WorldWideScience

Sample records for aberrant brain development

  1. Schizotypal perceptual aberrations of time: correlation between score, behavior and brain activity.

    Directory of Open Access Journals (Sweden)

    Shahar Arzy

    Full Text Available A fundamental trait of the human self is its continuum experience of space and time. Perceptual aberrations of this spatial and temporal continuity is a major characteristic of schizophrenia spectrum disturbances--including schizophrenia, schizotypal personality disorder and schizotypy. We have previously found the classical Perceptual Aberration Scale (PAS scores, related to body and space, to be positively correlated with both behavior and temporo-parietal activation in healthy participants performing a task involving self-projection in space. However, not much is known about the relationship between temporal perceptual aberration, behavior and brain activity. To this aim, we composed a temporal Perceptual Aberration Scale (tPAS similar to the traditional PAS. Testing on 170 participants suggested similar performance for PAS and tPAS. We then correlated tPAS and PAS scores to participants' performance and neural activity in a task of self-projection in time. tPAS scores correlated positively with reaction times across task conditions, as did PAS scores. Evoked potential mapping and electrical neuroimaging showed self-projection in time to recruit a network of brain regions at the left anterior temporal cortex, right temporo-parietal junction, and occipito-temporal cortex, and duration of activation in this network positively correlated with tPAS and PAS scores. These data demonstrate that schizotypal perceptual aberrations of both time and space, as reflected by tPAS and PAS scores, are positively correlated with performance and brain activation during self-projection in time in healthy individuals along the schizophrenia spectrum.

  2. Direct modulation of aberrant brain network connectivity through real-time NeuroFeedback.

    Science.gov (United States)

    Ramot, Michal; Kimmich, Sara; Gonzalez-Castillo, Javier; Roopchansingh, Vinai; Popal, Haroon; White, Emily; Gotts, Stephen J; Martin, Alex

    2017-09-16

    The existence of abnormal connectivity patterns between resting state networks in neuropsychiatric disorders, including Autism Spectrum Disorder (ASD), has been well established. Traditional treatment methods in ASD are limited, and do not address the aberrant network structure. Using real-time fMRI neurofeedback, we directly trained three brain nodes in participants with ASD, in which the aberrant connectivity has been shown to correlate with symptom severity. Desired network connectivity patterns were reinforced in real-time, without participants' awareness of the training taking place. This training regimen produced large, significant long-term changes in correlations at the network level, and whole brain analysis revealed that the greatest changes were focused on the areas being trained. These changes were not found in the control group. Moreover, changes in ASD resting state connectivity following the training were correlated to changes in behavior, suggesting that neurofeedback can be used to directly alter complex, clinically relevant network connectivity patterns.

  3. Direct modulation of aberrant brain network connectivity through real-time NeuroFeedback

    Science.gov (United States)

    Kimmich, Sara; Gonzalez-Castillo, Javier; Roopchansingh, Vinai; Popal, Haroon; White, Emily; Gotts, Stephen J; Martin, Alex

    2017-01-01

    The existence of abnormal connectivity patterns between resting state networks in neuropsychiatric disorders, including Autism Spectrum Disorder (ASD), has been well established. Traditional treatment methods in ASD are limited, and do not address the aberrant network structure. Using real-time fMRI neurofeedback, we directly trained three brain nodes in participants with ASD, in which the aberrant connectivity has been shown to correlate with symptom severity. Desired network connectivity patterns were reinforced in real-time, without participants’ awareness of the training taking place. This training regimen produced large, significant long-term changes in correlations at the network level, and whole brain analysis revealed that the greatest changes were focused on the areas being trained. These changes were not found in the control group. Moreover, changes in ASD resting state connectivity following the training were correlated to changes in behavior, suggesting that neurofeedback can be used to directly alter complex, clinically relevant network connectivity patterns. PMID:28917059

  4. Measuring aberrations in the rat brain by coherence-gated wavefront sensing using a Linnik interferometer.

    Science.gov (United States)

    Wang, Jinyu; Léger, Jean-François; Binding, Jonas; Boccara, A Claude; Gigan, Sylvain; Bourdieu, Laurent

    2012-10-01

    Aberrations limit the resolution, signal intensity and achievable imaging depth in microscopy. Coherence-gated wavefront sensing (CGWS) allows the fast measurement of aberrations in scattering samples and therefore the implementation of adaptive corrections. However, CGWS has been demonstrated so far only in weakly scattering samples. We designed a new CGWS scheme based on a Linnik interferometer and a SLED light source, which is able to compensate dispersion automatically and can be implemented on any microscope. In the highly scattering rat brain tissue, where multiply scattered photons falling within the temporal gate of the CGWS can no longer be neglected, we have measured known defocus and spherical aberrations up to a depth of 400 µm.

  5. Nonlinear adaptive optics: aberration correction in three photon fluorescence microscopy for mouse brain imaging

    Science.gov (United States)

    Sinefeld, David; Paudel, Hari P.; Wang, Tianyu; Wang, Mengran; Ouzounov, Dimitre G.; Bifano, Thomas G.; Xu, Chris

    2017-02-01

    Multiphoton fluorescence microscopy is a well-established technique for deep-tissue imaging with subcellular resolution. Three-photon microscopy (3PM) when combined with long wavelength excitation was shown to allow deeper imaging than two-photon microscopy (2PM) in biological tissues, such as mouse brain, because out-of-focus background light can be further reduced due to the higher order nonlinear excitation. As was demonstrated in 2PM systems, imaging depth and resolution can be improved by aberration correction using adaptive optics (AO) techniques which are based on shaping the scanning beam using a spatial light modulator (SLM). In this way, it is possible to compensate for tissue low order aberration and to some extent, to compensate for tissue scattering. Here, we present a 3PM AO microscopy system for brain imaging. Soliton self-frequency shift is used to create a femtosecond source at 1675 nm and a microelectromechanical (MEMS) SLM serves as the wavefront shaping device. We perturb the 1020 segment SLM using a modified nonlinear version of three-point phase shifting interferometry. The nonlinearity of the fluorescence signal used for feedback ensures that the signal is increasing when the spot size decreases, allowing compensation of phase errors in an iterative optimization process without direct phase measurement. We compare the performance for different orders of nonlinear feedback, showing an exponential growth in signal improvement as the nonlinear order increases. We demonstrate the impact of the method by applying the 3PM AO system for in-vivo mouse brain imaging, showing improvement in signal at 1-mm depth inside the brain.

  6. Peroxisomes in brain development and function☆

    Science.gov (United States)

    Berger, Johannes; Dorninger, Fabian; Forss-Petter, Sonja; Kunze, Markus

    2016-01-01

    Peroxisomes contain numerous enzymatic activities that are important for mammalian physiology. Patients lacking either all peroxisomal functions or a single enzyme or transporter function typically develop severe neurological deficits, which originate from aberrant development of the brain, demyelination and loss of axonal integrity, neuroinflammation or other neurodegenerative processes. Whilst correlating peroxisomal properties with a compilation of pathologies observed in human patients and mouse models lacking all or individual peroxisomal functions, we discuss the importance of peroxisomal metabolites and tissue- and cell type-specific contributions to the observed brain pathologies. This enables us to deconstruct the local and systemic contribution of individual metabolic pathways to specific brain functions. We also review the recently discovered variability of pathological symptoms in cases with unexpectedly mild presentation of peroxisome biogenesis disorders. Finally, we explore the emerging evidence linking peroxisomes to more common neurological disorders such as Alzheimer’s disease, autism and amyotrophic lateral sclerosis. This article is part of a Special Issue entitled: Peroxisomes edited by Ralf Erdmann. PMID:26686055

  7. Neurovascular coupling and energy metabolism in the developing brain

    Science.gov (United States)

    Kozberg, M.; Hillman, E.

    2016-01-01

    In the adult brain, increases in local neural activity are almost always accompanied by increases in local blood flow. However, many functional imaging studies of the newborn and developing human brain have observed patterns of hemodynamic responses that differ from adult responses. Among the proposed mechanisms for the observed variations is that neurovascular coupling itself is still developing in the perinatal brain. Many of the components thought to be involved in actuating and propagating this hemodynamic response are known to still be developing postnatally, including perivascular cells such as astrocytes and pericytes. Both neural and vascular networks expand and are then selectively pruned over the first year of human life. Additionally, the metabolic demands of the newborn brain are still evolving. These changes are highly likely to affect early postnatal neurovascular coupling, and thus may affect functional imaging signals in this age group. This chapter will discuss the literature relating to neurovascular development. Potential effects of normal and aberrant development of neurovascular coupling on the newborn brain will also be explored, as well as ways to effectively utilize imaging techniques that rely on hemodynamic modulation such as fMRI and NIRS in younger populations. PMID:27130418

  8. Sex-Specific Patterns of Aberrant Brain Function in First-Episode Treatment-Naive Patients with Schizophrenia.

    Science.gov (United States)

    Lei, Wei; Li, Mingli; Deng, Wei; Zhou, Yi; Ma, Xiaohong; Wang, Qiang; Guo, Wanjun; Li, Yinfei; Jiang, Lijun; Han, Yuanyuan; Huang, Chaohua; Hu, Xun; Li, Tao

    2015-07-16

    Male and female patients with schizophrenia show significant differences in a number of important clinical features, yet the neural substrates of these differences are still poorly understood. Here we explored the sex differences in the brain functional aberrations in 124 treatment-naïve patients with first-episode schizophrenia (61 males), compared with 102 age-matched healthy controls (50 males). Maps of degree centrality (DC) and amplitude of low-frequency fluctuations (ALFF) were constructed using resting-state functional magnetic resonance imaging data and compared between groups. We found that: (1) Selective DC reduction was observed in the right putamen (Put_R) in male patients and the left middle frontal gyrus (MFG) in female patients; (2) Functional connectivity analysis (using Put_R and MFG as seeds) found that male and female patients have disturbed functional integration in two separate networks, i.e., the sensorimotor network and the default mode network; (3) Significant ALFF alterations were also observed in these two networks in both genders; (4) Sex specific brain functional alterations were associated with various symptoms in patients. These results suggested that sex-specific patterns of functional aberration existed in schizophrenia, and these patterns were associated with the clinical features both in male and female patients.

  9. Sex-Specific Patterns of Aberrant Brain Function in First-Episode Treatment-Naive Patients with Schizophrenia

    Directory of Open Access Journals (Sweden)

    Wei Lei

    2015-07-01

    Full Text Available Male and female patients with schizophrenia show significant differences in a number of important clinical features, yet the neural substrates of these differences are still poorly understood. Here we explored the sex differences in the brain functional aberrations in 124 treatment-naïve patients with first-episode schizophrenia (61 males, compared with 102 age-matched healthy controls (50 males. Maps of degree centrality (DC and amplitude of low-frequency fluctuations (ALFF were constructed using resting-state functional magnetic resonance imaging data and compared between groups. We found that: (1 Selective DC reduction was observed in the right putamen (Put_R in male patients and the left middle frontal gyrus (MFG in female patients; (2 Functional connectivity analysis (using Put_R and MFG as seeds found that male and female patients have disturbed functional integration in two separate networks, i.e., the sensorimotor network and the default mode network; (3 Significant ALFF alterations were also observed in these two networks in both genders; (4 Sex specific brain functional alterations were associated with various symptoms in patients. These results suggested that sex-specific patterns of functional aberration existed in schizophrenia, and these patterns were associated with the clinical features both in male and female patients.

  10. Aberrant paramagnetic signals outside the tumor volume on routine surveillance MRI of brain tumor patients.

    Science.gov (United States)

    Yust-Katz, Shlomit; Inbar, Edna; Michaeli, Natalia; Limon, Dror; Siegal, Tali

    2017-09-01

    Late complications of cerebral radiation therapy (RT) involve vascular injury with acquired cavernous malformation, telangiectasias and damage to vascular walls which are well recognized in children. Its incidence in adults is unknown. Blood products and iron deposition that accompany vascular injury create paramagnetic effects on MRI. This study retrospectively investigated the frequency of paramagnetic lesions on routine surveillance MRI of adult brain tumor patients. MRI studies of 115 brain tumor patients were reviewed. Only studies containing sequences of either susceptibility weighted images or gradient echo or blood oxygenation level dependent imaging were included. Lesions inside the tumor volume were not considered. 68 studies fulfilled the above criteria and included 48 patients with previous RT (35 followed for >2 years and 13 for 1 year) and 20 patients who were not treated with RT. The median age at time of irradiation was 47 years. Aberrant paramagnetic lesions were found in 23/35 (65%) patients followed for >2 years after RT and in only 1/13 (8%) patients followed for 1-year after radiation (p = 0.03). The 1-year follow-up group did not differ from the control group [2/20 (9%)]. Most lesions were within the radiation field and none of the patients had related symptomatology. The number and incidence of these lesions increased with time and amounted to 75% over 3 years post RT. MRI paramagnetic signal aberrations are common findings in adult brain tumor patients that evolve over time after RT. The clinical significance of these lesions needs further investigation.

  11. Correspondence Between Aberrant Intrinsic Network Connectivity and Gray-Matter Volume in the Ventral Brain of Preterm Born Adults.

    Science.gov (United States)

    Bäuml, Josef G; Daamen, Marcel; Meng, Chun; Neitzel, Julia; Scheef, Lukas; Jaekel, Julia; Busch, Barbara; Baumann, Nicole; Bartmann, Peter; Wolke, Dieter; Boecker, Henning; Wohlschläger, Afra M; Sorg, Christian

    2015-11-01

    Widespread brain changes are present in preterm born infants, adolescents, and even adults. While neurobiological models of prematurity facilitate powerful explanations for the adverse effects of preterm birth on the developing brain at microscale, convincing linking principles at large-scale level to explain the widespread nature of brain changes are still missing. We investigated effects of preterm birth on the brain's large-scale intrinsic networks and their relation to brain structure in preterm born adults. In 95 preterm and 83 full-term born adults, structural and functional magnetic resonance imaging at-rest was used to analyze both voxel-based morphometry and spatial patterns of functional connectivity in ongoing blood oxygenation level-dependent activity. Differences in intrinsic functional connectivity (iFC) were found in cortical and subcortical networks. Structural differences were located in subcortical, temporal, and cingulate areas. Critically, for preterm born adults, iFC-network differences were overlapping and correlating with aberrant regional gray-matter (GM) volume specifically in subcortical and temporal areas. Overlapping changes were predicted by prematurity and in particular by neonatal medical complications. These results provide evidence that preterm birth has long-lasting effects on functional connectivity of intrinsic networks, and these changes are specifically related to structural alterations in ventral brain GM. © The Author 2014. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  12. The human brain and face: mechanisms of cranial, neurological and facial development revealed through malformations of holoprosencephaly, cyclopia and aberrations in chromosome 18.

    Science.gov (United States)

    Gondré-Lewis, Marjorie C; Gboluaje, Temitayo; Reid, Shaina N; Lin, Stephen; Wang, Paul; Green, William; Diogo, Rui; Fidélia-Lambert, Marie N; Herman, Mary M

    2015-09-01

    The study of inborn genetic errors can lend insight into mechanisms of normal human development and congenital malformations. Here, we present the first detailed comparison of cranial and neuro pathology in two exceedingly rare human individuals with cyclopia and alobar holoprosencephaly (HPE) in the presence and absence of aberrant chromosome 18 (aCh18). The aCh18 fetus contained one normal Ch18 and one with a pseudo-isodicentric duplication of chromosome 18q and partial deletion of 18p from 18p11.31 where the HPE gene, TGIF, resides, to the p terminus. In addition to synophthalmia, the aCh18 cyclopic malformations included a failure of induction of most of the telencephalon - closely approximating anencephaly, unchecked development of brain stem structures, near absence of the sphenoid bone and a malformed neurocranium and viscerocranium that constitute the median face. Although there was complete erasure of the olfactory and superior nasal structures, rudiments of nasal structures derived from the maxillary bone were evident, but with absent pharyngeal structures. The second non-aCh18 cyclopic fetus was initially classified as a true Cyclops, as it appeared to have a proboscis and one median eye with a single iris, but further analysis revealed two eye globes as expected for synophthalmic cyclopia. Furthermore, the proboscis was associated with the medial ethmoid ridge, consistent with an incomplete induction of these nasal structures, even as the nasal septum and paranasal sinuses were apparently developed. An important conclusion of this study is that it is the brain that predicts the overall configuration of the face, due to its influence on the development of surrounding skeletal structures. The present data using a combination of macroscopic, computed tomography (CT) and magnetic resonance imaging (MRI) techniques provide an unparalleled analysis on the extent of the effects of median defects, and insight into normal development and patterning of the brain

  13. Involvement of Neuroinflammation during Brain Development in Social Cognitive Deficits in Autism Spectrum Disorder and Schizophrenia.

    Science.gov (United States)

    Nakagawa, Yutaka; Chiba, Kenji

    2016-09-01

    Development of social cognition, a unique and high-order function, depends on brain maturation from childhood to adulthood in humans. Autism spectrum disorder (ASD) and schizophrenia have similar social cognitive deficits, although age of onset in each disorder is different. Pathogenesis of these disorders is complex and contains several features, including genetic risk factors, environmental risk factors, and sites of abnormalities in the brain. Although several hypotheses have been postulated, they seem to be insufficient to explain how brain alterations associated with symptoms in these disorders develop at distinct developmental stages. Development of ASD appears to be related to cerebellar dysfunction and subsequent thalamic hyperactivation in early childhood. By contrast, schizophrenia seems to be triggered by thalamic hyperactivation in late adolescence, whereas hippocampal aberration has been possibly initiated in childhood. One of the possible culprits is metal homeostasis disturbances that can induce dysfunction of blood-cerebrospinal fluid barrier. Thalamic hyperactivation is thought to be induced by microglia-mediated neuroinflammation and abnormalities of intracerebral environment. Consequently, it is likely that the thalamic hyperactivation triggers dysregulation of the dorsolateral prefrontal cortex for lower brain regions related to social cognition. In this review, we summarize the brain aberration in ASD and schizophrenia and provide a possible mechanism underlying social cognitive deficits in these disorders based on their distinct ages of onset. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.

  14. Aberrant brain functional connectome in patients with obstructive sleep apnea.

    Science.gov (United States)

    Chen, Li-Ting; Fan, Xiao-Le; Li, Hai-Jun; Ye, Cheng-Long; Yu, Hong-Hui; Xin, Hui-Zhen; Gong, Hong-Han; Peng, De-Chang; Yan, Li-Ping

    2018-01-01

    Obstructive sleep apnea (OSA) is accompanied by widespread abnormal spontaneous regional activity related to cognitive deficits. However, little is known about the topological properties of the functional brain connectome of patients with OSA. This study aimed to use the graph theory approaches to investigate the topological properties and functional connectivity (FC) of the functional connectome in patients with OSA, based on resting-state functional magnetic resonance imaging (rs-fMRI). Forty-five male patients with newly diagnosed untreated severe OSA and 45 male good sleepers (GSs) underwent a polysomnography (PSG), clinical evaluations, and rs-fMRI scans. The automated anatomical labeling (AAL) atlas was used to construct the functional brain connectome. The topological organization and FC of brain functional networks in patients with OSA were characterized using graph theory methods and investigated the relationship between functional network topology and clinical variables. Both the patients with OSA and the GSs exhibited high-efficiency "small-world" network attributes. However, the patients with OSA exhibited decreased σ, γ, E glob ; increased Lp, λ; and abnormal nodal centralities in several default-mode network (DMN), salience network (SN), and central executive network (CEN) regions. However, the patients with OSA exhibited abnormal functional connections between the DMN, SN, and CEN. The disrupted FC was significantly positive correlations with the global network metrics γ and σ. The global network metrics were significantly correlated with the Epworth Sleepiness Scale (ESS) score, Montreal Cognitive Assessment (MoCA) score, and oxygen desaturation index. The findings suggest that the functional connectome of patients with OSA exhibited disrupted functional integration and segregation, and functional disconnections of the DMN, SN, and CEN. The aberrant topological attributes may be associated with disrupted FC and cognitive functions. These

  15. Different Aberrant Mentalizing Networks in Males and Females with Autism Spectrum Disorders: Evidence from Resting-State Functional Magnetic Resonance Imaging

    Science.gov (United States)

    Yang, Jie; Lee, Jonathan

    2018-01-01

    Previous studies have found that individuals with autism spectrum disorders show impairments in mentalizing processes and aberrant brain activity compared with typically developing participants. However, the findings are mainly from male participants and the aberrant effects in autism spectrum disorder females and sex differences are still…

  16. Structural brain aberrations associated with the dissociative subtype of post-traumatic stress disorder.

    Science.gov (United States)

    Daniels, J K; Frewen, P; Theberge, J; Lanius, R A

    2016-03-01

    One factor potentially contributing to the heterogeneity of previous results on structural grey matter alterations in adult participants suffering from post-traumatic stress disorder (PTSD) is the varying levels of dissociative symptomatology. The aim of this study was therefore to test whether the recently defined dissociative subtype of PTSD characterized by symptoms of depersonalization and derealization is characterized by specific differences in volumetric brain morphology. Whole-brain MRI data were acquired for 59 patients with PTSD. Voxel-based morphometry was carried out to test for group differences between patients classified as belonging (n = 15) vs. not belonging (n = 44) to the dissociative subtype of PTSD. The correlation between dissociation (depersonalization/derealization) severity and grey matter volume was computed. Patients with PTSD classified as belonging to the dissociative subtype exhibited greater grey matter volume in the right precentral and fusiform gyri as well as less volume in the right inferior temporal gyrus. Greater dissociation severity was associated with greater volume in the right middle frontal gyrus. The results of this first whole-brain investigation of specific grey matter volume in dissociative subtype PTSD indentified structural aberrations in regions subserving the processing and regulation of emotional arousal. These might constitute characteristic biomarkers for the dissociative subtype PTSD. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  17. GLUT3 gene expression is critical for embryonic growth, brain development and survival.

    Science.gov (United States)

    Carayannopoulos, Mary O; Xiong, Fuxia; Jensen, Penny; Rios-Galdamez, Yesenia; Huang, Haigen; Lin, Shuo; Devaskar, Sherin U

    2014-04-01

    Glucose is the primary energy source for eukaryotic cells and the predominant substrate for the brain. GLUT3 is essential for trans-placental glucose transport and highly expressed in the mammalian brain. To further elucidate the role of GLUT3 in embryonic development, we utilized the vertebrate whole animal model system of Danio rerio as a tractable system for defining the cellular and molecular mechanisms altered by impaired glucose transport and metabolism related to perturbed expression of GLUT3. The comparable orthologue of human GLUT3 was identified and the expression of this gene abrogated during early embryonic development. In a dose-dependent manner embryonic brain development was disrupted resulting in a phenotype of aberrant brain organogenesis, associated with embryonic growth restriction and increased cellular apoptosis. Rescue of the morphant phenotype was achieved by providing exogenous GLUT3 mRNA. We conclude that GLUT3 is critically important for brain organogenesis and embryonic growth. Disruption of GLUT3 is responsible for the phenotypic spectrum of embryonic growth restriction to demise and neural apoptosis with microcephaly. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Pluripotency Genes and Their Functions in the Normal and Aberrant Breast and Brain

    Directory of Open Access Journals (Sweden)

    Tracy Seymour

    2015-11-01

    Full Text Available Pluripotent stem cells (PSCs attracted considerable interest with the successful isolation of embryonic stem cells (ESCs from the inner cell mass of murine, primate and human embryos. Whilst it was initially thought that the only PSCs were ESCs, in more recent years cells with similar properties have been isolated from organs of the adult, including the breast and brain. Adult PSCs in these organs have been suggested to be remnants of embryonic development that facilitate normal tissue homeostasis during repair and regeneration. They share certain characteristics with ESCs, such as an inherent capacity to self-renew and differentiate into cells of the three germ layers, properties that are regulated by master pluripotency transcription factors (TFs OCT4 (octamer-binding transcription factor 4, SOX2 (sex determining region Y-box 2, and homeobox protein NANOG. Aberrant expression of these TFs can be oncogenic resulting in heterogeneous tumours fueled by cancer stem cells (CSC, which are resistant to conventional treatments and are associated with tumour recurrence post-treatment. Further to enriching our understanding of the role of pluripotency TFs in normal tissue function, research now aims to develop optimized isolation and propagation methods for normal adult PSCs and CSCs for the purposes of regenerative medicine, developmental biology, and disease modeling aimed at targeted personalised cancer therapies.

  19. Replication stress and oxidative damage contribute to aberrant constitutive activation of DNA damage signalling in human gliomas

    DEFF Research Database (Denmark)

    Bartkova, J; Hamerlik, P; Stockhausen, Marie

    2010-01-01

    brain and grade II astrocytomas, despite the degree of DDR activation was higher in grade II tumors. Markers indicative of ongoing DNA replication stress (Chk1 activation, Rad17 phosphorylation, replication protein A foci and single-stranded DNA) were present in GBM cells under high- or low...... and indicate that replication stress, rather than oxidative stress, fuels the DNA damage signalling in early stages of astrocytoma development.......Malignant gliomas, the deadliest of brain neoplasms, show rampant genetic instability and resistance to genotoxic therapies, implicating potentially aberrant DNA damage response (DDR) in glioma pathogenesis and treatment failure. Here, we report on gross, aberrant constitutive activation of DNA...

  20. An aberrant precision account of autism.

    Directory of Open Access Journals (Sweden)

    Rebecca P Lawson

    2014-05-01

    Full Text Available Autism is a neurodevelopmental disorder characterised by problems with social-communication, restricted interests and repetitive behaviour. A recent and controversial article presented a compelling normative explanation for the perceptual symptoms of autism in terms of a failure of Bayesian inference (Pellicano and Burr, 2012. In response, we suggested that when Bayesian interference is grounded in its neural instantiation – namely, predictive coding – many features of autistic perception can be attributed to aberrant precision (or beliefs about precision within the context of hierarchical message passing in the brain (Friston et al., 2013. Here, we unpack the aberrant precision account of autism. Specifically, we consider how empirical findings – that speak directly or indirectly to neurobiological mechanisms – are consistent with the aberrant encoding of precision in autism; in particular, an imbalance of the precision ascribed to sensory evidence relative to prior beliefs.

  1. Aberrant Modulation of Brain Oscillatory Activity and Attentional Impairment in Attention-Deficit/Hyperactivity Disorder.

    Science.gov (United States)

    Lenartowicz, Agatha; Mazaheri, Ali; Jensen, Ole; Loo, Sandra K

    2018-01-01

    Electroencephalography and magnetoencephalography are noninvasive neuroimaging techniques that have been used extensively to study various resting-state and cognitive processes in the brain. The purpose of this review is to highlight a number of recent studies that have investigated the alpha band (8-12 Hz) oscillatory activity present in magnetoencephalography and electroencephalography, to provide new insights into the maladaptive network activity underlying attentional impairments in attention-deficit/hyperactivity disorder (ADHD). Studies reviewed demonstrate that event-related decrease in alpha is attenuated during visual selective attention, primarily in ADHD inattentive type, and is often significantly associated with accuracy and reaction time during task performance. Furthermore, aberrant modulation of alpha activity has been reported across development and may have abnormal or atypical lateralization patterns in ADHD. Modulations in the alpha band thus represent a robust, relatively unexplored putative biomarker of attentional impairment and a strong prospect for future studies aimed at examining underlying neural mechanisms and treatment response among individuals with ADHD. Potential limitations of its use as a diagnostic biomarker and directions for future research are discussed. Copyright © 2017 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  2. Brain Development

    Science.gov (United States)

    ... Become a Member Home Early Development & Well-Being Brain Development A child’s brain undergoes an amazing period of development from birth ... neural connections each second. The development of the brain is influenced by many factors, including a child’s ...

  3. Chromosomal aberration

    International Nuclear Information System (INIS)

    Ishii, Yutaka

    1988-01-01

    Chromosomal aberrations are classified into two types, chromosome-type and chromatid-type. Chromosom-type aberrations include terminal deletion, dicentric, ring and interstitial deletion, and chromatid-type aberrations include achromatic lesion, chromatid deletion, isochromatid deletion and chromatid exchange. Clastogens which induce chromosomal aberration are divided into ''S-dependent'' agents and ''S-independent''. It might mean whether they can induce double strand breaks independent of the S phase or not. Double strand breaks may be the ultimate lesions to induce chromosomal aberrations. Caffeine added even in the G 2 phase appeared to modify the frequency of chromatid aberrations induced by X-rays and mitomycin C. Those might suggest that the G 2 phase involves in the chromatid aberration formation. The double strand breaks might be repaired by ''G 2 repair system'', the error of which might yield breakage types of chromatid aberrations and the by-pass of which might yield chromatid exchanges. Chromosome-type aberrations might be formed in the G 1 phase. (author)

  4. High resolution post-mortem MRI of non-fixed in situ foetal brain in the second trimester of gestation. Normal foetal brain development

    Energy Technology Data Exchange (ETDEWEB)

    Scola, Elisa; Palumbo, Giovanni; Avignone, Sabrina; Cinnante, Claudia Maria [Fondazione IRCCS Ca Granda Ospedale Maggiore Policlinico, Neuroradiology Unit, Milan (Italy); Conte, Giorgio [Fondazione IRCCS Ca Granda Ospedale Maggiore Policlinico, Neuroradiology Unit, Milan (Italy); Universita degli Studi di Milano, Postgraduation School in Radiodiagnostics, Milan (Italy); Boito, Simona; Persico, Nicola [Fondazione IRCCS Ca Granda Ospedale Maggiore Policlinico, Department of Obstetrics and Gynaecology ' L. Mangiagalli' , Milan (Italy); Rizzuti, Tommaso [Fondazione IRCCS Ca Granda Ospedale Maggiore Policlinico, Pathology Unit, Milan (Italy); Triulzi, Fabio [Fondazione IRCCS Ca Granda Ospedale Maggiore Policlinico, Neuroradiology Unit, Milan (Italy); Universita degli Studi di Milano, Department of Pathophysiology and Transplantation, Milan (Italy)

    2018-01-15

    To describe normal foetal brain development with high resolution post-mortem MRI (PMMRI) of non-fixed foetal brains. We retrospectively collected PMMRIs of foetuses without intracranial abnormalities and chromosomal aberrations studied after a termination of pregnancy due to extracranial abnormalities or after a spontaneous intrauterine death. PMMRIs were performed on a 3-T scanner without any fixation and without removing the brain from the skull. All PMMRIs were evaluated in consensus by two neuroradiologists. Our analysis included ten PMMRIs (median gestational age (GA): 21 weeks; range: 17-28 weeks). At 19 and 20 weeks of GA, the corticospinal tracts are recognisable in the medulla oblongata, becoming less visible from 21 weeks. Prior to 20 weeks the posterior limb of the internal capsule (PLIC) is more hypointense than surrounding deep grey nuclei; starting from 21 weeks the PLIC becomes isointense, and is hyperintense at 28 weeks. From 19-22 weeks, the cerebral hemispheres show transient layers: marginal zone, cortical plate, subplate, and intermediate, subventricular and germinal zones. PMMRI of non-fixed in situ foetal brains preserves the natural tissue contrast and skull integrity. We assessed foetal brain development in a small cohort of foetuses, focusing on 19-22 weeks of gestation. (orig.)

  5. High resolution post-mortem MRI of non-fixed in situ foetal brain in the second trimester of gestation. Normal foetal brain development

    International Nuclear Information System (INIS)

    Scola, Elisa; Palumbo, Giovanni; Avignone, Sabrina; Cinnante, Claudia Maria; Conte, Giorgio; Boito, Simona; Persico, Nicola; Rizzuti, Tommaso; Triulzi, Fabio

    2018-01-01

    To describe normal foetal brain development with high resolution post-mortem MRI (PMMRI) of non-fixed foetal brains. We retrospectively collected PMMRIs of foetuses without intracranial abnormalities and chromosomal aberrations studied after a termination of pregnancy due to extracranial abnormalities or after a spontaneous intrauterine death. PMMRIs were performed on a 3-T scanner without any fixation and without removing the brain from the skull. All PMMRIs were evaluated in consensus by two neuroradiologists. Our analysis included ten PMMRIs (median gestational age (GA): 21 weeks; range: 17-28 weeks). At 19 and 20 weeks of GA, the corticospinal tracts are recognisable in the medulla oblongata, becoming less visible from 21 weeks. Prior to 20 weeks the posterior limb of the internal capsule (PLIC) is more hypointense than surrounding deep grey nuclei; starting from 21 weeks the PLIC becomes isointense, and is hyperintense at 28 weeks. From 19-22 weeks, the cerebral hemispheres show transient layers: marginal zone, cortical plate, subplate, and intermediate, subventricular and germinal zones. PMMRI of non-fixed in situ foetal brains preserves the natural tissue contrast and skull integrity. We assessed foetal brain development in a small cohort of foetuses, focusing on 19-22 weeks of gestation. (orig.)

  6. Delineation of early brain development from fetuses to infants with diffusion MRI and beyond.

    Science.gov (United States)

    Ouyang, Minhui; Dubois, Jessica; Yu, Qinlin; Mukherjee, Pratik; Huang, Hao

    2018-04-12

    Dynamic macrostructural and microstructural changes take place from the mid-fetal stage to 2 years after birth. Delineating brain structural changes during this early developmental period provides new insights into the complicated processes of both typical brain development and the pathological mechanisms underlying various psychiatric and neurological disorders including autism, attention deficit hyperactivity disorder and schizophrenia. Decades of histological studies have identified strong spatial and functional gradients of maturation in human brain gray and white matter. The recent improvements in magnetic resonance imaging (MRI) techniques, especially diffusion MRI (dMRI), relaxometry imaging, and magnetization transfer imaging (MTI) have provided unprecedented opportunities to non-invasively quantify and map the early developmental changes at whole brain and regional levels. Here, we review the recent advances in understanding early brain structural development during the second half of gestation and the first two postnatal years using modern MR techniques. Specifically, we review studies that delineate the emergence and microstructural maturation of white matter tracts, as well as dynamic mapping of inhomogeneous cortical microstructural organization unique to fetuses and infants. These imaging studies converge into maturational curves of MRI measurements that are distinctive across different white matter tracts and cortical regions. Furthermore, contemporary models offering biophysical interpretations of the dMRI-derived measurements are illustrated to infer the underlying microstructural changes. Collectively, this review summarizes findings that contribute to charting spatiotemporally heterogeneous gray and white matter structural development, offering MRI-based biomarkers of typical brain development and setting the stage for understanding aberrant brain development in neurodevelopmental disorders. Copyright © 2018. Published by Elsevier Inc.

  7. Effect of maternal excessive sodium intake on postnatal brain development in rat offspring.

    Science.gov (United States)

    Shin, Jung-a; Ahn, Young-mo; Lee, Hye-ah; Park, Hyesook; Kim, Young-ju; Lee, Hwa-young

    2015-04-01

    Postnatal brain development is affected by the in utero environment. Modern people usually have a high sodium intake. The aim of this study was to investigate the effect of sodium hyperingestion during pregnancy on the postnatal brain development of rat offspring. The sodium-overloaded rats received 1.8% NaCl in their drinking water for 7 days during the last week of gestation. Their body weight, urine, and blood levels of sodium and other parameters were measured. Some rats were sacrificed at pregnancy day 22 and the weight and length of the placenta and foetus were measured. The cerebral cortex and hippocampus were obtained from their offspring at postnatal day 1 and at postnatal weeks 1, 2, 4, and 8. Western blot analyses were conducted with brain tissue lysates. The sodium-overloaded animals had decreased weight gain in the last week of gestation as well as decreased food intake, increased water intake, urine volume, urine sodium, and serum sodium. There were no differences in placental weight and length. The foetuses of sodium-overloaded rats showed decreased body weight and size, and this difference was maintained postnatally for 2 weeks. In the cerebral cortex and hippocampus of the offspring, the protein levels of myelin basic protein, calmodulin/calcium-dependent protein kinase II, and brain-derived neurotrophic factor were decreased or aberrantly expressed. The present data suggest that increased sodium intake during pregnancy affects the brain development of the offspring.

  8. Optical Aberrations and Wavefront

    Directory of Open Access Journals (Sweden)

    Nihat Polat

    2014-08-01

    Full Text Available The deviation of light to create normal retinal image in the optical system is called aberration. Aberrations are divided two subgroup: low-order aberrations (defocus: spherical and cylindrical refractive errors and high-order aberrations (coma, spherical, trefoil, tetrafoil, quadrifoil, pentafoil, secondary astigmatism. Aberrations increase with aging. Spherical aberrations are compensated by positive corneal and negative lenticular spherical aberrations in youth. Total aberrations are elevated by positive corneal and positive lenticular spherical aberrations in elderly. In this study, we aimed to analyze the basic terms regarding optic aberrations which have gained significance recently. (Turk J Ophthalmol 2014; 44: 306-11

  9. Aberrant regional brain activities in alcohol dependence: a functional magnetic resonance imaging study

    Directory of Open Access Journals (Sweden)

    Tu XZ

    2018-03-01

    the right cerebellum posterior lobe (CPL, left rectal gyrus (RG, and right cluster of pons and cerebellum anterior lobe (CAL. ROC curve revealed high area under the curve (AUC values (mean ± SD: 0.864 ± 0.028; range: 0.828–0.911 of ReHo differences. Diagnostic analysis showed that these areas alone discriminated alcohol-dependent subjects from healthy controls with high degree of sensitivities (mean ± SD: 81.25% ± 11.49%; range: 62.5%–100% and specificities (mean ± SD: 81.75% ± 12.36%; range: 67.5%–100%. Years of drink showed negative correlation with left RG (r = -0.493, p = 0.007, the same finding was shown between AUDIT and right CPL (r = -0.52, p = 0.004. Conclusion: Alcohol dependence is associated with aberrant regional activities in multiple brain areas. ReHo analysis may be a useful biological indicator for the detection of regional brain activities in individuals with alcohol dependence. Keywords: alcohol dependence, regional homogeneity, receiver operating characteristic

  10. Brain-specific Crmp2 deletion leads to neuronal development deficits and behavioural impairments in mice.

    Science.gov (United States)

    Zhang, Hongsheng; Kang, Eunchai; Wang, Yaqing; Yang, Chaojuan; Yu, Hui; Wang, Qin; Chen, Zheyu; Zhang, Chen; Christian, Kimberly M; Song, Hongjun; Ming, Guo-Li; Xu, Zhiheng

    2016-06-01

    Several genome- and proteome-wide studies have associated transcription and translation changes of CRMP2 (collapsing response mediator protein 2) with psychiatric disorders, yet little is known about its function in the developing or adult mammalian brain in vivo. Here we show that brain-specific Crmp2 knockout (cKO) mice display molecular, cellular, structural and behavioural deficits, many of which are reminiscent of neural features and symptoms associated with schizophrenia. cKO mice exhibit enlarged ventricles and impaired social behaviour, locomotor activity, and learning and memory. Loss of Crmp2 in the hippocampus leads to reduced long-term potentiation, abnormal NMDA receptor composition, aberrant dendrite development and defective synapse formation in CA1 neurons. Furthermore, knockdown of crmp2 specifically in newborn neurons results in stage-dependent defects in their development during adult hippocampal neurogenesis. Our findings reveal a critical role for CRMP2 in neuronal plasticity, neural function and behavioural modulation in mice.

  11. Nodal aberration theory applied to freeform surfaces

    Science.gov (United States)

    Fuerschbach, Kyle; Rolland, Jannick P.; Thompson, Kevin P.

    2014-12-01

    When new three-dimensional packages are developed for imaging optical systems, the rotational symmetry of the optical system is often broken, changing its imaging behavior and making the optical performance worse. A method to restore the performance is to use freeform optical surfaces that compensate directly the aberrations introduced from tilting and decentering the optical surfaces. In order to effectively optimize the shape of a freeform surface to restore optical functionality, it is helpful to understand the aberration effect the surface may induce. Using nodal aberration theory the aberration fields induced by a freeform surface in an optical system are explored. These theoretical predications are experimentally validated with the design and implementation of an aberration generating telescope.

  12. Altered Markers of Brain Development in Crohn's Disease with Extraintestinal Manifestations - A Pilot Study.

    Directory of Open Access Journals (Sweden)

    Anne K Thomann

    Full Text Available Alterations of brain morphology in Crohn's disease have been reported, but data is scarce and heterogenous and the possible impact of disease predisposition on brain development is unknown. Assuming a systemic course of the disease, brain involvement seems more probable in presence of extraintestinal manifestations, but this question has not yet been addressed. The present study examined the relationship between Crohn's disease and brain structure and focused on the connection with extraintestinal manifestations and markers of brain development.In a pilot study, brains of 15 patients with Crohn's disease (of which 9 had a history of extraintestinal manifestations, i.e. arthritis, erythema nodosum and primary sclerosing cholangitis were compared to matched healthy controls using high resolution magnetic resonance imaging. Patients and controls were tested for depression, fatigue and global cognitive function. Cortical thickness, surface area and folding were determined via cortical surface modeling.The overall group comparison (i.e. all patients vs. controls yielded no significant results. In the patient subgroup with extraintestinal manifestations, changes in cortical area and folding, but not thickness, were identified: Patients showed elevated cortical surface area in the left middle frontal lobe (p<0.05 and hypergyrification in the left lingual gyrus (p<0.001 compared to healthy controls. Hypogyrification of the right insular cortex (p<0.05 and hypergyrification of the right anterior cingulate cortex (p<0.001 were detected in the subgroup comparison of patients with against without extraintestinal manifestations. P-values are corrected for multiple comparisons.Our findings lend further support to the hypothesis that Crohn's disease is associated with aberrant brain structure and preliminary support for the hypothesis that these changes are associated with a systemic course of the disease as indicated by extraintestinal manifestations. Changes

  13. Iteration of ultrasound aberration correction methods

    Science.gov (United States)

    Maasoey, Svein-Erik; Angelsen, Bjoern; Varslot, Trond

    2004-05-01

    Aberration in ultrasound medical imaging is usually modeled by time-delay and amplitude variations concentrated on the transmitting/receiving array. This filter process is here denoted a TDA filter. The TDA filter is an approximation to the physical aberration process, which occurs over an extended part of the human body wall. Estimation of the TDA filter, and performing correction on transmit and receive, has proven difficult. It has yet to be shown that this method works adequately for severe aberration. Estimation of the TDA filter can be iterated by retransmitting a corrected signal and re-estimate until a convergence criterion is fulfilled (adaptive imaging). Two methods for estimating time-delay and amplitude variations in receive signals from random scatterers have been developed. One method correlates each element signal with a reference signal. The other method use eigenvalue decomposition of the receive cross-spectrum matrix, based upon a receive energy-maximizing criterion. Simulations of iterating aberration correction with a TDA filter have been investigated to study its convergence properties. A weak and strong human-body wall model generated aberration. Both emulated the human abdominal wall. Results after iteration improve aberration correction substantially, and both estimation methods converge, even for the case of strong aberration.

  14. Brain anatomical networks in early human brain development.

    Science.gov (United States)

    Fan, Yong; Shi, Feng; Smith, Jeffrey Keith; Lin, Weili; Gilmore, John H; Shen, Dinggang

    2011-02-01

    Recent neuroimaging studies have demonstrated that human brain networks have economic small-world topology and modular organization, enabling efficient information transfer among brain regions. However, it remains largely unknown how the small-world topology and modular organization of human brain networks emerge and develop. Using longitudinal MRI data of 28 healthy pediatric subjects, collected at their ages of 1 month, 1 year, and 2 years, we analyzed development patterns of brain anatomical networks derived from morphological correlations of brain regional volumes. The results show that the brain network of 1-month-olds has the characteristically economic small-world topology and nonrandom modular organization. The network's cost efficiency increases with the brain development to 1 year and 2 years, so does the modularity, providing supportive evidence for the hypothesis that the small-world topology and the modular organization of brain networks are established during early brain development to support rapid synchronization and information transfer with minimal rewiring cost, as well as to balance between local processing and global integration of information. Copyright © 2010. Published by Elsevier Inc.

  15. Determination of aberration center of Ronchigram for automated aberration correctors in scanning transmission electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Sannomiya, Takumi, E-mail: sannomiya@mtl.titech.ac.jp [Tokyo Institute of Technology, Ookayama, Tokyo (Japan); Sawada, Hidetaka; Nakamichi, Tomohiro; Hosokawa, Fumio [JEOL Limited, Akishima, Tokyo (Japan); Nakamura, Yoshio; Tanishiro, Yasumasa; Takayanagi, Kunio [Tokyo Institute of Technology, Ookayama, Tokyo (Japan)

    2013-12-15

    A generic method to determine the aberration center is established, which can be utilized for aberration calculation and axis alignment for aberration corrected electron microscopes. In this method, decentering induced secondary aberrations from inherent primary aberrations are minimized to find the appropriate axis center. The fitness function to find the optimal decentering vector for the axis was defined as a sum of decentering induced secondary aberrations with properly distributed weight values according to the aberration order. Since the appropriate decentering vector is determined from the aberration values calculated at an arbitrary center axis, only one aberration measurement is in principle required to find the center, resulting in /very fast center search. This approach was tested for the Ronchigram based aberration calculation method for aberration corrected scanning transmission electron microscopy. Both in simulation and in experiments, the center search was confirmed to work well although the convergence to find the best axis becomes slower with larger primary aberrations. Such aberration center determination is expected to fully automatize the aberration correction procedures, which used to require pre-alignment of experienced users. This approach is also applicable to automated aperture positioning. - Highlights: • A generic method to determine the aberration center is established for (S)TEM. • Decentering induced secondary aberrations are utilized to find the center. • The method is tested on Ronchigrams both in simulation and experiment. • Proper weighting of the aberration gives a good convergence. • Larger primary aberration results in a slower convergence.

  16. Research development of thermal aberration in 193nm lithography exposure system

    Science.gov (United States)

    Wang, Yueqiang; Liu, Yong

    2014-08-01

    Lithographic exposure is the key process in the manufacture of the integrated circuit, and the performance of exposure system decides the level of microelectronic manufacture technology. Nowadays, the 193nm ArF immersion exposure tool is widely used by the IC manufacturer. With the uniformity of critical dimension (CDU) and overlay become tighter and the requirement for throughput become higher, the thermal aberration caused by lens material and structure absorbing the laser energy cannot be neglected. In this paper, we introduce the efforts and methods that researcher on thermal aberration and its control. Further, these methods were compared to show their own pros and cons. Finally we investigated the challenges of thermal aberration control for state of the art technologies.

  17. Aberrant brain regional homogeneity and functional connectivity in middle-aged T2DM patients: a resting-state functional MRI study

    Directory of Open Access Journals (Sweden)

    Daihong Liu

    2016-09-01

    Full Text Available Type 2 diabetes mellitus (T2DM has been associated with cognitive impairment. However, its neurological mechanism remains elusive. Combining regional homogeneity (ReHo and functional connectivity (FC analyses, the present study aimed to investigate brain functional alterations in middle-aged T2DM patients, which could provide complementary information for the neural substrates underlying T2DM-associated brain dysfunction. Twenty-five T2DM patients and 25 healthy controls were involved in neuropsychological testing and structural and resting-state functional magnetic resonance imaging data acquisition. ReHo analysis was conducted to determine the peak coordinates of brain regions with abnormal local brain activity synchronization. Then, the identified brain regions were considered as seeds, and FC between these brain regions and global voxels was computed. Finally, the potential correlations between the imaging indices and neuropsychological data were also explored. Compared with healthy controls, T2DM patients exhibited higher ReHo values in the anterior cingulate gyrus and lower ReHo in right fusiform gyrus, right precentral gyrus and right medial orbit of the superior frontal gyrus. Considering these areas as seed regions, T2DM patients displayed aberrant FC, mainly in the frontal and parietal lobes. The pattern of FC alterations in T2DM patients was characterized by decreased connectivity and positive to negative or negative to positive converted connectivity. Digital Span Test forward scores revealed significant correlations with the ReHo values of the right precentral gyrus (ρ = 0.527, p = 0.014 and FC between the right fusiform gyrus and middle temporal gyrus (ρ = -0.437, p = 0.048. Our findings suggest that T2DM patients suffer from cognitive dysfunction related to spatially local and remote brain activity synchronization impairment. The patterns of ReHo and FC alterations shed light on the mechanisms underlying T2DM-associated brain

  18. Mapping the Alzheimer's brain with connectomics

    Directory of Open Access Journals (Sweden)

    Teng eXie

    2012-01-01

    Full Text Available Alzheimer’s disease (AD is the most common form of dementia. As an incurable, progressive and neurodegenerative disease, it causes cognitive and memory deficits. However, the biological mechanisms underlying the disease are not thoroughly understood. In recent years, non-invasive neuroimaging and neurophysiological techniques (e.g., structural MRI, diffusion MRI, functional MRI and EEG/MEG and graph theory based network analysis have provided a new perspective on structural and functional connectivity patterns of the human brain (i.e., the human connectome in health and disease. Using these powerful approaches, several recent studies of patients with AD exhibited abnormal topological organization in both global and regional properties of neuronal networks, indicating that AD not only affects specific brain regions, but also alters the structural and functional associations between distinct brain regions. Specifically, disruptive organization in the whole-brain networks in AD is involved in the loss of small-world characters and the re-organization of hub distributions. These aberrant neuronal connectivity patterns were associated with cognitive deficits in patients with AD, even with genetic factors in healthy aging. These studies provide empirical evidence to support the existence of an aberrant connectome of AD. In this review we will summarize recent advances discovered in large-scale brain network studies of AD, mainly focusing on graph theoretical analysis of brain connectivity abnormalities. These studies provide novel insights into the pathophysiological mechanisms of AD and could be helpful in developing imaging biomarkers for disease diagnosis and monitoring.

  19. Ocular higher-order aberrations in a school children population

    Directory of Open Access Journals (Sweden)

    George Papamastorakis

    2015-04-01

    Conclusions: Differences in the low levels of ocular spherical aberration in young children possibly reflect differences in lenticular spherical aberration and relate to the gradient refractive index of the lens. The evaluation of spherical aberration at certain stages of eye growth may help to better understand the underlying mechanisms of myopia development.

  20. Possible mechanisms of chromosome aberrations. 2. Formation of aberrations after UV-irradiation

    International Nuclear Information System (INIS)

    Lebedeva, L.I.

    1982-01-01

    One of mechanisms of chromosome aberrations after UV-radiation of animal cells initiated by thymine dimerization from different dna threads (by cross joints) and finished in mitosis metaphase is discussed. The model of aberration formation, taking a count of peculiarities of chromosome ansate structure and predicting the important role of chromosome isolation during mitosis in realization of structural aberrations, is suggested. An attempt to present aberration formation under conditions of exact repair is the distinguishing feature of the model

  1. Aberration analysis calculations for synchrotron radiation beamline design

    International Nuclear Information System (INIS)

    McKinney, W.R.; Howells, M.; Padmore, H.A.

    1997-09-01

    The application of ray deviation calculations based on aberration coefficients for a single optical surface for the design of beamline optical systems is reviewed. A systematic development is presented which allows insight into which aberration may be causing the rays to deviate from perfect focus. A new development allowing analytical calculation of line shape is presented

  2. Low-energy foil aberration corrector

    International Nuclear Information System (INIS)

    Aken, R.H. van; Hagen, C.W.; Barth, J.E.; Kruit, P.

    2002-01-01

    A spherical and chromatic aberration corrector for electron microscopes is proposed, consisting of a thin foil sandwiched between two apertures. The electrons are retarded at the foil to almost zero energy, so that they can travel ballistically through the foil. It is shown that such a low-voltage corrector has a negative spherical aberration for not too large distances between aperture and foil, as well as a negative chromatic aberration. For various distances the third- and fifth-order spherical aberration coefficients and the first- and second-order chromatic aberration coefficients are calculated using ray tracing. Provided that the foils have sufficient electron transmission the corrector is able to correct the third-order spherical aberration and the first-order chromatic aberration of a typical low-voltage scanning electron microscope. Preliminary results show that the fifth-order spherical aberration and the second-order chromatic aberration can be kept sufficiently low

  3. Chromosome aberration analysis for biological dosimetry: a review

    International Nuclear Information System (INIS)

    Paul, S.F.D.; Venkatachalam, P.; Jeevanram, R.K.

    1996-01-01

    Among various biological dosimetry techniques, dicentric chromosome aberration method appears to be the method of choice in analysing accidental radiation exposure in most of the laboratories. The major advantage of this method is its sensitivity as the number of dicentric chromosomes present in control population is too small and more importantly radiation induces mainly dicentric chromosome aberration among unstable aberration. This report brings out the historical development of various cytogenetic methods, the basic structure of DNA, chromosomes and different forms of chromosome aberrations. It also highlights the construction of dose-response curve for dicentric chromosome and its use in the estimation of radiation dose. (author)

  4. Wave aberrations in rhesus monkeys with vision-induced ametropias

    Science.gov (United States)

    Ramamirtham, Ramkumar; Kee, Chea-su; Hung, Li-Fang; Qiao-Grider, Ying; Huang, Juan; Roorda, Austin; Smith, Earl L.

    2007-01-01

    The purpose of this study was to investigate the relationship between refractive errors and high-order aberrations in infant rhesus monkeys. Specifically, we compared the monochromatic wave aberrations measured with a Shack-Hartman wavefront sensor between normal monkeys and monkeys with vision-induced refractive errors. Shortly after birth, both normal monkeys and treated monkeys reared with optically induced defocus or form deprivation showed a decrease in the magnitude of high-order aberrations with age. However, the decrease in aberrations was typically smaller in the treated animals. Thus, at the end of the lens-rearing period, higher than normal amounts of aberrations were observed in treated eyes, both hyperopic and myopic eyes and treated eyes that developed astigmatism, but not spherical ametropias. The total RMS wavefront error increased with the degree of spherical refractive error, but was not correlated with the degree of astigmatism. Both myopic and hyperopic treated eyes showed elevated amounts of coma and trefoil and the degree of trefoil increased with the degree of spherical ametropia. Myopic eyes also exhibited a much higher prevalence of positive spherical aberration than normal or treated hyperopic eyes. Following the onset of unrestricted vision, the amount of high-order aberrations decreased in the treated monkeys that also recovered from the experimentally induced refractive errors. Our results demonstrate that high-order aberrations are influenced by visual experience in young primates and that the increase in high-order aberrations in our treated monkeys appears to be an optical byproduct of the vision-induced alterations in ocular growth that underlie changes in refractive error. The results from our study suggest that the higher amounts of wave aberrations observed in ametropic humans are likely to be a consequence, rather than a cause, of abnormal refractive development. PMID:17825347

  5. Childhood poverty and stress reactivity are associated with aberrant functional connectivity in default mode network.

    Science.gov (United States)

    Sripada, Rebecca K; Swain, James E; Evans, Gary W; Welsh, Robert C; Liberzon, Israel

    2014-08-01

    Convergent research suggests that childhood poverty is associated with perturbation in the stress response system. This might extend to aberrations in the connectivity of large-scale brain networks, which subserve key cognitive and emotional functions. Resting-state brain activity was measured in adults with a documented history of childhood poverty (n=26) and matched controls from middle-income families (n=26). Participants also underwent a standard laboratory social stress test and provided saliva samples for cortisol assay. Childhood poverty was associated with reduced default mode network (DMN) connectivity. This, in turn, was associated with higher cortisol levels in anticipation of social stress. These results suggest a possible brain basis for exaggerated stress sensitivity in low-income individuals. Alterations in DMN may be associated with less efficient cognitive processing or greater risk for development of stress-related psychopathology among individuals who experienced the adversity of chronic childhood poverty.

  6. Aberrant brain responses to emotionally valent words is normalised after cognitive behavioural therapy in female depressed adolescents.

    Science.gov (United States)

    Chuang, Jie-Yu; J Whitaker, Kirstie; Murray, Graham K; Elliott, Rebecca; Hagan, Cindy C; Graham, Julia Me; Ooi, Cinly; Tait, Roger; Holt, Rosemary J; van Nieuwenhuizen, Adrienne O; Reynolds, Shirley; Wilkinson, Paul O; Bullmore, Edward T; Lennox, Belinda R; Sahakian, Barbara J; Goodyer, Ian; Suckling, John

    2016-01-01

    Depression in adolescence is debilitating with high recurrence in adulthood, yet its pathophysiological mechanism remains enigmatic. To examine the interaction between emotion, cognition and treatment, functional brain responses to sad and happy distractors in an affective go/no-go task were explored before and after Cognitive Behavioural Therapy (CBT) in depressed female adolescents, and healthy participants. Eighty-two Depressed and 24 healthy female adolescents, aged 12-17 years, performed a functional magnetic resonance imaging (fMRI) affective go/no-go task at baseline. Participants were instructed to withhold their responses upon seeing happy or sad words. Among these participants, 13 patients had CBT over approximately 30 weeks. These participants and 20 matched controls then repeated the task. At baseline, increased activation in response to happy relative to neutral distractors was observed in the orbitofrontal cortex in depressed patients which was normalised after CBT. No significant group differences were found behaviourally or in brain activation in response to sad distractors. Improvements in symptoms (mean: 9.31, 95% CI: 5.35-13.27) were related at trend-level to activation changes in orbitofrontal cortex. In the follow-up section, a limited number of post-CBT patients were recruited. To our knowledge, this is the first fMRI study addressing the effect of CBT in adolescent depression. Although a bias toward negative information is widely accepted as a hallmark of depression, aberrant brain hyperactivity to positive distractors was found and normalised after CBT. Research, assessment and treatment focused on positive stimuli could be a future consideration. Moreover, a pathophysiological mechanism distinct from adult depression may be suggested and awaits further exploration. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  7. Aberrant regeneration of the third cranial nerve.

    Science.gov (United States)

    Shrestha, U D; Adhikari, S

    2012-01-01

    Aberrant regeneration of the third cranial nerve is most commonly due to its damage by trauma. A ten-month old child presented with the history of a fall from a four-storey building. She developed traumatic third nerve palsy and eventually the clinical features of aberrant regeneration of the third cranial nerve. The adduction of the eye improved over time. She was advised for patching for the strabismic amblyopia as well. Traumatic third nerve palsy may result in aberrant regeneration of the third cranial nerve. In younger patients, motility of the eye in different gazes may improve over time. © NEPjOPH.

  8. [Brain imaging in autism spectrum disorders. A review].

    Science.gov (United States)

    Dziobek, I; Köhne, S

    2011-05-01

    In the past two decades, an increasing number of functional and structural brain imaging studies has provided insights into the neurobiological basis of autism spectrum disorders (ASD). This article summarizes pertinent functional brain imaging studies addressing the neuronal underpinnings of ASD symptomatology (impairments in social interaction and communication, repetitive and restrictive behavior) and associated neuropsychological deficits (theory of mind, executive functions, central coherence), complemented by relevant structural imaging findings. The results of these studies show that although cognitive functions in ASD are generally mediated by the same brain regions as in typically developed individuals, the degree and especially the patterns of brain activation often differ. Therefore, a hypothesis of aberrant network connectivity has increasingly been favored over one of focal brain dysfunction.

  9. Postnatal brain development

    DEFF Research Database (Denmark)

    Jernigan, Terry L; Baaré, William F C; Stiles, Joan

    2011-01-01

    After birth, there is striking biological and functional development of the brain's fiber tracts as well as remodeling of cortical and subcortical structures. Behavioral development in children involves a complex and dynamic set of genetically guided processes by which neural structures interact...... in children and adolescents, as well as studies that link these changes to behavioral differences. Finally, we discuss evidence for effects on the brain of several factors that may play a role in mediating these brain-behavior associations in children, including genetic variation, behavioral interventions...... constantly with the environment. This is a protracted process, beginning in the third week of gestation and continuing into early adulthood. Reviewed here are studies using structural imaging techniques, with a special focus on diffusion weighted imaging, describing age-related brain maturational changes...

  10. Postnatal brain development

    DEFF Research Database (Denmark)

    Jernigan, Terry L; Baaré, William F C; Stiles, Joan

    2011-01-01

    After birth, there is striking biological and functional development of the brain's fiber tracts as well as remodeling of cortical and subcortical structures. Behavioral development in children involves a complex and dynamic set of genetically guided processes by which neural structures interact...... constantly with the environment. This is a protracted process, beginning in the third week of gestation and continuing into early adulthood. Reviewed here are studies using structural imaging techniques, with a special focus on diffusion weighted imaging, describing age-related brain maturational changes...... in children and adolescents, as well as studies that link these changes to behavioral differences. Finally, we discuss evidence for effects on the brain of several factors that may play a role in mediating these brain-behavior associations in children, including genetic variation, behavioral interventions...

  11. Osteoponin Promoter Controlled by DNA Methylation: Aberrant Methylation in Cloned Porcine Genome

    Directory of Open Access Journals (Sweden)

    Chih-Jie Shen

    2014-01-01

    Full Text Available Cloned animals usually exhibited many defects in physical characteristics or aberrant epigenetic reprogramming, especially in some important organ development. Osteoponin (OPN is an extracellular-matrix protein involved in heart and bone development and diseases. In this study, we investigated the correlation between OPN mRNA and its promoter methylation changes by the 5-aza-dc treatment in fibroblast cell and promoter assay. Aberrant methylation of porcine OPN was frequently found in different tissues of somatic nuclear transferred cloning pigs, and bisulfite sequence data suggested that the OPN promoter region −2615 to −2239 nucleotides (nt may be a crucial regulation DNA element. In pig ear fibroblast cell culture study, the demethylation of OPN promoter was found in dose-dependent response of 5-aza-dc treatment and followed the OPN mRNA reexpression. In cloned pig study, discrepant expression pattern was identified in several cloned pig tissues, especially in brain, heart, and ear. Promoter assay data revealed that four methylated CpG sites presenting in the −2615 to −2239 nt region cause significant downregulation of OPN promoter activity. These data suggested that methylation in the OPN promoter plays a crucial role in the regulation of OPN expression that we found in cloned pigs genome.

  12. Aberrant topology of striatum's connectivity is associated with the number of episodes in depression.

    Science.gov (United States)

    Meng, Chun; Brandl, Felix; Tahmasian, Masoud; Shao, Junming; Manoliu, Andrei; Scherr, Martin; Schwerthöffer, Dirk; Bäuml, Josef; Förstl, Hans; Zimmer, Claus; Wohlschläger, Afra M; Riedl, Valentin; Sorg, Christian

    2014-02-01

    In major depressive disorder, depressive episodes reoccur in ∼60% of cases; however, neural mechanisms of depressive relapse are poorly understood. Depressive episodes are characterized by aberrant topology of the brain's intrinsic functional connectivity network, and the number of episodes is one of the most important predictors for depressive relapse. In this study we hypothesized that specific changes of the topology of intrinsic connectivity interact with the course of episodes in recurrent depressive disorder. To address this hypothesis, we investigated which changes of connectivity topology are associated with the number of episodes in patients, independently of current symptoms and disease duration. Fifty subjects were recruited including 25 depressive patients (two to 10 episodes) and 25 gender- and age-matched control subjects. Resting-state functional magnetic resonance imaging, Harvard-Oxford brain atlas, wavelet-transformation of atlas-shaped regional time-series, and their pairwise Pearson's correlation were used to define individual connectivity matrices. Matrices were analysed by graph-based methods, resulting in outcome measures that were used as surrogates of intrinsic network topology. Topological scores were subsequently compared across groups, and, for patients only, related with the number of depressive episodes and current symptoms by partial correlation analysis. Concerning the whole brain connectivity network of patients, small-world topology was preserved but global efficiency was reduced and global betweenness-centrality increased. Aberrant nodal efficiency and centrality of regional connectivity was found in the dorsal striatum, inferior frontal and orbitofrontal cortex as well as in the occipital and somatosensory cortex. Inferior frontal changes were associated with current symptoms, whereas aberrant right putamen network topology was associated with the number of episodes. Results were controlled for effects of total grey matter

  13. The Distribution of Chromosomal Aberrations in Human Cells Predicted by a Generalized Time-Dependent Model of Radiation-Induced Formation of Aberrations

    Science.gov (United States)

    Ponomarev, Artem L.; George, K.; Cucinotta, F. A.

    2011-01-01

    New experimental data show how chromosomal aberrations for low- and high-LET radiation are dependent on DSB repair deficiencies in wild-type, AT and NBS cells. We simulated the development of chromosomal aberrations in these cells lines in a stochastic track-structure-dependent model, in which different cells have different kinetics of DSB repair. We updated a previously formulated model of chromosomal aberrations, which was based on a stochastic Monte Carlo approach, to consider the time-dependence of DSB rejoining. The previous version of the model had an assumption that all DSBs would rejoin, and therefore we called it a time-independent model. The chromosomal-aberrations model takes into account the DNA and track structure for low- and high-LET radiations, and provides an explanation and prediction of the statistics of rare and more complex aberrations. We compared the program-simulated kinetics of DSB rejoining to the experimentally-derived bimodal exponential curves of the DSB kinetics. We scored the formation of translocations, dicentrics, acentric and centric rings, deletions, and inversions. The fraction of DSBs participating in aberrations was studied in relation to the rejoining time. Comparisons of simulated dose dependence for simple aberrations to the experimental dose-dependence for HF19, AT and NBS cells will be made.

  14. Catadioptric aberration correction in cathode lens microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Tromp, R.M. [IBM T.J. Watson Research Center, PO Box 218, Yorktown Heights, NY 10598 (United States); Kamerlingh Onnes Laboratory, Leiden Institute of Physics, Niels Bohrweg 2, 2333 CA Leiden (Netherlands)

    2015-04-15

    In this paper I briefly review the use of electrostatic electron mirrors to correct the aberrations of the cathode lens objective lens in low energy electron microscope (LEEM) and photo electron emission microscope (PEEM) instruments. These catadioptric systems, combining electrostatic lens elements with a reflecting mirror, offer a compact solution, allowing simultaneous and independent correction of both spherical and chromatic aberrations. A comparison with catadioptric systems in light optics informs our understanding of the working principles behind aberration correction with electron mirrors, and may point the way to further improvements in the latter. With additional developments in detector technology, 1 nm spatial resolution in LEEM appears to be within reach. - Highlights: • The use of electron mirrors for aberration correction in LEEM/PEEM is reviewed. • A comparison is made with similar systems in light optics. • Conditions for 1 nm spatial resolution are discussed.

  15. Angstrom analysis with dynamic in-situ aberration corrected electron microscopy

    International Nuclear Information System (INIS)

    Gai, P L; Boyes, E D

    2010-01-01

    Following the pioneering development of atomic resolution in-situ environmental TEM (ETEM) for direct probing of gas-solid reactions, recent developments are presented of dynamic real time in-situ studies at the Angstrom level in an aberration corrected electron microscope. The in-situ data from Pt-Pd nanoparticles on carbon with the corresponding FFT/optical diffractogram (OD) illustrate an achieved resolution of 0 C and higher, in a double aberration corrected JEOL 2200 FS TEM/STEM employing a wider gap objective pole piece and gas tolerant TMP column pumping system. Direct observations of dynamic biofuel catalysts under controlled calcinations conditions and quantified with catalytic reactivity and physico-chemical studies show the benefits in-situ aberration correction in unveiling the evolution of surface active sites necessary for the development efficient heterogeneous catalysts. The new results open up opportunities for dynamic studies of materials in an aberration corrected environment and direct future development activities.

  16. Mutations and chromosomal aberrations

    International Nuclear Information System (INIS)

    Kihlman, B.A.

    1977-01-01

    The genetic changes of mutations and chromosomal aberrations are discussed. The consequences of both depend not only on the type of genetic change produced but also on the type of cell that is affected and on the development stage of the organism. (C.F.)

  17. Longitudinal Brain Development of Numerical Skills in Typically Developing Children and Children with Developmental Dyscalculia

    Directory of Open Access Journals (Sweden)

    Ursina McCaskey

    2018-01-01

    Full Text Available Developmental dyscalculia (DD is a learning disability affecting the acquisition of numerical-arithmetical skills. Studies report persistent deficits in number processing and aberrant functional activation of the fronto-parietal numerical network in DD. However, the neural development of numerical abilities has been scarcely investigated. The present paper provides a first attempt to investigate behavioral and neural trajectories of numerical abilities longitudinally in typically developing (TD and DD children. During a study period of 4 years, 28 children (8–11 years were evaluated twice by means of neuropsychological tests and a numerical order fMRI paradigm. Over time, TD children improved in numerical abilities and showed a consistent and well-developed fronto-parietal network. In contrast, DD children revealed persistent deficits in number processing and arithmetic. Brain imaging results of the DD group showed an age-related activation increase in parietal regions (intraparietal sulcus, pointing to a delayed development of number processing areas. Besides, an activation increase in frontal areas was observed over time, indicating the use of compensatory mechanisms. In conclusion, results suggest a continuation in neural development of number representation in DD, whereas the neural network for simple ordinal number estimation seems to be stable or show only subtle changes in TD children over time.

  18. Longitudinal Brain Development of Numerical Skills in Typically Developing Children and Children with Developmental Dyscalculia.

    Science.gov (United States)

    McCaskey, Ursina; von Aster, Michael; Maurer, Urs; Martin, Ernst; O'Gorman Tuura, Ruth; Kucian, Karin

    2017-01-01

    Developmental dyscalculia (DD) is a learning disability affecting the acquisition of numerical-arithmetical skills. Studies report persistent deficits in number processing and aberrant functional activation of the fronto-parietal numerical network in DD. However, the neural development of numerical abilities has been scarcely investigated. The present paper provides a first attempt to investigate behavioral and neural trajectories of numerical abilities longitudinally in typically developing (TD) and DD children. During a study period of 4 years, 28 children (8-11 years) were evaluated twice by means of neuropsychological tests and a numerical order fMRI paradigm. Over time, TD children improved in numerical abilities and showed a consistent and well-developed fronto-parietal network. In contrast, DD children revealed persistent deficits in number processing and arithmetic. Brain imaging results of the DD group showed an age-related activation increase in parietal regions (intraparietal sulcus), pointing to a delayed development of number processing areas. Besides, an activation increase in frontal areas was observed over time, indicating the use of compensatory mechanisms. In conclusion, results suggest a continuation in neural development of number representation in DD, whereas the neural network for simple ordinal number estimation seems to be stable or show only subtle changes in TD children over time.

  19. Chromosome aberrations: plants to human and Feulgen to FISH

    International Nuclear Information System (INIS)

    Natarajan, A.T.

    2005-01-01

    Chromosome aberrations and their impact on human health have been recognized for a long time. In the 1950s, in India, studies on induced chromosome aberrations in plants were initiated by Swaminathan and his students. I trace here the impact of these initial studies on further developments in this field. The studies which were started in plants have been extended to mammals (including human) and the simple squash and solid staining have been improved by molecular cytogenetic techniques, thus enabling accurate identification and quantification of different types of chromosome aberrations. These studies have also thrown light on the mechanisms of chromosome aberration formation, especially following exposure to ionizing radiation. (author)

  20. Higher order monochromatic aberrations of the human infant eye

    OpenAIRE

    Wang, Jingyun; Candy, T. Rowan

    2005-01-01

    The monochromatic optical aberrations of the eye degrade retinal image quality. Any significant aberrations during postnatal development could contribute to infants’ immature visual performance and provide signals for the control of eye growth. Aberrations of human infant eyes from 5 to 7 weeks old were compared with those of adult subjects using a model of an adultlike infant eye that accounted for differences in both eye and pupil size. Data were collected using the COAS Shack-Hartmann wave...

  1. Optical traps with geometric aberrations

    International Nuclear Information System (INIS)

    Roichman, Yael; Waldron, Alex; Gardel, Emily; Grier, David G.

    2006-01-01

    We assess the influence of geometric aberrations on the in-plane performance of optical traps by studying the dynamics of trapped colloidal spheres in deliberately distorted holographic optical tweezers. The lateral stiffness of the traps turns out to be insensitive to moderate amounts of coma, astigmatism, and spherical aberration. Moreover holographic aberration correction enables us to compensate inherent shortcomings in the optical train, thereby adaptively improving its performance. We also demonstrate the effects of geometric aberrations on the intensity profiles of optical vortices, whose readily measured deformations suggest a method for rapidly estimating and correcting geometric aberrations in holographic trapping systems

  2. Sextupole system for the correction of spherical aberration

    Science.gov (United States)

    Crewe, A.V.; Kopf, D.A.

    In an electron beam device in which an electron beam is developed and then focused by a lens to a particular spot, there is provided a means for eliminating spherical aberration. A sextupole electromagnetic lens is positioned between two focusing lenses. The interaction of the sextupole with the beam compensates for spherical aberration. (GHT)

  3. Educating the Human Brain. Human Brain Development Series

    Science.gov (United States)

    Posner, Michael I.; Rothbart, Mary K.

    2006-01-01

    "Educating the Human Brain" is the product of a quarter century of research. This book provides an empirical account of the early development of attention and self regulation in infants and young children. It examines the brain areas involved in regulatory networks, their connectivity, and how their development is influenced by genes and…

  4. Mask-induced aberration in EUV lithography

    Science.gov (United States)

    Nakajima, Yumi; Sato, Takashi; Inanami, Ryoichi; Nakasugi, Tetsuro; Higashiki, Tatsuhiko

    2009-04-01

    We estimated aberrations using Zernike sensitivity analysis. We found the difference of the tolerated aberration with line direction for illumination. The tolerated aberration of perpendicular line for illumination is much smaller than that of parallel line. We consider this difference to be attributable to the mask 3D effect. We call it mask-induced aberration. In the case of the perpendicular line for illumination, there was a difference in CD between right line and left line without aberration. In this report, we discuss the possibility of pattern formation in NA 0.25 generation EUV lithography tool. In perpendicular pattern for EUV light, the dominant part of aberration is mask-induced aberration. In EUV lithography, pattern correction based on the mask topography effect will be more important.

  5. Aberration Correction in the Brewer Spectrophotometer

    International Nuclear Information System (INIS)

    Johnston, J.E.; Kerr, J.B.; McElroy, C.T.; Wardle, D.I.

    2000-01-01

    The optical design of the Brewer Spectrophotometer has been optimised for measurements in the 300-320 nm wavelength range. An aberration resolution limit that is much less than the 0.6 nm FWHM (full width at half maximum) is achieved by using an Ebert-Fastie spectrometer design, modified by the inclusion tilted lens that optimises performance at 310 nm. The small contribution of the remaining aberration to the measured instrument function is critical to radiometric measurement quality. Ramifications of this design to the development of instrumentation with enhanced scanning abilities are discussed. (author)

  6. Detecting Aberrant Response Patterns in the Rasch Model. Rapport 87-3.

    Science.gov (United States)

    Kogut, Jan

    In this paper, the detection of response patterns aberrant from the Rasch model is considered. For this purpose, a new person fit index, recently developed by I. W. Molenaar (1987) and an iterative estimation procedure are used in a simulation study of Rasch model data mixed with aberrant data. Three kinds of aberrant response behavior are…

  7. Measurement of wavefront aberrations in cortex and peripheral nerve using a two-photon excitation guidestar

    Science.gov (United States)

    Futia, Gregory L.; Fontaine, Arjun; McCullough, Connor; Ozbay, Baris N.; George, Nickolas M.; Caldwell, John; Restrepo, Diego; Weir, Richard; Gibson, Emily A.

    2018-02-01

    Neural-machine interfaces using optogenetics are of interest due to their minimal invasiveness and potential for parallel read in and read out of activity. One possible biological target for such an interface is the peripheral nerve, where axonlevel imaging or stimulation could greatly improve interfacing with artificial limbs or enable neuron/fascicle level neuromodulation in the vagus nerve. Two-photon imaging has been successful in imaging brain activity using genetically encoded calcium or voltage indicators, but in the peripheral nerve, this is severely limited by scattering and aberrations from myelin. We employ a Shack-Hartman wavefront sensor and two-photon excitation guidestar to quantify optical scattering and aberrations in peripheral nerves and cortex. The sciatic and vagus nerves, and cortex from a ChAT-Cre ChR-eYFP transgenic mouse were excised and imaged directly. In peripheral nerves, defocus was the strongest aberration followed by astigmatism and coma. Peripheral nerve had orders of magnitude higher aberration compared with cortex. These results point to the potential of adaptive optics for increasing the depth of two-photon access into peripheral nerves.

  8. Aberrant rhythmic expression of cryptochrome2 regulates the radiosensitivity of rat gliomas.

    Science.gov (United States)

    Fan, Wang; Caiyan, Li; Ling, Zhu; Jiayun, Zhao

    2017-09-29

    In this study, we investigated the role of the clock regulatory protein cryptochrome 2 (Cry2) in determining the radiosensitivity of C6 glioma cells in a rat model. We observed that Cry2 mRNA and protein levels showed aberrant rhythmic periodicity of 8 h in glioma tissues, compared to 24 h in normal brain tissue. Cry2 mRNA and protein levels did not respond to irradiation in normal tissues, but both were increased at the ZT4 (low Cry2) and ZT8 (high Cry2) time points in gliomas. Immunohistochemical staining of PCNA and TUNEL assays demonstrated that high Cry2 expression in glioma tissues was associated with increased cell proliferation and decreased apoptosis. Western blot analysis showed that glioma cell fate was independent of p53, but was probably dependent on p73, which was more highly expressed at ZT4 (low Cry2) than at ZT8 (high Cry2). Levels of both p53 and p73 were unaffected by irradiation in normal brain tissues. These findings suggest aberrant rhythmic expression of Cry2 influence on radiosensitivity in rat gliomas.

  9. Normalization of aberrant resting state functional connectivity in fibromyalgia patients following a three month physical exercise therapy.

    Science.gov (United States)

    Flodin, P; Martinsen, S; Mannerkorpi, K; Löfgren, M; Bileviciute-Ljungar, I; Kosek, E; Fransson, P

    2015-01-01

    Physical exercise is one of the most efficient interventions to mitigate chronic pain symptoms in fibromyalgia (FM). However, little is known about the neurophysiological mechanisms mediating these effects. In this study we investigated resting-state connectivity using functional magnetic resonance imaging (fMRI) before and after a 15 week standardized exercise program supervised by physical therapists. Our aim was to gain an understanding of how physical exercise influences previously shown aberrant patterns of intrinsic brain activity in FM. Fourteen FM patients and eleven healthy controls successfully completed the physical exercise treatment. We investigated post- versus pre-treatment changes of brain connectivity, as well as changes in clinical symptoms in the patient group. FM patients reported improvements in symptom severity. Although several brain regions showed a treatment-related change in connectivity, only the connectivity between the right anterior insula and the left primary sensorimotor area was significantly more affected by the physical exercise among the fibromyalgia patients compared to healthy controls. Our results suggest that previously observed aberrant intrinsic brain connectivity patterns in FM are partly normalized by the physical exercise therapy. However, none of the observed normalizations in intrinsic brain connectivity were significantly correlated with symptom changes. Further studies conducted in larger cohorts are warranted to investigate the precise relationship between improvements in fibromyalgia symptoms and changes in intrinsic brain activity.

  10. Normalization of aberrant resting state functional connectivity in fibromyalgia patients following a three month physical exercise therapy

    Directory of Open Access Journals (Sweden)

    P. Flodin

    2015-01-01

    Full Text Available Physical exercise is one of the most efficient interventions to mitigate chronic pain symptoms in fibromyalgia (FM. However, little is known about the neurophysiological mechanisms mediating these effects. In this study we investigated resting-state connectivity using functional magnetic resonance imaging (fMRI before and after a 15 week standardized exercise program supervised by physical therapists. Our aim was to gain an understanding of how physical exercise influences previously shown aberrant patterns of intrinsic brain activity in FM. Fourteen FM patients and eleven healthy controls successfully completed the physical exercise treatment. We investigated post- versus pre-treatment changes of brain connectivity, as well as changes in clinical symptoms in the patient group. FM patients reported improvements in symptom severity. Although several brain regions showed a treatment-related change in connectivity, only the connectivity between the right anterior insula and the left primary sensorimotor area was significantly more affected by the physical exercise among the fibromyalgia patients compared to healthy controls. Our results suggest that previously observed aberrant intrinsic brain connectivity patterns in FM are partly normalized by the physical exercise therapy. However, none of the observed normalizations in intrinsic brain connectivity were significantly correlated with symptom changes. Further studies conducted in larger cohorts are warranted to investigate the precise relationship between improvements in fibromyalgia symptoms and changes in intrinsic brain activity.

  11. Brain connectivity aberrations in anabolic-androgenic steroid users

    Directory of Open Access Journals (Sweden)

    Lars T. Westlye

    2017-01-01

    Full Text Available Sustained anabolic-androgenic steroid (AAS use has adverse behavioral consequences, including aggression, violence and impulsivity. Candidate mechanisms include disruptions of brain networks with high concentrations of androgen receptors and critically involved in emotional and cognitive regulation. Here, we tested the effects of AAS on resting-state functional brain connectivity in the largest sample of AAS-users to date. We collected resting-state functional magnetic resonance imaging (fMRI data from 151 males engaged in heavy resistance strength training. 50 users tested positive for AAS based on the testosterone to epitestosterone (T/E ratio and doping substances in urine. 16 previous users and 59 controls tested negative. We estimated brain network nodes and their time-series using ICA and dual regression and defined connectivity matrices as the between-node partial correlations. In line with the emotional and behavioral consequences of AAS, current users exhibited reduced functional connectivity between key nodes involved in emotional and cognitive regulation, in particular reduced connectivity between the amygdala and default-mode network (DMN and between the dorsal attention network (DAN and a frontal node encompassing the superior and inferior frontal gyri (SFG/IFG and the anterior cingulate cortex (ACC, with further reductions as a function of dependency, lifetime exposure, and cycle state (on/off.

  12. Camera processing with chromatic aberration.

    Science.gov (United States)

    Korneliussen, Jan Tore; Hirakawa, Keigo

    2014-10-01

    Since the refractive index of materials commonly used for lens depends on the wavelengths of light, practical camera optics fail to converge light to a single point on an image plane. Known as chromatic aberration, this phenomenon distorts image details by introducing magnification error, defocus blur, and color fringes. Though achromatic and apochromatic lens designs reduce chromatic aberration to a degree, they are complex and expensive and they do not offer a perfect correction. In this paper, we propose a new postcapture processing scheme designed to overcome these problems computationally. Specifically, the proposed solution is comprised of chromatic aberration-tolerant demosaicking algorithm and post-demosaicking chromatic aberration correction. Experiments with simulated and real sensor data verify that the chromatic aberration is effectively corrected.

  13. Brown's TRANSPORT up to third order aberration by artificial intelligence

    International Nuclear Information System (INIS)

    Xia Jiawen; Xie Xi; Qiao Qingwen

    1991-01-01

    Brown's TRANSPORT is a first and second order matrix multiplication computer program intended for the design of accelerator beam transport systems, neglecting the third order aberration. Recently a new method was developed to derive analytically any order aberration coefficients of general charged particle optic system, applicable to any practical systems, such as accelerators, electron microscopes, lithographs, etc., including those unknown systems yet to be invented. An artificial intelligence program in Turbo Prolog was implemented on IBM-PC 286 or 386 machine to generate automatically the analytical expression of any order aberration coefficients of general charged particle optic system. Based on this new method and technique, Brown's TRANSPORT is extended beyond the second order aberration effects by artificial intelligence, outputing automatically all the analytical expressions up to the third order aberration coefficients

  14. Brown's transport up to third order aberration by artificial intelligence

    International Nuclear Information System (INIS)

    Xia Jiawen; Xie Xi; Qiao Qingwen

    1992-01-01

    Brown's TRANSPORT is a first and second order matrix multiplication computer program intended for the design of accelerator beam transport systems, neglecting the third order aberration. Recently a new method was developed to derive analytically any order aberration coefficients of general charged particle optic system, applicable to any practical systems, such as accelerators, electron microscopes, lithographs, including those unknown systems yet to be invented. An artificial intelligence program in Turbo Prolog was implemented on IBM-PC 286 or 386 machine to generate automatically the analytical expression of any order aberration coefficients of general charged particle optic system. Based on this new method and technique, Brown's TRANSPORT is extended beyond the second order aberration effect by artificial intelligence, outputting automatically all the analytical expressions up to the third order aberration coefficients

  15. Development of the Young Brain

    Science.gov (United States)

    ... Institute Announcements (24 items) Development of the Young Brain May 2, 2011 For more than twenty years, ... Giedd has studied the development of the adolescent brain. Decades of imaging work have led to remarkable ...

  16. The Elsevier trophoblast research award lecture: Impacts of placental growth factor and preeclampsia on brain development, behaviour, and cognition.

    Science.gov (United States)

    Rätsep, Matthew T; Hickman, Andrew F; Croy, B Anne

    2016-12-01

    Preeclampsia (PE) is a significant gestational disorder affecting 3-5% of all human pregnancies. In many PE pregnancies, maternal plasma is deficient in placental growth factor (PGF), a placentally-produced angiokine. Beyond immediate fetal risks associated with acute termination of the pregnancy, offspring of PE pregnancies (PE-F1) have higher long-term risks for hypertension, stroke, and cognitive impairment compared to F1s from uncomplicated pregnancies. At present, mechanisms that explain PE-F1 gains in postpartum risks are poorly understood. Our laboratory found that mice genetically-deleted for Pgf have altered fetal and adult brain vascular development. This is accompanied by sexually dimorphic alterations in anatomic structure in the adult Pgf -/- brain and impaired cognitive functions. We hypothesize that cerebrovascular and neurological aberrations occur in fetuses exposed to the progressive development of PE and that these brain changes impair cognitive functioning, enhance risk for stroke, elevate severity of stroke, and lead to worse stroke outcomes. These brain and placental outcomes may be linked to down-regulated PGF gene expression in early pre-implantation embryos, prior to gastrulation. This review explores our hypothesis that there are mechanistic links between low PGF detection in maternal plasma prodromal to PE, PE, and altered brain vascular, structural, and functional development amongst PE-F1s. We also include a summary of preliminary outcomes from a pilot study of 7-10 year old children that is the first to report magnetic resonance imaging, magnetic resonance angiography, and functional brain region assessment by eye movement control studies in PE-F1s. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Aberration-corrected STEM/TEM imaging at 15 kV

    International Nuclear Information System (INIS)

    Sasaki, Takeo; Sawada, Hidetaka; Hosokawa, Fumio; Sato, Yuta; Suenaga, Kazu

    2014-01-01

    The performance of aberration-corrected (scanning) transmission electron microscopy (S/TEM) at an accelerating voltage of 15 kV was evaluated in a low-voltage microscope equipped with a cold-field emission gun and a higher-order aberration corrector. Aberrations up to the fifth order were corrected by the aberration measurement and auto-correction system using the diffractogram tableau method in TEM and Ronchigram analysis in STEM. TEM observation of nanometer-sized particles demonstrated that aberrations up to an angle of 50 mrad were compensated. A TEM image of Si[110] exhibited lattice fringes with a spacing of 0.192 nm, and the power spectrum of the image showed spots corresponding to distances of 0.111 nm. An annular dark-field STEM image of Si[110] showed lattice fringes of (111) and (22¯0) planes corresponding to lattice distances of 0.314 nm and 0.192 nm, respectively. At an accelerating voltage of 15 kV, the developed low-voltage microscope achieved atomic-resolution imaging with a small chromatic aberration and a large uniform phase. - Highlights: • Aberration-corrected STEM/TEM imaging at 15 kV demonstrated lattice fringes of Si[110] single crystal with a spacing of 0.192 nm. • To achieve this performance at a lower accelerating voltage, uniform phase area over 50 mrad is mandatory in Ronchigram and Diffractogram tableau. • This means a higher-order aberration of six-fold astigmatism should be compensated. • In addition, decreasing the effect of chromatic aberration plays an important role for improving the performance of linear scattering component at 15 kV TEM

  18. Development of the Young Brain

    Medline Plus

    Full Text Available ... Traumatic Events (3 items) Institute Announcements (24 items) Development of the Young Brain May 2, 2011 For ... Health neuroscientist Dr. Jay Giedd has studied the development of the adolescent brain. Decades of imaging work ...

  19. Development of the Young Brain

    Medline Plus

    Full Text Available ... the development of children- their physical and intellectual growth. Studying the development of the adolescent brain has ... parts of the brain have much more dynamic growth than at other times. And so for very ...

  20. Development of the Young Brain

    Medline Plus

    Full Text Available ... Institute Announcements (24 items) Development of the Young Brain May 2, 2011 For more than twenty years, ... Giedd has studied the development of the adolescent brain. Decades of imaging work have led to remarkable ...

  1. Aberrant behavior and cognitive ability in preschool children

    Directory of Open Access Journals (Sweden)

    Bala Gustav

    2007-01-01

    Full Text Available The sample included 712 preschool boys and girls at the age of 4 to 7 years (mean 5.96 decimal years and standard deviation .96 from preschool institutions in Novi Sad, Sombor, Sremska Mitrovica and Bačka Palanka. Information concerning 36 indicators of aberrant behavior of the children were supplied by their parents, whereas their cognitive ability was tested by Raven’s progressive colored matrices. Based on factor analysis (promax method, four factors i.e. generators of aberrant behavior in children were singled out: aggression, anxiousness, dissociation, and hysteria, whose relations with cognitive functioning and age were also analyzed by factor analysis. Aberrant behavior and cognitive abilities show significant interrelatedness. Owing to orderly developed cognitive abilities, a child understands essence and reality of problems, realizes possibilities and manners of solving them, and succeeds in realizing successful psycho-social functioning. Developed cognitive abilities enable a child to recognize and understand her/his own reactions in different situations and develop manners of reacting, which leads to strengthening psycho-social safety and adapting behavior in accordance with her/his age and abilities.

  2. Development of the Young Brain

    Medline Plus

    Full Text Available ... Jay Giedd has studied the development of the adolescent brain. Decades of imaging work have led to remarkable ... and intellectual growth. Studying the development of the adolescent brain has been the life work of National Institute ...

  3. Correlations between corneal and total wavefront aberrations

    Science.gov (United States)

    Mrochen, Michael; Jankov, Mirko; Bueeler, Michael; Seiler, Theo

    2002-06-01

    Purpose: Corneal topography data expressed as corneal aberrations are frequently used to report corneal laser surgery results. However, the optical image quality at the retina depends on all optical elements of the eye such as the human lens. Thus, the aim of this study was to investigate the correlations between the corneal and total wavefront aberrations and to discuss the importance of corneal aberrations for representing corneal laser surgery results. Methods: Thirty three eyes of 22 myopic subjects were measured with a corneal topography system and a Tschernig-type wavefront analyzer after the pupils were dilated to at least 6 mm in diameter. All measurements were centered with respect to the line of sight. Corneal and total wavefront aberrations were calculated up to the 6th Zernike order in the same reference plane. Results: Statistically significant correlations (p the corneal and total wavefront aberrations were found for the astigmatism (C3,C5) and all 3rd Zernike order coefficients such as coma (C7,C8). No statistically significant correlations were found for all 4th to 6th order Zernike coefficients except for the 5th order horizontal coma C18 (p equals 0.003). On average, all Zernike coefficients for the corneal aberrations were found to be larger compared to Zernike coefficients for the total wavefront aberrations. Conclusions: Corneal aberrations are only of limited use for representing the optical quality of the human eye after corneal laser surgery. This is due to the lack of correlation between corneal and total wavefront aberrations in most of the higher order aberrations. Besides this, the data present in this study yield towards an aberration balancing between corneal aberrations and the optical elements within the eye that reduces the aberration from the cornea by a certain degree. Consequently, ideal customized ablations have to take both, corneal and total wavefront aberrations, into consideration.

  4. Imaging Brain Development: Benefiting from Individual Variability

    Directory of Open Access Journals (Sweden)

    Megha Sharda

    2015-01-01

    Full Text Available Human brain development is a complex process that evolves from early childhood to young adulthood. Major advances in brain imaging are increasingly being used to characterize the developing brain. These advances have further helped to elucidate the dynamic maturational processes that lead to the emergence of complex cognitive abilities in both typical and atypical development. However, conventional approaches involve categorical group comparison models and tend to disregard the role of widespread interindividual variability in brain development. This review highlights how this variability can inform our understanding of developmental processes. The latest studies in the field of brain development are reviewed, with a particular focus on the role of individual variability and the consequent heterogeneity in brain structural and functional development. This review also highlights how such heterogeneity might be utilized to inform our understanding of complex neuropsychiatric disorders and recommends the use of more dimensional approaches to study brain development.

  5. Brillouin micro-spectroscopy through aberrations via sensorless adaptive optics

    Science.gov (United States)

    Edrei, Eitan; Scarcelli, Giuliano

    2018-04-01

    Brillouin spectroscopy is a powerful optical technique for non-contact viscoelastic characterizations which has recently found applications in three-dimensional mapping of biological samples. Brillouin spectroscopy performances are rapidly degraded by optical aberrations and have therefore been limited to homogenous transparent samples. In this work, we developed an adaptive optics (AO) configuration designed for Brillouin scattering spectroscopy to engineer the incident wavefront and correct for aberrations. Our configuration does not require direct wavefront sensing and the injection of a "guide-star"; hence, it can be implemented without the need for sample pre-treatment. We used our AO-Brillouin spectrometer in aberrated phantoms and biological samples and obtained improved precision and resolution of Brillouin spectral analysis; we demonstrated 2.5-fold enhancement in Brillouin signal strength and 1.4-fold improvement in axial resolution because of the correction of optical aberrations.

  6. Non-random intrachromosomal distribution of radiation-induced chromatid aberrations in Vicia faba. [Aberration clustering

    Energy Technology Data Exchange (ETDEWEB)

    Schubert, I; Rieger, R [Akademie der Wissenschaften der DDR, Gatersleben. Zentralinst. fuer Genetik und Kulturpflanzenforschung

    1976-04-01

    A reconstructed karyotype of Vicia faba, with all chromosomes individually distinguishable, was treated with X-rays, fast neutrons, (/sup 3/H) uridine (/sup 3/HU). The distribution within metaphase chromosomes of induced chromatid aberrations was non-random for all agents used. Aberration clustering, in part agent specific, occurred in chromosome segments containing heterochromatin as defined by the presence of G bands. The pattern of aberration clustering found after treatment with /sup 3/HU did not allow the recognition of chromosome regions active in transcription during treatment. Furthermore, it was impossible to obtain unambiguous indications of the presence of AT- and GC-base clusters from the patterns of /sup 3/HT- and /sup 3/HC-induced chromatid aberrations, respectively. Possible reasons underlying these observations are discussed.

  7. miRNAs in brain development

    International Nuclear Information System (INIS)

    Petri, Rebecca; Malmevik, Josephine; Fasching, Liana; Åkerblom, Malin; Jakobsson, Johan

    2014-01-01

    MicroRNAs (miRNAs) are small, non-coding RNAs that negatively regulate gene expression at the post-transcriptional level. In the brain, a large number of miRNAs are expressed and there is a growing body of evidence demonstrating that miRNAs are essential for brain development and neuronal function. Conditional knockout studies of the core components in the miRNA biogenesis pathway, such as Dicer and DGCR8, have demonstrated a crucial role for miRNAs during the development of the central nervous system. Furthermore, mice deleted for specific miRNAs and miRNA-clusters demonstrate diverse functional roles for different miRNAs during the development of different brain structures. miRNAs have been proposed to regulate cellular functions such as differentiation, proliferation and fate-determination of neural progenitors. In this review we summarise the findings from recent studies that highlight the importance of miRNAs in brain development with a focus on the mouse model. We also discuss the technical limitations of current miRNA studies that still limit our understanding of this family of non-coding RNAs and propose the use of novel and refined technologies that are needed in order to fully determine the impact of specific miRNAs in brain development. - Highlights: • miRNAs are essential for brain development and neuronal function. • KO of Dicer is embryonically lethal. • Conditional Dicer KO results in defective proliferation or increased apoptosis. • KO of individual miRNAs or miRNA families is necessary to determine function

  8. Theory of aberration fields for general optical systems with freeform surfaces.

    Science.gov (United States)

    Fuerschbach, Kyle; Rolland, Jannick P; Thompson, Kevin P

    2014-11-03

    This paper utilizes the framework of nodal aberration theory to describe the aberration field behavior that emerges in optical systems with freeform optical surfaces, particularly φ-polynomial surfaces, including Zernike polynomial surfaces, that lie anywhere in the optical system. If the freeform surface is located at the stop or pupil, the net aberration contribution of the freeform surface is field constant. As the freeform optical surface is displaced longitudinally away from the stop or pupil of the optical system, the net aberration contribution becomes field dependent. It is demonstrated that there are no new aberration types when describing the aberration fields that arise with the introduction of freeform optical surfaces. Significantly it is shown that the aberration fields that emerge with the inclusion of freeform surfaces in an optical system are exactly those that have been described by nodal aberration theory for tilted and decentered optical systems. The key contribution here lies in establishing the field dependence and nodal behavior of each freeform term that is essential knowledge for effective application to optical system design. With this development, the nodes that are distributed throughout the field of view for each aberration type can be anticipated and targeted during optimization for the correction or control of the aberrations in an optical system with freeform surfaces. This work does not place any symmetry constraints on the optical system, which could be packaged in a fully three dimensional geometry, without fold mirrors.

  9. A high resolution chromosome image processor for study purposes, NIRS-1000:CHROMO STUDY, and algorithm developing to classify radiation induced aberrations.

    Science.gov (United States)

    Yamamoto, M; Hayata, I; Furuta, S

    1992-03-01

    Since 1989 we have promoted a project to develop an automated scoring system of radiation induced chromosome aberrations. As a first step, a high resolution image processing system for study purposes, NIRS-1000:CHROMO STUDY, has been developed. It is composed of: (1) CHROMO MARKER whose main purpose is to mark on images to make image data base, (2) CHROMO ALGO whose purpose is algorithm development, and (3) METAPHASE RANKER whose purposes are metaphase finding and ranking with a high power objective lens. However, METAPHASE RANKER is presently under development. The system utilizes a high definition video system so as to realize the best spatial resolution that is achievable with an optical microscope using an objective lens (x 100, numerical aperture 1.4). The video camera has 1024 effective scan lines to realize 0.1 microns sampling on a specimen. The system resolution achieved on the hard copy is less than 0.3 microns on a specimen. A preliminary algorithm has been developed to classify the aberrations on the system using projection information of gray level. The preliminary test results on excellent 10 metaphases show that the correct classification ratio is 92.7%, that the detection rate of the aberrations is 83.3% and that the false positive rate is 6.1%.

  10. Blast exposure causes early and persistent aberrant phospho- and cleaved-tau expression in a murine model of mild blast-induced traumatic brain injury.

    Science.gov (United States)

    Huber, Bertrand R; Meabon, James S; Martin, Tobin J; Mourad, Pierre D; Bennett, Raymond; Kraemer, Brian C; Cernak, Ibolja; Petrie, Eric C; Emery, Michael J; Swenson, Erik R; Mayer, Cynthia; Mehic, Edin; Peskind, Elaine R; Cook, David G

    2013-01-01

    Mild traumatic brain injury (mTBI) is considered the 'signature injury' of combat veterans that have served during the wars in Iraq and Afghanistan. This prevalence of mTBI is due in part to the common exposure to high explosive blasts in combat zones. In addition to the threats of blunt impact trauma caused by flying objects and the head itself being propelled against objects, the primary blast overpressure (BOP) generated by high explosives is capable of injuring the brain. Compared to other means of causing TBI, the pathophysiology of mild-to-moderate BOP is less well understood. To study the consequences of BOP exposure in mice, we employed a well-established approach using a compressed gas-driven shock tube that recapitulates battlefield-relevant open-field BOP. We found that 24 hours post-blast a single mild BOP provoked elevation of multiple phospho- and cleaved-tau species in neurons, as well as elevating manganese superoxide-dismutase (MnSOD or SOD2) levels, a cellular response to oxidative stress. In hippocampus, aberrant tau species persisted for at least 30 days post-exposure, while SOD2 levels returned to sham control levels. These findings suggest that elevated phospho- and cleaved-tau species may be among the initiating pathologic processes induced by mild blast exposure. These findings may have important implications for efforts to prevent blast-induced insults to the brain from progressing into long-term neurodegenerative disease processes.

  11. Adaptive optical microscope for brain imaging in vivo

    Science.gov (United States)

    Wang, Kai

    2017-04-01

    The optical heterogeneity of biological tissue imposes a major limitation to acquire detailed structural and functional information deep in the biological specimens using conventional microscopes. To restore optimal imaging performance, we developed an adaptive optical microscope based on direct wavefront sensing technique. This microscope can reliably measure and correct biological samples induced aberration. We demonstrated its performance and application in structural and functional brain imaging in various animal models, including fruit fly, zebrafish and mouse.

  12. Schizophrenia, vitamin D, and brain development.

    Science.gov (United States)

    Mackay-Sim, Alan; Féron, François; Eyles, Darryl; Burne, Thomas; McGrath, John

    2004-01-01

    Schizophrenia research is invigorated at present by the recent discovery of several plausible candidate susceptibility genes identified from genetic linkage and gene expression studies of brains from persons with schizophrenia. It is a current challenge to reconcile this gathering evidence for specific candidate susceptibility genes with the "neurodevelopmental hypothesis," which posits that schizophrenia arises from gene-environment interactions that disrupt brain development. We make the case here that schizophrenia may result not from numerous genes of small effect, but a few genes of transcriptional regulation acting during brain development. In particular we propose that low vitamin D during brain development interacts with susceptibility genes to alter the trajectory of brain development, probably by epigenetic regulation that alters gene expression throughout adult life. Vitamin D is an attractive "environmental" candidate because it appears to explain several key epidemiological features of schizophrenia. Vitamin D is an attractive "genetic" candidate because its nuclear hormone receptor regulates gene expression and nervous system development. The polygenic quality of schizophrenia, with linkage to many genes of small effect, maybe brought together via this "vitamin D hypothesis." We also discuss the possibility of a broader set of environmental and genetic factors interacting via the nuclear hormone receptors to affect the development of the brain leading to schizophrenia.

  13. Altered structure of cortical sulci in gilles de la Tourette syndrome: Further support for abnormal brain development.

    Science.gov (United States)

    Muellner, Julia; Delmaire, Christine; Valabrégue, Romain; Schüpbach, Michael; Mangin, Jean-François; Vidailhet, Marie; Lehéricy, Stéphane; Hartmann, Andreas; Worbe, Yulia

    2015-04-15

    Gilles de la Tourette syndrome is a neurodevelopmental disorder characterized by the presence of motor and vocal tics. We hypothesized that patients with this syndrome would present an aberrant pattern of cortical formation, which could potentially reflect global alterations of brain development. Using 3 Tesla structural neuroimaging, we compared sulcal depth, opening, and length and thickness of sulcal gray matter in 52 adult patients and 52 matched controls. Cortical sulci were automatically reconstructed and identified over the whole brain, using BrainVisa software. We focused on frontal, parietal, and temporal cortical regions, in which abnormal structure and functional activity were identified in previous neuroimaging studies. Partial correlation analysis with age, sex, and treatment as covariables of noninterest was performed amongst relevant clinical and neuroimaging variables in patients. Patients with Gilles de la Tourette syndrome showed lower depth and reduced thickness of gray matter in the pre- and post-central as well as superior, inferior, and internal frontal sulci. In patients with associated obsessive-compulsive disorder, additional structural changes were found in temporal, insular, and olfactory sulci. Crucially, severity of tics and of obsessive-compulsive disorder measured by Yale Global Tic severity scale and Yale-Brown Obsessive-Compulsive scale, respectively, correlated with structural sulcal changes in sensorimotor, temporal, dorsolateral prefrontal, and middle cingulate cortical areas. Patients with Gilles de la Tourette syndrome displayed an abnormal structural pattern of cortical sulci, which correlated with severity of clinical symptoms. Our results provide further evidence of abnormal brain development in GTS. © 2015 International Parkinson and Movement Disorder Society.

  14. On development of functional brain connectivity in the young brain

    Directory of Open Access Journals (Sweden)

    G.E. Anna-Jasmijn eHoff

    2013-10-01

    Full Text Available Our brain is a complex network of structurally and functionally interconnected regions, shaped to efficiently process and integrate information. The development from a brain equipped with basic functionalities to an efficient network facilitating complex behavior starts during gestation and continues into adulthood. Resting-state functional MRI (rs-fMRI enables the examination of developmental aspects of functional connectivity and functional brain networks. This review will discuss changes observed in the developing brain on the level of network functional connectivity (FC from a gestational age of 20 weeks onwards. We discuss findings of resting-state fMRI studies showing that functional network development starts during gestation, creating a foundation for each of the resting-state networks to be established. Visual and sensorimotor areas are reported to develop first, with other networks, at different rates, increasing both in network connectivity and size over time. Reaching childhood, marked fine-tuning and specialization takes place in the regions necessary for higher-order cognitive functions.

  15. An accurate optical design method for synchrotron radiation beamlines with wave-front aberration theory

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Xiaojiang, E-mail: slsyxj@nus.edu.sg; Diao, Caozheng; Breese, Mark B. H. [Singapore Synchrotron Light Source, National University of Singapore, Singapore 117603 (Singapore)

    2016-07-27

    An aberration calculation method which was developed by Lu [1] can treat individual aberration term precisely. Spectral aberration is the linear sum of these aberration terms, and the aberrations of multi-element systems also can be calculated correctly when the stretching ratio, defined herein, is unity. Evaluation of focusing mirror-grating systems which are optimized according to Lu’s method, along with the Light Path Function (LPF) and the Spot Diagram method (SD) are discussed to confirm the advantage of Lu’s methodology. Lu’s aberration terms are derived from a precise wave-front treatment, whereas the terms of the power series expansion of the light path function do not yield an accurate sum of the aberrations. Moreover, Lu’s aberration terms can be individually optimized. This is not possible with the analytical spot diagram formulae.

  16. A model of distributed phase aberration for deblurring phase estimated from scattering.

    Science.gov (United States)

    Tillett, Jason C; Astheimer, Jeffrey P; Waag, Robert C

    2010-01-01

    Correction of aberration in ultrasound imaging uses the response of a point reflector or its equivalent to characterize the aberration. Because a point reflector is usually unavailable, its equivalent is obtained using statistical methods, such as processing reflections from multiple focal regions in a random medium. However, the validity of methods that use reflections from multiple points is limited to isoplanatic patches for which the aberration is essentially the same. In this study, aberration is modeled by an offset phase screen to relax the isoplanatic restriction. Methods are developed to determine the depth and phase of the screen and to use the model for compensation of aberration as the beam is steered. Use of the model to enhance the performance of the noted statistical estimation procedure is also described. Experimental results obtained with tissue-mimicking phantoms that implement different models and produce different amounts of aberration are presented to show the efficacy of these methods. The improvement in b-scan resolution realized with the model is illustrated. The results show that the isoplanatic patch assumption for estimation of aberration can be relaxed and that propagation-path characteristics and aberration estimation are closely related.

  17. Globalization, Brain Drain, and Development

    OpenAIRE

    Docquier, Frédéric; Rapoport, Hillel

    2012-01-01

    This paper reviews four decades of economics research on the brain drain, with a focus on recent contributions and on development issues. We first assess the magnitude, intensity, and determinants of the brain drain, showing that brain drain (or high-skill) migration is becoming a dominant pattern of international migration and a major aspect of globalization. We then use a stylized growth model to analyze the various channels through which a brain drain affects the sending countries and revi...

  18. Pathophysiology of MDS: genomic aberrations.

    Science.gov (United States)

    Ichikawa, Motoshi

    2016-01-01

    Myelodysplastic syndromes (MDS) are characterized by clonal proliferation of hematopoietic stem/progenitor cells and their apoptosis, and show a propensity to progress to acute myelogenous leukemia (AML). Although MDS are recognized as neoplastic diseases caused by genomic aberrations of hematopoietic cells, the details of the genetic abnormalities underlying disease development have not as yet been fully elucidated due to difficulties in analyzing chromosomal abnormalities. Recent advances in comprehensive analyses of disease genomes including whole-genome sequencing technologies have revealed the genomic abnormalities in MDS. Surprisingly, gene mutations were found in approximately 80-90% of cases with MDS, and the novel mutations discovered with these technologies included previously unknown, MDS-specific, mutations such as those of the genes in the RNA-splicing machinery. It is anticipated that these recent studies will shed new light on the pathophysiology of MDS due to genomic aberrations.

  19. Aberration compensation using a spatial light modulator LCD

    International Nuclear Information System (INIS)

    Amezquita, R; Rincon, O; Torres, Y M

    2011-01-01

    The dynamic correction of aberrations introduced in optical systems have been a widely discussed topic in the past 10 years. Adaptive optics is the most important developed field where the Shack-Hartmann sensors and deformable mirrors are used for the measurement and correction of wavefronts. In this paper, an interferometric set-up which uses a Spatial Light Modulator (SLM) as an active element is proposed. Using this SLM a procedure for the compensation of all phase aberrations present in the experimental setup is shown.

  20. The role of ethnic identity, self-concept, and aberrant salience in psychotic-like experiences.

    Science.gov (United States)

    Cicero, David C; Cohn, Jonathan R

    2018-01-01

    Social-cognitive models of psychosis suggest that aberrant salience and self-concept clarity are related to the development and maintenance of psychoticlike experiences (PLEs). People with high aberrant salience but low self-concept clarity tend to have the highest levels of PLEs. Ethnic identity may also be related to PLEs. The current research aimed to (a) replicate the interaction between aberrant salience and self-concept clarity in their association with PLEs in an ethnically diverse sample, (b) examine whether ethnic identity and aberrant salience interact in their association with PLEs, and (c) determine if self-concept clarity and ethnic identity independently interact with aberrant salience in their association with PLEs. An ethnically diverse group of undergraduates (n = 663) completed self-report measures of aberrant salience, self-concept clarity, ethnic identity, and PLEs. There was an interaction between aberrant salience and self-concept clarity such that people with high levels of aberrant salience and low levels of self-concept clarity had the highest levels of PLEs. Similarly, there was an interaction between aberrant salience and ethnic identity such that people with high aberrant salience but low ethnic identity had the highest PLEs. These interactions independently contributed to explaining variance in PLEs. This interaction was present for the Exploration but not Commitment subscales of ethnic identity. These results suggest that, in addition to low self-concept clarity, low ethnic identity may be a risk factor for the development of psychosis. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  1. [Monochromatic aberration in accommodation. Dynamic wavefront analysis].

    Science.gov (United States)

    Fritzsch, M; Dawczynski, J; Jurkutat, S; Vollandt, R; Strobel, J

    2011-06-01

    Monochromatic aberrations may influence the visual acuity of the eye. They are not stable and can be affected by different factors. The subject of the following paper is the dynamic investigation of the changes in wavefront aberration with accommodation. Dynamic measurement of higher and lower order aberrations was performed with a WASCA Wavefront Analyzer (Carl-Zeiss-Meditec) and a specially constructed target device for aligning objects in far and near distances on 25 subjects aged from 15 to 27 years old. Wavefront aberrations showed some significant changes in accommodation. In addition to the characteristic sphere reaction accompanying miosis and changes in horizontal prism (Z(1) (1)) in the sense of a convergence movement of the eyeball also occurred. Furthermore defocus rose (Z(2) (0)) and astigmatism (Z(2) (-2)) changed. In higher-order aberrations a decrease in coma-like Zernike polynomials (Z(3) (-1), Z(3) (1)) was found. The most obvious change appeared in spherical aberration (Z(4) (0)) which increased and changed from positive to negative. In addition the secondary astigmatism (Z(4) (-2)) and quadrafoil (Z(4) (4)) rise also increased. The total root mean square (RMS), as well as the higher-order aberrations (RMS-HO) significantly increased in accommodation which is associated with a theoretical reduction of visual acuity. An analysis of the influence of pupil size on aberrations showed significant increases in defocus, spherical aberration, quadrafoil, RMS and RMS HO by increasing pupil diameter. By accommodation-associated miosis, the growing aberrations are partially compensated by focusing on near objects. Temporal analysis of the accommodation process with dynamic wavefront analysis revealed significant delays in pupil response and changing of prism in relation to the sphere reaction. In accommodation to near objects a discrete time ahead of third order aberrations in relation to the sphere response was found. Using dynamic wavefront measurement

  2. Why did humans develop a large brain?

    OpenAIRE

    Muscat Baron, Yves

    2012-01-01

    "Of all animals, man has the largest brain in proportion to his size"- Aristotle. Dr Yves Muscat Baron shares his theory on how humans evolved large brains. The theory outlines how gravity could have helped humans develop a large brain- the author has named the theory 'The Gravitational Vascular Theory'. http://www.um.edu.mt/think/why-did-humans-develop-a-large-brain/

  3. Direct Modulation Of Aberrant Brain Network Connectivity Through Real-Time NeuroFeedback

    OpenAIRE

    White, Emily; Popal, Haroon; Roopchansingh, Vinai; Gonzalez-Castillo, Javier; Kimmich, Sara; Ramot, Michal; Martin Ph.D., Alex; Gotts, Stephen

    2017-01-01

    eLife digest Even when we are at rest, our brains are always active. For example, areas of the brain involved in vision remain active in complete darkness. Different brain regions that connect together to perform a given task often show coordinated activity at rest. Past studies have shown that these resting connections are different in people with conditions such as autism. Some brain regions are more weakly connected while others are more strongly connected in people with autism spectrum di...

  4. Human Behavior, Learning, and the Developing Brain: Typical Development

    Science.gov (United States)

    Coch, Donna, Ed.; Fischer, Kurt W., Ed.; Dawson, Geraldine, Ed.

    2010-01-01

    This volume brings together leading authorities from multiple disciplines to examine the relationship between brain development and behavior in typically developing children. Presented are innovative cross-sectional and longitudinal studies that shed light on brain-behavior connections in infancy and toddlerhood through adolescence. Chapters…

  5. Development of the Young Brain

    Medline Plus

    Full Text Available ... items) Institute Announcements (24 items) Development of the Young Brain May 2, 2011 For more than twenty ... Announcer: Our brains have been challenged by the effects of multi-tasking in many ways brought on ...

  6. Development of the Young Brain

    Medline Plus

    Full Text Available ... development of the adolescent brain has been the life work of National Institute of Mental Health researcher ... Jay Giedd. Dr. Giedd: At different ages of life certain parts of the brain have much more ...

  7. Development of the Young Brain

    Medline Plus

    Full Text Available ... development of the adolescent brain. Decades of imaging work have led to remarkable insight and a more ... of the adolescent brain has been the life work of National Institute of Mental Health researcher Dr. ...

  8. Measurement of eye aberrations in a speckle field

    International Nuclear Information System (INIS)

    Larichev, A V; Ivanov, P V; Iroshnikov, N G; Shmalgauzen, V I

    2001-01-01

    The influence of speckles on the performance of a Shark-Hartmann wavefront sensor is investigated in the eye aberration studies. The dependence of the phase distortion measurement error on the characteristic speckle size is determined experimentally. Scanning of the reference source was used to suppress the speckle structure of the laser beam scattered by the retina. The technique developed by us made it possible to study the time dependence of the human eye aberrations with a resolution of 30 ms. (laser applications and other topics in quantum electronics)

  9. Development of the Young Brain

    Medline Plus

    Full Text Available ... 160; Watch on YouTube. Transcript Announcer: Parents and caregivers have always been fascinated with the development of ... size of the brain is nearly complete. But what goes on within the brain is nothing short ...

  10. Development of the Young Brain

    Medline Plus

    Full Text Available ... development of the adolescent brain has been the life work of National Institute of Mental Health researcher Dr. Jay Giedd. Dr. Giedd: At different ages of life certain parts of the brain have much more ...

  11. The development of brain network architecture

    NARCIS (Netherlands)

    Wierenga, Lara M.; van den Heuvel, Martijn P.; van Dijk, Sarai; Rijks, Yvonne; de Reus, Marcel A.; Durston, Sarah

    2016-01-01

    Brain connectivity shows protracted development throughout childhood and adolescence, and, as such, the topology of brain networks changes during this period. The complexity of these changes with development is reflected by regional differences in maturation. This study explored age-related changes

  12. The prediction of spherical aberration with schematic eyes.

    Science.gov (United States)

    Liou, H L; Brennan, N A

    1996-07-01

    Many model eyes have been proposed; they differ in optical characteristics and therefore have different aberrations and image quality. In predicting the visual performance of the eye, we are most concerned with the central foveal vision. Spherical aberration is the only on-axis monochromatic aberration and can be used as a criterion to assess the degree of resemblance of eye models to the human eye. We reviewed and compiled experimental values of the spherical aberration of the eye, calculated the spherical aberration of several different categories of model eyes and compared the calculated results to the experimental data. Results show an over-estimation of spherical aberration by all models, the finite schematic eyes predicting values of spherical aberration closest to the experimental data. Current model eyes do not predict the average experimental values of the spherical aberration of the eye. A new model eye satisfying this assessment criterion is required for investigations of the visual performance of the eye.

  13. The effects of vitamin D on brain development and adult brain function.

    Science.gov (United States)

    Kesby, James P; Eyles, Darryl W; Burne, Thomas H J; McGrath, John J

    2011-12-05

    A role for vitamin D in brain development and function has been gaining support over the last decade. Multiple lines of evidence suggest that this vitamin is actually a neuroactive steroid that acts on brain development, leading to alterations in brain neurochemistry and adult brain function. Early deficiencies have been linked with neuropsychiatric disorders, such as schizophrenia, and adult deficiencies have been associated with a host of adverse brain outcomes, including Parkinson's disease, Alzheimer's disease, depression and cognitive decline. This review summarises the current state of research on the actions of vitamin D in the brain and the consequences of deficiencies in this vitamin. Furthermore, we discuss specific implications of vitamin D status on the neurotransmitter, dopamine. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. Imaging characteristics of Zernike and annular polynomial aberrations.

    Science.gov (United States)

    Mahajan, Virendra N; Díaz, José Antonio

    2013-04-01

    The general equations for the point-spread function (PSF) and optical transfer function (OTF) are given for any pupil shape, and they are applied to optical imaging systems with circular and annular pupils. The symmetry properties of the PSF, the real and imaginary parts of the OTF, and the modulation transfer function (MTF) of a system with a circular pupil aberrated by a Zernike circle polynomial aberration are derived. The interferograms and PSFs are illustrated for some typical polynomial aberrations with a sigma value of one wave, and 3D PSFs and MTFs are shown for 0.1 wave. The Strehl ratio is also calculated for polynomial aberrations with a sigma value of 0.1 wave, and shown to be well estimated from the sigma value. The numerical results are compared with the corresponding results in the literature. Because of the same angular dependence of the corresponding annular and circle polynomial aberrations, the symmetry properties of systems with annular pupils aberrated by an annular polynomial aberration are the same as those for a circular pupil aberrated by a corresponding circle polynomial aberration. They are also illustrated with numerical examples.

  15. Geometric characteristics of aberrations of plane-symmetric optical systems

    International Nuclear Information System (INIS)

    Lu Lijun; Deng Zhiyong

    2009-01-01

    The geometric characteristics of aberrations of plane-symmetric optical systems are studied in detail with a wave-aberration theory. It is dealt with as an extension of the Seidel aberrations to realize a consistent aberration theory from axially symmetric to plane-symmetric systems. The aberration distribution is analyzed with the spot diagram of a ray and an aberration curve. Moreover, the root-mean-square value and the centroid of aberration distribution are discussed. The numerical results are obtained with the focusing optics of a toroidal mirror at grazing incidence.

  16. Quantitative Folding Pattern Analysis of Early Primary Sulci in Human Fetuses with Brain Abnormalities.

    Science.gov (United States)

    Im, K; Guimaraes, A; Kim, Y; Cottrill, E; Gagoski, B; Rollins, C; Ortinau, C; Yang, E; Grant, P E

    2017-07-01

    Aberrant gyral folding is a key feature in the diagnosis of many cerebral malformations. However, in fetal life, it is particularly challenging to confidently diagnose aberrant folding because of the rapid spatiotemporal changes of gyral development. Currently, there is no resource to measure how an individual fetal brain compares with normal spatiotemporal variations. In this study, we assessed the potential for automatic analysis of early sulcal patterns to detect individual fetal brains with cerebral abnormalities. Triplane MR images were aligned to create a motion-corrected volume for each individual fetal brain, and cortical plate surfaces were extracted. Sulcal basins were automatically identified on the cortical plate surface and compared with a combined set generated from 9 normal fetal brain templates. Sulcal pattern similarities to the templates were quantified by using multivariate geometric features and intersulcal relationships for 14 normal fetal brains and 5 fetal brains that were proved to be abnormal on postnatal MR imaging. Results were compared with the gyrification index. Significantly reduced sulcal pattern similarities to normal templates were found in all abnormal individual fetuses compared with normal fetuses (mean similarity [normal, abnormal], left: 0.818, 0.752; P the primary distinguishing features. The gyrification index was not significantly different between the normal and abnormal groups. Automated analysis of interrelated patterning of early primary sulci could outperform the traditional gyrification index and has the potential to quantitatively detect individual fetuses with emerging abnormal sulcal patterns. © 2017 by American Journal of Neuroradiology.

  17. Some aberrant foraminifera from the shelf sediments of central east coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    Setty, M.G.A; Almeida, F.

    A rich foraminiferal outer shelf assemblage has yielded some aberrant forms in the case of @iUvigerina@@ sp. @iSiphonoperta@@ sp., and @iNodosaria@@ sp. The aberration is (1) in the development of two terminal apertures with parallel necks...

  18. Aberration characteristics of immersion lenses for LVSEM

    International Nuclear Information System (INIS)

    Khursheed, Anjam

    2002-01-01

    This paper investigates the on-axis aberration characteristics of various immersion objective lenses for low voltage scanning electron microscopy (LVSEM). A simple aperture lens model is used to generate smooth axial field distributions. The simulation results show that mixed field electric-magnetic immersion lenses are predicted to have between 1.5 and 2 times smaller aberration limited probe diameters than their pure-field counterparts. At a landing energy of 1 keV, mixed field immersion lenses operating at the vacuum electrical field breakdown limit are predicted to have on-axis aberration coefficients between 50 and 60 μm, yielding an ultimate image resolution of below 1 nm. These aberrations lie in the same range as those for LVSEM systems that employ aberration correctors

  19. Asymmetry of the Brain: Development and Implications.

    Science.gov (United States)

    Duboc, Véronique; Dufourcq, Pascale; Blader, Patrick; Roussigné, Myriam

    2015-01-01

    Although the left and right hemispheres of our brains develop with a high degree of symmetry at both the anatomical and functional levels, it has become clear that subtle structural differences exist between the two sides and that each is dominant in processing specific cognitive tasks. As the result of evolutionary conservation or convergence, lateralization of the brain is found in both vertebrates and invertebrates, suggesting that it provides significant fitness for animal life. This widespread feature of hemispheric specialization has allowed the emergence of model systems to study its development and, in some cases, to link anatomical asymmetries to brain function and behavior. Here, we present some of what is known about brain asymmetry in humans and model organisms as well as what is known about the impact of environmental and genetic factors on brain asymmetry development. We specifically highlight the progress made in understanding the development of epithalamic asymmetries in zebrafish and how this model provides an exciting opportunity to address brain asymmetry at different levels of complexity.

  20. Disrupted Structural Brain Network in AD and aMCI: A Finding of Long Fiber Degeneration.

    Science.gov (United States)

    Fang, Rong; Yan, Xiao-Xiao; Wu, Zhi-Yuan; Sun, Yu; Yin, Qi-Hua; Wang, Ying; Tang, Hui-Dong; Sun, Jun-Feng; Miao, Fei; Chen, Sheng-Di

    2015-01-01

    Although recent evidence has emerged that Alzheimer's disease (AD) and amnestic mild cognitive impairment (aMCI) patients show both regional brain abnormalities and topological degeneration in brain networks, our understanding of the effects of white matter fiber aberrations on brain network topology in AD and aMCI is still rudimentary. In this study, we investigated the regional volumetric aberrations and the global topological abnormalities in AD and aMCI patients. The results showed a widely distributed atrophy in both gray and white matters in the AD and aMCI groups. In particular, AD patients had weaker connectivity with long fiber length than aMCI and normal control (NC) groups, as assessed by fractional anisotropy (FA). Furthermore, the brain networks of all three groups exhibited prominent economical small-world properties. Interestingly, the topological characteristics estimated from binary brain networks showed no significant group effect, indicating a tendency of preserving an optimal topological architecture in AD and aMCI during degeneration. However, significantly longer characteristic path length was observed in the FA weighted brain networks of AD and aMCI patients, suggesting dysfunctional global integration. Moreover, the abnormality of the characteristic path length was negatively correlated with the clinical ratings of cognitive impairment. Thus, the results therefore suggested that the topological alterations in weighted brain networks of AD are induced by the loss of connectivity with long fiber lengths. Our findings provide new insights into the alterations of the brain network in AD and may indicate the predictive value of the network metrics as biomarkers of disease development.

  1. Development of the Young Brain

    Medline Plus

    Full Text Available ... changing so much. We’ve been challenged- how do we keep up with the changing world and how do we assess the impact for good or for ... what was the human brain originally developed to do? Well, Dr. Giedd says our brains are fundamentally ...

  2. Aberrant functional network connectivity in psychopathy from a large (N = 985) forensic sample.

    Science.gov (United States)

    Espinoza, Flor A; Vergara, Victor M; Reyes, Daisy; Anderson, Nathaniel E; Harenski, Carla L; Decety, Jean; Rachakonda, Srinivas; Damaraju, Eswar; Rashid, Barnaly; Miller, Robyn L; Koenigs, Michael; Kosson, David S; Harenski, Keith; Kiehl, Kent A; Calhoun, Vince D

    2018-06-01

    Psychopathy is a personality disorder characterized by antisocial behavior, lack of remorse and empathy, and impaired decision making. The disproportionate amount of crime committed by psychopaths has severe emotional and economic impacts on society. Here we examine the neural correlates associated with psychopathy to improve early assessment and perhaps inform treatments for this condition. Previous resting-state functional magnetic resonance imaging (fMRI) studies in psychopathy have primarily focused on regions of interest. This study examines whole-brain functional connectivity and its association to psychopathic traits. Psychopathy was hypothesized to be characterized by aberrant functional network connectivity (FNC) in several limbic/paralimbic networks. Group-independent component and regression analyses were applied to a data set of resting-state fMRI from 985 incarcerated adult males. We identified resting-state networks (RSNs), estimated FNC between RSNs, and tested their association to psychopathy factors and total summary scores (Factor 1, interpersonal/affective; Factor 2, lifestyle/antisocial). Factor 1 scores showed both increased and reduced functional connectivity between RSNs from seven brain domains (sensorimotor, cerebellar, visual, salience, default mode, executive control, and attentional). Consistent with hypotheses, RSNs from the paralimbic system-insula, anterior and posterior cingulate cortex, amygdala, orbital frontal cortex, and superior temporal gyrus-were related to Factor 1 scores. No significant FNC associations were found with Factor 2 and total PCL-R scores. In summary, results suggest that the affective and interpersonal symptoms of psychopathy (Factor 1) are associated with aberrant connectivity in multiple brain networks, including paralimbic regions. © 2018 Wiley Periodicals, Inc.

  3. Freeform aberrations in phase space: an example.

    Science.gov (United States)

    Babington, James

    2017-06-01

    We consider how optical propagation and aberrations of freeform systems can be formulated in phase space. As an example system, a freeform prism is analyzed and discussed. Symmetry considerations and their group theory descriptions are given some importance. Numerical aberrations are also highlighted and put into the context of the underlying aberration theory.

  4. Spherical aberrations of human astigmatic corneas.

    Science.gov (United States)

    Zhao, Huawei; Dai, Guang-Ming; Chen, Li; Weeber, Henk A; Piers, Patricia A

    2011-11-01

    To evaluate whether the average spherical aberration of human astigmatic corneas is statistically equivalent to human nonastigmatic corneas. Spherical aberrations of 445 astigmatic corneas prior to laser vision correction were retrospectively investigated to determine Zernike coefficients for central corneal areas 6 mm in diameter using CTView (Sarver and Associates). Data were divided into groups according to cylinder power (0.01 to 0.25 diopters [D], 0.26 to 0.75 D, 0.76 to 1.06 D, 1.07 to 1.53 D, 1.54 to 2.00 D, and >2.00 D) and according to age by decade. Spherical aberrations were correlated with age and astigmatic power among groups and the entire population. Statistical analyses were conducted, and P.05 for all tested groups). Mean spherical aberration of astigmatic corneas was not correlated significantly with cylinder power or age (P>.05). Spherical aberrations are similar to those of nonastigmatic corneas, permitting the use of these additional data in the design of aspheric toric intra-ocular lenses. Copyright 2011, SLACK Incorporated.

  5. Practical MRI atlas of neonatal brain development

    International Nuclear Information System (INIS)

    Barkovich, A.J.; Truwit, C.L.

    1990-01-01

    This book is an anatomical reference for cranial magnetic resonance imaging (MRI) studies in neonates and infants. It contains 122 clear, sharp MRI scans and drawings showing changes in the normal appearance of the brain and skull during development. Sections of the atlas depict the major processes of maturation: brain myelination, development of the corpus callosum, development of the cranial bone marrow, and iron deposition in the brain. High-quality scans illustrate how these changes appear on magnetic resonance images during various stages of development

  6. Iron assessment to protect the developing brain.

    Science.gov (United States)

    Georgieff, Michael K

    2017-12-01

    Iron deficiency (ID) before the age of 3 y can lead to long-term neurological deficits despite prompt diagnosis of ID anemia (IDA) by screening of hemoglobin concentrations followed by iron treatment. Furthermore, pre- or nonanemic ID alters neurobehavioral function and is 3 times more common than IDA in toddlers. Given the global prevalence of ID and the enormous societal cost of developmental disabilities across the life span, better methods are needed to detect the risk of inadequate concentrations of iron for brain development (i.e., brain tissue ID) before dysfunction occurs and to monitor its amelioration after diagnosis and treatment. The current screening and treatment strategy for IDA fails to achieve this goal for 3 reasons. First, anemia is the final state in iron depletion. Thus, the developing brain is already iron deficient when IDA is diagnosed owing to the prioritization of available iron to red blood cells over all other tissues during negative iron balance in development. Second, brain ID, independently of IDA, is responsible for long-term neurological deficits. Thus, starting iron treatment after the onset of IDA is less effective than prevention. Multiple studies in humans and animal models show that post hoc treatment strategies do not reliably prevent ID-induced neurological deficits. Third, most currently used indexes of ID are population statistical cutoffs for either hematologic or iron status but are not bioindicators of brain ID and brain dysfunction in children. Furthermore, their relation to brain iron status is not known. To protect the developing brain, there is a need to generate serum measures that index brain dysfunction in the preanemic stage of ID, assess the ability of standard iron indicators to detect ID-induced brain dysfunction, and evaluate the efficacy of early iron treatment in preventing ID-induced brain dysfunction. © 2017 American Society for Nutrition.

  7. Disorders of brain development and phakomatosis

    International Nuclear Information System (INIS)

    Merhemis, Z.

    2006-01-01

    Full text: Disorders of brain development and phakomatosis are resulting from disturbed embryonic-foetal development One third of all major embryological anomalies involve CNS, and over 2000 different anomalies have been described. Anomalies of the brain often cause foetal and neonatal death, and mental and physical retardation in pediatric group. The majority of disorders of brain development and phakomatosis are idiopathic, and most of them are not hereditary or familial. Ultrasonography plays the important role in screening foetal and neonatal brain, but after closure of fontanels it is difficult to find the acoustic window. CT has limited contrast resolution, and disadvantage exposing infant to ionizing radiation. It is helpful to demonstrate the presence of calcifications. MR imaging has proved to be a diagnostic tool of major importance in children with disorders of brain development and phakomatosis. The excellent grey/white matter differentiation and multiplanar imaging capabilities of MR allow a systematic analysis of the brain. Disorders occurring in the first 4 weeks of gestation: Disorders of neural tube closure; Chiari malformation; Cephaloceles; Dermoid/Epidermoid. Disorders occurring between 5 and 10 weeks of gestation: Holoprosencephaly; Septo-optic dysplasia; Diencephalic cyst; Dandy Walker complex; Mega cistern magna. Disorders occurring between 2 and 5 months of gestation: Disorders of sulcation and cellular migration; Lissencephaly; Pachigyria; Schizencephaly; Heterotopias; Megaencephaly; Polymicrogyria; Porencephaly; Arachnoid cyst. Corpus callosum anomalies. Phakomatosis: Neurocutaneous Syndromes Neurofibromatosis Type 1 and 2; Tuberous Sclerosis; von Hippel-Lindau disease; Studge-Weber sy; Osler-Weber- Rendu sy

  8. Biophysical modeling of high field diffusion MRI demonstrates micro-structural aberration in chronic mild stress rat brain

    DEFF Research Database (Denmark)

    Khan, Ahmad Raza; Chuhutin, Andrey; Wiborg, Ove

    2016-01-01

    anhedonia is considered to be a realistic model of depression in studies of animal subjects. Stereological and neuronal tracing techniques have demonstrated persistent remodeling of microstructure in hippocampus, prefrontal cortex and amygdala of CMS brains. Recent developments in diffusion MRI (d...... microstructure in the hippocampus, prefrontal cortex, caudate putamen and amygdala regions of CMS rat brains by comparison to brains from normal controls. To validate findings of CMS induced microstructural alteration, histology was performed to determine neurite, nuclear and astrocyte density. d-MRI based...... neurite density and tensor-based mean kurtosis (MKT) were significantly higher, while mean diffusivity (MD), extracellular diffusivity (Deff) and intra-neurite diffusivity(DL) were significantly lower in the amygdala of CMS rat brains. Deff was also significantly lower in the hippocampus and caudate...

  9. Whole eye wavefront aberrations in Mexican male subjects.

    Science.gov (United States)

    Cantú, Roberto; Rosales, Marco A; Tepichín, Eduardo; Curioca, Andrée; Montes, Victor; Bonilla, Julio

    2004-01-01

    To analyze the characteristics, incidence, and appearance of wavefront aberrations in undilated, normal, unoperated eyes. Eighty-eight eyes of 44 healthy male Mexican subjects (mean age 25.32 years, range 18 to 36 yr) were divided into three groups based on uncorrected visual acuity of greater than or equal to 20/20, 20/30, or 20/40. UCVA measurements were obtained using an Acuity Max computer screen chart. Wavefront aberrations were measured with the Nidek OPD-Scan ARK 10000, Ver. 1.11b. All measurements were carried out at the same center by the same technician during a single session, following manufacturer instructions. Background illumination was 3 Lux. Wavefront aberration measurements for each group were statistically analyzed using StatView; an average eye was characterized and the resulting aberrations were simulated using MATLAB. We obtained wavefront aberration maps for the 20/20 undilated normal unoperated eyes for total, low, and high order aberration coefficients. Wavefront maps for right eyes were practically the same as those for left eyes. Higher aberrations did not contribute substantially to total wavefront analysis. Average aberrations of this "normal eye" will be used as criteria to decide the necessity of wavefront-guided ablation in our facilities. We will focus on the nearly zero average of high order aberrations in this normal whole eye as a reference to be matched.

  10. Brain connectivity in normally developing children and adolescents.

    Science.gov (United States)

    Khundrakpam, Budhachandra S; Lewis, John D; Zhao, Lu; Chouinard-Decorte, François; Evans, Alan C

    2016-07-01

    The developing human brain undergoes an astonishing sequence of events that continuously shape the structural and functional brain connectivity. Distinct regional variations in the timelines of maturational events (synaptogenesis and synaptic pruning) occurring at the synaptic level are reflected in brain measures at macroscopic resolution (cortical thickness and gray matter density). Interestingly, the observed brain changes coincide with cognitive milestones suggesting that the changing scaffold of brain circuits may subserve cognitive development. Recent advances in connectivity analysis propelled by graph theory have allowed, on one hand, the investigation of maturational changes in global organization of structural and functional brain networks; and on the other hand, the exploration of specific networks within the context of global brain networks. An emerging picture from several connectivity studies is a system-level rewiring that constantly refines the connectivity of the developing brain. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Development of the Young Brain

    Medline Plus

    Full Text Available ... we’ve been able to change what our brain does based on having the written word and having this ... developed to do? Well, Dr. Giedd says our brains are fundamentally designed to learn through example. Dr. Giedd: This learning by example is very powerful and that parents ...

  12. DNA lesions induced by replication stress trigger mitotic aberration and tetraploidy development.

    Directory of Open Access Journals (Sweden)

    Yosuke Ichijima

    Full Text Available During tumorigenesis, cells acquire immortality in association with the development of genomic instability. However, it is still elusive how genomic instability spontaneously generates during the process of tumorigenesis. Here, we show that precancerous DNA lesions induced by oncogene acceleration, which induce situations identical to the initial stages of cancer development, trigger tetraploidy/aneuploidy generation in association with mitotic aberration. Although oncogene acceleration primarily induces DNA replication stress and the resulting lesions in the S phase, these lesions are carried over into the M phase and cause cytokinesis failure and genomic instability. Unlike directly induced DNA double-strand breaks, DNA replication stress-associated lesions are cryptogenic and pass through cell-cycle checkpoints due to limited and ineffective activation of checkpoint factors. Furthermore, since damaged M-phase cells still progress in mitotic steps, these cells result in chromosomal mis-segregation, cytokinesis failure and the resulting tetraploidy generation. Thus, our results reveal a process of genomic instability generation triggered by precancerous DNA replication stress.

  13. Measuring and correcting aberrations of a cathode objective lens

    International Nuclear Information System (INIS)

    Tromp, R.M.

    2011-01-01

    In this paper I discuss several theoretical and practical aspects related to measuring and correcting the chromatic and spherical aberrations of a cathode objective lens as used in Low Energy Electron Microscopy (LEEM) and Photo Electron Emission Microscopy (PEEM) experiments. Special attention is paid to the various components of the cathode objective lens as they contribute to chromatic and spherical aberrations, and affect practical methods for aberration correction. This analysis has enabled us to correct a LEEM instrument for the spherical and chromatic aberrations of the objective lens. -- Research highlights: → Presents a comprehensive theory of the relation between chromatic aberration and lens current in a cathode objective lens. → Presents practical methods for measuring both spherical and chromatic aberrations of a cathode objective lens. → Presents measurements of these aberrations in good agreement with theory. → Presents practical methods for measuring and correcting these aberrations with an electron mirror.

  14. Measuring higher order optical aberrations of the human eye: techniques and applications

    Directory of Open Access Journals (Sweden)

    L. Alberto V. Carvalho

    2002-11-01

    Full Text Available In the present paper we discuss the development of "wave-front", an instrument for determining the lower and higher optical aberrations of the human eye. We also discuss the advantages that such instrumentation and techniques might bring to the ophthalmology professional of the 21st century. By shining a small light spot on the retina of subjects and observing the light that is reflected back from within the eye, we are able to quantitatively determine the amount of lower order aberrations (astigmatism, myopia, hyperopia and higher order aberrations (coma, spherical aberration, etc.. We have measured artificial eyes with calibrated ametropia ranging from +5 to -5 D, with and without 2 D astigmatism with axis at 45º and 90º. We used a device known as the Hartmann-Shack (HS sensor, originally developed for measuring the optical aberrations of optical instruments and general refracting surfaces in astronomical telescopes. The HS sensor sends information to a computer software for decomposition of wave-front aberrations into a set of Zernike polynomials. These polynomials have special mathematical properties and are more suitable in this case than the traditional Seidel polynomials. We have demonstrated that this technique is more precise than conventional autorefraction, with a root mean square error (RMSE of less than 0.1 µm for a 4-mm diameter pupil. In terms of dioptric power this represents an RMSE error of less than 0.04 D and 5º for the axis. This precision is sufficient for customized corneal ablations, among other applications.

  15. Ultra-precise measurement of optical aberrations for sub-Aangstroem transmission electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Barthel, J.

    2008-06-15

    Quantitative investigations of material structures on an atomic scale by means of highresolution transmission electron microscopy (HRTEM) impose not only extreme demands on the mechanic and electromagnetic stability of the applied instruments but require also their precise electron-optical adjustment. Today a physical resolution well below one Aangstroem can be achieved with commercially available microscopes on a daily basis. However, the achieved resolution can often not be reliably exploited for the interpretation of the resulting microscopical data due to the presence of so-called higher-order lens aberrations. At the starting time of this work, a sufficiently accurate procedure to measure higher-order aberrations was urgently missing. Since aberration measurement is a mandatory prerequisite for any technique of aberration control enabling quantitative high-resolution microscopy, the goal of this work is to develop such a measurement procedure for the Sub-Aangstroem regime. The measurement procedures developed in the course of this work are based on the numerical evaluation of a series of images taken from an amorphous object under electron-beam illumination with varying tilt. New techniques have been developed for the evaluation of single images as well as for the optimised evaluation of the whole series. These procedures allow microscope users to perform quantitative HRTEM even at a resolution of 0.5 Aangstroem. The precision reached with the newly developed measurement procedures is unprecedented and surpasses existing solutions by at least one order of magnitude in any respect. All the concepts and procedures for aberration measurement developed in this work have been implemented in a software package which satisfies professional demands with respect to robustness, precision, speed and user-friendliness. The new automatic aberrationmeasurement procedures are suitable to establish HRTEM as a quantitative technique for material science investigations in the

  16. Ultra-precise measurement of optical aberrations for sub-Aangstroem transmission electron microscopy

    International Nuclear Information System (INIS)

    Barthel, J.

    2008-06-01

    Quantitative investigations of material structures on an atomic scale by means of highresolution transmission electron microscopy (HRTEM) impose not only extreme demands on the mechanic and electromagnetic stability of the applied instruments but require also their precise electron-optical adjustment. Today a physical resolution well below one Aangstroem can be achieved with commercially available microscopes on a daily basis. However, the achieved resolution can often not be reliably exploited for the interpretation of the resulting microscopical data due to the presence of so-called higher-order lens aberrations. At the starting time of this work, a sufficiently accurate procedure to measure higher-order aberrations was urgently missing. Since aberration measurement is a mandatory prerequisite for any technique of aberration control enabling quantitative high-resolution microscopy, the goal of this work is to develop such a measurement procedure for the Sub-Aangstroem regime. The measurement procedures developed in the course of this work are based on the numerical evaluation of a series of images taken from an amorphous object under electron-beam illumination with varying tilt. New techniques have been developed for the evaluation of single images as well as for the optimised evaluation of the whole series. These procedures allow microscope users to perform quantitative HRTEM even at a resolution of 0.5 Aangstroem. The precision reached with the newly developed measurement procedures is unprecedented and surpasses existing solutions by at least one order of magnitude in any respect. All the concepts and procedures for aberration measurement developed in this work have been implemented in a software package which satisfies professional demands with respect to robustness, precision, speed and user-friendliness. The new automatic aberrationmeasurement procedures are suitable to establish HRTEM as a quantitative technique for material science investigations in the

  17. The developing brain in a multitasking world.

    Science.gov (United States)

    Rothbart, Mary K; Posner, Michael I

    2015-03-01

    To understand the problem of multitasking, it is necessary to examine the brain's attention networks that underlie the ability to switch attention between stimuli and tasks and to maintain a single focus among distractors. In this paper we discuss the development of brain networks related to the functions of achieving the alert state, orienting to sensory events, and developing self-control. These brain networks are common to everyone, but their efficiency varies among individuals and reflects both genes and experience. Training can alter brain networks. We consider two forms of training: (1) practice in tasks that involve particular networks, and (2) changes in brain state through such practices as meditation that may influence many networks. Playing action video games and multitasking are themselves methods of training the brain that can lead to improved performance but also to overdependence on media activity. We consider both of these outcomes and ideas about how to resist overdependence on media. Overall, our paper seeks to inform the reader about what has been learned about attention that can influence multitasking over the course of development.

  18. Static telescope aberration measurement using lucky imaging techniques

    Science.gov (United States)

    López-Marrero, Marcos; Rodríguez-Ramos, Luis Fernando; Marichal-Hernández, José Gil; Rodríguez-Ramos, José Manuel

    2012-07-01

    A procedure has been developed to compute static aberrations once the telescope PSF has been measured with the lucky imaging technique, using a nearby star close to the object of interest as the point source to probe the optical system. This PSF is iteratively turned into a phase map at the pupil using the Gerchberg-Saxton algorithm and then converted to the appropriate actuation information for a deformable mirror having low actuator number but large stroke capability. The main advantage of this procedure is related with the capability of correcting static aberration at the specific pointing direction and without the need of a wavefront sensor.

  19. Chromosomal aberrations in ore miners of Slovakia

    International Nuclear Information System (INIS)

    Beno, M.; Vladar, M.; Nikodemova, D.; Vicanova, M.; Durcik, M.

    1998-01-01

    A pilot study was performed in which the incidence of chromosomal aberrations in lymphocytes of miners in ore mines located in Central Slovakia was monitored and related to lifetime underground radon exposure and to lifetime smoking. The conclusions drawn from the results of the study were as follows: the counts of chromosomal aberrations in lymphocytes of miners were significantly higher than in an age matched control group of white-collar staff; the higher counts of chromosomal aberrations could be ascribed to underground exposure of miners and to smoking; a dependence of chromosomal aberration counts on the exposure to radon could not be assessed. (A.K.)

  20. Adolescent Brain Development and Drugs

    Science.gov (United States)

    Winters, Ken C.; Arria, Amelia

    2011-01-01

    Research now suggests that the human brain is still maturing during adolescence. The developing brain may help explain why adolescents sometimes make decisions that are risky and can lead to safety or health concerns, including unique vulnerabilities to drug abuse. This article explores how this new science may be put to use in our prevention and…

  1. Aberration studies and computer algebra

    International Nuclear Information System (INIS)

    Hawkes, P.W.

    1981-01-01

    The labour of calculating expressions for aberration coefficients is considerably lightened if a computer algebra language is used to perform the various substitutions and expansions involved. After a brief discussion of matrix representations of aberration coefficients, a particular language, which has shown itself to be well adapted to particle optics, is described and applied to the study of high frequency cavity lenses. (orig.)

  2. Theoretical investigation of aberrations upon ametropic human eyes

    Science.gov (United States)

    Tan, Bo; Chen, Ying-Ling; Lewis, J. W. L.; Baker, Kevin

    2003-11-01

    The human eye aberrations are important for visual acuity and ophthalmic diagnostics and surgical procedures. Reported monochromatic aberration data of the normal 20/20 human eyes are scarce. There exist even fewer reports of the relation between ametropic conditions and aberrations. We theoretically investigate the monochromatic and chromatic aberrations of human eyes for refractive errors of -10 to +10 diopters. Schematic human eye models are employed using optical design software for axial, index, and refractive types of ametropia.

  3. Chromosomal Aberrations in Monozygotic and Dizygotic Twins Versus Singletons in Denmark During 1968-2009

    DEFF Research Database (Denmark)

    Kristensen, Lone Krøldrup; Larsen, Lisbeth A; Fagerberg, Christina

    2017-01-01

    BACKGROUND: Hall (Embryologic development and monozygotic twinning. Acta Geneticae Medicae et Gemellologiae, Vol. 45, 1996, pp. 53-57) hypothesized that chromosomal aberrations can lead to monozygotic (MZ) twinning. However, twinning and chromosomal aberrations increase prenatal mortality and could...... reduce the prevalence of chromosomal aberrations in live-born twins. We compared prevalence proportion ratios (PPR) of chromosomal aberrations and trisomy 21 (T21) in live-born twins versus singletons born in Denmark during 1968-2009. METHODS: We linked the Danish Twin Registry and a 5% random sample...... of all singletons to the Danish Cytogenetic Central Register and calculated PPR adjusted for maternal age for MZ, dizygotic (DZ), and all twins versus singletons. Zygosity was based on questionnaires or genetic markers. RESULTS: No overall difference in risk of chromosomal aberrations or T21 in twins...

  4. Assessing the construct validity of aberrant salience

    Directory of Open Access Journals (Sweden)

    Kristin Schmidt

    2009-12-01

    Full Text Available We sought to validate the psychometric properties of a recently developed paradigm that aims to measure salience attribution processes proposed to contribute to positive psychotic symptoms, the Salience Attribution Test (SAT. The “aberrant salience” measure from the SAT showed good face validity in previous results, with elevated scores both in high-schizotypy individuals, and in patients with schizophrenia suffering from delusions. Exploring the construct validity of salience attribution variables derived from the SAT is important, since other factors, including latent inhibition/learned irrelevance, attention, probabilistic reward learning, sensitivity to probability, general cognitive ability and working memory could influence these measures. Fifty healthy participants completed schizotypy scales, the SAT, a learned irrelevance task, and a number of other cognitive tasks tapping into potentially confounding processes. Behavioural measures of interest from each task were entered into a principal components analysis, which yielded a five-factor structure accounting for ~75% percent of the variance in behaviour. Implicit aberrant salience was found to load onto its own factor, which was associated with elevated “Introvertive Anhedonia” schizotypy, replicating our previous finding. Learned irrelevance loaded onto a separate factor, which also included implicit adaptive salience, but was not associated with schizotypy. Explicit adaptive and aberrant salience, along with a measure of probabilistic learning, loaded onto a further factor, though this also did not correlate with schizotypy. These results suggest that the measures of learned irrelevance and implicit adaptive salience might be based on similar underlying processes, which are dissociable both from implicit aberrant salience and explicit measures of salience.

  5. DHA effects in brain development and function

    DEFF Research Database (Denmark)

    Lauritzen, Lotte; Brambilla, Paola; Mazzocchi, Allesandra

    2016-01-01

    the endogenous formation of DHA seems to be relatively low, DHA intake may contribute to optimal conditions for brain development. We performed a narrative review on research on the associations between DHA levels and brain development and function throughout the lifespan. Data from cell and animal studies...... justify the indication of DHA in relation to brain function for neuronal cell growth and differentiation as well as in relation to neuronal signaling. Most data from human studies concern the contribution of DHA to optimal visual acuity development. Accumulating data indicate that DHA may have effects...

  6. Flow cytogenetics: progress toward chromosomal aberration detection

    International Nuclear Information System (INIS)

    Carrano, A.V.; Gray, J.W.; Van Dilla, M.A.

    1977-01-01

    Using clonal derivatives of the Chinese hamster M3-1 cell line, we demonstrate the potential of flow systems to karyotype homogeneous aberrations (aberrations which are identical and present in every cell) and to detect heterogeneous aberrations (aberrations which occur randomly in a population and are not identical in every cell). Flow cytometry (FCM) of ethidium bromide stained isolated chromosomes from clone 650A of the M3-1 cells distinguishes nine chromosome types from the fourteen present in the actual karyotype. X-irradiation of this parent 650A clone produced two sub-clones with an altered flow karyotype, that is, their FCM distributions were characterized by the addition of new peaks and alterations in area under existing peaks. From the relative DNA content and area for each peak, as determined by computer analysis, we predicted that each clone had undergone a reciprocal translocation involving chromosomes from two peaks. This prediction was confirmed by Giemsa-banding the metaphase cells. Heterogeneous aberrations are reflected in the flow karyotype as an increase in background, that is, an increase in area underlying the chromosome peaks. This increase is dose dependent but, as yet, the sample variability has been too large for quantitative analysis. Flow sorting of the valleys between chromosome peaks produces enriched fractions of aberrant chromosomes for visual analysis. These approaches are potentially applicable to the analysis of chromsomal aberrations induced by environmental contaminants

  7. Aberration analysis for freeform surface terms overlay on general decentered and tilted optical surfaces.

    Science.gov (United States)

    Yang, Tong; Cheng, Dewen; Wang, Yongtian

    2018-03-19

    Aberration theory helps designers to better understand the nature of imaging systems. However, the existing aberration theory of freeform surfaces has many limitations. For example, it only works in the special case when the central area of the freeform surface is used. In addition, the light footprint is limited to a circle, which does not match the case of an elliptical footprint for general systems. In this paper, aberrations generated by freeform surface term overlay on general decentered and tilted optical surfaces are analyzed. For the case when the off-axis section of a freeform surface is used, the aberration equation for using stop and nonstop surfaces is discussed, and the aberrations generated by Zernike terms up to Z 17/18 are analyzed in detail. To solve the problem of the elliptical light footprint for tilted freeform surfaces, the scaled pupil vector is used in the aberration analysis. The mechanism of aberration transformation is discovered, and the aberrations generated by different Zernike terms in this case are calculated. Finally we proposed aberration equations for freeform terms on general decentered and tilted freeform surfaces. The research result given in this paper offers an important reference for optical designers and engineers, and it is of great importance in developing analytical methods for general freeform system design, tolerance analysis, and system assembly.

  8. Aberration-corrected STEM: current performance and future directions

    Energy Technology Data Exchange (ETDEWEB)

    Nellist, P D [Department of Physics, University of Dublin, Trinity College, Dublin 2 (Ireland); Chisholm, M F [Condensed Matter Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6030 (United States); Lupini, A R [Condensed Matter Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6030 (United States); Borisevich, A [Condensed Matter Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6030 (United States); Jr, W H Sides [Condensed Matter Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6030 (United States); Pennycook, S J [Condensed Matter Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6030 (United States); Dellby, N [Nion Co., 1102 8th St., Kirkland, WA 98033 (United States); Keyse, R [Nion Co., 1102 8th St., Kirkland, WA 98033 (United States); Krivanek, O L [Nion Co., 1102 8th St., Kirkland, WA 98033 (United States); Murfitt, M F [Nion Co., 1102 8th St., Kirkland, WA 98033 (United States); Szilagyi, Z S [Nion Co., 1102 8th St., Kirkland, WA 98033 (United States)

    2006-02-22

    Through the correction of spherical aberration in the scanning transmission electron microscope (STEM), the resolving of a 78 pm atomic column spacing has been demonstrated along with information transfer to 61 pm. The achievement of this resolution required careful control of microscope instabilities, parasitic aberrations and the compensation of uncorrected, higher order aberrations. Many of these issues are improved in a next generation STEM fitted with a new design of aberration corrector, and an initial result demonstrating aberration correction to a convergence semi-angle of 40 mrad is shown. The improved spatial resolution and beam convergence allowed for by such correction has implications for the way in which experiments are performed and how STEM data should be interpreted.

  9. Nodal aberration theory for wild-filed asymmetric optical systems

    Science.gov (United States)

    Chen, Yang; Cheng, Xuemin; Hao, Qun

    2016-10-01

    Nodal Aberration Theory (NAT) was used to calculate the zero field position in Full Field Display (FFD) for the given aberration term. Aiming at wide-filed non-rotational symmetric decentered optical systems, we have presented the nodal geography behavior of the family of third-order and fifth-order aberrations. Meanwhile, we have calculated the wavefront aberration expressions when one optical element in the system is tilted, which was not at the entrance pupil. By using a three-piece-cellphone lens example in optical design software CodeV, the nodal geography is testified under several situations; and the wavefront aberrations are calculated when the optical element is tilted. The properties of the nodal aberrations are analyzed by using Fringe Zernike coefficients, which are directly related with the wavefront aberration terms and usually obtained by real ray trace and wavefront surface fitting.

  10. Aberrant topological patterns of brain structural network in temporal lobe epilepsy.

    Science.gov (United States)

    Yasuda, Clarissa Lin; Chen, Zhang; Beltramini, Guilherme Coco; Coan, Ana Carolina; Morita, Marcia Elisabete; Kubota, Bruno; Bergo, Felipe; Beaulieu, Christian; Cendes, Fernando; Gross, Donald William

    2015-12-01

    Although altered large-scale brain network organization in patients with temporal lobe epilepsy (TLE) has been shown using morphologic measurements such as cortical thickness, these studies, have not included critical subcortical structures (such as hippocampus and amygdala) and have had relatively small sample sizes. Here, we investigated differences in topological organization of the brain volumetric networks between patients with right TLE (RTLE) and left TLE (LTLE) with unilateral hippocampal atrophy. We performed a cross-sectional analysis of 86 LTLE patients, 70 RTLE patients, and 116 controls. RTLE and LTLE groups were balanced for gender (p = 0.64), seizure frequency (Mann-Whitney U test, p = 0.94), age (p = 0.39), age of seizure onset (p = 0.21), and duration of disease (p = 0.69). Brain networks were constructed by thresholding correlation matrices of volumes from 80 cortical/subcortical regions (parcellated with Freesurfer v5.3 https://surfer.nmr.mgh.harvard.edu/) that were then analyzed using graph theoretical approaches. We identified reduced cortical/subcortical connectivity including bilateral hippocampus in both TLE groups, with the most significant interregional correlation increases occurring within the limbic system in LTLE and contralateral hemisphere in RTLE. Both TLE groups demonstrated less optimal topological organization, with decreased global efficiency and increased local efficiency and clustering coefficient. LTLE also displayed a more pronounced network disruption. Contrary to controls, hub nodes in both TLE groups were not distributed across whole brain, but rather found primarily in the paralimbic/limbic and temporal association cortices. Regions with increased centrality were concentrated in occipital lobes for LTLE and contralateral limbic/temporal areas for RTLE. These findings provide first evidence of altered topological organization of the whole brain volumetric network in TLE, with disruption of the coordinated patterns of

  11. Adolescent Brain and Cognitive Developments: Implications for Clinical Assessment in Traumatic Brain Injury

    Science.gov (United States)

    Ciccia, Angela Hein; Meulenbroek, Peter; Turkstra, Lyn S.

    2009-01-01

    Adolescence is a time of significant physical, social, and emotional developments, accompanied by changes in cognitive and language skills. Underlying these are significant developments in brain structures and functions including changes in cortical and subcortical gray matter and white matter tracts. Among the brain regions that develop during…

  12. Rest but busy: Aberrant resting-state functional connectivity of triple network model in insomnia.

    Science.gov (United States)

    Dong, Xiaojuan; Qin, Haixia; Wu, Taoyu; Hu, Hua; Liao, Keren; Cheng, Fei; Gao, Dong; Lei, Xu

    2018-02-01

    One classical hypothesis among many models to explain the etiology and maintenance of insomnia disorder (ID) is hyperarousal. Aberrant functional connectivity among resting-state large-scale brain networks may be the underlying neurological mechanisms of this hypothesis. The aim of current study was to investigate the functional network connectivity (FNC) among large-scale brain networks in patients with insomnia disorder (ID) during resting state. In the present study, the resting-state fMRI was used to evaluate whether patients with ID showed aberrant FNC among dorsal attention network (DAN), frontoparietal control network (FPC), anterior default mode network (aDMN), and posterior default mode network (pDMN) compared with healthy good sleepers (HGSs). The Pearson's correlation analysis was employed to explore whether the abnormal FNC observed in patients with ID was associated with sleep parameters, cognitive and emotional scores, and behavioral performance assessed by questionnaires and tasks. Patients with ID had worse subjective thought control ability measured by Thought Control Ability Questionnaire (TCAQ) and more negative affect than HGSs. Intriguingly, relative to HGSs, patients with ID showed a significant increase in FNC between DAN and FPC, but a significant decrease in FNC between aDMN and pDMN. Exploratory analysis in patients with ID revealed a significantly positive correlation between the DAN-FPC FNC and reaction time (RT) of psychomotor vigilance task (PVT). The current study demonstrated that even during the resting state, the task-activated and task-deactivated large-scale brain networks in insomniacs may still maintain a hyperarousal state, looking quite similar to the pattern in a task condition with external stimuli. Those results support the hyperarousal model of insomnia.

  13. Chromosome aberrations induced by radiation. With special reference to possible relation between chromosome aberrations and carcinogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Kamada, N [Hiroshima Univ. (Japan). Research Inst. for Nuclear Medicine and Biology

    1980-02-01

    Chromosome aberration seems to be one of the most conspicuous residual abnormalities recognizable in radiation-exposed persons for many years after exposure. Knowledge of the biological significance of these abnormalities seems to be necessary for understanding of the effect of radiation on humans, especially in relation to possible leukemic development. Cytogenetic studies were performed on the bone marrow cells, T and B lymphocytes, and fibroblasts in atomic bomb-survivors who were in apparent good health (105 cases), atomic bomb exposed patients who had prolonged periods of blood disorders which terminated in acute leukemia (8 cases), and who had no such abnormalities (6 cases). All patients with chronic myelocytic leukemia (CML) and a history of atomic bomb exposure showed Philadelphia chromosome, a characteristic chromosome abnormality for CML. The persistent chromosome aberrations of bone marrow cells, T and B lymphocytes found among the atomic bomb survivors with or without blood disorders may give some clue to solve the problems of carcinogenesis.

  14. Neurocan is dispensable for brain development

    DEFF Research Database (Denmark)

    Zhou, X H; Brakebusch, C; Matthies, H

    2001-01-01

    Neurocan is a component of the extracellular matrix in brain. Due to its inhibition of neuronal adhesion and outgrowth in vitro and its expression pattern in vivo it was suggested to play an important role in axon guidance and neurite growth. To study the role of neurocan in brain development we...... appear largely normal. Mild deficits in synaptic plasticity may exist, as maintenance of late-phase hippocampal long-term potentiation is reduced. These data indicate that neurocan has either a redundant or a more subtle function in the development of the brain....... generated neurocan-deficient mice by targeted disruption of the neurocan gene. These mice are viable and fertile and have no obvious deficits in reproduction and general performance. Brain anatomy, morphology, and ultrastructure are similar to those of wild-type mice. Perineuronal nets surrounding neurons...

  15. Development of the Young Brain

    Medline Plus

    Full Text Available ... and caregivers have always been fascinated with the development of children- their physical and intellectual growth. Studying the development of the adolescent brain has been the life ...

  16. Primary chromatic aberration elimination via optimization work with genetic algorithm

    Science.gov (United States)

    Wu, Bo-Wen; Liu, Tung-Kuan; Fang, Yi-Chin; Chou, Jyh-Horng; Tsai, Hsien-Lin; Chang, En-Hao

    2008-09-01

    Chromatic Aberration plays a part in modern optical systems, especially in digitalized and smart optical systems. Much effort has been devoted to eliminating specific chromatic aberration in order to match the demand for advanced digitalized optical products. Basically, the elimination of axial chromatic and lateral color aberration of an optical lens and system depends on the selection of optical glass. According to reports from glass companies all over the world, the number of various newly developed optical glasses in the market exceeds three hundred. However, due to the complexity of a practical optical system, optical designers have so far had difficulty in finding the right solution to eliminate small axial and lateral chromatic aberration except by the Damped Least Squares (DLS) method, which is limited in so far as the DLS method has not yet managed to find a better optical system configuration. In the present research, genetic algorithms are used to replace traditional DLS so as to eliminate axial and lateral chromatic, by combining the theories of geometric optics in Tessar type lenses and a technique involving Binary/Real Encoding, Multiple Dynamic Crossover and Random Gene Mutation to find a much better configuration for optical glasses. By implementing the algorithms outlined in this paper, satisfactory results can be achieved in eliminating axial and lateral color aberration.

  17. Adaptive aberration correction using a triode hyperbolic electron mirror

    International Nuclear Information System (INIS)

    Fitzgerald, J.P.S.; Word, R.C.; Koenenkamp, R.

    2011-01-01

    A converging electron mirror can be used to compensate spherical and chromatic aberrations in an electron microscope. This paper presents an analytical solution to a novel triode (three electrode) hyperbolic mirror as an improvement to the well-known diode (two electrode) hyperbolic mirror for aberration correction. A weakness of the diode mirror is a lack of flexibility in changing the chromatic and spherical aberration coefficients independently without changes in the mirror geometry. In order to remove this limitation, a third electrode can be added. We calculate the optical properties of the resulting triode mirror analytically on the basis of a simple model field distribution. We present the optical properties-the object/image distance, z 0 , and the coefficients of spherical and chromatic aberration, C s and C c , of both mirror types from an analysis of electron trajectories in the mirror field. From this analysis, we demonstrate that while the properties of both designs are similar, the additional parameters in the triode mirror improve the range of aberration that can be corrected. The triode mirror is also able to provide a dynamic adjustment range of chromatic aberration for fixed spherical aberration and focal length, or any permutation of these three parameters. While the dynamic range depends on the values of aberration correction needed, a nominal 10% tuning range is possible for most configurations accompanied by less than 1% change in the other two properties. -- Highlights: → Electrostatic aberration correction for chromatic and spherical aberration in electron optics. → Simultaneous correction of spherical and chromatic aberrations over a wide, adjustable range. → Analytic and quantitative description of correction parameters.

  18. Rooting Out Aberrant Behavior in Training.

    Science.gov (United States)

    Kokalis, Jerry, Jr.; Paquin, Dave

    1989-01-01

    Discusses aberrant, or disruptive, behavior in an industrial/business, classroom-based, instructor-led training setting. Three examples of aberrant behavior are described, typical case studies are provided for each, and preventive (long-term) and corrective (on-the-spot) strategies for dealing with the problems are discussed. (LRW)

  19. Endothelium-targeted overexpression of heat shock protein 27 ameliorates blood–brain barrier disruption after ischemic brain injury

    Science.gov (United States)

    Jiang, Xiaoyan; Zhang, Lili; Pu, Hongjian; Hu, Xiaoming; Zhang, Wenting; Cai, Wei; Gao, Yanqin; Leak, Rehana K.; Keep, Richard F.; Bennett, Michael V. L.; Chen, Jun

    2017-01-01

    The damage borne by the endothelial cells (ECs) forming the blood–brain barrier (BBB) during ischemic stroke and other neurological conditions disrupts the structure and function of the neurovascular unit and contributes to poor patient outcomes. We recently reported that structural aberrations in brain microvascular ECs—namely, uncontrolled actin polymerization and subsequent disassembly of junctional proteins, are a possible cause of the early onset BBB breach that arises within 30–60 min of reperfusion after transient focal ischemia. Here, we investigated the role of heat shock protein 27 (HSP27) as a direct inhibitor of actin polymerization and protectant against BBB disruption after ischemia/reperfusion (I/R). Using in vivo and in vitro models, we found that targeted overexpression of HSP27 specifically within ECs—but not within neurons—ameliorated BBB impairment 1–24 h after I/R. Mechanistically, HSP27 suppressed I/R-induced aberrant actin polymerization, stress fiber formation, and junctional protein translocation in brain microvascular ECs, independent of its protective actions against cell death. By preserving BBB integrity after I/R, EC-targeted HSP27 overexpression attenuated the infiltration of potentially destructive neutrophils and macrophages into brain parenchyma, thereby improving long-term stroke outcome. Notably, early poststroke administration of HSP27 attached to a cell-penetrating transduction domain (TAT-HSP27) rapidly elevated HSP27 levels in brain microvessels and ameliorated I/R-induced BBB disruption and subsequent neurological deficits. Thus, the present study demonstrates that HSP27 can function at the EC level to preserve BBB integrity after I/R brain injury. HSP27 may be a therapeutic agent for ischemic stroke and other neurological conditions involving BBB breakdown. PMID:28137866

  20. Chromatin structure and ionizing-radiation-induced chromosome aberrations

    International Nuclear Information System (INIS)

    Muehlmann-Diaz, M.C.

    1993-01-01

    The possible influence of chromatic structure or activity on chromosomal radiosensitivity was studied. A cell line was isolated which contained some 10 5 copies of an amplified plasmid in a single large mosquito artificial chromosome (MAC). This chromosome was hypersensitive to DNase I. Its radiosensitivity was some three fold greater than normal mosquito chromosomes in the same cell. In cultured human cells irradiated during G 0 , the initial breakage frequency in chromosome 4, 19 and the euchromatic and heterochromatic portions of the Y chromosome were measured over a wide range of doses by inducing Premature Chromosome Condensation (PCC) immediately after irradiation with Cs-137 gamma rays. No evidence was seen that Y heterochromatin or large fragments of it remained unbroken. The only significant deviation from the expected initial breakage frequency per Gy per unit length of chromosome was that observed for the euchromatic portion of the Y chromosome, with breakage nearly twice that expected. The development of aberrations involving X and Y chromosomes at the first mitosis after irradation was also studied. Normal female cells sustained about twice the frequency of aberrations involving X chromosomes for a dose of 7.3 Gy than the corresponding male cells. Fibroblasts from individuals with supernumerary X chromosomes did not show any further increase in X aberrations for this dos. The frequency of aberrations involving the heterochromatic portion of the long arm of the Y chromosome was about what would be expected for a similar length of autosome, but the euchromatic portion of the Y was about 3 times more radiosensitive per unit length. 5-Azacytidine treatment of cultured human female fibroblasts or fibroblasts from a 49,XXXXY individual, reduced the methylation of cytosine residues in DNA, and resulted in an increased chromosomal radiosensitivity in general, but it did not increase the frequency of aberrations involving the X chromosomes

  1. The correction of electron lens aberrations

    Energy Technology Data Exchange (ETDEWEB)

    Hawkes, P.W., E-mail: peter.hawkes@cemes.fr

    2015-09-15

    The progress of electron lens aberration correction from about 1990 onwards is chronicled. Reasonably complete lists of publications on this and related topics are appended. A present for Max Haider and Ondrej Krivanek in the year of their 65th birthdays. By a happy coincidence, this review was completed in the year that both Max Haider and Ondrej Krivanek reached the age of 65. It is a pleasure to dedicate it to the two leading actors in the saga of aberration corrector design and construction. They would both wish to associate their colleagues with such a tribute but it is the names of Haider and Krivanek (not forgetting Joachim Zach) that will remain in the annals of electron optics, next to that of Harald Rose. I am proud to know that both regard me as a friend as well as a colleague. - Highlights: • Geometrical aberration correction. • Chromatic aberration correction. • 50 pm resolution. • High-resolution electron energy-loss spectroscopy. • Extensive bibliographies.

  2. The correction of electron lens aberrations

    International Nuclear Information System (INIS)

    Hawkes, P.W.

    2015-01-01

    The progress of electron lens aberration correction from about 1990 onwards is chronicled. Reasonably complete lists of publications on this and related topics are appended. A present for Max Haider and Ondrej Krivanek in the year of their 65th birthdays. By a happy coincidence, this review was completed in the year that both Max Haider and Ondrej Krivanek reached the age of 65. It is a pleasure to dedicate it to the two leading actors in the saga of aberration corrector design and construction. They would both wish to associate their colleagues with such a tribute but it is the names of Haider and Krivanek (not forgetting Joachim Zach) that will remain in the annals of electron optics, next to that of Harald Rose. I am proud to know that both regard me as a friend as well as a colleague. - Highlights: • Geometrical aberration correction. • Chromatic aberration correction. • 50 pm resolution. • High-resolution electron energy-loss spectroscopy. • Extensive bibliographies

  3. Third-rank chromatic aberrations of electron lenses.

    Science.gov (United States)

    Liu, Zhixiong

    2018-02-01

    In this paper the third-rank chromatic aberration coefficients of round electron lenses are analytically derived and numerically calculated by Mathematica. Furthermore, the numerical results are cross-checked by the differential algebraic (DA) method, which verifies that all the formulas for the third-rank chromatic aberration coefficients are completely correct. It is hoped that this work would be helpful for further chromatic aberration correction in electron microscopy. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Evaluation of an automated karyotyping system for chromosome aberration analysis

    International Nuclear Information System (INIS)

    Prichard, H.M.

    1987-01-01

    Chromosome aberration analysis is a promising complement to conventional radiation dosimetry, particularly in the complex radiation fields encountered in the space environment. The capabilities of a recently developed automated karyotyping system were evaluated both to determine current capabilities and limitations and to suggest areas where future development should be emphasized. Cells exposed to radiometric chemicals and to photon and particulate radiation were evaluated by manual inspection and by automated karyotyping. It was demonstrated that the evaluated programs were appropriate for image digitization, storage, and transmission. However, automated and semi-automated scoring techniques must be advanced significantly if in-flight chromosome aberration analysis is to be practical. A degree of artificial intelligence may be necessary to realize this goal

  5. Aberrant Wnt signaling pathway in medial temporal lobe structures of Alzheimer's disease

    DEFF Research Database (Denmark)

    Riise, Jesper; Plath, Niels; Pakkenberg, Bente

    2015-01-01

    alterations of the intracellular Wnt pathway signaling components β-catenin, Gsk3β and Tcf7l1/Tcf3 and the phosphorylation state of β-catenin and Gsk3β in the hippocampus suggestive of a link between AD and aberrant canonical activity. Alterations in Gsk3β co-appeared with hippocampal kinase...... on isolated Wnt pathway components. Here, we provide the first comprehensive pathway-focused evaluation of the Wnt pathway in the entorhinal cortex and hippocampus of AD brains. Our data demonstrate altered Wnt pathway gene expression at all levels of the pathway in both medial temporal lobe regions...

  6. Modulation transfer function of a fish-eye lens based on the sixth-order wave aberration theory.

    Science.gov (United States)

    Jia, Han; Lu, Lijun; Cao, Yiqing

    2018-01-10

    A calculation program of the modulation transfer function (MTF) of a fish-eye lens is developed with the autocorrelation method, in which the sixth-order wave aberration theory of ultra-wide-angle optical systems is used to simulate the wave aberration distribution at the exit pupil of the optical systems. The autocorrelation integral is processed with the Gauss-Legendre integral, and the magnification chromatic aberration is discussed to calculate polychromatic MTF. The MTF calculation results of a given example are then compared with those previously obtained based on the fourth-order wave aberration theory of plane-symmetrical optical systems and with those from the Zemax program. The study shows that MTF based on the sixth-order wave aberration theory has satisfactory calculation accuracy even for a fish-eye lens with a large acceptance aperture. And the impacts of different types of aberrations on the MTF of a fish-eye lens are analyzed. Finally, we apply the self-adaptive and normalized real-coded genetic algorithm and the MTF developed in the paper to optimize the Nikon F/2.8 fish-eye lens; consequently, the optimized system shows better MTF performances than those of the original design.

  7. Disruption of Maternal DNA Repair Increases Sperm-DerivedChromosomal Aberrations

    Energy Technology Data Exchange (ETDEWEB)

    Marchetti, Francesco; Essers, Jeroun; Kanaar, Roland; Wyrobek,Andrew J.

    2007-02-07

    The final weeks of male germ cell differentiation occur in aDNA repair-deficient environment and normal development depends on theability of the egg to repair DNA damage in the fertilizing sperm. Geneticdisruption of maternal DNA double-strand break repair pathways in micesignificantly increased the frequency of zygotes with chromosomalstructural aberrations after paternal exposure to ionizing radiation.These findings demonstrate that radiation-induced DNA sperm lesions arerepaired after fertilization by maternal factors and suggest that geneticvariation in maternal DNA repair can modulate the risk of early pregnancylosses and of children with chromosomal aberrations of paternalorigin.

  8. Chromosome aberrations in pesticide-exposed greenhouse workers

    DEFF Research Database (Denmark)

    Lander, B F; Knudsen, Lisbeth E.; Gamborg, M O

    2000-01-01

    OBJECTIVES: The aim of this study was to investigate the possibility of subtoxic exposure to pesticides causing chromosome aberrations in greenhouse workers. METHODS: In a cross-sectional and prospective study design chromosome aberration frequencies in cultured lymphocytes were examined for 116...... greenhouse workers exposed to a complex mixture of almost 50 insecticides, fungicides, and growth regulators and also for 29 nonsmoking, nonpesticide-exposed referents. RESULTS: The preseason frequencies of chromosome aberrations were slightly but not statistically significantly elevated for the greenhouse...... workers when they were compared with the referents. After a summer season of pesticide spraying in the greenhouses, the total frequencies of cells with chromosome aberrations were significantly higher than in the preseason samples (P=0.02) and also higher than for the referents (P=0.05). This finding...

  9. Aberration-free intraocular lenses - What does this really mean?

    Science.gov (United States)

    Langenbucher, Achim; Schröder, Simon; Cayless, Alan; Eppig, Timo

    2017-09-01

    So-called aberration-free intraocular lenses (IOLs) are well established in modern cataract surgery. Usually, they are designed to perfectly refract a collimated light beam onto the focal point. We show how much aberration can be expected with such an IOL in a convergent light beam such as that found anterior to the human cornea. Additionally, the aberration in a collimated beam is estimated for an IOL that has no aberrations in the convergent beam. The convergent beam is modelled as the pencil of rays corresponding to the spherical wavefront resulting from a typical corneal power of 43m -1 . The IOLs are modelled as infinitely thin phase plates with 20m -1 optical power placed 5mm behind the cornea. Their aberrations are reported in terms of optical path length difference and longitudinal spherical aberration (LSA) of the marginal rays, as well as nominal spherical aberration (SA) calculated based on a Zernike representation of the wavefront-error at the corneal plane within a 6mm aperture. The IOL designed to have no aberrations in a collimated light beam has an optical path length difference of -1.8μm, and LSA of 0.15m -1 in the convergent beam of a typical eye. The corresponding nominal SA is 0.065μm. The IOL designed to have no aberrations in a convergent light beam has an optical path length difference of 1.8μm, and LSA of -0.15m -1 in the collimated beam. An IOL designed to have no aberrations in a collimated light beam will increase the SA of a patient's eye after implantation. Copyright © 2017. Published by Elsevier GmbH.

  10. Development of the Young Brain

    Medline Plus

    Full Text Available ... been fascinated with the development of children- their physical and intellectual growth. Studying the development of the ... the time children reach the first grade the physical size of the brain is nearly complete. But ...

  11. Development of the Young Brain

    Medline Plus

    Full Text Available ... Application Process Managing Grants Clinical Research Training Small Business Research Labs at NIMH Labs at NIMH Home ... the development of children- their physical and intellectual growth. Studying the development of the adolescent brain has ...

  12. DHA Effects in Brain Development and Function

    Directory of Open Access Journals (Sweden)

    Lotte Lauritzen

    2016-01-01

    Full Text Available Docosahexaenoic acid (DHA is a structural constituent of membranes specifically in the central nervous system. Its accumulation in the fetal brain takes place mainly during the last trimester of pregnancy and continues at very high rates up to the end of the second year of life. Since the endogenous formation of DHA seems to be relatively low, DHA intake may contribute to optimal conditions for brain development. We performed a narrative review on research on the associations between DHA levels and brain development and function throughout the lifespan. Data from cell and animal studies justify the indication of DHA in relation to brain function for neuronal cell growth and differentiation as well as in relation to neuronal signaling. Most data from human studies concern the contribution of DHA to optimal visual acuity development. Accumulating data indicate that DHA may have effects on the brain in infancy, and recent studies indicate that the effect of DHA may depend on gender and genotype of genes involved in the endogenous synthesis of DHA. While DHA levels may affect early development, potential effects are also increasingly recognized during childhood and adult life, suggesting a role of DHA in cognitive decline and in relation to major psychiatric disorders.

  13. DHA Effects in Brain Development and Function

    Science.gov (United States)

    Lauritzen, Lotte; Brambilla, Paolo; Mazzocchi, Alessandra; Harsløf, Laurine B. S.; Ciappolino, Valentina; Agostoni, Carlo

    2016-01-01

    Docosahexaenoic acid (DHA) is a structural constituent of membranes specifically in the central nervous system. Its accumulation in the fetal brain takes place mainly during the last trimester of pregnancy and continues at very high rates up to the end of the second year of life. Since the endogenous formation of DHA seems to be relatively low, DHA intake may contribute to optimal conditions for brain development. We performed a narrative review on research on the associations between DHA levels and brain development and function throughout the lifespan. Data from cell and animal studies justify the indication of DHA in relation to brain function for neuronal cell growth and differentiation as well as in relation to neuronal signaling. Most data from human studies concern the contribution of DHA to optimal visual acuity development. Accumulating data indicate that DHA may have effects on the brain in infancy, and recent studies indicate that the effect of DHA may depend on gender and genotype of genes involved in the endogenous synthesis of DHA. While DHA levels may affect early development, potential effects are also increasingly recognized during childhood and adult life, suggesting a role of DHA in cognitive decline and in relation to major psychiatric disorders. PMID:26742060

  14. Targeting brain metastases in ALK-rearranged non-small-cell lung cancer.

    Science.gov (United States)

    Zhang, Isabella; Zaorsky, Nicholas G; Palmer, Joshua D; Mehra, Ranee; Lu, Bo

    2015-10-01

    The incidence of brain metastases has increased as a result of improved systemic control and advances in imaging. However, development of novel therapeutics with CNS activity has not advanced at the same rate. Research on molecular markers has revealed many potential targets for antineoplastic agents, and a particularly important aberration is translocation in the ALK gene, identified in non-small-cell lung cancer (NSCLC). ALK inhibitors have shown systemic efficacy against ALK-rearranged NSCLC in many clinical trials, but the effectiveness of crizotinib in CNS disease is limited by poor blood-brain barrier penetration and acquired drug resistance. In this Review, we discuss potential pathways to target ALK-rearranged brain metastases, including next generation ALK inhibitors with greater CNS penetration and mechanisms to overcome resistance. Other important mechanisms to control CNS disease include targeting pathways downstream of ALK phosphorylation, increasing the permeability of the blood-brain barrier, modifying the tumour microenvironment, and adding concurrent radiotherapy. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Image transfer with spatial coherence for aberration corrected transmission electron microscopes

    International Nuclear Information System (INIS)

    Hosokawa, Fumio; Sawada, Hidetaka; Shinkawa, Takao; Sannomiya, Takumi

    2016-01-01

    The formula of spatial coherence involving an aberration up to six-fold astigmatism is derived for aberration-corrected transmission electron microscopy. Transfer functions for linear imaging are calculated using the newly derived formula with several residual aberrations. Depending on the symmetry and origin of an aberration, the calculated transfer function shows characteristic symmetries. The aberrations that originate from the field’s components, having uniformity along the z direction, namely, the n-fold astigmatism, show rotational symmetric damping of the coherence. The aberrations that originate from the field’s derivatives with respect to z, such as coma, star, and three lobe, show non-rotational symmetric damping. It is confirmed that the odd-symmetric wave aberrations have influences on the attenuation of an image via spatial coherence. Examples of image simulations of haemoglobin and Si [211] are shown by using the spatial coherence for an aberration-corrected electron microscope. - Highlights: • The formula of partial coherence for aberration corrected TEM is derived. • Transfer functions are calculated with several residual aberrations. • The calculated transfer function shows the characteristic damping. • The odd-symmetric wave aberrations can cause the attenuation of image via coherence. • The examples of aberration corrected TEM image simulations are shown.

  16. Image transfer with spatial coherence for aberration corrected transmission electron microscopes

    Energy Technology Data Exchange (ETDEWEB)

    Hosokawa, Fumio, E-mail: hosokawa@bio-net.co.jp [BioNet Ltd., 2-3-28 Nishikityo, Tachikwa, Tokyo (Japan); Tokyo Institute of Technology, 4259 Nagatsuta, Midoriku, Yokohama 226-8503 (Japan); Sawada, Hidetaka [JEOL (UK) Ltd., JEOL House, Silver Court, Watchmead, Welwyn Garden City, Herts AL7 1LT (United Kingdom); Shinkawa, Takao [BioNet Ltd., 2-3-28 Nishikityo, Tachikwa, Tokyo (Japan); Sannomiya, Takumi [Tokyo Institute of Technology, 4259 Nagatsuta, Midoriku, Yokohama 226-8503 (Japan)

    2016-08-15

    The formula of spatial coherence involving an aberration up to six-fold astigmatism is derived for aberration-corrected transmission electron microscopy. Transfer functions for linear imaging are calculated using the newly derived formula with several residual aberrations. Depending on the symmetry and origin of an aberration, the calculated transfer function shows characteristic symmetries. The aberrations that originate from the field’s components, having uniformity along the z direction, namely, the n-fold astigmatism, show rotational symmetric damping of the coherence. The aberrations that originate from the field’s derivatives with respect to z, such as coma, star, and three lobe, show non-rotational symmetric damping. It is confirmed that the odd-symmetric wave aberrations have influences on the attenuation of an image via spatial coherence. Examples of image simulations of haemoglobin and Si [211] are shown by using the spatial coherence for an aberration-corrected electron microscope. - Highlights: • The formula of partial coherence for aberration corrected TEM is derived. • Transfer functions are calculated with several residual aberrations. • The calculated transfer function shows the characteristic damping. • The odd-symmetric wave aberrations can cause the attenuation of image via coherence. • The examples of aberration corrected TEM image simulations are shown.

  17. Effect of aberrations in human eye on contrast sensitivity function

    Science.gov (United States)

    Quan, Wei; Wang, Feng-lin; Wang, Zhao-qi

    2011-06-01

    The quantitative analysis of the effect of aberrations in human eye on vision has important clinical value in the correction of aberrations. The wave-front aberrations of human eyes were measured with the Hartmann-Shack wave-front sensor and modulation transfer function (MTF) was computed from the wave-front aberrations. Contrast sensitivity function (CSF) was obtained from MTF and the retinal aerial image modulation (AIM). It is shown that the 2nd, 3rd, 4th, 5th, 6th Zernike aberrations deteriorate contrast sensitivity function. When the 2nd, 3rd, 4th, 5th, 6th Zernike aberrations are corrected high contrast sensitivity function can be obtained.

  18. Brief history of the Cambridge STEM aberration correction project and its progeny

    Energy Technology Data Exchange (ETDEWEB)

    Brown, L. Michael [Cavendish Laboratory, University of Cambridge, J.J. Thomson Avenue, Cambridge CB3 0HE (United Kingdom); Batson, Philip E. [Institute for Advanced Materials, Devices and Nanotechnology, Rutgers University, Piscataway, NJ 08854 (United States); Department of Physics, Rutgers University, Piscataway, NJ 08854 (United States); Department of Materials Science, Rutgers University, Piscataway, NJ 08854 (United States); Dellby, Niklas [Nion Company, 11515 NE 118th Street, Kirkland, WA 98034 (United States); Krivanek, Ondrej L. [Nion Company, 11515 NE 118th Street, Kirkland, WA 98034 (United States); Department of Physics, Arizona State University, Tempe, AZ 85287 (United States)

    2015-10-15

    We provide a brief history of the project to correct the spherical aberration of the scanning transmission electron microscope (STEM) that started in Cambridge (UK) and continued in Kirkland (WA, USA), Yorktown Heights (NY, USA), and other places. We describe the project in the full context of other aberration correction research and related work, partly in response to the incomplete context presented in the paper “In quest of perfection in electron optics: A biographical sketch of Harald Rose on the occasion of his 80th birthday”, recently published in Ultramicroscopy. - Highlights: • We provide a brief history of the Cambridge project to correct the spherical aberration of the scanning transmission electron microscope (STEM). • We describe the project in the full context of other aberration correction work and related research. • We summarize our corrector development work that followed the Cambridge project, and which was the first to reach higher spatial resolution than any non-corrected electron microscope.

  19. Brief history of the Cambridge STEM aberration correction project and its progeny

    International Nuclear Information System (INIS)

    Brown, L. Michael; Batson, Philip E.; Dellby, Niklas; Krivanek, Ondrej L.

    2015-01-01

    We provide a brief history of the project to correct the spherical aberration of the scanning transmission electron microscope (STEM) that started in Cambridge (UK) and continued in Kirkland (WA, USA), Yorktown Heights (NY, USA), and other places. We describe the project in the full context of other aberration correction research and related work, partly in response to the incomplete context presented in the paper “In quest of perfection in electron optics: A biographical sketch of Harald Rose on the occasion of his 80th birthday”, recently published in Ultramicroscopy. - Highlights: • We provide a brief history of the Cambridge project to correct the spherical aberration of the scanning transmission electron microscope (STEM). • We describe the project in the full context of other aberration correction work and related research. • We summarize our corrector development work that followed the Cambridge project, and which was the first to reach higher spatial resolution than any non-corrected electron microscope

  20. Development of the Young Brain

    Medline Plus

    Full Text Available ... been fascinated with the development of children- their physical and intellectual growth. Studying the development of the adolescent brain has been the life work of National Institute of Mental Health researcher Dr. Jay Giedd. Dr. Giedd: At different ...

  1. Development of the Young Brain

    Medline Plus

    Full Text Available ... been fascinated with the development of children- their physical and intellectual growth. Studying the development of the adolescent brain has been the life work of National Institute of Mental Health researcher Dr. Jay Giedd. Dr. Giedd: At ...

  2. The Art of Optical Aberrations

    Science.gov (United States)

    Wylde, Clarissa Eileen Kenney

    Art and optics are inseparable. Though seemingly opposite disciplines, the combination of art and optics has significantly impacted both culture and science as they are now known. As history has run its course, in the sciences, arts, and their fruitful combinations, optical aberrations have proved to be a problematic hindrance to progress. In an effort to eradicate aberrations the simple beauty of these aberrational forms has been labeled as undesirable and discarded. Here, rather than approach aberrations as erroneous, these beautiful forms are elevated to be the photographic subject in a new body of work, On the Bright Side. Though many recording methods could be utilized, this work was composed on classic, medium-format, photographic film using white-light, Michelson interferometry. The resulting images are both a representation of the true light rays that interacted on the distorted mirror surfaces (data) and the artist's compositional eye for what parts of the interferogram are chosen and displayed. A detailed description of the captivating interdisciplinary procedure is documented and presented alongside the final artwork, CCD digital reference images, and deformable mirror contour maps. This alluring marriage between the arts and sciences opens up a heretofore minimally explored aspect of the inextricable art-optics connection. It additionally provides a fascinating new conversation on the importance of light and optics in photographic composition.

  3. Morphometric Brain Abnormalities in Boys with Conduct Disorder

    Science.gov (United States)

    Huebner, Thomas; Vloet, Timo D.; Marx, Ivo; Konrad, Kerstin; Fink, Gereon R.; Herpertz, Sabine C.; Herpertz-Dahlmann, Beate

    2008-01-01

    Conduct disorder (CD) is associated with antisocial personality behavior that violates the basic rights of others. Results, on examining the structural brain aberrations in boys' CD, show that boys with CD and cormobid attention-deficit/hyperactivity disorder showed abnormalities in frontolimbic areas that could contribute to antisocial…

  4. Mapping Functional Brain Development: Building a Social Brain through Interactive Specialization

    Science.gov (United States)

    Johnson, Mark H.; Grossmann, Tobias; Kadosh, Kathrin Cohen

    2009-01-01

    The authors review a viewpoint on human functional brain development, interactive specialization (IS), and its application to the emerging network of cortical regions referred to as the "social brain." They advance the IS view in 2 new ways. First, they extend IS into a domain to which it has not previously been applied--the emergence of social…

  5. Aberration design of zoom lens systems using thick lens modules.

    Science.gov (United States)

    Zhang, Jinkai; Chen, Xiaobo; Xi, Juntong; Wu, Zhuoqi

    2014-12-20

    A systematic approach for the aberration design of a zoom lens system using a thick lens module is presented. Each component is treated as a thick lens module at the beginning of the design. A thick lens module refers to a thick lens component with a real lens structure, like lens materials, lens curvatures, lens thicknesses, and lens interval distances. All nine third-order aberrations of a thick lens component are considered during the design. The relationship of component aberrations in different zoom positions can be approximated from the aberration shift. After minimizing the aberrations of the zoom lens system, the nine third-order aberrations of every lens component can be determined. Then the thick lens structure of every lens component can be determined after optimization according to their first-order properties and third-order aberration targets. After a third optimization for minimum practical third-order aberrations of a zoom lens system, the aberration design using the thick lens module is complete, which provides a practical zoom lens system with thick lens structures. A double-sided telecentric zoom lens system is designed using the thick lens module in this paper, which shows that this method is practical for zoom lens design.

  6. Self-Control and the Developing Brain

    Science.gov (United States)

    Tarullo, Amanda R.; Obradovic, Jelena; Gunnar, Megan R.

    2009-01-01

    Self-control is a skill that children need to succeed academically, socially, and emotionally. Brain regions essential to self-control are immature at birth and develop slowly throughout childhood. From ages 3 to 6 years, as these brain regions become more mature, children show improved ability to control impulses, shift their attention flexibly,…

  7. Protracted dendritic growth in the typically developing human amygdala and increased spine density in young ASD brains.

    Science.gov (United States)

    Weir, R K; Bauman, M D; Jacobs, B; Schumann, C M

    2018-02-01

    The amygdala is a medial temporal lobe structure implicated in social and emotional regulation. In typical development (TD), the amygdala continues to increase volumetrically throughout childhood and into adulthood, while other brain structures are stable or decreasing in volume. In autism spectrum disorder (ASD), the amygdala undergoes rapid early growth, making it volumetrically larger in children with ASD compared to TD children. Here we explore: (a) if dendritic arborization in the amygdala follows the pattern of protracted growth in TD and early overgrowth in ASD and (b), if spine density in the amygdala in ASD cases differs from TD from youth to adulthood. The amygdala from 32 postmortem human brains (7-46 years of age) were stained using a Golgi-Kopsch impregnation. Ten principal neurons per case were selected in the lateral nucleus and traced using Neurolucida software in their entirety. We found that both ASD and TD individuals show a similar pattern of increasing dendritic length with age well into adulthood. However, spine density is (a) greater in young ASD cases compared to age-matched TD controls (ASD age into adulthood, a phenomenon not found in TD. Therefore, by adulthood, there is no observable difference in spine density in the amygdala between ASD and TD age-matched adults (≥18 years old). Our findings highlight the unique growth trajectory of the amygdala and suggest that spine density may contribute to aberrant development and function of the amygdala in children with ASD. © 2017 Wiley Periodicals, Inc.

  8. Aberrant Methylation and Reduced Expression of LHX9 in Malignant Gliomas of Childhood

    Directory of Open Access Journals (Sweden)

    Valentina Vladimirova

    2009-07-01

    Full Text Available High-grade gliomas (HGGs of childhood represent approximately 7% of pediatric brain tumors. They are highly invasive tumors and respond poorly to conventional treatments in contrast to pilocytic astrocytomas, which usually are well demarcated and frequently can be cured by surgery. The molecular events for this clinical relevant finding are only partially understood. In the current study, to identify aberrantly methylated genes that may be involved in the tumorigenesis of pediatric HGGs, we performed a microarray-based differential methylation hybridization approach and found frequent hypermethylation of the LHX9 (human Lim-homebox 9 gene encoding a transcription factor involved in brain development. Bisulfite genomic sequencing and combined bisulfite restriction analysis showed that HGGs were frequently methylated at two CpG-rich LHX9 regions in comparison to benign, nondiffuse pilocytic astrocytomas and normal brain tissues. The LHX9 hypermethylation was associated with reduced messenger RNA expression in pediatric HGG samples and corresponding cell lines. This epigenetic modification was reversible by pharmacological inhibition (5-aza-2′-deoxycytidine, and reexpression of LHX9 transcript was induced in pediatric glioma cell lines. Exogenous expression of LHX9 in glioma cell lines did not directly affect cell proliferation and apoptosis but specifically inhibited glioma cell migration and invasion in vitro, suggesting a possible implication of LHX9 in the migratory phenotype of HGGs. Our results demonstrate that the LHX9 gene is frequently silenced in pediatric malignant astrocytomas by hypermethylation and that this epigenetic alteration is involved in glioma cell migration and invasiveness.

  9. Third-order monochromatic aberrations via Fermat's principle

    International Nuclear Information System (INIS)

    Marasco, A.; Romano, A.

    2006-01-01

    By Fermat's principle and particular optical paths, which are not rays, a new aberration function is introduced. This function allows to derive, without resorting to the whole Hamiltonian formalism, the third-order geometrical aberrations of an optical system with a symmetry of revolution

  10. The neonatal brain : early connectome development and childhood cognition

    NARCIS (Netherlands)

    Keunen, K.

    2017-01-01

    The human brain is a vastly complex system that develops rapidly during human gestation. Its developmental pace is unprecedented in any other period of human development. By the time of normal birth the brain's layout verges on the adult human brain. All major structures have come into place,

  11. Radiation-induced chromosome aberrations in the rat peripheral blood

    International Nuclear Information System (INIS)

    Ziemba-Zoltowska, B.; Bocian, E.; Radwan, I.; Rosiek, O.; Sablinski, J.

    1978-01-01

    Chromosome aberrations in rat lymphocytes of peripheral blood after X (in vitro and in vivo) and 3 H tritiated water (in vivo) irradiations were studied. The yield of chromosome aberrations after in vivo and in vitro exposure to X-rays was similar. The frequency of chromosome aberrations three weeks after exposure to X-rays and soon after irradiation was practically on the same level. The yield of chromosome aberrations determined three weeks after injection with tritiated water or X-rays exposure was similar. (author)

  12. Chromosomal aberrations in bone marrow of continuously irradiated rats

    Energy Technology Data Exchange (ETDEWEB)

    Chlebosky, O; Praslicka, M; Chlebovska, K [Univerzita P.J. Safarika, Kosice (Czechoslovakia). Prirodovedecka Fakulta

    1975-01-01

    Research on chromosomal aberrations of the bone marrow in continuously irradiated rats showed that chromosomal aberrations are a highly sensitive indicator of radiation injury. An increase in the chromosomal aberration frequency was already found on the 5th day at daily doses of 0.5 R, i.e. a 12% increase at a total dose of 25 R. In the steady-state stage at daily doses of 0.5; 1; 2.5 R, the number of chromosomal aberrations stabilized at values of about 20%; at daily doses of 5 and 10 R at values of 30.=., at daily doses of 53 R at 45%, at a daily dose of 82.5 R, the number of chromosomal aberrations increased to 55%.

  13. Estimation of dose from chromosome aberration rate

    International Nuclear Information System (INIS)

    Li Deping

    1990-01-01

    The methods and skills of evaluating dose from correctly scored shromsome aberration rate are presented, and supplemented with corresponding BASIC computer code. The possibility and preventive measures of excessive probability of missing score of the aberrations in some of the current routine score methods are discussed. The use of dose-effect relationship with exposure time correction factor G in evaluating doses and their confidence intervals, dose estimation in mixed n-γ exposure, and identification of high by nonuniform acute exposure to low LET radiation and its dose estimation are discussed in more detail. The difference of estimated dose due to whether the interaction between subleisoms produced by n and γ have been taken into account is examined. In fitting the standard dose-aberration rate curve, proper weighing of experiment points and comparison with commonly accepted values are emphasised, and the coefficient of variation σ y √y of the aberration rate y as a function of dose and exposure time is given. In appendix I and II, the dose-aberration rate formula is derived from dual action theory, and the time variation of subleisom is illustrated and in appendix III, the estimation of dose from scores of two different types of aberrations (of other related score) is illustrated. Two computer codes are given in appendix IV, one is a simple code, the other a complete code, including the fitting of standard curve. the skills of using compressed data storage, and the production of simulated 'data ' for testing the curve fitting procedure are also given

  14. Correcting for color crosstalk and chromatic aberration in multicolor particle shadow velocimetry

    International Nuclear Information System (INIS)

    McPhail, M J; Fontaine, A A; Krane, M H; Goss, L; Crafton, J

    2015-01-01

    Color crosstalk and chromatic aberration can bias estimates of fluid velocity measured by color particle shadow velocimetry (CPSV), using multicolor illumination and a color camera. This article describes corrections to remove these bias errors, and their evaluation. Color crosstalk removal is demonstrated with linear unmixing. It is also shown that chromatic aberrations may be removed using either scale calibration, or by processing an image illuminated by all colors simultaneously. CPSV measurements of a fully developed turbulent pipe flow of glycerin were conducted. Corrected velocity statistics from these measurements were compared to both single-color PSV and LDV measurements and showed excellent agreement to fourth-order, to well into the viscous sublayer. Recommendations for practical assessment and correction of color aberration and color crosstalk are discussed. (paper)

  15. Aberration of a negative ion beam caused by space charge effect

    International Nuclear Information System (INIS)

    Miyamoto, K.; Wada, S.; Hatayama, A.

    2010-01-01

    Aberrations are inevitable when the charged particle beams are extracted, accelerated, transmitted, and focused with electrostatic and magnetic fields. In this study, we investigate the aberration of a negative ion accelerator for a neutral beam injector theoretically, especially the spherical aberration caused by the negative ion beam expansion due to the space charge effect. The negative ion current density profiles with the spherical aberration are compared with those without the spherical aberration. It is found that the negative ion current density profiles in a log scale are tailed due to the spherical aberration.

  16. Aberration of a negative ion beam caused by space charge effect

    Energy Technology Data Exchange (ETDEWEB)

    Miyamoto, K. [Naruto University of Education, 748 Nakashima, Takashima, Naruto-cho, Naruto-shi, Tokushima 772-8502 (Japan); Wada, S.; Hatayama, A. [Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522 (Japan)

    2010-02-15

    Aberrations are inevitable when the charged particle beams are extracted, accelerated, transmitted, and focused with electrostatic and magnetic fields. In this study, we investigate the aberration of a negative ion accelerator for a neutral beam injector theoretically, especially the spherical aberration caused by the negative ion beam expansion due to the space charge effect. The negative ion current density profiles with the spherical aberration are compared with those without the spherical aberration. It is found that the negative ion current density profiles in a log scale are tailed due to the spherical aberration.

  17. Aberration of a negative ion beam caused by space charge effect.

    Science.gov (United States)

    Miyamoto, K; Wada, S; Hatayama, A

    2010-02-01

    Aberrations are inevitable when the charged particle beams are extracted, accelerated, transmitted, and focused with electrostatic and magnetic fields. In this study, we investigate the aberration of a negative ion accelerator for a neutral beam injector theoretically, especially the spherical aberration caused by the negative ion beam expansion due to the space charge effect. The negative ion current density profiles with the spherical aberration are compared with those without the spherical aberration. It is found that the negative ion current density profiles in a log scale are tailed due to the spherical aberration.

  18. Transverse correlation vanishing due to phase aberrations

    CSIR Research Space (South Africa)

    Godin, T

    2011-06-01

    Full Text Available of the effects of each aberration on the ratio Sp ?? / , the following condition are imposed: 0max3max2max1 )()()( ??????? === . (9) It is assumed that the phase aberration is set in the beam-waist plane of radius mmW 5.10 = . Arbitrarily, the value... of max? is fixed to twice the incident beam width, 0max 2W=? , where the intensity is only 0.03% of the on-axis value. In the following we will express the aberration 0? in number of equivalent wavelengths given by the ratio )2/(00 pi...

  19. Frequencies of chromosome aberration on radiation workers

    International Nuclear Information System (INIS)

    Yanti Lusiyanti; Zubaidah Alatas

    2016-01-01

    Radiation exposure of the body can cause damage to the genetic material in cells (cytogenetic) in the form of changes in the structure or chromosomal aberrations in peripheral blood lymphocytes. Chromosomal aberrations can be unstable as dicentric and ring chromosomes, and is stable as translocation. Dicentric chromosome is the gold standard biomarker due to radiation exposure, and chromosome translocation is a biomarker for retrospective biodosimetry. The aim of this studi is to conduct examination of chromosomal aberrations in the radiation worker to determine the potential damage of cell that may arise due to occupational radiation exposure. The examination have been carried out on blood samples from 55 radiation workers in the range of 5-30 year of service. Chromosome aberration frequency measurement starts with blood sampling, culturing, harvesting, slide preparations, and lymphocyte chromosome staining with Giemsa and painting with Fluorescence In Situ Hybridization (FISH) technique. The results showed that chromosomal translocations are not found in blood samples radiation workers and dicentric chromosomes found only on 2 blood samples of radiation workers with a frequency of 0.001/cell. The frequency of chromosomal aberrations in the blood cells such workers within normal limits and this means that the workers have been implemented a radiation safety aspects very well. (author)

  20. Aberrations and adaptive optics in super-resolution microscopy

    Science.gov (United States)

    Booth, Martin; Andrade, Débora; Burke, Daniel; Patton, Brian; Zurauskas, Mantas

    2015-01-01

    As one of the most powerful tools in the biological investigation of cellular structures and dynamic processes, fluorescence microscopy has undergone extraordinary developments in the past decades. The advent of super-resolution techniques has enabled fluorescence microscopy – or rather nanoscopy – to achieve nanoscale resolution in living specimens and unravelled the interior of cells with unprecedented detail. The methods employed in this expanding field of microscopy, however, are especially prone to the detrimental effects of optical aberrations. In this review, we discuss how super-resolution microscopy techniques based upon single-molecule switching, stimulated emission depletion and structured illumination each suffer from aberrations in different ways that are dependent upon intrinsic technical aspects. We discuss the use of adaptive optics as an effective means to overcome this problem. PMID:26124194

  1. Transitionality in addiction: A "temporal continuum" hypotheses involving the aberrant motivation, the hedonic dysregulation, and the aberrant learning.

    Science.gov (United States)

    Patrono, Enrico; Gasbarri, Antonella; Tomaz, Carlos; Nishijo, Hisao

    2016-08-01

    Addiction is a chronic compulsion and relapsing disorder. It involves several brain areas and circuits, which encode vary functions such as reward, motivation, and memory. Drug addiction is defined as a "pathological pattern of use of a substance", characterized by the loss of control on drug-taking-related behaviors, the pursuance of those behaviors even in the presence of negative consequences, and a strong motivated activity to assume substances. Three different theories guide experimental research on drug addiction. Each of these theories consider singles features, such as an aberrant motivation, a hedonic dysregulation, and an aberrant habit learning as the main actor to explain the entire process of the addictive behaviors. The major goal of this study is to present a new hypotheses of transitionality from a controlled use to abuse of addictive substances trough the overview of the three different theories, considering all the single features of each single theory together on the same "temporal continuum" from use to abuse of addictive substances. Recently, it has been suggested that common neural systems may be activated by natural and pharmacological stimuli, raising the hypotheses that binge-eating disorders could be considered as addictive behaviors. The second goal of this study is to present evidences in order to highlight a possible psycho-bio-physiological superimposition between drug and "food addiction". Finally, interesting questions are brought up starting from last findings about a theoretical/psycho-bio-physiological superimposition between drug and "food addiction" and their possibly same transitionality along the same "temporal continuum" from use to abuse of addictive substances in order to investigate new therapeutic strategies based on new therapeutic strategies based on the individual moments characterizing the transition from the voluntary intake of substances to the maladaptive addictive behavior. Copyright © 2016. Published by Elsevier

  2. Aberrant repair and fibrosis development in skeletal muscle

    Directory of Open Access Journals (Sweden)

    Mann Christopher J

    2011-05-01

    Full Text Available Abstract The repair process of damaged tissue involves the coordinated activities of several cell types in response to local and systemic signals. Following acute tissue injury, infiltrating inflammatory cells and resident stem cells orchestrate their activities to restore tissue homeostasis. However, during chronic tissue damage, such as in muscular dystrophies, the inflammatory-cell infiltration and fibroblast activation persists, while the reparative capacity of stem cells (satellite cells is attenuated. Abnormal dystrophic muscle repair and its end stage, fibrosis, represent the final common pathway of virtually all chronic neurodegenerative muscular diseases. As our understanding of the pathogenesis of muscle fibrosis has progressed, it has become evident that the muscle provides a useful model for the regulation of tissue repair by the local microenvironment, showing interplay among muscle-specific stem cells, inflammatory cells, fibroblasts and extracellular matrix components of the mammalian wound-healing response. This article reviews the emerging findings of the mechanisms that underlie normal versus aberrant muscle-tissue repair.

  3. MRI study of minor physical anomaly in childhood autism implicates aberrant neurodevelopment in infancy.

    Directory of Open Access Journals (Sweden)

    Charlton Cheung

    Full Text Available MPAs (minor physical anomalies frequently occur in neurodevelopmental disorders because both face and brain are derived from neuroectoderm in the first trimester. Conventionally, MPAs are measured by evaluation of external appearance. Using MRI can help overcome inherent observer bias, facilitate multi-centre data acquisition, and explore how MPAs relate to brain dysmorphology in the same individual. Optical MPAs exhibit a tightly synchronized trajectory through fetal, postnatal and adult life. As head size enlarges with age, inter-orbital distance increases, and is mostly completed before age 3 years. We hypothesized that optical MPAs might afford a retrospective 'window' to early neurodevelopment; specifically, inter-orbital distance increase may represent a biomarker for early brain dysmaturation in autism.We recruited 91 children aged 7-16; 36 with an autism spectrum disorder and 55 age- and gender-matched typically developing controls. All children had normal IQ. Inter-orbital distance was measured on T1-weighted MRI scans. This value was entered into a voxel-by-voxel linear regression analysis with grey matter segmented from a bimodal MRI data-set. Age and total brain tissue volume were entered as covariates.Intra-class coefficient for measurement of the inter-orbital distance was 0.95. Inter-orbital distance was significantly increased in the autism group (p = 0.03, 2-tailed. The autism group showed a significant relationship between inter-orbital distance grey matter volume of bilateral amygdalae extending to the unci and inferior temporal poles.Greater inter-orbital distance in the autism group compared with healthy controls is consistent with infant head size expansion in autism. Inter-orbital distance positively correlated with volume of medial temporal lobe structures, suggesting a link to "social brain" dysmorphology in the autism group. We suggest these data support the role of optical MPAs as a "fossil record" of early

  4. Influence of radiation on the developing brain

    International Nuclear Information System (INIS)

    Gao Weimin; Zhou Xiangyan

    1997-01-01

    An outline of current status in study on the influence of radiation on the developing brain was given based on data from both human and animals. Analysis was made in 5 aspects, such as the behaviour of nervous, changes on cellular and molecular levels, apoptosis of cells, and the adaptive reaction, which could be helpful for further understanding the influences of prenatal exposure on the developing brain

  5. Fifth-order canonical geometric aberration analysis of electrostatic round lenses

    CERN Document Server

    Liu Zhi Xiong

    2002-01-01

    In this paper the fifth-order canonical geometric aberration patterns are analyzed and a numerical example is given on the basis of the analytical expressions of fifth-order aberration coefficients derived in the present work. The fifth-order spherical aberration, astigmatism and field curvature, and distortion are similar to the third-order ones and the fifth-order coma is slightly different. Besides, there are two more aberrations which do not exist in the third-order aberration: they are peanut aberration and elliptical coma in accordance with their shapes. In the numerical example, by using a cross-check of the calculated coefficients with those computed through the differential algebraic method, it has been verified that all the expressions are correct and the computational results are reliable with high precision.

  6. Chromosomal aberrations induced by alpha particles

    International Nuclear Information System (INIS)

    Guerrero C, C.; Brena V, M.

    2005-01-01

    The chromosomal aberrations produced by the ionizing radiation are commonly used when it is necessary to establish the exposure dose of an individual, it is a study that is used like complement of the traditional physical systems and its application is only in cases in that there is doubt about what indicates the conventional dosimetry. The biological dosimetry is based on the frequency of aberrations in the chromosomes of the lymphocytes of the individual in study and the dose is calculated taking like reference to the dose-response curves previously generated In vitro. A case of apparent over-exposure to alpha particles to which is practiced analysis of chromosomal aberrations to settle down if in fact there was exposure and as much as possible, to determine the presumed dose is presented. (Author)

  7. Mapping fetal brain development in utero using magnetic resonance imaging: the Big Bang of brain mapping.

    Science.gov (United States)

    Studholme, Colin

    2011-08-15

    The development of tools to construct and investigate probabilistic maps of the adult human brain from magnetic resonance imaging (MRI) has led to advances in both basic neuroscience and clinical diagnosis. These tools are increasingly being applied to brain development in adolescence and childhood, and even to neonatal and premature neonatal imaging. Even earlier in development, parallel advances in clinical fetal MRI have led to its growing use as a tool in challenging medical conditions. This has motivated new engineering developments encompassing optimal fast MRI scans and techniques derived from computer vision, the combination of which allows full 3D imaging of the moving fetal brain in utero without sedation. These promise to provide a new and unprecedented window into early human brain growth. This article reviews the developments that have led us to this point, examines the current state of the art in the fields of fast fetal imaging and motion correction, and describes the tools to analyze dynamically changing fetal brain structure. New methods to deal with developmental tissue segmentation and the construction of spatiotemporal atlases are examined, together with techniques to map fetal brain growth patterns.

  8. Spherical aberration and other higher-order aberrations in the human eye : from summary wave-front analysis data to optical variables relevant to visual perception

    NARCIS (Netherlands)

    Jansonius, Nomdo M.

    Wave-front analysis data from the human eye are commonly presented using the aberration coefficient c(4)(0) (primary spherical aberration) together with an overall measure of all higher-order aberrations. If groups of subjects are compared, however, the relevance of an observed difference cannot

  9. Statistical estimation of ultrasonic propagation path parameters for aberration correction.

    Science.gov (United States)

    Waag, Robert C; Astheimer, Jeffrey P

    2005-05-01

    Parameters in a linear filter model for ultrasonic propagation are found using statistical estimation. The model uses an inhomogeneous-medium Green's function that is decomposed into a homogeneous-transmission term and a path-dependent aberration term. Power and cross-power spectra of random-medium scattering are estimated over the frequency band of the transmit-receive system by using closely situated scattering volumes. The frequency-domain magnitude of the aberration is obtained from a normalization of the power spectrum. The corresponding phase is reconstructed from cross-power spectra of subaperture signals at adjacent receive positions by a recursion. The subapertures constrain the receive sensitivity pattern to eliminate measurement system phase contributions. The recursion uses a Laplacian-based algorithm to obtain phase from phase differences. Pulse-echo waveforms were acquired from a point reflector and a tissue-like scattering phantom through a tissue-mimicking aberration path from neighboring volumes having essentially the same aberration path. Propagation path aberration parameters calculated from the measurements of random scattering through the aberration phantom agree with corresponding parameters calculated for the same aberrator and array position by using echoes from the point reflector. The results indicate the approach describes, in addition to time shifts, waveform amplitude and shape changes produced by propagation through distributed aberration under realistic conditions.

  10. 125 Brain Games for Babies: Simple Games To Promote Early Brain Development.

    Science.gov (United States)

    Silberg, Jackie

    Scientists believe that the stimulation that infants and young children receive determines which synapses form in the brain. This book presents 125 games for infants from birth to 12 months and is designed to nurture brain development. The book is organized chronologically in 3-month increments. Each game description includes information from…

  11. Insulin and insulin-like growth factor receptors in the brain: physiological and pathological aspects.

    Science.gov (United States)

    Werner, Haim; LeRoith, Derek

    2014-12-01

    The involvement of insulin, the insulin-like growth factors (IGF1, IGF2) and their receptors in central nervous system development and function has been the focus of scientific interest for more than 30 years. The insulin-like peptides, both locally-produced proteins as well as those transported from the circulation into the brain via the blood-brain barrier, are involved in a myriad of biological activities. These actions include, among others, neuronal survival, neurogenes, angiogenesis, excitatory and inhibitory neurotransmission, regulation of food intake, and cognition. In recent years, a linkage between brain insulin/IGF1 and certain neuropathologies has been identified. Epidemiological studies have demonstrated a correlation between diabetes (mainly type 2) and Alzheimer׳s disease. In addition, an aberrant decline in IGF1 values was suggested to play a role in the development of Alzheimer׳s disease. The present review focuses on the expression and function of insulin, IGFs and their receptors in the brain in physiological and pathological conditions. Copyright © 2014 Elsevier B.V. and ECNP. All rights reserved.

  12. Higher order aberrations of the eye: Part one

    Directory of Open Access Journals (Sweden)

    Marsha Oberholzer

    2016-06-01

    Full Text Available This article is the first in a series of two articles that provide a comprehensive literature review of higher order aberrations (HOAs of the eye. The present article mainly explains the general principles of such HOAs as well as HOAs of importance, and the measuring apparatus used to measure HOAs of the eye. The second article in the series discusses factors contributing to variable results in measurements of HOAs of the eye. Keywords: Higher order aberrations; wavefront aberrations; aberrometer

  13. Developmental vitamin D deficiency causes abnormal brain development.

    Science.gov (United States)

    Eyles, D W; Feron, F; Cui, X; Kesby, J P; Harms, L H; Ko, P; McGrath, J J; Burne, T H J

    2009-12-01

    There is now clear evidence that vitamin D is involved in brain development. Our group is interested in environmental factors that shape brain development and how this may be relevant to neuropsychiatric diseases including schizophrenia. The origins of schizophrenia are considered developmental. We hypothesised that developmental vitamin D (DVD) deficiency may be the plausible neurobiological explanation for several important epidemiological correlates of schizophrenia namely: (1) the excess winter/spring birth rate, (2) increased incidence of the disease in 2nd generation Afro-Caribbean migrants and (3) increased urban birth rate. Moreover we have published two pieces of direct epidemiological support for this hypothesis in patients. In order to establish the "Biological Plausibility" of this hypothesis we have developed an animal model to study the effect of DVD deficiency on brain development. We do this by removing vitamin D from the diet of female rats prior to breeding. At birth we return all dams to a vitamin D containing diet. Using this procedure we impose a transient, gestational vitamin D deficiency, while maintaining normal calcium levels throughout. The brains of offspring from DVD-deficient dams are characterised by (1) a mild distortion in brain shape, (2) increased lateral ventricle volumes, (3) reduced differentiation and (4) diminished expression of neurotrophic factors. As adults, the alterations in ventricular volume persist and alterations in brain gene and protein expression emerge. Adult DVD-deficient rats also display behavioural sensitivity to agents that induce psychosis (the NMDA antagonist MK-801) and have impairments in attentional processing. In this review we summarise the literature addressing the function of vitamin D on neuronal and non-neuronal cells as well as in vivo results from DVD-deficient animals. Our conclusions from these data are that vitamin D is a plausible biological risk factor for neuropsychiatric disorders and that

  14. Plasticity during Early Brain Development Is Determined by Ontogenetic Potential.

    Science.gov (United States)

    Krägeloh-Mann, Ingeborg; Lidzba, Karen; Pavlova, Marina A; Wilke, Marko; Staudt, Martin

    2017-04-01

    Two competing hypotheses address neuroplasticity during early brain development: the "Kennard principle" describes the compensatory capacities of the immature developing CNS as superior to those of the adult brain, whereas the "Hebb principle" argues that the young brain is especially sensitive to insults. We provide evidence that these principles are not mutually exclusive. Following early brain lesions that are unilateral, the brain can refer to homotopic areas of the healthy hemisphere. This potential for reorganization is unique to the young brain but available only when, during ontogenesis of brain development, these areas have been used for the functions addressed. With respect to motor function, ipsilateral motor tracts can be recruited, which are only available during early brain development. Language can be reorganized to the right after early left hemispheric lesions, as the representation of the language network is initially bilateral. However, even in these situations, compensatory capacities of the developing brain are found to have limitations, probably defined by early determinants. Thus, plasticity and adaptivity are seen only within ontogenetic potential; that is, axonal or cortical structures cannot be recruited beyond early developmental possibilities. The young brain is probably more sensitive and vulnerable to lesions when these are bilateral. This is shown here for bilateral periventricular white matter lesions that clearly have an impact on cortical architecture and function, thus probably interfering with early network building. Georg Thieme Verlag KG Stuttgart · New York.

  15. Do DNA double-strand breaks induced by Alu I lead to development of novel aberrations in the second and third post-treatment mitoses?

    International Nuclear Information System (INIS)

    Wojcik, A.; Bonk, K.; Mueller, M.U.; Streffer, C.; Obe, G.

    1996-01-01

    Several authors have reported that ionizing radiation can give rise to novel aberrations several mitotic divisions after the exposure. At our institute this phenomenon has been observed in mouse preimplantation embryos. This cell system is uniquely well suited for such investigations because the first three cell divisions show a high degree of synchrony. Thus the expression of chromosomal aberrations at the first, second and third mitosis after irradiation can be scored unambiguously. To investigate whether DNA double-strand breaks may be the lesions responsible for the delayed expression of chromosomal aberrations, we have studied the frequencies of aberrations in the first, second and third mitosis after treatment of one-cell mouse embryos with the restriction enzyme Alu I. Embryos were permeabilized with Streptolysin-O. The results indicate that the induction of double-strand breaks does not lead to novel aberrations in the third post-treatment mitosis. Several embryos scored at the second mitosis showed very high numbers of aberrations, indicating that Alu I may remain active in the cells for a period of one cell cycle. After treatment with Streptolysin-O alone, enhanced aberration frequencies were observed in the third post-treatment mitosis, suggesting that membrane damage has a delayed effect on the cellular integrity. 44 refs., 3 figs., 3 tabs

  16. The development of brain network architecture.

    Science.gov (United States)

    Wierenga, Lara M; van den Heuvel, Martijn P; van Dijk, Sarai; Rijks, Yvonne; de Reus, Marcel A; Durston, Sarah

    2016-02-01

    Brain connectivity shows protracted development throughout childhood and adolescence, and, as such, the topology of brain networks changes during this period. The complexity of these changes with development is reflected by regional differences in maturation. This study explored age-related changes in network topology and regional developmental patterns during childhood and adolescence. We acquired two sets of Diffusion Weighted Imaging-scans and anatomical T1-weighted scans. The first dataset included 85 typically developing individuals (53 males; 32 females), aged between 7 and 23 years and was acquired on a Philips Achieva 1.5 Tesla scanner. A second dataset (N = 38) was acquired on a different (but identical) 1.5 T scanner and was used for independent replication of our results. We reconstructed whole brain networks using tractography. We operationalized fiber tract development as changes in mean diffusivity and radial diffusivity with age. Most fibers showed maturational changes in mean and radial diffusivity values throughout childhood and adolescence, likely reflecting increasing white matter integrity. The largest age-related changes were observed in association fibers within and between the frontal and parietal lobes. Furthermore, there was a simultaneous age-related decrease in average path length (P maturational model where connections between unimodal regions strengthen in childhood, followed by connections from these unimodal regions to association regions, while adolescence is characterized by the strengthening of connections between association regions within the frontal and parietal cortex. Hum Brain Mapp 37:717-729, 2016. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  17. A monochromatic, aberration-corrected, dual-beam low energy electron microscope.

    Science.gov (United States)

    Mankos, Marian; Shadman, Khashayar

    2013-07-01

    The monochromatic, aberration-corrected, dual-beam low energy electron microscope (MAD-LEEM) is a novel instrument aimed at imaging of nanostructures and surfaces at sub-nanometer resolution that includes a monochromator, aberration corrector and dual beam illumination. The monochromator reduces the energy spread of the illuminating electron beam, which significantly improves spectroscopic and spatial resolution. The aberration corrector utilizes an electron mirror with negative aberrations that can be used to compensate the aberrations of the LEEM objective lens for a range of electron energies. Dual flood illumination eliminates charging generated when a conventional LEEM is used to image insulating specimens. MAD-LEEM is designed for the purpose of imaging biological and insulating specimens, which are difficult to image with conventional LEEM, Low-Voltage SEM, and TEM instruments. The MAD-LEEM instrument can also be used as a general purpose LEEM with significantly improved resolution. The low impact energy of the electrons is critical for avoiding beam damage, as high energy electrons with keV kinetic energies used in SEMs and TEMs cause irreversible change to many specimens, in particular biological materials. A potential application for MAD-LEEM is in DNA sequencing, which demands imaging techniques that enable DNA sequencing at high resolution and speed, and at low cost. The key advantages of the MAD-LEEM approach for this application are the low electron impact energies, the long read lengths, and the absence of heavy-atom DNA labeling. Image contrast simulations of the detectability of individual nucleotides in a DNA strand have been developed in order to refine the optics blur and DNA base contrast requirements for this application. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. In vivo chromatic aberration in eyes implanted with intraocular lenses.

    Science.gov (United States)

    Pérez-Merino, Pablo; Dorronsoro, Carlos; Llorente, Lourdes; Durán, Sonia; Jiménez-Alfaro, Ignacio; Marcos, Susana

    2013-04-12

    To measure in vivo and objectively the monochromatic aberrations at different wavelengths, and the chromatic difference of focus between green and infrared wavelengths in eyes implanted with two models of intraocular lenses (IOL). EIGHTEEN EYES PARTICIPATED IN THIS STUDY: nine implanted with Tecnis ZB99 1-Piece acrylic IOL and nine implanted with AcrySof SN60WF IOL. A custom-developed laser ray tracing (LRT) aberrometer was used to measure the optical aberrations, at 532 nm and 785 nm wavelengths. The monochromatic wave aberrations were described using a fifth-order Zernike polynomial expansion. The chromatic difference of focus was estimated as the difference between the equivalent spherical errors corresponding to each wavelength. Wave aberration measurements were highly reproducible. Except for the defocus term, no significant differences in high order aberrations (HOA) were found between wavelengths. The average chromatic difference of focus was 0.46 ± 0.15 diopters (D) in the Tecnis group, and 0.75 ± 0.12 D in the AcrySof group, and the difference was statistically significant (P Chromatic difference of focus in the AcrySof group was not statistically significantly different from the Longitudinal chromatic aberration (LCA) previously reported in a phakic population (0.78 ± 0.16 D). The impact of LCA on retinal image quality (measured in terms of Strehl ratio) was drastically reduced when considering HOA and astigmatism in comparison with a diffraction-limited eye, yielding the differences in retinal image quality between Tecnis and AcrySof IOLs not significant. LRT aberrometry at different wavelengths is a reproducible technique to evaluate the chromatic difference of focus objectively in eyes implanted with IOLs. Replacement of the crystalline lens by the IOL did not increase chromatic difference of focus above that of phakic eyes in any of the groups. The AcrySof group showed chromatic difference of focus values very similar to physiological values in

  19. Development of the Young Brain

    Medline Plus

    Full Text Available ... Announcer: Through the work of Dr. Giedd and his colleagues, we’ve learned so much about the development of the adolescent brain. But researchers like Dr. Giedd may be entering ...

  20. Effect of spherical aberration on scintillations of Gaussian beams in atmospheric turbulence

    International Nuclear Information System (INIS)

    Ji, Xiaoling; Deng, Jinping

    2014-01-01

    The effect of spherical aberration on scintillations of Gaussian beams in weak, moderate and strong turbulence is studied using numerical simulation method. It is found that the effect of the negative spherical aberration on the on-axis scintillation index is quite different from that of the positive spherical aberration. In weak turbulence, the positive spherical aberration results in a decrease of the on-axis scintillation index on propagation, but the negative spherical aberration results in an increase of the on-axis scintillation index when the propagation distance is not large. In particular, in weak turbulence the negative spherical aberration may cause peaks of the on-axis scintillation index, and the peaks disappear in moderate and strong turbulence, which is explained in physics. The strong turbulence leads to less discrepancy among scintillations of Gaussian beams with and without spherical aberration. - Highlights: • In weak turbulence scintillations can be suppressed using positive spherical aberration. • In weak turbulence scintillations may be very large due to negative spherical aberration. • The effect of spherical aberration on scintillations is less with increasing of turbulence

  1. Effect of spherical aberration on scintillations of Gaussian beams in atmospheric turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Ji, Xiaoling, E-mail: jiXL100@163.com; Deng, Jinping

    2014-07-18

    The effect of spherical aberration on scintillations of Gaussian beams in weak, moderate and strong turbulence is studied using numerical simulation method. It is found that the effect of the negative spherical aberration on the on-axis scintillation index is quite different from that of the positive spherical aberration. In weak turbulence, the positive spherical aberration results in a decrease of the on-axis scintillation index on propagation, but the negative spherical aberration results in an increase of the on-axis scintillation index when the propagation distance is not large. In particular, in weak turbulence the negative spherical aberration may cause peaks of the on-axis scintillation index, and the peaks disappear in moderate and strong turbulence, which is explained in physics. The strong turbulence leads to less discrepancy among scintillations of Gaussian beams with and without spherical aberration. - Highlights: • In weak turbulence scintillations can be suppressed using positive spherical aberration. • In weak turbulence scintillations may be very large due to negative spherical aberration. • The effect of spherical aberration on scintillations is less with increasing of turbulence.

  2. Influence of Misalignment on High-Order Aberration Correction for Normal Human Eyes

    Science.gov (United States)

    Zhao, Hao-Xin; Xu, Bing; Xue, Li-Xia; Dai, Yun; Liu, Qian; Rao, Xue-Jun

    2008-04-01

    Although a compensation device can correct aberrations of human eyes, the effect will be degraded by its misalignment, especially for high-order aberration correction. We calculate the positioning tolerance of correction device for high-order aberrations, and within what degree the correcting effect is better than low-order aberration (defocus and astigmatism) correction. With fixed certain misalignment within the positioning tolerance, we calculate the residual wavefront rms aberration of the first-6 to first-35 terms along with the 3rd-5th terms of aberrations corrected, and the combined first-13 terms of aberrations are also studied under the same quantity of misalignment. However, the correction effect of high-order aberrations does not meliorate along with the increase of the high-order terms under some misalignment, moreover, some simple combined terms correction can achieve similar result as complex combinations. These results suggest that it is unnecessary to correct too much the terms of high-order aberrations which are difficult to accomplish in practice, and gives confidence to correct high-order aberrations out of the laboratory.

  3. Influence of Misalignment on High-Order Aberration Correction for Normal Human Eyes

    International Nuclear Information System (INIS)

    Hao-Xin, Zhao; Bing, Xu; Li-Xia, Xue; Yun, Dai; Qian, Liu; Xue-Jun, Rao

    2008-01-01

    Although a compensation device can correct aberrations of human eyes, the effect will be degraded by its misalignment, especially for high-order aberration correction. We calculate the positioning tolerance of correction device for high-order aberrations, and within what degree the correcting effect is better than low-order aberration (defocus and astigmatism) correction. With fixed certain misalignment within the positioning tolerance, we calculate the residual wavefront rms aberration of the first-6 to first-35 terms along with the 3rd-5th terms of aberrations corrected, and the combined first-13 terms of aberrations are also studied under the same quantity of misalignment. However, the correction effect of high-order aberrations does not meliorate along with the increase of the high-order terms under some misalignment, moreover, some simple combined terms correction can achieve similar result as complex combinations. These results suggest that it is unnecessary to correct too much the terms of high-order aberrations which are difficult to accomplish in practice, and gives confidence to correct high-order aberrations out of the laboratory

  4. Aberrant Intrinsic Activity and Connectivity in Cognitively Normal Parkinson's Disease.

    Science.gov (United States)

    Harrington, Deborah L; Shen, Qian; Castillo, Gabriel N; Filoteo, J Vincent; Litvan, Irene; Takahashi, Colleen; French, Chelsea

    2017-01-01

    , rather than compensatory influence on cognitive abilities tested in this study. Receiver operating curve analyses demonstrated excellent sensitivity (≥90%) of rsfMRI variables in distinguishing patients from controls, but poor accuracy for brain volume and cognitive variables. Altogether these results provide new insights into the topology, cognitive relevance, and sensitivity of aberrant intrinsic activity and connectivity that precedes clinically significant cognitive impairment. Longitudinal studies are needed to determine if these neurocognitive associations presage the development of future mild cognitive impairment or dementia.

  5. Mechanistic modeling of aberrant energy metabolism in human disease

    Directory of Open Access Journals (Sweden)

    Vineet eSangar

    2012-10-01

    Full Text Available Dysfunction in energy metabolism—including in pathways localized to the mitochondria—has been implicated in the pathogenesis of a wide array of disorders, ranging from cancer to neurodegenerative diseases to type II diabetes. The inherent complexities of energy and mitochondrial metabolism present a significant obstacle in the effort to understand the role that these molecular processes play in the development of disease. To help unravel these complexities, systems biology methods have been applied to develop an array of computational metabolic models, ranging from mitochondria-specific processes to genome-scale cellular networks. These constraint-based models can efficiently simulate aspects of normal and aberrant metabolism in various genetic and environmental conditions. Development of these models leverages—and also provides a powerful means to integrate and interpret—information from a wide range of sources including genomics, proteomics, metabolomics, and enzyme kinetics. Here, we review a variety of mechanistic modeling studies that explore metabolic functions, deficiency disorders, and aberrant biochemical pathways in mitochondria and related regions in the cell.

  6. Possible mechanisms of chromosomal aberrations: VII. Comparative dynamics of sister chromatid disjunction and realization of radiation-induced chromosomal aberrations during mitosis

    International Nuclear Information System (INIS)

    Lebedeva, L.I.; Akhmamet'eva, E.M.

    1994-01-01

    An increase in radiation-induced chromosomal aberrations during c-metaphase sister chromatid disjunction was demonstrated in murine bone marrow cells exposed to a total γ-irradiation at 0.5 Gy. Caffeine (Cf) treatment during mitosis partially suppressed the chromatid disjunction rate and increased the number of radiation-induced aberrations in this mitosis. Nalidixic acid (NA) treatment of c-metaphase cells completely suppressed chromatid disjunction and the realization of induced aberrations. Topoisomerase 2 was assumed to be involved during mitosis in both processes

  7. Ionising radiation and the developing human brain

    International Nuclear Information System (INIS)

    Schull, W.J.

    1991-01-01

    This article reviews the effects of radiation exposure of the developing human brain. Much of the evidence has come from the prenatally exposed in Hiroshima and Nagasaki. The effects on development age, mental retardation, head size, neuromuscular performance, intelligence tests, school performance and the occurrence of convulsions are discussed. Other topics covered include the biological nature of the damage to the brain, risk estimates in human and problems in radiation protection. (UK)

  8. Artificial neural network for the determination of Hubble Space Telescope aberration from stellar images

    Science.gov (United States)

    Barrett, Todd K.; Sandler, David G.

    1993-01-01

    An artificial-neural-network method, first developed for the measurement and control of atmospheric phase distortion, using stellar images, was used to estimate the optical aberration of the Hubble Space Telescope. A total of 26 estimates of distortion was obtained from 23 stellar images acquired at several secondary-mirror axial positions. The results were expressed as coefficients of eight orthogonal Zernike polynomials: focus through third-order spherical. For all modes other than spherical the measured aberration was small. The average spherical aberration of the estimates was -0.299 micron rms, which is in good agreement with predictions obtained when iterative phase-retrieval algorithms were used.

  9. A lateral chromatic aberration correction system for ultrahigh-definition color video camera

    Science.gov (United States)

    Yamashita, Takayuki; Shimamoto, Hiroshi; Funatsu, Ryohei; Mitani, Kohji; Nojiri, Yuji

    2006-02-01

    We have developed color camera for an 8k x 4k-pixel ultrahigh-definition video system, which is called Super Hi- Vision, with a 5x zoom lens and a signal-processing system incorporating a function for real-time lateral chromatic aberration correction. The chromatic aberration of the lens degrades color image resolution. So in order to develop a compact zoom lens consistent with ultrahigh-resolution characteristics, we incorporated a real-time correction function in the signal-processing system. The signal-processing system has eight memory tables to store the correction data at eight focal length points on the blue and red channels. When the focal length data is inputted from the lens control units, the relevant correction data are interpolated from two of eights correction data tables. This system performs geometrical conversion on both channels using this correction data. This paper describes that the correction function can successfully reduce the lateral chromatic aberration, to an amount small enough to ensure the desired image resolution was achieved over the entire range of the lens in real time.

  10. Development of the Young Brain

    Medline Plus

    Full Text Available ... developing brain. Announcer: So how well are our children handing multi-tasking in a digital age that changes, seemingly, by the hour? Early evidence suggests -pretty well. In fact, the human ...

  11. Chromosome aberration analysis based on a beta-binomial distribution

    International Nuclear Information System (INIS)

    Otake, Masanori; Prentice, R.L.

    1983-10-01

    Analyses carried out here generalized on earlier studies of chromosomal aberrations in the populations of Hiroshima and Nagasaki, by allowing extra-binomial variation in aberrant cell counts corresponding to within-subject correlations in cell aberrations. Strong within-subject correlations were detected with corresponding standard errors for the average number of aberrant cells that were often substantially larger than was previously assumed. The extra-binomial variation is accomodated in the analysis in the present report, as described in the section on dose-response models, by using a beta-binomial (B-B) variance structure. It is emphasized that we have generally satisfactory agreement between the observed and the B-B fitted frequencies by city-dose category. The chromosomal aberration data considered here are not extensive enough to allow a precise discrimination between competing dose-response models. A quadratic gamma ray and linear neutron model, however, most closely fits the chromosome data. (author)

  12. Aberrant neuromagnetic activation in the motor cortex in children with acute migraine: a magnetoencephalography study.

    Directory of Open Access Journals (Sweden)

    Xinyao Guo

    Full Text Available Migraine attacks have been shown to interfere with normal function in the brain such as motor or sensory function. However, to date, there has been no clinical neurophysiology study focusing on the motor function in children with migraine during headache attacks. To investigate the motor function in children with migraine, twenty-six children with acute migraine, meeting International Classification of Headache Disorders criteria and age- and gender-matched healthy children were studied using a 275-channel magnetoencephalography system. A finger-tapping paradigm was designed to elicit neuromagnetic activation in the motor cortex. Children with migraine showed significantly prolonged latency of movement-evoked magnetic fields (MEF during finger movement compared with the controls. The correlation coefficient of MEF latency and age in children with migraine was significantly different from that in healthy controls. The spectral power of high gamma (65-150 Hz oscillations during finger movement in the primary motor cortex is also significantly higher in children with migraine than in controls. The alteration of responding latency and aberrant high gamma oscillations suggest that the developmental trajectory of motor function in children with migraine is impaired during migraine attacks and/or developmentally delayed. This finding indicates that childhood migraine may affect the development of brain function and result in long-term problems.

  13. Aberrant development of post-movement beta rebound in adolescents and young adults with fetal alcohol spectrum disorders

    Directory of Open Access Journals (Sweden)

    Andrei A. Vakhtin

    2015-01-01

    Full Text Available Dependent on maternal (e.g. genetic, age and exposure (frequency, quantity, and timing variables, the effects of prenatal alcohol exposure on the developing fetus are known to vary widely, producing a broad range of morphological anomalies and neurocognitive deficits in offspring, referred to as fetal alcohol spectrum disorders (FASD. Maternal drinking during pregnancy remains a leading risk factor for the development of intellectual disabilities in the US. While few functional findings exist today that shed light on the mechanisms responsible for the observed impairments in individuals with FASD, animal models consistently report deleterious effects of early alcohol exposure on GABA-ergic inhibitory pathways. The post-motor beta rebound (PMBR, a transient increase of 15–30 Hz beta power in the motor cortex that follows the termination of movement, has been implicated as a neural signature of GABA-ergic inhibitory activity. Further, PMBR has been shown to be a reliable predictor of age in adolescents. The present study sought to investigate any differences in the development of PMBR between FASD and control groups. Beta event-related de-synchronization (ERD and movement-related gamma synchronization (MRGS, although not clearly linked to brain maturation, were also examined. Twenty-two participants with FASD and 22 age and sex-matched controls (12–22 years old underwent magnetoencephalography scans while performing an auditory oddball task, which required a button press in response to select target stimuli. The data surrounding the button presses were localized to the participants' motor cortices, and the time courses from the locations of the maximally evoked PMBR were subjected to wavelet analyses. The subsequent analysis of PMBR, ERD, and MRGS revealed a significant interaction between group and age in their effects on PMBR. While age had a significant effect on PMBR in the controls, no simple effects of age were detected in the FASD

  14. Radiation-induced cellular reproductive death and chromosome aberrations

    International Nuclear Information System (INIS)

    Bedford, J.S.; Mitchell, J.B.; Griggs, H.G.; Bender, M.A.

    1978-01-01

    If a major mode of cell killing by ionizing radiation is the death of cells containing visible chromosomal aberrations, as for example from anaphase-bridge formation at mitosis, then cells bearing such aberrations should be selectively eliminated from the population, resulting in an increased survival potential for the population remaining at each succeeding cell generation. Using synchronized V79B Chinese hamster cells, we measured the aberration frequency and the colony-forming ability of mitotic cells at each of the first three generations following irradiation in G1. Cells were resynchronized by mechanial harvest at each succeeding mitosis after irradiation in order to avoid mixing of generations in the cell population at later sampling times. As anticipated, the chromosome aberration frequencies decreased markedly from the first to the second and from the second to the third mitosis. The surviving fraction, however, was virtually the same for plating assays carried out immediately after irradiation, at the first, or at the second mitosis. The surviving fraction was significantly higher for cells reaching the third postirradiation mitosis. Survival and aberration frequencies were assayed again at approximately the fourteenth postirradiation division, by which time the irradiated and control populations were not significantly different

  15. Mitochondrial Chaperones in the Brain: Safeguarding Brain Health and Metabolism?

    Directory of Open Access Journals (Sweden)

    José Pedro Castro

    2018-04-01

    Full Text Available The brain orchestrates organ function and regulates whole body metabolism by the concerted action of neurons and glia cells in the central nervous system. To do so, the brain has tremendously high energy consumption and relies mainly on glucose utilization and mitochondrial function in order to exert its function. As a consequence of high rate metabolism, mitochondria in the brain accumulate errors over time, such as mitochondrial DNA (mtDNA mutations, reactive oxygen species, and misfolded and aggregated proteins. Thus, mitochondria need to employ specific mechanisms to avoid or ameliorate the rise of damaged proteins that contribute to aberrant mitochondrial function and oxidative stress. To maintain mitochondria homeostasis (mitostasis, cells evolved molecular chaperones that shuttle, refold, or in coordination with proteolytic systems, help to maintain a low steady-state level of misfolded/aggregated proteins. Their importance is exemplified by the occurrence of various brain diseases which exhibit reduced action of chaperones. Chaperone loss (expression and/or function has been observed during aging, metabolic diseases such as type 2 diabetes and in neurodegenerative diseases such as Alzheimer’s (AD, Parkinson’s (PD or even Huntington’s (HD diseases, where the accumulation of damage proteins is evidenced. Within this perspective, we propose that proper brain function is maintained by the joint action of mitochondrial chaperones to ensure and maintain mitostasis contributing to brain health, and that upon failure, alter brain function which can cause metabolic diseases.

  16. Aberrant internal carotid artery in the middle ear

    Energy Technology Data Exchange (ETDEWEB)

    Roh, Keun Tak; Kang, Hyun Koo [Dept. of Radiology, Seoul Veterans Hospital, Seoul (Korea, Republic of)

    2014-10-15

    The knowledge about the aberrant internal carotid artery (ICA) in the middle ear is essential for clinicians, because a misdiagnosis of the aberrant ICA could have serious consequences such as excessive aural bleeding during a middle ear surgery. A 38-year-old woman presented with tinnitus and hearing difficulties of the left ear that had started 5 years ago. During otoscopy, an anteroinferior bluish mass was seen in the tympanic space. Computed tomography and magnetic resonance imaging demonstrated a left-side aberrant ICA with bony dehiscence of the carotid canal in the middle ear and a reduced diameter of the tympanic ICA. Herein we report a case of an aberrant ICA in the middle ear. We also review the literature regarding this important vascular anomaly of the temporal bone which may lead to disastrous surgical complications.

  17. Aberrant internal carotid artery in the middle ear

    International Nuclear Information System (INIS)

    Roh, Keun Tak; Kang, Hyun Koo

    2014-01-01

    The knowledge about the aberrant internal carotid artery (ICA) in the middle ear is essential for clinicians, because a misdiagnosis of the aberrant ICA could have serious consequences such as excessive aural bleeding during a middle ear surgery. A 38-year-old woman presented with tinnitus and hearing difficulties of the left ear that had started 5 years ago. During otoscopy, an anteroinferior bluish mass was seen in the tympanic space. Computed tomography and magnetic resonance imaging demonstrated a left-side aberrant ICA with bony dehiscence of the carotid canal in the middle ear and a reduced diameter of the tympanic ICA. Herein we report a case of an aberrant ICA in the middle ear. We also review the literature regarding this important vascular anomaly of the temporal bone which may lead to disastrous surgical complications.

  18. The indispensable roles of microglia and astrocytes during brain development

    NARCIS (Netherlands)

    Reemst, Kitty; Noctor, Stephen C.; Lucassen, Paul J.; Hol, Elly M.

    2016-01-01

    Glia are essential for brain functioning during development and in the adult brain. Here, we discuss the various roles of both microglia and astrocytes, and their interactions during brain development. Although both cells are fundamentally different in origin and function, they often affect the same

  19. The Indispensable Roles of Microglia and Astrocytes during Brain Development

    NARCIS (Netherlands)

    Reemst, K.; Noctor, S.C.; Lucassen, P.J.; Hol, E.M.

    2016-01-01

    Glia are essential for brain functioning during development and in the adult brain. Here, we discuss the various roles of both microglia and astrocytes, and their interactions during brain development. Although both cells are fundamentally different in origin and function, they often affect the same

  20. Carrier and aberrations removal in interferometric fringe projection profilometry

    Science.gov (United States)

    Blain, P.; Michel, F.; Renotte, Y.; Habraken, S.

    2012-04-01

    A profilometer which takes advantage of polarization states splitting technique and monochromatic light projection method as a way to overcome ambient lighting for in-situ measurement is under development [1, 2]. Because of the Savart plate which refracts two out of axis beams, the device suffers from aberrations (mostly coma and astigmatism). These aberrations affect the quality of the sinusoidal fringe pattern. In fringe projection profilometry, the unwrapped phase distribution map contains the sum of the object's shape-related phase and carrier-fringe-related phase. In order to extract the 3D shape of the object, the carrier phase has to be removed [3, 4]. An easy way to remove both the fringe carrier and the aberrations of the optical system is to measure the phases of the test object and to measure the phase of a reference plane with the same set up and to subtract both phase maps. This time consuming technique is suitable for laboratory but not for industry. We propose a method to numerically remove both the fringe carrier and the aberrations. A first reference phase of a calibration plane is evaluated knowing the position of the different elements in the set up and the orientation of the fringes. Then a fitting of the phase map by Zernike polynomials is computed [5]. As the triangulation parameters are known during the calibration, the computation of Zernike coefficients has only to be made once. The wavefront error can be adjusted by a scale factor which depends on the position of the test object.

  1. Unc-51/ATG1 controls axonal and dendritic development via kinesin-mediated vesicle transport in the Drosophila brain.

    Directory of Open Access Journals (Sweden)

    Hiroaki Mochizuki

    2011-05-01

    Full Text Available Members of the evolutionary conserved Ser/Thr kinase Unc-51 family are key regulatory proteins that control neural development in both vertebrates and invertebrates. Previous studies have suggested diverse functions for the Unc-51 protein, including axonal elongation, growth cone guidance, and synaptic vesicle transport.In this work, we have investigated the functional significance of Unc-51-mediated vesicle transport in the development of complex brain structures in Drosophila. We show that Unc-51 preferentially accumulates in newly elongating axons of the mushroom body, a center of olfactory learning in flies. Mutations in unc-51 cause disintegration of the core of the developing mushroom body, with mislocalization of Fasciclin II (Fas II, an IgG-family cell adhesion molecule important for axonal guidance and fasciculation. In unc-51 mutants, Fas II accumulates in the cell bodies, calyx, and the proximal peduncle. Furthermore, we show that mutations in unc-51 cause aberrant overshooting of dendrites in the mushroom body and the antennal lobe. Loss of unc-51 function leads to marked accumulation of Rab5 and Golgi components, whereas the localization of dendrite-specific proteins, such as Down syndrome cell adhesion molecule (DSCAM and No distributive disjunction (Nod, remains unaltered. Genetic analyses of kinesin light chain (Klc and unc-51 double heterozygotes suggest the importance of kinesin-mediated membrane transport for axonal and dendritic development. Moreover, our data demonstrate that loss of Klc activity causes similar axonal and dendritic defects in mushroom body neurons, recapitulating the salient feature of the developmental abnormalities caused by unc-51 mutations.Unc-51 plays pivotal roles in the axonal and dendritic development of the Drosophila brain. Unc-51-mediated membrane vesicle transport is important in targeted localization of guidance molecules and organelles that regulate elongation and compartmentalization of

  2. Image based method for aberration measurement of lithographic tools

    Science.gov (United States)

    Xu, Shuang; Tao, Bo; Guo, Yongxing; Li, Gongfa

    2018-01-01

    Information of lens aberration of lithographic tools is important as it directly affects the intensity distribution in the image plane. Zernike polynomials are commonly used for a mathematical description of lens aberrations. Due to the advantage of lower cost and easier implementation of tools, image based measurement techniques have been widely used. Lithographic tools are typically partially coherent systems that can be described by a bilinear model, which entails time consuming calculations and does not lend a simple and intuitive relationship between lens aberrations and the resulted images. Previous methods for retrieving lens aberrations in such partially coherent systems involve through-focus image measurements and time-consuming iterative algorithms. In this work, we propose a method for aberration measurement in lithographic tools, which only requires measuring two images of intensity distribution. Two linear formulations are derived in matrix forms that directly relate the measured images to the unknown Zernike coefficients. Consequently, an efficient non-iterative solution is obtained.

  3. Cell survival and radiation induced chromosome aberrations. Pt. 2

    International Nuclear Information System (INIS)

    Bauchinger, M.; Schmid, E.; Braselmann, H.

    1986-01-01

    Human peripheral lymphocytes were irradiated in whole blood with 0.5-4.0 Gy of 220 kVp X-rays and the frequency of chromosome aberrations was determined in 1st or 2nd division metaphases discriminated by fluorescence plus giemsa staining. Using the empirical distributions of aberrations among cells, cell survival and transmission of aberrations were investigated. Considering both daughter cells, we found that 20% of fragments and 55% of dicentrics or ring chromosomes are lost during the 1st cell division; i.e. cell survival rate from 1st to 2nd generation is mainly influenced by anaphase bridging of these two-hit aberrations. Cell survival to 2nd mitosis was calculated considering this situation and compared with the survival derived from the fraction of M1 cells without unstable aberrations. The resulting shouldered survival curves showed significantly different slopes, indicating that cell reproductive death is overestimated in the latter approach. (orig.)

  4. Revisiting Cross-Channel Information Transfer for Chromatic Aberration Correction

    KAUST Repository

    Sun, Tiancheng; Peng, Yifan; Heidrich, Wolfgang

    2017-01-01

    Image aberrations can cause severe degradation in image quality for consumer-level cameras, especially under the current tendency to reduce the complexity of lens designs in order to shrink the overall size of modules. In simplified optical designs, chromatic aberration can be one of the most significant causes for degraded image quality, and it can be quite difficult to remove in post-processing, since it results in strong blurs in at least some of the color channels. In this work, we revisit the pixel-wise similarity between different color channels of the image and accordingly propose a novel algorithm for correcting chromatic aberration based on this cross-channel correlation. In contrast to recent weak prior-based models, ours uses strong pixel-wise fitting and transfer, which lead to significant quality improvements for large chromatic aberrations. Experimental results on both synthetic and real world images captured by different optical systems demonstrate that the chromatic aberration can be significantly reduced using our approach.

  5. Revisiting Cross-Channel Information Transfer for Chromatic Aberration Correction

    KAUST Repository

    Sun, Tiancheng

    2017-12-25

    Image aberrations can cause severe degradation in image quality for consumer-level cameras, especially under the current tendency to reduce the complexity of lens designs in order to shrink the overall size of modules. In simplified optical designs, chromatic aberration can be one of the most significant causes for degraded image quality, and it can be quite difficult to remove in post-processing, since it results in strong blurs in at least some of the color channels. In this work, we revisit the pixel-wise similarity between different color channels of the image and accordingly propose a novel algorithm for correcting chromatic aberration based on this cross-channel correlation. In contrast to recent weak prior-based models, ours uses strong pixel-wise fitting and transfer, which lead to significant quality improvements for large chromatic aberrations. Experimental results on both synthetic and real world images captured by different optical systems demonstrate that the chromatic aberration can be significantly reduced using our approach.

  6. Development of the Young Brain

    Medline Plus

    Full Text Available ... changing world and how do we assess the impact for good or for bad on the developing ... the everyday moments that really have a huge impact on how the brain forms and adapts. Announcer: ...

  7. Development of the Young Brain

    Medline Plus

    Full Text Available ... Traumatic Events (3 items) Institute Announcements (24 items) Development of the Young Brain May 2, 2011 For ... designed to learn through example. Dr. Giedd: This learning by example is very powerful and that parents ...

  8. Development of the Young Brain

    Medline Plus

    Full Text Available ... Mental Illnesses Clinical Trials Outreach Outreach Home Stakeholder Engagement Outreach Partnership Program Alliance for Research Progress Coalition ... development of the adolescent brain. Decades of imaging work have led to remarkable insight and a more ...

  9. Development of the Young Brain

    Medline Plus

    Full Text Available ... items) Institute Announcements (24 items) Development of the Young Brain May 2, 2011 For more than twenty ... are our children handing multi-tasking in a digital age that changes, seemingly, by the hour? Early ...

  10. Effect of alcohol exposure on fetal brain development

    Science.gov (United States)

    Sudheendran, Narendran; Bake, Shameena; Miranda, Rajesh C.; Larin, Kirill V.

    2013-02-01

    Alcohol consumption during pregnancy can be severely damage to the brain development in fetuses. This study investigates the effects of maternal ethanol consumption on brain development in mice embryos. Pregnant mice at gestational day 12.5 were intragastrically gavaged with ethanol (3g/Kg bwt) twice daily for three consecutive days. On gestational day 14.5, fetuses were collected and fixed in 4% paraformaldehyde and imaged using a swept-source optical coherence tomography (SSOCT) system. 3D images of the mice embryo brain were obtained and the volumes of the left and right ventricles of the brain were measured. The average volumes of the left and the right volumes of 5 embryos each alcohol-exposed and control embryos were measured to be 0.35 and 0.15 mm3, respectively. The results suggest that the left and right ventricle volumes of brain are much larger in the alcohol-exposed embryos as compared to control embryos indicating alcohol-induced developmental delay.

  11. Higher-Order Wavefront Aberrations for Populations of Young Emmetropes and Myopes

    Directory of Open Access Journals (Sweden)

    Jinhua Bao

    2009-01-01

    Conclusions: Human eyes have systematical higher order aberrations in population, and factors that cause bilateral symmetry of wavefront aberrations between the right and left eyes made important contribution to the systematical aberrations.

  12. Chromatic Aberration Correction for Atomic Resolution TEM Imaging from 20 to 80 kV.

    Science.gov (United States)

    Linck, Martin; Hartel, Peter; Uhlemann, Stephan; Kahl, Frank; Müller, Heiko; Zach, Joachim; Haider, Max; Niestadt, Marcel; Bischoff, Maarten; Biskupek, Johannes; Lee, Zhongbo; Lehnert, Tibor; Börrnert, Felix; Rose, Harald; Kaiser, Ute

    2016-08-12

    Atomic resolution in transmission electron microscopy of thin and light-atom materials requires a rigorous reduction of the beam energy to reduce knockon damage. However, at the same time, the chromatic aberration deteriorates the resolution of the TEM image dramatically. Within the framework of the SALVE project, we introduce a newly developed C_{c}/C_{s} corrector that is capable of correcting both the chromatic and the spherical aberration in the range of accelerating voltages from 20 to 80 kV. The corrector allows correcting axial aberrations up to fifth order as well as the dominating off-axial aberrations. Over the entire voltage range, optimum phase-contrast imaging conditions for weak signals from light atoms can be adjusted for an optical aperture of at least 55 mrad. The information transfer within this aperture is no longer limited by chromatic aberrations. We demonstrate the performance of the microscope using the examples of 30 kV phase-contrast TEM images of graphene and molybdenum disulfide, showing unprecedented contrast and resolution that matches image calculations.

  13. Analysis of the 'dilemma effect' in fifth-order deflection aberration

    International Nuclear Information System (INIS)

    Zhang Xiaobing; Yin Hanchun; Lei Wei; Xue Kunxing; Tong Linsu

    1999-01-01

    In this paper, the coma of the fifth-order aberration at a large deflection angle has been analyzed by using multipole field theory. The dilemma effect exists in the comas of fifth-order aberration. The dilemma effect, whose value D r is constant and independent of the 10-pole field, is the linear combination of coma aberrations. The coma of the fifth-order aberration is corrected by adjusting the 10-pole field distribution when D r is zero or small. The factors that influence the dilemma effect have been calculated and analyzed

  14. Chromatic aberrations of two-electrode transaxial mirrors

    International Nuclear Information System (INIS)

    Bejzina, L.G.; Karetskaya, S.P.

    1991-01-01

    Second order chromatic aberrations of electrostatic two-electrode transaxial mirrors in case the beam axial trajectory of charged particles is curvilinear are considered. Interrelations between coefficients of linear and angular chromatic aberrations are determined. Values of these coefficients for concave and convex transaxial mirrors with plane electrodes in dependence on potential ratio on electrodes by different onnular clearance radii are presented

  15. Alternative Splicing in Neurogenesis and Brain Development.

    Science.gov (United States)

    Su, Chun-Hao; D, Dhananjaya; Tarn, Woan-Yuh

    2018-01-01

    Alternative splicing of precursor mRNA is an important mechanism that increases transcriptomic and proteomic diversity and also post-transcriptionally regulates mRNA levels. Alternative splicing occurs at high frequency in brain tissues and contributes to every step of nervous system development, including cell-fate decisions, neuronal migration, axon guidance, and synaptogenesis. Genetic manipulation and RNA sequencing have provided insights into the molecular mechanisms underlying the effects of alternative splicing in stem cell self-renewal and neuronal fate specification. Timely expression and perhaps post-translational modification of neuron-specific splicing regulators play important roles in neuronal development. Alternative splicing of many key transcription regulators or epigenetic factors reprograms the transcriptome and hence contributes to stem cell fate determination. During neuronal differentiation, alternative splicing also modulates signaling activity, centriolar dynamics, and metabolic pathways. Moreover, alternative splicing impacts cortical lamination and neuronal development and function. In this review, we focus on recent progress toward understanding the contributions of alternative splicing to neurogenesis and brain development, which has shed light on how splicing defects may cause brain disorders and diseases.

  16. Alternative Splicing in Neurogenesis and Brain Development

    Directory of Open Access Journals (Sweden)

    Chun-Hao Su

    2018-02-01

    Full Text Available Alternative splicing of precursor mRNA is an important mechanism that increases transcriptomic and proteomic diversity and also post-transcriptionally regulates mRNA levels. Alternative splicing occurs at high frequency in brain tissues and contributes to every step of nervous system development, including cell-fate decisions, neuronal migration, axon guidance, and synaptogenesis. Genetic manipulation and RNA sequencing have provided insights into the molecular mechanisms underlying the effects of alternative splicing in stem cell self-renewal and neuronal fate specification. Timely expression and perhaps post-translational modification of neuron-specific splicing regulators play important roles in neuronal development. Alternative splicing of many key transcription regulators or epigenetic factors reprograms the transcriptome and hence contributes to stem cell fate determination. During neuronal differentiation, alternative splicing also modulates signaling activity, centriolar dynamics, and metabolic pathways. Moreover, alternative splicing impacts cortical lamination and neuronal development and function. In this review, we focus on recent progress toward understanding the contributions of alternative splicing to neurogenesis and brain development, which has shed light on how splicing defects may cause brain disorders and diseases.

  17. Spherical aberration correction in a scanning transmission electron microscope using a sculpted thin film.

    Science.gov (United States)

    Shiloh, Roy; Remez, Roei; Lu, Peng-Han; Jin, Lei; Lereah, Yossi; Tavabi, Amir H; Dunin-Borkowski, Rafal E; Arie, Ady

    2018-06-01

    Nearly eighty years ago, Scherzer showed that rotationally symmetric, charge-free, static electron lenses are limited by an unavoidable, positive spherical aberration. Following a long struggle, a major breakthrough in the spatial resolution of electron microscopes was reached two decades ago by abandoning the first of these conditions, with the successful development of multipole aberration correctors. Here, we use a refractive silicon nitride thin film to tackle the second of Scherzer's constraints and demonstrate an alternative method for correcting spherical aberration in a scanning transmission electron microscope. We reveal features in Si and Cu samples that cannot be resolved in an uncorrected microscope. Our thin film corrector can be implemented as an immediate low cost upgrade to existing electron microscopes without re-engineering of the electron column or complicated operation protocols and can be extended to the correction of additional aberrations. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  18. Subjective face recognition difficulties, aberrant sensibility, sleeping disturbances and aberrant eating habits in families with Asperger syndrome

    Directory of Open Access Journals (Sweden)

    Källman Tiia

    2005-04-01

    Full Text Available Abstract Background The present study was undertaken in order to determine whether a set of clinical features, which are not included in the DSM-IV or ICD-10 for Asperger Syndrome (AS, are associated with AS in particular or whether they are merely a familial trait that is not related to the diagnosis. Methods Ten large families, a total of 138 persons, of whom 58 individuals fulfilled the diagnostic criteria for AS and another 56 did not to fulfill these criteria, were studied using a structured interview focusing on the possible presence of face recognition difficulties, aberrant sensibility and eating habits and sleeping disturbances. Results The prevalence for face recognition difficulties was 46.6% in individuals with AS compared with 10.7% in the control group. The corresponding figures for subjectively reported presence of aberrant sensibilities were 91.4% and 46.6%, for sleeping disturbances 48.3% and 23.2% and for aberrant eating habits 60.3% and 14.3%, respectively. Conclusion An aberrant processing of sensory information appears to be a common feature in AS. The impact of these and other clinical features that are not incorporated in the ICD-10 and DSM-IV on our understanding of AS may hitherto have been underestimated. These associated clinical traits may well be reflected by the behavioural characteristics of these individuals.

  19. Time-resolved magnetic imaging in an aberration-corrected, energy-filtered photoemission electron microscope

    International Nuclear Information System (INIS)

    Nickel, F.; Gottlob, D.M.; Krug, I.P.; Doganay, H.; Cramm, S.; Kaiser, A.M.; Lin, G.; Makarov, D.; Schmidt, O.G.

    2013-01-01

    We report on the implementation and usage of a synchrotron-based time-resolving operation mode in an aberration-corrected, energy-filtered photoemission electron microscope. The setup consists of a new type of sample holder, which enables fast magnetization reversal of the sample by sub-ns pulses of up to 10 mT. Within the sample holder current pulses are generated by a fast avalanche photo diode and transformed into magnetic fields by means of a microstrip line. For more efficient use of the synchrotron time structure, we developed an electrostatic deflection gating mechanism capable of beam blanking within a few nanoseconds. This allows us to operate the setup in the hybrid bunch mode of the storage ring facility, selecting one or several bright singular light pulses which are temporally well-separated from the normal high-intensity multibunch pulse pattern. - Highlights: • A new time-resolving operation mode in photoemission electron microscopy is shown. • Our setup works within an energy-filtered, aberration-corrected PEEM. • A new gating system for bunch selection using synchrotron radiation is developed. • An alternative magnetic excitation system is developed. • First tr-imaging using an energy-filtered, aberration-corrected PEEM is shown

  20. Chromosomal aberrations in subjects exposed to ionizing radiation

    International Nuclear Information System (INIS)

    Jovicic, D.; Milacic, S.; Kovacevic, R.; Tanaskovic, I.

    2006-01-01

    Occupational exposure is particularly delicate because of chronic exposure to low doses of ionizing radiation and its cumulative effect, where it is important to consider the biological response of body to given conditions of exposure. The objective of this study was the observation of the recovery of the DNA damages in subjects working in the radiation area in two different intervals.Group I, consisting of 30 subjects, was exposed to ionizing radiation and unstable chromosomal aberrations were identified. Group II included the same, re-examined subjects (30) 9 months later. It was verified that 5 (16.67%) subjects still had unstable chromosomal aberrations, although they had been excluded from radiation area Controls groups (C) consisted of 64 subjects that were not exposed to mutagenic agents.The comparison of the control group with the two studied groups revealed the reduction of the unstable aberrations (p<0.05). The total effective doses, which increased with the years spent in radiation area, reflected the yield of chromosomal aberrations. The presence of chromosomal aberrations in some subjects, after the exclusion from the ionising radiation exposure, suggests that the time needed for the recovery of the DNA damages is different, which indicates the individual differences in radiosensitivity as well as different of the reparatory cellular response. (author)

  1. Spectral estimation for characterization of acoustic aberration.

    Science.gov (United States)

    Varslot, Trond; Angelsen, Bjørn; Waag, Robert C

    2004-07-01

    Spectral estimation based on acoustic backscatter from a motionless stochastic medium is described for characterization of aberration in ultrasonic imaging. The underlying assumptions for the estimation are: The correlation length of the medium is short compared to the length of the transmitted acoustic pulse, an isoplanatic region of sufficient size exists around the focal point, and the backscatter can be modeled as an ergodic stochastic process. The motivation for this work is ultrasonic imaging with aberration correction. Measurements were performed using a two-dimensional array system with 80 x 80 transducer elements and an element pitch of 0.6 mm. The f number for the measurements was 1.2 and the center frequency was 3.0 MHz with a 53% bandwidth. Relative phase of aberration was extracted from estimated cross spectra using a robust least-mean-square-error method based on an orthogonal expansion of the phase differences of neighboring wave forms as a function of frequency. Estimates of cross-spectrum phase from measurements of random scattering through a tissue-mimicking aberrator have confidence bands approximately +/- 5 degrees wide. Both phase and magnitude are in good agreement with a reference characterization obtained from a point scatterer.

  2. QRS aberration during atrial fibrillation at rest and during exercise. Effect of a selective potassium channel blocking agent

    NARCIS (Netherlands)

    Houltz, B; Darpo, B; Crijns, HJGM; Swedberg, K; Blomstrom, P; Jensen, SM; Svernhage, E; Edvardsson, N

    This study assesses the occurrence of and identifies clinical characteristics associated with the development of aberrant conduction during infusion of the I-kr-blocker almokalant. Class III drugs may induce aberrant conduction by prolongation of cardiac repolarization, especially during atrial

  3. Biodosimetry for medical diagnostic X-ray workers using stable chromosome aberration

    International Nuclear Information System (INIS)

    Wang Zhiquan; Liu Xuping; Li Jin

    1996-01-01

    The stable chromosome aberrations of medical diagnostic X-ray workers were analyzed using G-banding and their accumulative doses were evaluated. The results showed that the frequencies of reciprocal translocation, stable aberration and total aberration among the 4417 metaphase spread from 44 cases of medical diagnostic X-ray workers were distinctly higher than control values (P<0.05∼0.005). The stable aberration predominated strikingly in total aberration and reciprocal translocation was 57% in the stable aberrations. The medical diagnostic X-ray workers were divided into 3 groups according to calendar year of entry. The data showed that the frequencies of total aberration, stable aberration and reciprocal translocation increased with working years, especially in two groups who started working before 1970, there are statistically significant differences between the calendar year of entry before 1960 and 1960∼1969 in X-ray workers and control group. According to the equation recommended by Straume, linear coefficient (α) in linear quadratic model recommended by Schmid and the transformation coefficient by Lucas, the accumulative doses calculated are 0.58, 0.37 and 0.07 Gy for calendar year of entry before 1960, 1960∼1969 and after 1970 in X-ray workers, respectively

  4. Chromosomal aberrations in children exposed to diagnostic x-rays

    International Nuclear Information System (INIS)

    Nordenson, I.; Beckman, G.; Beckman, L.; Lemperg, R.

    1980-01-01

    Among children who have received high x-ray doses congenital dislocation of the hip joint is the predominating diagnosis. In a series of 9 children who had received high x-ray doses (8 with luxation of the hip joint and one with achondroplasia) a significant increase of chromosomal aberrations was found. The increase concerned mainly chromosome type aberrations. The shorter the time since the last x-ray investigation the higher was the frequency of chromosome type aberrations. (author)

  5. Outer brain barriers in rat and human development

    DEFF Research Database (Denmark)

    Brøchner, Christian B; Holst, Camilla Bjørnbak; Møllgård, Kjeld

    2015-01-01

    Complex barriers at the brain's surface, particularly in development, are poorly defined. In the adult, arachnoid blood-cerebrospinal fluid (CSF) barrier separates the fenestrated dural vessels from the CSF by means of a cell layer joined by tight junctions. Outer CSF-brain barrier provides...... diffusion restriction between brain and subarachnoid CSF through an initial radial glial end feet layer covered with a pial surface layer. To further characterize these interfaces we examined embryonic rat brains from E10 to P0 and forebrains from human embryos and fetuses (6-21st weeks post...

  6. Early bilingualism, language attainment, and brain development.

    Science.gov (United States)

    Berken, Jonathan A; Gracco, Vincent L; Klein, Denise

    2017-04-01

    The brain demonstrates a remarkable capacity to undergo structural and functional change in response to experience throughout the lifespan. Evidence suggests that, in many domains of skill acquisition, the manifestation of this neuroplasticity depends on the age at which learning begins. The fact that most skills are acquired late in childhood or in adulthood has proven to be a limitation in studies aimed at determining the relationship between age of acquisition and brain plasticity. Bilingualism, however, provides an optimal model for discerning differences in how the brain wires when a skill is acquired from birth, when the brain circuitry for language is being constructed, versus later in life, when the pathways subserving the first language are already well developed. This review examines some of the existing knowledge about optimal periods in language development, with particular attention to the attainment of native-like phonology. It focuses on the differences in brain structure and function between simultaneous and sequential bilinguals and the compensatory mechanisms employed when bilingualism is achieved later in life, based on evidence from studies using a variety of neuroimaging modalities, including positron emission tomography (PET), task-based and resting-state functional magnetic resonance imaging (fMRI), and structural MRI. The discussion concludes with the presentation of recent neuroimaging studies that explore the concept of nested optimal periods in language development and the different neural paths to language proficiency taken by simultaneous and sequential bilinguals, with extrapolation to general notions of the relationship between age of acquisition and ultimate skill performance. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Study on chromosome aberrations test determinated by micro-whole blood culture in vacuum blood collection tube

    International Nuclear Information System (INIS)

    Zhong Zhihong; Han Fang'an; Ge Qinjuan; Wu Xiao; Chen Juan

    2006-01-01

    Objective: To develop an easier and efficient method of culturing the chromosome and analyzing the aberrations in peripheral lymphocytes. Methods: Micro whole was cultured for 54 hours in home-made vacuum blood collection tube, and then collection, slice-making, microscopy detection for the chromosome aberrations was done. The difference of the results was analysed by comparing with the common method. Results: For 60 radiologists and 30 contrasts, the chromosome aberrations in peripheral lymphocytes were examed by this system, the lymphocytes and chromosome were clear and alive and easier to analyse. Compared with the common method, there was no significantly difference between the two analyzing results. Conclusion: The chromosome aberrations test by micro whole blood culture in vacuum blood collection tube is easier and efficient, and is worthy of being widely popularized. (authors)

  8. Future developments in brain-machine interface research.

    Science.gov (United States)

    Lebedev, Mikhail A; Tate, Andrew J; Hanson, Timothy L; Li, Zheng; O'Doherty, Joseph E; Winans, Jesse A; Ifft, Peter J; Zhuang, Katie Z; Fitzsimmons, Nathan A; Schwarz, David A; Fuller, Andrew M; An, Je Hi; Nicolelis, Miguel A L

    2011-01-01

    Neuroprosthetic devices based on brain-machine interface technology hold promise for the restoration of body mobility in patients suffering from devastating motor deficits caused by brain injury, neurologic diseases and limb loss. During the last decade, considerable progress has been achieved in this multidisciplinary research, mainly in the brain-machine interface that enacts upper-limb functionality. However, a considerable number of problems need to be resolved before fully functional limb neuroprostheses can be built. To move towards developing neuroprosthetic devices for humans, brain-machine interface research has to address a number of issues related to improving the quality of neuronal recordings, achieving stable, long-term performance, and extending the brain-machine interface approach to a broad range of motor and sensory functions. Here, we review the future steps that are part of the strategic plan of the Duke University Center for Neuroengineering, and its partners, the Brazilian National Institute of Brain-Machine Interfaces and the École Polytechnique Fédérale de Lausanne (EPFL) Center for Neuroprosthetics, to bring this new technology to clinical fruition.

  9. Future developments in brain-machine interface research

    Directory of Open Access Journals (Sweden)

    Mikhail A. Lebedev

    2011-01-01

    Full Text Available Neuroprosthetic devices based on brain-machine interface technology hold promise for the restoration of body mobility in patients suffering from devastating motor deficits caused by brain injury, neurologic diseases and limb loss. During the last decade, considerable progress has been achieved in this multidisciplinary research, mainly in the brain-machine interface that enacts upper-limb functionality. However, a considerable number of problems need to be resolved before fully functional limb neuroprostheses can be built. To move towards developing neuroprosthetic devices for humans, brain-machine interface research has to address a number of issues related to improving the quality of neuronal recordings, achieving stable, long-term performance, and extending the brain-machine interface approach to a broad range of motor and sensory functions. Here, we review the future steps that are part of the strategic plan of the Duke University Center for Neuroengineering, and its partners, the Brazilian National Institute of Brain-Machine Interfaces and the École Polytechnique Fédérale de Lausanne (EPFL Center for Neuroprosthetics, to bring this new technology to clinical fruition.

  10. Altered Brain Activity in Unipolar Depression Revisited: Meta-analyses of Neuroimaging Studies.

    Science.gov (United States)

    Müller, Veronika I; Cieslik, Edna C; Serbanescu, Ilinca; Laird, Angela R; Fox, Peter T; Eickhoff, Simon B

    2017-01-01

    During the past 20 years, numerous neuroimaging experiments have investigated aberrant brain activation during cognitive and emotional processing in patients with unipolar depression (UD). The results of those investigations, however, vary considerably; moreover, previous meta-analyses also yielded inconsistent findings. To readdress aberrant brain activation in UD as evidenced by neuroimaging experiments on cognitive and/or emotional processing. Neuroimaging experiments published from January 1, 1997, to October 1, 2015, were identified by a literature search of PubMed, Web of Science, and Google Scholar using different combinations of the terms fMRI (functional magnetic resonance imaging), PET (positron emission tomography), neural, major depression, depression, major depressive disorder, unipolar depression, dysthymia, emotion, emotional, affective, cognitive, task, memory, working memory, inhibition, control, n-back, and Stroop. Neuroimaging experiments (using fMRI or PET) reporting whole-brain results of group comparisons between adults with UD and healthy control individuals as coordinates in a standard anatomic reference space and using an emotional or/and cognitive challenging task were selected. Coordinates reported to show significant activation differences between UD and healthy controls during emotional or cognitive processing were extracted. By using the revised activation likelihood estimation algorithm, different meta-analyses were calculated. Meta-analyses tested for brain regions consistently found to show aberrant brain activation in UD compared with controls. Analyses were calculated across all emotional processing experiments, all cognitive processing experiments, positive emotion processing, negative emotion processing, experiments using emotional face stimuli, experiments with a sex discrimination task, and memory processing. All meta-analyses were calculated across experiments independent of reporting an increase or decrease of activity in

  11. Regional growth and atlasing of the developing human brain.

    Science.gov (United States)

    Makropoulos, Antonios; Aljabar, Paul; Wright, Robert; Hüning, Britta; Merchant, Nazakat; Arichi, Tomoki; Tusor, Nora; Hajnal, Joseph V; Edwards, A David; Counsell, Serena J; Rueckert, Daniel

    2016-01-15

    Detailed morphometric analysis of the neonatal brain is required to characterise brain development and define neuroimaging biomarkers related to impaired brain growth. Accurate automatic segmentation of neonatal brain MRI is a prerequisite to analyse large datasets. We have previously presented an accurate and robust automatic segmentation technique for parcellating the neonatal brain into multiple cortical and subcortical regions. In this study, we further extend our segmentation method to detect cortical sulci and provide a detailed delineation of the cortical ribbon. These detailed segmentations are used to build a 4-dimensional spatio-temporal structural atlas of the brain for 82 cortical and subcortical structures throughout this developmental period. We employ the algorithm to segment an extensive database of 420 MR images of the developing brain, from 27 to 45weeks post-menstrual age at imaging. Regional volumetric and cortical surface measurements are derived and used to investigate brain growth and development during this critical period and to assess the impact of immaturity at birth. Whole brain volume, the absolute volume of all structures studied, cortical curvature and cortical surface area increased with increasing age at scan. Relative volumes of cortical grey matter, cerebellum and cerebrospinal fluid increased with age at scan, while relative volumes of white matter, ventricles, brainstem and basal ganglia and thalami decreased. Preterm infants at term had smaller whole brain volumes, reduced regional white matter and cortical and subcortical grey matter volumes, and reduced cortical surface area compared with term born controls, while ventricular volume was greater in the preterm group. Increasing prematurity at birth was associated with a reduction in total and regional white matter, cortical and subcortical grey matter volume, an increase in ventricular volume, and reduced cortical surface area. Copyright © 2015 The Authors. Published by

  12. In vivo longitudinal chromatic aberration of pseudophakic eyes.

    Science.gov (United States)

    Siedlecki, Damian; Jóźwik, Agnieszka; Zając, Marek; Hill-Bator, Aneta; Turno-Kręcicka, Anna

    2014-02-01

    To present the results of longitudinal chromatic aberration measurements on two groups of pseudophakic eyes in comparison to healthy eyes. The longitudinal chromatic aberration of the eye, defined as chromatic difference of refraction with disabled accommodation, was measured with the use of a visual refractometer with a custom-designed target illuminator consisting of a narrow-band RGB diode (blue λb = 470 ± 15 nm; green λg = 525 ± 18 nm; red λr = 660 ± 10 nm). The measurements were performed on nine eyes implanted with AcrySof IQ SN60WF, 14 eyes implanted with AcrySof SA60AT, and 10 phakic eyes under cycloplegia. The mean values of the longitudinal chromatic aberration between 470 and 660 nm for the control group was 1.12 ± 0.14 D. For SA60AT group, it was 1.45 ± 0.42 D whereas for SN60WF it was 1.17 ± 0.52 D. The statistical test showed significant difference between SA60AT and the control group (p chromatic aberration in vivo can be easily and reliably estimated with an adapted visual refractometer. The two groups of pseudophakic eyes measured in this study showed different values of chromatic aberration. Its magnitude for SA60AT group was significantly larger than for the control group whereas for SN60WF the difference was not significant. The optical material used for intraocular lens design may have significant influence on the magnitude of the chromatic aberration of the pseudophakic eye, and therefore on its optical and visual performance in polychromatic light.

  13. Aberrant Intrinsic Activity and Connectivity in Cognitively Normal Parkinson’s Disease

    Directory of Open Access Journals (Sweden)

    Deborah L. Harrington

    2017-06-01

    pathological, rather than compensatory influence on cognitive abilities tested in this study. Receiver operating curve analyses demonstrated excellent sensitivity (≥90% of rsfMRI variables in distinguishing patients from controls, but poor accuracy for brain volume and cognitive variables. Altogether these results provide new insights into the topology, cognitive relevance, and sensitivity of aberrant intrinsic activity and connectivity that precedes clinically significant cognitive impairment. Longitudinal studies are needed to determine if these neurocognitive associations presage the development of future mild cognitive impairment or dementia.

  14. MicroRNA expression profiling of the porcine developing brain

    DEFF Research Database (Denmark)

    Podolska, Agnieszka; Kaczkowski, Bogumil; Busk, Peter Kamp

    2011-01-01

    MicroRNAs are small, non-coding RNA molecules that regulate gene expression at the post-transcriptional level and play an important role in the control of developmental and physiological processes. In particular, the developing brain contains an impressive diversity of microRNAs. Most micro...... and the growth curve when compared to humans. Considering these similarities, studies examining microRNA expression during porcine brain development could potentially be used to predict the expression profile and role of microRNAs in the human brain....

  15. Cellular origin of prognostic chromosomal aberrations in AML patients

    DEFF Research Database (Denmark)

    Mora-Jensen, H.; Jendholm, J.; Rapin, N.

    2015-01-01

    chromosomal structural rearrangements and single nucleotide variants (SNVs). Conventional AML diagnostics and recent seminal next-generation sequencing (NGS) studies have identified more than 200 recurrent genetic aberrations presenting in various combinations in individual patients. Significantly, many...... of these aberrations occur in normal hematopoietic stem and progenitor cells (HSCs/HPCs) before definitive leukemic transformation through additional acquisition of a few (that is, mostly 1 or 2) leukemia-promoting driver aberrations. NGS studies on sorted bone marrow (BM) populations of AML patients with a normal...

  16. Anesthesia and the developing brain

    DEFF Research Database (Denmark)

    Davidson, Andrew J; Becke, Karin; de Graaff, Jurgen

    2015-01-01

    It is now well established that many general anesthetics have a variety of effects on the developing brain in animal models. In contrast, human cohort studies show mixed evidence for any association between neurobehavioural outcome and anesthesia exposure in early childhood. In spite of large...

  17. Unusual developmental pattern of brain lateralization in young boys with autism spectrum disorder: Power analysis with child-sized magnetoencephalography.

    Science.gov (United States)

    Hiraishi, Hirotoshi; Kikuchi, Mitsuru; Yoshimura, Yuko; Kitagawa, Sachiko; Hasegawa, Chiaki; Munesue, Toshio; Takesaki, Natsumi; Ono, Yasuki; Takahashi, Tsutomu; Suzuki, Michio; Higashida, Haruhiro; Asada, Minoru; Minabe, Yoshio

    2015-03-01

    Autism spectrum disorder (ASD) is often described as comprising an unusual brain growth pattern and aberrant brain lateralization. Although it is important to study the pathophysiology of the developing ASD cortex, examples of physiological brain lateralization in young children with ASD have yet to be well examined. Thirty-eight boys with ASD (aged 3-7 years) and 38 typically developing (TD) boys (aged 3-8 years) concentrated on video programs and their brain activities were measured non-invasively. We employed a customized child-sized magnetoencephalography system in which the sensors were located as close to the brain as possible for optimal recording in young children. To produce a credible laterality index of the brain oscillations, we defined two clusters of sensors corresponding to the right and left hemispheres. We focused on the laterality index ([left - right]/[left+right]) of the relative power band in seven frequency bands. The TD group displayed significantly rightward lateralized brain oscillations in the theta-1 frequency bands compared to the ASD group. This is the first study to demonstrate unusual brain lateralization of brain oscillations measured by magnetoencephalography in young children with ASD. © 2014 The Authors. Psychiatry and Clinical Neurosciences © 2014 Japanese Society of Psychiatry and Neurology.

  18. Higher order aberrations in amblyopic children and their role in refractory amblyopia

    Directory of Open Access Journals (Sweden)

    Arnaldo Dias-Santos

    2014-12-01

    Full Text Available Objective: Some studies have hypothesized that an unfavourable higher order aberrometric profile could act as an amblyogenic mechanism and may be responsible for some amblyopic cases that are refractory to conventional treatment or cases of “idiopathic” amblyopia. This study compared the aberrometric profile in amblyopic children to that of children with normal visual development and compared the aberrometric profile in corrected amblyopic eyes and refractory amblyopic eyes with that of healthy eyes. Methods: Cross-sectional study with three groups of children – the CA group (22 eyes of 11 children with unilateral corrected amblyopia, the RA group (24 eyes of 13 children with unilateral refractory amblyopia and the C group (28 eyes of 14 children with normal visual development. Higher order aberrations were evaluated using an OPD-Scan III (NIDEK. Comparisons of the aberrometric profile were made between these groups as well as between the amblyopic and healthy eyes within the CA and RA groups. Results: Higher order aberrations with greater impact in visual quality were not significantly higher in the CA and RA groups when compared with the C group. Moreover, there were no statistically significant differences in the higher order aberrometric profile between the amblyopic and healthy eyes within the CA and RA groups. Conclusions: Contrary to lower order aberrations (e.g., myopia, hyperopia, primary astigmatism, higher order aberrations do not seem to be involved in the etiopathogenesis of amblyopia. Therefore, these are likely not the cause of most cases of refractory amblyopia.

  19. Neuroimaging biomarkers of preterm brain injury: toward developing the preterm connectome

    Energy Technology Data Exchange (ETDEWEB)

    Panigrahy, Ashok [Children' s Hospital Los Angeles, Department of Radiology, Los Angeles, CA (United States); Children' s Hospital of Pittsburgh of UPMC, Department of Pediatric Radiology, Pittsburgh, PA (United States); Wisnowski, Jessica L. [Children' s Hospital Los Angeles, Department of Radiology, Los Angeles, CA (United States); University of Southern California, Brain and Creativity Institute, Los Angeles, CA (United States); Furtado, Andre [Children' s Hospital of Pittsburgh of UPMC, Department of Pediatric Radiology, Pittsburgh, PA (United States); Lepore, Natasha [Children' s Hospital Los Angeles, Department of Radiology, Los Angeles, CA (United States); Paquette, Lisa [Children' s Hospital Los Angeles, Center for Fetal and Neonatal Medicine, Los Angeles, CA (United States); Bluml, Stefan [Children' s Hospital Los Angeles, Department of Radiology, Los Angeles, CA (United States); University of Southern California, Department of Biomedical Engineering, Los Angeles, CA (United States)

    2012-01-15

    For typically developing infants, the last trimester of fetal development extending into the first post-natal months is a period of rapid brain development. Infants who are born premature face significant risk of brain injury (e.g., intraventricular or germinal matrix hemorrhage and periventricular leukomalacia) from complications in the perinatal period and also potential long-term neurodevelopmental disabilities because these early injuries can interrupt normal brain maturation. Neuroimaging has played an important role in the diagnosis and management of the preterm infant. Both cranial US and conventional MRI techniques are useful in diagnostic and prognostic evaluation of preterm brain development and injury. Cranial US is highly sensitive for intraventricular hemorrhage (IVH) and provides prognostic information regarding cerebral palsy. Data are limited regarding the utility of MRI as a routine screening instrument for brain injury for all preterm infants. However, MRI might provide diagnostic or prognostic information regarding PVL and other types of preterm brain injury in the setting of specific clinical indications and risk factors. Further development of advanced MR techniques like volumetric MR imaging, diffusion tensor imaging, metabolic imaging (MR spectroscopy) and functional connectivity are necessary to provide additional insight into the molecular, cellular and systems processes that underlie brain development and outcome in the preterm infant. The adult concept of the ''connectome'' is also relevant in understanding brain networks that underlie the preterm brain. Knowledge of the preterm connectome will provide a framework for understanding preterm brain function and dysfunction, and potentially even a roadmap for brain plasticity. By combining conventional imaging techniques with more advanced techniques, neuroimaging findings will likely be used not only as diagnostic and prognostic tools, but also as biomarkers for long

  20. Neuroimaging biomarkers of preterm brain injury: toward developing the preterm connectome

    International Nuclear Information System (INIS)

    Panigrahy, Ashok; Wisnowski, Jessica L.; Furtado, Andre; Lepore, Natasha; Paquette, Lisa; Bluml, Stefan

    2012-01-01

    For typically developing infants, the last trimester of fetal development extending into the first post-natal months is a period of rapid brain development. Infants who are born premature face significant risk of brain injury (e.g., intraventricular or germinal matrix hemorrhage and periventricular leukomalacia) from complications in the perinatal period and also potential long-term neurodevelopmental disabilities because these early injuries can interrupt normal brain maturation. Neuroimaging has played an important role in the diagnosis and management of the preterm infant. Both cranial US and conventional MRI techniques are useful in diagnostic and prognostic evaluation of preterm brain development and injury. Cranial US is highly sensitive for intraventricular hemorrhage (IVH) and provides prognostic information regarding cerebral palsy. Data are limited regarding the utility of MRI as a routine screening instrument for brain injury for all preterm infants. However, MRI might provide diagnostic or prognostic information regarding PVL and other types of preterm brain injury in the setting of specific clinical indications and risk factors. Further development of advanced MR techniques like volumetric MR imaging, diffusion tensor imaging, metabolic imaging (MR spectroscopy) and functional connectivity are necessary to provide additional insight into the molecular, cellular and systems processes that underlie brain development and outcome in the preterm infant. The adult concept of the ''connectome'' is also relevant in understanding brain networks that underlie the preterm brain. Knowledge of the preterm connectome will provide a framework for understanding preterm brain function and dysfunction, and potentially even a roadmap for brain plasticity. By combining conventional imaging techniques with more advanced techniques, neuroimaging findings will likely be used not only as diagnostic and prognostic tools, but also as biomarkers for long-term neurodevelopmental

  1. Dimensions of driving anger and their relationships with aberrant driving.

    Science.gov (United States)

    Zhang, Tingru; Chan, Alan H S; Zhang, Wei

    2015-08-01

    The purpose of this study was to investigate the relationship between driving anger and aberrant driving behaviours. An internet-based questionnaire survey was administered to a sample of Chinese drivers, with driving anger measured by a 14-item short Driving Anger Scale (DAS) and the aberrant driving behaviours measured by a 23-item Driver Behaviour Questionnaire (DBQ). The results of Confirmatory Factor Analysis demonstrated that the three-factor model (hostile gesture, arrival-blocking and safety-blocking) of the DAS fitted the driving anger data well. The Exploratory Factor Analysis on DBQ data differentiated four types of aberrant driving, viz. emotional violation, error, deliberate violation and maintaining progress violation. For the anger-aberration relation, it was found that only "arrival-blocking" anger was a significant positive predictor for all four types of aberrant driving behaviours. The "safety-blocking" anger revealed a negative impact on deliberate violations, a finding different from previously established positive anger-aberration relation. These results suggest that drivers with different patterns of driving anger would show different behavioural tendencies and as a result intervention strategies may be differentially effective for drivers of different profiles. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Ocular wavefront aberration and refractive error in pre-school children

    Science.gov (United States)

    Thapa, Damber; Fleck, Andre; Lakshminarayanan, Vasudevan; Bobier, William R.

    2011-11-01

    Hartmann-Shack images taken from an archived collection of SureSight refractive measurements of pre-school children in Oxford County, Ontario, Canada were retrieved and re-analyzed. Higher-order aberrations were calculated over the age range of 3 to 6 years. These higher-order aberrations were compared with respect to magnitudes of ametropia. Subjects were classified as emmetropic (range -0.5 to + 0.5D), low hyperopic (+ 0.5 to +2D) and high hyperopic (+2D or more) based upon the resulting spherical equivalent. Higher-order aberrations were found to increase with higher levels of hyperopia (p < 0.01). The strongest effect was for children showing more than +2.00D of hyperopia. The correlation coefficients were small in all of the higher-order aberrations; however, they were significant (p < 0.01). These analyses indicate a weak association between refractive error and higher-order aberrations in pre-school children.

  3. Prospects for electron beam aberration correction using sculpted phase masks

    Energy Technology Data Exchange (ETDEWEB)

    Shiloh, Roy, E-mail: royshilo@post.tau.ac.il; Remez, Roei; Arie, Ady

    2016-04-15

    Technological advances in fabrication methods allowed the microscopy community to take incremental steps towards perfecting the electron microscope, and magnetic lens design in particular. Still, state of the art aberration-corrected microscopes are yet 20–30 times shy of the theoretical electron diffraction limit. Moreover, these microscopes consume significant physical space and are very expensive. Here, we show how a thin, sculpted membrane is used as a phase-mask to induce specific aberrations into an electron beam probe in a standard high resolution TEM. In particular, we experimentally demonstrate beam splitting, two-fold astigmatism, three-fold astigmatism, and spherical aberration. - Highlights: • Thin membranes can be used as aberration correctors in electron columns. • We demonstrate tilt, twofold-, threefold-astigmatism, and spherical aberrations. • Experimental and physical-optics simulation results are in good agreement. • Advantages in cost, size, nonmagnetism, and nearly-arbitrary correction.

  4. Comparison of wavefront aberrations under cycloplegic, scotopic and photopic conditions using WaveScan

    Directory of Open Access Journals (Sweden)

    Rong Fan

    2012-04-01

    Full Text Available PURPOSE: To evaluate the differences of wavefront aberrations under cycloplegic, scotopic and photopic conditions. METHODS: A total of 174 eyes of 105 patients were measured using the wavefront sensor (WaveScan® 3.62 under different pupil conditions: cycloplegic 8.58 ± 0.54 mm (6.4 mm - 9.5 mm, scotopic 7.53 ± 0.69 mm (5.7 mm - 9.1 mm and photopic 6.08 ± 1.14 mm (4.1 mm - 8.8 mm. The pupil diameter, standard Zernike coefficients, root mean square of higher-order aberrations and dominant aberrations were compared between cycloplegic and scotopic conditions, and between scotopic and photopic conditions. RESULTS: The pupil diameter was 7.53 ± 0.69 mm under the scotopic condition, which reached the requirement of about 6.5 mm optical zone design in the wavefront-guided surgery and prevented measurement error due to the pupil centroid shift caused by mydriatics. Pharmacological pupil dilation induced increase of standard Zernike coefficients Z3-3, Z4(0 and Z5-5. The higher-order aberrations, third-order aberration, fourth-order aberration, fifth-order aberration, sixth-order aberration, and spherical aberration increased statistically significantly, compared to the scotopic condition (P<0.010. When the scotopic condition shifted to the photopic condition, the standard Zernike coefficients Z4(0, Z4², Z6-4, Z6-2, Z6² decreased and all the higher-order aberrations decreased statistically significantly (P<0.010, demonstrating that accommodative miosis can significantly improve vision under the photopic condition. Under the three conditions, the vertical coma aberration appears the most frequently within the dominant aberrations without significant effect by pupil size variance, and the proportion of spherical aberrations decreased with the decrease of the pupil size. CONCLUSIONS: The wavefront aberrations are significantly different under cycloplegic, scotopic and photopic conditions. Using the wavefront sensor (VISX WaveScan to measure scotopic

  5. Aberrant salience, self-concept clarity, and interview-rated psychotic-like experiences.

    Science.gov (United States)

    Cicero, David C; Docherty, Anna R; Becker, Theresa M; Martin, Elizabeth A; Kerns, John G

    2015-02-01

    Many social-cognitive models of psychotic-like symptoms posit a role for self-concept and aberrant salience. Previous work has shown that the interaction between aberrant salience and self-concept clarity is associated with self-reported psychotic-like experiences. In the current research with two structured interviews, the interaction between aberrant salience and self-concept clarity was found to be associated with interview-rated psychotic-like experiences. The interaction was associated with psychotic-like experiences composite scores, delusional ideation, grandiosity, and perceptual anomalies. In all cases, self-concept clarity was negatively associated with psychotic-like experiences at high levels of aberrant salience, but unassociated with psychotic-like experiences at low levels of aberrant salience. The interaction was specific to positive psychotic-like experiences and not present for negative or disorganized ratings. The interaction was not mediated by self-esteem levels. These results provide further evidence that aberrant salience and self-concept clarity play an important role in the generation of psychotic-like experiences.

  6. Researchers Find Essential Brain Circuit in Visual Development

    Science.gov (United States)

    ... 2013 Researchers find essential brain circuit in visual development NIH-funded study could lead to new treatments for amblyopia. The cartoon at left shows the connections from the eyes to the brain in a mouse. The right image shows the binocular zone of the mouse ...

  7. Recurrent branchial sinus tract with aberrant extension.

    Science.gov (United States)

    Barret, J P

    2004-01-01

    Second branchial cysts are the commonest lesions among congenital lateral neck anomalies. Good knowledge of anatomy and embryology are necessary for proper treatment. Surgical treatment involves resection of all branchial remnants, which extend laterally in the neck, medial to the sternocleidomastoid muscle with cranial extension to the pharynx and ipsilateral tonsillar fosa. However, infections and previous surgery can distort anatomy, making the approach to branchial anomalies more difficult. We present a case of a 17-year-old patient who presented with a second branchial tract anomaly with an aberrant extension to the midline and part of the contralateral neck. Previous surgical interventions and chronic infections may have been the primary cause for this aberrant tract. All head and neck surgeons should bear in mind that aberrant presentations may exist when reoperating on chronic branchial cysts fistulas.

  8. Immune responses at brain barriers and implications for brain development and neurological function in later life

    Directory of Open Access Journals (Sweden)

    Helen B. Stolp

    2013-08-01

    Full Text Available For a long time the brain has been considered an immune-privileged site due to a muted inflammatory response and the presence of protective brain barriers. It is now recognised that neuroinflammation may play an important role in almost all neurological disorders and that the brain barriers may be contributing through either normal immune signalling, or disruption of their basic physiological mechanisms. The distinction between normal function and dysfunction at the barriers is difficult to dissect, partly due to a lack of understanding of normal barrier function and partly because of physiological changes that occur as part of normal development and ageing. Brain barriers consist of a number of interacting structural and physiological elements including tight junctions between adjacent barrier cells and an array of influx and efflux transporters. Despite these protective mechanisms, the capacity for immune-surveillance of the brain is maintained, and there is evidence of inflammatory signalling at the brain barriers that may be an important part of the body’s response to damage or infection. This signalling system appears to change both with normal ageing, and during disease. Changes may affect diapedesis of immune cells and active molecular transfer, or cause rearrangement of the tight junctions and an increase in passive permeability across barrier interfaces. Here we review the many elements that contribute to brain barrier functions and how they respond to inflammation, particularly during development and aging. The implications of inflammation–induced barrier dysfunction for brain development and subsequent neurological function are also discussed.

  9. The influence of puberty on subcortical brain development.

    Science.gov (United States)

    Goddings, Anne-Lise; Mills, Kathryn L; Clasen, Liv S; Giedd, Jay N; Viner, Russell M; Blakemore, Sarah-Jayne

    2014-03-01

    Puberty is characterized by hormonal, physical and psychological transformation. The human brain undergoes significant changes between childhood and adulthood, but little is known about how puberty influences its structural development. Using a longitudinal sample of 711 magnetic resonance imaging scans from 275 individuals aged 7-20years, we examined how subcortical brain regions change in relation to puberty. Our regions of interest included the amygdala, hippocampus and corpus striatum including the nucleus accumbens (NA), caudate, putamen and globus pallidus (GP). Pubertal development was significantly related to structural volume in all six regions in both sexes. Pubertal development and age had both independent and interactive influences on volume for the amygdala, hippocampus and putamen in both sexes, and the caudate in females. There was an interactive puberty-by-age effect on volume for the NA and GP in both sexes, and the caudate in males. These findings suggest a significant role for puberty in structural brain development. © 2013. Published by Elsevier Inc. All rights reserved.

  10. MRI Evaluation and Safety in the Developing Brain

    Science.gov (United States)

    Tocchio, Shannon; Kline-Fath, Beth; Kanal, Emanuel; Schmithorst, Vincent J.; Panigrahy, Ashok

    2015-01-01

    Magnetic resonance imaging (MRI) evaluation of the developing brain has dramatically increased over the last decade. Faster acquisitions and the development of advanced MRI sequences such as magnetic resonance spectroscopy (MRS), diffusion tensor imaging (DTI), perfusion imaging, functional MR imaging (fMRI), and susceptibility weighted imaging (SWI), as well as the use of higher magnetic field strengths has made MRI an invaluable tool for detailed evaluation of the developing brain. This article will provide an overview of the use and challenges associated with 1.5T and 3T static magnetic fields for evaluation of the developing brain. This review will also summarize the advantages, clinical challenges and safety concerns specifically related to MRI in the fetus and newborn, including the implications of increased magnetic field strength, logistics related to transporting and monitoring of neonates during scanning, sedation considerations and a discussion of current technologies such as MRI-conditional neonatal incubators and dedicated small-foot print neonatal intensive care unit (NICU) scanners. PMID:25743582

  11. Study of radiation-induced chromosomal aberrations

    International Nuclear Information System (INIS)

    Wolfring, E.

    2004-06-01

    A method for determining chromosomal aberrations was established for the purpose of examining the relative biological effectiveness (RBE) of photon radiation with respect to mammary epithelium cells. Cells were exposed to 25 kV X-radiation and to 200 kV X-radiation for comparison and the resulting concentrations of chromosomal aberrations were compared. The RBE M value for radiation-induced fragmentation was found to be 4.2 ± 2.4, while the RBE M value for radiation-induced generation of dicentric chromosomes was found to be 0.5 ± 0.5. In addition to the evaluation of chromosomal aberrations the number of cell cycles undergone by the cells was monitored by means of BrDU staining. As expected, the proportion of cells which underwent more than one cell cycle following exposure to 5 Gy was very low in both cases, amounting to 1.9% (25 kV) and 3.2 (200 kV). Non-radiated cells yielded control values of 26.0% and 12.6%, suggesting variations in external conditions from day to day

  12. Design and analysis of beam separator magnets for third generation aberration compensated PEEMs

    International Nuclear Information System (INIS)

    Wu, Y.K.; Robin, D.S.; Forest, E.; Schlueter, R.; Anders, S.; Feng, J.; Padmore, H.; Wei, D.H.

    2004-01-01

    A state of the art X-ray photoemission electron microscope (PEEM2) is operational at the Advanced Light Source at a resolution of typically 50 nm for a range of chemical and magnetic surface studies. A new microscope, PEEM3, is under development with an aim of achieving a resolution of 5 nm and more than an order of magnitude increase in transmission at the nominal resolution of PEEM2. The resolution and flux improvement is realized by providing geometric and chromatic aberration compensations in the system using an electron mirror and a beam separator magnet. The nearly aberration-free design of the beam separator is critical to the performance of third generation PEEMs. In this paper, we present the optics design model, optimal operation parameters, analyses of aberration impact, as well as the mechanical alignment tolerance for PEEM3 separator prototypes. In particular, we emphasize the importance of a new semi-analytical approach to design complex charged particle optics using the truncated power series algebra. Because of its ability to compute high-order aberrations, this approach allows systematic and comprehensive analyses of any charged particle optics systems with analytical electric and magnetic fields

  13. Theoretical estimates of spherical and chromatic aberration in photoemission electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Fitzgerald, J.P.S., E-mail: fit@pdx.edu; Word, R.C.; Könenkamp, R.

    2016-01-15

    We present theoretical estimates of the mean coefficients of spherical and chromatic aberration for low energy photoemission electron microscopy (PEEM). Using simple analytic models, we find that the aberration coefficients depend primarily on the difference between the photon energy and the photoemission threshold, as expected. However, the shape of the photoelectron spectral distribution impacts the coefficients by up to 30%. These estimates should allow more precise correction of aberration in PEEM in experimental situations where the aberration coefficients and precise electron energy distribution cannot be readily measured. - Highlights: • Spherical and chromatic aberration coefficients of the accelerating field in PEEM. • Compact, analytic expressions for coefficients depending on two emission parameters. • Effect of an aperture stop on the distribution is also considered.

  14. Effects of residual aberrations explored on single-walled carbon nanotubes

    International Nuclear Information System (INIS)

    Biskupek, Johannes; Hartel, Peter; Haider, Maximilian; Kaiser, Ute

    2012-01-01

    The effects of geometric residual aberrations such as coma B 2 and two-fold astigmatism A 1 on the contrast in aberration corrected high resolution transmission electron microscopy (HRTEM) images are investigated on single-walled carbon nanotubes (SWNT). The individual aberrations are adjusted and set up manually using an imaging C S -corrector. We demonstrate how coma B 2 can be recognized by an experienced user directly in the image and how it blurs the contrast. Even with uncorrected (resolution limiting) spherical aberration C S the coma B 2 has to be considered and must be minimized. Limits for a tolerable coma are given. The experiments are confirmed by image simulations. -- Highlights: ► Individual effects of residual aberrations such as B 2 , A 1 , and C S are demonstrated. ► Experimental HRTEM and simulated images of carbon nanotubes are compared. ► A detection limit of 50 nm B 2 in a single HRTEM image is determined.

  15. Correlation between Post-LASIK Starburst Symptom and Ocular Wavefront Aberrations

    Science.gov (United States)

    Liu, Yong-Ji; Mu, Guo-Guang; Wang, Zhao-Qi; Wang-Yan

    2006-06-01

    Monochromatic aberrations in post laser in-situ keratomileusis (LASIK) eyes are measured. The data are categorized into reference group and starburst group according to the visual symptoms. Statistic analysis has been made to find the correlation between the ocular wavefront aberrations and the starburst symptom. The rms aberrations of the 3rd and 4th orders for the starburst group are significantly larger than those for the reference group. The starburst symptom shows a strong correlation with vertical coma, total coma, spherical aberrations. For 3-mm pupil size and 5.8-mm pupil size, the modulation transfer function (MTF) of the starburst group are lower than those of the reference group, but their visual acuities are close. MTF and PSF analyses are made for two groups, and the results are consistent with the statistical analysis, which means the difference between the two groups is mainly due to the third- and fourth-order Zernike aberrations.

  16. Right Brain/Left Brain President Barack Obama's Uncommon Leadership Ability and How We Can Each Develop It

    CERN Document Server

    Decosterd, Mary Lou

    2010-01-01

    Right Brain/Left Brain President: Barack Obama's Uncommon Leadership Ability and How We Can Each Develop It is an inspirational guide to leadership as it should be practiced, conveyed through an up-close look at the man who sets the new leadership bar. Author Mary Lou D'costerd uses her Right Brain/Left Brain Leadership Model to frame Barack Obama's leadership skill sets. Her book shows that Obama's unique brand of leadership is the result of his extraordinary ability to leverage full-brain potential in the ways he thinks, decides, and acts. ||Right Brain/Left Brain President examines Obama's

  17. Split-plot fractional designs: Is minimum aberration enough?

    DEFF Research Database (Denmark)

    Kulahci, Murat; Ramirez, Jose; Tobias, Randy

    2006-01-01

    Split-plot experiments are commonly used in industry for product and process improvement. Recent articles on designing split-plot experiments concentrate on minimum aberration as the design criterion. Minimum aberration has been criticized as a design criterion for completely randomized fractional...... factorial design and alternative criteria, such as the maximum number of clear two-factor interactions, are suggested (Wu and Hamada (2000)). The need for alternatives to minimum aberration is even more acute for split-plot designs. In a standard split-plot design, there are several types of two...... for completely randomized designs. Consequently, we provide a modified version of the maximum number of clear two-factor interactions design criterion to be used for split-plot designs....

  18. Biological dosimetry: chromosomal aberration analysis for dose assessment

    International Nuclear Information System (INIS)

    1986-01-01

    In view of the growing importance of chromosomal aberration analysis as a biological dosimeter, the present report provides a concise summary of the scientific background of the subject and a comprehensive source of information at the technical level. After a review of the basic principles of radiation dosimetry and radiation biology basic information on the biology of lymphocytes, the structure of chromosomes and the classification of chromosomal aberrations are presented. This is followed by a presentation of techniques for collecting blood, storing, transporting, culturing, making chromosomal preparations and scaring of aberrations. The physical and statistical parameters involved in dose assessment are discussed and examples of actual dose assessments taken from the scientific literature are given

  19. Stress Sensitivity, Aberrant Salience, and Threat Anticipation in Early Psychosis: An Experience Sampling Study

    Science.gov (United States)

    Reininghaus, Ulrich; Kempton, Matthew J.; Valmaggia, Lucia; Craig, Tom K. J.; Garety, Philippa; Onyejiaka, Adanna; Gayer-Anderson, Charlotte; So, Suzanne H.; Hubbard, Kathryn; Beards, Stephanie; Dazzan, Paola; Pariante, Carmine; Mondelli, Valeria; Fisher, Helen L.; Mills, John G.; Viechtbauer, Wolfgang; McGuire, Philip; van Os, Jim; Murray, Robin M.; Wykes, Til; Myin-Germeys, Inez; Morgan, Craig

    2016-01-01

    While contemporary models of psychosis have proposed a number of putative psychological mechanisms, how these impact on individuals to increase intensity of psychotic experiences in real life, outside the research laboratory, remains unclear. We aimed to investigate whether elevated stress sensitivity, experiences of aberrant novelty and salience, and enhanced anticipation of threat contribute to the development of psychotic experiences in daily life. We used the experience sampling method (ESM) to assess stress, negative affect, aberrant salience, threat anticipation, and psychotic experiences in 51 individuals with first-episode psychosis (FEP), 46 individuals with an at-risk mental state (ARMS) for psychosis, and 53 controls with no personal or family history of psychosis. Linear mixed models were used to account for the multilevel structure of ESM data. In all 3 groups, elevated stress sensitivity, aberrant salience, and enhanced threat anticipation were associated with an increased intensity of psychotic experiences. However, elevated sensitivity to minor stressful events (χ2 = 6.3, P = 0.044), activities (χ2 = 6.7, P = 0.036), and areas (χ2 = 9.4, P = 0.009) and enhanced threat anticipation (χ2 = 9.3, P = 0.009) were associated with more intense psychotic experiences in FEP individuals than controls. Sensitivity to outsider status (χ2 = 5.7, P = 0.058) and aberrantly salient experiences (χ2 = 12.3, P = 0.002) were more strongly associated with psychotic experiences in ARMS individuals than controls. Our findings suggest that stress sensitivity, aberrant salience, and threat anticipation are important psychological processes in the development of psychotic experiences in daily life in the early stages of the disorder. PMID:26834027

  20. Cross Talk Between Brain Innate Immunity and Serotonin Signaling Underlies Depressive-Like Behavior Induced by Alzheimer's Amyloid-β Oligomers in Mice.

    Science.gov (United States)

    Ledo, Jose Henrique; Azevedo, Estefania P; Beckman, Danielle; Ribeiro, Felipe C; Santos, Luis E; Razolli, Daniela S; Kincheski, Grasielle C; Melo, Helen M; Bellio, Maria; Teixeira, Antonio L; Velloso, Licio A; Foguel, Debora; De Felice, Fernanda G; Ferreira, Sergio T

    2016-11-30

    Considerable clinical and epidemiological evidence links Alzheimer's disease (AD) and depression. However, the molecular mechanisms underlying this connection are largely unknown. We reported recently that soluble Aβ oligomers (AβOs), toxins that accumulate in AD brains and are thought to instigate synapse damage and memory loss, induce depressive-like behavior in mice. Here, we report that the mechanism underlying this action involves AβO-induced microglial activation, aberrant TNF-α signaling, and decreased brain serotonin levels. Inactivation or ablation of microglia blocked the increase in brain TNF-α and abolished depressive-like behavior induced by AβOs. Significantly, we identified serotonin as a negative regulator of microglial activation. Finally, AβOs failed to induce depressive-like behavior in Toll-like receptor 4-deficient mice and in mice harboring a nonfunctional TLR4 variant in myeloid cells. Results establish that AβOs trigger depressive-like behavior via a double impact on brain serotonin levels and microglial activation, unveiling a cross talk between brain innate immunity and serotonergic signaling as a key player in mood alterations in AD. Alzheimer's disease (AD) is a progressive neurodegenerative disorder and the main cause of dementia in the world. Brain accumulation of amyloid-β oligomers (AβOs) is a major feature in the pathogenesis of AD. Although clinical and epidemiological data suggest a strong connection between AD and depression, the underlying mechanisms linking these two disorders remain largely unknown. Here, we report that aberrant activation of the brain innate immunity and decreased serotonergic tonus in the brain are key players in AβO-induced depressive-like behavior in mice. Our findings may open up new possibilities for the development of effective therapeutics for AD and depression aimed at modulating microglial function. Copyright © 2016 the authors 0270-6474/16/3612106-11$15.00/0.

  1. The human brain. Prenatal development and structure

    International Nuclear Information System (INIS)

    Marin-Padilla, Miguel

    2011-01-01

    This book is unique among the current literature in that it systematically documents the prenatal structural development of the human brain. It is based on lifelong study using essentially a single staining procedure, the classic rapid Golgi procedure, which ensures an unusual and desirable uniformity in the observations. The book is amply illustrated with 81 large, high-quality color photomicrographs never previously reproduced. These photomicrographs, obtained at 6, 7, 11, 15, 18, 20, 25, 30, 35, and 40 weeks of gestation, offer a fascinating insight into the sequential prenatal development of neurons, blood vessels, and glia in the human brain. (orig.)

  2. The human brain. Prenatal development and structure

    Energy Technology Data Exchange (ETDEWEB)

    Marin-Padilla, Miguel

    2011-07-01

    This book is unique among the current literature in that it systematically documents the prenatal structural development of the human brain. It is based on lifelong study using essentially a single staining procedure, the classic rapid Golgi procedure, which ensures an unusual and desirable uniformity in the observations. The book is amply illustrated with 81 large, high-quality color photomicrographs never previously reproduced. These photomicrographs, obtained at 6, 7, 11, 15, 18, 20, 25, 30, 35, and 40 weeks of gestation, offer a fascinating insight into the sequential prenatal development of neurons, blood vessels, and glia in the human brain. (orig.)

  3. Differential algebraic method for arbitrary order curvilinear-axis combined geometric-chromatic aberration analysis

    International Nuclear Information System (INIS)

    Cheng Min; Tang Tiantong; Lu Yilong; Yao Zhenhua

    2003-01-01

    The principle of differential algebra is applied to analyse and calculate arbitrary order curvilinear-axis combined geometric-chromatic aberrations of electron optical systems. Expressions of differential algebraic form of high order combined aberrations are obtained and arbitrary order combined aberrations can be calculated numerically. As an example, a typical wide electron beam focusing system with curved optical axes named magnetic immersion lens has been studied. All the second-order and third-order combined geometric-chromatic aberrations of the lens have been calculated, and the patterns of the corresponding geometric aberrations and combined aberrations have been given as well

  4. Population spherical aberration: associations with ametropia, age, corneal curvature, and image quality

    Directory of Open Access Journals (Sweden)

    Kingston AC

    2013-05-01

    Full Text Available Amanda C Kingston,1,2 Ian G Cox11Bausch + Lomb, Rochester, NY, USA; 2Department of Biomedical Engineering, University of Rochester, Rochester, NY, USAPurpose: The aim of this analysis was to determine the total ocular wavefront aberration values of a large phakic population of physiologically normal, ametropic eyes, gathered under the same clinical protocol using the same diagnostic wavefront sensor.Materials and methods: Studies were conducted at multiple sites in Asia, North America, Europe, and Australia. A Bausch + Lomb Zywave II Wavefront Aberrometer (Rochester, NY, USA was used to measure the lower and higher order aberrations of each eye. Data analysis was conducted using linear regression analysis to determine the relationship between total spherical aberration, ametropia, age, corneal curvature, and image quality.Results: Linear regression analysis showed no correlation (r = 0.0207, P = 0.4874 between degree of ametropia and the amount of spherical aberration. There was also no correlation when the population was stratified into myopic and hyperopic refractive groups (rm = 0.0529, Pm = 0.0804 and rh = 0.1572, Ph = 0.2754. There was a statistically significant and weak positive correlation (r = 0.1962, P < 0.001 between age and the amount of spherical aberration measured in the eye; spherical aberration became more positive with increasing age. Also, there was a statistically significant and moderately positive correlation (r = 0.3611, P < 0.001 with steepness of corneal curvature; spherical aberration became more positive with increasing power of the anterior corneal surface. Assessment of image quality using optical design software (Zemax™, Bellevue, WA, USA showed that there was an overall benefit in correcting the average spherical aberration of this population.Conclusion: Analysis of this dataset provides insights into the inherent spherical aberration of a typical phakic, pre-presbyopic, population and provides the ability to

  5. An automatic system to search, acquire, and analyse chromosomal aberrations obtained using FISH technique

    International Nuclear Information System (INIS)

    Esposito, R.D.

    2003-01-01

    Full text: Chromosomal aberrations (CA) analysis in peripheral blood lymphocytes is useful both in prenatal diagnoses and cancer cytogenetics, as well as in toxicology to determine the biologically significant dose of specific, both physical and chemical, genotoxic agents to which an individual is exposed. A useful cytogenetic technique for CAs analysis is Fluorescence-in-situ-Hybridization (FISH) which simplifies the automatic Identification and characterisation of aberrations, allowing the visualisation of chromosomes as bright signals on a dark background, and a fast analysis of stable aberrations, which are particularly interesting for late effects. The main limitation of CA analysis is the rarity with which these events occur, and therefore the time necessary to single out a statistically significant number of aberrant cells. In order to address this problem, a prototype system, capable of automatically searching, acquiring, and recognising chromosomal images of samples prepared using FISH, has been developed. The system is able to score large number of samples in a reasonable time using predefined search criteria. The system is based on the appropriately implemented and characterised automatic metaphase finder Metafer4 (MetaSystems), coupled with a specific module for the acquisition of high magnification metaphase images with any combination of fluorescence filters. These images are then analysed and classified using our software. The prototype is currently capable of separating normal metaphase images from presumed aberrant ones. This system is currently in use in our laboratories both by ourselves and by other researchers not involved in its development, in order to carry out analyses of CAs induced by ionising radiation. The prototype allows simple acquisition and management of large quantities of images and makes it possible to carry out methodological studies -such as the comparison of results obtained by different operators- as well as increasing the

  6. Developmental thyroid hormone insufficiency and brain development: A role for brain-derived neurotrophic factor (BDNF)?*

    Science.gov (United States)

    Thyroid hormones (TH) are essential for normal brain development. Even subclinical hypothyroidism experienced in utero can result in neuropsychological deficits in children despite normal thyroid status at birth. Neurotrophins have been implicated in a host of brain cellular func...

  7. Fifth-order aberrations in magnetic quadrupole-octupole systems

    International Nuclear Information System (INIS)

    Ling, K.M.

    1990-01-01

    Explicit integral expressions are given for the fifth-order geometrical aberration coefficients in rectilinear magnetic quadrupole-octupole systems used for the transport of nonrelativistic charged particle beams. The numerical values of the fifth-order geometrical aberration coefficients for a rare earth cobalt (REC) quadrupole doublet are given as an example. 26 refs., 5 figs., 4 tabs

  8. Poverty and Brain Development in Children: Implications for Learning

    Science.gov (United States)

    Dike, Victor E.

    2017-01-01

    Debates on the effect of poverty on brain development in children and its implications for learning have been raging for decades. Research suggests that poverty affects brain development in children and that the implications for learning are more compelling today given the attention the issue has attracted. For instance, studies in the fields of…

  9. Genome wide identification of aberrant alternative splicing events in myotonic dystrophy type 2.

    Science.gov (United States)

    Perfetti, Alessandra; Greco, Simona; Fasanaro, Pasquale; Bugiardini, Enrico; Cardani, Rosanna; Garcia-Manteiga, Jose M; Manteiga, Jose M Garcia; Riba, Michela; Cittaro, Davide; Stupka, Elia; Meola, Giovanni; Martelli, Fabio

    2014-01-01

    Myotonic dystrophy type 2 (DM2) is a genetic, autosomal dominant disease due to expansion of tetraplet (CCTG) repetitions in the first intron of the ZNF9/CNBP gene. DM2 is a multisystemic disorder affecting the skeletal muscle, the heart, the eye and the endocrine system. According to the proposed pathological mechanism, the expanded tetraplets have an RNA toxic effect, disrupting the splicing of many mRNAs. Thus, the identification of aberrantly spliced transcripts is instrumental for our understanding of the molecular mechanisms underpinning the disease. The aim of this study was the identification of new aberrant alternative splicing events in DM2 patients. By genome wide analysis of 10 DM2 patients and 10 controls (CTR), we identified 273 alternative spliced exons in 218 genes. While many aberrant splicing events were already identified in the past, most were new. A subset of these events was validated by qPCR assays in 19 DM2 and 15 CTR subjects. To gain insight into the molecular pathways involving the identified aberrantly spliced genes, we performed a bioinformatics analysis with Ingenuity system. This analysis indicated a deregulation of development, cell survival, metabolism, calcium signaling and contractility. In conclusion, our genome wide analysis provided a database of aberrant splicing events in the skeletal muscle of DM2 patients. The affected genes are involved in numerous pathways and networks important for muscle physio-pathology, suggesting that the identified variants may contribute to DM2 pathogenesis.

  10. Aberrant DNA Methylation in Chronic Myeloid Leukemia: Cell Fate Control, Prognosis, and Therapeutic Response.

    Science.gov (United States)

    Behzad, Masumeh Maleki; Shahrabi, Saeid; Jaseb, Kaveh; Bertacchini, Jessika; Ketabchi, Neda; Saki, Najmaldin

    2018-01-31

    Chronic myeloid leukemia (CML) is a hematopoietic stem cell malignancy characterized by the expression of the BCR-ABL1 fusion gene with different chimeric transcripts. Despite the crucial impact of constitutively active tyrosine kinase in CML pathogenesis, aberrant DNA methylation of certain genes plays an important role in disease progression and the development of drug resistance. This article reviews recent findings relevant to the effect of DNA methylation pattern of regulatory genes on various cellular activities such as cell proliferation and survival, as well as cell-signaling molecules in CML. These data might contribute to defining the role of aberrant DNA methylation in disease initiation and progression. However, further studies are needed on the validation of specific aberrant methylation markers regarding the prognosis and prediction of response among the CML patients.

  11. Development of the Young Brain

    Medline Plus

    Full Text Available ... Training (1 item) Other Treatments (15 items) Alzheimer’s Disease (2 items) Coping with Traumatic Events (3 items) Institute Announcements (24 items) Development of the Young Brain May 2, 2011 For more than twenty years, National Institute of Mental Health neuroscientist Dr. Jay Giedd has studied the ...

  12. Lethality of radiation-induced chromosome aberrations in human tumour cell lines with different radiosensitivities.

    Science.gov (United States)

    Coco-Martin, J M; Ottenheim, C P; Bartelink, H; Begg, A C

    1996-03-01

    In order to find an explanation for the eventual disappearance of all chromosome aberrations in two radiosensitive human tumour cell lines, the type and stability of different aberration types was investigated in more detail. To classify the aberrations into unstable and stable types, three-colour fluorescence in situ hybridization was performed, including a whole-chromosome probe, a pancentromere probe, and a stain for total DNA. This technique enables the appropriate classification of the aberrations principally by the presence (stable) or not (unstable) of a single centromere per chromosome. Unstable-type aberrations were found to disappear within 7 days (several divisions) in the two radiosensitive and the two radioresistant tumour lines investigated. Stable-type aberrations were found to remain at an approximately constant level over the duration of the experiment (14 days; 8-10 divisions) in the two radioresistant lines. In contrast, the majority of these stable-type aberrations had disappeared by 14 days in the two radiosensitive lines. The previous findings of disappearance of total aberrations in radiosensitive cells was therefore not due to a reduced induction of stable-type aberrations, but the complete disappearance of cells with this aberration type. These results could not be explained by differences in apoptosis or G1 blocks. Two possible explanations for these unexpected findings involve non-random induction of unstable-type aberrations, or lethality of stable-type aberrations. The results suggest caution in the use of stable-type aberration numbers as a predictor for radiosensitivity.

  13. Influence of coma aberration on aperture averaged scintillations in oceanic turbulence

    Science.gov (United States)

    Luo, Yujuan; Ji, Xiaoling; Yu, Hong

    2018-01-01

    The influence of coma aberration on aperture averaged scintillations in oceanic turbulence is studied in detail by using the numerical simulation method. In general, in weak oceanic turbulence, the aperture averaged scintillation can be effectively suppressed by means of the coma aberration, and the aperture averaged scintillation decreases as the coma aberration coefficient increases. However, in moderate and strong oceanic turbulence the influence of coma aberration on aperture averaged scintillations can be ignored. In addition, the aperture averaged scintillation dominated by salinity-induced turbulence is larger than that dominated by temperature-induced turbulence. In particular, it is shown that for coma-aberrated Gaussian beams, the behavior of aperture averaged scintillation index is quite different from the behavior of point scintillation index, and the aperture averaged scintillation index is more suitable for characterizing scintillations in practice.

  14. Adolescent brain development and the mature minor doctrine.

    Science.gov (United States)

    Silber, Tomas J

    2011-08-01

    The medical rights of minors have been questioned, especially due to information on adolescent brain development and studies on adolescent decision-making. This chapter briefly introduces the mature minor doctrine (MMD) and its history, justification, and practice and then presents some of the objections to the MMD. The article then highlights new knowledge about adolescent brain development (ABD) and what this may contribute to this debate and describes "hot cognition" and "cold cognition". It concludes by alerting the reader to the danger of making inappropriate use of the discoveries of brain science and proposing a prudent approach to adolescent consent and confidentiality, one that incorporates the new knowledge on ABD without "turning back the clock" on the medical rights of minors.

  15. Supporting Parents with Two Essential Understandings: Attachment and Brain Development.

    Science.gov (United States)

    Berger, Eugenia Hepworth

    1999-01-01

    Readiness to learn is a constant state. Two critical aspects of early childhood provide parents sufficient understanding of their child's development: attachment and brain development. Children develop attachments to caregivers but need consistent parental care and love. Human brains continue to quickly grow during the first two years of life.…

  16. A Culture-Behavior-Brain Loop Model of Human Development.

    Science.gov (United States)

    Han, Shihui; Ma, Yina

    2015-11-01

    Increasing evidence suggests that cultural influences on brain activity are associated with multiple cognitive and affective processes. These findings prompt an integrative framework to account for dynamic interactions between culture, behavior, and the brain. We put forward a culture-behavior-brain (CBB) loop model of human development that proposes that culture shapes the brain by contextualizing behavior, and the brain fits and modifies culture via behavioral influences. Genes provide a fundamental basis for, and interact with, the CBB loop at both individual and population levels. The CBB loop model advances our understanding of the dynamic relationships between culture, behavior, and the brain, which are crucial for human phylogeny and ontogeny. Future brain changes due to cultural influences are discussed based on the CBB loop model. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Effects of Psychostimulant Drugs on Developing Brain

    Directory of Open Access Journals (Sweden)

    Ibrahim Durukan

    2013-08-01

    Full Text Available Although psychostimulants have been used for the treatment of attention deficit hyperactivity disorder for approximately 70 years, little is known about the long term effects of these drugs on developing brain. The observable effects of psychostimulants are influenced by the timing of exposure, the age of examination after drug exposure and sex. Preclinical studies point out that chronic psychostimulant exposure before adolescence cause reverse sensitization or tolerance and this leads to reduction in stimulant effectiveness in adolesecence and adulthood. Preclinical studies show the potential long term effects of psychostimulants. But it is necessary to investigate the relationship between preclinical effects and clinical practice. A developmental approach is needed to understand the impact of pediatric medications on the brain that includes assessment at multiple ages to completely characterize the long term effects of these medications. The aim of this paper is to review the effects of psychostimulants on developing brain.

  18. A common brain network links development, aging, and vulnerability to disease.

    Science.gov (United States)

    Douaud, Gwenaëlle; Groves, Adrian R; Tamnes, Christian K; Westlye, Lars Tjelta; Duff, Eugene P; Engvig, Andreas; Walhovd, Kristine B; James, Anthony; Gass, Achim; Monsch, Andreas U; Matthews, Paul M; Fjell, Anders M; Smith, Stephen M; Johansen-Berg, Heidi

    2014-12-09

    Several theories link processes of development and aging in humans. In neuroscience, one model posits for instance that healthy age-related brain degeneration mirrors development, with the areas of the brain thought to develop later also degenerating earlier. However, intrinsic evidence for such a link between healthy aging and development in brain structure remains elusive. Here, we show that a data-driven analysis of brain structural variation across 484 healthy participants (8-85 y) reveals a largely--but not only--transmodal network whose lifespan pattern of age-related change intrinsically supports this model of mirroring development and aging. We further demonstrate that this network of brain regions, which develops relatively late during adolescence and shows accelerated degeneration in old age compared with the rest of the brain, characterizes areas of heightened vulnerability to unhealthy developmental and aging processes, as exemplified by schizophrenia and Alzheimer's disease, respectively. Specifically, this network, while derived solely from healthy subjects, spatially recapitulates the pattern of brain abnormalities observed in both schizophrenia and Alzheimer's disease. This network is further associated in our large-scale healthy population with intellectual ability and episodic memory, whose impairment contributes to key symptoms of schizophrenia and Alzheimer's disease. Taken together, our results suggest that the common spatial pattern of abnormalities observed in these two disorders, which emerge at opposite ends of the life spectrum, might be influenced by the timing of their separate and distinct pathological processes in disrupting healthy cerebral development and aging, respectively.

  19. We have got you 'covered': how the meninges control brain development.

    Science.gov (United States)

    Siegenthaler, Julie A; Pleasure, Samuel J

    2011-06-01

    The meninges have traditionally been viewed as specialized membranes surrounding and protecting the adult brain from injury. However, there is increasing evidence that the fetal meninges play important roles during brain development. Through the release of diffusible factors, the meninges influence the proliferative and migratory behaviors of neural progenitors and neurons in the forebrain and hindbrain. Meningeal cells also secrete and organize the pial basement membrane (BM), a critical anchor point for the radially oriented fibers of neuroepithelial stem cells. With its emerging role in brain development, the potential that defects in meningeal development may underlie certain congenital brain abnormalities in humans should be considered. In this review, we will discuss what is known about assembly of the fetal meninges and review the role of meningeal-derived proteins in mouse and human brain development. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. Thyroid hormones and fetal brain development.

    Science.gov (United States)

    Pemberton, H N; Franklyn, J A; Kilby, M D

    2005-08-01

    Thyroid hormones are intricately involved in the developing fetal brain. The fetal central nervous system is sensitive to the maternal thyroid status. Critical amounts of maternal T3 and T4 must be transported across the placenta to the fetus to ensure the correct development of the brain throughout ontogeny. Severe mental retardation of the child can occur due to compromised iodine intake or thyroid disease. This has been reported in areas of the world with iodine insufficiency, New Guinea, and also in mother with thyroid complications such as hypothyroxinaemia and hyperthyroidism. The molecular control of thyroid hormones by deiodinases for the activation of thyroid hormones is critical to ensure the correct amount of active thyroid hormones are temporally supplied to the fetus. These hormones provide timing signals for the induction of programmes for differentiation and maturation at specific stages of development. Understanding these molecular mechanisms further will have profound implications in the clinical management of individuals affected by abnormal maternal of fetal thyroid status.

  1. Screening for aberrant behavior in the nuclear industry

    International Nuclear Information System (INIS)

    Borofsky, G.L.

    1987-01-01

    This paper attempts to promote a fuller understanding of how psychological assessment procedures can be used to reduce the threat from aberrant behavior in the nuclear industry. It begins with a discussion of the scientifically based methods that are used by psychologists in constructing, scoring, and interpreting these procedures. This discussion includes an emphasis on the concepts of validity and reliability and their central importance when one is choosing specific psychological screening tools. Criteria for selecting and using psychological assessment procedures when screening for aberrant behavior are also provided. Some commonly used assessment procedures that satisfy these criteria are discussed. A number a psychological assessment procedures specifically recommended for use in screening for aberrant behavior in the nuclear industry are described

  2. High order aberrations calculation of a hexapole corrector using a differential algebra method

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Yongfeng, E-mail: yfkang@mail.xjtu.edu.cn [Key Laboratory for Physical Electronics and Devices of the Ministry of Education, Xi' an Jiaotong University, Xi' an 710049 (China); Liu, Xing [Key Laboratory for Physical Electronics and Devices of the Ministry of Education, Xi' an Jiaotong University, Xi' an 710049 (China); Zhao, Jingyi, E-mail: jingyi.zhao@foxmail.com [School of Science, Chang’an University, Xi’an 710064 (China); Tang, Tiantong [Key Laboratory for Physical Electronics and Devices of the Ministry of Education, Xi' an Jiaotong University, Xi' an 710049 (China)

    2017-02-21

    A differential algebraic (DA) method is proved as an unusual and effective tool in numerical analysis. It implements conveniently differentiation up to arbitrary high order, based on the nonstandard analysis. In this paper, the differential algebra (DA) method has been employed to compute the high order aberrations up to the fifth order of a practical hexapole corrector including round lenses and hexapole lenses. The program has been developed and tested as well. The electro-magnetic fields of arbitrary point are obtained by local analytic expressions, then field potentials are transformed into new forms which can be operated in the DA calculation. In this paper, the geometric and chromatic aberrations up to fifth order of a practical hexapole corrector system are calculated by the developed program.

  3. Aberrant supracallosal longitudinal bundle: MR features, pathogenesis and associated clinical phenotype

    International Nuclear Information System (INIS)

    Arrigoni, Filippo; Peruzzo, Denis; Romaniello, Romina; Borgatti, Renato; Righini, Andrea; Parazzini, Cecilia; Colombo, Paola; Bassi, Maria Teresa; Triulzi, Fabio

    2016-01-01

    To describe the MRI and structural features of a peculiar malformation of the corpus callosum (CC) in a group of young patients with intellectual disability. We studied with conventional MRI and DTI a group of subjects showing an aberrant supracallosal bundle, characterized by the presence of a triangle-shaped bulging above the dorsal surface of CC on the midline. Clinical evaluations, CGH-array and instrumental analysis were also collected. Among 85 patients with malformed CC, we identified 15 subjects that showed the supracallosal bundle. The CC was thickened in five cases, long and thinned in three cases, short and thinned in three cases and it had a ''ribbon-like'' appearance in four subjects. Additional brain anomalies were present in eight cases. DTI colour maps and tractography showed that the bundle had an antero-posterior longitudinal orientation and that the tract bifurcated posteriorly, ending in the posterior hippocampi. Patients had different combinations of neurological symptoms, but all showed mild or severe intellectual disability. Combining radiological and genetic data with embryological knowledge of the development of cerebral commissures, we hypothesize that the supracallosal bundle represents a vestigial structure, the dorsal fornix, present during fetal life. Its persistence is associated with intellectual disability. (orig.)

  4. Children’s Brain Development Benefits from Longer Gestation

    Directory of Open Access Journals (Sweden)

    Elysia Poggi Davis

    2011-02-01

    Full Text Available Disruptions to brain development associated with shortened gestation place individuals at risk for the development of behavioral and psychological dysfunction throughout the lifespan. The purpose of the present study was to determine if the benefit for brain development conferred by increased gestational length exists on a continuum across the gestational age spectrum among healthy children with a stable neonatal course. Neurodevelopment was evaluated with structural magnetic resonance imaging (MRI in 100 healthy right-handed six to ten year old children born between 28 and 41 gestational weeks with a stable neonatal course. Data indicate that a longer gestational period confers an advantage for neurodevelopment. Longer duration of gestation was associated with region-specific increases in grey matter density. Further, the benefit of longer gestation for brain development was present even when only full term infants were considered. These findings demonstrate that even modest decreases in the duration of gestation can exert profound and lasting effects on neurodevelopment for both term and preterm infants and may contribute to long-term risk for health and disease.

  5. Effects of ocular aberrations on contrast detection in noise.

    Science.gov (United States)

    Liang, Bo; Liu, Rong; Dai, Yun; Zhou, Jiawei; Zhou, Yifeng; Zhang, Yudong

    2012-08-06

    We use adaptive optics (AO) techniques to manipulate the ocular aberrations and elucidate the effects of these ocular aberrations on contrast detection in a noisy background. The detectability of sine wave gratings at frequencies of 4, 8, and 16 circles per degree (cpd) was measured in a standard two-interval force-choice staircase procedure against backgrounds of various levels of white noise. The observer's ocular aberrations were either corrected with AO or left uncorrected. In low levels of external noise, contrast detection thresholds are always lowered by AO correction, whereas in high levels of external noise, they are generally elevated by AO correction. Higher levels of external noise are required to make this threshold elevation observable when signal spatial frequencies increase from 4 to 16 cpd. The linear-amplifier-model fit shows that mostly sampling efficiency and equivalent noise both decrease with AO correction. Our findings indicate that ocular aberrations could be beneficial for contrast detection in high-level noises. The implications of these findings are discussed.

  6. Chromosome aberrations and cell survival in irradiated mammalian cells

    International Nuclear Information System (INIS)

    Tremp, J.

    1981-01-01

    A possible correlation between chromosome aberrations and reduced proliferation capacity or cell death was investigated. Synchronized Chinese hamster fibroblast cells were irradiated with 300 rad of x rays in early G 1 . Despite synchronization the cells reached the subsequent mitosis at different times. The frequency of chromosome aberrations was determined in the postirradiation division at 2-h intervals. The highest frequency occurred in cells with a first cell cycle of medium length. The colony-forming ability of mitotic cells was measured in parallel samples by following the progress of individual mitoses. The proportion of cells forming macrocolonies decreased with increasing cell cycle length, and the number of non-colony-forming cells increased. Irrespective of various first cell cycle lengths and different frequencies of chromosome aberrations, the number of cells forming microcolonies remained constant. A correlation was found between the absence of chromosome aberrations and the ability of cells to form macrocolonies. However, cells with a long first cell cycle formed fewer macrocolonies than expected

  7. Design for an aberration corrected scanning electron microscope using miniature electron mirrors.

    Science.gov (United States)

    Dohi, Hideto; Kruit, Pieter

    2018-06-01

    Resolution of scanning electron microscopes (SEMs) is determined by aberrations of the objective lens. It is well known that both spherical and chromatic aberrations can be compensated by placing a 90-degree bending magnet and an electron mirror in the beam path before the objective lens. Nevertheless, this approach has not led to wide use of these aberration correctors, partly because aberrations of the bending magnet can be a serious problem. A mirror corrector with two mirrors placed perpendicularly to the optic axis of an SEM and facing each other is proposed. As a result, only small-angle magnetic deflection is necessary to guide the electron beam around the top mirror to the bottom mirror and around the bottom mirror to the objective lens. The deflection angle, in the order of 50 mrad, is sufficiently small to avoid deflection aberrations. In addition, lateral dispersion at the sample plane can be avoided by making the deflection fields symmetric. Such a corrector system is only possible if the incoming beam can pass the top mirror at a distance in the order of millimeters, without being disturbed by the electric fields of electrodes of the mirror. It is proposed that condition can be satisfied with micro-scale electron optical elements fabricated by using MEMS technology. In the proposed corrector system, the micro-mirrors have to provide the exact negative spherical and chromatic aberrations for correcting the aberration of the objective lens. This exact tuning is accomplished by variable magnification between the micro-mirrors and the objective lens using an additional transfer lens. Extensive optical calculations are reported. Aberrations of the micro-mirrors were analyzed by numerical calculation. Dispersion and aberrations of the deflectors were calculated by using an analytical field model. Combination aberrations caused by the off-axis position of dispersive rays in the mirrors and objective lens were also analyzed. It is concluded that the proposed

  8. In-situ fluorescence hybridization applied to biological dosimetry: contribution of automation to the counting of radio-induced chromosome aberrations

    International Nuclear Information System (INIS)

    Germain Thomas Roy, Laurence

    1999-01-01

    The frequency of chromosome aberrations on peripheral blood lymphocytes is a dose indicator in the case of ionizing radiations over-exposure. Stable chromosome aberrations (translocations, insertions) are visualized after labelling of some chromosomes using the fluorescence in-situ hybridization (FISH). The study of the use of the FISH technique in biological dosimetry is done with dose-effect curves. It seems that a bias is introduced during the observation of chromosome aberrations involving only 3 pairs of chromosomes. In order to avoid this bias, it would be useful to test the feasibility of using the multi-FISH technique in biological dosimetry. Moreover, this type of chromosome aberration changes with the type of irradiation. It is thus important to define the aberrations to be considered when the FISH technique is used. In order to reduce the time of image analysis, the CYTOGEN system, developed by IMSTAR company (Paris, France) has been adapted to the needs of biological dosimetry. This system allows to localize automatically the metaphases on the slide, which reduces the observation time by 2 or 4. An automatic detection protocol for chromosome aberrations has been implemented. It comprises the image capture, the contours detection and the classification of some chromosome aberrations. The different steps of this protocol have been tested in order to check that no bias is introduced by the automation. However, because radio-induced aberrations are rare events, it seems that a totally automatic system is not foreseeable. A semi-automatic analysis is more suitable. The use of the Slit-Scan technology (Laboratory of applied physics, Heidelberg, Germany) in biological dosimetry has been studied too. This technique allows to analyze rapidly a huge number of chromosomes. A good correlation has been observed between the dicentric frequency measured automatically and by manual counting. The system is under development and should be adapted to the detection of

  9. Electrostatic axisymmetric mirror with removable spherical aberration

    International Nuclear Information System (INIS)

    Birmuzaev, S.B.; Serikbaeva, G.S.; Hizirova, M.A.

    1999-01-01

    The electrostatic axisymmetric mirror, assembled from three coaxial cylinders with an equal diameter d and under the potential v1, v2 and v3, was computed. The proportions of geometrical and electric parameters of the mirror, with which the spherical 3-order aberration may be eliminated, were determined. The computation outcomes of the case, when the focal power of the mirror is enough large and the object plane in the focus is out of its field, are presented (Fig. 1 - potentials proportion that makes elimination of the spherical aberration possible; Fig. 2 - the focus coordinates when the spherical aberration is eliminated). The geometrical values are presented by d, and the electric ones are presented by v1. The figures on the curves present a length of the second (middle) electrode. The zero point is located in the middle of the gap between the first and second electrodes The investigated mirror may be used as a lens for the transmission electron microscope

  10. Stress Sensitivity, Aberrant Salience, and Threat Anticipation in Early Psychosis: An Experience Sampling Study.

    Science.gov (United States)

    Reininghaus, Ulrich; Kempton, Matthew J; Valmaggia, Lucia; Craig, Tom K J; Garety, Philippa; Onyejiaka, Adanna; Gayer-Anderson, Charlotte; So, Suzanne H; Hubbard, Kathryn; Beards, Stephanie; Dazzan, Paola; Pariante, Carmine; Mondelli, Valeria; Fisher, Helen L; Mills, John G; Viechtbauer, Wolfgang; McGuire, Philip; van Os, Jim; Murray, Robin M; Wykes, Til; Myin-Germeys, Inez; Morgan, Craig

    2016-05-01

    While contemporary models of psychosis have proposed a number of putative psychological mechanisms, how these impact on individuals to increase intensity of psychotic experiences in real life, outside the research laboratory, remains unclear. We aimed to investigate whether elevated stress sensitivity, experiences of aberrant novelty and salience, and enhanced anticipation of threat contribute to the development of psychotic experiences in daily life. We used the experience sampling method (ESM) to assess stress, negative affect, aberrant salience, threat anticipation, and psychotic experiences in 51 individuals with first-episode psychosis (FEP), 46 individuals with an at-risk mental state (ARMS) for psychosis, and 53 controls with no personal or family history of psychosis. Linear mixed models were used to account for the multilevel structure of ESM data. In all 3 groups, elevated stress sensitivity, aberrant salience, and enhanced threat anticipation were associated with an increased intensity of psychotic experiences. However, elevated sensitivity to minor stressful events (χ(2)= 6.3,P= 0.044), activities (χ(2)= 6.7,P= 0.036), and areas (χ(2)= 9.4,P= 0.009) and enhanced threat anticipation (χ(2)= 9.3,P= 0.009) were associated with more intense psychotic experiences in FEP individuals than controls. Sensitivity to outsider status (χ(2)= 5.7,P= 0.058) and aberrantly salient experiences (χ(2)= 12.3,P= 0.002) were more strongly associated with psychotic experiences in ARMS individuals than controls. Our findings suggest that stress sensitivity, aberrant salience, and threat anticipation are important psychological processes in the development of psychotic experiences in daily life in the early stages of the disorder. © The Author 2016. Published by Oxford University Press on behalf of the Maryland Psychiatric Research Center.

  11. Association of Child Poverty, Brain Development, and Academic Achievement

    Science.gov (United States)

    Hair, Nicole L.; Hanson, Jamie L.; Wolfe, Barbara L.; Pollak, Seth D.

    2015-01-01

    IMPORTANCE Children living in poverty generally perform poorly in school, with markedly lower standardized test scores and lower educational attainment. The longer children live in poverty, the greater their academic deficits. These patterns persist to adulthood, contributing to lifetime-reduced occupational attainment. OBJECTIVE To determine whether atypical patterns of structural brain development mediate the relationship between household poverty and impaired academic performance. DESIGN, SETTING, AND PARTICIPANTS Longitudinal cohort study analyzing 823 magnetic resonance imaging scans of 389 typically developing children and adolescents aged 4 to 22 years from the National Institutes of Health Magnetic Resonance Imaging Study of Normal Brain Development with complete sociodemographic and neuroimaging data. Data collection began in November 2001 and ended in August 2007. Participants were screened for a variety of factors suspected to adversely affect brain development, recruited at 6 data collection sites across the United States, assessed at baseline, and followed up at 24-month intervals for a total of 3 periods. Each study center used community-based sampling to reflect regional and overall US demographics of income, race, and ethnicity based on the US Department of Housing and Urban Development definitions of area income. One-quarter of sample households reported the total family income below 200% of the federal poverty level. Repeated observations were available for 301 participants. EXPOSURE Household poverty measured by family income and adjusted for family size as a percentage of the federal poverty level. MAIN OUTCOMES AND MEASURES Children’s scores on cognitive and academic achievement assessments and brain tissue, including gray matter of the total brain, frontal lobe, temporal lobe, and hippocampus. RESULTS Poverty is tied to structural differences in several areas of the brain associated with school readiness skills, with the largest influence

  12. Association of Child Poverty, Brain Development, and Academic Achievement.

    Science.gov (United States)

    Hair, Nicole L; Hanson, Jamie L; Wolfe, Barbara L; Pollak, Seth D

    2015-09-01

    Children living in poverty generally perform poorly in school, with markedly lower standardized test scores and lower educational attainment. The longer children live in poverty, the greater their academic deficits. These patterns persist to adulthood, contributing to lifetime-reduced occupational attainment. To determine whether atypical patterns of structural brain development mediate the relationship between household poverty and impaired academic performance. Longitudinal cohort study analyzing 823 magnetic resonance imaging scans of 389 typically developing children and adolescents aged 4 to 22 years from the National Institutes of Health Magnetic Resonance Imaging Study of Normal Brain Development with complete sociodemographic and neuroimaging data. Data collection began in November 2001 and ended in August 2007. Participants were screened for a variety of factors suspected to adversely affect brain development, recruited at 6 data collection sites across the United States, assessed at baseline, and followed up at 24-month intervals for a total of 3 periods. Each study center used community-based sampling to reflect regional and overall US demographics of income, race, and ethnicity based on the US Department of Housing and Urban Development definitions of area income. One-quarter of sample households reported the total family income below 200% of the federal poverty level. Repeated observations were available for 301 participants. Household poverty measured by family income and adjusted for family size as a percentage of the federal poverty level. Children's scores on cognitive and academic achievement assessments and brain tissue, including gray matter of the total brain, frontal lobe, temporal lobe, and hippocampus. Poverty is tied to structural differences in several areas of the brain associated with school readiness skills, with the largest influence observed among children from the poorest households. Regional gray matter volumes of children below 1

  13. Development of large-scale functional brain networks in children.

    Directory of Open Access Journals (Sweden)

    Kaustubh Supekar

    2009-07-01

    Full Text Available The ontogeny of large-scale functional organization of the human brain is not well understood. Here we use network analysis of intrinsic functional connectivity to characterize the organization of brain networks in 23 children (ages 7-9 y and 22 young-adults (ages 19-22 y. Comparison of network properties, including path-length, clustering-coefficient, hierarchy, and regional connectivity, revealed that although children and young-adults' brains have similar "small-world" organization at the global level, they differ significantly in hierarchical organization and interregional connectivity. We found that subcortical areas were more strongly connected with primary sensory, association, and paralimbic areas in children, whereas young-adults showed stronger cortico-cortical connectivity between paralimbic, limbic, and association areas. Further, combined analysis of functional connectivity with wiring distance measures derived from white-matter fiber tracking revealed that the development of large-scale brain networks is characterized by weakening of short-range functional connectivity and strengthening of long-range functional connectivity. Importantly, our findings show that the dynamic process of over-connectivity followed by pruning, which rewires connectivity at the neuronal level, also operates at the systems level, helping to reconfigure and rebalance subcortical and paralimbic connectivity in the developing brain. Our study demonstrates the usefulness of network analysis of brain connectivity to elucidate key principles underlying functional brain maturation, paving the way for novel studies of disrupted brain connectivity in neurodevelopmental disorders such as autism.

  14. Development of large-scale functional brain networks in children.

    Science.gov (United States)

    Supekar, Kaustubh; Musen, Mark; Menon, Vinod

    2009-07-01

    The ontogeny of large-scale functional organization of the human brain is not well understood. Here we use network analysis of intrinsic functional connectivity to characterize the organization of brain networks in 23 children (ages 7-9 y) and 22 young-adults (ages 19-22 y). Comparison of network properties, including path-length, clustering-coefficient, hierarchy, and regional connectivity, revealed that although children and young-adults' brains have similar "small-world" organization at the global level, they differ significantly in hierarchical organization and interregional connectivity. We found that subcortical areas were more strongly connected with primary sensory, association, and paralimbic areas in children, whereas young-adults showed stronger cortico-cortical connectivity between paralimbic, limbic, and association areas. Further, combined analysis of functional connectivity with wiring distance measures derived from white-matter fiber tracking revealed that the development of large-scale brain networks is characterized by weakening of short-range functional connectivity and strengthening of long-range functional connectivity. Importantly, our findings show that the dynamic process of over-connectivity followed by pruning, which rewires connectivity at the neuronal level, also operates at the systems level, helping to reconfigure and rebalance subcortical and paralimbic connectivity in the developing brain. Our study demonstrates the usefulness of network analysis of brain connectivity to elucidate key principles underlying functional brain maturation, paving the way for novel studies of disrupted brain connectivity in neurodevelopmental disorders such as autism.

  15. Endothelial cell marker PAL-E reactivity in brain tumor, developing brain, and brain disease

    NARCIS (Netherlands)

    Leenstra, S.; Troost, D.; Das, P. K.; Claessen, N.; Becker, A. E.; Bosch, D. A.

    1993-01-01

    The endothelial cell marker PAL-E is not reactive to vessels in the normal brain. The present study concerns the PAL-E reactivity in brain tumors in contrast to normal brain and nonneoplastic brain disease. A total of 122 specimens were examined: brain tumors (n = 94), nonneoplastic brain disease (n

  16. Disruption of brain anatomical networks in schizophrenia: A longitudinal, diffusion tensor imaging based study.

    Science.gov (United States)

    Sun, Yu; Chen, Yu; Lee, Renick; Bezerianos, Anastasios; Collinson, Simon L; Sim, Kang

    2016-03-01

    Despite convergent neuroimaging evidence indicating a wide range of brain abnormalities in schizophrenia, our understanding of alterations in the topological architecture of brain anatomical networks and how they are modulated over time, is still rudimentary. Here, we employed graph theoretical analysis of longitudinal diffusion tensor imaging data (DTI) over a 5-year period to investigate brain network topology in schizophrenia and its relationship with clinical manifestations of the illness. Using deterministic tractography, weighted brain anatomical networks were constructed from 31 patients experiencing schizophrenia and 28 age- and gender-matched healthy control subjects. Although the overall small-world characteristics were observed at both baseline and follow-up, a scan-point independent significant deficit of global integration was found in patients compared to controls, suggesting dysfunctional integration of the brain and supporting the notion of schizophrenia as a disconnection syndrome. Specifically, several brain regions (e.g., the inferior frontal gyrus and the bilateral insula) that are crucial for cognitive and emotional integration were aberrant. Furthermore, a significant group-by-longitudinal scan interaction was revealed in the characteristic path length and global efficiency, attributing to a progressive aberration of global integration in patients compared to healthy controls. Moreover, the progressive disruptions of the brain anatomical network topology were associated with the clinical symptoms of the patients. Together, our findings provide insights into the substrates of anatomical dysconnectivity patterns for schizophrenia and highlight the potential for connectome-based metrics as neural markers of illness progression and clinical change with treatment. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Construction of special eye models for investigation of chromatic and higher-order aberrations of eyes.

    Science.gov (United States)

    Zhai, Yi; Wang, Yan; Wang, Zhaoqi; Liu, Yongji; Zhang, Lin; He, Yuanqing; Chang, Shengjiang

    2014-01-01

    An achromatic element eliminating only longitudinal chromatic aberration (LCA) while maintaining transverse chromatic aberration (TCA) is established for the eye model, which involves the angle formed by the visual and optical axis. To investigate the impacts of higher-order aberrations on vision, the actual data of higher-order aberrations of human eyes with three typical levels are introduced into the eye model along visual axis. Moreover, three kinds of individual eye models are established to investigate the impacts of higher-order aberrations, chromatic aberration (LCA+TCA), LCA and TCA on vision under the photopic condition, respectively. Results show that for most human eyes, the impact of chromatic aberration on vision is much stronger than that of higher-order aberrations, and the impact of LCA in chromatic aberration dominates. The impact of TCA is approximately equal to that of normal level higher-order aberrations and it can be ignored when LCA exists.

  18. Aberrant alternative splicing is another hallmark of cancer.

    Science.gov (United States)

    Ladomery, Michael

    2013-01-01

    The vast majority of human genes are alternatively spliced. Not surprisingly, aberrant alternative splicing is increasingly linked to cancer. Splice isoforms often encode proteins that have distinct and even antagonistic properties. The abnormal expression of splice factors and splice factor kinases in cancer changes the alternative splicing of critically important pre-mRNAs. Aberrant alternative splicing should be added to the growing list of cancer hallmarks.

  19. Aberrant Alternative Splicing Is Another Hallmark of Cancer

    OpenAIRE

    Ladomery, Michael

    2013-01-01

    The vast majority of human genes are alternatively spliced. Not surprisingly, aberrant alternative splicing is increasingly linked to cancer. Splice isoforms often encode proteins that have distinct and even antagonistic properties. The abnormal expression of splice factors and splice factor kinases in cancer changes the alternative splicing of critically important pre-mRNAs. Aberrant alternative splicing should be added to the growing list of cancer hallmarks.

  20. Transcranial passive acoustic mapping with hemispherical sparse arrays using CT-based skull-specific aberration corrections: a simulation study

    International Nuclear Information System (INIS)

    Jones, Ryan M; O’Reilly, Meaghan A; Hynynen, Kullervo

    2013-01-01

    The feasibility of transcranial passive acoustic mapping with hemispherical sparse arrays (30 cm diameter, 16 to 1372 elements, 2.48 mm receiver diameter) using CT-based aberration corrections was investigated via numerical simulations. A multi-layered ray acoustic transcranial ultrasound propagation model based on CT-derived skull morphology was developed. By incorporating skull-specific aberration corrections into a conventional passive beamforming algorithm (Norton and Won 2000 IEEE Trans. Geosci. Remote Sens. 38 1337–43), simulated acoustic source fields representing the emissions from acoustically-stimulated microbubbles were spatially mapped through three digitized human skulls, with the transskull reconstructions closely matching the water-path control images. Image quality was quantified based on main lobe beamwidths, peak sidelobe ratio, and image signal-to-noise ratio. The effects on the resulting image quality of the source’s emission frequency and location within the skull cavity, the array sparsity and element configuration, the receiver element sensitivity, and the specific skull morphology were all investigated. The system’s resolution capabilities were also estimated for various degrees of array sparsity. Passive imaging of acoustic sources through an intact skull was shown possible with sparse hemispherical imaging arrays. This technique may be useful for the monitoring and control of transcranial focused ultrasound (FUS) treatments, particularly non-thermal, cavitation-mediated applications such as FUS-induced blood–brain barrier disruption or sonothrombolysis, for which no real-time monitoring techniques currently exist. (paper)

  1. Transcranial passive acoustic mapping with hemispherical sparse arrays using CT-based skull-specific aberration corrections: a simulation study

    Science.gov (United States)

    Jones, Ryan M.; O’Reilly, Meaghan A.; Hynynen, Kullervo

    2013-01-01

    The feasibility of transcranial passive acoustic mapping with hemispherical sparse arrays (30 cm diameter, 16 to 1372 elements, 2.48 mm receiver diameter) using CT-based aberration corrections was investigated via numerical simulations. A multi-layered ray acoustic transcranial ultrasound propagation model based on CT-derived skull morphology was developed. By incorporating skull-specific aberration corrections into a conventional passive beamforming algorithm (Norton and Won 2000 IEEE Trans. Geosci. Remote Sens. 38 1337–43), simulated acoustic source fields representing the emissions from acoustically-stimulated microbubbles were spatially mapped through three digitized human skulls, with the transskull reconstructions closely matching the water-path control images. Image quality was quantified based on main lobe beamwidths, peak sidelobe ratio, and image signal-to-noise ratio. The effects on the resulting image quality of the source’s emission frequency and location within the skull cavity, the array sparsity and element configuration, the receiver element sensitivity, and the specific skull morphology were all investigated. The system’s resolution capabilities were also estimated for various degrees of array sparsity. Passive imaging of acoustic sources through an intact skull was shown possible with sparse hemispherical imaging arrays. This technique may be useful for the monitoring and control of transcranial focused ultrasound (FUS) treatments, particularly non-thermal, cavitation-mediated applications such as FUS-induced blood-brain barrier disruption or sonothrombolysis, for which no real-time monitoring technique currently exists. PMID:23807573

  2. MCPH1: a window into brain development and evolution

    Directory of Open Access Journals (Sweden)

    Jeannette eNardelli

    2015-03-01

    Full Text Available The development of the mammalian cerebral cortex involves a series of mechanisms: from patterning, progenitor cell proliferation and differentiation, to neuronal migration. Many factors influence the development of the cerebral cortex to its normal size and neuronal composition. Of these, the mechanisms that influence the proliferation and differentiation of neural progenitor cells are of particular interest, as they may have the greatest consequence on brain size, not only during development but also in evolution. In this context, causative genes of human autosomal recessive primary microcephaly, such as ASPM and MCPH1, are attractive candidates, as many of them show positive selection during primate evolution. MCPH1 causes microcephaly in mice and humans and is involved in a diverse array of molecular functions beyond brain development, including DNA repair and chromosome condensation. Positive selection of MCPH1 in the primate lineage has led to much insight and discussion of its role in brain size evolution. In this review, we will present an overview of MCPH1 from these multiple angles, and whilst its specific role in brain size regulation during development and evolution remain elusive, the pieces of the puzzle will be discussed with the aim of putting together the full picture of this fascinating gene.

  3. Identification of aberrant gene expression associated with aberrant promoter methylation in primordial germ cells between E13 and E16 rat F3 generation vinclozolin lineage.

    Science.gov (United States)

    Taguchi, Y-h

    2015-01-01

    Transgenerational epigenetics (TGE) are currently considered important in disease, but the mechanisms involved are not yet fully understood. TGE abnormalities expected to cause disease are likely to be initiated during development and to be mediated by aberrant gene expression associated with aberrant promoter methylation that is heritable between generations. However, because methylation is removed and then re-established during development, it is not easy to identify promoter methylation abnormalities by comparing normal lineages with those expected to exhibit TGE abnormalities. This study applied the recently proposed principal component analysis (PCA)-based unsupervised feature extraction to previously reported and publically available gene expression/promoter methylation profiles of rat primordial germ cells, between E13 and E16 of the F3 generation vinclozolin lineage that are expected to exhibit TGE abnormalities, to identify multiple genes that exhibited aberrant gene expression/promoter methylation during development. The biological feasibility of the identified genes were tested via enrichment analyses of various biological concepts including pathway analysis, gene ontology terms and protein-protein interactions. All validations suggested superiority of the proposed method over three conventional and popular supervised methods that employed t test, limma and significance analysis of microarrays, respectively. The identified genes were globally related to tumors, the prostate, kidney, testis and the immune system and were previously reported to be related to various diseases caused by TGE. Among the genes reported by PCA-based unsupervised feature extraction, we propose that chemokine signaling pathways and leucine rich repeat proteins are key factors that initiate transgenerational epigenetic-mediated diseases, because multiple genes included in these two categories were identified in this study.

  4. The BRAIN Initiative: developing technology to catalyse neuroscience discovery

    Science.gov (United States)

    Jorgenson, Lyric A.; Newsome, William T.; Anderson, David J.; Bargmann, Cornelia I.; Brown, Emery N.; Deisseroth, Karl; Donoghue, John P.; Hudson, Kathy L.; Ling, Geoffrey S. F.; MacLeish, Peter R.; Marder, Eve; Normann, Richard A.; Sanes, Joshua R.; Schnitzer, Mark J.; Sejnowski, Terrence J.; Tank, David W.; Tsien, Roger Y.; Ugurbil, Kamil; Wingfield, John C.

    2015-01-01

    The evolution of the field of neuroscience has been propelled by the advent of novel technological capabilities, and the pace at which these capabilities are being developed has accelerated dramatically in the past decade. Capitalizing on this momentum, the United States launched the Brain Research through Advancing Innovative Neurotechnologies (BRAIN) Initiative to develop and apply new tools and technologies for revolutionizing our understanding of the brain. In this article, we review the scientific vision for this initiative set forth by the National Institutes of Health and discuss its implications for the future of neuroscience research. Particular emphasis is given to its potential impact on the mapping and study of neural circuits, and how this knowledge will transform our understanding of the complexity of the human brain and its diverse array of behaviours, perceptions, thoughts and emotions. PMID:25823863

  5. The Effects of Blast Exposure on Protein Deimination in the Brain

    Directory of Open Access Journals (Sweden)

    Peter J. Attilio

    2017-01-01

    Full Text Available Oxidative stress and calcium excitotoxicity are hallmarks of traumatic brain injury (TBI. While these early disruptions may be corrected over a relatively short period of time, long-lasting consequences of TBI including impaired cognition and mood imbalances can persist for years, even in the absence of any evidence of overt injury based on neuroimaging. This investigation examined the possibility that disordered protein deimination occurs as a result of TBI and may thus contribute to the long-term pathologies of TBI. Protein deimination is a calcium-activated, posttranslational modification implicated in the autoimmune diseases rheumatoid arthritis and multiple sclerosis, where aberrant deimination creates antigenic epitopes that elicit an autoimmune attack. The present study utilized proteomic analyses to show that blast TBI alters the deimination status of proteins in the porcine cerebral cortex. The affected proteins represent a small subset of the entire brain proteome and include glial fibrillary acidic protein and vimentin, proteins reported to be involved in autoimmune-based pathologies. The data also indicate that blast injury is associated with an increase in immunoglobulins in the brain, possibly representing autoantibodies directed against novel protein epitopes. These findings indicate that aberrant protein deimination is a biomarker for blast TBI and may therefore underlie chronic neuropathologies of head injury.

  6. Gesture in the Developing Brain

    Science.gov (United States)

    Dick, Anthony Steven; Goldin-Meadow, Susan; Solodkin, Ana; Small, Steven L.

    2012-01-01

    Speakers convey meaning not only through words, but also through gestures. Although children are exposed to co-speech gestures from birth, we do not know how the developing brain comes to connect meaning conveyed in gesture with speech. We used functional magnetic resonance imaging (fMRI) to address this question and scanned 8- to 11-year-old…

  7. Acquisition of Genetic Aberrations by Activation-Induced Cytidine Deaminase (AID) during Inflammation-Associated Carcinogenesis

    International Nuclear Information System (INIS)

    Takai, Atsushi; Marusawa, Hiroyuki; Chiba, Tsutomu

    2011-01-01

    Genetic abnormalities such as nucleotide alterations and chromosomal disorders that accumulate in various tumor-related genes have an important role in cancer development. The precise mechanism of the acquisition of genetic aberrations, however, remains unclear. Activation-induced cytidine deaminase (AID), a nucleotide editing enzyme, is essential for the diversification of antibody production. AID is expressed only in activated B lymphocytes under physiologic conditions and induces somatic hypermutation and class switch recombination in immunoglobulin genes. Inflammation leads to aberrant AID expression in various gastrointestinal organs and increased AID expression contributes to cancer development by inducing genetic alterations in epithelial cells. Studies of how AID induces genetic disorders are expected to elucidate the mechanism of inflammation-associated carcinogenesis

  8. Screening of clonal chromosome aberrations present in A-bomb survivors by FISH method

    International Nuclear Information System (INIS)

    Nakano, Mimako; Kodama, Yoshiaki; Ito, Masahiro; Otaki, Kazuo; Nakamura, Nori

    1997-01-01

    Significance of FISH method for detection of clonal chromosome aberration was reviewed. A clonal chromosome aberration is derived from one abnormal cell clone and gives the influence on the frequency of the aberration. As well, the size and frequency of the aberration give an important information concerning lymphocyte kinetics. FISH method is meaningful for detection of the clonal aberration. Fifteen kinds of clonal aberrations were detected in A-bomb survivors, of which 10 were specifically detected by the method, indicating that its detection rate was 2-3 time as high as the ordinary method. The results were those on the DNA probe on no.1, no.2 and no.3 chromosomes, which consisting of about 23% of the genome. (K.H.)

  9. Traumatic Brain Injuries during Development: Implications for Alcohol Abuse

    Directory of Open Access Journals (Sweden)

    Zachary M. Weil

    2017-07-01

    Full Text Available Traumatic brain injuries are strongly related to alcohol intoxication as by some estimates half or more of all brain injuries involve at least one intoxicated individual. Additionally, there is mounting evidence that traumatic brain injuries can themselves serve as independent risk factors for the development of alcohol use disorders, particularly when injury occurs during juvenile or adolescent development. Here, we will review the epidemiological and experimental evidence for this phenomenon and discuss potential psychosocial mediators including attenuation of negative affect and impaired decision making as well as neurochemical mediators including disruption in the glutamatergic, GABAergic, and dopaminergic signaling pathways and increases in inflammation.

  10. Aberrant brain response after auditory deviance in PTSD compared to trauma controls: An EEG study

    NARCIS (Netherlands)

    Bangel, Katrin A.; van Buschbach, Susanne; Smit, Dirk J. A.; Mazaheri, Ali; Olff, Miranda

    2017-01-01

    Part of the symptomatology of post-traumatic stress disorder (PTSD) are alterations in arousal and reactivity which could be related to a maladaptive increase in the automated sensory change detection system of the brain. In the current EEG study we investigated whether the brain's response to a

  11. Taurine Induces Proliferation of Neural Stem Cells and Synapse Development in the Developing Mouse Brain

    Science.gov (United States)

    Shivaraj, Mattu Chetana; Marcy, Guillaume; Low, Guoliang; Ryu, Jae Ryun; Zhao, Xianfeng; Rosales, Francisco J.; Goh, Eyleen L. K.

    2012-01-01

    Taurine is a sulfur-containing amino acid present in high concentrations in mammalian tissues. It has been implicated in several processes involving brain development and neurotransmission. However, the role of taurine in hippocampal neurogenesis during brain development is still unknown. Here we show that taurine regulates neural progenitor cell (NPC) proliferation in the dentate gyrus of the developing brain as well as in cultured early postnatal (P5) hippocampal progenitor cells and hippocampal slices derived from P5 mice brains. Taurine increased cell proliferation without having a significant effect on neural differentiation both in cultured P5 NPCs as well as cultured hippocampal slices and in vivo. Expression level analysis of synaptic proteins revealed that taurine increases the expression of Synapsin 1 and PSD 95. We also found that taurine stimulates the phosphorylation of ERK1/2 indicating a possible role of the ERK pathway in mediating the changes that we observed, especially in proliferation. Taken together, our results demonstrate a role for taurine in neural stem/progenitor cell proliferation in developing brain and suggest the involvement of the ERK1/2 pathways in mediating these actions. Our study also shows that taurine influences the levels of proteins associated with synapse development. This is the first evidence showing the effect of taurine on early postnatal neuronal development using a combination of in vitro, ex-vivo and in vivo systems. PMID:22916184

  12. Diffusion imaging and tractography of congenital brain malformations

    International Nuclear Information System (INIS)

    Wahl, Michael; Barkovich, A.J.; Mukherjee, Pratik

    2010-01-01

    Diffusion imaging is an MRI modality that measures the microscopic molecular motion of water in order to investigate white matter microstructure. The modality has been used extensively in recent years to investigate the neuroanatomical basis of congenital brain malformations. We review the basic principles of diffusion imaging and of specific techniques, including diffusion tensor imaging (DTI) and high angular resolution diffusion imaging (HARDI). We show how DTI and HARDI, and their application to fiber tractography, has elucidated the aberrant connectivity underlying a number of congenital brain malformations. Finally, we discuss potential uses for diffusion imaging of developmental disorders in the clinical and research realms. (orig.)

  13. Study of wavefront aberration in DR patients with different degree of dry eye

    Directory of Open Access Journals (Sweden)

    Jin-Ran Fang

    2018-05-01

    Full Text Available AIM: To compare the changes of wavefront aberrations in patients with diabetic retinopathy(DRand with different degrees of dry eye and to explore the reasons of visual quality decline in them. METHODS: We randomly selected 40 eyes in our hospital for treatment with DR and varying degrees of dry eye, and 40 eyes of normal control group. Topcon KR-1W visual quality analyzer was used to record the mean square the total high order corneal aberration, spherical aberration, comatic aberration and trefoil aberration of cornea with pupil diameters of 4mm and 6mm. Analysis of variance were used to compare the wavefront aberrations and the aberration values in the control group and in patients with diabetic retinopathy and with different degrees of dry eye. RESULTS: For 4mm and 6mm pupil diameters, nondiabetic retinopathy(NDRwith dry eye group, the nonproliferative diabetic retinopathy(NPDRwith dry eye group and proliferative diabetic retinopathy(PDRdry eye group had significantly increased tHOA, coma and trefoil compared with the contrast group(PPCONCLUSION: Dry eye of diabetic retinopathy with different degrees is closely related to the increase of wavefront aberration. Increased wavefront aberration may be one of the reasons to reduced visual quality in patients with diabetic retinopathy and with dry eye, and provide the basis for the decline of visual function of diabetic patients with dry eye.

  14. Starting Smart: How Early Experiences Affect Brain Development. Second Edition.

    Science.gov (United States)

    Hawley, Theresa

    Based on recent research, it is now believed that brain growth is highly dependent upon children's early experiences. Neurons allow communication and coordinated functioning among various brain areas. Brain development after birth consists of an ongoing process of wiring and rewiring the connections among neurons. The forming and breaking of…

  15. Aberrant hepatic artery

    International Nuclear Information System (INIS)

    Konstam, M.A.; Novelline, R.A.; Athanasoulis, C.A.

    1979-01-01

    In a patient undergoing selective hepatic arteriography for suspected liver trauma, a nonopacified area of the liver, initially thought to represent a hepatic hematoma, was later discovered to be due to the presence of an accessory right hepatic artery arising from the superior mesenteric artery. This case illustrates the need for a search for aberrant vasculature whenever a liver hematoma is suspected on the basis of a selective hepatic arteriogram. (orig.) [de

  16. Hand in glove: brain and skull in development and dysmorphogenesis

    Science.gov (United States)

    Flaherty, Kevin

    2013-01-01

    The brain originates relatively early in development from differentiated ectoderm that forms a hollow tube and takes on an exceedingly complex shape with development. The skull is made up of individual bony elements that form from neural crest- and mesoderm-derived mesenchyme that unite to provide support and protection for soft tissues and spaces of the head. The meninges provide a protective and permeable membrane between brain and skull. Across evolutionary and developmental time, dynamic changes in brain and skull shape track one another so that their integration is evidenced in two structures that fit soundly regardless of changes in biomechanical and physiologic functions. Evidence for this tight correspondence is also seen in diseases of the craniofacial complex that are often classified as diseases of the skull (e.g., craniosynostosis) or diseases of the brain (e.g., holoprosencephaly) even when both tissues are affected. Our review suggests a model that links brain and skull morphogenesis through coordinated integration of signaling pathways (e.g., FGF, TGFβ, Wnt) via processes that are not currently understood, perhaps involving the meninges. Differences in the earliest signaling of biological structure establish divergent designs that will be enhanced during morphogenesis. Signaling systems that pattern the developing brain are also active in patterning required for growth and assembly of the skull and some members of these signaling families have been indicated as causal for craniofacial diseases. Because cells of early brain and skull are sensitive to similar signaling families, variation in the strength or timing of signals or shifts in patterning boundaries that affect one system (neural or skull) could also affect the other system and appropriate co-adjustments in development would be made. Interactions of these signaling systems and of the tissues that they pattern are fundamental to the consistent but labile functional and structural association

  17. Nutrition and brain development in early life.

    Science.gov (United States)

    Prado, Elizabeth L; Dewey, Kathryn G

    2014-04-01

    Presented here is an overview of the pathway from early nutrient deficiency to long-term brain function, cognition, and productivity, focusing on research from low- and middle-income countries. Animal models have demonstrated the importance of adequate nutrition for the neurodevelopmental processes that occur rapidly during pregnancy and infancy, such as neuron proliferation and myelination. However, several factors influence whether nutrient deficiencies during this period cause permanent cognitive deficits in human populations, including the child's interaction with the environment, the timing and degree of nutrient deficiency, and the possibility of recovery. These factors should be taken into account in the design and interpretation of future research. Certain types of nutritional deficiency clearly impair brain development, including severe acute malnutrition, chronic undernutrition, iron deficiency, and iodine deficiency. While strategies such as salt iodization and micronutrient powders have been shown to improve these conditions, direct evidence of their impact on brain development is scarce. Other strategies also require further research, including supplementation with iron and other micronutrients, essential fatty acids, and fortified food supplements during pregnancy and infancy. © 2014 International Life Sciences Institute.

  18. Resting-state EEG oscillatory dynamics in fragile X syndrome: abnormal functional connectivity and brain network organization.

    Directory of Open Access Journals (Sweden)

    Melle J W van der Molen

    Full Text Available Disruptions in functional connectivity and dysfunctional brain networks are considered to be a neurological hallmark of neurodevelopmental disorders. Despite the vast literature on functional brain connectivity in typical brain development, surprisingly few attempts have been made to characterize brain network integrity in neurodevelopmental disorders. Here we used resting-state EEG to characterize functional brain connectivity and brain network organization in eight males with fragile X syndrome (FXS and 12 healthy male controls. Functional connectivity was calculated based on the phase lag index (PLI, a non-linear synchronization index that is less sensitive to the effects of volume conduction. Brain network organization was assessed with graph theoretical analysis. A decrease in global functional connectivity was observed in FXS males for upper alpha and beta frequency bands. For theta oscillations, we found increased connectivity in long-range (fronto-posterior and short-range (frontal-frontal and posterior-posterior clusters. Graph theoretical analysis yielded evidence of increased path length in the theta band, suggesting that information transfer between brain regions is particularly impaired for theta oscillations in FXS. These findings are discussed in terms of aberrant maturation of neuronal oscillatory dynamics, resulting in an imbalance in excitatory and inhibitory neuronal circuit activity.

  19. Development of Human Brain Structural Networks Through Infancy and Childhood

    Science.gov (United States)

    Huang, Hao; Shu, Ni; Mishra, Virendra; Jeon, Tina; Chalak, Lina; Wang, Zhiyue J.; Rollins, Nancy; Gong, Gaolang; Cheng, Hua; Peng, Yun; Dong, Qi; He, Yong

    2015-01-01

    During human brain development through infancy and childhood, microstructural and macrostructural changes take place to reshape the brain's structural networks and better adapt them to sophisticated functional and cognitive requirements. However, structural topological configuration of the human brain during this specific development period is not well understood. In this study, diffusion magnetic resonance image (dMRI) of 25 neonates, 13 toddlers, and 25 preadolescents were acquired to characterize network dynamics at these 3 landmark cross-sectional ages during early childhood. dMRI tractography was used to construct human brain structural networks, and the underlying topological properties were quantified by graph-theory approaches. Modular organization and small-world attributes are evident at birth with several important topological metrics increasing monotonically during development. Most significant increases of regional nodes occur in the posterior cingulate cortex, which plays a pivotal role in the functional default mode network. Positive correlations exist between nodal efficiencies and fractional anisotropy of the white matter traced from these nodes, while correlation slopes vary among the brain regions. These results reveal substantial topological reorganization of human brain structural networks through infancy and childhood, which is likely to be the outcome of both heterogeneous strengthening of the major white matter tracts and pruning of other axonal fibers. PMID:24335033

  20. Aberrant neural networks for the recognition memory of socially relevant information in patients with schizophrenia.

    Science.gov (United States)

    Oh, Jooyoung; Chun, Ji-Won; Kim, Eunseong; Park, Hae-Jeong; Lee, Boreom; Kim, Jae-Jin

    2017-01-01

    Patients with schizophrenia exhibit several cognitive deficits, including memory impairment. Problems with recognition memory can hinder socially adaptive behavior. Previous investigations have suggested that altered activation of the frontotemporal area plays an important role in recognition memory impairment. However, the cerebral networks related to these deficits are not known. The aim of this study was to elucidate the brain networks required for recognizing socially relevant information in patients with schizophrenia performing an old-new recognition task. Sixteen patients with schizophrenia and 16 controls participated in this study. First, the subjects performed the theme-identification task during functional magnetic resonance imaging. In this task, pictures depicting social situations were presented with three words, and the subjects were asked to select the best theme word for each picture. The subjects then performed an old-new recognition task in which they were asked to discriminate whether the presented words were old or new. Task performance and neural responses in the old-new recognition task were compared between the subject groups. An independent component analysis of the functional connectivity was performed. The patients with schizophrenia exhibited decreased discriminability and increased activation of the right superior temporal gyrus compared with the controls during correct responses. Furthermore, aberrant network activities were found in the frontopolar and language comprehension networks in the patients. The functional connectivity analysis showed aberrant connectivity in the frontopolar and language comprehension networks in the patients with schizophrenia, and these aberrations possibly contribute to their low recognition performance and social dysfunction. These results suggest that the frontopolar and language comprehension networks are potential therapeutic targets in patients with schizophrenia.

  1. Frequency of primary amenorrhea due to chromosomal aberration

    International Nuclear Information System (INIS)

    Jabbar, S.

    2004-01-01

    Objective: To find out the frequency of primary amenorrhea due to chromosomal aberration and the different options available for management. Subjects and Methods: All patients with primary amenorrhea due to chromosomal aberrations were included in study. Patient's detailed history, general physical examination, presence or absence of secondary sexual characteristics, abdominal and pelvic examination finding were noted. Targeted investigations, including ultrasound, hormonal assay, buccal smear and karyotyping results were recorded. The management options were individually tailored with focus n psychological management. Results: Eighteen patients out of 30,000 patients were diagnosed as having primary amenorrhea. Six had primary amenorrhea due to chromosomal aberrations with the frequency of 0.02%. The age at presentation was 20 years and above in 50%. The most common cause was Turner's syndrome seen in 4 out of 6. The presenting symptoms were delay in onset of menstruation in 05 patients and primary infertility in 01 patient. Conclusion: Primary amenorrhea due to chromosomal aberration is an uncommon condition requiring an early and accurate diagnosis. Turner's syndrome is a relatively common cause of this condition. Management should be multi-disciplinary and individualized according to the patient's age and symptom at presentation. Psychological management is very important and counselling throughout treatment is recommended. (author)

  2. An aberrant uterus: Case report | Ondieki | East African Medical ...

    African Journals Online (AJOL)

    A case of an aberrant uterus is presented and literature reviewed. The patient presented with abnormal uterine bleeding, left iliac fossa pain and was managed by excising the aberrant uterus. This case was an enigma as it didn't present in the classical way one with anomalies of the uterus would present. Despite ...

  3. A chronological expression profile of gene activity during embryonic mouse brain development.

    Science.gov (United States)

    Goggolidou, P; Soneji, S; Powles-Glover, N; Williams, D; Sethi, S; Baban, D; Simon, M M; Ragoussis, I; Norris, D P

    2013-12-01

    The brain is a functionally complex organ, the patterning and development of which are key to adult health. To help elucidate the genetic networks underlying mammalian brain patterning, we conducted detailed transcriptional profiling during embryonic development of the mouse brain. A total of 2,400 genes were identified as showing differential expression between three developmental stages. Analysis of the data identified nine gene clusters to demonstrate analogous expression profiles. A significant group of novel genes of as yet undiscovered biological function were detected as being potentially relevant to brain development and function, in addition to genes that have previously identified roles in the brain. Furthermore, analysis for genes that display asymmetric expression between the left and right brain hemispheres during development revealed 35 genes as putatively asymmetric from a combined data set. Our data constitute a valuable new resource for neuroscience and neurodevelopment, exposing possible functional associations between genes, including novel loci, and encouraging their further investigation in human neurological and behavioural disorders.

  4. Related research on corneal higher-order aberrations after different ways refractive surgery

    Directory of Open Access Journals (Sweden)

    Shu-Xi He

    2015-08-01

    Full Text Available AIM:To evaluate the changes of corneal high-order aberration(including Coma, Spab, RMShafter laser in situ keratomileusis(LASIKwith femtosecond laser, sub-Bowman keratomileusis(SBKand laser epithelial keratomileusis(LASEK.METHODS: Of 82 myopic patients(164 eyes, 31 patients(62 eyeswere treated by FS-LASIK, 31 patients(62 eyeswere treated by SBK, 20 patients(40 eyeswere treated by LASEK. Sirius system was used for measuring the coma aberration, spherical aberration, and high order aberration at 1, 15d,1, 3mo after surgery.RESULTS: 1Vision: The uncorrected visual acuity of the three groups had no differences(P>0.05. 2Corneal aberrations: Three kinds of surgical procedure for patients with corneal aberration had significant impact. The C7, C8, C12 and RMSh of three groups were increased significantly(P0.05. The C7, C8, C12 and RMSh were not recovered to preoperative levels after 3mo. But the increase of patients after FS-LASIK was smaller than the other two groups, with statistical significance(P0.05.CONCLUSION: Compared with SBK and LASEK,FS-LASIK has better visual acuity in the early postoperative and corneal higher-order aberrations increase is relatively small.

  5. Chromosome aberrations in Norwegian reindeer following the Chernobyl accident

    International Nuclear Information System (INIS)

    Røed, K.H.; Jacobsen, M.

    1995-01-01

    Chromosome analyses were carried out on peripheral blood lymphocytes of semi-domestic reindeer in Norway which had been exposed to varying amounts of radiocesium emanating from the Chernobyl accident. The sampling was done in the period 1987-1990. The material included 192 reindeer, originating from four herds in central Norway, an area considerably affected by fallout from the Chernobyl accident, and from three herds in northern Norway which was unaffected by fallout from the accident. Significant heterogeneity in the distribution of chromosome aberrations between herds was observed. The pattern of chromosome aberration frequencies between herds was not related to the variation in radiocesium exposure from the Chernobyl accident. Other factors than the Chernobyl accident appear therefore to be of importance for the distribution of aberration frequencies found among present herds. Within the most contaminated area the reindeer born in 1986 showed significantly more chromosome aberrations than those born both before and after 1986. This could suggest that the Chernobyl accident fallout created an effect particularly among calves, during the immediate post-accident period in the most exposed areas

  6. Aligning Technology Education Teaching with Brain Development

    Science.gov (United States)

    Katsioloudis, Petros

    2015-01-01

    This exploratory study was designed to determine if there is a level of alignment between technology education curriculum and theories of intellectual development. The researcher compared Epstein's Brain Growth Theory and Piaget's Status of Intellectual Development with technology education curriculum from Australia, England, and the United…

  7. Novel plumage aberrations in Paraguayan non-Passerine Birds, and the definition of a new plumage aberration unique to Psittacidae

    Directory of Open Access Journals (Sweden)

    Paul Smith

    2017-07-01

    Full Text Available Anomalous plumage colourations are reported for three species of non-passerine birds from Paraguay, Limpkin (Aramaus guarauna; Aramidae, Nanday Parakeet (Nandayus nenday; Psittacidae, and the Little Woodpecker (Veniliornis passerinus; Picidae. A leucistic Limpkin is the first published report of a colour anomaly for the family Aramidae. The colour aberration in N. nenday is hypothesised to be a result of an excess of red psittacofulvin pigments, which are unique to the Psittacidae. Although the mechanisms causing this colour aberration remain unknown, we suggest the term psittacofulvism for the phenotypic effect observed.

  8. Bisphenol A Interaction With Brain Development and Functions

    Directory of Open Access Journals (Sweden)

    P. Negri-Cesi

    2015-06-01

    Full Text Available Brain development is an organized, but constantly adaptive, process in which genetic and epigenetic signals allow neurons to differentiate, to migrate, and to develop correct connections. Gender specific prenatal sex hormone milieu participates in the dimorphic development of many neuronal networks. Environmental cues may interfere with these developmental programs, producing adverse outcomes. Bisphenol A (BPA, an estrogenic/antiandrogenic endocrine disruptor widely diffused in the environment, produces adverse effects at levels below the acceptable daily intake. This review analyzes the recent literature on the consequences of perinatal exposure to BPA environmental doses on the development of a dimorphic brain. The BPA interference with the development and function of the neuroendocrine hypothalamus and of the nuclei controlling energy balance, and with the hippocampal memory processing is also discussed. The detrimental action of BPA appears complex, involving different hormonal and epigenetic pathways activated, often in a dimorphic way, within clearcut susceptibility windows. To date, discrepancies in experimental approaches and in related outcomes make unfeasible to translate the available information into clear dose–response models for human risk assessment. Evaluation of BPA brain levels in relation to the appearance of adverse effects in future basic studies will certainly give better definition of the warning threshold for human health.

  9. Brain tumors and synchrotron radiation: Methodological developments in quantitative brain perfusion imaging and radiation therapy

    International Nuclear Information System (INIS)

    Adam, Jean-Francois

    2005-01-01

    High-grade gliomas are the most frequent type of primary brain tumors in adults. Unfortunately, the management of glioblastomas is still mainly palliative and remains a difficult challenge, despite advances in brain tumor molecular biology and in some emerging therapies. Synchrotron radiation opens fields for medical imaging and radiation therapy by using monochromatic intense x-ray beams. It is now well known that angiogenesis plays a critical role in the tumor growth process and that brain perfusion is representative of the tumor mitotic activity. Synchrotron radiation quantitative computed tomography (SRCT) is one of the most accurate techniques for measuring in vivo contrast agent concentration and thus computing precise and accurate absolute values of the brain perfusion key parameters. The methodological developments of SRCT absolute brain perfusion measurements as well as their preclinical validation are detailed in this thesis. In particular, absolute cerebral volume and blood brain barrier permeability high-resolution (pixel size 2 ) parametric maps were reported. In conventional radiotherapy, the treatment of these tumors remains a delicate challenge, because the damages to the surrounding normal brain tissue limit the amount of radiation that can be delivered. One strategy to overcome this limitation is to infuse an iodinated contrast agent to the patient during the irradiation. The contrast agent accumulates in the tumor, through the broken blood brain barrier, and the irradiation is performed with kilovoltage x rays, in tomography mode, the tumor being located at the center of rotation and the beam size adjusted to the tumor dimensions. The dose enhancement results from the photoelectric effect on the heavy element and from the irradiation geometry. Synchrotron beams, providing high intensity, tunable monochromatic x rays, are ideal for this treatment. The beam properties allow the selection of monochromatic irradiation, at the optimal energy, for a

  10. Ketamine administration in healthy volunteers reproduces aberrant agency experiences associated with schizophrenia

    NARCIS (Netherlands)

    Moore, James W.; Turner, Danielle C.; Corlett, Philip R.; Arana, Fernando S.; Morgan, Hannah L.; Absalom, Antony R.; Adapa, Ram; de Wit, Sanne; Everitt, Jessica C.; Gardner, Jenny M.; Pigott, Jennifer S.; Haggard, Patrick; Fletcher, Paul C.

    2011-01-01

    Introduction. Aberrant experience of agency is characteristic of schizophrenia. An understanding of the neurobiological basis of such experience is therefore of considerable importance for developing successful models of the disease. We aimed to characterise the effects of ketamine, a drug model for

  11. Zernike phase spatial filter for measuring the aberrations

    OpenAIRE

    Svetlana N. Khonina; Victor V. Kotlyar; Dmitriy V. Kirsh

    2015-01-01

    To measure directly the wavefront aberration coefficients, we propose to use the multi8order diffractive element fitted with the set of Zernike polynomials. Polynomials of lowest degree describe defocusing (ametropy) and astigmatism. Coefficients of highest degree correspond to the spherical aberration of oblique rays that occurs as a consequence of misalignment of the crystalline lens and foveola, as well as deflection at the periphery of the crystalline lens. Mul^order elements allow severa...

  12. Microglia and Beyond: Innate Immune Cells As Regulators of Brain Development and Behavioral Function

    Directory of Open Access Journals (Sweden)

    Kathryn M. Lenz

    2018-04-01

    Full Text Available Innate immune cells play a well-documented role in the etiology and disease course of many brain-based conditions, including multiple sclerosis, Alzheimer’s disease, traumatic brain and spinal cord injury, and brain cancers. In contrast, it is only recently becoming clear that innate immune cells, primarily brain resident macrophages called microglia, are also key regulators of brain development. This review summarizes the current state of knowledge regarding microglia in brain development, with particular emphasis on how microglia during development are distinct from microglia later in life. We also summarize the effects of early life perturbations on microglia function in the developing brain, the role that biological sex plays in microglia function, and the potential role that microglia may play in developmental brain disorders. Finally, given how new the field of developmental neuroimmunology is, we highlight what has yet to be learned about how innate immune cells shape the development of brain and behavior.

  13. Microglia and Beyond: Innate Immune Cells As Regulators of Brain Development and Behavioral Function.

    Science.gov (United States)

    Lenz, Kathryn M; Nelson, Lars H

    2018-01-01

    Innate immune cells play a well-documented role in the etiology and disease course of many brain-based conditions, including multiple sclerosis, Alzheimer's disease, traumatic brain and spinal cord injury, and brain cancers. In contrast, it is only recently becoming clear that innate immune cells, primarily brain resident macrophages called microglia, are also key regulators of brain development. This review summarizes the current state of knowledge regarding microglia in brain development, with particular emphasis on how microglia during development are distinct from microglia later in life. We also summarize the effects of early life perturbations on microglia function in the developing brain, the role that biological sex plays in microglia function, and the potential role that microglia may play in developmental brain disorders. Finally, given how new the field of developmental neuroimmunology is, we highlight what has yet to be learned about how innate immune cells shape the development of brain and behavior.

  14. Aberration compensation of an ultrasound imaging instrument with a reduced number of channels.

    Science.gov (United States)

    Jiang, Wei; Astheimer, Jeffrey P; Waag, Robert C

    2012-10-01

    Focusing and imaging qualities of an ultrasound imaging system that uses aberration correction were experimentally investigated as functions of the number of parallel channels. Front-end electronics that consolidate signals from multiple physical elements can be used to lower hardware and computational costs by reducing the number of parallel channels. However, the signals from sparse arrays of synthetic elements yield poorer aberration estimates. In this study, aberration estimates derived from synthetic arrays of varying element sizes are evaluated by comparing compensated receive focuses, compensated transmit focuses, and compensated b-scan images of a point target and a cyst phantom. An array of 80 x 80 physical elements with a pitch of 0.6 x 0.6 mm was used for all of the experiments and the aberration was produced by a phantom selected to mimic propagation through abdominal wall. The results show that aberration correction derived from synthetic arrays with pitches that have a diagonal length smaller than 70% of the correlation length of the aberration yield focuses and images of approximately the same quality. This connection between correlation length of the aberration and synthetic element size provides a guideline for determining the number of parallel channels that are required when designing imaging systems that employ aberration correction.

  15. Genome-wide identification of significant aberrations in cancer genome.

    Science.gov (United States)

    Yuan, Xiguo; Yu, Guoqiang; Hou, Xuchu; Shih, Ie-Ming; Clarke, Robert; Zhang, Junying; Hoffman, Eric P; Wang, Roger R; Zhang, Zhen; Wang, Yue

    2012-07-27

    Somatic Copy Number Alterations (CNAs) in human genomes are present in almost all human cancers. Systematic efforts to characterize such structural variants must effectively distinguish significant consensus events from random background aberrations. Here we introduce Significant Aberration in Cancer (SAIC), a new method for characterizing and assessing the statistical significance of recurrent CNA units. Three main features of SAIC include: (1) exploiting the intrinsic correlation among consecutive probes to assign a score to each CNA unit instead of single probes; (2) performing permutations on CNA units that preserve correlations inherent in the copy number data; and (3) iteratively detecting Significant Copy Number Aberrations (SCAs) and estimating an unbiased null distribution by applying an SCA-exclusive permutation scheme. We test and compare the performance of SAIC against four peer methods (GISTIC, STAC, KC-SMART, CMDS) on a large number of simulation datasets. Experimental results show that SAIC outperforms peer methods in terms of larger area under the Receiver Operating Characteristics curve and increased detection power. We then apply SAIC to analyze structural genomic aberrations acquired in four real cancer genome-wide copy number data sets (ovarian cancer, metastatic prostate cancer, lung adenocarcinoma, glioblastoma). When compared with previously reported results, SAIC successfully identifies most SCAs known to be of biological significance and associated with oncogenes (e.g., KRAS, CCNE1, and MYC) or tumor suppressor genes (e.g., CDKN2A/B). Furthermore, SAIC identifies a number of novel SCAs in these copy number data that encompass tumor related genes and may warrant further studies. Supported by a well-grounded theoretical framework, SAIC has been developed and used to identify SCAs in various cancer copy number data sets, providing useful information to study the landscape of cancer genomes. Open-source and platform-independent SAIC software is

  16. Ultrashort echo-time MRI versus CT for skull aberration correction in MR-guided transcranial focused ultrasound: In vitro comparison on human calvaria.

    Science.gov (United States)

    Miller, G Wilson; Eames, Matthew; Snell, John; Aubry, Jean-François

    2015-05-01

    Transcranial magnetic resonance-guided focused ultrasound (TcMRgFUS) brain treatment systems compensate for skull-induced beam aberrations by adjusting the phase and amplitude of individual ultrasound transducer elements. These corrections are currently calculated based on a preacquired computed tomography (CT) scan of the patient's head. The purpose of the work presented here is to demonstrate the feasibility of using ultrashort echo-time magnetic resonance imaging (UTE MRI) instead of CT to calculate and apply aberration corrections on a clinical TcMRgFUS system. Phantom experiments were performed in three ex-vivo human skulls filled with tissue-mimicking hydrogel. Each skull phantom was imaged with both CT and UTE MRI. The MR images were then segmented into "skull" and "not-skull" pixels using a computationally efficient, threshold-based algorithm, and the resulting 3D binary skull map was converted into a series of 2D virtual CT images. Each skull was mounted in the head transducer of a clinical TcMRgFUS system (ExAblate Neuro, Insightec, Israel), and transcranial sonications were performed using a power setting of approximately 750 acoustic watts at several different target locations within the electronic steering range of the transducer. Each target location was sonicated three times: once using aberration corrections calculated from the actual CT scan, once using corrections calculated from the MRI-derived virtual CT scan, and once without applying any aberration correction. MR thermometry was performed in conjunction with each 10-s sonication, and the highest single-pixel temperature rise and surrounding-pixel mean were recorded for each sonication. The measured temperature rises were ∼ 45% larger for aberration-corrected sonications than for noncorrected sonications. This improvement was highly significant (p skull-induced ultrasound aberration corrections. Their results suggest that UTE MRI could be used instead of CT to implement such corrections on

  17. Chromosome aberration studies and microdosimetry with radiations of varying quality

    International Nuclear Information System (INIS)

    Grillmaier, R.E.; Bihy, L.; Menzel, H.G.; Schuhmacher, H.

    1978-01-01

    To investigate the biological effectivity of complex irradiation fields encountered in radiation protection and high LET radiation therapy and to find meaningful specification of radiation quality closely related to the biological effectivity, correlated chromosome aberration studies and microdosimetric investigations have been carried out using cyclotron produced collimated fast neutrons. Human lymphocytes have been irradiated at different dose levels in the direct beam and in different positions in the penumbra and the rates of acentric fragments and dicentrics have been determined. In identical positions microdosimetric measurements have been performed. The dose relationship of aberration rates after irradiation in the direct beam, the aberration rates observed in the penumbra and the microdosimetric quantities ysub(D), ysub(F) and y* are presented and their relations are discussed. Furthermore the dose relationship of chromosome aberrations induced by 60 Co-γ-rays has been investigated and used to establish the RBE dose relationship of cyclotron neutrons

  18. Retrospective Dose Reconstruction for Medical Diagnostic X Ray Workers in China using Stable Chromosome Aberrations

    International Nuclear Information System (INIS)

    Wang, Q.; Liu, P.; Li, J.; Wang, Q.; Tang, S.; Sun, M.; Wang, L.; Aoyama, T.; Sugahara, T.

    1998-01-01

    The chromosome rearrangements in medical diagnostic X ray workers were analysed using the G-banding technique and evaluated collectively in accumulated doses. A total of 9102 metaphase spreads from 84 medical diagnostic X ray workers and 17 controls were scored. The results showed that: (1) the frequencies of translocation, stable chromosome aberration and total aberration in X ray workers were significantly higher than those of controls (P < 0.05 γ 0.005), unstable chromosome aberrations (including dicentric and acentric aberration) tended upwards; (2) the main aberration in stable aberrations was reciprocal translocation; (3) the stable aberration predominated strikingly in total aberrations. The medical diagnostic X ray workers were divided into three groups according to calendar year of entry. The data showed that the frequencies of translocation, stable aberration and total aberration increased with earlier year of entry, especially in two groups who started working before 1970. According to the equation recommended by Straume et al, linear coefficient (α) in the linear quadratic model provided by Fernandez's experiment, their collective accumulation doses calculated were 0.53, 0.26 and 0.06 Gy for calendar year of entry before 1960, 1960-1969, and after 1970, in X ray workers, respectively. (author)

  19. Forging our understanding of lncRNAs in the brain.

    Science.gov (United States)

    Andersen, Rebecca E; Lim, Daniel A

    2018-01-01

    During both development and adulthood, the human brain expresses many thousands of long noncoding RNAs (lncRNAs), and aberrant lncRNA expression has been associated with a wide range of neurological diseases. Although the biological significance of most lncRNAs remains to be discovered, it is now clear that certain lncRNAs carry out important functions in neurodevelopment, neural cell function, and perhaps even diseases of the human brain. Given the relatively inclusive definition of lncRNAs-transcripts longer than 200 nucleotides with essentially no protein coding potential-this class of noncoding transcript is both large and very diverse. Furthermore, emerging data indicate that lncRNA genes can act via multiple, non-mutually exclusive molecular mechanisms, and specific functions are difficult to predict from lncRNA expression or sequence alone. Thus, the different experimental approaches used to explore the role of a lncRNA might each shed light upon distinct facets of its overall molecular mechanism, and combining multiple approaches may be necessary to fully illuminate the function of any particular lncRNA. To understand how lncRNAs affect brain development and neurological disease, in vivo studies of lncRNA function are required. Thus, in this review, we focus our discussion upon a small set of neural lncRNAs that have been experimentally manipulated in mice. Together, these examples illustrate how studies of individual lncRNAs using multiple experimental approaches can help reveal the richness and complexity of lncRNA function in both neurodevelopment and diseases of the brain.

  20. Chromosome painting in biological dosimetry: Semi-automatic system to score stable chromosome aberrations

    International Nuclear Information System (INIS)

    Garcia-Sagredo, J.M.; Vallcorba, I.; Sanchez-Hombre, M.C.; Ferro, M.T.; San Roman Cos-Gayon, C.; Santos, A.; Malpica, N.; Ortiz, C.

    1997-01-01

    From the beginning of the description of the procedure of chromosome painting by fluorescence in situ hybridization (FISH), it was thought its possible application to score induced chromosomal aberrations in radiation exposition. With chromosome painting it is possible to detect changes between chromosomes that has been validated in radiation exposition. Translocation scoring by FISH, contrarily to the unstable dicentrics, mainly detect stable chromosome aberrations that do not disappear, it allows the capability of quantify delayed acute expositions or chronic cumulative expositions. The large number of cells that have to be analyzed for high accuracy, specially when dealing with low radiation doses, makes it almost imperative to use an automatic analysis system. After validate translocation scoring by FISH in our, we have evaluated the ability and sensitivity to detect chromosomal aberrations by chromosome using different paint probes used, showing that any combination of paint probes can be used to score induced chromosomal aberrations. Our group has developed a FISH analysis that is currently being adapted for translocation scoring analysis. It includes systematic error correction and internal control probes. The performance tests carried out show that 9,000 cells can be analyzed in 10 hr. using a Sparc 4/370. Although with a faster computer, a higher throughput is expected, for large population screening or very low radiation doses, this performance still has to be improved. (author)

  1. Development of human brain structural networks through infancy and childhood.

    Science.gov (United States)

    Huang, Hao; Shu, Ni; Mishra, Virendra; Jeon, Tina; Chalak, Lina; Wang, Zhiyue J; Rollins, Nancy; Gong, Gaolang; Cheng, Hua; Peng, Yun; Dong, Qi; He, Yong

    2015-05-01

    During human brain development through infancy and childhood, microstructural and macrostructural changes take place to reshape the brain's structural networks and better adapt them to sophisticated functional and cognitive requirements. However, structural topological configuration of the human brain during this specific development period is not well understood. In this study, diffusion magnetic resonance image (dMRI) of 25 neonates, 13 toddlers, and 25 preadolescents were acquired to characterize network dynamics at these 3 landmark cross-sectional ages during early childhood. dMRI tractography was used to construct human brain structural networks, and the underlying topological properties were quantified by graph-theory approaches. Modular organization and small-world attributes are evident at birth with several important topological metrics increasing monotonically during development. Most significant increases of regional nodes occur in the posterior cingulate cortex, which plays a pivotal role in the functional default mode network. Positive correlations exist between nodal efficiencies and fractional anisotropy of the white matter traced from these nodes, while correlation slopes vary among the brain regions. These results reveal substantial topological reorganization of human brain structural networks through infancy and childhood, which is likely to be the outcome of both heterogeneous strengthening of the major white matter tracts and pruning of other axonal fibers. © The Author 2013. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  2. Optical clearing and fluorescence deep-tissue imaging for 3D quantitative analysis of the brain tumor microenvironment

    NARCIS (Netherlands)

    Lagerweij, Tonny; Dusoswa, Sophie A.; Negrean, Adrian; Hendrikx, Esther M.L.; de Vries, Helga E.; Kole, Jeroen; Garcia-Vallejo, Juan J.; Mansvelder, Huibert D; Vandertop, W. Peter; Noske, David P.; Tannous, Bakhos A.; Musters, René J P; van Kooyk, Yvette; Wesseling, Pieter; Zhao, Xi Wen; Wurdinger, Thomas

    2017-01-01

    Background: Three-dimensional visualization of the brain vasculature and its interactions with surrounding cells may shed light on diseases where aberrant microvascular organization is involved, including glioblastoma (GBM). Intravital confocal imaging allows 3D visualization of microvascular

  3. Evolution of the brain and phylogenetic development of Mrican ...

    African Journals Online (AJOL)

    Evolution of the brain and phylogenetic development of Mrican Bovidae. Henriette Oboussier. Zoological Institute and Museum, University of Hamburg. Evidence drawn from the study of 270 brains of 54 species and subspecies of African Bovidae makes it possible to base phylogenetic relationships on the similarities in the ...

  4. Relationship of DNA lesions and their repair to chromosomal aberration production

    International Nuclear Information System (INIS)

    Bender, M.A.

    1979-01-01

    Recent work on the roles of specific kinds of DNA lesions and their enzymatic repair systems in the production of chromosomal aberrations seems consistent with a simple molecular model of chromosomal aberrations formation. Evidence from experiments with the human repair-deficient genetic diseases xeroderma pigmentosom, ataxia telangiectasia, and Fanconi's anemia is reviewed in the light of the contributions to aberration production of single and double polynucleotide strand breaks, base damage, polynucleotide strand crosslinks, and pyrimidine cyclobutane dimers

  5. Relationship of DNA lesions and their repair to chromosomal aberration production

    Energy Technology Data Exchange (ETDEWEB)

    Bender, M.A.

    1979-01-01

    Recent work on the roles of specific kinds of DNA lesions and their enzymatic repair systems in the production of chromosomal aberrations seems consistent with a simple molecular model of chromosomal aberrations formation. Evidence from experiments with the human repair-deficient genetic diseases xeroderma pigmentosom, ataxia telangiectasia, and Fanconi's anemia is reviewed in the light of the contributions to aberration production of single and double polynucleotide strand breaks, base damage, polynucleotide strand crosslinks, and pyrimidine cyclobutane dimers.

  6. Low chromatic aberration hexapole for molecular state selection

    International Nuclear Information System (INIS)

    Ke, Yi; Deng, Xiao-Bing; Hu, Zhong-Kun

    2016-01-01

    In molecular beam state-selection experiments, the electrostatic hexapole acts as an optical lens, imaging molecules from the source to the focus. The molecular longitudinal velocity spread induces the phenomenon of chromatic aberration, which will reduce the state-selection purity. We propose a scheme which can effectively reduce the chromatic aberration by changing the hexapole voltage operating manner. The hexapole is already charged before molecules arrive at the entrance of the hexapole. When molecules are completely inside the hexapole, the voltage is switched off rapidly at an appropriate time. In this manner, faster molecules travel a longer hexapole focusing region than slower molecules. Therefore the focusing positions of molecules with different velocities become close. Numerical trajectory simulations of molecular state selection are carried out, and the results show that this low chromatic aberration hexapole can significantly improve the state purity from 46.2% to 87.0%. (paper)

  7. An electron microscope for the aberration-corrected era

    Energy Technology Data Exchange (ETDEWEB)

    Krivanek, O.L. [Nion Co., 1102 8th Street, Kirkland, WA 98033 (United States)], E-mail: krivanek.ondrej@gmail.com; Corbin, G.J.; Dellby, N.; Elston, B.F.; Keyse, R.J.; Murfitt, M.F.; Own, C.S.; Szilagyi, Z.S.; Woodruff, J.W. [Nion Co., 1102 8th Street, Kirkland, WA 98033 (United States)

    2008-02-15

    Improved resolution made possible by aberration correction has greatly increased the demands on the performance of all parts of high-end electron microscopes. In order to meet these demands, we have designed and built an entirely new scanning transmission electron microscope (STEM). The microscope includes a flexible illumination system that allows the properties of its probe to be changed on-the-fly, a third-generation aberration corrector which corrects all geometric aberrations up to fifth order, an ultra-responsive yet stable five-axis sample stage, and a flexible configuration of optimized detectors. The microscope features many innovations, such as a modular column assembled from building blocks that can be stacked in almost any order, in situ storage and cleaning facilities for up to five samples, computer-controlled loading of samples into the column, and self-diagnosing electronics. The microscope construction is described, and examples of its capabilities are shown.

  8. An electron microscope for the aberration-corrected era

    International Nuclear Information System (INIS)

    Krivanek, O.L.; Corbin, G.J.; Dellby, N.; Elston, B.F.; Keyse, R.J.; Murfitt, M.F.; Own, C.S.; Szilagyi, Z.S.; Woodruff, J.W.

    2008-01-01

    Improved resolution made possible by aberration correction has greatly increased the demands on the performance of all parts of high-end electron microscopes. In order to meet these demands, we have designed and built an entirely new scanning transmission electron microscope (STEM). The microscope includes a flexible illumination system that allows the properties of its probe to be changed on-the-fly, a third-generation aberration corrector which corrects all geometric aberrations up to fifth order, an ultra-responsive yet stable five-axis sample stage, and a flexible configuration of optimized detectors. The microscope features many innovations, such as a modular column assembled from building blocks that can be stacked in almost any order, in situ storage and cleaning facilities for up to five samples, computer-controlled loading of samples into the column, and self-diagnosing electronics. The microscope construction is described, and examples of its capabilities are shown

  9. γ-ray induced chromosome aberration in rabbit peripheral blood lymphocytes irradiated in partial and whole body and decline of aberration rate with time post-exposure

    International Nuclear Information System (INIS)

    Zhang Lianzhen; Deng Zhicheng; Wang Haiyan

    1997-01-01

    Te author presents the results of study on 60 Co γ-ray induced chromosome aberration in rabbits peripheral blood lymphocytes irradiated in partial and whole body and the aberration rate decrease with the time of post-exposure. The experiments included 5 groups, it was whole-body exposure group, partial-body exposure (abdomen and pelvic cavity) group, blood irradiation group in vitro and control group respectively. Radiation dose was 3.0 Gy delivered at rate of 0.5 Gy/min. The results show that it was no significant differences between whole body and in blood irradiation group. The chromosome aberration yield in whole body exposure group was higher than that in partial-body group and in the abdomen exposure group was higher than in that in the pelvic cavity irradiation; The chromosome aberration rate decreased with the time of post-exposure in partial and whole body by γ-ray irradiation

  10. Effects of SMILE and Trans-PRK on corneal higher order aberrations after myopic correction

    Directory of Open Access Journals (Sweden)

    Jiao Zhao

    2018-02-01

    Full Text Available AIM:To observe the effects of small incision lenticule extraction(SMILEand trans-epithelial photorefractive keratectomy(Trans-PRKon corneal horizontal coma, vertical coma, and spherical aberration and total higher order aberrations after refractive correction for myopia. METHODS: This was a prospective non-randomized cohort study. The cohort included 40 patients(80 eyeswith myopia, who received refraction correction surgery from December 2016 to February 2017 in Leshan Ophthalmic Center. Twenty patients(40 eyesreceived SMILE surgery and the other 20 patients(40 eyesreceived Trans-PRK surgery. Corneal aberrations were determined by a high-resolution Pentacam Scheimpflug camera before the surgery and at 1 and 3mo after the operation. Statistical analyses were performed using analysis of variance of repeated measures. RESULTS: At 1 and 3mo post-operation, the uncorrected visual acuity in both groups was better than or equal to the preoperative best corrected visual acuity. The preoperative corneal aberrations showed no significant difference between the two groups(P>0.05. Significantly higher aberration was found after the surgery in both groups(PP>0.05. Post-operation, horizontal and vertical coma had no significant difference between the two groups(P>0.05, while SMILE group showed lower spherical aberration and lower total higher order aberration than Trans-PRK group(PCONCLUSION: Both SMILE and Trans-PRK increase corneal aberration and their effects on horizontal and vertical coma are similar. However, SMILE has a minor influence on spherical aberration and total high order aberration than Trans-PRK.

  11. Development of a model for whole brain learning of physiology.

    Science.gov (United States)

    Eagleton, Saramarie; Muller, Anton

    2011-12-01

    In this report, a model was developed for whole brain learning based on Curry's onion model. Curry described the effect of personality traits as the inner layer of learning, information-processing styles as the middle layer of learning, and environmental and instructional preferences as the outer layer of learning. The model that was developed elaborates on these layers by relating the personality traits central to learning to the different quadrants of brain preference, as described by Neethling's brain profile, as the inner layer of the onion. This layer is encircled by the learning styles that describe different information-processing preferences for each brain quadrant. For the middle layer, the different stages of Kolb's learning cycle are classified into the four brain quadrants associated with the different brain processing strategies within the information processing circle. Each of the stages of Kolb's learning cycle is also associated with a specific cognitive learning strategy. These two inner circles are enclosed by the circle representing the role of the environment and instruction on learning. It relates environmental factors that affect learning and distinguishes between face-to-face and technology-assisted learning. This model informs on the design of instructional interventions for physiology to encourage whole brain learning.

  12. 'Love builds brains': representations of attachment and children's brain development in parenting education material.

    Science.gov (United States)

    Wall, Glenda

    2018-03-01

    A focus on early brain development has come to dominate expert child rearing advice over the past two decades. Recent scholars have noted a reinvigoration of the concept of attachment in this advice and changes in the ways that attachment is framed and understood. The extent to which the concept of attachment is drawn on, the way it is framed, and the consequences for mothers, families and parent-child relationships is examined through a discursive analysis of a current Canadian parental education campaign. Findings support the argument that attachment is receiving a great deal of attention in brain-based parenting education programmes as children's emotional development becomes increasingly prioritized. Attachment is presented as needing to be actively and continually built through expert-guided empathetic and responsive parental behaviour, and is framed as crucial for the development of brain pathways that promote emotional strength and self-regulation in children. Attachment-building is also presented as requiring highly intensive parenting that falls overwhelmingly to mothers. The parent-child relationship that is envisioned is one that is instrumental, lacking in affect and conducive to the creation of ideal self-regulating neo-liberal citizens. © 2017 Foundation for the Sociology of Health & Illness.

  13. Estimation and Compensation of aberrations in Spatial Light Modulators

    International Nuclear Information System (INIS)

    Arias, Augusto; Castaneda, Roman

    2011-01-01

    The spatial light modulator (SLM) Holoeye LC-R720 is based on LCoS (Liquid Crystal on Silicon) technology. Due to the induced curvatures on the silicon plate by the production process, there are static aberrations in the wave-fronts modified by the SLM. In order to calculate the aberrated wave-front we used phase-shifting interferometry, an optimization algorithm for far field propagation, and the geometric characterization of the focal spot along the caustic. Zernike polynomials were used for expanding and comparing the wave-fronts. The aberration compensation was carried out by displaying the conjugated transmittance on the SLM. The complexity of the experimental setup and the requirements of the digital processing of each estimation method were comparatively analyzed.

  14. Simultaneous correction of large low-order and high-order aberrations with a new deformable mirror technology

    Science.gov (United States)

    Rooms, F.; Camet, S.; Curis, J. F.

    2010-02-01

    A new technology of deformable mirror will be presented. Based on magnetic actuators, these deformable mirrors feature record strokes (more than +/- 45μm of astigmatism and focus correction) with an optimized temporal behavior. Furthermore, the development has been made in order to have a large density of actuators within a small clear aperture (typically 52 actuators within a diameter of 9.0mm). We will present the key benefits of this technology for vision science: simultaneous correction of low and high order aberrations, AO-SLO image without artifacts due to the membrane vibration, optimized control, etc. Using recent papers published by Doble, Thibos and Miller, we show the performances that can be achieved by various configurations using statistical approach. The typical distribution of wavefront aberrations (both the low order aberration (LOA) and high order aberration (HOA)) have been computed and the correction applied by the mirror. We compare two configurations of deformable mirrors (52 and 97 actuators) and highlight the influence of the number of actuators on the fitting error, the photon noise error and the effective bandwidth of correction.

  15. Nodular Hyperplasia Arising from the Lateral Aberrant Thyroid Tissue: A Case Report

    International Nuclear Information System (INIS)

    Jeong, Min Hye; Park, Jeong Seon; Lee, Young Jun

    2012-01-01

    The presence of aberrant thyroid tissue in the lateral neck is very rare. In addition, nodular hyperplasia in ectopic thyroid has rarely been reported. Due to the unusual location, the presence of lateral aberrant thyroid tissue could be misdiagnosed as a lymphadenopathy, neurogenic tumor, etc. We report on a case of nodular hyperplasia arising from the right lateral aberrant thyroid tissue.

  16. Chromosomal aberrations in Cynomolgus peripheral lymphocytes during and after fractionated whole-body γ-irradiation

    International Nuclear Information System (INIS)

    Guedeney, G.; Malarbet, J.L.; Doloy, M.T.

    1989-01-01

    Cynomolgus monkeys (Macaca fascicularis) were exposed to fractionated whole-body γ-irradiation at high and low dose rates for 4 or 5 weeks. The time-dependence of chromosomal aberrations was studied in relation to the number of lymphocytes during irradiation and after exposure for periods of up to about 600 days for chromosomal aberrations and 200 days for lymphocyte counts. Additivity of the daily effects on the number of chromosomal aberrations was observed during the exposures. Immediately after the end of the exposures the number of chromosomal aberrations decreased to reach low values. The disappearance of chromosomal aberrations seemed to be related to recovery of the lymphocyte counts. The data presented here emphasize the different kinetic patterns of chromosomal aberrations after fractionated and acute irradiation. (author)

  17. Optical clearing and fluorescence deep-tissue imaging for 3D quantitative analysis of the brain tumor microenvironment

    NARCIS (Netherlands)

    Lagerweij, Tonny; Dusoswa, Sophie A.; Negrean, Adrian; Hendrikx, Esther M. L.; de Vries, Helga E.; Kole, Jeroen; Garcia-Vallejo, Juan J.; Mansvelder, Huibert D.; Vandertop, W. Peter; Noske, David P.; Tannous, Bakhos A.; Musters, René J. P.; van Kooyk, Yvette; Wesseling, Pieter; Zhao, Xi Wen; Wurdinger, Thomas

    2017-01-01

    Three-dimensional visualization of the brain vasculature and its interactions with surrounding cells may shed light on diseases where aberrant microvascular organization is involved, including glioblastoma (GBM). Intravital confocal imaging allows 3D visualization of microvascular structures and

  18. Brain anomalies induced by gamma irradiation in prenatal period

    International Nuclear Information System (INIS)

    Schmidt, S.L.

    1992-01-01

    Gamma irradiation has been utilized in order to produce cortical and callosal abnormalities. We have also checked for the presence of the aberrant longitudinal bundle in the brains of mice born acallosal due to prenatal irradiation is also checked. Pregnant mice were exposed to gamma irradiation from a 6 0 Co source at 16, 17 and 19 days of gestational age (E 16, E 17 and E 19) with total doses of 2 Gy and 3 Gy. At 60 days postnatal the offspring of irradiated animals were intra cardiac perfused, the brains were removed from the cranio and cut into coronal or para sagittal sections. (author)

  19. Establishing working standards of chromosome aberrations analysis for biological dosimetry

    International Nuclear Information System (INIS)

    Bui Thi Kim Luyen; Tran Que; Pham Ngoc Duy; Nguyen Thi Kim Anh; Ha Thi Ngoc Lien

    2015-01-01

    Biological dosimetry is an dose assessment method using specify bio markers of radiation. IAEA (International Atomic Energy Agency) and ISO (International Organization for Standardization) defined that dicentric chromosome is specify for radiation, it is a gold standard for biodosimetry. Along with the documents published by IAEA, WHO, ISO and OECD, our results of study on the chromosome aberrations induced by radiation were organized systematically in nine standards that dealing with chromosome aberration test and micronucleus test in human peripheral blood lymphocytes in vitro. This standard addresses: the reference dose-effect for dose estimation, the minimum detection levels, cell culture, slide preparation, scoring procedure for chromosome aberrations use for biodosimetry, the criteria for converting aberration frequency into absorbed dose, reporting of results. Following these standards, the automatic analysis devices were calibrated for improving biological dosimetry method. This standard will be used to acquire and maintain accreditation of the Biological Dosimetry laboratory in Nuclear Research Institute. (author)

  20. Low level dose induced chromosome aberrations in human blood lymphocytes

    International Nuclear Information System (INIS)

    Pohl-Rueling, J.

    1992-01-01

    Unstable structural aberrations in chromosomes of human blood lymphocytes cannot be used as biological dosemeters in the low dose range, when extrapolating from high doses using a linear dose response, as required by the original formula of the dual radiation action theory. A survey is given of experimental dose-response curves of chromosome aberrations, obtained in investigations not only by this institute, in cooperation with many other laboratories, but also by various authors in different areas of the world. The results are not compatible with the predicted linear dose relationships at in vivo dose ranges up to 30 mGy.y -1 . The aberration frequencies rise sharply with dose within the normal environmental exposure up to about twice that level. At higher doses, aberration frequencies increase less rapidly and reach a plateau. Some in vitro experiments of various authors with higher doses of low LET radiations, up to about 400 mGy have found dose responses with steps. (author)

  1. Brain Imaging of Human Sexual Response : Recent Developments and Future Directions

    NARCIS (Netherlands)

    Ruesink, Gerben B; Georgiadis, Janniko R

    2017-01-01

    Purpose of Review: The purpose of this study is to provide a comprehensive summary of the latest developments in the experimental brain study of human sexuality, focusing on brain connectivity during the sexual response. Recent Findings: Stable patterns of brain activation have been established for

  2. Induction of chromosomal aberrations in human lymphocytes by fission neutrons

    International Nuclear Information System (INIS)

    Silva, Marcia Augusta da; Coelho, Paulo Rogerio Pinto; Bartolini, Paolo; Okazaki, Kayo

    2009-01-01

    Chromosome aberrations induced by sparsely ionizing radiation (low-LET) are well known and cytogenetic analyses of irradiated human lymphocytes have been widely applied to biological dosimetry. However, much less is known about chromosome aberrations induced by densely ionizing radiation (high LET), such as that of alpha particles or neutrons. Such particles induce DNA strand breaks, as well as chromosome breakage and rearrangements of high complexity. This damage is more localized and less efficiently repaired than after X- or γ-ray irradiation. This preferential production of complex aberrations by densely ionizing radiation is related to the unique energy deposition patterns, which produces highly localized multiple DNA damage at the chromosomal level. A better knowledge of the interactions between different types of radiation and cellular DNA is of importance, not only from the radiobiological viewpoint but also for dosimetric and therapeutic purposes. The objective of the present study was to analyse the cytogenetic effects of fission neutrons on peripheral blood lymphocytes in order to evaluate structural and numerical aberrations and number of cells in the different mitotic cycles. So, blood samples from five healthy donors, 22-25 years old, of both sexes, were irradiated in the Research Reactor IEA-R1 of our Institute (IPEN/CNEN-SP) with thermal and fast neutrons at doses of 0.2; 0.3; 0.5 and 1.0 Gy. The γ contribution to the total absorbed dose was about 30%. These doses were monitored by thermoluminescent dosemeters: LiF-600 (for neutrons) and LiF-700 (for γ-rays). The data concerning structural aberrations were evaluated with regard to three parameters: percentage of cells with aberrations, number of aberrations/cell and number of dicentric/cell. The cytogenetic results showed an increase in the three parameters after irradiation with neutrons, as a function of radiation dose. Apparently, there was no influence of neutrons on the kinetics of cellular

  3. Development of the blood-brain barrier: a historical point of view.

    Science.gov (United States)

    Ribatti, Domenico; Nico, Beatrice; Crivellato, Enrico; Artico, Marco

    2006-01-01

    Although there has been considerable controversy since the observation by Ehrlich more than 100 years ago that the brain did not take up dyes from the vascular system, the concept of an endothelial blood-brain barrier (BBB) was confirmed by the unequivocal demonstration that the passage of molecules from blood to brain and vice versa was prevented by endothelial tight junctions (TJs). There are three major functions implicated in the term "BBB": protection of the brain from the blood milieu, selective transport, and metabolism or modification of blood- or brain-borne substances. The BBB phenotype develops under the influence of associated brain cells, especially astrocytic glia, and consists of complex TJs and a number of specific transport and enzyme systems that regulate molecular traffic across the endothelial cells. The development of the BBB is a complex process that leads to endothelial cells with unique permeability characteristics due to high electrical resistance and the expression of specific transporters and metabolic pathways. This review article summarizes the historical background underlying our current knowledge of the cellular and molecular mechanisms involved in the development and maintenance of the BBB. (c) 2006 Wiley-Liss, Inc.

  4. Aberrations of chromosome 8 in myelodysplastic syndromes: Clinical and biological significance

    Directory of Open Access Journals (Sweden)

    Marisavljević Dragomir

    2006-01-01

    Full Text Available Introduction: Rearrangements of any single chromosome in human karyotype have been reported in patients with pMDS. Objective: To examine the role of aberrations of chromosome 8 in pathogenesis, clinical presentation and progression of myelodysplastic syndromes. Method: Cytogenetic analysis of bone marrow cells was carried out by direct method and by means of 24- and/or 48-hour unstimulated cell culture. Chromosomes were obtained by modified method of HG-bands. Results: On presentation, 109 out of 271 successfully karyotyped patients (40,2% had abnormal karyotypes. Among them, 22 patients (10.9% had aberrations of chromosome 8. Ten patients had trisomy 8 as "simple" aberration whilst additional three cases had trisomy 8 included in "complex" karyotypes (≥3 chromosomes. Cases with constitutional trisomy 8 mosaicism (CT8M were excluded using the chromosome analyses of PHA-stimulated blood cultures. On the contrary, monosomy (seven patients or deletion of chromosome 8 (two patients were exclusively found in "complex" karyotypes. During prolonged cytogenetic follow-up, trisomy 8 was not recorded in evolving karyotypes. In contrast, trisomy 8 disappeared in two cases during subsequent cytogenetic studies, i.e. 23 and 72 months from diagnosis, accompanied in one patient with complete hematological remission. No difference regarding age, sex, cytopenia, blood and marrow blast count or response to treatment was found between patients with trisomy 8 as the sole aberration compared to those with normal cytogenetics. Median survival of patients with trisomy 8 as the sole aberration was 27 months, as compared to 32 months in patients with normal cytogenetics (p=0.468, whilst median survival of patients with aberrations of chromosome 8 included in "complex" karyotypes was only 4 months. Conclusion: Aberrations of chromosome 8 are common in patients with pMDS. The presence of a clone with trisomy 8 is not always the sign of disease progression or poor

  5. Functional brain imaging across development.

    Science.gov (United States)

    Rubia, Katya

    2013-12-01

    The developmental cognitive neuroscience literature has grown exponentially over the last decade. This paper reviews the functional magnetic resonance imaging (fMRI) literature on brain function development of typically late developing functions of cognitive and motivation control, timing and attention as well as of resting state neural networks. Evidence shows that between childhood and adulthood, concomitant with cognitive maturation, there is progressively increased functional activation in task-relevant lateral and medial frontal, striatal and parieto-temporal brain regions that mediate these higher level control functions. This is accompanied by progressively stronger functional inter-regional connectivity within task-relevant fronto-striatal and fronto-parieto-temporal networks. Negative age associations are observed in earlier developing posterior and limbic regions, suggesting a shift with age from the recruitment of "bottom-up" processing regions towards "top-down" fronto-cortical and fronto-subcortical connections, leading to a more mature, supervised cognition. The resting state fMRI literature further complements this evidence by showing progressively stronger deactivation with age in anti-correlated task-negative resting state networks, which is associated with better task performance. Furthermore, connectivity analyses during the resting state show that with development increasingly stronger long-range connections are being formed, for example, between fronto-parietal and fronto-cerebellar connections, in both task-positive networks and in task-negative default mode networks, together with progressively lesser short-range connections, suggesting progressive functional integration and segregation with age. Overall, evidence suggests that throughout development between childhood and adulthood, there is progressive refinement and integration of both task-positive fronto-cortical and fronto-subcortical activation and task-negative deactivation, leading to

  6. Aberrant brain-stem morphometry associated with sleep disturbance in drug-naïve subjects with Alzheimer's disease

    Directory of Open Access Journals (Sweden)

    Lee JH

    2016-08-01

    Full Text Available Ji Han Lee,1 Won Sang Jung,2 Woo Hee Choi,3 Hyun Kook Lim4 1Washington University in St Louis, St Louis, MO, USA; 2Department of Radiology, 3Department of Nuclear Medicine, 4Department of Psychiatry, Saint Vincent Hospital, College of Medicine, The Catholic University of Korea, Suwon, South Korea Objective: Among patients with Alzheimer’s disease (AD, sleep disturbances are common and serious noncognitive symptoms. Previous studies of AD patients have identified deformations in the brain stem, which may play an important role in the regulation of sleep. The aim of this study was to further investigate the relationship between sleep disturbances and alterations in brain stem morphology in AD.Materials and methods: In 44 patients with AD and 40 healthy elderly controls, sleep disturbances were measured using the Neuropsychiatry Inventory sleep subscale. We employed magnetic resonance imaging-based automated segmentation tools to examine the relationship between sleep disturbances and changes in brain stem morphology.Results: Analyses of the data from AD subjects revealed significant correlations between the Neuropsychiatry Inventory sleep-subscale scores and structural alterations in the left posterior lateral region of the brain stem, as well as normalized brain stem volumes. In addition, significant group differences in posterior brain stem morphology were observed between the AD group and the control group.Conclusion: This study is the first to analyze an association between sleep disturbances and brain stem morphology in AD. In line with previous findings, this study lends support to the possibility that brain stem structural abnormalities might be important neurobiological mechanisms underlying sleep disturbances associated with AD. Further longitudinal research is needed to confirm these findings. Keywords: Alzheimer’s disease, sleep, brain stem, MRI, shape analysis

  7. Corneal Aberrations in Former Preterm Infants: Results From The Wiesbaden Prematurity Study.

    Science.gov (United States)

    Fieß, Achim; Schuster, Alexander K; Kölb-Keerl, Ruth; Knuf, Markus; Kirchhof, Bernd; Muether, Philipp S; Bauer, Jacqueline

    2017-12-01

    To compare corneal aberrations in former preterm infants to that of full-term infants. A prospective cross-sectional study was carried out measuring the corneal shape with Scheimpflug imaging in former preterm infants of gestational age (GA) ≤32 weeks and full-term infants with GA ≥37 weeks now being aged between 4 to 10 years. The main outcome measures were corneal aberrations including astigmatism (Zernike: Z2-2; Z22), coma (Z3-1; Z31), trefoil (Z3-3; Z33), spherical aberration (Z40) and root-mean square of higher-order aberrations (RMS HOA). Multivariable analysis was performed to assess independent associations of gestational age groups and of retinopathy of prematurity (ROP) occurrence with corneal aberrations adjusting for sex and age at examination. A total of 259 former full-term and 226 preterm infants with a mean age of 7.2 ± 2.0 years were included in this study. Statistical analysis revealed an association of extreme prematurity (GA ≤28 weeks) with higher-order and lower-order aberrations of the total cornea. Vertical coma was higher in extreme prematurity (P prematurity rather than with ROP occurrence.

  8. Measurement of specimen-induced aberrations of biological samples using phase stepping interferometry.

    Science.gov (United States)

    Schwertner, M; Booth, M J; Neil, M A A; Wilson, T

    2004-01-01

    Confocal or multiphoton microscopes, which deliver optical sections and three-dimensional (3D) images of thick specimens, are widely used in biology. These techniques, however, are sensitive to aberrations that may originate from the refractive index structure of the specimen itself. The aberrations cause reduced signal intensity and the 3D resolution of the instrument is compromised. It has been suggested to correct for aberrations in confocal microscopes using adaptive optics. In order to define the design specifications for such adaptive optics systems, one has to know the amount of aberrations present for typical applications such as with biological samples. We have built a phase stepping interferometer microscope that directly measures the aberration of the wavefront. The modal content of the wavefront is extracted by employing Zernike mode decomposition. Results for typical biological specimens are presented. It was found for all samples investigated that higher order Zernike modes give only a small contribution to the overall aberration. Therefore, these higher order modes can be neglected in future adaptive optics sensing and correction schemes implemented into confocal or multiphoton microscopes, leading to more efficient designs.

  9. Effects of long-term radiation exposure on chromosomal aberrations in radiological technologists

    International Nuclear Information System (INIS)

    Kumagai, Etsuko; Onomichi, Mitsukazu; Tanaka, Ryuji; Kumagai, Takashi; Sawada, Shozo.

    1990-01-01

    Chromosomal aberrations in the lymphocytes of radiation technologists (RT) were analyzed by the trypsin G-banding method to study the late effects of long-term exposure to low doses of radiation. Structural aberrations were identified in 384 (2.5%) of 15442 cells analyzed from 53 RT as compared to 177 (1.6%) of 11136 cells from 36 healthy controls. Stable aberrations were the most frequent in both groups and were either translocations or deletions. Unstable aberrations were mainly acentric fragments in both groups. The frequency of translocations and acentric fragments was significantly higher in the RT than in the controls and was highest in the RT over 50 years. The highest frequency observed in the >50 age group was attributed to the unknown for cumulative dose prior to introduction of film badges. Frequency of chromosomal aberrations correlated with the estimated dose from the film badges and years of experience of each RT based on the equation y=0.22+0.37D+4.35D 2 , where y is overall frequency of chromosomal aberrations and D is the estimated radiation dose in Sv. (author)

  10. MR imaging methods for assessing fetal brain development.

    Science.gov (United States)

    Rutherford, Mary; Jiang, Shuzhou; Allsop, Joanna; Perkins, Lucinda; Srinivasan, Latha; Hayat, Tayyib; Kumar, Sailesh; Hajnal, Jo

    2008-05-01

    Fetal magnetic resonance imaging provides an ideal tool for investigating growth and development of the brain in vivo. Current imaging methods have been hampered by fetal motion but recent advances in image acquisition can produce high signal to noise, high resolution 3-dimensional datasets suitable for objective quantification by state of the art post acquisition computer programs. Continuing development of imaging techniques will allow a unique insight into the developing brain, more specifically process of cell migration, axonal pathway formation, and cortical maturation. Accurate quantification of these developmental processes in the normal fetus will allow us to identify subtle deviations from normal during the second and third trimester of pregnancy either in the compromised fetus or in infants born prematurely.

  11. Identification of microRNA signature in different pediatric brain tumors.

    Science.gov (United States)

    Tantawy, Marwa; Elzayat, Mariam G; Yehia, Dina; Taha, Hala

    2018-01-01

    Understanding pediatric brain tumor biology is essential to help on disease stratification, and to find novel markers for early diagnosis. MicroRNA (miRNA) expression has been linked to clinical outcomes and tumor biology. Here, we aimed to detect the expression of different miRNAs in different pediatric brain tumor subtypes to discover biomarkers for early detection and develop novel therapies. Expression of 82 miRNAs was detected in 120 pediatric brain tumors from fixed-formalin paraffin-embedded tissues, low-grade glioma, high-grade glioma, ependymoma, and medulloblastoma, using quantitative real-time PCR. Low-expression of miR-221, miR-9, and miR-181c/d and over-expression of miR-101, miR-222, miR-139, miR-1827, and miR-34c was found in medulloblastoma; low expression of miR-10a and over-expression of miR-10b and miR-29a in ependymoma; low expression of miR-26a and overexpression of miR-19a/b, miR-24, miR-27a, miR- 584, and miR-527 in low-grade glioma. Cox regression showed differential miRNA expression between responders and non-responders. The most specific were miR-10a and miR-29a low expression in LGG non-responders, miR-135a and miR-146b over-expression in ependymoma non-responders, and miR-135b overexpression in medulloblastoma non-responders. MicroRNAs are differentially expressed in subtypes of brain tumors suggesting that they may help diagnosis. A greater understanding of aberrant miRNA in pediatric brain tumors may support development of novel therapies.

  12. Hartmann characterization of the PEEM-3 aberration-corrected X-ray photoemission electron microscope.

    Science.gov (United States)

    Scholl, A; Marcus, M A; Doran, A; Nasiatka, J R; Young, A T; MacDowell, A A; Streubel, R; Kent, N; Feng, J; Wan, W; Padmore, H A

    2018-05-01

    Aberration correction by an electron mirror dramatically improves the spatial resolution and transmission of photoemission electron microscopes. We will review the performance of the recently installed aberration corrector of the X-ray Photoemission Electron Microscope PEEM-3 and show a large improvement in the efficiency of the electron optics. Hartmann testing is introduced as a quantitative method to measure the geometrical aberrations of a cathode lens electron microscope. We find that aberration correction leads to an order of magnitude reduction of the spherical aberrations, suggesting that a spatial resolution of below 100 nm is possible at 100% transmission of the optics when using x-rays. We demonstrate this improved performance by imaging test patterns employing element and magnetic contrast. Published by Elsevier B.V.

  13. Circumflex coronary artery with aberrant origin and atherosclerosis

    International Nuclear Information System (INIS)

    Ozcan, E.; Bozlar, U.; Celik, T.; Tasar, M.

    2012-01-01

    Full text: Introduction: Circumflex (Cx) coronary artery congenital anomaly is reported to be less than 1% incidence. Coronary arteries with aberrant origin are more likely to have atherosclerosis according to some published literatures. Objectives and tasks: In this study we aim to present computed tomography (CT) angiography findings of a patient, who has Cx artery with aberrant origin and atherosclerotic. Materials and methods: 57-year-old woman without any symptoms who has risk factors to atherosclerosis was referred to our clinic for coronary CT angiography. Results: In CT angiography; we detected Cx coronary artery with aberrant origin (right sinus of valsalva) and retroaortic course. Also we saw intimal irregularities and calcified plaque causing severe narrowing in the proximal segment of artery. Right coronary and left anterior descendant arteries had mild atherosclerosis. Conclusion: Coroner CT angiography, which allows multiplanar imaging with high resolution, is an effective diagnostic tool for coronary artery disease, like not only congenital anomalies but also acquired atherosclerotic disease

  14. Spherical aberration correction with threefold symmetric line currents.

    Science.gov (United States)

    Hoque, Shahedul; Ito, Hiroyuki; Nishi, Ryuji; Takaoka, Akio; Munro, Eric

    2016-02-01

    It has been shown that N-fold symmetric line current (henceforth denoted as N-SYLC) produces 2N-pole magnetic fields. In this paper, a threefold symmetric line current (N3-SYLC in short) is proposed for correcting 3rd order spherical aberration of round lenses. N3-SYLC can be realized without using magnetic materials, which makes it free of the problems of hysteresis, inhomogeneity and saturation. We investigate theoretically the basic properties of an N3-SYLC configuration which can in principle be realized by simple wires. By optimizing the parameters of a system with beam energy of 5.5keV, the required excitation current for correcting 3rd order spherical aberration coefficient of 400 mm is less than 1AT, and the residual higher order aberrations can be kept sufficiently small to obtain beam size of less than 1 nm for initial slopes up to 5 mrad. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Language and reading development in the brain today: neuromarkers and the case for prediction.

    Science.gov (United States)

    Buchweitz, Augusto

    2016-01-01

    The goal of this article is to provide an account of language development in the brain using the new information about brain function gleaned from cognitive neuroscience. This account goes beyond describing the association between language and specific brain areas to advocate the possibility of predicting language outcomes using brain-imaging data. The goal is to address the current evidence about language development in the brain and prediction of language outcomes. Recent studies will be discussed in the light of the evidence generated for predicting language outcomes and using new methods of analysis of brain data. The present account of brain behavior will address: (1) the development of a hardwired brain circuit for spoken language; (2) the neural adaptation that follows reading instruction and fosters the "grafting" of visual processing areas of the brain onto the hardwired circuit of spoken language; and (3) the prediction of language development and the possibility of translational neuroscience. Brain imaging has allowed for the identification of neural indices (neuromarkers) that reflect typical and atypical language development; the possibility of predicting risk for language disorders has emerged. A mandate to develop a bridge between neuroscience and health and cognition-related outcomes may pave the way for translational neuroscience. Copyright © 2016 Sociedade Brasileira de Pediatria. Published by Elsevier Editora Ltda. All rights reserved.

  16. Aberrant PO2 values in proficiency testing.

    Science.gov (United States)

    Fonzi, C E; Clausen, J L; Mahoney, J

    1993-03-01

    We prospectively determined the frequency of aberrant vials of fluorocarbon/buffer used for proficiency testing of measurements of pH, PCO2, and PO2, using 20 duplicate vials from 12 lots of fluorocarbon/buffer and two arterial blood gas analyzers in eight reference laboratories. We defined aberrant vials as vials for which both duplicate measurements differed from the mean value of repeated measurements for the specific instrument (for each lot of testing materials) by > 0.04 for pH, > 10% of the mean or 3.0 mm Hg, whichever was greater, for PCO2; or > 10% of the mean or 6 mm Hg, whichever was greater, for PO2. Four of 1620 vials (0.25%) were aberrant, all based on PO2 measurements (range of mean values: pH, 7.181-7.631; PCO2, 12.7-65.9; PO2, 32.5-150.1) were 0.0055 for pH, 0.67 mm Hg for PCO2, and 1.65 mm Hg for PO2. Deliberate contamination of the fluorocarbon emulsion with room air, as might occur during sampling from the vial, indicated that only minor increases in PO2 (e.g., 1.0 mm Hg at PO2 of 56 mm Hg) occur when samples are aspirated. Larger increases in PO2 (mean 7.1 mm Hg at a PO2 of 66 mm Hg) occurred when the syringe samples were contaminated with room air. We conclude that isolated aberrant measurements of PO2 in blood gas proficiency testing attributable to vial contents can occur, but the frequency is very low.

  17. Chromosome aberrations analysis of Serbia population from 1985 to 1995

    International Nuclear Information System (INIS)

    Jovicic, D.; Markovic, B.; Milacic, S.; Joksic, G.

    1996-01-01

    After the accident of NE Chernobyl in May 1986, Chernobyl's fallout with unhomogeneous dispersion of radioactive material in atmosphere caused the difference in contamination of the Serbia territory. The highest contamination was found to be in region Uzice, and the lowest in the region Nis. Two groups of population from these regions were undergone chromosome aberration analysis during 1987, 1988 and 1989. year. The results of our examination show increased frequency of structural chromosome aberrations/dicentrics, rings, peri centric inversions and acentric/ in the Uzice population, especially in the 1987. year. In 1985 and 1995 year have not been found chromosome aberrations. 2 refs.; 1 figs.; 2 tabs

  18. Murine cytomegalovirus infection of neural stem cells alters neurogenesis in the developing brain.

    Directory of Open Access Journals (Sweden)

    Manohar B Mutnal

    2011-01-01

    Full Text Available Congenital cytomegalovirus (CMV brain infection causes serious neuro-developmental sequelae including: mental retardation, cerebral palsy, and sensorineural hearing loss. But, the mechanisms of injury and pathogenesis to the fetal brain are not completely understood. The present study addresses potential pathogenic mechanisms by which this virus injures the CNS using a neonatal mouse model that mirrors congenital brain infection. This investigation focused on, analysis of cell types infected with mouse cytomegalovirus (MCMV and the pattern of injury to the developing brain.We used our MCMV infection model and a multi-color flow cytometry approach to quantify the effect of viral infection on the developing brain, identifying specific target cells and the consequent effect on neurogenesis. In this study, we show that neural stem cells (NSCs and neuronal precursor cells are the principal target cells for MCMV in the developing brain. In addition, viral infection was demonstrated to cause a loss of NSCs expressing CD133 and nestin. We also showed that infection of neonates leads to subsequent abnormal brain development as indicated by loss of CD24(hi cells that incorporated BrdU. This neonatal brain infection was also associated with altered expression of Oct4, a multipotency marker; as well as down regulation of the neurotrophins BDNF and NT3, which are essential to regulate the birth and differentiation of neurons during normal brain development. Finally, we report decreased expression of doublecortin, a marker to identify young neurons, following viral brain infection.MCMV brain infection of newborn mice causes significant loss of NSCs, decreased proliferation of neuronal precursor cells, and marked loss of young neurons.

  19. Gene co-expression networks shed light into diseases of brain iron accumulation.

    Science.gov (United States)

    Bettencourt, Conceição; Forabosco, Paola; Wiethoff, Sarah; Heidari, Moones; Johnstone, Daniel M; Botía, Juan A; Collingwood, Joanna F; Hardy, John; Milward, Elizabeth A; Ryten, Mina; Houlden, Henry

    2016-03-01

    Aberrant brain iron deposition is observed in both common and rare neurodegenerative disorders, including those categorized as Neurodegeneration with Brain Iron Accumulation (NBIA), which are characterized by focal iron accumulation in the basal ganglia. Two NBIA genes are directly involved in iron metabolism, but whether other NBIA-related genes also regulate iron homeostasis in the human brain, and whether aberrant iron deposition contributes to neurodegenerative processes remains largely unknown. This study aims to expand our understanding of these iron overload diseases and identify relationships between known NBIA genes and their main interacting partners by using a systems biology approach. We used whole-transcriptome gene expression data from human brain samples originating from 101 neuropathologically normal individuals (10 brain regions) to generate weighted gene co-expression networks and cluster the 10 known NBIA genes in an unsupervised manner. We investigated NBIA-enriched networks for relevant cell types and pathways, and whether they are disrupted by iron loading in NBIA diseased tissue and in an in vivo mouse model. We identified two basal ganglia gene co-expression modules significantly enriched for NBIA genes, which resemble neuronal and oligodendrocytic signatures. These NBIA gene networks are enriched for iron-related genes, and implicate synapse and lipid metabolism related pathways. Our data also indicates that these networks are disrupted by excessive brain iron loading. We identified multiple cell types in the origin of NBIA disorders. We also found unforeseen links between NBIA networks and iron-related processes, and demonstrate convergent pathways connecting NBIAs and phenotypically overlapping diseases. Our results are of further relevance for these diseases by providing candidates for new causative genes and possible points for therapeutic intervention. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  20. Aberrant phenotypes in peripheral T cell lymphomas.

    Science.gov (United States)

    Hastrup, N; Ralfkiaer, E; Pallesen, G

    1989-01-01

    Seventy six peripheral T cell lymphomas were examined immunohistologically to test their reactivity with a panel of monoclonal antibodies against 11 T cell associated antigens (CD1-8, CD27, UCHL1, and the T cell antigen receptor). Sixty two (82%) lymphomas showed aberrant phenotypes, and four main categories were distinguished as follows: (i) lack of one or several pan-T cell antigens (49, 64% of the cases); (ii) loss of both the CD4 and CD8 antigens (11, 15% of the cases); (iii) coexpression of the CD4 and CD8 antigens (13, 17% of the cases); and (iv) expression of the CD1 antigen (eight, 11% of the cases). No correlation was seen between the occurrence of aberrant phenotypes and the histological subtype. It is concluded that the demonstration of an aberrant phenotype is a valuable supplement to histological assessment in the diagnosis of peripheral T cell lymphomas. It is recommended that the panel of monoclonal antibodies against T cell differentiation antigens should be fairly large, as apparently any antigen may be lost in the process of malignant transformation. Images Figure PMID:2469701

  1. The Role of Aberrant Salience and Self-Concept Clarity in Psychotic-Like Experiences

    Science.gov (United States)

    Cicero, David C.; Becker, Theresa M.; Martin, Elizabeth A.; Docherty, Anna R.; Kerns, John G.

    2013-01-01

    Most theories of psychotic-like experiences posit the involvement of social-cognitive mechanisms. The current research examined the relations between psychotic-like experiences and two social-cognitive mechanisms, high aberrant salience and low self-concept clarity. In particular, we examined whether aberrant salience, or the incorrect assignment of importance to neutral stimuli, and low self-concept clarity interacted to predict psychotic-like experiences. The current research included three large samples (n = 667, 724, 744) of participants and over-sampled for increased schizotypal personality traits. In all three studies, an interaction between aberrant salience and self-concept clarity was found such that participants with high aberrant salience and low self-concept clarity had the highest levels of psychotic-like experiences. In addition, aberrant salience and self-concept clarity interacted to predict a supplemental measure of delusions in Study 2. In Study 3, in contrast to low self-concept clarity, neuroticism did not interact with aberrant salience to predict psychotic-like experiences, suggesting that the relation between low self-concept clarity and psychosis may not be due to neuroticism. Additionally, aberrant salience and self-concept clarity did not interact to predict to other schizotypal personality disorder criteria, social anhedonia or trait paranoia, which suggests the interaction is specific to psychotic-like experiences. Overall, our results are consistent with several social-cognitive models of psychosis suggesting that aberrant salience and self-concept clarity might be important mechanisms in the occurrence of psychotic-like symptoms. PMID:22452775

  2. Modeling Early Postnatal Brain Growth and Development with CT: Changes in the Brain Radiodensity Histogram from Birth to 2 Years.

    Science.gov (United States)

    Cauley, K A; Hu, Y; Och, J; Yorks, P J; Fielden, S W

    2018-04-01

    The majority of brain growth and development occur in the first 2 years of life. This study investigated these changes by analysis of the brain radiodensity histogram of head CT scans from the clinical population, 0-2 years of age. One hundred twenty consecutive head CTs with normal findings meeting the inclusion criteria from children from birth to 2 years were retrospectively identified from 3 different CT scan platforms. Histogram analysis was performed on brain-extracted images, and histogram mean, mode, full width at half maximum, skewness, kurtosis, and SD were correlated with subject age. The effects of scan platform were investigated. Normative curves were fitted by polynomial regression analysis. Average total brain volume was 360 cm 3 at birth, 948 cm 3 at 1 year, and 1072 cm 3 at 2 years. Total brain tissue density showed an 11% increase in mean density at 1 year and 19% at 2 years. Brain radiodensity histogram skewness was positive at birth, declining logarithmically in the first 200 days of life. The histogram kurtosis also decreased in the first 200 days to approach a normal distribution. Direct segmentation of CT images showed that changes in brain radiodensity histogram skewness correlated with, and can be explained by, a relative increase in gray matter volume and an increase in gray and white matter tissue density that occurs during this period of brain maturation. Normative metrics of the brain radiodensity histogram derived from routine clinical head CT images can be used to develop a model of normal brain development. © 2018 by American Journal of Neuroradiology.

  3. Fetal MRI of pathological brain development

    International Nuclear Information System (INIS)

    Brugger, P.C.; Prayer, D.

    2006-01-01

    Because of the superior tissue contrast, high spatial resolution, and multiplanar capabilities, fetal magnetic resonance imaging (MRI) can depict fetal brain pathologies with high accuracy. Pathological fetal brain development may result from malformations or acquired conditions. Differentiation of these etiologies is important with respect to managing the actual pregnancy or counseling future pregnancies. As a widened ventricular system is a common hallmark of both maldevelopment and acquired conditions, it may cause problems in the differential diagnosis. Fetal MRI can provide detailed morphological information, which allows refinement of the diagnosis of ventricular enlargement in a large number of cases. Systematic work-up of morphological details that may be recognized on MR images provides an approach for achieving a correct diagnosis in cases of ventricle enlargement. (orig.) [de

  4. Influences of brain development and ageing on cortical interactive networks.

    Science.gov (United States)

    Zhu, Chengyu; Guo, Xiaoli; Jin, Zheng; Sun, Junfeng; Qiu, Yihong; Zhu, Yisheng; Tong, Shanbao

    2011-02-01

    To study the effect of brain development and ageing on the pattern of cortical interactive networks. By causality analysis of multichannel electroencephalograph (EEG) with partial directed coherence (PDC), we investigated the different neural networks involved in the whole cortex as well as the anterior and posterior areas in three age groups, i.e., children (0-10 years), mid-aged adults (26-38 years) and the elderly (56-80 years). By comparing the cortical interactive networks in different age groups, the following findings were concluded: (1) the cortical interactive network in the right hemisphere develops earlier than its left counterpart in the development stage; (2) the cortical interactive network of anterior cortex, especially at C3 and F3, is demonstrated to undergo far more extensive changes, compared with the posterior area during brain development and ageing; (3) the asymmetry of the cortical interactive networks declines during ageing with more loss of connectivity in the left frontal and central areas. The age-related variation of cortical interactive networks from resting EEG provides new insights into brain development and ageing. Our findings demonstrated that the PDC analysis of EEG is a powerful approach for characterizing the cortical functional connectivity during brain development and ageing. Copyright © 2010 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  5. DNA Repair Defects and Chromosomal Aberrations

    Science.gov (United States)

    Hada, Megumi; George, K. A.; Huff, J. L.; Pluth, J. M.; Cucinotta, F. A.

    2009-01-01

    Yields of chromosome aberrations were assessed in cells deficient in DNA doublestrand break (DSB) repair, after exposure to acute or to low-dose-rate (0.018 Gy/hr) gamma rays or acute high LET iron nuclei. We studied several cell lines including fibroblasts deficient in ATM (ataxia telangiectasia mutated; product of the gene that is mutated in ataxia telangiectasia patients) or NBS (nibrin; product of the gene mutated in the Nijmegen breakage syndrome), and gliomablastoma cells that are proficient or lacking in DNA-dependent protein kinase (DNA-PK) activity. Chromosomes were analyzed using the fluorescence in situ hybridization (FISH) chromosome painting method in cells at the first division post irradiation, and chromosome aberrations were identified as either simple exchanges (translocations and dicentrics) or complex exchanges (involving >2 breaks in 2 or more chromosomes). Gamma irradiation induced greater yields of both simple and complex exchanges in the DSB repair-defective cells than in the normal cells. The quadratic dose-response terms for both simple and complex chromosome exchanges were significantly higher for the ATM- and NBS-deficient lines than for normal fibroblasts. However, in the NBS cells the linear dose-response term was significantly higher only for simple exchanges. The large increases in the quadratic dose-response terms in these repair-defective cell lines points the importance of the functions of ATM and NBS in chromatin modifications to facilitate correct DSB repair and minimize the formation of aberrations. The differences found between ATM- and NBS-deficient cells at low doses suggest that important questions should with regard to applying observations of radiation sensitivity at high dose to low-dose exposures. For aberrations induced by iron nuclei, regression models preferred purely linear dose responses for simple exchanges and quadratic dose responses for complex exchanges. Relative biological effectiveness (RBE) factors of all of

  6. I. The theory of aberrations of quadrupole focusing arrays. II. Ion optical design of high quality extracted synchrotron beams with application to the bevatron

    Energy Technology Data Exchange (ETDEWEB)

    Meads, Jr, Philip Francis [Univ. of California, Berkeley, CA (United States). Applied Science and Technology

    1963-05-15

    In Part One they formulate in a general way the problem of analyzing and evaluating the aberrations of quadrupole magnet beam systems, and of characterizing the shapes and other properties of the beam envelopes in the neighborhood of foci. They consider all aberrations, including those due to misalignments and faulty construction, through third order in small parameters, for quadrupole beam systems. One result of this study is the development of analytic and numerical techniques for treating these aberrations, yielding useful expressions for the comparison of the aberrations of different beam systems. A second result of this study is a comprehensive digital computer program that determines the magnitude and nature of the aberrations of such beam systems. The code, using linear programming techniques, will adjust the parameters of a beam system to obtain specified optical properties and to reduce the magnitude of aberrations that limit the performance of that system. They examine numerically, in detail, the aberrations of two typical beam systems. In Part Two, they examine the problem of extracting the proton beam from a synchrotron of 'H' type magnet construction. They describe the optical studies that resulted in the design of an external beam from the Bevatron that is optimized with respect to linear, dispersive, and aberration properties and that uses beam elements of conservative design. The design of the beam is the result of the collaboration of many people representing several disciplines. They describe the digital computer programs developed to carry out detailed orbit studies which were required because of the existence of large second order aberrations in the beam.

  7. Ionizing radiation and frequency of chromosomal aberrations in exposed personnel

    International Nuclear Information System (INIS)

    Spasojevic-Tisma, Vera; Pavlovic, Snezana

    2008-01-01

    Full text: Frequencies of chromosomal aberrations in lymphocytes of peripheral blood were investigated among the observed groups of subjects who were exposed to low radiation doses (external exposure) in comparison with the control group. The first group of subjects is involved in the production of radioisotope technetium, whose accumulated work exposure time ranges between 3 and 30 years. The second group works on inspection of the medical X-ray equipment, whose accumulated work exposure time is between 2 and 34 years. The third group worked on decontamination of the terrain from depleted uranium radioactive ammunition. These workers were involved in mechanical removal of the surface soil layer to a depth of 50 cm. They were selected out of a group of professionals otherwise exposed to radiation from confined sources in their daily work. The accumulated work exposure of this group ranged from 2 to 34 years. The control group consisted of individuals not working in the ionizing radiation zone. The average yearly absorbed dose measured by TL dosimeters for all three observed groups did not exceed 2 mSv. The chromosomal aberrations were analyzed by a modified Moorhead method. The objective of the study was to establish the existence of differences in the frequencies of chromosomal aberrations change with respect to the source type, i.e. type of radioactive emission. Comparisons of the chromosomal changes in the observed groups revealed that the group working on technetium production had an increase in the frequency of chromosomal aberrations with respect to control. The aberrations found were of the acentric fragment and chromosomal break types. A comparison of the exposed groups between each other, no statistically significant differences in the numbers of chromosomal aberrations were found. Soil decontamination from depleted uranium did not contribute to the relative radiation risk, since it lasted only a few months, and was done by the professionals fully clothed

  8. Chromosome aberrations in cultured skin cells obtained from atomic bomb survivors

    International Nuclear Information System (INIS)

    Honda, Takeo; Sadamori, Naoki.

    1989-01-01

    Skin specimens were obtained from 11 A-bomb survivors, 10 of whom had been exposed at ≤2300 m from the hypocenter, and 7 non-exposed controls. There was a higher frequency (12%, 147/1222 cells) of chromosome aberrations in the exposed group compared with 1.2% (4/341 cells) in the control group. This suggests that aberrant cells are still present in the skin tissue 40 years or more after the bombing. Of 147 cells, 136 cells (91.3%) showed translocation of chromosome. Other aberrations, such as inversion, deletion, dicentric chromosome and acentric fragment, were observed in only 3.8%. These aberrant cells tended to be observed in A-bomb survivors exposed to high doses and with a history of severe acute symptoms. One hundred and twenty two (83%) of 136 aberrant cells were obtained from 3 A-bomb survivors, which has important implications for marked proliferation of specific clone cells. In an analysis by B-band staining technique for the 122 cells, band sites of break point were found to correspond to loci of protooncogenes, suggesting the involvement in aggressive proliferation of clone cells. (Namekawa, K)

  9. Changes of chromosome aberration rate and micronucleus frequency along with accumulated dose in continuously irradiated mice with a low dose rate of γ-rays

    International Nuclear Information System (INIS)

    Tanaka, Kimio; Izumi, Jun; Yanai, Takanori; Ichinohe, Kazuaki; Matsumoto, Tsuneya

    2003-01-01

    Chromosome aberrations in chronically exposed workers in nuclear facilities and medical radiologists have been reported. However chronological change of chromosome aberration rates along with accumulated dose has not been well studied. Chromosome aberrations and micronuclei in spleen lymphocytes were observed serially in mice continuously irradiated with a low dose rate of 20 mGy/day up to 400 days. Chromosome aberration rates were rapidly increased to 11.1% at 1 Gy, while micronucleus incidence increased at 5 Gy. After these doses their increase rates were saturated. Micronucleus incidence in bone marrow erythroblasts was higher than in spleen cells. These chronological changes of cytogenetic aberrations seem to be induced through a balance between developments of chromosome aberrations and micronuclei, and life span of spleen lymphocytes. These results will be helpful for risk assessment in low dose rate radiation exposure. (author)

  10. Development of the Young Brain

    Medline Plus

    Full Text Available ... brain involved in controlling our impulses, long range planning, judgment, decision making. Announcer: Imaging has shown by the time children reach the first grade the physical size of the brain is nearly complete. But what goes on within the brain is nothing short ...

  11. Mechanical origins of rightward torsion in early chick brain development

    Science.gov (United States)

    Chen, Zi; Guo, Qiaohang; Dai, Eric; Taber, Larry

    2015-03-01

    During early development, the neural tube of the chick embryo undergoes a combination of progressive ventral bending and rightward torsion. This torsional deformation is one of the major organ-level left-right asymmetry events in development. Previous studies suggested that bending is mainly due to differential growth, however, the mechanism for torsion remains poorly understood. Since the heart almost always loops rightwards that the brain twists, researchers have speculated that heart looping affects the direction of brain torsion. However, direct evidence is lacking, nor is the mechanical origin of such torsion understood. In our study, experimental perturbations show that the bending and torsional deformations in the brain are coupled and that the vitelline membrane applies an external load necessary for torsion to occur. Moreover, the asymmetry of the looping heart gives rise to the chirality of the twisted brain. A computational model and a 3D printed physical model are employed to help interpret these findings. Our work clarifies the mechanical origins of brain torsion and the associated left-right asymmetry, and further reveals that the asymmetric development in one organ can induce the asymmetry of another developing organ through mechanics, reminiscent of D'Arcy Thompson's view of biological form as ``diagram of forces''. Z.C. is supported by the Society in Science - Branco Weiss fellowship, administered by ETH Zurich. L.A.T acknowledges the support from NIH Grants R01 GM075200 and R01 NS070918.

  12. Alteration of Interictal Brain Activity in Patients with Temporal Lobe Epilepsy in the Left Dominant Hemisphere: A Resting-State MEG Study

    Directory of Open Access Journals (Sweden)

    Haitao Zhu

    2014-01-01

    Full Text Available Resting MEG activities were compared between patients with left temporal lobe epilepsy (LTLE and normal controls. Using SAMg2, the activities of MEG data were reconstructed and normalized. Significantly elevated SAMg2 signals were found in LTLE patients in the left temporal lobe and medial structures. Marked decreases of SAMg2 signals were found in the wide extratemporal lobe regions, such as the bilateral visual cortex. The study also demonstrated a positive correlation between the seizure frequency and brain activities of the abnormal regions after the multiple linear regression analysis. These results suggested that the aberrant brain activities not only were related to the epileptogenic zones, but also existed in other extratemporal regions in patients with LTLE. The activities of the aberrant regions could be further damaged with the increase of the seizure frequency. Our findings indicated that LTLE could be a multifocal disease, including complex epileptic networks and brain dysfunction networks.

  13. Development of the brain's functional network architecture.

    Science.gov (United States)

    Vogel, Alecia C; Power, Jonathan D; Petersen, Steven E; Schlaggar, Bradley L

    2010-12-01

    A full understanding of the development of the brain's functional network architecture requires not only an understanding of developmental changes in neural processing in individual brain regions but also an understanding of changes in inter-regional interactions. Resting state functional connectivity MRI (rs-fcMRI) is increasingly being used to study functional interactions between brain regions in both adults and children. We briefly review methods used to study functional interactions and networks with rs-fcMRI and how these methods have been used to define developmental changes in network functional connectivity. The developmental rs-fcMRI studies to date have found two general properties. First, regional interactions change from being predominately anatomically local in children to interactions spanning longer cortical distances in young adults. Second, this developmental change in functional connectivity occurs, in general, via mechanisms of segregation of local regions and integration of distant regions into disparate subnetworks.

  14. Aberrant Recapitulation of Developmental Program: Novel Target in Scleroderma

    Science.gov (United States)

    2015-12-01

    AWARD NUMBER: W81XWH-12-1-0472 TITLE: “Aberrant Recapitulation of Developmental Program: Novel Target in Scleroderma ” PRINCIPAL INVESTIGATOR...SUBTITLE Aberrant Recapitulation of Developmental Program: Novel Target in Scleroderma 5a. CONTRACT NUMBER W81XWH-12-1-0472 5b. GRANT NUMBER 5c. PROGRAM...SPONSOR/MONITOR’S REPORT NUMBER(S) 12. DISTRIBUTION / AVAILABILITY STATEMENT 13. SUPPLEMENTARY NOTES 14. ABSTRACT Fibrosis in scleroderma is associated

  15. Relationship between Concentrations of Lutein and StARD3 among Pediatric and Geriatric Human Brain Tissue.

    Directory of Open Access Journals (Sweden)

    Jirayu Tanprasertsuk

    Full Text Available Lutein, a dietary carotenoid, selectively accumulates in human retina and brain. While many epidemiological studies show evidence of a relationship between lutein status and cognitive health, lutein's selective uptake in human brain tissue and its potential function in early neural development and cognitive health have been poorly evaluated at a molecular level. The objective of this study was to evaluate the cross-sectional relationship between concentrations of brain lutein and StARD3 (identified as its binding protein in retinal tissue among three age groups: infants (1-4 months, n = 10, older adults (55-86 years, n = 8, and centenarians (98-105 years, n = 10. Brain lutein concentrations were analyzed by high-performance liquid chromatography and StARD3 levels were analyzed by Western Blot analysis. The strong relationship in infant brains (r = 0.75, P 0.05, seven of whom had mild cognitive impairment (MCI or dementia. These exploratory findings suggest an age-related decrease or abnormality of StARD3 activity in human brain. Given that StARD3 is also involved in cholesterol transportation, a process that is aberrant in neurodegenerative diseases, the potential protective function of lutein against these diseases remains to be explored.

  16. The effects of Psychotropic drugs On Developing brain (ePOD) study : methods and design

    NARCIS (Netherlands)

    Bottelier, Marco A; Schouw, Marieke L J; Klomp, Anne; Tamminga, Hyke G H; Schrantee, Anouk G M; Bouziane, Cheima; de Ruiter, Michiel B; Boer, Frits; Ruhé, Henricus G; Denys, D.; Rijsman, Roselyne; Lindauer, Ramon J L; Reitsma, Hans B; Geurts, Hilde M; Reneman, Liesbeth

    2014-01-01

    BACKGROUND: Animal studies have shown that methylphenidate (MPH) and fluoxetine (FLX) have different effects on dopaminergic and serotonergic system in the developing brain compared to the developed brain. The effects of Psychotropic drugs On the Developing brain (ePOD) study is a combination of

  17. The effects of psychotropic drugs on developing brain (ePOD) study: methods and design

    NARCIS (Netherlands)

    Bottelier, M.A.; Schouw, M.L.J.; Klomp, A.; Tamminga, G.H.; Schrantee, A.G.M.; Bouziane, C.; de Ruiter, M.B.; Boer, F.; Ruhé, H.G.; Denys, D.; Rijsman, R.; Lindauer, R.J.L.; Reitsma, H.B.; Geurts, H.M.; Reneman, L.

    2014-01-01

    Background: Animal studies have shown that methylphenidate (MPH) and fluoxetine (FLX) have different effects on dopaminergic and serotonergic system in the developing brain compared to the developed brain. The effects of Psychotropic drugs On the Developing brain (ePOD) study is a combination of

  18. The effects of Psychotropic drugs On Developing brain (ePOD) study : methods and design

    NARCIS (Netherlands)

    Bottelier, Marco A.; Schouw, Marieke L. J.; Klomp, Anne; Tamminga, Hyke G. H.; Schrantee, Anouk G. M.; Bouziane, Cheima; de Ruiter, Michiel B.; Boer, Frits; Ruhe, Henricus G.; Denys, Damiaan; Rijsman, Roselyne; Lindauer, Ramon J. L.; Reitsma, Hans B.; Geurts, Hilde M.; Reneman, Liesbeth

    2014-01-01

    Background: Animal studies have shown that methylphenidate (MPH) and fluoxetine (FLX) have different effects on dopaminergic and serotonergic system in the developing brain compared to the developed brain. The effects of Psychotropic drugs On the Developing brain (ePOD) study is a combination of

  19. The effects of Psychotropic drugs On Developing brain (ePOD) study: methods and design

    NARCIS (Netherlands)

    Bottelier, Marco A.; Schouw, Marieke L. J.; Klomp, Anne; Tamminga, Hyke G. H.; Schrantee, Anouk G. M.; Bouziane, Cheima; de Ruiter, Michiel B.; Boer, Frits; Ruhé, Henricus G.; Denys, Damiaan; Rijsman, Roselyne; Lindauer, Ramon J. L.; Reitsma, Hans B.; Geurts, Hilde M.; Reneman, Liesbeth

    2014-01-01

    Animal studies have shown that methylphenidate (MPH) and fluoxetine (FLX) have different effects on dopaminergic and serotonergic system in the developing brain compared to the developed brain. The effects of Psychotropic drugs On the Developing brain (ePOD) study is a combination of different

  20. Spherical aberration of an optical system and its influence on depth of focus.

    Science.gov (United States)

    Mikš, Antonín; Pokorný, Petr

    2017-06-10

    This paper analyzes the influence of spherical aberration on the depth of focus of symmetrical optical systems for imaging of axial points. A calculation of a beam's caustics is discussed using ray equations in the image plane and considering longitudinal spherical aberration as well. Concurrently, the influence of aberration coefficients on extremes of such a curve is presented. Afterwards, conditions for aberration coefficients are derived if the Strehl definition should be the same in two symmetrically placed planes with respect to the paraxial image plane. Such conditions for optical systems with large aberrations are derived with the use of geometric-optical approximation where the gyration diameter of the beam in given planes of the optical system is evaluated. Therefore, one can calculate aberration coefficients in such a way that the optical system generates a beam of rays that has the gyration radius in a given interval smaller than the defined limit value. Moreover, one can calculate the maximal depth of focus of the optical system respecting the aforementioned conditions.

  1. Outline of an ultracorrector compensating for all primary chromatic and geometrical aberrations of charged-particle lenses

    International Nuclear Information System (INIS)

    Rose, Harald

    2004-01-01

    A novel ultracorrector is outlined which compensates for the primary and secondary first-order chromatic aberrations and all third-order geometrical aberrations of electron optical systems with a straight axis. Owing to the imposed symmetry conditions on the fields and the paraxial fundamental rays, the corrector does not introduce aberrations with 2-fold symmetry. The chromatic aberrations are corrected by means of crossed electric magnetic quadrupoles while the third-order geometrical aberrations are eliminated by octopoles. By placing these elements at distinct positions within the corrector, it is possible to successively eliminate the third-order aberrations in such a way that each subsequent correction does not affect the aberrations corrected in the preceding correction steps

  2. Starting Smart: How Early Experiences Affect Brain Development. An Ounce of Prevention Fund Paper.

    Science.gov (United States)

    Ounce of Prevention Fund.

    Recent research has provided great insight into the impact of early experience on brain development. It is now believed that brain growth is highly dependent upon early experiences. Neurons allow communication and coordinated functioning among various brain areas. Brain development after birth consists of an ongoing process of wiring and rewiring…

  3. Development of the Young Brain

    Medline Plus

    Full Text Available ... the frontal part of the brain involved in controlling our impulses, long range planning, judgment, decision making. Announcer: Imaging has shown by the time children reach the first grade the physical size of the brain is nearly complete. But what goes on within the brain is nothing short ...

  4. Global analysis of aberrant pre-mRNA splicing in glioblastoma using exon expression arrays

    Directory of Open Access Journals (Sweden)

    Nixon Tamara J

    2008-05-01

    Full Text Available Abstract Background Tumor-predominant splice isoforms were identified during comparative in silico sequence analysis of EST clones, suggesting that global aberrant alternative pre-mRNA splicing may be an epigenetic phenomenon in cancer. We used an exon expression array to perform an objective, genome-wide survey of glioma-specific splicing in 24 GBM and 12 nontumor brain samples. Validation studies were performed using RT-PCR on glioma cell lines, patient tumor and nontumor brain samples. Results In total, we confirmed 14 genes with glioma-specific splicing; seven were novel events identified by the exon expression array (A2BP1, BCAS1, CACNA1G, CLTA, KCNC2, SNCB, and TPD52L2. Our data indicate that large changes (> 5-fold in alternative splicing are infrequent in gliomagenesis ( Conclusion While we observed some tumor-specific alternative splicing, the number of genes showing exclusive tumor-specific isoforms was on the order of tens, rather than the hundreds suggested previously by in silico mining. Given the important role of alternative splicing in neural differentiation, there may be selective pressure to maintain a majority of splicing events in order to retain glial-like characteristics of the tumor cells.

  5. Altered Intrinsic Pyramidal Neuron Properties and Pathway-Specific Synaptic Dysfunction Underlie Aberrant Hippocampal Network Function in a Mouse Model of Tauopathy.

    Science.gov (United States)

    Booth, Clair A; Witton, Jonathan; Nowacki, Jakub; Tsaneva-Atanasova, Krasimira; Jones, Matthew W; Randall, Andrew D; Brown, Jonathan T

    2016-01-13

    The formation and deposition of tau protein aggregates is proposed to contribute to cognitive impairments in dementia by disrupting neuronal function in brain regions, including the hippocampus. We used a battery of in vivo and in vitro electrophysiological recordings in the rTg4510 transgenic mouse model, which overexpresses a mutant form of human tau protein, to investigate the effects of tau pathology on hippocampal neuronal function in area CA1 of 7- to 8-month-old mice, an age point at which rTg4510 animals exhibit advanced tau pathology and progressive neurodegeneration. In vitro recordings revealed shifted theta-frequency resonance properties of CA1 pyramidal neurons, deficits in synaptic transmission at Schaffer collateral synapses, and blunted plasticity and imbalanced inhibition at temporoammonic synapses. These changes were associated with aberrant CA1 network oscillations, pyramidal neuron bursting, and spatial information coding in vivo. Our findings relate tauopathy-associated changes in cellular neurophysiology to altered behavior-dependent network function. Dementia is characterized by the loss of learning and memory ability. The deposition of tau protein aggregates in the brain is a pathological hallmark of dementia; and the hippocampus, a brain structure known to be critical in processing learning and memory, is one of the first and most heavily affected regions. Our results show that, in area CA1 of hippocampus, a region involved in spatial learning and memory, tau pathology is associated with specific disturbances in synaptic, cellular, and network-level function, culminating in the aberrant encoding of spatial information and spatial memory impairment. These studies identify several novel ways in which hippocampal information processing may be disrupted in dementia, which may provide targets for future therapeutic intervention. Copyright © 2016 Booth, Witton et al.

  6. Phase Aberration and Attenuation Effects on Acoustic Radiation Force-Based Shear Wave Generation.

    Science.gov (United States)

    Carrascal, Carolina Amador; Aristizabal, Sara; Greenleaf, James F; Urban, Matthew W

    2016-02-01

    Elasticity is measured by shear wave elasticity imaging (SWEI) methods using acoustic radiation force to create the shear waves. Phase aberration and tissue attenuation can hamper the generation of shear waves for in vivo applications. In this study, the effects of phase aberration and attenuation in ultrasound focusing for creating shear waves were explored. This includes the effects of phase shifts and amplitude attenuation on shear wave characteristics such as shear wave amplitude, shear wave speed, shear wave center frequency, and bandwidth. Two samples of swine belly tissue were used to create phase aberration and attenuation experimentally. To explore the phase aberration and attenuation effects individually, tissue experiments were complemented with ultrasound beam simulations using fast object-oriented C++ ultrasound simulator (FOCUS) and shear wave simulations using finite-element-model (FEM) analysis. The ultrasound frequency used to generate shear waves was varied from 3.0 to 4.5 MHz. Results: The measured acoustic pressure and resulting shear wave amplitude decreased approximately 40%-90% with the introduction of the tissue samples. Acoustic intensity and shear wave displacement were correlated for both tissue samples, and the resulting Pearson's correlation coefficients were 0.99 and 0.97. Analysis of shear wave generation with tissue samples (phase aberration and attenuation case), measured phase screen, (only phase aberration case), and FOCUS/FEM model (only attenuation case) showed that tissue attenuation affected the shear wave generation more than tissue aberration. Decreasing the ultrasound frequency helped maintain a focused beam for creation of shear waves in the presence of both phase aberration and attenuation.

  7. Studying frequency processing of the brain to enhance long-term memory and develop a human brain protocol.

    Science.gov (United States)

    Friedrich, Wernher; Du, Shengzhi; Balt, Karlien

    2015-01-01

    The temporal lobe in conjunction with the hippocampus is responsible for memory processing. The gamma wave is involved with this process. To develop a human brain protocol, a better understanding of the relationship between gamma and long-term memory is vital. A more comprehensive understanding of the human brain and specific analogue waves it uses will support the development of a human brain protocol. Fifty-eight participants aged between 6 and 60 years participated in long-term memory experiments. It is envisaged that the brain could be stimulated through binaural beats (sound frequency) at 40 Hz (gamma) to enhance long-term memory capacity. EEG recordings have been transformed to sound and then to an information standard, namely ASCII. Statistical analysis showed a proportional relationship between long-term memory and gamma activity. Results from EEG recordings indicate a pattern. The pattern was obtained through the de-codification of an EEG recording to sound and then to ASCII. Stimulation of gamma should enhance long term memory capacity. More research is required to unlock the human brains' protocol key. This key will enable the processing of information directly to and from human memory via gamma, the hippocampus and the temporal lobe.

  8. [Frequency of chromosome aberrations in residents of the Semipalatinsk Oblast].

    Science.gov (United States)

    Gubitskaia, E G; Akhmatullina, N B; Vsevolodov, E B; Bishnevskaia, S S; Sharipov, I K; Cherednichenko, O G

    1999-06-01

    Cytogenetic analysis of the population of the Beskaragai district of the Semipalatinsk oblast adjacent to the territory of the nuclear test site was conducted by means of an ecological genetic questionnaire and cytogenetic examination of metaphase chromosomes. An increase in the total mutation level in the region was observed. The frequency of chromosome aberrations among the population of the Beskaragai district (3.2%) was statistically significantly (about 1.5 times) higher than the background levels in the clear regions (from 1 to 2%). Furthermore, the frequency of aberrations in adolescents was comparable with that in the adults. The spectrum of chromosome aberrations pointed to a significant contribution of radiation component to the mutagenesis.

  9. Chronological changes in microRNA expression in the developing human brain.

    Directory of Open Access Journals (Sweden)

    Michael P Moreau

    Full Text Available MicroRNAs (miRNAs are endogenously expressed noncoding RNA molecules that are believed to regulate multiple neurobiological processes. Expression studies have revealed distinct temporal expression patterns in the developing rodent and porcine brain, but comprehensive profiling in the developing human brain has not been previously reported.We performed microarray and TaqMan-based expression analysis of all annotated mature miRNAs (miRBase 10.0 as well as 373 novel, predicted miRNAs. Expression levels were measured in 48 post-mortem brain tissue samples, representing gestational ages 14-24 weeks, as well as early postnatal and adult time points.Expression levels of 312 miRNAs changed significantly between at least two of the broad age categories, defined as fetal, young, and adult.We have constructed a miRNA expression atlas of the developing human brain, and we propose a classification scheme to guide future studies of neurobiological function.

  10. Basics about Babies' Brain Development = Los basicos del desarrollo del cerebro.

    Science.gov (United States)

    Southeastern Regional Vision for Education (SERVE), Tallahassee, FL.

    This brochure for parents, in English- and Spanish-language versions, provides facts about infants' brains and offers suggestions for parents to help their baby's development by providing experiences to stimulate neural development. The facts are: (1) a baby's brain needs many different experiences to be nourished, such as being talked or sung to…

  11. Canine urothelial carcinoma: genomically aberrant and comparatively relevant.

    Science.gov (United States)

    Shapiro, S G; Raghunath, S; Williams, C; Motsinger-Reif, A A; Cullen, J M; Liu, T; Albertson, D; Ruvolo, M; Bergstrom Lucas, A; Jin, J; Knapp, D W; Schiffman, J D; Breen, M

    2015-06-01

    Urothelial carcinoma (UC), also referred to as transitional cell carcinoma (TCC), is the most common bladder malignancy in both human and canine populations. In human UC, numerous studies have demonstrated the prevalence of chromosomal imbalances. Although the histopathology of the disease is similar in both species, studies evaluating the genomic profile of canine UC are lacking, limiting the discovery of key comparative molecular markers associated with driving UC pathogenesis. In the present study, we evaluated 31 primary canine UC biopsies by oligonucleotide array comparative genomic hybridization (oaCGH). Results highlighted the presence of three highly recurrent numerical aberrations: gain of dog chromosome (CFA) 13 and 36 and loss of CFA 19. Regional gains of CFA 13 and 36 were present in 97 % and 84 % of cases, respectively, and losses on CFA 19 were present in 77 % of cases. Fluorescence in situ hybridization (FISH), using targeted bacterial artificial chromosome (BAC) clones and custom Agilent SureFISH probes, was performed to detect and quantify these regions in paraffin-embedded biopsy sections and urine-derived urothelial cells. The data indicate that these three aberrations are potentially diagnostic of UC. Comparison of our canine oaCGH data with that of 285 human cases identified a series of shared copy number aberrations. Using an informatics approach to interrogate the frequency of copy number aberrations across both species, we identified those that had the highest joint probability of association with UC. The most significant joint region contained the gene PABPC1, which should be considered further for its role in UC progression. In addition, cross-species filtering of genome-wide copy number data highlighted several genes as high-profile candidates for further analysis, including CDKN2A, S100A8/9, and LRP1B. We propose that these common aberrations are indicative of an evolutionarily conserved mechanism of pathogenesis and harbor genes

  12. Genome-wide identification of significant aberrations in cancer genome

    Directory of Open Access Journals (Sweden)

    Yuan Xiguo

    2012-07-01

    Full Text Available Abstract Background Somatic Copy Number Alterations (CNAs in human genomes are present in almost all human cancers. Systematic efforts to characterize such structural variants must effectively distinguish significant consensus events from random background aberrations. Here we introduce Significant Aberration in Cancer (SAIC, a new method for characterizing and assessing the statistical significance of recurrent CNA units. Three main features of SAIC include: (1 exploiting the intrinsic correlation among consecutive probes to assign a score to each CNA unit instead of single probes; (2 performing permutations on CNA units that preserve correlations inherent in the copy number data; and (3 iteratively detecting Significant Copy Number Aberrations (SCAs and estimating an unbiased null distribution by applying an SCA-exclusive permutation scheme. Results We test and compare the performance of SAIC against four peer methods (GISTIC, STAC, KC-SMART, CMDS on a large number of simulation datasets. Experimental results show that SAIC outperforms peer methods in terms of larger area under the Receiver Operating Characteristics curve and increased detection power. We then apply SAIC to analyze structural genomic aberrations acquired in four real cancer genome-wide copy number data sets (ovarian cancer, metastatic prostate cancer, lung adenocarcinoma, glioblastoma. When compared with previously reported results, SAIC successfully identifies most SCAs known to be of biological significance and associated with oncogenes (e.g., KRAS, CCNE1, and MYC or tumor suppressor genes (e.g., CDKN2A/B. Furthermore, SAIC identifies a number of novel SCAs in these copy number data that encompass tumor related genes and may warrant further studies. Conclusions Supported by a well-grounded theoretical framework, SAIC has been developed and used to identify SCAs in various cancer copy number data sets, providing useful information to study the landscape of cancer genomes

  13. Cancer biomarkers defined by autoantibody signatures to aberrant O-glycopeptide epitopes

    DEFF Research Database (Denmark)

    Wandall, Hans H; Blixt, Ola; Tarp, Mads A

    2010-01-01

    Autoantibodies to cancer antigens hold promise as biomarkers for early detection of cancer. Proteins that are aberrantly processed in cancer cells are likely to present autoantibody targets. The extracellular mucin MUC1 is overexpressed and aberrantly glycosylated in many cancers; thus, we evalua...

  14. Impact of types of lymphocyte chromosomal aberrations on human cancer risk

    DEFF Research Database (Denmark)

    Hagmar, Lars; Strömberg, Ulf; Bonassi, Stefano

    2004-01-01

    The frequency of cells with structural chromosomal aberrations (CAs) in peripheral blood lymphocytes is the first genotoxicity biomarker that has shown an association with cancer risk. CAs are usually divided into chromosome-type (CSAs) and chromatid-type aberrations (CTAs), with different mechan...

  15. Melatonin in Pregnancy: Effects on Brain Development and CNS Programming Disorders.

    Science.gov (United States)

    Sagrillo-Fagundes, Lucas; Assunção Salustiano, Eugênia Maria; Yen, Philippe Wong; Soliman, Ahmed; Vaillancourt, Cathy

    2016-01-01

    Melatonin is an important neuroprotective factor and its receptors are expressed in the fetal brain. During normal pregnancy, maternal melatonin level increases progressively until term and is highly transferred to the fetus, with an important role in brain formation and differentiation. Maternal melatonin provides the first circadian signal to the fetus. This indolamine is also produced de novo and plays a protective role in the human placenta. In pregnancy disorders, both maternal and placental melatonin levels are decreased. Alteration in maternal melatonin level has been associated with disrupted brain programming with long-term effects. Melatonin has strong antioxidant protective effects directly and indirectly via the activation of its receptors. The fetal brain is highly susceptible to oxygenation variation and oxidative stress that can lead to neuronal development disruption. Based on that, several approaches have been tested as a treatment in case of pregnancy disorders and melatonin, through its neuroprotective effect, has been recently accepted against fetal brain injury. This review provides an overview about the protective effects of melatonin during pregnancy and on fetal brain development.

  16. Three-dimensional optical transfer functions in the aberration-corrected scanning transmission electron microscope.

    Science.gov (United States)

    Jones, L; Nellist, P D

    2014-05-01

    In the scanning transmission electron microscope, hardware aberration correctors can now correct for the positive spherical aberration of round electron lenses. These correctors make use of nonround optics such as hexapoles or octupoles, leading to the limiting aberrations often being of a nonround type. Here we explore the effect of a number of potential limiting aberrations on the imaging performance of the scanning transmission electron microscope through their resulting optical transfer functions. In particular, the response of the optical transfer function to changes in defocus are examined, given that this is the final aberration to be tuned just before image acquisition. The resulting three-dimensional optical transfer functions also allow an assessment of the performance of a system for focal-series experiments or optical sectioning applications. © 2014 The Authors Journal of Microscopy © 2014 Royal Microscopical Society.

  17. Stable and unstable chromosomal aberrations in workers at nuclear waste repository

    International Nuclear Information System (INIS)

    Hadjidekova, V.; Atanasova, P.; Iovchev, M.; Agova, S.

    2004-01-01

    A cytogenetic analysis of chromosomal aberrations was performed on 15 workers from final nuclear waste repository 'Novi Han'. The frequency of chromosomal aberrations were estimated in peripheral blood lymphocytes by conventional staining with Giemza and fluorescent in situ hybridization staining (FISH) using DNA specific probes. The results are compared with a control group from the administrative staff of the radioactive storage. All persons were interviewed by a special questionnaire list for professional, medical, and social status. The comparison of the results does not show increase of the frequency of unstable chromosomal aberrations detected by conventional staining. The frequency of stable chromosomal aberrations detected by FISH were significantly higher in workers group than in controls, although the statistical significance is low. The results show that FISH test is found to be more sensitive than conventional chromosomal analysis as a cytogenetic monitor test of the occupationally exposed subjects. (authors)

  18. Non-linear character of dose dependences of chromosome aberration frequency in radiation-damaged root

    International Nuclear Information System (INIS)

    Kravets, E.A.; Berezhnaya, V.V.; Sakada, V.I.; Rashidov, N.M.; Grodzinskij, D.M.; Kravets, E.A.; Berezhnaya, V.V.; Sakada, V.I.; Rashidov, N.M.; Grodzinskij, D.M.

    2012-01-01

    The dose dependences of the aberrant anaphases in the root meristem in 48 hours after the irradiation have non-linear character and a plateau in the region about 6-8 Gy. The plateau indicates the activation of recovery processes. In the plateau range, the level of damages for this genotype is 33% for aberrant anaphases (FAA), 2.3 aberrations per aberrant anaphase (A/AC), and 0.74 aberrations for the total number of anaphases. At 10 Gy, the dose curve forms the exponential region caused by the involvement of the large number of new cells with unrepaired damages in the mutation process. The increase of A/AC to 1.1 indicate the ''criticality'' of the meristem radiation damage.

  19. Descriptive evaluation of chromosome aberrations in blood lymphocytes due to gamma-irradiation

    International Nuclear Information System (INIS)

    Medina III, F.S.; Gregorio, J.S.; Vinoya, P.C.; Panlaque, C.A.

    1983-01-01

    To induce and evaluate the effect of radiation among Filipinos, frequencies and types of ν-ray induced chromosome aberrations were studied with peripheral lymphocytes from 19 donors. Peripheral blood samples were irradiated at 0 Gray, 500 mGy, 1 Gy, 2 Gy, 3 Gy and 4 Gy. Irradiated blood samples were cultured by the same standard technique as that commonly used for human blood lymphocytes. Our observations showed that irradiation causes chromosomal aberration similar to effects observed in Caucasians. Our study confirm that irradiation causes an increase of the chromosome aberrations types normally found in the control (gaps, chromatid breaks and chromosome fragments) and can induce aberrations which are rarely observed in non-exposed individual (deletions, translocations, polycentrics, rings, and despiralizations). (author)

  20. Chromosome aberration frequency in blood lymphocytes of animals with 239Pu lung burdens

    International Nuclear Information System (INIS)

    Brooks, A.L.; LaBauve, R.J.; McClellan, R.O.; Jensen, D.A.

    1976-01-01

    Other investigators have suggested a causal relationship between accidental 239 Pu exposures in man and the presence of chromosome aberrations in blood lymphocytes. For experimental assessment of this relationship, 16 rhesus monkeys and 171 Chinese hamsters were exposed to 239 PuO 2 aerosols and an additional five hamsters were injected with 239 Pu citrate, and the frequency of aberrations in blood lymphocyte was determined. Hamsters with the highest lung burden had a median survival time of about 80 days. No deaths occurred in any of the other treated hamsters or monkeys by 250 days after 239 Pu inhalation. Hamsters sacrificed at 30 days showed an increase in chromosome aberration frequency with increasing dose to lungs. By 120 days after inhalation, the aberration frequency in the controls was 0.012. The frequency in animals with doses that produced significant life shortening had decreased to 0.018 and to 0.032 aberration/cell in animals with lower doses. At 380 days after injection of 2 nCi of 239 Pu citrate per gram of body weight, hamster lymphocytes had an aberration frequency of 0.048 aberration/cell. The level of chromosome damage in the 239 PuO 2 -exposed monkeys at 30 and 90 days after inhalation was not different from that observed in controls. Possible reasons for differences between the experimental animal observations and findings in man are discussed

  1. Spatio-temporal regulation of circular RNA expression during porcine embryonic brain development

    DEFF Research Database (Denmark)

    Venø, Morten T; Hansen, Thomas B; Venø, Susanne T

    2015-01-01

    BACKGROUND: Recently, thousands of circular RNAs (circRNAs) have been discovered in various tissues and cell types from human, mouse, fruit fly and nematodes. However, expression of circRNAs across mammalian brain development has never been examined. RESULTS: Here we profile the expression of circ......RNA in five brain tissues at up to six time-points during fetal porcine development, constituting the first report of circRNA in the brain development of a large animal. An unbiased analysis reveals a highly complex regulation pattern of thousands of circular RNAs, with a distinct spatio-temporal expression...... are functionally conserved between mouse and human. Furthermore, we observe that "hot-spot" genes produce multiple circRNA isoforms, which are often differentially expressed across porcine brain development. A global comparison of porcine circRNAs reveals that introns flanking circularized exons are longer than...

  2. Explanation of test and assessment of chromosomal aberrations on occupational health examinations for radiation workers

    International Nuclear Information System (INIS)

    Lu Yumin; Fu Baohua; Han Lin; Wang Xi'ai; Zhao Fengling

    2012-01-01

    Test and Assessment of Chromosomal Aberrations on Occupational Health Examinations for Radiation Workers was formulated for standardizing analysis and outcome assessment of chromosomal aberrations on occupational health examinations for radiation workers. In order to provide experimental and theoretical basis for implementation and extension of this standard, this paper interpreted the standard comprehensively, including some existed problems that methods on detection and outcome assessment of chromosomal aberrations is not unified in different laboratories in China, and related criteria,laws and regulations at home and abroad are not fit for the detection of chromosomal aberrations for radiation workers very well; some introduction on methods of chromosomal slide preparation, discriminant analysis and outcome assessment of chromosomal aberration; and some influencing factors in the quality of chromosomal aberration detection. (authors)

  3. Development of I-123-labeled amines for brain studies: localization of I-123 iodophenylalkyl amines in rat brain

    International Nuclear Information System (INIS)

    Winchell, H.S.; Baldwin, R.M.; Lin, T.H.

    1980-01-01

    Localization in rat brain of forty iodophenylalkyl amines labeled with I-123 was evaluated in an attempt to develop I-123-labeled amines useful for brain studies. For the amines studied, the highest activity in brain and the brain-to-blood activity ratios ranked p > m > o as related to iodine position on the benzene ring: for alkyl groups the rank order was α-methylethyl > ethyl > methyl > none; for N additions it was single lipophilic group > H > two lipophilic groups. It is suggested that introduction of a halogen into the ring structure of many amines results in greater concentration of the agent in brain than is seen with the nonhalogenated parent compound. The agent N-isopropyl-p-iodoamphetamine was chosen for further study because, in the rat, it showed high brain activity (1.57%/g) and brain-blood ratio (12.6) at 5 min

  4. Automatic phase aberration compensation for digital holographic microscopy based on deep learning background detection.

    Science.gov (United States)

    Nguyen, Thanh; Bui, Vy; Lam, Van; Raub, Christopher B; Chang, Lin-Ching; Nehmetallah, George

    2017-06-26

    We propose a fully automatic technique to obtain aberration free quantitative phase imaging in digital holographic microscopy (DHM) based on deep learning. The traditional DHM solves the phase aberration compensation problem by manually detecting the background for quantitative measurement. This would be a drawback in real time implementation and for dynamic processes such as cell migration phenomena. A recent automatic aberration compensation approach using principle component analysis (PCA) in DHM avoids human intervention regardless of the cells' motion. However, it corrects spherical/elliptical aberration only and disregards the higher order aberrations. Traditional image segmentation techniques can be employed to spatially detect cell locations. Ideally, automatic image segmentation techniques make real time measurement possible. However, existing automatic unsupervised segmentation techniques have poor performance when applied to DHM phase images because of aberrations and speckle noise. In this paper, we propose a novel method that combines a supervised deep learning technique with convolutional neural network (CNN) and Zernike polynomial fitting (ZPF). The deep learning CNN is implemented to perform automatic background region detection that allows for ZPF to compute the self-conjugated phase to compensate for most aberrations.

  5. Chromosome aberrations induced by 135 MeV of carbon and neon beams by PRC

    International Nuclear Information System (INIS)

    Ohara, Hiroshi; Minamihisamatu, Masako; Kanai, Tatsuaki; Eguchi-Kasai, Kiyomi; Itsukaichi, Hiromi; Fukutsu, Kumiko; Yatagai, Fumio; Sato, Kohki.

    1993-01-01

    Radiation-induced chromosome aberration can be an indicator of the radiation lesions in irradiated cells. Many studies on chromosome aberration induced by X-ray and γ - ray have indicated that the dose response of the aberration can be fitted to a quadratic equation, Y = αD + βD 2 , and it becomes linear as the LET of beams increases. The main subject of this study was some quantification of chromosomal aberration induced by 135 MeV/n carbon and neon beams produced by the RRC, the operation of which increasingly became useful for the studies on heavy ion biology. The results will meet with some of the radiobiological features connected to the specific action of charged particles. The materials used, the experimental method and the results are reported. Four curves of the dose response for the production of dicentric and ring types of aberration induced by carbon and neon beams and four different dose average LETs are given. Aberration production rate became higher as LET increased. Chromosome aberration can be quantified as an indicator of radiation lesions in the case of high LET particle radiation. (K.I.)

  6. Influence of atmospheric turbulence on the energy focusability of Gaussian beams with spherical aberration

    International Nuclear Information System (INIS)

    Deng, Jinping; Ji, Xiaoling

    2014-01-01

    By using the four-dimensional (4D) computer code of the time-dependent propagation of laser beams through atmospheric turbulence, the influence of atmospheric turbulence on the energy focusability of Gaussian beams with spherical aberration is studied in detail, where the mean-squared beam width, the power in the bucket (PIB), the β parameter and the energy Strehl ratio are taken as the characteristic parameters. It is shown that turbulence results in beam spreading, and the effect of spherical aberration on the beam spreading decreases due to turbulence. Gaussian beams with negative spherical aberration are more affected by turbulence than those with positive spherical aberration. For the negative spherical aberration case, the focus position moves to the source plane due to turbulence. It is mentioned that the influence of turbulence on the energy focusability defined by a certain energy (i.e. PIB = 63%) is very heavy when the negative spherical aberration is very heavy. On the other hand, the influence of turbulence on the energy focusability defined by the energy within a given bucket radius (i.e. mean-squared beam width) is heaviest when a certain negative spherical aberration coefficient is adopted. (papers)

  7. Structural brain abnormalities in early onset first-episode psychosis

    DEFF Research Database (Denmark)

    Pagsberg, A K; Baaré, William Frans Christian; Raabjerg Christensen, A M

    2007-01-01

    BACKGROUND: Brain morphometry in children and adolescents with first-episode psychosis offer a unique opportunity for pathogenetic investigations. METHODS: We compared high-resolution 3D T1-weighted magnetic resonance images of the brain in 29 patients (schizophrenia, schizotypal disorder...... that schizophrenia patients (n = 15) had significantly larger lateral ventricles as compared to controls. Duration and dose of antipsychotics correlated negatively with global gray matter volume in minimally medicated patients (n = 18). CONCLUSION: Findings of white matter changes and enlarged lateral ventricles...... already at illness onset in young schizophrenia spectrum patients, suggests aberrant neurodevelopmental processes in the pathogenesis of these disorders. Gray matter volume changes, however, appear not to be a key feature in early onset first-episode psychosis....

  8. Chromosome aberrations as a biological dosimeter in Thorotrast patients: dosimetric problems

    International Nuclear Information System (INIS)

    Kemmer, W.; Steinstraesser, A.; Muth, H.

    1979-01-01

    The results of chromosome aberration analyses in 68 Thorotrast patients are discussed. In all patients dicentric chromosome aberrations were found but the chromosome aberration rate neither corresponds with the calculated whole body activity or the estimated absorbed dose in the organs of the RHS nor with the radium-224-equivalent value calculated from the radon-220 activity measured in the expired air. From x-ray examinations and histologic studies of lymph nodes the conclusion is drawn that the microdose absorbed from one lymphocyte is not in relation to the mean absorbed RHS dose, calculated from biophysical measurements

  9. Longitudinal brain development in extremely preterm newborns

    NARCIS (Netherlands)

    Kersbergen, K.J.

    2015-01-01

    To unravel the pathophysiology underlying the large percentage of preterm born infants that will demonstrate neurodevelopmental impairments during childhood, a better understanding of brain development during what would have been the third trimester of pregnancy is needed. The aim of this thesis was

  10. Chromosome aberration assays in barley (Hordeum vulgare)

    Energy Technology Data Exchange (ETDEWEB)

    Constantin, M J [Univ. of Tennessee, Knoxville; Nilan, R A

    1982-01-01

    Barley is an exceellent organism for studies of induced chromosome aberrations because of its few (2n = 2x = 14) relatively large chromosomes. Root-tip and shoot-tip cells have been used extensively for the study of ionizing radiation-induced chromosome aberrations. The general procedures are well known, the technology is simple and easy to learn, and the assays are relatively quick and inexpensive. Both root tips and shoot tips can be used for the study of chemical mutagens as well as ionizing radiations. Pollen mother cells are well suited for studying the effects of mutagens on meiotic chromosomes. The literature review for the Gene-Tox Program reported on 61 chemicals tested for their effects on barley chromosomes. Of these, 90% were reported to be either positive or positive dose-related, while 7% were negative and 3% were questionable. Barley assays based on chromosomal aberrations are useful to detect the clastogenic potency of chemicals under laboratory conditions. Indications are that the data from barley can be used to corroborate data obtained from other organisms. Among the classes of chemicals assayed were: alcohols and phenols; alkaloids; epoxides; alkyl sulfates; amides and sulfonamides; aromatic amines; aryl halides; aziridines; alkenes; carbamates; hydroazides; nitroaromatics; nitrosamides; nitrosources; phenothiazines; and polycyclic aromatic hydrocarbons.

  11. Study of chromosome aberrations on the workers occupationally exposed to thorium and rare earth mixed dust

    International Nuclear Information System (INIS)

    Zhang Wei; Wang Chunyan; Lv Huiming; Zhang Cuilan; Hao Shuxia; Su Xu; Jia Kejun; Liu Yufei

    2008-01-01

    Objective: To study the effect of thorium and rare earth mixed dust on chromosome aberrations in the lymphocytes of occupational exposed workers. Methods: Analyses of unstable chromosome aberrations on 53 occupational exposed workers and 58 control workers were carried out by the conventional Giemsa staining method. Fluorescence in situ hybridization method was performed to analyze the chromosome stable aberrations on 10 occupational exposed workers and l0 control workers. Results: The frequencies of chromosomal aberration cells, dicentrics plus rings, total aberrations in exposed workers were significantly higher than those in controls. No significant difference was found in the frequency of acentric aberrations between exposed and non-exposed workers. No significant difference was found in the frequency of translocations between exposed and non-exposed workers. Conclusions: Chronically occupational exposure to thorium and rare earth mixed dust can increase the induction of unstable chromosome aberration, but the increase of stable chromosome aberrations (translocation) can not be observed. (authors)

  12. THE IMPACT OF POVERTY ON THE DEVELOPMENT OF BRAIN NETWORKS

    Directory of Open Access Journals (Sweden)

    Sebastian J Lipina

    2012-08-01

    Full Text Available Although the study of brain development in non-human animals is an old one, recent imaging methods have allowed non-invasive studies of the grey and white matter of the human brain over the lifespan. Classic animal studies show clearly that impoverished environments reduce cortical grey matter in relation to complex environments and cognitive and imaging studies in humans suggest which networks may be most influenced by poverty. Studies have been clear in showing the plasticity of many brain systems, but whether sensitivity to learning differs over the lifespan and for which networks is still unclear. A major task for current research is a successful integration of these methods to understand how development and learning shape the neural networks underlying achievements in literacy, numeracy, and attention. This paper seeks to foster further integration by reviewing the currents state of knowledge relating brain changes to behavior and indicating possible future directions.

  13. Regulatory brain development: balancing emotion and cognition.

    Science.gov (United States)

    Perlman, Susan B; Pelphrey, Kevin A

    2010-01-01

    Emotion regulation is a critical aspect of children's social development, yet few studies have examined the brain mechanisms involved in its development. Theoretical accounts have conceptualized emotion regulation as relying on prefrontal control of limbic regions, specifying the anterior cingulate cortex (ACC) as a key brain region. Functional magnetic resonance imaging in 5- to 11-year-olds during emotion regulation and processing of emotionally expressive faces revealed that older children preferentially recruited the more dorsal “cognitive” areas of the ACC, while younger children preferentially engaged the more ventral “emotional” areas. Additionally, children with more fearful temperaments exhibited more ventral ACC activity while less fearful children exhibited increased activity in the dorsal ACC. These findings provide insight into a potential neurobiological mechanism underlying well-documented behavioral and cognitive changes from more emotional to more cognitive regulatory strategies with increasing age, as well as individual differences in this developmental process as a function of temperament. Our results hold important implications for our understanding of normal development and should also help to inform our understanding and management of emotional disorders. © 2010 Psychology Press

  14. Diffusion Tensor Imaging: Application to the Study of the Developing Brain

    Science.gov (United States)

    Cascio, Carissa J.; Gerig, Guido; Piven, Joseph

    2007-01-01

    Objective: To provide an overview of diffusion tensor imaging (DTI) and its application to the study of white matter in the developing brain in both healthy and clinical samples. Method: The development of DTI and its application to brain imaging of white matter tracts is discussed. Forty-eight studies using DTI to examine diffusion properties of…

  15. Correction of 157-nm lens based on phase ring aberration extraction method

    Science.gov (United States)

    Meute, Jeff; Rich, Georgia K.; Conley, Will; Smith, Bruce W.; Zavyalova, Lena V.; Cashmore, Julian S.; Ashworth, Dominic; Webb, James E.; Rich, Lisa

    2004-05-01

    Early manufacture and use of 157nm high NA lenses has presented significant challenges including: intrinsic birefringence correction, control of optical surface contamination, and the use of relatively unproven materials, coatings, and metrology. Many of these issues were addressed during the manufacture and use of International SEMATECH"s 0.85NA lens. Most significantly, we were the first to employ 157nm phase measurement interferometry (PMI) and birefringence modeling software for lens optimization. These efforts yielded significant wavefront improvement and produced one of the best wavefront-corrected 157nm lenses to date. After applying the best practices to the manufacture of the lens, we still had to overcome the difficulties of integrating the lens into the tool platform at International SEMATECH instead of at the supplier facility. After lens integration, alignment, and field optimization were complete, conventional lithography and phase ring aberration extraction techniques were used to characterize system performance. These techniques suggested a wavefront error of approximately 0.05 waves RMS--much larger than the 0.03 waves RMS predicted by 157nm PMI. In-situ wavefront correction was planned for in the early stages of this project to mitigate risks introduced by the use of development materials and techniques and field integration of the lens. In this publication, we document the development and use of a phase ring aberration extraction method for characterizing imaging performance and a technique for correcting aberrations with the addition of an optical compensation plate. Imaging results before and after the lens correction are presented and differences between actual and predicted results are discussed.

  16. Genomic and Epigenomic Aberrations in Esophageal Squamous Cell Carcinoma and Implications for Patients

    Science.gov (United States)

    Lin, De-Chen; Wang, Ming-Rong; Koeffler, H. Phillip

    2018-01-01

    Esophageal squamous cell carcinoma (ESCC) is a common malignancy without effective therapy. The exomes of more than 600 ESCCs have been sequenced in the past 4 years, and numerous key aberrations have been identified. Recently, researchers reported both inter- and intratumor heterogeneity. Although these are interesting observations, their clinical implications are unclear due to the limited number of samples profiled. Epigenomic alterations, such as changes in DNA methylation, histone acetylation, and RNA editing, also have been observed in ESCCs. However, it is not clear what proportion of ESCC cells carry these epigenomic aberrations or how they contribute to tumor development. We review the genomic and epigenomic characteristics of ESCCs, with a focus on emerging themes. We discuss their clinical implications and future research directions. PMID:28757263

  17. A physical multifield model predicts the development of volume and structure in the human brain

    Science.gov (United States)

    Rooij, Rijk de; Kuhl, Ellen

    2018-03-01

    The prenatal development of the human brain is characterized by a rapid increase in brain volume and a development of a highly folded cortex. At the cellular level, these events are enabled by symmetric and asymmetric cell division in the ventricular regions of the brain followed by an outwards cell migration towards the peripheral regions. The role of mechanics during brain development has been suggested and acknowledged in past decades, but remains insufficiently understood. Here we propose a mechanistic model that couples cell division, cell migration, and brain volume growth to accurately model the developing brain between weeks 10 and 29 of gestation. Our model accurately predicts a 160-fold volume increase from 1.5 cm3 at week 10 to 235 cm3 at week 29 of gestation. In agreement with human brain development, the cortex begins to form around week 22 and accounts for about 30% of the total brain volume at week 29. Our results show that cell division and coupling between cell density and volume growth are essential to accurately model brain volume development, whereas cell migration and diffusion contribute mainly to the development of the cortex. We demonstrate that complex folding patterns, including sinusoidal folds and creases, emerge naturally as the cortex develops, even for low stiffness contrasts between the cortex and subcortex.

  18. Delayed formation of chromosome aberrations in mouse pachytebne spermatocytes treated with triethylenemelamine (TEM)

    International Nuclear Information System (INIS)

    Generoso, W.M.; Krishna, M.; Sotomayor, R.E.; Cacheiro, N.L.A.

    1977-01-01

    Induction of chromosome aberrations in pachytene spermatocytes of mice by 2 mg/kg TEM was compared with induction by 400 R x rays. These doses induced comparably high dominant lethal effects in pachytene spermatocytes of mice. Cytological analysis at diakinesis-metaphase I stage showed that whereas 76.4% of the cells treated with x rays at pachytene stage had aberrations, the frequencies observed in two TEM experiments were only 0.8 and 2.2%. On the other hand, 5% of the progeny from TEM-treated pachytene spermatocytes were found to be translocation heterozygotes. This is the first report on the recovery of heritable translocations from treated spermatocytes of mice. The aberration frequencies observed for TEM in diakinesis-metaphase I were much too low to account for all the lethal mutations and heritable translocations. Thus, the formation of the bulk of aberrations induced by TEM in pachytene spermatocytes was delayed--a marked contrast to the more immediate formation of x-ray-induced aberrations. It is postulated that the formation of the bulk of TEM-induced aberrations in pachytene spermatocytes and in certain postmeiotic stages occurs sometime during spermiogenesis, and not through the operation of postfertilization pronuclear DNA synthesis

  19. Persistence of radiation-induced chromosome aberrations in a long-term cell culture.

    Science.gov (United States)

    Duran, Assumpta; Barquinero, Joan Francesc; Caballín, María Rosa; Ribas, Montserrat; Barrios, Leonardo

    2009-04-01

    The aim of the present study was to evaluate the persistence of chromosome aberrations induced by X rays. FISH painting and mFISH techniques were applied to long-term cultures of irradiated cells. With painting, at 2 Gy the frequency of apparently simple translocations remained almost invariable during all the culture, whereas at 4 Gy a rapid decline was observed between the first and the second samples, followed by a slight decrease until the end of the culture. Apparently simple dicentrics and complex aberrations disappeared after the first sample at 2 and 4 Gy. By mFISH, at 2 Gy the frequency of complete plus one-way translocations remained invariable between the first and last sample, but at 4 Gy a 60% decline was observed. True incomplete simple translocations disappeared at 2 and 4 Gy, indicating that incompleteness could be a factor to consider when the persistence of translocations is analyzed. The analysis by mFISH showed that the frequency of complex aberrations and their complexity increased with dose and tended to disappear in the last sample. Our results indicate that the influence of dose on the decrease in the frequency of simple translocations with time postirradiation cannot be fully explained by the disappearance of true incomplete translocations and complex aberrations. The chromosome involvement was random for radiation-induced exchange aberrations and non-random for total aberrations. Chromosome 7 showed the highest deviations from expected, being less and more involved than expected in the first and last samples, respectively. Some preferential chromosome-chromosome associations were observed, including a coincidence with a cluster from radiogenic chromosome aberrations described in other studies.

  20. Anatomical Brain Magnetic Resonance Imaging of Typically Developing Children and Adolescents

    Science.gov (United States)

    Giedd, Jay N.; Lalonde, Francois M.; Celano, Mark J.; White, Samantha L.; Wallace, Gregory L.; Lee, Nancy R.; Lenroot, Rhoshel K.

    2009-01-01

    Methodological issues relevant to magnetic resonance imaging studies of brain anatomy are discussed along with the findings on the neuroanatomic changes during childhood and adolescence. The development of the brain is also discussed.

  1. Accuracy of modal wavefront estimation from eye transverse aberration measurements

    Science.gov (United States)

    Chyzh, Igor H.; Sokurenko, Vyacheslav M.

    2001-01-01

    The influence of random errors in measurement of eye transverse aberrations on the accuracy of reconstructing wave aberration as well as ametropia and astigmatism parameters is investigated. The dependence of mentioned errors on a ratio between the number of measurement points and the number of polynomial coefficients is found for different pupil location of measurement points. Recommendations are proposed for setting these ratios.

  2. Correcting the Chromatic Aberration in Barrel Distortion of Endoscopic Images

    Directory of Open Access Journals (Sweden)

    Y. M. Harry Ng

    2003-04-01

    Full Text Available Modern endoscopes offer physicians a wide-angle field of view (FOV for minimally invasive therapies. However, the high level of barrel distortion may prevent accurate perception of image. Fortunately, this kind of distortion may be corrected by digital image processing. In this paper we investigate the chromatic aberrations in the barrel distortion of endoscopic images. In the past, chromatic aberration in endoscopes is corrected by achromatic lenses or active lens control. In contrast, we take a computational approach by modifying the concept of image warping and the existing barrel distortion correction algorithm to tackle the chromatic aberration problem. In addition, an error function for the determination of the level of centroid coincidence is proposed. Simulation and experimental results confirm the effectiveness of our method.

  3. State of the Art Review: Poverty and the Developing Brain

    Science.gov (United States)

    Riis, Jenna L.; Noble, Kimberly G.

    2016-01-01

    In the United States, >40% of children are either poor or near-poor. As a group, children in poverty are more likely to experience worse health and more developmental delay, lower achievement, and more behavioral and emotional problems than their more advantaged peers; however, there is broad variability in outcomes among children exposed to similar conditions. Building on a robust literature from animal models showing that environmental deprivation or enrichment shapes the brain, there has been increasing interest in understanding how the experience of poverty may shape the brain in humans. In this review, we summarize research on the relationship between socioeconomic status and brain development, focusing on studies published in the last 5 years. Drawing on a conceptual framework informed by animal models, we highlight neural plasticity, epigenetics, material deprivation (eg, cognitive stimulation, nutrient deficiencies), stress (eg, negative parenting behaviors), and environmental toxins as factors that may shape the developing brain. We then summarize the existing evidence for the relationship between child poverty and brain structure and function, focusing on brain areas that support memory, emotion regulation, and higher-order cognitive functioning (ie, hippocampus, amygdala, prefrontal cortex) and regions that support language and literacy (ie, cortical areas of the left hemisphere). We then consider some limitations of the current literature and discuss the implications of neuroscience concepts and methods for interventions in the pediatric medical home. PMID:26952506

  4. Structural analysis of γ radiation-induced chromosomal aberrations observed by atomic force microscopy

    International Nuclear Information System (INIS)

    Qu Shuang; Chen Ying; Ge Shili; Liu Xiulin; Zhou Pingkun; Zhang Sa; Zhang Detian

    2003-01-01

    Objective: To find a new method for the measurement of radiation-induced damage, the structures of normal chromosomes and 60 Co γ-ray-induced chromosomal aberration were analyzed by atomic force microscopy. Methods: Normal and irradiated chromosomes of human peripheral blood lymphocytes were prepared, then three-dimensional structure and height of chromosomes were analyzed by atomic force microscopy. Results: Three-dimensional structures of normal chromosomes and dicentric aberration in irradiated chromosomes were observed clearly. The data of chromosome height were helpful to recognizing the dicentric aberrations. Conclusion: Atomic force microscopy providing three-dimension image and linear measurement is a new and valuable tool for structural analysis of radiation-induced chromosomal aberrations

  5. Studies on the chromosome aberrations and isozyme patterns in cancer patients treated with therapeutic radiation

    International Nuclear Information System (INIS)

    Kim, J.J.

    1979-09-01

    The chromosome aberration yield of peripheral blood lymphocytes obtained from cancer patients who had been locally irradiated with therapeutic radiation seems to be largely influenced by total dose, loss of cell with aberration, irradiation interval and dose per day. When treatment period from 7 to 21 days and total dose range from 1000 to 3000 rad, the aberration yield is considered to change according to total dose and accumulated effect by continued existence of damaged chromosomes. However, loss of cell with aberration might play important role in chromosome aberration yield of peripheral blood lymphocytes obtained from those who had received radiation above 3000 rad. In case that other conditions make little difference, dose per day and irradiation interval are looked upon as important factors in aberration yield of lymphocyte chromosomes

  6. Chromosome aberrations in human lymphocytes exposed to tritiated water in vitro

    International Nuclear Information System (INIS)

    Bocian, E.; Ziemba-zak, B.; Rosiek, O.; Sablinski, J.

    1978-01-01

    The induction of chromosome aberrations in human peripheral blood lymphocytes by tritiated water or 180 kV X-rays in vitro was studied. Lymphocytes were exposed to various concentrations of HTO for 2 h or for 53 h. Chromosome and chromatid type aberrations were scored during the first mitotic division after stimulation with phytohaemagglutinin. For the analysis of the dose-response relationship the data were fitted by the method of least-squares to different models. After acute exposure to tritium β-rays and X-rays, the dicentrics + centric rings and terminal + interstitial deletions gave the best fit to the linear-quadratic function. However, data for these types of aberrations after 53 h exposure to HTO gave equally good fit to the linear and linear-quadratic functions. The best description of the dose-response relationship for chromatid aberrations is given by the linear model. In the system studied the RBE of tritium β-rays as compared to 180 KV X-rays was 1.17+-0.02. (Auth.)

  7. Aberration measurement of projection optics in lithographic tools based on two-beam interference theory

    International Nuclear Information System (INIS)

    Ma Mingying; Wang Xiangzhao; Wang Fan

    2006-01-01

    The degradation of image quality caused by aberrations of projection optics in lithographic tools is a serious problem in optical lithography. We propose what we believe to be a novel technique for measuring aberrations of projection optics based on two-beam interference theory. By utilizing the partial coherent imaging theory, a novel model that accurately characterizes the relative image displacement of a fine grating pattern to a large pattern induced by aberrations is derived. Both even and odd aberrations are extracted independently from the relative image displacements of the printed patterns by two-beam interference imaging of the zeroth and positive first orders. The simulation results show that by using this technique we can measure the aberrations present in the lithographic tool with higher accuracy

  8. Aberration measurement of projection optics in lithographic tools based on two-beam interference theory.

    Science.gov (United States)

    Ma, Mingying; Wang, Xiangzhao; Wang, Fan

    2006-11-10

    The degradation of image quality caused by aberrations of projection optics in lithographic tools is a serious problem in optical lithography. We propose what we believe to be a novel technique for measuring aberrations of projection optics based on two-beam interference theory. By utilizing the partial coherent imaging theory, a novel model that accurately characterizes the relative image displacement of a fine grating pattern to a large pattern induced by aberrations is derived. Both even and odd aberrations are extracted independently from the relative image displacements of the printed patterns by two-beam interference imaging of the zeroth and positive first orders. The simulation results show that by using this technique we can measure the aberrations present in the lithographic tool with higher accuracy.

  9. Attention training improves aberrant neural dynamics during working memory processing in veterans with PTSD.

    Science.gov (United States)

    McDermott, Timothy J; Badura-Brack, Amy S; Becker, Katherine M; Ryan, Tara J; Bar-Haim, Yair; Pine, Daniel S; Khanna, Maya M; Heinrichs-Graham, Elizabeth; Wilson, Tony W

    2016-12-01

    Posttraumatic stress disorder (PTSD) is associated with executive functioning deficits, including disruptions in working memory (WM). Recent studies suggest that attention training reduces PTSD symptomatology, but the underlying neural mechanisms are unknown. We used high-density magnetoencephalography (MEG) to evaluate whether attention training modulates brain regions serving WM processing in PTSD. Fourteen veterans with PTSD completed a WM task during a 306-sensor MEG recording before and after 8 sessions of attention training treatment. A matched comparison sample of 12 combat-exposed veterans without PTSD completed the same WM task during a single MEG session. To identify the spatiotemporal dynamics, each group's data were transformed into the time-frequency domain, and significant oscillatory brain responses were imaged using a beamforming approach. All participants exhibited activity in left hemispheric language areas consistent with a verbal WM task. Additionally, veterans with PTSD and combat-exposed healthy controls each exhibited oscillatory responses in right hemispheric homologue regions (e.g., right Broca's area); however, these responses were in opposite directions. Group differences in oscillatory activity emerged in the theta band (4-8 Hz) during encoding and in the alpha band (9-12 Hz) during maintenance and were significant in right prefrontal and right supramarginal and inferior parietal regions. Importantly, following attention training, these significant group differences were reduced or eliminated. This study provides initial evidence that attention training improves aberrant neural activity in brain networks serving WM processing.

  10. Correcting the wavefront aberration of membrane mirror based on liquid crystal spatial light modulator

    Science.gov (United States)

    Yang, Bin; Wei, Yin; Chen, Xinhua; Tang, Minxue

    2014-11-01

    Membrane mirror with flexible polymer film substrate is a new-concept ultra lightweight mirror for space applications. Compared with traditional mirrors, membrane mirror has the advantages of lightweight, folding and deployable, low cost and etc. Due to the surface shape of flexible membrane mirror is easy to deviate from the design surface shape, it will bring wavefront aberration to the optical system. In order to solve this problem, a method of membrane mirror wavefront aberration correction based on the liquid crystal spatial light modulator (LCSLM) will be studied in this paper. The wavefront aberration correction principle of LCSLM is described and the phase modulation property of a LCSLM is measured and analyzed firstly. Then the membrane mirror wavefront aberration correction system is designed and established according to the optical properties of a membrane mirror. The LCSLM and a Hartmann-Shack sensor are used as a wavefront corrector and a wavefront detector, respectively. The detected wavefront aberration is calculated and converted into voltage value on LCSLM for the mirror wavefront aberration correction by programming in Matlab. When in experiment, the wavefront aberration of a glass plane mirror with a diameter of 70 mm is measured and corrected for verifying the feasibility of the experiment system and the correctness of the program. The PV value and RMS value of distorted wavefront are reduced and near diffraction limited optical performance is achieved. On this basis, the wavefront aberration of the aperture center Φ25 mm in a membrane mirror with a diameter of 200 mm is corrected and the errors are analyzed. It provides a means of correcting the wavefront aberration of membrane mirror.

  11. Comparison of Regional Brain Perfusion Levels in Chronically Smoking and Non-Smoking Adults

    Directory of Open Access Journals (Sweden)

    Timothy C. Durazzo

    2015-07-01

    Full Text Available Chronic cigarette smoking is associated with numerous abnormalities in brain neurobiology, but few studies specifically investigated the chronic effects of smoking (compared to the acute effects of smoking, nicotine administration, or nicotine withdrawal on cerebral perfusion (i.e., blood flow. Predominately middle-aged male (47 ± 11 years of age smokers (n = 34 and non-smokers (n = 27 were compared on regional cortical perfusion measured by continuous arterial spin labeling magnetic resonance studies at 4 Tesla. Smokers showed significantly lower perfusion than non-smokers in the bilateral medial and lateral orbitofrontal cortices, bilateral inferior parietal lobules, bilateral superior temporal gyri, left posterior cingulate, right isthmus of cingulate, and right supramarginal gyrus. Greater lifetime duration of smoking (adjusted for age was related to lower perfusion in multiple brain regions. The results indicated smokers showed significant perfusion deficits in anterior cortical regions implicated in the development, progression, and maintenance of all addictive disorders. Smokers concurrently demonstrated reduced blood flow in posterior brain regions that show morphological and metabolic aberrations as well as elevated beta amyloid deposition demonstrated by those with early stage Alzheimer disease. The findings provide additional novel evidence of the adverse effects of cigarette smoking on the human brain.

  12. Third-order aberration-free ion-optical system for an electromagnetic isotope separator

    International Nuclear Information System (INIS)

    Chavet, I.

    1982-12-01

    The essential qualities required of a production isotope separator are high output and high enrichment factor. For this purpose, the imaging system should have as little geometric aberration as possible. In the proposed system, consisting of a homogeneous sector-type analyzing magnet, the beam is crossed in the axial direction at the entrance boundary of the magnetic field and the incidence to this boundary is normal. It is shown that for this case all radial aberrations to the ''practical'' third order can be eliminated provided four optical conditions are satisfied: two related to heterogeneous aberration terms in addition to the two conditions related to the second and third order homogeneous aperture aberration terms. The resulting equations take into account the magnetic fringe-field effects to the third order. (author)

  13. Media use and brain development during adolescence

    NARCIS (Netherlands)

    Crone, Eveline A.; Konijn, Elly A.

    2018-01-01

    The current generation of adolescents grows up in a media-saturated world. However, it is unclear how media influences the maturational trajectories of brain regions involved in social interactions. Here we review the neural development in adolescence and show how neuroscience can provide a deeper

  14. Sleep variability in adolescence is associated with altered brain development.

    Science.gov (United States)

    Telzer, Eva H; Goldenberg, Diane; Fuligni, Andrew J; Lieberman, Matthew D; Gálvan, Adriana

    2015-08-01

    Despite the known importance of sleep for brain development, and the sharp increase in poor sleep during adolescence, we know relatively little about how sleep impacts the developing brain. We present the first longitudinal study to examine how sleep during adolescence is associated with white matter integrity. We find that greater variability in sleep duration one year prior to a DTI scan is associated with lower white matter integrity above and beyond the effects of sleep duration, and variability in bedtime, whereas sleep variability a few months prior to the scan is not associated with white matter integrity. Thus, variability in sleep duration during adolescence may have long-term impairments on the developing brain. White matter integrity should be increasing during adolescence, and so sleep variability is directly at odds with normative developmental trends. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  15. Normal Brain-Skull Development with Hybrid Deformable VR Models Simulation.

    Science.gov (United States)

    Jin, Jing; De Ribaupierre, Sandrine; Eagleson, Roy

    2016-01-01

    This paper describes a simulation framework for a clinical application involving skull-brain co-development in infants, leading to a platform for craniosynostosis modeling. Craniosynostosis occurs when one or more sutures are fused early in life, resulting in an abnormal skull shape. Surgery is required to reopen the suture and reduce intracranial pressure, but is difficult without any predictive model to assist surgical planning. We aim to study normal brain-skull growth by computer simulation, which requires a head model and appropriate mathematical methods for brain and skull growth respectively. On the basis of our previous model, we further specified suture model into fibrous and cartilaginous sutures and develop algorithm for skull extension. We evaluate the resulting simulation by comparison with datasets of cases and normal growth.

  16. Aberrant functional connectivity of resting state networks in transient ischemic attack.

    Directory of Open Access Journals (Sweden)

    Rong Li

    Full Text Available BACKGROUND: Transient ischemic attack (TIA is usually defined as a neurologic ischemic disorder without permanent cerebral infarction. Studies have showed that patients with TIA can have lasting cognitive functional impairment. Inherent brain activity in the resting state is spatially organized in a set of specific coherent patterns named resting state networks (RSNs, which epitomize the functional architecture of memory, language, attention, visual, auditory and somato-motor networks. Here, we aimed to detect differences in RSNs between TIA patients and healthy controls (HCs. METHODS: Twenty one TIA patients suffered an ischemic event and 21 matched HCs were enrolled in the study. All subjects were investigated using cognitive tests, psychiatric tests and functional magnetic resonance imaging (fMRI. Independent component analysis (ICA was adopted to acquire the eight brain RSNs. Then one-sample t-tests were calculated in each group to gather the spatial maps of each RSNs, followed by second level analysis to investigate statistical differences on RSNs between twenty one TIA patients and 21 controls. Furthermore, a correlation analysis was performed to explore the relationship between functional connectivity (FC and cognitive and psychiatric scales in TIA group. RESULTS: Compared with the controls, TIA patients exhibited both decreased and increased functional connectivity in default mode network (DMN and self-referential network (SRN, and decreased functional connectivity in dorsal attention network (DAN, central-executive network (CEN, core network (CN, somato-motor network (SMN, visual network (VN and auditory network (AN. There was no correlation between neuropsychological scores and functional connectivity in regions of RSNs. CONCLUSIONS: We observed selective impairments of RSN intrinsic FC in TIA patients, whose all eight RSNs had aberrant functional connectivity. These changes indicate that TIA is a disease with widely abnormal brain

  17. Intracranial Tumor Cell Migration and the Development of Multiple Brain Metastases in Malignant Melanoma

    Directory of Open Access Journals (Sweden)

    Trude G. Simonsen

    2016-06-01

    Full Text Available INTRODUCTION: A majority of patients with melanoma brain metastases develop multiple lesions, and these patients show particularly poor prognosis. To develop improved treatment strategies, detailed insights into the biology of melanoma brain metastases, and particularly the development of multiple lesions, are needed. The purpose of this preclinical investigation was to study melanoma cell migration within the brain after cell injection into a well-defined intracerebral site. METHODS: A-07, D-12, R-18, and U-25 human melanoma cells transfected with green fluorescent protein were injected stereotactically into the right cerebral hemisphere of nude mice. Moribund mice were killed and autopsied, and the brain was evaluated by fluorescence imaging or histological examination. RESULTS: Intracerebral inoculation of melanoma cells produced multiple lesions involving all regions of the brain, suggesting that the cells were able to migrate over substantial distances within the brain. Multiple modes of transport were identified, and all transport modes were observed in all four melanoma lines. Thus, the melanoma cells were passively transported via the flow of cerebrospinal fluid in the meninges and ventricles, they migrated actively along leptomeningeal and brain parenchymal blood vessels, and they migrated actively along the surfaces separating different brain compartments. CONCLUSION: Migration of melanoma cells after initial arrest, extravasation, and growth at a single location within the brain may contribute significantly to the development of multiple melanoma brain metastases.

  18. Identification of microRNA signature in different pediatric brain tumors

    Directory of Open Access Journals (Sweden)

    Marwa Tantawy

    2018-03-01

    Full Text Available Abstract Understanding pediatric brain tumor biology is essential to help on disease stratification, and to find novel markers for early diagnosis. MicroRNA (miRNA expression has been linked to clinical outcomes and tumor biology. Here, we aimed to detect the expression of different miRNAs in different pediatric brain tumor subtypes to discover biomarkers for early detection and develop novel therapies. Expression of 82 miRNAs was detected in 120 pediatric brain tumors from fixed-formalin paraffin-embedded tissues, low-grade glioma, high-grade glioma, ependymoma, and medulloblastoma, using quantitative real-time PCR. Low-expression of miR-221, miR-9, and miR-181c/d and over-expression of miR-101, miR-222, miR-139, miR-1827, and miR-34c was found in medulloblastoma; low expression of miR-10a and over-expression of miR-10b and miR-29a in ependymoma; low expression of miR-26a and overexpression of miR-19a/b, miR-24, miR-27a, miR- 584, and miR-527 in low-grade glioma. Cox regression showed differential miRNA expression between responders and non-responders. The most specific were miR-10a and miR-29a low expression in LGG non-responders, miR-135a and miR-146b over-expression in ependymoma non-responders, and miR-135b overexpression in medulloblastoma non-responders. MicroRNAs are differentially expressed in subtypes of brain tumors suggesting that they may help diagnosis. A greater understanding of aberrant miRNA in pediatric brain tumors may support development of novel therapies.

  19. Longitudinal chromatic aberration of the human eye in the visible and near infrared from wavefront sensing, double-pass and psychophysics

    Science.gov (United States)

    Vinas, Maria; Dorronsoro, Carlos; Cortes, Daniel; Pascual, Daniel; Marcos, Susana

    2015-01-01

    Longitudinal Chromatic Aberration (LCA) influences the optical quality of the eye. However, the reported LCA varies across studies, likely associated to differences in the measurement techniques. We present LCA measured in subjects using wavefront sensing, double-pass retinal images, and psychophysical methods with a custom-developed polychromatic Adaptive Optics system in a wide spectral range (450-950 nm), with control of subjects’ natural aberrations. LCA measured psychophysically was significantly higher than that from reflectometric techniques (1.51 D vs 1.00 D in the 488-700 nm range). Ours results indicate that the presence of natural aberrations is not the cause for the discrepancies across techniques. PMID:25798317

  20. Thyroid hormones states and brain development interactions.

    Science.gov (United States)

    Ahmed, Osama M; El-Gareib, A W; El-Bakry, A M; Abd El-Tawab, S M; Ahmed, R G

    2008-04-01

    The action of thyroid hormones (THs) in the brain is strictly regulated, since these hormones play a crucial role in the development and physiological functioning of the central nervous system (CNS). Disorders of the thyroid gland are among the most common endocrine maladies. Therefore, the objective of this study was to identify in broad terms the interactions between thyroid hormone states or actions and brain development. THs regulate the neuronal cytoarchitecture, neuronal growth and synaptogenesis, and their receptors are widely distributed in the CNS. Any deficiency or increase of them (hypo- or hyperthyroidism) during these periods may result in an irreversible impairment, morphological and cytoarchitecture abnormalities, disorganization, maldevelopment and physical retardation. This includes abnormal neuronal proliferation, migration, decreased dendritic densities and dendritic arborizations. This drastic effect may be responsible for the loss of neurons vital functions and may lead, in turn, to the biochemical dysfunctions. This could explain the physiological and behavioral changes observed in the animals or human during thyroid dysfunction. It can be hypothesized that the sensitive to the thyroid hormones is not only remarked in the neonatal period but also prior to birth, and THs change during the development may lead to the brain damage if not corrected shortly after the birth. Thus, the hypothesis that neurodevelopmental abnormalities might be related to the thyroid hormones is plausible. Taken together, the alterations of neurotransmitters and disturbance in the GABA, adenosine and pro/antioxidant systems in CNS due to the thyroid dysfunction may retard the neurogenesis and CNS growth and the reverse is true. In general, THs disorder during early life may lead to distortions rather than synchronized shifts in the relative development of several central transmitter systems that leads to a multitude of irreversible morphological and biochemical