarajan, A.T.; Obe, G.

    1978-01-01

    Chinese hamster ovary cells (CHO) were X-irradiated in G2 stage of the cell cycle and immediately treated, in the presence of inactivated Sendai virus, with Neurospora endonuclease (E.C. 3.1.4.), an enzyme which is specific for cleaving single-stranded DNA. With this treatment, the frequencies of all types of chromosome aberrations increased when compared to X-irradiated controls. These results are interpreted as due to the conversion of some of the X-ray induced single-stranded DNA breaks into double-strand breaks by this enzyme. Similar enhancement due to this enzyme was found following treatment with methyl methanesulfonate (MMS) and bleomycin, but not following UV and mitomycin C. Addition of Micrococcus endonuclease and Neurospora endonuclease to the cells did not alter the frequencies of aberrations induced by UV. The introduction of enzymes with specific DNA-repair function offers possibilities to probe into the molecular events involved in the formation of structural chromosome aberrations induced by different classes of physical and chemical mutagens. (Auth.)

  12. Aberration-free FTIR spectroscopic imaging of live cells in microfluidic devices.

    Science.gov (United States)

    Chan, K L Andrew; Kazarian, Sergei G

    2013-07-21

    The label-free, non-destructive chemical analysis offered by FTIR spectroscopic imaging is a very attractive and potentially powerful tool for studies of live biological cells. FTIR imaging of live cells is a challenging task, due to the fact that cells are cultured in an aqueous environment. While the synchrotron facility has proven to be a valuable tool for FTIR microspectroscopic studies of single live cells, we have demonstrated that high quality infrared spectra of single live cells using an ordinary Globar source can also be obtained by adding a pair of lenses to a common transmission liquid cell. The lenses, when placed on the transmission cell window, form pseudo hemispheres which removes the refraction of light and hence improve the imaging and spectral quality of the obtained data. This study demonstrates that infrared spectra of single live cells can be obtained without the focus shifting effect at different wavenumbers, caused by the chromatic aberration. Spectra of the single cells have confirmed that the measured spectral region remains in focus across the whole range, while spectra of the single cells measured without the lenses have shown some erroneous features as a result of the shift of focus. It has also been demonstrated that the addition of lenses can be applied to the imaging of cells in microfabricated devices. We have shown that it was not possible to obtain a focused image of an isolated cell in a droplet of DPBS in oil unless the lenses are applied. The use of the approach described herein allows for well focused images of single cells in DPBS droplets to be obtained.

  13. Effects of long-term radiation exposure on chromosomal aberrations in radiological technologists

    International Nuclear Information System (INIS)

    Kumagai, Etsuko; Onomichi, Mitsukazu; Tanaka, Ryuji; Kumagai, Takashi; Sawada, Shozo.

    1990-01-01

    Chromosomal aberrations in the lymphocytes of radiation technologists (RT) were analyzed by the trypsin G-banding method to study the late effects of long-term exposure to low doses of radiation. Structural aberrations were identified in 384 (2.5%) of 15442 cells analyzed from 53 RT as compared to 177 (1.6%) of 11136 cells from 36 healthy controls. Stable aberrations were the most frequent in both groups and were either translocations or deletions. Unstable aberrations were mainly acentric fragments in both groups. The frequency of translocations and acentric fragments was significantly higher in the RT than in the controls and was highest in the RT over 50 years. The highest frequency observed in the >50 age group was attributed to the unknown for cumulative dose prior to introduction of film badges. Frequency of chromosomal aberrations correlated with the estimated dose from the film badges and years of experience of each RT based on the equation y=0.22+0.37D+4.35D 2 , where y is overall frequency of chromosomal aberrations and D is the estimated radiation dose in Sv. (author)

  14. Determination of aberration center of Ronchigram for automated aberration correctors in scanning transmission electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Sannomiya, Takumi, E-mail: sannomiya@mtl.titech.ac.jp [Tokyo Institute of Technology, Ookayama, Tokyo (Japan); Sawada, Hidetaka; Nakamichi, Tomohiro; Hosokawa, Fumio [JEOL Limited, Akishima, Tokyo (Japan); Nakamura, Yoshio; Tanishiro, Yasumasa; Takayanagi, Kunio [Tokyo Institute of Technology, Ookayama, Tokyo (Japan)

    2013-12-15

    A generic method to determine the aberration center is established, which can be utilized for aberration calculation and axis alignment for aberration corrected electron microscopes. In this method, decentering induced secondary aberrations from inherent primary aberrations are minimized to find the appropriate axis center. The fitness function to find the optimal decentering vector for the axis was defined as a sum of decentering induced secondary aberrations with properly distributed weight values according to the aberration order. Since the appropriate decentering vector is determined from the aberration values calculated at an arbitrary center axis, only one aberration measurement is in principle required to find the center, resulting in /very fast center search. This approach was tested for the Ronchigram based aberration calculation method for aberration corrected scanning transmission electron microscopy. Both in simulation and in experiments, the center search was confirmed to work well although the convergence to find the best axis becomes slower with larger primary aberrations. Such aberration center determination is expected to fully automatize the aberration correction procedures, which used to require pre-alignment of experienced users. This approach is also applicable to automated aperture positioning. - Highlights: • A generic method to determine the aberration center is established for (S)TEM. • Decentering induced secondary aberrations are utilized to find the center. • The method is tested on Ronchigrams both in simulation and experiment. • Proper weighting of the aberration gives a good convergence. • Larger primary aberration results in a slower convergence.

  15. X-ray- and mitomycin C (MMC)-induced chromosome aberrations in spermiogenic germ cells and the repair capacity of mouse eggs for the X-ray and MMC damage

    International Nuclear Information System (INIS)

    Matsuda, Yoichi; Utsugi-Takeuchi, Toyoko; Tobari, Izuo; Seki, Naohiko; Chiba Univ.

    1989-01-01

    Chromosome aberrations induced at the first-cleavage metaphase of eggs fertilized with sperm recovered from spermiogenic cells which had been X-irradiated and treated with mitomycin C (MMC) at various stages were observed using in vitro fertilization and embryo culture technique. Furthermore, the repair capacity of the fertilized eggs for X-ray- and MMC-induced DNA damage which was induced in the spermiogenic cells and retained in the sperm until fertilization was investigated by analysis of the potentiation effects of 2 repair inhibitors, 3-aminobenzamide (3AB) and caffeine on the yield of chromosome aberrations. The frequency of chromosome aberrations observed in the eggs fertilized with sperm recovered from speratozoa to late spermatid stage (0-8 days after X-irradiation). The induced chromosome aberrations followed by chromosome exchange through all the spermiogenic stages. The results suggest that the large amount of DNA lesions induced in spermiogenic cells by X-rays and MMC persist as reparable damage until sperm maturation and are effectively repaired in the cytoplasm of the fertilized eggs. (author). 29 refs.; 2 figs.; 2 tabs

  16. Variations in cell morphology in the canine cruciate ligament complex.

    Science.gov (United States)

    Smith, K D; Vaughan-Thomas, A; Spiller, D G; Clegg, P D; Innes, J F; Comerford, E J

    2012-08-01

    Cell morphology may reflect the mechanical environment of tissues and influence tissue physiology and response to injury. Normal cruciate ligaments (CLs) from disease-free stifle joints were harvested from dog breeds with a high (Labrador retriever) and low (Greyhound) risk of cranial cruciate ligament (CCL) rupture. Antibodies against the cytoskeletal components vimentin and alpha tubulin were used to analyse cell morphology; nuclei were stained with 4',6-diamidino-2-phenylindole, and images were collected using conventional and confocal microscopy. Both cranial and caudal CLs contained cells of heterogenous morphologies. Cells were arranged between collagen bundles and frequently had cytoplasmic processes. Some of these processes were long (type A cells), others were shorter, thicker and more branched (type B cells), and some had no processes (type C cells). Processes were frequently shown to contact other cells, extending longitudinally and transversely through the CLs. Cells with longer processes had fusiform nuclei, and those with no processes had rounded nuclei and were more frequent in the mid-substance of both CLs. Cells with long processes were more commonly noted in the CLs of the Greyhound. As contact between cells may facilitate direct communication, variances in cell morphology between breeds at a differing risk of CCL rupture may reflect differences in CL physiology. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. A high frequency of induction of chromosome aberrations in the bone marrow cells of LEC strain rats by X-irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Okui, Toyo (Hokkaido Inst. of Public Health, Sapporo (Japan)); Hayashi, Masanobu; Watanabe, Tomomasa; Namioka, Shigeo (Dept. of Lab. Animal Science, Hokkaido Univ., Sapporo (Japan)); Endoh, Daiji; Sato, Fumiaki (Dept. of Radiation Biology, Faculty of Veterinary Medicine, Hokkaido Univ., Sapporo (Japan)); Kasai, Noriyuki (Inst. for Animal Experimentation, Hokkaido Univ., Sapporo (Japan))

    1994-08-01

    LEC strain rats, which have been known to develop hereditarily spontaneous fulminant hepatitis 4 to 5 months after birth, are highly sensitive to whole-body X-irradiation when compared to WKAH strain rats. The present results showed that the frequencies of all types of chromosome aberrations induced by X-irradiation in the bone marrow cells of LEC rats were approximately 2- to 3-fold higher than those of WKAH rats, though no significant difference was observed in the frequency of spontaneous chromosome aberrations between LEC and WKAH rats.

  18. Chromosomal aberrations induced by caffeine, 3H-thymidine and by X-rays in two L5178Y sublines of different radiosensitivity. Part 2. Effect of 2 mM caffeine on the frequency of chromosomal aberrations induced by X-radiation

    International Nuclear Information System (INIS)

    Bocian, E.; Bouzyk, E.; Rosiek, O.; Ziemba-Zoltowska, B.

    1982-01-01

    The effect of 2 mM caffeine on the frequency of X-ray induced chromatid aberrations in two sublines of L5178Y cells with different sensitivity to X-rays was examined. Cells were irradiated with 1 Gy of X-rays and treated with caffeine for 12 h after irradiation. The frequency of aberrations was estimated at time intervals from 5 to 48 h after irradiation. Caffeine increased the frequency of cells with numerous aberrations produced by X radiation in both sublines. Its potentiating effect was greater in the radiation-resistant subline L5178Y-R than in the radiation-sensitive one L5178Y-S. In caffeine-treated L5178Y-S cells chromosomal aberrations were revealed earlier than in the untreated cells. (author)

  19. Induction of chromosomal aberrations by neutron capture reactions

    International Nuclear Information System (INIS)

    Ikushima, Takaji

    1993-01-01

    Boron neutron capture reaction (B-NCR) has been practiced in the treatment of malignancies of the central nervous system and melanoma using a thermal neutron beam from the KUR. Because of the very large neutron absorption cross-section and high kinetic energy released, gadolinium (Gd-157) has been expected to be an another promising element for neutron capture therapy. The dose-response relationship was determined for the induction of chromosomal aberrations by neutron capture reactions by B-10 and Gd-157 in cultured mammalian cells. The cells were exposed to thermal neutron beam with and without B-10 enriched (97 atom %) boric acid or Gd-DTPA, and chromosome-type aberrations were analysed in the first metaphases following irradiation. The frequency of dicentrics and rings increased linearly with neutron fluence either in the presence or absence of B-10 boric acid, while the yield of chromosomal aberrations induced by Gd-NCR increased in a linear quadratic fashion as a function of dose as in γ-rayed cells. Survival curves for the cells exposed to thermal neutrons showed no shoulder irrespective of the loading of B-10, but Gd-NCR produced the survival curve with a small shoulder. The differential chromosomal response to B-NCR and Gd-NCR might reflect the difference in radiation quality generated from the two types of thermal neutron capture reaction. (J.P.N.)

  20. Caffeine-mediated release of alpha-radiation-induced G2 arrest increases the yield of chromosome aberrations

    International Nuclear Information System (INIS)

    Luecke-Huhle, C.; Hieber, L.; Wegner, R.D.

    1983-01-01

    Severe and partly irreversible G2 arrest caused by americium-241 alpha-particles in Chinese hamster V79 cells acted as a competing process to the yield of detectable aberrant mitoses at metaphase. With increasing dose of alpha-radiation an increasing fraction of cells was irreversibly arrested in G2 with the consequence of interphase death before the first post-irradiation mitosis. This irreversible G2 arrest (demonstrated by flow cytofluorometry and mitotic indices) could be overcome by adding caffeine 8 hours after irradiation, the time point of maximum G2 arrest (80-90 per cent of all cells). Within 3.5 hours the number of aberrant mitoses increased by this treatment from 54 to 96 per cent and from 65 to 99.9 per cent for doses of 1.75 and 4.38 Gy of alpha-particles, respectively. The aberration frequency per mitotic cell, scored as chromatid and isochromatid breaks, rings, interchanges and dicentrics increased by a factor of about 3 after releasing G2 arrested cells. The frequency distribution of aberrations per cell revealed that, after 4.38 Gy, 58 per cent of the formerly G2-arrested cells had more than five aberrations per cell compared to only 8 per cent without the interaction of caffeine. (author)

  1. Effects of turmeric and its active principle, curcumin, on bleomycin-induced chromosome aberrations in Chinese hamster ovary cells

    OpenAIRE

    Araújo, Maria Cristina P.; Dias, Francisca da Luz; Kronka, Sergio N. [UNESP; Takahashi, Catarina S.

    1999-01-01

    Naturally occurring antioxidants have been extensively studied for their capacity to protect organisms and cells from oxidative damage. Many plant constituents including turmeric and curcumin appear to be potent antimutagens and antioxidants. The effects of turmeric and curcumin on chromosomal aberration frequencies induced by the radiomimetic agent bleomycin (BLM) were investigated in Chinese hamster ovary (CHO) cells. Three concentrations of each drug, turmeric (100, 250 and 500 mg/ml) and ...

  2. Morphological classification of plant cell deaths.

    Science.gov (United States)

    van Doorn, W G; Beers, E P; Dangl, J L; Franklin-Tong, V E; Gallois, P; Hara-Nishimura, I; Jones, A M; Kawai-Yamada, M; Lam, E; Mundy, J; Mur, L A J; Petersen, M; Smertenko, A; Taliansky, M; Van Breusegem, F; Wolpert, T; Woltering, E; Zhivotovsky, B; Bozhkov, P V

    2011-08-01

    Programmed cell death (PCD) is an integral part of plant development and of responses to abiotic stress or pathogens. Although the morphology of plant PCD is, in some cases, well characterised and molecular mechanisms controlling plant PCD are beginning to emerge, there is still confusion about the classification of PCD in plants. Here we suggest a classification based on morphological criteria. According to this classification, the use of the term 'apoptosis' is not justified in plants, but at least two classes of PCD can be distinguished: vacuolar cell death and necrosis. During vacuolar cell death, the cell contents are removed by a combination of autophagy-like process and release of hydrolases from collapsed lytic vacuoles. Necrosis is characterised by early rupture of the plasma membrane, shrinkage of the protoplast and absence of vacuolar cell death features. Vacuolar cell death is common during tissue and organ formation and elimination, whereas necrosis is typically found under abiotic stress. Some examples of plant PCD cannot be ascribed to either major class and are therefore classified as separate modalities. These are PCD associated with the hypersensitive response to biotrophic pathogens, which can express features of both necrosis and vacuolar cell death, PCD in starchy cereal endosperm and during self-incompatibility. The present classification is not static, but will be subject to further revision, especially when specific biochemical pathways are better defined.

  3. Morphological evolution of InAs/InP quantum wires through aberration-corrected scanning transmission electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Sales, D L; Molina, S I [Departamento de Ciencia de los Materiales e I. M. y Q. I., Universidad de Cadiz, Campus Rio San Pedro, E-11510 Puerto Real, Cadiz (Spain); Varela, M; Pennycook, S J [Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Galindo, P L [Departamento de Lenguajes y Sistemas Informaticos, Universidad de Cadiz, Campus Rio San Pedro, E-11510 Puerto Real, Cadiz (Spain); Gonzalez, L; Gonzalez, Y [Instituto de Microelectronica de Madrid (CNM, CSIC), Isaac Newton 8, E-28760 Tres Cantos, Madrid (Spain); Fuster, D, E-mail: david.sales@uca.es [UMDO - Unidad Asociada al CSIC-IMM, Instituto de Ciencia de Materiales, Universidad de Valencia, PO Box 22085, 4607 Valencia (Spain)

    2010-08-13

    Evolution of the size, shape and composition of self-assembled InAs/InP quantum wires through the Stranski-Krastanov transition has been determined by aberration-corrected Z-contrast imaging. High resolution compositional maps of the wires in the initial, intermediate and final formation stages are presented. (001) is the main facet at their very initial stage of formation, which is gradually reduced in favour of {l_brace}114{r_brace} or {l_brace}118{r_brace}, ending with the formation of mature quantum wires with {l_brace}114{r_brace} facets. Significant changes in wire dimensions are measured when varying slightly the amount of InAs deposited. These results are used as input parameters to build three-dimensional models that allow calculation of the strain energy during the quantum wire formation process. The observed morphological evolution is explained in terms of the calculated elastic energy changes at the growth front. Regions of the wetting layer close to the nanostructure perimeters have higher strain energy, causing migration of As atoms towards the quantum wire terraces, where the structure is partially relaxed; the thickness of the wetting layer is reduced in these zones and the island height increases until the (001) facet is removed.

  4. Chromosome aberrations induced by radiation. With special reference to possible relation between chromosome aberrations and carcinogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Kamada, N [Hiroshima Univ. (Japan). Research Inst. for Nuclear Medicine and Biology

    1980-02-01

    Chromosome aberration seems to be one of the most conspicuous residual abnormalities recognizable in radiation-exposed persons for many years after exposure. Knowledge of the biological significance of these abnormalities seems to be necessary for understanding of the effect of radiation on humans, especially in relation to possible leukemic development. Cytogenetic studies were performed on the bone marrow cells, T and B lymphocytes, and fibroblasts in atomic bomb-survivors who were in apparent good health (105 cases), atomic bomb exposed patients who had prolonged periods of blood disorders which terminated in acute leukemia (8 cases), and who had no such abnormalities (6 cases). All patients with chronic myelocytic leukemia (CML) and a history of atomic bomb exposure showed Philadelphia chromosome, a characteristic chromosome abnormality for CML. The persistent chromosome aberrations of bone marrow cells, T and B lymphocytes found among the atomic bomb survivors with or without blood disorders may give some clue to solve the problems of carcinogenesis.

  5. Cell-stage-specific enhancement by caffeine of the frequency of chromatid aberrations induced by X-rays in neutral ganglia of Drosophila melanogaster

    International Nuclear Information System (INIS)

    De Marco, A.; Polani, S.

    1981-01-01

    Caffeine (10 -2 M) induced a high level of chromatid aberrations in neural ganglia of third-instar larvae of Drosophila melanogaster only when it was added to cells in late G 2 and mitotic prophase. No aberrations were observed after treatment in late S-middle G 2 or C-mitosis. We observed that, in these stages, caffeine strongly increased X-ray-induced damage (500 R). This potentiation was quantitatively similar. But it involved all types of aberration after treatment in C-mitosis, and essentially isochromatid deletions and chromatid exhanges after treatment in S-G 2 . Some hypotheses are put forth to explain the possible mechanism of action of caffeine in the potentiation of X-ray-induced damage. (orig.)

  6. Role of DNA polymerase α in chromosomal aberration production by ionizing radiation

    International Nuclear Information System (INIS)

    Bender, M.A.

    1983-01-01

    Aphidicolin is a tetracyclic diterpinoid fungal antibiotic which inhibits DNA synthesis in eukaryotic cells by interfering specifically with DNA polymerase α, apparently by binding to and inactivating the DNA-polymerase α complex. We have shown that aphidicolin, like other inhibitors of DNA synthesis, both induces chromosomal aberrations in human peripheral lymphocytes, and, as a post-treatment, interacts synergistically with x rays to produce greatly enhanced aberration yields. The present experiments explore the effects of aphidicolin in human lymphocytes in the post-DNA-synthetic G 2 phase of the cell cycle. These experiments utilized labeling with tritiated thymidine to positively identify cells in the S phase at the time of treatment, and used serial colcemid collections and fixations to determine aberration yields over as much of the G 2 phase as feasible. Because DNA polymerase α is the only DNA synthetic or repair enzyme known to be affected by aphidicolin, we infer that this enzyme is directly involved in the repair of DNA lesions which can result in visible chromosomal aberrations. (DT)

  7. Chromatin dynamics during cell cycle mediate conversion of DNA damage into chromatid breaks and affect formation of chromosomal aberrations: Biological and clinical significance

    International Nuclear Information System (INIS)

    Terzoudi, Georgia I.; Hatzi, Vasiliki I.; Donta-Bakoyianni, Catherine; Pantelias, Gabriel E.

    2011-01-01

    The formation of diverse chromosomal aberrations following irradiation and the variability in radiosensitivity at different cell-cycle stages remain a long standing controversy, probably because most of the studies have focused on elucidating the enzymatic mechanisms involved using simple DNA substrates. Yet, recognition, processing and repair of DNA damage occur within the nucleoprotein complex of chromatin which is dynamic in nature, capable of rapid unfolding, disassembling, assembling and refolding. The present work reviews experimental work designed to investigate the impact of chromatin dynamics and chromosome conformation changes during cell-cycle in the formation of chromosomal aberrations. Using conventional cytogenetics and premature chromosome condensation to visualize interphase chromatin, the data presented support the hypothesis that chromatin dynamic changes during cell-cycle are important determinants in the conversion of sub-microscopic DNA lesions into chromatid breaks. Consequently, the type and yield of radiation-induced chromosomal aberrations at a given cell-cycle-stage depends on the combined effect of DNA repair processes and chromatin dynamics, which is cell-cycle-regulated and subject to up- or down-regulation following radiation exposure or genetic alterations. This new hypothesis is used to explain the variability in radiosensitivity observed at various cell-cycle-stages, among mutant cells and cells of different origin, or among different individuals, and to revisit unresolved issues and unanswered questions. In addition, it is used to better understand hypersensitivity of AT cells and to provide an improved predictive G2-assay for evaluating radiosensitivity at individual level. Finally, experimental data at single cell level obtained using hybrid cells suggest that the proposed hypothesis applies only to the irradiated component of the hybrid.

  8. MORPHOLOGY AND CELL BIOMASS OF SPONGE Aaptos aaptos AND

    Directory of Open Access Journals (Sweden)

    Meutia Samira Ismet

    2011-12-01

    Full Text Available Aaptos aaptos and Petrosia sp. sponges are known for their ability to produce potential marine bioactive compound. As a metazoan animal with simple body structure, the morphology and it association with symbiont-bacteria could influence their bioactive compound both type and activity, as much as their habitat adaptation. In order to determine morphology and its cell biomass of Aaptos aaptos dan Petrosia sp., samples were taken from the West Pari Island, at 7 m depth. Preserved samples (in 4% formaldehyde were examined using a histological mounting and centrifugation method to separate the cells fraction of sponge’s tissues. A. aaptos sponge has a soft body structure with 55.9% skeleton-forming fraction, 14.2% sponge cell fraction and 29.9% bacteria fraction. Meanwhile, Petrosia sp. sponge has a rigid body with dominant skeleton-forming fraction (68.6%, and lesser sponge cell and bacteria associated (19.7% and 11.7%, respectively.Keywords: A. aaptos, Petrosia sp, morphology, cell biomass

  9. Biological radiation dose estimation by chromosomal aberrations analysis in human peripheral blood (dose-effect curve)

    International Nuclear Information System (INIS)

    Al-Achkar, W.

    2001-09-01

    In order to draw a dose-effect curve, experimentally gamma ray induced chromosomal aberrations in human peripheral lymphocytes from eight healthy people were studied. Samples from 4 males and 4 females were irradiated in tubes with 0.15, 0.25, 0.5, 1, 1.5, 2, 2.5 gray of gamma ray (Co 60 at dose rate 0.3 Gy/min). Irradiated and control samples were incubated in 37 centigrade for 48 hours cell cultures. Cell cultures then were stopped and metaphases spread, Giemsa stained to score the induced chromosomal aberrations. Chromosomal aberrations from 67888 metaphases were scored. Curves from the total number of dicentrics, dicentrics + rings and total numbers of breaks in cell for each individual or for all people were drawn. An increase of all chromosomal aberrations types with the elevation of the doses was observed. The yield of chromosome aberrations is related to the dose used. These curves give a quick useful estimation of the accidentally radiation exposure. (author)

  10. Relationship of DNA repair to chromosome aberrations, sister-chromatid exchanges and survival during liquid-holding recovery in X-irradiated mammalian cells

    International Nuclear Information System (INIS)

    Fornace, A.J. Jr.; Nagasawa, H.; Little, J.B.

    1980-01-01

    The repair of X-ray-induced DNA single strand breaks and DNA-protein cross-links was investigated in stationary phase, contact-inhibited mouse cells by the alkaline-elution technique. Approx. 90% of X-ray-induced single strand breaks were rejoined during the first hour of repair, whereas most of the remaining breaks were rejoined more slowly during the next 5 h. At early repair times, the number of residual non-rejoined sungle strand breaks was approx. proportional to the X-ray dose. DNA-protein cross-links were removed at a slower rate (Tsub(1/2) approx. 10-12 h). Cells were held in stationary growth for various periods of time after irradiation before subculture at low density to score for colony survival (potentially lethal damage repair), chromosome aberrations in the first mitosis, and sister-chromatid exchanges in the second mitosis. Both cell killing and the frequency of chromosome aberrations decreased during the first several hours of recovery, reaching a minimum level by 6 h; this decrease correlated temporally with the repair of the slowly rejoining DNA-strand breaks. Relatively few sister-chromatid exchanges were observed when the cells were subcultured immediately after X-ray. The exchange frequency rose to maximum levels after a 4-h recovery interval, and returned to control levels after 12 h of recovery. The possible relationship of DNA repair to these changes in survival, chromosome aberrations, and sister-chromatid exchanges during liquid-holding recovery is discussed. (orig.)

  11. Dysfunction in gap junction intercellular communication induces aberrant behavior of the inner cell mass and frequent collapses of expanded blastocysts in mouse embryos.

    Science.gov (United States)

    Togashi, Kazue; Kumagai, Jin; Sato, Emiko; Shirasawa, Hiromitsu; Shimoda, Yuki; Makino, Kenichi; Sato, Wataru; Kumazawa, Yukiyo; Omori, Yasufumi; Terada, Yukihiro

    2015-06-01

    We investigated the role of gap junctions (GJs) in embryological differentiation, and observed the morphological behavior of the inner cell mass (ICM) by time-lapse movie observation (TLM) with gap junction inhibitors (GJis). ICR mouse embryos were exposed to two types of GJis in CZB medium: oleamide (0 to 50 μM) and 1-heptanol (0 to 10 mM). We compared the rate of blastocyst formation at embryonic day 4.5 (E4.5) with E5.5. We also observed and evaluated the times from the second cleavage to each embryonic developing stage by TLM. We investigated embryonic distribution of DNA, Nanog protein, and Connexin 43 protein with immunofluorescent staining. In the comparison of E4.5 with E5.5, inhibition of gap junction intercellular communication (GJIC) delayed embryonic blastocyst formation. The times from the second cleavage to blastocyst formation were significantly extended in the GJi-treated embryos (control vs with oleamide, 2224 ± 179 min vs 2354 ± 278 min, p = 0.013). Morphological differences were traced in control versus GJi-treated embryos until the hatching stage. Oleamide induced frequent severe collapses of expanded blastocysts (77.4 % versus 26.3 %, p = 0.0001) and aberrant ICM divisions connected to sticky strands (74.3 % versus 5.3 %, p = 0.0001). Immunofluorescent staining indicated Nanog-positive cells were distributed in each divided ICM. GJIC plays an important role in blastocyst formation, collapses of expanded blastocysts, and the ICM construction in mouse embryos.

  12. Phytochemicals attenuating aberrant activation of β-catenin in cancer cells.

    Directory of Open Access Journals (Sweden)

    Dan Wang

    Full Text Available Phytochemicals are a rich source of chemoprevention agents but their effects on modulating the Wnt/β-catenin signaling pathway have remained largely uninvestigated. Aberrantly activated Wnt signaling can result in the abnormal stabilization of β-catenin, a key causative step in a broad spectrum of cancers. Here we report the modulation of lithium chloride-activated canonical Wnt/β-catenin signaling by phytochemicals that have antioxidant, anti-inflammatory or chemopreventive properties. The compounds were first screened with a cervical cancer-derived stable Wnt signaling reporter HeLa cell line. Positive hits were subsequently evaluated for β-catenin degradation, suppression of β-catenin nuclear localization and down-regulation of downstream oncogenic targets of Wnt/β-catenin pathway. Our study shows a novel degradation path of β-catenin protein in HeLa cells by Avenanthramide 2p (a polyphenol and Triptolide (a diterpene triepoxide, respectively from oats and a Chinese medicinal plant. The findings present Avenanthramide 2p as a potential chemopreventive dietary compound that merits further study using in vivo models of cancers; they also provide a new perspective on the mechanism of action of Triptolide.

  13. The morphology of durability issues in PEM fuel cells

    International Nuclear Information System (INIS)

    Kundu, S.; Fowler, M.; Simon, L.; Grot, S.

    2004-01-01

    'Full text:' The work presented here examines durability issues in PEM fuel cell materials by examining material morphology and linking morphological features to performance. Scanning electron microscope (SEM) techniques have been able to identify a variety of features on the catalyst layer, each with their own implication to the overall performance and durability of the membrane electrode assembly (MEA). These features include cracking, delamination of the catalyst layer, catalyst clustering, electrolyte clustering, and thickness variations. Links between several of these features and catalyst dispersion conditions was also examined, showing that how the material was manufactured influences the type of morphological features present. The SEM has also been used with accelerated aging techniques to closely examine aging of the gas diffusion layer (GDL). It can be shown that over time the GDL will loose its hydrophobic character and hence become more susceptible to flooding in a fuel cell. The impact of morphological changes were determined using fuel cell models and experimental work. The ultimate aim of this work is to provide material developers with the tools and knowledge necessary to design better materials and therefore bring fuel cells closer to commercialization. (author)

  14. Cell Morphology Change by the Ultraviolet Ray Irradiation

    International Nuclear Information System (INIS)

    Park, Myung Joo; Matuo, Yoichirou; Akiyama, Yoko; Izumi, Yoshinobu; Nishijima, Shigehiro

    2009-01-01

    The effect of low doses of ultraviolet (UV) irradiation on morphology changes of cell has been studied based on the observation of the cell length. It was shown that UV-irradiated cell has different behavior in comparison with nonirradiated cell. From the histogram of cell-length distribution, it was confirmed that cell cycle of non irradiated cell was 28 hours, and that cell cycle of irradiated cell with dose of 20 Jm -2 was delayed (39 hours), while irradiated cell with 40 Jm -2 and 60 Jm -2 did not divide and kept growing continuously. It was supposed that in case of 20 Jm -2 of irradiation dose, the cell cycle was delayed because the checkpoint worked in order to repair DNA damage induced by generation of pyrimidine dimer, reactive oxygen species and so on. It was also supposed that in case of 40 Jm -2 and 60 Jm -2 of irradiation dose, overgrowth was induced because the checkpoint was not worked well. The morphology of overgrown cell was similar to that of normally senescent cell. Therefore, it was considered that cell senescence was accelerated by UV irradiation with irradiation doses of 40 Jm -2 and 60 Jm -2

  15. DNA damage and chromosome aberration induced by heavy-ion beams

    International Nuclear Information System (INIS)

    Takakura, Kahoru; Funada, Aya; Aoki, Mizuho; Furusawa, Yoshiya

    2003-01-01

    The aim of this study is to clarify the relation between cell death and chromosomal aberration in cultured human cells (human salivary gland (HSG) tumor cells and GM05389 human normal fibroblasts) irradiated with heavy ion beams on the basis of linear energy transfer (LET) values. The LET dependences of cell death were observed for the both cells by the method of colony assay. The LET dependences of the chromosomal aberrations, breaks and gaps, isochromatid breaks and exchanges were also observed for the both cells using the premature chromosome condensation (PCC) method. From these results it is suggested that exchange formation is essential for the cell death caused by heavy ion beam irradiation. It is suspected that the densely ionizing track structure of hight LET heavy ions inhibits the effective repair in the chromatid breaks and isochromatid breaks and finally induce much exchange in the cells, which should be essential cause of cell death. (author)

  16. Chromosome aberrations frequencies in peripheral blood lymphocytes from patients with larynx cancer

    International Nuclear Information System (INIS)

    Lisowska, H.; Lankoff, A.; Banasik, A.; Padjas, A.; Wieczorek, A.; Kuszewski, T.; Gozdz, A.; Wojcik, A.

    2005-01-01

    There is data suggesting that the sensitivity to ionising radiation of peripheral blood lymphocytes of cancer patients is higher than in healthy donors. This effect is especially prominent when chromosomal aberrations induced in S/G2 phase of the cell cycle are analysed. The aim of our study was to investigate if the S/G2- aberration frequencies in lymphocytes of patients with larynx cancer were higher than in control individuals. In addition, the multiple fixation regimen was applied in lymphocytes of the cancer patients. The aim of this was to check if the aberration frequencies scored in cells harvested at one time point were representative for a larger fraction of the cell cycle. Peripheral blood of 40 patients was collected before the onset of radiotherapy, cultured and irradiated with Co-60 (2 Gy) after 67 hours of culture time. Irradiation was performed in the Swietokrzyskie Oncology Center. Chromosome specimens were prepared from cells fixed at three time points after irradiation: 5, 7 and 9 hours. Colcemide was always added for 2 hours before harvest. Lymphocytes of 40 healthy donors were cultured and irradiated in the same way like in the case of patients with cancer, however, they were only harvested at one time point (5 hours p.r.). No statistically significant differences in aberration frequencies were observed between lymphocytes harvested at the 3 time points. In both donor groups, individual differences in aberration frequencies were observed. Despite this, the aberration frequencies in lymphocytes of patients were in average higher than in the healthy donors. This suggests, that the radiation sensitivity of lymphocytes of patients with larynx cancer may be a marker of cancer predisposition. More patients must be analysed to confirm this hypothesis. (author)

  17. Identification of Differentially Expressed Genes Induced by Aberrant Methylation in Oral Squamous Cell Carcinomas Using Integrated Bioinformatic Analysis

    Directory of Open Access Journals (Sweden)

    Xiaoqi Zhang

    2018-06-01

    Full Text Available Oral squamous cell carcinoma (OSCC is a malignant disease. Methylation plays a key role in the etiology and pathogenesis of OSCC. The goal of this study was to identify aberrantly methylated differentially expressed genes (DEGs in OSCCs, and to explore the underlying mechanisms of tumorigenesis by using integrated bioinformatic analysis. Gene expression profiles (GSE30784 and GSE38532 were analyzed using the R software to obtain aberrantly methylated DEGs. Functional enrichment analysis of screened genes was performed using the DAVID software. Protein–protein interaction (PPI networks were constructed using the STRING database. The cBioPortal software was used to exhibit the alterations of genes. Lastly, we validated the results with the Cancer Genome Atlas (TCGA data. Twenty-eight upregulated hypomethylated genes and 24 downregulated hypermethylated genes were identified. These genes were enriched in the biological process of regulation in immune response, and were mainly involved in the PI3K-AKT and EMT pathways. Additionally, three upregulated hypomethylated oncogenes and four downregulated hypermethylated tumor suppressor genes (TSGs were identified. In conclusion, our study indicated possible aberrantly methylated DEGs and pathways in OSCCs, which could improve the understanding of the underlying molecular mechanisms. Aberrantly methylated oncogenes and TSGs may also serve as biomarkers and therapeutic targets for the precise diagnosis and treatment of OSCCs in the future.

  18. Screening of clonal chromosome aberrations present in A-bomb survivors by FISH method

    International Nuclear Information System (INIS)

    Nakano, Mimako; Kodama, Yoshiaki; Ito, Masahiro; Otaki, Kazuo; Nakamura, Nori

    1997-01-01

    Significance of FISH method for detection of clonal chromosome aberration was reviewed. A clonal chromosome aberration is derived from one abnormal cell clone and gives the influence on the frequency of the aberration. As well, the size and frequency of the aberration give an important information concerning lymphocyte kinetics. FISH method is meaningful for detection of the clonal aberration. Fifteen kinds of clonal aberrations were detected in A-bomb survivors, of which 10 were specifically detected by the method, indicating that its detection rate was 2-3 time as high as the ordinary method. The results were those on the DNA probe on no.1, no.2 and no.3 chromosomes, which consisting of about 23% of the genome. (K.H.)

  19. Investigation of X-ray-induced chromosome aberrations in 'preleukaemic' mammalian cells

    International Nuclear Information System (INIS)

    Szollar, J.

    1977-01-01

    A study was done on the frequency of numerical and structural aberrations induced by different doses of X-ray irradiation in spontaneously leukaemic AKR mice, compared with the values of healthy control CBA/H-T 6 T 6 mice. Both were irradiated under the same conditions, but their chromosomes were affected in a different way. The number of cells containing aneuploid sets, rings, fragments, or metacentric chromosomes was significantly higher in the 2-month-old AKR mice than in the control CBA group. The increased chromosomal fragility found in AKR bone marrow cells 5-7 months before the manifestation of lymphoid leukaemia might be an important factor in the development of malignant condition. This genetic imbalance could provide a possible reason for an increase of spontaneous malfunction of the cellular system, as well as for an increased sensitivity to external factors. Thus it might be connected directly with the predisposition to malignant growth, or it has an indirect role helping virus activation, or acting together with the immune deficiency, by creating a weaker system that is more sensitive to carcinogenic agents

  20. Low-energy foil aberration corrector

    International Nuclear Information System (INIS)

    Aken, R.H. van; Hagen, C.W.; Barth, J.E.; Kruit, P.

    2002-01-01

    A spherical and chromatic aberration corrector for electron microscopes is proposed, consisting of a thin foil sandwiched between two apertures. The electrons are retarded at the foil to almost zero energy, so that they can travel ballistically through the foil. It is shown that such a low-voltage corrector has a negative spherical aberration for not too large distances between aperture and foil, as well as a negative chromatic aberration. For various distances the third- and fifth-order spherical aberration coefficients and the first- and second-order chromatic aberration coefficients are calculated using ray tracing. Provided that the foils have sufficient electron transmission the corrector is able to correct the third-order spherical aberration and the first-order chromatic aberration of a typical low-voltage scanning electron microscope. Preliminary results show that the fifth-order spherical aberration and the second-order chromatic aberration can be kept sufficiently low

  1. Chromosome aberration assays in barley (Hordeum vulgare)

    Energy Technology Data Exchange (ETDEWEB)

    Constantin, M J [Univ. of Tennessee, Knoxville; Nilan, R A

    1982-01-01

    Barley is an exceellent organism for studies of induced chromosome aberrations because of its few (2n = 2x = 14) relatively large chromosomes. Root-tip and shoot-tip cells have been used extensively for the study of ionizing radiation-induced chromosome aberrations. The general procedures are well known, the technology is simple and easy to learn, and the assays are relatively quick and inexpensive. Both root tips and shoot tips can be used for the study of chemical mutagens as well as ionizing radiations. Pollen mother cells are well suited for studying the effects of mutagens on meiotic chromosomes. The literature review for the Gene-Tox Program reported on 61 chemicals tested for their effects on barley chromosomes. Of these, 90% were reported to be either positive or positive dose-related, while 7% were negative and 3% were questionable. Barley assays based on chromosomal aberrations are useful to detect the clastogenic potency of chemicals under laboratory conditions. Indications are that the data from barley can be used to corroborate data obtained from other organisms. Among the classes of chemicals assayed were: alcohols and phenols; alkaloids; epoxides; alkyl sulfates; amides and sulfonamides; aromatic amines; aryl halides; aziridines; alkenes; carbamates; hydroazides; nitroaromatics; nitrosamides; nitrosources; phenothiazines; and polycyclic aromatic hydrocarbons.

  2. Effects of aphidicolin on repair replication and induced chromosomal aberrations in mammalian cells

    International Nuclear Information System (INIS)

    Zeeland, A.A. van; Filon, A.R.; Natarajan, A.T.; Bussmann, C.J.M.; Degrassi, F.; Kesteren-van Leeuwen, A.C. van; Palitti, F.; Rome Univ.

    1982-01-01

    The influence of aphidicolin, an inhibitor of polymerase α, on UV-induced repair replication in human skin fibroblasts, as well as in HeLa cells, was determined. In growing fibroblasts and in HeLa cells, aphidicolin had a potentiating effect on UV-induced repair replication, whereas in fibroblasts grown to confluency, aphidicolin had an inhibitory effect. This inhibitory effect was stronger when measured in the presence of hydroxyurea. In HeLa cells the presence of both aphidicolin and hydroxyurea also had an inhibitory effect, but in the presence of hydroxyurea alone, UV-induced repair replication was enhanced. The results of these studies can be explained on the basis of differences in deoxyribonucleotide triphosphate pool sizes in growing and confluent cells. Post-treatment of X-irradiated human lymphocytes in the G 0 and G 1 stages with aphidicolin increased the frequencies of X-ray-induced chromosomal aberrations. Such an increase was not observed in G 1 cells of CHO after similar treatment with X-rays and aphidicolin. However, treatment with aphidicolin, in the G 2 stage, increased the frequencies of induced chromatid breaks. The significance of these results is discussed. (orig.)

  3. Chromosome aberration frequency in blood lymphocytes of animals with 239Pu lung burdens

    International Nuclear Information System (INIS)

    Brooks, A.L.; LaBauve, R.J.; McClellan, R.O.; Jensen, D.A.

    1976-01-01

    Other investigators have suggested a causal relationship between accidental 239 Pu exposures in man and the presence of chromosome aberrations in blood lymphocytes. For experimental assessment of this relationship, 16 rhesus monkeys and 171 Chinese hamsters were exposed to 239 PuO 2 aerosols and an additional five hamsters were injected with 239 Pu citrate, and the frequency of aberrations in blood lymphocyte was determined. Hamsters with the highest lung burden had a median survival time of about 80 days. No deaths occurred in any of the other treated hamsters or monkeys by 250 days after 239 Pu inhalation. Hamsters sacrificed at 30 days showed an increase in chromosome aberration frequency with increasing dose to lungs. By 120 days after inhalation, the aberration frequency in the controls was 0.012. The frequency in animals with doses that produced significant life shortening had decreased to 0.018 and to 0.032 aberration/cell in animals with lower doses. At 380 days after injection of 2 nCi of 239 Pu citrate per gram of body weight, hamster lymphocytes had an aberration frequency of 0.048 aberration/cell. The level of chromosome damage in the 239 PuO 2 -exposed monkeys at 30 and 90 days after inhalation was not different from that observed in controls. Possible reasons for differences between the experimental animal observations and findings in man are discussed

  4. Polyploidy and chromosomal aberrations induced by mutagens in open flowering sterile mutants of spring barley

    Energy Technology Data Exchange (ETDEWEB)

    Manzyuk, V T; Kozachenko, M R; Kirichenko, V V

    1975-01-01

    Two types of aberration in meiosis were observed which induced sterility in chemical and radiational mutations of spring wheat: asynapsis and absence of cytokinesis, and chromosomal aberrations in the form of bridges and fragments. Gamma-mutants have many more chromosomal aberrations in the form of fragments, bridges and cells with micronuclei than do chemical mutants. The percent of tetrads with micronuclei is 1.5-2 times greater than the number of dyads with such nuclei. We obtained an original gamma-mutant exhibiting depolyploidization and polyploidization in the mother cells; we also observed cells possessing chromosomal associations of n, 2n, 4n, 68, 8n and greater.

  5. Chromosomal aberrations in Sigmodon hispidus from a Superfund site

    International Nuclear Information System (INIS)

    Bowers, B.; McBee, K.; Lochmiller, R.; Burks, S.; Qualls, C.

    1995-01-01

    Cotton rats (Sigmodon hispidus) were collected from an EPA Superfund site located on an abandoned oil refinery. Three trapping grids were located on the refinery and three similar grids were located at uncontaminated localities which served as reference sites. Bone marrow metaphase chromosome preparations were examined for chromosomal damage. For each individual, 50 cells were scored for six classes of chromosomal lesions. For the fall 1991 trapping period, mean number of aberrant cells per individual was 2.33, 0.85, and 1.50 for the three Superfund grids., Mean number of aberrant cells per individual was 2.55, 2.55, and 2.12 from the reference grids. Mean number of lesions per cell was 2.77, 0.86, and 1.9 from the Superfund grids, and 3.55, 2.77, and 2.50 from the reference grids. For the spring 1992 trapping period, more damage was observed in animals from both Superfund and reference sites; however, animals from Superfund grids had more damage than animals from reference grids. Mean number of aberrant cells per individual was 3.50, 3.25, and 3.70 from the Superfund grids, and 2.40, 2.11, and 1.40 from the reference grids. Mean number of lesions per cell was 4.80, 4.25, and 5.50 from the Superfund grids, and 2.60, 2.33, and 1.50 from the reference grids. These data suggest animals may be more susceptible to chromosomal damage during winter months, and animals from the Superfund grids appear to be more severely affected than animals from reference grids

  6. Morphological classification of plant cell deaths

    DEFF Research Database (Denmark)

    van Doorn, W.G.; Beers, E.P.; Dangl, J.L.

    2011-01-01

    , which can express features of both necrosis and vacuolar cell death, PCD in starchy cereal endosperm and during self-incompatibility. The present classification is not static, but will be subject to further revision, especially when specific biochemical pathways are better defined....... the classification of PCD in plants. Here we suggest a classification based on morphological criteria. According to this classification, the use of the term 'apoptosis' is not justified in plants, but at least two classes of PCD can be distinguished: vacuolar cell death and necrosis. During vacuolar cell death...

  7. Supra-physiological folic acid concentrations induce aberrant DNA methylation in normal human cells in vitro.

    Science.gov (United States)

    Charles, Michelle A; Johnson, Ian T; Belshaw, Nigel J

    2012-07-01

    The micronutrients folate and selenium may modulate DNA methylation patterns by affecting intracellular levels of the methyl donor S-adenosylmethionine (SAM) and/or the product of methylation reactions S-adenosylhomocysteine (SAH). WI-38 fibroblasts and FHC colon epithelial cells were cultured in the presence of two forms of folate or four forms of selenium at physiologically-relevant doses, and their effects on LINE-1 methylation, gene-specific CpG island (CGI) methylation and intracellular SAM:SAH were determined. At physiologically-relevant doses the forms of folate or selenium had no effect on LINE-1 or CGI methylation, nor on intracellular SAM:SAH. However the commercial cell culture media used for the selenium studies, containing supra-physiological concentrations of folic acid, induced LINE-1 hypomethylation, CGI hypermethylation and decreased intracellular SAM:SAH in both cell lines. We conclude that the exposure of normal human cells to supra-physiological folic acid concentrations present in commercial cell culture media perturbs the intracellular SAM:SAH ratio and induces aberrant DNA methylation.

  8. Caspase Activation and Aberrant Cell Growth in a p53+/+ Cell Line from a Li-Fraumeni Syndrome Family

    Directory of Open Access Journals (Sweden)

    Zaki A. Sherif

    2015-01-01

    Full Text Available Wild-type p53 is well known to induce cell cycle arrest and apoptosis to block aberrant cell growth. However, p53’s unique role in apoptosis and cell proliferation in Li-Fraumeni Syndrome (LFS has not been well elucidated. The aim of this study is to characterize the activity of wild-type p53 protein in LFS family dominated by a germline negative mutant p53. As expected, etoposide-treated wild-type p53-containing cell lines, LFS 2852 and control Jurkat, showed a greater rate of caspase- and annexin V-induced apoptotic cell death compared to the p53-mutant LFS 2673 cell line although mitochondrial and nuclear assays could not detect apoptosis in these organelles. The most intriguing part of the observation was the abnormal proliferation rate of the wild-type p53-containing cell line, which grew twice as fast as 2673 and Jurkat cells. This is important because apoptosis inducers acting through the mitochondrial death pathway are emerging as promising drugs against tumors where the role of p53 is not only to target gene regulation but also to block cell proliferation. This study casts a long shadow on the possible dysregulation of p53 mediators that enable cell proliferation. The deregulation of proliferation pathways represents an important anticancer therapeutic strategy for patients with the LFS phenotype.

  9. Interchromosomal distribution of gamma ray-induced chromatid aberrations in Chinese hamster ovary cells

    International Nuclear Information System (INIS)

    Martinez-Lopez, Wilner; Porro, Valentina; Folle, Gustavo A.; Mendez-Acuna, Leticia; Obe, Guenter; Savage, John R.K.

    2000-01-01

    Inter chromosomal distributions of breakpoints from chromatid-type aberrations induced by gamma rays in Chinese hamster ovary cells were analyzed. In most chromosomes the distribution was as expected from chromosome lengths for simple breaks or the respective relative corrected length in case of exchanges. There were deviations from expectation in a few chromosomes for chromatid breaks, interchanges, intra-arm intra changes and inter-arm intra changes. Especially interesting are the results concerning chromosomes 2 and 8, which were more often involved in exchanges than expected. An 'exchange phenotype' for these chromosomes is proposed and possible explanations for the nonrandom distribution of chromosome breakpoints are presented. (author)

  10. Cell wall staining with Trypan blue enables quantitative analysis of morphological changes in yeast cells.

    Science.gov (United States)

    Liesche, Johannes; Marek, Magdalena; Günther-Pomorski, Thomas

    2015-01-01

    Yeast cells are protected by a cell wall that plays an important role in the exchange of substances with the environment. The cell wall structure is dynamic and can adapt to different physiological states or environmental conditions. For the investigation of morphological changes, selective staining with fluorescent dyes is a valuable tool. Furthermore, cell wall staining is used to facilitate sub-cellular localization experiments with fluorescently-labeled proteins and the detection of yeast cells in non-fungal host tissues. Here, we report staining of Saccharomyces cerevisiae cell wall with Trypan Blue, which emits strong red fluorescence upon binding to chitin and yeast glucan; thereby, it facilitates cell wall analysis by confocal and super-resolution microscopy. The staining pattern of Trypan Blue was similar to that of the widely used UV-excitable, blue fluorescent cell wall stain Calcofluor White. Trypan Blue staining facilitated quantification of cell size and cell wall volume when utilizing the optical sectioning capacity of a confocal microscope. This enabled the quantification of morphological changes during growth under anaerobic conditions and in the presence of chemicals, demonstrating the potential of this approach for morphological investigations or screening assays.

  11. Cell wall staining with Trypan Blue enables quantitative analysis of morphological changes in yeast cells

    Directory of Open Access Journals (Sweden)

    Johannes eLiesche

    2015-02-01

    Full Text Available Yeast cells are protected by a cell wall that plays an important role in the exchange of substances with the environment. The cell wall structure is dynamic and can adapt to different physiological states or environmental conditions. For the investigation of morphological changes, selective staining with fluorescent dyes is a valuable tool. Furthermore, cell wall staining is used to facilitate sub-cellular localization experiments with fluorescently-labeled proteins and the detection of yeast cells in non-fungal host tissues. Here, we report staining of Saccharomyces cerevisiae cell wall with Trypan Blue, which emits strong red fluorescence upon binding to chitin and yeast glucan; thereby, it facilitates cell wall analysis by confocal and super-resolution microscopy. The staining pattern of Trypan Blue was similar to that of the widely used UV-excitable, blue fluorescent cell wall stain Calcofluor White. Trypan Blue staining facilitated quantification of cell size and cell wall volume when utilizing the optical sectioning capacity of a confocal microscope. This enabled the quantification of morphological changes during growth under anaerobic conditions and in the presence of chemicals, demonstrating the potential of this approach for morphological investigations or screening assays.

  12. Tyrosine kinase receptor c-ros-oncogene 1 inhibition alleviates aberrant bone formation of TWIST-1 haploinsufficient calvarial cells from Saethre-Chotzen syndrome patients.

    Science.gov (United States)

    Camp, Esther; Anderson, Peter J; Zannettino, Andrew C W; Glackin, Carlotta A; Gronthos, Stan

    2018-09-01

    Saethre-Chotzen syndrome (SCS), associated with TWIST-1 mutations, is characterized by premature fusion of cranial sutures. TWIST-1 haploinsufficiency, leads to alterations in suture mesenchyme cellular gene expression patterns, resulting in aberrant osteogenesis and craniosynostosis. We analyzed the expression of the TWIST-1 target, Tyrosine kinase receptor c-ros-oncogene 1 (C-ROS-1) in TWIST-1 haploinsufficient calvarial cells derived from SCS patients and calvaria of Twist-1 del/+ mutant mice and found it to be highly expressed when compared to TWIST-1 wild-type controls. Knock-down of C-ROS-1 expression in TWIST-1 haploinsufficient calvarial cells derived from SCS patients was associated with decreased capacity for osteogenic differentiation in vitro. Furthermore, treatment of human SCS calvarial cells with the tyrosine kinase chemical inhibitor, Crizotinib, resulted in reduced C-ROS-1 activity and the osteogenic potential of human SCS calvarial cells with minor effects on cell viability or proliferation. Cultured human SCS calvarial cells treated with Crizotinib exhibited a dose-dependent decrease in alkaline phosphatase activity and mineral deposition, with an associated decrease in expression levels of Runt-related transcription factor 2 and OSTEOPONTIN, with reduced PI3K/Akt signalling in vitro. Furthermore, Crizotinib treatment resulted in reduced BMP-2 mediated bone formation potential of whole Twist-1 del/+ mutant mouse calvaria organotypic cultures. Collectively, these results suggest that C-ROS-1 promotes osteogenic differentiation of TWIST-1 haploinsufficient calvarial osteogenic progenitor cells. Furthermore, the aberrant osteogenic potential of these cells is inhibited by the reduction of C-ROS-1. Therefore, targeting C-ROS-1 with a pharmacological agent, such as Crizotinib, may serve as a novel therapeutic strategy to alleviate craniosynostosis associated with aberrant TWIST-1 function. © 2018 Wiley Periodicals, Inc.

  13. Peripheral T-Cell Lymphoma with Aberrant Expression of CD19, CD20, and CD79a: Case Report and Literature Review

    Science.gov (United States)

    Matnani, Rahul G.; Stewart, Rachel L.; Pulliam, Joseph; Jennings, Chester D.; Kesler, Melissa

    2013-01-01

    A case of lymphoma of T-cell derivation with aberrant expression of three B-cell lineage markers (CD19, CD20, and CD79a), which was diagnosed on a left axillary excision, is described. Immunohistochemical studies and flow cytometry analysis demonstrated neoplastic cells expressing CD3, CD19, CD20, and CD79a with absence of CD4, CD8, CD10, CD30, CD34, CD56, CD68, TDT, MPO, PAX-5, and surface immunoglobulin. Gene rearrangement studies performed on paraffin blocks demonstrated monoclonal T-cell receptor gamma chain rearrangement with no evidence of clonal heavy chain rearrangement. The neoplastic cells were negative for Epstein-Barr virus (EBV) or Human Herpes Virus 8 (HHV-8). At the time of diagnosis, the PET scan demonstrated hypermetabolic neoplastic cells involving the left axilla, bilateral internal jugular areas, mediastinum, right hilum, bilateral lungs, and spleen. However, bone marrow biopsy performed for hemolytic anemia revealed normocellular bone marrow with trilineage maturation. The patient had no evidence of immunodeficiency or infection with EBV or HHV-8. This is the first reported case of a mature T-cell lymphoma with aberrant expression of three B-cell lineage markers. The current report also highlights the need for molecular gene rearrangement studies to determine the precise lineage of ambiguous neoplastic clones. PMID:24066244

  14. Peripheral T-Cell Lymphoma with Aberrant Expression of CD19, CD20, and CD79a: Case Report and Literature Review

    Directory of Open Access Journals (Sweden)

    Rahul G. Matnani

    2013-01-01

    Full Text Available A case of lymphoma of T-cell derivation with aberrant expression of three B-cell lineage markers (CD19, CD20, and CD79a, which was diagnosed on a left axillary excision, is described. Immunohistochemical studies and flow cytometry analysis demonstrated neoplastic cells expressing CD3, CD19, CD20, and CD79a with absence of CD4, CD8, CD10, CD30, CD34, CD56, CD68, TDT, MPO, PAX-5, and surface immunoglobulin. Gene rearrangement studies performed on paraffin blocks demonstrated monoclonal T-cell receptor gamma chain rearrangement with no evidence of clonal heavy chain rearrangement. The neoplastic cells were negative for Epstein-Barr virus (EBV or Human Herpes Virus 8 (HHV-8. At the time of diagnosis, the PET scan demonstrated hypermetabolic neoplastic cells involving the left axilla, bilateral internal jugular areas, mediastinum, right hilum, bilateral lungs, and spleen. However, bone marrow biopsy performed for hemolytic anemia revealed normocellular bone marrow with trilineage maturation. The patient had no evidence of immunodeficiency or infection with EBV or HHV-8. This is the first reported case of a mature T-cell lymphoma with aberrant expression of three B-cell lineage markers. The current report also highlights the need for molecular gene rearrangement studies to determine the precise lineage of ambiguous neoplastic clones.

  15. Morphological classification of plant cell deaths

    NARCIS (Netherlands)

    Doorn, van W.G.; Beers, E.P.; Dangl, J.L.; Franklin-Tong, V.E.; Woltering, E.J.

    2011-01-01

    Programmed cell death (PCD) is an integral part of plant development and of responses to abiotic stress or pathogens. Although the morphology of plant PCD is, in some cases, well characterised and molecular mechanisms controlling plant PCD are beginning to emerge, there is still confusion about the

  16. Morphological evaluation during in vitro chondrogenesis of dental pulp stromal cells

    Directory of Open Access Journals (Sweden)

    Choo-Ryung Chung

    2012-02-01

    Full Text Available Objectives The aim was to confirm the stem cell-like properties of the dental pulp stromal cells and to evaluate the morphologic changes during in vitro chondrogenesis. Materials and Methods Stromal cells were outgrown from the dental pulp tissue of the premolars. Surface markers were investigated and cell proliferation rate was compared to other mesenchymal stem cells. Multipotency of the pulp cells was confirmed by inducing osteogenesis, adipogenesis and chondrogenesis. The morphologic changes in the chondrogenic pellet during the 21 day of induction were evaluated under light microscope and transmission electron microscope. TUNEL assay was used to evaluate apoptosis within the chondrogenic pellets. Results Pulp cells were CD90, 105 positive and CD31, 34 negative. They showed similar proliferation rate to other stem cells. Pulp cells differentiated to osteogenic, adipogenic and chondrogenic tissues. During chondrogenesis, 3-dimensional pellet was created with multi-layers, hypertrophic chondrocyte-like cells and cartilage-like extracellular matrix. However, cell morphology became irregular and apoptotic cells were increased after 7 day of chondrogenic induction. Conclusions Pulp cells indicated mesenchymal stem cell-like characteristics. During the in vitro chondrogenesis, cellular activity was superior during the earlier phase (within 7 day of differentiation.

  17. Aberrant Hedgehog ligands induce progressive pancreatic fibrosis by paracrine activation of myofibroblasts and ductular cells in transgenic zebrafish.

    Directory of Open Access Journals (Sweden)

    In Hye Jung

    Full Text Available Hedgehog (Hh signaling is frequently up-regulated in fibrogenic pancreatic diseases including chronic pancreatitis and pancreatic cancer. Although recent series suggest exclusive paracrine activation of stromal cells by Hh ligands from epithelial components, debates still exist on how Hh signaling works in pathologic conditions. To explore how Hh signaling affects the pancreas, we investigated transgenic phenotypes in zebrafish that over-express either Indian Hh or Sonic Hh along with green fluorescence protein (GFP to enable real-time observation, or GFP alone as control, at the ptf1a domain. Transgenic embryos and zebrafish were serially followed for transgenic phenotypes, and investigated using quantitative reverse transcription-polymerase chain reaction (qRT-PCR, in situ hybridization, and immunohistochemistry. Over-expression of Ihh or Shh reveals virtually identical phenotypes. Hh induces morphologic changes in a developing pancreas without derangement in acinar differentiation. In older zebrafish, Hh induces progressive pancreatic fibrosis intermingled with proliferating ductular structures, which is accompanied by the destruction of the acinar structures. Both myofibroblasts and ductular are activated and proliferated by paracrine Hh signaling, showing restricted expression of Hh downstream components including Patched1 (Ptc1, Smoothened (Smo, and Gli1/2 in those Hh-responsive cells. Hh ligands induce matrix metalloproteinases (MMPs, especially MMP9 in all Hh-responsive cells, and transform growth factor-ß1 (TGFß1 only in ductular cells. Aberrant Hh over-expression, however, does not induce pancreatic tumors. On treatment with inhibitors, embryonic phenotypes are reversed by either cyclopamine or Hedgehog Primary Inhibitor-4 (HPI-4. Pancreatic fibrosis is only prevented by HPI-4. Our study provides strong evidence of Hh signaling which induces pancreatic fibrosis through paracrine activation of Hh-responsive cells in vivo. Induction of

  18. Disruption of microtubule network rescues aberrant actin comets in dynamin2-depleted cells.

    Directory of Open Access Journals (Sweden)

    Yuji Henmi

    Full Text Available A large GTPase dynamin, which is required for endocytic vesicle formation, regulates the actin cytoskeleton through its interaction with cortactin. Dynamin2 mutants impair the formation of actin comets, which are induced by Listeria monocytogenes or phosphatidylinositol-4-phosphate 5-kinase. However, the role of dynamin2 in the regulation of the actin comet is still unclear. Here we show that aberrant actin comets in dynamin2-depleted cells were rescued by disrupting of microtubule networks. Depletion of dynamin2, but not cortactin, significantly reduced the length and the speed of actin comets induced by Listeria. This implies that dynamin2 may regulate the actin comet in a cortactin-independent manner. As dynamin regulates microtubules, we investigated whether perturbation of microtubules would rescue actin comet formation in dynamin2-depleted cells. Treatment with taxol or colchicine created a microtubule-free space in the cytoplasm, and made no difference between control and dynamin2 siRNA cells. This suggests that the alteration of microtubules by dynamin2 depletion reduced the length and the speed of the actin comet.

  19. Aberrations of chromosome 8 in myelodysplastic syndromes: Clinical and biological significance

    Directory of Open Access Journals (Sweden)

    Marisavljević Dragomir

    2006-01-01

    Full Text Available Introduction: Rearrangements of any single chromosome in human karyotype have been reported in patients with pMDS. Objective: To examine the role of aberrations of chromosome 8 in pathogenesis, clinical presentation and progression of myelodysplastic syndromes. Method: Cytogenetic analysis of bone marrow cells was carried out by direct method and by means of 24- and/or 48-hour unstimulated cell culture. Chromosomes were obtained by modified method of HG-bands. Results: On presentation, 109 out of 271 successfully karyotyped patients (40,2% had abnormal karyotypes. Among them, 22 patients (10.9% had aberrations of chromosome 8. Ten patients had trisomy 8 as "simple" aberration whilst additional three cases had trisomy 8 included in "complex" karyotypes (≥3 chromosomes. Cases with constitutional trisomy 8 mosaicism (CT8M were excluded using the chromosome analyses of PHA-stimulated blood cultures. On the contrary, monosomy (seven patients or deletion of chromosome 8 (two patients were exclusively found in "complex" karyotypes. During prolonged cytogenetic follow-up, trisomy 8 was not recorded in evolving karyotypes. In contrast, trisomy 8 disappeared in two cases during subsequent cytogenetic studies, i.e. 23 and 72 months from diagnosis, accompanied in one patient with complete hematological remission. No difference regarding age, sex, cytopenia, blood and marrow blast count or response to treatment was found between patients with trisomy 8 as the sole aberration compared to those with normal cytogenetics. Median survival of patients with trisomy 8 as the sole aberration was 27 months, as compared to 32 months in patients with normal cytogenetics (p=0.468, whilst median survival of patients with aberrations of chromosome 8 included in "complex" karyotypes was only 4 months. Conclusion: Aberrations of chromosome 8 are common in patients with pMDS. The presence of a clone with trisomy 8 is not always the sign of disease progression or poor

  20. Identification of aberrant gene expression associated with aberrant promoter methylation in primordial germ cells between E13 and E16 rat F3 generation vinclozolin lineage.

    Science.gov (United States)

    Taguchi, Y-h

    2015-01-01

    Transgenerational epigenetics (TGE) are currently considered important in disease, but the mechanisms involved are not yet fully understood. TGE abnormalities expected to cause disease are likely to be initiated during development and to be mediated by aberrant gene expression associated with aberrant promoter methylation that is heritable between generations. However, because methylation is removed and then re-established during development, it is not easy to identify promoter methylation abnormalities by comparing normal lineages with those expected to exhibit TGE abnormalities. This study applied the recently proposed principal component analysis (PCA)-based unsupervised feature extraction to previously reported and publically available gene expression/promoter methylation profiles of rat primordial germ cells, between E13 and E16 of the F3 generation vinclozolin lineage that are expected to exhibit TGE abnormalities, to identify multiple genes that exhibited aberrant gene expression/promoter methylation during development. The biological feasibility of the identified genes were tested via enrichment analyses of various biological concepts including pathway analysis, gene ontology terms and protein-protein interactions. All validations suggested superiority of the proposed method over three conventional and popular supervised methods that employed t test, limma and significance analysis of microarrays, respectively. The identified genes were globally related to tumors, the prostate, kidney, testis and the immune system and were previously reported to be related to various diseases caused by TGE. Among the genes reported by PCA-based unsupervised feature extraction, we propose that chemokine signaling pathways and leucine rich repeat proteins are key factors that initiate transgenerational epigenetic-mediated diseases, because multiple genes included in these two categories were identified in this study.

  1. Polymer solar cells. Morphology-property-correlation; Polymere Solarzellen. Morphologie-Eigenschafts-Korrelation

    Energy Technology Data Exchange (ETDEWEB)

    Erb, Tobias

    2008-09-22

    The aim of the presented dissertation is to clarify open questions concerning the development and control of the morphology in the active layer of polymer bulk heterojunction solar cells. The new findings hereby derived shall modify the existing models of the active layer morphology as found in today's literature. The experimental investigations were performed by X-ray diffraction, spectroscopic ellipsometry, and photoluminescence spectroscopy. In addition to those methods, light microscopy and differential scanning calorimetry were applied to investigate three chosen material systems: P3HT/PCBM-C{sub 60}, P3HT/MDHE-C{sub 60}, and P3HT/(MDHE){sub 2}-C{sub 60}. On the basis of experimental results a morphological model is developed, which is discussed in the context of existing literature. The solar cells were electrically characterised by current-voltage and external quantum efficiency measurements. The structural model is set into relation with photovoltaic parameters of the polymer solar cell, such as short circuit photocurrent, open circuit voltage, fill factor, and power conversion efficiency. This contributes to the explanation and analysis of the electrical properties of the organic solar cell as a device. In summary, this work yields morphology-property-relations that are able to explain the interaction between physical properties, such as light absorption, charge carrier generation, and transport, with the morphology present within the active layer. Finally, the three investigated systems are compared and evaluated with respect to their applicability in polymer solar cells. Further on, the morphology-propertyrelations are used to develop a strategy to estimate the suitability of new twocomponent polymer-fullerene donor-acceptor systems for polymer solar cells. Based on these findings it becomes possible to evaluate the optimization potential for new materials. In conclusion, this helps to develop polymer solar cells with increased power conversion

  2. Multiple chromosome aberrations among newborns from high level natural radiation area and normal level natural radiation area of south west coast of Kerala

    International Nuclear Information System (INIS)

    Soren, D.C.; Ramachandran, E.N.; Karuppasamy, C.V.; Cheriyan, V.D.; Anil Kumar, V.; Koya, P.K.M.; Seshadri, M.

    2010-01-01

    Cord blood samples were collected in heparin vials and microculture techniques employed to obtain good metaphase chromosome spreads. In cytogenetic studies on newborns cells with multiple aberrations were recorded in 57 from a total of 27285 newborns (1266972 cells). Of these 17294 newborns (964140 cells) were from High Level Natural Radiation Area (HLNRA) and 9991 newborns (302832 cells) from Normal Level Natural Radiation Area (NLNRA). Cells with multiple aberrations were observed in 38 and 19 newborns from High and Normal Level Natural Radiation Area respectively. On an average one cell with multiple aberrations was observed among 479 newborns. Cells with multiple aberrations were observed in newborns from HLNRA as well as NLNRA in both males and females. Gender difference of newborns, maternal age group and background radiation levels did not seem to have any influence in the occurrence of Multiple chromosome aberrations

  3. Non-linear character of dose dependences of chromosome aberration frequency in radiation-damaged root

    International Nuclear Information System (INIS)

    Kravets, E.A.; Berezhnaya, V.V.; Sakada, V.I.; Rashidov, N.M.; Grodzinskij, D.M.; Kravets, E.A.; Berezhnaya, V.V.; Sakada, V.I.; Rashidov, N.M.; Grodzinskij, D.M.

    2012-01-01

    The dose dependences of the aberrant anaphases in the root meristem in 48 hours after the irradiation have non-linear character and a plateau in the region about 6-8 Gy. The plateau indicates the activation of recovery processes. In the plateau range, the level of damages for this genotype is 33% for aberrant anaphases (FAA), 2.3 aberrations per aberrant anaphase (A/AC), and 0.74 aberrations for the total number of anaphases. At 10 Gy, the dose curve forms the exponential region caused by the involvement of the large number of new cells with unrepaired damages in the mutation process. The increase of A/AC to 1.1 indicate the ''criticality'' of the meristem radiation damage.

  4. Induced chromosomal aberrations in somatic cells of Nigella sativa L. by mitomycin C.

    Science.gov (United States)

    Kumar, P; Nizam, J

    1978-01-01

    A cytological study was carried out on root tips of Nigella sativa L. by treatment with Mitomycin C at 0.001% for six time intervals (10, 15, 20, 30, 40, and 50 min). The chromosomal abnormalities were increasingly proportionate to the increase in time of treatment. The seedlings treated with a 0.001% concentration of Mitomycin C for 10 min. did not show any significant effect. At other time intervals, the effect was observed to be quite significant. Beyond 40 min. treatment almost all the cells would become sticky. Thirty minutes' treatment showed significant effect, inducing various types of chromosomal aberrations in the anaphase, such as bridges and fragments of 34.13% and 48.07%, respectively.

  5. New trends and techniques in chromosome aberration analysis

    International Nuclear Information System (INIS)

    Bender, M.A.

    1978-01-01

    The following topics are discussed: automation of chromosome analysis; storage of fixed cells from cultures of lymphocytes obtained routinely during periodic employee medical examinations; analysis of banded chromosomes; identification of first division metaphases; sister chromatid exchange; and patterns of aberration induction

  6. Relationship between chromosomal aberration of bone marrow cells and dosage of irradiation after 46Sc internal pollution and external low dose X-irradiation in mice

    International Nuclear Information System (INIS)

    Li Guofu; Li Zhang; Wu Yin

    1989-01-01

    The relationship between chromosomal aberration of bone marrow cells and dosage in mice 24 h after 46 Sc internal pollution combined with external low dose whole body X-irradiation was quantiatively studied. The results showed that the relationship between chromosomal aberration and dosage was expressed in a linear regression equation. The chromosomal aberration rate was lower in the combined exposure than that of the sum of internal and external exposures, but higher than that of either the internal or external exposure singly. The relationship between chromosomal aberration and time was expressed in the following three phase exponential function: Y(t) = 2.9078 exp 0.27668t + 2.9371 exp -0.0778t + 2.3786 -0.01788t . By means of fit test, there was no significant difference between the determined and the theoretical values. The 90% theoretical values got from all the equations distributed over the determined values

  7. Investigating the chemical and morphological evolution of GaAs capped InAs/InP quantum dots emitting at 1.5μm using aberration-corrected scanning transmission electron microscopy

    DEFF Research Database (Denmark)

    Kadkhodazadeh, Shima; Semenova, Elizaveta; Yvind, Kresten

    2011-01-01

    The emission wavelength of InAs quantum dots grown on InP has been shown to shift to the technologically desirable 1.5μm with the deposition of 1–2 monolayers of GaAs on top of the quantum dots. Here, we use aberration-corrected scanning transmission electron microscopy to investigate morphological...... and compositional changes occurring to the quantum dots as a result of the deposition of 1.7 monolayers of GaAs on top of them, prior to complete overgrowth with InP. The results are compared with theoretical models describing the overgrowth process....

  8. Heavy ion-induced chromosomal aberrations analyzed by fluorescence in situ hybridization

    International Nuclear Information System (INIS)

    Durante, M.; Gialanella, G.; Grossi, G.; Pugliese, M.; Cella, L.; Greco, O.; George, K.; Yang, T.C.

    1997-01-01

    We have investigated the effectiveness of heavy ions in the induction of chromosomal aberrations in mammalian cells by the recent technique of fluorescence in situ hybridization (FISH) with whole-chromosome probes. FISH-painting was used both in metaphase and interphase (prematurely condensed) chromosomes. The purpose of our experiments was to address the following problems: (a) the ratio of different types of aberrations as a function of radiation quality (search for biomarkers); (b) the ratio between aberrations scored in interphase and metaphase as a function of radiation quality (role of apoptosis); (c) differences between cytogenetic effects produced by different ions at the same LET (role of track structure). (orig./MG)

  9. Heavy ion-induced chromosomal aberrations analyzed by fluorescence in situ hybridization

    Energy Technology Data Exchange (ETDEWEB)

    Durante, M; Gialanella, G; Grossi, G; Pugliese, M [Univ. ` ` Federico II` ` , Naples (Italy). Dept. of Physics; [INFN, Naples (Italy); Cella, L; Greco, O [Univ. ` ` Federico II` ` , Naples (Italy). Dept. of Physics; Furusawa, Y [NIRS, Chiba (Japan); George, K; Yang, T C [NASA Lyndon B. Johnson Space Center, Houston, TX (United States)

    1997-09-01

    We have investigated the effectiveness of heavy ions in the induction of chromosomal aberrations in mammalian cells by the recent technique of fluorescence in situ hybridization (FISH) with whole-chromosome probes. FISH-painting was used both in metaphase and interphase (prematurely condensed) chromosomes. The purpose of our experiments was to address the following problems: (a) the ratio of different types of aberrations as a function of radiation quality (search for biomarkers); (b) the ratio between aberrations scored in interphase and metaphase as a function of radiation quality (role of apoptosis); (c) differences between cytogenetic effects produced by different ions at the same LET (role of track structure). (orig./MG)

  10. Optical traps with geometric aberrations

    International Nuclear Information System (INIS)

    Roichman, Yael; Waldron, Alex; Gardel, Emily; Grier, David G.

    2006-01-01

    We assess the influence of geometric aberrations on the in-plane performance of optical traps by studying the dynamics of trapped colloidal spheres in deliberately distorted holographic optical tweezers. The lateral stiffness of the traps turns out to be insensitive to moderate amounts of coma, astigmatism, and spherical aberration. Moreover holographic aberration correction enables us to compensate inherent shortcomings in the optical train, thereby adaptively improving its performance. We also demonstrate the effects of geometric aberrations on the intensity profiles of optical vortices, whose readily measured deformations suggest a method for rapidly estimating and correcting geometric aberrations in holographic trapping systems

  11. Data supporting mitochondrial morphological changes by SPG13-associated HSPD1 mutants

    Directory of Open Access Journals (Sweden)

    Yuki Miyamoto

    2016-03-01

    Full Text Available The data is related to the research article entitled “Hypomyelinating leukodystrophy-associated missense mutation in HSPD1 blunts mitochondrial dynamics” [1]. In addition to hypomyelinating leukodystrophy (HLD 4 (OMIM no. 612233, it is known that spastic paraplegia (SPG 13 (OMIM no. 605280 is caused by HSPD1’s amino acid mutation. Two amino acid mutations Val-98-to-Ile (V98I and Gln-461-to-Glu (Q461E are associated with SPG13 [2]. In order to investigate the effects of HSPD1’s V98I or Q461E mutant on mitochondrial morphological changes, we transfected each of the respective mutant-encoding genes into Cos-7 cells. Either of V98I or Q461E mutant exhibited increased number of mitochondria and short length mitochondrial morphologies. Using MitoTracker dye-incorporating assay, decreased mitochondrial membrane potential was also observed in both cases. The data described here supports that SPG13-associated HSPD1 mutant participates in causing aberrant mitochondrial morphological changes with decreased activities. Keywords: SPG13, HSPD1, Mitochondrion, Morphological change

  12. Establishing working standards of chromosome aberrations analysis for biological dosimetry

    International Nuclear Information System (INIS)

    Bui Thi Kim Luyen; Tran Que; Pham Ngoc Duy; Nguyen Thi Kim Anh; Ha Thi Ngoc Lien

    2015-01-01

    Biological dosimetry is an dose assessment method using specify bio markers of radiation. IAEA (International Atomic Energy Agency) and ISO (International Organization for Standardization) defined that dicentric chromosome is specify for radiation, it is a gold standard for biodosimetry. Along with the documents published by IAEA, WHO, ISO and OECD, our results of study on the chromosome aberrations induced by radiation were organized systematically in nine standards that dealing with chromosome aberration test and micronucleus test in human peripheral blood lymphocytes in vitro. This standard addresses: the reference dose-effect for dose estimation, the minimum detection levels, cell culture, slide preparation, scoring procedure for chromosome aberrations use for biodosimetry, the criteria for converting aberration frequency into absorbed dose, reporting of results. Following these standards, the automatic analysis devices were calibrated for improving biological dosimetry method. This standard will be used to acquire and maintain accreditation of the Biological Dosimetry laboratory in Nuclear Research Institute. (author)

  13. Studies on chromosomal aberrations and dominant lethal mutations induced by x irradiation in germ cells of male mice

    International Nuclear Information System (INIS)

    Wang Xianli; Wang Mingdong; Wang Bin; Sun Shuqing

    1992-01-01

    After male mice irradiated by 2 Gy X rays mated to normal virginal females superovulated with PMSG and HCG, pronuclei chromosome spreading of first-cleavage embryos were prepared and chromosomal aberrations of paternal pronuclei were observed. The results showed that the frequency of chromosomal aberrations was highest irradiated at spermatic stage among different stages of spermatogenesis. The sequence of radiosensitivity in spermatogenesis was as follows: spermatids > mature sperm > spermatocyte > spermatogonia and stem spermatogonia. The frequencies of paternal chromosomal aberrations resulted from irradiation at spermatids and mature sperms were significantly higher than that in control. The reciprocal translocations of stem spermatogonia induced by 2 Gy X rays in those male mice were also examined in the preparations of diakinesis-metaphase I. The frequency of reciprocal translocations were 0.0429 per cell and significantly higher than that in control. The proportion of unbalanced gametes, resulting in lethal embryos after fertilization, was 0.02145 to be predicted. At the same time, the dominant lethality induced by X rays in stem spermatogonia was measured, being 0.0371. The frequency of dead fetuses in irradiation group was about twice as in control. The regression analysis was found that the reciprocal translocations was markedly related to the dominant lethality

  14. Canine urothelial carcinoma: genomically aberrant and comparatively relevant.

    Science.gov (United States)

    Shapiro, S G; Raghunath, S; Williams, C; Motsinger-Reif, A A; Cullen, J M; Liu, T; Albertson, D; Ruvolo, M; Bergstrom Lucas, A; Jin, J; Knapp, D W; Schiffman, J D; Breen, M

    2015-06-01

    Urothelial carcinoma (UC), also referred to as transitional cell carcinoma (TCC), is the most common bladder malignancy in both human and canine populations. In human UC, numerous studies have demonstrated the prevalence of chromosomal imbalances. Although the histopathology of the disease is similar in both species, studies evaluating the genomic profile of canine UC are lacking, limiting the discovery of key comparative molecular markers associated with driving UC pathogenesis. In the present study, we evaluated 31 primary canine UC biopsies by oligonucleotide array comparative genomic hybridization (oaCGH). Results highlighted the presence of three highly recurrent numerical aberrations: gain of dog chromosome (CFA) 13 and 36 and loss of CFA 19. Regional gains of CFA 13 and 36 were present in 97 % and 84 % of cases, respectively, and losses on CFA 19 were present in 77 % of cases. Fluorescence in situ hybridization (FISH), using targeted bacterial artificial chromosome (BAC) clones and custom Agilent SureFISH probes, was performed to detect and quantify these regions in paraffin-embedded biopsy sections and urine-derived urothelial cells. The data indicate that these three aberrations are potentially diagnostic of UC. Comparison of our canine oaCGH data with that of 285 human cases identified a series of shared copy number aberrations. Using an informatics approach to interrogate the frequency of copy number aberrations across both species, we identified those that had the highest joint probability of association with UC. The most significant joint region contained the gene PABPC1, which should be considered further for its role in UC progression. In addition, cross-species filtering of genome-wide copy number data highlighted several genes as high-profile candidates for further analysis, including CDKN2A, S100A8/9, and LRP1B. We propose that these common aberrations are indicative of an evolutionarily conserved mechanism of pathogenesis and harbor genes

  15. Formation and Expansion of Leukemia-Specific Chromosome Aberrations in Hematopoietic Cells of X-ray Irradiated Mice

    International Nuclear Information System (INIS)

    Ban, N.; Kai, M.; Kusama, T.

    2004-01-01

    C3H/He mice develop acute myeloid leukemia (AML) after whole-body irradiation, and typical chromosome 2 deletions are found in the leukemia cells. To investigate a process of the formation and the expansion of the AML-specific deletions, we have examined its frequency in primitive hematopoietic cells that could be the target of the leukemogenesis. Male C3H/He mice were exposed to 3Gy x-rays and sacrificed after certain periods of time. Bone marrow cells were collected from the femora and a single-cell suspension from each animal was divided into two parts. One part of the cell suspension was cultured in methylcellulose medium and metaphase spreads were prepared from each growing colony. The other part was sorted to obtain Lin+ and Lin Scal cells and those cells were scored with FISH for the AML-specific deletions. Karyotyping of the cultured cells detected signs of the delayed chromosomal instability, but an aberration involving chromosome 2 has not been found so far. FISH to the sorted cells, however, revealed the ANL-specific deletions could be produced in the primitive hematopoietic cells as an early event of radiation exposure. (Author) 16 refs

  16. Modification of chromosomal aberration and polyploidy by combined treatment with x-rays and colchicine in Trichosanthes anguina

    International Nuclear Information System (INIS)

    Datta, S.K.; Basu, R.K.

    1978-01-01

    Mitosis in root tip cells of T. anguina after treatment of seeds with X-rays, colchicine and in combination of the two was studied. X-irradiation resulted in cells with chromosomal aberrations, which increased with increase in doses. With increase in colchicine concentrations there was decrease in diploid cells with consequent increase in polyploid cells. Post-irradiation colchicine treatment resulted in both aberrant and polyploid cells but their frequencies were less than separate treatment with X-rays and colchicine respectively. (author)

  17. Detection of chromosomal aberrations by fluorescence in situ hybridization in the first three postirradiation divisions of human lymphocytes

    International Nuclear Information System (INIS)

    Boei, J.J.W.A.; Vermeulen, S.; Natarajan, A.T.

    1996-01-01

    Chromosomal aberrations in human lymphocytes were analyzed by fluorescence in situ hybridization (FISH) in the first 3 postirradiation (0 and 2 Gy) divisions. Cells were grown in the presence of BrdU, collected at different sampling times (47, 70 and 91 h) and analyzed using an alphoid centromeric probe and PCR amplified DNA libraries for chromosomes 2 and 8. Following differential staining of sister chromatids, the analyzed cells were identified to be either in the first, second or third mitosis after irradiation. The frequencies of both dicentrics and fragments showed a reduction of about 50% after each cell generation, whereas translocations were more persistent. Cells within the same postirradiation division showed higher aberration frequencies when derived from later sampling times, indicating a delay in progression of aberrant cells. As a result, the frequencies for dicentrics and fragments remained rather constant at different sampling times if the cell cycle parameter was not taken into account. Thus, the average generation time of the lymphocytes had a clear effect on the obtained aberration frequencies. The described method allows the study of the persistence of chromosome damage using the FISH technique during 3 subsequent cell divisions in vitro

  18. Mask-induced aberration in EUV lithography

    Science.gov (United States)

    Nakajima, Yumi; Sato, Takashi; Inanami, Ryoichi; Nakasugi, Tetsuro; Higashiki, Tatsuhiko

    2009-04-01

    We estimated aberrations using Zernike sensitivity analysis. We found the difference of the tolerated aberration with line direction for illumination. The tolerated aberration of perpendicular line for illumination is much smaller than that of parallel line. We consider this difference to be attributable to the mask 3D effect. We call it mask-induced aberration. In the case of the perpendicular line for illumination, there was a difference in CD between right line and left line without aberration. In this report, we discuss the possibility of pattern formation in NA 0.25 generation EUV lithography tool. In perpendicular pattern for EUV light, the dominant part of aberration is mask-induced aberration. In EUV lithography, pattern correction based on the mask topography effect will be more important.

  19. Pathway aberrations of murine melanoma cells observed in Paired-End diTag transcriptomes

    Directory of Open Access Journals (Sweden)

    Liu Edison

    2007-06-01

    Full Text Available Abstract Background Melanoma is the major cause of skin cancer deaths and melanoma incidence doubles every 10 to 20 years. However, little is known about melanoma pathway aberrations. Here we applied the robust Gene Identification Signature Paired End diTag (GIS-PET approach to investigate the melanoma transcriptome and characterize the global pathway aberrations. Methods GIS-PET technology directly links 5' mRNA signatures with their corresponding 3' signatures to generate, and then concatenate, PETs for efficient sequencing. We annotated PETs to pathways of KEGG database and compared the murine B16F1 melanoma transcriptome with three non-melanoma murine transcriptomes (Melan-a2 melanocytes, E14 embryonic stem cells, and E17.5 embryo. Gene expression levels as represented by PET counts were compared across melanoma and melanocyte libraries to identify the most significantly altered pathways and investigate the expression levels of crucial cancer genes. Results Melanin biosynthesis genes were solely expressed in the cells of melanocytic origin, indicating the feasibility of using the PET approach for transcriptome comparison. The most significantly altered pathways were metabolic pathways, including upregulated pathways: purine metabolism, aminophosphonate metabolism, tyrosine metabolism, selenoamino acid metabolism, galactose utilization, nitrobenzene degradation, and bisphenol A degradation; and downregulated pathways: oxidative phosphorylation, ATPase synthesis, TCA cycle, pyruvate metabolism, and glutathione metabolism. The downregulated pathways concurrently indicated a slowdown of mitochondrial activities. Mitochondrial permeability was also significantly altered, as indicated by transcriptional activation of ATP/ADP, citrate/malate, Mg++, fatty acid and amino acid transporters, and transcriptional repression of zinc and metal ion transporters. Upregulation of cell cycle progression, MAPK, and PI3K/Akt pathways were more limited to certain

  20. Engineering Cyanobacterial Cell Morphology for Enhanced Recovery and Processing of Biomass.

    Science.gov (United States)

    Jordan, Adam; Chandler, Jenna; MacCready, Joshua S; Huang, Jingcheng; Osteryoung, Katherine W; Ducat, Daniel C

    2017-05-01

    Cyanobacteria are emerging as alternative crop species for the production of fuels, chemicals, and biomass. Yet, the success of these microbes depends on the development of cost-effective technologies that permit scaled cultivation and cell harvesting. Here, we investigate the feasibility of engineering cell morphology to improve biomass recovery and decrease energetic costs associated with lysing cyanobacterial cells. Specifically, we modify the levels of Min system proteins in Synechococcus elongatus PCC 7942. The Min system has established functions in controlling cell division by regulating the assembly of FtsZ, a tubulin-like protein required for defining the bacterial division plane. We show that altering the expression of two FtsZ-regulatory proteins, MinC and Cdv3, enables control over cell morphology by disrupting FtsZ localization and cell division without preventing continued cell growth. By varying the expression of these proteins, we can tune the lengths of cyanobacterial cells across a broad dynamic range, anywhere from an ∼20% increased length (relative to the wild type) to near-millimeter lengths. Highly elongated cells exhibit increased rates of sedimentation under low centrifugal forces or by gravity-assisted settling. Furthermore, hyperelongated cells are also more susceptible to lysis through the application of mild physical stress. Collectively, these results demonstrate a novel approach toward decreasing harvesting and processing costs associated with mass cyanobacterial cultivation by altering morphology at the cellular level. IMPORTANCE We show that the cell length of a model cyanobacterial species can be programmed by rationally manipulating the expression of protein factors that suppress cell division. In some instances, we can increase the size of these cells to near-millimeter lengths with this approach. The resulting elongated cells have favorable properties with regard to cell harvesting and lysis. Furthermore, cells treated in this

  1. Selective accumulation of 147Pm in organism on induction of PCE's micronucleus and SCE of bone marrow cells as well as the chromosome aberrations on fetal liver and spleen

    International Nuclear Information System (INIS)

    Zhu Shoupeng; Zheng Siying; Wang Liuyi; Lu Zhongyan; Yang Shuqin

    1989-01-01

    Study of accumulation peculiarity of 147 Pm showed that I.V. different doses of 147 Pm were the same selectively localized in skeleton and liver. Retention of 147 Pm in skeleton and liver was elevated when the radioactive doses of 147 Pm were increased. At the same time absorption does of 147 Pm radiation was heightened. The ability of 147 Pm to induce sister chromatid exchanges (SCEs) has been investigated by IdU labelling methods. A statistically significant elevation of SCEs was observed after 147 Pm intake.In mice the number of SCEs per cell in bone marrow cells was always higher when the animals were maintained on the doses of 37 Bq/g. The injurious effects of 147 Pm, using PCE's micronucleus rates in bone marrow cells were observed. 147 Pm was dominantly deposited on maternal liver. Deposition of 147 Pm in maternal spleen was about quandrantal of the maternal liver. Studies indicated that maternal contamination of 147 Pm could induced chromosome aberrations in fetal liver and spleen cells. Among the type of aberrations induced by 147 Pm, chromatid breakage were predominant. The incidence of chromosome aberrations on fetal liver cells induced by 147 Pm was higher on fetal spleen cells

  2. The Relevance of Chromosome Aberration Yields for Biological Dosimetry After Low-Level Occupational Irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Bauchinger, M.; Schmid, E.; Hug, O. [Gesellschaft fuer Strahlenforschung, Institut fuer Biologie, Neuherberg, Federal Republic of Germany (Germany); Strahlenbiologisches Institut der Universitaet Muenchen, Federal Republic of Germany (Germany)

    1971-06-15

    The usefulness of chromosome analysis for biological dosimetry has been tested in two groups of persons occupationally exposed to radiation: (I) in nurses employed in gynaecological radiology, exposed especially when handling radium inserts; and (II) in nuclear industry workers, all of which were exposed to external gamma irradiation and some of them also to internal radiation after incorporation of various radionuclides. The total dose registered with personal dosimeters ranged in Group 1 from 0.1 to 91.1 rem accumulated over working periods of 0.1 to 13 years, and in Group II from 1.0 to 18.2 rem accumulated over 1 to 9 years. Compared with unexposed controls, both groups exhibit a significant increase of cells with chromosome aberrations as well as larger numbers of breaks per cell. Dicentrics and rings could be observed in some cells, providing good evidence for previous radiation exposure, since these types of aberrations are extremely rare events in unexposed individuals. No correlation between the aberration yields and the film badge values could be demonstrated in Group II. Also, in Group I the fluctuations from individual to individual are rather high. Nevertheless, a positive correlation to the ''dose'' was obtained. Even a sub-group of the nurses that had only been exposed to 20 rem showed significantly more aberrations than control persons. From the results obtained, type and frequency of chromosome aberrations may be considered an indicator of radiation exposure even at the low doses. The reasons for lack of correspondence of chromosome aberration yields and the results of personal monitoring procedures are discussed in detail. (author)

  3. Cell type dependent morphological adaptation in polyelectrolyte hydrogels governs chondrogenic fate.

    Science.gov (United States)

    Raghothaman, Deepak; Leong, Meng Fatt; Lim, Tze Chiun; Wan, Andrew C A; Ser, Zheng; Lee, Eng Hin; Yang, Zheng

    2016-04-04

    Repair of critical-size articular cartilage defects typically involves delivery of cells in biodegradable, 3D matrices. Differences in the developmental status of mesenchymal stem cells (MSCs) and terminally differentiated mature chondrocytes might be a critical factor in engineering appropriate 3D matrices for articular cartilage tissue engineering. This study examined the relationship between material-driven early cell morphological adaptations and chondrogenic outcomes, by studying the influence of aligned collagen type I (Col I) presentation on chondrocytes and MSC in interfacial polyelectrolyte complexation (IPC)-based hydrogels. In the absence of Col I, both chondrocytes and MSCs adopted rounded cell morphology and formed clusters, with chondrocyte clusters favoring the maintenance of hyaline phenotype, while MSC clusters differentiated to fibro-superficial zone-like chondrocytes. Encapsulated chondrocytes in IPC-Col I hydrogel adopted a fibroblastic morphology forming fibro-superficial zone-like phenotype, which could be reversed by inhibiting actin polymerization using cytochalasin D (CytD). In contrast, adoption of fibroblastic morphology by encapsulated MSCs in IPC-Col I facilitated superior chondrogenesis, generating a mature, hyaline neocartilage tissue. CytD treatment abrogated the elongation of MSCs and brought about a single cell-like state, resulting in insignificant chondrogenic differentiation, underscoring the essential requirement of providing matrix environments that are amenable to cell-cell interactions for robust MSC chondrogenic differentiation. Our study demonstrates that MSCs and culture-expanded chondrocytes favour differential microenvironmental niches and emphasizes the importance of designing biomaterials that meet cell type-specific requirements, in adopting chondrocyte or MSC-based approaches for regenerating hyaline, articular cartilage.

  4. Body-weight and chromosome aberrations induced by X-rays in somatic cells of Drosophila melanogaster

    International Nuclear Information System (INIS)

    Marco, A. de; Belloni, M.P.

    1976-01-01

    Body-weight has been shown to influence the final expression of genetic damage by X-rays in Drosophila melanogaster. If larvae of Drosophila were raised up to the third instar in media containing different amounts of the same nutrient and in different conditions of crowding a positive correlation was observed between body-weight and frequency of chromosome aberrations induced by a given dose of X-rays in the somatic cells of their nerve ganglia. This effect, present in both sexes, is most plausibly attributed to a different capacity of big and small larvae for repairing radiation damage. (orig.) [de

  5. Phospho-specific flow cytometry identifies aberrant signaling in indolent B-cell lymphoma

    Directory of Open Access Journals (Sweden)

    Blix Egil S

    2012-10-01

    -induced phosphorylation of signaling proteins in distinct cell populations can be used to identify aberrant signaling pathways.

  6. Spatial and temporal changes in the morphology of preosteoblastic cells seeded on microstructured tantalum surfaces

    DEFF Research Database (Denmark)

    Justesen, Jørn; Lorentzen, M.; Andersen, L. K.

    2009-01-01

    It has been widely reported that surface morphology on the micrometer scale affects cell function as well as cell shape. In this study, we have systematically compared the influence of 13 topographically micropatterned tantalum surfaces on the temporal development of morphology, including spreading......, and length of preosteoblastic cells (MC3T3-E1). Cells were examined after 0.5, 1, 4, and 24 h on different Ta microstructures with vertical dimensions (heights) of 0.25 and 1.6 mu m. Cell morphologies depended upon the underlying Surface topography, and the length and spreading of cells varied as a function...... to depend on the distance between the pillars with one specific pillar Structure exhibiting a decreased spreading combined with a radical change in morphology of the cells. Interestingly, this morphology on the particular pillar structure was associated with a markedly different distribution of the actio...

  7. Ectopic Expression of Homeobox Gene NKX2-1 in Diffuse Large B-Cell Lymphoma Is Mediated by Aberrant Chromatin Modifications

    Science.gov (United States)

    Nagel, Stefan; Ehrentraut, Stefan; Tomasch, Jürgen; Quentmeier, Hilmar; Meyer, Corinna; Kaufmann, Maren; Drexler, Hans G.; MacLeod, Roderick A. F.

    2013-01-01

    Homeobox genes encode transcription factors ubiquitously involved in basic developmental processes, deregulation of which promotes cell transformation in multiple cancers including hematopoietic malignancies. In particular, NKL-family homeobox genes TLX1, TLX3 and NKX2-5 are ectopically activated by chromosomal rearrangements in T-cell neoplasias. Here, using transcriptional microarray profiling and RQ-PCR we identified ectopic expression of NKL-family member NKX2-1, in a diffuse large B-cell lymphoma (DLBCL) cell line SU-DHL-5. Moreover, in silico analysis demonstrated NKX2-1 overexpression in 5% of examined DLBCL patient samples. NKX2-1 is physiologically expressed in lung and thyroid tissues where it regulates differentiation. Chromosomal and genomic analyses excluded rearrangements at the NKX2-1 locus in SU-DHL-5, implying alternative activation. Comparative expression profiling implicated several candidate genes in NKX2-1 regulation, variously encoding transcription factors, chromatin modifiers and signaling components. Accordingly, siRNA-mediated knockdown and overexpression studies confirmed involvement of transcription factor HEY1, histone methyltransferase MLL and ubiquitinated histone H2B in NKX2-1 deregulation. Chromosomal aberrations targeting MLL at 11q23 and the histone gene cluster HIST1 at 6p22 which we observed in SU-DHL-5 may, therefore, represent fundamental mutations mediating an aberrant chromatin structure at NKX2-1. Taken together, we identified ectopic expression of NKX2-1 in DLBCL cells, representing the central player in an oncogenic regulative network compromising B-cell differentiation. Thus, our data extend the paradigm of NKL homeobox gene deregulation in lymphoid malignancies. PMID:23637834

  8. Effects of hypergravity on adipose-derived stem cell morphology, mechanical property and proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Tavakolinejad, Alireza [Medical Nanotechnology and Tissue Engineering Research Center, Taleghani Hospital, Shahid Beheshti University of Medical Sciences, Tehran (Iran, Islamic Republic of); Rabbani, Mohsen, E-mail: m.rabbani@eng.ui.ac.ir [Department of Biomedical Engineering, University of Isfahan, Isfahan (Iran, Islamic Republic of); Janmaleki, Mohsen [Medical Nanotechnology and Tissue Engineering Research Center, Taleghani Hospital, Shahid Beheshti University of Medical Sciences, Tehran (Iran, Islamic Republic of)

    2015-08-21

    Alteration in specific inertial conditions can lead to changes in morphology, proliferation, mechanical properties and cytoskeleton of cells. In this report, the effects of hypergravity on morphology of Adipose-Derived Stem Cells (ADSCs) are indicated. ADSCs were repeatedly exposed to discontinuous hypergravity conditions of 10 g, 20 g, 40 g and 60 g by utilizing centrifuge (three times of 20 min exposure, with an interval of 40 min at 1 g). Cell morphology in terms of length, width and cell elongation index and cytoskeleton of actin filaments and microtubules were analyzed by image processing. Consistent changes observed in cell elongation index as morphological change. Moreover, cell proliferation was assessed and mechanical properties of cells in case of elastic modulus of cells were evaluated by Atomic Force Microscopy. Increase in proliferation and decrease in elastic modulus of cells are further results of this study. Staining ADSC was done to show changes in cytoskeleton of the cells associated to hypergravity condition specifically in microfilament and microtubule components. After exposing to hypergravity, significant changes were observed in microfilaments and microtubule density as components of cytoskeleton. It was concluded that there could be a relationship between changes in morphology and MFs as the main component of the cells. - Highlights: • Hypergravity (10 g, 20 g, 40 g and 60 g) affects on adipose derived stem cells (ADSCs). • ADSCs after exposure to the hypergravity are more slender. • The height of ADSCs increases in all test groups comparing their control group. • Hypergravity decreases ADSCs modulus of elasticity and cell actin fiber content. • Hypergravity enhances proliferation rate of ADSCs.

  9. Effects of hypergravity on adipose-derived stem cell morphology, mechanical property and proliferation

    International Nuclear Information System (INIS)

    Tavakolinejad, Alireza; Rabbani, Mohsen; Janmaleki, Mohsen

    2015-01-01

    Alteration in specific inertial conditions can lead to changes in morphology, proliferation, mechanical properties and cytoskeleton of cells. In this report, the effects of hypergravity on morphology of Adipose-Derived Stem Cells (ADSCs) are indicated. ADSCs were repeatedly exposed to discontinuous hypergravity conditions of 10 g, 20 g, 40 g and 60 g by utilizing centrifuge (three times of 20 min exposure, with an interval of 40 min at 1 g). Cell morphology in terms of length, width and cell elongation index and cytoskeleton of actin filaments and microtubules were analyzed by image processing. Consistent changes observed in cell elongation index as morphological change. Moreover, cell proliferation was assessed and mechanical properties of cells in case of elastic modulus of cells were evaluated by Atomic Force Microscopy. Increase in proliferation and decrease in elastic modulus of cells are further results of this study. Staining ADSC was done to show changes in cytoskeleton of the cells associated to hypergravity condition specifically in microfilament and microtubule components. After exposing to hypergravity, significant changes were observed in microfilaments and microtubule density as components of cytoskeleton. It was concluded that there could be a relationship between changes in morphology and MFs as the main component of the cells. - Highlights: • Hypergravity (10 g, 20 g, 40 g and 60 g) affects on adipose derived stem cells (ADSCs). • ADSCs after exposure to the hypergravity are more slender. • The height of ADSCs increases in all test groups comparing their control group. • Hypergravity decreases ADSCs modulus of elasticity and cell actin fiber content. • Hypergravity enhances proliferation rate of ADSCs

  10. Aspirin induces morphological transformation to the secretory state in isolated rabbit parietal cells.

    Science.gov (United States)

    Murthy, U K; Levine, R A

    1991-08-01

    The morphological response of rabbit parietal cells to aspirin was evaluated by grading several ultra-structural features including the extent of the tubulovesicular system, intracellular secretory canaliculi, and microvilli. After exposure of isolated parietal cells and gastric glands to aspirin or histamine, there was an approximately twofold increase in the ratio of secretory to nonsecretory parietal cells, and depletion of extracellular Ca2+ abolished the aspirin-induced morphological changes. Morphometry in parietal cells showed that aspirin induced a sixfold increase in secretory canalicular membrane elaboration. Aspirin potentiated histamine-induced parietal cell respiration and aminopyrine uptake ratio but did not increase basal respiration or aminopyrine uptake, suggesting an apparent dissociation from aspirin-induced morphological changes.

  11. Camera processing with chromatic aberration.

    Science.gov (United States)

    Korneliussen, Jan Tore; Hirakawa, Keigo

    2014-10-01

    Since the refractive index of materials commonly used for lens depends on the wavelengths of light, practical camera optics fail to converge light to a single point on an image plane. Known as chromatic aberration, this phenomenon distorts image details by introducing magnification error, defocus blur, and color fringes. Though achromatic and apochromatic lens designs reduce chromatic aberration to a degree, they are complex and expensive and they do not offer a perfect correction. In this paper, we propose a new postcapture processing scheme designed to overcome these problems computationally. Specifically, the proposed solution is comprised of chromatic aberration-tolerant demosaicking algorithm and post-demosaicking chromatic aberration correction. Experiments with simulated and real sensor data verify that the chromatic aberration is effectively corrected.

  12. Comparative analysis of chromosome aberrations in human lymphocytes induced 'in vitro' by various types of ionizing radiation

    International Nuclear Information System (INIS)

    Todorov, S.

    1975-01-01

    A quantitative analysis on various types of chromosome aberrations in human peripheral blood lymphocytes after in vitro whole blood irradiation with 180 kV X-rays, gamma rays from cobalt 60, 50 MeV protons and scission neutrons is carried out. The following aberrations are scored: breaks, total number of aberrations, aberrant cells, chromosome fragments, dicentrics and interstitial deletions. The experimental data obtained are statistically processed applying the method of the least squares and employing four mathematical models: Y = cD 2 , Y = cD, Y = a + bD and Y = a + bD + cD 2 . Statistical analysis showed that after treatment with low LET (linear energy transfer) radiations the most suitable for the description of the kinetic of the two break aberrations, total number of aberrations and breaks in relation to dose is the polynomial second degree model, whereas for one break aberrations and aberrant cells - the linear model. The linear model is equally appropriate for one or two breaks aberrations when it is a matter of high LET radiations. Using the linear component of the polynominal second degree equation a comparative characteristic of the RBE (relative biological effectiveness) for the various radiations types is made. The following mean values for RBE are obtained: 0,86 +- 0,44 for gamma radiation from cobalt 60, 0,98 +- 0,06 for 50 MeV protons and 2,38 +- 0,11 for scission neutrons. (A.B.)

  13. Do DNA double-strand breaks induced by Alu I lead to development of novel aberrations in the second and third post-treatment mitoses?

    International Nuclear Information System (INIS)

    Wojcik, A.; Bonk, K.; Mueller, M.U.; Streffer, C.; Obe, G.

    1996-01-01

    Several authors have reported that ionizing radiation can give rise to novel aberrations several mitotic divisions after the exposure. At our institute this phenomenon has been observed in mouse preimplantation embryos. This cell system is uniquely well suited for such investigations because the first three cell divisions show a high degree of synchrony. Thus the expression of chromosomal aberrations at the first, second and third mitosis after irradiation can be scored unambiguously. To investigate whether DNA double-strand breaks may be the lesions responsible for the delayed expression of chromosomal aberrations, we have studied the frequencies of aberrations in the first, second and third mitosis after treatment of one-cell mouse embryos with the restriction enzyme Alu I. Embryos were permeabilized with Streptolysin-O. The results indicate that the induction of double-strand breaks does not lead to novel aberrations in the third post-treatment mitosis. Several embryos scored at the second mitosis showed very high numbers of aberrations, indicating that Alu I may remain active in the cells for a period of one cell cycle. After treatment with Streptolysin-O alone, enhanced aberration frequencies were observed in the third post-treatment mitosis, suggesting that membrane damage has a delayed effect on the cellular integrity. 44 refs., 3 figs., 3 tabs

  14. A special cell morphology of saccharomyces cerevisiae induced by low-temperature plasma

    International Nuclear Information System (INIS)

    Ling Dajun; Cao Jinxiang

    2003-01-01

    A special cell morphology, cavity-like cells, was found in posterities of Saccharomyces cerevisiae treated by low-temperature air plasma with different powers. The feature of the special morphology indicates that the cavity-like cells may be formed by cellular mutation effect induced by the plasma, instead of direct cellular damage by the plasma. The results suggest that the cellular mutation effect of the low-temperature plasma is a complex process

  15. Study of chromosome aberrations on the workers occupationally exposed to thorium and rare earth mixed dust

    International Nuclear Information System (INIS)

    Zhang Wei; Wang Chunyan; Lv Huiming; Zhang Cuilan; Hao Shuxia; Su Xu; Jia Kejun; Liu Yufei

    2008-01-01

    Objective: To study the effect of thorium and rare earth mixed dust on chromosome aberrations in the lymphocytes of occupational exposed workers. Methods: Analyses of unstable chromosome aberrations on 53 occupational exposed workers and 58 control workers were carried out by the conventional Giemsa staining method. Fluorescence in situ hybridization method was performed to analyze the chromosome stable aberrations on 10 occupational exposed workers and l0 control workers. Results: The frequencies of chromosomal aberration cells, dicentrics plus rings, total aberrations in exposed workers were significantly higher than those in controls. No significant difference was found in the frequency of acentric aberrations between exposed and non-exposed workers. No significant difference was found in the frequency of translocations between exposed and non-exposed workers. Conclusions: Chronically occupational exposure to thorium and rare earth mixed dust can increase the induction of unstable chromosome aberration, but the increase of stable chromosome aberrations (translocation) can not be observed. (authors)

  16. Dose response relationship for unstable-type chromosome aberration rate of spleen cells from mice continuously exposed to low-dose-rate gamma-rays

    International Nuclear Information System (INIS)

    Tanaka, Kimio; Khoda, Atsushi; Ichinohe, Kazuaki; Oghiso, Yoichi

    2007-01-01

    It has been reported that people who are chronically exposed to radiation such as nuclear facility workers and medical radiologists have slightly higher incidences of chromosome aberrations than non-exposed people. However, chronological changes of chromosome aberration rates related to accumulated doses and dose-rates for low dose-rate radiation exposures have not been well studied. Precise analyses of human populations are quite limited because confounding factors influence the results. For this reason, animal experiments are important for analyses. Mice were continuously exposed to gamma-rays at 400 mGy/22 hr/day for 10 days, 20 mGy/22 hr/day for about 400 days, and 1 mGy/22 hr/day for about 615 days under SPF conditions. Chronological changes of unstable-type chromosome aberration rates of spleen cells were observed along with accumulated doses at the middle dose rate and the two low-dose rates by conventional Giemsa-staining method. Aberrations such as dicentric chromosome, ring chromosome and fragment increased in a two-phase manner within 0-1.2 Gy and 2-8 Gy at 20 mGy/22 hr/day. They slightly increased up to 0.5 Gy at 1 mGy/22 hr/day. Aberration rates for 1, 2, 8 Gy at the 20 mGy/22 hr/day and for 0.5 Gy at 1 mGy/22 hr/day were 5.1, 9.6, 13.9 and 2.2 times higher than those of age-matched, non-irradiated control mice, respectively. Chromosome aberration rates at 400 mGy/22 hr/day were 2.7 times higher than that of 20 mGy/22 hr/day for the same total dose of 1.2 Gy. The results that unstable-type chromosome aberrations increased with accumulated dose of the low-dose rate radiation will be important to establish biological dosimetry for people who are chronically exposed to radiation. (author)

  17. Simulations of DSB Yields and Radiation-induced Chromosomal Aberrations in Human Cells Based on the Stochastic Track Structure Induced by HZE Particles

    Science.gov (United States)

    Ponomarev, Artem; Plante, Ianik; George, Kerry; Wu, Honglu

    2014-01-01

    The formation of double-strand breaks (DSBs) and chromosomal aberrations (CAs) is of great importance in radiation research and, specifically, in space applications. We are presenting a new particle track and DNA damage model, in which the particle stochastic track structure is combined with the random walk (RW) structure of chromosomes in a cell nucleus. The motivation for this effort stems from the fact that the model with the RW chromosomes, NASARTI (NASA radiation track image) previously relied on amorphous track structure, while the stochastic track structure model RITRACKS (Relativistic Ion Tracks) was focused on more microscopic targets than the entire genome. We have combined chromosomes simulated by RWs with stochastic track structure, which uses nanoscopic dose calculations performed with the Monte-Carlo simulation by RITRACKS in a voxelized space. The new simulations produce the number of DSBs as function of dose and particle fluence for high-energy particles, including iron, carbon and protons, using voxels of 20 nm dimension. The combined model also calculates yields of radiation-induced CAs and unrejoined chromosome breaks in normal and repair deficient cells. The joined computational model is calibrated using the relative frequencies and distributions of chromosomal aberrations reported in the literature. The model considers fractionated deposition of energy to approximate dose rates of the space flight environment. The joined model also predicts of the yields and sizes of translocations, dicentrics, rings, and more complex-type aberrations formed in the G0/G1 cell cycle phase during the first cell division after irradiation. We found that the main advantage of the joined model is our ability to simulate small doses: 0.05-0.5 Gy. At such low doses, the stochastic track structure proved to be indispensable, as the action of individual delta-rays becomes more important.

  18. Use of unstable chromosome aberrations for biological dosimetry after the first postirradiation mitosis

    International Nuclear Information System (INIS)

    Doloy, M.T.; Malarbet, J.L.; Guedeney, G.; Bourguignon, M.; Leroy, A.; Reillaudou, M.; Masse, R.

    1991-01-01

    The loss of unstable chromosome aberrations after the first postirradiation mitosis makes their use difficult in radiation dosimetry. We describe here a method which, in a cell population observed at this stage, allows retrospective estimation of the frequencies of the unstable aberrations induced at the time of irradiation, and their use as a dosimeter. The laws controlling the behavior of unstable aberrations during mitosis were defined from a large-scale experiment on irradiated human lymphocytes. For cells undergoing the first, second, or third mitosis after irradiation, relationships were determined between the frequency, at irradiation time, of acentric fragments not arising from formation of dicentrics or rings, and the ratio of dicentrics and centric rings appearing without acentric fragments to the total number of dicentrics plus rings. On the basis of this ratio, the method described here provides an assessment of the postirradiation mitotic activity in a cell population. This assessment permitted estimation of the cell distribution and frequency of dicentrics plus centric rings, and of the frequency of acentric fragments at the time of irradiation. The use of this method for retrospective dosimetry after whole-body irradiation under various conditions of exposure is illustrated

  19. Individual and combined effects of ochratoxin A and citrinin on viability and DNA fragmentation in cultured Vero cells and on chromosome aberrations in mice bone marrow cells

    International Nuclear Information System (INIS)

    Bouslimi, Amel; Bouaziz, Chayma; Ayed-Boussema, Imen; Hassen, Wafa; Bacha, Hassen

    2008-01-01

    Ochratoxin A (OTA) and citrinin (CTN) are two common contaminant mycotoxins which can occur jointly in a wide range of food commodities. Both mycotoxins have several toxic effects but share a significant nephrotoxic and carcinogenic potential since OTA and CTN were reported to be responsible for naturally occurring human and animal kidney diseases and tumors. Considering the concomitant production of OTA and CTN, it is very likely that humans and animals are always exposed to the mixture rather than to individual compounds. Therefore, the aim of the present study was to investigate, in vivo and in vitro, whether DNA damage is enhanced by combination of both mycotoxins as compared to their effect separately. To this end, we have assessed their effects individually or combined on cell proliferation and DNA fragmentation in cultured Vero cells and in vivo by monitoring the induction of chromosome aberrations. Our results clearly showed that cultured renal cells respond to OTA and CTN exposure by a moderate and weak inhibition of cell proliferation, respectively. However, when combined, they exert a significant increase in inhibition of cell viability. Similar results were found for the investigated genotoxicity endpoints (DNA fragmentation and chromosome aberrations). Altogether, our study showed that OTA and CTN combination effects are clearly synergistic. The synergistic induction of DNA damage observed with OTA and CTN taken concomitantly could be relevant to explain the molecular basis of the renal diseases and tumorogenesis induced by naturally occurring mycotoxins

  20. The induction of chromosomal aberrations by X irradiation during S-phase in cultured diploid Syrian hamster fibroblasts

    International Nuclear Information System (INIS)

    Savage, J.R.K.; Bhunya, S.P.

    1980-01-01

    The induction of chromosomal aberrations by 4.0 Gy of 250 kV X-rays in cell throughout S-phase has been investigated in untransformed diploid Syrian hamster fibroblasts. Using a method of subdividing S into catologically defined stages (on the basis of replication band patterns displayed after brome-deoxyuridine incorporation) it is shown that: (1) This dose does not perturb, measurable, the intracellular programme of synthesis at the chromosome band level, so that the cell classification criteria remain valid after radiation. (2) Mitotic delay and perturbation appears to be less for cells in very early S, but there is no evidence of a massive cell mixing of S cells. (3) S-phase is, in general, much less sensitive to aberration induction at all sub-phases than G 2 . (4) Both chromosome and chromatid-type aberrations are found in pre- S and S cells, but chromatid-types predominate in the latter at all sub-phases. (5) The frequency of chromatid-types, especially interchanges falls in eraly. (orig.)

  1. No significant level of inheritable interchromosomal aberrations in the progeny of bystander primary human fibroblasts after alpha particle irradiation

    Science.gov (United States)

    Hu, Burong; Zhu, Jiayun; Zhou, Hongning; Hei, Tom K.

    2013-02-01

    A major concern for bystander effects is the probability that normal healthy cells adjacent to the irradiated cells become genomically unstable and undergo further carcinogenesis after therapeutic irradiation or space mission where astronauts are exposed to low dose of heavy ions. Genomic instability is a hallmark of cancer cells. In the present study, two irradiation protocols were performed in order to ensure pure populations of bystander cells and the genomic instability in their progeny were investigated. After irradiation, chromosomal aberrations of cells were analyzed at designated time points using G2 phase premature chromosome condensation (G2-PCC) coupled with Giemsa staining and with multiplex fluorescent in situ hybridization (mFISH). Our Giemsa staining assay demonstrated that elevated yields of chromatid breaks were induced in the progeny of pure bystander primary fibroblasts up to 20 days after irradiation. mFISH assay showed no significant level of inheritable interchromosomal aberrations were induced in the progeny of the bystander cell groups, while the fractions of gross aberrations (chromatid breaks or chromosomal breaks) significantly increased in some bystander cell groups. These results suggest that genomic instability occurred in the progeny of the irradiation associated bystander normal fibroblasts exclude the inheritable interchromosomal aberration.

  2. Disruption of Maternal DNA Repair Increases Sperm-DerivedChromosomal Aberrations

    Energy Technology Data Exchange (ETDEWEB)

    Marchetti, Francesco; Essers, Jeroun; Kanaar, Roland; Wyrobek,Andrew J.

    2007-02-07

    The final weeks of male germ cell differentiation occur in aDNA repair-deficient environment and normal development depends on theability of the egg to repair DNA damage in the fertilizing sperm. Geneticdisruption of maternal DNA double-strand break repair pathways in micesignificantly increased the frequency of zygotes with chromosomalstructural aberrations after paternal exposure to ionizing radiation.These findings demonstrate that radiation-induced DNA sperm lesions arerepaired after fertilization by maternal factors and suggest that geneticvariation in maternal DNA repair can modulate the risk of early pregnancylosses and of children with chromosomal aberrations of paternalorigin.

  3. Combined cytokinesis-block micronucleus and chromosomal aberration assay for the evaluation of radiosensitizers at low radiation doses

    International Nuclear Information System (INIS)

    Oya, Natsuo; Shibamoto, Yuta; Shibata, Toru

    1994-01-01

    Several methods have been tried for evaluating the efficacy of hypoxic cell radiosensitizers at clinically relevant low radiation doses (1-4 Gy). The cytokinesis-block micronucleus assay is known to be useful for both the in vitro and in vivo evaluation of radiosensitizers, while the chromosomal aberration assay has been commonly used to assess the mutagenicity of various agents. In the present study, the chromosomal aberration assay and the cytokinesis-block micronucleus assay were performed simultaneously to assess the radiosensitizing effect of etanidazole and KU-2285 at low radiation doses. The correlation between the two assays was also evaluated. In vitro study: EMT-6 cells were irradiated at a dose of 1-3 Gy under hypoxic conditions with or without the drugs at 1 mM. In vivo-in vitro study: EMT-6 tumor-bearing BALB/c mice received 2-4 Gy of radiation with or without administration of the drugs at 200 mg/kg. Single-cell suspensions were then obtained in both studies and were used for the cytokinesis-block micronucleus assay and the chromosomal aberration assay. The micronucleus frequency in binucleate cells was evaluated in the former assay, and the frequency of chromosomal aberrations in metaphase cells was evaluated in the latter assay. In vitro study: the sensitizer enhancement ratios of etanidazole and KU-2285 were 1.73 and 2.21, respectively, in the micronucleus assay, and 1.41 and 1.79 in the chromosomal aberration assay. In vivo-in vitro study: the sensitizer enhancement ratios of etanidazole and KU-2285 were 1.18 and 1.31, respectively, in the micronucleus assay, and 1.16 and 1.42 in the chromosomal aberration assay. In both studies, a linear correlation was observed between the micronucleus frequency and the chromosomal aberration frequency. The background (i.e., the frequency at 0 Gy) of the latter assay was considerably lower than that of the former assay, especially in the in vivo study. 31 refs., 4 figs

  4. Mechanisms of induction of chromosomal aberrations and their detection by fluorescence in situ hybridization

    International Nuclear Information System (INIS)

    Natarajan, A.T.

    2002-01-01

    Recently introduced fluorescence in situ hybridization (FISH) technique employing chromosome specific DNA libraries as well as region specific DNA probes (e.g., centromere, telomere) have helped to analyse chromosomal aberrations in great detail and thus have given some new insights into the mechanisms of induction of chromosomal aberrations. The relative proportion of induction of translocations and dicentrics by ionising radiation was studied in human, mice and Chinese hamster cells. Many of the studies point to the differences between the mechanisms of induction of dicentrics and translocations. Preliminary results obtained in our laboratory using arm specific probes for human chromosomes 1 and 3 indicate that the aberrations between the arms appear to be more than expected on a random basis. By employing telomeric probes the frequencies of interstitial deletions were found to be high and similar to the frequencies of dicentrics both in human and mouse lymphocytes. A recent study with human chromosome specific probes clearly shows variation of sensitivity of chromosomes for the induction of exchange aberrations. Radiation response studies with Chinese hamster cells using telomeric probes, suggest that telomeric sequences, especially interstitial ones appear to be an important factor in the origin of both spontaneous and induced chromosomal aberrations

  5. Modeling the Excess Cell Surface Stored in a Complex Morphology of Bleb-Like Protrusions.

    Directory of Open Access Journals (Sweden)

    Maryna Kapustina

    2016-03-01

    Full Text Available Cells transition from spread to rounded morphologies in diverse physiological contexts including mitosis and mesenchymal-to-amoeboid transitions. When these drastic shape changes occur rapidly, cell volume and surface area are approximately conserved. Consequently, the rounded cells are suddenly presented with a several-fold excess of cell surface whose area far exceeds that of a smooth sphere enclosing the cell volume. This excess is stored in a population of bleb-like protrusions (BLiPs, whose size distribution is shown by electron micrographs to be skewed. We introduce three complementary models of rounded cell morphologies with a prescribed excess surface area. A 2D Hamiltonian model provides a mechanistic description of how discrete attachment points between the cell surface and cortex together with surface bending energy can generate a morphology that satisfies a prescribed excess area and BLiP number density. A 3D random seed-and-growth model simulates efficient packing of BLiPs over a primary rounded shape, demonstrating a pathway for skewed BLiP size distributions that recapitulate 3D morphologies. Finally, a phase field model (2D and 3D posits energy-based constitutive laws for the cell membrane, nematic F-actin cortex, interior cytosol, and external aqueous medium. The cell surface is equipped with a spontaneous curvature function, a proxy for the cell surface-cortex couple, that is a priori unknown, which the model "learns" from the thin section transmission electron micrograph image (2D or the "seed and growth" model image (3D. Converged phase field simulations predict self-consistent amplitudes and spatial localization of pressure and stress throughout the cell for any posited stationary morphology target and cell compartment constitutive properties. The models form a general framework for future studies of cell morphological dynamics in a variety of biological contexts.

  6. Genomic aberrations in spitzoid tumours and their implications for diagnosis, prognosis and therapy

    Science.gov (United States)

    Wiesner, Thomas; Kutzner, Heinz; Cerroni, Lorenzo; Mihm, Martin J.; Busam, Klaus J.; Murali, Rajmohan

    2016-01-01

    Summary Histopathological evaluation of melanocytic tumours usually allows reliable distinction of benign melanocytic naevi from melanoma. More difficult is the histopathological classification of Spitz tumours, a heterogeneous group of tumours composed of large epithelioid or spindle-shaped melanocytes. Spitz tumours are biologically distinct from conventional melanocytic naevi and melanoma, as exemplified by their distinct patterns of genetic aberrations. Whereas conventional naevi and melanoma often harbour BRAF mutations, NRAS mutations, or inactivation of NF1, Spitz tumours show HRAS mutations, inactivation of BAP1 (often combined with BRAF mutations), or genomic rearrangements involving the kinases ALK, ROS1, NTRK1, BRAF, RET, and MET. In Spitz naevi, which lack significant histological atypia, all of these mitogenic driver aberrations trigger rapid cell proliferation, but after an initial growth phase, various tumour suppressive mechanisms stably block further growth. In some tumours, additional genomic aberrations may abrogate various tumour suppressive mechanisms, such as cell-cycle arrest, telomere shortening, or DNA damage response. The melanocytes then start to grow in a less organised fashion, may spread to regional lymph nodes, and are termed atypical Spitz tumours. Upon acquisition of even more aberrations, which often activate additional oncogenic pathways or reduce and alter cell differentiation, the neoplastic cells become entirely malignant and may colonise and take over distant organs (spitzoid melanoma). The sequential acquisition of genomic aberrations suggests that Spitz tumours represent a continuous biological spectrum, rather than a dichotomy of benign versus malignant, and that tumours with ambiguous histological features (atypical Spitz tumours) might be best classified as low-grade melanocytic tumours. The number of genetic aberrations usually correlates with the degree of histological atypia and explains why existing ancillary genetic

  7. HCV core protein-induced down-regulation of microRNA-152 promoted aberrant proliferation by regulating Wnt1 in HepG2 cells.

    Directory of Open Access Journals (Sweden)

    Shifeng Huang

    Full Text Available Hepatitis C virus (HCV has been reported to regulate cellular microRNAs (miRNAs. The HCV core protein is considered to be a potential oncoprotein in HCV-related hepatocellular carcinoma (HCV-HCC, but HCV core-regulated miRNAs are largely unknown. Our preliminary experiments revealed significant down-regulation of microRNA-152 (miR-152 by HCV core protein in HepG2 cells. Through target gene prediction softwares, Wnt1 was predicted to be a potential target of miR-152. The present study was initiated to investigate whether miR-152 is aberrantly regulated by the HCV core protein, and involved in the regulation of the aberrant proliferation of HCV-HCC cells.MiR-152 levels were examined by stem-loop real-time RT-PCR (SLqRT-PCR. Cell proliferation was analyzed by MTT and colony formation assay. Cell cycle analysis was performed by flow cytometry. Luciferase reporter assay was conducted to confirm miRNA-target association. Wnt1 expression was determined by real-time qPCR and Western blotting.HCV core protein significantly suppressed miR-152 expression, and led to significant Wnt1 up-regulation with a concomitant aberrantly promoted proliferation. Moreover, we validated that miR-152 inhibition promoted, while miR-152 mimics inhibited cell proliferation. Using, qRT-PCR and western blot, Wnt1 was demonstrated to be regulated by miR-152. Luciferase activity assay showed that while miR-152 mimics significantly reduced the luciferase activity by 83.76% (P<0.0001, miR-152 inhibitor showed no effect on luciferase reporter. Most notably, salvage expression of miR-152 after Ad-HCV core infection for 24 h almost totally reversed the proliferation-promoting effect of the HCV core protein, and meanwhile, reduced the expression of both Wnt1 mRNA and protein to basal levels.These findings provide important evidence that the reduced miR-152 expression by HCV core protein can indirectly lose an inhibitory effect on Wnt1, which might, at least partially lead to cell

  8. Correlating yeast cell stress physiology to changes in the cell surface morphology: atomic force microscopic studies.

    Science.gov (United States)

    Canetta, Elisabetta; Walker, Graeme M; Adya, Ashok K

    2006-07-06

    Atomic Force Microscopy (AFM) has emerged as a powerful biophysical tool in biotechnology and medicine to investigate the morphological, physical, and mechanical properties of yeasts and other biological systems. However, properties such as, yeasts' response to environmental stresses, metabolic activities of pathogenic yeasts, cell-cell/cell-substrate adhesion, and cell-flocculation have rarely been investigated so far by using biophysical tools. Our recent results obtained by AFM on one strain each of Saccharomyces cerevisiae and Schizosaccharomyces pombe show a clear correlation between the physiology of environmentally stressed yeasts and the changes in their surface morphology. The future directions of the AFM related techniques in relation to yeasts are also discussed.

  9. Biophysical subsets of embryonic stem cells display distinct phenotypic and morphological signatures.

    Directory of Open Access Journals (Sweden)

    Tom Bongiorno

    Full Text Available The highly proliferative and pluripotent characteristics of embryonic stem cells engender great promise for tissue engineering and regenerative medicine, but the rapid identification and isolation of target cell phenotypes remains challenging. Therefore, the objectives of this study were to characterize cell mechanics as a function of differentiation and to employ differences in cell stiffness to select population subsets with distinct mechanical, morphological, and biological properties. Biomechanical analysis with atomic force microscopy revealed that embryonic stem cells stiffened within one day of differentiation induced by leukemia inhibitory factor removal, with a lagging but pronounced change from spherical to spindle-shaped cell morphology. A microfluidic device was then employed to sort a differentially labeled mixture of pluripotent and differentiating cells based on stiffness, resulting in pluripotent cell enrichment in the soft device outlet. Furthermore, sorting an unlabeled population of partially differentiated cells produced a subset of "soft" cells that was enriched for the pluripotent phenotype, as assessed by post-sort characterization of cell mechanics, morphology, and gene expression. The results of this study indicate that intrinsic cell mechanical properties might serve as a basis for efficient, high-throughput, and label-free isolation of pluripotent stem cells, which will facilitate a greater biological understanding of pluripotency and advance the potential of pluripotent stem cell differentiated progeny as cell sources for tissue engineering and regenerative medicine.

  10. Effect of Yeast Cell Morphology, Cell Wall Physical Structure and Chemical Composition on Patulin Adsorption.

    Science.gov (United States)

    Luo, Ying; Wang, Jianguo; Liu, Bin; Wang, Zhouli; Yuan, Yahong; Yue, Tianli

    2015-01-01

    The capability of yeast to adsorb patulin in fruit juice can aid in substantially reducing the patulin toxic effect on human health. This study aimed to investigate the capability of yeast cell morphology and cell wall internal structure and composition to adsorb patulin. To compare different yeast cell morphologies, cell wall internal structure and composition, scanning electron microscope, transmission electron microscope and ion chromatography were used. The results indicated that patulin adsorption capability of yeast was influenced by cell surface areas, volume, and cell wall thickness, as well as 1,3-β-glucan content. Among these factors, cell wall thickness and 1,3-β-glucan content serve significant functions. The investigation revealed that patulin adsorption capability was mainly affected by the three-dimensional network structure of the cell wall composed of 1,3-β-glucan. Finally, patulin adsorption in commercial kiwi fruit juice was investigated, and the results indicated that yeast cells could adsorb patulin from commercial kiwi fruit juice efficiently. This study can potentially simulate in vitro cell walls to enhance patulin adsorption capability and successfully apply to fruit juice industry.

  11. Effect of caffeine posttreatment on X-ray-induced chromosomal aberrations in human blood lymphocytes in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Natarajan, A T [Rijksuniversiteit Leiden (Netherlands). Dept. of Radiation Genetics and Chemical Mutagenesis; Cohen (J.A.) Inst. voor Radiopathologie en Stralenbescherming, Leiden (Netherlands)); Obe, G [Rijksuniversiteit Leiden (Netherlands). Dept. of Radiation Genetics and Chemical Mutagenesis; Cohen (J.A.) Inst. voor Radiopathologie en Stralenbescherming, Leiden (Netherlands); Freie Univ. Berlin (Germany, F.R.). Inst. fuer Genetik); Dulout, F N [Rijksuniversiteit Leiden (Netherlands). Dept. of Radiation Genetics and Chemical Mutagenesis; Instituto Multidisciplinario de Biologia Celular, La Plata (Argentinia))

    1980-01-01

    The potentiating effect of caffeine on X-ray-induced chromosomal aberrations in human blood lymphocytes has been investigated, with special reference to cell cycle stages (G0 and G2). Both quantitative and qualitative differences in the yield of chromosomal aberrations were detected in caffeine-posttreated cells, depending on the cell stage irradiated. The studies on caffeine potentiating effects on X-irradiated G0 lymphocytes from normal adults, newborns, Down syndrome patients, and an ataxia telangiectasia patient pointed to interindividual variations in the response to caffeine potentiation among normal probands and a very profound effect in ataxia cells.

  12. Correlations between corneal and total wavefront aberrations

    Science.gov (United States)

    Mrochen, Michael; Jankov, Mirko; Bueeler, Michael; Seiler, Theo

    2002-06-01

    Purpose: Corneal topography data expressed as corneal aberrations are frequently used to report corneal laser surgery results. However, the optical image quality at the retina depends on all optical elements of the eye such as the human lens. Thus, the aim of this study was to investigate the correlations between the corneal and total wavefront aberrations and to discuss the importance of corneal aberrations for representing corneal laser surgery results. Methods: Thirty three eyes of 22 myopic subjects were measured with a corneal topography system and a Tschernig-type wavefront analyzer after the pupils were dilated to at least 6 mm in diameter. All measurements were centered with respect to the line of sight. Corneal and total wavefront aberrations were calculated up to the 6th Zernike order in the same reference plane. Results: Statistically significant correlations (p the corneal and total wavefront aberrations were found for the astigmatism (C3,C5) and all 3rd Zernike order coefficients such as coma (C7,C8). No statistically significant correlations were found for all 4th to 6th order Zernike coefficients except for the 5th order horizontal coma C18 (p equals 0.003). On average, all Zernike coefficients for the corneal aberrations were found to be larger compared to Zernike coefficients for the total wavefront aberrations. Conclusions: Corneal aberrations are only of limited use for representing the optical quality of the human eye after corneal laser surgery. This is due to the lack of correlation between corneal and total wavefront aberrations in most of the higher order aberrations. Besides this, the data present in this study yield towards an aberration balancing between corneal aberrations and the optical elements within the eye that reduces the aberration from the cornea by a certain degree. Consequently, ideal customized ablations have to take both, corneal and total wavefront aberrations, into consideration.

  13. Cells bearing chromosome aberrations lacking one telomere are selectively blocked at the G2/M checkpoint

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, Pilar [Unitat de Biologia Cel.lular, Departament de Biologia Cel.lular, Fisiologia i Immunologia, Universitat Autonoma de Barcelona, 08193 Bellaterra (Spain); Barquinero, Joan Francesc [Unitat d' Antropologia Biologica, Departament de Biologia Animal, Biologia Vegetal i Ecologia, Universitat Autonoma de Barcelona, 08193 Bellaterra (Spain); Duran, Assumpta [Unitat de Biologia Cel.lular, Departament de Biologia Cel.lular, Fisiologia i Immunologia, Universitat Autonoma de Barcelona, 08193 Bellaterra (Spain); Caballin, Maria Rosa [Unitat d' Antropologia Biologica, Departament de Biologia Animal, Biologia Vegetal i Ecologia, Universitat Autonoma de Barcelona, 08193 Bellaterra (Spain); Ribas, Montserrat [Servei de Radiofisica i Radioproteccio de l' Hospital de la Santa Creu i Sant Pau, 08025 Barcelona (Spain); Barrios, Leonardo, E-mail: Lleonard.Barrios@uab.cat [Unitat de Biologia Cel.lular, Departament de Biologia Cel.lular, Fisiologia i Immunologia, Universitat Autonoma de Barcelona, 08193 Bellaterra (Spain)

    2009-11-02

    Cell cycle checkpoints are part of the cellular mechanisms to maintain genomic integrity. After ionizing radiation exposure, the cells can show delay or arrest in their progression through the cell cycle, as well as an activation of the DNA repair machinery in order to reduce the damage. The G2/M checkpoint prevents G2 cells entering mitosis until the DNA damage has been reduced. The present study evaluates which G0 radiation-induced chromosome aberrations are negatively selected in the G2/M checkpoint. For this purpose, peripheral blood samples were irradiated at 1 and 3 Gy of {gamma}-rays, and lymphocytes were cultured for 48 h. Calyculin-A and Colcemid were used to analyze, in the same slide, cells in G2 and M. Chromosome spreads were consecutively analyzed by solid stain, pancentromeric and pantelomeric FISH and mFISH. The results show that the frequency of incomplete chromosome elements, those lacking a telomeric signal at one end, decreases abruptly from G2 to M. This indicates that cells with incomplete chromosome elements can progress from G0 to G2, but at the G2/M checkpoint suffer a strong negative selection.

  14. Cells bearing chromosome aberrations lacking one telomere are selectively blocked at the G2/M checkpoint

    International Nuclear Information System (INIS)

    Rodriguez, Pilar; Barquinero, Joan Francesc; Duran, Assumpta; Caballin, Maria Rosa; Ribas, Montserrat; Barrios, Leonardo

    2009-01-01

    Cell cycle checkpoints are part of the cellular mechanisms to maintain genomic integrity. After ionizing radiation exposure, the cells can show delay or arrest in their progression through the cell cycle, as well as an activation of the DNA repair machinery in order to reduce the damage. The G2/M checkpoint prevents G2 cells entering mitosis until the DNA damage has been reduced. The present study evaluates which G0 radiation-induced chromosome aberrations are negatively selected in the G2/M checkpoint. For this purpose, peripheral blood samples were irradiated at 1 and 3 Gy of γ-rays, and lymphocytes were cultured for 48 h. Calyculin-A and Colcemid were used to analyze, in the same slide, cells in G2 and M. Chromosome spreads were consecutively analyzed by solid stain, pancentromeric and pantelomeric FISH and mFISH. The results show that the frequency of incomplete chromosome elements, those lacking a telomeric signal at one end, decreases abruptly from G2 to M. This indicates that cells with incomplete chromosome elements can progress from G0 to G2, but at the G2/M checkpoint suffer a strong negative selection.

  15. The effect of 3-aminobenzamide on X-ray induction of chromosome aberrations in Down syndrome lymphocytes

    International Nuclear Information System (INIS)

    McLaren, R.A.; Au, W.W.; Legator, M.S.

    1989-01-01

    Human lymphocytes from normal and Down syndrome (DS) subjects were examined to determine the effect of 3-aminobenzamide (3AB) on X-ray-induced chromosome aberrations. Lymphocytes were treated with 150 or 300 rad of X-rays in the presence of 3 mM 3AB for various times after irradiation, and then the cells were analyzed for the presence of chromosome aberrations in mitotic cells. 3-Aminobenzamide had no effect on the frequency of chromosome aberrations as a result of treatment with X-rays in the presence of 3AB. These observations indicate that DS lymphocytes are more sensitive to the inhibition of poly(ADP)ribose synthetase than normal lymphocytes. (author). 44 refs.; 3 tabs

  16. Chromosome aberrations induced by 135 MeV of carbon and neon beams by PRC

    International Nuclear Information System (INIS)

    Ohara, Hiroshi; Minamihisamatu, Masako; Kanai, Tatsuaki; Eguchi-Kasai, Kiyomi; Itsukaichi, Hiromi; Fukutsu, Kumiko; Yatagai, Fumio; Sato, Kohki.

    1993-01-01

    Radiation-induced chromosome aberration can be an indicator of the radiation lesions in irradiated cells. Many studies on chromosome aberration induced by X-ray and γ - ray have indicated that the dose response of the aberration can be fitted to a quadratic equation, Y = αD + βD 2 , and it becomes linear as the LET of beams increases. The main subject of this study was some quantification of chromosomal aberration induced by 135 MeV/n carbon and neon beams produced by the RRC, the operation of which increasingly became useful for the studies on heavy ion biology. The results will meet with some of the radiobiological features connected to the specific action of charged particles. The materials used, the experimental method and the results are reported. Four curves of the dose response for the production of dicentric and ring types of aberration induced by carbon and neon beams and four different dose average LETs are given. Aberration production rate became higher as LET increased. Chromosome aberration can be quantified as an indicator of radiation lesions in the case of high LET particle radiation. (K.I.)

  17. Induction and persistence of chromosome aberrations in human lymphocytes exposed to neutrons in vitro or in vivo: Implications of findings in 'retrospective' biological dosimetry

    International Nuclear Information System (INIS)

    Littlefield, L.G.; McFee, A.F.; Sayer, A.M.; O'Neill, J.P.; Kleinerman, R.A.; Maor, M.H.

    2000-01-01

    The induction and persistence were evaluated of chromosome aberrations in lymphocytes exposed in vitro to highly efficient 1 MeV monoenergetic neutrons and in patients who received fast neutrons as therapy for tumours. For the in vitro studies, lymphocytes were exposed to various doses of neutrons and cultured for one or 20 cell cycles. Aberrations were quantified in painted chromosome pairs 1, 2 or 4. These 1 MeV neutrons were highly efficient in inducing aberrations, and dicentrics as well as one-way and two-way translocations increased as a linear function of dose. About 30% of the aberrant metaphases displayed complex aberrations. After multiple in vitro cell divisions, virtually all asymmetrical aberrations had been eliminated from the cell population, and the frequency of one-way translocations was reduced dramatically. In contrast, most two-way translocations apparently survived through multiple cell divisions and still displayed excellent correlation with dose after 20 cell cycles. Classical methods were used to evaluate persistence of aberrations in patients who received fractionated neutron therapy to tumours located in many different sites. Neutron induced dicentrics and rings disappeared from the peripheral circulation within the first three years after exposure, while translocations persisted for more than 17 y. However, considerable variability in numbers of aberrations were observed between patients who had received similar 'average bone marrow doses'. Results of these studies are discussed in relation to the possible use of translocations as retrospective dosemeters in persons exposed to radiation many years ago. (author)

  18. Delayed formation of chromosome aberrations in mouse pachytebne spermatocytes treated with triethylenemelamine (TEM)

    International Nuclear Information System (INIS)

    Generoso, W.M.; Krishna, M.; Sotomayor, R.E.; Cacheiro, N.L.A.

    1977-01-01

    Induction of chromosome aberrations in pachytene spermatocytes of mice by 2 mg/kg TEM was compared with induction by 400 R x rays. These doses induced comparably high dominant lethal effects in pachytene spermatocytes of mice. Cytological analysis at diakinesis-metaphase I stage showed that whereas 76.4% of the cells treated with x rays at pachytene stage had aberrations, the frequencies observed in two TEM experiments were only 0.8 and 2.2%. On the other hand, 5% of the progeny from TEM-treated pachytene spermatocytes were found to be translocation heterozygotes. This is the first report on the recovery of heritable translocations from treated spermatocytes of mice. The aberration frequencies observed for TEM in diakinesis-metaphase I were much too low to account for all the lethal mutations and heritable translocations. Thus, the formation of the bulk of aberrations induced by TEM in pachytene spermatocytes was delayed--a marked contrast to the more immediate formation of x-ray-induced aberrations. It is postulated that the formation of the bulk of TEM-induced aberrations in pachytene spermatocytes and in certain postmeiotic stages occurs sometime during spermiogenesis, and not through the operation of postfertilization pronuclear DNA synthesis

  19. Identification of Proteins Related to Epigenetic Regulation in the Malignant Transformation of Aberrant Karyotypic Human Embryonic Stem Cells by Quantitative Proteomics

    Science.gov (United States)

    Sun, Yi; Yang, Yixuan; Zeng, Sicong; Tan, Yueqiu; Lu, Guangxiu; Lin, Ge

    2014-01-01

    Previous reports have demonstrated that human embryonic stem cells (hESCs) tend to develop genomic alterations and progress to a malignant state during long-term in vitro culture. This raises concerns of the clinical safety in using cultured hESCs. However, transformed hESCs might serve as an excellent model to determine the process of embryonic stem cell transition. In this study, ITRAQ-based tandem mass spectrometry was used to quantify normal and aberrant karyotypic hESCs proteins from simple to more complex karyotypic abnormalities. We identified and quantified 2583 proteins, and found that the expression levels of 316 proteins that represented at least 23 functional molecular groups were significantly different in both normal and abnormal hESCs. Dysregulated protein expression in epigenetic regulation was further verified in six pairs of hESC lines in early and late passage. In summary, this study is the first large-scale quantitative proteomic analysis of the malignant transformation of aberrant karyotypic hESCs. The data generated should serve as a useful reference of stem cell-derived tumor progression. Increased expression of both HDAC2 and CTNNB1 are detected as early as the pre-neoplastic stage, and might serve as prognostic markers in the malignant transformation of hESCs. PMID:24465727

  20. Simulations of DSB Yields and Radiation-induced Chromosomal Aberrations in Human Cells Based on the Stochastic Track Structure iIduced by HZE Particles

    Science.gov (United States)

    Ponomarev, Artem; Plante, Ianik; George, Kerry; Wu, Honglu

    2014-01-01

    The formation of double-strand breaks (DSBs) and chromosomal aberrations (CAs) is of great importance in radiation research and, specifically, in space applications. We are presenting a new particle track and DNA damage model, in which the particle stochastic track structure is combined with the random walk (RW) structure of chromosomes in a cell nucleus. The motivation for this effort stems from the fact that the model with the RW chromosomes, NASARTI (NASA radiation track image) previously relied on amorphous track structure, while the stochastic track structure model RITRACKS (Relativistic Ion Tracks) was focused on more microscopic targets than the entire genome. We have combined chromosomes simulated by RWs with stochastic track structure, which uses nanoscopic dose calculations performed with the Monte-Carlo simulation by RITRACKS in a voxelized space. The new simulations produce the number of DSBs as function of dose and particle fluence for high-energy particles, including iron, carbon and protons, using voxels of 20 nm dimension. The combined model also calculates yields of radiation-induced CAs and unrejoined chromosome breaks in normal and repair deficient cells. The joined computational model is calibrated using the relative frequencies and distributions of chromosomal aberrations reported in the literature. The model considers fractionated deposition of energy to approximate dose rates of the space flight environment. The joined model also predicts of the yields and sizes of translocations, dicentrics, rings, and more complex-type aberrations formed in the G0/G1 cell cycle phase during the first cell division after irradiation. We found that the main advantage of the joined model is our ability to simulate small doses: 0.05-0.5 Gy. At such low doses, the stochastic track structure proved to be indispensable, as the action of individual delta-rays becomes more important.

  1. Epigenetically Aberrant Stroma in MDS Propagates Disease via Wnt/β-Catenin Activation.

    Science.gov (United States)

    Bhagat, Tushar D; Chen, Si; Bartenstein, Matthias; Barlowe, A Trevor; Von Ahrens, Dagny; Choudhary, Gaurav S; Tivnan, Patrick; Amin, Elianna; Marcondes, A Mario; Sanders, Mathijs A; Hoogenboezem, Remco M; Kambhampati, Suman; Ramachandra, Nandini; Mantzaris, Iaonnis; Sukrithan, Vineeth; Laurence, Remi; Lopez, Robert; Bhagat, Prafullla; Giricz, Orsi; Sohal, Davendra; Wickrema, Amittha; Yeung, Cecilia; Gritsman, Kira; Aplan, Peter; Hochedlinger, Konrad; Yu, Yiting; Pradhan, Kith; Zhang, Jinghang; Greally, John M; Mukherjee, Siddhartha; Pellagatti, Andrea; Boultwood, Jacqueline; Will, Britta; Steidl, Ulrich; Raaijmakers, Marc H G P; Deeg, H Joachim; Kharas, Michael G; Verma, Amit

    2017-09-15

    The bone marrow microenvironment influences malignant hematopoiesis, but how it promotes leukemogenesis has not been elucidated. In addition, the role of the bone marrow stroma in regulating clinical responses to DNA methyltransferase inhibitors (DNMTi) is also poorly understood. In this study, we conducted a DNA methylome analysis of bone marrow-derived stromal cells from myelodysplastic syndrome (MDS) patients and observed widespread aberrant cytosine hypermethylation occurring preferentially outside CpG islands. Stroma derived from 5-azacytidine-treated patients lacked aberrant methylation and DNMTi treatment of primary MDS stroma enhanced its ability to support erythroid differentiation. An integrative expression analysis revealed that the WNT pathway antagonist FRZB was aberrantly hypermethylated and underexpressed in MDS stroma. This result was confirmed in an independent set of sorted, primary MDS-derived mesenchymal cells. We documented a WNT/β-catenin activation signature in CD34 + cells from advanced cases of MDS, where it associated with adverse prognosis. Constitutive activation of β-catenin in hematopoietic cells yielded lethal myeloid disease in a NUP98-HOXD13 mouse model of MDS, confirming its role in disease progression. Our results define novel epigenetic changes in the bone marrow microenvironment, which lead to β-catenin activation and disease progression of MDS. Cancer Res; 77(18); 4846-57. ©2017 AACR . ©2017 American Association for Cancer Research.

  2. Non-random intrachromosomal distribution of radiation-induced chromatid aberrations in Vicia faba. [Aberration clustering

    Energy Technology Data Exchange (ETDEWEB)

    Schubert, I; Rieger, R [Akademie der Wissenschaften der DDR, Gatersleben. Zentralinst. fuer Genetik und Kulturpflanzenforschung

    1976-04-01

    A reconstructed karyotype of Vicia faba, with all chromosomes individually distinguishable, was treated with X-rays, fast neutrons, (/sup 3/H) uridine (/sup 3/HU). The distribution within metaphase chromosomes of induced chromatid aberrations was non-random for all agents used. Aberration clustering, in part agent specific, occurred in chromosome segments containing heterochromatin as defined by the presence of G bands. The pattern of aberration clustering found after treatment with /sup 3/HU did not allow the recognition of chromosome regions active in transcription during treatment. Furthermore, it was impossible to obtain unambiguous indications of the presence of AT- and GC-base clusters from the patterns of /sup 3/HT- and /sup 3/HC-induced chromatid aberrations, respectively. Possible reasons underlying these observations are discussed.

  3. Reduced E-Cadherin and Aberrant β-Catenin Expression are Associated With Advanced Disease in Signet-Ring Cell Carcinomas.

    Science.gov (United States)

    Ma, Yihong R; Ren, Zhiyong; Conner, Michael G; Siegal, Gene P; Wei, Shi

    2017-07-01

    Signet-ring cell carcinomas (SRCCs) tend to present at higher stages and thus are generally associated with a worse prognosis. It has been postulated that a deficiency of E-cadherin may be causal in the pathogenesis of SRCC in animal models. In this study, we systemically analyzed the expression of E-cadherin and β-catenin, a key component of the cadherin complex, in 137 consecutive SRCCs of various organ systems to explore the significance of these molecules in the pathogenesis and progression of SRCCs. Seventy-six percent of SRCCs showed loss or reduced E-cadherin expression. Aberrant β-catenin expression, defined as loss of membranous expression and nuclear/cytoplasmic subcellular localization, was observed in 60% of these cases, with the altered β-catenin expression observed most commonly in the breast (93%) and least in the lung (38%) primaries. Further, the aberrant β-catenin was significantly associated with pathologic nodal stage (P=0.002) and clinical stage (P=0.02). Our findings demonstrated that reduced membranous E-cadherin and aberrant β-catenin expression were frequent events in SRCCs of various organs, and that the altered β-catenin expression was significantly associated with advanced disease. The observations further support the importance of these molecules in the pathogenesis of SRCCs, and indicate the fundamental role of the Wnt/β-catenin signaling pathway in the progression of these tumors. Further investigations of the downstream molecules in this cascade may provide potential novel therapeutic targets for this aggressive tumor type.

  4. Influence of chromosome territory morphology and nuclear distribution on exchange frequencies: comparison between experiment and simulation

    Energy Technology Data Exchange (ETDEWEB)

    Kreth, G.; Hase, J.V.; Finsterle, J.; Cremer, C. [Kirchhoff Institute for Physics, INF, Heidelber (Germany); Greulich, K. [German Cancer Research Center, INF, Heidelberg (Germany); Cremer, M. [Institute of Anthropology and Human Genetics, Muenchen (Germany)

    2003-07-01

    To explore the influence of chromosome territory morphology and the positioning of certain chromosomes in the nuclear volume on aberration frequencies, in the present study geometric computer models of all Chromosome Territories (CTs) in a human cell nucleus were used to investigate these constraints quantitatively. For this purpose a geometric representation of a CT in a given nuclear volume was approximated by a linear polymer chain of 500 nm sized spherical 1 Mbp domains connected by entropic spring potentials. The morphology aspect was investigated for the active and inactive X-chromosome of female cells. Assuming a statistical distribution of Xa, Xi and the autosomes a quite good agreement of virtually calculated translocation break frequencies with observed frequencies determined from Hiroshima A-bomb survivors was found. To regard in a first step the aspect of the experimentally observed different locations of certain chromosomes, a simulated gene density correlated distribution of modeled lymphocytes was realized. The respective calculated translocation frequencies were compared with fish experiments of irradiated lymphocyte cells. (author)

  5. Aberrant meiotic behavior in Agave tequilana Weber var. azul.

    Science.gov (United States)

    Ruvalcaba-Ruiz, Domingo; Rodríguez-Garay, Benjamin

    2002-10-23

    Agave tequilana Weber var. azul, is the only one variety permitted by federal law in México to be used for tequila production which is the most popular contemporary alcoholic beverage made from agave and recognized worldwide. Despite the economic, genetic, and ornamental value of the plant, it has not been subjected to detailed cytogenetic research, which could lead to a better understanding of its reproduction for future genetic improvement. The objective of this work was to study the meiotic behavior in pollen mother cells and its implications on the pollen viability in Agave tequilana Weber var. azul. The analysis of Pollen Mother Cells in anaphase I (A-I) showed 82.56% of cells with a normal anaphase and, 17.44% with an irregular anaphase. In which 5.28% corresponded to cells with side arm bridges (SAB); 3.68% cells with one bridge and one fragment; 2.58% of irregular anaphase showed cells with one or two lagging chromosomes and 2.95% showed one acentric fragment; cells with two bridges and cells with two bridges and one acentric fragment were observed in frequencies of 1.60% and 1.35% respectively. In anaphase II some cells showed bridges and fragments too. Aberrant A-I cells had many shrunken or empty pollen grains (42.00%) and 58.00 % viable pollen. The observed meiotic irregularities suggest that structural chromosome aberrations have occurred, such as heterozygous inversions, sister chromatid exchanges, deletions and duplications which in turn are reflected in a low pollen viability.

  6. Aberrant meiotic behavior in Agave tequilana Weber var. azul

    Directory of Open Access Journals (Sweden)

    Rodríguez-Garay Benjamin

    2002-10-01

    Full Text Available Abstract Background Agave tequilana Weber var. azul, is the only one variety permitted by federal law in México to be used for tequila production which is the most popular contemporary alcoholic beverage made from agave and recognized worldwide. Despite the economic, genetic, and ornamental value of the plant, it has not been subjected to detailed cytogenetic research, which could lead to a better understanding of its reproduction for future genetic improvement. The objective of this work was to study the meiotic behavior in pollen mother cells and its implications on the pollen viability in Agave tequilana Weber var. azul. Results The analysis of Pollen Mother Cells in anaphase I (A-I showed 82.56% of cells with a normal anaphase and, 17.44% with an irregular anaphase. In which 5.28% corresponded to cells with side arm bridges (SAB; 3.68% cells with one bridge and one fragment; 2.58% of irregular anaphase showed cells with one or two lagging chromosomes and 2.95% showed one acentric fragment; cells with two bridges and cells with two bridges and one acentric fragment were observed in frequencies of 1.60% and 1.35% respectively. In anaphase II some cells showed bridges and fragments too. Aberrant A-I cells had many shrunken or empty pollen grains (42.00% and 58.00 % viable pollen. Conclusion The observed meiotic irregularities suggest that structural chromosome aberrations have occurred, such as heterozygous inversions, sister chromatid exchanges, deletions and duplications which in turn are reflected in a low pollen viability.

  7. Changes in the rat lung after exposure to radon and its progeny: Effects on incorporation of bromodeoxyuridine in epithelial cells and on the incidence of nuclear aberrations in Alveolar macrophages

    International Nuclear Information System (INIS)

    Taya, A.; Morgan, A.; Baker, S.T.; Humphreys, J.A.H.; Collier, C.G.; Bisson, M.

    1994-01-01

    The aim of this study was to investigate some responses of cells in the rat respiratory tract as a function of time after inhalation exposure to various levels of radon and its progeny. Rats were exposed to a constant concentration of radon and its progeny to give cumulative exposure levels of 120, 225, 440 and 990 working level months (WLM). An additional unexposed group of rats served as controls. The end points selected for investigation were (a) the incorporation of bromodeoxyuridine (BrdU) in epithelial cells of the conducting airways and of the alveolar region of the respiratory tract and (b) the incidence of alveolar macrophages with nuclear aberrations. After exposure, the incidence of epithelial cells incorporating BrdU-the labeling index-increased in all regions of the respiratory tract examined, but the increase occurred later in alveolar than in airway epithelial cells. The highest labeling index was found in bronchial epithelial cells, which probably received the highest radiation dose. After an initial induction period, the incidence of alveolar macrophages with nuclear aberrations also increased. The possibility of using the labeling index of alveolar and airway epithelial cells, and/or the incidence of nuclear aberrations in alveolar macrophages, to estimate the radiation dose to various regions of the respiratory tract after exposure of rats to radon and its progeny is discussed. 22 refs., 3 figs., 1 tab

  8. Spontaneous and X-ray induced chromosomal aberrations in selected connective tissue diseases

    International Nuclear Information System (INIS)

    Burkhardt, W.C.; Jackson, J.F.; Songcharoen, S.; Meydrech, E.F.

    1980-01-01

    Chromosome studies were performed on peripheral blood lymphocytes of 28 patients with connective tissue disease (6 with progressive systemic sclerosis, 6 with systemic lupus erythematosus, 6 with anti-nuclear antibody positive rheumatoid arthritis, 6 with anti-nuclear antibody negative rheumatoid arthritis, and 4 with mixed connective tissue disease) and on 17 controls to determine the frequency of spontaneous as well as X-ray (75 rads) induced aberrations. The mean spontaneous chromosomal aberration frequency for the 28 patients (9.1%) was significantly (P=0.038) greater than that of controls (6.4%). When patients were categorized into specific clinically designated connective tissue disease subdivisions for comparison with the controls, only X-irradiated cells from the progressive systemic sclerosis group displayed significantly elevated levels of total chromosomal aberrations over those of the control group. The X-irradiated lymphocytes from these patients had an average of 23.6% aberrations per patient, while those of the control group showed an average of 14.9% per patient (P<0.05). (author)

  9. Spontaneous and X-ray induced chromosomal aberrations in selected connective tissue diseases

    Energy Technology Data Exchange (ETDEWEB)

    Burkhardt, W C; Jackson, J F; Songcharoen, S; Meydrech, E F [Mississippi Univ., Jackson (USA). Medical Center

    1980-01-01

    Chromosome studies were performed on peripheral blood lymphocytes of 28 patients with connective tissue disease (6 with progressive systemic sclerosis, 6 with systemic lupus erythematosus, 6 with anti-nuclear antibody positive rheumatoid arthritis, 6 with anti-nuclear antibody negative rheumatoid arthritis, and 4 with mixed connective tissue disease) and on 17 controls to determine the frequency of spontaneous as well as X-ray (75 rads) induced aberrations. The mean spontaneous chromosomal aberration frequency for the 28 patients (9.1%) was significantly (P=0.038) greater than that of controls (6.4%). When patients were categorized into specific clinically designated connective tissue disease subdivisions for comparison with the controls, only X-irradiated cells from the progressive systemic sclerosis group displayed significantly elevated levels of total chromosomal aberrations over those of the control group. The X-irradiated lymphocytes from these patients had an average of 23.6% aberrations per patient, while those of the control group showed an average of 14.9% per patient (P<0.05).

  10. Effect of Yeast Cell Morphology, Cell Wall Physical Structure and Chemical Composition on Patulin Adsorption.

    Directory of Open Access Journals (Sweden)

    Ying Luo

    Full Text Available The capability of yeast to adsorb patulin in fruit juice can aid in substantially reducing the patulin toxic effect on human health. This study aimed to investigate the capability of yeast cell morphology and cell wall internal structure and composition to adsorb patulin. To compare different yeast cell morphologies, cell wall internal structure and composition, scanning electron microscope, transmission electron microscope and ion chromatography were used. The results indicated that patulin adsorption capability of yeast was influenced by cell surface areas, volume, and cell wall thickness, as well as 1,3-β-glucan content. Among these factors, cell wall thickness and 1,3-β-glucan content serve significant functions. The investigation revealed that patulin adsorption capability was mainly affected by the three-dimensional network structure of the cell wall composed of 1,3-β-glucan. Finally, patulin adsorption in commercial kiwi fruit juice was investigated, and the results indicated that yeast cells could adsorb patulin from commercial kiwi fruit juice efficiently. This study can potentially simulate in vitro cell walls to enhance patulin adsorption capability and successfully apply to fruit juice industry.

  11. original article the use of morphological and cell wall chemical

    African Journals Online (AJOL)

    boaz

    THE USE OF MORPHOLOGICAL AND CELL WALL CHEMICAL MARKERS IN. THE IDENTIFICATION OF ... aerial hyphae, with or without diffusible pigments on medium surface (7, 14). Cell wall components of Actinomycetes enable rapid qualitative identification of certain .... Alexander von Humboldt Foundation and the.

  12. Comparison of type and frequency of chromosome aberrations by conventional and G-staining methods in Hiroshima atomic bomb survivors

    International Nuclear Information System (INIS)

    Ohtaki, Kazuo; Shimba, Hachiro; Sofuni, Toshio; Awa, A.A.

    1982-07-01

    Somatic chromosomes derived from cultured lymphocytes of 23 atomic bomb survivors of Hiroshima were analyzed to determine the type and frequency of radiation-induced structural aberrations, using in sequence the ordinary staining method (O-method) and the trypsin G-banding method (G-method). Of 896 cells examined, 342 were found to contain induced aberrations, including 31 cells in which the precise identification of the type of aberrations was not possible even by the G-method. The number of chromosome aberrations observed was 376 in the 311 cells where aberrant precise identification was possible. The majority (288 or 76.6%) were intra- or inter-chromosomal symmetric exchanges due to a two-break event, while only 24 were found to be asymmetric exchanges (dicentrics, rings, and interstitial deletions). Further, there were 28 aberrations showing acentric fragments and terminal deletions, and the remaining 36 were complex intra- and inter-chromosomal exchanges involving three or more breaks which result in insertions and double translocations. A comparative karyotype analysis of the same metaphases examined by the sequential 0- And G-methods was carried out independently on 361 aberrations, mostly of the symmetric type. It was found that 78 (21.6%) of the 361 were detected only by the G-method; among these were 14 paracentric inversions, 48 reciprocal interchanges of chromosome segments with either equal length (11) or unequal length (37), 14 minor deletions and 2 complex rearrangements, all of which were nevertheless judged to fall within the normal range of variation by theO-method. In contrast, 25 aberrations detected in O-method chromosomes which were overcontracted or twisted, were shown to have normal banding patterns by the G-method. (author)

  13. The ROCK isoforms differentially regulate the morphological characteristics of carcinoma cells.

    Science.gov (United States)

    Jerrell, Rachel J; Leih, Mitchell J; Parekh, Aron

    2017-06-26

    Rho-associated kinase (ROCK) activity drives cell migration via actomyosin contractility. During invasion, individual cancer cells can transition between 2 modes of migration, mesenchymal and amoeboid. Changes in ROCK activity can cause a switch between these migration phenotypes which are defined by distinct morphologies. However, recent studies have shown that the ROCK isoforms are not functionally redundant as previously thought. Therefore, it is unclear whether the ROCK isoforms play different roles in regulating migration phenotypes. Here, we found that ROCK1 and ROCK2 differentially regulate carcinoma cell morphology resulting in intermediate phenotypes that share some mesenchymal and amoeboid characteristics. These findings suggest that the ROCK isoforms play unique roles in the phenotypic plasticity of mesenchymal carcinoma cells which may have therapeutic implications.

  14. Induction of Chromosomal Aberrations at Fluences of Less Than One HZE Particle per Cell Nucleus

    Science.gov (United States)

    Hada, Megumi; Chappell, Lori J.; Wang, Minli; George, Kerry A.; Cucinotta, Francis A.

    2014-01-01

    The assumption of a linear dose response used to describe the biological effects of high LET radiation is fundamental in radiation protection methodologies. We investigated the dose response for chromosomal aberrations for exposures corresponding to less than one particle traversal per cell nucleus by high energy and charge (HZE) nuclei. Human fibroblast and lymphocyte cells where irradiated with several low doses of <0.1 Gy, and several higher doses of up to 1 Gy with O (77 keV/ (long-s)m), Si (99 keV/ (long-s)m), Fe (175 keV/ (long-s)m), Fe (195 keV/ (long-s)m) or Fe (240 keV/ (long-s)m) particles. Chromosomal aberrations at first mitosis were scored using fluorescence in situ hybridization (FISH) with chromosome specific paints for chromosomes 1, 2 and 4 and DAPI staining of background chromosomes. Non-linear regression models were used to evaluate possible linear and non-linear dose response models based on these data. Dose responses for simple exchanges for human fibroblast irradiated under confluent culture conditions were best fit by non-linear models motivated by a non-targeted effect (NTE). Best fits for the dose response data for human lymphocytes irradiated in blood tubes were a NTE model for O and a linear response model fit best for Si and Fe particles. Additional evidence for NTE were found in low dose experiments measuring gamma-H2AX foci, a marker of double strand breaks (DSB), and split-dose experiments with human fibroblasts. Our results suggest that simple exchanges in normal human fibroblasts have an important NTE contribution at low particle fluence. The current and prior experimental studies provide important evidence against the linear dose response assumption used in radiation protection for HZE particles and other high LET radiation at the relevant range of low doses.

  15. Lipophilic organic pollutants induce changes in phospholipid and membrane protein composition leading to Vero cell morphological change.

    Science.gov (United States)

    Liao, Ting T; Wang, Lei; Jia, Ru W; Fu, Xiao H; Chua, Hong

    2014-01-01

    Membrane damage related to morphological change in Vero cells is a sensitive index of the composite biotoxicity of trace lipophilic chemicals. However, judging whether the morphological change in Vero cells happens and its ratio are difficult because it is not a quantitative characteristic. To find biomarkers of cell morphological change for quantitatively representing the ratio of morphological changed cell, the mechanism of cell membrane damage driven by typical lipophilic chemicals, such as trichlorophenol (TCP) and perfluorooctanesulphonate (PFOS), was explored. The ratio of morphologically changed cells generally increased with increased TCP or PFOS concentrations, and the level of four major components of phospholipids varied with concentrations of TCP or PFOS, but only the ratio of phosphatidylcholine (PC)/phosphatidylethanolamine (PE) decreased regularly as TCP or PFOS concentrations increased. Analysis of membrane proteins showed that the level of vimentin in normal cell membranes is high, while it decreases or vanishes after TCP exposure. These variations in phospholipid and membrane protein components may result in membrane leakage and variation in rigid structure, which leads to changes in cell morphology. Therefore, the ratio of PC/PE and amount of vimentin may be potential biomarkers for representing the ratio of morphological changed Vero cell introduced by trace lipophilic compounds, thus their composite bio-toxicity.

  16. Morphology-based prediction of osteogenic differentiation potential of human mesenchymal stem cells.

    Directory of Open Access Journals (Sweden)

    Fumiko Matsuoka

    Full Text Available Human bone marrow mesenchymal stem cells (hBMSCs are widely used cell source for clinical bone regeneration. Achieving the greatest therapeutic effect is dependent on the osteogenic differentiation potential of the stem cells to be implanted. However, there are still no practical methods to characterize such potential non-invasively or previously. Monitoring cellular morphology is a practical and non-invasive approach for evaluating osteogenic potential. Unfortunately, such image-based approaches had been historically qualitative and requiring experienced interpretation. By combining the non-invasive attributes of microscopy with the latest technology allowing higher throughput and quantitative imaging metrics, we studied the applicability of morphometric features to quantitatively predict cellular osteogenic potential. We applied computational machine learning, combining cell morphology features with their corresponding biochemical osteogenic assay results, to develop prediction model of osteogenic differentiation. Using a dataset of 9,990 images automatically acquired by BioStation CT during osteogenic differentiation culture of hBMSCs, 666 morphometric features were extracted as parameters. Two commonly used osteogenic markers, alkaline phosphatase (ALP activity and calcium deposition were measured experimentally, and used as the true biological differentiation status to validate the prediction accuracy. Using time-course morphological features throughout differentiation culture, the prediction results highly correlated with the experimentally defined differentiation marker values (R>0.89 for both marker predictions. The clinical applicability of our morphology-based prediction was further examined with two scenarios: one using only historical cell images and the other using both historical images together with the patient's own cell images to predict a new patient's cellular potential. The prediction accuracy was found to be greatly enhanced

  17. Sister chromatid exchanges and structural chromosome aberrations in lymphocytes in operating room personnel

    Energy Technology Data Exchange (ETDEWEB)

    Husum, B; Niebuhr, E; Wulf, H C; Norgaard, I

    1983-06-01

    Information on possible chromosomal damage in humans after long-term exposure to trace concentrations of waste anaesthetic gases is scarce. We examined peripheral lymphocytes in operating room personnel for both chromosome aberrations and sister chromatid exchanges (SCE). Following a standardized procedure of cultivation and staining, 30 cells from each person were scored for SCE and 100 cells from each person were examined for chromosome aberrations. A total of 45 persons were examined, representing anaesthetists (n . 15), operating room nurses assisting the surgeon (n . 10), nurses circulating in the operating room (n . 8) and healthy, unexposed controls (n . 12). The median duration of working in the operating room was 102 months, respectively. Time-weighted concentration levels of 2.5-4.3 p.p.m. of halothane and 25-400 p.p.m. of nitrous oxide were measured in the breathing zones of the anaesthetists during mask anaesthesia. Examination of SCE and chromosome aberrations yielded corresponding qualitative results. With both tests, no statistically significant difference was observed between the four groups of persons. It was concluded that by examination of both SCE and chromosome aberrations in peripheral lymphocytes in operating room personnel, no indication was found of a mutagenic effect of long-term exposure to trace concentrations of waste anaesthetic gases.

  18. Denervation-induced homeostatic dendritic plasticity in morphological granule cell models

    Directory of Open Access Journals (Sweden)

    Hermann Cuntz

    2014-03-01

    Full Text Available Neuronal death and subsequent denervation of target areas are major consequences of several neurological conditions such asischemia or neurodegeneration (Alzheimer's disease. The denervation-induced axonal loss results in reorganization of the dendritic tree of denervated neurons. The dendritic reorganization has been previously studied using entorhinal cortex lesion (ECL. ECL leads to shortening and loss of dendritic segments in the denervated outer molecular layer of the dentate gyrus. However, the functional importance of these long-term dendritic alterations is not yet understood and their impact on neuronal electrical properties remains unclear. Here we analyzed what happens to the electrotonic structure and excitability of dentate granule cells after lesion-induced alterations of their dendritic morphology, assuming all other parameters remain equal. We performed comparative electrotonic analysis in anatomically and biophysically realistic compartmental models of 3D-reconstructed healthy and denervated granule cells. Using the method of morphological modeling based on optimization principles minimizing the amount of wiring and maximizing synaptic democracy, we built artificial granule cells which replicate morphological features of their real counterparts. Our results show that somatofugal and somatopetal voltage attenuation in the passive cable model are strongly reduced in denervated granule cells. In line with these predictions, the attenuation both of simulated backpropagating action potentials and forward propagating EPSPs was significantly reduced in dendrites of denervated neurons. Intriguingly, the enhancement of action potential backpropagation occurred specifically in the denervated dendritic layers. Furthermore, simulations of synaptic f-I curves revealed a homeostatic increase of excitability in denervated granule cells. In summary, our morphological and compartmental modeling indicates that unless modified by changes of

  19. Chromosomal aberrations and micronuclei frequencies in Bulgarian control population

    International Nuclear Information System (INIS)

    Popova, I.; Hadjidekova, V.; Hristova, R.; Atanasova, P.

    2004-01-01

    The aim of this investigation is to represent the frequency of spontaneous chromosomal damages in peripheral blood lymphocytes of Bulgarian control population. Material and methods: The investigated group includes persons belonging to both sexes and different ages. Each of them is interviewed of their social and health status. Sixteen persons are examined using the chromosomal aberrations analysis and forty-five with micronucleus test. The frequency of chromosomal aberrations varied between 0 - 2.4 % and the mean value is 1.00 %. The frequency of cells with micronuclei varied between 4.5 - 24.5 % and the mean value 12,9 %. Further work on the investigation of spontaneous frequency of chromosomal damages is in progress. (authors)

  20. Cytogenetic effects of irradiation in epithelial kidney cells of monkeys and possibilities of using these data for evaluation of chromosome aberration level in kidneys of persons subjected to radiotherapy

    International Nuclear Information System (INIS)

    Machavariani, M.G.

    1983-01-01

    Data on somatic mutagenesis, induced by radiation, in epithelial kidney cells of monkeys are presented. It is noted that chromosomal aberrations in the kideny cells of monkeys can be indicator of estimation of hUman kideny state during radiotherapy

  1. The effect of caffeine posttreatment on X-ray-induced chromosomal aberrations in human blood lymphocytes in vitro

    International Nuclear Information System (INIS)

    Natarajan, A.T.; Obe, G.

    1980-01-01

    The potentiating effect of caffeine on X-ray-induced chromosomal aberrations in human blood lymphocytes has been investigated, with special reference to cell cycle stages (G0 and G2). Both quantitative and qualitative differences in the yield of chromosomal aberrations were detected in caffeine-posttreated cells, depending on the cell stage irradiated. The studies on caffeine potentiating effects on X-irradiated G0 lymphocytes from normal adults, newborns, Down syndrome patients, and an ataxia telangiectasia patient pointed to interindividual variations in the response to caffeine potentiation among normal probands and a very profound effect in ataxia cells. (orig.) [de

  2. Very low dose and dose-rate X-ray induced adaptive response in human lymphocytes at various cell cycle stages against bleomycin induced chromatid aberrations

    International Nuclear Information System (INIS)

    Hossein Mozdarani; Moghadam, R.N.

    2007-01-01

    Complete text of publication follows. Objective: To study the adaptive response induced by very low doses of X-rays at very low dose rate in human lymphocytes at different cell cycle stages followed by a challenge dose of bleomycin sulphate at G2 phase. Materials and Methods: Human peripheral blood lymphocytes before (G0) and after PHA stimulation (G1 and G2) were exposed to 1 and 5 cGy X-rays generated by a fluoroscopy unit with a dose rate of 5.56 mGy/min and challenged with 5 μg/ml bleomycin sulphate (BLM) 48 hours after culture initiation. Mitotic cells were arrested at metaphase by addition of colcemid in cultures 1.5 h before harvesting. Harvesting and slide preparation was performed using standard method. 100 well spread metaphases were analyzed for the presence of chromatid type aberrations for each sample. Results: Results obtained indicate that there is a linear relationship between the dose of BLM and chromatid aberrations below 5 μg/ml (R=0.93, p<0.0001). The results also show that pretreatment of lymphocytes with low dose X-rays at G0, G1 and G2 phases of the cell cycle significantly reduced the sensitivity of lymphocytes to the clastogenic effects of BLM in G2. Much lower frequencies of chromatid aberrations were observed in X-ray irradiated lymphocytes following BLM treatment (p<0.05). The magnitudes of adaptation induced at different phases of the cell cycle were not significantly different. Furthermore, there was no a significant difference in the magnitude of adaptive response induced by either 1 or 5 cGy X-rays. Conclusion: These observations might indicate that resistance of pre-exposure of lymphocytes to very low doses of X-rays protects them from clastogenic effects of BLM. This effect might be due to initial DNA damage induced in these cells leading to provocation of an active DNA repair mechanism independent of cell cycle stage.

  3. Cytotoxicity and genotoxicity of UVA irradiation in Chinese hamster ovary cells measured by specific locus mutations, sister chromatid exchanges and chromosome aberrations

    International Nuclear Information System (INIS)

    Lundgren, Karsten; Wulf, H.C.

    1988-01-01

    The increasing use of artificial UVA (320-400 nm) suntanning devices has brought attention to possible hazardous effects of UVA. In contrast with earlier studies, several groups recently have described that UVA possibly is mutagenic. We evaluate the genotoxic properties of broad band UVA using CHO cells and three different assays: specific locus (HGPRT) mutations, chromosome aberrations, and sister chromatid exchanges (SCEs). The UVA-source was an UVASUN 2000 S (Mutzhas), emitting UVA above 340 nm. The survival curve of the cells exhibited a shoulder up to 200 kJ/m 2 , that was followed by exponential killing at higher fluences. Mutations were induced linearly in the fluence range of 0-200 kJ/m 2 to a level seven fold higher than the spontaneous, followed by a decrease at fluences above 300 kJ/m 2 . Over the total range of tested fluences (0-300 kJ/m 2 ) a linear dose-response relationship was observed for UVA-induced SCEs. A significantly higher percentage of the cells showed chromosomes with aberrations at the higher levels of exposure (200, 300 and 400 kJ/m 2 ), but no dose response was demonstrated. Our results confirm recent findings showing that UVA is mutagenic in mammalian cells and suggest that UVA exposure may contribute to the total burden of genetic damage caused by exposure to ultraviolet light. (author)

  4. Aberrations and adaptive optics in super-resolution microscopy

    Science.gov (United States)

    Booth, Martin; Andrade, Débora; Burke, Daniel; Patton, Brian; Zurauskas, Mantas

    2015-01-01

    As one of the most powerful tools in the biological investigation of cellular structures and dynamic processes, fluorescence microscopy has undergone extraordinary developments in the past decades. The advent of super-resolution techniques has enabled fluorescence microscopy – or rather nanoscopy – to achieve nanoscale resolution in living specimens and unravelled the interior of cells with unprecedented detail. The methods employed in this expanding field of microscopy, however, are especially prone to the detrimental effects of optical aberrations. In this review, we discuss how super-resolution microscopy techniques based upon single-molecule switching, stimulated emission depletion and structured illumination each suffer from aberrations in different ways that are dependent upon intrinsic technical aspects. We discuss the use of adaptive optics as an effective means to overcome this problem. PMID:26124194

  5. Cdk5 regulates accurate maturation of newborn granule cells in the adult hippocampus.

    Directory of Open Access Journals (Sweden)

    Sebastian Jessberger

    2008-11-01

    Full Text Available Newborn granule cells become functionally integrated into the synaptic circuitry of the adult dentate gyrus after a morphological and electrophysiological maturation process. The molecular mechanisms by which immature neurons and the neurites extending from them find their appropriate position and target area remain largely unknown. Here we show that single-cell-specific knockdown of cyclin-dependent kinase 5 (cdk5 activity in newborn cells using a retrovirus-based strategy leads to aberrant growth of dendritic processes, which is associated with an altered migration pattern of newborn cells. Even though spine formation and maturation are reduced in cdk5-deficient cells, aberrant dendrites form ectopic synapses onto hilar neurons. These observations identify cdk5 to be critically involved in the maturation and dendrite extension of newborn neurons in the course of adult neurogenesis. The data presented here also suggest a mechanistic dissociation between accurate dendritic targeting and subsequent synapse formation.

  6. Aberrant Expression of Xist in Aborted Porcine Fetuses Derived from Somatic Cell Nuclear Transfer Embryos

    Directory of Open Access Journals (Sweden)

    Lin Yuan

    2014-11-01

    Full Text Available Cloned pigs generated by somatic cell nuclear transfer (SCNT show a greater ratio of early abortion during mid-gestation than normal controls. X-linked genes have been demonstrated to be important for the development of cloned embryos. To determine the relationship between the expression of X-linked genes and abortion of cloned porcine fetuses, the expression of X-linked genes were investigated by quantitative real-time polymerase chain reaction (q-PCR and the methylation status of Xist DMR was performed by bisulfate-specific PCR (BSP. q-PCR analysis indicated that there was aberrant expression of X-linked genes, especially the upregulated expression of Xist in both female and male aborted fetuses compared to control fetuses. Results of BSP suggested that hypomethylation of Xist occurred in aborted fetuses, whether male or female. These results suggest that the abnormal expression of Xist may be associated with the abortion of fetuses derived from somatic cell nuclear transfer embryos.

  7. Aberrant Expression of Xist in Aborted Porcine Fetuses Derived from Somatic Cell Nuclear Transfer Embryos

    Science.gov (United States)

    Yuan, Lin; Wang, Anfeng; Yao, Chaogang; Huang, Yongye; Duan, Feifei; Lv, Qinyan; Wang, Dongxu; Ouyang, Hongsheng; Li, Zhanjun; Lai, Liangxue

    2014-01-01

    Cloned pigs generated by somatic cell nuclear transfer (SCNT) show a greater ratio of early abortion during mid-gestation than normal controls. X-linked genes have been demonstrated to be important for the development of cloned embryos. To determine the relationship between the expression of X-linked genes and abortion of cloned porcine fetuses, the expression of X-linked genes were investigated by quantitative real-time polymerase chain reaction (q-PCR) and the methylation status of Xist DMR was performed by bisulfate-specific PCR (BSP). q-PCR analysis indicated that there was aberrant expression of X-linked genes, especially the upregulated expression of Xist in both female and male aborted fetuses compared to control fetuses. Results of BSP suggested that hypomethylation of Xist occurred in aborted fetuses, whether male or female. These results suggest that the abnormal expression of Xist may be associated with the abortion of fetuses derived from somatic cell nuclear transfer embryos. PMID:25429426

  8. Chromosomal Aberrations in Humans Induced by Urban Air Pollution

    DEFF Research Database (Denmark)

    Knudsen, Lisbeth E.; Norppa, Hannu; Gamborg, Michael O.

    1999-01-01

    We have studied the influence of individual susceptibility factors on the genotoxic effects of urban air pollution in 106 nonsmoking bus drivers and 101 postal workers in the Copenhagen metropolitan area. We used the frequency of chromosomal aberrations in peripheral blood lymphocytes as a biomar......We have studied the influence of individual susceptibility factors on the genotoxic effects of urban air pollution in 106 nonsmoking bus drivers and 101 postal workers in the Copenhagen metropolitan area. We used the frequency of chromosomal aberrations in peripheral blood lymphocytes...... that long-term exposure to urban air pollution (with traffic as the main contributor) induces chromosome damage in human somatic cells. Low DNA repair capacity and GSTM1 and NAT2 variants associated with reduced detoxification ability increase susceptibility to such damage. The effect of the GSTM1 genotype......, which was observed only in the bus drivers, appears to be associated with air pollution, whereas the NAT2 genotype effect, which affected all subjects, may influence the individual response to some other common exposure or the baseline level of chromosomal aberrations....

  9. Understanding Solvent Manipulation of Morphology in Bulk-Heterojunction Organic Solar Cells.

    Science.gov (United States)

    Chen, Yuxia; Zhan, Chuanlang; Yao, Jiannian

    2016-10-06

    Film morphology greatly influences the performance of bulk-heterojunction (BHJ)-structure-based solar cells. It is known that an interpenetrating bicontinuous network with nanoscale-separated donor and acceptor phases for charge transfer, an ordered molecular packing for exciton diffusion and charge transport, and a vertical compositionally graded structure for charge collection are prerequisites for achieving highly efficient BHJ organic solar cells (OSCs). Therefore, control of the morphology to obtain an ideal structure is a key problem. For this solution-processing BHJ system, the solvent participates fully in film processing. Its involvement is critical in modifying the nanostructure of BHJ films. In this review, we discuss the effects of solvent-related methods on the morphology of BHJ films, including selection of the casting solvent, solvent mixture, solvent vapor annealing, and solvent soaking. On the basis of a discussion on interaction strength and time between solvent and active materials, we believe that the solvent-morphology-performance relationship will be clearer and that solvent selection as a means to manipulate the morphology of BHJ films will be more rational. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Chromosome aberrations in space-exposed seeds of Allium cepa L

    International Nuclear Information System (INIS)

    Wang, S.

    1994-01-01

    Onion (Allium cepa L.) seeds c.v. Patti King were packed in sealed canisters and launched into space orbit about 296 km above earth by the space shuttle Challenger in April 1984. After more than five years exposure to space, the seeds were retrieved by the space shuttle Columbia and returned to earth in January, 1990. Somatic chromosomes at anaphase and telophase stages were analyzed and cells with normal or abnormal chromosome separations were recorded. Space-exposed and control seeds showed an average of 10.9% and 2.8% chromosome aberrations, respectively. Seeds contained in the two exterior layers of the canister had 16.5 to 18.5% chromosome aberration. The results indicated that irradiation in space would be a direct cause for chromosome aberrations in onion seeds. Analysis of seed germination rate and vigor were also determined. The average germination rate for space-exposed and control seeds were 53.3% and 19.8%, respectively. Possible reasons for the results obtained are discussed [it

  11. Iteration of ultrasound aberration correction methods

    Science.gov (United States)

    Maasoey, Svein-Erik; Angelsen, Bjoern; Varslot, Trond

    2004-05-01

    Aberration in ultrasound medical imaging is usually modeled by time-delay and amplitude variations concentrated on the transmitting/receiving array. This filter process is here denoted a TDA filter. The TDA filter is an approximation to the physical aberration process, which occurs over an extended part of the human body wall. Estimation of the TDA filter, and performing correction on transmit and receive, has proven difficult. It has yet to be shown that this method works adequately for severe aberration. Estimation of the TDA filter can be iterated by retransmitting a corrected signal and re-estimate until a convergence criterion is fulfilled (adaptive imaging). Two methods for estimating time-delay and amplitude variations in receive signals from random scatterers have been developed. One method correlates each element signal with a reference signal. The other method use eigenvalue decomposition of the receive cross-spectrum matrix, based upon a receive energy-maximizing criterion. Simulations of iterating aberration correction with a TDA filter have been investigated to study its convergence properties. A weak and strong human-body wall model generated aberration. Both emulated the human abdominal wall. Results after iteration improve aberration correction substantially, and both estimation methods converge, even for the case of strong aberration.

  12. Aberrant DNA Methylation in Human iPSCs Associates with MYC-Binding Motifs in a Clone-Specific Manner Independent of Genetics.

    Science.gov (United States)

    Panopoulos, Athanasia D; Smith, Erin N; Arias, Angelo D; Shepard, Peter J; Hishida, Yuriko; Modesto, Veronica; Diffenderfer, Kenneth E; Conner, Clay; Biggs, William; Sandoval, Efren; D'Antonio-Chronowska, Agnieszka; Berggren, W Travis; Izpisua Belmonte, Juan Carlos; Frazer, Kelly A

    2017-04-06

    Induced pluripotent stem cells (iPSCs) show variable methylation patterns between lines, some of which reflect aberrant differences relative to embryonic stem cells (ESCs). To examine whether this aberrant methylation results from genetic variation or non-genetic mechanisms, we generated human iPSCs from monozygotic twins to investigate how genetic background, clone, and passage number contribute. We found that aberrantly methylated CpGs are enriched in regulatory regions associated with MYC protein motifs and affect gene expression. We classified differentially methylated CpGs as being associated with genetic and/or non-genetic factors (clone and passage), and we found that aberrant methylation preferentially occurs at CpGs associated with clone-specific effects. We further found that clone-specific effects play a strong role in recurrent aberrant methylation at specific CpG sites across different studies. Our results argue that a non-genetic biological mechanism underlies aberrant methylation in iPSCs and that it is likely based on a probabilistic process involving MYC that takes place during or shortly after reprogramming. Published by Elsevier Inc.

  13. Space Radiation Effects on Human Cells: Modeling DNA Breakage, DNA Damage Foci Distribution, Chromosomal Aberrations and Tissue Effects

    Science.gov (United States)

    Ponomarev, A. L.; Huff, J. L.; Cucinotta, F. A.

    2011-01-01

    Future long-tem space travel will face challenges from radiation concerns as the space environment poses health risk to humans in space from radiations with high biological efficiency and adverse post-flight long-term effects. Solar particles events may dramatically affect the crew performance, while Galactic Cosmic Rays will induce a chronic exposure to high-linear-energy-transfer (LET) particles. These types of radiation, not present on the ground level, can increase the probability of a fatal cancer later in astronaut life. No feasible shielding is possible from radiation in space, especially for the heavy ion component, as suggested solutions will require a dramatic increase in the mass of the mission. Our research group focuses on fundamental research and strategic analysis leading to better shielding design and to better understanding of the biological mechanisms of radiation damage. We present our recent effort to model DNA damage and tissue damage using computational models based on the physics of heavy ion radiation, DNA structure and DNA damage and repair in human cells. Our particular area of expertise include the clustered DNA damage from high-LET radiation, the visualization of DSBs (DNA double strand breaks) via DNA damage foci, image analysis and the statistics of the foci for different experimental situations, chromosomal aberration formation through DSB misrepair, the kinetics of DSB repair leading to a model-derived spectrum of chromosomal aberrations, and, finally, the simulation of human tissue and the pattern of apoptotic cell damage. This compendium of theoretical and experimental data sheds light on the complex nature of radiation interacting with human DNA, cells and tissues, which can lead to mutagenesis and carcinogenesis later in human life after the space mission.

  14. Short curcumin treatment modulates oxidative stress, arginase activity, aberrant crypt foci, and TGF-β1 and HES-1 transcripts in 1,2-dimethylhydrazine-colon carcinogenesis in mice

    International Nuclear Information System (INIS)

    Bounaama, Abdelkader; Djerdjouri, Bahia; Laroche-Clary, Audrey; Le Morvan, Valérie; Robert, Jacques

    2012-01-01

    Highlights: ► 1,2-Dimethylhydrazine (DMH) toxicity was driven by oxidative stress. ► Arginase activity correlated to aberrant crypt foci (ACF). ► Curcumin diet restored redox status and induced apoptosis of dysplastic ACF. ► Curcumin reduced arginase activity and up regulated TGF-β1 and HES-1 transcripts. -- Abstract: This study investigated the effect of short curcumin treatment, a natural antioxidant on 1,2-dimethylhydrazine (DMH)-induced aberrant crypt foci (ACF) in mice. The incidence of aberrant crypt foci (ACF) was 100%, with 54 ± 6 per colon, 10 weeks after the first DMH injection and reached 67 ± 12 per colon after 12 weeks. A high level of undifferentiated goblet cells and a weak apoptotic activity were shown in dysplastic ACF. The morphological alterations of colonic mucosa were associated to severe oxidative stress ratio with 43% increase in malondialdehyde vs. 36% decrease in GSH. DMH also increased inducible nitric synthase (iNOS) mRNA transcripts (250%), nitrites level (240%) and arginase activity (296%), leading to nitrosative stress and cell proliferation. Curcumin treatment, starting at week 10 post-DMH injection for 14 days, reduced the number of ACF (40%), iNOS expression (25%) and arginase activity (73%), and improved redox status by approximately 46%, compared to DMH-treated mice. Moreover, curcumin induced apoptosis of dysplastic ACF cells without restoring goblet cells differentiation. Interestingly, curcumin induced a parallel increase in TGF-β1 and HES-1 transcripts (42% and 26%, respectively). In conclusion, the protective effect of curcumin was driven by the reduction of arginase activity and nitrosative stress. The up regulation of TGF-β1 and HES-1 expression by curcumin suggests for the first time, a potential interplay between these signalling pathways in the chemoprotective mechanism of curcumin.

  15. Further investigation on chromosome aberrations in lymphocytes of inhabitants in high background radiation area in Yangjiang

    International Nuclear Information System (INIS)

    Chen Deqing; Zhang Chaoyang; Yao Suyan

    1985-01-01

    Blood samples were taken from 122 healthy secondary school students at the age of 15 to 16 living in a high background radiation region and from 99 controls, All subjects from both areas had lived there since their births; they were non-smokers and without history of exposure to medical X-rays. The youngsters of 15 to 16 years old who were native-born and grew up in the high background radiation area received approximately 3.5 rad more cumulative γ-ray exposure than those in the control area. For each individual 200 M-1 cells were analysed. The frequency of chromosome aberrations in the high background group was 0.47/100 cells, while that in the control group was 0.33/100 cells, the diffrence being statistically significant. The frequencies of acentrics (fragment, acentric ring and minute), dicentrics and stable aberrations (inversion and translocation) were 0.41, 0.021 and 0.045/100 cells respectively in the high background group, and 0.30, 0.020 and 0.005/100 cells respectively in the control group. Only the difference of stable aberrations between the two groups was significant

  16. Cellient™ automated cell block versus traditional cell block preparation: a comparison of morphologic features and immunohistochemical staining.

    Science.gov (United States)

    Wagner, David G; Russell, Donna K; Benson, Jenna M; Schneider, Ashley E; Hoda, Rana S; Bonfiglio, Thomas A

    2011-10-01

    Traditional cell block (TCB) sections serve as an important diagnostic adjunct to cytologic smears but are also used today as a reliable preparation for immunohistochemical (IHC) studies. There are many ways to prepare a cell block and the methods continue to be revised. In this study, we compare the TCB with the Cellient™ automated cell block system. Thirty-five cell blocks were obtained from 16 benign and 19 malignant nongynecologic cytology specimens at a large university teaching hospital and prepared according to TCB and Cellient protocols. Cell block sections from both methods were compared for possible differences in various morphologic features and immunohistochemical staining patterns. In the 16 benign cases, no significant morphologic differences were found between the TCB and Cellient cell block sections. For the 19 malignant cases, some noticeable differences in the nuclear chromatin and cellularity were identified, although statistical significance was not attained. Immunohistochemical or special stains were performed on 89% of the malignant cases (17/19). Inadequate cellularity precluded full evaluation in 23% of Cellient cell block IHC preparations (4/17). Of the malignant cases with adequate cellularity (13/17), the immunohistochemical staining patterns from the different methods were identical in 53% of cases. The traditional and Cellient cell block sections showed similar morphologic and immunohistochemical staining patterns. The only significant difference between the two methods concerned the lower overall cell block cellularity identified during immunohistochemical staining in the Cellient cell block sections. Copyright © 2010 Wiley-Liss, Inc.

  17. The role of apical contractility in determining cell morphology in multilayered epithelial sheets and tubes

    Science.gov (United States)

    Zhen Tan, Rui; Lai, Tanny; Chiam, K.-H.

    2017-08-01

    A multilayered epithelium is made up of individual cells that are stratified in an orderly fashion, layer by layer. In such tissues, individual cells can adopt a wide range of shapes ranging from columnar to squamous. From histological images, we observe that, in flat epithelia such as the skin, the cells in the top layer are squamous while those in the middle and bottom layers are columnar, whereas in tubular epithelia, the cells in all layers are columnar. We develop a computational model to understand how individual cell shape is governed by the mechanical forces within multilayered flat and curved epithelia. We derive the energy function for an epithelial sheet of cells considering intercellular adhesive and intracellular contractile forces. We determine computationally the cell morphologies that minimize the energy function for a wide range of cellular parameters. Depending on the dominant adhesive and contractile forces, we find four dominant cell morphologies for the multilayered-layered flat sheet and three dominant cell morphologies for the two-layered curved sheet. We study the transitions between the dominant cell morphologies for the two-layered flat sheet and find both continuous and discontinuous transitions and also the presence of multistable states. Matching our computational results with histological images, we conclude that apical contractile forces from the actomyosin belt in the epithelial cells is the dominant force determining cell shape in multilayered epithelia. Our computational model can guide tissue engineers in designing artificial multilayered epithelia, in terms of figuring out the cellular parameters needed to achieve realistic epithelial morphologies.

  18. Expression of Leukemia-Associated Nup98 Fusion Proteins Generates an Aberrant Nuclear Envelope Phenotype.

    Science.gov (United States)

    Fahrenkrog, Birthe; Martinelli, Valérie; Nilles, Nadine; Fruhmann, Gernot; Chatel, Guillaume; Juge, Sabine; Sauder, Ursula; Di Giacomo, Danika; Mecucci, Cristina; Schwaller, Jürg

    2016-01-01

    Chromosomal translocations involving the nucleoporin NUP98 have been described in several hematopoietic malignancies, in particular acute myeloid leukemia (AML). In the resulting chimeric proteins, Nup98's N-terminal region is fused to the C-terminal region of about 30 different partners, including homeodomain (HD) transcription factors. While transcriptional targets of distinct Nup98 chimeras related to immortalization are relatively well described, little is known about other potential cellular effects of these fusion proteins. By comparing the sub-nuclear localization of a large number of Nup98 fusions with HD and non-HD partners throughout the cell cycle we found that while all Nup98 chimeras were nuclear during interphase, only Nup98-HD fusion proteins exhibited a characteristic speckled appearance. During mitosis, only Nup98-HD fusions were concentrated on chromosomes. Despite the difference in localization, all tested Nup98 chimera provoked morphological alterations in the nuclear envelope (NE), in particular affecting the nuclear lamina and the lamina-associated polypeptide 2α (LAP2α). Importantly, such aberrations were not only observed in transiently transfected HeLa cells but also in mouse bone marrow cells immortalized by Nup98 fusions and in cells derived from leukemia patients harboring Nup98 fusions. Our findings unravel Nup98 fusion-associated NE alterations that may contribute to leukemogenesis.

  19. Effects of turmeric and its active principle, curcumin, on bleomycin-induced chromosome aberrations in Chinese hamster ovary cells

    Directory of Open Access Journals (Sweden)

    Araújo Maria Cristina P.

    1999-01-01

    Full Text Available Naturally occurring antioxidants have been extensively studied for their capacity to protect organisms and cells from oxidative damage. Many plant constituents including turmeric and curcumin appear to be potent antimutagens and antioxidants. The effects of turmeric and curcumin on chromosomal aberration frequencies induced by the radiomimetic agent bleomycin (BLM were investigated in Chinese hamster ovary (CHO cells. Three concentrations of each drug, turmeric (100, 250 and 500 mg/ml and curcumin (2.5, 5 and 10 mg/ml, were combined with BLM (10 mg/ml in CHO cells treated during the G1/S, S or G2/S phases of the cell cycle. Neither turmeric nor curcumin prevented BLM-induced chromosomal damage in any phases of the cell cycle. Conversely, a potentiation of the clastogenicity of BLM by curcumin was clearly observed in cells treated during the S and G2/S phases. Curcumin was also clastogenic by itself at 10 µg/ml in two protocols used. However, the exact mechanism by which curcumin produced clastogenic and potentiating effects remains unknown.

  20. Gamma induced chromosomal aberrations in meristem cells of cotton hybrids and their parental forms

    International Nuclear Information System (INIS)

    Kraevoj, S.Ya.; Akhmedova, M.M.; Amirkulov, D.

    1977-01-01

    The effect of gamma quanta on the first mitoses in the small roots of cotton hybrids and their parents results in different frequency of chromosome rearrangements in them. It has been proved that the frequency of chromosome aberrations is different in hybrids and different varieties of cotton. With increase in irradiation doses (from 10 to 30 kR) the frequency of chromosome aberrations goes up in all varieties and hybrids studies. The type of chromosome rearrangements in hybrids and their parents depends on the irradiation dose

  1. Semi-automated detection of aberrant chromosomes in bivariate flow karyotypes

    NARCIS (Netherlands)

    Boschman, G. A.; Manders, E. M.; Rens, W.; Slater, R.; Aten, J. A.

    1992-01-01

    A method is described that is designed to compare, in a standardized procedure, bivariate flow karyotypes of Hoechst 33258 (HO)/Chromomycin A3 (CA) stained human chromosomes from cells with aberrations with a reference flow karyotype of normal chromosomes. In addition to uniform normalization of

  2. [Monochromatic aberration in accommodation. Dynamic wavefront analysis].

    Science.gov (United States)

    Fritzsch, M; Dawczynski, J; Jurkutat, S; Vollandt, R; Strobel, J

    2011-06-01

    Monochromatic aberrations may influence the visual acuity of the eye. They are not stable and can be affected by different factors. The subject of the following paper is the dynamic investigation of the changes in wavefront aberration with accommodation. Dynamic measurement of higher and lower order aberrations was performed with a WASCA Wavefront Analyzer (Carl-Zeiss-Meditec) and a specially constructed target device for aligning objects in far and near distances on 25 subjects aged from 15 to 27 years old. Wavefront aberrations showed some significant changes in accommodation. In addition to the characteristic sphere reaction accompanying miosis and changes in horizontal prism (Z(1) (1)) in the sense of a convergence movement of the eyeball also occurred. Furthermore defocus rose (Z(2) (0)) and astigmatism (Z(2) (-2)) changed. In higher-order aberrations a decrease in coma-like Zernike polynomials (Z(3) (-1), Z(3) (1)) was found. The most obvious change appeared in spherical aberration (Z(4) (0)) which increased and changed from positive to negative. In addition the secondary astigmatism (Z(4) (-2)) and quadrafoil (Z(4) (4)) rise also increased. The total root mean square (RMS), as well as the higher-order aberrations (RMS-HO) significantly increased in accommodation which is associated with a theoretical reduction of visual acuity. An analysis of the influence of pupil size on aberrations showed significant increases in defocus, spherical aberration, quadrafoil, RMS and RMS HO by increasing pupil diameter. By accommodation-associated miosis, the growing aberrations are partially compensated by focusing on near objects. Temporal analysis of the accommodation process with dynamic wavefront analysis revealed significant delays in pupil response and changing of prism in relation to the sphere reaction. In accommodation to near objects a discrete time ahead of third order aberrations in relation to the sphere response was found. Using dynamic wavefront measurement

  3. Chromosome Aberrations in Human Lymphocytes Irradiated with Ionizing Radiation

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Tae Ho; Kim, Jin Hong; Kim, Jin Kyu [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    The purpose of the present experiment was to provide data on the dose-dependent production of chromosome aberrations such as dicentrics, centric rings, and excess acentrics. Radiation is one of the more dangerous clastogens in the environment. Ionizing radiation causes chromosome breakages and various cytogenetic aberrations in exposed cells. In an investigation into radiation emergencies, it is important to estimate the dose to exposed persons for several reasons. Physical dosimeters (e. g., film badges) may misrepresent the actual radiation dose and may not be available in a radiological accident or terrorism incident. Biological dosimetry is suitable for estimating the radiation dose during such accidents. The dicentric chromosome assay is very sensitive and a reliable bio-indicator in cases of accidental overexposure.

  4. The study of chromosome aberration yield in human lymphocytes as an indicator of radiation dose. 1. Techniques

    International Nuclear Information System (INIS)

    Purrott, R.J.; Lloyd, D.C.

    1972-08-01

    Estimates of exposure to ionizing radiation can be obtained by determining the yield of chromosome aberrations in cultured human lymphocytes. Chromosomes can only be conveniently examined during cell division. The lymphocytes, which do not normally divide whilst circulating, are stimulated to divide during a 48-hour culture period. Two types of culture technique are described, one of which employs a lymphocyte-enriched inoculum and the other which uses whole blood. After culture the cells are harvested, dispensed onto slides and prepared for microscopic examination. An account is also given of the analysis of various types of radiation-induced chromosome aberrations and of the construction of calibration curves for certain types and rates of radiation which are used to interpret the aberration yields in terms of dose. (author)

  5. Similar kinetics of chromatid aberrations in X-irradiated xrs 5 and wild-type Chinese hamster ovary cells

    International Nuclear Information System (INIS)

    MacLeod, R.A.F.; Bryant, P.E.

    1990-01-01

    We have studied the kinetics of chromatid aberrations in cells of the Chinese hamster ovary (CHO-K1) derived, X-ray sensitive cell line xrs 5 irradiated in the G 2 phase at 37 0 C, as well as during a cell cycle extended by transient hypothermia at 33 0 C. While a given X-ray dose was estimated to produce about 4 times as many chromatid break and twice the frequency of exchanges in xrs 5 cells as in the parent line, there was no difference between the lines in the rates of disappearance of chromatid breaks during G 2 at either temperature; and similar patterns of chromatid exchange kinetics were observed in the two lines. Both the frequencies and distributions of chromatid breaks at different times after irradiation are consistent with the view that the disappearance of these during incubation represents a repair process. These results imply that the G 2 chromosomal radiosensitivity of the xrs 5 mutant resides at the level of initial chromatid damage. (author)

  6. Supramolecular Approaches to Nanoscale Morphological Control in Organic Solar Cells

    Directory of Open Access Journals (Sweden)

    Alexander M. Haruk

    2015-06-01

    Full Text Available Having recently surpassed 10% efficiency, solar cells based on organic molecules are poised to become a viable low-cost clean energy source with the added advantages of mechanical flexibility and light weight. The best-performing organic solar cells rely on a nanostructured active layer morphology consisting of a complex organization of electron donating and electron accepting molecules. Although much progress has been made in designing new donor and acceptor molecules, rational control over active layer morphology remains a central challenge. Long-term device stability is another important consideration that needs to be addressed. This review highlights supramolecular strategies for generating highly stable nanostructured organic photovoltaic active materials by design.

  7. Effect of Cymbopogon citratus (lemongrass) and Syzygium aromaticum (clove) oils on the morphology and mortality of Aedes aegypti and Anopheles dirus larvae.

    Science.gov (United States)

    Soonwera, Mayura; Phasomkusolsil, Siriporn

    2016-04-01

    Cymbopogon citratus (lemongrass) and Syzygium aromaticum (clove) oils were evaluated to determine mortality rates, morphological aberrations, and persistence when used against third and fourth larval instars of Aedes aegypti and Anopheles dirus. The oils were evaluated at 1, 5, and 10 % concentrations in mixtures with soybean oil. Persistence of higher concentrations was measured over a period of 10 days. For Ae. aegypti, both plant oils caused various morphological aberrations to include deformed larvae, incomplete eclosion, white pupae, deformed pupae, dead normal pupae, and incomplete pupal eclosion. All of these aberrations led to larval mortality. In Ae. aegypti larvae, there were no significant differences in mortality at days 1, 5, and 10 or between third and fourth larval instar exposure. In An. dirus, morphological aberrations were rare and S. aromaticum oil was more effective in causing mortality among all larval stages. Both oils were equally effective at producing mortality on days 1, 5, and 10. Both oils had slightly increased LT50 rates from day 1 to day 10. In conclusion, both lemongrass and clove oils have significant effects on the immature stages of Ae. aegypti and An. dirus and could potentially be developed for use as larvicides.

  8. Maintenance of the cell morphology by MinC in Helicobacter pylori.

    Directory of Open Access Journals (Sweden)

    Pei-Yu Chiou

    Full Text Available In the model organism Escherichia coli, Min proteins are involved in regulating the division of septa formation. The computational genome analysis of Helicobacter pylori, a gram-negative microaerophilic bacterium causing gastritis and peptic ulceration, also identified MinC, MinD, and MinE. However, MinC (HP1053 shares a low identity with those of other bacteria and its function in H. pylori remains unclear. In this study, we used morphological and genetic approaches to examine the molecular role of MinC. The results were shown that an H. pylori mutant lacking MinC forms filamentous cells, while the wild-type strain retains the shape of short rods. In addition, a minC mutant regains the short rods when complemented with an intact minCHp gene. The overexpression of MinCHp in E. coli did not affect the growth and cell morphology. Immunofluorescence microscopy revealed that MinCHp forms helix-form structures in H. pylori, whereas MinCHp localizes at cell poles and pole of new daughter cell in E. coli. In addition, co-immunoprecipitation showed MinC can interact with MinD but not with FtsZ during mid-exponential stage of H. pylori. Altogether, our results show that MinCHp plays a key role in maintaining proper cell morphology and its function differs from those of MinCEc.

  9. Chromosome painting in biological dosimetry: Semi-automatic system to score stable chromosome aberrations

    International Nuclear Information System (INIS)

    Garcia-Sagredo, J.M.; Vallcorba, I.; Sanchez-Hombre, M.C.; Ferro, M.T.; San Roman Cos-Gayon, C.; Santos, A.; Malpica, N.; Ortiz, C.

    1997-01-01

    From the beginning of the description of the procedure of chromosome painting by fluorescence in situ hybridization (FISH), it was thought its possible application to score induced chromosomal aberrations in radiation exposition. With chromosome painting it is possible to detect changes between chromosomes that has been validated in radiation exposition. Translocation scoring by FISH, contrarily to the unstable dicentrics, mainly detect stable chromosome aberrations that do not disappear, it allows the capability of quantify delayed acute expositions or chronic cumulative expositions. The large number of cells that have to be analyzed for high accuracy, specially when dealing with low radiation doses, makes it almost imperative to use an automatic analysis system. After validate translocation scoring by FISH in our, we have evaluated the ability and sensitivity to detect chromosomal aberrations by chromosome using different paint probes used, showing that any combination of paint probes can be used to score induced chromosomal aberrations. Our group has developed a FISH analysis that is currently being adapted for translocation scoring analysis. It includes systematic error correction and internal control probes. The performance tests carried out show that 9,000 cells can be analyzed in 10 hr. using a Sparc 4/370. Although with a faster computer, a higher throughput is expected, for large population screening or very low radiation doses, this performance still has to be improved. (author)

  10. Automated studies of radiation-induced changes in 3T3 cell motility and morphology

    International Nuclear Information System (INIS)

    Thurston, G.; Palcic, B.

    1985-01-01

    The most common endpoint in radiobiological studies is cell survival, as measured by colony forming ability. There is substantial experimental evidence that cell survival is related to the amount of radiation damage to the DNA. Radiation induces other changes in cell behaviour and morphology that may not be due to DNA damage alone. For example, low doses of radiation (<100 rads) were found to alter the ''phagokinetic tracks'' of moving 3T3 cells. They reported abnormal cell motility as demonstrated by a more random pattern of motion. 3T3 cells were also noted to show changes in morphology after exposure to x-rays. The fibroblast adhesion routine is disrupted by low doses of radiation (cell settling, microspike extension, lamellipodia flow, then cell spreading). An automated microscope system, DMIPS, is being used to automatically track 3T3 cells as they move and to correlate their movement with their morphology. An effort is being made to quantitate, for a large number of cells, the changes in 3T3 cell motility induced by radiation. The DMIPS procedure is compared to the gold dust technique

  11. The ultrastructural surface morphology of oral cancer cells and keratinocytes after exposure to chitosan

    Science.gov (United States)

    Fatimah; Sarsito, A. S.; Wimardhani, Y. S.

    2017-08-01

    Low-molecular-weight chitosan (LMWC) has the same selective cytotoxic effects on oral cancer cells as cisplatin. The cell deaths caused by the anticancer characteristics of chitosan show that apoptosis is not the death pathway of the primary cells involved. The interactions between LMWC and the cells need to be explored. The objective of this study was to compare the ultrastructural morphology of oral Squamous Cell Carcinoma (SCC Ca)-922 and noncancer keratinocyte HaCaT cell lines after exposure to LMWC and cisplatin. The cells were treated with LMWC and cisplatin, and their ultrastructural morphology was analyzed using scanning electron micrographs. Features of early apoptosis, seen as the loss of microvilli, were detected in the LMWC-exposed Ca9-22 cells, and there was a material surrounding the cells. In contrast, the LMWC-exposed HaCaT cells showed no changes related to apoptosis. The results were the opposite when cisplatin was used. This study confirms that there are differences in the ultrastructural surface morphology of LMWC-exposed and cisplatin-exposed oral cancer cells and keratinocytes that could be correlated with their biological activity.

  12. Morphologic and proteomic characterization of exosomes released by cultured extravillous trophoblast cells

    Energy Technology Data Exchange (ETDEWEB)

    Atay, Safinur [Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, KY (United States); Gercel-Taylor, Cicek [Obstetrics, Gynecology and Women' s Health, University of Louisville School of Medicine, Louisville, KY (United States); Kesimer, Mehmet [Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC (United States); Taylor, Douglas D., E-mail: ddtaylor@louisville.edu [Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, KY (United States); Obstetrics, Gynecology and Women' s Health, University of Louisville School of Medicine, Louisville, KY (United States)

    2011-05-01

    Exosomes represent an important intercellular communication vehicle, mediating events essential for the decidual microenvironment. While we have demonstrated exosome induction of pro-inflammatory cytokines, to date, no extensive characterization of trophoblast-derived exosomes has been provided. Our objective was to provide a morphologic and proteomic characterization of these exosomes. Exosomes were isolated from the conditioned media of Swan71 human trophoblast cells by ultrafiltration and ultracentrifugation. These were analyzed for density (sucrose density gradient centrifugation), morphology (electron microscopy), size (dynamic light scattering) and protein composition (Ion Trap mass spectrometry and western immunoblotting). Based on density gradient centrifugation, microvesicles from Sw71 cells exhibit a density between 1.134 and 1.173 g/ml. Electron microscopy demonstrated that microvesicles from Sw71 cells exhibit the characteristic cup-shaped morphology of exosomes. Dynamic light scattering showed a bell-shaped curve, indicating a homogeneous population with a mean size of 165 nm {+-} 0.5 nm. Ion Trap mass spectrometry demonstrated the presence of exosome marker proteins (including CD81, Alix, cytoskeleton related proteins, and Rab family). The MS results were confirmed by western immunoblotting. Based on morphology, density, size and protein composition, we defined the release of exosomes from extravillous trophoblast cells and provide their first extensive characterization. This characterization is essential in furthering our understanding of 'normal' early pregnancy.

  13. Morphologic and proteomic characterization of exosomes released by cultured extravillous trophoblast cells

    International Nuclear Information System (INIS)

    Atay, Safinur; Gercel-Taylor, Cicek; Kesimer, Mehmet; Taylor, Douglas D.

    2011-01-01

    Exosomes represent an important intercellular communication vehicle, mediating events essential for the decidual microenvironment. While we have demonstrated exosome induction of pro-inflammatory cytokines, to date, no extensive characterization of trophoblast-derived exosomes has been provided. Our objective was to provide a morphologic and proteomic characterization of these exosomes. Exosomes were isolated from the conditioned media of Swan71 human trophoblast cells by ultrafiltration and ultracentrifugation. These were analyzed for density (sucrose density gradient centrifugation), morphology (electron microscopy), size (dynamic light scattering) and protein composition (Ion Trap mass spectrometry and western immunoblotting). Based on density gradient centrifugation, microvesicles from Sw71 cells exhibit a density between 1.134 and 1.173 g/ml. Electron microscopy demonstrated that microvesicles from Sw71 cells exhibit the characteristic cup-shaped morphology of exosomes. Dynamic light scattering showed a bell-shaped curve, indicating a homogeneous population with a mean size of 165 nm ± 0.5 nm. Ion Trap mass spectrometry demonstrated the presence of exosome marker proteins (including CD81, Alix, cytoskeleton related proteins, and Rab family). The MS results were confirmed by western immunoblotting. Based on morphology, density, size and protein composition, we defined the release of exosomes from extravillous trophoblast cells and provide their first extensive characterization. This characterization is essential in furthering our understanding of 'normal' early pregnancy.

  14. Role of base damage in aberration formation: interaction of aphidicolin and x-rays

    International Nuclear Information System (INIS)

    Bender, M.A.; Preston, R.J.

    1981-01-01

    The base analog cytosine arabinoside (CA) is an inhibitor of DNA synthesis that is able to induce chromosomal aberrations not only in the DNA synthetic (S) phase of the cell cycle but in cells in the pre- (G 0 or G 1 ) and in the post-DNA-synthetic (G 2 ) phases of the cell cycle as well. Incubation of human peripheral lymphocytes in CA following either G 0 or G 2 x irradiation causes a synergistic increase in chromosomal aberration frequency. CA is believed to preferentially inhibit DNA polymerase α. It is suggested that it is inhibition of the repair of x-ray-induced base damage that is responsible for the synergistic effect on chromosomal aberration production observed with x-ray and CA treatment of human peripheral lymphocytes. It has also been observed that CA induces sister chromatid exchanges (SCE) in mammalian cells when present during normal DNA replication and that it also interacts synergistically with uv in the induction of SCE. A number of other inhibitors of DNA synthesis were also tested, one, aphidicolin (APC), did produce effects similar to CA at the same concentration. Aphidicolin is a tetracyclic diterpinoid that inhibits the growth of eukaryotic cells by inhibition of DNA synthesis. This action has been shown to result from specific inhibition of DNA polymerase α, but not of polymerases β or γ. Unlike CA, it seems likely that APC inhibits by binding to and inactivating the DNA-α polymerase complex. Because both CA and APC are α polymerase inhibitors and because both interact synergistically with uv in the production of SCE, studies were conducted to determine whether APC also shares other cytogenetic properties of CA. Results to date have shown that, like CA, APC is clastogenic in both G 0 and G 2 , and it also interacts synergistically with x rays to increase chromosomal aberration production in both G 0 and G 2

  15. Cellular Morphology-Mediated Proliferation and Drug Sensitivity of Breast Cancer Cells

    Directory of Open Access Journals (Sweden)

    Ryota Domura

    2017-06-01

    Full Text Available The interpretation of the local microenvironment of the extracellular matrix for malignant tumor cells is in intimate relation with metastatic spread of cancer cells involving the associated issues of cellular proliferation and drug responsiveness. This study was aimed to assess the combination of both surface topographies (fiber alignments and different stiffness of the polymeric substrates (poly(l-lactic acid and poly(ε-caprolactone, PLLA and PCL, respectively as well as collagen substrates (coat and gel to elucidate the effect of the cellular morphology on cellular proliferation and drug sensitivities of two different types of breast cancer cells (MDA-MB-231 and MCF-7. The morphological spreading parameter (nucleus/cytoplasm area ratio induced by the anthropogenic substrates has correlated intimately with the cellular proliferation and the drug sensitivity the half maximal inhibitory concentration (IC50 of cancer cells. This study demonstrated the promising results of the parameter for the evaluation of cancer cell malignancy.

  16. Cellular Morphology-Mediated Proliferation and Drug Sensitivity of Breast Cancer Cells.

    Science.gov (United States)

    Domura, Ryota; Sasaki, Rie; Ishikawa, Yuma; Okamoto, Masami

    2017-06-06

    The interpretation of the local microenvironment of the extracellular matrix for malignant tumor cells is in intimate relation with metastatic spread of cancer cells involving the associated issues of cellular proliferation and drug responsiveness. This study was aimed to assess the combination of both surface topographies (fiber alignments) and different stiffness of the polymeric substrates (poly(l-lactic acid) and poly(ε-caprolactone), PLLA and PCL, respectively) as well as collagen substrates (coat and gel) to elucidate the effect of the cellular morphology on cellular proliferation and drug sensitivities of two different types of breast cancer cells (MDA-MB-231 and MCF-7). The morphological spreading parameter (nucleus/cytoplasm area ratio) induced by the anthropogenic substrates has correlated intimately with the cellular proliferation and the drug sensitivity the half maximal inhibitory concentration (IC 50 ) of cancer cells. This study demonstrated the promising results of the parameter for the evaluation of cancer cell malignancy.

  17. Some thoughts on the nature of chromosomal aberrations and their use as a quantitative end-point for radiobiological studies

    International Nuclear Information System (INIS)

    Savage, J.R.K.

    1978-01-01

    A vital condition when chromosomal aberrations are to be used as a quantitative end-point (e.g. for constructing a dose response curve) is that a specific dose must produce a specific yield of aberrations under a given set of experimental conditions. In practice, there are very few cell systems where this condition is met. The majority show significant variations in observed yield with time between irradiation and sampling, indicative of variable radiosensitivity within the cell population. The profile of this yield time curve is determined by the cell-cycle kinetics and therefore is itself subject to modification by radiation through mitotic delay and perturbation. Thus in such heterogeneous populations, each increment of dose not only induces more aberrations, but at the same time modifies the recovered yield per cell. This has an obvious bearing upon the interpretation of the shape of any dose-response curve obtained

  18. Comparison of the dose-response relationships for chromosome aberration frequencies between the T65D and DS86 dosimetries

    International Nuclear Information System (INIS)

    Preston, D.L.; McConney, M.E.; Awa, A.A.; Ohtaki, Kazuo; Itoh, Masahiro; Honda, Takeo.

    1989-05-01

    Cytogenetic data, derived from cultured lymphocytes of atomic bomb survivors and controls in the ABCC-RERF Adult Health Study cohort, have been analyzed to determine differences in the dose-response relationships for chromosome aberrations between the T65D and DS86 dose estimates and to assess differences between Hiroshima and Nagasaki. For a linear dose-response model, the average percentage of cells with at least one chromosome aberration increases less rapidly with dose in Nagasaki than in Hiroshima. The magnitude of the intercity difference in the percentage of cells with aberrations per gray is less for DS86 than for T65D, though the difference is statistically significant for both kerma and bone marrow dose with either dosimetry. The percentage of cells with aberrations per gray for DS86 kerma estimates is about 60 % greater than the corresponding T65D slope. Analyses to test nonlinearity in the dose-response function indicate significant departures (p<.001) from linearity, using both dosimetries for both kerma and marrow dose. Therefore, comparative results are presented for a range of RBE relationships under various linear (L) and linearquadratic linear (LQ-L) models. As an illustrative result, if one assumes an LQ-L model similar to models reported in the cytogenetic literature, with a limiting RBE of 20 at zero dose, the DS86 slope (the percentage of cells with aberrations per sievert) is 120 % greater than the corresponding T65D value. (J.P.N.)

  19. Chromosome aberrations in workers of ignalina nuclear power plant

    Energy Technology Data Exchange (ETDEWEB)

    Griciene, B.; Januskeviciute, I.; Mierauskiene, J.; Slapsyte, G. [Vilnius Univ. (Lithuania)

    2006-07-01

    individual for the presence of chromosome aberrations. Chromosome aberration analysis revealed no differences between the two groups of radiation workers, or between the radiation workers and controls. The mean total chromosome aberration frequencies were: 1,32 {+-} 0,27 CA/100 cells (group A), 1,56{+-}0,39 CA/100 cells (group B), and 1,65{+-}0,15 CA/100 cells (group C). The average yield of dicentric chromosomes per 100 cells in A and B radiation groups was 0,10{+-}0.06 and 0,05{+-}0,04, respectively, and 0,08{+-}0,02 in controls. Thus, the results of the present study indicate no increase in chromosome aberration frequencies in I.N.P.P. workers exposed to doses close to permissible annual dose limits. The next blood sampling of I.N.P.P. workers will be performed in October 2005. The Lithuanian Bio ethics Committee approved the study. (authors)

  20. Chromosome aberrations in workers of ignalina nuclear power plant

    International Nuclear Information System (INIS)

    Griciene, B.; Januskeviciute, I.; Mierauskiene, J.; Slapsyte, G.

    2006-01-01

    individual for the presence of chromosome aberrations. Chromosome aberration analysis revealed no differences between the two groups of radiation workers, or between the radiation workers and controls. The mean total chromosome aberration frequencies were: 1,32 ± 0,27 CA/100 cells (group A), 1,56±0,39 CA/100 cells (group B), and 1,65±0,15 CA/100 cells (group C). The average yield of dicentric chromosomes per 100 cells in A and B radiation groups was 0,10±0.06 and 0,05±0,04, respectively, and 0,08±0,02 in controls. Thus, the results of the present study indicate no increase in chromosome aberration frequencies in I.N.P.P. workers exposed to doses close to permissible annual dose limits. The next blood sampling of I.N.P.P. workers will be performed in October 2005. The Lithuanian Bio ethics Committee approved the study. (authors)

  1. DEMONSTRATION OF THE GENUINE ISO-12P CHARACTER OF THE STANDARD MARKER CHROMOSOME OF TESTICULAR GERM-CELL TUMORS AND IDENTIFICATION OF FURTHER CHROMOSOME-12 ABERRATIONS BY COMPETITIVE INSITU HYBRIDIZATION

    NARCIS (Netherlands)

    SUIJKERBUIJK, RF; VANDEVEEN, AY; VANECHTEN, J; BUYS, CHCM; DEJONG, B; OOSTERHUIS, JW; WARBURTON, DA; CASSIMAN, JJ; SCHONK, D; VANKESSEL, AG

    The recently developed competitive in situ hybridization (CISH) strategy was applied to the analysis of chromosome 12 aberrations in testicular germ cell tumors (TGCTs). DNAs from two rodent-human somatic cell hybrids, containing either a normal chromosome 12 or the p arm of chromosome 12 as their

  2. High efficiency polymer solar cells with vertically modulated nanoscale morphology

    International Nuclear Information System (INIS)

    Kumar, Ankit; Hong Ziruo; Yang Yang; Li Gang

    2009-01-01

    Nanoscale morphology has been shown to be a critical parameter governing charge transport properties of polymer bulk heterojunction (BHJ) solar cells. Recent results on vertical phase separation have intensified the research on 3D morphology control. In this paper, we intend to modify the distribution of donors and acceptors in a classical BHJ polymer solar cell by making the active layer richer in donors and acceptors near the anode and cathode respectively. Here, we chose [6,6]-phenyl- C 61 -butyric acid methyl ester (PCBM) to be the acceptor material to be thermally deposited on top of [poly(3-hexylthiophene)] P3HT: the PCBM active layer to achieve a vertical composition gradient in the BHJ structure. Here we report on a solar cell with enhanced power conversion efficiency of 4.5% which can be directly correlated with the decrease in series resistance of the device.

  3. Estimating and controlling chromatic aberration losses for two-junction, two-terminal devices in refractive concentrator systems

    Energy Technology Data Exchange (ETDEWEB)

    Kurtz, S.R. [National Renewable Energy Lab., Golden, CO (United States); O`Neill, M.J. [ENTECH, Inc., Keller, TX (United States)

    1996-05-01

    Although previous studies have measured and calculated chromatic aberration losses and proposed methods for reducing these by modifying the optics, significant work remains to be done toward understanding how to quantity the losses and how various parameters affect this loss. This paper presents an analytical definition and calculation method for chromatic aberration losses. The effects of sheet resistance of the midlayers of the cell, total irradiance, incident spectrum, cell width, and diode quality factor are studied. A method for measuring the midlayer resistance in finished sells is described.

  4. The prediction of spherical aberration with schematic eyes.

    Science.gov (United States)

    Liou, H L; Brennan, N A

    1996-07-01

    Many model eyes have been proposed; they differ in optical characteristics and therefore have different aberrations and image quality. In predicting the visual performance of the eye, we are most concerned with the central foveal vision. Spherical aberration is the only on-axis monochromatic aberration and can be used as a criterion to assess the degree of resemblance of eye models to the human eye. We reviewed and compiled experimental values of the spherical aberration of the eye, calculated the spherical aberration of several different categories of model eyes and compared the calculated results to the experimental data. Results show an over-estimation of spherical aberration by all models, the finite schematic eyes predicting values of spherical aberration closest to the experimental data. Current model eyes do not predict the average experimental values of the spherical aberration of the eye. A new model eye satisfying this assessment criterion is required for investigations of the visual performance of the eye.

  5. Aberrant ocular architecture and function in patients with Klinefelter syndrome.

    Science.gov (United States)

    Brand, Cristin; Zitzmann, Michael; Eter, Nicole; Kliesch, Sabine; Wistuba, Joachim; Alnawaiseh, Maged; Heiduschka, Peter

    2017-10-13

    Klinefelter Syndrome (KS), the most common chromosomal disorder in men (47,XXY), is associated with numerous comorbidities. Based on a number of isolated case reports, we performed the first systematic and comprehensive evaluation of eye health in KS patients with a focus on ocular structure and vascularization. Twenty-one KS patients and 26 male and 38 female controls underwent a variety of non-invasive examinations investigating ocular morphology (examination of retinal thickness, optic nerve head, and cornea) and function (visual field testing and quantification of ocular vessel density by optical coherence tomography angiography). In comparison to healthy controls, KS patients exhibited a smaller foveal avascular zone and a decreased retinal thickness due to a drastically thinner outer nuclear layer. The cornea of KS patients showed a decreased peripheral thickness and volume. In perimetry evaluation, KS patients required brighter stimuli and gave more irregular values. KS patients show an ocular phenotype including morphological and functional features, which is very likely caused by the supernumerary X chromosome. Thus, KS should not be limited to infertility, endocrine dysfunction, neurocognitive and psychosocial comorbidities. Defining an aberrant ocular morphology and function, awareness for possible eye problems should be raised.

  6. Evaluation of an automated karyotyping system for chromosome aberration analysis

    International Nuclear Information System (INIS)

    Prichard, H.M.

    1987-01-01

    Chromosome aberration analysis is a promising complement to conventional radiation dosimetry, particularly in the complex radiation fields encountered in the space environment. The capabilities of a recently developed automated karyotyping system were evaluated both to determine current capabilities and limitations and to suggest areas where future development should be emphasized. Cells exposed to radiometric chemicals and to photon and particulate radiation were evaluated by manual inspection and by automated karyotyping. It was demonstrated that the evaluated programs were appropriate for image digitization, storage, and transmission. However, automated and semi-automated scoring techniques must be advanced significantly if in-flight chromosome aberration analysis is to be practical. A degree of artificial intelligence may be necessary to realize this goal

  7. MET signalling in primary colon epithelial cells leads to increased transformation irrespective of aberrant Wnt signalling

    Science.gov (United States)

    Boon, E M J; Kovarikova, M; Derksen, P W B; van der Neut, R

    2005-01-01

    It has been shown that in hereditary and most sporadic colon tumours, components of the Wnt pathway are mutated. The Wnt target MET has been implicated in the development of colon cancer. Here, we show that overexpression of wild-type or a constitutively activated form of MET in colon epithelial cells leads to increased transformation irrespective of Wnt signalling. Fetal human colon epithelial cells without aberrant Wnt signalling were transfected with wild-type or mutated MET constructs. Expression of these constructs leads to increased phosphorylation of MET and its downstream targets PKB and MAPK. Upon stimulation with HGF, the expression of E-cadherin is downregulated in wild-type MET-transfected cells, whereas cells expressing mutated MET show low E-cadherin levels independent of stimulation with ligand. This implies a higher migratory propensity of these cells. Furthermore, fetal human colon epithelial cells expressing the mutated form of MET have colony-forming capacity in soft agar, while cells expressing wild-type MET show an intermediate phenotype. Subcutaneous injection of mutated MET-transfected cells in nude mice leads to the formation of tumours within 12 days in all mice injected. At this time point, mock-transfected cells do not form tumours, while wild-type MET-transfected cells form subcutaneous tumours in one out of five mice. We thus show that MET signalling can lead to increased transformation of colon epithelial cells independent of Wnt signalling and in this way could play an essential role in the onset and progression of colorectal cancer. PMID:15785735

  8. Retinal ganglion cells in the eastern newt Notophthalmus viridescens: topography, morphology, and diversity.

    Science.gov (United States)

    Pushchin, Igor I; Karetin, Yuriy A

    2009-10-20

    The topography and morphology of retinal ganglion cells (RGCs) in the eastern newt were studied. Cells were retrogradely labeled with tetramethylrhodamine-conjugated dextran amines or horseradish peroxidase and examined in retinal wholemounts. Their total number was 18,025 +/- 3,602 (mean +/- SEM). The spatial density of RGCs varied from 2,100 cells/mm(2) in the retinal periphery to 4,500 cells/mm(2) in the dorsotemporal retina. No prominent retinal specializations were found. The spatial resolution estimated from the spatial density of RGCs varied from 1.4 cycles per degree in the periphery to 1.95 cycles per degree in the region of the peak RGC density. A sample of 68 cells was camera lucida drawn and subjected to quantitative analysis. A total of 21 parameters related to RGC morphology and stratification in the retina were estimated. Partitionings obtained by using different clustering algorithms combined with automatic variable weighting and dimensionality reduction techniques were compared, and an effective solution was found by using silhouette analysis. A total of seven clusters were identified and associated with potential cell types. Kruskal-Wallis ANOVA-on-Ranks with post hoc Mann-Whitney U tests showed significant pairwise between-cluster differences in one or more of the clustering variables. The average silhouette values of the clusters were reasonably high, ranging from 0.52 to 0.79. Cells assigned to the same cluster displayed similar morphology and stratification in the retina. The advantages and limitations of the methodology adopted are discussed. The present classification is compared with known morphological and physiological RGC classifications in other salamanders.

  9. Protective Effect of Curcumin on γ - radiation Induced Chromosome Aberrations in Human Blood Lymphocytes

    International Nuclear Information System (INIS)

    AlSuhaibani, E.S

    2008-01-01

    The present work is aimed at evaluating the radioprotective effect of curcumin on γ radiation induced genetic toxicity. The DNA damage was analyzed by the frequencies of chromosome aberrations assay. Human lymphocytes were treated in vitro with 5.0 γg/ml of curcumin for 30 min at 37 degree C then exposed to 1, 2 and 4 Gy gamma-radiation. The lymphocytes which were pre-treated with curcumin exhibited a significant decrease in the frequency of chromosome aberration at 1 and 2 Gy radiation-induced chromosome damage as compared with the irradiated cells which did not receive the curcumin pretreatment. Thus, pretreatment with curcumin gives protection to lymphocytes against γ-radiation induced chromosome aberration at certain doses. (author)

  10. Human aortic endothelial cell morphology influenced by topography of porous silicon substrates.

    Science.gov (United States)

    Formentín, Pilar; Catalán, Úrsula; Fernández-Castillejo, Sara; Alba, Maria; Baranowska, Malgorzata; Solà, Rosa; Pallarès, Josep; Marsal, Lluís F

    2015-10-01

    Porous silicon has received much attention because of its optical properties and for its usefulness in cell-based biosensing, drug delivery, and tissue engineering applications. Surface properties of the biomaterial are associated with cell adhesion and with proliferation, migration, and differentiation. The present article analyzes the behavior of human aortic endothelial cells in macro- and nanoporous collagen-modified porous silicon samples. On both substrates, cells are well adhered and numerous. Confocal microscopy and scanning electron microscopy were employed to study the effects of porosity on the morphology of the cells. On macroporous silicon, filopodia is not observed but the cell spreads on the surface, increasing the lamellipodia surface which penetrates the macropore. On nanoporous silicon, multiple filopodia were found to branch out from the cell body. These results demonstrate that the pore size plays a key role in controlling the morphology and growth rate of human aortic endothelial cells, and that these forms of silicon can be used to control cell development in tissue engineering as well as in basic cell biology research. © The Author(s) 2015.

  11. Imaging characteristics of Zernike and annular polynomial aberrations.

    Science.gov (United States)

    Mahajan, Virendra N; Díaz, José Antonio

    2013-04-01

    The general equations for the point-spread function (PSF) and optical transfer function (OTF) are given for any pupil shape, and they are applied to optical imaging systems with circular and annular pupils. The symmetry properties of the PSF, the real and imaginary parts of the OTF, and the modulation transfer function (MTF) of a system with a circular pupil aberrated by a Zernike circle polynomial aberration are derived. The interferograms and PSFs are illustrated for some typical polynomial aberrations with a sigma value of one wave, and 3D PSFs and MTFs are shown for 0.1 wave. The Strehl ratio is also calculated for polynomial aberrations with a sigma value of 0.1 wave, and shown to be well estimated from the sigma value. The numerical results are compared with the corresponding results in the literature. Because of the same angular dependence of the corresponding annular and circle polynomial aberrations, the symmetry properties of systems with annular pupils aberrated by an annular polynomial aberration are the same as those for a circular pupil aberrated by a corresponding circle polynomial aberration. They are also illustrated with numerical examples.

  12. The BNCT resistant fraction of cancer cells. An in vitro morphologic and cytofluorimetric study on a rat coloncarcinoma cell line

    International Nuclear Information System (INIS)

    Ferrari, C.; Clerici, A.M.; Mazzini, G.

    2006-01-01

    Given the high efficacy of the BNCT treatment, recurrences reasonably depends on the failure of a cell fraction to uptake and retain adequate levels of boronated compounds. Aim of this study is to identify, quantify and characterize the resistant cell fraction relative to the delivered boron concentration. Experiments were performed on the DHD/K12/TRb line by means of cytofluorimetric DNA analysis, plating efficiency and morphologic observations. Cells were incubated with p-boronophenylalanine (BPA) concentrations ranging from 10 to 40 ppm for 18 h. Following neutron exposure, cells were reseeded for subsequent morphologic observations, counting and DNA analysis. Samples of irradiated cells not BPA enriched and non-irradiated cells with and without boron were compared with them. After 24 hs there were no differences among the four conditions, in terms of number of recovered cells, morphology and cell cycle distribution. Starting from 48 hs and up to 7 days BPA irradiated cells showed growth in dimensions, important cell number reduction and multiclonal DNA profile worsening with time. After 9 days normally sized cell clones appeared confirming the presence of a resistant cell fraction able to restore the original cell population after 21 days. The incidence of surviving cells turned out to be in the range 0,026-0,05%. (author)

  13. Geometric characteristics of aberrations of plane-symmetric optical systems

    International Nuclear Information System (INIS)

    Lu Lijun; Deng Zhiyong

    2009-01-01

    The geometric characteristics of aberrations of plane-symmetric optical systems are studied in detail with a wave-aberration theory. It is dealt with as an extension of the Seidel aberrations to realize a consistent aberration theory from axially symmetric to plane-symmetric systems. The aberration distribution is analyzed with the spot diagram of a ray and an aberration curve. Moreover, the root-mean-square value and the centroid of aberration distribution are discussed. The numerical results are obtained with the focusing optics of a toroidal mirror at grazing incidence.

  14. Nodal aberration theory applied to freeform surfaces

    Science.gov (United States)

    Fuerschbach, Kyle; Rolland, Jannick P.; Thompson, Kevin P.

    2014-12-01

    When new three-dimensional packages are developed for imaging optical systems, the rotational symmetry of the optical system is often broken, changing its imaging behavior and making the optical performance worse. A method to restore the performance is to use freeform optical surfaces that compensate directly the aberrations introduced from tilting and decentering the optical surfaces. In order to effectively optimize the shape of a freeform surface to restore optical functionality, it is helpful to understand the aberration effect the surface may induce. Using nodal aberration theory the aberration fields induced by a freeform surface in an optical system are explored. These theoretical predications are experimentally validated with the design and implementation of an aberration generating telescope.

  15. Morphology Analysis and Optimization: Crucial Factor Determining the Performance of Perovskite Solar Cells

    Directory of Open Access Journals (Sweden)

    Wenjin Zeng

    2017-03-01

    Full Text Available This review presents an overall discussion on the morphology analysis and optimization for perovskite (PVSK solar cells. Surface morphology and energy alignment have been proven to play a dominant role in determining the device performance. The effect of the key parameters such as solution condition and preparation atmosphere on the crystallization of PVSK, the characterization of surface morphology and interface distribution in the perovskite layer is discussed in detail. Furthermore, the analysis of interface energy level alignment by using X-ray photoelectron spectroscopy and ultraviolet photoelectron spectroscopy is presented to reveals the correlation between morphology and charge generation and collection within the perovskite layer, and its influence on the device performance. The techniques including architecture modification, solvent annealing, etc. were reviewed as an efficient approach to improve the morphology of PVSK. It is expected that further progress will be achieved with more efforts devoted to the insight of the mechanism of surface engineering in the field of PVSK solar cells.

  16. Studies on drosophila radiosensitive strains. 6. Influence of UV-rays and methyl methansulfonate on the survival and the frequency of chromosome aberrations in somatic cells of the larvae of mutant mus(2)201sup(G1)

    International Nuclear Information System (INIS)

    Levina, V.V.; Sharygin, V.I.

    1984-01-01

    Larvae of mutagen-sensitive mutant of mus (2) 201sup(G1) drosophila of different ages are subjected to the effect of UV-rays and methyl methan-sulfonate. After this mortality of individuals at the larva and chrysalis development stages is accounted, as well as chromosome aberrations in somatic cells of larvae of the 3-rd age. It is shown that mutation studied determines high mortality of flies at both larva and chrysalis stages and increased number of both spontaneous and induced aberrations. The conclusion is made that chromosome aberrations are not the only reason for the death of mutant individuals after treatment with mutagens and that functions of the gene studied are important for both dividing and nondividing cells

  17. No increase in radiation-induced chromosome aberration complexity detected by m-FISH after culture in the presence of 5'-bromodeoxyuridine

    International Nuclear Information System (INIS)

    Sumption, Natalia D.; Goodhead, Dudley T.; Anderson, Rhona M.

    2006-01-01

    The thymidine analogue, 5'-bromodeoxyuridine (BrdU), is a known mutagen that is routinely introduced into culture media for subsequent Harlequin stain analysis and determination of cell cycle status. Previously, we examined the induction of chromosome aberrations in human peripheral blood lymphocytes (PBL) known to be in their 1st cell division following exposure to a low dose (0.5 Gy, average one α-particle per cell) of high-LET α-particles. We found complex chromosome aberrations to be characteristic of exposure to high-LET radiation and suggested the features of complex exchange to reflect qualitatively the spatial deposition of this densely ionising radiation. To exclude the possibility that BrdU addition post-irradiation influenced the complexity of chromosomal damage observed by m-FISH, the effect of increasing BrdU concentration on aberration complexity was investigated. Comparisons between BrdU concentration (0, 10 and 40 μM) and between sham- and α-particle-irradiated PBL, were made both independently and in combination to enable discrimination between BrdU and high-LET radiation effects. Aberration type, size, complexity and completeness were assessed by m-FISH, and the relative progression through cell division was evaluated. We found no evidence of any qualitative difference in the complexity of damage as visualised by m-FISH but did observe an increase in the frequency of complex exchanges with increasing BrdU concentration indicative of altered cell cycle kinetics. The parameters measured here are consistent with findings from previous in vitro and in vivo work, indicating that each complex aberration visualised by m-FISH is characteristic of the structure of the high-LET α-particle track and the geometry of cell irradiated

  18. Studies on chromosome aberrations in workers occupationally exposed to radiation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jong Hyung; Oh, Hyeon Joo; Shim, Sun Bo; Roh, Hye Won; Lee, Hai Yong [Korea Food and Drug Administration, Seoul (Korea, Republic of); Kang, Soon Ja [Ewha Womens Univ., Seoul (Korea, Republic of)

    1998-06-01

    Cytogenetic assays for unstable chromosomes were performed on 54 medical radiation workers who are occupationally exposed to radiation and 42 controls. A total of 15,577 metaphase cells were scored. The frequencies of dicentrics and acentric chromosomes on controls were 0.52*10{sup -3} and 0.82*10{sup -2}, respectively. On radiation workers those were 2.28*10{sup -3} and 1.34*10{sup -2}, respectively. Though the frequencies of all types of chromosome aberrations in the workers were higher than those in the controls, the only significant difference was found in the case of dicentrics (P < 0.01). When we considered exposure dose of recent one year, duration of employment and smoking habit in radiation worker, a slight increase was shown in frequency of unstable chromosome aberrations on these workers, but no statistical differences were observed (P > 0.05) except exposure dose of recent one year (P < 0.05). These results could indicate that low level exposure to ionizing radiation can induce unstable chromosome aberrations in blood lymphocytes.

  19. Increased separase activity and occurrence of centrosome aberrations concur with transformation of MDS.

    Science.gov (United States)

    Ruppenthal, Sabrina; Kleiner, Helga; Nolte, Florian; Fabarius, Alice; Hofmann, Wolf-Karsten; Nowak, Daniel; Seifarth, Wolfgang

    2018-01-01

    ESPL1/separase, a cysteine endopeptidase, is a key player in centrosome duplication and mitotic sister chromatid separation. Aberrant expression and/or altered separase proteolytic activity are associated with centrosome amplification, aneuploidy, tumorigenesis and disease progression. Since centrosome alterations are a common and early detectable feature in patients with myelodysplastic syndrome (MDS) and cytogenetic aberrations play an important role in disease risk stratification, we examined separase activity on single cell level in 67 bone marrow samples obtained from patients with MDS, secondary acute myeloid leukemia (sAML), de novo acute myeloid leukemia (AML) and healthy controls by a flow cytometric separase activity assay. The separase activity distribution (SAD) value, a calculated measure for the occurrence of cells with prominent separase activity within the analyzed sample, was tested for correlation with the centrosome, karyotype and gene mutation status. We found higher SAD values in bone marrow cells of sAML patients than in corresponding cells of MDS patients. This concurred with an increased incidence of aberrant centrosome phenotypes in sAML vs. MDS samples. No correlation was found between SAD values and the karyotype/gene mutation status. During follow-up of four MDS patients we observed increasing SAD values after transformation to sAML, in two patients SAD values decreased during azacitidine therapy. Cell culture experiments employing MDS-L cells as an in vitro model of MDS revealed that treatment with rigosertib, a PLK1 inhibitor and therapeutic drug known to induce G2/M arrest, results in decreased SAD values. In conclusion, the appearance of cells with unusual high separase activity levels, as indicated by increased SAD values, concurs with the transformation of MDS to sAML and may reflect separase dysregulation potentially contributing to clonal evolution during MDS progression. Separase activity measurement may therefore be useful as a

  20. Aberration characteristics of immersion lenses for LVSEM

    International Nuclear Information System (INIS)

    Khursheed, Anjam

    2002-01-01

    This paper investigates the on-axis aberration characteristics of various immersion objective lenses for low voltage scanning electron microscopy (LVSEM). A simple aperture lens model is used to generate smooth axial field distributions. The simulation results show that mixed field electric-magnetic immersion lenses are predicted to have between 1.5 and 2 times smaller aberration limited probe diameters than their pure-field counterparts. At a landing energy of 1 keV, mixed field immersion lenses operating at the vacuum electrical field breakdown limit are predicted to have on-axis aberration coefficients between 50 and 60 μm, yielding an ultimate image resolution of below 1 nm. These aberrations lie in the same range as those for LVSEM systems that employ aberration correctors

  1. Suitable parameter choice on quantitative morphology of A549 cell in epithelial–mesenchymal transition

    Science.gov (United States)

    Ren, Zhou-Xin; Yu, Hai-Bin; Li, Jian-Sheng; Shen, Jun-Ling; Du, Wen-Sen

    2015-01-01

    Evaluation of morphological changes in cells is an integral part of study on epithelial to mesenchymal transition (EMT), however, only a few papers reported the changes in quantitative parameters and no article compared different parameters for demanding better parameters. In the study, the purpose was to investigate suitable parameters for quantitative evaluation of EMT morphological changes. A549 human lung adenocarcinoma cell line was selected for the study. Some cells were stimulated by transforming growth factor-β1 (TGF-β1) for EMT, and other cells were as control without TGF-β1 stimulation. Subsequently, cells were placed in phase contrast microscope and three arbitrary fields were captured and saved with a personal computer. Using the tools of Photoshop software, some cells in an image were selected, segmented out and exchanged into unique hue, and other part in the image was shifted into another unique hue. The cells were calculated with 29 morphological parameters by Image Pro Plus software. A parameter between cells with or without TGF-β1 stimulation was compared statistically and nine parameters were significantly different between them. Receiver operating characteristic curve (ROC curve) of a parameter was described with SPSS software and F-test was used to compare two areas under the curves (AUCs) in Excel. Among them, roundness and radius ratio were the most AUCs and were significant higher than the other parameters. The results provided a new method with quantitative assessment of cell morphology during EMT, and found out two parameters, roundness and radius ratio, as suitable for quantification. PMID:26182364

  2. Gamma-radiation-induced chromosal aberration in human lymphocytes: dose-rate effects in stimulated and non-stimulated cells

    International Nuclear Information System (INIS)

    Liniecki, J.; Bajerska, A.; Wyszynska, K.; Cisowska, B.

    1977-01-01

    Stimulated and non-stimulated human peripheral blood lymphocytes were irradiated acutely and chronically, over 24 h. Dose-effect relationships for dicentric chromosomes were established and various models were fitted to the data. At prolonged irradiations, the yield decreased in basic agreement with the linear-quadratic model of aberration induction. Dose-protraction experiments on PHA + and PHA - lymphocytes, irradiated under various conditions of oxygenation and suspension (culture medium, whole blood) showed that the rejoining time increased from about 3 h in non-stimulated cells to about 10 h after PHA stimulation, and that this retarded rejoining was most likely due to blastic transformation itself and not to other conditions of irradiation

  3. COPD and squamous cell lung cancer: aberrant inflammation and immunity is the common link.

    Science.gov (United States)

    Bozinovski, Steven; Vlahos, Ross; Anthony, Desiree; McQualter, Jonathan; Anderson, Gary; Irving, Louis; Steinfort, Daniel

    2016-02-01

    Cigarette smoking has reached epidemic proportions within many regions of the world and remains the highest risk factor for chronic obstructive pulmonary disease (COPD) and lung cancer. Squamous cell lung cancer is commonly detected in heavy smokers, where the risk of developing lung cancer is not solely defined by tobacco consumption. Although therapies that target common driver mutations in adenocarcinomas are showing some promise, they are proving ineffective in smoking-related squamous cell lung cancer. Since COPD is characterized by an excessive inflammatory and oxidative stress response, this review details how aberrant innate, adaptive and systemic inflammatory processes can contribute to lung cancer susceptibility in COPD. Activated leukocytes release increasing levels of proteases and free radicals as COPD progresses and tertiary lymphoid aggregates accumulate with increasing severity. Reactive oxygen species promote formation of reactive carbonyls that are not only tumourigenic through initiating DNA damage, but can directly alter the function of regulatory proteins involved in host immunity and tumour suppressor functions. Systemic inflammation is also markedly increased during infective exacerbations in COPD and the interplay between tumour-promoting serum amyloid A (SAA) and IL-17A is discussed. SAA is also an endogenous allosteric modifier of FPR2 expressed on immune and epithelial cells, and the therapeutic potential of targeting this receptor is proposed as a novel strategy for COPD-lung cancer overlap. © 2015 The British Pharmacological Society.

  4. GPR84 sustains aberrant β-catenin signaling in leukemic stem cells for maintenance of MLL leukemogenesis.

    Science.gov (United States)

    Dietrich, Philipp A; Yang, Chen; Leung, Halina H L; Lynch, Jennifer R; Gonzales, Estrella; Liu, Bing; Haber, Michelle; Norris, Murray D; Wang, Jianlong; Wang, Jenny Yingzi

    2014-11-20

    β-catenin is required for establishment of leukemic stem cells (LSCs) in acute myeloid leukemia (AML). Targeted inhibition of β-catenin signaling has been hampered by the lack of pathway components amenable to pharmacologic manipulation. Here we identified a novel β-catenin regulator, GPR84, a member of the G protein-coupled receptor family that represents a highly tractable class of drug targets. High GPR84 expression levels were confirmed in human and mouse AML LSCs compared with hematopoietic stem cells (HSCs). Suppression of GPR84 significantly inhibited cell growth by inducing G1-phase cell-cycle arrest in pre-LSCs, reduced LSC frequency, and impaired reconstitution of stem cell-derived mixed-lineage leukemia (MLL) AML, which represents an aggressive and drug-resistant subtype of AML. The GPR84-deficient phenotype in established AML could be rescued by expression of constitutively active β-catenin. Furthermore, GPR84 conferred a growth advantage to Hoxa9/Meis1a-transduced stem cells. Microarray analysis demonstrated that GPR84 significantly upregulated a small set of MLL-fusion targets and β-catenin coeffectors, and downregulated a hematopoietic cell-cycle inhibitor. Altogether, our data reveal a previously unrecognized role of GPR84 in maintaining fully developed AML by sustaining aberrant β-catenin signaling in LSCs, and suggest that targeting the oncogenic GPR84/β-catenin signaling axis may represent a novel therapeutic strategy for AML. © 2014 by The American Society of Hematology.

  5. Mast cell-deficient Kit(W-sh) "Sash" mutant mice display aberrant myelopoiesis leading to the accumulation of splenocytes that act as myeloid-derived suppressor cells.

    Science.gov (United States)

    Michel, Anastasija; Schüler, Andrea; Friedrich, Pamela; Döner, Fatma; Bopp, Tobias; Radsak, Markus; Hoffmann, Markus; Relle, Manfred; Distler, Ute; Kuharev, Jörg; Tenzer, Stefan; Feyerabend, Thorsten B; Rodewald, Hans-Reimer; Schild, Hansjörg; Schmitt, Edgar; Becker, Marc; Stassen, Michael

    2013-06-01

    Mast cell-deficient Kit(W-sh) "sash" mice are widely used to investigate mast cell functions. However, mutations of c-Kit also affect additional cells of hematopoietic and nonimmune origin. In this study, we demonstrate that Kit(W-sh) causes aberrant extramedullary myelopoiesis characterized by the expansion of immature lineage-negative cells, common myeloid progenitors, and granulocyte/macrophage progenitors in the spleen. A consistent feature shared by these cell types is the reduced expression of c-Kit. Populations expressing intermediate and high levels of Ly6G, a component of the myeloid differentiation Ag Gr-1, are also highly expanded in the spleen of sash mice. These cells are able to suppress T cell responses in vitro and phenotypically and functionally resemble myeloid-derived suppressor cells (MDSC). MDSC typically accumulate in tumor-bearing hosts and are able to dampen immune responses. Consequently, transfer of MDSC from naive sash mice into line 1 alveolar cell carcinoma tumor-bearing wild-type littermates leads to enhanced tumor progression. However, although it can also be observed in sash mice, accelerated growth of transplanted line 1 alveolar cell carcinoma tumors is a mast cell-independent phenomenon. Thus, the Kit(W-sh) mutation broadly affects key steps in myelopoiesis that may have an impact on mast cell research.

  6. Time-kill profiles and cell-surface morphological effects of crude ...

    African Journals Online (AJOL)

    MK1201 mycelial extract on the viability and cell surface morphology of methicillin-susceptible Staphylococcus aureus (MSSA) and methicillin-resistant Staphylococcus aureus (MRSA). Methods: Time-kill assays were conducted by incubating test ...

  7. Plasma cell morphology in multiple myeloma and related disorders.

    Science.gov (United States)

    Ribourtout, B; Zandecki, M

    2015-06-01

    Normal and reactive plasma cells (PC) are easy to ascertain on human bone marrow films, due to their small mature-appearing nucleus and large cytoplasm, the latter usually deep blue after Giemsa staining. Cytoplasm is filled with long strands of rough endoplasmic reticulum and one large Golgi apparatus (paranuclear hof), demonstrating that PC are dedicated mainly to protein synthesis and excretion (immunoglobulin). Deregulation of the genome may induce clonal expansion of one PC that will lead to immunoglobulin overproduction and eventually to one among the so-called PC neoplasms. In multiple myeloma (MM), the number of PC is over 10% in most patients studied. Changes in the morphology of myeloma PC may be inconspicuous as compared to normal PC (30-50% patients). In other instances PC show one or several morphological changes. One is related to low amount of cytoplasm, defining lymphoplasmacytoid myeloma (10-15% patients). In other cases (40-50% patients), named immature myeloma cases, nuclear-cytoplasmic asynchrony is observed: presence of one nucleolus, finely dispersed chromatin and/or irregular nuclear contour contrast with a still large and blue (mature) cytoplasm. A peculiar morphological change, corresponding to the presence of very immature PC named plasmablasts, is observed in 10-15% cases. Several prognostic morphological classifications have been published, as mature myeloma is related to favorable outcome and immature myeloma, peculiarly plasmablastic myeloma, is related to dismal prognosis. However, such classifications are no longer included in current prognostic schemes. Changes related to the nucleus are very rare in monoclonal gammopathy of unknown significance (MGUS). In contrast, anomalies related to the cytoplasm of PC, including color (flaming cells), round inclusions (Mott cells, Russell bodies), Auer rod-like or crystalline inclusions, are reported in myeloma cases as well as in MGUS and at times in reactive disorders. They do not correspond

  8. Dose Assessment using Chromosome Aberration Analyses in Human Peripheral Blood Lymphocytes

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Tae Ho; Kim, Jin-Hong; Kim, Jin Kyu [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    The healthy five donors were recruited to establish the dose-response calibration curve for chromosomal aberrations by ionizing radiation exposure. Our cytogenetic results revealed that the mean frequency of chromosome aberration increased with increasing radiation dose. In this study, dicentric assay and CBMN assay were compared considering the sensitivity and accuracy of dose estimation. Therefore, these chromosome aberration analyses will be the foundation for biological dosimetric analysis with additional research methods such as translocation and PCC assay. The conventional analysis of dicentric chromosomes in HPBL was suggested by Bender and Gooch in 1962. This assay has been for many years, the golden standard and the most specific method for ionizing radiation damage. The dicentric assay technique in HPBL has been shown as the most sensitive biological method and reliable bio-indicator of quantifying the radiation dose. In contrast, the micronucleus assay has advantages over the dicentric assay since it is rapid and requires less specialized expertise, and accordingly it can be applied to monitor a big population. The cytokinesis-block micronucleus (CBMN) assay is a suitable method for micronuceli measurement in cultured human as well as mammalian cells. The aim of our study was to establish the dose response curve of radiation-induced chromosome aberrations in HPBL by analyzing the frequency of dicentrics and micronuclei.

  9. Freeform aberrations in phase space: an example.

    Science.gov (United States)

    Babington, James

    2017-06-01

    We consider how optical propagation and aberrations of freeform systems can be formulated in phase space. As an example system, a freeform prism is analyzed and discussed. Symmetry considerations and their group theory descriptions are given some importance. Numerical aberrations are also highlighted and put into the context of the underlying aberration theory.

  10. Spherical aberrations of human astigmatic corneas.

    Science.gov (United States)

    Zhao, Huawei; Dai, Guang-Ming; Chen, Li; Weeber, Henk A; Piers, Patricia A

    2011-11-01

    To evaluate whether the average spherical aberration of human astigmatic corneas is statistically equivalent to human nonastigmatic corneas. Spherical aberrations of 445 astigmatic corneas prior to laser vision correction were retrospectively investigated to determine Zernike coefficients for central corneal areas 6 mm in diameter using CTView (Sarver and Associates). Data were divided into groups according to cylinder power (0.01 to 0.25 diopters [D], 0.26 to 0.75 D, 0.76 to 1.06 D, 1.07 to 1.53 D, 1.54 to 2.00 D, and >2.00 D) and according to age by decade. Spherical aberrations were correlated with age and astigmatic power among groups and the entire population. Statistical analyses were conducted, and P.05 for all tested groups). Mean spherical aberration of astigmatic corneas was not correlated significantly with cylinder power or age (P>.05). Spherical aberrations are similar to those of nonastigmatic corneas, permitting the use of these additional data in the design of aspheric toric intra-ocular lenses. Copyright 2011, SLACK Incorporated.

  11. Atomic force microscopic study of the effects of ethanol on yeast cell surface morphology.

    Science.gov (United States)

    Canetta, Elisabetta; Adya, Ashok K; Walker, Graeme M

    2006-02-01

    The detrimental effects of ethanol toxicity on the cell surface morphology of Saccharomyces cerevisiae (strain NCYC 1681) and Schizosaccharomyces pombe (strain DVPB 1354) were investigated using an atomic force microscope (AFM). In combination with culture viability and mean cell volume measurements AFM studies allowed us to relate the cell surface morphological changes, observed on nanometer lateral resolution, with the cellular stress physiology. Exposing yeasts to increasing stressful concentrations of ethanol led to decreased cell viabilities and mean cell volumes. Together with the roughness and bearing volume analyses of the AFM images, the results provided novel insight into the relative ethanol tolerance of S. cerevisiae and Sc. pombe.

  12. Morphology and efficiency : the case of Polymer/ZnO solar cells

    NARCIS (Netherlands)

    Koster, L.J.A.; Stenzel, O.; Oosterhout, S.D.; Wienk, M.M.; Schmidt, V.; Janssen, R.A.J.

    2013-01-01

    The performance of polymer solar cells critically depends on the morphology of the interface between the donor- and acceptor materials that are used to create and transport charge carriers. Solar cells based on poly(3-hexylthiophene) and ZnO were fully characterized in terms of their efficiency and

  13. Morphology and Efficiency : The Case of Polymer/ZnO Solar Cells

    NARCIS (Netherlands)

    Koster, L.J.A.; Stenzel, O.; Oosterhout, S.D.; Wienk, M.M.; Schmidt, V.; Janssen, R.A.J.

    The performance of polymer solar cells critically depends on the morphology of the interface between the donor- and acceptor materials that are used to create and transport charge carriers. Solar cells based on poly(3-hexylthiophene) and ZnO were fully characterized in terms of their efficiency and

  14. Liver-cell patterning lab chip: mimicking the morphology of liver lobule tissue.

    Science.gov (United States)

    Ho, Chen-Ta; Lin, Ruei-Zeng; Chen, Rong-Jhe; Chin, Chung-Kuang; Gong, Song-En; Chang, Hwan-You; Peng, Hwei-Ling; Hsu, Long; Yew, Tri-Rung; Chang, Shau-Feng; Liu, Cheng-Hsien

    2013-09-21

    A lobule-mimetic cell-patterning technique for on-chip reconstruction of centimetre-scale liver tissue of heterogeneous hepatic and endothelial cells via an enhanced field-induced dielectrophoresis (DEP) trap is demonstrated and reported. By mimicking the basic morphology of liver tissue, the classic hepatic lobule, the lobule-mimetic-stellate-electrodes array was designed for cell patterning. Through DEP manipulation, well-defined and enhanced spatial electric field gradients were created for in-parallel manipulation of massive individual cells. With this liver-cell patterning labchip design, the original randomly distributed hepatic and endothelial cells inside the microfluidic chamber can be manipulated separately and aligned into the desired pattern that mimicks the morphology of liver lobule tissue. Experimental results showed that both hepatic and endothelial cells were orderly guided, snared, and aligned along the field-induced orientation to form the lobule-mimetic pattern. About 95% cell viability of hepatic and endothelial cells was also observed after cell-patterning demonstration via a fluorescent assay technique. The liver function of CYP450-1A1 enzyme activity showed an 80% enhancement for our engineered liver tissue (HepG2+HUVECs) compared to the non-patterned pure HepG2 for two-day culturing.

  15. A temperature-sensitive dcw1 mutant of Saccharomyces cerevisiae is cell cycle arrested with small buds which have aberrant cell walls.

    Science.gov (United States)

    Kitagaki, Hiroshi; Ito, Kiyoshi; Shimoi, Hitoshi

    2004-10-01

    Dcw1p and Dfg5p in Saccharomyces cerevisiae are homologous proteins that were previously shown to be involved in cell wall biogenesis and to be essential for growth. Dcw1p was found to be a glycosylphosphatidylinositol-anchored membrane protein. To investigate the roles of these proteins in cell wall biogenesis and cell growth, we constructed mutant alleles of DCW1 by random mutagenesis, introduced them into a Deltadcw1 Deltadfg5 background, and isolated a temperature-sensitive mutant, DC61 (dcw1-3 Deltadfg5). When DC61 cells were incubated at 37 degrees C, most cells had small buds, with areas less than 20% of those of the mother cells. This result indicates that DC61 cells arrest growth with small buds at 37 degrees C. At 37 degrees C, fewer DC61 cells had 1N DNA content and most of them still had a single nucleus located apart from the bud neck. In addition, in DC61 cells incubated at 37 degrees C, bipolar spindles were not formed. These results indicate that DC61 cells, when incubated at 37 degrees C, are cell cycle arrested after DNA replication and prior to the separation of spindle pole bodies. The small buds of DC61 accumulated chitin in the bud cortex, and some of them were lysed, which indicates that they had aberrant cell walls. A temperature-sensitive dfg5 mutant, DF66 (Deltadcw1 dfg5-29), showed similar phenotypes. DCW1 and DFG5 mRNA levels peaked in the G1 and S phases, respectively. These results indicate that Dcw1p and Dfg5p are involved in bud formation through their involvement in biogenesis of the bud cell wall.

  16. Whole eye wavefront aberrations in Mexican male subjects.

    Science.gov (United States)

    Cantú, Roberto; Rosales, Marco A; Tepichín, Eduardo; Curioca, Andrée; Montes, Victor; Bonilla, Julio

    2004-01-01

    To analyze the characteristics, incidence, and appearance of wavefront aberrations in undilated, normal, unoperated eyes. Eighty-eight eyes of 44 healthy male Mexican subjects (mean age 25.32 years, range 18 to 36 yr) were divided into three groups based on uncorrected visual acuity of greater than or equal to 20/20, 20/30, or 20/40. UCVA measurements were obtained using an Acuity Max computer screen chart. Wavefront aberrations were measured with the Nidek OPD-Scan ARK 10000, Ver. 1.11b. All measurements were carried out at the same center by the same technician during a single session, following manufacturer instructions. Background illumination was 3 Lux. Wavefront aberration measurements for each group were statistically analyzed using StatView; an average eye was characterized and the resulting aberrations were simulated using MATLAB. We obtained wavefront aberration maps for the 20/20 undilated normal unoperated eyes for total, low, and high order aberration coefficients. Wavefront maps for right eyes were practically the same as those for left eyes. Higher aberrations did not contribute substantially to total wavefront analysis. Average aberrations of this "normal eye" will be used as criteria to decide the necessity of wavefront-guided ablation in our facilities. We will focus on the nearly zero average of high order aberrations in this normal whole eye as a reference to be matched.

  17. Aberrant repair and fibrosis development in skeletal muscle

    Directory of Open Access Journals (Sweden)

    Mann Christopher J

    2011-05-01

    Full Text Available Abstract The repair process of damaged tissue involves the coordinated activities of several cell types in response to local and systemic signals. Following acute tissue injury, infiltrating inflammatory cells and resident stem cells orchestrate their activities to restore tissue homeostasis. However, during chronic tissue damage, such as in muscular dystrophies, the inflammatory-cell infiltration and fibroblast activation persists, while the reparative capacity of stem cells (satellite cells is attenuated. Abnormal dystrophic muscle repair and its end stage, fibrosis, represent the final common pathway of virtually all chronic neurodegenerative muscular diseases. As our understanding of the pathogenesis of muscle fibrosis has progressed, it has become evident that the muscle provides a useful model for the regulation of tissue repair by the local microenvironment, showing interplay among muscle-specific stem cells, inflammatory cells, fibroblasts and extracellular matrix components of the mammalian wound-healing response. This article reviews the emerging findings of the mechanisms that underlie normal versus aberrant muscle-tissue repair.

  18. Functional and morphological recovery of the T-cell compartment in lethally irradiated and reconstituted mice

    International Nuclear Information System (INIS)

    Kraal, G.; Hilst, B. van der; Boden, D.

    1979-01-01

    The recovery of the T-cell compartment in mice after lethal irradiation and reconstitution was studied using functional and morphological parameters. T-helper cell activity, determined by the direct SRBC-plaque-forming cell (PFC) response, recovered in a similar fashion as T-memory function which was studied by adoptive transfer of carrier-primed cells. Both functions returned to control levels in 2.5 to 3 months. Using immunoperoxidase staining of frozen sections with anti-T cell serum, the morphological recovery of the T-cell dependent areas in the white pulp of the spleen could be studied and compared with the functional recovery. (author)

  19. Genomic copy number analysis of a spectrum of blue nevi identifies recurrent aberrations of entire chromosomal arms in melanoma ex blue nevus.

    Science.gov (United States)

    Chan, May P; Andea, Aleodor A; Harms, Paul W; Durham, Alison B; Patel, Rajiv M; Wang, Min; Robichaud, Patrick; Fisher, Gary J; Johnson, Timothy M; Fullen, Douglas R

    2016-03-01

    Blue nevi may display significant atypia or undergo malignant transformation. Morphologic diagnosis of this spectrum of lesions is notoriously difficult, and molecular tools are increasingly used to improve diagnostic accuracy. We studied copy number aberrations in a cohort of cellular blue nevi, atypical cellular blue nevi, and melanomas ex blue nevi using Affymetrix's OncoScan platform. Cases with sufficient DNA were analyzed for GNAQ, GNA11, and HRAS mutations. Copy number aberrations were detected in 0 of 5 (0%) cellular blue nevi, 3 of 12 (25%) atypical cellular blue nevi, and 6 of 9 (67%) melanomas ex blue nevi. None of the atypical cellular blue nevi displayed more than one aberration, whereas complex aberrations involving four or more regions were seen exclusively in melanomas ex blue nevi. Gains and losses of entire chromosomal arms were identified in four of five melanomas ex blue nevi with copy number aberrations. In particular, gains of 1q, 4p, 6p, and 8q, and losses of 1p and 4q were each found in at least two melanomas. Whole chromosome aberrations were also common, and represented the sole finding in one atypical cellular blue nevus. When seen in melanomas, however, whole chromosome aberrations were invariably accompanied by partial aberrations of other chromosomes. Three melanomas ex blue nevi harbored aberrations, which were absent or negligible in their precursor components, suggesting progression in tumor biology. Gene mutations involving GNAQ and GNA11 were each detected in two of eight melanomas ex blue nevi. In conclusion, copy number aberrations are more common and often complex in melanomas ex blue nevi compared with cellular and atypical cellular blue nevi. Identification of recurrent gains and losses of entire chromosomal arms in melanomas ex blue nevi suggests that development of new probes targeting these regions may improve detection and risk stratification of these lesions.

  20. Assessment of DNA damage and Chromosome aberration in human lymphocyte exposed to low dose radiation detected by FISH(Fluorescence In Situ Hybridization) and SCGE(Single Cell Gel Electrophoresis)

    International Nuclear Information System (INIS)

    Chung, Hai Won; Kim, Su Young; Kim, Byung Mo; Kim, Sun Jin; Ha, Sung Whan; Kim, Tae Hwan; Cho, Chul Koo

    2000-01-01

    Comparative study was performed for the assessment of DNA damage and Chromosomal aberration in human lymphocyte exposed to low dose radiation using Fluorescence In Situ Hybridization(FISH) and Single Cell Gel Electrophoresis(SCGE). Chromosomal aberrations in human lymphocyte exposed to radiation at doses of 5, 10, 30 and 50cGy were analysed with whole chromosome-specific probes by human chromosome 1, 2 and 4 according to PAINT system. FISH with chromosome-specific probe has been used to be a valid and rapid method for detection of chromosome rearrangements induced by low dose radiation. The frequencies of stable translocation per cell equivalents were 0.0116, 0.0375, 0.0407, 0.0727 and 0.0814 for 0, 5, 10, 30 and 50cGy, respectively, and those of dicentric were 0.00, 0.0125, 0.174, 0.0291 and 0.0407 respectively. Radiation induced DNA damage in human lymphocyte in a dose-dependent manner at low doses from 5cGy to 50cGy, which were analysed by single Cell Gel Electrophoresis(SCGE). From above results, FISH seemed to be useful for radiation biodosimetry by which the frequencies of stable aberrations in human lymphocyte can be observed more easily than by conventional method and SCGE also seemed to be sensitive method for detecting DNA damage by low dose radiation exposure, so that those methods will improve our technique to perform meaningful biodosimetry for radiation at low doses

  1. Label-free morphology-based prediction of multiple differentiation potentials of human mesenchymal stem cells for early evaluation of intact cells.

    Directory of Open Access Journals (Sweden)

    Hiroto Sasaki

    Full Text Available Precise quantification of cellular potential of stem cells, such as human bone marrow-derived mesenchymal stem cells (hBMSCs, is important for achieving stable and effective outcomes in clinical stem cell therapy. Here, we report a method for image-based prediction of the multiple differentiation potentials of hBMSCs. This method has four major advantages: (1 the cells used for potential prediction are fully intact, and therefore directly usable for clinical applications; (2 predictions of potentials are generated before differentiation cultures are initiated; (3 prediction of multiple potentials can be provided simultaneously for each sample; and (4 predictions of potentials yield quantitative values that correlate strongly with the experimental data. Our results show that the collapse of hBMSC differentiation potentials, triggered by in vitro expansion, can be quantitatively predicted far in advance by predicting multiple potentials, multi-lineage differentiation potentials (osteogenic, adipogenic, and chondrogenic and population doubling potential using morphological features apparent during the first 4 days of expansion culture. In order to understand how such morphological features can be effective for advance predictions, we measured gene-expression profiles of the same early undifferentiated cells. Both senescence-related genes (p16 and p21 and cytoskeleton-related genes (PTK2, CD146, and CD49 already correlated to the decrease of potentials at this stage. To objectively compare the performance of morphology and gene expression for such early prediction, we tested a range of models using various combinations of features. Such comparison of predictive performances revealed that morphological features performed better overall than gene-expression profiles, balancing the predictive accuracy with the effort required for model construction. This benchmark list of various prediction models not only identifies the best morphological feature

  2. Measuring and correcting aberrations of a cathode objective lens

    International Nuclear Information System (INIS)

    Tromp, R.M.

    2011-01-01

    In this paper I discuss several theoretical and practical aspects related to measuring and correcting the chromatic and spherical aberrations of a cathode objective lens as used in Low Energy Electron Microscopy (LEEM) and Photo Electron Emission Microscopy (PEEM) experiments. Special attention is paid to the various components of the cathode objective lens as they contribute to chromatic and spherical aberrations, and affect practical methods for aberration correction. This analysis has enabled us to correct a LEEM instrument for the spherical and chromatic aberrations of the objective lens. -- Research highlights: → Presents a comprehensive theory of the relation between chromatic aberration and lens current in a cathode objective lens. → Presents practical methods for measuring both spherical and chromatic aberrations of a cathode objective lens. → Presents measurements of these aberrations in good agreement with theory. → Presents practical methods for measuring and correcting these aberrations with an electron mirror.

  3. Chromosome aberrations in human peripheral lymphocytes induced by single or fractionated X-irradiation

    International Nuclear Information System (INIS)

    Ivanov, B.; Leonard, A.; Deknyudt, G.

    1980-01-01

    Investigated is the effect of single (125 and 250 R) and fractionated (2x125 R) irradiation on the output of chromosome aberrations in lymphocytes of human peripheral blood kept between irradiations at the temperature of 5 deg C. The single irradiation is carried out immediately after vein-puncture. In the case of fractionated irradiation the first dose of 125R is given after vein-puncture, the second, in the interval of 2, 8 and 24 hours. Blood is cultivated immediately after two irradiations in order to prepare metaphase plates for cytogenic analysis. Repair processes in cell heritage structures are not realised in blood irradiated by fractions which is kept at 5 deg C between irradiations. On the contrary, chromosome fragments, interstitial deletions, aberrant cells and cell breaks are found in a large amount in blood irradiated by fractions. They have appeared with the authentically high statistic difference as compared with the cells irradiated one time with the same dose. This effect is probably attained due to blood preservation

  4. Use of M-FISH analysis of α-particle-induced chromosome aberrations for the assessment of chromosomal breakpoint distribution and complex aberration formation

    International Nuclear Information System (INIS)

    Anderson, R.M.; Sumption, N.D.; Papworth, D.G.; Goodhead, D.T.

    2003-01-01

    Double strand breaks (dsb) of varying complexity are an important class of damage induced after exposure to ionising radiation and are considered to be the critical lesion for the formation of radiation-induced chromosome aberrations. Assuming the basic principles of the 'Breakage and Reunion' theory, dsb represent 'breakage' and aberrations are produced from the illegitimate repair (reunion) of the resulting dsb free-'ends'. Numerous questions relate to this process, in particular, (1) do chromosomal breakpoint 'hot-spots' that represent sensitive sites for breakage and/or regions of preferential repair/mis-repair, exist? (2) Considering that individual chromosomes and chromosome regions occupy discrete territories in the interphase nucleus, could rearrangements between specific chromosomes reflect domain organisation at the time of damage? (3) Assuming the topological constraints imposed on chromatin are not dramatically influenced by the presence of dsb, then how do multiple 'ends' from different chromosomes proximally associate for mis-repair as complex chromosome aberrations? To address these questions, we have analysed the chromosome aberrations induced in peripheral blood lymphocytes after exposure to 0.5 Gy α -particles (mean of 1 α -particle/cell) using the technique of M-FISH. This technique 'paints' all the human chromosomes (excluding homologues) uniquely, allowing chromosomal mis-repair to be visualised as differential colour-junctions and in addition, enhanced DAPI banding enables gross breakpoint assignation of these colour junctions. To test for non-randomness, we are comparing the frequency of occurrence of breakpoints obtained up to now with the F98 glioma model our knowledbased on chromosome length. Similarly, the involvement of each chromosome relative to other chromosomes within individual rearrangements can be determined by assuming the volume of chromosome domains is also proportional to their length. The current data to be presented will

  5. Morphological characterization of a human glioma cell l ine.

    Science.gov (United States)

    Machado, Camila Ml; Schenka, André; Vassallo, José; Tamashiro, Wirla Msc; Gonçalves, Estela M; Genari, Selma C; Verinaud, Liana

    2005-05-10

    A human malignant continuous cell line, named NG97, was recently established in our laboratory. This cell line has been serially subcultured over 100 times in standard culture media presenting no sign of cell senescence. The NG97 cell line has a doubling time of about 24 h. Immunocytochemical analysis of glial markers demonstrated that cells are positive for glial fibrillary acidic protein (GFAP) and S-100 protein, and negative for vimentin. Under phase-contrast microscope, cultures of NG97 showed cells with variable morphological features, such as small rounded cells, fusiform cells (fibroblastic-like cells), and dendritic-like cells. However, at confluence just small rounded and fusiform cells can be observed. At scanning electron microscopy (SEM) small rounded cells showed heterogeneous microextentions, including blebs and filopodia. Dendritic-like cells were flat and presented extensive prolongations, making several contacts with small rounded cells, while fusiform cells presented their surfaces dominated by microvilli.We believe that the knowledge about NG97 cell line may be useful for a deeper understanding of biological and immunological characteristics of gliomas.

  6. Preparation of nano-hydroxyapatite particles with different morphology and their response to highly malignant melanoma cells in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Li Bo [National Engineering Research Center for Biomaterial, Sichuan University, Chengdu 610064 (China); Guo Bo [National Engineering Research Center for Biomaterial, Sichuan University, Chengdu 610064 (China); West China Eye Center of Huaxi Hospital, Sichuan University, Chengdu 610064 (China); Fan Hongsong [National Engineering Research Center for Biomaterial, Sichuan University, Chengdu 610064 (China)], E-mail: leewave@126.com; Zhang Xingdong [National Engineering Research Center for Biomaterial, Sichuan University, Chengdu 610064 (China)

    2008-11-15

    To investigate the effects of nano-hydroxyapatite (HA) particles with different morphology on highly malignant melanoma cells, three kinds of HA particles with different morphology were synthesized and co-cultured with highly malignant melanoma cells using phosphate-buffered saline (PBS) as control. A precipitation method with or without citric acid addition as surfactant was used to produce rod-like hydroxyapatite (HA) particles with nano- and micron size, respectively, and a novel oil-in-water emulsion method was employed to prepare ellipse-like nano-HA particles. Particle morphology and size distribution of the as prepared HA powders were characterized by transmission electron microscope (TEM) and dynamic light scattering technique. The nano- and micron HA particles with different morphology were co-cultured with highly malignant melanoma cells. Immunofluorescence analysis and MTT assay were employed to evaluate morphological change of nucleolus and proliferation of tumour cells, respectively. To compare the effects of HA particles on cell response, the PBS without HA particles was used as control. The experiment results indicated that particle nanoscale effect rather than particle morphology of HA was more effective for the inhibition on highly malignant melanoma cells proliferation.

  7. Aberrant Long Noncoding RNAs Expression Profiles Affect Cisplatin Resistance in Lung Adenocarcinoma

    Directory of Open Access Journals (Sweden)

    Lijuan Hu

    2017-01-01

    Full Text Available Background. Long noncoding RNAs (lncRNAs have been shown to be involved in the mechanism of cisplatin resistance in lung adenocarcinoma (LAD. However, the roles of lncRNAs in cisplatin resistance in LAD are not well understood. Methods. We used a high-throughput microarray to compare the lncRNA and mRNA expression profiles in cisplatin resistance cell A549/DDP and cisplatin sensitive cell A549. Several candidate cisplatin resistance-associated lncRNAs were verified by real-time quantitative reverse transcription polymerase chain reaction (PCR analysis. Results. We found that 1,543 lncRNAs and 1,713 mRNAs were differentially expressed in A549/DDP cell and A549 cell, hinting that many lncRNAs were irregular from cisplatin resistance in LAD. We also obtain the fact that 12 lncRNAs were aberrantly expressed in A549/DDP cell compared with A549 cell by quantitative PCR. Among these, UCA1 was the aberrantly expressed lncRNA and can significantly reduce the IC50 of cisplatin in A549/DDP cell after knockdown, while it can increase the IC50 of cisplatin after UCA1 was overexpressed in NCI-H1299. Conclusions. We obtained patterns of irregular lncRNAs and they may play a key role in cisplatin resistance of LAD.

  8. The Induction of Chromosome Aberrations and Micronuclei in Human Peripheral Blood Lymphocytes at Low Doses of Radiation

    CERN Document Server

    Shmakova, N L; Krasavin, E A; Melnikova, L A; Fadeeva, T A

    2003-01-01

    The chromosome damage induced by the low doses of gamma-irradiation with ^{60}Co and X-rays in peripheral blood lymphocytes has been studied using different cytogenetic assays. Isolated lymphocytes were exposed to 0.01-1.0 Gy, simulated by PHA, and analysed for chromosome aberrations by the metaphase and the anaphase methods, by the micronucleus assay. Despite the quantitative differences in the amount of chromosome damage revealed by different methods, all of them demonstrated complex nonlinear dose dependence of the frequency of aberrant cells and aberrations. At the dose range of 0.01-0.05 Gy the cells showed the highest radiosensitivity; at 0.05-0.5 Gy the dose-independent induction of chromosome damage was revealed. At the doses of 0.5-1.0 Gy the dose-effect curves became linear with the decreased slope compared with the initial one (by a factor of 5 to 10 for different criteria) reflecting a higher radioresistance of the cells. These data confirm the idea that the direct linear extrapolation of high-dos...

  9. Behavioral response and cell morphology changes of caenorhabditis elegans under high power millimeter wave irradiation

    International Nuclear Information System (INIS)

    Ren Changhong; Gao Yan; Wu Yonghong; Xu Zhiwei; Zhang Chenggang; Yuan Guangjiang; Xu Shouxi; Su Yinong; Liu Pukun

    2010-01-01

    C. elegans were exposed to high power millimeter waves (MMWs) with different mean power densities, to investigate their behavioral response and cell morphology changes under MMW irradiation. The time-course photomicrography system was used to record the behavioral changes of C. elegans. The behavioral response and cell morphology changes were further observed by stereoscopic microscopes. The results show that freely moving C. elegans will escape from the MMW irradiation region quickly. After the exposure to MMWs with output mean power of 10 W and 12 W, the bending speed of C. elegans increases significantly at first, while the movement gradually slows down until the bodies get rigid. However, exposed to 5 W MMW, C. elegans show a distinctive tolerant reaction because of the thermal effect. In addition, cell morphological observations show that the nuclear structure of the eggs are abnormal after abnormal after MMW irradiation. High power MMW significantly affects the behaviors and cell morphology of C. elegans, which suggests the C. elegans could be used as a typical model species to study the biological effects of MMW irradiation. (authors)

  10. Effects of temperature and cellular interactions on the mechanics and morphology of human cancer cells investigated by atomic force microscopy.

    Science.gov (United States)

    Li, Mi; Liu, LianQing; Xi, Ning; Wang, YueChao; Xiao, XiuBin; Zhang, WeiJing

    2015-09-01

    Cell mechanics plays an important role in cellular physiological activities. Recent studies have shown that cellular mechanical properties are novel biomarkers for indicating the cell states. In this article, temperature-controllable atomic force microscopy (AFM) was applied to quantitatively investigate the effects of temperature and cellular interactions on the mechanics and morphology of human cancer cells. First, AFM indenting experiments were performed on six types of human cells to investigate the changes of cellular Young's modulus at different temperatures and the results showed that the mechanical responses to the changes of temperature were variable for different types of cancer cells. Second, AFM imaging experiments were performed to observe the morphological changes in living cells at different temperatures and the results showed the significant changes of cell morphology caused by the alterations of temperature. Finally, by co-culturing human cancer cells with human immune cells, the mechanical and morphological changes in cancer cells were investigated. The results showed that the co-culture of cancer cells and immune cells could cause the distinct mechanical changes in cancer cells, but no significant morphological differences were observed. The experimental results improved our understanding of the effects of temperature and cellular interactions on the mechanics and morphology of cancer cells.

  11. Morphological and Metabolic Parameters of Red Blood Cells after Their Treatment with Ozone

    Directory of Open Access Journals (Sweden)

    Anna V. Deryugina

    2018-01-01

    Full Text Available The purpose of the study was to assess the morphology of red blood cells (RBC and the association of morphological parameters with lipid peroxidation processes and the content of organic phosphates in RBC when treating packed red blood cells with the ozonized saline solution (with an ozone concentration of 2 mg/l after different storage periods.Materials and methods. The morphology of human RBC, the concentration of malonic dialdehyde (MDA in RBC, the catalase activity, the concentration of ATP and 2,3-diphosphoglycerate (2,3-DPG were studied before and after treatment of RBC with the ozonized saline (with the ozone concentration of 2 mg/l after 7, 14, 21 and 30 days of storage.Results. The effect of ozone (2 ng/l in vitro on the packed red blood cells after 7–21 days of storage contributed to the recovery of RBC shape, increased the concentration of ATP and 2,3-DPG, and optimized the lipid peroxidation. Ozone did not demonstrate a pronounced positive effect on these parameters when the packed RBCs were stored for 30 days.Conclusion. The treatment of the packed RBCs with the ozonized saline solution (with the ozone concentration of 2 mg/l contributed to the recovery of the discocyte count due to optimization of lipid peroxidation processes in cell membranes and enhanced the synthesis of organic phosphates in cells due to the activation of glycolysis and the pentose phosphate pathway. This can be used to improve the morphological and metabolic status of the packed RBCs before their transfusion. 

  12. Morphology of endothelial cells from different regions of the equine cornea

    OpenAIRE

    Faganello, Cláudia Skilhan; Silva, Vanessa Ruiz Moura da; Andrade, Maria Cristina Caldart de; Carissimi, André Silva; Pigatto, João Antonio Tadeu

    2016-01-01

    ABSTRACT: The objective of this study was to evaluate the morphology of different regions of the equine cornea using optical microscopy. Both healthy eyes of eight horses, male or female, of different ages were evaluated. Corneas were stained with alizarin red vital dye and subsequently examined and photographed using optical microscopy. Corneal endothelial morphology of central, superior, inferior, temporal and nasal areas was assessed. One hundred endothelial cells from each corneal area we...

  13. ALS/FTLD-linked TDP-43 regulates neurite morphology and cell survival in differentiated neurons

    International Nuclear Information System (INIS)

    Han, Jeong-Ho; Yu, Tae-Hoon; Ryu, Hyun-Hee; Jun, Mi-Hee; Ban, Byung-Kwan; Jang, Deok-Jin; Lee, Jin-A

    2013-01-01

    Tar-DNA binding protein of 43 kDa (TDP-43) has been characterized as a major component of protein aggregates in brains with neurodegenerative diseases such as frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS). However, physiological roles of TDP-43 and early cellular pathogenic effects caused by disease associated mutations in differentiated neurons are still largely unknown. Here, we investigated the physiological roles of TDP-43 and the effects of missense mutations associated with diseases in differentiated cortical neurons. The reduction of TDP-43 by siRNA increased abnormal neurites and decreased cell viability. ALS/FTLD-associated missense mutant proteins (A315T, Q331K, and M337V) were partially mislocalized to the cytosol and neurites when compared to wild-type and showed abnormal neurites similar to those observed in cases of loss of TDP-43. Interestingly, cytosolic expression of wild-type TDP-43 with mutated nuclear localization signals also induced abnormal neurtie morphology and reduction of cell viability. However, there was no significant difference in the effects of cytosolic expression in neuronal morphology and cell toxicity between wild-type and missense mutant proteins. Thus, our results suggest that mislocalization of missense mutant TDP-43 may contribute to loss of TDP-43 function and affect neuronal morphology, probably via dominant negative action before severe neurodegeneration in differentiated cortical neurons. Highlights: • The function of nuclear TDP-43 in neurite morphology in mature neurons. • Partial mislocalization of TDP-43 missense mutants into cytosol from nucleus. • Abnormal neurite morphology caused by missense mutants of TDP-43. • The effect of cytosolic expression of TDP-43 in neurite morphology and in cell survival

  14. ALS/FTLD-linked TDP-43 regulates neurite morphology and cell survival in differentiated neurons

    Energy Technology Data Exchange (ETDEWEB)

    Han, Jeong-Ho; Yu, Tae-Hoon; Ryu, Hyun-Hee; Jun, Mi-Hee; Ban, Byung-Kwan [Department of Biotechnology, College of Life Science and Nanotechnology, Hannam University, Dajeon 305-811 (Korea, Republic of); Jang, Deok-Jin [Department of Applied Biology, College of Ecology and Environment, Kyungpook National University, 386, Gajang-dong, Sangju-si, Kyungbuk 742-711 (Korea, Republic of); Lee, Jin-A, E-mail: leeja@hnu.kr [Department of Biotechnology, College of Life Science and Nanotechnology, Hannam University, Dajeon 305-811 (Korea, Republic of)

    2013-08-01

    Tar-DNA binding protein of 43 kDa (TDP-43) has been characterized as a major component of protein aggregates in brains with neurodegenerative diseases such as frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS). However, physiological roles of TDP-43 and early cellular pathogenic effects caused by disease associated mutations in differentiated neurons are still largely unknown. Here, we investigated the physiological roles of TDP-43 and the effects of missense mutations associated with diseases in differentiated cortical neurons. The reduction of TDP-43 by siRNA increased abnormal neurites and decreased cell viability. ALS/FTLD-associated missense mutant proteins (A315T, Q331K, and M337V) were partially mislocalized to the cytosol and neurites when compared to wild-type and showed abnormal neurites similar to those observed in cases of loss of TDP-43. Interestingly, cytosolic expression of wild-type TDP-43 with mutated nuclear localization signals also induced abnormal neurtie morphology and reduction of cell viability. However, there was no significant difference in the effects of cytosolic expression in neuronal morphology and cell toxicity between wild-type and missense mutant proteins. Thus, our results suggest that mislocalization of missense mutant TDP-43 may contribute to loss of TDP-43 function and affect neuronal morphology, probably via dominant negative action before severe neurodegeneration in differentiated cortical neurons. Highlights: • The function of nuclear TDP-43 in neurite morphology in mature neurons. • Partial mislocalization of TDP-43 missense mutants into cytosol from nucleus. • Abnormal neurite morphology caused by missense mutants of TDP-43. • The effect of cytosolic expression of TDP-43 in neurite morphology and in cell survival.

  15. Corneal endothelial cell density and morphology in healthy Turkish eyes.

    Science.gov (United States)

    Arıcı, Ceyhun; Arslan, Osman Sevki; Dikkaya, Funda

    2014-01-01

    Purpose. To describe the normative values of corneal endothelial cell density, morphology, and central corneal thickness in healthy Turkish eyes. Methods. Specular microscopy was performed in 252 eyes of 126 healthy volunteers (M : F, 42 : 84). Parameters studied included mean endothelial cell density (MCD), mean cell area (MCA), coefficient of variation (CV) in cell size, percentage of hexagonal cells, and central corneal thickness (CCT). Results. The mean age of volunteers was 44.3 ± 13.5 (range, 20 to 70) years. There was a statistically significant decrease in MCD (P Filipino eyes and higher than that described in Indian, Thai, and Iranian eyes.

  16. Quantitative assessment of cancer cell morphology and motility using telecentric digital holographic microscopy and machine learning.

    Science.gov (United States)

    Lam, Van K; Nguyen, Thanh C; Chung, Byung M; Nehmetallah, George; Raub, Christopher B

    2018-03-01

    The noninvasive, fast acquisition of quantitative phase maps using digital holographic microscopy (DHM) allows tracking of rapid cellular motility on transparent substrates. On two-dimensional surfaces in vitro, MDA-MB-231 cancer cells assume several morphologies related to the mode of migration and substrate stiffness, relevant to mechanisms of cancer invasiveness in vivo. The quantitative phase information from DHM may accurately classify adhesive cancer cell subpopulations with clinical relevance. To test this, cells from the invasive breast cancer MDA-MB-231 cell line were cultured on glass, tissue-culture treated polystyrene, and collagen hydrogels, and imaged with DHM followed by epifluorescence microscopy after staining F-actin and nuclei. Trends in cell phase parameters were tracked on the different substrates, during cell division, and during matrix adhesion, relating them to F-actin features. Support vector machine learning algorithms were trained and tested using parameters from holographic phase reconstructions and cell geometric features from conventional phase images, and used to distinguish between elongated and rounded cell morphologies. DHM was able to distinguish between elongated and rounded morphologies of MDA-MB-231 cells with 94% accuracy, compared to 83% accuracy using cell geometric features from conventional brightfield microscopy. This finding indicates the potential of DHM to detect and monitor cancer cell morphologies relevant to cell cycle phase status, substrate adhesion, and motility. © 2017 International Society for Advancement of Cytometry. © 2017 International Society for Advancement of Cytometry.

  17. Chromosomal aberrations in ore miners of Slovakia

    International Nuclear Information System (INIS)

    Beno, M.; Vladar, M.; Nikodemova, D.; Vicanova, M.; Durcik, M.

    1998-01-01

    A pilot study was performed in which the incidence of chromosomal aberrations in lymphocytes of miners in ore mines located in Central Slovakia was monitored and related to lifetime underground radon exposure and to lifetime smoking. The conclusions drawn from the results of the study were as follows: the counts of chromosomal aberrations in lymphocytes of miners were significantly higher than in an age matched control group of white-collar staff; the higher counts of chromosomal aberrations could be ascribed to underground exposure of miners and to smoking; a dependence of chromosomal aberration counts on the exposure to radon could not be assessed. (A.K.)

  18. Gamma radiation induced chromosal aberration in human lymphocytes: dose-rate effects in stimulated and non-stimulated cells

    Energy Technology Data Exchange (ETDEWEB)

    Liniecki, J; Bajerska, A; Wyszynska, K [School of Medicine, Lodz (Poland). Div. of Nuclear Medicine and Radiobiology. Medical Research Center; Cisowska, B [Copernicus Municipal Hospital, Lodz (Poland). Oncology Center. Radiotherapy Dept.

    1977-05-01

    Stimulated and non-stimulated human peripheral blood lymphocytes were irradiated acutely and chronically, over 24 h. Dose-effect relationships for dicentric chromosomes were established and various models were fitted to the data. At prolonged irradiations, the yield decreased in basic agreement with the linear-quadratic model of aberration induction. Dose-protraction experiments on PHA/sup +/ and PHA/sup -/ lymphocytes, irradiated under various conditions of oxygenation and suspension (culture medium, whole blood) showed that the rejoining time increased from about 3 h in non-stimulated cells to about 10 h after PHA stimulation, and that this retarded rejoining was most likely due to blastic transformation itself and not to other conditions of irradiation.

  19. Induction of morphological changes in death-induced cancer cells monitored by holographic microscopy.

    Science.gov (United States)

    El-Schich, Zahra; Mölder, Anna; Tassidis, Helena; Härkönen, Pirkko; Falck Miniotis, Maria; Gjörloff Wingren, Anette

    2015-03-01

    We are using the label-free technique of holographic microscopy to analyze cellular parameters including cell number, confluence, cellular volume and area directly in the cell culture environment. We show that death-induced cells can be distinguished from untreated counterparts by the use of holographic microscopy, and we demonstrate its capability for cell death assessment. Morphological analysis of two representative cell lines (L929 and DU145) was performed in the culture flasks without any prior cell detachment. The two cell lines were treated with the anti-tumour agent etoposide for 1-3days. Measurements by holographic microscopy showed significant differences in average cell number, confluence, volume and area when comparing etoposide-treated with untreated cells. The cell volume of the treated cell lines was initially increased at early time-points. By time, cells decreased in volume, especially when treated with high doses of etoposide. In conclusion, we have shown that holographic microscopy allows label-free and completely non-invasive morphological measurements of cell growth, viability and death. Future applications could include real-time monitoring of these holographic microscopy parameters in cells in response to clinically relevant compounds. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Human neural progenitors express functional lysophospholipid receptors that regulate cell growth and morphology

    Directory of Open Access Journals (Sweden)

    Callihan Phillip

    2008-12-01

    Full Text Available Abstract Background Lysophospholipids regulate the morphology and growth of neurons, neural cell lines, and neural progenitors. A stable human neural progenitor cell line is not currently available in which to study the role of lysophospholipids in human neural development. We recently established a stable, adherent human embryonic stem cell-derived neuroepithelial (hES-NEP cell line which recapitulates morphological and phenotypic features of neural progenitor cells isolated from fetal tissue. The goal of this study was to determine if hES-NEP cells express functional lysophospholipid receptors, and if activation of these receptors mediates cellular responses critical for neural development. Results Our results demonstrate that Lysophosphatidic Acid (LPA and Sphingosine-1-phosphate (S1P receptors are functionally expressed in hES-NEP cells and are coupled to multiple cellular signaling pathways. We have shown that transcript levels for S1P1 receptor increased significantly in the transition from embryonic stem cell to hES-NEP. hES-NEP cells express LPA and S1P receptors coupled to Gi/o G-proteins that inhibit adenylyl cyclase and to Gq-like phospholipase C activity. LPA and S1P also induce p44/42 ERK MAP kinase phosphorylation in these cells and stimulate cell proliferation via Gi/o coupled receptors in an Epidermal Growth Factor Receptor (EGFR- and ERK-dependent pathway. In contrast, LPA and S1P stimulate transient cell rounding and aggregation that is independent of EGFR and ERK, but dependent on the Rho effector p160 ROCK. Conclusion Thus, lysophospholipids regulate neural progenitor growth and morphology through distinct mechanisms. These findings establish human ES cell-derived NEP cells as a model system for studying the role of lysophospholipids in neural progenitors.

  1. Aberration studies and computer algebra

    International Nuclear Information System (INIS)

    Hawkes, P.W.

    1981-01-01

    The labour of calculating expressions for aberration coefficients is considerably lightened if a computer algebra language is used to perform the various substitutions and expansions involved. After a brief discussion of matrix representations of aberration coefficients, a particular language, which has shown itself to be well adapted to particle optics, is described and applied to the study of high frequency cavity lenses. (orig.)

  2. Theoretical investigation of aberrations upon ametropic human eyes

    Science.gov (United States)

    Tan, Bo; Chen, Ying-Ling; Lewis, J. W. L.; Baker, Kevin

    2003-11-01

    The human eye aberrations are important for visual acuity and ophthalmic diagnostics and surgical procedures. Reported monochromatic aberration data of the normal 20/20 human eyes are scarce. There exist even fewer reports of the relation between ametropic conditions and aberrations. We theoretically investigate the monochromatic and chromatic aberrations of human eyes for refractive errors of -10 to +10 diopters. Schematic human eye models are employed using optical design software for axial, index, and refractive types of ametropia.

  3. Dose-rate effects and chronological changes of chromosome aberration rates in spleen cells from mice that are chronically exposed to gamma-ray at low dose rates

    International Nuclear Information System (INIS)

    Tanaka, Kimio; Kohda, Atsushi; Ichinohe, Kazuaki; Matsumoto, Tsuneya; Oghiso, Yoichi

    2006-01-01

    Dose-rate effects have not been examined in the low dose-rate regions of less than 60-600 mGy/h. Mice were chronically exposed to gamma-ray at 20 mGy/day (approximately 1 mGy/h) up to 700 days and at 1 mGy/day (approximately 0.05 mGy/h) for 500 days under SPF conditions. Chronological changes of chromosome aberration rates in spleen cells were observed along with accumulated doses at both low dose-rates. Unstable aberrations increased in a biphasic manner within 0-2 Gy and 4-14 Gy in 20 mGy/day irradiation. They slightly increased up to 0.5 Gy in 1 mGy/day irradiation. Chromosome aberration rates at 20 mGy/day and 1 mGy/day were compared at the same total doses of 0.5 Gy and 0.25 Gy. They were 2.0 vs. 0.53, and 1.0 vs. 0.47 respectively. Thus, dose-rate effects were observed in these low dose-rate regions. (author)

  4. Effect of vitamin E on cytotoxicity, DNA single strand breaks, chromosomal aberrations, and mutation in Chinese hamster V-79 cells exposed to ultraviolet-B light

    International Nuclear Information System (INIS)

    Sugiyama, M.; Tsuzuki, K.; Matsumoto, K.; Ogura, R.

    1992-01-01

    The effect of pretreatment with vitamin E on cytotoxicity, DNA single strand breaks, and chromosomal aberrations as well as on mutation induced by ultraviolet-B light (UV-B) was investigated in Chinese hamster V-79 cells. Cellular pretreatment with non-toxic levels of 25 μM α-tocopherol succinate (vitamin E) for 24h prior to exposure resulted in a 10-fold increase in cellular levels of α-tocopherol. Using a colony-forming assay, this pretreatment decreased the cytotoxicity of UV-B light. However, alkaline elution assays demonstrated that pretreatment with vitamin E did not affect the number of DNA single strand breaks caused by UV-B light. UV-B exposure produced a dose-dependent induction of chromosomal aberrations and mutations at the HGPRT locus, and neither of these actions of UV-B was influenced by pretreatment with the vitamin. These results suggest that vitamin E protects cells from UV-B-induced cytotoxicity, possibly through its ability to scavenge free radicals. The genotoxicity induced by UV-B light may not correlate directly with the cytotoxic action of this wavelength region in sunlight. (author)

  5. The morphologies of breast cancer cell lines in three-dimensionalassays correlate with their profiles of gene expression

    Energy Technology Data Exchange (ETDEWEB)

    Kenny, Paraic A.; Lee, Genee Y.; Myers, Connie A.; Neve, RichardM.; Semeiks, Jeremy R.; Spellman, Paul T.; Lorenz, Katrin; Lee, Eva H.; Barcellos-Hoff, Mary Helen; Petersen, Ole W.; Gray, Joe W.; Bissell, MinaJ.

    2007-01-31

    3D cell cultures are rapidly becoming the method of choice for the physiologically relevant modeling of many aspects of non-malignant and malignant cell behavior ex vivo. Nevertheless, only a limited number of distinct cell types have been evaluated in this assay to date. Here we report the first large scale comparison of the transcriptional profiles and 3D cell culture phenotypes of a substantial panel of human breast cancer cell lines. Each cell line adopts a colony morphology of one of four main classes in 3D culture. These morphologies reflect, at least in part, the underlying gene expression profile and protein expression patterns of the cell lines, and distinct morphologies were also associated with tumor cell invasiveness and with cell lines originating from metastases. We further demonstrate that consistent differences in genes encoding signal transduction proteins emerge when even tumor cells are cultured in 3D microenvironments.

  6. Physicochemical Constraints on the Distribution of Benthic Foraminiferal Cell Morphology in the Modern Ocean

    Science.gov (United States)

    Keating-Bitonti, C.; Payne, J.

    2016-02-01

    Patterns in the sizes and shapes of marine organisms often occur across latitude and water depth gradients as a function of metabolic constraints dictated by the physical environment. However, the environmental factors that maintain these gradients in morphology remain incompletely understood because several oceanographic variables of biological importance are intimately correlated, such as temperature, dissolved oxygen concentration, particulate organic carbon (POC) flux, and carbonate saturation. Benthic foraminifera, a diverse group of single-celled protists that occur in nearly all marine environments, provide an ideal opportunity to test statistically among the various hypothesized environmental controls on cell morphology. Here, we use over 7,000 occurrences of 541 species of recent benthic foraminifera that span more than 60 degrees of latitude and 1,600 meters of water depth around the North American continental margin to assess the relative contributions of temperature, oxygen availability, carbonate saturation, and POC flux on their size and volume-to-surface area ratio in the modern ocean. Seawater temperature and dissolved oxygen concentrations best predict both measures of benthic foraminiferal cell morphology from the North American continental margin. These same variables also explain morphological variations from the Pacific continental margin in isolation, but dissolved oxygen is absent from the best model for the Atlantic. Because our results concur with predictions from first principles of cell physiology, we interpret these findings to reflect the physiological selective pressures on cell morphology as determined by the physical environment. Moreover, these findings suggest that warming waters and the expansion of hypoxic zones associated with anthropogenic-induced climate change are more likely to impact benthic foraminiferal communities than changes in primary productivity or ocean acidification.

  7. Aberration-corrected STEM: current performance and future directions

    Energy Technology Data Exchange (ETDEWEB)

    Nellist, P D [Department of Physics, University of Dublin, Trinity College, Dublin 2 (Ireland); Chisholm, M F [Condensed Matter Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6030 (United States); Lupini, A R [Condensed Matter Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6030 (United States); Borisevich, A [Condensed Matter Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6030 (United States); Jr, W H Sides [Condensed Matter Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6030 (United States); Pennycook, S J [Condensed Matter Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6030 (United States); Dellby, N [Nion Co., 1102 8th St., Kirkland, WA 98033 (United States); Keyse, R [Nion Co., 1102 8th St., Kirkland, WA 98033 (United States); Krivanek, O L [Nion Co., 1102 8th St., Kirkland, WA 98033 (United States); Murfitt, M F [Nion Co., 1102 8th St., Kirkland, WA 98033 (United States); Szilagyi, Z S [Nion Co., 1102 8th St., Kirkland, WA 98033 (United States)

    2006-02-22

    Through the correction of spherical aberration in the scanning transmission electron microscope (STEM), the resolving of a 78 pm atomic column spacing has been demonstrated along with information transfer to 61 pm. The achievement of this resolution required careful control of microscope instabilities, parasitic aberrations and the compensation of uncorrected, higher order aberrations. Many of these issues are improved in a next generation STEM fitted with a new design of aberration corrector, and an initial result demonstrating aberration correction to a convergence semi-angle of 40 mrad is shown. The improved spatial resolution and beam convergence allowed for by such correction has implications for the way in which experiments are performed and how STEM data should be interpreted.

  8. Nodal aberration theory for wild-filed asymmetric optical systems

    Science.gov (United States)

    Chen, Yang; Cheng, Xuemin; Hao, Qun

    2016-10-01

    Nodal Aberration Theory (NAT) was used to calculate the zero field position in Full Field Display (FFD) for the given aberration term. Aiming at wide-filed non-rotational symmetric decentered optical systems, we have presented the nodal geography behavior of the family of third-order and fifth-order aberrations. Meanwhile, we have calculated the wavefront aberration expressions when one optical element in the system is tilted, which was not at the entrance pupil. By using a three-piece-cellphone lens example in optical design software CodeV, the nodal geography is testified under several situations; and the wavefront aberrations are calculated when the optical element is tilted. The properties of the nodal aberrations are analyzed by using Fringe Zernike coefficients, which are directly related with the wavefront aberration terms and usually obtained by real ray trace and wavefront surface fitting.

  9. X-ray-induced chromosome aberrations in the leucocytes of mouse and man

    International Nuclear Information System (INIS)

    Preston, R.J.; Brewen, J.G.

    1978-01-01

    In earlier studies it was shown that the frequency of dicentrics induced by X-rays in human leucocytes was about twice that induced in mouse leucocytes. The frequencies of deletions were similar in both species. However, the mouse cultures were fixed at 60 h and the human cultures at 54 h. In both cases it was likely that some of the cells analysed were in their second post-treatment mitosis. Further studies were carried out using fixation times of 48 h for both mouse and human cultures (three different human donors were used). The same relationships held here, namely twice as many dicentrics in humans, and similar deletion frequencies in both. The aberration frequencies observed were corrected to take account of second-diversion cells by assuming that cells containing a dicentric without an accompanying fragment were in their second division. There were more such cells in mouse than in human cultures. Further to increase reliance on the conclusions, cultures were fixed at the earliest times that 300 cells per dose could be obtained - 36 h for the mouse, 42 h for the human. The frequencies of dicentrics were increased in both, and a relationship of about 2:1 for human to mouse was obtained. Deletion frequencies were similar in both. Since no dicentrics without fragments were obtained, it appeared that aberration frequencies in first-division cells only were being compared. (author)

  10. MiR-509-3-5p causes aberrant mitosis and anti-proliferative effect by suppression of PLK1 in human lung cancer A549 cells

    International Nuclear Information System (INIS)

    Wang, Xian-Hui; Lu, Yao; Liang, Jing-Jing; Cao, Ji-Xiang; Jin, Ya-Qiong; An, Guo-Shun; Ni, Ju-Hua; Jia, Hong-Ti; Li, Shu-Yan

    2016-01-01

    MicroRNAs (miRNAs) are potent post-transcriptional regulators of gene expression and play roles in DNA damage response (DDR). PLK1 is identified as a modulator of DNA damage checkpoint. Although down-regulation of PLK1 by certain microRNAs has been reported, little is known about the interplay between PLK1 and miR-509-3-5p in DDR. Here we have demonstrated that miR-509-3-5p repressed PLK1 expression by targeting PLK1 3′-UTR, thereby causing mitotic aberration and growth arrest of human lung cancer A549 cells. Repression of PLK1 by miR-509-3-5p was further evidenced by over-expression of miR-509-3-5p in A549, HepG2 and HCT116p53 −/− cancer cells, in which PLK1 protein was suppressed. Consistently, miR-509-3-5p was stimulated, while PLK1 protein was down-regulated in A549 cells exposed to CIS and ADR, suggesting that suppression of PLK1 by miR-509-3-5p is a component of CIS/ADR-induced DDR pathway. Flow cytometry and immunofluorescence labeling showed that over-expression of miR-509-3-5p in A549 induced G2/M arrest and aberrant mitosis characterized by abnormal bipolar mitotic spindles, condensed chromosomes, lagging DNA and chromosome bridges. In addition, over-expression of miR-509-3-5p markedly blocked A549 cell proliferation and sensitized the cells to CIS and ADR treatment. Taken together, miR-509-3-5p is a feasible suppressor for cancer by targeting PLK1. Our data may provide aid in potential design of combined chemotherapy and in our better understanding of the roles of microRNAs in response to DNA damage. - Highlights: • MiR-509-3-5p represses PLK1 expression by targeting PLK1 3ГЉВ№-UTR. • Expression of miR-509-3-5p is induced and PLK1 repressed upon DNA damage. • Overexpression of miR-509-3-5p induces G2/M arrest and aberrant mitosis. • MiR-509-3-5p inhibits cell proliferation and sensitizes cells to DNA damage agents.

  11. Chromosome Aberration on High Level Background Natural Radiation Areas

    International Nuclear Information System (INIS)

    Yanti-Lusiyanti; Zubaidah-Alatas

    2001-01-01

    When the body is irradiated, all cells can suffer cytogenetic damage that can be seen as structural damage of chromosome in the lymphocytes. People no matter where they live in world are exposed to background radiation from natural sources both internal and external such as cosmic radiation, terrestrial radiation, cosmogenic radiation radon and thoron. Level of area natural ionizing radiation is varies depending on the altitude, the soil or rock conditions, particular food chains and the building materials and construction features. Level of normal areas of background exposure is annual effective dose 2.4 mSv and the high level areas of background exposure 20 mSv. This paper discuses the frequency of aberration chromosome especially dysenteries in several countries having high level radiation background. It seems that frequency of chromosome aberrations increase, generally with the increase of age of the people and the accumulated dose received. (author)

  12. Cell Painting, a high-content image-based assay for morphological profiling using multiplexed fluorescent dyes

    Science.gov (United States)

    Bray, Mark-Anthony; Singh, Shantanu; Han, Han; Davis, Chadwick T.; Borgeson, Blake; Hartland, Cathy; Kost-Alimova, Maria; Gustafsdottir, Sigrun M.; Gibson, Christopher C.; Carpenter, Anne E.

    2016-01-01

    In morphological profiling, quantitative data are extracted from microscopy images of cells to identify biologically relevant similarities and differences among samples based on these profiles. This protocol describes the design and execution of experiments using Cell Painting, a morphological profiling assay multiplexing six fluorescent dyes imaged in five channels, to reveal eight broadly relevant cellular components or organelles. Cells are plated in multi-well plates, perturbed with the treatments to be tested, stained, fixed, and imaged on a high-throughput microscope. Then, automated image analysis software identifies individual cells and measures ~1,500 morphological features (various measures of size, shape, texture, intensity, etc.) to produce a rich profile suitable for detecting subtle phenotypes. Profiles of cell populations treated with different experimental perturbations can be compared to suit many goals, such as identifying the phenotypic impact of chemical or genetic perturbations, grouping compounds and/or genes into functional pathways, and identifying signatures of disease. Cell culture and image acquisition takes two weeks; feature extraction and data analysis take an additional 1-2 weeks. PMID:27560178

  13. Adaptive aberration correction using a triode hyperbolic electron mirror

    International Nuclear Information System (INIS)

    Fitzgerald, J.P.S.; Word, R.C.; Koenenkamp, R.

    2011-01-01

    A converging electron mirror can be used to compensate spherical and chromatic aberrations in an electron microscope. This paper presents an analytical solution to a novel triode (three electrode) hyperbolic mirror as an improvement to the well-known diode (two electrode) hyperbolic mirror for aberration correction. A weakness of the diode mirror is a lack of flexibility in changing the chromatic and spherical aberration coefficients independently without changes in the mirror geometry. In order to remove this limitation, a third electrode can be added. We calculate the optical properties of the resulting triode mirror analytically on the basis of a simple model field distribution. We present the optical properties-the object/image distance, z 0 , and the coefficients of spherical and chromatic aberration, C s and C c , of both mirror types from an analysis of electron trajectories in the mirror field. From this analysis, we demonstrate that while the properties of both designs are similar, the additional parameters in the triode mirror improve the range of aberration that can be corrected. The triode mirror is also able to provide a dynamic adjustment range of chromatic aberration for fixed spherical aberration and focal length, or any permutation of these three parameters. While the dynamic range depends on the values of aberration correction needed, a nominal 10% tuning range is possible for most configurations accompanied by less than 1% change in the other two properties. -- Highlights: → Electrostatic aberration correction for chromatic and spherical aberration in electron optics. → Simultaneous correction of spherical and chromatic aberrations over a wide, adjustable range. → Analytic and quantitative description of correction parameters.

  14. Aberrant cell divisions in root meristeme of maize following exposure to X-rays low doses compared to similar effects of 50 Hz electromagnetic exposure

    Directory of Open Access Journals (Sweden)

    Luchian T.

    2012-04-01

    Full Text Available The response of maize to radiation exposure was investigated by two cytogenetic methods considering the importance of the geno-toxic effect for environmental and agricultural purposes. Uniform genophond seeds, freshly germinated, were exposed to relatively low radiation doses using a radiotherapy X-ray applicator from a hospital irradiation device and to a 50 Hz electromagnetic field with about 10 mT magnetic induction (generated within laboratory assembled electromagnetic coils. Radicular meristeme tissue aliquots were prevailed for cytogenetic investigation based on microscopic observations and cell counting. Microscope slides were prepared following a specific procedure (squash technique and Feulgen method based on modified Carr reactive coloration. Mitotic index as well as chromosomal aberration percentage were calculated for more than 30,000 cells taken into account. From a qualitative viewpoint, chromosomal aberrations such as interchromatidian bridges, lagging and expelled chromosomes and multipolar divisions were evidenced - no distinct situation for either ionizing radiation or electromagnetic field being identified. The main quantitative difference consisted in the increased mitotic index for electromagnetic exposure increased times compared with the diminished mitotic index in the case of low X-ray doses.

  15. Gene Fusions Associated with Recurrent Amplicons Represent a Class of Passenger Aberrations in Breast Cancer

    Directory of Open Access Journals (Sweden)

    Shanker Kalyana-Sundaram

    2012-08-01

    Full Text Available Application of high-throughput transcriptome sequencing has spurred highly sensitive detection and discovery of gene fusions in cancer, but distinguishing potentially oncogenic fusions from random, “passenger” aberrations has proven challenging. Here we examine a distinctive group of gene fusions that involve genes present in the loci of chromosomal amplifications—a class of oncogenic aberrations that are widely prevalent in breast cancers. Integrative analysis of a panel of 14 breast cancer cell lines comparing gene fusions discovered by high-throughput transcriptome sequencing and genome-wide copy number aberrations assessed by array comparative genomic hybridization, led to the identification of 77 gene fusions, of which more than 60% were localized to amplicons including 17q12, 17q23, 20q13, chr8q, and others. Many of these fusions appeared to be recurrent or involved highly expressed oncogenic drivers, frequently fused with multiple different partners, but sometimes displaying loss of functional domains. As illustrative examples of the “amplicon-associated” gene fusions, we examined here a recurrent gene fusion involving the mediator of mammalian target of rapamycin signaling, RPS6KB1 kinase in BT-474, and the therapeutically important receptor tyrosine kinase EGFR in MDA-MB-468 breast cancer cell line. These gene fusions comprise a minor allelic fraction relative to the highly expressed full-length transcripts and encode chimera lacking the kinase domains, which do not impart dependence on the respective cells. Our study suggests that amplicon-associated gene fusions in breast cancer primarily represent a by-product of chromosomal amplifications, which constitutes a subset of passenger aberrations and should be factored accordingly during prioritization of gene fusion candidates.

  16. Rooting Out Aberrant Behavior in Training.

    Science.gov (United States)

    Kokalis, Jerry, Jr.; Paquin, Dave

    1989-01-01

    Discusses aberrant, or disruptive, behavior in an industrial/business, classroom-based, instructor-led training setting. Three examples of aberrant behavior are described, typical case studies are provided for each, and preventive (long-term) and corrective (on-the-spot) strategies for dealing with the problems are discussed. (LRW)

  17. Human Mesenchymal Stem Cell Morphology and Migration on Micro-Textured Titanium

    Directory of Open Access Journals (Sweden)

    Brittany eBanik

    2016-05-01

    Full Text Available The implant used in spinal fusion procedures is an essential component to achieving successful arthrodesis. At the cellular level, the implant impacts healing and fusion through a series of steps: first, mesenchymal stem cells (MSCs need to adhere and proliferate to cover the implant; second, the MSCs must differentiate into osteoblasts; third, the osteoid matrix produced by the osteoblasts needs to generate new bone tissue, thoroughly integrating the implant with the vertebrate above and below. Previous research has demonstrated that micro-textured titanium is advantageous over smooth titanium and PEEK implants for both promoting osteogenic differentiation and integrating with host bone tissue; however, no investigation to date has examined the early morphology and migration of MSCs on these surfaces. This study details cell spreading and morphology changes over 24 hours, rate and directionality of migration 6 to 18 hours post seeding, differentiation markers at 10 days, and the long term morphology of MSCs at 7 days, on micro-textured, acid-etched titanium (Endoskeleton, smooth titanium, and smooth PEEK surfaces. The results demonstrate in all metrics, the two titanium surfaces outperformed the PEEK surface. Furthermore, the rough acid-etched titanium surface presented the most favorable overall results, demonstrating the random migration needed to efficiently cover a surface in addition to morphologies consistent with osteoblasts and preosteoblasts.

  18. Aberrant activity of NKL homeobox gene NKX3-2 in a T-ALL subset

    Science.gov (United States)

    Meyer, Corinna; Kaufmann, Maren; Zaborski, Margarete; MacLeod, Roderick A. F.; Drexler, Hans G.

    2018-01-01

    T-cell acute lymphoblastic leukemia (T-ALL) is a hematopoietic malignancy originating from T-cell progenitors in which differentiation is blocked at early stages. Physiological expression of specific NKL homeobox genes obeys a hematopoietic NKL-code implicated in the process of lymphopoiesis while in differentiated T-cells these genes are silenced. We propose that this developmental expression pattern underlies the observation that NKL homeobox genes are the most ubiquitous group of transcription factors deregulated in T-ALL, including TLX1, TLX3, NKX2-5 and NKX3-1. Here, we describe a novel member of the NKL homeobox gene subclass, NKX3-2 (BAPX1), which is aberrantly activated in 18% of pediatric T-ALL patients analyzed while being normally expressed in developing spleen. Identification of NKX3-2 expression in T-ALL cell line CCRF-CEM qualified these cells to model its deregulation and function in a leukemic context. Genomic and chromosomal analyses demonstrated normal configuration of the NKX3-2 locus at chromosome 4p15, thus excluding cytogenetic dysregulation. Comparative expression profiling analysis of NKX3-2 patient data revealed deregulated activity of BMP- and MAPK-signalling. These candidate pathways were experimentally confirmed to mediate aberrant NKX3-2 expression. We also show that homeobox gene SIX6, plus MIR17HG and GATA3 are downstream targets of NKX3-2 and plausibly contribute to the pathogenesis of this malignancy by suppressing T-cell differentiation. Finally, NKL homeobox gene NKX2-5 was activated by NKX3-2 in CCRF-CEM and by FOXG1 in PEER, representing mutually inhibitory activators of this translocated oncogene. Together, our findings reveal a novel oncogenic NKL homeobox gene subclass member which is aberrantly expressed in a large subset of T-ALL patients and participates in a deregulated gene network likely to arise in developing spleen. PMID:29746601

  19. The correction of electron lens aberrations

    Energy Technology Data Exchange (ETDEWEB)

    Hawkes, P.W., E-mail: peter.hawkes@cemes.fr

    2015-09-15

    The progress of electron lens aberration correction from about 1990 onwards is chronicled. Reasonably complete lists of publications on this and related topics are appended. A present for Max Haider and Ondrej Krivanek in the year of their 65th birthdays. By a happy coincidence, this review was completed in the year that both Max Haider and Ondrej Krivanek reached the age of 65. It is a pleasure to dedicate it to the two leading actors in the saga of aberration corrector design and construction. They would both wish to associate their colleagues with such a tribute but it is the names of Haider and Krivanek (not forgetting Joachim Zach) that will remain in the annals of electron optics, next to that of Harald Rose. I am proud to know that both regard me as a friend as well as a colleague. - Highlights: • Geometrical aberration correction. • Chromatic aberration correction. • 50 pm resolution. • High-resolution electron energy-loss spectroscopy. • Extensive bibliographies.

  20. The correction of electron lens aberrations

    International Nuclear Information System (INIS)

    Hawkes, P.W.

    2015-01-01

    The progress of electron lens aberration correction from about 1990 onwards is chronicled. Reasonably complete lists of publications on this and related topics are appended. A present for Max Haider and Ondrej Krivanek in the year of their 65th birthdays. By a happy coincidence, this review was completed in the year that both Max Haider and Ondrej Krivanek reached the age of 65. It is a pleasure to dedicate it to the two leading actors in the saga of aberration corrector design and construction. They would both wish to associate their colleagues with such a tribute but it is the names of Haider and Krivanek (not forgetting Joachim Zach) that will remain in the annals of electron optics, next to that of Harald Rose. I am proud to know that both regard me as a friend as well as a colleague. - Highlights: • Geometrical aberration correction. • Chromatic aberration correction. • 50 pm resolution. • High-resolution electron energy-loss spectroscopy. • Extensive bibliographies

  1. Potential in a single cancer cell to produce heterogeneous morphology, radiosensitivity and gene expression

    International Nuclear Information System (INIS)

    Ban, Sadayuki; Ishikawa, Ken-ichi; Kawai, Seiko; Koyama-Saegusa, Kumiko; Ishikawa, Atsuko; Imai, Takashi; Shimada, Yutaka; Inazawa, Johji

    2005-01-01

    Morphologically heterogeneous colonies were formed from a cultured cell line (KYSE70) established from one human esophageal carcinoma tissue. Two subclones were separated from a single clone (clone 13) of KYSE70 cells. One subclone (clone 13-3G) formed mainly mounding colonies and the other (clone 13-6G) formed flat, diffusive colonies. X-irradiation stimulated the cells to dedifferentiate from the mounding state to the flat, diffusive state. Clone 13-6G cells were more radiosensitive than the other 3 cell lines. Clustering analysis for gene expression level by oligonucleotide microarray demonstrated that in the radiosensitive clone 13-6G cells, expression of genes involved in cell adhesion was upregulated, but genes involved in the response to DNA damage stimulus were downregulated. The data demonstrated that a single cancer cell had the potential to produce progeny heterogeneous in terms of morphology, radiation sensitivity and gene expression, and irradiation enhanced the dedifferentiation of cancer cells. (author)

  2. T-Cell lymphoproliferative disorder of hand-mirror cell morphology presenting in an eosinophilic loculated peritoneal effusion, with omental "caking"

    Directory of Open Access Journals (Sweden)

    Tufankjian Dearon

    2006-01-01

    Full Text Available Abstract Background Cells with "hand mirror" morphology have not, to the best of our knowledge, been described in a primary effusion sample. This paper describes a case of T-cell lymphoma with eosinophilia in a patient with suspected peritoneal carcinomatosis. Rarely, a T-cell lymphoproliferative process may mimic primary peritoneal carcinomatosis, clinically suggested by a presentation in CT imaging of omental caking with bilateral massive loculated effusions in a patient without lymphadenopathy or splenomegaly. Methods A 60 year old caucasian male presented with vague abdominal discomfort and increasing abdominal girth. Computed tomography showed a two centimeter thick omental cake and a small loculated effusion. The clinical presentation and imaging findings were most consistent with peritoneal carcinomatosis. Cytologic evaluation of the effusion was undertaken for diagnostic study. Results Rapid intraprocedural interpretation of the effusion sample showed a monomorphic population of cells with "hand-mirror" cell morphology exhibiting cytoplasmic extensions (uropodia with 3–5 course dark cytoplasmic granules and a rim of vacuolated cytoplasm capping the opposing "mirror head" side. These cells were seen within a background of mature eosinophils. Flow cytometric evaluation of the ascites fluid demonstrated an atypical T-cell population with the following immunophenotype: CD2-, CD3+, CD4-, CD5-, CD7-, CD8+, CD56+. T-cell receptor (TCR gene rearrangement was positive for clonal TCR-gamma gene rearrangement, supporting the diagnosis of a T-lymphoprolifereative disorder. Conclusion A T-cell lymphoproliferative process may present with "hand mirror" morphology in an effusion sample. These cells may show polar cytoplasmic vacuolization and 3–5 course granules within the "handle" of these unique cells. Cytoplasm shows peripheral constriction around the nucleus.

  3. Effect of mobile phone station on micronucleus frequency and chromosomal aberrations in human blood cells.

    Science.gov (United States)

    Yildirim, M S; Yildirim, A; Zamani, A G; Okudan, N

    2010-01-01

    The use of mobile telephones has rapidly increased worldwide as well as the number of mobile phone base stations that lead to rise low level radiofrequency emissions which may in turn have possible harm for human health. The national radiation protection board has published the known effects of radio waves exposure on humans living close to mobile phone base stations. However, several studies have claimed that the base station has detrimental effects on different tissues. In this study, we aimed to evaluate the effects of mobile phone base stations on the micronucleus (MN) frequency and chromosomal aberrations on blood in people who were living around mobile phone base stations and healthy controls. Frequency of MN and chromosomal aberrations in study and control groups was 8.96 +/- 3.51 and 6.97 +/- 1.52 (p: 0.16); 0.36 +/- 0.31 and 0.75 +/- 0.61 (p: 0.07), respectively. Our results show that there was not a significant difference of MN frequency and chromosomal aberrations between the two study groups. The results claim that cellular phones and their base stations do not produce important carcinogenic changes.

  4. In vitro radiation and chemotherapy sensitivity of established cell lines of human small cell lung cancer and its large cell morphological variants

    International Nuclear Information System (INIS)

    Carney, D.N.; Mitchell, J.B.; Kinsella, T.J.

    1983-01-01

    The in vitro response to radiation and chemotherapeutic drugs of cell lines established from 7 patients with small cell (SC) lung cancer were tested using a soft agarose clonogenic assay. Five cell lines retained the typical morphological and biochemical amine precursor uptake decarboxylation characteristics of SC, while two cell lines had undergone ''transformation'' to large cell (LC) morphological variants with loss of amine precursor uptake decarboxylation cell characteristics of SC. The radiation survival curves for the SC lines were characterized by D0 values ranging from 51 to 140 rads and extrapolation values (n) ranging from 1.0 to 3.3. While the D0 values of the radiation survival curves of the LC variants were similar (91 and 80 rads), the extrapolation values were 5.6 and 11.1 In vitro chemosensitivity testing of the cell lines revealed an excellent correlation between prior treatment status of the patient and in vitro sensitivity or resistance. No correlation was observed between in vitro chemosensitivity and radiation response. These data suggest that transformation of SC to LC with loss of amine precursor uptake and decarboxylation characteristics is associated with a marked increase in radiation resistance (n) in vitro. The observation of a 2- to 5-fold increase in survival of the LC compared to the SC lines following 200 rads suggests that the use of larger daily radiation fractions and/or radiation-sensitizing drugs might lead to a significantly greater clinical response in patients with LC morphology. This clinical approach may have a major impact on patient response and survival

  5. The effects of electrospun substrate-mediated cell colony morphology on the self-renewal of human induced pluripotent stem cells.

    Science.gov (United States)

    Maldonado, Maricela; Wong, Lauren Y; Echeverria, Cristina; Ico, Gerardo; Low, Karen; Fujimoto, Taylor; Johnson, Jed K; Nam, Jin

    2015-05-01

    The development of xeno-free, chemically defined stem cell culture systems has been a primary focus in the field of regenerative medicine to enhance the clinical application of pluripotent stem cells (PSCs). In this regard, various electrospun substrates with diverse physiochemical properties were synthesized utilizing various polymer precursors and surface treatments. Human induced pluripotent stem cells (IPSCs) cultured on these substrates were characterized by their gene and protein expression to determine the effects of the substrate physiochemical properties on the cells' self-renewal, i.e., proliferation and the maintenance of pluripotency. The results showed that surface chemistry significantly affected cell colony formation via governing the colony edge propagation. More importantly, when surface chemistry of the substrates was uniformly controlled by collagen conjugation, the stiffness of substrate was inversely related to the sphericity, a degree of three dimensionality in colony morphology. The differences in sphericity subsequently affected spontaneous differentiation of IPSCs during a long-term culture, implicating that the colony morphology is a deciding factor in the lineage commitment of PSCs. Overall, we show that the capability of controlling IPSC colony morphology by electrospun substrates provides a means to modulate IPSC self-renewal. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Is 24-color FISH detection of in-vitro radiation-induced chromosomal aberrations suited to determine individual intrinsic radiosensitivity?

    International Nuclear Information System (INIS)

    Kuechler, A.; Wendt, T.G.; Neubauer, S.; Grabenbauer, G.G.; Sauer, R.; Claussen, U.; Liehr, T.

    2002-01-01

    Background: Reliable determination of intrinsic radiosensitivity in individual patients is a serious need in radiation oncology. Chromosomal aberrations are sensitive indicators of a previous exposure to ionizing irradiation. Former molecular cytogenetic studies showed that such aberrations as an equivalent of intrinsic radiosensitivity can be detected by fluorescence in-situ hybridization (FISH) techniques using whole chromosome painting (wcp) probes. However, only one up to three randomly chosen wcp probes have been applied for such approaches until now. As a random distribution of chromosomal rearrangements along the chromosomes is up to now still controversial, the power of the 24-color FISH approach should be elucidated in the present study. Methods and Material: Lymphocytes derived from lymphoblastoid cell lines of one patient with Nijmegen breakage syndrome (NBS homozygote) and of two NBS heterozygotes and peripheral blood lymphocytes of two controls were analyzed. Samples of each patient/control were irradiated in vitro with 0.0 Gy, 0.7 Gy or 2.0 Gy prior to cultivation. Chromosomal aberrations were analyzed in detail and quantified by means of 24-color FISH as an expression of the individual intrinsic radiosensitivity. Results: 24-color FISH analyses were done in a total of 1,674 metaphases. After in-vitro irradiation, 21% (0.7 Gy) or 57% (2.0 Gy) of the controls' cells, 15% (0.7 Gy) or 53% (2.0 Gy) of the heterozygotes' cells and 54% (0.7 Gy) or 79% (2.0 Gy) of the homozygote's cells contained aberrations. The highest average rates of breaks per mitosis [B/M] (0.7 Gy: 1.80 B/M, 2.0 Gy: 4.03 B/M) and complex chromosomal rearrangements [CCR] (0.7 Gy: 0.20 CCR/M, 2.0 Gy: 0.47 CCR/M) were observed in the NBS patient. Moreover, the proportion of different aberration types after irradiation showed a distinct increase in the rate of CCR combined with a decrease in dicentrics in the NBS homozygote. Conclusion: To come to a more complete picture of radiation

  7. Aberrant Apoptotic Response of Colorectal Cancer Cells to Novel Nucleoside Analogues.

    Directory of Open Access Journals (Sweden)

    Leonie Harmse

    Full Text Available Despite the increased understanding of colorectal cancer and the introduction of targeted drug therapy, the metastatic phase of the disease remains refractory to treatment. Since the deregulation of normal apoptosis contributes to the pathogenesis of colorectal cancer, novel nucleoside analogues were synthesized here and evaluated for their ability to induce apoptosis and cause cell death in two colorectal adeno-carcinoma cell lines, Caco-2 and HT-29. Three novel nucleoside analogues assessed here showed cytotoxic activity, as measured by the MTT assay against both cell lines: the IC50 values ranged between 3 and 37 μM, with Caco-2 cells being more sensitive than HT-29 cells. Compared to camptothecin, the positive control, the nucleoside analogues were significantly less toxic to normal unstimulated leukocytes (p>0.05. Moreover, the nucleosides were able to induce apoptosis as measured by an increase in caspase 8 and caspase 3 activity above that of the control. This was additionally supported by data derived from Annexin V-FITC assays. Despite marginal changes to the mitochondrial membrane potential, all three nucleosides caused a significant increase in cytosolic cytochrome c (p>0.05, with a corresponding decrease in mitochondrial cytochrome c. Morphological analysis of both cell lines showed the rapid appearance of vacuoles following exposure to two of the nucleosides, while a third caused cellular detachment, delayed cytoplasmic vacuolisation and nuclear abnormalities. Preliminary investigations, using the autophagic indicator monodansylcadaverine and chloroquine as positive control, showed that two of the nucleosides induced the formation of autophagic vacuoles. In summary, the novel nucleoside analogues showed selective cytotoxicity towards both cancer cell lines and are effective initiators of an unusual apoptotic response, demonstrating their potential to serve as structural scaffolds for more potent analogues.

  8. Aberrant Apoptotic Response of Colorectal Cancer Cells to Novel Nucleoside Analogues.

    Science.gov (United States)

    Harmse, Leonie; Dahan-Farkas, Nurit; Panayides, Jenny-Lee; van Otterlo, Willem; Penny, Clement

    2015-01-01

    Despite the increased understanding of colorectal cancer and the introduction of targeted drug therapy, the metastatic phase of the disease remains refractory to treatment. Since the deregulation of normal apoptosis contributes to the pathogenesis of colorectal cancer, novel nucleoside analogues were synthesized here and evaluated for their ability to induce apoptosis and cause cell death in two colorectal adeno-carcinoma cell lines, Caco-2 and HT-29. Three novel nucleoside analogues assessed here showed cytotoxic activity, as measured by the MTT assay against both cell lines: the IC50 values ranged between 3 and 37 μM, with Caco-2 cells being more sensitive than HT-29 cells. Compared to camptothecin, the positive control, the nucleoside analogues were significantly less toxic to normal unstimulated leukocytes (p>0.05). Moreover, the nucleosides were able to induce apoptosis as measured by an increase in caspase 8 and caspase 3 activity above that of the control. This was additionally supported by data derived from Annexin V-FITC assays. Despite marginal changes to the mitochondrial membrane potential, all three nucleosides caused a significant increase in cytosolic cytochrome c (p>0.05), with a corresponding decrease in mitochondrial cytochrome c. Morphological analysis of both cell lines showed the rapid appearance of vacuoles following exposure to two of the nucleosides, while a third caused cellular detachment, delayed cytoplasmic vacuolisation and nuclear abnormalities. Preliminary investigations, using the autophagic indicator monodansylcadaverine and chloroquine as positive control, showed that two of the nucleosides induced the formation of autophagic vacuoles. In summary, the novel nucleoside analogues showed selective cytotoxicity towards both cancer cell lines and are effective initiators of an unusual apoptotic response, demonstrating their potential to serve as structural scaffolds for more potent analogues.

  9. Third-rank chromatic aberrations of electron lenses.

    Science.gov (United States)

    Liu, Zhixiong

    2018-02-01

    In this paper the third-rank chromatic aberration coefficients of round electron lenses are analytically derived and numerically calculated by Mathematica. Furthermore, the numerical results are cross-checked by the differential algebraic (DA) method, which verifies that all the formulas for the third-rank chromatic aberration coefficients are completely correct. It is hoped that this work would be helpful for further chromatic aberration correction in electron microscopy. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Morphological Control for High Performance, Solution-Processed Planar Heterojunction Perovskite Solar Cells

    KAUST Repository

    Eperon, Giles E.

    2013-09-09

    Organometal trihalide perovskite based solar cells have exhibited the highest efficiencies to-date when incorporated into mesostructured composites. However, thin solid films of a perovskite absorber should be capable of operating at the highest efficiency in a simple planar heterojunction configuration. Here, it is shown that film morphology is a critical issue in planar heterojunction CH3NH3PbI3-xCl x solar cells. The morphology is carefully controlled by varying processing conditions, and it is demonstrated that the highest photocurrents are attainable only with the highest perovskite surface coverages. With optimized solution based film formation, power conversion efficiencies of up to 11.4% are achieved, the first report of efficiencies above 10% in fully thin-film solution processed perovskite solar cells with no mesoporous layer. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Adult renal cell carcinoma with rhabdoid morphology represents a neoplastic dedifferentiation analogous to sarcomatoid carcinoma.

    Science.gov (United States)

    Chapman-Fredricks, Jennifer R; Herrera, Loren; Bracho, Jorge; Gomez-Fernandez, Carmen; Leveillee, Raymond; Rey, Luis; Jorda, Merce

    2011-10-01

    Renal cell carcinoma (RCC) with rhabdoid morphology (RCC-RM) is a recently described variant of RCC, which has an aggressive biologic behavior and poor prognosis, akin to sarcomatoid RCC. The current World Health Organization classification of RCC does not include the rhabdoid phenotype as a distinct histologic entity. The aim of this study is to investigate whether RCC-RM represents a dedifferentiation of a classifiable-type World Health Organization RCC or a carcinosarcoma with muscle differentiation. We reviewed 168 cases of RCC obtained between 2003 and 2008. From these cases, 10 (6%) were found to have areas of classic rhabdoid morphology. Immunohistochemistry for cytokeratin, epithelial membrane antigen, desmin, CD10, and CD117 was performed in each case using the labeled streptavidin-biotin method. Rhabdoid differentiation was identified in association with conventional-type RCC (9) and with unclassifiable-type RCC with spindle cell morphology (1). In all cases, both the rhabdoid and nonrhabdoid tumoral areas were positive for cytokeratin and epithelial membrane antigen and negative for desmin. Cytokeratin positivity in the rhabdoid areas was focal. In cases associated with conventional-type RCC, CD10 was positive in both the rhabdoid and nonrhabdoid foci. CD117 was negative in these tumors. The unclassifiable-type RCC with spindle cell morphology was negative for both CD10 and CD117. The similar immunophenotype between the rhabdoid and nonrhabdoid tumoral foci supports the origin of the rhabdoid cells from the classifiable-type RCC. Areas of rhabdoid morphology do not represent muscle metaplastic differentiation. Renal cell carcinoma with rhabdoid morphology may represent a dedifferentiation of a classifiable-type RCC, similar to that of sarcomatoid differentiation. The recognition of RCC-RM is important as it allows for the inclusion of these high-grade malignancies into a category associated with poor prognosis despite lacking the spindle cell component

  12. Biological radiation dose estimation by chromosomal aberrations analysis in human peripheral blood (dose- effect curve)

    International Nuclear Information System (INIS)

    Al Achkar, W.

    2002-01-01

    In order to draw a dose-effect curve, blood from eight healthy people were studied. Samples were irradiated in tubes with 0.15-2.5 gray of gamma ray.Irradiated and control samples were incubated for cell cultures. Chromosomal aberrations from 67888 metaphases were scored. Curves from the total number of dicentrics, dicentrics+ rings and total numbers of breaks were drawn. The yield of chromosome aberrations is related to the dose used. These curves give a quick useful estimation of the accidentally radiation exposure. (author)

  13. Aberrantly methylated DNA as a biomarker in breast cancer.

    Science.gov (United States)

    Kristiansen, Søren; Jørgensen, Lars M; Guldberg, Per; Sölétormos, György

    2013-01-01

    Aberrant DNA hypermethylation at gene promoters is a frequent event in human breast cancer. Recent genome-wide studies have identified hundreds of genes that exhibit differential methylation between breast cancer cells and normal breast tissue. Due to the tumor-specific nature of DNA hypermethylation events, their use as tumor biomarkers is usually not hampered by analytical signals from normal cells, which is a general problem for existing protein tumor markers used for clinical assessment of breast cancer. There is accumulating evidence that DNA-methylation changes in breast cancer patients occur early during tumorigenesis. This may open up for effective screening, and analysis of blood or nipple aspirate may later help in diagnosing breast cancer. As a more detailed molecular characterization of different types of breast cancer becomes available, the ability to divide patients into subgroups based on DNA biomarkers may improve prognosis. Serial monitoring of DNA-methylation markers in blood during treatment may be useful, particularly when the cancer burden is below the detection level for standard imaging techniques. Overall, aberrant DNA methylation has a great potential as a versatile biomarker tool for screening, diagnosis, prognosis and monitoring of breast cancer. Standardization of methods and biomarker panels will be required to fully exploit this clinical potential.

  14. Subpopulations of lymphocytes and their bearing on the radiation dose-response of the human lymphocyte (cell survival, mitogenic stimulation and chromosome aberration frequency)

    International Nuclear Information System (INIS)

    Schwartz, J.L.

    1979-01-01

    To determine whether in the lymphocyte the frequency of chromosome aberrations might be influenced by a differential radiation response of the varying types of cells, as well as interactions among them, subpopulations were separated on the basis of differences in cell surface receptors. The subpopulations, namely, T and B lymphocytes and three T subsets, T-M, T-G, T-null, were found to differ in radiosensitivity as measured by survival in culture and mitotic index after PHA stimulation. All the populations studied are represented to varying degrees among the mitotic cells of unirradiated samples 48 hours after PHA stimulation. At increasing doses of 6 Co gamma rays (50, 100, 250, 500 rads), however, their proportions change both as a direct result of irradiation, such as cell killing, and as an indirect effect, such as the reduction in suppressor cell action

  15. Ring substituents mediate the morphology of PBDTTPD-PCBM bulk-heterojunction solar cells

    KAUST Repository

    Warnan, Julien

    2014-04-08

    Among π-conjugated polymer donors for efficient bulk-heterojunction (BHJ) solar cell applications, poly(benzo[1,2-b:4,5-b′]dithiophene- thieno[3,4-c]pyrrole-4,6-dione) (PBDTTPD) polymers yield some of the highest open-circuit voltages (VOC, ca. 0.9 V) and fill-factors (FF, ca. 70%) in conventional (single-cell) BHJ devices with PCBM acceptors. In PBDTTPD, side chains of varying size and branching affect polymer self-assembly, nanostructural order, and impact material performance. However, the role of the polymer side-chain pattern in the intimate mixing between polymer donors and PCBM acceptors, and on the development of the BHJ morphology is in general less understood. In this contribution, we show that ring substituents such as furan (F), thiophene (T) and selenophene (S)-incorporated into the side chains of PBDTTPD polymers-can induce significant and, of importance, very different morphological effects in BHJs with PCBM. A combination of experimental and theoretical (via density functional theory) characterizations sheds light on how varying the heteroatom of the ring substituents impacts (i) the preferred side-chain configurations and (ii) the ionization, electronic, and optical properties of the PBDTTPD polymers. In parallel, we find that the PBDT(X)TPD analogs (with X = F, T, or S) span a broad range of power conversion efficiencies (PCEs, 3-6.5%) in optimized devices with improved thin-film morphologies via the use of 1,8-diiodooctane (DIO), and discuss that persistent morphological impediments at the nanoscale can be at the origin of the spread in PCE across optimized PBDT(X)TPD-based devices. With their high VOC ∼1 V, PBDT(X)TPD polymers are promising candidates for use in the high-band gap cell of tandem solar cells. © 2014 American Chemical Society.

  16. Ring substituents mediate the morphology of PBDTTPD-PCBM bulk-heterojunction solar cells

    KAUST Repository

    Warnan, Julien; El Labban, Abdulrahman; Cabanetos, Clement; Hoke, Eric T.; Shukla, Pradeep Kumar; Risko, Chad; Bré das, Jean Luc; McGehee, Michael D.; Beaujuge, Pierre

    2014-01-01

    Among π-conjugated polymer donors for efficient bulk-heterojunction (BHJ) solar cell applications, poly(benzo[1,2-b:4,5-b′]dithiophene- thieno[3,4-c]pyrrole-4,6-dione) (PBDTTPD) polymers yield some of the highest open-circuit voltages (VOC, ca. 0.9 V) and fill-factors (FF, ca. 70%) in conventional (single-cell) BHJ devices with PCBM acceptors. In PBDTTPD, side chains of varying size and branching affect polymer self-assembly, nanostructural order, and impact material performance. However, the role of the polymer side-chain pattern in the intimate mixing between polymer donors and PCBM acceptors, and on the development of the BHJ morphology is in general less understood. In this contribution, we show that ring substituents such as furan (F), thiophene (T) and selenophene (S)-incorporated into the side chains of PBDTTPD polymers-can induce significant and, of importance, very different morphological effects in BHJs with PCBM. A combination of experimental and theoretical (via density functional theory) characterizations sheds light on how varying the heteroatom of the ring substituents impacts (i) the preferred side-chain configurations and (ii) the ionization, electronic, and optical properties of the PBDTTPD polymers. In parallel, we find that the PBDT(X)TPD analogs (with X = F, T, or S) span a broad range of power conversion efficiencies (PCEs, 3-6.5%) in optimized devices with improved thin-film morphologies via the use of 1,8-diiodooctane (DIO), and discuss that persistent morphological impediments at the nanoscale can be at the origin of the spread in PCE across optimized PBDT(X)TPD-based devices. With their high VOC ∼1 V, PBDT(X)TPD polymers are promising candidates for use in the high-band gap cell of tandem solar cells. © 2014 American Chemical Society.

  17. Genome wide identification of aberrant alternative splicing events in myotonic dystrophy type 2.

    Science.gov (United States)

    Perfetti, Alessandra; Greco, Simona; Fasanaro, Pasquale; Bugiardini, Enrico; Cardani, Rosanna; Garcia-Manteiga, Jose M; Manteiga, Jose M Garcia; Riba, Michela; Cittaro, Davide; Stupka, Elia; Meola, Giovanni; Martelli, Fabio

    2014-01-01

    Myotonic dystrophy type 2 (DM2) is a genetic, autosomal dominant disease due to expansion of tetraplet (CCTG) repetitions in the first intron of the ZNF9/CNBP gene. DM2 is a multisystemic disorder affecting the skeletal muscle, the heart, the eye and the endocrine system. According to the proposed pathological mechanism, the expanded tetraplets have an RNA toxic effect, disrupting the splicing of many mRNAs. Thus, the identification of aberrantly spliced transcripts is instrumental for our understanding of the molecular mechanisms underpinning the disease. The aim of this study was the identification of new aberrant alternative splicing events in DM2 patients. By genome wide analysis of 10 DM2 patients and 10 controls (CTR), we identified 273 alternative spliced exons in 218 genes. While many aberrant splicing events were already identified in the past, most were new. A subset of these events was validated by qPCR assays in 19 DM2 and 15 CTR subjects. To gain insight into the molecular pathways involving the identified aberrantly spliced genes, we performed a bioinformatics analysis with Ingenuity system. This analysis indicated a deregulation of development, cell survival, metabolism, calcium signaling and contractility. In conclusion, our genome wide analysis provided a database of aberrant splicing events in the skeletal muscle of DM2 patients. The affected genes are involved in numerous pathways and networks important for muscle physio-pathology, suggesting that the identified variants may contribute to DM2 pathogenesis.

  18. Circulating Tumor Cells with Aberrant ALK Copy Number Predict Progression-Free Survival during Crizotinib Treatment in ALK-Rearranged Non-Small Cell Lung Cancer Patients.

    Science.gov (United States)

    Pailler, Emma; Oulhen, Marianne; Borget, Isabelle; Remon, Jordi; Ross, Kirsty; Auger, Nathalie; Billiot, Fanny; Ngo Camus, Maud; Commo, Frédéric; Lindsay, Colin R; Planchard, David; Soria, Jean-Charles; Besse, Benjamin; Farace, Françoise

    2017-05-01

    The duration and magnitude of clinical response are unpredictable in ALK -rearranged non-small cell lung cancer (NSCLC) patients treated with crizotinib, although all patients invariably develop resistance. Here, we evaluated whether circulating tumor cells (CTC) with aberrant ALK -FISH patterns [ ALK -rearrangement, ALK -copy number gain ( ALK -CNG)] monitored on crizotinib could predict progression-free survival (PFS) in a cohort of ALK -rearranged patients. Thirty-nine ALK -rearranged NSCLC patients treated with crizotinib as first ALK inhibitor were recruited prospectively. Blood samples were collected at baseline and at an early time-point (2 months) on crizotinib. Aberrant ALK -FISH patterns were examined in CTCs using immunofluorescence staining combined with filter-adapted FISH after filtration enrichment. CTCs were classified into distinct subsets according to the presence of ALK -rearrangement and/or ALK -CNG signals. No significant association between baseline numbers of ALK -rearranged or ALK -CNG CTCs and PFS was observed. However, we observed a significant association between the decrease in CTC number with ALK -CNG on crizotinib and a longer PFS (likelihood ratio test, P = 0.025). In multivariate analysis, the dynamic change of CTC with ALK -CNG was the strongest factor associated with PFS (HR, 4.485; 95% confidence interval, 1.543-13.030, P = 0.006). Although not dominant, ALK -CNG has been reported to be one of the mechanisms of acquired resistance to crizotinib in tumor biopsies. Our results suggest that the dynamic change in the numbers of CTCs with ALK -CNG may be a predictive biomarker for crizotinib efficacy in ALK -rearranged NSCLC patients. Serial molecular analysis of CTC shows promise for real-time patient monitoring and clinical outcome prediction in this population. Cancer Res; 77(9); 2222-30. ©2017 AACR . ©2017 American Association for Cancer Research.

  19. Morphology and Differentiation of MG63 Osteoblast Cells on Saliva Contaminated Implant Surfaces

    Directory of Open Access Journals (Sweden)

    Neda Shams

    2015-11-01

    Full Text Available Objectives: Osteoblasts are the most important cells in the osseointegration process. Despite years of study on dental Implants, limited studies have discussed the effect of saliva on the adhesion process of osteoblasts to implant surfaces. The aim of this in vitro study was to evaluate the effect of saliva on morphology and differentiation of osteoblasts attached to implant surfaces.Materials and Methods: Twelve Axiom dental implants were divided into two groups. Implants of the case group were placed in containers, containing saliva, for 40 minutes. Then, all the implants were separately stored in a medium containing MG63 human osteoblasts for a week. Cell morphology and differentiation were assessed using a scanning electron microscope and their alkaline phosphatase (ALP activity was determined. The t-test was used to compare the two groups.Results: Scanning electron microscopic observation of osteoblasts revealed round or square cells with fewer and shorter cellular processes in saliva contaminated samples, whereas elongated, fusiform and well-defined cell processes were seen in the control group. ALP level was significantly lower in case compared to control group (P<0.05.Conclusion: Saliva contamination alters osteoblast morphology and differentiation and may subsequently interfere with successful osseointegration. Thus, saliva contamination of bone and implant must be prevented or minimized.

  20. Aberrant rhythmic expression of cryptochrome2 regulates the radiosensitivity of rat gliomas.

    Science.gov (United States)

    Fan, Wang; Caiyan, Li; Ling, Zhu; Jiayun, Zhao

    2017-09-29

    In this study, we investigated the role of the clock regulatory protein cryptochrome 2 (Cry2) in determining the radiosensitivity of C6 glioma cells in a rat model. We observed that Cry2 mRNA and protein levels showed aberrant rhythmic periodicity of 8 h in glioma tissues, compared to 24 h in normal brain tissue. Cry2 mRNA and protein levels did not respond to irradiation in normal tissues, but both were increased at the ZT4 (low Cry2) and ZT8 (high Cry2) time points in gliomas. Immunohistochemical staining of PCNA and TUNEL assays demonstrated that high Cry2 expression in glioma tissues was associated with increased cell proliferation and decreased apoptosis. Western blot analysis showed that glioma cell fate was independent of p53, but was probably dependent on p73, which was more highly expressed at ZT4 (low Cry2) than at ZT8 (high Cry2). Levels of both p53 and p73 were unaffected by irradiation in normal brain tissues. These findings suggest aberrant rhythmic expression of Cry2 influence on radiosensitivity in rat gliomas.

  1. Cell cycle inhibitor, p19INK4d, promotes cell survival and decreases chromosomal aberrations after genotoxic insult due to enhanced DNA repair.

    Science.gov (United States)

    Scassa, María E; Marazita, Mariela C; Ceruti, Julieta M; Carcagno, Abel L; Sirkin, Pablo F; González-Cid, Marcela; Pignataro, Omar P; Cánepa, Eduardo T

    2007-05-01

    Genome integrity and cell proliferation and survival are regulated by an intricate network of pathways that includes cell cycle checkpoints, DNA repair and recombination, and programmed cell death. It makes sense that there should be a coordinated regulation of these different processes, but the components of such mechanisms remain unknown. In this report, we demonstrate that p19INK4d expression enhances cell survival under genotoxic conditions. By using p19INK4d-overexpressing clones, we demonstrated that p19INK4d expression correlates with the cellular resistance to UV treatment with increased DNA repair activity against UV-induced lesions. On the contrary, cells transfected with p19INK4d antisense cDNA show reduced ability to repair DNA damage and increased sensitivity to genotoxic insult when compared with their p19INK4d-overexpressing counterparts. Consistent with these findings, our studies also show that p19INK4d-overexpressing cells present not only a minor accumulation of UV-induced chromosomal aberrations but a lower frequency of spontaneous chromosome abnormalities than p19INK4d-antisense cells. Lastly, we suggest that p19INK4d effects are dissociated from its role as CDK4/6 inhibitor. The results presented herein support a crucial role for p19INK4d in regulating genomic stability and overall cell viability under conditions of genotoxic stress. We propose that p19INK4d would belong to a protein network that would integrate DNA repair, apoptotic and checkpoint mechanisms in order to maintain the genomic integrity.

  2. Aberration-free intraocular lenses - What does this really mean?

    Science.gov (United States)

    Langenbucher, Achim; Schröder, Simon; Cayless, Alan; Eppig, Timo

    2017-09-01

    So-called aberration-free intraocular lenses (IOLs) are well established in modern cataract surgery. Usually, they are designed to perfectly refract a collimated light beam onto the focal point. We show how much aberration can be expected with such an IOL in a convergent light beam such as that found anterior to the human cornea. Additionally, the aberration in a collimated beam is estimated for an IOL that has no aberrations in the convergent beam. The convergent beam is modelled as the pencil of rays corresponding to the spherical wavefront resulting from a typical corneal power of 43m -1 . The IOLs are modelled as infinitely thin phase plates with 20m -1 optical power placed 5mm behind the cornea. Their aberrations are reported in terms of optical path length difference and longitudinal spherical aberration (LSA) of the marginal rays, as well as nominal spherical aberration (SA) calculated based on a Zernike representation of the wavefront-error at the corneal plane within a 6mm aperture. The IOL designed to have no aberrations in a collimated light beam has an optical path length difference of -1.8μm, and LSA of 0.15m -1 in the convergent beam of a typical eye. The corresponding nominal SA is 0.065μm. The IOL designed to have no aberrations in a convergent light beam has an optical path length difference of 1.8μm, and LSA of -0.15m -1 in the collimated beam. An IOL designed to have no aberrations in a collimated light beam will increase the SA of a patient's eye after implantation. Copyright © 2017. Published by Elsevier GmbH.

  3. Recent Approaches to Controlling the Nanoscale Morphology of Polymer-Based Bulk-Heterojunction Solar Cells

    Directory of Open Access Journals (Sweden)

    Abdulra'uf Lukman Bola

    2013-11-01

    Full Text Available The need for clean, inexpensive and renewable energy has increasingly turned research attention towards polymer photovoltaic cells. However, the performance efficiency of these devices is still low in comparison with silicon-based devices. The recent introduction of new materials and processing techniques has resulted in a remarkable increase in power-conversion efficiency, with a value above 10%. Controlling the interpenetrating network morphology is a key factor in obtaining devices with improved performance. This review focuses on the influence of controlled nanoscale morphology on the overall performance of bulk-heterojunction (BHJ photovoltaic cells. Strategies such as the use of solvents, solvent annealing, polymer nanowires (NWs, and donor–acceptor (D–A blend ratios employed to control the active-layer morphologies are all discussed.

  4. A phosphatase-independent gain-of-function mutation in PTEN triggers aberrant cell growth in astrocytes through an autocrine IGF-1 loop.

    Science.gov (United States)

    Fernández, S; Genis, L; Torres-Alemán, I

    2014-08-07

    Loss-of-function mutations in the phosphatase PTEN (phosphatase and tensin homolog deleted on chromosome10) contribute to aberrant cell growth in part through upregulation of the mitogenic IGF-1/PI3K/Akt pathway. In turn, this pathway exerts a homeostatic feedback over PTEN. Using mutagenesis analysis to explore a possible impact of this mutual control on astrocyte growth, we found that truncation of the C-terminal region of PTEN (Δ51) associates with a marked increase in NFκB activity, a transcription factor overactivated in astrocyte tumors. Whereas mutations of PTEN are considered to lead to a loss-of-function, PTENΔ51, a truncation that comprises a region frequently mutated in human gliomas, displayed a neomorphic (gain-of-function) activity that was independent of its phosphatase activity. This gain-of-function of PTENΔ51 includes stimulation of IGF-1 synthesis through protein kinase A activation of the IGF-1 promoter. Increased IGF-1 originates an autocrine loop that activates Akt and NFκB. Constitutive activation of NFκB in PTENΔ51-expressing astrocytes leads to aberrant cell growth; astrocytes expressing this mutant PTEN generate colonies in vitro and tumors in vivo. Mutations converting a tumor suppressor such as PTEN into a tumor promoter through a gain-of-function involving IGF-1 production may further our understanding of the role played by this growth factor in glioma growth and help us define druggable targets for personalized therapy.

  5. Effects of Angular Frequency During Clinorotation on Mesenchymal Stem Cell Morphology and Migration

    Science.gov (United States)

    Luna, Carlos; Yew, Alvin G.; Hsieh, Adam H.

    2015-01-01

    Background/Objectives: Ground-based microgravity simulation can reproduce the apparent effects of weightlessness in spaceflight using clinostats that continuously reorient the gravity vector on a specimen, creating a time-averaged nullification of gravity. In this work, we investigated the effects of clinorotation speed on the morphology, cytoarchitecture, and migration behavior of human mesenchymal stem cells (hMSCs). Methods: We compared cell responses at clinorotation speeds of 0, 30, 60, and 75 rpm over 8 hours in a recently developed lab-on-chip-based clinostat system. Time lapse light microscopy was used to visualize changes in cell morphology during and after cessation of clinorotation. Cytoarchitecture was assessed by actin and vinculin staining, and chemotaxis was examined using time lapse light microscopy of cells in NGF (100 ng/ml) gradients. Results: Among clinorotated groups, cell area distributions indicated a greater inhibition of cell spreading with higher angular frequency (p is less than 0.005), though average cell area at 30 rpm after 8 hours became statistically similar to control (p = 0.794). Cells at 75rpm clinorotation remained viable and were able to re-spread after clinorotation. In chemotaxis chambers clinorotation did not alter migration patterns in elongated cells, but most clinorotated cells exhibited cell retraction, which strongly compromised motility.

  6. Use of FISH-translocations analyses for retrospective biological dosimetry: How stable are stable chromosome aberrations?

    International Nuclear Information System (INIS)

    Darroudi, F.

    2000-01-01

    Chromosome aberrations, in particular dicentrics, in peripheral blood lymphocytes are used to estimate the absorbed dose immediately following a radiation accident. However, difficulties for dose estimation arise with old exposures, due to a decline of cells containing unstable dicentric aberrations. The fluorescence in situ hybridisation (FISH) technique employing chromosome specific DNA libraries to 'paint' individual human chromosomes has opened new perspectives for rapid and reliable detection of stable chromosome aberrations such as translocations. The inherent stability of translocations over cell generations has enabled them to be used as a biodosemeter. However, due to the limited life of circulating T-lymphocytes, a level of uncertainty exists on the long-term persistence of stable translocations. The objectives of the present work are to present the current state of knowledge on the stability of translocations detected by FISH. The following aspects have been considered; (1) experience so far of retrospective biological dosimetry in humans following accidental and occupational over-exposure, (2) animal studies using mice and monkeys, (3) the influence of subsequent cell divisions on the yield and persistence of translocations following in vitro irradiation of human lymphocytes, and (4) the needs for further work to standardise and validate the use of FISH as a biological dosemeter, and to investigate the influence of various parameters such as radiation quality, dose rate and the discrimination of sub-types of translocations on persistence. (author)

  7. Effects of extracellular and intracellular pH on repair of potentially lethal damage, chromosome aberrations and DNA double-strand breaks in irradiated plateau-phase A549 cells

    International Nuclear Information System (INIS)

    Jayanth, V.R.; Bayne, M.T.; Varnes, M.E.

    1994-01-01

    Plateau-phage A549 cells exhibit a high capacity for repair of potentially lethal radiation damage (PLD). Previously it was found that PLD repair could be partially inhibited by increasing the extracellular pH (pH e ) of the spent medium from its normal value of 6.7-6.8 to 7.6 during postirradiation holding. This study shows that PLD repair is also inhibited by reducing the pH e of the spent medium to 6.0. The effects of altering pH e on rejoining of DNA double-strand breaks (DSBs) as measured by neutral filter elution and on mitotic delay and chromosome aberrations seen after releasing cells from the plateau phase were investigated. Neither increasing nor decreasing the pH e of the spent medium had an effect on radiation-induced mitotic delay. Rejoining of DSBs was significantly inhibited by holding at pH e 6.0 but not affected by holding at pH e 7.6. At 2 h after irradiation about 51% of unrejoined breaks remained at pH e 6.0, compared to about 15% at pH e 6.7 or 7.6. However, holding at pH e 7.6 appeared to cause a marginal change in the kinetics of rejoining of DSBs. Repair of lesions leading to dicentric and acentric chromosome aberrations did not occur when cells were held at pH e 6.0, since less than 10% of these aberrations disappeared from cells held for 24 h before subculture. In contrast, holding plateau-phase cells at pH e 7.6 vs 6.7 caused a small but significant reduction in the disappearance of dicentrics but had no effect on the rate or extent of the disappearance of acentrics. These data have led us to hypothesize that inhibition of PLD repair by holding at pH e 6.0 is related both to inhibition of pH-dependent DNA repair enzymes and to induction of changes in DNA which lead to misrepair when the cells are released from plateau phase. Inhibition of PLD repair by holding at pH e 7.6 is related primarily to changes in DNA structure which promote misrepair. 43 refs., 5 figs., 4 tabs

  8. Tendon cell outgrowth rates and morphology associated with kevlar-49.

    Science.gov (United States)

    Zimmerman, M; Gordon, K E

    1988-12-01

    A rat tendon cell model was used to evaluate the in vitro biocompatibility of kevlar-49. The cell response to kevlar was compared to carbon AS-4 and nylon sutures. Three trials were run and cell growth rates were statistically similar for all the materials tested. A separate experiment was conducted in which the same fiber materials were placed in the same Petri dish. Again, the rates were similar for each material. Finally, the cells were observed with a scanning electron microscope, and the three classic cell morphologies associated with this tendon cell model were observed. Also, cellular attachment to the fiber and cellular encapsulation of the fiber were identical for the three materials tested. Kevlar-49 proved to be comparable to carbon AS4 and nylon sutures in terms of cellular response and cell outgrowth rates.

  9. Chromosomal aberrations in blood lymphocytes of the residents of 30-km Chernobyl NPP exclusion zone

    International Nuclear Information System (INIS)

    Bezdrobna, Larysa; Tsyganok, Tetyana; Romanova, Olena; Tarasenko, Larysa; Tryshyn, Volodymyr; Klimkina, Ludmila

    2016-01-01

    A comparative cytogenetic examination of 33 self-settlers in the 30 km ChNPP Exclusion Zone and 31 residents in villages of Yahotyn district, Kyiv region was carried out in 1998-99. The levels of soil contamination of their residential areas with "1"3"7Cs, "9"0Sr and "2"3"8","2"3"9"+"2"4"0Pu were 74–477 kBq/m"2, 33–288 kBq/m"2 and 1.5-10.0 kBq/m"2, respectively for the former, and 1.9–5.8 kBq/m"2, 0.6–2.8 kBq/m"2 and 0.01-0.05 kBq/m"2, respectively for the latter. Using various data about the radiation situation in the Exclusion Zone, the effective doses on whole-body of the self-settlers were estimated to be 30–333 mSv for the whole residing period after the accident. The mean frequencies of aberrant cells and chromosomal aberrations for the Zone self-settlers were significantly higher than those for the residents in Yahotyn district, while the values of the latter group were found to be above the spontaneous levels reported in literatures. The individual variability in the distribution of the same indices was significantly larger for the self-settlers than for the Yahotyn residents. The compared groups also differ in the distribution of aberrations in cells. A repeated examination of 20 Zone self-settlers was conducted in 2001. A significant decrease in chromosome type aberration frequency was found at the expense of fragments frequency decrease. However, the total frequency of chromosomal aberrations didn't differ in 1998-99 and in 2001. (author)

  10. Image transfer with spatial coherence for aberration corrected transmission electron microscopes

    International Nuclear Information System (INIS)

    Hosokawa, Fumio; Sawada, Hidetaka; Shinkawa, Takao; Sannomiya, Takumi

    2016-01-01

    The formula of spatial coherence involving an aberration up to six-fold astigmatism is derived for aberration-corrected transmission electron microscopy. Transfer functions for linear imaging are calculated using the newly derived formula with several residual aberrations. Depending on the symmetry and origin of an aberration, the calculated transfer function shows characteristic symmetries. The aberrations that originate from the field’s components, having uniformity along the z direction, namely, the n-fold astigmatism, show rotational symmetric damping of the coherence. The aberrations that originate from the field’s derivatives with respect to z, such as coma, star, and three lobe, show non-rotational symmetric damping. It is confirmed that the odd-symmetric wave aberrations have influences on the attenuation of an image via spatial coherence. Examples of image simulations of haemoglobin and Si [211] are shown by using the spatial coherence for an aberration-corrected electron microscope. - Highlights: • The formula of partial coherence for aberration corrected TEM is derived. • Transfer functions are calculated with several residual aberrations. • The calculated transfer function shows the characteristic damping. • The odd-symmetric wave aberrations can cause the attenuation of image via coherence. • The examples of aberration corrected TEM image simulations are shown.

  11. Image transfer with spatial coherence for aberration corrected transmission electron microscopes

    Energy Technology Data Exchange (ETDEWEB)

    Hosokawa, Fumio, E-mail: hosokawa@bio-net.co.jp [BioNet Ltd., 2-3-28 Nishikityo, Tachikwa, Tokyo (Japan); Tokyo Institute of Technology, 4259 Nagatsuta, Midoriku, Yokohama 226-8503 (Japan); Sawada, Hidetaka [JEOL (UK) Ltd., JEOL House, Silver Court, Watchmead, Welwyn Garden City, Herts AL7 1LT (United Kingdom); Shinkawa, Takao [BioNet Ltd., 2-3-28 Nishikityo, Tachikwa, Tokyo (Japan); Sannomiya, Takumi [Tokyo Institute of Technology, 4259 Nagatsuta, Midoriku, Yokohama 226-8503 (Japan)

    2016-08-15

    The formula of spatial coherence involving an aberration up to six-fold astigmatism is derived for aberration-corrected transmission electron microscopy. Transfer functions for linear imaging are calculated using the newly derived formula with several residual aberrations. Depending on the symmetry and origin of an aberration, the calculated transfer function shows characteristic symmetries. The aberrations that originate from the field’s components, having uniformity along the z direction, namely, the n-fold astigmatism, show rotational symmetric damping of the coherence. The aberrations that originate from the field’s derivatives with respect to z, such as coma, star, and three lobe, show non-rotational symmetric damping. It is confirmed that the odd-symmetric wave aberrations have influences on the attenuation of an image via spatial coherence. Examples of image simulations of haemoglobin and Si [211] are shown by using the spatial coherence for an aberration-corrected electron microscope. - Highlights: • The formula of partial coherence for aberration corrected TEM is derived. • Transfer functions are calculated with several residual aberrations. • The calculated transfer function shows the characteristic damping. • The odd-symmetric wave aberrations can cause the attenuation of image via coherence. • The examples of aberration corrected TEM image simulations are shown.

  12. Effect of aberrations in human eye on contrast sensitivity function

    Science.gov (United States)

    Quan, Wei; Wang, Feng-lin; Wang, Zhao-qi

    2011-06-01

    The quantitative analysis of the effect of aberrations in human eye on vision has important clinical value in the correction of aberrations. The wave-front aberrations of human eyes were measured with the Hartmann-Shack wave-front sensor and modulation transfer function (MTF) was computed from the wave-front aberrations. Contrast sensitivity function (CSF) was obtained from MTF and the retinal aerial image modulation (AIM). It is shown that the 2nd, 3rd, 4th, 5th, 6th Zernike aberrations deteriorate contrast sensitivity function. When the 2nd, 3rd, 4th, 5th, 6th Zernike aberrations are corrected high contrast sensitivity function can be obtained.

  13. Automatic analysis of dividing cells in live cell movies to detect mitotic delays and correlate phenotypes in time.

    Science.gov (United States)

    Harder, Nathalie; Mora-Bermúdez, Felipe; Godinez, William J; Wünsche, Annelie; Eils, Roland; Ellenberg, Jan; Rohr, Karl

    2009-11-01

    Live-cell imaging allows detailed dynamic cellular phenotyping for cell biology and, in combination with small molecule or drug libraries, for high-content screening. Fully automated analysis of live cell movies has been hampered by the lack of computational approaches that allow tracking and recognition of individual cell fates over time in a precise manner. Here, we present a fully automated approach to analyze time-lapse movies of dividing cells. Our method dynamically categorizes cells into seven phases of the cell cycle and five aberrant morphological phenotypes over time. It reliably tracks cells and their progeny and can thus measure the length of mitotic phases and detect cause and effect if mitosis goes awry. We applied our computational scheme to annotate mitotic phenotypes induced by RNAi gene knockdown of CKAP5 (also known as ch-TOG) or by treatment with the drug nocodazole. Our approach can be readily applied to comparable assays aiming at uncovering the dynamic cause of cell division phenotypes.

  14. Morphologically controlled ZnO nanostructures as electron transport materials in polymer-based organic solar cells

    International Nuclear Information System (INIS)

    Choi, Kyu-Chae; Lee, Eun-Jin; Baek, Youn-Kyoung; Lim, Dong-Chan; Kang, Yong-Cheol; Kim, Yang-Do; Kim, Ki Hyun; Kim, Jae Pil; Kim, Young-Kuk

    2015-01-01

    Highlights: • Enhanced efficiency of solar cells using ZnO nanocrystals for charge transport. • Morphology of the charge transport layer is controlled. • Mixture of nanoparticles and nanorods are advantageous for cell efficiency. - ABSTRACT: The morphology of ZnO electron transport layers based on ZnO nanoparticles were modified with incorporation of ZnO nanorods via their co-deposition from mixed colloidal solution of nanoparticles and nanorods. In particular, the short circuit current density and the fill factor of the constructed photovoltaic device were simultaneously improved by applying mixture of ZnO nanoparticles and nanorods. As a result, a large improvement of power conversion efficiency up to 9% for the inverted organic solar cells having a blend of low band gap polymers and fullerene derivative as an active layer was demonstrated with the morphologically controlled ZnO electron transport layer.

  15. No Relationship between Embryo Morphology and Successful Derivation of Human Embryonic Stem Cell Lines

    Science.gov (United States)

    Ström, Susanne; Rodriguez-Wallberg, Kenny; Holm, Frida; Bergström, Rosita; Eklund, Linda; Strömberg, Anne-Marie; Hovatta, Outi

    2010-01-01

    Background The large number (30) of permanent human embryonic stem cell (hESC) lines and additional 29 which did not continue growing, in our laboratory at Karolinska Institutet have given us a possibility to analyse the relationship between embryo morphology and the success of derivation of hESC lines. The derivation method has been improved during the period 2002–2009, towards fewer xeno-components. Embryo quality is important as regards the likelihood of pregnancy, but there is little information regarding likelihood of stem cell derivation. Methods We evaluated the relationship of pronuclear zygote stage, the score based on embryo morphology and developmental rate at cleavage state, and the morphology of the blastocyst at the time of donation to stem cell research, to see how they correlated to successful establishment of new hESC lines. Results Derivation of hESC lines succeeded from poor quality and good quality embryos in the same extent. In several blastocysts, no real inner cell mass (ICM) was seen, but permanent well growing hESC lines could be established. One tripronuclear (3PN) zygote, which developed to blastocyst stage, gave origin to a karyotypically normal hESC line. Conclusion Even very poor quality embryos with few cells in the ICM can give origin to hESC lines. PMID:21217828

  16. Atomic Force Microscopy Investigation of Morphological and Nanomechanical Properties of Pseudomonas aeruginosa Cells

    DEFF Research Database (Denmark)

    Mortensen, Ninell Pollas

    2008-01-01

    changes in the fraction of individual bacteria and bacteria undergoing proliferation, and decrease of cell length of mother and daughter cells. The results indicated that colistin arrested the bacterial growth just after septum formation. Furthermore did the morphology change from a smooth bacterial......Atomic Force Microscopy (AFM) is unique in the aspect of studying living biological sample under physiological conditions. AFM was invented in 1986 by Binnig and Gerber and began in the early 1990’s to be implemented in life science. AFM can give a detailed three dimensional image of an intact cell......, but also be used to examine the nanomechanical properties on single cell level. These qualities make AFM a powerful tool in biology and can be used to examine both morphological and nanomechanical response to various liquids environments, such as osmotic pressure, but also the effects of e.g. antibiotic...

  17. Chromosome aberration analysis for biological dosimetry: a review

    International Nuclear Information System (INIS)

    Paul, S.F.D.; Venkatachalam, P.; Jeevanram, R.K.

    1996-01-01

    Among various biological dosimetry techniques, dicentric chromosome aberration method appears to be the method of choice in analysing accidental radiation exposure in most of the laboratories. The major advantage of this method is its sensitivity as the number of dicentric chromosomes present in control population is too small and more importantly radiation induces mainly dicentric chromosome aberration among unstable aberration. This report brings out the historical development of various cytogenetic methods, the basic structure of DNA, chromosomes and different forms of chromosome aberrations. It also highlights the construction of dose-response curve for dicentric chromosome and its use in the estimation of radiation dose. (author)

  18. Effect of hydroxyapatite particle size, morphology and crystallinity on proliferation of colon cancer HCT116 cells

    Energy Technology Data Exchange (ETDEWEB)

    Dey, Sangeeta; Das, Mitun, E-mail: mitun@cgcri.res.in; Balla, Vamsi Krishna

    2014-06-01

    The aim of the present work is to chemically and physically characterize the synthesized Hydroxyapatite (HAp) micro and nanoparticles and to explore the inhibitory effect of nano-HAps on the in vitro growth of human colon cancerous cells HCT116. HAp powder was synthesized using three different routes to achieve micro and nanosized powders, with different morphologies and crystallinity. The synthesized powders were characterized using X-ray diffraction, FTIR spectroscopy and scanning electron microscope. The results showed that the average crystallite size of HAp powder varies from 11 nm to 177 nm and respective crystallinity of powder found to be in the range of 0.12 and 0.92. The effect of these physico-chemical properties of HAp powders on human colon cancer HCT116 cells inhibition was determined in vitro. It was found that decreasing the HAp powder crystallite size between 11 nm and 22 nm significantly increases the HCT116 cell inhibition. Our results demonstrate that apart from HAp powder size their crystallinity and morphology also play an important role in cellular inhibition of human colon cancer cells. - Highlights: • Chemically synthesized hydroxyapatite micro and nano-particles with different morphologies and crystallinity. • In vitro cell–material interaction showed that hydroxyapatite nano-particles inhibit colon cancer cells. • Human colon cancer cell inhibition also depends on crystallinity and morphology of HAp powder.

  19. Wave aberrations in rhesus monkeys with vision-induced ametropias

    Science.gov (United States)

    Ramamirtham, Ramkumar; Kee, Chea-su; Hung, Li-Fang; Qiao-Grider, Ying; Huang, Juan; Roorda, Austin; Smith, Earl L.

    2007-01-01

    The purpose of this study was to investigate the relationship between refractive errors and high-order aberrations in infant rhesus monkeys. Specifically, we compared the monochromatic wave aberrations measured with a Shack-Hartman wavefront sensor between normal monkeys and monkeys with vision-induced refractive errors. Shortly after birth, both normal monkeys and treated monkeys reared with optically induced defocus or form deprivation showed a decrease in the magnitude of high-order aberrations with age. However, the decrease in aberrations was typically smaller in the treated animals. Thus, at the end of the lens-rearing period, higher than normal amounts of aberrations were observed in treated eyes, both hyperopic and myopic eyes and treated eyes that developed astigmatism, but not spherical ametropias. The total RMS wavefront error increased with the degree of spherical refractive error, but was not correlated with the degree of astigmatism. Both myopic and hyperopic treated eyes showed elevated amounts of coma and trefoil and the degree of trefoil increased with the degree of spherical ametropia. Myopic eyes also exhibited a much higher prevalence of positive spherical aberration than normal or treated hyperopic eyes. Following the onset of unrestricted vision, the amount of high-order aberrations decreased in the treated monkeys that also recovered from the experimentally induced refractive errors. Our results demonstrate that high-order aberrations are influenced by visual experience in young primates and that the increase in high-order aberrations in our treated monkeys appears to be an optical byproduct of the vision-induced alterations in ocular growth that underlie changes in refractive error. The results from our study suggest that the higher amounts of wave aberrations observed in ametropic humans are likely to be a consequence, rather than a cause, of abnormal refractive development. PMID:17825347

  20. An influence of occupational exposure on level of chromosome aberrations in nuclear power plant workers

    International Nuclear Information System (INIS)

    Birute Griciene; Grazina Slapsyte

    2007-01-01

    Complete text of publication follows. Objective. The workers of Ignalina Nuclear Power Plant (INPP) receive the highest occupational ionising radiation doses in Lithuania. Their occupational exposure results mainly from external low LET gamma radiation. Some workers receive additional internal and neutron exposure. Though exposure doses are generally low and don't exceed the annual dose limit, the higher doses are obtained during outages. The aim of the present study was to analyse chromosome aberration frequencies in lymphocytes of INPP workers exposed to the different types of ionising radiation. Methods. The blood sampling of 52 INPP male workers was performed in 2004-2006. For 29 workers radiation exposure resulted from the external gamma rays only. Their mean annual dose averaged over the 3-year period prior blood sampling was 11.7±8.7 mSv. The mean cumulative dose - 197.7±174.7 mSv. 15 workers had an intake of gamma radionuclides ( 60 Co, 137 Cs), contributing to the doses less than 0.1 mSv. Their mean cumulative dose - 278.2±191.9 mSv. The mean annual dose averaged over the 3-year period prior blood sampling was 11.8±5.3 mSv. For 8 subjects neutron doses below 0.2 mSv were recorded. Their mean annual dose averaged over the 3-year period prior blood sampling was 7.0±2.9 mSv. The mean cumulative dose was 241.8±93.0 mSv. Heparinized venous blood samples were taken and cultures were initiated according to the standard procedures. Phytohaemagglutinin (7.8 μg/ml) stimulated cultures were incubated at 37degC for 72 hours in RPMI 1640 medium supplemented with 12% heat-inactivated newborn calf serum, 40 μg/ml gentamycin. Colchicine was added to the culture during the initiation at a final concentration of 0,25 μg/ml. The harvested lymphocytes were treated with hypotonic KCl (0,075 M) and then fixed in methanol-glacial acetic acid (3:1). Flame-dried slides were stained with Giemsa, coded and scored blind. Generally 500 first-division cells per individual were

  1. Live birth potential of good morphology and vitrified blastocysts presenting abnormal cell divisions

    DEFF Research Database (Denmark)

    Azzarello, Antonino; Høst, Thomas; Hay-Schmidt, Anders

    2017-01-01

    a lower live birth rate (17.0%) than blastocyst with solely regular cell divisions (29.3%). ACDs could occur at more than one cell division in the same good morphology blastocyst. Reported as independent events, we observed ACDs occurring more frequently at the later cell cycles (1st: 1.3%; 2nd: 8.0%; 3rd...

  2. Abnormal red cell structure and function in neuroacanthocytosis.

    Directory of Open Access Journals (Sweden)

    Judith C A Cluitmans

    Full Text Available Panthothenate kinase-associated neurodegeneration (PKAN belongs to a group of hereditary neurodegenerative disorders known as neuroacanthocytosis (NA. This genetically heterogeneous group of diseases is characterized by degeneration of neurons in the basal ganglia and by the presence of deformed red blood cells with thorny protrusions, acanthocytes, in the circulation.The goal of our study is to elucidate the molecular mechanisms underlying this aberrant red cell morphology and the corresponding functional consequences. This could shed light on the etiology of the neurodegeneration.We performed a qualitative and semi-quantitative morphological, immunofluorescent, biochemical and functional analysis of the red cells of several patients with PKAN and, for the first time, of the red cells of their family members.We show that the blood of patients with PKAN contains not only variable numbers of acanthocytes, but also a wide range of other misshapen red cells. Immunofluorescent and immunoblot analyses suggest an altered membrane organization, rather than quantitative changes in protein expression. Strikingly, these changes are not limited to the red blood cells of PKAN patients, but are also present in the red cells of heterozygous carriers without neurological problems. Furthermore, changes are not only present in acanthocytes, but also in other red cells, including discocytes. The patients' cells, however, are more fragile, as observed in a spleen-mimicking device.These morphological, molecular and functional characteristics of red cells in patients with PKAN and their family members offer new tools for diagnosis and present a window into the pathophysiology of neuroacanthocytosis.

  3. The Art of Optical Aberrations

    Science.gov (United States)

    Wylde, Clarissa Eileen Kenney

    Art and optics are inseparable. Though seemingly opposite disciplines, the combination of art and optics has significantly impacted both culture and science as they are now known. As history has run its course, in the sciences, arts, and their fruitful combinations, optical aberrations have proved to be a problematic hindrance to progress. In an effort to eradicate aberrations the simple beauty of these aberrational forms has been labeled as undesirable and discarded. Here, rather than approach aberrations as erroneous, these beautiful forms are elevated to be the photographic subject in a new body of work, On the Bright Side. Though many recording methods could be utilized, this work was composed on classic, medium-format, photographic film using white-light, Michelson interferometry. The resulting images are both a representation of the true light rays that interacted on the distorted mirror surfaces (data) and the artist's compositional eye for what parts of the interferogram are chosen and displayed. A detailed description of the captivating interdisciplinary procedure is documented and presented alongside the final artwork, CCD digital reference images, and deformable mirror contour maps. This alluring marriage between the arts and sciences opens up a heretofore minimally explored aspect of the inextricable art-optics connection. It additionally provides a fascinating new conversation on the importance of light and optics in photographic composition.

  4. Cell wall staining with Trypan blue enables quantitative analysis of morphological changes in yeast cells

    DEFF Research Database (Denmark)

    Liesche, Johannes; Marek, Magdalena; Günther-Pomorski, Thomas

    2015-01-01

    staining with fluorescent dyes is a valuable tool. Furthermore, cell wall staining is used to facilitate sub-cellular localization experiments with fluorescently-labeled proteins and the detection of yeast cells in non-fungal host tissues. Here, we report staining of Saccharomyces cerevisiae cell wall......Yeast cells are protected by a cell wall that plays an important role in the exchange of substances with the environment. The cell wall structure is dynamic and can adapt to different physiological states or environmental conditions. For the investigation of morphological changes, selective...... with Trypan Blue, which emits strong red fluorescence upon binding to chitin and yeast glucan; thereby, it facilitates cell wall analysis by confocal and super-resolution microscopy. The staining pattern of Trypan Blue was similar to that of the widely used UV-excitable, blue fluorescent cell wall stain...

  5. Aberrant DNA methylation of matrix remodeling and cell adhesion related genes in pterygium.

    Directory of Open Access Journals (Sweden)

    Andri K Riau

    Full Text Available BACKGROUND: Pterygium is a common ocular surface disease characterized by abnormal epithelial and fibrovascular proliferation, invasion, and matrix remodeling. This lesion, which migrates from the periphery to the center of the cornea, impairs vision and causes considerable irritation. The mechanism of pterygium formation remains ambiguous, and current treatment is solely surgical excision, with a significant risk of recurrence after surgery. Here, we investigate the role of methylation in DNA sequences that regulate matrix remodeling and cell adhesion in pterygium formation. METHODOLOGY/PRINCIPAL FINDINGS: Pterygium and uninvolved conjunctiva samples were obtained from the same eye of patients undergoing surgery. The EpiTYPER Sequenom technology, based on differential base cleavage and bisulfite sequencing was used to evaluate the extent of methylation of 29 matrix and adhesion related genes. In pterygium, three CpG sites at -268, -32 and -29 bp upstream of transglutaminase 2 (TGM-2 transcription initiation were significantly hypermethylated (p<0.05, whereas hypomethylation was detected at CpGs +484 and +602 bp downstream of matrix metalloproteinase 2 (MMP-2 transcription start site, and -809, -762, -631 and -629 bp upstream of the CD24 transcription start site. RT-qPCR, western blot and immunofluorescent staining showed that transcript and protein expression were reduced for TGM-2 and increased for MMP-2 and CD24. Inhibition of methylation in cultured conjunctival epithelial cells increased these transcripts. CONCLUSIONS/SIGNIFICANCE: We found regions of aberrant DNA methylation which were consistent with alteration of TGM-2, MMP-2, and CD24 transcript and protein expression, and that inhibition of methylation in cultured cells can increase the expression of these genes. Since these genes were related to cell adhesion and matrix remodeling, dysregulation may lead to fibroblastic and neovascular changes and pterygium formation. These results

  6. Involvement of aberrant DNA methylation on reduced expression of lysophosphatidic acid receptor-1 gene in rat tumor cell lines

    International Nuclear Information System (INIS)

    Tsujiuchi, Toshifumi; Shimizu, Kyoko; Onishi, Mariko; Sugata, Eriko; Fujii, Hiromasa; Mori, Toshio; Honoki, Kanya; Fukushima, Nobuyuki

    2006-01-01

    Lysophosphatidic acid (LPA) is a bioactive phospholipid that stimulates cell proliferation, migration, and protects cells from apoptosis. It interacts with specific G protein-coupled transmembrane receptors. Recently, it has been reported that alterations of LPA receptor expression might be important in the malignant transformation of tumor cells. Therefore, to assess an involvement of DNA methylation in reduced expression of the LPA receptor-1 (lpa1) gene, we investigated the expression of the lpa1 gene and its DNA methylation patterns in rat tumor cell lines. Both rat brain-derived neuroblastoma B103 and liver-derived hepatoma RH7777 cells used in this study indicated no expression of lpa1. For the analysis of methylation status, bisulfite sequencing was performed with B103 and RH7777 cells, comparing with other lpa1 expressed cells and normal tissues of brain and liver. The lpa1 expressed cells and tissues were all unmethylated in this region of lpa1. In contrast, both B103 and RH7777 cells were highly methylated, correlating with reduced expression of the lpa1. Treatment with 5-aza 2'-deoxycytidine induced expression of lpa1 gene in B103 and RH7777 cells after 24 h. In RH7777 cells treated with 5-aza 2'-deoxycytidine, stress fiber formation was also observed in response to LPA in RH7777 cells, but not in untreated RH7777 cells. These results suggest that aberrant DNA methylation of the lpa1 gene may be involved in its reduced expression in rat tumor cells

  7. Risk scaling factors from inactivation to chromosome aberrations, mutations and oncogenic transformations in mammalian cells

    International Nuclear Information System (INIS)

    Alkaharam, A.S.; Watt, D.E.

    1997-01-01

    Analyses of bio-effect mechanisms of damage to mammalian cells in terms of the quality parameter 'mean free path for primary ionisation', for heavy charged particles, strongly suggests that there is a common mechanism for the biological endpoints of chromosome aberrations, mutations and oncogenic transformation. The lethal lesions are identified as unrepaired double-strand breaks in the intracellular DNA. As data for the various endpoints studied can be represented in a unified scheme, for any radiation type, it follows that radiation risk factors can be determined on the basis of simple ratios to the inactivation cross sections. There are intrinsic physical reasons why neutrons can never reach the saturation level of heavier particles for equal fluences. The probabilities of risk with respect to inactivation, for chromosome dicentrics, mutation of the HPRT gene and of oncogenic transformation are respectively 0.24, 5.8 x 10 -5 , and 4.1 x 10 -3 . (author)

  8. CD30+ lymphoproliferative disorder with spindle-cell morphology.

    Science.gov (United States)

    Martires, Kathryn J; Cohen, Brandon E; Cassarino, David S

    2016-11-01

    Lymphomatoid papulosis (LyP) is classified as a CD30+ primary cutaneous lymphoproliferative disease. The phenotypic variability along the spectrum of CD30+ lymphoproliferative diseases is highlighted by the distinct histologic subtypes of LyP types A, B, C, and the more recently described types D, E, and F. We report the case of an elderly woman with a clinical presentation and histopathologic findings consistent with LyP, whose atypical CD30+ infiltrate uniquely demonstrated a spindle-cell morphology. To our knowledge, this is the first reported case of LyP characterized by CD30+ spindle-shaped cells, and may represent a new and distinct histologic variant of LyP. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  9. Effect of gamma irradiation on morphology of leaf and shoot apex of ginger, turmeric and mango-ginger

    International Nuclear Information System (INIS)

    Raju, E.C.; Patel, J.D.; Shah, J.J.

    1980-01-01

    Effect of 2, 5, 10, 20 and 30 kR gamma irradiation on morphology and growth of ginger (Zingiber officinale Rosc.), Turmeric (Curcuma domestica Valet) and mango-ginger (Curcuma amada Roxb), and shoot apical organisation in ginger was studied. Higher doses (20 and 30 kR) of radiation proved to be lethal. Morphological aberrations in foliage leaves are reported. Irradiated shoot apices appear histologically inert. (auth.)

  10. Effect of gamma irradiation on morphology of leaf and shoot apex of ginger, turmeric and mango-ginger

    Energy Technology Data Exchange (ETDEWEB)

    Raju, E C; Patel, J D; Shah, J J [Sardar Patel Univ., Vallabh Vidyanagar (India). Dept. of Biosciences

    1980-06-01

    Effect of 2, 5, 10, 20 and 30 kR gamma irradiation on morphology and growth of ginger (Zingiber officinale Rosc.), Turmeric (Curcuma domestica Valet) and mango-ginger (Curcuma amada Roxb), and shoot apical organisation in ginger was studied. Higher doses (20 and 30 kR) of radiation proved to be lethal. Morphological aberrations in foliage leaves are reported. Irradiated shoot apices appear histologically inert.

  11. Poisson goodness-of-fit tests for radiation-induced chromosome aberrations

    International Nuclear Information System (INIS)

    Merkle, W.

    1981-01-01

    Asymptotic and exact Poisson goodness-to-fit tests have been reviewed with regard to their applicability in analysing distributional properties of data on chromosome aberrations. It has been demonstrated that for typical cytogenetic samples, i.e. when the average number of aberrations per cell is smaller than one, results of asymptotic tests, especially of the most commonly used u-test, differ greatly from results of corresponding exact tests. While the u-statistic can serve as a qualitative index to indicate a tendency towards under- or over-dispersion, exact tests should be used if the assumption of a Poisson distribution is crucial, e.g. in investigating induction mechanisms. If the main interest is to detect a difference between the mean and the variance of a sample it is furthermore important to realize that a much larger sample size is required to detect underdispersion than it is to detect overdispersion. (author)

  12. Controlled cell morphology and liver-specific function of engineered primary hepatocytes by fibroblast layer cell densities.

    Science.gov (United States)

    Sakai, Yusuke; Koike, Makiko; Kawahara, Daisuke; Hasegawa, Hideko; Murai, Tomomi; Yamanouchi, Kosho; Soyama, Akihiko; Hidaka, Masaaki; Takatsuki, Mitsuhisa; Fujita, Fumihiko; Kuroki, Tamotsu; Eguchi, Susumu

    2018-03-05

    Engineered primary hepatocytes, including co-cultured hepatocyte sheets, are an attractive to basic scientific and clinical researchers because they maintain liver-specific functions, have reconstructed cell polarity, and have high transplantation efficiency. However, co-culture conditions regarding engineered primary hepatocytes were suboptimal in promoting these advantages. Here we report that the hepatocyte morphology and liver-specific function levels are controlled by the normal human diploid fibroblast (TIG-118 cell) layer cell density. Primary rat hepatocytes were plated onto TIG-118 cells, previously plated 3 days before at 1.04, 5.21, and 26.1×10 3  cells/cm 2 . Hepatocytes plated onto lower TIG-118 cell densities expanded better during the early culture period. The hepatocytes gathered as colonies and only exhibited small adhesion areas because of the pushing force from proliferating TIG-118 cells. The smaller areas of each hepatocyte result in the development of bile canaliculi. The highest density of TIG-118 cells downregulated albumin synthesis activity of hepatocytes. The hepatocytes may have undergone apoptosis associated with high TGF-β1 concentration and necrosis due to a lack of oxygen. These occurrences were supported by apoptotic chromatin condensation and high expression of both proteins HIF-1a and HIF-1b. Three types of engineered hepatocyte/fibroblast sheets comprising different TIG-118 cell densities were harvested after 4 days of hepatocyte culture and showed a complete cell sheet format without any holes. Hepatocyte morphology and liver-specific function levels are controlled by TIG-118 cell density, which helps to design better engineered hepatocytes for future applications such as in vitro cell-based assays and transplantable hepatocyte tissues. Copyright © 2018 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  13. Solution-Processed Molecular Organic Solar cell: Relationship between Morphology and Device Performance

    KAUST Repository

    Babics, Maxime

    2018-05-09

    In the last decade, organic photovoltaics (OPV) have gained considerable attention with a rapid improvement of power conversion efficiency (PCE) from 5% to more than 13%. At the origin of the gradual efficiency improvements are (i) the rationalization of material design and (ii) systematic optimization of film processing condition. OPV can have a key role in markets such as building-integrated photovoltaics (BIPV). The main advantages of organic solar cells are semitransparency, low weight, good performance at low light intensity, flexibility and potential low-cost module manufacture through solution processed-based technologies. In solution processed OPV, the active layer that converts photons into electric charges is a composite of two organic compounds, a donor (D) and an acceptor (A) where the best morphology is achieved via the so-called bulk heterojunction (BHJ): an interpenetrating phase-separated D-A network. Historically, research has been focused on polymer donors and guidelines about morphology and film processing have been established. However recent studies have shown that small-molecule (SM) donors can rival their polymer counterparts in performance. The advantages of SM are a defined molecular weight, the ease of purification and a good batch-to-batch reproducibility. Using this class of material the existing guidelines have to be adjusted and refined. In this dissertation, using new SM synthesized in our laboratory, solution-processed organic solar cells are fabricated in which the morphology of the active layer is controlled by thermal annealing, the use of additive or solvent vapor annealing. In-depth analyses of the morphology are correlated to charge generation, recombination and extraction inferred from device physics. In the first part of the dissertation, using a small amount of 1,8-Diiodooctane additive that acts as a plasticizer, it is found that the D-A domains do not necessarily need to be pure and that mixed domains can also result in

  14. Aberration design of zoom lens systems using thick lens modules.

    Science.gov (United States)

    Zhang, Jinkai; Chen, Xiaobo; Xi, Juntong; Wu, Zhuoqi

    2014-12-20

    A systematic approach for the aberration design of a zoom lens system using a thick lens module is presented. Each component is treated as a thick lens module at the beginning of the design. A thick lens module refers to a thick lens component with a real lens structure, like lens materials, lens curvatures, lens thicknesses, and lens interval distances. All nine third-order aberrations of a thick lens component are considered during the design. The relationship of component aberrations in different zoom positions can be approximated from the aberration shift. After minimizing the aberrations of the zoom lens system, the nine third-order aberrations of every lens component can be determined. Then the thick lens structure of every lens component can be determined after optimization according to their first-order properties and third-order aberration targets. After a third optimization for minimum practical third-order aberrations of a zoom lens system, the aberration design using the thick lens module is complete, which provides a practical zoom lens system with thick lens structures. A double-sided telecentric zoom lens system is designed using the thick lens module in this paper, which shows that this method is practical for zoom lens design.

  15. Third-order monochromatic aberrations via Fermat's principle

    International Nuclear Information System (INIS)

    Marasco, A.; Romano, A.

    2006-01-01

    By Fermat's principle and particular optical paths, which are not rays, a new aberration function is introduced. This function allows to derive, without resorting to the whole Hamiltonian formalism, the third-order geometrical aberrations of an optical system with a symmetry of revolution

  16. Catadioptric aberration correction in cathode lens microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Tromp, R.M. [IBM T.J. Watson Research Center, PO Box 218, Yorktown Heights, NY 10598 (United States); Kamerlingh Onnes Laboratory, Leiden Institute of Physics, Niels Bohrweg 2, 2333 CA Leiden (Netherlands)

    2015-04-15

    In this paper I briefly review the use of electrostatic electron mirrors to correct the aberrations of the cathode lens objective lens in low energy electron microscope (LEEM) and photo electron emission microscope (PEEM) instruments. These catadioptric systems, combining electrostatic lens elements with a reflecting mirror, offer a compact solution, allowing simultaneous and independent correction of both spherical and chromatic aberrations. A comparison with catadioptric systems in light optics informs our understanding of the working principles behind aberration correction with electron mirrors, and may point the way to further improvements in the latter. With additional developments in detector technology, 1 nm spatial resolution in LEEM appears to be within reach. - Highlights: • The use of electron mirrors for aberration correction in LEEM/PEEM is reviewed. • A comparison is made with similar systems in light optics. • Conditions for 1 nm spatial resolution are discussed.

  17. Radiation-induced chromosome aberrations in the rat peripheral blood

    International Nuclear Information System (INIS)

    Ziemba-Zoltowska, B.; Bocian, E.; Radwan, I.; Rosiek, O.; Sablinski, J.

    1978-01-01

    Chromosome aberrations in rat lymphocytes of peripheral blood after X (in vitro and in vivo) and 3 H tritiated water (in vivo) irradiations were studied. The yield of chromosome aberrations after in vivo and in vitro exposure to X-rays was similar. The frequency of chromosome aberrations three weeks after exposure to X-rays and soon after irradiation was practically on the same level. The yield of chromosome aberrations determined three weeks after injection with tritiated water or X-rays exposure was similar. (author)

  18. Aberrant expression of long noncoding RNAs in cumulus cells isolated from PCOS patients.

    Science.gov (United States)

    Huang, Xin; Hao, Cuifang; Bao, Hongchu; Wang, Meimei; Dai, Huangguan

    2016-01-01

    To describe the long noncoding RNA (lncRNA) profiles in cumulus cells isolated from polycystic ovary syndrome (PCOS) patients by employing a microarray and in-depth bioinformatics analysis. This information will help us understand the occurrence and development of PCOS. In this study, we used a microarray to describe lncRNA profiles in cumulus cells isolated from ten patients (five PCOS and five normal women). Several differentially expressed lncRNAs were chosen to validate the microarray results by quantitative RT-PCR (qRT-PCR). Then, the differentially expressed lncRNAs were classified into three subgroups (HOX loci lncRNA, enhancer-like lncRNA, and lincRNA) to deduce their potential features. Furthermore, a lncRNA/mRNA co-expression network was constructed by using the Cytoscape software (V2.8.3, http://www.cytoscape.org/ ). We observed that 623 lncRNAs and 260 messenger RNAs (mRNAs) were significantly up- or down-regulated (≥2-fold change), and these differences could be used to discriminate cumulus cells of PCOS from those of normal patients. Five differentially expressed lncRNAs (XLOC_011402, ENST00000454271, ENST00000433673, ENST00000450294, and ENST00000432431) were selected to validate the microarray results using quantitative RT-PCR (qRT-PCR). The qRT-PCR results were consistent with the microarray data. Further analysis indicated that many differentially expressed lncRNAs were transcribed from chromosome 2 and may act as enhancers to regulate their neighboring protein-coding genes. Forty-three lncRNAs and 29 mRNAs were used to construct the coding-non-coding gene co-expression network. Most pairs positively correlated, and one mRNA correlated with one or more lncRNAs. Our study is the first to determine genome-wide lncRNA expression patterns in cumulus cells isolated from PCOS patients by microarray. The results show that clusters of lncRNAs were aberrantly expressed in cumulus cells of PCOS patients compared with those of normal women, which revealed

  19. Chromosomal aberrations in bone marrow of continuously irradiated rats

    Energy Technology Data Exchange (ETDEWEB)

    Chlebosky, O; Praslicka, M; Chlebovska, K [Univerzita P.J. Safarika, Kosice (Czechoslovakia). Prirodovedecka Fakulta

    1975-01-01

    Research on chromosomal aberrations of the bone marrow in continuously irradiated rats showed that chromosomal aberrations are a highly sensitive indicator of radiation injury. An increase in the chromosomal aberration frequency was already found on the 5th day at daily doses of 0.5 R, i.e. a 12% increase at a total dose of 25 R. In the steady-state stage at daily doses of 0.5; 1; 2.5 R, the number of chromosomal aberrations stabilized at values of about 20%; at daily doses of 5 and 10 R at values of 30.=., at daily doses of 53 R at 45%, at a daily dose of 82.5 R, the number of chromosomal aberrations increased to 55%.

  20. Children with asthma by school age display aberrant immune responses to pathogenic airway bacteria as infants

    DEFF Research Database (Denmark)

    Larsen, Jeppe Madura; Pedersen, Susanne Brix; Thysen, Anna Hammerich

    2014-01-01

    childhood asthma. We hypothesized that children with asthma have an abnormal immune response to pathogenic bacteria in infancy. ObjectiveWe aimed to assess the bacterial immune response in asymptomatic infants and the association with later development of asthma by age 7 years. MethodsThe Copenhagen...... was assessed based on the pattern of cytokines produced and T-cell activation. ResultsThe immune response to pathogenic bacteria was different in infants with asthma by 7 years of age (P = .0007). In particular, prospective asthmatic subjects had aberrant production of IL-5 (P = .008), IL-13 (P = .057), IL-17...... (P = .001), and IL-10 (P = .028), whereas there were no differences in T-cell activation or peripheral T-cell composition. ConclusionsChildren with asthma by school age exhibited an aberrant immune response to pathogenic bacteria in infancy. We propose that an abnormal immune response to pathogenic...

  1. Aberration-corrected STEM/TEM imaging at 15 kV

    International Nuclear Information System (INIS)

    Sasaki, Takeo; Sawada, Hidetaka; Hosokawa, Fumio; Sato, Yuta; Suenaga, Kazu

    2014-01-01

    The performance of aberration-corrected (scanning) transmission electron microscopy (S/TEM) at an accelerating voltage of 15 kV was evaluated in a low-voltage microscope equipped with a cold-field emission gun and a higher-order aberration corrector. Aberrations up to the fifth order were corrected by the aberration measurement and auto-correction system using the diffractogram tableau method in TEM and Ronchigram analysis in STEM. TEM observation of nanometer-sized particles demonstrated that aberrations up to an angle of 50 mrad were compensated. A TEM image of Si[110] exhibited lattice fringes with a spacing of 0.192 nm, and the power spectrum of the image showed spots corresponding to distances of 0.111 nm. An annular dark-field STEM image of Si[110] showed lattice fringes of (111) and (22¯0) planes corresponding to lattice distances of 0.314 nm and 0.192 nm, respectively. At an accelerating voltage of 15 kV, the developed low-voltage microscope achieved atomic-resolution imaging with a small chromatic aberration and a large uniform phase. - Highlights: • Aberration-corrected STEM/TEM imaging at 15 kV demonstrated lattice fringes of Si[110] single crystal with a spacing of 0.192 nm. • To achieve this performance at a lower accelerating voltage, uniform phase area over 50 mrad is mandatory in Ronchigram and Diffractogram tableau. • This means a higher-order aberration of six-fold astigmatism should be compensated. • In addition, decreasing the effect of chromatic aberration plays an important role for improving the performance of linear scattering component at 15 kV TEM

  2. Estimation of dose from chromosome aberration rate

    International Nuclear Information System (INIS)

    Li Deping

    1990-01-01

    The methods and skills of evaluating dose from correctly scored shromsome aberration rate are presented, and supplemented with corresponding BASIC computer code. The possibility and preventive measures of excessive probability of missing score of the aberrations in some of the current routine score methods are discussed. The use of dose-effect relationship with exposure time correction factor G in evaluating doses and their confidence intervals, dose estimation in mixed n-γ exposure, and identification of high by nonuniform acute exposure to low LET radiation and its dose estimation are discussed in more detail. The difference of estimated dose due to whether the interaction between subleisoms produced by n and γ have been taken into account is examined. In fitting the standard dose-aberration rate curve, proper weighing of experiment points and comparison with commonly accepted values are emphasised, and the coefficient of variation σ y √y of the aberration rate y as a function of dose and exposure time is given. In appendix I and II, the dose-aberration rate formula is derived from dual action theory, and the time variation of subleisom is illustrated and in appendix III, the estimation of dose from scores of two different types of aberrations (of other related score) is illustrated. Two computer codes are given in appendix IV, one is a simple code, the other a complete code, including the fitting of standard curve. the skills of using compressed data storage, and the production of simulated 'data ' for testing the curve fitting procedure are also given

  3. Transforming growth factor-β2 induces morphological alteration of human corneal endothelial cells in vitro

    Directory of Open Access Journals (Sweden)

    Jing Wang

    2014-10-01

    Full Text Available AIM:To investigate the morphological altering effect of transforming growth factor-β2 (TGF-β2 on untransfected human corneal endothelial cells (HCECs in vitro.METHODS: After untransfected HCECs were treated with TGF-β2 at different concentrations, the morphology, cytoskeleton distribution, and type IV collagen expression of the cells were examined with inverted contrast light microscopy, fluorescence microscopy, immunofluorescence or Western Blot.RESULTS:TGF-β2 at the concentration of 3-15 μg/L had obviously alterative effects on HCECs morphology in dose and time-dependent manner, and 9 μg/L was the peak concentration. TGF-β2 (9 μg/L altered HCE cell morphology after treatment for 36h, increased the mean optical density (P<0.01 and the length of F-actin, reduced the mean optical density (P<0.01 of the collagen type IV in extracellular matrix (ECM and induced the rearrangement of F-actin, microtubule in cytoplasm and collagen type IV in ECM after treatment for 72h. CONCLUTION:TGF-β2 has obviously alterative effect on the morphology of HCECs from polygonal phenotype to enlarged spindle-shaped phenotype, in dose and time-dependence manner by inducing more, elongation and alignment of F-actin, rearrangement of microtubule and larger spread area of collagen type IV.

  4. Aberration of a negative ion beam caused by space charge effect

    International Nuclear Information System (INIS)

    Miyamoto, K.; Wada, S.; Hatayama, A.

    2010-01-01

    Aberrations are inevitable when the charged particle beams are extracted, accelerated, transmitted, and focused with electrostatic and magnetic fields. In this study, we investigate the aberration of a negative ion accelerator for a neutral beam injector theoretically, especially the spherical aberration caused by the negative ion beam expansion due to the space charge effect. The negative ion current density profiles with the spherical aberration are compared with those without the spherical aberration. It is found that the negative ion current density profiles in a log scale are tailed due to the spherical aberration.

  5. Aberration of a negative ion beam caused by space charge effect

    Energy Technology Data Exchange (ETDEWEB)

    Miyamoto, K. [Naruto University of Education, 748 Nakashima, Takashima, Naruto-cho, Naruto-shi, Tokushima 772-8502 (Japan); Wada, S.; Hatayama, A. [Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522 (Japan)

    2010-02-15

    Aberrations are inevitable when the charged particle beams are extracted, accelerated, transmitted, and focused with electrostatic and magnetic fields. In this study, we investigate the aberration of a negative ion accelerator for a neutral beam injector theoretically, especially the spherical aberration caused by the negative ion beam expansion due to the space charge effect. The negative ion current density profiles with the spherical aberration are compared with those without the spherical aberration. It is found that the negative ion current density profiles in a log scale are tailed due to the spherical aberration.

  6. Aberration of a negative ion beam caused by space charge effect.

    Science.gov (United States)

    Miyamoto, K; Wada, S; Hatayama, A

    2010-02-01

    Aberrations are inevitable when the charged particle beams are extracted, accelerated, transmitted, and focused with electrostatic and magnetic fields. In this study, we investigate the aberration of a negative ion accelerator for a neutral beam injector theoretically, especially the spherical aberration caused by the negative ion beam expansion due to the space charge effect. The negative ion current density profiles with the spherical aberration are compared with those without the spherical aberration. It is found that the negative ion current density profiles in a log scale are tailed due to the spherical aberration.

  7. Size and morphology effects of titania on dye-sensitized solar cells performance

    International Nuclear Information System (INIS)

    Chien, Wen-Chen; Lin, Chien-Chih; Jang, Shiue-Ming; Kao, Tien-Hsieh

    2013-01-01

    This study uses commercial titania (P25) to prepare titania nanowires (NWs) using alkali and hydrothermal treatments. Nanosized titania P25 and NWs were used to prepare spray-dried titania P25 (SP25) and spray-dried titania nanowires (SNWs), respectively, using the spray-drying process. These different titania sizes and morphologies were used to fabricate photoelectrodes for dye-sensitized solar cells (DSSCs) and to investigate their effect on cell performance. All prepared titania NWs and SNWs were in the anatase phase after heat treatment at 450 °C for 2 h. The specific areas for titania with different morphologies were 49.5 m 2 /g for P25, 48.3 m 2 /g for SP25, 42.6 m 2 /g for NWs, and 40.3 m 2 /g for SNWs. The results show that the surface areas decreased when the titania P25 or NWs were processed by spray drying. In optimal conditions, DSSCs prepared from P25 + 2.5 wt.% NWs with a light-to-electric energy conversion efficiency of 5.88% were produced using a simulated solar light irradiation of 100 mW/cm 2 (AM 1.5). - Highlights: • Titania with different size and morphology were prepared. • Hydrothermal and spray drying process were applied. • Solar cells with an efficiency of 5.88% were produced

  8. Size and morphology effects of titania on dye-sensitized solar cells performance

    Energy Technology Data Exchange (ETDEWEB)

    Chien, Wen-Chen, E-mail: wcchien@mail.mcut.edu.tw [Department of Chemical Engineering, Ming Chi University of Technology, 84 Gunjuan Road, New Taipei City 243, Taiwan (China); Battery Research Center of Green Energy, Ming Chi University of Technology, 84 Gunjuan Road, New Taipei City 243, Taiwan (China); Lin, Chien-Chih [Department of Chemical Engineering, Ming Chi University of Technology, 84 Gunjuan Road, New Taipei City 243, Taiwan (China); Jang, Shiue-Ming [Industrial Technology Research Institute, Hsinchu 310, Taiwan (China); Kao, Tien-Hsieh [Department of Chemical Engineering, Ming Chi University of Technology, 84 Gunjuan Road, New Taipei City 243, Taiwan (China)

    2013-10-01

    This study uses commercial titania (P25) to prepare titania nanowires (NWs) using alkali and hydrothermal treatments. Nanosized titania P25 and NWs were used to prepare spray-dried titania P25 (SP25) and spray-dried titania nanowires (SNWs), respectively, using the spray-drying process. These different titania sizes and morphologies were used to fabricate photoelectrodes for dye-sensitized solar cells (DSSCs) and to investigate their effect on cell performance. All prepared titania NWs and SNWs were in the anatase phase after heat treatment at 450 °C for 2 h. The specific areas for titania with different morphologies were 49.5 m{sup 2}/g for P25, 48.3 m{sup 2}/g for SP25, 42.6 m{sup 2}/g for NWs, and 40.3 m{sup 2}/g for SNWs. The results show that the surface areas decreased when the titania P25 or NWs were processed by spray drying. In optimal conditions, DSSCs prepared from P25 + 2.5 wt.% NWs with a light-to-electric energy conversion efficiency of 5.88% were produced using a simulated solar light irradiation of 100 mW/cm{sup 2} (AM 1.5). - Highlights: • Titania with different size and morphology were prepared. • Hydrothermal and spray drying process were applied. • Solar cells with an efficiency of 5.88% were produced.

  9. Morphological alterations in newly born dentate gyrus granule cells that emerge after status epilepticus contribute to make them less excitable.

    Directory of Open Access Journals (Sweden)

    Julián Tejada

    Full Text Available Computer simulations of external current stimulations of dentate gyrus granule cells of rats with Status Epilepticus induced by pilocarpine and control rats were used to evaluate whether morphological differences alone between these cells have an impact on their electrophysiological behavior. The cell models were constructed using morphological information from tridimensional reconstructions with Neurolucida software. To evaluate the effect of morphology differences alone, ion channel conductances, densities and distributions over the dendritic trees of dentate gyrus granule cells were the same for all models. External simulated currents were injected in randomly chosen dendrites belonging to one of three different areas of dentate gyrus granule cell molecular layer: inner molecular layer, medial molecular layer and outer molecular layer. Somatic membrane potentials were recorded to determine firing frequencies and inter-spike intervals. The results show that morphologically altered granule cells from pilocarpine-induced epileptic rats are less excitable than control cells, especially when they are stimulated in the inner molecular layer, which is the target area for mossy fibers that sprout after pilocarpine-induced cell degeneration. This suggests that morphological alterations may act as a protective mechanism to allow dentate gyrus granule cells to cope with the increase of stimulation caused by mossy fiber sprouting.

  10. The distribution of chromosome aberrations among chromosomes of karyotype in exposed human lymphocyte

    International Nuclear Information System (INIS)

    Que Tran; Tien Hoang Hung

    1997-01-01

    Induced chromosome aberrations (ch. ab.) in exposed Human peripheral blood lymphocyte have been used to assay radio.bio.doses, because of their characters such as: the maintaining Go phase in cell cycle in body, the distribution of cell in blood system and the distribution of ch. ab. in exposed cells of body and among chromosomes of karyotype. The frequency of ch. ab. reflected the quantity of radiation dose, dose rate and radiation energy. The dependence between radiation dose and frequency of ch. ab. was illustrated by the mathematic equations. The distribution of induced ch. ab. among the cells exposed to uniform radiation fields was Poisson's, but the distribution of ch. ab. among chromosomes in karyotype depended on radiation field and mononucleotid sequence of DNA molecular of each chromosome. The minimum influence of mononucleotid sequence of DNA molecular in inform ch. ab. will be advantageous state for dose-assessments. The location of induced ch. ab. in exposed Human lymphocyte had been determined by karyotype analyses. The data of statistic analyse had improved that the number of ch. ab. depended on the size of chromosomes in karyotype. The equal distribution of ch. ab.among chromosomes in karyotype provided the objectiveness and the accuracy of using the chromosomal aberrant analysis technique on bio-dosimetry. (author)

  11. In Situ Malignant Transformation and Progenitor-Mediated Cell Budding: Two Different Pathways for Breast Ductal and Lobular Tumor Invasion

    Directory of Open Access Journals (Sweden)

    Yan-gao Man, Mina Izadjoo, Guohong Song, Alexander Stojadinovic

    2011-01-01

    Full Text Available The human breast lobular and ductal structures and the derived tumors from these structures differ substantial in their morphology, microenvironment, biological presentation, functions, and clinical prognosis. Based on these differences, we have proposed that pre-invasive lobular tumors may progress to invasive lesions through “in situ malignant transformation”, in which the entire myoepithelial cell layer within a given lobule or lobular clusters undergoes extensive degeneration and disruptions, which allows the entire epithelial cell population associated with these myoepithelial cell layers directly invade the stroma or vascular structures. In contrast, pre-invasive ductal tumors may invade the stroma or vascular structures through “progenitor-mediated cell budding”, in which focal myoepithelial cell degeneration-induced aberrant leukocyte infiltration causes focal disruptions in the tumor capsules, which selectively favor monoclonal proliferation of the overlying tumor stem cells or a biologically more aggressive cell clone. Our current study attempted to provide more direct morphological and immunohistochemical data that are consistent with our hypotheses.

  12. Aberrant regeneration of the third cranial nerve.

    Science.gov (United States)

    Shrestha, U D; Adhikari, S

    2012-01-01

    Aberrant regeneration of the third cranial nerve is most commonly due to its damage by trauma. A ten-month old child presented with the history of a fall from a four-storey building. She developed traumatic third nerve palsy and eventually the clinical features of aberrant regeneration of the third cranial nerve. The adduction of the eye improved over time. She was advised for patching for the strabismic amblyopia as well. Traumatic third nerve palsy may result in aberrant regeneration of the third cranial nerve. In younger patients, motility of the eye in different gazes may improve over time. © NEPjOPH.

  13. Transverse correlation vanishing due to phase aberrations

    CSIR Research Space (South Africa)

    Godin, T

    2011-06-01

    Full Text Available of the effects of each aberration on the ratio Sp ?? / , the following condition are imposed: 0max3max2max1 )()()( ??????? === . (9) It is assumed that the phase aberration is set in the beam-waist plane of radius mmW 5.10 = . Arbitrarily, the value... of max? is fixed to twice the incident beam width, 0max 2W=? , where the intensity is only 0.03% of the on-axis value. In the following we will express the aberration 0? in number of equivalent wavelengths given by the ratio )2/(00 pi...

  14. Morphological analysis of human umbilical vein endothelial cells co-cultured with ovarian cancer cells in 3D: An oncogenic angiogenesis assay.

    Directory of Open Access Journals (Sweden)

    Xiao Wan

    Full Text Available Antiangiogenic therapy for cancer is a strategy targeted at tumour vasculature, often in combination with conventional cytotoxicity treatments. Animal testing is still the most common method used for evaluating the efficacy of new drugs but tissue-engineered in vitro models are becoming more acceptable for replacing and reducing the use of animals in anti-cancer drug screening. In this study, a 3D co-culture model of human endothelial cells and ovarian cancer cells was developed. This model has the potential to mimic the interactions between endothelial cells and ovarian cancer cells. The feasibility of applying this model in drug testing was explored here. The complex morphology of the co-culture system, which features development of both endothelial tubule-like structures and tumour structures, was analysed quantitatively by an image analysis method. The co-culture morphology integrity was maintained for 10 days and the potential of the model for anti-cancer drug testing was evaluated using Paclitaxel and Cisplatin, two common anti-tumour drugs with different mechanisms of action. Both traditional cell viability assays and quantitative morphological analyses were applied in the drug testing. Cisplatin proved a good example showing the advantages of morphological analysis of the co-culture model when compared with mono-culture of endothelial cells, which did not reveal an inhibitory effect of Cisplatin on the tubule-like endothelial structures. Thus, the tubule areas of the co-culture reflected the anti-angiogenesis potential of Cisplatin. In summary, in vitro cancer models can be developed using a tissue engineering approach to more closely mimic the characteristics of tumours in vivo. Combined with the image analysis technique, this developed 3D co-culture angiogenesis model will provide more reproducible and reliably quantified results and reveal further information of the drug's effects on both tumour cell growth and tumour angiogenesis.

  15. Morphology of primary human venous endothelial cell cultures before and after culture medium exchange.

    Science.gov (United States)

    Krüger-Genge, A; Fuhrmann, R; Jung, F; Franke, R P

    2015-01-01

    The evaluation of the interaction of human, venous endothelial cells (HUVEC) with body foreign materials on the cellular level cannot be performed in vivo, but is investigated in vitro under standard culture conditions. To maintain the vitality, proliferation and morphology of HUVEC seeded on body foreign substrates over days, the cell culture medium is usually exchanged every second day. It is well known, that alterations in the microenvironment of cells bear the risk of influencing cell morphology and function. In the current study the influence of cell culture medium exchange on HUVEC cytoskeletal microfilament structure and function was investigated. HUVEC in the third passage were seeded on extracellular matrix (ECM) - which was secreted from bovine corneal endothelial cells on glass- until functional confluence was reached. The experiment started 11 days after HUVEC seeding with an exchange of the cell culture medium followed by a staining of the actin microfilaments with phalloidin-rhodamin 1.5 and 5 minutes after medium exchange. The microfilaments were documented by use of an Olympus microscope (IMT-2) equipped with a UV lamp and online connected to a TV chain (Sony XC 50 ST/monochrome) implying an OPTIMAS - Image analysis system. Prostacyclin was analysed in the cell culture supernatant. 1.5 min after culture medium exchange in the functionally confluent cultures a slight disturbance of the actin microfilament structure with a broadening of the marginal filament band, a partial disconnection of cell-cell contacts and the appearance of intercellular fenestrations were observed. 5 minutes after medium exchange a redevelopment of the slightly disturbed microfilament structure with a condensation and narrowing of the marginal filament band was seen. 12 h later a further consolidation of the microfilament structure occurred. In addition, a perturbation of the cultured HUVEC occurred after cell culture medium exchange. The prostacyclin concentration in the

  16. Structural and numerical chromosome aberration inducers in liver micronucleus test in rats with partial hepatectomy.

    Science.gov (United States)

    Itoh, Satoru; Hattori, Chiharu; Nagata, Mayumi; Sanbuissho, Atsushi

    2012-08-30

    The liver micronucleus test is an important method to detect pro-mutagens such as active metabolites not reaching bone marrow due to their short lifespan. We have already reported that dosing of the test compound after partial hepatectomy (PH) is essential to detect genotoxicity of numerical chromosome aberration inducers in mice [Mutat. Res. 632 (2007) 89-98]. In naive animals, the proportion of binucleated cells in rats is less than half of that in mice, which suggests a species difference in the response to chromosome aberration inducers. In the present study, we investigated the responses to structural and numerical chromosome aberration inducers in the rat liver micronucleus test. Two structural chromosome aberretion inducers (diethylnitrosamine and 1,2-dimethylhydrazine) and two numerical chromosome aberration inducers (colchicine and carbendazim) were used in the present study. PH was performed a day before or after the dosing of the test compound in 8-week old male F344 rats and hepatocytes were isolated 4 days after the PH. As a result, diethylnitrosamine and 1,2-dimethylhydrazine, structural chromosome aberration inducers, exhibited significant increase in the incidence of micronucleated hepatocyte (MNH) when given either before and after PH. Colchicine and carbendazim, numerical chromosome aberration inducers, did not result in any toxicologically significant increase in MNH frequency when given before PH, while they exhibited MNH induction when given after PH. It is confirmed that dosing after PH is essential in order to detect genotoxicity of numerical chromosome aberration inducers in rats as well as in mice. Regarding the species difference, a different temporal response to colchicine was identified. Colchicine increased the incidence of MNH 4 days after PH in rats, although such induction in mice was observed 8-10 days after PH. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Ocular higher-order aberrations in a school children population

    Directory of Open Access Journals (Sweden)

    George Papamastorakis

    2015-04-01

    Conclusions: Differences in the low levels of ocular spherical aberration in young children possibly reflect differences in lenticular spherical aberration and relate to the gradient refractive index of the lens. The evaluation of spherical aberration at certain stages of eye growth may help to better understand the underlying mechanisms of myopia development.

  18. Research on Spontaneously Emerged Chromosomal Aberrations in the Periphery Blood Lymphocytes in Cattle (‘Buša’ Breed

    Directory of Open Access Journals (Sweden)

    Danica Hasanbašić

    2007-11-01

    Full Text Available Knowledge of spontaneous aberrations, namely, of their frequency in non-irradiated cells is of paramount importance not only in cytogenetic research, but also in contemporary animal production.The paper deals with research on spontaneously emerged chromosomal aberrations in the peripheral blood lymphocytes in the cattle of ‘Buša’ breed.To obtain metaphase chromosomes the conventional method of lymphocyte cultivation was used, albeit slightly modified and adapted to the examined animals and the laboratory conditions.The research findings indicate that a certain percent of spontaneously emerged chromosomal aberrations of chromatid type (gap and break have been found in the peripheral blood lymphocytes in the cattle of ‘Buša’ breed.

  19. Morphology of the epidermis of the neotropical catfish Pimelodella lateristriga (Lichtenstein, 1823 with emphasis in club cells.

    Directory of Open Access Journals (Sweden)

    Eduardo Medeiros Damasceno

    Full Text Available The epidermis of Ostariophysi fish is composed of 4 main cell types: epidermal cells (or filament containing cells, mucous cells, granular cells and club cells. The morphological analysis of the epidermis of the catfish Pimelodella lateristriga revealed the presence of only two types of cells: epidermal and club cells. The latter were evident in the middle layer of the epidermis, being the largest cells within the epithelium. Few organelles were located in the perinuclear region, while the rest of the cytoplasm was filled with a non-vesicular fibrillar substance. Club cells contained two irregular nuclei with evident nucleoli and high compacted peripheral chromatin. Histochemical analysis detected prevalence of protein within the cytoplasm other than carbohydrates, which were absent. These characteristics are similar to those described to most Ostariophysi studied so far. On the other hand, the epidermal cells differ from what is found in the literature. The present study described three distinct types, as follows: superficial, abundant and dense cells. Differences among them were restricted to their cytoplasm and nucleus morphology. Mucous cells were found in all Ostariophysi studied so far, although they were absent in P. lateristriga, along with granular cells, also typical of other catfish epidermis. The preset study corroborates the observations on club cells' morphology in Siluriformes specimens, and shows important differences in epidermis composition and cell structure of P. lateristriga regarding the literature data.

  20. Procedure Improvement in Blood Processing for Chromosome Aberration Analyst

    International Nuclear Information System (INIS)

    Noraisyah Mohd Yusof; Juliana Mahamad; Rahimah Abd Rahim; Yahaya Talib; Mohd Rodzi Ali

    2015-01-01

    Detection of chromosome at metaphase of the cell cycle is performed either manually or automatically. Procedure for slide preparation published by the IAEA does not guarantee that the quality of slide is suitable for automatic detection. The detection efficiency reduces if there is cells debris on slides. This paper describes the modifications made to the standard procedure. The period of hypotonic treatment to the cell was lengthened; the slides were pre-treated with RNase and the frequency of rinsing during the chromosomal coloring process was increased. Results show the metaphase images were better and clearer, and numbers of metaphase that can be detected automatically were also increased. In conclusion, modification to the current standard protocol helps to easy the process of chromosome aberration analysis at Nuclear Malaysia. (author)

  1. Fifth-order canonical geometric aberration analysis of electrostatic round lenses

    CERN Document Server

    Liu Zhi Xiong

    2002-01-01

    In this paper the fifth-order canonical geometric aberration patterns are analyzed and a numerical example is given on the basis of the analytical expressions of fifth-order aberration coefficients derived in the present work. The fifth-order spherical aberration, astigmatism and field curvature, and distortion are similar to the third-order ones and the fifth-order coma is slightly different. Besides, there are two more aberrations which do not exist in the third-order aberration: they are peanut aberration and elliptical coma in accordance with their shapes. In the numerical example, by using a cross-check of the calculated coefficients with those computed through the differential algebraic method, it has been verified that all the expressions are correct and the computational results are reliable with high precision.

  2. Blastomyces dermatitidis septins CDC3, CDC10, and CDC12 impact the morphology of yeast and hyphae, but are not required for the phase transition.

    Science.gov (United States)

    Marty, Amber J; Gauthier, Gregory M

    2013-01-01

    Blastomyces dermatitidis, the etiologic agent of blastomycosis, belongs to a group of thermally dimorphic fungi that change between mold (22°C) and yeast (37°C) in response to temperature. The contribution of structural proteins such as septins to this phase transition in these fungi remains poorly understood. Septins are GTPases that serve as a scaffold for proteins involved with cytokinesis, cell polarity, and cell morphology. In this study, we use a GFP sentinel RNA interference system to investigate the impact of CDC3, CDC10, CDC12, and ASPE on the morphology and phase transition of B. dermatitidis. Targeting CDC3, CDC10, and CDC12 by RNA interference resulted in yeast with aberrant morphology at 37°C with defects in cytokinesis. Downshifting the temperature to 22°C promoted the conversion to the mold phase, but did not abrogate the morphologic defects. CDC3, CDC10, and CDC12 knockdown strains grew as mold with curved, thickened hyphae. Knocking down ASPE transcript did not alter morphology of yeast at 37°C or mold at 22°C. Following an increase in temperature from 22°C to 37°C, all septin knockdown strains were able to revert to yeast. In conclusion, CDC3, CDC10, and CDC12 septin- encoding genes are required for proper morphology of yeast and hyphae, but are dispensable for the phase transition.

  3. Chromosomal aberrations induced by alpha particles

    International Nuclear Information System (INIS)

    Guerrero C, C.; Brena V, M.

    2005-01-01

    The chromosomal aberrations produced by the ionizing radiation are commonly used when it is necessary to establish the exposure dose of an individual, it is a study that is used like complement of the traditional physical systems and its application is only in cases in that there is doubt about what indicates the conventional dosimetry. The biological dosimetry is based on the frequency of aberrations in the chromosomes of the lymphocytes of the individual in study and the dose is calculated taking like reference to the dose-response curves previously generated In vitro. A case of apparent over-exposure to alpha particles to which is practiced analysis of chromosomal aberrations to settle down if in fact there was exposure and as much as possible, to determine the presumed dose is presented. (Author)

  4. The influence of morphology on charge transport/recombination dynamics in planar perovskite solar cells

    Science.gov (United States)

    Yu, Man; Wang, Yi; Wang, Hao-Yi; Han, Jun; Qin, Yujun; Zhang, Jian-Ping; Ai, Xi-Cheng

    2016-10-01

    The photovoltaic performance of planar perovskite solar cell is significantly influenced by the morphology of perovskite film. In this work, five kinds of devices with different perovskite film morphologies were prepared by varying the concentration of CH3NH3Cl in precursor solutions. We found that best morphology of perovskite film results in the excellent photovoltaic performance with an average efficiency of 15.52% and a champion efficiency of 16.38%. Transient photovoltage and photocurrent measurements are performed to elucidate the mechanism of photoelectric conversion processes, which shows that the charge recombination is effectively suppressed and the charge transport is obviously promoted by optimized morphology.

  5. Multiparameter flow cytometry reveals myelodysplasia-related aberrant antigen expression in myelodysplastic/myeloproliferative neoplasms.

    Science.gov (United States)

    Kern, Wolfgang; Bacher, Ulrike; Schnittger, Susanne; Alpermann, Tamara; Haferlach, Claudia; Haferlach, Torsten

    2013-05-01

    Within the myelodysplastic/myeloproliferative neoplasm (MDS/MPN) category of the WHO (2008), only chronic myelomonocytic leukemia was so far evaluated by multiparameter flow cytometry (MFC). To investigate the potential of MFC for MDS/MPNs, unclassifiable (MDS/MPNu), and refractory anemia associated with ring sideroblasts and marked thrombocytosis (RARS-T), we studied 91 patients with these entities (60 males/31 females; 35.3-87.4 years) for MDS-related aberrant immunophenotypes (≥ 2 different cell lineages with ≥ 3 aberrantly expressed antigens). Data were correlated with cytomorphology and cytogenetics. MFC identified MDS-related immunophenotypes in 54/91 (59.3%) of patients. Patients with or without MDS-related immunophenotype did not differ significantly by demographic characteristics, blood values, or median overall survival. MDS-related immunophenotype cases showed a higher number of aberrantly expressed antigens (mean ± SD, 4.9 ± 2.4 vs. 2.0 ± 1.4; P MPNu and RARS-T. MFC therefore may be helpful to separate cases into more "MDS-like" or "MPN-like" subgroups. Copyright © 2012 International Clinical Cytometry Society.

  6. Frequency of chromosomal aberrations in rat myelocaryocytes during long-term repeated irradiation

    International Nuclear Information System (INIS)

    Uryadnitskaya, T.I.; Sukhodoev, V.V.; Muksinova, K.N.

    1977-01-01

    In the course of a long-term daily irradiation of rats (50R/day), the frequency of chromosome aberrations in the bone marrow cells increased disproportionally to a total radiation dose which was due to the reduced frequency of chromosome damage at the intervals between daily exposures. The rate of this reduction was mainly determined by myelocaryocyte proliferation

  7. Chromosomal aberrations and micronuclei frequencies in Bulgarian control population

    Energy Technology Data Exchange (ETDEWEB)

    Staynova, A.; Hadjidekova, V.; Popova, L.; Hristova, R.; Georgieva, G. [Radiation Genetics Laboratory, National Centre of Radiobology and Radiation Protection, Sofia (Bulgaria)

    2013-07-01

    The correct estimation of the possible genotoxic effects in humans after external damage agents exposures depends on the data of the spontaneous levels of the biomarkers used. Spontaneous levels of chromosomal aberrations (CA) and micronuclei (MN) formation in human peripheral lymphocytes, and their variability were studied in a population of a clean environmentally regions in Bulgaria. Spontaneous frequency of CA was investigated in peripheral blood lymphocytes of 151 subjects. Peripheral blood lymphocytes from 148 subjects were analysed for the presence of MN. Also MN assay was applied for evaluation of genotoxic effects in buccal epithelium cells obtained from 43 donors. The mean frequency ± sd of the cells with ca is 1.42± 0.95. The mean frequency ± SD of cells with MN is 11.99 ± 6.50%. The mean frequency ± SD of cells with MN in buccal epithelium cells was found to be 2.53 ± 1.41x10{sup -3}. (author)

  8. Effect of post-treatments with caffeine during G2 on the frequencies of chromosome-type aberrations produced by X-rays in human lymphocytes during G0 and G1

    International Nuclear Information System (INIS)

    Tanzarella, C.; De Salvia, R.; Degrassi, F.; Palitti, F.; Andersson, H.C.; Hansson, K.; Kihlman, B.A.

    1986-01-01

    Human lymphocytes were irradiated with X-rays in G 0 and G 1 , grown in the presence of 5-bromodeoxyuridine, and harvested at different times from 48 to 80 h after stimulation. Some cultures were exposed to 2.5-5 mM caffeine during the last 3 h before harvesting. The frequencies of chromosome-type aberrations were scored in first division (M 1 ) metaphases. The post-treatment with caffeine increased the frequencies of mitoses and chromosome-type aberrations in irradiated cultures. The results suggest that cells carrying chromosome-type aberrations are delayed in G 2 and that caffeine increases the frequencies of aberrations in dividing cells by removing this G 2 -block. (author)

  9. Changes of chromosome aberration rate and micronucleus frequency along with accumulated dose in continuously irradiated mice with a low dose rate of γ-rays

    International Nuclear Information System (INIS)

    Tanaka, Kimio; Izumi, Jun; Yanai, Takanori; Ichinohe, Kazuaki; Matsumoto, Tsuneya

    2003-01-01

    Chromosome aberrations in chronically exposed workers in nuclear facilities and medical radiologists have been reported. However chronological change of chromosome aberration rates along with accumulated dose has not been well studied. Chromosome aberrations and micronuclei in spleen lymphocytes were observed serially in mice continuously irradiated with a low dose rate of 20 mGy/day up to 400 days. Chromosome aberration rates were rapidly increased to 11.1% at 1 Gy, while micronucleus incidence increased at 5 Gy. After these doses their increase rates were saturated. Micronucleus incidence in bone marrow erythroblasts was higher than in spleen cells. These chronological changes of cytogenetic aberrations seem to be induced through a balance between developments of chromosome aberrations and micronuclei, and life span of spleen lymphocytes. These results will be helpful for risk assessment in low dose rate radiation exposure. (author)

  10. Spherical aberration and other higher-order aberrations in the human eye : from summary wave-front analysis data to optical variables relevant to visual perception

    NARCIS (Netherlands)

    Jansonius, Nomdo M.

    Wave-front analysis data from the human eye are commonly presented using the aberration coefficient c(4)(0) (primary spherical aberration) together with an overall measure of all higher-order aberrations. If groups of subjects are compared, however, the relevance of an observed difference cannot

  11. Morphological changes of the red blood cells treated with metal oxide nanoparticles.

    Science.gov (United States)

    Kozelskaya, A I; Panin, A V; Khlusov, I A; Mokrushnikov, P V; Zaitsev, B N; Kuzmenko, D I; Vasyukov, G Yu

    2016-12-01

    The toxic effect of Al 2 O 3 , SiО 2 and ZrО 2 nanoparticles on red blood cells of Wistar rats was studied in vitro using the atomic force microscopy and the fluorescence analysis. Transformation of discocytes into echinocytes and spherocytes caused by the metal oxide nanoparticles was revealed. It was shown that only extremely high concentration of the nanoparticles (2mg/ml) allows correct estimating of their effect on the cell morphology. Besides, it was found out that the microviscosity changes of red blood cell membranes treated with nanoparticles began long before morphological modifications of the cells. On the contrary, the negatively charged ZrO 2 and SiO 2 nanoparticles did not affect ghost microviscosity up to concentrations of 1μg/ml and 0.1mg/ml, correspondingly. In its turn, the positively charged Al 2 O 3 nanoparticles induced structural changes in the lipid bilayer of the red blood cells already at a concentration of 0.05μg/ml. A decrease in microviscosity of the erythrocyte ghosts treated with Al 2 O 3 and SiO 2 nanoparticles was shown. It was detected that the interaction of ZrO 2 nanoparticles with the cells led to an increase in the membrane microviscosity and cracking of swollen erythrocytes. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Early effects of trimethyltin on the dentate gyrus basket cells: a morphological study

    Energy Technology Data Exchange (ETDEWEB)

    Chang, L.W.; Dyer, R.S.

    1985-01-01

    Electrophysiological evidence for reduction of recurrent inhibition in the dentate gyrus in animals exposed to trimethyltin (TMT) suggested alterations in the inhibitory neurons (basket cells) by TMT. The present study was designed to investigate the morphology of basket cells after TMT exposure. Long-Evans hooded rats were injected with TMT chloride in a dose of 6.0 mg/kg body weight (b.w.). Tissue samples from the dentate gyri were examined by both light and electron microscopy at 24 and 72 h after TMT exposure. Except for isolated basket cell damage at 72 h, no remarkable pathological changes were observed with light microscopy. Consistent with previous data, electron microscopy revealed that the basket cells of the dentate gyrus are large neurons situated just below the granule cell layer with characteristic large, infolded nuclei and intranuclear filamentous rods. Increased cytoplasmic density and degenerative changes of the Golgi complex were evident in the basket cells as early as 24 h after TMT exposure. By 72 h, neuronal vacuolation, accumulation of lysosomes, and occasional neuronal necrosis were observed. No significant pathological changes were found among the granule cells at this time. This report provides the first morphological evidence for early damage to the basket cells by TMT, which may account for the reduction of recurrent inhibition and hyperexcitability among the granule cells reported previously.

  13. NOTCH2 signaling confers immature morphology and aggressiveness in human hepatocellular carcinoma cells.

    Science.gov (United States)

    Hayashi, Yoshihiro; Osanai, Makoto; Lee, Gang-Hong

    2015-10-01

    The NOTCH family of membranous receptors plays key roles during development and carcinogenesis. Since NOTCH2, yet not NOTCH1 has been shown essential for murine hepatogenesis, NOTCH2 rather than NOTCH1 may be more relevant to human hepatocarcinogenesis; however, no previous studies have supported this hypothesis. We therefore assessed the role of NOTCH2 in human hepatocellular carcinoma (HCC) by immunohistochemistry and cell culture. Immunohistochemically, 19% of primary HCCs showed nuclear staining for NOTCH2, indicating activated NOTCH2 signaling. NOTCH2-positive HCCs were on average in more advanced clinical stages, and exhibited more immature cellular morphology, i.e. higher nuclear-cytoplasmic ratios and nuclear densities. Such features were not evident in NOTCH1‑positive HCCs. In human HCC cell lines, abundant NOTCH2 expression was associated with anaplasia, represented by loss of E-cadherin. When NOTCH2 signaling was stably downregulated in HLF cells, an anaplastic HCC cell line, the cells were attenuated in potential for in vitro invasiveness and migration, as well as in vivo tumorigenicity accompanied by histological maturation. Generally, inverse results were obtained for a differentiated HCC cell line, Huh7, manipulated to overexpress activated NOTCH2. These findings suggested that the NOTCH2 signaling may confer aggressive behavior and immature morphology in human HCC cells.

  14. Statistical estimation of ultrasonic propagation path parameters for aberration correction.

    Science.gov (United States)

    Waag, Robert C; Astheimer, Jeffrey P

    2005-05-01

    Parameters in a linear filter model for ultrasonic propagation are found using statistical estimation. The model uses an inhomogeneous-medium Green's function that is decomposed into a homogeneous-transmission term and a path-dependent aberration term. Power and cross-power spectra of random-medium scattering are estimated over the frequency band of the transmit-receive system by using closely situated scattering volumes. The frequency-domain magnitude of the aberration is obtained from a normalization of the power spectrum. The corresponding phase is reconstructed from cross-power spectra of subaperture signals at adjacent receive positions by a recursion. The subapertures constrain the receive sensitivity pattern to eliminate measurement system phase contributions. The recursion uses a Laplacian-based algorithm to obtain phase from phase differences. Pulse-echo waveforms were acquired from a point reflector and a tissue-like scattering phantom through a tissue-mimicking aberration path from neighboring volumes having essentially the same aberration path. Propagation path aberration parameters calculated from the measurements of random scattering through the aberration phantom agree with corresponding parameters calculated for the same aberrator and array position by using echoes from the point reflector. The results indicate the approach describes, in addition to time shifts, waveform amplitude and shape changes produced by propagation through distributed aberration under realistic conditions.

  15. Application of image flow cytometry for the characterization of red blood cell morphology

    Science.gov (United States)

    Pinto, Ruben N.; Sebastian, Joseph A.; Parsons, Michael; Chang, Tim C.; Acker, Jason P.; Kolios, Michael C.

    2017-02-01

    Red blood cells (RBCs) stored in hypothermic environments for the purpose of transfusion have been documented to undergo structural and functional changes over time. One sign of the so-called RBC storage lesion is irreversible damage to the cell membrane. Consequently, RBCs undergo a morphological transformation from regular, deformable biconcave discocytes to rigid spheroechinocytes. The spherically shaped RBCs lack the deformability to efficiently enter microvasculature, thereby reducing the capacity of RBCs to oxygenate tissue. Blood banks currently rely on microscope techniques that include fixing, staining and cell counting in order to morphologically characterize RBC samples; these methods are labor intensive and highly subjective. This study presents a novel, high-throughput RBC morphology characterization technique using image flow cytometry (IFC). An image segmentation template was developed to process 100,000 images acquired from the IFC system and output the relative spheroechinocyte percentage. The technique was applied on samples extracted from two blood bags to monitor the morphological changes of the RBCs during in vitro hypothermic storage. The study found that, for a given sample of RBCs, the IFC method was twice as fast in data acquisition, and analyzed 250-350 times more RBCs than the conventional method. Over the lifespan of the blood bags, the mean spheroechinocyte population increased by 37%. Future work will focus on expanding the template to segregate RBC images into more subpopulations for the validation of the IFC method against conventional techniques; the expanded template will aid in establishing quantitative links between spheroechinocyte increase and other RBC storage lesion characteristics.

  16. Mechanistic modeling of aberrant energy metabolism in human disease

    Directory of Open Access Journals (Sweden)

    Vineet eSangar

    2012-10-01

    Full Text Available Dysfunction in energy metabolism—including in pathways localized to the mitochondria—has been implicated in the pathogenesis of a wide array of disorders, ranging from cancer to neurodegenerative diseases to type II diabetes. The inherent complexities of energy and mitochondrial metabolism present a significant obstacle in the effort to understand the role that these molecular processes play in the development of disease. To help unravel these complexities, systems biology methods have been applied to develop an array of computational metabolic models, ranging from mitochondria-specific processes to genome-scale cellular networks. These constraint-based models can efficiently simulate aspects of normal and aberrant metabolism in various genetic and environmental conditions. Development of these models leverages—and also provides a powerful means to integrate and interpret—information from a wide range of sources including genomics, proteomics, metabolomics, and enzyme kinetics. Here, we review a variety of mechanistic modeling studies that explore metabolic functions, deficiency disorders, and aberrant biochemical pathways in mitochondria and related regions in the cell.

  17. Cell wall carbohydrates content of pathogenic Candida albicans strain morphological forms.

    Science.gov (United States)

    Staniszewska, Monika; Bondaryk, Małgorzata; Rabczenko, Daniel; Smoleńska-Sym, Gabriela; Kurzatkowski, Wiesław

    2013-01-01

    The study evaluated the cell wall carbohydrates fraction in blastoconidia grown in YEPD medium at 30 degrees C and in the conglomerate of true hyphae grown in human serum at 37 degrees C. The clinical isolate obtained from a child with widespread C. albicans infection was used in the study. The cells were broken with glass beads, centrifuged to harvest the cell wall followed by subjection to TFA hydrolysis and in the result of that released monosaccharides were detected by HPAEC-PAD. Both, serum and temperature conditions (37 degrees C) affected germination process influencing the cell wall carbohydrates content when incubation in serum was prolonged from 1 to 18 h. The mannan content of blastoconidia was almost twofold higher compared to filamentous forms (149.25 +/- 299.24 vs 77.26 +/- 122.07). The glucan content was threefold lower in blastoconidia compared to hyphae (251.86 +/- 243.44 vs 755.81 +/- 1299.30). The chitin level was fourfold lower in blastoconidia compared to filaments (23.86 +/- 54.09 vs 106.29 +/- 170.12). The reason for the differences in the carbohydrates content may be related to type of morphology induced in different environmental conditions. Among tested carbohydrates, glucan appeared to be present in appreciably larger amounts in both tested morphological fractions. The ultrastructure of the blastoconidial cell wall revealed striking differences compared to the hyphae indicating the carbohydrates content alterations for wall assembly during hyphal growth at alkaline pH and temp. 37 degrees C. The study provided evidence for the relationship between morphogenesis, cell-cell adhesion induced by serum and changes in the level of carbohydrates content.

  18. Higher order aberrations of the eye: Part one

    Directory of Open Access Journals (Sweden)

    Marsha Oberholzer

    2016-06-01

    Full Text Available This article is the first in a series of two articles that provide a comprehensive literature review of higher order aberrations (HOAs of the eye. The present article mainly explains the general principles of such HOAs as well as HOAs of importance, and the measuring apparatus used to measure HOAs of the eye. The second article in the series discusses factors contributing to variable results in measurements of HOAs of the eye. Keywords: Higher order aberrations; wavefront aberrations; aberrometer

  19. Effect of Solvent-Assisted Nanoscaled Organo-Gels on Morphology and Performance of Organic Solar Cells

    DEFF Research Database (Denmark)

    Zuo, Li-Jian; Hu, Xiao-Lian; Ye, Tao

    2012-01-01

    with that of the organo-gels in solution. Through this knowledge, we eventually achieve controlled morphology and optimized organic solar cells (OSCs) performance. Our results present a significant step forward for understanding the self-assembly behavior of conjugated polymers, control of their morphology...... and optimization of OSC performance....

  20. Nanoscopic morphological changes in yeast cell surfaces caused by oxidative stress: an atomic force microscopic study.

    Science.gov (United States)

    Canetta, Elisabetta; Walker, Graeme M; Adya, Ashok K

    2009-06-01

    Nanoscopic changes in the cell surface morphology of the yeasts Saccharomyces cerevisiae (strain NCYC 1681) and Schizosaccharomyces pombe (strain DVPB 1354), due to their exposure to varying concentrations of hydrogen peroxide (oxidative stress), were investigated using an atomic force microscope (AFM). Increasing hydrogen peroxide concentration led to a decrease in cell viabilities and mean cell volumes, and an increase in the surface roughness of the yeasts. In addition, AFM studies revealed that oxidative stress caused cell compression in both S. cerevisiae and Schiz. pombe cells and an increase in the number of aged yeasts. These results confirmed the importance and usefulness of AFM in investigating the morphology of stressed microbial cells at the nanoscale. The results also provided novel information on the relative oxidative stress tolerance of S. cerevisiae and Schiz. pombe.

  1. Effect of spherical aberration on scintillations of Gaussian beams in atmospheric turbulence

    International Nuclear Information System (INIS)

    Ji, Xiaoling; Deng, Jinping

    2014-01-01

    The effect of spherical aberration on scintillations of Gaussian beams in weak, moderate and strong turbulence is studied using numerical simulation method. It is found that the effect of the negative spherical aberration on the on-axis scintillation index is quite different from that of the positive spherical aberration. In weak turbulence, the positive spherical aberration results in a decrease of the on-axis scintillation index on propagation, but the negative spherical aberration results in an increase of the on-axis scintillation index when the propagation distance is not large. In particular, in weak turbulence the negative spherical aberration may cause peaks of the on-axis scintillation index, and the peaks disappear in moderate and strong turbulence, which is explained in physics. The strong turbulence leads to less discrepancy among scintillations of Gaussian beams with and without spherical aberration. - Highlights: • In weak turbulence scintillations can be suppressed using positive spherical aberration. • In weak turbulence scintillations may be very large due to negative spherical aberration. • The effect of spherical aberration on scintillations is less with increasing of turbulence

  2. Effect of spherical aberration on scintillations of Gaussian beams in atmospheric turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Ji, Xiaoling, E-mail: jiXL100@163.com; Deng, Jinping

    2014-07-18

    The effect of spherical aberration on scintillations of Gaussian beams in weak, moderate and strong turbulence is studied using numerical simulation method. It is found that the effect of the negative spherical aberration on the on-axis scintillation index is quite different from that of the positive spherical aberration. In weak turbulence, the positive spherical aberration results in a decrease of the on-axis scintillation index on propagation, but the negative spherical aberration results in an increase of the on-axis scintillation index when the propagation distance is not large. In particular, in weak turbulence the negative spherical aberration may cause peaks of the on-axis scintillation index, and the peaks disappear in moderate and strong turbulence, which is explained in physics. The strong turbulence leads to less discrepancy among scintillations of Gaussian beams with and without spherical aberration. - Highlights: • In weak turbulence scintillations can be suppressed using positive spherical aberration. • In weak turbulence scintillations may be very large due to negative spherical aberration. • The effect of spherical aberration on scintillations is less with increasing of turbulence.

  3. Influence of Misalignment on High-Order Aberration Correction for Normal Human Eyes

    Science.gov (United States)

    Zhao, Hao-Xin; Xu, Bing; Xue, Li-Xia; Dai, Yun; Liu, Qian; Rao, Xue-Jun

    2008-04-01

    Although a compensation device can correct aberrations of human eyes, the effect will be degraded by its misalignment, especially for high-order aberration correction. We calculate the positioning tolerance of correction device for high-order aberrations, and within what degree the correcting effect is better than low-order aberration (defocus and astigmatism) correction. With fixed certain misalignment within the positioning tolerance, we calculate the residual wavefront rms aberration of the first-6 to first-35 terms along with the 3rd-5th terms of aberrations corrected, and the combined first-13 terms of aberrations are also studied under the same quantity of misalignment. However, the correction effect of high-order aberrations does not meliorate along with the increase of the high-order terms under some misalignment, moreover, some simple combined terms correction can achieve similar result as complex combinations. These results suggest that it is unnecessary to correct too much the terms of high-order aberrations which are difficult to accomplish in practice, and gives confidence to correct high-order aberrations out of the laboratory.

  4. Influence of Misalignment on High-Order Aberration Correction for Normal Human Eyes

    International Nuclear Information System (INIS)

    Hao-Xin, Zhao; Bing, Xu; Li-Xia, Xue; Yun, Dai; Qian, Liu; Xue-Jun, Rao

    2008-01-01

    Although a compensation device can correct aberrations of human eyes, the effect will be degraded by its misalignment, especially for high-order aberration correction. We calculate the positioning tolerance of correction device for high-order aberrations, and within what degree the correcting effect is better than low-order aberration (defocus and astigmatism) correction. With fixed certain misalignment within the positioning tolerance, we calculate the residual wavefront rms aberration of the first-6 to first-35 terms along with the 3rd-5th terms of aberrations corrected, and the combined first-13 terms of aberrations are also studied under the same quantity of misalignment. However, the correction effect of high-order aberrations does not meliorate along with the increase of the high-order terms under some misalignment, moreover, some simple combined terms correction can achieve similar result as complex combinations. These results suggest that it is unnecessary to correct too much the terms of high-order aberrations which are difficult to accomplish in practice, and gives confidence to correct high-order aberrations out of the laboratory

  5. APC/β-catenin-rich complexes at membrane protrusions regulate mammary tumor cell migration and mesenchymal morphology

    International Nuclear Information System (INIS)

    Odenwald, Matthew A; Prosperi, Jenifer R; Goss, Kathleen H

    2013-01-01

    The APC tumor suppressor is mutated or downregulated in many tumor types, and is prominently localized to punctate clusters at protrusion tips in migratory cells, such as in astrocytes where it has been implicated in directed cell motility. Although APC loss is considered an initiating event in colorectal cancer, for example, it is less clear what role APC plays in tumor cell motility and whether loss of APC might be an important promoter of tumor progression in addition to initiation. The localization of APC and β-catenin was analyzed in multiple cell lines, including non-transformed epithelial lines treated with a proteasome inhibitor or TGFβ to induce an epithelial-to-mesenchymal transition (EMT), as well as several breast cancer lines, by immunofluorescence. APC expression was knocked down in 4T07 mammary tumor cells using lentiviral-mediated delivery of APC-specific short-hairpin (sh) RNAs, and assessed using quantitative (q) reverse-transcriptase (RT)-PCR and western blotting. Tumor cell motility was analyzed by performing wound-filling assays, and morphology via immunofluorescence (IF) and phase-contrast microscopy. Additionally, proliferation was measured using BrdU incorporation, and TCF reporter assays were performed to determine β-catenin/TCF-mediated transcriptional activity. APC/β-catenin-rich complexes were observed at protrusion ends of migratory epithelial cells treated with a proteasome inhibitor or when EMT has been induced and in tumor cells with a mesenchymal, spindle-like morphology. 4T07 tumor cells with reduced APC levels were significantly less motile and had a more rounded morphology; yet, they did not differ significantly in proliferation or β-catenin/TCF transcriptional activity. Furthermore, we found that APC/β-catenin-rich complexes at protrusion ends were dependent upon an intact microtubule cytoskeleton. These findings indicate that membrane protrusions with APC/β-catenin-containing puncta control the migratory potential and

  6. APC/β-catenin-rich complexes at membrane protrusions regulate mammary tumor cell migration and mesenchymal morphology

    Science.gov (United States)

    2013-01-01

    Background The APC tumor suppressor is mutated or downregulated in many tumor types, and is prominently localized to punctate clusters at protrusion tips in migratory cells, such as in astrocytes where it has been implicated in directed cell motility. Although APC loss is considered an initiating event in colorectal cancer, for example, it is less clear what role APC plays in tumor cell motility and whether loss of APC might be an important promoter of tumor progression in addition to initiation. Methods The localization of APC and β-catenin was analyzed in multiple cell lines, including non-transformed epithelial lines treated with a proteasome inhibitor or TGFβ to induce an epithelial-to-mesenchymal transition (EMT), as well as several breast cancer lines, by immunofluorescence. APC expression was knocked down in 4T07 mammary tumor cells using lentiviral-mediated delivery of APC-specific short-hairpin (sh) RNAs, and assessed using quantitative (q) reverse-transcriptase (RT)-PCR and western blotting. Tumor cell motility was analyzed by performing wound-filling assays, and morphology via immunofluorescence (IF) and phase-contrast microscopy. Additionally, proliferation was measured using BrdU incorporation, and TCF reporter assays were performed to determine β-catenin/TCF-mediated transcriptional activity. Results APC/β-catenin-rich complexes were observed at protrusion ends of migratory epithelial cells treated with a proteasome inhibitor or when EMT has been induced and in tumor cells with a mesenchymal, spindle-like morphology. 4T07 tumor cells with reduced APC levels were significantly less motile and had a more rounded morphology; yet, they did not differ significantly in proliferation or β-catenin/TCF transcriptional activity. Furthermore, we found that APC/β-catenin-rich complexes at protrusion ends were dependent upon an intact microtubule cytoskeleton. Conclusions These findings indicate that membrane protrusions with APC/β-catenin-containing puncta

  7. Resolving tumor heterogeneity: genes involved in chordoma cell development identified by low-template analysis of morphologically distinct cells.

    Directory of Open Access Journals (Sweden)

    Amin El-Heliebi

    Full Text Available The classical sacrococcygeal chordoma tumor presents with a typical morphology of lobulated myxoid tumor tissue with cords, strands and nests of tumor cells. The population of cells consists of small non-vacuolated cells, intermediate cells with a wide range of vacuolization and large heavily vacuolated (physaliferous cells. To date analysis was only performed on bulk tumor mass because of its rare incidence, lack of suited model systems and technical limitations thereby neglecting its heterogeneous composition. We intended to clarify whether the observed cell types are derived from genetically distinct clones or represent different phenotypes. Furthermore, we aimed at elucidating the differences between small non-vacuolated and large physaliferous cells on the genomic and transcriptomic level. Phenotype-specific analyses of small non-vacuolated and large physaliferous cells in two independent chordoma cell lines yielded four candidate genes involved in chordoma cell development. UCHL3, coding for an ubiquitin hydrolase, was found to be over-expressed in the large physaliferous cell phenotype of MUG-Chor1 (18.7-fold and U-CH1 (3.7-fold cells. The mannosyltransferase ALG11 (695-fold and the phosphatase subunit PPP2CB (18.6-fold were found to be up-regulated in large physaliferous MUG-Chor1 cells showing a similar trend in U-CH1 cells. TMEM144, an orphan 10-transmembrane family receptor, yielded contradictory data as cDNA microarray analysis showed up- but RT-qPCR data down-regulation in large physaliferous MUG-Chor1 cells. Isolation of few but morphologically identical cells allowed us to overcome the limitations of bulk analysis in chordoma research. We identified the different chordoma cell phenotypes to be part of a developmental process and discovered new genes linked to chordoma cell development representing potential targets for further research in chordoma tumor biology.

  8. Chromosome aberrations: plants to human and Feulgen to FISH

    International Nuclear Information System (INIS)

    Natarajan, A.T.

    2005-01-01

    Chromosome aberrations and their impact on human health have been recognized for a long time. In the 1950s, in India, studies on induced chromosome aberrations in plants were initiated by Swaminathan and his students. I trace here the impact of these initial studies on further developments in this field. The studies which were started in plants have been extended to mammals (including human) and the simple squash and solid staining have been improved by molecular cytogenetic techniques, thus enabling accurate identification and quantification of different types of chromosome aberrations. These studies have also thrown light on the mechanisms of chromosome aberration formation, especially following exposure to ionizing radiation. (author)

  9. Stage specificity and dose-response relationships for chromosome aberrations induced in mouse primary spermatocytes following X-irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Matsuda, Y.; Tobari, I.; Utsugi, T.

    1986-05-01

    In this study, dose-response relationships were examined for chromosome aberrations observed at diakinesis-metaphase I of spermatocytes with X-irradiation at various stages of meiosis (diplotene, mid-pachytene, zygotene and leptotene). The frequencies of cells with X-ray-induced chromosome aberrations increased with dose at all stages in the applied range of 0.5-3.0 Gy and tended to increase as the irradiated stages descended after leptotene stage. In three stages, the frequencies increased exponentially with dose, but the rates of induction of chromosome breaks were markedly different depending on the stages at which spermatocytes were irradiated with X-rays. The rate of induction was the highest at diplotene and the lowest at leptotene, suggesting that diplotene spermatocytes had the highest radiosensitivity to the induction of chromosome breaks, followed by pachytene, zygotene and leptotene spermatocytes in that order. The dose-response relationships fitted well to linear equations for deletion-type aberrations at each stage, and to linear-quadratic equations for exchange-type aberrations at all stages except for leptotene. At leptotene, the chromatid exchanges were hardly observed, the aberrations being mainly consisted of iso-chromatid fragments. On the contrary, chromatid exchanges and iso-chromatide deletions were mainly observed at later stages (zygotene-diplotene).

  10. Specific features of red blood cell morphology in hemolytic disease neonates undergoing intrauterine intravascular blood transfusion

    Directory of Open Access Journals (Sweden)

    A. V. Ivanova

    2016-01-01

    Full Text Available The paper presents data on the characteristics of red blood cell morphology in infants who have undergone intrauterine intravascular blood transfusion for hemolytic disease of the fetus. The infants are shown to have a reduction in the mean volume of red blood cells and in their mean level of hemoglobin, a decrease in the fraction of fetal hemoglobin and an increase in oxygen tension at half saturation. The above morphological characteristics of red blood cells remain decreased during the neonatal period after exchange transfusion or others, as clinically indicated, which seems to suggest that the compensatory-adaptive mechanisms to regulate hematopoiesis are exhausted and a donor’s red blood cells continue to be predominant.

  11. Pervasive transcription read-through promotes aberrant expression of oncogenes and RNA chimeras in renal carcinoma

    Science.gov (United States)

    Grosso, Ana R; Leite, Ana P; Carvalho, Sílvia; Matos, Mafalda R; Martins, Filipa B; Vítor, Alexandra C; Desterro, Joana MP; Carmo-Fonseca, Maria; de Almeida, Sérgio F

    2015-01-01

    Aberrant expression of cancer genes and non-canonical RNA species is a hallmark of cancer. However, the mechanisms driving such atypical gene expression programs are incompletely understood. Here, our transcriptional profiling of a cohort of 50 primary clear cell renal cell carcinoma (ccRCC) samples from The Cancer Genome Atlas (TCGA) reveals that transcription read-through beyond the termination site is a source of transcriptome diversity in cancer cells. Amongst the genes most frequently mutated in ccRCC, we identified SETD2 inactivation as a potent enhancer of transcription read-through. We further show that invasion of neighbouring genes and generation of RNA chimeras are functional outcomes of transcription read-through. We identified the BCL2 oncogene as one of such invaded genes and detected a novel chimera, the CTSC-RAB38, in 20% of ccRCC samples. Collectively, our data highlight a novel link between transcription read-through and aberrant expression of oncogenes and chimeric transcripts that is prevalent in cancer. DOI: http://dx.doi.org/10.7554/eLife.09214.001 PMID:26575290

  12. FREQUENCY OF CHROMOSOMAL ABERRATIONS AND MICRONUCLEI IN HORSE LYMPHOCYTES FOLLOWING IN VITRO EXPOSURE TO LOW DOSE IONISING RADIATION

    Directory of Open Access Journals (Sweden)

    Dunja Rukavina

    2012-07-01

    Full Text Available Ionising radiation is known to cause chromosomal instability, which is observed as increased frequency of chromosomal aberration and micronuclei. These are listed as reliable criteria in biological dosimetry. Numerous experiments conducted on both animal and plant models demonstrated that increase in radiation dosage is followed by increased mutation frequency, and that mutations occur even at the lowest exposure. We used horse blood in vitro irradiated by low doses of ionizing radiation. Cultivation of peripheral blood lymphocytes and micronucleus test were used as biomarkers of genetic damage. The observed aberrations were recorded and classified in accordance with the International System of Cytogenetic Nomenclature. Micronuclei were identified on the basis of criteria proposed by Fenech et al. (8. Analysis of chromosomal aberration showed increased frequency of aberrations in blood cultures exposed to 0,1 Gy and 0,2 Gy compared to the controls. Microscopic analysis of chromosomal damage in in vitro micronucleus test revealed that the applied radiation dose induced micronuclei while no binucleated cells with micronuclei were found in lymphocytes that were not irradiated. In this paper we analysed the influence of low dose ionising radiation on frequency of chromosomal aberration and micronuclei in horse lymphocytes following in vitro exposure to X-rays (0,1 Gy and 0,2 Gy. Key words: chromosomal aberrations, micronuclei, ionising radiation, horse lymphocytes

  13. Theory of aberration fields for general optical systems with freeform surfaces.

    Science.gov (United States)

    Fuerschbach, Kyle; Rolland, Jannick P; Thompson, Kevin P

    2014-11-03

    This paper utilizes the framework of nodal aberration theory to describe the aberration field behavior that emerges in optical systems with freeform optical surfaces, particularly φ-polynomial surfaces, including Zernike polynomial surfaces, that lie anywhere in the optical system. If the freeform surface is located at the stop or pupil, the net aberration contribution of the freeform surface is field constant. As the freeform optical surface is displaced longitudinally away from the stop or pupil of the optical system, the net aberration contribution becomes field dependent. It is demonstrated that there are no new aberration types when describing the aberration fields that arise with the introduction of freeform optical surfaces. Significantly it is shown that the aberration fields that emerge with the inclusion of freeform surfaces in an optical system are exactly those that have been described by nodal aberration theory for tilted and decentered optical systems. The key contribution here lies in establishing the field dependence and nodal behavior of each freeform term that is essential knowledge for effective application to optical system design. With this development, the nodes that are distributed throughout the field of view for each aberration type can be anticipated and targeted during optimization for the correction or control of the aberrations in an optical system with freeform surfaces. This work does not place any symmetry constraints on the optical system, which could be packaged in a fully three dimensional geometry, without fold mirrors.

  14. Aberrant internal carotid artery in the middle ear

    Energy Technology Data Exchange (ETDEWEB)

    Roh, Keun Tak; Kang, Hyun Koo [Dept. of Radiology, Seoul Veterans Hospital, Seoul (Korea, Republic of)

    2014-10-15

    The knowledge about the aberrant internal carotid artery (ICA) in the middle ear is essential for clinicians, because a misdiagnosis of the aberrant ICA could have serious consequences such as excessive aural bleeding during a middle ear surgery. A 38-year-old woman presented with tinnitus and hearing difficulties of the left ear that had started 5 years ago. During otoscopy, an anteroinferior bluish mass was seen in the tympanic space. Computed tomography and magnetic resonance imaging demonstrated a left-side aberrant ICA with bony dehiscence of the carotid canal in the middle ear and a reduced diameter of the tympanic ICA. Herein we report a case of an aberrant ICA in the middle ear. We also review the literature regarding this important vascular anomaly of the temporal bone which may lead to disastrous surgical complications.

  15. Aberrant internal carotid artery in the middle ear

    International Nuclear Information System (INIS)

    Roh, Keun Tak; Kang, Hyun Koo

    2014-01-01

    The knowledge about the aberrant internal carotid artery (ICA) in the middle ear is essential for clinicians, because a misdiagnosis of the aberrant ICA could have serious consequences such as excessive aural bleeding during a middle ear surgery. A 38-year-old woman presented with tinnitus and hearing difficulties of the left ear that had started 5 years ago. During otoscopy, an anteroinferior bluish mass was seen in the tympanic space. Computed tomography and magnetic resonance imaging demonstrated a left-side aberrant ICA with bony dehiscence of the carotid canal in the middle ear and a reduced diameter of the tympanic ICA. Herein we report a case of an aberrant ICA in the middle ear. We also review the literature regarding this important vascular anomaly of the temporal bone which may lead to disastrous surgical complications.

  16. Acquisition of Genetic Aberrations by Activation-Induced Cytidine Deaminase (AID) during Inflammation-Associated Carcinogenesis

    International Nuclear Information System (INIS)

    Takai, Atsushi; Marusawa, Hiroyuki; Chiba, Tsutomu

    2011-01-01

    Genetic abnormalities such as nucleotide alterations and chromosomal disorders that accumulate in various tumor-related genes have an important role in cancer development. The precise mechanism of the acquisition of genetic aberrations, however, remains unclear. Activation-induced cytidine deaminase (AID), a nucleotide editing enzyme, is essential for the diversification of antibody production. AID is expressed only in activated B lymphocytes under physiologic conditions and induces somatic hypermutation and class switch recombination in immunoglobulin genes. Inflammation leads to aberrant AID expression in various gastrointestinal organs and increased AID expression contributes to cancer development by inducing genetic alterations in epithelial cells. Studies of how AID induces genetic disorders are expected to elucidate the mechanism of inflammation-associated carcinogenesis

  17. Study of radiation-induced chromosomal aberrations; Untersuchung strahleninduzierter Chromosomenaberrationen. Bestrahlung der Brustdruesenepithelzelllinie MCF-12A mit Roentgenstrahlung aus konventionellen Roentgenroehren und Bestimmung der Dosis-Effekt-Kurve. Studienarbeit

    Energy Technology Data Exchange (ETDEWEB)

    Wolfring, E. [Technische Univ. Bergakademie Freiberg (Germany). Interdisziplinaeres Oekologisches Zentrum

    2004-06-01

    A method for determining chromosomal aberrations was established for the purpose of examining the relative biological effectiveness (RBE) of photon radiation with respect to mammary epithelium cells. Cells were exposed to 25 kV X-radiation and to 200 kV X-radiation for comparison and the resulting concentrations of chromosomal aberrations were compared. The RBE{sub M} value for radiation-induced fragmentation was found to be 4.2 {+-} 2.4, while the RBE{sub M} value for radiation-induced generation of dicentric chromosomes was found to be 0.5 {+-} 0.5. In addition to the evaluation of chromosomal aberrations the number of cell cycles undergone by the cells was monitored by means of BrDU staining. As expected, the proportion of cells which underwent more than one cell cycle following exposure to 5 Gy was very low in both cases, amounting to 1.9% (25 kV) and 3.2 (200 kV). Non-radiated cells yielded control values of 26.0% and 12.6%, suggesting variations in external conditions from day to day.

  18. Human hereditary diseases associated with elevated frequency of chromosome aberrations

    International Nuclear Information System (INIS)

    Ejima, Yosuke

    1988-01-01

    Human recessive diseases collectively known as chromosome breakage syndromes include Fanconi's anemia, Bloom's syndrome and ataxia telangiectasia. Cells from these patients show chromosome instabilities both spontaneously and following treatments with radiations or certain chemicals, where defects in DNA metabolisms are supposed to be involved. Cells from patients with ataxia telangiectasia are hypersensitive to ionizing radiations, though DNA replication is less affected than in normal cells. Chromatid-type as well as chromosom-type aberrations are induced in cells irradiated in G 0 or G 1 phases. These unusual responses to radiations may provide clues for understanding the link between DNA replicative response and cellular radiosensitivity. Alterations in cellular radiosensitivity or spontaneous chromosome instabilities are observed in some patients with congenital chromosome anomalies or dominant diseases, where underlying defects may be different from those in recessive diseases. (author)

  19. Human hereditary diseases associated with elevated frequency of chromosome aberrations

    Energy Technology Data Exchange (ETDEWEB)

    Ejima, Yosuke; Ikushima, Takaji (ed.)

    1988-07-01

    Human recessive diseases collectively known as chromosome breakage syndromes include Fanconi's anemia, Bloom's syndrome and ataxia telangiectasia. Cells from these patients show chromosome instabilities both spontaneously and following treatments with radiations or certain chemicals, where defects in DNA metabolisms are supposed to be involved. Cells from patients with ataxia telangiectasia are hypersensitive to ionizing radiations, though DNA replication is less affected than in normal cells. Chromatid-type as well as chromosom-type aberrations are induced in cells irradiated in G/sub 0/ or G/sub 1/ phases. These unusual responses to radiations may provide clues for understanding the link between DNA replicative response and cellular radiosensitivity. Alterations in cellular radiosensitivity or spontaneous chromosome instabilities are observed in some patients with congenital chromosome anomalies or dominant diseases, where underlying defects may be different from those in recessive diseases.

  20. Live-cell imaging study of mitochondrial morphology in mammalian cells exposed to X-rays

    International Nuclear Information System (INIS)

    Noguchi, M.; Yokoya, A.; Narita, A.; Fujii, K.; Kanari, Y.

    2015-01-01

    Morphological changes in mitochondria induced by X-irradiation in normal murine mammary gland cells were studied with a live-cell microscopic imaging technique. Mitochondria were visualised by staining with a specific fluorescent probe in the cells, which express fluorescent ubiquitination-based cell-cycle indicator 2 (Fucci2) probes to visualise cell cycle. In unirradiated cells, the number of cells with fragmented mitochondria was about 20 % of the total cells through observation period (96 h). In irradiated cells, the population with fragmented mitochondria significantly increased depending on the absorbed dose. Particularly, for 8 Gy irradiation, the accumulation of fragmentation persists even in the cells whose cell cycle came to a stand (80 % in G1 (G0-like) phase). The fraction reached to a maximum at 96 h after irradiation. The kinetics of the fraction with fragmented mitochondria was similar to that for cells in S/G2/M phase (20 %) through the observation period (120 h). The evidences show that, in irradiated cells, some signals are continually released from a nucleus or cytoplasm even in the G0-like cells to operate some sort of protein machineries involved in mitochondrial fission. It is inferred that this delayed mitochondrial fragmentation is strongly related to their dysfunction, and hence might modulate radiobiological effects such as mutation or cell death. (authors)