WorldWideScience

Sample records for abelian higgs model

  1. Abelian versus non-abelian Higgs model in three dimensions

    International Nuclear Information System (INIS)

    Buchmueller, W.; Philipsen, O.

    1995-04-01

    We study the phase structure of the abelian Higgs model in three dimensions based on perturbation theory and a set of gauge independent gap equations for Higgs boson and vector boson masses. Contrary to the non-abelian Higgs model, the vector boson mass vanishes in the symmetric phase. In the Higgs phase the gap equations yield masses consistent with perturbation theory. The phase transition is first-order for small values of the scalar self-coupling λ, where the employed loop expansion is applicable. (orig.)

  2. The Vortex Oscillations and Abelian Higgs Model

    International Nuclear Information System (INIS)

    Karkowski, J.; Swierczynski, Z.

    2000-01-01

    The excitations of the vortex in Abelian Higgs model with small ratio of vector and Higgs particle masses are considered. Three main modes encountered in numerical computations are described in detail. They are also compared to analytic results obtained recently by Arodz and Hadasz in Phys. Rev. D54, 4004 (1996). (author)

  3. String tension in the three-dimensional Abelian Higgs model

    International Nuclear Information System (INIS)

    Farakos, K.; Koutsoumbas, G.; Sarantakos, S.

    1988-01-01

    We measure the expectation values of the Wilson loops for the radially active Abelian Higgs model in three dimensions with Higgs charge q = 1 and q = 2. We observe a drastic fall-off of the area term as we pass to the Higgs phase, as well as a peak of the perimetric term at the phase transition. Implications of our results for other Higgs models are also discussed. (orig.)

  4. Effective action and cluster properties of the abelian Higgs model

    Energy Technology Data Exchange (ETDEWEB)

    Balaban, T; Imbrie, J Z; Jaffe, A

    1988-02-01

    We continue our program to establish the Higgs mechanism and mass gap for the abelian Higgs model in two and three dimensions. We develop a multiscale cluster expansion for the high frequency modes of the theory, within a framework of iterated renormalization group transformations. The expansions yield decoupling properties needed for a proof of exponential decay of correlations. The result of this analysis is a gauge invariant unit lattice theory with a deep Higgs potential of the shape required to exhibit the Higgs mechanism.

  5. Stability of infinite derivative Abelian Higgs models

    Science.gov (United States)

    Ghoshal, Anish; Mazumdar, Anupam; Okada, Nobuchika; Villalba, Desmond

    2018-04-01

    Motivated by the stringy effects by modifying the local kinetic term of an Abelian Higgs field by the Gaussian kinetic term, we show that the Higgs field does not possess any instability; the Yukawa coupling between the scalar and the fermion, the gauge coupling, and the self interaction of the Higgs yields exponentially suppressed running at high energies, showing that such class of theory never suffers from vacuum instability. We briefly discuss its implications for the early Universe cosmology.

  6. Dyon Condensation and Dual Superconductivity in Abelian Higgs Model of QCD

    Directory of Open Access Journals (Sweden)

    B. S. Rajput

    2010-01-01

    Full Text Available Constructing the effective action for dyonic field in Abelian projection of QCD, it has been demonstrated that any charge (electrical or magnetic of dyon screens its own direct potential to which it minimally couples and antiscreens the dual potential leading to dual superconductivity in accordance with generalized Meissner effect. Taking the Abelian projection of QCD, an Abelian Higgs model, incorporating dual superconductivity and confinement, has been constructed and its representation has been obtained in terms of average of Wilson loop.

  7. Topological excitations and Monte-Carlo simulation of the Abelian-Higgs model

    International Nuclear Information System (INIS)

    Ranft, J.

    1981-01-01

    The phase structure and topological excitations, in particular the magnetic monopole current density, are investigated in a Monte-Carlo simulation of the lattice version of the four-dimensional Abelian-Higgs model. The monopole current density is found to be large in the confinement phase and rapidly decreasing in the Coulomb and Higgs phases. This result supports the view that confinement is neglected with the condensation of monopole-antimonopole pairs

  8. Compact Q=2 Abelian Higgs model in the London limit: Vortex-monopole chains and the photon propagator

    International Nuclear Information System (INIS)

    Chernodub, M.N.; Feldmann, R.; Schiller, A.; Ilgenfritz, E.-M.

    2005-01-01

    The confining and topological properties of the compact Abelian Higgs model with doubly-charged Higgs field in three space-time dimensions are studied. We consider the London limit of the model. We show that the monopoles are forming chainlike structures (kept together by Abrikosov-Nielsen-Olesen vortices), the presence of which is essential for getting simultaneously permanent confinement of singly-charged particles and breaking of the string spanned between doubly-charged particles. In the confinement phase, the chains are forming percolating clusters, while in the deconfinement (Higgs) phase, the chains are of finite size. The described picture is in close analogy with the synthesis of the Abelian monopole and the center vortex pictures in confining non-Abelian gauge models. The screening properties of the vacuum are studied by means of the photon propagator in the Landau gauge

  9. Construction of quantized gauge fields: continuum limit of the Abelian Higgs model in two dimensions

    International Nuclear Information System (INIS)

    Seiler, E.

    1981-01-01

    The author proves the existence of the continuum limit of the two-dimensional Higgs model for two cases: External gauge fields that are Hoelder continuous and may be non-Abelian, and the fully quantized Abelian model. In the latter case all Wightman axioms are verified except clustering. Important ingredients are a universal diamagnetic bound and correlation inequalities. (Auth.)

  10. Temperature dependence of critical magnetic fields for the Abelian Higgs model

    International Nuclear Information System (INIS)

    Magpantay, J.; Mukku, C.; Sayed, W.A.

    1981-05-01

    One loop temperature and external electromagnetic field effects on the Abelian Higgs model are studied using the momentum space heat kernel. We obtain expressions for the critical fields necessary for symmetry restoration at some finite temperature and display the critical B vs. T curve separating the broken and restored phases in the B-T plane. (author)

  11. Phase structure, magnetic monopoles and vortices in the lattice Abelian Higgs model

    International Nuclear Information System (INIS)

    Ranft, J.; Kripfganz, J.; Ranft, G.

    1982-04-01

    We present Monte Carlo calculations of lattice Abelian Higgs models in 4 dimensions and with charges of the Higgs particles equal to q = 1, 2 and 6. The phase transitions are studied in the plane of the two coupling constants considering separately average plaquette and average link expectation values. The density of topological excitations is studied. In the confinement phase we find finite densities of magnetic monopole currents, electric currents and vortex currents. The magnetic monopole currents vanish exponentially in the Coulomb phase. The density of electric currents and vortex currents is finite in the Coulomb phase and vanishes exponentially in the Higgs phase. (author)

  12. Lattice vortices in the two-dimensional Abelian Higgs model

    International Nuclear Information System (INIS)

    Grunewald, S.; Ilgenfritz, E.-M.; Mueller-Preussker, M.

    1986-01-01

    Multi-vortices of the 2D Abelian Higgs model on a finite lattice by relaxation of Monte-Carlo equilibrium configurations are generated and identified. The lattice vortices have action and a uniquely defined topological charge corresponding to the continuum ones. They exhibit the expected exponential decay behaviour and satisfy approximately the classical equations of motion. Vortex-antivortex superpositions are seen as well, supporting the dilute gas picture. Single vortices finally relax into ''dislocations'' and dissapear. A background charge construction turns out nearly insensitive with respect to dislocations

  13. Radiation from an excited vortex in the Abelian Higgs model

    Science.gov (United States)

    Arodź, H.; Hadasz, L.

    1996-09-01

    An excited vortex in the Abelian Higgs model is investigated with the help of a polynomial approximation. The excitation consists of the longitudinal component of a vector field trapped by the vortex. The energy and profile of the excitation as well as its back reaction on the vortex are found in the case of small κ. It turns out that the width of the excited vortex oscillates in time. Moreover, the vector field has a radiative long range component. Also, an upper bound on the amplitude of the excitation is found.

  14. Fun with the Abelian Higgs model

    International Nuclear Information System (INIS)

    Malinsky, Michal

    2013-01-01

    In calculations of the elementary scalar spectra of spontaneously broken gauge theories there are a number of subtleties which, though it is often unnecessary to deal with them in the order-of-magnitude type of calculations, have to be taken into account if fully consistent results are sought for. Within the ''canonical'' effective-potential approach these are, for instance: the need to handle infinite series of nested commutators of derivatives of field-dependent mass matrices, the need to cope with spurious IR divergences emerging in the consistent leading-order approximation and, in particular, the need to account for the fine interplay between the renormalization effects in the one- and two-point Green functions which, indeed, is essential for the proper stable vacuum identification and, thus, for the correct interpretation of the results. In this note we illustrate some of these issues in the realm of the minimal Abelian Higgs model and two of its simplest extensions including extra heavy scalars in the spectrum in attempt to exemplify the key aspects of the usual ''hierarchy problem'' lore in a very specific and simple setting. We emphasize that, regardless of the omnipresent polynomial cut-off dependence in the one-loop corrections to the scalar two-point function, the physical Higgs boson mass is always governed by the associated symmetry-breaking VEV and, as such, it is generally as UV-robust as all other VEV-driven masses in the theory. (orig.)

  15. Diffusion of massive particles around an Abelian-Higgs string

    Science.gov (United States)

    Saha, Abhisek; Sanyal, Soma

    2018-03-01

    We study the diffusion of massive particles in the space time of an Abelian Higgs string. The particles in the early universe plasma execute Brownian motion. This motion of the particles is modeled as a two dimensional random walk in the plane of the Abelian Higgs string. The particles move randomly in the space time of the string according to their geodesic equations. We observe that for certain values of their energy and angular momentum, an overdensity of particles is observed close to the string. We find that the string parameters determine the distribution of the particles. We make an estimate of the density fluctuation generated around the string as a function of the deficit angle. Though the thickness of the string is small, the length is large and the overdensity close to the string may have cosmological consequences in the early universe.

  16. A non-perturbative argument for the non-abelian Higgs mechanism

    International Nuclear Information System (INIS)

    De Palma, G.; Strocchi, F.

    2013-01-01

    The evasion of massless Goldstone bosons by the non-abelian Higgs mechanism is proved by a non-perturbative argument in the local BRST gauge. -- Highlights: •The perturbative explanation of the Higgs mechanism (HM) is not under mathematical control. •We offer a non-perturbative proof of the absence of Goldstone bosons from the non-abelian HM. •Our non-perturbative proof in the BRST gauge avoids a mean field ansatz and expansion

  17. A non-perturbative argument for the non-abelian Higgs mechanism

    Energy Technology Data Exchange (ETDEWEB)

    De Palma, G. [Scuola Normale Superiore, Pisa (Italy); INFN, Sezione di Pisa, Pisa (Italy); Strocchi, F., E-mail: franco.strocchi@sns.it [INFN, Sezione di Pisa, Pisa (Italy)

    2013-09-15

    The evasion of massless Goldstone bosons by the non-abelian Higgs mechanism is proved by a non-perturbative argument in the local BRST gauge. -- Highlights: •The perturbative explanation of the Higgs mechanism (HM) is not under mathematical control. •We offer a non-perturbative proof of the absence of Goldstone bosons from the non-abelian HM. •Our non-perturbative proof in the BRST gauge avoids a mean field ansatz and expansion.

  18. Self-Dual Configurations in a Generalized Abelian Chern-Simons-Higgs Model with Explicit Breaking of the Lorentz Covariance

    International Nuclear Information System (INIS)

    Sourrouille, Lucas; Casana, Rodolfo

    2016-01-01

    We have studied the existence of self-dual solitonic solutions in a generalization of the Abelian Chern-Simons-Higgs model. Such a generalization introduces two different nonnegative functions, ω_1(|ϕ|) and ω(|ϕ|), which split the kinetic term of the Higgs field, |D_μϕ|"2→ω_1(|ϕ|)|D_0ϕ|"2-ω(|ϕ|)|D_kϕ|"2, breaking explicitly the Lorentz covariance. We have shown that a clean implementation of the Bogomolnyi procedure only can be implemented whether ω(|ϕ|)∝β|ϕ|"2"β"-"2 with β≥1. The self-dual or Bogomolnyi equations produce an infinity number of soliton solutions by choosing conveniently the generalizing function ω_1(|ϕ|) which must be able to provide a finite magnetic field. Also, we have shown that by properly choosing the generalizing functions it is possible to reproduce the Bogomolnyi equations of the Abelian Maxwell-Higgs and Chern-Simons-Higgs models. Finally, some new self-dual |ϕ|"6-vortex solutions have been analyzed from both theoretical and numerical point of view.

  19. Radiation from an excited vortex in the Abelian Higgs model

    International Nuclear Information System (INIS)

    Arodz, H.; Hadasz, L.

    1996-01-01

    An excited vortex in the Abelian Higgs model is investigated with the help of a polynomial approximation. The excitation consists of the longitudinal component of a vector field trapped by the vortex. The energy and profile of the excitation as well as its back reaction on the vortex are found in the case of small κ. It turns out that the width of the excited vortex oscillates in time. Moreover, the vector field has a radiative long range component. Also, an upper bound on the amplitude of the excitation is found. copyright 1996 The American Physical Society

  20. ABELIAN-HIGGS HAIR FOR BLACK-HOLES

    NARCIS (Netherlands)

    ACHUCARRO, A; GREGORY, R; KUIJKEN, K

    1995-01-01

    We find evidence for the existence of solutions of the Einstein and Abelian Higgs field equations describing a black hole pierced by a Nielsen-Olesen vortex. This situation falls outside the scope of the usual no-hair arguments due to the nontrivial topology of the vortex configuration and the

  1. Gauge invariance and the effective potential: the Abelian Higgs model

    International Nuclear Information System (INIS)

    Ramaswamy, S.

    1995-01-01

    The gauge invariance of the effective potential in the Abelian Higgs model is examined. The Nielsen identities, which ensure gauge independence of the effective potential and other physical quantities, are shown to hold at finite temperature and in the presence of the chemical potential. It is also shown that, as a consequence of the Nielsen identities, the standard order parameter for symmetry breaking, namely the scalar field vacuum expectation value, has a non-zero parametric dependence on the gauge choice employed. These are then verified to one loop at finite temperature. High-temperature symmetry breaking is considered. In the leading high-temperature limit, the potential agrees with the previous calculations. (orig.)

  2. Aspects of quantum corrections in a Lorentz-violating extension of the abelian Higgs Model

    Energy Technology Data Exchange (ETDEWEB)

    Brito, L.C.T.; Fargnoli, H.G. [Universidade Federal de Lavras, MG (Brazil); Scarpelli, A.P. Baeta [Departamento de Policia Federal, Rio de Janeiro, RJ (Brazil)

    2013-07-01

    Full text: We have investigated new aspects related to the four-dimensional abelian gauge-Higgs model with the addition of the Carroll-Field-Jackiw term (CFJ). We have focused on one-loop quantum corrections to the photon and Higgs sectors and we have analyzed what kind of effects are induced at the quantum level by spontaneous gauge symmetry breaking due the presence of the CFJ term. We have shown that new finite and non-ambiguous Lorentz-breaking terms are induced in both sectors at second order in the background vector. Specifically in the pure gauge sector, a CPT-even aether term (free from ambiguities) is induced. A CPT-even term is also induced in the pure Higgs sector. Both terms have been mapped in the Standard Model Extension. Besides, aspects of the one-loop renormalization of the background vector dependent terms have been studied. The new divergences due the presence of the CFJ term were shown to be worked out by the renormalization condition which requires the vanishing of the vacuum expectation value of the Higgs field. So at one loop the CFJ term does not spoil the well known renormalizability of the model without Lorentz symmetry breaking terms. The calculations have been done within dimensional methods and in an arbitrary gauge choice. (author)

  3. Peristaltic modes of a single vortex in the Abelian Higgs model

    International Nuclear Information System (INIS)

    Kojo, Toru; Suganuma, Hideo; Tsumura, Kyosuke

    2007-01-01

    Using the Abelian Higgs model, we study the radial excitations of single vortex and their propagation modes along the vortex line. We call such beyond-stringy modes peristaltic modes of single vortex. With the profile of the static vortex, we derive the vortex-induced potential, i.e., single-particle potential for the Higgs and the photon field fluctuations around the static vortex, and investigate the coherently propagating fluctuations which correspond to the vibration of the vortex. We derive, analyze, and numerically solve the field equations of the Higgs and the photon field fluctuations around the static vortex with various Ginzburg-Landau parameter κ and topological charge n. Around the Bogomol'nyi-Prasad-Sommerfield value or critical coupling κ 2 =1/2, there appears a significant correlation between the Higgs and the photon field fluctuations mediated by the static vortex. As a result, for κ 2 =1/2, we find the characteristic new-type discrete pole of the peristaltic mode corresponding to the quasibound state of coherently fluctuating fields and the static vortex. We investigate its excitation energy, correlation energy of coherent fluctuations, spatial distributions, and the resulting magnetic flux behavior in detail. Our investigation covers not only usual type-II vortices with n=1 but also type-I and type-II vortices with n set-membership sign Z for the application to various general systems where the vortexlike objects behave as the essential degrees of freedom

  4. Chaos based on Riemannian geometric approach to Abelian-Higgs dynamical system

    International Nuclear Information System (INIS)

    Kawabe, Tetsuji

    2003-01-01

    Based on the Riemannian geometric approach, we study chaos of the Abelian-Higgs dynamical system derived from a classical field equation consisting of a spatially homogeneous Abelian gauge field and Higgs field. Using the global indicator of chaos formulated by the sectional curvature of the ambient manifold, we show that this approach brings the same qualitative and quantitative information about order and chaos as has been provided by the Lyapunov exponents in the conventional and phenomenological approach. We confirm that the mechanism of chaos is a parametric instability of the system. By analyzing a close relation between the sectional curvature and the Gaussian curvature, we point out that the Toda-Brumer criterion becomes a sufficient condition to the criterion based on this geometric approach as to the stability condition

  5. Higgs phase in non-Abelian gauge theories

    International Nuclear Information System (INIS)

    Kaymakcalan, O.S.

    1981-06-01

    A non-Abelian gauge theory involving scalar fields with non-tachyonic mass terms in the Lagrangian is considered, in order to construct a finite energy density trial vacuum for this theory. The usual scalar potential arguments suggest that the vacuum of such a theory would be in the perturbative phase. However, the obvious choices for a vacuum in this phase, the Axial gauge and the Coulomb gauge bare vacua, do not have finite energy densities even with an ultraviolet cutoff. Indeed, it is a non-trivial problem to construct finite energy density vacua for non-Abelian gauge theories and this is intimately connected with the gauge fixing degeneracies of these theories. Since the gauge fixing is achieved in the Unitary gauge, this suggests that the Unitary gauge bare vacuum might be a finite energy trial vacuum and, despite the form of the scalar potential, the vacuum of this theory might be in a Higgs phase rather than the perturbative phase

  6. Symmetric solitonic excitations of the (1 + 1)-dimensional Abelian-Higgs classical vacuum.

    Science.gov (United States)

    Diakonos, F K; Katsimiga, G C; Maintas, X N; Tsagkarakis, C E

    2015-02-01

    We study the classical dynamics of the Abelian-Higgs model in (1 + 1) space-time dimensions for the case of strongly broken gauge symmetry. In this limit the wells of the potential are almost harmonic and sufficiently deep, presenting a scenario far from the associated critical point. Using a multiscale perturbation expansion, the equations of motion for the fields are reduced to a system of coupled nonlinear Schrödinger equations. Exact solutions of the latter are used to obtain approximate analytical solutions for the full dynamics of both the gauge and Higgs field in the form of oscillons and oscillating kinks. Numerical simulations of the exact dynamics verify the validity of these solutions. We explore their persistence for a wide range of the model's single parameter, which is the ratio of the Higgs mass (m(H)) to the gauge-field mass (m(A)). We show that only oscillons oscillating symmetrically with respect to the "classical vacuum," for both the gauge and the Higgs field, are long lived. Furthermore, plane waves and oscillating kinks are shown to decay into oscillon-like patterns, due to the modulation instability mechanism.

  7. Vortex dynamics in nonrelativistic version of Abelian Higgs model: Effects of the medium on the vortex motion

    Directory of Open Access Journals (Sweden)

    Kozhevnikov Arkadii

    2016-01-01

    Full Text Available The closed vortex dynamics is considered in the nonrelativistic version of the Abelian Higgs Model. The effect of the exchange of excitations propagating in the medium on the vortex string motion is taken into account. The obtained are the effective action and the equation of motion both including the exchange of the propagating excitations between the distant segments of the vortex and the possibility of its interaction with the static fermion asymmetric background. They are applied to the derivation of the time dependence of the basic geometrical contour characteristics.

  8. Flavored gauge mediation with discrete non-Abelian symmetries

    Science.gov (United States)

    Everett, Lisa L.; Garon, Todd S.

    2018-05-01

    We explore the model building and phenomenology of flavored gauge-mediation models of supersymmetry breaking in which the electroweak Higgs doublets and the S U (2 ) messenger doublets are connected by a discrete non-Abelian symmetry. The embedding of the Higgs and messenger fields into representations of this non-Abelian Higgs-messenger symmetry results in specific relations between the Standard Model Yukawa couplings and the messenger-matter Yukawa interactions. Taking the concrete example of an S3 Higgs-messenger symmetry, we demonstrate that, while the minimal implementation of this scenario suffers from a severe μ /Bμ problem that is well known from ordinary gauge mediation, expanding the Higgs-messenger field content allows for the possibility that μ and Bμ can be separately tuned, allowing for the possibility of phenomenologically viable models of the soft supersymmetry-breaking terms. We construct toy examples of this type that are consistent with the observed 125 GeV Higgs boson mass.

  9. Hydrodynamics of defects in the Abelian-Higgs model: An application to nematic liquid crystals

    International Nuclear Information System (INIS)

    Kurz, Guenter; Sarkar, Sarben

    2000-01-01

    The Abelian-Higgs model is the basis for a gauge covariant form of the distortion free energy for nematic liquid crystals. This is used to derive a new form of the Ericksen-Leslie equations incorporating the dynamics of disclinations in nematic films. The zero liquid flow case is treated in detail for simplicity. The equations are reduced to dynamic equations for disclination points in moduli space for a small deviation from the Bogomol'nyi limit. We are able to derive analytically the dynamics of disclinations with winding numbers of the same sign. A set of such disclinations close to one another, i.e., with overlapping cores, can result from the disintegration of a larger disclination, and they repel one another. For a pair of such dis- clinations far apart from one another we find that they move on a straight line where their separation increases logarithmically over time

  10. Gauge turbulence, topological defect dynamics, and condensation in Higgs models

    Energy Technology Data Exchange (ETDEWEB)

    Gasenzer, Thomas [Institut für Theoretische Physik, Universität Heidelberg, Philosophenweg 16, 69120 Heidelberg (Germany); ExtreMe Matter Institute EMMI, GSI, Planckstraße 1, D-64291 Darmstadt (Germany); McLerran, Larry [Physics Department, Bldg. 510A, Brookhaven National Laboratory, Upton, NY 11973 (United States); RIKEN BNL Research Center, Bldg. 510A, Brookhaven National Laboratory, Upton, NY 11973 (United States); Physics Department, China Central Normal University, Wuhan (China); Pawlowski, Jan M.; Sexty, Dénes [Institut für Theoretische Physik, Universität Heidelberg, Philosophenweg 16, 69120 Heidelberg (Germany); ExtreMe Matter Institute EMMI, GSI, Planckstraße 1, D-64291 Darmstadt (Germany)

    2014-10-15

    The real-time dynamics of topological defects and turbulent configurations of gauge fields for electric and magnetic confinement are studied numerically within a 2+1D Abelian Higgs model. It is shown that confinement is appearing in such systems equilibrating after a strong initial quench such as the overpopulation of the infrared modes. While the final equilibrium state does not support confinement, metastable vortex defect configurations appearing in the gauge field are found to be closely related to the appearance of physically observable confined electric and magnetic charges. These phenomena are seen to be intimately related to the approach of a non-thermal fixed point of the far-from-equilibrium dynamical evolution, signaled by universal scaling in the gauge-invariant correlation function of the Higgs field. Even when the parameters of the Higgs action do not support condensate formation in the vacuum, during this approach, transient Higgs condensation is observed. We discuss implications of these results for the far-from-equilibrium dynamics of Yang–Mills fields and potential mechanisms of how confinement and condensation in non-Abelian gauge fields can be understood in terms of the dynamics of Higgs models. These suggest that there is an interesting new class of dynamics of strong coherent turbulent gauge fields with condensates.

  11. Gauge turbulence, topological defect dynamics, and condensation in Higgs models

    International Nuclear Information System (INIS)

    Gasenzer, Thomas; McLerran, Larry; Pawlowski, Jan M.; Sexty, Dénes

    2014-01-01

    The real-time dynamics of topological defects and turbulent configurations of gauge fields for electric and magnetic confinement are studied numerically within a 2+1D Abelian Higgs model. It is shown that confinement is appearing in such systems equilibrating after a strong initial quench such as the overpopulation of the infrared modes. While the final equilibrium state does not support confinement, metastable vortex defect configurations appearing in the gauge field are found to be closely related to the appearance of physically observable confined electric and magnetic charges. These phenomena are seen to be intimately related to the approach of a non-thermal fixed point of the far-from-equilibrium dynamical evolution, signaled by universal scaling in the gauge-invariant correlation function of the Higgs field. Even when the parameters of the Higgs action do not support condensate formation in the vacuum, during this approach, transient Higgs condensation is observed. We discuss implications of these results for the far-from-equilibrium dynamics of Yang–Mills fields and potential mechanisms of how confinement and condensation in non-Abelian gauge fields can be understood in terms of the dynamics of Higgs models. These suggest that there is an interesting new class of dynamics of strong coherent turbulent gauge fields with condensates

  12. Decay of the standard model Higgs field after inflation

    CERN Document Server

    Figueroa, Daniel G; Torrenti, Francisco

    2015-01-01

    We study the nonperturbative dynamics of the Standard Model (SM) after inflation, in the regime where the SM is decoupled from (or weakly coupled to) the inflationary sector. We use classical lattice simulations in an expanding box in (3+1) dimensions, modeling the SM gauge interactions with both global and Abelian-Higgs analogue scenarios. We consider different post-inflationary expansion rates. During inflation, the Higgs forms a condensate, which starts oscillating soon after inflation ends. Via nonperturbative effects, the oscillations lead to a fast decay of the Higgs into the SM species, transferring most of the energy into $Z$ and $W^{\\pm}$ bosons. All species are initially excited far away from equilibrium, but their interactions lead them into a stationary stage, with exact equipartition among the different energy components. From there on the system eventually reaches equilibrium. We have characterized in detail, in the different expansion histories considered, the evolution of the Higgs and of its ...

  13. Towards a realization of the condensed-matter-gravity correspondence in string theory via consistent Abelian truncation of the Aharony-Bergman-Jafferis-Maldacena model.

    Science.gov (United States)

    Mohammed, Asadig; Murugan, Jeff; Nastase, Horatiu

    2012-11-02

    We present an embedding of the three-dimensional relativistic Landau-Ginzburg model for condensed matter systems in an N = 6, U(N) × U(N) Chern-Simons-matter theory [the Aharony-Bergman-Jafferis-Maldacena model] by consistently truncating the latter to an Abelian effective field theory encoding the collective dynamics of O(N) of the O(N(2)) modes. In fact, depending on the vacuum expectation value on one of the Aharony-Bergman-Jafferis-Maldacena scalars, a mass deformation parameter μ and the Chern-Simons level number k, our Abelianization prescription allows us to interpolate between the Abelian Higgs model with its usual multivortex solutions and a Ø(4) theory. We sketch a simple condensed matter model that reproduces all the salient features of the Abelianization. In this context, the Abelianization can be interpreted as giving a dimensional reduction from four dimensions.

  14. Vector Higgs-portal dark matter and the invisible Higgs

    International Nuclear Information System (INIS)

    Lebedev, Oleg; Lee, Hyun Min; Mambrini, Yann

    2011-11-01

    The Higgs sector of the Standard Model offers a unique probe of the hidden sector. In this work, we explore the possibility of renormalizable Higgs couplings to the hidden sector vector fields which can constitute dark matter (DM). Abelian gauge sectors with minimal field content, necessary to render the gauge fields massive, have a natural Z 2 parity. This symmetry ensures stability of the vector fields making them viable dark matter candidates, while evading the usual electroweak constraints. We illustrate this idea with the Stueckelberg and Higgs mechanisms. Vector DM is consistent with the WMAP, XENON100, and LHC constraints, while it can affect significantly the invisible Higgs decay. Due to the enhanced branching ratio for the Higgs decay into the longitudinal components of the vector field, the vector Higgs portal provides an efficient way to hide the Higgs at the LHC. This could be the reason why the latest combined ATLAS/CMS data did not bring evidence for the existence of the Higgs boson. (orig.)

  15. Vector Higgs portal dark matter and the invisible Higgs

    International Nuclear Information System (INIS)

    Lebedev, Oleg; Lee, Hyun Min; Mambrini, Yann

    2012-01-01

    The Higgs sector of the Standard Model offers a unique probe of the hidden sector. In this work, we explore the possibility of renormalizable Higgs couplings to the hidden sector vector fields which can constitute dark matter (DM). Abelian gauge sectors with minimal field content, necessary to render the gauge fields massive, have a natural Z 2 parity. This symmetry ensures stability of the vector fields making them viable dark matter candidates, while evading the usual electroweak constraints. We illustrate this idea with the Stückelberg and Higgs mechanisms. Vector DM is consistent with the WMAP, XENON100, and LHC constraints, while it can affect significantly the invisible Higgs decay. Due to the enhanced branching ratio for the Higgs decay into the longitudinal components of the vector field, the vector Higgs portal provides an efficient way to hide the Higgs at the LHC. This could be the reason why the latest combined ATLAS/CMS data did not bring evidence for the existence of the Higgs boson.

  16. Vector Higgs-portal dark matter and the invisible Higgs

    Energy Technology Data Exchange (ETDEWEB)

    Lebedev, Oleg [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Lee, Hyun Min [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Mambrini, Yann [Paris-Sud Univ., 91 - Orsay (France). Lab. de Physique Theorique

    2011-11-15

    The Higgs sector of the Standard Model offers a unique probe of the hidden sector. In this work, we explore the possibility of renormalizable Higgs couplings to the hidden sector vector fields which can constitute dark matter (DM). Abelian gauge sectors with minimal field content, necessary to render the gauge fields massive, have a natural Z{sub 2} parity. This symmetry ensures stability of the vector fields making them viable dark matter candidates, while evading the usual electroweak constraints. We illustrate this idea with the Stueckelberg and Higgs mechanisms. Vector DM is consistent with the WMAP, XENON100, and LHC constraints, while it can affect significantly the invisible Higgs decay. Due to the enhanced branching ratio for the Higgs decay into the longitudinal components of the vector field, the vector Higgs portal provides an efficient way to hide the Higgs at the LHC. This could be the reason why the latest combined ATLAS/CMS data did not bring evidence for the existence of the Higgs boson. (orig.)

  17. Reflections on the Higgs system. Lectures given in the Academic Training Programme of CERN 1996-1997

    International Nuclear Information System (INIS)

    Veltmann, M.

    1997-01-01

    A detailed discussion of Higgs systems, including the Abelian Higgs model and the Higgs system of the Standard Model, is presented. The advantages and disadvantages of more complex Higgs systems, involving several doublets or higher representations, are scrutinized. The prospects for detecting Higgs-system-related effects at high energy are sketched. (orig.)

  18. Gravitational waves from non-Abelian gauge fields at a tachyonic transition

    Science.gov (United States)

    Tranberg, Anders; Tähtinen, Sara; Weir, David J.

    2018-04-01

    We compute the gravitational wave spectrum from a tachyonic preheating transition of a Standard Model-like SU(2)-Higgs system. Tachyonic preheating involves exponentially growing IR modes, at scales as large as the horizon. Such a transition at the electroweak scale could be detectable by LISA, if these non-perturbatively large modes translate into non-linear dynamics sourcing gravitational waves. Through large-scale numerical simulations, we find that the spectrum of gravitational waves does not exhibit such IR features. Instead, we find two peaks corresponding to the Higgs and gauge field mass, respectively. We find that the gravitational wave production is reduced when adding non-Abelian gauge fields to a scalar-only theory, but increases when adding Abelian gauge fields. In particular, gauge fields suppress the gravitational wave spectrum in the IR. A tachyonic transition in the early Universe will therefore not be detectable by LISA, even if it involves non-Abelian gauge fields.

  19. Integrable Abelian vortex-like solitons

    Energy Technology Data Exchange (ETDEWEB)

    Contatto, Felipe, E-mail: felipe.contatto@damtp.cam.ac.uk [Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA (United Kingdom); CAPES Foundation, Ministry of Education of Brazil, Brasília, DF 70040-020 (Brazil)

    2017-05-10

    We propose a modified version of the Ginzburg–Landau energy functional admitting static solitons and determine all the Painlevé-integrable cases of its Bogomolny equations of a given class of models. Explicit solutions are determined in terms of the third Painlevé transcendents, allowing us to calculate physical quantities such as the vortex number and the vortex strength. These solutions can be interpreted as the usual Abelian-Higgs vortices on surfaces of non-constant curvature with conical singularity.

  20. Integrable Abelian vortex-like solitons

    Directory of Open Access Journals (Sweden)

    Felipe Contatto

    2017-05-01

    Full Text Available We propose a modified version of the Ginzburg–Landau energy functional admitting static solitons and determine all the Painlevé-integrable cases of its Bogomolny equations of a given class of models. Explicit solutions are determined in terms of the third Painlevé transcendents, allowing us to calculate physical quantities such as the vortex number and the vortex strength. These solutions can be interpreted as the usual Abelian-Higgs vortices on surfaces of non-constant curvature with conical singularity.

  1. Point-splitting as a regularization method for λφ4-type vertices: Abelian case

    International Nuclear Information System (INIS)

    Moura-Melo, Winder A.; Helayel Neto, J.A.

    1998-11-01

    We obtained regularized Abelian Lagrangians containing λφ 4 -type vertices by means of a suitable point-splitting procedure. The calculation is developed in details for a general Lagrangian, whose fields (gauge and matter ones) satisfy certain conditions. We illustrates our results by considering some special cases, such as the Abelian Higgs, the (ψ-barψ) 2 and the Avdeev-Chizov (real rank-2 antisymmetric tensor as matter fields) models. We also discuss some features of the obtained Lagrangian such as the regularity and non-locality of its new integrating terms. Moreover, the resolution of the Abelian case may teach us some useful technical aspects when dealing with the non-Abelian one. (author)

  2. Self-dual configurations in Abelian Higgs models with k-generalized gauge field dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Casana, R.; Cavalcante, A. [Departamento de Física, Universidade Federal do Maranhão,65080-805, São Luís, Maranhão (Brazil); Hora, E. da [Departamento de Física, Universidade Federal do Maranhão,65080-805, São Luís, Maranhão (Brazil); Coordenadoria Interdisciplinar de Ciência e Tecnologia, Universidade Federal do Maranhão,65080-805, São Luís, Maranhão (Brazil)

    2016-12-14

    We have shown the existence of self-dual solutions in new Maxwell-Higgs scenarios where the gauge field possesses a k-generalized dynamic, i.e., the kinetic term of gauge field is a highly nonlinear function of F{sub μν}F{sup μν}. We have implemented our proposal by means of a k-generalized model displaying the spontaneous symmetry breaking phenomenon. We implement consistently the Bogomol’nyi-Prasad-Sommerfield formalism providing highly nonlinear self-dual equations whose solutions are electrically neutral possessing total energy proportional to the magnetic flux. Among the infinite set of possible configurations, we have found families of k-generalized models whose self-dual equations have a form mathematically similar to the ones arising in the Maxwell-Higgs or Chern-Simons-Higgs models. Furthermore, we have verified that our proposal also supports infinite twinlike models with |ϕ|{sup 4}-potential or |ϕ|{sup 6}-potential. With the aim to show explicitly that the BPS equations are able to provide well-behaved configurations, we have considered a test model in order to study axially symmetric vortices. By depending of the self-dual potential, we have shown that the k-generalized model is able to produce solutions that for long distances have a exponential decay (as Abrikosov-Nielsen-Olesen vortices) or have a power-law decay (characterizing delocalized vortices). In all cases, we observe that the generalization modifies the vortex core size, the magnetic field amplitude and the bosonic masses but the total energy remains proportional to the quantized magnetic flux.

  3. New bounds on the phase transition line in a non-compact abelian lattice Higgs model

    International Nuclear Information System (INIS)

    Nill, F.

    1987-01-01

    The Higgs expectation value and the 't Hooft loop are investigated as order respectively disorder parameters in a fixed-length Higgs model of Villain type with gauge group R. Based on either observable the phase transition line is shown to be monotonically decreasing and Lipschitz continuous with Lipschitz constant 4d in dimension d ≥ 3. This gives new bounds on the phase transition line in terms of its endpoints, i.e. the critical couplings of the Z-gauge model and the XY-model with Villain action, respectively. (orig.)

  4. Phase structure and phase transition of the SU(2) Higgs model in three dimensions

    International Nuclear Information System (INIS)

    Buchmueller, W.; Philipsen, O.

    1994-11-01

    We derive a set of gauge independent gap equations for Higgs boson and vector boson masses for the SU(2) Higgs model in three dimensions. The solutions can be associated with the Higgs phase and the symmetric phase, respectively. In the Higgs phase the calculated masses are in agreement with results from perturbation theory. In the symmetric phase a non-perturbative vector boson mass is generated by the non-abelian gauge interactions, whose value is rather independent of the scalar self-coupling λ. For small values of λ the phase transition is first-order. Its strength decreases with increasing λ, and at a critical value λ c the first-order transition changes to a crossover. Based on a perturbative matching the three-dimensional theory is related to the four-dimensional theory at high temperatures. The critical Higgs mass m H c , corresponding to the critical coupling λ c , is estimated to be below 100 GeV. The ''symmetric phase'' of the theory can be interpreted as a Higgs phase whose parameters are determined non-perturbatively. The obtained Higgs boson and vector boson masses are compared with recent results from lattice Monte Carlo simulations. (orig.)

  5. Solving the flavour problem in supersymmetric Standard Models with three Higgs families

    International Nuclear Information System (INIS)

    Howl, R.; King, S.F.

    2010-01-01

    We show how a non-Abelian family symmetry Δ 27 can be used to solve the flavour problem of supersymmetric Standard Models containing three Higgs families such as the Exceptional Supersymmetric Standard Model (E 6 SSM). The three 27-dimensional families of the E 6 SSM, including the three families of Higgs fields, transform in a triplet representation of the Δ 27 family symmetry, allowing the family symmetry to commute with a possible high energy E 6 symmetry. The Δ 27 family symmetry here provides a high energy understanding of the Z 2 H symmetry of the E 6 SSM, which solves the flavour changing neutral current problem of the three families of Higgs fields. The main phenomenological predictions of the model are tri-bi-maximal mixing for leptons, two almost degenerate LSPs and two almost degenerate families of colour triplet D-fermions, providing a clear prediction for the LHC. In addition the model predicts PGBs with masses below the TeV scale, and possibly much lighter, which appears to be a quite general and robust prediction of all models based on the D-term vacuum alignment mechanism.

  6. An asymptotic safety scenario for gauged chiral Higgs-Yukawa models

    International Nuclear Information System (INIS)

    Gies, Holger; Rechenberger, Stefan; Scherer, Michael M.; Zambelli, Luca

    2013-01-01

    We investigate chiral Higgs-Yukawa models with a non-abelian gauged left-handed sector reminiscent to a sub-sector of the standard model. We discover a new weak-coupling fixed-point behavior that allows for ultraviolet complete RG trajectories which can be connected with a conventional long-range infrared behavior in the Higgs phase. This non-trivial ultraviolet behavior is characterized by asymptotic freedom in all interaction couplings, but a quasi conformal behavior in all mass-like parameters. The stable microscopic scalar potential asymptotically approaches flatness in the ultraviolet, however, with a non-vanishing minimum increasing inversely proportional to the asymptotically free gauge coupling. This gives rise to non-perturbative - though weak-coupling - threshold effects which induce ultraviolet stability along a line of fixed points. Despite the weak-coupling properties, the system exhibits non-Gaussian features which are distinctly different from its standard perturbative counterpart: e.g., on a branch of the line of fixed points, we find linear instead of quadratically running renormalization constants. Whereas the Fermi constant and the top mass are naturally of the same order of magnitude, our model generically allows for light Higgs boson masses. Realistic mass ratios are related to particular RG trajectories with a ''walking'' mid-momentum regime. (orig.)

  7. An asymptotic safety scenario for gauged chiral Higgs-Yukawa models

    Science.gov (United States)

    Gies, Holger; Rechenberger, Stefan; Scherer, Michael M.; Zambelli, Luca

    2013-12-01

    We investigate chiral Higgs-Yukawa models with a non-abelian gauged left-handed sector reminiscent to a sub-sector of the standard model. We discover a new weak-coupling fixed-point behavior that allows for ultraviolet complete RG trajectories which can be connected with a conventional long-range infrared behavior in the Higgs phase. This non-trivial ultraviolet behavior is characterized by asymptotic freedom in all interaction couplings, but a quasi conformal behavior in all mass-like parameters. The stable microscopic scalar potential asymptotically approaches flatness in the ultraviolet, however, with a non-vanishing minimum increasing inversely proportional to the asymptotically free gauge coupling. This gives rise to non-perturbative—though weak-coupling—threshold effects which induce ultraviolet stability along a line of fixed points. Despite the weak-coupling properties, the system exhibits non-Gaußian features which are distinctly different from its standard perturbative counterpart: e.g., on a branch of the line of fixed points, we find linear instead of quadratically running renormalization constants. Whereas the Fermi constant and the top mass are naturally of the same order of magnitude, our model generically allows for light Higgs boson masses. Realistic mass ratios are related to particular RG trajectories with a "walking" mid-momentum regime.

  8. Vortices and quark confinement in non-Abelian gauge theories

    International Nuclear Information System (INIS)

    Mandelstam, S.

    1976-01-01

    Non-Abelian vortices of the type proposed by Nielsen and Olesen are discussed. It is shown that the vortices must contain a single unit of quantized flux absorbed by a Dirac monopole at each end. The monopoles satisfy a confinement condition; if quark numbers are assigned to the monopoles, is is found that the model contains a natural explanation of quark confinement. The I-spin variables associated with the non-Abelian gauge field correspond to the colour degree freedom. An alternative model in which (colour) charges and monopoles are interchanged is also suggested. The Higgs field which breaks the degeneracy of the vacuum is replaced by an operator which creates monopoles of the type suggested by 't Hooft. In such a model colour might be confined. The investigations are at a very preliminary stage, but the model appears to offer a natural explanation of confinement without the explicit introduction of monopole fields. (Auth.)

  9. Spontaneously broken abelian gauge invariant supersymmetric model

    International Nuclear Information System (INIS)

    Mainland, G.B.; Tanaka, K.

    A model is presented that is invariant under an Abelian gauge transformation and a modified supersymmetry transformation. This model is broken spontaneously, and the interplay between symmetry breaking, Goldstone particles, and mass breaking is studied. In the present model, spontaneously breaking the Abelian symmetry of the vacuum restores the invariance of the vacuum under a modified supersymmetry transformation. (U.S.)

  10. Non Abelian T-duality in Gauged Linear Sigma Models

    Science.gov (United States)

    Bizet, Nana Cabo; Martínez-Merino, Aldo; Zayas, Leopoldo A. Pando; Santos-Silva, Roberto

    2018-04-01

    Abelian T-duality in Gauged Linear Sigma Models (GLSM) forms the basis of the physical understanding of Mirror Symmetry as presented by Hori and Vafa. We consider an alternative formulation of Abelian T-duality on GLSM's as a gauging of a global U(1) symmetry with the addition of appropriate Lagrange multipliers. For GLSMs with Abelian gauge groups and without superpotential we reproduce the dual models introduced by Hori and Vafa. We extend the construction to formulate non-Abelian T-duality on GLSMs with global non-Abelian symmetries. The equations of motion that lead to the dual model are obtained for a general group, they depend in general on semi-chiral superfields; for cases such as SU(2) they depend on twisted chiral superfields. We solve the equations of motion for an SU(2) gauged group with a choice of a particular Lie algebra direction of the vector superfield. This direction covers a non-Abelian sector that can be described by a family of Abelian dualities. The dual model Lagrangian depends on twisted chiral superfields and a twisted superpotential is generated. We explore some non-perturbative aspects by making an Ansatz for the instanton corrections in the dual theories. We verify that the effective potential for the U(1) field strength in a fixed configuration on the original theory matches the one of the dual theory. Imposing restrictions on the vector superfield, more general non-Abelian dual models are obtained. We analyze the dual models via the geometry of their susy vacua.

  11. Dual Higgs theory for color confinement

    International Nuclear Information System (INIS)

    Ichie, H.; Suganuma, H.

    1999-01-01

    We study theoretical bases of the dual Higgs theory for confinement physics in QCD in terms of monopoles and the gluon configuration in the maximally abelian (MA) gauge. Abelian dominance for the confinement force can be analytically proved by regarding the off-diagonal angle variable as a random variable in the lattice formalism. In the long-distance scale, the contribution of off-diagonal gluons to the Wilson loop cancels each other and exhibits a perimeter law behavior, which leads to exact abelian dominance on the string tension if the finite size effect of the Wilson loop is removed. We investigate the appearance of the monopole in the QCD vacuum, considering the role of off-diagonal gluons. The monopole carries a large fluctuation of the gluon field and provides a large abelian action in abelian projected QCD. Due to the partial cancellation between the abelian part and the off-diagonal part of the QCD action, the monopole can appear in QCD without large cost of the QCD action. The off-diagonal gluon is necessary for existence of the monopole at the short-distance scale. We study monopole condensation, which is the requirement of the dual Higgs theory, by comparing the QCD vacuum with the monopole-current system. We find that 'entropy' of monopole-current dominates than its 'energy', and the monopole seems to be condensed at the infrared scale in the QCD vacuum. Copyright (1999) World Scientific Publishing Co. Pte. Ltd

  12. Strength of the trilinear Higgs boson coupling in technicolor models

    International Nuclear Information System (INIS)

    Doff, A.; Natale, A.A.

    2006-01-01

    In the standard model of elementary particles the fermion and gauge boson masses are generated due to the interaction of these particles with elementary Higgs scalar bosons. Despite its success there are some points in the model as, for instance, the enormous range of masses between the lightest and heaviest fermions and other peculiarities that could be better explained at a deeper level. The nature of the Higgs boson is one of the most important problems in particle physics, and there are many questions that may be answered in the near future by LHC experiments, such as: Is the Higgs boson, if it exists at all, elementary or composite? What are the symmetries behind the Higgs mechanism? There are many variants for the Higgs mechanism. Our interest in this work will be focused in the models of electroweak symmetry breaking via strongly interacting theories of technicolor (TC) type. In these theories the Higgs boson is a composite of the so called technifermions, and at some extent any model where the Higgs boson is not an elementary field follows more or less the same ideas of the technicolor models. In extensions of the standard model the scalar self-couplings can be enhanced, like in the supersymmetric version. If the same happens in models of dynamical symmetry breaking, as far as we know, has not been investigated up to now, and this study is the motivation of our work. Although technicolor is a non-Abelian gauge theory it is not necessarily similar to QCD, and most of the work in this area try to find the TC dynamics dealing with the particle content of the theory in order to obtain a technifermion self-energy that does not lead to phenomenological problems as in the scheme known as walking technicolor. In this work we will consider a very general Ansatz for the technifermion self-energy, which is an essential ingredient to compute the scalar self-couplings. This Ansatz interpolates between all known forms of technifermionic self-energy. As we vary some

  13. A Lorentz-Violating Alternative to Higgs Mechanism?

    CERN Document Server

    Alexandre, Jean

    2011-01-01

    We consider a four-dimensional field-theory model with two massless fermions, coupled to an Abelian vector field without flavour mixing, and to another Abelian vector field with flavour mixing. Both Abelian vectors have a Lorentz-violating kinetic term, introducing a Lorentz-violation mass scale $M$, from which fermions and the flavour-mixing vector get their dynamical masses, whereas the vector coupled without flavour mixing remains massless. When the two coupling constants have similar values in order of magnitude, a mass hierarchy pattern emerges, in which one fermion is very light compared to the other, whilst the vector mass is larger than the mass of the heavy fermion. The work presented here may be considered as a Lorentz-symmetry-Violating alternative to the Higgs mechanism, in the sense that no scalar particle (fundamental or composite) is necessary for the generation of the vector-meson mass. However, the model is not realistic given that, as a result of Lorentz Violation, the maximal (light-cone) s...

  14. Some aspects of non-Abelian gauge theories

    International Nuclear Information System (INIS)

    Tyburski, L.J.

    1976-01-01

    Two aspects of the theory of non-Abelian gauge fields are considered. In the first part, the fermion-fermion scattering amplitude is calculated for a non-Abelian gauge theory with SU(N) gauge symmetry in the limit of high energy with fixed momentum transfer through sixth order in the coupling constant. Only the leading logarithmic terms in each order of perturbation theory are kept. To avoid the infrared problem, the Higgs mechanism is invoked to give masses to the vector bosons of the theory. It is found that the scattering amplitude exponentiates to a Regge form. This result is qualitatively different from an earlier published calculation. In the second part of the thesis, we consider fermion-fermion scattering in a non-Abelian gauge theory with massless vector bosons, and demonstrate that for physically measurable cross sections the infrared divergences of the theory cancel out to lowest nontrivial order

  15. A magnetic instability of the non-Abelian Sakai-Sugimoto model

    International Nuclear Information System (INIS)

    Callebaut, Nele; Dudal, David

    2014-01-01

    In this follow-up paper of http://dx.doi.org/10.1007/JHEP03(2013)033 we further discuss the occurrence of a magnetically induced tachyonic instability of the rho meson in the two-flavour Sakai-Sugimoto model, uplifting two remaining approximations in the previous paper. That is, firstly, the magnetically induced splitting of the branes is now taken into account, evaluating without approximations the symmetrized trace which enters in the non-Abelian Dirac-Born-Infeld (DBI) action. This leads to an extra mass generating effect for the charged heavy-light rho meson through a holographic Higgs mechanism. Secondly, we compare the results in the approximation to second order in the field strength to the results using the full DBI-action. Both improvements cause an increase of the critical magnetic field for the onset of rho meson condensation. In addition, the stability in the scalar sector in the presence of the magnetic field is discussed

  16. Constraints on abelian extensions of the Standard Model from two-loop vacuum stability and U(1){sub B−L}

    Energy Technology Data Exchange (ETDEWEB)

    Corianò, Claudio [STAG Research Centre and Mathematical Sciences,University of Southampton, Southampton SO17 1BJ (United Kingdom); Dipartimento di Matematica e Fisica “Ennio De Giorgi' ,Università del Salento and INFN - Sezione di Lecce,Via Arnesano, 73100 Lecce (Italy); Rose, Luigi Delle; Marzo, Carlo [Dipartimento di Matematica e Fisica “Ennio De Giorgi' ,Università del Salento and INFN - Sezione di Lecce,Via Arnesano, 73100 Lecce (Italy)

    2016-02-19

    We present a renormalization group study of the scalar potential in a minimal U(1){sub B−L} extension of the Standard Model involving one extra heavier Higgs and three heavy right-handed neutrinos with family universal B-L charge assignments. We implement a type-I seesaw for the masses of the light neutrinos of the Standard Model. In particular, compared to a previous study, we perform a two-loop extension of the evolution, showing that two-loop effects are essential for the study of the stability of the scalar potential up to the Planck scale. The analysis includes the contribution of the kinetic mixing between the two abelian gauge groups, which is radiatively generated by the evolution, and the one-loop matching conditions at the electroweak scale. By requiring the stability of the potential up to the Planck mass, significant constraints on the masses of the heavy neutrinos, on the gauge couplings and the mixing in the Higgs sector are identified.

  17. Mapping of parent hamiltonians from abelian and non-abelian quantum hall states to exact models of critical spin chains

    CERN Document Server

    Greiter, Martin

    2011-01-01

    This monograph introduces an exact model for a critical spin chain with arbitrary spin S, which includes the Haldane--Shastry model as the special case S=1/2.  While spinons in the Haldane-Shastry model obey abelian half-fermi statistics, the spinons in the general model introduced here obey non-abelian statistics.  This manifests itself through topological choices for the fractional momentum spacings.  The general model is derived by mapping exact models of quantized Hall states onto spin chains.  The book begins with pedagogical review of all the relevant models including the non-abelian statistics in the Pfaffian Hall state, and is understandable to every student with a graduate course in quantum mechanics.

  18. Holographic twin Higgs model.

    Science.gov (United States)

    Geller, Michael; Telem, Ofri

    2015-05-15

    We present the first realization of a "twin Higgs" model as a holographic composite Higgs model. Uniquely among composite Higgs models, the Higgs potential is protected by a new standard model (SM) singlet elementary "mirror" sector at the sigma model scale f and not by the composite states at m_{KK}, naturally allowing for m_{KK} beyond the LHC reach. As a result, naturalness in our model cannot be constrained by the LHC, but may be probed by precision Higgs measurements at future lepton colliders, and by direct searches for Kaluza-Klein excitations at a 100 TeV collider.

  19. Holographic Twin Higgs Model

    Science.gov (United States)

    Geller, Michael; Telem, Ofri

    2015-05-01

    We present the first realization of a "twin Higgs" model as a holographic composite Higgs model. Uniquely among composite Higgs models, the Higgs potential is protected by a new standard model (SM) singlet elementary "mirror" sector at the sigma model scale f and not by the composite states at mKK , naturally allowing for mKK beyond the LHC reach. As a result, naturalness in our model cannot be constrained by the LHC, but may be probed by precision Higgs measurements at future lepton colliders, and by direct searches for Kaluza-Klein excitations at a 100 TeV collider.

  20. Finiteness results for Abelian tree models

    NARCIS (Netherlands)

    Draisma, J.; Eggermont, R.H.

    2015-01-01

    Equivariant tree models are statistical models used in the reconstruction of phylogenetic trees from genetic data. Here equivariant refers to a symmetry group imposed on the root distribution and on the transition matrices in the model. We prove that if that symmetry group is Abelian, then the

  1. Finiteness results for Abelian tree models

    NARCIS (Netherlands)

    Draisma, J.; Eggermont, R.H.

    2012-01-01

    Equivariant tree models are statistical models used in the reconstruction of phylogenetic trees from genetic data. Here equivariant refers to a symmetry group imposed on the root distribution and on the transition matrices in the model. We prove that if that symmetry group is Abelian, then the

  2. Finiteness results for Abelian tree models

    NARCIS (Netherlands)

    Draisma, J.; Eggermont, R.H.

    2015-01-01

    Equivariant tree models are statistical models used in the reconstruction of phylogenetic trees from genetic data. Here equivariant§ refers to a symmetry group imposed on the root distribution and on the transition matrices in the model. We prove that if that symmetry group is Abelian, then the

  3. Trilinear Higgs couplings in the two Higgs doublet model with CP violation

    International Nuclear Information System (INIS)

    Osland, Per; Pandita, P. N.; Selbuz, Levent

    2008-01-01

    We carry out a detailed analysis of the general two Higgs doublet model with CP violation. We describe two different parametrizations of this model, and then study the Higgs boson masses and the trilinear Higgs couplings for these two parametrizations. Within a rather general model, we find that the trilinear Higgs couplings have a significant dependence on the details of the model, even when the lightest Higgs boson mass is taken to be a fixed parameter. We include radiative corrections in the one-loop effective potential approximation in our analysis of the Higgs boson masses and the Higgs trilinear couplings. The one-loop corrections to the trilinear couplings of the two Higgs doublet model also depend significantly on the details of the model, and can be rather large. We study quantitatively the trilinear Higgs couplings, and show that these couplings are typically several times larger than the corresponding standard model trilinear Higgs coupling in some regions of the parameter space. We also briefly discuss the decoupling limit of the two Higgs doublet model.

  4. Higgs pair production in the CP-violating two-Higgs-doublet model

    Science.gov (United States)

    Bian, Ligong; Chen, Ning; Jiang, Yun

    2017-12-01

    The SM-like Higgs pair production is discussed in the framework of the general CP-violating two-Higgs-doublet model, where we find that the CP-violating mixing angles can be related to the Higgs self-couplings. Therefore, the future experimental searches for Higgs boson pairs can be constrained by the improved precision of the electric dipole moment measurements. Based on a series of constraints of the SM-like Higgs boson signal fits, the perturbative unitarity and stability bounds to the Higgs potential, and the most recent LHC searches for heavy Higgs bosons, we suggest a set of benchmark models for the future high-energy collider searches for Higgs pair production. The e+e- colliders operating at s = (500GeV,1 TeV) are capable of measuring the Higgs cubic self-couplings of the benchmark models directly. We also estimate the cross sections of the resonance contributions to the Higgs pair productions for the benchmark models at the future LHC and SppC/FCC-hh runs.

  5. Nonperturbative construction of massive Yang-Mills fields without the Higgs field

    Science.gov (United States)

    Kondo, Kei-Ichi

    2013-01-01

    In order to understand the so-called decoupling solution for gluon and ghost propagators in QCD, we give a nonperturbative construction of a massive vector field describing a non-Abelian massive spin-one particle, which has the correct physical degrees of freedom and is invariant under a modified Becchi-Rouet-Stora-Tyutin transformation, in a massive Yang-Mills model without the Higgs field, i.e., the Curci-Ferrari model. The resulting non-Abelian massive vector boson field is written by using a nonlinear but local transformation from the original fields in the Curci-Ferrari model. As an application, we write down a local mass term for the Yang-Mills field and a dimension-two condensate, which are exactly invariant under the modified Becchi-Rouet-Stora-Tyutin transformation, Lorentz transformation, and color rotation.

  6. Abelian Higgs mechanism in the Schroedinger picture

    International Nuclear Information System (INIS)

    Kim, S.K.; Namgung, W.; Soh, K.S.; Yee, J.H.

    1990-01-01

    We have studied symmetry-breaking phenomena in scalar electrodynamics by evaluating the effective potential at one-loop order in the Schroedinger picture. Contributions to the effective potential by the Higgs particle and the transverse and longitudinal components of a photon are compared with other previous works, and they are found to be consistent

  7. Inert two-Higgs-doublet model strongly coupled to a non-Abelian vector resonance

    Science.gov (United States)

    Rojas-Abatte, Felipe; Mora, Maria Luisa; Urbina, Jose; Zerwekh, Alfonso R.

    2017-11-01

    We study the possibility of a dark matter candidate having its origin in an extended Higgs sector which, at least partially, is related to a new strongly interacting sector. More concretely, we consider an i2HDM (i.e., a Type-I two Higgs doublet model supplemented with a Z2 under which the nonstandard scalar doublet is odd) based on the gauge group S U (2 )1×S U (2 )2×U (1 )Y . We assume that one of the scalar doublets and the standard fermion transform nontrivially under S U (2 )1 while the second doublet transforms under S U (2 )2. Our main hypothesis is that standard sector is weakly coupled while the gauge interactions associated to the second group is characterized by a large coupling constant. We explore the consequences of this construction for the phenomenology of the dark matter candidate and we show that the presence of the new vector resonance reduces the relic density saturation region, compared to the usual i2DHM, in the high dark matter mass range. In the collider side, we argue that the mono-Z production is the channel which offers the best chances to manifest the presence of the new vector field. We study the departures from the usual i2HDM predictions and show that the discovery of the heavy vector at the LHC is challenging even in the mono-Z channel since the typical cross sections are of the order of 10-2 fb .

  8. Status of the charged Higgs boson in two Higgs doublet models

    Science.gov (United States)

    Arbey, A.; Mahmoudi, F.; Stål, O.; Stefaniak, T.

    2018-03-01

    The existence of charged Higgs boson(s) is inevitable in models with two (or more) Higgs doublets. Hence, their discovery would constitute unambiguous evidence for new physics beyond the Standard Model (SM). Taking into account all relevant results from direct charged and neutral Higgs boson searches at LEP and the LHC, as well as the most recent constraints from flavour physics, we present a detailed analysis of the current phenomenological status of the charged Higgs sector in a variety of well-motivated two Higgs doublet models (2HDMs). We find that charged Higgs bosons as light as 75 GeV can still be compatible with the combined data, although this implies severely suppressed charged Higgs couplings to all fermions. In more popular models, e.g. the 2HDM of Type II, we find that flavour physics observables impose a combined lower limit on the charged Higgs mass of M_{H^± } ≳ 600 GeV - independent of tan β - which increases to M_{H^± } ≳ 650 GeV for tan β < 1. We furthermore find that in certain scenarios, the signature of a charged Higgs boson decaying into a lighter neutral Higgs boson and a W boson provides a promising experimental avenue that would greatly complement the existing LHC search programme for charged Higgs boson(s).

  9. Status of the charged Higgs boson in two Higgs doublet models

    International Nuclear Information System (INIS)

    Arbey, A.; Mahmoudi, F.; Stefaniak, T.; Staal, O.

    2018-01-01

    The existence of charged Higgs boson(s) is inevitable in models with two (or more) Higgs doublets. Hence, their discovery would constitute unambiguous evidence for new physics beyond the Standard Model (SM). Taking into account all relevant results from direct charged and neutral Higgs boson searches at LEP and the LHC, as well as the most recent constraints from flavour physics, we present a detailed analysis of the current phenomenological status of the charged Higgs sector in a variety of well-motivated two Higgs doublet models (2HDMs). We find that charged Higgs bosons as light as 75 GeV can still be compatible with the combined data, although this implies severely suppressed charged Higgs couplings to all fermions. In more popular models, e.g. the 2HDM of Type II, we find that flavour physics observables impose a combined lower limit on the charged Higgs mass of M H ± > or similar 600 GeV - independent of tan β - which increases to M H ± > or similar 650 GeV for tan β < 1. We furthermore find that in certain scenarios, the signature of a charged Higgs boson decaying into a lighter neutral Higgs boson and a W boson provides a promising experimental avenue that would greatly complement the existing LHC search programme for charged Higgs boson(s). (orig.)

  10. Real-Time Dynamics in the (1+1)-D Abelian Higgs Model with Fermions

    NARCIS (Netherlands)

    Aarts, G.; Smit, J.

    2000-01-01

    In approximate dynamical equations, inhomogenous classical (mean) gauge and Higgs fields are coupled to quantized fermions. The equations are solved numerically on a spacetime lattice. The fermions appear to equilibrate according to the Fermi-Dirac distribution with time-dependent temperature and

  11. A tale of twin Higgs: natural twin two Higgs doublet models

    International Nuclear Information System (INIS)

    Yu, Jiang-Hao

    2016-01-01

    In original twin Higgs model, vacuum misalignment between electroweak and new physics scales is realized by adding explicit ℤ 2 breaking term. Introducing additional twin Higgs could accommodate spontaneous ℤ 2 breaking, which explains origin of this misalignment. We introduce a class of twin two Higgs doublet models with most general scalar potential, and discuss general conditions which trigger electroweak and ℤ 2 symmetry breaking. Various scenarios on realising the vacuum misalignment are systematically discussed in a natural composite two Higgs double model framework: explicit ℤ 2 breaking, radiative ℤ 2 breaking, tadpole-induced ℤ 2 breaking, and quartic-induced ℤ 2 breaking. We investigate the Higgs mass spectra and Higgs phenomenology in these scenarios.

  12. Non-Abelian duality in N = 4 supersymmetric gauge theories

    International Nuclear Information System (INIS)

    Dorey, Nicholas; Fraser, Christophe; Hollowood, Timithy J.; Kneipp, Marco A.C.

    1996-03-01

    A semi-classical check of the Goddard-Nuyts-Olive (GNO) generalized duality conjecture for gauge theories with adjoint Higgs fields is performed for the case where the unbroken gauge group is non-Abelian. The monopole solutions of the theory transform under the non-Abelian part of the unbroken global symmetry and the associated component of the moduli space is a Lie group coset space. The well-known problems in introducing collective coordinates for these degrees-of-freedom are solved by considering suitable multi monopole configurations in which the long-range non-Abelian fields cancel. In the context of an N = 4 supersymmetric gauge theory, the multiplicity of BPS saturated states is given by the number of ground-states of a supersymmetric quantum mechanics on the compact internal moduli space. The resulting degeneracy is expressed as the Euler character of the coset space. In all cases the number of states is consistent with the dimensions of the multiplets of the unbroken dual gauge group, and hence the results provide strong support for the GNO conjecture. (author). 39 refs

  13. Lattice Higgs models

    International Nuclear Information System (INIS)

    Jersak, J.

    1986-01-01

    This year has brought a sudden interest in lattice Higgs models. After five years of only modest activity we now have many new results obtained both by analytic and Monte Carlo methods. This talk is a review of the present state of lattice Higgs models with particular emphasis on the recent development

  14. A tale of twin Higgs: natural twin two Higgs doublet models

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Jiang-Hao [Amherst Center for Fundamental Interactions, Department of Physics,University of Massachusetts Amherst,710 North Pleasant St., Amherst, MA 01002 (United States)

    2016-12-28

    In original twin Higgs model, vacuum misalignment between electroweak and new physics scales is realized by adding explicit ℤ{sub 2} breaking term. Introducing additional twin Higgs could accommodate spontaneous ℤ{sub 2} breaking, which explains origin of this misalignment. We introduce a class of twin two Higgs doublet models with most general scalar potential, and discuss general conditions which trigger electroweak and ℤ{sub 2} symmetry breaking. Various scenarios on realising the vacuum misalignment are systematically discussed in a natural composite two Higgs double model framework: explicit ℤ{sub 2} breaking, radiative ℤ{sub 2} breaking, tadpole-induced ℤ{sub 2} breaking, and quartic-induced ℤ{sub 2} breaking. We investigate the Higgs mass spectra and Higgs phenomenology in these scenarios.

  15. Abelian tensor models on the lattice

    Science.gov (United States)

    Chaudhuri, Soumyadeep; Giraldo-Rivera, Victor I.; Joseph, Anosh; Loganayagam, R.; Yoon, Junggi

    2018-04-01

    We consider a chain of Abelian Klebanov-Tarnopolsky fermionic tensor models coupled through quartic nearest-neighbor interactions. We characterize the gauge-singlet spectrum for small chains (L =2 ,3 ,4 ,5 ) and observe that the spectral statistics exhibits strong evidence in favor of quasi-many-body localization.

  16. Anomalous Abelian symmetry in the standard model

    International Nuclear Information System (INIS)

    Ramond, P.

    1995-01-01

    The observed hierarchy of quark and lepton masses can be parametrized by nonrenormalizable operators with dimensions determined by an anomalous Abelian family symmetry, a gauge extension to the minimal supersymmetric standard model. Such an Abelian symmetry is generic to compactified superstring theories, with its anomalies compensated by the Green-Schwarz mechanism. If we assume these two symmetries to be the same, we find the electroweak mixing angle to be sin 2 θ ω = 3/8 at the string scale, just by setting the ratio of the product of down quark to charged lepton masses equal to one at the string scale. This assumes no GUT structure. The generality of the result suggests a superstring origin for the standard model. We generalize our analysis to massive neutrinos, and mixings in the lepton sector

  17. Lorentz-violating alternative to the Higgs mechanism?

    International Nuclear Information System (INIS)

    Alexandre, Jean; Mavromatos, Nick E.

    2011-01-01

    We consider a four-dimensional field-theory model with two massless fermions, coupled to an Abelian vector field without flavor mixing, and to another Abelian vector field with flavor mixing. Both Abelian vectors have a Lorentz-violating kinetic term, introducing a Lorentz-violation mass scale M, from which fermions and the flavor-mixing vector get their dynamical masses, whereas the vector coupled without flavor mixing remains massless. When the two coupling constants have similar values in order of magnitude, a mass hierarchy pattern emerges, in which one fermion is very light compared to the other, while the vector mass is of the order of the heavy fermion mass. The work presented here may be considered as a Lorentz-symmetry-violating alternative to the Higgs mechanism, in the sense that no scalar particle (fundamental or composite) is necessary for the generation of the vector-meson mass. However, the model is not realistic given that, as a result of Lorentz violation, the maximal (light-cone) speed seen by the fermions is smaller than that of the massless gauge boson (which equals the speed of light in vacuo) by an amount which is unacceptably large to be compatible with the current tests of Lorentz invariance, unless the gauge couplings assume unnaturally small values. Possible ways out of this phenomenological drawback are briefly discussed, postponing a detailed construction of more realistic models for future work.

  18. Two Higgs Doublet Model and Model Independent Interpretation of Neutral Higgs Boson Searches

    CERN Document Server

    Abbiendi, G.; Ainsley, C.; Akesson, P.F.; Alexander, G.; Allison, John; Anderson, K.J.; Arcelli, S.; Asai, S.; Ashby, S.F.; Axen, D.; Azuelos, G.; Bailey, I.; Ball, A.H.; Barberio, E.; Barlow, Roger J.; Baumann, S.; Behnke, T.; Bell, Kenneth Watson; Bella, G.; Bellerive, A.; Benelli, G.; Bentvelsen, S.; Bethke, S.; Biebel, O.; Bloodworth, I.J.; Boeriu, O.; Bock, P.; Bohme, J.; Bonacorsi, D.; Boutemeur, M.; Braibant, S.; Bright-Thomas, P.; Brigliadori, L.; Brown, Robert M.; Burckhart, H.J.; Cammin, J.; Capiluppi, P.; Carnegie, R.K.; Carter, A.A.; Carter, J.R.; Chang, C.Y.; Charlton, David G.; Clarke, P.E.L.; Clay, E.; Cohen, I.; Cooke, O.C.; Couchman, J.; Couyoumtzelis, C.; Coxe, R.L.; Csilling, A.; Cuffiani, M.; Dado, S.; Dallavalle, G.Marco; Dallison, S.; de Roeck, A.; de Wolf, E.; Dervan, P.; Desch, K.; Dienes, B.; Dixit, M.S.; Donkers, M.; Dubbert, J.; Duchovni, E.; Duckeck, G.; Duerdoth, I.P.; Estabrooks, P.G.; Etzion, E.; Fabbri, F.; Fanti, M.; Feld, L.; Ferrari, P.; Fiedler, F.; Fleck, I.; Ford, M.; Frey, A.; Furtjes, A.; Futyan, D.I.; Gagnon, P.; Gary, J.W.; Gaycken, G.; Geich-Gimbel, C.; Giacomelli, G.; Giacomelli, P.; Glenzinski, D.; Goldberg, J.; Grandi, C.; Graham, K.; Gross, E.; Grunhaus, J.; Gruwe, M.; Gunther, P.O.; Hajdu, C.; Hanson, G.G.; Hansroul, M.; Hapke, M.; Harder, K.; Harel, A.; Harin-Dirac, M.; Hauke, A.; Hauschild, M.; Hawkes, C.M.; Hawkings, R.; Hemingway, R.J.; Hensel, C.; Herten, G.; Heuer, R.D.; Hill, J.C.; Hocker, James Andrew; Hoffman, Kara Dion; Homer, R.J.; Honma, A.K.; Horvath, D.; Hossain, K.R.; Howard, R.; Huntemeyer, P.; Igo-Kemenes, P.; Ishii, K.; Jacob, F.R.; Jawahery, A.; Jeremie, H.; Jones, C.R.; Jovanovic, P.; Junk, T.R.; Kanaya, N.; Kanzaki, J.; Karapetian, G.; Karlen, D.; Kartvelishvili, V.; Kawagoe, K.; Kawamoto, T.; Keeler, R.K.; Kellogg, R.G.; Kennedy, B.W.; Kim, D.H.; Klein, K.; Klier, A.; Kluth, S.; Kobayashi, T.; Kobel, M.; Kokott, T.P.; Komamiya, S.; Kowalewski, Robert V.; Kress, T.; Krieger, P.; von Krogh, J.; Kuhl, T.; Kupper, M.; Kyberd, P.; Lafferty, G.D.; Landsman, H.; Lanske, D.; Lawson, I.; Layter, J.G.; Leins, A.; Lellouch, D.; Letts, J.; Levinson, L.; Liebisch, R.; Lillich, J.; List, B.; Littlewood, C.; Lloyd, A.W.; Lloyd, S.L.; Loebinger, F.K.; Long, G.D.; Losty, M.J.; Lu, J.; Ludwig, J.; Macchiolo, A.; Macpherson, A.; Mader, W.; Marcellini, S.; Marchant, T.E.; Martin, A.J.; Martin, J.P.; Martinez, G.; Mashimo, T.; Mattig, Peter; McDonald, W.John; McKenna, J.; McMahon, T.J.; McPherson, R.A.; Meijers, F.; Mendez-Lorenzo, P.; Menges, W.; Merritt, F.S.; Mes, H.; Michelini, A.; Mihara, S.; Mikenberg, G.; Miller, D.J.; Mohr, W.; Montanari, A.; Mori, T.; Nagai, K.; Nakamura, I.; Neal, H.A.; Nisius, R.; O'Neale, S.W.; Oakham, F.G.; Odorici, F.; Ogren, H.O.; Oh, A.; Okpara, A.; Oreglia, M.J.; Orito, S.; Pasztor, G.; Pater, J.R.; Patrick, G.N.; Patt, J.; Pfeifenschneider, P.; Pilcher, J.E.; Pinfold, J.; Plane, David E.; Poli, B.; Polok, J.; Pooth, O.; Przybycien, M.; Quadt, A.; Rembser, C.; Renkel, P.; Rick, H.; Rodning, N.; Roney, J.M.; Rosati, S.; Roscoe, K.; Rossi, A.M.; Rozen, Y.; Runge, K.; Runolfsson, O.; Rust, D.R.; Sachs, K.; Saeki, T.; Sahr, O.; Sarkisyan, E.K.G.; Sbarra, C.; Schaile, A.D.; Schaile, O.; Scharff-Hansen, P.; Schroder, Matthias; Schumacher, M.; Schwick, C.; Scott, W.G.; Seuster, R.; Shears, T.G.; Shen, B.C.; Shepherd-Themistocleous, C.H.; Sherwood, P.; Siroli, G.P.; Skuja, A.; Smith, A.M.; Snow, G.A.; Sobie, R.; Soldner-Rembold, S.; Spagnolo, S.; Sproston, M.; Stahl, A.; Stephens, K.; Stoll, K.; Strom, David M.; Strohmer, R.; Stumpf, L.; Surrow, B.; Talbot, S.D.; Tarem, S.; Taylor, R.J.; Teuscher, R.; Thiergen, M.; Thomas, J.; Thomson, M.A.; Torrence, E.; Towers, S.; Toya, D.; Trefzger, T.; Trigger, I.; Trocsanyi, Z.; Tsur, E.; Turner-Watson, M.F.; Ueda, I.; Vachon, B.; Vannerem, P.; Verzocchi, M.; Voss, H.; Vossebeld, J.; Waller, D.; Ward, C.P.; Ward, D.R.; Watkins, P.M.; Watson, A.T.; Watson, N.K.; Wells, P.S.; Wengler, T.; Wermes, N.; Wetterling, D.; White, J.S.; Wilson, G.W.; Wilson, J.A.; Wyatt, T.R.; Yamashita, S.; Zacek, V.; Zer-Zion, D.

    2001-01-01

    Searches for the neutral Higgs bosons h0 and A0, are used to obtain limits on the Type II Two Higgs Doublet Model (2HDM(II)) with no CP-violation in the Higgs sector and no additional particles besides the five Higgs bosons. The analysis combines approximately 170 pb-1 of data collected with the OPAL detector at sqrt{s} ~ 189 GeV with previous runs at sqrt{s} ~ mZ and sqrt{s} ~ 183 GeV. The searches are sensitive to the h0, A0 -> qq, gg, tau+tau- and h0 -> A0A0 decay modes of the Higgs bosons. For the first time, the 2HDM(II) parameter space is explored in a detailed scan, and new flavour independent analyses are applied to examine regions in which the neutral Higgs bosons decay predominantly into light quarks or gluons. Model-independent limits are also given.

  19. The Higgs boson can delay reheating after inflation

    Science.gov (United States)

    Freese, Katherine; Sfakianakis, Evangelos I.; Stengel, Patrick; Visinelli, Luca

    2018-05-01

    The Standard Model Higgs boson, which has previously been shown to develop an effective vacuum expectation value during inflation, can give rise to large particle masses during inflation and reheating, leading to temporary blocking of the reheating process and a lower reheat temperature after inflation. We study the effects on the multiple stages of reheating: resonant particle production (preheating) as well as perturbative decays from coherent oscillations of the inflaton field. Specifically, we study both the cases of the inflaton coupling to Standard Model fermions through Yukawa interactions as well as to Abelian gauge fields through a Chern-Simons term. We find that, in the case of perturbative inflaton decay to SM fermions, reheating can be delayed due to Higgs blocking and the reheat temperature can decrease by up to an order of magnitude. In the case of gauge-reheating, Higgs-generated masses of the gauge fields can suppress preheating even for large inflaton-gauge couplings. In extreme cases, preheating can be shut down completely and must be substituted by perturbative decay as the dominant reheating channel. Finally, we discuss the distribution of reheat temperatures in different Hubble patches, arising from the stochastic nature of the Higgs VEV during inflation and its implications for the generation of both adiabatic and isocurvature fluctuations.

  20. Partially composite Higgs models

    DEFF Research Database (Denmark)

    Alanne, Tommi; Buarque Franzosi, Diogo; Frandsen, Mads T.

    2018-01-01

    We study the phenomenology of partially composite-Higgs models where electroweak symmetry breaking is dynamically induced, and the Higgs is a mixture of a composite and an elementary state. The models considered have explicit realizations in terms of gauge-Yukawa theories with new strongly...... interacting fermions coupled to elementary scalars and allow for a very SM-like Higgs state. We study constraints on their parameter spaces from vacuum stability and perturbativity as well as from LHC results and find that requiring vacuum stability up to the compositeness scale already imposes relevant...... constraints. A small part of parameter space around the classically conformal limit is stable up to the Planck scale. This is however already strongly disfavored by LHC results. in different limits, the models realize both (partially) composite-Higgs and (bosonic) technicolor models and a dynamical extension...

  1. Higgs boson production and decay in little Higgs models with T-parity

    International Nuclear Information System (INIS)

    Chen, C.-R.; Tobe, Kazuhiro; Yuan, C.-P.

    2006-01-01

    We study Higgs boson production and decay in a certain class of little Higgs models with T-parity in which some T-parity partners of the Standard Model (SM) fermions gain their masses through Yukawa-type couplings. We find that the Higgs boson production cross section of a 120 GeV Higgs boson at the CERN LHC via gg fusion process at one-loop level could be reduced by about 45%, 35% and 20%, as compared to its SM prediction, for a relatively low new particle mass scale f=600, 700 and 1000 GeV, respectively. On the other hand, the weak boson fusion cross section is close to the SM value. Furthermore, the Higgs boson decay branching ratio into di-photon mode can be enhanced by about 35% in small Higgs mass region in certain case, for the total decay width of Higgs boson in the little Higgs model is always smaller than that in the SM

  2. Toponium and two-Higgs models

    International Nuclear Information System (INIS)

    Franzini, P.J.

    1986-04-01

    Bounds from B 0 - anti B 0 mixing on charged-Higgs-boson masses and couplings in two-Higgs-doublet models are presented. These bounds are comparable to those obtained, with additional assumptions, from the neutral-K-system. The effects of the neutral Higgs bosons of these models on the spectrum and wave function of toponium are discussed. These effects could, in the future, lead to limits on, or the discovery of, these Higgs bosons. 8 refs., 3 figs

  3. Higgs mass bounds from a chirally invariant lattice Higgs-Yukawa model with overlap fermions

    International Nuclear Information System (INIS)

    Gerhold, Philipp; Kallarackal, Jim

    2008-10-01

    We study the parameter dependence of the Higgs mass in a chirally invariant lattice Higgs-Yukawa model emulating the same Higgs-fermion coupling structure as in the Higgs sector of the electroweak Standard Model. Eventually, the aim is to establish upper and lower Higgs mass bounds. Here we present our preliminary results on the lower Higgs mass bound at several selected values for the cutoff and give a brief outlook towards the upper Higgs mass bound. (orig.)

  4. The Higgs-strahlung and double Higgs-strahlung production in the left-right twin Higgs model at the ILC

    International Nuclear Information System (INIS)

    Yao-Bei, Liu; Hong-Mei, Han; Xue-Lei, Wang

    2008-01-01

    The Higgs-strahlung process e + e - → ZH and the double Higgs-strahlung process e + e - → ZHH are very important for studying Higgs boson properties and the Higgs self-coupling in the high-energy e + e - collider (ILC). We calculate the contributions of the left-right twin Higgs (LRTH) model to these processes and find that, in the favorable parameter spaces, the LRTH model can generate significant corrections to the production cross-section of these processes. We expect that the possible signals of the LRTH model can be detected via these processes in the future ILC experiments. (authors)

  5. Classical dynamics of the Abelian Higgs model from the critical point and beyond

    Directory of Open Access Journals (Sweden)

    G.C. Katsimiga

    2015-09-01

    Full Text Available We present two different families of solutions of the U(1-Higgs model in a (1+1 dimensional setting leading to a localization of the gauge field. First we consider a uniform background (the usual vacuum, which corresponds to the fully higgsed-superconducting phase. Then we study the case of a non-uniform background in the form of a domain wall which could be relevantly close to the critical point of the associated spontaneous symmetry breaking. For both cases we obtain approximate analytical nodeless and nodal solutions for the gauge field resulting as bound states of an effective Pöschl–Teller potential created by the scalar field. The two scenaria differ only in the scale of the characteristic localization length. Numerical simulations confirm the validity of the obtained analytical solutions. Additionally we demonstrate how a kink may be used as a mediator driving the dynamics from the critical point and beyond.

  6. Smoking-gun signatures for little Higgs models

    International Nuclear Information System (INIS)

    Han, Tao

    2004-01-01

    The little Higgs idea is a new way to solve the 'little hierarchy' problem by protecting the Higgs mass from quadratically divergent one-loop corrections. After a general introduction, I first describe the Littlest Higgs model to illustrate the little Higgs idea. I then present certain phenomenological signatures of two classes of little Higgs theories for future colliders. I emphasize to test the cancellation mechanism and how to distinguish different little Higgs models. (author)

  7. Vacuum stability in neutrinophilic Higgs doublet model

    International Nuclear Information System (INIS)

    Haba, Naoyuki; Horita, Tomohiro

    2011-01-01

    A neutrinophilic Higgs model has tiny vacuum expectation value (VEV), which can naturally explain tiny masses of neutrinos. There is a large energy scale hierarchy between a VEV of the neutrinophilic Higgs doublet and that of usual standard model-like Higgs doublet. In this Letter we at first analyze vacuum structures of Higgs potential in both supersymmetry (SUSY) and non-SUSY neutrinophilic Higgs models, and next investigate a stability of this VEV hierarchy against radiative corrections. We will show that the VEV hierarchy is stable against radiative corrections in both Dirac neutrino and Majorana neutrino scenarios in both SUSY and non-SUSY neutrinophilic Higgs doublet models.

  8. Searches for non-Standard Model Higgs bosons

    CERN Document Server

    Dumitriu, Ana Elena; The ATLAS collaboration

    2018-01-01

    This presentation focuses on the Searches for non-Standard Model Higgs bosons using 36.1 fb of data collected by the ATLAS experiment. There are several theoretical models with an extended Higgs sector considered: 2 Higgs Doublet Models (2HDM), Supersymmetry (SUSY), which brings along super-partners of the SM particles (+ The Minimal Supersymmetric Standard Model (MSSM), whose Higgs sector is equivalent to the one of a constrained 2HDM of type II and the next-to MSSM (NMSSM)), General searches and Invisible decaying Higgs boson.

  9. Smoking-gun signatures of little Higgs models

    Energy Technology Data Exchange (ETDEWEB)

    Han Tao [Department of Physics, University of Wisconsin, Madison, Wisconsin 53706 (United States); Institute of Theoretical Physics, Academia Sinica, Beijing 100080 (China); Logan, Heather E. [Department of Physics, University of Wisconsin, Madison, Wisconsin 53706 (United States); Wang, L.-T. [Department of Physics, University of Wisconsin, Madison, Wisconsin 53706 (United States); Jefferson Laboratory of Physics, Harvard University, Cambridge, Massachusetts 02138 (United States)

    2006-01-15

    Little Higgs models predict new gauge bosons, fermions and scalars at the TeV scale that stabilize the Higgs mass against quadratically divergent one-loop radiative corrections. We categorize the many little Higgs models into two classes based on the structure of the extended electroweak gauge group and examine the experimental signatures that identify the little Higgs mechanism in addition to those that identify the particular little Higgs model. We find that by examining the properties of the new heavy fermion(s) at the LHC, one can distinguish the structure of the top quark mass generation mechanism and test the little Higgs mechanism in the top sector. Similarly, by studying the couplings of the new gauge bosons to the light Higgs boson and to the Standard Model fermions, one can confirm the little Higgs mechanism and determine the structure of the extended electroweak gauge group.

  10. Classical and quantum mechanics of non-abelian gauge fields

    International Nuclear Information System (INIS)

    Savvidy, G.K.

    1984-01-01

    Classical and quantum mechanics of non-abelian gauge fields are investigated both with and without spontaneous symmetry breaking. The fundamental subsystem (FS) of Yang-Mills classical mechanics (YMCM) is considered. It is shown to be a Kolmogorov K-system, and hence to have strong statistical properties. Integrable systems are also found, to which in terms of KAM theory Yang-Mills-Higgs classical mechanics (YMHCM) is close. Quantum-mechanical properties of the YM system and their relation to the problem of confinement are discussed. (orig.)

  11. Worldlines and worldsheets for non-abelian lattice field theories: Abelian color fluxes and Abelian color cycles

    Directory of Open Access Journals (Sweden)

    Gattringer Christof

    2018-01-01

    Full Text Available We discuss recent developments for exact reformulations of lattice field theories in terms of worldlines and worldsheets. In particular we focus on a strategy which is applicable also to non-abelian theories: traces and matrix/vector products are written as explicit sums over color indices and a dual variable is introduced for each individual term. These dual variables correspond to fluxes in both, space-time and color for matter fields (Abelian color fluxes, or to fluxes in color space around space-time plaquettes for gauge fields (Abelian color cycles. Subsequently all original degrees of freedom, i.e., matter fields and gauge links, can be integrated out. Integrating over complex phases of matter fields gives rise to constraints that enforce conservation of matter flux on all sites. Integrating out phases of gauge fields enforces vanishing combined flux of matter-and gauge degrees of freedom. The constraints give rise to a system of worldlines and worldsheets. Integrating over the factors that are not phases (e.g., radial degrees of freedom or contributions from the Haar measure generates additional weight factors that together with the constraints implement the full symmetry of the conventional formulation, now in the language of worldlines and worldsheets. We discuss the Abelian color flux and Abelian color cycle strategies for three examples: the SU(2 principal chiral model with chemical potential coupled to two of the Noether charges, SU(2 lattice gauge theory coupled to staggered fermions, as well as full lattice QCD with staggered fermions. For the principal chiral model we present some simulation results that illustrate properties of the worldline dynamics at finite chemical potentials.

  12. Worldlines and worldsheets for non-abelian lattice field theories: Abelian color fluxes and Abelian color cycles

    Science.gov (United States)

    Gattringer, Christof; Göschl, Daniel; Marchis, Carlotta

    2018-03-01

    We discuss recent developments for exact reformulations of lattice field theories in terms of worldlines and worldsheets. In particular we focus on a strategy which is applicable also to non-abelian theories: traces and matrix/vector products are written as explicit sums over color indices and a dual variable is introduced for each individual term. These dual variables correspond to fluxes in both, space-time and color for matter fields (Abelian color fluxes), or to fluxes in color space around space-time plaquettes for gauge fields (Abelian color cycles). Subsequently all original degrees of freedom, i.e., matter fields and gauge links, can be integrated out. Integrating over complex phases of matter fields gives rise to constraints that enforce conservation of matter flux on all sites. Integrating out phases of gauge fields enforces vanishing combined flux of matter-and gauge degrees of freedom. The constraints give rise to a system of worldlines and worldsheets. Integrating over the factors that are not phases (e.g., radial degrees of freedom or contributions from the Haar measure) generates additional weight factors that together with the constraints implement the full symmetry of the conventional formulation, now in the language of worldlines and worldsheets. We discuss the Abelian color flux and Abelian color cycle strategies for three examples: the SU(2) principal chiral model with chemical potential coupled to two of the Noether charges, SU(2) lattice gauge theory coupled to staggered fermions, as well as full lattice QCD with staggered fermions. For the principal chiral model we present some simulation results that illustrate properties of the worldline dynamics at finite chemical potentials.

  13. Abelian embedding formulation of the Stueckelberg model and its power-counting renormalizable extension

    International Nuclear Information System (INIS)

    Quadri, Andrea

    2006-01-01

    We elucidate the geometry of the polynomial formulation of the non-Abelian Stueckelberg mechanism. We show that a natural off-shell nilpotent Becchi-Rouet-Stora-Tyutin (BRST) differential exists allowing to implement the constraint on the σ field by means of BRST techniques. This is achieved by extending the ghost sector by an additional U(1) factor (Abelian embedding). An important consequence is that a further BRST-invariant but not gauge-invariant mass term can be written for the non-Abelian gauge fields. As all versions of the Stueckelberg theory, also the Abelian embedding formulation yields a nonpower-counting renormalizable theory in D=4. We then derive its natural power-counting renormalizable extension and show that the physical spectrum contains a physical massive scalar particle. Physical unitarity is also established. This model implements the spontaneous symmetry breaking in the Abelian embedding formalism

  14. Extended Higgs sectors in radiative neutrino models

    Directory of Open Access Journals (Sweden)

    Oleg Antipin

    2017-05-01

    Full Text Available Testable Higgs partners may be sought within the extensions of the SM Higgs sector aimed at generating neutrino masses at the loop level. We study a viability of extended Higgs sectors for two selected models of radiative neutrino masses: a one-loop mass model, providing the Higgs partner within a real triplet scalar representation, and a three-loop mass model, providing it within its two-Higgs-doublet sector. The Higgs sector in the one-loop model may remain stable and perturbative up to the Planck scale, whereas the three-loop model calls for a UV completion around 106 GeV. Additional vector-like lepton and exotic scalar fields, which are required to close one- and three-loop neutrino-mass diagrams, play a decisive role for the testability of the respective models. We constrain the parameter space of these models using LHC bounds on diboson resonances.

  15. Maximally Symmetric Composite Higgs Models.

    Science.gov (United States)

    Csáki, Csaba; Ma, Teng; Shu, Jing

    2017-09-29

    Maximal symmetry is a novel tool for composite pseudo Goldstone boson Higgs models: it is a remnant of an enhanced global symmetry of the composite fermion sector involving a twisting with the Higgs field. Maximal symmetry has far-reaching consequences: it ensures that the Higgs potential is finite and fully calculable, and also minimizes the tuning. We present a detailed analysis of the maximally symmetric SO(5)/SO(4) model and comment on its observational consequences.

  16. Gauge field copies and Higgs mechanism

    International Nuclear Information System (INIS)

    Gleiser, M.

    1982-07-01

    From the algebric classification of the possible solutions of the necessary and sufficient condition for the existence of gauge field copies in two possible classes the Higgs mechanism for the potential obtained from the difference between two copied potentials is applied. It is shown that for class I 'electric type' it is possible to construct a vector field that satisfies an electromagnetic wave equation. For class I 'magnetic type', a vector field that satisfies a non-linear equation as a consequence of the non-abelianity of the theory, is obtained. It is shown that for class II it's not possible to apply the Higgs mechanism. A possible physical interpretation for the 'gauge field copies' phenomenon, is obtained. (author) [pt

  17. Semialigned two Higgs doublet model

    Science.gov (United States)

    Haba, Naoyuki; Umeeda, Hiroyuki; Yamada, Toshifumi

    2018-02-01

    In the left-right symmetric model based on S U (2 )L×S U (2 )R×U (1 )B -L gauge symmetry, there appear heavy neutral scalar particles mediating quark flavor changing neutral currents (FCNCs) at tree level. We consider a situation where such FCNCs give the only sign of the left-right model while WR gauge boson is decoupled, and name it "semialigned two Higgs doublet model" because the model resembles a two Higgs doublet model with mildly aligned Yukawa couplings to quarks. We predict a correlation among processes induced by quark FCNCs in the model, and argue that future precise calculation of meson-antimeson mixings and C P violation therein may hint at the semialigned two Higgs doublet model and the left-right model behind it.

  18. Higgs and confinement phases in the fundamental SU(2) Higgs model: Mean field analysis

    International Nuclear Information System (INIS)

    Damgaard, P.H.; Heller, U.M.

    1985-01-01

    The phase diagram of the four-dimensional SU(2) gauge-Higgs model with Higgs field in the fundamental representation is derived by mean field techniques. When the Higgs field is allowed to fluctuate in. Magnitude, the analytic connection between Higgs and confinement phases breaks down for sufficiently small values of the quark Higgs coupling, indicating that the Higgs and confinement phases for these couplings are strictly distinct phases. (orig.)

  19. Phenomenological comparison of models with extended Higgs sectors

    International Nuclear Information System (INIS)

    Muehlleitner, Margarete

    2017-01-01

    Beyond the Standard Model (SM) extensions usually include extended Higgs sectors. Models with singlet or doublet fields are the simplest ones that are compatible with the ρ parameter constraint. The discovery of new non-SM Higgs bosons and the identification of the underlying model requires dedicated Higgs properties analyses. In this paper, we compare several Higgs sectors featuring 3 CP-even neutral Higgs bosons that are also motivated by their simplicity and their capability to solve some of the flaws of the SM. They are: the SM extended by a complex singlet field (C x SM), the singlet extension of the 2-Higgs-Doublet Model (N2HDM), and the Next-to-Minimal Supersymmetric SM extension (NMSSM). In addition, we analyse the CP-violating 2-Higgs-Doublet Model (C2HDM), which provides 3 neutral Higgs bosons with a pseudoscalar admixture. This allows us to compare the effects of singlet and pseudoscalar admixtures. Through dedicated scans of the allowed parameter space of the models, we analyse the phenomenologically viable scenarios from the view point of the SM-like Higgs boson and of the signal rates of the non-SM-like Higgs bosons to be found. In particular, we analyse the effect of singlet/pseudoscalar admixture, and the potential to differentiate these models in the near future. This is supported by a study of couplings sums of the Higgs bosons to massive gauge bosons and to fermions, where we identify features that allow us to distinguish the models, in particular when only part of the Higgs spectrum is discovered. Our results can be taken as guidelines for future LHC data analyses, by the ATLAS and CMS experiments, to identify specific benchmark points aimed at revealing the underlying model.

  20. Phenomenological comparison of models with extended Higgs sectors

    Energy Technology Data Exchange (ETDEWEB)

    Muehlleitner, Margarete [Karlsruhe Institute of Technology (KIT), Karlsruhe (Germany). Inst. for Theoretical Physics; Sampaio, Marco O.P. [Aveiro Univ. e CIDMA (Portugal). Dept. de Fisica; Santos, Rui [Instituto Politecnico de Lisboa (Portugal). ISEL - Instituto Superior de Engenharia de Lisboa; Lisboa Univ. (Portugal). Centro de Fisica Teorica e Computacional; Univ. do Minho, Braga (Portugal). LIP, Dept. de Fisica; Wittbrodt, Jonas [Karlsruhe Institute of Technology (KIT), Karlsruhe (Germany). Inst. for Theoretical Physics; Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2017-03-22

    Beyond the Standard Model (SM) extensions usually include extended Higgs sectors. Models with singlet or doublet fields are the simplest ones that are compatible with the ρ parameter constraint. The discovery of new non-SM Higgs bosons and the identification of the underlying model requires dedicated Higgs properties analyses. In this paper, we compare several Higgs sectors featuring 3 CP-even neutral Higgs bosons that are also motivated by their simplicity and their capability to solve some of the flaws of the SM. They are: the SM extended by a complex singlet field (C x SM), the singlet extension of the 2-Higgs-Doublet Model (N2HDM), and the Next-to-Minimal Supersymmetric SM extension (NMSSM). In addition, we analyse the CP-violating 2-Higgs-Doublet Model (C2HDM), which provides 3 neutral Higgs bosons with a pseudoscalar admixture. This allows us to compare the effects of singlet and pseudoscalar admixtures. Through dedicated scans of the allowed parameter space of the models, we analyse the phenomenologically viable scenarios from the view point of the SM-like Higgs boson and of the signal rates of the non-SM-like Higgs bosons to be found. In particular, we analyse the effect of singlet/pseudoscalar admixture, and the potential to differentiate these models in the near future. This is supported by a study of couplings sums of the Higgs bosons to massive gauge bosons and to fermions, where we identify features that allow us to distinguish the models, in particular when only part of the Higgs spectrum is discovered. Our results can be taken as guidelines for future LHC data analyses, by the ATLAS and CMS experiments, to identify specific benchmark points aimed at revealing the underlying model.

  1. Higgs triplets in the standard model

    International Nuclear Information System (INIS)

    Gunion, J.F.; Vega, R.; Wudka, J.

    1990-01-01

    Even though the standard model of the strong and electroweak interactions has proven enormously successful, it need not be the case that a single Higgs-doublet field is responsible for giving masses to the weakly interacting vector bosons and the fermions. In this paper we explore the phenomenology of a Higgs sector for the standard model which contains both doublet and triplet fields [under SU(2) L ]. The resulting Higgs bosons have many exotic features and surprising experimental signatures. Since a critical task of future accelerators will be to either discover or establish the nonexistence of Higgs bosons with mass below the TeV scale, it will be important to keep in mind the alternative possibilities characteristic of this and other nonminimal Higgs sectors

  2. Upper Higgs boson mass bounds from a chirally invariant lattice Higgs-Yukawa Model

    Energy Technology Data Exchange (ETDEWEB)

    Gerhold, P. [Humboldt-Universitaet, Berlin (Germany). Inst. fuer Physik; John von Neumann-Institut fuer Computing NIC/DESY, Zeuthen (Germany); Jansen, K. [John von Neumann-Institut fuer Computing NIC/DESY, Zeuthen (Germany)

    2010-02-15

    We establish the cutoff-dependent upper Higgs boson mass bound by means of direct lattice computations in the framework of a chirally invariant lattice Higgs-Yukawa model emulating the same chiral Yukawa coupling structure as in the Higgs-fermion sector of the Standard Model. As expected from the triviality picture of the Higgs sector, we observe the upper mass bound to decrease with rising cutoff parameter {lambda}. Moreover, the strength of the fermionic contribution to the upper mass bound is explored by comparing to the corresponding analysis in the pure {phi}{sup 4}-theory. (orig.)

  3. Abelian primitive words

    OpenAIRE

    Domaratzki, Michael; Rampersad, Narad

    2011-01-01

    We investigate Abelian primitive words, which are words that are not Abelian powers. We show that unlike classical primitive words, the set of Abelian primitive words is not context-free. We can determine whether a word is Abelian primitive in linear time. Also different from classical primitive words, we find that a word may have more than one Abelian root. We also consider enumeration problems and the relation to the theory of codes. Peer reviewed

  4. LHC Higgs physics beyond the Standard Model

    International Nuclear Information System (INIS)

    Spannowsky, M.

    2007-01-01

    The Large Hadron Collider (LHC) at CERN will be able to perform proton collisions at a much higher center-of-mass energy and luminosity than any other collider. Its main purpose is to detect the Higgs boson, the last unobserved particle of the Standard Model, explaining the riddle of the origin of mass. Studies have shown, that for the whole allowed region of the Higgs mass processes exist to detect the Higgs at the LHC. However, the Standard Model cannot be a theory of everything and is not able to provide a complete understanding of physics. It is at most an effective theory up to a presently unknown energy scale. Hence, extensions of the Standard Model are necessary which can affect the Higgs-boson signals. We discuss these effects in two popular extensions of the Standard Model: the Minimal Supersymmetric Standard Model (MSSM) and the Standard Model with four generations (SM4G). Constraints on these models come predominantly from flavor physics and electroweak precision measurements. We show, that the SM4G is still viable and that a fourth generation has strong impact on decay and production processes of the Higgs boson. Furthermore, we study the charged Higgs boson in the MSSM, yielding a clear signal for physics beyond the Standard Model. For small tan β in minimal flavor violation (MFV) no processes for the detection of a charged Higgs boson do exist at the LHC. However, MFV is just motivated by the experimental agreement of results from flavor physics with Standard Model predictions, but not by any basic theoretical consideration. In this thesis, we calculate charged Higgs boson production cross sections beyond the assumption of MFV, where a large number of free parameters is present in the MSSM. We find that the soft-breaking parameters which enhance the charged-Higgs boson production most are just bound to large values, e.g. by rare B-meson decays. Although the charged-Higgs boson cross sections beyond MFV turn out to be sizeable, only a detailed

  5. LHC Higgs physics beyond the Standard Model

    Energy Technology Data Exchange (ETDEWEB)

    Spannowsky, M.

    2007-09-22

    The Large Hadron Collider (LHC) at CERN will be able to perform proton collisions at a much higher center-of-mass energy and luminosity than any other collider. Its main purpose is to detect the Higgs boson, the last unobserved particle of the Standard Model, explaining the riddle of the origin of mass. Studies have shown, that for the whole allowed region of the Higgs mass processes exist to detect the Higgs at the LHC. However, the Standard Model cannot be a theory of everything and is not able to provide a complete understanding of physics. It is at most an effective theory up to a presently unknown energy scale. Hence, extensions of the Standard Model are necessary which can affect the Higgs-boson signals. We discuss these effects in two popular extensions of the Standard Model: the Minimal Supersymmetric Standard Model (MSSM) and the Standard Model with four generations (SM4G). Constraints on these models come predominantly from flavor physics and electroweak precision measurements. We show, that the SM4G is still viable and that a fourth generation has strong impact on decay and production processes of the Higgs boson. Furthermore, we study the charged Higgs boson in the MSSM, yielding a clear signal for physics beyond the Standard Model. For small tan {beta} in minimal flavor violation (MFV) no processes for the detection of a charged Higgs boson do exist at the LHC. However, MFV is just motivated by the experimental agreement of results from flavor physics with Standard Model predictions, but not by any basic theoretical consideration. In this thesis, we calculate charged Higgs boson production cross sections beyond the assumption of MFV, where a large number of free parameters is present in the MSSM. We find that the soft-breaking parameters which enhance the charged-Higgs boson production most are just bound to large values, e.g. by rare B-meson decays. Although the charged-Higgs boson cross sections beyond MFV turn out to be sizeable, only a detailed

  6. Higgs Production and Decay in Models of a Warped Extra Dimension with a Bulk Higgs

    OpenAIRE

    Archer, Paul R.; Carena, Marcela; Carmona, Adrian; Neubert, Matthias

    2014-01-01

    Warped extra-dimension models in which the Higgs boson is allowed to propagate in the bulk of a compact AdS$_5$ space are conjectured to be dual to models featuring a partially composite Higgs boson. They offer a framework with which to investigate the implications of changing the scaling dimension of the Higgs operator, which can be used to reduce the constraints from electroweak precision data. In the context of such models, we calculate the cross section for Higgs production in gluon fusio...

  7. Higgs detectability in the extended supersymmetric standard model

    International Nuclear Information System (INIS)

    Kamoshita, Jun-ichi

    1995-01-01

    Higgs detectability at a future linear collider are discussed in the minimal supersymmetric standard model (MSSM) and a supersymmetric standard model with a gauge singlet Higgs field (NMSSM). First, in the MSSM at least one of the neutral scalar Higgs is shown to be detectable irrespective of parameters of the model in a future e + e - linear collider at √s = 300-500 GeV. Next the Higgs sector of the NMSSM is considered, since the lightest Higgs boson can be singlet dominated and therefore decouple from Z 0 boson it is important to consider the production of heavier Higgses. It is shown that also in this case at least one of the neutral scalar Higgs will be detectable in a future linear collider. We extend the analysis and show that the same is true even if three singlets are included. Thus the detectability of these Higgs bosons of these models is guaranteed. (author)

  8. LEP Higgs boson searches beyond the standard model

    Indian Academy of Sciences (India)

    These include the searches for charged Higgs bosons, models with two Higgs field doublets, searches for 'fermiophobic' Higgs decay, invisible Higgs boson decays, decay-mode independent searches, and limits on Yukawa and anomalous Higgs couplings. I review the searches done by the four LEP experiments and ...

  9. Standard model without Higgs particles

    International Nuclear Information System (INIS)

    Kovalenko, S.G.

    1992-10-01

    A modification of the standard model of electroweak interactions with the nonlocal Higgs sector is proposed. Proper form of nonlocality makes Higgs particles unobservable after the electroweak symmetry breaking. They appear only as a virtual state because their propagator is an entire function. We discuss some specific consequences of this approach comparing it with the conventional standard model. (author). 12 refs

  10. Search for Higgs bosons beyond the Standard Model

    Directory of Open Access Journals (Sweden)

    Mankel Rainer

    2015-01-01

    Full Text Available While the existence of a Higgs boson with a mass near 125 GeV has been clearly established, the detailed structure of the entire Higgs sector is yet unclear. Beyond the standard model interpretation, various scenarios for extended Higgs sectors are being considered. Such options include the minimal and next-to-minimal supersymmetric extensions (MSSM and NMSSM of the standard model, more generic Two-Higgs Doublet models (2HDM, as well as truly exotic Higgs bosons decaying e.g. into totally invisible final states. This article presents recent results from the CMS experiment.

  11. Search for a lighter Higgs boson in Two Higgs Doublet Models

    Energy Technology Data Exchange (ETDEWEB)

    Cacciapaglia, Giacomo; Deandrea, Aldo; Gascon-Shotkin, Suzanne; Corre, Solène Le; Lethuillier, Morgan [University Lyon, Université Claude Bernard Lyon 1, CNRS/IN2P3, UMR5822 IPNL,4, rue E. Fermi, Villeurbanne, F-69622 (France); Tao, Junquan [Institute High Energy Physics, Chinese Academy of Sciences,P.O. Box 918, Beijing, 100049 (China)

    2016-12-15

    We consider present constraints on Two Higgs Doublet Models, both from the LHC at Run 1 and from other sources in order to explore the possibility of constraining a neutral scalar or pseudo-scalar particle lighter than the 125 GeV Higgs boson. Such a lighter particle is not yet completely excluded by present data. We show with a simplified analysis that some new constraints could be obtained at the LHC if such a search is performed by the experimental collaborations, which we therefore encourage to continue carrying out light diphoton resonance searches at √s=13 TeV in the context of Two Higgs Doublet Models.

  12. Phenomenologies of Higgs messenger models

    Energy Technology Data Exchange (ETDEWEB)

    Zheng Sibo; Yu Yao; Wu Xinggang [Department of Physics, Chongqing University, Chongqing 401331 (China)

    2011-08-11

    In this Letter, we investigate the phenomenologies of models where the Higgs sector plays the role of messengers in gauge mediation. The minimal Higgs sector and its extension are considered respectively. We find that there exist viable models when an appropriate parity is imposed. Phenomenological features in these kind of models include three sum rules for scalar masses, light gluino as well as one-loop {mu} and two-loop B{mu} terms.

  13. On discrete symmetries for a whole Abelian model

    International Nuclear Information System (INIS)

    Chauca, J.; Doria, R.

    2012-01-01

    Considering the whole concept applied to gauge theory a nonlinear abelian model is derived. A next step is to understand on the model properties. At this work, it will be devoted to discrete symmetries. For this, we will work based in two fields reference systems. This whole gauge symmetry allows to be analyzed through different sets which are the constructor basis {D μ ,X i μ } and the physical basis {G μI }. Taking as fields reference system the diagonalized spin-1 sector, P, C, T and PCT symmetries are analyzed. They show that under this systemic model there are conservation laws driven for the parts and for the whole. It develops the meaning of whole-parity, field-parity and so on. However it is the whole symmetry that rules. This means that usually forbidden particles as pseudovector photons can be introduced through such whole abelian system. As result, one notices that the fields whole {G μI } manifest a quanta diversity. It involves particles with different spins, masses and discrete quantum numbers under a same gauge symmetry. It says that without violating PCT symmetry different possibilities on discrete symmetries can be accommodated.

  14. Four loop wave function renormalization in the non-abelian Thirring model

    International Nuclear Information System (INIS)

    Ali, D.B.; Gracey, J.A.

    2001-01-01

    We compute the anomalous dimension of the fermion field with N f flavours in the fundamental representation of a general Lie colour group in the non-abelian Thirring model at four loops. The implications on the renormalization of the two point Green's function through the loss of multiplicative renormalizability of the model in dimensional regularization due to the appearance of evanescent four fermi operators are considered at length. We observe the appearance of one new colour group Casimir, d F abcd d F abcd , in the final four loop result and discuss its consequences for the relation of the Knizhnik-Zamolodchikov critical exponents in the Wess-Zumino-Witten-Novikov model to the non-abelian Thirring model. Renormalization scheme changes are also considered to ensure that the underlying Fierz symmetry broken by dimensional regularization is restored

  15. The Higgs boson resonance from a chiral Higgs-Yukawa model on the lattice

    Energy Technology Data Exchange (ETDEWEB)

    Kallarackal, Jim

    2011-04-28

    Despite the fact that the standard model of particle physics has been confirmed in many high energy experiments, the existence of the Higgs boson is not assured. The Higgs boson is a central part of the electroweak theory and is crucial to generate masses for fermions and the weak gauge bosons. The goal of this work is to set limits on the mass and the decay width of the Higgs boson. The basis to compute the physical quantities is the path integral which is here evaluated by means of Monte Carlo simulations thus allowing for fully non perturbative calculations. A polynomial hybrid Monte Carlo algorithm is used to incorporate dynamical fermions. The chiral symmetry of the electroweak model is incorporated by using the Neuberger overlap operator. Here, the standard model is considered in the limit of a Higgs-Yukawa sector which does not contain the weak gauge bosons and only a degenerate doublet of top- and bottom quarks are incorporated. Results from lattice perturbation theory up to one loop of the Higgs boson propagator are compared with those obtained from Monte Carlo simulations at three different values of the Yukawa coupling. At all values of the investigated couplings, the perturbative results agree very well with the Monte Carlo data. A main focus of this work is the investigation of the resonance parameters of the Higgs boson. The resonance width and the resonance mass are investigated at weak and at large quartic couplings. The parameters of the model are chosen such that the Higgs boson can decay into any even number of Goldstone bosons. Thus, the Higgs boson does not appear as an asymptotic stable state but as a resonance. In all considered cases the Higgs boson resonance width lies below 10% of the resonance mass. The obtained resonance mass is compared with the mass obtained from the Higgs boson propagator. The results agree perfectly at all values of the quartic coupling considered. Finally, the effect of a heavy fourth generation of fermions on the

  16. The Higgs boson resonance from a chiral Higgs-Yukawa model on the lattice

    International Nuclear Information System (INIS)

    Kallarackal, Jim

    2011-01-01

    Despite the fact that the standard model of particle physics has been confirmed in many high energy experiments, the existence of the Higgs boson is not assured. The Higgs boson is a central part of the electroweak theory and is crucial to generate masses for fermions and the weak gauge bosons. The goal of this work is to set limits on the mass and the decay width of the Higgs boson. The basis to compute the physical quantities is the path integral which is here evaluated by means of Monte Carlo simulations thus allowing for fully non perturbative calculations. A polynomial hybrid Monte Carlo algorithm is used to incorporate dynamical fermions. The chiral symmetry of the electroweak model is incorporated by using the Neuberger overlap operator. Here, the standard model is considered in the limit of a Higgs-Yukawa sector which does not contain the weak gauge bosons and only a degenerate doublet of top- and bottom quarks are incorporated. Results from lattice perturbation theory up to one loop of the Higgs boson propagator are compared with those obtained from Monte Carlo simulations at three different values of the Yukawa coupling. At all values of the investigated couplings, the perturbative results agree very well with the Monte Carlo data. A main focus of this work is the investigation of the resonance parameters of the Higgs boson. The resonance width and the resonance mass are investigated at weak and at large quartic couplings. The parameters of the model are chosen such that the Higgs boson can decay into any even number of Goldstone bosons. Thus, the Higgs boson does not appear as an asymptotic stable state but as a resonance. In all considered cases the Higgs boson resonance width lies below 10% of the resonance mass. The obtained resonance mass is compared with the mass obtained from the Higgs boson propagator. The results agree perfectly at all values of the quartic coupling considered. Finally, the effect of a heavy fourth generation of fermions on the

  17. Standard model Higgs boson-inflaton and dark matter

    International Nuclear Information System (INIS)

    Clark, T. E.; Liu Boyang; Love, S. T.; Veldhuis, T. ter

    2009-01-01

    The standard model Higgs boson can serve as the inflaton field of slow roll inflationary models provided it exhibits a large nonminimal coupling with the gravitational scalar curvature. The Higgs boson self interactions and its couplings with a standard model singlet scalar serving as the source of dark matter are then subject to cosmological constraints. These bounds, which can be more stringent than those arising from vacuum stability and perturbative triviality alone, still allow values for the Higgs boson mass which should be accessible at the LHC. As the Higgs boson coupling to the dark matter strengthens, lower values of the Higgs boson mass consistent with the cosmological data are allowed.

  18. On the origin of mass and the electroweak mass spectrum without Higgs

    International Nuclear Information System (INIS)

    Souza, Manoelita Martins

    1995-01-01

    In a Causality Preserving Manifold Formalism (CPMF), which is based on a new model of spacetime, masses are consequences of spacetime structure symmetries. The mass spectrum of a set of non Abelian fields is solely determined from its Lagrangian kinematic term, in a way independent of any kind of interactions and without any extra field (no Higgs, no Yukawa couplings etc). After a brief review about this CPMF, the origin and meaning of mass is discussed and then illustrated with the vector boson sector of the SU(2) x U(1) electroweak theory. (author)

  19. Error Correction for Non-Abelian Topological Quantum Computation

    Directory of Open Access Journals (Sweden)

    James R. Wootton

    2014-03-01

    Full Text Available The possibility of quantum computation using non-Abelian anyons has been considered for over a decade. However, the question of how to obtain and process information about what errors have occurred in order to negate their effects has not yet been considered. This is in stark contrast with quantum computation proposals for Abelian anyons, for which decoding algorithms have been tailor-made for many topological error-correcting codes and error models. Here, we address this issue by considering the properties of non-Abelian error correction, in general. We also choose a specific anyon model and error model to probe the problem in more detail. The anyon model is the charge submodel of D(S_{3}. This shares many properties with important models such as the Fibonacci anyons, making our method more generally applicable. The error model is a straightforward generalization of those used in the case of Abelian anyons for initial benchmarking of error correction methods. It is found that error correction is possible under a threshold value of 7% for the total probability of an error on each physical spin. This is remarkably comparable with the thresholds for Abelian models.

  20. Partially natural Two Higgs Doublet Models

    Energy Technology Data Exchange (ETDEWEB)

    Draper, Patrick [Department of Physics, University of California,Broida Hall, Santa Barbara, CA 93106 (United States); Haber, Howard E. [Santa Cruz Institute for Particle Physics, University of California,1156 High Street, Santa Cruz, CA 95064 (United States); Kavli Institute for Theoretical Physics, University of California,Kohn Hall, Santa Barbara, CA 93106 (United States); Ruderman, Joshua T. [Center for Cosmology and Particle Physics, Department of Physics, New York University,4 Washington Pl. New York, NY 10003 (United States)

    2016-06-21

    It is possible that the electroweak scale is low due to the fine-tuning of microscopic parameters, which can result from selection effects. The experimental discovery of new light fundamental scalars other than the Standard Model Higgs boson would seem to disfavor this possibility, since generically such states imply parametrically worse fine-tuning with no compelling connection to selection effects. We discuss counterexamples where the Higgs boson is light because of fine-tuning, and a second scalar doublet is light because a discrete symmetry relates its mass to the mass of the Standard Model Higgs boson. Our examples require new vectorlike fermions at the electroweak scale, and the models possess a rich electroweak vacuum structure. The mechanism that we discuss does not protect a small CP-odd Higgs mass in split or high-scale supersymmetry-breaking scenarios of the MSSM due to an incompatibility between the discrete symmetries and holomorphy.

  1. 90 - GeV Higgs boson in supersymmetric models

    International Nuclear Information System (INIS)

    Grzadkowski, B.; Kalinowski, J.; Pokorski, S.

    1989-07-01

    We discuss supersymmetric models with a hierarchy of vacuum expectation values of Higgs fields. These models predict one of the physical neutral Higgs bosons to have its mass very close to the Z-boson mass. Properties of such a 90-GeV Higgs boson are discussed. (author)

  2. Beyond-the-Standard Model Higgs Physics using the ATLAS Experiment

    CERN Document Server

    Madsen, Alexander; The ATLAS collaboration

    2015-01-01

    The discovery of a Higgs boson with a mass of about 125 GeV has prompted the question of whether or not this particle is part of a larger and more complex Higgs sector than that envisioned in the Standard Model. In this talk, the latest results from the ATLAS experiment on Beyond-the-Standard Model (BSM) Higgs searches are outlined. Searches for additional Higgs bosons are presented and interpreted in well-motivated BSM Higgs frameworks, such as two-Higgs-doublet Models and the Minimal and Next to Minimal Supersymmetric Standard Model.

  3. Beyond-the-Standard Model Higgs Physics using the ATLAS Experiment

    CERN Document Server

    Vanadia, Marco; The ATLAS collaboration

    2015-01-01

    The discovery of a Higgs boson with a mass of about 125 GeV has prompted the question of whether or not this particle is part of a larger and more complex Higgs sector than that envisioned in the Standard Model. In this talk, the latest Run 1 results from the ATLAS Experiment on Beyond-the-Standard Model (BSM) Higgs searches are outlined. Searches for additional Higgs bosons are presented and interpreted in wellmotivated BSM Higgs frameworks, including the two-Higgs-doublet Models and the Minimal and Next to Minimal Supersymmetric Standard Model.

  4. Beyond-the-Standard Model Higgs Physics using the ATLAS Experiment

    CERN Document Server

    Scutti, Federico; The ATLAS collaboration

    2015-01-01

    The discovery of a Higgs boson with a mass of about 125 GeV has prompted the question of whether or not this particle is part of a larger and more complex Higgs sector than that envisioned in the Standard Model. In this talk, the current results from the ATLAS experiment on Beyond-the-Standard Model (BSM) Higgs searches are summarized. Searches for additional Higgs bosons are presented and interpreted in well-motivated BSM Higgs frameworks, such as two-Higgs-doublet Models and the Minimal and Next to Minimal Supersymmetric Standard Model.

  5. Beyond-the-Standard Model Higgs Physics using the ATLAS Experiment

    CERN Document Server

    Nagata, Kazuki; The ATLAS collaboration

    2014-01-01

    The discovery of a Higgs boson with a mass of about 125 GeV has prompted the question of whether or not this particle is part of a larger and more complex Higgs sector than that envisioned in the Standard Model. In this talk, the current results from the ATLAS experiment on Beyond-the-Standard Model (BSM) Higgs searches are outlined. Searches for additional Higgs bosons are presented and interpreted in well-motivated BSM Higgs frameworks, such as two-Higgs-doublet Models and the Minimal and Next to Minimal Supersymmetric Standard Model.

  6. Beyond-the-Standard Model Higgs physics using the ATLAS experiment

    CERN Document Server

    Ernis, G; The ATLAS collaboration

    2014-01-01

    The discovery of a Higgs boson with a mass of about 125 GeV has prompted the question of whether or not this particle is part of a larger and more complex Higgs sector than that envisioned in the Standard Model. In this talk, the current results from the ATLAS experiment on Beyond-the-Standard Model (BSM) Higgs searches are outlined. Searches for additional Higgs bosons are presented and interpreted in well-motivated BSM Higgs frameworks, such as two-Higgs-doublet Models and the Minimal and Next to Minimal Supersymmetric Standard Model.

  7. Higgs boson decays and production via gluon fusion at LHC in littlest Higgs models with T parity

    International Nuclear Information System (INIS)

    Wang Lei; Yang Jinmin

    2009-01-01

    We study the Higgs boson decays and production via gluon fusion at the LHC as a probe of two typical littlest Higgs models which introduce a top quark partner with different (even and odd) T parity to cancel the Higgs mass quadratic divergence contributed by the top quark. For each model, we consider two different choices for the down-type quark Yukawa couplings. We first examine the branching ratios of the Higgs boson decays and then study the production via gluon fusion followed by the decay into two photons or two weak gauge bosons. We find that the predictions can be quite different for different models or different choices of down-type quark Yukawa couplings, and all these predictions can sizably deviate from the standard model predictions. So the Higgs boson processes at the LHC can be a sensitive probe for these littlest Higgs models.

  8. Abelian 2-form gauge theory: special features

    International Nuclear Information System (INIS)

    Malik, R P

    2003-01-01

    It is shown that the four (3 + 1)-dimensional (4D) free Abelian 2-form gauge theory provides an example of (i) a class of field theoretical models for the Hodge theory, and (ii) a possible candidate for the quasi-topological field theory (q-TFT). Despite many striking similarities with some of the key topological features of the two (1 + 1)-dimensional (2D) free Abelian (and self-interacting non-Abelian) gauge theories, it turns out that the 4D free Abelian 2-form gauge theory is not an exact TFT. To corroborate this conclusion, some of the key issues are discussed. In particular, it is shown that the (anti-)BRST and (anti-)co-BRST invariant quantities of the 4D 2-form Abelian gauge theory obey recursion relations that are reminiscent of the exact TFTs but the Lagrangian density of this theory is not found to be able to be expressed as the sum of (anti-)BRST and (anti-)co-BRST exact quantities as is the case with the topological 2D free Abelian (and self-interacting non-Abelian) gauge theories

  9. Beyond the standard Higgs at the LHC. Present constraints on little Higgs models and future prospects

    International Nuclear Information System (INIS)

    Tonini, Marco

    2014-11-01

    This thesis discusses the consistency of different Little Higgs models with the collected collider data as of the summer of 2013. Moreover, future prospects for possible discoveries and mass measurement methods of new physics signals at the foreseen LHC run II with increased center-of-mass energy are presented. Little Higgs models belong to a class of extensions of the Standard Higgs model, predicting a strong interaction regime at a compositeness scale Λ=4πf approximate global symmetry spontaneously broken at the scale f. A natural hierarchy between the compositeness and the electroweak scale is introduced by the Collective Symmetry Breaking mechanism: one-loop diagrams generating the Higgs mass term are forced to be at most logarithmically sensitive to Λ. A naturally light Higgs boson can thus be accommodated, consistently with a perturbative theory until a scale of order 10 TeV. We have probed the parameter space of three prominent examples of Little Higgs models, namely the Simplest Little Higgs model, the Littlest Higgs model, and the Littlest Higgs model with T-parity, against electroweak precision observables and the collected LHC data concerning both Higgs properties and direct searches for new particles, with √(s)=7,8 TeV and up to 25 fb -1 of integrated luminosity. Lower bounds on the scale f are set, within a certain degree of confidence level, which allow to draw conclusions on the ''naturalness'' of the different models. Optimisations of the existing direct searches setups, assuming a Little Higgs signal, as well as dedicated mass measurement methods designed for the foreseen LHC runs with √(s)=13,14 TeV are thoroughly discussed and proposed in this thesis. Special attention will be dedicated to final states including either a large or negligible fraction of missing transverse momentum. In particular, we will propose a dedicated collider search tailored for the discovery and mass measurement of a top partner, exploiting jet

  10. Minimal composite Higgs models at the LHC

    Science.gov (United States)

    Carena, Marcela; Da Rold, Leandro; Pontón, Eduardo

    2014-06-01

    We consider composite Higgs models where the Higgs is a pseudo-Nambu Goldstone boson arising from the spontaneous breaking of an approximate global symmetry by some underlying strong dynamics. We focus on the SO(5) → SO(4) symmetry breaking pattern, assuming the "partial compositeness" paradigm. We study the consequences on Higgs physics of the fermionic representations produced by the strong dynamics, that mix with the Standard Model (SM) degrees of freedom. We consider models based on the lowest-dimensional representations of SO(5) that allow for the custodial protection of the coupling, i.e. the 5, 10 and 14. We find a generic suppression of the gluon fusion process, while the Higgs branching fractions can be enhanced or suppressed compared to the SM. Interestingly, a precise measurement of the Higgs boson couplings can distinguish between different realizations in the fermionic sector, thus providing crucial information about the nature of the UV dynamics.

  11. Minimal composite Higgs models at the LHC

    International Nuclear Information System (INIS)

    Carena, Marcela; Rold, Leandro Da; Pontón, Eduardo

    2014-01-01

    We consider composite Higgs models where the Higgs is a pseudo-Nambu Goldstone boson arising from the spontaneous breaking of an approximate global symmetry by some underlying strong dynamics. We focus on the SO(5)→SO(4) symmetry breaking pattern, assuming the “partial compositeness" paradigm. We study the consequences on Higgs physics of the fermionic representations produced by the strong dynamics, that mix with the Standard Model (SM) degrees of freedom. We consider models based on the lowest-dimensional representations of SO(5) that allow for the custodial protection of the Zb-barb coupling, i.e. the 5, 10 and 14. We find a generic suppression of the gluon fusion process, while the Higgs branching fractions can be enhanced or suppressed compared to the SM. Interestingly, a precise measurement of the Higgs boson couplings can distinguish between different realizations in the fermionic sector, thus providing crucial information about the nature of the UV dynamics.

  12. Upper and lower Higgs boson mass bounds from a chirally invariant lattice Higgs-Yukawa model

    International Nuclear Information System (INIS)

    Gerhold, Philipp Frederik Clemens

    2009-01-01

    Motivated by the advent of the Large Hadron Collider (LHC) the aim of the present work is the non-perturbative determination of the cutoff-dependent upper and lower mass bounds of the Standard Model Higgs boson based on first principle calculations, in particular not relying on additional information such as the triviality property of the Higgs- Yukawa sector or indirect arguments like vacuum stability considerations. For that purpose the lattice approach is employed to allow for a non-perturbative investigation of a chirally invariant lattice Higgs-Yukawa model, serving here as a reasonable simplification of the full Standard Model, containing only those fields and interactions which are most essential for the intended Higgs boson mass determination. These are the complex Higgs doublet as well as the top and bottom quark fields and their mutual interactions. To maintain the chiral character of the Standard Model Higgs-fermion coupling also on the lattice, the latter model is constructed on the basis of the Neuberger overlap operator, obeying then an exact global lattice chiral symmetry. Respecting the fermionic degrees of freedom in a fully dynamical manner by virtue of a PHMC algorithm appropriately adapted to the here intended lattice calculations, such mass bounds can indeed be established with the aforementioned approach. Supported by analytical calculations performed in the framework of the constraint effective potential, the lower bound is found to be approximately m low H (Λ)=80 GeV at a cutoff of Λ=1000 GeV. The emergence of a lower Higgs boson mass bound is thus a manifest property of the pure Higgs-Yukawa sector that evolves directly from the Higgs-fermion interaction for a given set of Yukawa coupling constants. Its quantitative size, however, turns out to be non-universal in the sense, that it depends on the specific form, for instance, of the Higgs boson self-interaction. The upper Higgs boson mass bound is then established in the strong coupling

  13. The U(1)-Higgs model: critical behaviour in the confining-Higgs region

    International Nuclear Information System (INIS)

    Alonso, J.L.; Azcoiti, V.; Campos, I.; Ciria, J.C.; Cruz, A.; Iniguez, D.; Lesmes, F.; Piedrafita, C.; Rivero, A.; Tarancon, A.; Badoni, D.; Fernandez, L.A.; Munoz Sudupe, A.; Ruiz-Lorenzo, J.J.; Gonzalez-Arroyo, A.; Martinez, P.; Pech, J.; Tellez, P.

    1993-01-01

    We study numerically the critical properties of the U(1)-Higgs lattice model, with fixed Higgs modulus, in the region of small gauge coupling where the Higgs and confining phases merge. We find evidence for a first-order transition line that ends in a second-order point. By means of a rotation in parameter space we introduce thermodynamic magnitudes and critical exponents in close resemblance with simple models that show analogous critical behaviour. The measured data allow us to fit the critical exponents finding values in agreement with the mean-field prediction. The location of the critical point and the slope of the first-order line are accurately measured. (orig.)

  14. An introduction to non-Abelian discrete symmetries for particle physicists

    CERN Document Server

    Ishimori, Hajime; Ohki, Hiroshi; Okada, Hiroshi; Shimizu, Yusuke; Tanimoto, Morimitsu

    2012-01-01

    These lecture notes provide a tutorial review of non-Abelian discrete groups and show some applications to issues in physics where discrete symmetries constitute an important principle for model building in particle physics. While Abelian discrete symmetries are often imposed in order to control couplings for particle physics - in particular model building beyond the standard model - non-Abelian discrete symmetries have been applied to understand the three-generation flavor structure in particular. Indeed, non-Abelian discrete symmetries are considered to be the most attractive choice for the flavor sector: model builders have tried to derive experimental values of quark and lepton masses, and mixing angles by assuming non-Abelian discrete flavor symmetries of quarks and leptons, yet, lepton mixing has already been intensively discussed in this context, as well. The possible origins of the non-Abelian discrete symmetry for flavors is another topic of interest, as they can arise from an underlying theory -...

  15. On the abelianity of the stochastic sandpile model

    OpenAIRE

    Nunzi, François

    2016-01-01

    We consider a stochastic variant of the Abelian Sandpile Model (ASM) on a finite graph, introduced by Chan, Marckert and Selig. Even though it is a more general model, some nice properties still hold. We show that on a certain probability space, even if we lose the group structure due to topplings not being deterministic, some operators still commute. As a corollary, we show that the stationary distribution still does not depend on how sand grains are added onto the graph in our model, answer...

  16. Pseudoscalar boson and standard model-like Higgs boson productions at the LHC in the simplest little Higgs model

    International Nuclear Information System (INIS)

    Wang Lei; Han Xiaofang

    2010-01-01

    In the framework of the simplest little Higgs model, we perform a comprehensive study for the pair productions of the pseudoscalar boson η and standard model-like Higgs boson h at LHC, namely gg(bb)→ηη, gg(qq)→ηh, and gg(bb)→hh. These production processes provide a way to probe the couplings between Higgs bosons. We find that the cross section of gg→ηη always dominates over that of bb→ηη. When the Higgs boson h which mediates these two processes is on-shell, their cross sections can reach several thousand fb and several hundred fb, respectively. When the intermediate state h is off-shell, those two cross sections are reduced by 2 orders of magnitude, respectively. The cross sections of gg→ηh and qq→ηh are about in the same order of magnitude, which can reach O(10 2 fb) for a light η boson. Besides, compared with the standard model prediction, the cross section of a pair of standard model-like Higgs bosons production at LHC can be enhanced sizably. Finally, we briefly discuss the observable signatures of ηη, ηh, and hh at the LHC.

  17. Beyond-the-Standard Model Higgs Physics using the ATLAS Experiment

    CERN Document Server

    Vanadia, Marco; The ATLAS collaboration

    2015-01-01

    The discovery of a Higgs boson with a mass of about 125 GeV/$\\rm{c^2}$ has prompted the question of whether or not this particle is part of a larger and more complex Higgs sector than that envisioned in the Standard Model. In this report, the latest Run 1 results from the ATLAS Experiment on Beyond-the-Standard Model (BSM) Higgs searches are outlined. Searches for additional Higgs bosons are presented and interpreted in well motivated BSM Higgs frameworks, including the two-Higgs-doublet Models and the Minimal and Next to Minimal Supersymmetric Standard Model.

  18. Impersonating the Standard Model Higgs boson: alignment without decoupling

    International Nuclear Information System (INIS)

    Carena, Marcela; Low, Ian; Shah, Nausheen R.; Wagner, Carlos E.M.

    2014-01-01

    In models with an extended Higgs sector there exists an alignment limit, in which the lightest CP-even Higgs boson mimics the Standard Model Higgs. The alignment limit is commonly associated with the decoupling limit, where all non-standard scalars are significantly heavier than the Z boson. However, alignment can occur irrespective of the mass scale of the rest of the Higgs sector. In this work we discuss the general conditions that lead to “alignment without decoupling”, therefore allowing for the existence of additional non-standard Higgs bosons at the weak scale. The values of tan β for which this happens are derived in terms of the effective Higgs quartic couplings in general two-Higgs-doublet models as well as in supersymmetric theories, including the MSSM and the NMSSM. Moreover, we study the information encoded in the variations of the SM Higgs-fermion couplings to explore regions in the m A −tan β parameter space

  19. The Higgs boson resonance width from a chiral Higgs-Yukawa model on the lattice

    International Nuclear Information System (INIS)

    Gerhold, Philipp; Kallarackal, Jim; Humboldt-Universitaet, Berlin; Jansen, Karl

    2011-11-01

    The Higgs boson is a central part of the electroweak theory and is crucial to generate masses for quarks, leptons and the weak gauge bosons. We use a 4-dimensional Euclidean lattice formulation of the Higgs-Yukawa sector of the electroweak model to compute physical quantities in the path integral approach which is evaluated by means of Monte Carlo simulations thus allowing for fully non perturbative calculations. The chiral symmetry of the model is incorporated by using the Neuberger overlap Dirac operator. The here considered Higgs-Yukawa model does not involve the weak gauge bosons and furthermore, only a degenerate doublet of top- and bottom quarks are incorporated. The goal of this work is to study the resonance properties of the Higgs boson and its sensitivity to the strength of the quartic self coupling. (orig.)

  20. Upper and lower Higgs boson mass bounds from a lattice Higgs-Yukawa model with dynamical overlap fermions

    International Nuclear Information System (INIS)

    Gerhold, Philipp; Jansen, Karl

    2009-12-01

    We study a lattice Higgs-Yukawa model emulating the same Higgs-fermion coupling structure as in the Higgs sector of the electroweak Standard Model, in particular, obeying a Ginsparg- Wilson version of the underlying SU(2) L x U(1) Y symmetry, being a global symmetry here due to the neglection of gauge fields in this model. In this paper we present our results on the cutoffdependent upper Higgs boson mass bound at several selected values of the cutoff parameter Λ. (orig.)

  1. Little Higgs models and T parity

    International Nuclear Information System (INIS)

    Perelstein, Maxim

    2006-01-01

    Little Higgs models are an interesting extension of the standard model at the TeV scale. They provide a simple and attractive mechanism of electroweak symmetry breaking. We review one of the simplest models of this class, the littlest Higgs model, and its extension with T parity. The model with T parity satisfies precision electroweak constraints without fine-tuning, contains an attractive dark matter candidate, and leads to interesting phenomenology at the Large Hadron Collider (LHC). (author)

  2. Spontaneous parity violation and minimal Higgs models

    International Nuclear Information System (INIS)

    Chavez, H.; Martins Simoes, J.A.

    2007-01-01

    In this paper we present a model for the spontaneous breaking of parity with two Higgs doublets and two neutral Higgs singlets which are even and odd under D-parity. The condition υ R >>υ L can be satisfied without introducing bidoublets, and it is induced by the breaking of D-parity through the vacuum expectation value of the odd Higgs singlet. Examples of left-right symmetric and mirror fermions models in grand unified theories are presented. (orig.)

  3. Stiefel-Skyrem-Higgs models, their classical static solutions and Yang-Mills-Higgs monopoles

    International Nuclear Information System (INIS)

    Dobrev, V.K.

    1981-07-01

    A new series of models is introduced by adding Higgs fields to the earlier proposed euclidean four-dimensional Skyrme-like models with Yang-Mills composite fields constructed from Stiefel manifold-valued fields. The classical static versions of these models are discussed. The connection with the monopole solutions of the Yang-Mills-Higgs models in the Prasad-Sommerfield limit is pointed out and the BPS monopole is reobtained as an example. (author)

  4. Radiative corrections to the triple Higgs coupling in the inert Higgs doublet model

    International Nuclear Information System (INIS)

    Arhrib, Abdesslam; Benbrik, Rachid; Falaki, Jaouad El; Jueid, Adil

    2015-01-01

    We investigate the implication of the recent discovery of a Higgs-like particle in the first phase of the LHC Run 1 on the Inert Higgs Doublet Model (IHDM). The determination of the Higgs couplings to SM particles and its intrinsic properties will get improved during the new LHC Run 2 starting this year. The new LHC Run 2 would also shade some light on the triple Higgs coupling. Such measurement is very important in order to establish the details of the electroweak symmetry breaking mechanism. Given the importance of the Higgs couplings both at the LHC and e + e − Linear Collider machines, accurate theoretical predictions are required. We study the radiative corrections to the triple Higgs coupling hhh and to hZZ, hWW couplings in the context of the IHDM. By combining several theoretical and experimental constraints on parameter space, we show that extra particles might modify the triple Higgs coupling near threshold regions. Finally, we discuss the effect of these corrections on the double Higgs production signal at the e + e − LC and show that they can be rather important.

  5. Radiative corrections to the Higgs couplings in the triplet model

    International Nuclear Information System (INIS)

    KIKUCHI, M.

    2014-01-01

    The feature of extended Higgs models can appear in the pattern of deviations from the Standard Model (SM) predictions in coupling constants of the SM-like Higgs boson (h). We can thus discriminate extended Higgs models by precisely measuring the pattern of deviations in the coupling constants of h, even when extra bosons are not found directly. In order to compare the theoretical predictions to the future precision data at the ILC, we must evaluate the theoretical predictions with radiative corrections in various extended Higgs models. In this paper, we give our comprehensive study for radiative corrections to various Higgs boson couplings of h in the minimal Higgs triplet model (HTM). First, we define renormalization conditions in the model, and we calculate the Higgs coupling; gγγ, hWW, hZZ and hhh at the one loop level. We then evaluate deviations in coupling constants of the SM-like Higgs boson from the predictions in the SM. We find that one-loop contributions to these couplings are substantial as compared to their expected measurement accuracies at the ILC. Therefore the HTM has a possibility to be distinguished from the other models by comparing the pattern of deviations in the Higgs boson couplings.

  6. Standard model Higgs physics at colliders

    International Nuclear Information System (INIS)

    Rosca, A.

    2007-01-01

    In this report we briefly review the experimental status and prospects to verify the Higgs mechanism of spontaneous symmetry breaking. The focus is on the most relevant aspects of the phenomenology of the Standard Model Higgs boson at current (Tevatron) and future (Large Hadron Collider, LHC and International Linear Collider, ILC) particle colliders. We review the Standard Model searches: searches at the Tevatron, the program planned at the LHC and prospects at the ILC. Emphasis is put on what follows after a candidate discovery at the LHC: the various measurements which are necessary to precisely determine what the properties of this Higgs candidate are. (author)

  7. Heterotic non-Abelian orbifolds

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, Maximilian [Technische Univ. Muenchen, Garching (Germany). Physik-Department; Ramos-Sanchez, Saul [UNAM, Mexico (Mexico). Dept. of Theoretical Physics; Vaudrevange, Patrick K.S. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2013-04-15

    We perform the first systematic analysis of particle spectra obtained from heterotic string compactifications on non-Abelian toroidal orbifolds. After developing a new technique to compute the particle spectrum in the case of standard embedding based on higher dimensional supersymmetry, we compute the Hodge numbers for all recently classified 331 non-Abelian orbifold geometries which yield N=1 supersymmetry for heterotic compactifications. Surprisingly, most Hodge numbers follow the empiric pattern h{sup (1,1)}-h{sup (2,1)}=0 mod 6, which might be related to the number of three standard model generations. Furthermore, we study the fundamental groups in order to identify the possibilities for non-local gauge symmetry breaking. Three examples are discussed in detail: the simplest non-Abelian orbifold S{sub 3} and two more elaborated examples, T{sub 7} and {Delta}(27), which have only one untwisted Kaehler and no untwisted complex structure modulus. Such models might be especially interesting in the context of no-scale supergravity. Finally, we briefly discuss the case of orbifolds with vanishing Euler numbers in the context of enhanced (spontaneously broken) supersymmetry.

  8. The Standard Model and Higgs physics

    Science.gov (United States)

    Torassa, Ezio

    2018-05-01

    The Standard Model is a consistent and computable theory that successfully describes the elementary particle interactions. The strong, electromagnetic and weak interactions have been included in the theory exploiting the relation between group symmetries and group generators, in order to smartly introduce the force carriers. The group properties lead to constraints between boson masses and couplings. All the measurements performed at the LEP, Tevatron, LHC and other accelerators proved the consistency of the Standard Model. A key element of the theory is the Higgs field, which together with the spontaneous symmetry breaking, gives mass to the vector bosons and to the fermions. Unlike the case of vector bosons, the theory does not provide prediction for the Higgs boson mass. The LEP experiments, while providing very precise measurements of the Standard Model theory, searched for the evidence of the Higgs boson until the year 2000. The discovery of the top quark in 1994 by the Tevatron experiments and of the Higgs boson in 2012 by the LHC experiments were considered as the completion of the fundamental particles list of the Standard Model theory. Nevertheless the neutrino oscillations, the dark matter and the baryon asymmetry in the Universe evidence that we need a new extended model. In the Standard Model there are also some unattractive theoretical aspects like the divergent loop corrections to the Higgs boson mass and the very small Yukawa couplings needed to describe the neutrino masses. For all these reasons, the hunt of discrepancies between Standard Model and data is still going on with the aim to finally describe the new extended theory.

  9. Effect of multiple Higgs fields on the phase structure of the SU(2)-Higgs model

    International Nuclear Information System (INIS)

    Wurtz, Mark; Steele, T. G.; Lewis, Randy

    2009-01-01

    The SU(2)-Higgs model, with a single Higgs field in the fundamental representation and a quartic self-interaction, has a Higgs region and a confinement region which are analytically connected in the parameter space of the theory; these regions thus represent a single phase. The effect of multiple Higgs fields on this phase structure is examined via Monte Carlo lattice simulations. For the case of N≥2 identical Higgs fields, there is no remaining analytic connection between the Higgs and confinement regions, at least when Lagrangian terms that directly couple different Higgs flavors are omitted. An explanation of this result in terms of enhancement from overlapping phase transitions is explored for N=2 by introducing an asymmetry in the hopping parameters of the Higgs fields. It is found that an enhancement of the phase transitions can still occur for a moderate (10%) asymmetry in the resulting hopping parameters.

  10. Beyond the Standard Model Higgs searches at the LHC

    CERN Document Server

    Meridiani, P

    2015-01-01

    The Run I at the LHC marks the birth of the "Higgs physics", a path which will be followed at its full extent in the future runs of the LHC. Indeed there are two complementary paths to be followed to new physics in the Higgs sector: precision measurements of the Higgs properties (couplings, mass, spin and parity), where new physics can manifest as deviation from the Standard Model, or direct search for processes not foreseen in the Standard Model (Higgs decays not foreseen in the Standard Model, additional scalars which would indicate an extended Higgs sector). The current status of these studies at the LHC is presented, focussing in particular on the direct searches for rare or invisible Higgs decays or for an extended Higgs sector. The results are based on the analysis of the proton-proton collisions at 7 and 8 TeV center-of-mass energy at the LHC by the ATLAS and CMS collaborations.

  11. On the origin of mass and the electroweak mass spectrum without Higgs

    International Nuclear Information System (INIS)

    Souza, Manoelito Martins de

    1994-01-01

    Full text: In a Causality Preserving Manifold Formalism, (CPMF), which is based on a model of spacetime with geometric and strict implementation of causality, masses are consequences of the spacetime symmetries. The mass spectrum of a set of non Abelian fields is solely determined from its Lagrangian kinematics term, in a way independent of any kind of interactions and without any extra field (no Higgs, no Yukawa coupling). The origin and meaning of mass in this formalism is discussed and then illustrated with the vector boson sector of the standard SU(2)x U(1) electroweak theory. (author)

  12. Higgs bosons in supersymmetric models. Pt. 1

    International Nuclear Information System (INIS)

    Gunion, J.F.

    1986-01-01

    We describe the properties of Higgs bosons in a class of supersymmetric theories. We consider models in which the low-energy sector contains two weak complex doublets and perhaps one complex gauge-singlet Higgs field. Supersymmetry is assumed to be either softly or spontaneously broken, thereby imposing a number of restrictions on the Higgs boson parameters. We elucidate the Higgs boson masses and present Feynman rules for their couplings to the gauge bosons, fermions and scalars of the theory. We also present Feynman rules for vertices which are related by supersymmetry to the above couplings. Exact analytic expressions are given in two useful limits - one corresponding to the absence of the gauge-singlet Higgs field and the other corresponding to the absence of a supersymmetric Higgs mass term. (orig.)

  13. Symmetries for SM Alignment in multi-Higgs Doublet Models

    CERN Document Server

    Pilaftsis, Apostolos

    2016-01-01

    We derive the complete set of maximal symmetries for Standard Model (SM) alignment that may occur in the tree-level scalar potential of multi-Higgs Doublet Models, with $n > 2$ Higgs doublets. Our results generalize the symmetries of SM alignment, without decoupling of large mass scales or fine-tuning, previously obtained in the context of two-Higgs Doublet Models.

  14. Exact diagonalization of cubic lattice models in commensurate Abelian magnetic fluxes and translational invariant non-Abelian potentials

    DEFF Research Database (Denmark)

    Burrello, M.; Fulga, Ion Cosma; Lepori, L.

    2017-01-01

    of a translational invariant non-Abelian coupling for multi-component spinors does not affect the dimension of the minimal Hamiltonian blocks, nor the dimension of the magnetic Brillouin zone. General formulas are presented for the U(2) case and explicit examples are investigated involving π and 2π/3 magnetic fluxes......We present a general analytical formalism to determine the energy spectrum of a quantum particle in a cubic lattice subject to translationally invariant commensurate magnetic fluxes and in the presence of a general spaceindependent non-Abelian gauge potential. We first review and analyze the case...... of purely Abelian potentials, showing also that the so-called Hasegawa gauge yields a decomposition of the Hamiltonian into sub-matrices having minimal dimension. Explicit expressions for such matrices are derived, also for general anisotropic fluxes. Later on, we show that the introduction...

  15. Simple models with ALICE fluxes

    CERN Document Server

    Striet, J

    2000-01-01

    We introduce two simple models which feature an Alice electrodynamics phase. In a well defined sense the Alice flux solutions we obtain in these models obey first order equations similar to those of the Nielsen-Olesen fluxtube in the abelian higgs model in the Bogomol'nyi limit. Some numerical solutions are presented as well.

  16. Tadpole-induced electroweak symmetry breaking and pNGB Higgs models

    Energy Technology Data Exchange (ETDEWEB)

    Harnik, Roni; Howe, Kiel; Kearney, John [Theoretical Physics Department, Fermi National Accelerator Laboratory, Batavia, IL 60510 (United States)

    2017-03-22

    We investigate induced electroweak symmetry breaking (EWSB) in models in which the Higgs is a pseudo-Nambu-Goldstone boson (pNGB). In pNGB Higgs models, Higgs properties and precision electroweak measurements imply a hierarchy between the EWSB and global symmetry-breaking scales, v{sub H}≪f{sub H}. When the pNGB potential is generated radiatively, this hierarchy requires fine-tuning to a degree of at least ∼v{sub H}{sup 2}/f{sub H}{sup 2}. We show that if Higgs EWSB is induced by a tadpole arising from an auxiliary sector at scale f{sub Σ}≪v{sub H}, this tuning is significantly ameliorated or can even be removed. We present explicit examples both in Composite Higgs models based on SO(5)/SO(4) and in Twin Higgs models. For the Twin case, the result is a fully natural model with f{sub H}∼1 TeV and the lightest colored top partners at 2 TeV. These models also have an appealing mechanism to generate the scales of the auxiliary sector and Higgs EWSB directly from the scale f{sub H}, with a natural hierarchy f{sub Σ}≪v{sub H}≪f{sub H}∼TeV. The framework predicts modified Higgs coupling as well as new Higgs and vector states at LHC13.

  17. Maximally Symmetric Two Higgs Doublet Model with Natural Standard Model Alignment

    CERN Document Server

    Dev, P S Bhupal

    2014-01-01

    We study the Higgs mass spectrum as predicted by a Maximally Symmetric Two Higgs Doublet Model (MS-2HDM) potential based on the SO(5) group, softly broken by bilinear Higgs mass terms. We show that the lightest Higgs sector resulting from this MS-2HDM becomes naturally aligned with that of the Standard Model (SM), independently of the charged Higgs boson mass and $\\tan \\beta$. In the context of Type-II 2HDM, SO(5) is the simplest of the three possible symmetry realizations of the scalar potential that can naturally lead to the SM alignment. Nevertheless, renormalization group effects due to the hypercharge gauge coupling $g'$ and third-generation Yukawa couplings may break sizeably this SM alignment, along with the custodial symmetry inherited by the SO(5) group. Using the current Higgs signal strength data from the LHC, which disfavour large deviations from the SM alignment limit, we derive lower mass bounds on the heavy Higgs sector as a function of $\\tan\\beta$, which can be stronger than the existing limit...

  18. Building and testing models with extended Higgs sectors

    Science.gov (United States)

    Ivanov, Igor P.

    2017-07-01

    Models with non-minimal Higgs sectors represent a mainstream direction in theoretical exploration of physics opportunities beyond the Standard Model. Extended scalar sectors help alleviate difficulties of the Standard Model and lead to a rich spectrum of characteristic collider signatures and astroparticle consequences. In this review, we introduce the reader to the world of extended Higgs sectors. Not pretending to exhaustively cover the entire body of literature, we walk through a selection of the most popular examples: the two- and multi-Higgs-doublet models, as well as singlet and triplet extensions. We will show how one typically builds models with extended Higgs sectors, describe the main goals and the challenges which arise on the way, and mention some methods to overcome them. We will also describe how such models can be tested, what are the key observables one focuses on, and illustrate the general strategy with a subjective selection of results.

  19. Geometrical origin of tricritical points of various U(1) lattice models

    International Nuclear Information System (INIS)

    Janke, W.; Kleiert, H.

    1989-01-01

    The authors review the dual relationship between various compact U(1) lattice models and Abelian Higgs models, the latter being the disorder field theories of line-like topological excitations in the system. The authors point out that the predicted first-order transitions in the Abelian Higgs models (Coleman-Weinberg mechanism) are, in three dimensions, in contradiction with direct numerical investigations in the compact U(1) formulation since these yield continuous transitions in the major part of the phase diagram. In four dimensions, there are indications from Monte Carlo data for a similar situation. Concentrating on the strong-coupling expansion in terms of geometrical objects, surfaces or lines, with certain statistical weights, the authors present semi-quantitative arguments explaining the observed cross-over from first-order to continuous transitions by the balance between the lowest two weights (2:1 ratio) of these geometrical objects

  20. Interference contributions to gluon initiated heavy Higgs production in the Two-Higgs-Doublet Model

    International Nuclear Information System (INIS)

    Greiner, Nicolas

    2016-03-01

    We discuss the production of a heavy neutral Higgs boson of a CP-conserving Two-Higgs-Doublet Model in gluon fusion and its decay into a four-fermion final state, gg(→VV)→e + e - π + π - /e + e - ν l anti ν l . We investigate the interference contributions to invariant mass distributions of the four-fermion final state and other relevant kinematical observables. The relative importance of the different contributions is quantified for the process in the on-shell approximation, gg→ZZ. We show that interferences of the heavy Higgs with the light Higgs boson and background contributions are essential for a correct description of the differential cross section. Even though they contribute below O(10%) to those heavy Higgs signal cross sections, to which the experiments at the Large Hadron Collider were sensitive in its first run, we find that they are sizeable in certain regions of the parameter space that are relevant for future heavy Higgs boson searches. In fact, the interference contributions can significantly enhance the experimental sensitivity to the heavy Higgs boson.

  1. A review of Higgs mass calculations in supersymmetric models

    DEFF Research Database (Denmark)

    Draper, P.; Rzehak, H.

    2016-01-01

    The discovery of the Higgs boson is both a milestone achievement for the Standard Model and an exciting probe of new physics beyond the SM. One of the most important properties of the Higgs is its mass, a number that has proven to be highly constraining for models of new physics, particularly those...... related to the electroweak hierarchy problem. Perhaps the most extensively studied examples are supersymmetric models, which, while capable of producing a 125 GeV Higgs boson with SM-like properties, do so in non-generic parts of their parameter spaces. We review the computation of the Higgs mass...

  2. Composite Higgs Models and the tt-bar H Channel

    International Nuclear Information System (INIS)

    Carmona, A.; Chala, M.; Santiago, J.

    2012-01-01

    Despite its suppressed couplings to Standard Model particles, a composite Higgs with mass m H = 125 GeV and a moderate degree of compositeness can be consistent with current Higgs searches, including a sizable enhancement in the H → γγ channel. Heavy resonances common to many composite Higgs models can mediate new Higgs production mechanisms. In particular, the tt-bar H channel can be accessible at the LHC in these models through the exchange of colored vector and fermion resonances. In this case, the tt-bar H channel is not a direct measure of the top Yukawa coupling. (authors)

  3. Theory of Abelian projection

    International Nuclear Information System (INIS)

    Ogilvie, M.C.

    1999-01-01

    Analytic methods for Abelian projection are developed. A number of results are obtained related to string tension measurements. It is proven that even without gauge fixing, Abelian projection yields string tensions of the underlying non-Abelian theory. Strong arguments are given for similar results in the case where gauge fixing is employed. The methods used emphasize that the projected theory is derived from the underlying non-Abelian theory rather than vice versa. In general, the choice of subgroup used for projection is not very important, and need not be Abelian. While gauge fixing is shown to be in principle unnecessary for the success of Abelian projection, it is computationally advantageous for the same reasons that improved operators, e.g., the use of fat links, are advantageous in Wilson loop measurements. Two other issues, Casimir scaling and the conflict between projection and critical universality, are also discussed. copyright 1999 The American Physical Society

  4. Higgs production and decay in models of a warped extra dimension with a bulk Higgs

    International Nuclear Information System (INIS)

    Archer, Paul R.; Carena, Marcela; Carmona, Adrian; Neubert, Matthias

    2015-01-01

    Warped extra-dimension models in which the Higgs boson is allowed to propagate in the bulk of a compact AdS 5 space are conjectured to be dual to models featuring a partially composite Higgs boson. They offer a framework with which to investigate the implications of changing the scaling dimension of the Higgs operator, which can be used to reduce the constraints from electroweak precision data. In the context of such models, we calculate the cross section for Higgs production in gluon fusion and the H → γγ decay rate and show that they are finite (at one-loop order) as a consequence of gauge invariance. The extended scalar sector comprising the Kaluza-Klein excitations of the Standard Model scalars is constructed in detail. The largest effects are due to virtual KK fermions, whose contributions to the cross section and decay rate introduce a quadratic sensitivity to the maximum allowed value y * of the random complex entries of the 5D anarchic Yukawa matrices. We find an enhancement of the gluon-fusion cross section and a reduction of the H → γγ rate as well as of the tree-level Higgs couplings to fermions and electroweak gauge bosons. As a result, we perform a detailed study of the correlated signal strengths for different production mechanisms and decay channels as functions of y * , the mass scale of Kaluza-Klein resonances and the scaling dimension of the composite Higgs operator

  5. Higgs boson pair production at the photon linear collider in the two Higgs doublet model

    International Nuclear Information System (INIS)

    Asakawa, Eri; Harada, Daisuke; Okada, Yasuhiro; Kanemura, Shinya; Tsumura, Koji

    2009-02-01

    We calculate the cross section of the lightest Higgs boson pair production at the Photon Linear Collider in the two Higgs doublet model. We focus on the scenario in which the lightest Higgs boson has the standard model like couplings to gauge bosons. We take into account the one-loop correction to the hhh coupling as well as additional one-loop diagrams due to charged bosons to the γγ → hh helicity amplitudes. We discuss the impact of these corrections on the hhh coupling measurement at the Photon Linear Collider. (author)

  6. On the Probability of Occurrence of Clusters in Abelian Sandpile Model

    OpenAIRE

    Moradi, M.; Rouhani, S.

    2004-01-01

    We have performed extensive simulations on the Abelian Sandpile Model (ASM) on square lattice. We have estimated the probability of observation of many clusters. Some are in good agreement with previous analytical results, while some show discrepancies between simulation and analytical results.

  7. The minimal curvaton-Higgs model

    International Nuclear Information System (INIS)

    Enqvist, Kari; Lerner, Rose N.; Helsinki Univ. and Helsinki Institute of Physics; Takahashi, Tomo

    2013-10-01

    We present the first full study of the minimal curvaton-Higgs (MCH) model, which is a minimal interpretation of the curvaton scenario with one real scalar coupled to the standard model Higgs boson. The standard model coupling allows the dynamics of the model to be determined in detail, including effects from the thermal background and from radiative corrections to the potential. The relevant mechanisms for curvaton decay are incomplete non-perturbative decay (delayed by thermal blocking), followed by decay via a dimension-5 non-renormalisable operator. To avoid spoiling the predictions of big bang nucleosynthesis, we find the ''bare'' curvaton mass to be m σ ≥8 x 10 4 GeV. To match observational data from Planck there is an upper limit on the curvaton-higgs coupling g, between 10 -3 and 10 -2 , depending on the mass. This is due to interactions with the thermal background. We find that typically non-Gaussianities are small but that if f NL is observed in the near future then m σ 9 GeV, depending on Hubble scale during inflation. In a thermal dark matter model, the lower bound on m σ can increase substantially. The parameter space may also be affected once the baryogenesis mechanism is specified.

  8. Learning from Higgs physics at future Higgs factories

    Energy Technology Data Exchange (ETDEWEB)

    Gu, Jiayin [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Chinese Academy of Sciences, Beijing (China). Center for Future High Energy Physics; Li, Honglei [Jinan Univ., Shandong (China). School of Physics and Technology; Arizona Univ., Tucson, AZ (United States). Dept. of Physics; Liu, Zhen [Fermi National Accelerator Laboratory, Batavia, IL (United States). Theoretical Physics Dept.; Su, Shufang [Arizona Univ., Tucson, AZ (United States). Dept. of Physics; Su, Wei [Arizona Univ., Tucson, AZ (United States). Dept. of Physics; Chinese Academy of Sciences, Beijing (China). Inst. of Theoretical Physics; Univ. of Chinese Academy of Sciences, Beijing (China). School of Physics

    2017-09-15

    Future Higgs factories can reach impressive precision on Higgs property measurements. In this paper, instead of conventional focus of Higgs precision in certain interaction bases, we explored its sensitivity to new physics models at the electron-positron colliders. In particular, we studied two categories of new physics models, Standard Model (SM) with a real scalar singlet extension, and Two Higgs Double Model (2HDM) as examples of weakly-interacting models, Minimal Composite Higgs Model (MCHM) and three typical patterns of the more general operator counting for strong interacting models as examples of strong dynamics. We performed a global fit to various Higgs search channels to obtain the 95% C.L. constraints on the model parameter space. In the SM with a singlet extension, we obtained the limits on the singlet-doublet mixing angle sinθ, as well as the more general Wilson coefficients of the induced higher dimensional operators. In the 2HDM, we analyzed tree level effects in tanβ vs. cos(β-α) plane, as well as the one-loop contributions from the heavy Higgs bosons in the alignment limit to obtain the constraints on heavy Higgs masses for different types of 2HDM. In strong dynamics models, we obtained lower limits on the strong dynamics scale. In addition, once deviations of Higgs couplings are observed, they can be used to distinguish different models. We also compared the sensitivity of various future Higgs factories, namely Circular Electron Positron Collider (CEPC), Future Circular Collider (FCC)-ee and International Linear Collider (ILC).

  9. Learning from Higgs physics at future Higgs factories

    International Nuclear Information System (INIS)

    Gu, Jiayin; Chinese Academy of Sciences, Beijing; Li, Honglei; Arizona Univ., Tucson, AZ; Liu, Zhen; Su, Shufang; Su, Wei; Chinese Academy of Sciences, Beijing; Univ. of Chinese Academy of Sciences, Beijing

    2017-09-01

    Future Higgs factories can reach impressive precision on Higgs property measurements. In this paper, instead of conventional focus of Higgs precision in certain interaction bases, we explored its sensitivity to new physics models at the electron-positron colliders. In particular, we studied two categories of new physics models, Standard Model (SM) with a real scalar singlet extension, and Two Higgs Double Model (2HDM) as examples of weakly-interacting models, Minimal Composite Higgs Model (MCHM) and three typical patterns of the more general operator counting for strong interacting models as examples of strong dynamics. We performed a global fit to various Higgs search channels to obtain the 95% C.L. constraints on the model parameter space. In the SM with a singlet extension, we obtained the limits on the singlet-doublet mixing angle sinθ, as well as the more general Wilson coefficients of the induced higher dimensional operators. In the 2HDM, we analyzed tree level effects in tanβ vs. cos(β-α) plane, as well as the one-loop contributions from the heavy Higgs bosons in the alignment limit to obtain the constraints on heavy Higgs masses for different types of 2HDM. In strong dynamics models, we obtained lower limits on the strong dynamics scale. In addition, once deviations of Higgs couplings are observed, they can be used to distinguish different models. We also compared the sensitivity of various future Higgs factories, namely Circular Electron Positron Collider (CEPC), Future Circular Collider (FCC)-ee and International Linear Collider (ILC).

  10. Neutral Naturalness from Orbifold Higgs Models

    Science.gov (United States)

    Craig, Nathaniel; Knapen, Simon; Longhi, Pietro

    2015-02-01

    We present a general class of natural theories in which the Higgs boson is a pseudo-Goldstone boson in an orbifolded gauge theory. The symmetry protecting the Higgs boson at low energies is an accidental global symmetry of the quadratic action, rather than a full continuous symmetry. The lightest degrees of freedom protecting the weak scale carry no standard model (SM) quantum numbers and interact with visible matter principally through the Higgs portal. This opens the door to the systematic study of "neutral naturalness": natural theories with SM-neutral states that are as yet untested by the LHC.

  11. Implications of Higgs searches on the four-generation standard model.

    Science.gov (United States)

    Kuflik, Eric; Nir, Yosef; Volansky, Tomer

    2013-03-01

    Within the four-generation standard model, the Higgs couplings to gluons and to photons deviate in a significant way from the predictions of the three-generation standard model. As a consequence, large departures in several Higgs production and decay channels are expected. Recent Higgs search results, presented by ATLAS, CMS, and CDF, hint on the existence of a Higgs boson with a mass around 125 GeV. Using these results and assuming such a Higgs boson, we derive exclusion limits on the four-generation standard model. For m(H)=125 GeV, the model is excluded above 99.95% confidence level. For 124.5 GeV≤m(H)≤127.5 GeV, an exclusion limit above 99% confidence level is found.

  12. Thermal leptogenesis in a supersymmetric neutrinophilic Higgs model

    International Nuclear Information System (INIS)

    Haba, Naoyuki; Seto, Osamu

    2011-01-01

    We investigate thermal leptogenesis in a supersymmetric neutrinophilic Higgs model by taking phenomenological constraints into account, where, in addition to the minimal supersymmetric standard model, we introduce an extra Higgs field with a tiny vacuum expectation value which generates neutrino masses. Thanks to this tiny vacuum expectation value of the neutrinophilic Higgs, our model allows us to reduce the mass of the lightest right-handed (s)neutrino to be O(10 5 ) GeV, keeping sufficiently large CP asymmetry in its decay. Therefore, the reheating temperature after inflation is not necessarily high; hence this scenario is free from the gravitino problem.

  13. Higgs decays to dark matter: Beyond the minimal model

    International Nuclear Information System (INIS)

    Pospelov, Maxim; Ritz, Adam

    2011-01-01

    We examine the interplay between Higgs mediation of dark-matter annihilation and scattering on one hand and the invisible Higgs decay width on the other, in a generic class of models utilizing the Higgs portal. We find that, while the invisible width of the Higgs to dark matter is now constrained for a minimal singlet scalar dark matter particle by experiments such as XENON100, this conclusion is not robust within more generic examples of Higgs mediation. We present a survey of simple dark matter scenarios with m DM h /2 and Higgs portal mediation, where direct-detection signatures are suppressed, while the Higgs width is still dominated by decays to dark matter.

  14. Higgs bosons in the left-right model

    International Nuclear Information System (INIS)

    Boyarkina, G.G.; Boyarkin, O.M.

    2000-01-01

    The model with the SU(2) L x SU(2) R x U(1) B-L gauge group, containing one bidoublet and two triplets in the Higgs sector, is considered. The link between the constants determining the physical Higgs boson interactions and the neutrino oscillation parameters is found. It is shown that the observation of the ultrahigh-energy neutrinos with the help of the processes e - ν e →W - Z, e - ν e →μ - ν μ , gives us information on the singly charged Higgs bosons. The processes of the doubly charged Higgs boson production, e - μ - →Δ (--) 1 γ, e - μ - →Δ (--) 1 Z, are investigated. From the point of view of detecting the neutral Higgs bosons the process of the electron-muon recharge e - μ + →e + μ - is studied. (orig.)

  15. Analysis of the phase structure in extended Higgs models

    Energy Technology Data Exchange (ETDEWEB)

    Seniuch, M.

    2006-07-07

    We study the generation of the baryon asymmetry in the context of electroweak baryogenesis in two different extensions of the Standard Model. First, we consider an effective theory, in which the Standard Model is augmented by an additional dimension-six Higgs operator. The effects of new physics beyond a cut-off scale are parameterized by this operator. The second model is the two-Higgs-doublet model, whose particle spectrum is extended by two further neutral and two charged heavy Higgs bosons. In both cases we focus on the properties of the electroweak phase transition, especially on its strength and the profile of the nucleating bubbles. After reviewing some general aspects of the electroweak phase transition and baryogenesis we derive the respective thermal effective potentials to one-loop order. We systematically study the parameter spaces, using numerical methods, and compute the strength of the phase transition and the wall thickness as a function of the Higgs masses. We find a strong first order transition for a light Higgs state with a mass up to about 200 GeV. In case of the dimension-six model the cut-off scale has to stay between 500 and 850 GeV, in the two-Higgs-doublet model one needs at least one heavy Higgs mass of 300 GeV. The wall thickness varies for both theories in the range roughly from two to fifteen, in units of the inverse critical temperature. We also estimate the size of the electron and neutron electric dipole moments, since new sources of CP violation give rise to them. In wide ranges of the parameter space we are not in conflict with the experimental bounds. Finally the baryon asymmetry, which is predicted by these models, is related to the Higgs mass and the other appropriate input parameters. In both models the measured baryon asymmetry can be achieved for natural values of the model parameters. (orig.)

  16. Ruling out a strongly interacting standard Higgs model

    International Nuclear Information System (INIS)

    Riesselmann, K.; Willenbrock, S.

    1997-01-01

    Previous work has suggested that perturbation theory is unreliable for Higgs- and Goldstone-boson scattering, at energies above the Higgs-boson mass, for relatively small values of the Higgs quartic coupling λ(μ). By performing a summation of nonlogarithmic terms, we show that perturbation theory is in fact reliable up to relatively large coupling. This eliminates the possibility of a strongly interacting standard Higgs model at energies above the Higgs-boson mass, complementing earlier studies which excluded strong interactions at energies near the Higgs-boson mass. The summation can be formulated in terms of an appropriate scale in the running coupling, μ=√(s)/e∼√(s)/2.7, so it can be incorporated easily in renormalization-group-improved tree-level amplitudes as well as higher-order calculations. copyright 1996 The American Physical Society

  17. Axion and PVLAS Collaboration data in a little Higgs model

    International Nuclear Information System (INIS)

    Fukuyama, Takeshi; Kikuchi, Tatsuru

    2006-01-01

    Little Higgs models may provide a solution to the gauge hierarchy problem in the mass of the Higgs boson. In this framework the Higgs boson arises as the pseudo-Nambu-Goldstone (PNG) boson. We show that the lepton triplet introduced in a little Higgs model explains a small mass parameter in the double see-saw mechanism for neutrino masses, and it can also gives an explanation for the axionlike particle recently reported by PVLAS collaboration

  18. Higgs bosons in the next-to-minimal supersymmetric standard model at the LHC

    International Nuclear Information System (INIS)

    Ellwanger, Ulrich

    2011-01-01

    We review possible properties of Higgs bosons in the NMSSM, which allow to discriminate this model from the MSSM: masses of mostly standard-model-like Higgs bosons at or above 140 GeV, or enhanced branching fractions into two photons, or Higgs-to-Higgs decays. In the case of a standard-model-like Higgs boson above 140 GeV, it is necessarily accompanied by a lighter state with a large gauge singlet component. Examples for such scenarios are presented. Available studies on Higgs-to-Higgs decays are discussed according to the various Higgs production modes, light Higgs masses and decay channels. (orig.)

  19. Quantum field theory I foundations and Abelian and non-Abelian gauge theories

    CERN Document Server

    Manoukian, Edouard B

    2016-01-01

    This textbook covers a broad spectrum of developments in QFT, emphasizing those aspects that are now well consolidated and for which satisfactory theoretical descriptions have been provided. The book is unique in that it offers a new approach to the subject and explores many topics merely touched upon, if covered at all, in standard reference works. A detailed and largely non-technical introductory chapter traces the development of QFT from its inception in 1926. The elegant functional differential approach put forward by Schwinger, referred to as the quantum dynamical (action) principle, and its underlying theory are used systematically in order to generate the so-called vacuum-to-vacuum transition amplitude of both abelian and non-abelian gauge theories, in addition to Feynman’s well-known functional integral approach, referred to as the path-integral approach. Given the wealth of information also to be found in the abelian case, equal importance is put on both abelian and non-abelian gauge theories. Pa...

  20. Little Higgs model limits from LHC - Input for Snowmass 2013

    International Nuclear Information System (INIS)

    Reuter, Juergen; Tonini, Marco; Vries, Maikel de

    2013-07-01

    The status of the most prominent model implementations of the Little Higgs paradigm, the Littlest Higgs with and without discrete T parity as well as the Simplest Little Higgs are reviewed. For this, we are taking into account a fit to 21 electroweak precision observables from LEP, SLC, Tevatron together with the full 25 fb -1 of Higgs data reported from ATLAS and CMS at Moriond 2013. We also - focusing on the Littlest Higgs with T parity - include an outlook on corresponding direct searches at the 8 TeV LHC and their competitiveness with the EW and Higgs data regarding their exclusion potential. This contribution to the Snowmass procedure serves as a guideline which regions in parameter space of Little Higgs models are still compatible for the upcoming LHC runs and future experiments at the energy frontier. For this we propose two different benchmark scenarios for the Littlest Higgs with T parity, one with heavy mirror quarks, one with light ones.

  1. Little Higgs model limits from LHC - Input for Snowmass 2013

    Energy Technology Data Exchange (ETDEWEB)

    Reuter, Juergen; Tonini, Marco; Vries, Maikel. de

    2013-07-15

    The status of the most prominent model implementations of the Little Higgs paradigm, the Littlest Higgs with and without discrete T parity as well as the Simplest Little Higgs are reviewed. For this, we are taking into account a fit to 21 electroweak precision observables from LEP, SLC, Tevatron together with the full 25 fb{sup -1} of Higgs data reported from ATLAS and CMS at Moriond 2013. We also - focusing on the Littlest Higgs with T parity - include an outlook on corresponding direct searches at the 8 TeV LHC and their competitiveness with the EW and Higgs data regarding their exclusion potential. This contribution to the Snowmass procedure serves as a guideline which regions in parameter space of Little Higgs models are still compatible for the upcoming LHC runs and future experiments at the energy frontier. For this we propose two different benchmark scenarios for the Littlest Higgs with T parity, one with heavy mirror quarks, one with light ones.

  2. Very light Higgs bosons in extended models at the LHC

    International Nuclear Information System (INIS)

    Belyaev, Alexander; Guedes, Renato; Santos, Rui; Moretti, Stefano

    2010-01-01

    The Large Electron-Positron (LEP) collider experiments have constrained the mass of the standard model (SM) Higgs boson to be above 114.4 GeV. This bound applies to all extensions of the SM where the coupling of a Higgs boson to the Z boson and also the Higgs decay profile do not differ much from the SM one. However, in scenarios with extended Higgs sectors, this coupling can be made very small by a suitable choice of the parameters of the model. In such cases, the lightest CP-even Higgs boson mass can in turn be made very small. Such a very light Higgs state, with a mass of the order of the Z boson one or even smaller, could have escaped detection at LEP. In this work we perform a detailed parton level study on the feasibility of the detection of such a very light Higgs particle at the Large Hadron Collider (LHC) in the production process pp→hj→τ + τ - j, where j is a resolved jet. We conclude that there are several models where such a Higgs state could be detected at the LHC with early data.

  3. The minimal curvaton-Higgs model

    Energy Technology Data Exchange (ETDEWEB)

    Enqvist, Kari [Helsinki Univ. and Helsinki Institute of Physics (Finland). Physics Dept.; Lerner, Rose N. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Helsinki Univ. and Helsinki Institute of Physics (Finland). Physics Dept.; Takahashi, Tomo [Saga Univ. (Japan). Dept. of Physics

    2013-10-15

    We present the first full study of the minimal curvaton-Higgs (MCH) model, which is a minimal interpretation of the curvaton scenario with one real scalar coupled to the standard model Higgs boson. The standard model coupling allows the dynamics of the model to be determined in detail, including effects from the thermal background and from radiative corrections to the potential. The relevant mechanisms for curvaton decay are incomplete non-perturbative decay (delayed by thermal blocking), followed by decay via a dimension-5 non-renormalisable operator. To avoid spoiling the predictions of big bang nucleosynthesis, we find the ''bare'' curvaton mass to be m{sub {sigma}}{>=}8 x 10{sup 4} GeV. To match observational data from Planck there is an upper limit on the curvaton-higgs coupling g, between 10{sup -3} and 10{sup -2}, depending on the mass. This is due to interactions with the thermal background. We find that typically non-Gaussianities are small but that if f{sub NL} is observed in the near future then m{sub {sigma}}model, the lower bound on m{sub {sigma}} can increase substantially. The parameter space may also be affected once the baryogenesis mechanism is specified.

  4. Exotic quarks in Twin Higgs models

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Hsin-Chia [Department of Physics, University of California, Davis,One Shields Avenue, Davis, CA 95616 (United States); Jung, Sunghoon [School of Physics, Korea Institute for Advanced Study,85 Hoegiro, Dongdaemun-gu, Seoul 130-722 (Korea, Republic of); SLAC National Accelerator Laboratory,2575 Sand Hill Road, Menlo Park, CA 94025 (United States); Salvioni, Ennio [Department of Physics, University of California, Davis,One Shields Avenue, Davis, CA 95616 (United States); Tsai, Yuhsin [Department of Physics, University of California, Davis,One Shields Avenue, Davis, CA 95616 (United States); Maryland Center for Fundamental Physics,Department of Physics, University of Maryland,College Park, MD 20742 (United States)

    2016-03-14

    The Twin Higgs model provides a natural theory for the electroweak symmetry breaking without the need of new particles carrying the standard model gauge charges below a few TeV. In the low energy theory, the only probe comes from the mixing of the Higgs fields in the standard model and twin sectors. However, an ultraviolet completion is required below ∼ 10 TeV to remove residual logarithmic divergences. In non-supersymmetric completions, new exotic fermions charged under both the standard model and twin gauge symmetries have to be present to accompany the top quark, thus providing a high energy probe of the model. Some of them carry standard model color, and may therefore be copiously produced at current or future hadron colliders. Once produced, these exotic quarks can decay into a top together with twin sector particles. If the twin sector particles escape the detection, we have the irreducible stop-like signals. On the other hand, some twin sector particles may decay back into the standard model particles with long lifetimes, giving spectacular displaced vertex signals in combination with the prompt top quarks. This happens in the Fraternal Twin Higgs scenario with typical parameters, and sometimes is even necessary for cosmological reasons. We study the potential displaced vertex signals from the decays of the twin bottomonia, twin glueballs, and twin leptons in the Fraternal Twin Higgs scenario. Depending on the details of the twin sector, the exotic quarks may be probed up to ∼ 2.5 TeV at the LHC and beyond 10 TeV at a future 100 TeV collider, providing a strong test of this class of ultraviolet completions.

  5. Higgs Boson Properties in the Standard Model and its Supersymmetric Extensions

    CERN Document Server

    Ellis, Jonathan Richard; Zwirner, F; Ellis, John; Ridolfi, Giovanni; Zwirner, Fabio

    2007-01-01

    We review the realization of the Brout-Englert-Higgs mechanism in the electroweak theory and describe the experimental and theoretical constraints on the mass of the single Higgs boson expected in the minimal Standard Model. We also discuss the couplings of this Higgs boson and its possible decay modes as functions of its unknown mass. We then review the structure of the Higgs sector in the minimal supersymmetric extension of the Standard Model (MSSM), noting the importance of loop corrections to the masses of its five physical Higgs bosons. Finally, we discuss some non-minimal models.

  6. Higgs boson properties in the Standard Model and its supersymmetric extensions

    International Nuclear Information System (INIS)

    Ellis, J.; Ridolfi, G.; Zwirner, F.

    2007-01-01

    We review the realization of the Brout-Englert-Higgs mechanism in the electroweak theory and describe the experimental and theoretical constraints on the mass of the single Higgs boson expected in the minimal Standard Model. We also discuss the couplings of this Higgs boson and its possible decay modes as functions of its unknown mass. We then review the structure of the Higgs sector in the minimal supersymmetric extension of the Standard Model (MSSM), noting the importance of loop corrections to the masses of its 5 physical Higgs bosons. Finally, we discuss some non-minimal models. (authors)

  7. Hermitian self-dual quasi-abelian codes

    Directory of Open Access Journals (Sweden)

    Herbert S. Palines

    2017-12-01

    Full Text Available Quasi-abelian codes constitute an important class of linear codes containing theoretically and practically interesting codes such as quasi-cyclic codes, abelian codes, and cyclic codes. In particular, the sub-class consisting of 1-generator quasi-abelian codes contains large families of good codes. Based on the well-known decomposition of quasi-abelian codes, the characterization and enumeration of Hermitian self-dual quasi-abelian codes are given. In the case of 1-generator quasi-abelian codes, we offer necessary and sufficient conditions for such codes to be Hermitian self-dual and give a formula for the number of these codes. In the case where the underlying groups are some $p$-groups, the actual number of resulting Hermitian self-dual quasi-abelian codes are determined.

  8. Higgs boson production in the littlest Higgs model with T-parity at the ILC

    Science.gov (United States)

    Han, Jinzhong; Yang, Guang; Meng, Ming; Wang, Weijian; Li, Jingyun

    2018-04-01

    We investigate the Higgs boson production processes e+e‑→ ZH, e+e‑→ νν¯H, e+e‑→ tt¯H, e+e‑→ ZHH and e+e‑→ νν¯HH in the littlest Higgs model with T-parity (LHT) at the International Linear Collider (ILC). We calculate the LHT model predictions on the production rate of these processes at the ILC in the case of (un)polarized beams and the signal strengths of the production processes ZH and νν¯H with Higgs decaying to bb¯(gg,γγ). In the allowed parameter space, we find that the signal strengths μgg is most likely approach to the expected precision of the ILC.

  9. Higgs-boson contributions to gauge-boson mass shifts in extended electroweak models

    International Nuclear Information System (INIS)

    Moore, S.R.

    1985-10-01

    In the minimal standard model, the difference between the tree-level and one-loop-corrected predictions for the gauge-boson masses, known as the mass shifts, are of the order of 4%. The dominant contribution is from light-fermion loops. The Higgs-dependent terms are small, even if the Higgs boson is heavy. We have analyzed the mass shifts for models with a more complicated Higgs sector. We use the on-shell renormalization scheme, in which the parameters of the theory are the physical masses and couplings. We have considered the 2-doublet, n-doublet, triplet and doublet-triplet models. We have found that the Z-boson mass prediction has a strong dependence on the charged-Higgs mass. In the limit that the charged Higgs is much heavier than the gauge bosons, the Higgs-dependent terms become significant, and may even cancel the light-fermion terms. In the models with a Higgs triplet, there is also a strong dependence on the neutral-Higgs masses, although this contribution tends to be suppressed in realistic models. The W-boson mass shift does not have a strong Higgs dependence. If we use the Z mass as input in determining the parameters of the theory, a scenario which will become attractive as the mass of the Z is accurately measured in the next few years, we find that the W-boson mass shift exhibits the same sort of behavior, differing from the minimal model for the case of the charged Higgs being heavy. We have found that when radiative corrections are taken into account, models with extended Higgs sectors may differ significantly from the minimal standard model in their predictions for the gauge-boson masses. Thus, an accurate measurement of the masses will help shed light on the structure of the Higgs sector. 68 refs

  10. The correction of the littlest Higgs model to the Higgs production process e+e-→e+e-H at the ILC

    International Nuclear Information System (INIS)

    Wang, Xuelei; Liu, Yaobei; Chen, Jihong; Yang, Hua

    2007-01-01

    The littlest Higgs model is the most economical one among various little Higgs models. In the context of the littlest Higgs model, we study the process e + e - →e + e - H at the ILC and calculate the correction of the littlest Higgs model to the cross section of this process. The results show that, in the favorable parameter spaces preferred by the electroweak precision data, the value of the relative correction is in the range from a few percent to tens percent. In most cases, the correction is large enough to reach the measurement precision of the ILC. Therefore, the correction of the littlest Higgs model to the process e + e - →e + e - H might be detected at the ILC, which will give an ideal way to test the model. (orig.)

  11. Beyond The Standard Model Higgs Physics with Photons with the CMS Detector

    CERN Document Server

    Teixeira de Lima, Rafael

    The experimental discovery of the Higgs boson is one of the latest successes of the Standard Model of particle physics. Although all measurements have confirmed that this newly discovered particle is the Higgs boson predicted by the Standard Model, with no deviations to suggest otherwise, the Higgs boson can guide us to new models which modify the electroweak symmetry breaking mechanism or predict new states that couple to the Higgs. Therefore, it's paramount to directly look for modifications of our current model with the help of the recently discovered particle. In this thesis, two analyses involving beyond the Standard Model physics tied to the Higgs sector will be explored. First, looking at exotic Higgs decays, an analysis searching for the final state with photons and missing transverse energy will be presented. Then, the search for Higgs pair production, both resonantly and non-resonantly (a process predicted by the Standard Model, albeit at very low rates), in the final state with two bottom quark je...

  12. Analytical results for Abelian projection

    International Nuclear Information System (INIS)

    Ogilivie, Michael C.

    1999-01-01

    Analytic methods for Abelian projection are developed, and a number of results related to string tension measurements are obtained. It is proven that even without gauge fixing, Abelian projection yields string tensions of the underlying non-Abelian theory. Strong arguments are given for similar results in the case where gauge fixing is employed. The subgroup used for projection need only contain the center of the gauge group, and need not be Abelian. While gauge fixing is shown to be in principle unnecessary for the success of Abelian projection, it is computationally advantageous for the same reasons that improved operators, e.g., the use of fat links, are advantageous in Wilson loop measurements

  13. Maximal Abelian sets of roots

    CERN Document Server

    Lawther, R

    2018-01-01

    In this work the author lets \\Phi be an irreducible root system, with Coxeter group W. He considers subsets of \\Phi which are abelian, meaning that no two roots in the set have sum in \\Phi \\cup \\{ 0 \\}. He classifies all maximal abelian sets (i.e., abelian sets properly contained in no other) up to the action of W: for each W-orbit of maximal abelian sets we provide an explicit representative X, identify the (setwise) stabilizer W_X of X in W, and decompose X into W_X-orbits. Abelian sets of roots are closely related to abelian unipotent subgroups of simple algebraic groups, and thus to abelian p-subgroups of finite groups of Lie type over fields of characteristic p. Parts of the work presented here have been used to confirm the p-rank of E_8(p^n), and (somewhat unexpectedly) to obtain for the first time the 2-ranks of the Monster and Baby Monster sporadic groups, together with the double cover of the latter. Root systems of classical type are dealt with quickly here; the vast majority of the present work con...

  14. Non-Abelian strings and axions

    International Nuclear Information System (INIS)

    Gorsky, A.; Shifman, M.; Yung, A.

    2006-01-01

    We address two distinct but related issues: (i) the impact of (two-dimensional) axions in a two-dimensional theory known to model confinement, the CP(N-1) model; (ii) bulk axions in four-dimensional Yang-Mills theory supporting non-Abelian strings. In the first case n, n kinks play the role of 'quarks'. They are known to be confined. We show that introduction of axions leads to deconfinement (at very large distances). This is akin to the phenomenon of wall liberation in four-dimensional Yang-Mills theory. In the second case we demonstrate that the bulk axion does not liberate confined (anti)monopoles, in contradistinction with the two-dimensional model. A novel physical effect which we observe is the axion radiation caused by monopole-antimonopole pairs attached to the non-Abelian strings

  15. Abelian projection on the torus for general gauge groups

    International Nuclear Information System (INIS)

    Ford, C.; Tok, T.; Wipf, A.

    1999-01-01

    We consider Yang-Mills theories with general gauge groups G and twists of the four-torus. We find consistent boundary conditions for gauge fields in all instanton sectors. An extended abelian projection with respect to the Polyakov loop operator is presented, where A 0 is independent of time and in the Cartan subalgebra. Fundamental domains for the gauge fixed A 0 are constructed for arbitrary gauge groups. In the sectors with non-vanishing instanton number such gauge fixings are necessarily singular. The singularities can be restricted to Dirac strings joining magnetically charged defects. The magnetic charges of these monopoles take their values in the co-root lattice of the gauge group. We relate the magnetic charges of the defects and the windings of suitable Higgs fields about these defects to the instanton number

  16. Non-Abelian color dielectric - towards the effective model of the low energy QCD

    International Nuclear Information System (INIS)

    Wereszczynski, A.; Slusarczyk, M.

    2005-01-01

    Lattice motivated triplet color scalar field theory is analyzed. We consider non-minimal as well as covariant derivative coupling with SU(2) gauge fields. Field configurations generated by external electric sources are presented. Moreover non-Abelian magnetic monopoles are found. Dependence on the spatial coordinates in the obtained solutions is identical as in the usual Abelian case. We show also that after a decomposition of the fields a modified Faddeev-Niemi action can be obtained. It contains explicit O(3) symmetry breaking term parameterized by the condensate of an isoscalar field. Due to that Goldstone bosons observed in the original Faddeev-Niemi model are removed. (orig.)

  17. Can the 125 GeV Higgs be the Little Higgs?

    Energy Technology Data Exchange (ETDEWEB)

    Reuter, J.; Tonini, M

    2012-12-15

    After the discovery of the Higgs-like boson by the LHC 2012 it is the most important task to check whether this new particle is the Standard Model Higgs boson or something else. In this paper, we study whether the 125 GeV boson could be the pseudo- Goldstone boson of Little Higgs models. We derive limits on the parameter space of several Little Higgs models (simple group and product group models, with and without T-parity), both from the experimental data from ATLAS and CMS about the different Higgs discovery channel and the electroweak precision observables. We perform a fit of several Little Higgs models to all electroweak parameters from measurements of SLC, LEP, Tevatron, and LHC. For the Higgs searches, we include all available data from the summer conferences 2012 as well as the update from December 2012.

  18. Phenomenological viability of orbifold models with three Higgs families

    International Nuclear Information System (INIS)

    Escudero, Nicolas; Munoz, Carlos; Teixeira, Ana M.

    2006-01-01

    We discuss the phenomenological viability of string multi-Higgs doublet models, namely a scenario of heterotic Z 3 orbifolds with two Wilson lines, which naturally predicts three supersymmetric families of matter and Higgs fields. We study the orbifold parameter space, and discuss the compatibility of the predicted Yukawa couplings with current experimental data. We address the implications of tree-level flavour changing neutral processes in constraining the Higgs sector of the model, finding that viable scenarios can be obtained for a reasonably light Higgs spectrum. We also take into account the tree-level contributions to indirect CP violation, showing that the experimental value of ε K can be accommodated in the present framework

  19. LHC phenomenology of composite 2-Higgs doublet models

    Energy Technology Data Exchange (ETDEWEB)

    De Curtis, Stefania [University of Florence, Department of Physics and Astronomy, Sesto Fiorentino (Italy); INFN, Sezione di Firenze (Italy); Moretti, Stefano; Yagyu, Kei; Yildirim, Emine [University of Southampton, School of Physics and Astronomy, Southampton (United Kingdom)

    2017-08-15

    We investigate the phenomenology of Composite 2-Higgs doublet models (C2HDMs) of various Yukawa types based on the global symmetry breaking SO(6) → SO(4) x SO(2). The kinetic part and the Yukawa Lagrangian are constructed in terms of the pseudo Nambu-Goldstone Boson (pNGB) matrix and a 6-plet of fermions under SO(6). The scalar potential is assumed to be the same as that of the Elementary 2-Higgs doublet model (E2HDM) with a softly broken discrete Z{sub 2} symmetry. We then discuss the phenomenological differences between the E2HDM and C2HDM by focusing on the deviations from standard model (SM) couplings of the discovered Higgs state (h) as well as on the production cross sections and branching ratios (BRs) at the large Hadron collider (LHC) of extra Higgs bosons. We find that, even if the same deviation in the hVV (V = W,Z) coupling is assumed in the two scenarios, there appear significant differences between the E2HDM and C2HDM from the structure of the Yukawa couplings, so that production and decay features of extra Higgs bosons can be used to distinguish between the two scenarios. (orig.)

  20. Exploring holographic Composite Higgs models

    Energy Technology Data Exchange (ETDEWEB)

    Croon, Djuna [Department of Physics and Astronomy, University of Sussex,BN1 9QH Brighton (United Kingdom); Perimeter Institute for Theoretical Physics,Waterloo, ON (Canada); Dillon, Barry M.; Huber, Stephan J.; Sanz, Veronica [Department of Physics and Astronomy, University of Sussex,BN1 9QH Brighton (United Kingdom)

    2016-07-13

    Simple Composite Higgs models predict new vector-like fermions not too far from the electroweak scale, yet LHC limits are now sensitive to the TeV scale. Motivated by this tension, we explore the holographic dual of the minimal model, MCHM{sub 5}, to try and alleviate this tension without increasing the fine-tuning in the Higgs potential. Interestingly, we find that lowering the UV cutoff in the 5D picture allows for heavier top partners and less fine-tuning. In the 4D dual this corresponds to increasing the number of “colours” N, thus increasing the decay constant of the Goldstone Higgs. This is essentially a ‘Little Randall-Sundrum Model’, which are known to reduce some flavour and electroweak constraints. Furthermore, in anticipation of the ongoing efforts at the LHC to put bounds on the top Yukawa, we demonstrate that deviations from the SM can be suppressed or enhanced with respect to what is expected from mere symmetry arguments in 4D. We conclude that the 5D holographic realisation of the MCHM{sub 5} with a small UV cutoff is not in tension with the current experimental data.

  1. Neutral Higgs bosons in the standard model and in the minimal ...

    Indian Academy of Sciences (India)

    assumed to be CP invariant. Finally, we discuss an alternative MSSM scenario including. CP violation in the Higgs sector. Keywords. Higgs bosons; standard model; minimal supersymmetric model; searches at LEP. 1. Introduction. One of the challenges in high-energy particle physics is the discovery of Higgs bosons.

  2. Implications of a Light Higgs in Composite Models

    CERN Document Server

    Redi, Michele

    2012-01-01

    We study the Higgs mass in composite Higgs models with partial compositeness, extending the results of Ref. [1] to different representations of the composite sector for SO(5)/SO(4) and to the coset SO(6)/SO(5). For a given tuning we find in general a strong correlation between the mass of the top partners and the Higgs mass, akin to the one in supersymmetry. If the theory is natural a Higgs mass of 125 GeV typically requires fermionic partners below TeV which might be within the reach of the present run of LHC. A discussion of CP properties of both cosets is also presented.

  3. Beyond the Standard Model Higgs boson searches using the ATLAS Experiment

    CERN Document Server

    Tsukerman, Ilya; The ATLAS collaboration

    2014-01-01

    The discovery of a Higgs boson with a mass of about 125 GeV has prompted the question of whether or not this particle is part of a larger and more complex Higgs sector than that envisioned in the Standard Model. In this talk, the current results from the ATLAS experiment on Beyond the Standard Model (BSM) Higgs boson searches are outlined. The results are interpreted in well-motivated BSM Higgs frameworks.

  4. Stringy origin of non-Abelian discrete flavor symmetries

    International Nuclear Information System (INIS)

    Kobayashi, Tatsuo; Nilles, Hans Peter; Ploeger, Felix; Raby, Stuart; Ratz, Michael

    2007-01-01

    We study the origin of non-Abelian discrete flavor symmetries in superstring theory. We classify all possible non-Abelian discrete flavor symmetries which can appear in heterotic orbifold models. These symmetries include D 4 and Δ(54). We find that the symmetries of the couplings are always larger than the symmetries of the compact space. This is because they are a consequence of the geometry of the orbifold combined with the space group selection rules of the string. We also study possible breaking patterns. Our analysis yields a simple geometric understanding of the realization of non-Abelian flavor symmetries

  5. CMS standard model Higgs boson results

    Directory of Open Access Journals (Sweden)

    Garcia-Abia Pablo

    2013-11-01

    Full Text Available In July 2012 CMS announced the discovery of a new boson with properties resembling those of the long-sought Higgs boson. The analysis of the proton-proton collision data recorded by the CMS detector at the LHC, corresponding to integrated luminosities of 5.1 fb−1 at √s = 7 TeV and 19.6 fb−1 at √s = 8 TeV, confirm the Higgs-like nature of the new boson, with a signal strength associated with vector bosons and fermions consistent with the expectations for a standard model (SM Higgs boson, and spin-parity clearly favouring the scalar nature of the new boson. In this note I review the updated results of the CMS experiment.

  6. Numerical simulation of Higgs models

    International Nuclear Information System (INIS)

    Jaster, A.

    1995-10-01

    The SU(2) Higgs and the Schwinger model on the lattice were analysed. Numerical simulations of the SU(2) Higgs model were performed to study the finite temperature electroweak phase transition. With the help of the multicanonical method the distribution of an order parameter at the phase transition point was measured. This was used to obtain the order of the phase transition and the value of the interface tension with the histogram method. Numerical simulations were also performed at zero temperature to perform renormalization. The measured values for the Wilson loops were used to determine the static potential and from this the renormalized gauge coupling. The Schwinger model was simulated at different gauge couplings to analyse the properties of the Kaplan-Shamir fermions. The prediction that the mass parameter gets only multiplicative renormalization was tested and verified. (orig.)

  7. Asymptotically Free Natural Supersymmetric Twin Higgs Model

    Science.gov (United States)

    Badziak, Marcin; Harigaya, Keisuke

    2018-05-01

    Twin Higgs (TH) models explain the absence of new colored particles responsible for natural electroweak symmetry breaking (EWSB). All known ultraviolet completions of TH models require some nonperturbative dynamics below the Planck scale. We propose a supersymmetric model in which the TH mechanism is introduced by a new asymptotically free gauge interaction. The model features natural EWSB for squarks and gluino heavier than 2 TeV even if supersymmetry breaking is mediated around the Planck scale, and has interesting flavor phenomenology including the top quark decay into the Higgs boson and the up quark which may be discovered at the LHC.

  8. Higgs potential in the type II seesaw model

    International Nuclear Information System (INIS)

    Arhrib, A.; Benbrik, R.; Chabab, M.; Rahili, L.; Ramadan, J.; Moultaka, G.; Peyranere, M. C.

    2011-01-01

    The standard model Higgs sector, extended by one weak gauge triplet of scalar fields with a very small vacuum expectation value, is a very promising setting to account for neutrino masses through the so-called type II seesaw mechanism. In this paper we consider the general renormalizable doublet/triplet Higgs potential of this model. We perform a detailed study of its main dynamical features that depend on five dimensionless couplings and two mass parameters after spontaneous symmetry breaking, and highlight the implications for the Higgs phenomenology. In particular, we determine (i) the complete set of tree-level unitarity constraints on the couplings of the potential and (ii) the exact tree-level boundedness from below constraints on these couplings, valid for all directions. When combined, these constraints delineate precisely the theoretically allowed parameter space domain within our perturbative approximation. Among the seven physical Higgs states of this model, the mass of the lighter (heavier) CP even state h 0 (H 0 ) will always satisfy a theoretical upper (lower) bound that is reached for a critical value μ c of μ (the mass parameter controlling triple couplings among the doublet/triplet Higgses). Saturating the unitarity bounds, we find an upper bound m h 0 or approx. μ c and μ c . In the first regime the Higgs sector is typically very heavy, and only h 0 that becomes SM-like could be accessible to the LHC. In contrast, in the second regime, somewhat overlooked in the literature, most of the Higgs sector is light. In particular, the heaviest state H 0 becomes SM-like, the lighter states being the CP odd Higgs, the (doubly) charged Higgses, and a decoupled h 0 , possibly leading to a distinctive phenomenology at the colliders.

  9. Recent developments in HiggsBounds and a preview of HiggsSignals

    Energy Technology Data Exchange (ETDEWEB)

    Bechtle, Philip; Stefaniak, Tim; Williams, Karina [Bonn Univ. (Germany). Physikalisches Inst.; Heinemeyer, Sven [Instituto de Fisica de Cantabria (CSIC-UC), Santander (Spain); Staal, Oscar [Stockholm Univ. (Sweden). Dept. of Physics; Weiglein, Georg [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Brein, Oliver

    2013-01-15

    We report on recent developments in the public computer code HiggsBounds, which confronts arbitrary Higgs sector predictions with 95% C.L. exclusion limits from Higgs searches at the LEP, Tevatron and LHC experiments. We discuss in detail the performance of the Standard Model (SM) likeness test as implemented in the latest version HiggsBounds-3.8.0, whose outcome decides whether a search for a SM Higgs boson can be applied to a model beyond the SM. Furthermore, we give a preview of features in the upcoming version HiggsBounds-4.0.0 and the new program HiggsSignals, which performs a {chi}{sup 2} test of Higgs sector predictions against the signal rate and mass measurements from Higgs boson analyses at the Tevatron and LHC. This is illustrated with an example where the heavier CP-even Higgs boson of the Minimal Supersymmetric Standard Model (MSSM) is considered as an explanation of the LHC Higgs signal at {approx_equal} 126 GeV.

  10. B-meson anomalies and Higgs physics in flavored U(1)' model

    Science.gov (United States)

    Bian, Ligong; Lee, Hyun Min; Park, Chan Beom

    2018-04-01

    We consider a simple extension of the Standard Model with flavor-dependent U(1)', that has been proposed to explain some of B-meson anomalies recently reported at LHCb. The U(1)' charge is chosen as a linear combination of anomaly-free B_3-L_3 and L_μ -L_τ . In this model, the flavor structure in the SM is restricted due to flavor-dependent U(1)' charges, in particular, quark mixings are induced by a small vacuum expectation value of the extra Higgs doublet. As a result, it is natural to get sizable flavor-violating Yukawa couplings of heavy Higgs bosons involving the bottom quark. In this article, we focus on the phenomenology of the Higgs sector of the model including extra Higgs doublet and singlet scalars. We impose various bounds on the extended Higgs sector from Higgs and electroweak precision data, B-meson mixings and decays as well as unitarity and stability bounds, then discuss the productions and decays of heavy Higgs bosons at the LHC.

  11. Precise predictions within the two-Higgs-doublet model

    International Nuclear Information System (INIS)

    Altenkamp, Lukas

    2017-01-01

    We consider the Two-Higgs-Doublet Model (THDM) where the Standard Model (SM) field content is extended by adding a further Higgs-boson doublet. This results in five Higgs bosons, two CP-even, one CP-odd and a charged Higgs boson and it's anti-particle. In order to provide accurate and reliable predictions within this model, next-to-leading order calculations are necessary. To this end, we perform a renormalization procedure and adopt four new renormalization schemes. The counterterm Feynman rules as well as the renormalization conditions are implemented into an FeynArts model file, yielding the possibility to generate amplitudes and squared matrix elements for arbitrary processes which is a major contribution to the automation of higher-order calculations. As an application we investigate the decay of a light, CP-even, SM-like Higgs boson into four fermions in the THDM. To this end, we extend the program Prophecy4f and compute the partial decay widths for different benchmark scenarios. For all investigated scenarios, we observe that the THDM widths are bounded by the SM widths and that the deviations are larger at higher order. The renormalization group equations have been solved in order to investigate the renormalization scale dependence which gives an estimate of the theoretical uncertainty arising due to the truncation of the perturbation series. By comparing the results of different renormalization schemes we determine for which parameter regions each scheme provides reliable predictions.

  12. Precise predictions within the two-Higgs-doublet model

    Energy Technology Data Exchange (ETDEWEB)

    Altenkamp, Lukas

    2017-02-21

    We consider the Two-Higgs-Doublet Model (THDM) where the Standard Model (SM) field content is extended by adding a further Higgs-boson doublet. This results in five Higgs bosons, two CP-even, one CP-odd and a charged Higgs boson and it's anti-particle. In order to provide accurate and reliable predictions within this model, next-to-leading order calculations are necessary. To this end, we perform a renormalization procedure and adopt four new renormalization schemes. The counterterm Feynman rules as well as the renormalization conditions are implemented into an FeynArts model file, yielding the possibility to generate amplitudes and squared matrix elements for arbitrary processes which is a major contribution to the automation of higher-order calculations. As an application we investigate the decay of a light, CP-even, SM-like Higgs boson into four fermions in the THDM. To this end, we extend the program Prophecy4f and compute the partial decay widths for different benchmark scenarios. For all investigated scenarios, we observe that the THDM widths are bounded by the SM widths and that the deviations are larger at higher order. The renormalization group equations have been solved in order to investigate the renormalization scale dependence which gives an estimate of the theoretical uncertainty arising due to the truncation of the perturbation series. By comparing the results of different renormalization schemes we determine for which parameter regions each scheme provides reliable predictions.

  13. ATLAS discovery potential of the Standard Model Higgs boson

    CERN Document Server

    Weiser, C; The ATLAS collaboration

    2009-01-01

    The Standard Model of elementary particles is remarkably succesful in describing experimental data. The Higgs mechanism as the origin of electroweak symmetry breaking and mass generation, however, has not yet been confirmed experimentally. The search for the Higgs boson is thus one of the most important tasks of the ATLAS experiment at the Large Hadron Collider (LHC). This talk will present an overview of the potential of the ATLAS detector for the discovery of the Standard Model Higgs boson. Different production processes and decay channels -to cover a wide mass range- will be discussed.

  14. ATLAS Discovery Potential of the Standard Model Higgs Boson

    CERN Document Server

    Weiser, C; The ATLAS collaboration

    2010-01-01

    The Standard Model of elementary particles is remarkably succesful in describing experimental data. The Higgs mechanism as the origin of electroweak symmetry breaking and mass generation, however, has not yet been confirmed experimentally. The search for the Higgs boson is thus one of the most important tasks of the ATLAS experiment at the Large Hadron Collider (LHC). This talk will present an overview of the potential of the ATLAS detector for the discovery of the Standard Model Higgs boson. Different production processes and decay channels -to cover a wide mass range- will be discussed.

  15. Higgs particles in the standard model and supersymmetric theories

    International Nuclear Information System (INIS)

    Muehlleitner, M.M.

    2000-08-01

    This thesis presents a theoretical analysis of the properties of the Higgs bosons in the standard model (SM) and the minimal supersymmetric extension (MSSM), which can be investigated at the LHC and e + e - linear colliders. The final goal is the reconstruction of the Higgs potential and thus the verification of the Higgs mechanism. MSSM Higgs boson production processes at future γγ colliders are calculated in several decay channels. Heavy scalar and pseudoscalar Higgs bosons can be discovered in the bb final state in the investigated mass range 200 to 800 GeV for moderate and large values of tanβ. The τ + τ - channel provides a heavy Higgs boson discovery potential for large values of tanβ. Several mechanisms that can be exploited at e + e - linear colliders for the measurement of the lifetime of a SM Higgs boson in the intermediate mass range are analysed. In the WW mode, the lifetime of Higgs scalars with masses below ∝160 GeV can be determined with an error less than 10%. The reconstruction of the Higgs potential requires the measurement of the Higgs self-couplings. The SM and MSSM trilinear Higgs self-couplings are accessible in double and triple Higgs production. A theoretical analysis is presented in the relevant channels at the LHC and e + e - linear colliders. For high luminosities, the SM trilinear Higgs self-coupling can be measured with an accuracy of 20% at a 500 GeV e + e - linear collider. The MSSM coupling among three light Higgs bosons has to be extracted from continuum production. The other trilinear Higgs couplings are measurable in a restricted range of the MSSM parameter space. At the LHC, the Hhh coupling can be probed in resonant decays. (orig.)

  16. Higgs bosons and sleptons in an alternative left-right model

    International Nuclear Information System (INIS)

    Roszkowski, L.

    1990-01-01

    The phenomenological structure of the combined Higgs-boson--slepton sector of the alternative left-right-supersymmetric model introduced by Ma is explored. Constraints upon and relations between Higgs-boson and slepton masses are derived and a tightly constrained mass spectrum is found. In general, one neutral Higgs boson is never heavier than 98 GeV, one neutral Higgs boson is always nearly degenerate in mass with the extra neutral gauge boson Z 2 0 , and the charged Higgs boson can in principle be as light as 22 GeV. Further constraints require large ratios of Higgs vacuum expectation values, strongly favor the W R mass above ∼423 GeV, predict one Higgs-boson mass to be always very close to 98 GeV, and masses of the other Higgs bosons and the sleptons to be bounded from above and preferably not much above the Z mass. In addition, the possibility of detecting light Higgs bosons at CERN LEP and the SLAC Linear Collider is briefly discussed

  17. Conformal field theory construction for non-Abelian hierarchy wave functions

    Science.gov (United States)

    Tournois, Yoran; Hermanns, Maria

    2017-12-01

    The fractional quantum Hall effect is the paradigmatic example of topologically ordered phases. One of its most fascinating aspects is the large variety of different topological orders that may be realized, in particular non-Abelian ones. Here we analyze a class of non-Abelian fractional quantum Hall model states which are generalizations of the Abelian Haldane-Halperin hierarchy. We derive their topological properties and show that the quasiparticles obey non-Abelian fusion rules of type su (q)k . For a subset of these states we are able to derive the conformal field theory description that makes the topological properties—in particular braiding—of the state manifest. The model states we study provide explicit wave functions for a large variety of interesting topological orders, which may be relevant for certain fractional quantum Hall states observed in the first excited Landau level.

  18. Minkowski space structure of the Higgs potential in the two-Higgs-doublet model. II. Minima, symmetries, and topology

    International Nuclear Information System (INIS)

    Ivanov, I. P.

    2008-01-01

    We continue to explore the consequences of the recently discovered Minkowski space structure of the Higgs potential in the two-Higgs-doublet model. Here, we focus on the vacuum properties. The search for extrema of the Higgs potential is reformulated in terms of 3-quadrics in the 3+1-dimensional Minkowski space. We prove that 2HDM cannot have more than two local minima in the orbit space and that a twice-degenerate minimum can arise only via spontaneous violation of a discrete symmetry of the Higgs potential. Investigating topology of the 3-quadrics, we give concise criteria for existence of noncontractible paths in the Higgs orbit space. We also study explicit symmetries of the Higgs potential/Lagrangian and their spontaneous violation from a wider perspective than usual

  19. Electroweak symmetry breaking in supersymmetric gauge-Higgs unification models

    International Nuclear Information System (INIS)

    Choi, Kiwoon; Jeong, Kwang-Sik; Okumura, Ken-ichi; Haba, Naoyuki; Shimizu, Yasuhiro; Yamaguchi, Masahiro

    2004-01-01

    We examine the Higgs mass parameters and electroweak symmetry breaking in supersymmetric orbifold field theories in which the 4-dimensional Higgs fields originate from higher-dimensional gauge supermultiplets. It is noted that such gauge-Higgs unification leads to a specific boundary condition on the Higgs mass parameters at the compactification scale, which is independent of the details of supersymmetry breaking mechanism. With this boundary condition, phenomenologically viable parameter space of the model is severely constrained by the condition of electroweak symmetry breaking for supersymmetry breaking scenarios which can be realized naturally in orbifold field theories. For instance, if it is assumed that the 4-dimensional effective theory is the minimal supersymmetric standard model with supersymmetry breaking parameters induced by the Scherk-Schwarz mechanism, a correct electroweak symmetry breaking can not be achieved for reasonable range of parameters of the model, even when one includes additional contributions to the Higgs mass parameters from the auxiliary component of 4-dimensional conformal compensator. However if there exists a supersymmetry breaking mediated by brane superfields, sizable portion of the parameter space can give a correct electroweak symmetry breaking. (author)

  20. Effective potential in ultraviolet completions for composite Higgs models

    Science.gov (United States)

    Golterman, Maarten; Shamir, Yigal

    2018-05-01

    We consider a class of composite Higgs models based on asymptotically free S O (d ) gauge theories with d odd, with fermions in two irreducible representations, and in which the Higgs field arises as a pseudo-Nambu-Goldstone boson and the top quark is partially composite. The Nambu-Goldstone coset containing the Higgs field, or Higgs coset, is either S U (4 )/S p (4 ) or S U (5 )/S O (5 ), whereas the top partners live in two-index representations of the relevant flavor group [S U (4 ) or S U (5 )]. In both cases, there is a large number of terms in the most general four-fermion Lagrangian describing the interaction of third-generation quarks with the top partners. We derive the top-induced effective potential for the Higgs coset together with the singlet pseudo-Nambu-Goldstone boson associated with the non-anomalous axial symmetry, to leading order in the couplings between the third-generation quarks and the composite sector. We obtain expressions for the low-energy constants in terms of top-partner two-point functions. We revisit the effective potential of another composite Higgs model that we have studied previously, which is based on an S U (4 ) gauge theory and provides a different realization of the S U (5 )/S O (5 ) coset. The top partners of this model live in the fundamental representation of S U (5 ), and, as a result, the effective potential of this model is qualitatively different from the S O (d ) gauge theories. We also discuss the role of the isospin-triplet fields contained in the S U (5 )/S O (5 ) coset, and show that, without further constraints on the four-fermion couplings, an expectation value for the Higgs field will trigger the subsequent condensation of an isospin-triplet field.

  1. Abelian projection at the multi-instanton

    International Nuclear Information System (INIS)

    Fukushima, M.

    2001-01-01

    We study full non-Abelian, Abelian projected lattice field configurations built up from random instanton gas configurations in the continuum. We study the instanton contribution to the Q-barQ force with respect to whether various versions of Abelian dominance hold. We show that the lattice used to discretize the instanton gas configurations has to be sufficiently coarse (a ≅ 2ρ-bar compared with the instanton size ρ-bar) such that maximal Abelian gauge projection as well as the monopole gas contribution to the Q-barQ force reproduce the non-Abelian instanton-mediated force in the intermediate range of linear quasi-confinement. (author)

  2. Derivative interactions and perturbative UV contributions in N Higgs doublet models

    Energy Technology Data Exchange (ETDEWEB)

    Kikuta, Yohei [KEK Theory Center, KEK, Tsukuba (Japan); The Graduate University for Advanced Studies, Department of Particle and Nuclear Physics, Tsukuba (Japan); Yamamoto, Yasuhiro [Universidad de Granada, Deportamento de Fisica Teorica y del Cosmos, Facultad de Ciencias and CAFPE, Granada (Spain)

    2016-05-15

    We study the Higgs derivative interactions on models including arbitrary number of the Higgs doublets. These interactions are generated by two ways. One is higher order corrections of composite Higgs models, and the other is integration of heavy scalars and vectors. In the latter case, three point couplings between the Higgs doublets and these heavy states are the sources of the derivative interactions. Their representations are constrained to couple with the doublets. We explicitly calculate all derivative interactions generated by integrating out. Their degrees of freedom and conditions to impose the custodial symmetry are discussed. We also study the vector boson scattering processes with a couple of two Higgs doublet models to see experimental signals of the derivative interactions. They are differently affected by each heavy field. (orig.)

  3. Multi-Higgs doublet models: physical parametrization, sum rules and unitarity bounds

    Science.gov (United States)

    Bento, Miguel P.; Haber, Howard E.; Romão, J. C.; Silva, João P.

    2017-11-01

    If the scalar sector of the Standard Model is non-minimal, one might expect multiple generations of the hypercharge-1/2 scalar doublet analogous to the generational structure of the fermions. In this work, we examine the structure of a Higgs sector consisting of N Higgs doublets (where N ≥ 2). It is particularly convenient to work in the so-called charged Higgs basis, in which the neutral Higgs vacuum expectation value resides entirely in the first Higgs doublet, and the charged components of remaining N - 1 Higgs doublets are mass-eigenstate fields. We elucidate the interactions of the gauge bosons with the physical Higgs scalars and the Goldstone bosons and show that they are determined by an N × 2 N matrix. This matrix depends on ( N - 1)(2 N - 1) real parameters that are associated with the mixing of the neutral Higgs fields in the charged Higgs basis. Among these parameters, N - 1 are unphysical (and can be removed by rephasing the physical charged Higgs fields), and the remaining 2( N - 1)2 parameters are physical. We also demonstrate a particularly simple form for the cubic interaction and some of the quartic interactions of the Goldstone bosons with the physical Higgs scalars. These results are applied in the derivation of Higgs coupling sum rules and tree-level unitarity bounds that restrict the size of the quartic scalar couplings. In particular, new applications to three Higgs doublet models with an order-4 CP symmetry and with a Z_3 symmetry, respectively, are presented.

  4. Atomic quantum simulation of the lattice gauge-Higgs model: Higgs couplings and emergence of exact local gauge symmetry.

    Science.gov (United States)

    Kasamatsu, Kenichi; Ichinose, Ikuo; Matsui, Tetsuo

    2013-09-13

    Recently, the possibility of quantum simulation of dynamical gauge fields was pointed out by using a system of cold atoms trapped on each link in an optical lattice. However, to implement exact local gauge invariance, fine-tuning the interaction parameters among atoms is necessary. In the present Letter, we study the effect of violation of the U(1) local gauge invariance by relaxing the fine-tuning of the parameters and showing that a wide variety of cold atoms is still a faithful quantum simulator for a U(1) gauge-Higgs model containing a Higgs field sitting on sites. The clarification of the dynamics of this gauge-Higgs model sheds some light upon various unsolved problems, including the inflation process of the early Universe. We study the phase structure of this model by Monte Carlo simulation and also discuss the atomic characteristics of the Higgs phase in each simulator.

  5. Model-independent determination of the triple Higgs coupling at e+e- colliders

    Science.gov (United States)

    Barklow, Tim; Fujii, Keisuke; Jung, Sunghoon; Peskin, Michael E.; Tian, Junping

    2018-03-01

    The observation of Higgs pair production at high-energy colliders can give evidence for the presence of a triple Higgs coupling. However, the actual determination of the value of this coupling is more difficult. In the context of general models for new physics, double Higgs production processes can receive contributions from many possible beyond-Standard-Model effects. This dependence must be understood if one is to make a definite statement about the deviation of the Higgs field potential from the Standard Model. In this paper, we study the extraction of the triple Higgs coupling from the process e+e-→Z h h . We show that, by combining the measurement of this process with other measurements available at a 500 GeV e+e- collider, it is possible to quote model-independent limits on the effective field theory parameter c6 that parametrizes modifications of the Higgs potential. We present precise error estimates based on the anticipated International Linear Collider physics program, studied with full simulation. Our analysis also gives new insight into the model-independent extraction of the Higgs boson coupling constants and total width from e+e- data.

  6. Classification of three-family grand unification in string theory. II. The SU(5) and SU(6) models

    International Nuclear Information System (INIS)

    Kakushadze, Z.; Tye, S.H.

    1997-01-01

    Requiring that supersymmetric SU(5) and SU(6) grand unifications in the heterotic string theory must have three chiral families, adjoint (or higher representation) Higgs fields in the grand unified gauge group, and a non-Abelian hidden sector, we construct such string models within the framework of free conformal field theory and asymmetric orbifolds. Within this framework, we construct all such string models via Z 6 asymmetric orbifolds that include a Z 3 outerautomorphism, the latter yielding a level-three current algebra for the grand unification gauge group SU(5) or SU(6). We then classify all such Z 6 asymmetric orbifolds that result in models with a non-Abelian hidden sector. All models classified in this paper have only one adjoint (but no other higher representation) Higgs field in the grand unified gauge group. This Higgs field is neutral under all other gauge symmetries. The list of hidden sectors for three-family SU(6) string models are SU(2), SU(3), and SU(2)circle-times SU(2). In addition to these, three-family SU(5) string models can also have an SU(4) hidden sector. Some of the models have an apparent anomalous U(1) gauge symmetry. copyright 1997 The American Physical Society

  7. Higgs boson resonance parameters and the finite temperature phase transition in a chirally invariant Higgs-Yukawa model

    Energy Technology Data Exchange (ETDEWEB)

    Bulava, John; Jansen, Karl [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Gerhold, Philip; Kallarackal, Jim; Nagy, Attila [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Humbolt-Univ. Berlin (Germany)

    2011-12-15

    We study a chirally invariant Higgs-Yukawa model regulated on a space-time lattice. We calculate Higgs boson resonance parameters and mass bounds for various values of the mass of the degenerate fermion doublet. Also, first results on the phase transition temperature are presented. In general, this model may be relevant for BSM scenarios with a heavy fourth generation of quarks. (orig.)

  8. Higgs potential and spinor connection within Weinberg-Salam model

    International Nuclear Information System (INIS)

    Trostel, R.

    1987-01-01

    We arrive at a theory of the Higgs potential by extending the usual concept of the covariant derivative containing the gauge fields to one which also contains the Higgs fields, by using a spinor connection compatible under local gauge transformations. Not only the Yukawa couplings are geometrized by this procedure but also the nonlinear Higgs potential naturally appears within the curvature of the corresponding spinor connection. Taking the gauge group to be SU(2) x U(1), we arrive for the leptonic Weinberg Salam model at a Weinberg angle prediction of sin 2 θ=1/4 and at a Higgs mass of about 263-270 GeV without using any supersymmetry argument. Taking the gauge group to be SU(3) C x SU(2) x U(1) the above leptonic result is obtained only if e 2 /g S 2 is sufficiently small, which is approximately true. Working with two independent Higgs doublets we arrive at a Higgs mass sum rule, where two Higgs must have a mass of about 188 GeV. (author)

  9. Studying Higgs pair production in the process γγ→H0H0 in the two-Higgs-doublet model

    International Nuclear Information System (INIS)

    La-Zhen, S.; Yao-Yang, L.

    1996-01-01

    In the two-Higgs-doublet model the complete nonstandard Higgs boson helicity amplitudes for the Higgs boson pair production process γγ→H 0 H 0 is calculated and explicit formulas for nonstandard Higgs boson contributions to the helicity amplitudes are given. It is shown that the cross section is in the range of 0.03 endash 30 pb at √s=1 TeV, for Higgs boson masses of 350 H 0 <490 GeV in monochromatic γγ collisions. The angular distribution for Higgs pair production is strongly peaked in the forward and backward directions. In particular the angular dependence for Higgs pair production is due to the nonstandard Higgs boson getting larger where the box diagrams constitute the dominant part of the differential cross section. For studying heavy Higgs pair production the use of circularly polarized photon beams with equal helicities is advantageous. copyright 1996 The American Physical Society

  10. Anomaly mediated supersymmetric models and Higgs data from the LHC

    CERN Document Server

    Arbey, A; Mahmoudi, F; Tarhini, A

    2013-01-01

    Anomaly mediation models are well motivated supersymmetry breaking scenarios which appear as alternatives to the mSUGRA paradigm. These models are quite compelling from the theoretical point of view and it is therefore important to test if they are also viable models for phenomenology. We perform a study of these models in the light of all standard flavour, collider and dark matter constraints, including also the recent Higgs boson measurements for the mass and signal strengths in the different decay channels. The minimal AMSB scenario can satisfy in part of its parameter space the dark matter requirement but is only marginally consistent with the current Higgs boson mass value. The HyperCharge-AMSB and Mixed Moduli-AMSB scenarios can better describe present data from dark matter, flavour, low energy physics and are consistent with the measured mass of the Higgs boson. The inclusion of the preferred signal strengths for the Higgs boson decay channels shows that for tan(beta) > 5 the HC-AMSB and MM-AMSB models...

  11. Higgs bosons in the two-doublet model with CP violation

    International Nuclear Information System (INIS)

    Akhmetzyanova, E.; Dolgopolov, M.; Dubinin, M.

    2005-01-01

    We consider the effective two-Higgs-doublet potential with complex parameters, when the CP invariance is broken both explicitly and spontaneously. The diagonal mass term in the local minimum of the potential is constructed for the physical basis of Higgs fields, keeping explicitly the limiting case of CP conservation, if the parameters are taken real. For the special case of the two-doublet Higgs sector of the minimal supersymmetric model, when CP invariance is violated by the Higgs bosons interaction with scalar quarks of the third generation, we calculate by means of the effective potential method the Higgs boson masses and evaluate the two-fermion Higgs boson decay widths and the widths of rare one-loop-mediated decays H→γγ, H→gg

  12. Search for the Standard Model Higgs Boson at LEP

    CERN Document Server

    Barate, R.; De Bonis, I.; Decamp, D.; Goy, C.; Jezequel, S.; Lees, J.P.; Martin, F.; Merle, E.; Minard, M.N.; Pietrzyk, B.; Trocme, B.; Boix, G.; Bravo, S.; Casado, M.P.; Chmeissani, M.; Crespo, J.M.; Fernandez, E.; Fernandez-Bosman, M.; Garrido, L.; Grauges, E.; Lopez, J.; Martinez, M.; Merino, G.; Miquel, R.; Mir, L.M.; Pacheco, A.; Paneque, D.; Ruiz, H.; Heister, A.; Schael, S.; Colaleo, A.; Creanza, D.; De Filippis, N.; de Palma, M.; Iaselli, G.; Maggi, G.; Maggi, M.; Nuzzo, S.; Ranieri, A.; Raso, G.; Ruggieri, F.; Selvaggi, G.; Silvestris, L.; Tempesta, P.; Tricomi, A.; Zito, G.; Huang, X.; Lin, J.; Quyang, Q.; Wang, T.; Xie, Y.; Xu, R.; Xue, S.; Zhang, J.; Zhang, L.; Zhao, W.; Abbaneo, D.; Azzurri, P.; Barklow, T.; Buchmuller, O.; Cattaneo, M.; Cerutti, F.; Clerbaux, B.; Drevermann, H.; Forty, R.W.; Frank, M.; Gianotti, F.; Greening, T.C.; Hansen, J.B.; Harvey, J.; Hutchcroft, D.E.; Janot, P.; Jost, B.; Kado, M.; Maley, P.; Mato, P.; Moutoussi, A.; Ranjard, F.; Rolandi, Gigi; Schlatter, D.; Sguazzoni, G.; Tejessy, W.; Teubert, F.; Valassi, A.; Videau, I.; Ward, J.J.; Badaud, F.; Dessagne, S.; Falvard, A.; Fayolle, D.; Gay, P.; Jousset, J.; Michel, B.; Monteil, S.; Pallin, D.; Pascolo, J.M.; Perret, P.; Hansen, J.D.; Hansen, J.R.; Hansen, P.H.; Nilsson, B.S.; Waananen, A.; Kyriakis, A.; Markou, C.; Simopoulou, E.; Vayaki, A.; Zachariadou, K.; Blondel, A.; Brient, J.C.; Machefert, F.; Rouge, A.; Swynghedauw, M.; Tanaka, R.; Videau, H.; Ciulli, V.; Focardi, E.; Parrini, G.; Antonelli, A.; Antonelli, M.; Bencivenni, G.; Bologna, G.; Bossi, F.; Campana, P.; Capon, G.; Chiarella, V.; Laurelli, P.; Mannocchi, G.; Murtas, F.; Murtas, G.P.; Passalacqua, L.; Pepe-Altarelli, M.; Spagnolo, P.; Kennedy, J.; Lynch, J.G.; Negus, P.; O'Shea, V.; Smith, D.; Thompson, A.S.; Wasserbaech, S.; Cavanaugh, R.; Dhamotharan, S.; Geweniger, C.; Hanke, P.; Hepp, V.; Kluge, E.E.; Leibenguth, G.; Putzer, A.; Stenzel, H.; Tittel, K.; Werner, S.; Wunsch, M.; Beuselinck, R.; Binnie, D.M.; Cameron, W.; Davies, G.; Dornan, P.J.; Girone, M.; Hill, R.D.; Marinelli, N.; Nowell, J.; Przysiezniak, H.; Rutherford, S.A.; Sedgbeer, J.K.; Thompson, J.C.; White, R.; Ghete, V.M.; Girtler, P.; Kneringer, E.; Kuhn, D.; Rudolph, G.; Bouhova-Thacker, E.; Bowdery, C.K.; Clarke, D.P.; Ellis, G.; Finch, A.J.; Foster, F.; Hughes, G.; Jones, R.W.L.; Pearson, M.R.; Robertson, N.A.; Smizanska, M.; Lemaitre, V.; Blumenschein, U.; Holldorfer, F.; Jakobs, K.; Kayser, F.; Kleinknecht, K.; Muller, A.S.; Quast, G.; Renk, B.; Sander, H.G.; Schmeling, S.; Wachsmuth, H.; Zeitnitz, C.; Ziegler, T.; Bonissent, A.; Carr, J.; Coyle, P.; Curtil, C.; Ealet, A.; Fouchez, D.; Leroy, O.; Kachelhoffer, T.; Payre, P.; Rousseau, D.; Tilquin, A.; Ragusa, F.; David, A.; Dietl, H.; Ganis, G.; Huttmann, K.; Lutjens, G.; Mannert, C.; Manner, W.; Moser, H.G.; Settles, R.; Wolf, G.; Boucrot, J.; Callot, O.; Davier, M.; Duflot, L.; Grivaz, J.F.; Heusse, P.; Jacholkowska, A.; Loomis, C.; Serin, L.; Veillet, J.J.; de Vivie de Regie, J.B.; Yuan, C.; Bagliesi, Giuseppe; Boccali, T.; Foa, L.; Giammanco, A.; Giassi, A.; Ligabue, F.; Messineo, A.; Palla, F.; Sanguinetti, G.; Sciaba, A.; Tenchini, R.; Venturi, A.; Verdini, P.G.; Awunor, O.; Blair, G.A.; Coles, J.; Cowan, G.; Garcia-Bellido, A.; Green, M.G.; Jones, L.T.; Medcalf, T.; Misiejuk, A.; Strong, J.A.; Teixeira-Dias, P.; Clifft, R.W.; Edgecock, T.R.; Norton, P.R.; Tomalin, I.R.; Bloch-Devaux, Brigitte; Boumediene, D.; Colas, P.; Fabbro, B.; Lancon, E.; Lemaire, M.C.; Locci, E.; Perez, P.; Rander, J.; Renardy, J.F.; Rosowsky, A.; Seager, P.; Trabelsi, A.; Tuchming, B.; Vallage, B.; Konstantinidis, N.; Litke, A.M.; Taylor, G.; Booth, C.N.; Cartwright, S.; Combley, F.; Hodgson, P.N.; Lehto, M.; Thompson, L.F.; Affholderbach, K.; Boehrer, Armin; Brandt, S.; Grupen, C.; Hess, J.; Ngac, A.; Prange, G.; Sieler, U.; Borean, C.; Giannini, G.; He, H.; Putz, J.; Rothberg, J.; Armstrong, S.R.; Berkelman, Karl; Cranmer, K.; Ferguson, D.P.S.; Gao, Y.; Gonzalez, S.; Hayes, O.J.; Hu, H.; Jin, S.; Kile, J.; McNamara, P.A., III; Nielsen, J.; Pan, Y.B.; von Wimmersperg-Toeller, J.H.; Wiedenmann, W.; Wu, J.; Wu, S.L.; Wu, X.; Zobernig, G.; Dissertori, G.; Abdallah, J.; Abreu, P.; Adam, W.; Adzic, P.; Albrecht, T.; Alderweireld, T.; Alemany-Fernandez, R.; Allmendinger, T.; Allport, P.P.; Amaldi, U.; Amapane, N.; Amato, S.; Anashkin, E.; Andreazza, A.; Andringa, S.; Anjos, N.; Antilogus, P.; Apel, W.D.; Arnoud, Y.; Ask, S.; Asman, B.; Augustin, J.E.; Augustinus, A.; Baillon, P.; Ballestrero, A.; Bambade, P.; Barbier, R.; Bardin, D.; Barker, G.J.; Baroncelli, A.; Battaglia, M.; Baubillier, M.; Becks, K.H.; Begalli, M.; Behrmann, A.; Ben-Haim, E.; Benekos, N.; Benvenuti, A.; Berat, C.; Berggren, M.; Berntzon, L.; Bertrand, D.; Besancon, M.; Besson, N.; Bloch, D.; Blom, M.; Bluj, M.; Bonesini, M.; Boonekamp, M.; Booth, P.S.L.; Borisov, G.; Botner, O.; Bouquet, B.; Bowcock, T.J.V.; Boyko, I.; Bracko, M.; Brenner, R.; Brodet, E.; Bruckman, P.; Brunet, J.M.; Bugge, L.; Buschmann, P.; Calvi, M.; Camporesi, T.; Canale, V.; Carena, F.; Castro, Nuno Filipe; Cavallo, F.; Chapkin, M.; Charpentier, P.; Checchia, P.; Chierici, R.; Chliapnikov, P.; Chudoba, J.; Chung, S.U.; Cieslik, K.; Collins, P.; Contri, R.; Cosme, G.; Cossutti, F.; Costa, M.J.; Crawley, B.; Crennell, D.; Cuevas, J.; DHondt, J.; Dalmau, J.; da Silva, T.; Da Silva, W.; Della Ricca, G.; De Angelis, A.; De Boer, W.; De Clercq, C.; De Lotto, B.; De Maria, N.; De Min, A.; de Paula, L.; Di Ciaccio, L.; Di Simone, A.; Doroba, K.; Drees, J.; Dris, M.; Eigen, G.; Ekelof, T.; Ellert, M.; Elsing, M.; Espirito Santo, M.C.; Fanourakis, G.; Fassouliotis, D.; Feindt, M.; Fernandez, J.; Ferrer, A.; Ferro, F.; Flagmeyer, U.; Foeth, H.; Fokitis, E.; Fulda-Quenzer, F.; Fuster, J.; Gandelman, M.; Garcia, C.; Gavillet, P.; Gazis, Evangelos; Gokieli, R.; Golob, B.; Gomez-Ceballos, G.; Goncalves, P.; Graziani, E.; Grosdidier, G.; Grzelak, K.; Guy, J.; Haag, C.; Hallgren, A.; Hamacher, K.; Hamilton, K.; Hansen, J.; Haug, S.; Hauler, F.; Hedberg, V.; Hennecke, M.; Herr, H.; Hoffman, J.; Holmgren, S.O.; Holt, P.J.; Houlden, M.A.; Hultqvist, K.; Jackson, John Neil; Jarlskog, G.; Jarry, P.; Jeans, D.; Johansson, Erik Karl; Johansson, P.D.; Jonsson, P.; Joram, C.; Jungermann, L.; Kapusta, Frederic; Katsanevas, S.; Katsoufis, E.; Kernel, G.; Kersevan, B.P.; Kiiskinen, A.; King, B.T.; Kjaer, N.J.; Kluit, P.; Kokkinias, P.; Kourkoumelis, C.; Kouznetsov, O.; Krumstein, Z.; Kucharczyk, M.; Lamsa, J.; Leder, G.; Ledroit, Fabienne; Leinonen, L.; Leitner, R.; Lemonne, J.; Lepeltier, V.; Lesiak, T.; Liebig, W.; Liko, D.; Lipniacka, A.; Lopes, J.H.; Lopez, J.M.; Loukas, D.; Lutz, P.; Lyons, L.; MacNaughton, J.; Malek, A.; Maltezos, S.; Mandl, F.; Marco, J.; Marco, R.; Marechal, B.; Margoni, M.; Marin, J.C.; Mariotti, C.; Markou, A.; Martinez-Rivero, C.; Masik, J.; Mastroyiannopoulos, N.; Matorras, F.; Matteuzzi, C.; Mazzucato, F.; Mazzucato, M.; McNulty, R.; Meroni, C.; Meyer, W.T.; Migliore, E.; Mitaroff, W.; Mjoernmark, U.; Moa, T.; Moch, M.; Monig, Klaus; Monge, R.; Montenegro, J.; Moraes, D.; Moreno, S.; Morettini, P.; Mueller, U.; Muenich, K.; Mulders, M.; Mundim, L.; Murray, W.; Muryn, B.; Myatt, G.; Myklebust, T.; Nassiakou, M.; Navarria, F.; Nawrocki, K.; Nicolaidou, R.; Nikolenko, M.; Oblakowska-Mucha, A.; Obraztsov, V.; Olshevski, A.; Onofre, A.; Orava, R.; Osterberg, K.; Ouraou, A.; Oyanguren, A.; Paganoni, M.; Paiano, S.; Palacios, J.P.; Palka, H.; Papadopoulou, T.D.; Pape, L.; Parkes, C.; Parodi, F.; Parzefall, U.; Passeri, A.; Passon, O.; Peralta, L.; Perepelitsa, V.; Perrotta, A.; Petrolini, A.; Piedra, J.; Pieri, L.; Pierre, F.; Pimenta, M.; Piotto, E.; Podobnik, T.; Poireau, V.; Pol, M.E.; Polok, G.; Poropat, P.; Pozdniakov, V.; Pukhaeva, N.; Pullia, A.; Rames, J.; Ramler, L.; Read, Alexander L.; Rebecchi, P.; Rehn, J.; Reid, D.; Reinhardt, R.; Renton, P.; Richard, F.; Ridky, J.; Rivero, M.; Rodriguez, D.; Romero, A.; Ronchese, P.; Rosenberg, E.; Roudeau, P.; Rovelli, T.; Ruhlmann-Kleider, V.; Ryabtchikov, D.; Sadovsky, A.; Salmi, L.; Salt, J.; Savoy-Navarro, A.; Schwickerath, U.; Segar, A.; Sekulin, R.; Siebel, M.; Sisakian, A.; Smadja, G.; Smirnova, O.; Sokolov, A.; Sopczak, A.; Sosnowski, R.; Spassov, T.; Stanitzki, M.; Stocchi, A.; Strauss, J.; Stugu, B.; Szczekowski, M.; Szeptycka, M.; Szumlak, T.; Tabarelli, T.; Taffard, A.C.; Tegenfeldt, F.; Timmermans, Jan; Tkatchev, L.; Tobin, M.; Todorovova, S.; Tome, B.; Tonazzo, A.; Tortosa, P.; Travnicek, P.; Treille, D.; Tristram, G.; Trochimczuk, M.; Troncon, C.; Turluer, M.L.; Tyapkin, I.A.; Tyapkin, P.; Tzamarias, S.; Uvarov, V.; Valenti, G.; Van Dam, Piet; Van Eldik, J.; Van Lysebetten, A.; Van Remortel, N.; Van Vulpen, I.; Vegni, G.; Veloso, F.; Venus, W.; Verbeure, F.; Verdier, P.; Verzi, V.; Vilanova, D.; Vitale, L.; Vrba, V.; Wahlen, H.; Washbrook, A.J.; Weiser, C.; Wicke, D.; Wickens, J.; Wilkinson, G.; Winter, M.; Witek, M.; Yushchenko, O.; Zalewska, A.; Zalewski, P.; Zavrtanik, D.; Zhuravlov, V.; Zimine, N.I.; Zintchenko, A.; Zupan, M.; Achard, P.; Adriani, O.; Aguilar-Benitez, M.; Alcaraz, J.; Alemanni, G.; Allaby, J.; Aloisio, A.; Alviggi, M.G.; Anderhub, H.; Andreev, Valery P.; Anselmo, F.; Arefiev, A.; Azemoon, T.; Aziz, T.; Baarmand, M.; Bagnaia, P.; Bajox, A.; Baksay, G.; Baksay, L.; Baldew, S.V.; Banerjee, S.; Barczyk, A.; Barillere, R.; Bartalini, P.; Basile, M.; Batalova, N.; Battiston, R.; Bay, A.; Becattini, F.; Becker, U.; Behner, F.; Bellucci, L.; Berbeco, R.; Berdugo, J.; Berges, P.; Bertucci, B.; Betev, B.L.; Biasini, M.; Biglietti, M.; Biland, A.; Blaising, J.J.; Blyth, S.C.; Bobbink, G.J.; Bohm, A.; Boldizsar, L.; Borgia, B.; Bourilkov, D.; Bourquin, M.; Braccini, S.; Branson, J.G.; Brochu, F.; Buijs, A.; Burger, J.D.; Burger, W.J.; Cai, X.D.; Capell, M.; Cara Romeo, G.; Carlino, G.; Cartacci, A.; Casau, J.; Cavallari, F.; Cavallo, N.; Cecchi, C.; Cerrada, M.; Chamizo, M.; Chang, Y.H.; Chemarin, M.; Chen, A.; Chen, G.; Chen, G.M.; Chen, H.F.; Chen, H.S.; Chiefari, G.; Cifarelli, L.; Cindolo, F.; Clare, I.; Clare, R.; Coignet, G.; Colino, N.; Costantini, S.; de la Cruz, B.; Cucciarelli, S.; Dai, T.S.; van Dalen, J.A.; de Asmundis, R.; Deglont, P.; Debreczeni, J.; Degre, A.; Deiters, K.; della Volpe, D.; Delmeire, E.; Denes, P.; De Notaristefani, F.; De Salvo, A.; Diemoz, M.; Dierckxsens, M.; van Dierendonck, D.; Dionisi, C.; Dittmar, M.; Doria, A.; Dova, M.T.; Duchesneau, D.; Duinker, P.; Echenard, B.; Eline, A.; El Mamouni, H.; Engler, A.; Eppling, F.J.; Ewers, A.; Extermann, P.; Falagan, M.A.; Falciano, S.; Favara, A.; Fay, J.; Fedin, O.; Felcini, M.; Ferguson, T.; Fesefeldt, H.; Fiandrini, E.; Field, J.H.; Filthaut, F.; Fisher, P.H.; Fisher, W.; Fisk, I.; Forconi, G.; Freudenreich, K.; Furetta, C.; Galaktionov, Iouri; Ganguli, S.N.; Garcia-Abia, Pablo; Gataullin, M.; Gentile, S.; Giagu, S.; Gong, Z.F.; Grenier, Gerald Jean; Grimm, O.; Gruenewald, M.W.; Guida, M.; van Gulik, R.; Gupta, V.K.; Gurtu, A.; Gutay, L.J.; Haas, D.; Hatzifotiadou, D.; Hebbeker, T.; Herve, Alain; Hirschfelder, J.; Hofer, H.; Holzner, G.; Hou, S.R.; Hu, Y.; Jin, B.N.; Jones, Lawrence W.; de Jong, P.; Josa-Mutuberria, I.; Kafer, D.; Kaur, M.; Kienzle-Focacci, M.N.; Kim, J.K.; Kirkby, Jasper; Kittel, W.; Klimentov, A.; Konig, A.C.; Kopal, M.; Koutsenko, V.; Kraber, M.; Kraemer, R.W.; Krenz, W.; Kruger, A.; Kunin, A.; Ladron de Guevara, P.; Laktineh, I.; Landi, G.; Lebeau, M.; Lebedev, A.; Lebrun, P.; Lecomte, P.; Lecoq, P.; Le Coultre, P.; Lee, H.J.; Le Goff, J.M.; Leiste, R.; Levtchenko, P.; Li, C.; Likhoded, S.; Lin, C.H.; Lin, W.T.; Linde, F.L.; Lista, L.; Liu, Z.A.; Lohmann, W.; Longo, E.; Lu, Y.S.; Lubelsmeyer, K.; Luci, C.; Luckey, David; Luminari, L.; Lustermann, W.; Ma, W.G.; Malgeri, L.; Malinin, A.; Mana, C.; Mangeol, D.; Mans, J.; Martin, J.P.; Marzano, F.; Mazumdar, K.; McNeil, R.R.; Mele, S.; Merola, L.; Meschini, M.; Metzger, W.J.; Mihul, A.; Milcent, H.; Mirabelli, G.; Mnich, J.; Mohanty, G.B.; Muanza, G.S.; Muijs, A.J.M.; Musicar, B.; Musy, M.; Nagy, S.; Napolitano, M.; Nessi-Tedaldi, F.; Newman, H.; Niessen, T.; Nisati, A.; Kluge, Hannelies; Ofierzynski, R.; Organtini, G.; Palomares, C.; Pandoulas, D.; Paolucci, P.; Paramatti, R.; Passaleva, G.; Patricelli, S.; Paul, Thomas Cantzon; Pauluzzi, M.; Paus, C.; Pauss, F.; Pedace, M.; Pensotti, S.; Perret-Gallix, D.; Petersen, B.; Piccolo, D.; Pierella, F.; Piroue, P.A.; Pistolesi, E.; Plyaskin, V.; Pohl, M.; Pojidaev, V.; Postema, H.; Pothier, J.; Prokofiev, D.O.; Prokofiev, D.; Quartieri, J.; Rahal-Callot, G.; Rahaman, Mohammad Azizur; Raics, P.; Raja, N.; Ramelli, R.; Rancoita, P.G.; Ranieri, R.; Raspereza, A.; Razis, P.; Ren, D.; Rescigno, M.; Reucroft, S.; Riemann, S.; Riles, Keith; Roe, B.P.; Romero, L.; Rosca, A.; Rosier-Lee, S.; Roth, Stefan; Rosenbleck, C.; Roux, B.; Rubio, J.A.; Ruggiero, G.; Rykaczewski, H.; Sakharov, A.; Saremi, S.; Sarkar, S.; Salicio, J.; Sanchez, E.; Sanders, M.P.; Schafer, C.; Schegelsky, V.; Schmidt-Kaerst, S.; Schmitz, D.; Schopper, H.; Schotanus, D.J.; Schwering, G.; Sciacca, C.; Servoli, L.; Shevchenko, S.; Shivarov, N.; Shoutko, V.; Shumilov, E.; Shvorob, A.; Siedenburg, T.; Son, D.; Spillantini, P.; Steuer, M.; Stickland, D.P.; Stoyanov, B.; Straessner, A.; Sudhakar, K.; Sultanov, G.; Sun, L.Z.; Sushkov, S.; Suter, H.; Swain, J.D.; Szillasi, Z.; Tang, X.W.; Tarjan, P.; Tauscher, L.; Taylor, L.; Tellili, B.; Teyssier, D.; Timmermans, Charles; Ting, Samuel C.C.; Ting, S.M.; Tonwar, S.C.; Toth, J.; Tully, C.; Tung, K.L.; Uchida, Y.; Ulbricht, J.; Valente, E.; Van de Walle, R.T.; Veszpremi, V.; Vesztergombi, G.; Vetlitsky, I.; Vicinanza, D.; Viertel, G.; Villa, S.; Vivargent, M.; Vlachos, S.; Vodopianov, I.; Vogel, H.; Vogt, H.; Vorobiev, I.; Vorobyov, A.A.; Wadhwa, M.; Wallraff, W.; Wang, M.; Wang, X.L.; Wang, Z.M.; Weber, M.; Wienemann, P.; Wilkens, H.; Wu, S.X.; Wynhoff, S.; Xia, L.; Xu, Z.Z.; Yamamoto, J.; Yang, B.Z.; Yang, C.G.; Yang, H.J.; Yang, M.; Yeh, S.C.; Zalite, A.; Zalite, Yu.; Zhang, Z.P.; Zhao, J.; Zhu, G.Y.; Zhu, R.Y.; Zhuang, H.L.; Zichichi, A.; Zilizi, G.; Zimmermann, B.; Zoller, M.; Abbiendi, G.; Ainsley, C.; Akesson, P.F.; Alexander, G.; Allison, John; Amaral, P.; Anagnostou, G.; Anderson, K.J.; Arcelli, S.; Asai, S.; Axen, D.; Azuelos, G.; Bailey, I.; Barberio, E.; Barlow, R.J.; Batley, R.J.; Bechtle, P.; Behnke, T.; Bell, Kenneth Watson; Bell, P.J.; Bella, G.; Bellerive, A.; Benelli, G.; Bethke, S.; Biebel, O.; Bloodworth, I.J.; Boeriu, O.; Bock, P.; Bonacorsi, D.; Boutemeur, M.; Braibant, S.; Brigliadori, L.; Brown, Robert M.; Buesser, K.; Burckhart, H.J.; Campana, S.; Carnegie, R.K.; Caron, B.; Carter, A.A.; Carter, J.R.; Chang, C.Y.; Charlton, David G.; Csilling, A.; Cuffiani, M.; Dado, S.; Dallavalle, G.Marco; Dallison, S.; De Roeck, A.; De Wolf, E.A.; Desch, K.; Dienes, B.; Donkers, M.; Dubbert, J.; Duchovni, E.; Duckeck, G.; Duerdoth, I.P.; Elfgren, E.; Etzion, E.; Fabbri, F.; Feld, L.; Ferrari, P.; Fiedler, F.; Fleck, I.; Ford, M.; Frey, A.; Furtjes, A.; Gagnon, P.; Gary, John William; Gaycken, G.; Geich-Gimbel, C.; Giacomelli, G.; Giacomelli, P.; Giunta, Marina; Goldberg, J.; Gross, E.; Grunhaus, J.; Gruwe, M.; Gunther, P.O.; Gupta, A.; Hajdu, C.; Hamann, M.; Hanson, G.G.; Harder, K.; Harel, A.; Harin-Dirac, M.; Hauschild, M.; Hauschildt, J.; Hawkes, C.M.; Hawkings, R.; Hemingway, R.J.; Hensel, C.; Herten, G.; Heuer, R.D.; Hill, J.C.; Hoffman, Kara Dion; Homer, R.J.; Horvath, D.; Howard, R.; Huntemeyer, P.; Igo-Kemenes, P.; Ishii, K.; Jeremie, H.; Jovanovic, P.; Junk, T.R.; Kanaya, N.; Kanzaki, J.; Karapetian, G.; Karlen, D.; Kartvelishvili, V.; Kawagoe, K.; Kawamoto, T.; Keeler, R.K.; Kellogg, R.G.; Kennedy, B.W.; Kim, D.H.; Klein, K.; Klier, A.; Kluth, S.; Kobayashi, T.; Kobel, M.; Komamiya, S.; Kormos, Laura L.; Kowalewski, Robert V.; Kramer, T.; Kress, T.; Krieger, P.; von Krogh, J.; Krop, D.; Kruger, K.; Kupper, M.; Lafferty, G.D.; Landsman, H.; Lanske, D.; Layter, J.G.; Leins, A.; Lellouch, D.; Letts, J.; Levinson, L.; Lillich, J.; Lloyd, S.L.; Loebinger, F.K.; Lu, J.; Ludwig, J.; Macpherson, A.; Mader, W.; Marcellini, S.; Marchant, T.E.; Martin, A.J.; Masetti, G.; Mashimo, T.; Mattig, Peter; McDonald, W.J.; McKenna, J.; McMahon, T.J.; McPherson, R.A.; Meijers, F.; Mendez-Lorenzo, P.; Menges, W.; Merritt, F.S.; Mes, H.; Michelini, A.; Mihara, S.; Mikenberg, G.; Miller, D.J.; Moed, S.; Mohr, W.; Mori, T.; Mutter, A.; Nagai, K.; Nakamura, I.; Neal, H.A.; Nisius, R.; ONeale, S.W.; Oh, A.; Okpara, A.; Oreglia, M.J.; Orito, S.; Pahl, C.; Pasztor, G.; Pater, J.R.; Patrick, G.N.; Pilcher, J.E.; Pinfold, J.; Plane, David E.; Poli, B.; Polok, J.; Pooth, O.; Przybycien, M.; Quadt, A.; Rabbertz, K.; Rembser, C.; Renkel, P.; Rick, H.; Roney, J.M.; Rosati, S.; Rozen, Y.; Runge, K.; Sachs, K.; Saeki, T.; Sahr, O.; Sarkisyan, E.K.G.; Schaile, A.D.; Schaile, O.; Scharff-Hansen, P.; Schieck, J.; Schoerner-Sadenius, Thomas; Schroder, Matthias; Schumacher, M.; Schwick, C.; Scott, W.G.; Seuster, R.; Shears, T.G.; Shen, B.C.; Shepherd-Themistocleous, C.H.; Sherwood, P.; Siroli, G.; Skuja, A.; Smith, A.M.; Sobie, R.; Soldner-Rembold, S.; Spagnolo, S.; Spano, F.; Stahl, A.; Stephens, K.; Strom, David M.; Strohmer, R.; Tarem, S.; Tasevsky, M.; Taylor, R.J.; Teuscher, R.; Thomson, M.A.; Torrence, E.; Toya, D.; Tran, P.; Trefzger, T.; Tricoli, A.; Trigger, I.; Trocsanyi, Z.; Tsur, E.; Turner-Watson, M.F.; Ueda, I.; Ujvari, B.; Vachon, B.; Vollmer, C.F.; Vannerem, P.; Verzocchi, M.; Voss, H.; Vossebeld, J.; Waller, D.; Ward, C.P.; Ward, D.R.; Watkins, P.M.; Watson, A.T.; Watson, N.K.; Wells, P.S.; Wengler, T.; Wermes, N.; Wetterling, D.; Wilson, G.W.; Wilson, J.A.; Wyatt, T.R.; Yamashita, S.; Zer-Zion, D.; Zivkovic, Lidija; Heinemeyer, S.; Weiglein, G.

    2003-01-01

    The four LEP collaborations, ALEPH, DELPHI, L3 and OPAL, have collected a total of 2461 pb-1 of e+e- collision data at centre-of-mass energies between 189 and 209 GeV. The data are used to search for the Standard Model Higgs boson. The search results of the four collaborations are combined and examined in a likelihood test for their consistency with two hypotheses: the background hypothesis and the signal plus background hypothesis. The corresponding confidences have been computed as functions of the hypothetical Higgs boson mass. A lower bound of 114.4 GeV/c2 is established, at the 95% confidence level, on the mass of the Standard Model Higgs boson. The LEP data are also used to set upper bounds on the HZZ coupling for various assumptions concerning the decay of the Higgs boson.

  13. Leptophilic neutral Higgs bosons in two Higgs doublet model at a linear collider

    Energy Technology Data Exchange (ETDEWEB)

    Hashemi, Majid [Shiraz University, Physics Department, College of Sciences, Shiraz (Iran, Islamic Republic of)

    2017-05-15

    This paper addresses the question of the observability of neutral Higgs bosons through the leptonic decay in a two Higgs doublet model (2HDM). Both scalar and pseudo-scalar Higgs bosons (H, A) are considered. The model is set to type IV to enhance the leptonic decay. In such a scenario, a signal production process like e{sup +}e{sup -} → A{sup 0}H{sup 0} → ττμμ or μμττ would provide a clear signal on top of the background in a di-muon invariant mass distribution far from the Z boson pole mass. The analysis is based on a τ-id algorithm which preselects events if they have two τ jets by requiring a hadronic τ decay. Several benchmark points are defined for the search, requiring a linear collider operating at √(s) = 0.5 and 1 TeV. It is shown that the signal can be observed on top of the background in all benchmark points at an integrated luminosity of 1000 fb{sup -1}. (orig.)

  14. Flavour Independent $h^{0}A^{0}$ Search and Two Higgs Doublet Model Interpretation of Neutral Higgs Boson Searches at LEP

    CERN Document Server

    Abbiendi, G.; Akesson, P.F.; Alexander, G.; Allison, John; Amaral, P.; Anagnostou, G.; Anderson, K.J.; Asai, S.; Axen, D.; Bailey, I.; Barberio, E.; Barillari, T.; Barlow, R.J.; Batley, R.J.; Bechtle, P.; Behnke, T.; Bell, Kenneth Watson; Bell, P.J.; Bella, G.; Bellerive, A.; Benelli, G.; Bethke, S.; Biebel, O.; Boeriu, O.; Bock, P.; Boutemeur, M.; Braibant, S.; Brown, Robert M.; Burckhart, H.J.; Campana, S.; Capiluppi, P.; Carnegie, R.K.; Carter, A.A.; Carter, J.R.; Chang, C.Y.; Charlton, D.G.; Ciocca, C.; Csilling, A.; Cuffiani, M.; Dado, S.; De Roeck, A.; De Wolf, E.A.; Desch, K.; Dienes, B.; Donkers, M.; Dubbert, J.; Duchovni, E.; Duckeck, G.; Duerdoth, I.P.; Etzion, E.; Fabbri, F.; Ferrari, P.; Fiedler, F.; Fleck, I.; Ford, M.; Frey, A.; Gagnon, P.; Gary, John William; Geich-Gimbel, C.; Giacomelli, G.; Giacomelli, P.; Giunta, Marina; Goldberg, J.; Gross, E.; Grunhaus, J.; Gruwe, M.; Gunther, P.O.; Gupta, A.; Hajdu, C.; Hamann, M.; Hanson, G.G.; Harel, A.; Hauschild, M.; Hawkes, C.M.; Hawkings, R.; Hemingway, R.J.; Herten, G.; Heuer, R.D.; Hill, J.C.; Hoffman, Kara Dion; Horvath, D.; Igo-Kemenes, P.; Ishii, K.; Jeremie, H.; Jovanovic, P.; Junk, T.R.; Kanzaki, J.; Karlen, D.; Kawagoe, K.; Kawamoto, T.; Keeler, R.K.; Kellogg, R.G.; Kennedy, B.W.; Kluth, S.; Kobayashi, T.; Kobel, M.; Komamiya, S.; Kramer, T.; Krieger, P.; von Krogh, J.; Kuhl, T.; Kupper, M.; Lafferty, G.D.; Landsman, H.; Lanske, D.; Lellouch, D.; Lettso, J.; Levinson, L.; Lillich, J.; Lloyd, S.L.; Loebinger, F.K.; Lu, J.; Ludwig, A.; Ludwig, J.; Mader, W.; Marcellini, S.; Martin, A.J.; Masetti, G.; Mashimo, T.; Mattig, Peter; McKenna, J.; McPherson, R.A.; Meijers, F.; Menges, W.; Merritt, F.S.; Mes, H.; Meyer, Niels T.; Michelini, A.; Mihara, S.; Mikenberg, G.; Miller, D.J.; Mohr, W.; Mori, T.; Mutter, A.; Nagai, K.; Nakamura, I.; Nanjo, H.; Neal, H.A.; Nisius, R.; O'Neale, S.W.; Oh, A.; Oreglia, M.J.; Orito, S.; Pahl, C.; Pasztor, G.; Pater, J.R.; Pilcher, J.E.; Pinfold, J.; Plane, David E.; Pooth, O.; Przybycien, M.; Quadt, A.; Rabbertz, K.; Rembser, C.; Renkel, P.; Roney, J.M.; Rossi, A.M.; Rozen, Y.; Runge, K.; Sachs, K.; Saeki, T.; Sarkisyan, E.K.G.; Schaile, A.D.; Schaile, O.; Scharff-Hansen, P.; Schieck, J.; Schorner-Sadenius, T.; Schroder, Matthias; Schumacher, M.; Seuster, R.; Shears, T.G.; Shen, B.C.; Sherwood, P.; Skuja, A.; Smith, A.M.; Sobie, R.; Soldner-Rembold, S.; Spano, F.; Stahl, A.; Strom, David M.; Strohmer, R.; Tarem, S.; Tasevsky, M.; Teuscher, R.; Thomson, M.A.; Torrence, E.; Toya, D.; Tran, P.; Trigger, I.; Trocsanyi, Z.; Tsur, E.; Turner-Watson, M.F.; Ueda, I.; Ujvari, B.; Vollmer, C.F.; Vannerem, P.; Vertesi, R.; Verzocchi, M.; Voss, H.; Vossebeld, J.; Ward, C.P.; Ward, D.R.; Watkins, P.M.; Watson, A.T.; Watson, N.K.; Wells, P.S.; Wengler, T.; Wermes, N.; Wilson, G.W.; Wilson, J.A.; Wolf, G.; Wyatt, T.R.; Yamashita, S.; Zer-Zion, D.; Zivkovic, Lidija

    2005-01-01

    Upper limits on the cross-section of the pair-production process e+e- -> h0A0 assuming 100% decays into hadrons, are derived from a new search for the h0A0 -> hadrons topology, independent of the hadronic flavour of the decay products. Searches for the neutral Higgs bosons h0 and A0, are used to obtain constraints on the Type II Two Higgs Doublet Model (2HDM(11)) with no CP violation in the Higgs sector and no additional non Standard Model particles besides the five Higgs bosons. The analysis combines LEP1 and LEP2 data collected with the OPAL detctor up to the highest available centre-of-mass energies. The searches are sensitive to the h0, A0 -> qq, gg,tau+tau- and h0 -> A0A0 decay modes of the Higgs bosons. The 2HDM(II) parameter space is explored in a detailed scan. Large regions of the 2HDM(II) parameter space are excluded at the 95% CL in the (mh, mA), (mh, tanb) and (mA, tanb) planes, using both direct neutral Higgs boson searches and indirect limits derived from Standard Model high precision measuremen...

  15. Electroweak Higgs production with HiggsPO at NLO QCD

    Science.gov (United States)

    Greljo, Admir; Isidori, Gino; Lindert, Jonas M.; Marzocca, David; Zhang, Hantian

    2017-12-01

    We present the HiggsPO UFO model for Monte Carlo event generation of electroweak VH and VBF Higgs production processes at NLO in QCD in the formalism of Higgs pseudo-observables (PO). We illustrate the use of this tool by studying the QCD corrections, matched to a parton shower, for several benchmark points in the Higgs PO parameter space. We find that, while being sizable and thus important to be considered in realistic experimental analyses, the QCD higher-order corrections largely factorize. As an additional finding, based on the NLO results, we advocate to consider 2D distributions of the two-jet azimuthal-angle difference and the leading jet p_T for new physics searches in VBF Higgs production. The HiggsPO UFO model is publicly available.

  16. Higgs phenomenology in the minimal S U (3 )L×U (1 )X model

    Science.gov (United States)

    Okada, Hiroshi; Okada, Nobuchika; Orikasa, Yuta; Yagyu, Kei

    2016-07-01

    We investigate the phenomenology of a model based on the S U (3 )c×S U (3 )L×U (1 )X gauge theory, the so-called 331 model. In particular, we focus on the Higgs sector of the model which is composed of three S U (3 )L triplet Higgs fields and is the minimal form for realizing a phenomenologically acceptable scenario. After the spontaneous symmetry breaking S U (3 )L×U (1 )X→S U (2 )L×U (1 )Y , our Higgs sector effectively becomes that with two S U (2 )L doublet scalar fields, in which the first- and the second-generation quarks couple to a different Higgs doublet from that which couples to the third-generation quarks. This structure causes the flavor-changing neutral current mediated by Higgs bosons at the tree level. By taking an alignment limit of the mass matrix for the C P -even Higgs bosons, which is naturally realized in the case with the breaking scale of S U (3 )L×U (1 )X much larger than that of S U (2 )L×U (1 )Y, we can avoid current constraints from flavor experiments such as the B0-B¯ 0 mixing even for the Higgs bosons masses that are O (100 ) GeV . In this allowed parameter space, we clarify that a characteristic deviation in quark Yukawa couplings of the Standard Model-like Higgs boson is predicted, which has a different pattern from that seen in two Higgs doublet models with a softly broken Z2 symmetry. We also find that the flavor-violating decay modes of the extra Higgs boson, e.g., H /A →t c and H±→t s , can be dominant, and they yield the important signature to distinguish our model from the two Higgs doublet models.

  17. Electroweak phase transition in two Higgs doublet models

    International Nuclear Information System (INIS)

    Cline, J.M.; Lemieux, P.

    1997-01-01

    We reexamine the strength of the first-order phase transition in the electroweak theory supplemented by an extra Higgs doublet. The finite-temperature effective potential V eff is computed to one-loop order, including the summation of ring diagrams, to study the ratio φ c /T c of the Higgs field VEV to the critical temperature. We make a number of improvements over previous treatments, including a consistent treatment of Goldstone bosons in V eff , an accurate analytic approximation to V eff valid for any mass-to-temperature ratios, and use of the experimentally measured top quark mass. For two-Higgs-doublet models, we identify a significant region of parameter space where φ c /T c is large enough for electroweak baryogenesis, and we argue that this identification should persist even at higher orders in perturbation theory. In the case of the minimal supersymmetric standard model, our results indicate that the extra Higgs bosons have little effect on the strength of the phase transition. copyright 1997 The American Physical Society

  18. Search strategies for top partners in composite Higgs models

    Science.gov (United States)

    Gripaios, Ben; Müller, Thibaut; Parker, M. A.; Sutherland, Dave

    2014-08-01

    We consider how best to search for top partners in generic composite Higgs models. We begin by classifying the possible group representations carried by top partners in models with and without a custodial SU(2) × SU(2) ⋊ 2 symmetry protecting the rate for Z → decays. We identify a number of minimal models whose top partners only have electric charges of , , or and thus decay to top or bottom quarks via a single Higgs or electroweak gauge boson. We develop an inclusive search for these based on a top veto, which we find to be more effective than existing searches. Less minimal models feature light states that can be sought in final states with like-sign leptons and so we find that 2 straightforward LHC searches give a reasonable coverage of the gamut of composite Higgs models.

  19. Higgs-boson contributions to gauge-boson mass shifts in extended electroweak models

    International Nuclear Information System (INIS)

    Moore, S.R.

    1985-01-01

    The author analyzed the mass shifts for models with a more complicated Higgs sector. He uses the on-shell renormalization scheme, in which the parameters of the theory are the physical masses and couplings. The author has considered the 2-doublet, n-doublet, triplet and doublet-triplet models. He has found that the Z-boson mass prediction has a strong dependence on the charged-Higgs mass. In the limit that the charged Higgs is much heavier than the gauge bosons, the Higgs-dependent terms become significant, and may even cancel the light-fermion terms. If the author uses the Z mass as input in determining the parameters of the theory, a scenario which will become attractive as the mass of the Z is accurately measured in the next few years, it is found that the W-boson mass shift exhibits the same sort of behavior, differing from the minimal model for the case of the charged Higgs being heavy. The author has found that when the radiative corrections are taken into account, models with extended Higgs sectors may differ significantly from the minimal standard model in this predictions for the gauge-boson masses. Thus, an accurate measurement of the masses will help shed light on the structure of the Higgs sector

  20. Standard Model Higgs Boson with the L3 Experiment at LEP

    CERN Document Server

    Achard, P.; Aguilar-Benitez, M.; Alcaraz, J.; Alemanni, G.; Allaby, J.; Aloisio, A.; Alviggi, M.G.; Anderhub, H.; Andreev, Valery P.; Anselmo, F.; Arefev, A.; Azemoon, T.; Aziz, T.; Baarmand, M.; Bagnaia, P.; Bajo, A.; Baksay, G.; Baksay, L.; Baldew, S.V.; Banerjee, S.; Banerjee, Sw.; Barczyk, A.; Barillere, R.; Bartalini, P.; Basile, M.; Batalova, N.; Battiston, R.; Bay, A.; Becattini, F.; Becker, U.; Behner, F.; Bellucci, L.; Berbeco, R.; Berdugo, J.; Berges, P.; Bertucci, B.; Betev, B.L.; Biasini, M.; Biglietti, M.; Biland, A.; Blaising, J.J.; Blyth, S.C.; Bobbink, G.J.; Bohm, A.; Boldizsar, L.; Borgia, B.; Bourilkov, D.; Bourquin, M.; Braccini, S.; Branson, J.G.; Brochu, F.; Buijs, A.; Burger, J.D.; Burger, W.J.; Cai, X.D.; Capell, M.; Cara Romeo, G.; Carlino, G.; Cartacci, A.; Casaus, J.; Cavallari, F.; Cavallo, N.; Cecchi, C.; Cerrada, M.; Chamizo, M.; Chang, Y.H.; Chemarin, M.; Chen, A.; Chen, G.; Chen, G.M.; Chen, H.F.; Chen, H.S.; Chiefari, G.; Cifarelli, L.; Cindolo, F.; Clare, I.; Clare, R.; Coignet, G.; Colino, N.; Costantini, S.; De la Cruz, B.; Cucciarelli, S.; Dai, T.S.; Van Dalen, J.A.; De Asmundis, R.; Deglon, P.; Debreczeni, J.; Degre, A.; Deiters, K.; Della Volpe, D.; Delmeire, E.; Denes, P.; DeNotaristefani, F.; De Salvo, A.; Diemoz, M.; Dierckxsens, M.; Van Dierendonck, D.; Dionisi, C.; Dittmar, M.; Doria, A.; Dova, M.T.; Duchesneau, D.; Duinker, P.; Echenard, B.; Eline, A.; El Mamouni, H.; Engler, A.; Eppling, F.J.; Ewers, A.; Extermann, P.; Falagan, M.A.; Falciano, S.; Favara, A.; Fay, J.; Fedin, O.; Felcini, M.; Ferguson, T.; Fesefeldt, H.; Fiandrini, E.; Field, J.H.; Filthaut, F.; Fisher, P.H.; Fisher, W.; Fisk, I.; Forconi, G.; Freudenreich, K.; Furetta, C.; Galaktionov, Iouri; Ganguli, S.N.; Garcia-Abia, Pablo; Gataullin, M.; Gentile, S.; Giagu, S.; Gong, Z.F.; Grenier, Gerald Jean; Grimm, O.; Gruenewald, M.W.; Guida, M.; Van Gulik, R.; Gupta, V.K.; Gurtu, A.; Gutay, L.J.; Haas, D.; Hatzifotiadou, D.; Hebbeker, T.; Herve, Alain; Hirschfelder, J.; Hofer, H.; Holzner, G.; Hou, S.R.; Hu, Y.; Jin, B.N.; Jones, Lawrence W.; de Jong, P.; Josa-Mutuberria, I.; Kafer, D.; Kaur, M.; Kienzle-Focacci, M.N.; Kim, J.K.; Kirkby, Jasper; Kittel, W.; Klimentov, A.; Konig, A.C.; Kopal, M.; Koutsenko, V.; Kraber, M.; Kraemer, R.W.; Krenz, W.; Kruger, A.; Kunin, A.; Ladron De Guevara, P.; Laktineh, I.; Landi, G.; Lebeau, M.; Lebedev, A.; Lebrun, P.; Lecomte, P.; Lecoq, P.; Le Coultre, P.; Lee, H.J.; Le Goff, J.M.; Leiste, R.; Levtchenko, P.; Li, C.; Likhoded, S.; Lin, C.H.; Lin, W.T.; Linde, F.L.; Lista, L.; Liu, Z.A.; Lohmann, W.; Longo, E.; Lu, Y.S.; Lubelsmeyer, K.; Luci, C.; Luckey, David; Luminari, L.; Lustermann, W.; Ma, W.G.; Malgeri, L.; Malinin, A.; Mana, C.; Mangeol, D.; Mans, J.; Martin, J.P.; Marzano, F.; Mazumdar, K.; McNeil, R.R.; Mele, S.; Merola, L.; Meschini, M.; Metzger, W.J.; Mihul, A.; Milcent, H.; Mirabelli, G.; Mnich, J.; Mohanty, G.B.; Muanza, G.S.; Muijs, A.J.M.; Musicar, B.; Musy, M.; Nagy, S.; Napolitano, M.; Nessi-Tedaldi, F.; Newman, H.; Niessen, T.; Nisati, A.; Kluge, Hannelies; Ofierzynski, R.; Organtini, G.; Palomares, C.; Pandoulas, D.; Paolucci, P.; Paramatti, R.; Passaleva, G.; Patricelli, S.; Paul, Thomas Cantzon; Pauluzzi, M.; Paus, C.; Pauss, F.; Pedace, M.; Pensotti, S.; Perret-Gallix, D.; Petersen, B.; Piccolo, D.; Pierella, F.; Piroue, P.A.; Pistolesi, E.; Plyaskin, V.; Pohl, M.; Pojidaev, V.; Postema, H.; Pothier, J.; Prokofev, D.O.; Prokofiev, D.; Quartieri, J.; Rahal-Callot, G.; Rahaman, M.A.; Raics, P.; Raja, N.; Ramelli, R.; Rancoita, P.G.; Ranieri, R.; Raspereza, A.; Razis, P.; Ren, D.; Rescigno, M.; Reucroft, S.; Riemann, S.; Riles, Keith; Roe, B.P.; Romero, L.; Rosca, A.; Rosier-Lees, S.; Roth, Stefan; Rosenbleck, C.; Roux, B.; Rubio, J.A.; Ruggiero, G.; Rykaczewski, H.; Sakharov, A.; Saremi, S.; Sarkar, S.; Salicio, J.; Sanchez, E.; Sanders, M.P.; Schafer, C.; Schegelsky, V.; Schmidt-Kaerst, S.; Schmitz, D.; Schopper, H.; Schotanus, D.J.; Schwering, G.; Sciacca, C.; Servoli, L.; Shevchenko, S.; Shivarov, N.; Shoutko, V.; Shumilov, E.; Shvorob, A.; Siedenburg, T.; Son, D.; Spillantini, P.; Steuer, M.; Stickland, D.P.; Stoyanov, B.; Straessner, A.; Sudhakar, K.; Sultanov, G.; Sun, L.Z.; Sushkov, S.; Suter, H.; Swain, J.D.; Szillasi, Z.; Tang, X.W.; Tarjan, P.; Tauscher, L.; Taylor, L.; Tellili, B.; Teyssier, D.; Timmermans, Charles; Ting, Samuel C.C.; Ting, S.M.; Tonwar, S.C.; Toth, J.; Tully, C.; Tung, K.L.; Uchida, Y.; Ulbricht, J.; Valente, E.; Van de Walle, R.T.; Veszpremi, V.; Vesztergombi, G.; Vetlitsky, I.; Vicinanza, D.; Viertel, G.; Villa, S.; Vivargent, M.; Vlachos, S.; Vodopianov, I.; Vogel, H.; Vogt, H.; Vorobev, I.; Vorobyov, A.A.; Wadhwa, M.; Wallraff, W.; Wang, M.; Wang, X.L.; Wang, Z.M.; Weber, M.; Wienemann, P.; Wilkens, H.; Wu, S.X.; Wynhoff, S.; Xia, L.; Xu, Z.Z.; Yamamoto, J.; Yang, B.Z.; Yang, C.G.; Yang, H.J.; Yang, M.; Yeh, S.C.; Zalite, A.; Zalite, Yu.; Zhang, Z.P.; Zhao, J.; Zhu, G.Y.; Zhu, R.Y.; Zhuang, H.L.; Zichichi, A.; Zilizi, G.; Zimmermann, B.; Zoller, M.

    2001-01-01

    Final results of the search for the Standard Model Higgs boson are presented for the data collected by the L3 detector at LEP at centre-of-mass energies up to about 209 GeV. These data are compared with the expectations of Standard Model processes for Higgs boson masses up to 120 GeV. A lower limit on the mass of the Standard Model Higgs boson of 112.0 GeV is set at the 95% confidence level. The most significant high mass candidate is a Hnn bar event. It has a reconstructed Higgs mass of 115 GeV and it was recorded at Square root of s =206.4 GeV.

  1. Dark matter model with non-Abelian gauge symmetry

    International Nuclear Information System (INIS)

    Zhang Hao; Li Chongsheng; Cao Qinghong; Li Zhao

    2010-01-01

    We propose a dark-matter model in which the dark sector is gauged under a new SU(2) group. The dark sector consists of SU(2) dark gauge fields, two triplet dark Higgs fields, and two dark fermion doublets (dark-matter candidates in this model). The dark sector interacts with the standard model sector through kinetic and mass mixing operators. The model explains both PAMELA and Fermi LAT data very well and also satisfies constraints from both the dark-matter relic density and standard model precision observables. The phenomenology of the model at the LHC is also explored.

  2. Directed Abelian algebras and their application to stochastic models.

    Science.gov (United States)

    Alcaraz, F C; Rittenberg, V

    2008-10-01

    With each directed acyclic graph (this includes some D-dimensional lattices) one can associate some Abelian algebras that we call directed Abelian algebras (DAAs). On each site of the graph one attaches a generator of the algebra. These algebras depend on several parameters and are semisimple. Using any DAA, one can define a family of Hamiltonians which give the continuous time evolution of a stochastic process. The calculation of the spectra and ground-state wave functions (stationary state probability distributions) is an easy algebraic exercise. If one considers D-dimensional lattices and chooses Hamiltonians linear in the generators, in finite-size scaling the Hamiltonian spectrum is gapless with a critical dynamic exponent z=D. One possible application of the DAA is to sandpile models. In the paper we present this application, considering one- and two-dimensional lattices. In the one-dimensional case, when the DAA conserves the number of particles, the avalanches belong to the random walker universality class (critical exponent sigma_(tau)=32 ). We study the local density of particles inside large avalanches, showing a depletion of particles at the source of the avalanche and an enrichment at its end. In two dimensions we did extensive Monte-Carlo simulations and found sigma_(tau)=1.780+/-0.005 .

  3. Organized versus self-organized criticality in the abelian sandpile model

    OpenAIRE

    Fey-den Boer, AC Anne; Redig, FHJ Frank

    2005-01-01

    We define stabilizability of an infinite volume height configuration and of a probability measure on height configurations. We show that for high enough densities, a probability measure cannot be stabilized. We also show that in some sense the thermodynamic limit of the uniform measures on the recurrent configurations of the abelian sandpile model (ASM) is a maximal element of the set of stabilizable measures. In that sense the self-organized critical behavior of the ASM can be understood in ...

  4. Electroweak Calibration of the Higgs Characterization Model

    CERN Multimedia

    CERN. Geneva

    2015-01-01

    I will present the preliminary results of histogram fits using the Higgs Combine histogram fitting package. These fits can be used to estimate the effects of electroweak contributions to the p p -> H mu+ mu- Higgs production channel and calibrate Beyond Standard Model (BSM) simulations which ignore these effects. I will emphasize my findings' significance in the context of other research here at CERN and in the broader world of high energy physics.

  5. Broken Weyl symmetry. [Gauge model, coupling, Higgs field

    Energy Technology Data Exchange (ETDEWEB)

    Domokos, G.

    1976-05-01

    It is argued that conformal symmetry can be properly understood in the framework of field theories in curved space. In such theories, invariance is required under general coordinate transformations and conformal rescalings. A gauge model coupled to a Higgs field is examined. In the tree approximation, the vacuum solution exhibits two Higgs phenomena; both the phase (Goldstone boson) and the coordinate dependent part of the radial component of the scalar field can be removed by a Higgs-Kibble transformation. The resulting vacuum solution corresponds to a space of constant curvature and constant vacuum expectation value of the scalar field.

  6. Electroweak Higgs production with HiggsPO at NLO QCD

    International Nuclear Information System (INIS)

    Greljo, Admir; Isidori, Gino; Zhang, Hantian; Lindert, Jonas M.; Marzocca, David

    2017-01-01

    We present the HiggsPO UFO model for Monte Carlo event generation of electroweak VH and VBF Higgs production processes at NLO in QCD in the formalism of Higgs pseudo-observables (PO). We illustrate the use of this tool by studying the QCD corrections, matched to a parton shower, for several benchmark points in the Higgs PO parameter space. We find that, while being sizable and thus important to be considered in realistic experimental analyses, the QCD higher-order corrections largely factorize. As an additional finding, based on the NLO results, we advocate to consider 2D distributions of the two-jet azimuthal-angle difference and the leading jet p T for new physics searches in VBF Higgs production. The HiggsPO UFO model is publicly available. (orig.)

  7. Electroweak Higgs production with HiggsPO at NLO QCD

    Energy Technology Data Exchange (ETDEWEB)

    Greljo, Admir [Universitaet Zuerich, Physik-Institut, Zurich (Switzerland); Johannes Gutenberg-Universitaet Mainz, PRISMA Cluster of Excellence and Mainz Institute for Theoretical Physics, Mainz (Germany); University of Sarajevo, Faculty of Science, Sarajevo (Bosnia and Herzegovina); Isidori, Gino; Zhang, Hantian [Universitaet Zuerich, Physik-Institut, Zurich (Switzerland); Lindert, Jonas M. [Durham University, Department of Physics, Institute for Particle Physics Phenomenology, Durham (United Kingdom); Marzocca, David [Universitaet Zuerich, Physik-Institut, Zurich (Switzerland); INFN, Sezione di Trieste(Italy); SISSA, Trieste (Italy)

    2017-12-15

    We present the HiggsPO UFO model for Monte Carlo event generation of electroweak VH and VBF Higgs production processes at NLO in QCD in the formalism of Higgs pseudo-observables (PO). We illustrate the use of this tool by studying the QCD corrections, matched to a parton shower, for several benchmark points in the Higgs PO parameter space. We find that, while being sizable and thus important to be considered in realistic experimental analyses, the QCD higher-order corrections largely factorize. As an additional finding, based on the NLO results, we advocate to consider 2D distributions of the two-jet azimuthal-angle difference and the leading jet p{sub T} for new physics searches in VBF Higgs production. The HiggsPO UFO model is publicly available. (orig.)

  8. Generalized Higgs inflation

    Energy Technology Data Exchange (ETDEWEB)

    Kamada, Kohei [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Kobayashi, Tsutomu [Kyoto Univ. (Japan). Hakubi Center; Kyoto Univ. (Japan). Dept. of Physics; Takahashi, Tomo [Saga Univ. (Japan). Dept. of Physics; Yamaguchi, Masahide [Tokyo Institute of Technology (Japan). Dept. of Physics; Yokoyama, Jun' ichi [Tokyo Univ. (JP). Research Center for the Early Universe (RESCEU); Tokyo Univ., Chiba (JP). Inst. for the Physics and Mathematics of the Universe (IPMU)

    2012-03-15

    We study Higgs inflation in the context of generalized G-inflation, i.e., the most general single-field inflation model with second-order field equations. The four variants of Higgs inflation proposed so far in the literature can be accommodated at one time in our framework. We also propose yet another class of Higgs inflation, the running Einstein inflation model, that can naturally arise from the generalized G-inflation framework. As a result, five Higgs inflation models in all should be discussed on an equal footing. Concise formulas for primordial fluctuations in these generalized Higgs inflation models are provided, which will be helpful to determine which model is favored from the future experiments and observations such as the Large Hadron Collider and the Planck satellite.

  9. LETTER TO THE EDITOR: Bicomplexes and conservation laws in non-Abelian Toda models

    Science.gov (United States)

    Gueuvoghlanian, E. P.

    2001-08-01

    A bicomplex structure is associated with the Leznov-Saveliev equation of integrable models. The linear problem associated with the zero-curvature condition is derived in terms of the bicomplex linear equation. The explicit example of a non-Abelian conformal affine Toda model is discussed in detail and its conservation laws are derived from the zero-curvature representation of its equation of motion.

  10. HiggsSignals. Confronting arbitrary Higgs sectors with measurements at the Tevatron and the LHC

    Energy Technology Data Exchange (ETDEWEB)

    Bechtle, Philip [Bonn Univ. (Germany). Physikalisches Inst.; Heinemeyer, Sven [Instituto de Fisica de Cantabria (CSIC-UC), Santander (Spain); Staal, Oscar [Stockholm Univ. (Sweden). The Oskar Klein Centre; Stefaniak, Tim [Bonn Univ. (Germany). Physikalisches Inst.; Bonn Univ. (Germany). Bethe Center for Theoretical Physics; Weiglein, Georg [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2013-05-15

    HiggsSignals is a Fortran90 computer code that allows to test the compatibility of Higgs sector predictions against Higgs rates and masses measured at the LHC or the Tevatron. Arbitrary models with any number of Higgs bosons can be investigated using a model-independent input scheme based on HiggsBounds. The test is based on the calculation of a {chi}{sup 2} measure from the predictions and the measured Higgs rates and masses, with the ability of fully taking into account systematics and correlations for the signal rate predictions, luminosity and Higgs mass predictions. It features two complementary methods for the test. First, the peak-centered method, in which each observable is defined by a Higgs signal rate measured at a specific hypothetical Higgs mass, corresponding to a tentative Higgs signal. Second, the mass-centered method, where the test is evaluated by comparing the signal rate measurement to the theory prediction at the Higgs mass predicted by the model. The program allows for the simultaneous use of both methods, which is useful in testing models with multiple Higgs bosons. The code automatically combines the signal rates of multiple Higgs bosons if their signals cannot be resolved by the experimental analysis. We compare results obtained with HiggsSignals to official ATLAS and CMS results for various examples of Higgs property determinations and find very good agreement. A few examples of HiggsSignals applications are provided, going beyond the scenarios investigated by the LHC collaborations. For models with more than one Higgs boson we recommend to use HiggsSignals and HiggsBounds in parallel to exploit the full constraining power of Higgs search exclusion limits and the measurements of the signal seen at m{sub H} {approx} 125.5 GeV.

  11. Non-Abelian sigma models from Yang-Mills theory compactified on a circle

    Science.gov (United States)

    Ivanova, Tatiana A.; Lechtenfeld, Olaf; Popov, Alexander D.

    2018-06-01

    We consider SU(N) Yang-Mills theory on R 2 , 1 ×S1, where S1 is a spatial circle. In the infrared limit of a small-circle radius the Yang-Mills action reduces to the action of a sigma model on R 2 , 1 whose target space is a 2 (N - 1)-dimensional torus modulo the Weyl-group action. We argue that there is freedom in the choice of the framing of the gauge bundles, which leads to more general options. In particular, we show that this low-energy limit can give rise to a target space SU (N) ×SU (N) /ZN. The latter is the direct product of SU(N) and its Langlands dual SU (N) /ZN, and it contains the above-mentioned torus as its maximal Abelian subgroup. An analogous result is obtained for any non-Abelian gauge group.

  12. Handbook of LHC Higgs Cross Sections: 3. Higgs Properties

    Energy Technology Data Exchange (ETDEWEB)

    Heinemeyer, S; et al.

    2013-01-01

    This Report summarizes the results of the activities in 2012 and the first half of 2013 of the LHC Higgs Cross Section Working Group. The main goal of the working group was to present the state of the art of Higgs Physics at the LHC, integrating all new results that have appeared in the last few years. This report follows the first working group report Handbook of LHC Higgs Cross Sections: 1. Inclusive Observables (CERN-2011-002) and the second working group report Handbook of LHC Higgs Cross Sections: 2. Differential Distributions (CERN-2012-002). After the discovery of a Higgs boson at the LHC in mid-2012 this report focuses on refined prediction of Standard Model (SM) Higgs phenomenology around the experimentally observed value of 125-126 GeV, refined predictions for heavy SM-like Higgs bosons as well as predictions in the Minimal Supersymmetric Standard Model and first steps to go beyond these models. The other main focus is on the extraction of the characteristics and properties of the newly discovered particle such as couplings to SM particles, spin and CP-quantum numbers etc.

  13. ILC Higgs White Paper

    CERN Document Server

    Asner, D.M.; Calancha, C.; Fujii, K.; Graf, N.; Haber, H.E.; Ishikawa, A.; Kanemura, S.; Kawada, S.; Kurata, M.; Miyamoto, A.; Neal, H.; Ono, H.; Potter, C.; Strube, J.; Suehara, T.; Tanabe, T.; Tian, J.; Tsumura, J.; Watanuki, S.; Weiglein, G.; Yagyu, K.; Yokoya, H.

    2013-01-01

    The ILC Higgs White Paper is a review of Higgs Boson theory and experiment at the International Linear Collider (ILC). Theory topics include the Standard Model Higgs, the two-Higgs doublet model, alternative approaches to electroweak symmetry breaking, and precision goals for Higgs boson experiments. Experimental topics include the measurement of the Higgs cross section times branching ratio for various Higgs decay modes at ILC center of mass energies of 250, 500, and 1000 GeV, and the extraction of Higgs couplings and the total Higgs width from these measurements. Luminosity scenarios based on the ILC TDR machine design are used throughout. The gamma-gamma collider option at the ILC is also discussed.

  14. Experimental limits from ATLAS on Standard Model Higgs production.

    CERN Multimedia

    ATLAS, collaboration

    2012-01-01

    Experimental limits from ATLAS on Standard Model Higgs production in the mass range 110-600 GeV. The solid curve reflects the observed experimental limits for the production of a Higgs of each possible mass value (horizontal axis). The region for which the solid curve dips below the horizontal line at the value of 1 is excluded with a 95% confidence level (CL). The dashed curve shows the expected limit in the absence of the Higgs boson, based on simulations. The green and yellow bands correspond (respectively) to 68%, and 95% confidence level regions from the expected limits. Higgs masses in the narrow range 123-130 GeV are the only masses not excluded at 95% CL

  15. Higgs results from ATLAS

    International Nuclear Information System (INIS)

    Chen, Xin

    2016-01-01

    The updated Higgs measurements in various search channels with ATLAS Run 1 data are reviewed. Both the Standard Model (SM) Higgs results, such as H → γγ, ZZ, WW, ττ, μμ, bb-bar, and Beyond Standard Model (BSM) results, such as the charged Higgs, Higgs invisible decay and tensor couplings, are summarized. Prospects for future Higgs searches are briefly discussed

  16. Classification of finite reparametrization symmetry groups in the three-Higgs-doublet model

    International Nuclear Information System (INIS)

    Ivanov, Igor P.; Vdovin, E.

    2013-01-01

    Symmetries play a crucial role in electroweak symmetry breaking models with non-minimal Higgs content. Within each class of these models, it is desirable to know which symmetry groups can be implemented via the scalar sector. In N-Higgs-doublet models, this classification problem was solved only for N=2 doublets. Very recently, we suggested a method to classify all realizable finite symmetry groups of Higgs-family transformations in the three-Higgs-doublet model (3HDM). Here, we present this classification in all detail together with an introduction to the theory of solvable groups, which play the key role in our derivation. We also consider generalized-CP symmetries, and discuss the interplay between Higgs-family symmetries and CP-conservation. In particular, we prove that presence of the Z 4 symmetry guarantees the explicit CP-conservation of the potential. This work completes classification of finite reparametrization symmetry groups in 3HDM. (orig.)

  17. Higgs boson pair productions in the Georgi-Machacek model at the LHC

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Jung [Physics Division, National Center for Theoretical Sciences,Hsinchu, Taiwan 30013, R.O.C. (China); Chen, Chuan-Ren [Department of Physics, National Taiwan Normal University,Taipei, Taiwan 11677, R.O.C. (China); Chiang, Cheng-Wei [Department of Physics, National Taiwan University,Taipei, Taiwan 10617, R.O.C. (China); Institute of Physics, Academia Sinica,Taipei, Taiwan 11529, R.O.C. (China); Physics Division, National Center for Theoretical Sciences,Hsinchu, Taiwan 30013, R.O.C. (China)

    2017-03-27

    Higgs bosons pair production is well known for its sensitivity to probing the sign and size of Higgs boson self coupling, providing a way to determine whether there is an extended Higgs sector. The Georgi-Machacek (GM) model extends the Standard Model (SM) with an SU(2){sub L} triplet scalar field that has one real and one complex components. The Higgs self coupling now has a wider range than that in the SM, with even the possibility of a sign flip. The new heavy singlet Higgs boson H{sub 1}{sup 0} can contribute to s-channel production of the hh pairs. In this work, we study non-resonant/resonant Higgs boson pair productions pp→hh and pp→H{sub 1}{sup 0}→hh, focusing exclusively on the contribution of H{sub 1}{sup 0}. We show the sensitivity for Higgs boson pair production searches at the 13-TeV LHC with the luminosities of 3.2, 30 and 100 fb{sup −1}.

  18. Top quark asymmetry from a non-Abelian horizontal symmetry

    CERN Document Server

    Jung, Sunghoon; Wells, James D

    2011-01-01

    Motivated by the persistence of a large measured top quark forward-backward asymmetry at the Tevatron, we examine a model of non-Abelian flavor gauge symmetry. The exchange of the gauge bosons in the $t$-channel can give a large $\\Afb$ due to the forward Rutherford scattering peak. We address generic constraints on non-Abelian $t$-channel physics models including flavor diagonal resonances and potentially dangerous contributions to inclusive top pair cross sections. We caution on the general difficulty of comparing theoretical predictions for top quark signals to the existing experimental results due to potentially important acceptance effects. The first signature at the Large Hadron Collider can be a large inclusive top pair cross section, or like-sign dilepton events, although the latter signal is much smaller than in Abelian models. Deviations of the invariant mass distributions at the LHC will also be promising signatures. A more direct consistency check of the Tevatron asymmetry through the LHC asymmetry...

  19. CP properties of symmetry-constrained two-Higgs-doublet models

    CERN Document Server

    Ferreira, P M; Nachtmann, O; Silva, Joao P

    2010-01-01

    The two-Higgs-doublet model can be constrained by imposing Higgs-family symmetries and/or generalized CP symmetries. It is known that there are only six independent classes of such symmetry-constrained models. We study the CP properties of all cases in the bilinear formalism. An exact symmetry implies CP conservation. We show that soft breaking of the symmetry can lead to spontaneous CP violation (CPV) in three of the classes.

  20. The universal Higgs fit

    DEFF Research Database (Denmark)

    Giardino, P. P.; Kannike, K.; Masina, I.

    2014-01-01

    We perform a state-of-the-art global fit to all Higgs data. We synthesise them into a 'universal' form, which allows to easily test any desired model. We apply the proposed methodology to extract from data the Higgs branching ratios, production cross sections, couplings and to analyse composite...... Higgs models, models with extra Higgs doublets, supersymmetry, extra particles in the loops, anomalous top couplings, and invisible Higgs decays into Dark Matter. Best fit regions lie around the Standard Model predictions and are well approximated by our 'universal' fit. Latest data exclude the dilaton...... as an alternative to the Higgs, and disfavour fits with negative Yukawa couplings. We derive for the first time the SM Higgs boson mass from the measured rates, rather than from the peak positions, obtaining M-h = 124.4 +/- 1.6 GeV....

  1. Non-abelian bosonization and higher spin symmetries

    International Nuclear Information System (INIS)

    Zaikov, R.P.

    1995-03-01

    The higher spin properties of the non-abelian bosonization in the classical theory are investigated. Both the symmetry transformation algebra and the classical current algebra for the non-abelian free fermionic model are linear Gel'fand-Dickey type algebras. However, for the corresponding WZNW model these algebras are different. There exist symmetry transformations which algebra remains the linear Gel'fand-Dickey algebra while in the corresponding current algebra nonlinear terms arised. Moreover, this algebra is closed (in Casimir form) only in an extended current space in which nonlinear currents are included. In the affine sector, it is necessary to include higher isotopic spin current too. As result we have have a triple extended algebra. (author). 30 refs

  2. Higgs-Yukawa model with higher dimension operators via extended mean field theory

    CERN Document Server

    Akerlund, Oscar

    2016-01-01

    Using Extended Mean Field Theory (EMFT) on the lattice, we study properties of the Higgs-Yukawa model as an approximation of the Standard Model Higgs sector, and the effect of higher dimension operators. We note that the discussion of vacuum stability is completely modified in the presence of a $\\phi^6$ term, and that the Higgs mass no longer appears fine tuned. We also study the finite temperature transition. Without higher dimension operators the transition is found to be second order (crossover with gauge fields) for the experimental value of the Higgs mass $M_h=125$ GeV. By taking a $\\phi^6$ interaction in the Higgs potential as a proxy for a UV completion of the Standard Model, the transition becomes stronger and turns first order if the scale of new physics, i.e. the mass of the lightest mediator particle, is around $1.5$ TeV. This implies that electroweak baryogenesis may be viable in models which introduce new particles around that scale.

  3. Exploring little Higgs models with ATLAS at the LHC

    International Nuclear Information System (INIS)

    Azuelos, G.; Benslama, K.; Costanzo, D.; Couture, G.; Garcia, J.E.; Hinchliffe, I.G.; Kanaya, N.; Lechowski, M.; Mehdiyev, R.; Polesello, G.; Ros, E.; Rousseau, D.

    2004-01-01

    We discuss possible searches for the new particles predicted by Little Higgs Models at the LHC. By using a simulation of the ATLAS detector, we demonstrate how the predicted quark, gauge bosons and additional Higgs bosons can be found and estimate the mass range over which their properties can be constrained

  4. Search for Higgs boson in beyond standard model scenarios

    Indian Academy of Sciences (India)

    The principal physics motivation of the LHC experiments is to search for the Higgs boson and to probe the physics of TeV energy scale. Potential of discovery for Higgs bosons in various scenarios beyond standard model have been estimated for both CMS and ATLAS experiments through detailed detector simulations.

  5. Constraining supersymmetric models using Higgs physics, precision observables and direct searches

    International Nuclear Information System (INIS)

    Zeune, Lisa

    2014-08-01

    We present various complementary possibilities to exploit experimental measurements in order to test and constrain supersymmetric (SUSY) models. Direct searches for SUSY particles have not resulted in any signal so far, and limits on the SUSY parameter space have been set. Measurements of the properties of the observed Higgs boson at ∝126 GeV as well as of the W boson mass (M W ) can provide valuable indirect constraints, supplementing the ones from direct searches. This thesis is divided into three major parts: In the first part we present the currently most precise prediction for M W in the Minimal Supersymmetric Standard Model (MSSM) with complex parameters and in the Next-to-Minimal Supersymmetric Standard Model (NMSSM). The evaluation includes the full one-loop result and all relevant available higher order corrections of Standard Model (SM) and SUSY type. We perform a detailed scan over the MSSM parameter space, taking into account the latest experimental results, including the observation of a Higgs signal. We find that the current measurements for M W and the top quark mass (m t ) slightly favour a non-zero SUSY contribution. The impact of different SUSY sectors on the prediction of M W as well as the size of the higher-order SUSY corrections are analysed both in the MSSM and the NMSSM. We investigate the genuine NMSSM contribution from the extended Higgs and neutralino sectors and highlight differences between the M W predictions in the two SUSY models. In the second part of the thesis we discuss possible interpretations of the observed Higgs signal in SUSY models. The properties of the observed Higgs boson are compatible with the SM so far, but many other interpretations are also possible. Performing scans over the relevant parts of the MSSM and the NMSSM parameter spaces and applying relevant constraints from Higgs searches, flavour physics and electroweak measurements, we find that a Higgs boson at ∝126 GeV, which decays into two photons, can in

  6. Handbook of LHC Higgs Cross Sections: 3. Higgs Properties Report of the LHC Higgs Cross Section Working Group

    CERN Document Server

    Heinemeyer, S; Passarino, G; Tanaka, R; Andersen, J R; Artoisenet, P; Bagnaschi, E A; Banfi, A; Becher, T; Bernlochner, F U; Bolognesi, S; Bolzoni, P; Boughezal, R; Buarque, D; Campbell, J; Caola, F; Carena, M; Cascioli, F; Chanon, N; Cheng, T; Choi, S Y; David, A; de Aquino, P; Degrassi, G; Del Re, D; Denner, A; van Deurzen, H; Diglio, S; Di Micco, B; Di Nardo, R; Dittmaier, S; Dührssen, M; Ellis, R K; Ferrera, G; Fidanza, N; Flechl, M; de Florian, D; Forte, S; Frederix, R; Frixione, S; Gangal, S; Gao, Y; Garzelli, M V; Gillberg, D; Govoni, P; Grazzini, M; Greiner, N; Griffiths, J; Gritsan, A V; Grojean, C; Hall, D C; Hays, C; Harlander, R; Hernandez-Pinto, R; Höche, S; Huston, J; Jubb, T; Kadastik, M; Kallweit, S; Kardos, A; Kashif, L; Kauer, N; Kim, H; Klees, R; Krämer, M; Krauss, F; Laureys, A; Laurila, S; Lehti, S; Li, Q; Liebler, S; Liu, X; Logan, E; Luisoni, G; Malberti, M; Maltoni, F; Mawatari, K; Maierhoefer, F; Mantler, H; Martin, S; Mastrolia, P; Mattelaer, O; Mazzitelli, J; Mellado, B; Melnikov, K; Meridiani, P; Miller, D J; Mirabella, E; Moch, S O; Monni, P; Moretti, N; Mück, A; Mühlleitner, M; Musella, P; Nason, P; Neu, C; Neubert, M; Oleari, C; Olsen, J; Ossola, G; Peraro, T; Peters, K; Petriello, F; Piacquadio, G; Potter, C T; Pozzorini, S; Prokofiev, K; Puljak, I; Rauch, M; Rebuzzi, D; Reina, L; Rietkerk, R; Rizzi, A; Rotstein-Habarnau, Y; Salam, G P; Sborlini, G; Schissler, F; Schönherr, M; Schulze, M; Schumacher, M; Siegert, F; Slavich, P; Smillie, J M; Stål, O; von Soden-Fraunhofen, J F; Spira, M; Stewart, I W; Tackmann, F J; Taylor, P T E; Tommasini, D; Thompson, J; Thorne, R S; Torrielli, P; Tramontano, F; Tran, N V; Trócsányi, Z; Ubiali, M; Vazquez Acosta, M; Vickey, T; Vicini, A; Waalewijn, W J; Wackeroth, D; Wagner, C; Walsh, J R; Wang, J; Weiglein, G; Whitbeck, A; Williams, C; Yu, J; Zanderighi, G; Zanetti, M; Zaro, M; Zerwas, P M; Zhang, C; Zirke, T J E; Zuberi, S

    2013-01-01

    This Report summarizes the results of the activities in 2012 and the first half of 2013 of the LHC Higgs Cross Section Working Group. The main goal of the working group was to present the state of the art of Higgs Physics at the LHC, integrating all new results that have appeared in the last few years. This report follows the first working group report Handbook of LHC Higgs Cross Sections: 1. Inclusive Observables (CERN-2011-002) and the second working group report Handbook of LHC Higgs Cross Sections: 2. Differential Distributions (CERN-2012-002). After the discovery of a Higgs boson at the LHC in mid-2012 this report focuses on refined prediction of Standard Model (SM) Higgs phenomenology around the experimentally observed value of 125-126 GeV, refined predictions for heavy SM-like Higgs bosons as well as predictions in the Minimal Supersymmetric Standard Model and first steps to go beyond these models. The other main focus is on the extraction of the characteristics and properties of the newly discovered p...

  7. Higgs pair production at NLO QCD for CP-violating Higgs sectors

    Science.gov (United States)

    Gröber, R.; Mühlleitner, M.; Spira, M.

    2017-12-01

    Higgs pair production through gluon fusion is an important process at the LHC to test the dynamics underlying electroweak symmetry breaking. Higgs sectors beyond the Standard Model (SM) can substantially modify this cross section through novel couplings not present in the SM or the on-shell production of new heavy Higgs bosons that subsequently decay into Higgs pairs. CP violation in the Higgs sector is important for the explanation of the observed matter-antimatter asymmetry through electroweak baryogenesis. In this work we compute the next-to-leading order (NLO) QCD corrections in the heavy top quark limit, including the effects of CP violation in the Higgs sector. We choose the effective theory (EFT) approach, which provides a rather model-independent way to explore New Physics (NP) effects by adding dimension-6 operators, both CP-conserving and CP-violating ones, to the SM Lagrangian. Furthermore, we perform the computation within a specific UV-complete model and choose as benchmark model the general 2-Higgs-Doublet Model with CP violation, the C2HDM. Depending on the dimension-6 coefficients, the relative NLO QCD corrections are affected by several per cent through the new CP-violating operators. This is also the case for SM-like Higgs pair production in the C2HDM, while the relative QCD corrections in the production of heavier C2HDM Higgs boson pairs deviate more strongly from the SM case. The absolute cross sections both in the EFT and the C2HDM can be modified by more than an order of magnitude. In particular, in the C2HDM the resonant production of Higgs pairs can by far exceed the SM cross section.

  8. Hidden Fine Tuning In The Quark Sector Of Little Higgs Models

    CERN Document Server

    Grinstein, Benjamin; Uttayarat, Patipan

    2010-01-01

    In Little Higgs models a collective symmetry prevents the higgs from acquiring a quadratically divergent mass at one loop. We have previously shown that the couplings in the Littlest Higgs model introduced to give the top quark a mass do not naturally respect the collective symmetry. We extend our previous work showing that the problem is generic: it arises from the fact that the would be collective symmetry of any one top quark mass term is broken by gauge interactions.

  9. Scalar sector of the 3 3 1 model with three Higgs triplets

    International Nuclear Information System (INIS)

    Hoang Ngoc Long

    1997-10-01

    A scalar sector of the 3 3 1 model with three Higgs triplets is considered. The mass spectrum, eigenstates and interactions of the Higgs and the SM gauge bosons are derived. We show that one of the neutral scalars can be identified with the standard model Higgs boson, and in the considered potential there is no mixing between scalars having VEV and ones without VEV. (author)

  10. Two-Higgs-doublet models with Minimal Flavour Violation

    International Nuclear Information System (INIS)

    Carlucci, Maria Valentina

    2010-01-01

    The tree-level flavour-changing neutral currents in the two-Higgs-doublet models can be suppressed by protecting the breaking of either flavour or flavour-blind symmetries, but only the first choice, implemented by the application of the Minimal Flavour Violation hypothesis, is stable under quantum corrections. Moreover, a two-Higgs-doublet model with Minimal Flavour Violation enriched with flavour-blind phases can explain the anomalies recently found in the ΔF = 2 transitions, namely the large CP-violating phase in B s mixing and the tension between ε K and S ψKS .

  11. Exploring Higgs triplet models via vector boson scattering at the LHC

    International Nuclear Information System (INIS)

    Godfrey, Stephen; Moats, Ken

    2010-01-01

    We present the results of a study of Higgs triplet boson production arising in the littlest Higgs, left-right symmetric, and Georgi-Machacek models in the W ± W ± , W ± Z, W + W - , and ZZ channels at the LHC. We focus on the ''gold-plated'' purely leptonic decay modes and consider the irreducible electroweak, QCD, and t-quark backgrounds, applying a combination of forward-jet tagging, central-jet vetoing, and stringent leptonic cuts to suppress the backgrounds. We find that, given the constraints on the triplet vacuum expectation value (vev), considerable luminosity is required to observe Higgs triplet bosons in vector boson scattering. Observing a Higgs triplet at the LHC is most promising in the Georgi-Machacek model due to a weaker constraint on the triplet vev. In this model, we find that a Higgs triplet boson with a mass of 1.0(1.5) TeV can be observed at the LHC with an integrated luminosity as low as 41(119) fb -1 in the W ± W ± channel and as low as 171(474) fb -1 in the W ± Z channel. Observation of Higgs triplet bosons in these channels would help identify the underlying theory.

  12. Higgs-Yukawa model in chirally-invariant lattice field theory

    CERN Document Server

    Bulava, John; Jansen, Karl; Kallarackal, Jim; Knippschild, Bastian; Lin, C.-J.David; Nagai, Kei-Ichi; Nagy, Attila; Ogawa, Kenji

    2013-01-01

    Non-perturbative numerical lattice studies of the Higgs-Yukawa sector of the standard model with exact chiral symmetry are reviewed. In particular, we discuss bounds on the Higgs boson mass at the standard model top quark mass, and in the presence of heavy fermions. We present a comprehensive study of the phase structure of the theory at weak and very strong values of the Yukawa coupling as well as at non-zero temperature.

  13. Higgs-Yukawa model in chirally-invariant lattice field theory

    Energy Technology Data Exchange (ETDEWEB)

    Bulava, John [CERN, Geneva (Switzerland). Physics Department; Gerhold, Philipp; Kallarackal, Jim; Nagy, Attila [Humboldt Univ. Berlin (Germany). Inst. fuer Physik; Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Jansen, Karl [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Knippschild, Bastian [National Taiwan Univ., Taipei (China). Dept. of Physics; Lin, C.J. David [National Chiao-Tung Univ., Hsinchu (China). Inst. of Physics; National Centre for Theoretical Sciences, Hsinchu (China). Div. of Physics; Nagai, Kei-Ichi [Nagoya Univ., Nagoya, Aichi (Japan). Kobayashi-Maskawa Institute; Ogawa, Kenji [Chung-Yuan Christian Univ., Chung-Li (China). Dept. of Physics

    2012-10-15

    Non-perturbative numerical lattice studies of the Higgs-Yukawa sector of the standard model with exact chiral symmetry are reviewed. In particular, we discuss bounds on the Higgs boson mass at the standard model top quark mass, and in the presence of heavy fermions. We present a comprehensive study of the phase structure of the theory at weak and very strong values of the Yukawa coupling as well as at non-zero temperature.

  14. Searches for Neutral Higgs Bosons in Extended Models

    CERN Document Server

    Abdallah, J; Adam, W; Adzic, P; Albrecht, T; Alderweireld, T; Alemany-Fernandez, R; Allmendinger, T; Allport, P P; Amaldi, Ugo; Amapane, N; Amato, S; Anashkin, E; Andreazza, A; Andringa, S; Anjos, N; Antilogus, P; Apel, W D; Arnoud, Y; Ask, S; Åsman, B; Augustin, J E; Augustinus, A; Baillon, Paul; Ballestrero, A; Bambade, P; Barbier, R; Bardin, Dimitri Yuri; Barker, G J; Baroncelli, A; Battaglia, Marco; Baubillier, M; Becks, K H; Begalli, M; Behrmann, A; Ben-Haim, E; Benekos, N C; Benvenuti, Alberto C; Bérat, C; Berggren, M; Berntzon, L; Bertrand, D; Besançon, M; Besson, N; Bloch, D; Blom, M; Bluj, M; Bonesini, M; Boonekamp, M; Booth, P S L; Borisov, G; Botner, O; Bouquet, B; Bowcock, T J V; Boyko, I; Bracko, M; Brenner, R; Brodet, E; Brückman, P; Brunet, J M; Bugge, L; Buschmann, P; Calvi, M; Camporesi, T; Canale, V; Carena, F; Castro, N; Cavallo, F R; Chapkin, M M; Charpentier, P; Checchia, P; Chierici, R; Shlyapnikov, P; Chudoba, J; Chung, S U; Cieslik, K; Collins, P; Contri, R; Cosme, G; Cossutti, F; Costa, M J; Crennell, D J; Cuevas-Maestro, J; D'Hondt, J; Dalmau, J; Da Silva, T; Da Silva, W; Della Ricca, G; De Angelis, A; de Boer, Wim; De Clercq, C; De Lotto, B; De Maria, N; De Min, A; De Paula, L S; Di Ciaccio, L; Di Simone, A; Doroba, K; Drees, J; Dris, M; Eigen, G; Ekelöf, T J C; Ellert, M; Elsing, M; Espirito-Santo, M C; Fanourakis, G K; Fassouliotis, D; Feindt, M; Fernández, J; Ferrer, A; Ferro, F; Flagmeyer, U; Föth, H; Fokitis, E; Fulda-Quenzer, F; Fuster, J A; Gandelman, M; García, C; Gavillet, P; Gazis, E N; Gokieli, R; Golob, B; Gómez-Ceballos, G; Gonçalves, P; Graziani, E; Grosdidier, G; Grzelak, K; Guy, J; Haag, C; Hallgren, A; Hamacher, K; Hamilton, K; Haug, S; Hauler, F; Hedberg, V; Hennecke, M; Herr, H; Hoffman, J; Holmgren, S O; Holt, P J; Houlden, M A; Hultqvist, K; Jackson, J N; Jarlskog, G; Jarry, P; Jeans, D; Johansson, E K; Johansson, P D; Jonsson, P; Joram, C; Jungermann, L; Kapusta, F; Katsanevas, S; Katsoufis, E C; Kernel, G; Kersevan, B P; Kerzel, U; Kiiskinen, A P; King, B T; Kjaer, N J; Kluit, P; Kokkinias, P; Kourkoumelis, C; Kuznetsov, O; Krumshtein, Z; Kucharczyk, M; Lamsa, J; Leder, G; Ledroit, F; Leinonen, L; Leitner, R; Lemonne, J; Lepeltier, V; Lesiak, T; Liebig, W; Liko, D; Lipniacka, A; Lopes, J H; López, J M; Loukas, D; Lutz, P; Lyons, L; MacNaughton, J; Malek, A; Maltezos, S; Mandl, F; Marco, J; Marco, R; Maréchal, B; Margoni, M; Marin, J C; Mariotti, C; Markou, A; Martínez-Rivero, C; Masik, J; Mastroyiannopoulos, N; Matorras, F; Matteuzzi, C; Mazzucato, F; Mazzucato, M; McNulty, R; Meroni, C; Migliore, E; Mitaroff, W A; Mjörnmark, U; Moa, T; Moch, M; Mönig, K; Monge, R; Montenegro, J; Moraes, D; Moreno, S; Morettini, P; Müller, U; Münich, K; Mulders, M; Mundim, L; Murray, W; Muryn, B; Myatt, G; Myklebust, T; Nassiakou, M; Navarria, Francesco Luigi; Nawrocki, K; Nicolaidou, R; Nikolenko, M; Oblakowska-Mucha, A; Obraztsov, V F; Olshevskii, A G; Onofre, A; Orava, R; Österberg, K; Ouraou, A; Oyanguren, A; Paganoni, M; Paiano, S; Palacios, J P; Palka, H; Papadopoulou, T D; Pape, L; Parkes, C; Parodi, F; Parzefall, U; Passeri, A; Passon, O; Peralta, L; Perepelitsa, V F; Perrotta, A; Petrolini, A; Piedra, J; Pieri, L; Pierre, F; Pimenta, M; Piotto, E; Podobnik, T; Poireau, V; Pol, M E; Polok, G; Pozdnyakov, V; Pukhaeva, N; Pullia, A; Rames, J; Read, A; Rebecchi, P; Rehn, J; Reid, D; Reinhardt, R; Renton, P B; Richard, F; Rídky, J; Rivero, M; Rodríguez, D; Romero, A; Ronchese, P; Roudeau, P; Rovelli, T; Ruhlmann-Kleider, V; Ryabtchikov, D; Sadovskii, A; Salmi, L; Salt, J; Sander, C; Savoy-Navarro, A; Schwickerath, U; Segar, A; Sekulin, R L; Siebel, M; Sissakian, A N; Smadja, G; Smirnova, O G; Sokolov, A; Sopczak, A; Sosnowski, R; Spassoff, Tz; Stanitzki, M; Stocchi, A; Strauss, J; Stugu, B; Szczekowski, M; Szeptycka, M; Szumlak, T; Tabarelli de Fatis, T; Taffard, A C; Tegenfeldt, F; Timmermans, J; Tkatchev, L G; Tobin, M; Todorovova, S; Tomé, B; Tonazzo, A; Tortosa, P; Travnicek, P; Treille, D; Tristram, G; Trochimczuk, M; Troncon, C; Turluer, M L; Tyapkin, I A; Tyapkin, P; Tzamarias, S; Uvarov, V; Valenti, G; van Dam, P; Van Eldik, J; Van Lysebetten, A; Van Remortel, N; Van Vulpen, I; Vegni, G; Veloso, F; Venus, W; Verdier, P; Verzi, V; Vilanova, D; Vitale, L; Vrba, V; Wahlen, H; Washbrook, A J; Weiser, C; Wicke, D; Wickens, J; Wilkinson, G; Winter, M; Witek, M; Yushchenko, O P; Zalewska-Bak, A; Zalewski, P; Zavrtanik, D; Zhuravlov, V; Zimin, N I; Zintchenko, A; Zupan, M

    2004-01-01

    Searches for neutral Higgs bosons produced at LEP in association with Z bosons, in pairs and in the Yukawa process are presented in this paper. Higgs boson decays into b quarks, tau leptons, or other Higgs bosons are considered, giving rise to four-b, four-b+jets, six-b and four-tau final states, as well as mixed modes with b quarks and tau leptons. The whole mass domain kinematically accessible at LEP in these topologies is searched. The analysed data set covers both the LEP1 and LEP2 energy ranges and exploits most of the luminosity recorded by the DELPHI experiment. No convincing evidence for a signal is found, and results are presented in the form of mass-dependent upper bounds on coupling factors (in units of model-independent reference cross-sections) for all processes, allowing interpretation of the data in a large class of models.

  15. Restrictions on two Higgs doublet models and CP violation at the unification scale

    International Nuclear Information System (INIS)

    Athanasiu, G.G.

    1987-04-01

    Bounds on charged Higgs masses and couplings in models with two Higgs doublets are examined that came from CP violation in the neutral K system. Bounds on charged Higgs masses and couplings in two Higgs doublet models are also obtained from their effects on neutral-B-meson mixing. The bounds are found to be comparable to those obtained with additional assumptions from the neutral K system. The three generation phase invariant measure of CP violation is shown to satisfy a simple and solvable renormalization group equation. Its value is seen to fall by four to eight orders of magnitude between the weak and grand unification scales in the standard model, as well as in its two Higgs and supersymmetric extensions

  16. Beyond-the-Standard Model Higgs Physics using the ATLAS Experiment

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00444174; The ATLAS collaboration

    2015-01-01

    Some recent searches for the Higgs boson in the context of beyond the Standard Model, performed by the ATLAS experiment are presented: high mass Higgs boson searches, lepton flavour violating Higgs decay, NMSSM, con- straint from the search for three photons. The interpretation based on the measurements of Higgs couplings are shown, along with the constraint on the Higgs boson invisible decays. Except the latter has some part using both full √s = 7 TeV and √s = 8 TeV data, the rest are performed with the √s = 8 TeV data of proton-proton collisions collected by the ATLAS experiment. No sig- nificant excess of data over the predicted background is observed in all those searches. Limits are placed in certain quantities depending on the searches.

  17. On the Higgs-like boson in the minimal supersymmetric 3-3-1 model

    Science.gov (United States)

    Ferreira, J. G.; Pires, C. A. de S.; da Silva, P. S. Rodrigues; Siqueira, Clarissa

    2018-03-01

    It is imperative that any proposal of new physics beyond the standard model possesses a Higgs-like boson with 125 GeV of mass and couplings with the standard particles that recover the branching ratios and signal strengths as measured by CMS and ATLAS. We address this issue within the supersymmetric version of the minimal 3-3-1 model. For this we develop the Higgs potential with focus on the lightest Higgs provided by the model. Our proposal is to verify if it recovers the properties of the Standard Model Higgs. With respect to its mass, we calculate it up to one loop level by taking into account all contributions provided by the model. In regard to its couplings, we restrict our investigation to couplings of the Higgs-like boson with the standard particles, only. We then calculate the dominant branching ratios and the respective signal strengths and confront our results with the recent measurements of CMS and ATLAS. As distinctive aspects, we remark that our Higgs-like boson intermediates flavor changing neutral processes and has as signature the decay t → h+c. We calculate its branching ratio and compare it with current bounds. We also show that the Higgs potential of the model is stable for the region of parameter space employed in our calculations.

  18. Overview of the Higgs and Standard Model physics at ATLAS

    CERN Document Server

    Vazquez Schroeder, Tamara; The ATLAS collaboration

    2018-01-01

    This talk presents selected aspects of recent physics results from the ATLAS collaboration in the Standard Model and Higgs sectors, with a focus on the recent evidence for the associated production of the Higgs boson and a top quark pair.

  19. Non-Abelian bubbles in microstate geometries

    Energy Technology Data Exchange (ETDEWEB)

    Ramírez, Pedro F. [Instituto de Física Teórica UAM/CSIC,C/ Nicolás Cabrera, 13-15, C.University Cantoblanco, E-28049 Madrid (Spain); Institut de Physique Théorique, Université Paris Saclay, CEA, CNRS,Orme des Merisiers bâtiment 774, F-91191 Gif-sur-Yvette (France)

    2016-11-24

    We find the first smooth bubbling microstate geometries with non-Abelian fields. The solutions constitute an extension of the BPS three-charge smooth microstates. These consist in general families of regular supersymmetric solutions with non-trivial topology, i.e. bubbles, of N=1, d=5 Super-Einstein-Yang-Mills theory, having the asymptotic charges of a black hole or black ring but with no horizon. The non-Abelian fields make their presence at the very heart of the microstate structure: the physical size of the bubbles is affected by the non-Abelian topological charge they carry, which combines with the Abelian flux threading the bubbles to hold them up. Interestingly the non-Abelian fields carry a set of adjustable continuous parameters that do not alter the asymptotics of the solutions but modify the local geometry. This feature can be used to obtain a classically infinite number of microstate solutions with the asymptotics of a single black hole or black ring.

  20. Abelian Chern-Simons theory and contact torsion

    DEFF Research Database (Denmark)

    McLellan, Brendan Donald Kenneth

    2013-01-01

    Chern-Simons theory on a closed contact three-manifold is studied when the Lie group for gauge transformations is compact, connected and abelian. A shift reduced abelian Chern-Simons partition function is introduced using an alternative formulation of the partition function using formal ideas in ...... in quantum field theory. We compare the shift reduced partition function with other formulations of the abelian Chern-Simons partition function. This study naturally motivates an Atiyah-Patodi-Singer type index problem in contact geometry.......Chern-Simons theory on a closed contact three-manifold is studied when the Lie group for gauge transformations is compact, connected and abelian. A shift reduced abelian Chern-Simons partition function is introduced using an alternative formulation of the partition function using formal ideas...

  1. Strongly coupled models with a Higgs-like boson

    International Nuclear Information System (INIS)

    Pich, A.; Rosell, I.; Sanz-Cillero, J. J.

    2013-01-01

    Considering the one-loop calculation of the oblique S and T parameters, we have presented a study of the viability of strongly-coupled scenarios of electroweak symmetry breaking with a light Higgs-like boson. The calculation has been done by using an effective Lagrangian, being short-distance constraints and dispersive relations the main ingredients of the estimation. Contrary to a widely spread believe, we have demonstrated that strongly coupled electroweak models with massive resonances are not in conflict with experimental constraints on these parameters and the recently observed Higgs-like resonance. So there is room for these models, but they are stringently constrained. The vector and axial-vector states should be heavy enough (with masses above the TeV scale), the mass splitting between them is highly preferred to be small and the Higgs-like scalar should have a WW coupling close to the Standard Model one. It is important to stress that these conclusions do not depend critically on the inclusion of the second Weinberg sum rule. (authors)

  2. On flavour and naturalness of composite Higgs models

    International Nuclear Information System (INIS)

    Matsedonskyi, Oleksii

    2015-01-01

    We analyse the interplay of the constraints imposed on flavour-symmetric Composite Higgs models by Naturalness considerations and the constraints derived from Flavour Physics and Electroweak Precision Tests. Our analysis is based on the Effective Field Theory which describes the Higgs as a pseudo-Nambu-Goldstone boson and also includes the composite fermionic resonances. Within this approach one is able to identify the directions in the parameter space where the U(3)-symmetric flavour models can pass the current experimental constraints, without conflicting with the light Higgs mass. We also derive the general features of the U(2)-symmetric models required by the experimental bounds, in case of elementary and totally composite t R . An effect in the Zb-barb coupling, which can potentially allow for sizable deviations in Z→b-barb decay parameters without modifying flavour physics observables, is identified. We also present the analysis of the mixed scenario, where the top quark mass is generated due to Partial Compositeness while the light quark masses are Technicolor-like.

  3. Higgs pair production at NLO QCD for CP-violating Higgs sectors

    Directory of Open Access Journals (Sweden)

    R. Gröber

    2017-12-01

    Full Text Available Higgs pair production through gluon fusion is an important process at the LHC to test the dynamics underlying electroweak symmetry breaking. Higgs sectors beyond the Standard Model (SM can substantially modify this cross section through novel couplings not present in the SM or the on-shell production of new heavy Higgs bosons that subsequently decay into Higgs pairs. CP violation in the Higgs sector is important for the explanation of the observed matter-antimatter asymmetry through electroweak baryogenesis. In this work we compute the next-to-leading order (NLO QCD corrections in the heavy top quark limit, including the effects of CP violation in the Higgs sector. We choose the effective theory (EFT approach, which provides a rather model-independent way to explore New Physics (NP effects by adding dimension-6 operators, both CP-conserving and CP-violating ones, to the SM Lagrangian. Furthermore, we perform the computation within a specific UV-complete model and choose as benchmark model the general 2-Higgs-Doublet Model with CP violation, the C2HDM. Depending on the dimension-6 coefficients, the relative NLO QCD corrections are affected by several per cent through the new CP-violating operators. This is also the case for SM-like Higgs pair production in the C2HDM, while the relative QCD corrections in the production of heavier C2HDM Higgs boson pairs deviate more strongly from the SM case. The absolute cross sections both in the EFT and the C2HDM can be modified by more than an order of magnitude. In particular, in the C2HDM the resonant production of Higgs pairs can by far exceed the SM cross section.

  4. Decoupling, effective Lagrangian, and gauge hierarchy in spontaneously broken non-Abelian gauge theories

    International Nuclear Information System (INIS)

    Kazama, Y.; Yao, Y.

    1982-01-01

    In spontaneously broken non-Abelian gauge theories which admit gauge hierarchy at the tree level, we show, to all orders in perturbation theory, that (i) the superheavy particles decouple from the light sector at low energies, (ii) an effective low-energy renormalizable theory emerges together with appropriate counterterms, and (iii) the gauge hierarchy can be consistently maintained in the presence of radiative corrections. These assertions are explicitly demonstrated for O(3) gauge theory with two triplets of Higgs particles in a manner easily applicable to more realistic grand unified theories. Furthermore, as a by-product of our analysis, we obtain a systematic method of computing the parameters of the effective low-energy theory via renormalization-group equations to any desired accuracy

  5. Abelian faces of state spaces of C*-algebras

    International Nuclear Information System (INIS)

    Batty, C.J.K.

    1980-01-01

    Let F be a closed face of the weak* compact convex state space of a unital C*-algebra A. The class of F-abelian states, introduced earlier by the author, is studied further. It is shown (without any restriction on A or F) that F is a Choquet simplex if and only if every state in F is F-abelian, and that it is sufficient for this that every pure state in F is F-abelian. As a corollary, it is deduced that an arbitrary C*-dynamical system (A,G,α) is G-abelian if and only if every ergodic state is weakly clustering. Nevertheless the set of all F-abelian (or even G-abelian) states is not necessarily weak* compact. (orig.)

  6. On the loop-loop scattering amplitudes in Abelian and non-Abelian gauge theories

    International Nuclear Information System (INIS)

    Meggiolaro, Enrico

    2005-01-01

    The high-energy elastic scattering amplitude of two colour-singlet qq-bar pairs is governed by the correlation function of two Wilson loops, which follow the classical straight lines for quark (antiquark) trajectories. This quantity is expected to be free of IR divergences, differently from what happens for the parton-parton elastic scattering amplitude, described, in the high-energy limit, by the expectation value of two Wilson lines. We shall explicitly test this IR finiteness by a direct non-perturbative computation of the loop-loop scattering amplitudes in the (pedagogic, but surely physically interesting) case of quenched QED. The results obtained for the Abelian case will be generalized to the case of a non-Abelian gauge theory with Nc colours, but stopping to the order O(g4) in perturbation theory. In connection with the above-mentioned IR finiteness, we shall also discuss some analytic properties of the loop-loop scattering amplitudes in both Abelian and non-Abelian gauge theories, when going from Minkowskian to Euclidean theory, which can be relevant to the still unsolved problem of the s-dependence of hadron-hadron total cross-sections

  7. Fermions and non-Abelian vortex

    International Nuclear Information System (INIS)

    Mello, E.R.B. de.

    1986-01-01

    Some aspectos of the fermion-non-Abelian vortex system are discussed. It is shown that this system presents properties analogous to the fermion-non-Abelian magnetic monopole one. But, differrently from the fermion-monopole case, this system does not present fermion condensate V = 0. (Author) [pt

  8. Unitarizing Higgs Inflation

    CERN Document Server

    Giudice, Gian F

    2011-01-01

    We consider a simple extension of the Standard Model Higgs inflation with one new real scalar field which preserves unitarity up to the Planck scale. The new scalar field (called sigma) completes in the ultraviolet the theory of Higgs inflation by linearizing the Higgs kinetic term in the Einstein frame, just as the non-linear sigma model is unitarized into its linear version. The unitarity cutoff of the effective theory, obtained by integrating out the sigma field, varies with the background value of the Higgs field. In our setup, both the Higgs field and the sigma field participate in the inflationary dynamics, following the flat direction of the potential. We obtain the same slow-roll parameters and spectral index as in the original Higgs inflation but we find that the Hubble rate during inflation depends not only on the Higgs self-coupling, but also on the unknown couplings of the sigma field.

  9. Unitarizing Higgs inflation

    International Nuclear Information System (INIS)

    Giudice, Gian F.; Lee, Hyun Min

    2011-01-01

    We consider a simple extension of the Standard Model Higgs inflation with one new real scalar field which preserves unitarity up to the Planck scale. The new scalar field (called sigma) completes in the ultraviolet the theory of Higgs inflation by linearizing the Higgs kinetic term in the Einstein frame, just as the non-linear sigma model is unitarized into its linear version. The unitarity cutoff of the effective theory, obtained by integrating out the sigma field, varies with the background value of the Higgs field. In our setup, both the Higgs field and the sigma field participate in the inflationary dynamics, following the flat direction of the potential. We obtain the same slow-roll parameters and spectral index as in the original Higgs inflation but we find that the Hubble rate during inflation depends not only on the Higgs self-coupling, but also on the unknown couplings of the sigma field.

  10. Higgs boson production and decay at e+e− colliders as a probe of the Left–Right twin Higgs model

    Directory of Open Access Journals (Sweden)

    Jinzhong Han

    2015-07-01

    Full Text Available In the framework of the Left–Right twin Higgs (LRTH model, we consider the constrains from the latest search for high-mass dilepton resonances at the LHC and find that the heavy neutral boson ZH is excluded with mass below 2.76 TeV. Under these constrains, we study the Higgs–Gauge coupling production processes e+e−→ZH, e+e−→νeνe¯H and e+e−→e+e−H, top quark Yukawa coupling production process e+e−→tt¯H, Higgs self-couplings production processes e+e−→ZHH and e+e−→νeνe¯HH at e+e− colliders. Besides, we study the major decay modes of the Higgs boson, namely h→ff¯(f=b,c,τ, VV⁎(V=W,Z, gg, γγ. We find that the LRTH effects are sizable so that the Higgs boson processes at e+e− collider can be a sensitive probe for the LRTH model.

  11. Vector and Axial-vector resonances in composite models of the Higgs boson

    DEFF Research Database (Denmark)

    Franzosi, Diogo Buarque; Cacciapaglia, Giacomo; Cai, Haiying

    2016-01-01

    We provide a non-linear realisation of composite Higgs models in the context of the SU(4)/Sp(4) symmetry breaking pattern, where the effective Lagrangian of the spin-0 and spin-1 resonances is constructed via the CCWZ prescription using the Hidden Symmetry formalism. We investigate the EWPT const...... as a template for the phenomenology of composite Higgs models at the LHC and at future 100 TeV colliders, as well as for other application. In this work, we focus on the formalism for spin-1 resonances and their bounds from di-lepton and di-boson searches at the LHC.......We provide a non-linear realisation of composite Higgs models in the context of the SU(4)/Sp(4) symmetry breaking pattern, where the effective Lagrangian of the spin-0 and spin-1 resonances is constructed via the CCWZ prescription using the Hidden Symmetry formalism. We investigate the EWPT...... constraints by accounting the effects from reduced Higgs couplings and integrating out heavy spin-1 resonances. This theory emerges from an underlying theory of gauge interactions with fermions, thus first principle lattice results predict the massive spectrum in composite Higgs models. This model can be used...

  12. A Ball Pool Model to Illustrate Higgs Physics to the Public

    Science.gov (United States)

    Organtini, Giovanni

    2017-01-01

    A simple model is presented to explain Higgs boson physics to the grand public. The model consists of a children's ball pool representing a Universe filled with a certain amount of the Higgs field. The model is suitable for usage as a hands-on tool in scientific exhibits and provides a clear explanation of almost all the aspects of the physics of…

  13. Penguin effects induced by the two-Higgs-doublet model and charmless B-meson decays

    International Nuclear Information System (INIS)

    Davies, A.J.; Joshi, G.C.; Matsuda, M.

    1991-03-01

    Nonstandard physical effects through the penguin diagram induced by the charged Higgs scalar contribution in the two-Higgs-doublet model are analysed. The non-leptonic β-decay processes including the non-standard two-Higgs-doublet contribution are compared with the standard model results, which arise from the magnetic gluon transition term. The charged Higgs contribution gives a sizable enhancement to the branching fractions of β-meson charmless decay. 13 refs., 4 figs

  14. Restrictions on two Higgs doublet models and CP violation at the unification scale

    International Nuclear Information System (INIS)

    Athanasiu, G.G.

    1987-01-01

    In Part I we examine bounds from CP violation in the neutral K system on charged Higgs masses and couplings in models with two Higgs doublets. While CP violation is still due only to a non-zero phase in the Kobayashi-Maskawa matrix, there are additional short-distance contributions involving charged Higgs exchange rather than W boson exchange. By having CP violation in the mass matrix, but not in the kaon to two pions decay amplitude, largely due to Higgs exchange, it is possible to obtain a small value of ε'/ε. In Part II we obtain bounds on charged-Higgs-boson masses and couplings in two Higgs doublet models from their effects on neutral-B-meson mixing. The bounds are comparable to those obtained with additional assumptions from the neutral-K-system. Neutral-Higgs-boson effects on the spectrum and wave functions of tt bound states are examined in the same model. In the future they could lead to restrictions on, or discovery of, the corresponding neutral Higgs bosons if they have relatively low masses and enhanced couplings. Finally, in Part III, the three generation phase invariant measure of CP violation is shown to satisfy a simple and solvable renormalization group equation. Its value falls by four to eight orders of magnitude between the weak and grand unification scales in the standard model, as well as in its two Higgs and supersymmetric extensions. Such a small value of CP violation at the grand unification scale can pose a problem for baryogenesis; this avoided if there are heavy quarks with masses close to their fixed points

  15. The Higgs hunter's guide

    CERN Document Server

    Gunion, John F; Haber, Howard E; Kane, Gordon L

    1989-01-01

    The Higgs Hunter's Guide is a definitive and comprehensive guide to the physics of Higgs bosons. In particular, it discusses the extended Higgs sectors required by those recent theoretical approaches that go beyond the Standard Model, including supersymmetry and superstring-inspired models.

  16. Higgs Discovery

    DEFF Research Database (Denmark)

    Sannino, Francesco

    2013-01-01

    has been challenged by the discovery of a not-so-heavy Higgs-like state. I will therefore review the recent discovery \\cite{Foadi:2012bb} that the standard model top-induced radiative corrections naturally reduce the intrinsic non-perturbative mass of the composite Higgs state towards the desired...... via first principle lattice simulations with encouraging results. The new findings show that the recent naive claims made about new strong dynamics at the electroweak scale being disfavoured by the discovery of a not-so-heavy composite Higgs are unwarranted. I will then introduce the more speculative......I discuss the impact of the discovery of a Higgs-like state on composite dynamics starting by critically examining the reasons in favour of either an elementary or composite nature of this state. Accepting the standard model interpretation I re-address the standard model vacuum stability within...

  17. Marginal and non-commutative deformations via non-abelian T-duality

    Energy Technology Data Exchange (ETDEWEB)

    Hoare, Ben [Institut für Theoretische Physik, ETH Zürich,Wolfgang-Pauli-Strasse 27, 8093 Zürich (Switzerland); Thompson, Daniel C. [Theoretische Natuurkunde, Vrije Universiteit Brussel & The International Solvay Institutes, Pleinlaan 2, B-1050 Brussels (Belgium)

    2017-02-10

    In this short article we develop recent proposals to relate Yang-Baxter sigma-models and non-abelian T-duality. We demonstrate explicitly that the holographic space-times associated to both (multi-parameter)-β-deformations and non-commutative deformations of N=4 super Yang-Mills gauge theory including the RR fluxes can be obtained via the machinery of non-abelian T-duality in Type II supergravity.

  18. Elements of theory of abelian groups

    International Nuclear Information System (INIS)

    Lebedenko, V.M.

    1977-01-01

    Some methods and results of studies on the abelian group theory being an important branch of modern algebra are presented. Some examples of the application of the abelian groups in physics are given. A primary information on commutative groups is presented. The concepts of a group, a subgroup, homomorphism, an order of element are given; those of torsion, torsion-free and mixed groups are considered, as well as the concepts of direct and full direct sums. The concepts of a free group and defining relations, of linear dependence and a rank are given. The main classes of abelian groups and subgroup types are described. Some classical results on the abelian group theory are presented, its modern state is described, the links with other regions of algebra are presented

  19. Vector and axial-vector resonances in composite models of the Higgs boson

    Energy Technology Data Exchange (ETDEWEB)

    Franzosi, Diogo Buarque [II. Physikalisches Institut, Universität Göttingen,Friedrich-Hund-Platz 1, 37077 Göttingen (Germany); Cacciapaglia, Giacomo; Cai, Haiying; Deandrea, Aldo [Univ Lyon, Université Lyon 1, CNRS/IN2P3, IPNL,F-69622, Villeurbanne (France); Frandsen, Mads [CP-Origins & Danish Institute for Advanced Study DIAS, University of Southern Denmark,Campusvej 55, DK-5230 Odense M (Denmark)

    2016-11-11

    We provide a non-linear realisation of composite Higgs models in the context of the SU(4)/Sp(4) symmetry breaking pattern, where the effective Lagrangian of the spin-0 and spin-1 resonances is constructed via the CCWZ prescription using the Hidden Symmetry formalism. We investigate the EWPT constraints by accounting the effects from reduced Higgs couplings and integrating out heavy spin-1 resonances. This theory emerges from an underlying theory of gauge interactions with fermions, thus first principle lattice results predict the massive spectrum in composite Higgs models. This model can be used as a template for the phenomenology of composite Higgs models at the LHC and at future 100 TeV colliders, as well as for other application. In this work, we focus on the formalism for spin-1 resonances and their bounds from di-lepton and di-boson searches at the LHC.

  20. arXiv Statistical Analyses of Higgs- and Z-Portal Dark Matter Models

    CERN Document Server

    Ellis, John; Marzola, Luca; Raidal, Martti

    2018-06-12

    We perform frequentist and Bayesian statistical analyses of Higgs- and Z-portal models of dark matter particles with spin 0, 1/2 and 1. Our analyses incorporate data from direct detection and indirect detection experiments, as well as LHC searches for monojet and monophoton events, and we also analyze the potential impacts of future direct detection experiments. We find acceptable regions of the parameter spaces for Higgs-portal models with real scalar, neutral vector, Majorana or Dirac fermion dark matter particles, and Z-portal models with Majorana or Dirac fermion dark matter particles. In many of these cases, there are interesting prospects for discovering dark matter particles in Higgs or Z decays, as well as dark matter particles weighing $\\gtrsim 100$ GeV. Negative results from planned direct detection experiments would still allow acceptable regions for Higgs- and Z-portal models with Majorana or Dirac fermion dark matter particles.

  1. Handbook of LHC Higgs Cross Sections: 4. Deciphering the Nature of the Higgs Sector

    Energy Technology Data Exchange (ETDEWEB)

    de Florian, D. [National Univ. of San Martin, Buenos Aires (Argentina); et al.

    2016-10-25

    This Report summarizes the results of the activities of the LHC Higgs Cross Section Working Group in the period 2014-2016. The main goal of the working group was to present the state-of-the-art of Higgs physics at the LHC, integrating all new results that have appeared in the last few years. The first part compiles the most up-to-date predictions of Higgs boson production cross sections and decay branching ratios, parton distribution functions, and off-shell Higgs boson production and interference effects. The second part discusses the recent progress in Higgs effective field theory predictions, followed by the third part on pseudo-observables, simplified template cross section and fiducial cross section measurements, which give the baseline framework for Higgs boson property measurements. The fourth part deals with the beyond the Standard Model predictions of various benchmark scenarios of Minimal Supersymmetric Standard Model, extended scalar sector, Next-to-Minimal Supersymmetric Standard Model and exotic Higgs boson decays. This report follows three previous working-group reports: Handbook of LHC Higgs Cross Sections: 1. Inclusive Observables (CERN-2011-002), Handbook of LHC Higgs Cross Sections: 2. Differential Distributions (CERN-2012-002), and Handbook of LHC Higgs Cross Sections: 3. Higgs properties (CERN-2013-004). The current report serves as the baseline reference for Higgs physics in LHC Run 2 and beyond.

  2. Fermionic extensions of the Standard Model in light of the Higgs couplings

    Science.gov (United States)

    Bizot, Nicolas; Frigerio, Michele

    2016-01-01

    As the Higgs boson properties settle, the constraints on the Standard Model extensions tighten. We consider all possible new fermions that can couple to the Higgs, inspecting sets of up to four chiral multiplets. We confront them with direct collider searches, electroweak precision tests, and current knowledge of the Higgs couplings. The focus is on scenarios that may depart from the decoupling limit of very large masses and vanishing mixing, as they offer the best prospects for detection. We identify exotic chiral families that may receive a mass from the Higgs only, still in agreement with the hγγ signal strength. A mixing θ between the Standard Model and non-chiral fermions induces order θ 2 deviations in the Higgs couplings. The mixing can be as large as θ ˜ 0 .5 in case of custodial protection of the Z couplings or accidental cancellation in the oblique parameters. We also notice some intriguing effects for much smaller values of θ, especially in the lepton sector. Our survey includes a number of unconventional pairs of vector-like and Majorana fermions coupled through the Higgs, that may induce order one corrections to the Higgs radiative couplings. We single out the regions of parameters where hγγ and hgg are unaffected, while the hγZ signal strength is significantly modified, turning a few times larger than in the Standard Model in two cases. The second run of the LHC will effectively test most of these scenarios.

  3. Can we distinguish an MSSM Higgs from a SM Higgs at a linear collider?

    International Nuclear Information System (INIS)

    Logan, Heather E.

    2001-01-01

    We study the prospects for distinguishing the CP-even Higgs boson of the minimal supersymmetric extension of the Standard Model (MSSM) from the Standard Model (SM) Higgs boson by measuring its branching ratios at an e + e - linear collider. The regions of the M A -tan β plane in which an MSSM Higgs boson can be distinguished from the SM Higgs boson depend strongly upon the supersymmetric parameters that enter the radiative corrections to the Higgs mass matrix and the Higgs couplings to fermions. In some regions of parameter space it is possible to extract the supersymmetric correction to the relation between the b quark mass and its Yukawa coupling from Higgs branching ratio measurements

  4. Simulating the electroweak phase transition in the SU(2) Higgs model

    International Nuclear Information System (INIS)

    Fodor, Z.; Hein, J.; Jansen, K.; Jaster, A.; Montvay, I.

    1994-09-01

    Numerical simulations are performed to study the finite temperature phase transition in the SU(2) Higgs model on the lattice. In the presently investigated range of the Higgs boson mass, below 50 GeV, the phase transition turns out to be of first order and its strength is rapidly decreasing with increasing Higgs boson mass. In order to control the systematic errors, we also perform studies of scaling violations and of finite volume effects. (orig.)

  5. Constraints on Models for the Higgs Boson with Exotic Spin and Parity

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Emily Hannah [Michigan State U.

    2016-01-01

    The production of a Higgs boson in association with a vector boson at the Tevatron offers a unique opportunity to study models for the Higgs boson with exotic spin J and parity P assignments. At the Tevatron the V H system is produced near threshold. Different JP assignments of the Higgs boson can be distinguished by examining the behavior of the cross section near threshold. The relatively low backgrounds at the Tevatron compared to the LHC put us in a unique position to study the direct decay of the Higgs boson to fermions. If the Higgs sector is more complex than predicted, studying the spin and parity of the Higgs boson in all decay modes is important. In this Thesis we will examine the WH → ℓνb¯b production and decay mode using 9.7 fb-1 of data collected by the D0 experiment in an attempt to derive constraints on models containing exotic values for the spin and parity of the Higgs boson. In particular, we will examine models for a Higgs boson with JP = 0- and JP = 2+. We use a likelihood ratio to quantify the degree to which our data are incompatible with exotic JP predictions for a range of possible production rates. Assuming the production cross section times branching ratio of the signals in the models considered is equal to the standard model prediction, the WH → ℓνb¯b mode alone is unable to reject either exotic model considered. We will also discuss the combination of the ZH → ℓℓb¯b, WH → ℓνb¯b, and V H → ννb¯b production modes at the D0 experiment and with the CDF experiment. When combining all three production modes at the D0 experiment we reject the JP = 0- and JP = 2+ hypotheses at the 97.6% CL and at the 99.0% CL, respectively, when assuming the signal production cross section times branching ratio is equal to the standard model predicted value. When combining with the CDF experiment we reject the JP = 0- and JP = 2+ hypotheses with significances of 5.0 standard deviations and 4.9 standard deviations

  6. Group Approach to the Quantization of Non-Abelian Stueckelberg Models

    International Nuclear Information System (INIS)

    Aldaya, V; Lopez-Ruiz, F F; Calixto, M

    2011-01-01

    The quantum field theory of Non-Linear Sigma Models on coadjoint orbits of a semi-simple group G are formulated in the framework of a Group Approach to Quantization. In this scheme, partial-trace Lagrangians are recovered from two-cocycles defined on the infinite-dimensional group of sections of the jet-gauge group J 1 (G). This construction is extended to the entire physical system coupled to Yang-Mills fields, thus constituting an algebraic formulation of the Non-Abelian Stueckelgerg formalism devoid of the unitarity/renormalizability obstruction that this theory finds in the standard Lagrangian formalism under canonical quantization.

  7. Group Approach to the Quantization of Non-Abelian Stueckelberg Models

    Energy Technology Data Exchange (ETDEWEB)

    Aldaya, V; Lopez-Ruiz, F F [Instituto de Astrofisica de AndalucIa (IAA-CSIC), Apartado Postal 3004, 18080 Granada (Spain); Calixto, M, E-mail: valdaya@iaa.es, E-mail: Manuel.Calixto@upct.es, E-mail: flopez@iaa.es [Departamento de Matematica Aplicada y Estadistica, Universidad Politecnica de Cartagena, Paseo Alfonso XIII 56, 30203 Cartagena (Spain)

    2011-03-01

    The quantum field theory of Non-Linear Sigma Models on coadjoint orbits of a semi-simple group G are formulated in the framework of a Group Approach to Quantization. In this scheme, partial-trace Lagrangians are recovered from two-cocycles defined on the infinite-dimensional group of sections of the jet-gauge group J{sup 1} (G). This construction is extended to the entire physical system coupled to Yang-Mills fields, thus constituting an algebraic formulation of the Non-Abelian Stueckelgerg formalism devoid of the unitarity/renormalizability obstruction that this theory finds in the standard Lagrangian formalism under canonical quantization.

  8. Abelian dominance in Einstein’s theory

    International Nuclear Information System (INIS)

    Cho, Y M; Oh, S H; Kim, Sang-Woo

    2012-01-01

    We conjecture the Abelian dominance in Einstein’s theory, that is, the Abelian part of the theory plays the central role in the dynamics. Treating Einstein’s theory as a gauge theory of the Lorentz group, we show that Einstein’s theory can be decomposed into the restricted part made up of the restricted connection which has the full Lorentz gauge invariance and the valence part made up of the valence connection which plays the role of gravitational source of the restricted gravity. In this decomposition, the role of the metric g μν is replaced by a four-index metric tensor g μν which transforms covariantly under the Lorentz group, and the metric-compatibility condition ∇ α g μν = 0 of the connection is replaced by the gauge and generally covariant condition D μ g μν = 0. We show that there are two different Abelian decompositions, the light-like (or null) decomposition and the non-light-like (or non-null) decomposition, because the Lorentz group has two maximal Abelian subgroups. The decomposition shows the existence of the restricted gravity which has the full general invariance but is much simpler than Einstein’s theory. Moreover, it tells us that the restricted gravity can be written as an Abelian gauge theory, which implies that the graviton can be described by a massless spin-1 field. This establishes the Abelian dominance in Einstein’s theory. (paper)

  9. Fractionalizing Majorana Fermions: Non-Abelian Statistics on the Edges of Abelian Quantum Hall States

    Directory of Open Access Journals (Sweden)

    Netanel H. Lindner

    2012-10-01

    Full Text Available We study the non-Abelian statistics characterizing systems where counterpropagating gapless modes on the edges of fractional quantum Hall states are gapped by proximity coupling to superconductors and ferromagnets. The most transparent example is that of a fractional quantum spin Hall state, in which electrons of one spin direction occupy a fractional quantum Hall state of ν=1/m, while electrons of the opposite spin occupy a similar state with ν=-1/m. However, we also propose other examples of such systems, which are easier to realize experimentally. We find that each interface between a region on the edge coupled to a superconductor and a region coupled to a ferromagnet corresponds to a non-Abelian anyon of quantum dimension sqrt[2m]. We calculate the unitary transformations that are associated with the braiding of these anyons, and we show that they are able to realize a richer set of non-Abelian representations of the braid group than the set realized by non-Abelian anyons based on Majorana fermions. We carry out this calculation both explicitly and by applying general considerations. Finally, we show that topological manipulations with these anyons cannot realize universal quantum computation.

  10. Testing the scalar sector of the twin Higgs model at colliders

    Science.gov (United States)

    Chacko, Zackaria; Kilic, Can; Najjari, Saereh; Verhaaren, Christopher B.

    2018-03-01

    We consider mirror twin Higgs models in which the breaking of the global symmetry is realized linearly. In this scenario, the radial mode in the Higgs potential is present in the spectrum and constitutes a second portal between the twin and SM sectors. We show that a study of the properties of this particle at colliders, when combined with precision measurements of the light Higgs, can be used to overdetermine the form of the scalar potential, thereby confirming that it possesses an enhanced global symmetry as dictated by the twin Higgs mechanism. We find that, although the reach of the LHC for this state is limited, future linear colliders will be able to explore a significant part of the preferred parameter space, allowing the possibility of directly testing the twin Higgs framework.

  11. Implications for new physics from fine-tuning arguments: II. Little Higgs models

    International Nuclear Information System (INIS)

    Casas, J.A.; Espinosa, J.R.; Hidalgo, I.

    2005-01-01

    We examine the fine-tuning associated to electroweak breaking in Little Higgs scenarios and find it to be always substantial and, generically, much higher than suggested by the rough estimates usually made. This is due to implicit tunings between parameters that can be overlooked at first glance but show up in a more systematic analysis. Focusing on four popular and representative Little Higgs scenarios, we find that the fine-tuning is essentially comparable to that of the Little Hierarchy problem of the Standard Model (which these scenarios attempt to solve) and higher than in supersymmetric models. This does not demonstrate that all Little Higgs models are fine-tuned, but stresses the need of a careful analysis of this issue in model-building before claiming that a particular model is not fine-tuned. In this respect we identify the main sources of potential fine-tuning that should be watched out for, in order to construct a successful Little Higgs model, which seems to be a non-trivial goal. (author)

  12. Higgs boson production via Z, W bosons and toponium in the E6 superstring model

    International Nuclear Information System (INIS)

    Barger, V.; Whisnant, K.

    1988-01-01

    The authors examine the production of light Higgs bosons associated with electroweak symmetry-breaking in an E 6 superstring model in Z ω HZ * decays, in e + e - annihilation and in toponium decays. They find that the couplings of the lightest scalar Higgs boson H 1 0 in these models are very similar to those of the standard Higgs boson unless the pseudoscalar P 0 in the model has mass ≤ M z . Possible new modes for Higgs boson production not found in the standard model are presented. The authors give simple analytic expressions for the Higgs boson masses and mixing angles in the limit that the extra Z' gauge boson is heavy which clearly shows the production mechanisms that are favored for a given set of model parameters

  13. Anatomy of Higgs mass in supersymmetric inverse seesaw models

    Energy Technology Data Exchange (ETDEWEB)

    Chun, Eung Jin, E-mail: ejchun@kias.re.kr [Korea Institute for Advanced Study, Seoul 130-722 (Korea, Republic of); Mummidi, V. Suryanarayana, E-mail: soori9@cts.iisc.ernet.in [Centre for High Energy Physics, Indian Institute of Science, Bangalore 560012 (India); Vempati, Sudhir K., E-mail: vempati@cts.iisc.ernet.in [Centre for High Energy Physics, Indian Institute of Science, Bangalore 560012 (India)

    2014-09-07

    We compute the one loop corrections to the CP-even Higgs mass matrix in the supersymmetric inverse seesaw model to single out the different cases where the radiative corrections from the neutrino sector could become important. It is found that there could be a significant enhancement in the Higgs mass even for Dirac neutrino masses of O(30) GeV if the left-handed sneutrino soft mass is comparable or larger than the right-handed neutrino mass. In the case where right-handed neutrino masses are significantly larger than the supersymmetry breaking scale, the corrections can utmost account to an upward shift of 3 GeV. For very heavy multi TeV sneutrinos, the corrections replicate the stop corrections at 1-loop. We further show that general gauge mediation with inverse seesaw model naturally accommodates a 125 GeV Higgs with TeV scale stops.

  14. Higgs physics at LHC

    OpenAIRE

    Unal, G

    2006-01-01

    This is a review of Higgs physics at LHC. The topics covered are the search of the Standard Model Higgs boson (with emphasis on the low mass region), the measurements of the Higgs boson properties (mass, width, spin, CP and couplings) and the Higgs sector of the MSSM.

  15. Conformally invariant Inert Higgs doublet model: an unified model for Inflation and Dark matter

    International Nuclear Information System (INIS)

    Das, Moumita; Mohanty, Subhendra

    2012-01-01

    Motivation of our present study is the searching for an unified model which can describe both the inflation as well as dark matter. From particle physics point of view, Higgs can be the most interesting candidate for the scalar field inflation. Conformal coupling of the inflaton with the gravity can generate the density perturbation and we use this idea in a realistic inert Higgs doublet model. We study the loop corrections of this conformally coupled system and in present era there is electroweak symmetry breaking to provide the mass of the particles. Study of the mass spectrum in present era reveals the scalar dark matter with mass 33.7 GeV and lightest Higgs at 125.6 GeV.

  16. Search for Higgs bosons predicted in two-Higgs-doublet models via decays to tau lepton pairs in 1.96 TeV pp collisions.

    Science.gov (United States)

    Aaltonen, T; Adelman, J; Akimoto, T; Alvarez González, B; Amerio, S; Amidei, D; Anastassov, A; Annovi, A; Antos, J; Apollinari, G; Apresyan, A; Arisawa, T; Artikov, A; Ashmanskas, W; Attal, A; Aurisano, A; Azfar, F; Badgett, W; Barbaro-Galtieri, A; Barnes, V E; Barnett, B A; Barria, P; Bartos, P; Bartsch, V; Bauer, G; Beauchemin, P-H; Bedeschi, F; Beecher, D; Behari, S; Bellettini, G; Bellinger, J; Benjamin, D; Beretvas, A; Beringer, J; Bhatti, A; Binkley, M; Bisello, D; Bizjak, I; Blair, R E; Blocker, C; Blumenfeld, B; Bocci, A; Bodek, A; Boisvert, V; Bolla, G; Bortoletto, D; Boudreau, J; Boveia, A; Brau, B; Bridgeman, A; Brigliadori, L; Bromberg, C; Brubaker, E; Budagov, J; Budd, H S; Budd, S; Burke, S; Burkett, K; Busetto, G; Bussey, P; Buzatu, A; Byrum, K L; Cabrera, S; Calancha, C; Campanelli, M; Campbell, M; Canelli, F; Canepa, A; Carls, B; Carlsmith, D; Carosi, R; Carrillo, S; Carron, S; Casal, B; Casarsa, M; Castro, A; Catastini, P; Cauz, D; Cavaliere, V; Cavalli-Sforza, M; Cerri, A; Cerrito, L; Chang, S H; Chen, Y C; Chertok, M; Chiarelli, G; Chlachidze, G; Chlebana, F; Cho, K; Chokheli, D; Chou, J P; Choudalakis, G; Chuang, S H; Chung, K; Chung, W H; Chung, Y S; Chwalek, T; Ciobanu, C I; Ciocci, M A; Clark, A; Clark, D; Compostella, G; Convery, M E; Conway, J; Cordelli, M; Cortiana, G; Cox, C A; Cox, D J; Crescioli, F; Cuenca Almenar, C; Cuevas, J; Culbertson, R; Cully, J C; Dagenhart, D; Datta, M; Davies, T; de Barbaro, P; De Cecco, S; Deisher, A; De Lorenzo, G; Dell'Orso, M; Deluca, C; Demortier, L; Deng, J; Deninno, M; Derwent, P F; Di Canto, A; di Giovanni, G P; Dionisi, C; Di Ruzza, B; Dittmann, J R; D'Onofrio, M; Donati, S; Dong, P; Donini, J; Dorigo, T; Dube, S; Efron, J; Elagin, A; Erbacher, R; Errede, D; Errede, S; Eusebi, R; Fang, H C; Farrington, S; Fedorko, W T; Feild, R G; Feindt, M; Fernandez, J P; Ferrazza, C; Field, R; Flanagan, G; Forrest, R; Frank, M J; Franklin, M; Freeman, J C; Furic, I; Gallinaro, M; Galyardt, J; Garberson, F; Garcia, J E; Garfinkel, A F; Garosi, P; Genser, K; Gerberich, H; Gerdes, D; Gessler, A; Giagu, S; Giakoumopoulou, V; Giannetti, P; Gibson, K; Gimmell, J L; Ginsburg, C M; Giokaris, N; Giordani, M; Giromini, P; Giunta, M; Giurgiu, G; Glagolev, V; Glenzinski, D; Gold, M; Goldschmidt, N; Golossanov, A; Gomez, G; Gomez-Ceballos, G; Goncharov, M; González, O; Gorelov, I; Goshaw, A T; Goulianos, K; Gresele, A; Grinstein, S; Grosso-Pilcher, C; Group, R C; Grundler, U; Guimaraes da Costa, J; Gunay-Unalan, Z; Haber, C; Hahn, K; Hahn, S R; Halkiadakis, E; Han, B-Y; Han, J Y; Happacher, F; Hara, K; Hare, D; Hare, M; Harper, S; Harr, R F; Harris, R M; Hartz, M; Hatakeyama, K; Hays, C; Heck, M; Heijboer, A; Heinrich, J; Henderson, C; Herndon, M; Heuser, J; Hewamanage, S; Hidas, D; Hill, C S; Hirschbuehl, D; Hocker, A; Hou, S; Houlden, M; Hsu, S-C; Huffman, B T; Hughes, R E; Husemann, U; Hussein, M; Huston, J; Incandela, J; Introzzi, G; Iori, M; Ivanov, A; James, E; Jang, D; Jayatilaka, B; Jeon, E J; Jha, M K; Jindariani, S; Johnson, W; Jones, M; Joo, K K; Jun, S Y; Jung, J E; Junk, T R; Kamon, T; Kar, D; Karchin, P E; Kato, Y; Kephart, R; Ketchum, W; Keung, J; Khotilovich, V; Kilminster, B; Kim, D H; Kim, H S; Kim, H W; Kim, J E; Kim, M J; Kim, S B; Kim, S H; Kim, Y K; Kimura, N; Kirsch, L; Klimenko, S; Knuteson, B; Ko, B R; Kondo, K; Kong, D J; Konigsberg, J; Korytov, A; Kotwal, A V; Kreps, M; Kroll, J; Krop, D; Krumnack, N; Kruse, M; Krutelyov, V; Kubo, T; Kuhr, T; Kulkarni, N P; Kurata, M; Kwang, S; Laasanen, A T; Lami, S; Lammel, S; Lancaster, M; Lander, R L; Lannon, K; Lath, A; Latino, G; Lazzizzera, I; LeCompte, T; Lee, E; Lee, H S; Lee, S W; Leone, S; Lewis, J D; Lin, C-S; Linacre, J; Lindgren, M; Lipeles, E; Lister, A; Litvintsev, D O; Liu, C; Liu, T; Lockyer, N S; Loginov, A; Loreti, M; Lovas, L; Lucchesi, D; Luci, C; Lueck, J; Lujan, P; Lukens, P; Lungu, G; Lyons, L; Lys, J; Lysak, R; MacQueen, D; Madrak, R; Maeshima, K; Makhoul, K; Maki, T; Maksimovic, P; Malde, S; Malik, S; Manca, G; Manousakis-Katsikakis, A; Margaroli, F; Marino, C; Marino, C P; Martin, A; Martin, V; Martínez, M; Martínez-Ballarín, R; Maruyama, T; Mastrandrea, P; Masubuchi, T; Mathis, M; Mattson, M E; Mazzanti, P; McFarland, K S; McIntyre, P; McNulty, R; Mehta, A; Mehtala, P; Menzione, A; Merkel, P; Mesropian, C; Miao, T; Miladinovic, N; Miller, R; Mills, C; Milnik, M; Mitra, A; Mitselmakher, G; Miyake, H; Moggi, N; Mondragon, M N; Moon, C S; Moore, R; Morello, M J; Morlock, J; Movilla Fernandez, P; Mülmenstädt, J; Mukherjee, A; Muller, Th; Mumford, R; Murat, P; Mussini, M; Nachtman, J; Nagai, Y; Nagano, A; Naganoma, J; Nakamura, K; Nakano, I; Napier, A; Necula, V; Nett, J; Neu, C; Neubauer, M S; Neubauer, S; Nielsen, J; Nodulman, L; Norman, M; Norniella, O; Nurse, E; Oakes, L; Oh, S H; Oh, Y D; Oksuzian, I; Okusawa, T; Orava, R; Osterberg, K; Pagan Griso, S; Pagliarone, C; Palencia, E; Papadimitriou, V; Papaikonomou, A; Paramonov, A A; Parks, B; Pashapour, S; Patrick, J; Pauletta, G; Paulini, M; Paus, C; Peiffer, T; Pellett, D E; Penzo, A; Phillips, T J; Piacentino, G; Pianori, E; Pinera, L; Pitts, K; Plager, C; Pondrom, L; Poukhov, O; Pounder, N; Prakoshyn, F; Pronko, A; Proudfoot, J; Ptohos, F; Pueschel, E; Punzi, G; Pursley, J; Rademacker, J; Rahaman, A; Ramakrishnan, V; Ranjan, N; Redondo, I; Renton, P; Renz, M; Rescigno, M; Richter, S; Rimondi, F; Ristori, L; Robson, A; Rodrigo, T; Rodriguez, T; Rogers, E; Rolli, S; Roser, R; Rossi, M; Rossin, R; Roy, P; Ruiz, A; Russ, J; Rusu, V; Rutherford, B; Saarikko, H; Safonov, A; Sakumoto, W K; Saltó, O; Santi, L; Sarkar, S; Sartori, L; Sato, K; Savoy-Navarro, A; Schlabach, P; Schmidt, A; Schmidt, E E; Schmidt, M A; Schmidt, M P; Schmitt, M; Schwarz, T; Scodellaro, L; Scribano, A; Scuri, F; Sedov, A; Seidel, S; Seiya, Y; Semenov, A; Sexton-Kennedy, L; Sforza, F; Sfyrla, A; Shalhout, S Z; Shears, T; Shepard, P F; Shimojima, M; Shiraishi, S; Shochet, M; Shon, Y; Shreyber, I; Sinervo, P; Sisakyan, A; Slaughter, A J; Slaunwhite, J; Sliwa, K; Smith, J R; Snider, F D; Snihur, R; Soha, A; Somalwar, S; Sorin, V; Spreitzer, T; Squillacioti, P; Stanitzki, M; St Denis, R; Stelzer, B; Stelzer-Chilton, O; Stentz, D; Strologas, J; Strycker, G L; Suh, J S; Sukhanov, A; Suslov, I; Suzuki, T; Taffard, A; Takashima, R; Takeuchi, Y; Tanaka, R; Tecchio, M; Teng, P K; Terashi, K; Thom, J; Thompson, A S; Thompson, G A; Thomson, E; Tipton, P; Ttito-Guzmán, P; Tkaczyk, S; Toback, D; Tokar, S; Tollefson, K; Tomura, T; Tonelli, D; Torre, S; Torretta, D; Totaro, P; Tourneur, S; Trovato, M; Tsai, S-Y; Tu, Y; Turini, N; Ukegawa, F; Vallecorsa, S; van Remortel, N; Varganov, A; Vataga, E; Vázquez, F; Velev, G; Vellidis, C; Vidal, M; Vidal, R; Vila, I; Vilar, R; Vine, T; Vogel, M; Volobouev, I; Volpi, G; Wagner, P; Wagner, R G; Wagner, R L; Wagner, W; Wagner-Kuhr, J; Wakisaka, T; Wallny, R; Wang, S M; Warburton, A; Waters, D; Weinberger, M; Weinelt, J; Wester, W C; Whitehouse, B; Whiteson, D; Wicklund, A B; Wicklund, E; Wilbur, S; Williams, G; Williams, H H; Wilson, P; Winer, B L; Wittich, P; Wolbers, S; Wolfe, C; Wright, T; Wu, X; Würthwein, F; Xie, S; Yagil, A; Yamamoto, K; Yamaoka, J; Yang, U K; Yang, Y C; Yao, W M; Yeh, G P; Yi, K; Yoh, J; Yorita, K; Yoshida, T; Yu, G B; Yu, I; Yu, S S; Yun, J C; Zanello, L; Zanetti, A; Zhang, X; Zheng, Y; Zucchelli, S

    2009-11-13

    We present the results of a search for Higgs bosons predicted in two-Higgs-doublet models, in the case where the Higgs bosons decay to tau lepton pairs, using 1.8 fb(-1) of integrated luminosity of pp collisions recorded by the CDF II experiment at the Fermilab Tevatron. Studying the mass distribution in events where one or both tau leptons decay leptonically, no evidence for a Higgs boson signal is observed. The result is used to infer exclusion limits in the two-dimensional space of tanbeta versus m(A) (the ratio of the vacuum expectation values of the two Higgs doublets and the mass of the pseudoscalar boson, respectively).

  17. CP violation in a multi-Higgs-doublet model with flavor-changing neutral currents

    International Nuclear Information System (INIS)

    Deshpande, N.G.; He, X.

    1994-01-01

    We study CP violation in multi-Higgs-doublet model based on a S 3 xZ 3 horizontal symmetry where the CKM phase is not the principal source of CP violation. We consider two mechanisms for CP violation in this model: (a) CP violation due to complex Yukawa couplings, and (b) CP violation due to scalar-pseudoscalar Higgs boson mixings. Both mechanisms can explain the observed CP violation in the neutral kaon system. ε'/ε due to neutral Higgs boson exchange is small in both mechanisms, but charged Higgs boson contributions can be as large as 10 -4 for (a) and 10 -3 for (b). CP violation in the neutral B system is, however, quite different from the minimal standard model. The neutron electric dipole moment can be as large as the present experimental bound, and can be used to constrain charged Higgs boson masses. The electron EDM is one order of magnitude below the experimental bound in case (b) and smaller in case (a)

  18. Corrections to di-Higgs boson production with light stops and modified Higgs couplings

    Science.gov (United States)

    Huang, Peisi; Joglekar, Aniket; Li, Min; Wagner, Carlos E. M.

    2018-04-01

    The Higgs pair production in gluon fusion is a sensitive probe of beyond-standard model (BSM) phenomena and its detection is a major goal for the LHC and higher energy hadron collider experiments. In this work we reanalyze the possible modifications of the Higgs pair production cross section within low energy supersymmetry models. We show that the supersymmetric contributions to the Higgs pair production cross section are strongly correlated with the ones of the single Higgs production in the gluon fusion channel. Motivated by the analysis of ATLAS and CMS Higgs production data, we show that the scalar superpartners' contributions may lead to significant modification of the di-Higgs production rate and invariant mass distribution with respect to the SM predictions. We also analyze the combined effects on the di-Higgs production rate of a modification of the Higgs trilinear and top-quark Yukawa couplings in the presence of light stops. In particular, we show that due to the destructive interference of the triangle and box amplitude contributions to the di-Higgs production cross section, even a small modification of the top-quark Yukawa coupling can lead to a significant increase of the di-Higgs production rate.

  19. Hypercyclic Abelian Semigroups of Matrices on Cn

    International Nuclear Information System (INIS)

    Ayadi, Adlene; Marzougui, Habib

    2010-07-01

    We give a complete characterization of existence of dense orbit for any abelian semigroup of matrices on C n . For finitely generated semigroups, this characterization is explicit and is used to determine the minimal number of matrices in normal form over C which forms a hypercyclic abelian semigroup on C n . In particular, we show that no abelian semigroup generated by n matrices on C n can be hypercyclic. (author)

  20. Non-abelian paracurrents and their generalizations

    International Nuclear Information System (INIS)

    Bardakci, K.

    1993-01-01

    Extending earlier work, the classical algebra of parafermions (paracurrents) of non-abelian coset models is quantized. The problems connected with non-associativity are resolved by generalizing the concept of factorization. Conformal generators are constructed and the associated conformal algebra with correct central charge is reproduced. It is also shown how to generalize the paracurrent algebra to arrive at new conformal models. (orig.)

  1. Abelian Sandpile Model (ASM) and Infinite Volume Limit

    Indian Academy of Sciences (India)

    ASM- Properties. Any possible sequence of topplings leads to the same stable configuration [Dhar]. The result of particle addition at and subsequent relaxation is given by an operator. £ бвд £ евд £. , where вд £. ¢. ¦. ¤ззз ¤ вг иг . £. ©. ¢ йа£. (Abelian). 7-b ...

  2. Exploring extended scalar sectors with di-Higgs signals: a Higgs EFT perspective

    Science.gov (United States)

    Corbett, Tyler; Joglekar, Aniket; Li, Hao-Lin; Yu, Jiang-Hao

    2018-05-01

    We consider extended scalar sectors of the Standard Model as ultraviolet complete motivations for studying the effective Higgs self-interaction operators of the Standard Model effective field theory. We investigate all motivated heavy scalar models which generate the dimension-six effective operator, | H|6, at tree level and proceed to identify the full set of tree-level dimension-six operators by integrating out the heavy scalars. Of seven models which generate | H|6 at tree level only two, quadruplets of hypercharge Y = 3 Y H and Y = Y H , generate only this operator. Next we perform global fits to constrain relevant Wilson coefficients from the LHC single Higgs measurements as well as the electroweak oblique parameters S and T. We find that the T parameter puts very strong constraints on the Wilson coefficient of the | H|6 operator in the triplet and quadruplet models, while the singlet and doublet models could still have Higgs self-couplings which deviate significantly from the standard model prediction. To determine the extent to which the | H|6 operator could be constrained, we study the di-Higgs signatures at the future 100 TeV collider and explore future sensitivity of this operator. Projected onto the Higgs potential parameters of the extended scalar sectors, with 30 ab-1 luminosity data we will be able to explore the Higgs potential parameters in all seven models.

  3. The standard model and beyond

    CERN Document Server

    Langacker, Paul

    2017-01-01

    This new edition of The Standard Model and Beyond presents an advanced introduction to the physics and formalism of the standard model and other non-abelian gauge theories. It provides a solid background for understanding supersymmetry, string theory, extra dimensions, dynamical symmetry breaking, and cosmology. In addition to updating all of the experimental and phenomenological results from the first edition, it contains a new chapter on collider physics; expanded discussions of Higgs, neutrino, and dark matter physics; and many new problems. The book first reviews calculational techniques in field theory and the status of quantum electrodynamics. It then focuses on global and local symmetries and the construction of non-abelian gauge theories. The structure and tests of quantum chromodynamics, collider physics, the electroweak interactions and theory, and the physics of neutrino mass and mixing are thoroughly explored. The final chapter discusses the motivations for extending the standard model and examin...

  4. A new approach to non-Abelian hydrodynamics

    International Nuclear Information System (INIS)

    Fernández-Melgarejo, Jose J.; Rey, Soo-Jong; Surówka, Piotr

    2017-01-01

    We present a new approach to describe hydrodynamics carrying non-Abelian macroscopic degrees of freedom. Based on the Kaluza-Klein compactification of a higher-dimensional neutral dissipative fluid on a manifold of non-Abelian isometry, we obtain a four-dimensional colored dissipative fluid coupled to Yang-Mills gauge field. We derive transport coefficients of resulting colored fluid, which feature non-Abelian character of color charges. In particular, we obtain color-specific terms in the gradient expansions and response quantities such as the conductivity matrix and the chemical potentials. We argue that our Kaluza-Klein approach provides a robust description of non-Abelian hydrodynamics, and discuss some links between this system and quark-gluon plasma and fluid/gravity duality.

  5. A new approach to non-Abelian hydrodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Fernández-Melgarejo, Jose J. [Center for the Fundamental Laws of Nature, Harvard University,Cambridge, MA 02138 (United States); Rey, Soo-Jong [School of Physics & Astronomy and Center for Theoretical Physics, Seoul National University,Seoul, 08826 (Korea, Republic of); Department of Fundamental Sciences, University of Science and Technology,Daejeon, 34113 (Korea, Republic of); Center for Gauge, Gravity & Strings, Institute for Basic Sciences,Daejeon, 34047 (Korea, Republic of); Surówka, Piotr [Center for the Fundamental Laws of Nature, Harvard University,Cambridge, MA 02138 (United States); Max-Planck-Institut für Physik (Werner-Heisenberg-Institut),Föhringer Ring 6, D-80805 Munich (Germany)

    2017-02-23

    We present a new approach to describe hydrodynamics carrying non-Abelian macroscopic degrees of freedom. Based on the Kaluza-Klein compactification of a higher-dimensional neutral dissipative fluid on a manifold of non-Abelian isometry, we obtain a four-dimensional colored dissipative fluid coupled to Yang-Mills gauge field. We derive transport coefficients of resulting colored fluid, which feature non-Abelian character of color charges. In particular, we obtain color-specific terms in the gradient expansions and response quantities such as the conductivity matrix and the chemical potentials. We argue that our Kaluza-Klein approach provides a robust description of non-Abelian hydrodynamics, and discuss some links between this system and quark-gluon plasma and fluid/gravity duality.

  6. Abelian groups with a minimal generating set | Ruzicka ...

    African Journals Online (AJOL)

    We study the existence of minimal generating sets in Abelian groups. We prove that Abelian groups with minimal generating sets are not closed under quotients, nor under subgroups, nor under infinite products. We give necessary and sufficient conditions for existence of a minimal generating set providing that the Abelian ...

  7. Invisible Higgs decays from Higgs-graviscalar mixing

    International Nuclear Information System (INIS)

    Dominici, Daniele; Gunion, John F.

    2009-01-01

    We recompute the invisible Higgs decay width arising from Higgs-graviscalar mixing in the Arkani-Hamed, Dimopoulos, Dvali model, comparing the original derivation in the nondiagonal mass basis to that in a diagonal mass basis. The results obtained are identical (and differ by a factor of 2 from the original calculation) but the diagonal-basis derivation is pedagogically useful for clarifying the physics of the invisible width from mixing. We emphasize that both derivations make it clear that a direct scan in energy for a process such as WW→WW mediated by Higgs plus graviscalar intermediate resonances would follow a single Breit-Wigner form with total width given by Γ tot =Γ h SM +Γ invisible . We also compute the additional contributions to the invisible width due to direct Higgs to graviscalar-pair decays. We find that the invisible width due to the latter is relatively small, unless the Higgs mass is comparable to or larger than the effective extra-dimensional Planck mass.

  8. Higgs-gauge boson interactions in the economical 3-3-1 model

    International Nuclear Information System (INIS)

    Phung Van Dong; Hoang Ngoc Long; Dang Van Soa

    2006-01-01

    Interactions among the standard model gauge bosons and scalar fields in the framework of the SU(3) C xSU(3) L xU(1) X gauge model with minimal (economical) Higgs content are presented. From these couplings, all scalar fields including the neutral scalar h and the Goldstone bosons can be identified and their couplings with the usual gauge bosons such as the photon, the charged W ± , and the neutral Z, without any additional conditions, are recovered. In the effective approximation, the full content of the scalar sector can be recognized. The CP-odd part of the Goldstone associated with the neutral non-Hermitian bilepton gauge boson G X 0 is decoupled, while its CP-even counterpart has the mixing in the same way in the gauge boson sector. Masses of the new neutral Higgs boson H 1 0 and the neutral non-Hermitian bilepton X 0 are dependent on a coefficient of Higgs self-coupling (λ 1 ). Similarly, masses of the singly charged Higgs boson H 2 ± and of the charged bilepton Y ± are proportional through a coefficient of Higgs self-interaction (λ 4 ). The hadronic cross section for production of this Higgs boson at the CERN LHC in the effective vector boson approximation is calculated. Numerical evaluation shows that the cross section can exceed 260 fb

  9. Distinguishing Little-Higgs product and simple group models at the LHC and ILC

    International Nuclear Information System (INIS)

    Kilian, W.; Rainwater, D.

    2006-09-01

    We propose a means to discriminate between the two basic variants of Little Higgs models, the Product Group and Simple Group models, at the next generation of colliders. It relies on a special coupling of light pseudoscalar particles present in Little Higgs models, the pseudo-axions, to the Z and the Higgs boson, which is present only in Simple Group models. We discuss the collider phenomenology of the pseudo-axion in the presence of such a coupling at the LHC, where resonant production and decay of either the Higgs or the pseudo-axion induced by that coupling can be observed for much of parameter space. The full allowed range of parameters, including regions where the observability is limited at the LHC, is covered by a future ILC, where double scalar production would be a golden channel to look for. (orig.)

  10. Distinguishing Little-Higgs product and simple group models at the LHC and ILC

    Energy Technology Data Exchange (ETDEWEB)

    Kilian, W. [Siegen Univ. (Gesamthochschule) (Germany). Fachbereich 7 - Physik]|[Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Rainwater, D. [Rochester Univ., NY (United States). Dept. of Physics and Astronomy; Reuter, J. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2006-09-15

    We propose a means to discriminate between the two basic variants of Little Higgs models, the Product Group and Simple Group models, at the next generation of colliders. It relies on a special coupling of light pseudoscalar particles present in Little Higgs models, the pseudo-axions, to the Z and the Higgs boson, which is present only in Simple Group models. We discuss the collider phenomenology of the pseudo-axion in the presence of such a coupling at the LHC, where resonant production and decay of either the Higgs or the pseudo-axion induced by that coupling can be observed for much of parameter space. The full allowed range of parameters, including regions where the observability is limited at the LHC, is covered by a future ILC, where double scalar production would be a golden channel to look for. (orig.)

  11. Penguin effects induced by the two-Higgs-doublet model and charmless B-meson decays

    International Nuclear Information System (INIS)

    Davies, A.J.; Joshi, G.C.; Matsuda, M.

    1991-01-01

    Nonstandard physical effects through the penguin diagram induced by the charged Higgs scalar contribution in the two-Higgs-doublet model are analysed. Since non-leptonic B-decay processes to final states consisting of s+s+anti s are induced only through the penguin diagram they are important tests of such contributions. We compare these decays including the non-standard two-Higgs-doublet contribution with the standard model results, which arise from the magnetic gluon transistion term. The charged Higgs contribution can give a sizable enhancement to the branching fraction of B-meson charmless decay. (orig.)

  12. Dual computations of non-Abelian Yang-Mills theories on the lattice

    International Nuclear Information System (INIS)

    Cherrington, J. Wade; Khavkine, Igor; Christensen, J. Daniel

    2007-01-01

    In the past several decades there have been a number of proposals for computing with dual forms of non-Abelian Yang-Mills theories on the lattice. Motivated by the gauge-invariant, geometric picture offered by dual models and successful applications of duality in the U(1) case, we revisit the question of whether it is practical to perform numerical computation using non-Abelian dual models. Specifically, we consider three-dimensional SU(2) pure Yang-Mills as an accessible yet nontrivial case in which the gauge group is non-Abelian. Using methods developed recently in the context of spin foam quantum gravity, we derive an algorithm for efficiently computing the dual amplitude and describe Metropolis moves for sampling the dual ensemble. We relate our algorithms to prior work in non-Abelian dual computations of Hari Dass and his collaborators, addressing several problems that have been left open. We report results of spin expectation value computations over a range of lattice sizes and couplings that are in agreement with our conventional lattice computations. We conclude with an outlook on further development of dual methods and their application to problems of current interest

  13. Localization in abelian Chern-Simons theory

    DEFF Research Database (Denmark)

    McLellan, Brendan Donald Kenneth

    2013-01-01

    Chern-Simons theory on a closed contact three-manifold is studied when the Lie group for gauge transformations is compact, connected, and abelian. The abelian Chern-Simons partition function is derived using the Faddeev-Popov gauge fixing method. The partition function is then formally computed...

  14. Impact of flavor and Higgs physics on theories beyond the standard model

    Energy Technology Data Exchange (ETDEWEB)

    Casagrande, Sandro

    2013-02-13

    Quantum effects of physics beyond the Standard Model receive strong indirect constraints from precisely measured collider observables. In the conceptual part of this thesis, we apply the generic relations between particle interactions in perturbatively unitary theories to calculate one-loop amplitudes for flavor physics. We provide template results applicable for any model of this class. We also investigate example models that are partly and such that are not perturbatively unitary: the Littlest Higgs model and Randall-Sundrum models. The latter have a unique coupling structure, which we cover exhaustively. We find strong constraints on the Randall-Sundrum models and numerically compare those from flavor, electroweak precision, and Higgs physics by performing detailed parameter scans. We observe interesting correlations between flavor observables, and we find that constraints from Higgs production and decays are already competitive.

  15. Impact of flavor and Higgs physics on theories beyond the standard model

    International Nuclear Information System (INIS)

    Casagrande, Sandro

    2013-01-01

    Quantum effects of physics beyond the Standard Model receive strong indirect constraints from precisely measured collider observables. In the conceptual part of this thesis, we apply the generic relations between particle interactions in perturbatively unitary theories to calculate one-loop amplitudes for flavor physics. We provide template results applicable for any model of this class. We also investigate example models that are partly and such that are not perturbatively unitary: the Littlest Higgs model and Randall-Sundrum models. The latter have a unique coupling structure, which we cover exhaustively. We find strong constraints on the Randall-Sundrum models and numerically compare those from flavor, electroweak precision, and Higgs physics by performing detailed parameter scans. We observe interesting correlations between flavor observables, and we find that constraints from Higgs production and decays are already competitive.

  16. Study of Higgs self couplings of a supersymmetric E6 model at the international linear collider

    International Nuclear Information System (INIS)

    Ham, S. W.; Han, K. D.; Lee, J. I.; Oh, S. K.

    2010-01-01

    We study the Higgs self couplings of a supersymmetric E 6 model that has two Higgs doublets and two Higgs singlets. The lightest scalar Higgs boson in the model may be heavier than 112 GeV, at the one-loop level, where the negative results for the Higgs search at the LEP2 experiments are taken into account. The contributions from the top and scalar top quark loops are included in the radiative corrections to the one-loop mass of the lightest scalar Higgs boson in the effective potential approximation. The effect of the Higgs self couplings may be observed in the production of the lightest scalar Higgs bosons in e + e - collisions at the International Linear Collider (ILC) via the double Higgs-strahlung process. For the center of mass energy of 500 GeV with an integrated luminosity of 500 fb -1 and an efficiency of 20%, we expect that at least 5 events of the lightest scalar Higgs boson may be produced at the ILC via the double Higgs-strahlung process.

  17. Unquenched flavor on the Higgs branch

    International Nuclear Information System (INIS)

    Faedo, Antón F.; Mateos, David; Pantelidou, Christiana; Tarrío, Javier

    2016-01-01

    We construct the gravity duals of the Higgs branches of three-dimensional (four-dimensional) super Yang-Mills theories coupled to N_f quark flavors. The effect of the quarks on the color degrees of freedom is included, and corresponds on the gravity side to the backreaction of N_f flavor D6-branes (D7-branes) on the background of N_c color D2-branes (D3-branes). The Higgsing of the gauge group arises from the dissolution of some color branes inside the flavor branes. The dissolved color branes are represented by non-Abelian instantons whose backreaction is also included. The result is a cascading-like solution in which the effective number of color branes varies along the holographic direction. In the three-dimensional case the solution may include an arbitrary number of quasi-conformal (walking) regions.

  18. Detecting the Higgs bosons of supersymmetric models in Z0 decays

    International Nuclear Information System (INIS)

    Barnett, R.M.; Gamberini, G.

    1990-01-01

    We propose a method to detect the associated pair production, at the Z 0 resonance, of the light scalar and pseudoscalar Higgs bosons predicted by the minimal supersymmetric model. The method would be useful to study Higgs boson masses in the range 15-50 GeV. We consider the banti b-banti b and banti b-τ + τ - decay combinations of the Higgs pair. We exploit the angular distributions of the decay products in order to suppress the background and accurately determine the mass of the two Higgs particles. The number of events is small, but the signals are very distinct, and a limited study strongly suggests that the backgrounds will not obscure the signals. (orig.)

  19. Strongly interacting Higgs bosons

    International Nuclear Information System (INIS)

    Appelquist, T.; Bernard, C.

    1980-01-01

    The sensitivity of present-energy weak interactions to a strongly interacting heavy-Higgs-boson sector is discussed. The gauged nonlinear sigma model, which is the limit of the linear model as the Higgs-boson mass goes to infinity, is used to organize and catalogue all possible heavy-Higgs-boson effects. As long as the SU(2)/sub L/ x SU(2)/sub R/ symmetry of the Higgs sector is preserved, these effects are found to be small, of the order of the square of the gauge coupling times logarithms (but not powers) of the Higgs-boson mass divided by the W mass. We work in the context of a simplified model with gauge group SU(2)/sub L/; the extension to SU(2)/sub L/ x U(1) is briefly discussed

  20. Higgs-radion phenomenology in stabilized RS models

    Directory of Open Access Journals (Sweden)

    Boos Eduard

    2016-01-01

    Full Text Available An important general prediction of stabilized brane world models is the existence of a bulk scalar radion field, whose lowest Kaluza-Klein (KK mode is the scalar particle called the radion. This field comes from the fluctuations of the metric in the extra dimension and the radion mass can be smaller than that of all the massive KK modes of the other particles propagating in the multidimensional bulk. Due to its origin, the radion and its KK tower couple to the trace of the energy-momentum tensor of the Standard Model. These fields have the same quantum numbers as the neutral Higgs field and can mix with the latter, if they are coupled. We present a short review of some aspects of Higgs-radion phenomenology in stabilized brane-world models. In particular, we discuss the possibility of explaining the 750 GeV excess by the production of a radion-dominated state.

  1. Higgs quartic coupling and neutrino sector evolution in 2UED models

    KAUST Repository

    Abdalgabar, A.

    2014-05-20

    Two compact universal extra-dimensional models are an interesting class of models for different theoretical and phenomenological issues, such as the justification of having three standard model fermion families, suppression of proton decay rate, dark matter parity from relics of the six-dimensional Lorentz symmetry, origin of masses and mixings in the standard model. However, these theories are merely effective ones, with typically a reduced range of validity in their energy scale. We explore two limiting cases of the three standard model generations all propagating in the bulk or all localised to a brane, from the point of view of renormalisation group equation evolutions for the Higgs sector and for the neutrino sector of these models. The recent experimental results of the Higgs boson from the LHC allow, in some scenarios, stronger constraints on the cutoff scale to be placed, from the requirement of the stability of the Higgs potential. 2014 The Author(s).

  2. Higgs production via weak boson fusion in the standard model and the MSSM

    International Nuclear Information System (INIS)

    Figy, Terrance; Palmer, Sophy

    2010-12-01

    Weak boson fusion is expected to be an important Higgs production channel at the LHC. Complete one-loop results for weak boson fusion in the Standard Model have been obtained by calculating the full virtual electroweak corrections and photon radiation and implementing these results into the public Monte Carlo program VBFNLO (which includes the NLO QCD corrections). Furthermore the dominant supersymmetric one-loop corrections to neutral Higgs production, in the general case where the MSSM includes complex phases, have been calculated. These results have been combined with all one-loop corrections of Standard Model type and with the propagator-type corrections from the Higgs sector of the MSSM up to the two-loop level. Within the Standard Model the electroweak corrections are found to be as important as the QCD corrections after the application of appropriate cuts. The corrections yield a shift in the cross section of order 5% for a Higgs of mass 100-200 GeV, confirming the result obtained previously in the literature. For the production of a light Higgs boson in the MSSM the Standard Model result is recovered in the decoupling limit, while the loop contributions from superpartners to the production of neutral MSSM Higgs bosons can give rise to corrections in excess of 10% away from the decoupling region. (orig.)

  3. Triviality bound on lightest Higgs mass in next to minimal supersymmetric model

    International Nuclear Information System (INIS)

    Choudhury, S.R.; Mamta; Dutta, Sukanta

    1998-01-01

    We study the implication of triviality on Higgs sector in next to minimal supersymmetric model (NMSSM) using variational field theory. It is shown that the mass of the lightest Higgs boson in NMSSM has an upper bound ∼ 10 M w which is of the same order as that in the standard model. (author)

  4. On whole Abelian model dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Chauca, J.; Doria, R. [CBPF, Rio de Janeiro (Brazil); Aprendanet, Petropolis, 25600 (Brazil)

    2012-09-24

    Physics challenge is to determine the objects dynamics. However, there are two ways for deciphering the part. The first one is to search for the ultimate constituents; the second one is to understand its behaviour in whole terms. Therefore, the parts can be defined either from elementary constituents or as whole functions. Historically, science has been moving through the first aspect, however, quarks confinement and complexity are interrupting this usual approach. These relevant facts are supporting for a systemic vision be introduced. Our effort here is to study on the whole meaning through gauge theory. Consider a systemic dynamics oriented through the U(1) - systemic gauge parameter which function is to collect a fields set {l_brace}A{sub {mu}I}{r_brace}. Derive the corresponding whole gauge invariant Lagrangian, equations of motion, Bianchi identities, Noether relationships, charges and Ward-Takahashi equations. Whole Lorentz force and BRST symmetry are also studied. These expressions bring new interpretations further than the usual abelian model. They are generating a systemic system governed by 2N+ 10 classical equations plus Ward-Takahashi identities. A whole dynamics based on the notions of directive and circumstance is producing a set determinism where the parts dynamics are inserted in the whole evolution. A dynamics based on state, collective and individual equations with a systemic interdependence.

  5. Simplified models for Higgs physics: singlet scalar and vector-like quark phenomenology

    Energy Technology Data Exchange (ETDEWEB)

    Dolan, Matthew J. [ARC Centre of Excellence for Particle Physics at the Terascale,School of Physics, University of Melbourne,Melbourne 3010 (Australia); Hewett, J.L. [SLAC National Accelerator Laboratory,Menlo Park 94025, CA (United States); Krämer, M. [Institute for Theoretical Particle Physics and Cosmology, RWTH Aachen University,D-52056 Aachen (Germany); Rizzo, T.G. [SLAC National Accelerator Laboratory,Menlo Park 94025, CA (United States)

    2016-07-08

    Simplified models provide a useful tool to conduct the search and exploration of physics beyond the Standard Model in a model-independent fashion. In this work we consider the complementarity of indirect searches for new physics in Higgs couplings and distributions with direct searches for new particles, using a simplified model which includes a new singlet scalar resonance and vector-like fermions that can mix with the SM top-quark. We fit this model to the combined ATLAS and CMS 125 GeV Higgs production and coupling measurements and other precision electroweak constraints, and explore in detail the effects of the new matter content upon Higgs production and kinematics. We highlight some novel features and decay modes of the top partner phenomenology, and discuss prospects for Run II.

  6. Non-abelian dark sectors and their collider signatures

    International Nuclear Information System (INIS)

    Baumgart, Matthew; Cheung, Clifford; Ruderman, Joshua T.; Wang, Lian-Tao; Yavin, Itay

    2009-01-01

    Motivated by the recent proliferation of observed astrophysical anomalies, Arkani-Hamed et al. have proposed a model in which dark matter is charged under a non-abelian 'dark' gauge symmetry that is broken at ∼1 GeV. In this paper, we present a survey of concrete models realizing such a scenario, followed by a largely model-independent study of collider phenomenology relevant to the Tevatron and the LHC. We address some model building issues that are easily surmounted to accommodate the astrophysics. While SUSY is not necessary, we argue that it is theoretically well-motivated because the GeV scale is automatically generated. Specifically, we propose a novel mechanism by which mixed D-terms in the dark sector induce either SUSY breaking or a super-Higgs mechanism precisely at a GeV. Furthermore, we elaborate on the original proposal of Arkani-Hamed et al. in which the dark matter acts as a messenger of gauge mediation to the dark sector. In our collider analysis we present cross-sections for dominant production channels and lifetime estimates for primary decay modes. We find that dark gauge bosons can be produced at the Tevatron and the LHC, either through a process analogous to prompt photon production or through a rare Z decay channel. Dark gauge bosons will decay back to the SM via 'lepton jets' which typically contain >2 and as many as 8 leptons, significantly improving their discovery potential. Since SUSY decays from the MSSM will eventually cascade down to these lepton jets, the discovery potential for direct electroweak-ino production may also be improved. Exploiting the unique kinematics, we find that it is possible to reconstruct the mass of the MSSM LSP. We also present several non-SUSY and SUSY decay channels that have displaced vertices and lead to multiple leptons with partially correlated impact parameters.

  7. Instantons and Gribov copies in the maximally Abelian gauge

    International Nuclear Information System (INIS)

    Bruckmann, F.; Heinzl, T.; Wipf, A.; Tok, T.

    2000-01-01

    We calculate the Faddeev-Popov operator corresponding to the maximally Abelian gauge for gauge group SU(N). Specializing to SU(2) we look for explicit zero modes of this operator. Within an illuminating toy model (Yang-Mills mechanics) the problem can be completely solved and understood. In the field theory case we are able to find an analytic expression for a normalizable zero mode in the background of a single 't Hooft instanton. Accordingly, such an instanton corresponds to a horizon configuration in the maximally Abelian gauge. Possible physical implications are discussed

  8. Searches for BSM Higgs Bosons with ATLAS

    CERN Document Server

    Navarro, Gabriela; The ATLAS collaboration

    2015-01-01

    The discovery of a Higgs-like boson with a mass of about 125GeV has prompted the question of whether or not this particle is part of a much larger and more complex Higgs sector than that envisioned in the Standard Model. In this talk, the current results from the ATLAS Experiment regarding Beyond-the-Standard Model (BSM) Higgs hypothesis tests are outlined. Searches for additional Higgs bosons are presented and interpreted in well-motivated BSM Higgs frameworks, such as two-Higgs-doublet Models and the Minimal Supersymmetric Standard Model.

  9. Boosted Higgs shapes

    International Nuclear Information System (INIS)

    Schlaffer, Matthias; Spannowsky, Michael; Wymant, Chris

    2014-05-01

    The inclusive Higgs production rate through gluon fusion has been measured to be in agreement with the Standard Model (SM). We show that even if the inclusive Higgs production rate is very SM-like, a precise determination of the boosted Higgs transverse momentum shape offers the opportunity to see effects of natural new physics. These measurements are generically motivated by effective field theory arguments and specifically in extensions of the SM with a natural weak scale, like composite Higgs models and natural supersymmetry. We show in detail how a measurement at high transverse momentum of H→2l+p T via H→ττ and H→WW * could be performed and demonstrate that it offers a compelling alternative to the t anti tH channel. We discuss the sensitivity to new physics in the most challenging scenario of an exactly SM-like inclusive Higgs cross-section.

  10. Abelian color cycles: A new approach to strong coupling expansion and dual representations for non-abelian lattice gauge theory

    Energy Technology Data Exchange (ETDEWEB)

    Gattringer, Christof, E-mail: christof.gattringer@uni-graz.at; Marchis, Carlotta, E-mail: carla.marchis@uni-graz.at

    2017-03-15

    We propose a new approach to strong coupling series and dual representations for non-abelian lattice gauge theories using the SU(2) case as an example. The Wilson gauge action is written as a sum over “abelian color cycles” (ACC) which correspond to loops in color space around plaquettes. The ACCs are complex numbers which can be commuted freely such that the strong coupling series and the dual representation can be obtained as in the abelian case. Using a suitable representation of the SU(2) gauge variables we integrate out all original gauge links and identify the constraints for the dual variables in the SU(2) case. We show that the construction can be generalized to the case of SU(2) gauge fields with staggered fermions. The result is a strong coupling series where all gauge integrals are known in closed form and we discuss its applicability for possible dual simulations. The abelian color cycle concept can be generalized to other non-abelian gauge groups such as SU(3).

  11. Higgs properties and decays, searches for high mass Higgs boson and di-Higgs production

    CERN Document Server

    Cadamuro, Luca

    2018-01-01

    The study of the scalar sector of the standard model of particle physics is one of the main goals of the LHC physics programme.A precise characterisation of the Higgs boson, searches for extensions of the scalar sector, and the study of Higgs boson pair production are complementary in this exploration.This document describes the status of Higgs boson physics analyses performed by the ATLAS and CMS Collaborations, focusing on the latest results from pp collisions at sqrt(s) = 13 TeV recorded in 2016, for an integrated luminosity of about 36 fb-1.

  12. Asymptotic conformal invariance in a non-Abelian Chern-Simons-matter model

    Energy Technology Data Exchange (ETDEWEB)

    Acebal, J.L. [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil). Coordenacao de Campos e Particulas]. E-mail: acebal@cbpf.br

    2002-08-01

    One shows here the existence of solutions to the Callan-Symanzik equation for the non-Abelian SU(2) Chern-Simons-matter model which exhibits asymptotic conformal invariance to every order in perturbative theory. The conformal symmetry in the classical domain is shown to hold by means of a local criteria based on the trace of the energy-momentum tensor. By using recently exhibited regimes for the dependence between the several couplings in which the set of {beta}-functions vanish, the asymptotic conformal invariance of the model appears to be valid in the quantum domain. By considering the SU (n) case the possible non validity of the proof for a particular {eta} would be merely accidental. (author)

  13. Electric dipole moments in two-Higgs-doublet models

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Martin [Institut für Physik, Technische Universität Dortmund,Otto-Hahn-Str. 4, D-44221 Dortmund (Germany); Pich, Antonio [IFIC, Universitat de València - CSIC,Apt. Correos 22085, E-46071 València (Spain)

    2014-04-10

    Electric dipole moments are extremely sensitive probes for additional sources of CP violation in new physics models. Specifically, they have been argued in the past to exclude new CP-violating phases in two-Higgs-doublet models. Since recently models including such phases have been discussed widely, we revisit the available constraints in the presence of mechanisms which are typically invoked to evade flavour-changing neutral currents. To that aim, we start by assessing the necessary calculations on the hadronic, nuclear and atomic/molecular level, deriving expressions with conservative error estimates. Their phenomenological analysis in the context of two-Higgs-doublet models yields strong constraints, in some cases weakened by a cancellation mechanism among contributions from neutral scalars. While the corresponding parameter combinations do not yet have to be unnaturally small, the constraints are likely to preclude large effects in other CP-violating observables. Nevertheless, the generically expected contributions to electric dipole moments in this class of models lie within the projected sensitivity of the next-generation experiments.

  14. Looking For Physics Beyond The Standard Model: Searches For Charged Higgs Bosons At $e^{+}e^{-}$ Colliders

    CERN Document Server

    Kiiskinen, A P

    2004-01-01

    This thesis describes direct searches for pair production of charged Higgs bosons performed in the data collected by the DELPHI detector at the LEP collider at CERN. In addition, the possibilities to discover and study heavy charged Higgs bosons at possible future high-energy linear colliders are presented. The existence of charged Higgs bosons is predicted by many extensions of the Standard Model. A possible discovery of these particles would be a solid proof for physics beyond the Standard Model. Discovery of charged Higgs bosons, and measurement of their properties, would also provide useful information about the structure of the more general theory. New analysis methods were developed for the searches performed at LEP. A large, previously unexplored, mass range for cover but no evidence for the existence of the charged Higgs bosons was found. This allowed setting new lower mass limits for the charged Higgs boson within the framework of general two Higgs doublet models. Results have been interpreted and pr...

  15. Two-Higgs-doublet-portal dark-matter models in light of direct search and LHC data

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Chia-Feng [Department of Physics and Center for Theoretical Sciences, National Taiwan University,No. 1, Sec. 4, Roosevelt Rd., Taipei 106, Taiwan (China); He, Xiao-Gang [Department of Physics and Center for Theoretical Sciences, National Taiwan University,No. 1, Sec. 4, Roosevelt Rd., Taipei 106, Taiwan (China); INPAC, Department of Physics and Astronomy, Shanghai Jiao Tong University,800 Dongchuan Rd., Minhang, Shanghai 200240 (China); Physics Division, National Center for Theoretical Sciences,No. 101, Sec. 2, Kuang Fu Rd., Hsinchu 300, Taiwan (China); Tandean, Jusak [Department of Physics and Center for Theoretical Sciences, National Taiwan University,No. 1, Sec. 4, Roosevelt Rd., Taipei 106, Taiwan (China); Physics Division, National Center for Theoretical Sciences,No. 101, Sec. 2, Kuang Fu Rd., Hsinchu 300, Taiwan (China)

    2017-04-19

    We explore simple Higgs-portal models of dark matter (DM) with spin 1/2, 3/2, and 1, respectively, applying to them constraints from the LUX and PandaX-II direct detection experiments and from LHC measurements on the 125-GeV Higgs boson. With only one Higgs doublet, we find that the spin-1/2 DM having a purely scalar effective coupling to the doublet is viable only in a narrow range of mass near the Higgs pole, whereas the vector DM is still allowed if its mass is also close to the Higgs pole or exceeds 1.4 TeV, both in line with earlier analyses. Moreover, the spin-3/2 DM is in a roughly similar situation to the spin-1/2 DM, but has surviving parameter space which is even more restricted. We also consider the two-Higgs-doublet extension of each of the preceding models, assuming that the expanded Yukawa sector is that of the two-Higgs-doublet model of type II. We show that in these two-Higgs-doublet-portal models significant portions of the DM mass regions excluded in the simplest scenarios by direct search bounds can be reclaimed due to suppression of the effective DM interactions with nucleons at some ratios of the CP-even Higgs bosons’ couplings to the up and down quarks. The regained parameter space contains areas which can yield a DM-nucleon scattering cross-section that is far less than its current experimental limit or even goes below the neutrino-background floor.

  16. Dual potentials in non-Abelian gauge theories

    International Nuclear Information System (INIS)

    Caticha, A.

    1988-01-01

    Motivated by the possibility that confinement and superconductivity are similar phenomena, dual potentials are introduced into Yang-Mills theory in two different ways. Both are extensions of Zwanziger's two-potential formalism for Abelian charges and monopoles to the non-Abelian case. In the first approach the dual potentials carry a color index and there is a rather simple, although nonlocal, dual-variable formulation. In the second approach dual variables are introduced into the so-called Abelian projection of the SU(2) Yang-Mills theory. An interesting feature is that the quartic contact interactions are absent and there is a special gauge choice for which the theory takes on a ''purely electromagnetic'' form. More important, however, is the appearance of an additional Abelian magnetic gauge symmetry the dynamical breaking of which may be associated with confinement

  17. Search for the Standard Model Higgs Boson with the OPAL Detector at LEP

    CERN Document Server

    Abbiendi, G.; Akesson, P.F.; Alexander, G.; Allison, John; Amaral, P.; Anagnostou, G.; Anderson, K.J.; Arcelli, S.; Asai, S.; Axen, D.; Azuelos, G.; Bailey, I.; Barberio, E.; Barlow, R.J.; Batley, R.J.; Bechtle, P.; Behnke, T.; Bell, Kenneth Watson; Bell, P.J.; Bella, G.; Bellerive, A.; Benelli, G.; Bethke, S.; Biebel, O.; Bloodworth, I.J.; Boeriu, O.; Bock, P.; Bonacorsi, D.; Boutemeur, M.; Braibant, S.; Brigliadori, L.; Brown, Robert M.; Buesser, K.; Burckhart, H.J.; Campana, S.; Carnegie, R.K.; Caron, B.; Carter, A.A.; Carter, J.R.; Chang, C.Y.; Charlton, David G.; Csilling, A.; Cuffiani, M.; Dado, S.; Dallavalle, G.Marco; Dallison, S.; De Roeck, A.; De Wolf, E.A.; Desch, K.; Dienes, B.; Donkers, M.; Dubbert, J.; Duchovni, E.; Duckeck, G.; Duerdoth, I.P.; Elfgren, E.; Etzion, E.; Fabbri, F.; Feld, L.; Ferrari, P.; Fiedler, F.; Fleck, I.; Ford, M.; Frey, A.; Furtjes, A.; Gagnon, P.; Gary, John William; Gaycken, G.; Geich-Gimbel, C.; Giacomelli, G.; Giacomelli, P.; Giunta, Marina; Goldberg, J.; Gross, E.; Grunhaus, J.; Gruwe, M.; Gunther, P.O.; Gupta, A.; Hajdu, C.; Hamann, M.; Hanson, G.G.; Harder, K.; Harel, A.; Harin-Dirac, M.; Hauschild, M.; Hauschildt, J.; Hawkes, C.M.; Hawkings, R.; Hemingway, R.J.; Hensel, C.; Herten, G.; Heuer, R.D.; Hill, J.C.; Hoffman, Kara Dion; Homer, R.J.; Horvath, D.; Howard, R.; Huntemeyer, P.; Igo-Kemenes, P.; Ishii, K.; Jeremie, H.; Jovanovic, P.; Junk, T.R.; Kanaya, N.; Kanzaki, J.; Karapetian, G.; Karlen, D.; Kartvelishvili, V.; Kawagoe, K.; Kawamoto, T.; Keeler, R.K.; Kellogg, R.G.; Kennedy, B.W.; Kim, D.H.; Klein, K.; Klier, A.; Kluth, S.; Kobayashi, T.; Kobel, M.; Komamiya, S.; Kormos, Laura L.; Kowalewski, Robert V.; Kramer, T.; Kress, T.; Krieger, P.; von Krogh, J.; Krop, D.; Kruger, K.; Kupper, M.; Lafferty, G.D.; Landsman, H.; Lanske, D.; Layter, J.G.; Leins, A.; Lellouch, D.; Letts, J.; Levinson, L.; Lillich, J.; Lloyd, S.L.; Loebinger, F.K.; Lu, J.; Ludwig, J.; Macpherson, A.; Mader, W.; Marcellini, S.; Marchant, T.E.; Martin, A.J.; Martin, J.P.; Masetti, G.; Mashimo, T.; Mattig, Peter; McDonald, W.J.; McKenna, J.; McMahon, T.J.; McPherson, R.A.; Meijers, F.; Mendez-Lorenzo, P.; Menges, W.; Merritt, F.S.; Mes, H.; Michelini, A.; Mihara, S.; Mikenberg, G.; Miller, D.J.; Moed, S.; Mohr, W.; Mori, T.; Mutter, A.; Nagai, K.; Nakamura, I.; Neal, H.A.; Nisius, R.; O'Neale, S.W.; Oh, A.; Okpara, A.; Oreglia, M.J.; Orito, S.; Pahl, C.; Pasztor, G.; Pater, J.R.; Patrick, G.N.; Pilcher, J.E.; Pinfold, J.; Plane, David E.; Poli, B.; Polok, J.; Pooth, O.; Przybycien, M.; Quadt, A.; Rabbertz, K.; Rembser, C.; Renkel, P.; Rick, H.; Roney, J.M.; Rosati, S.; Rozen, Y.; Runge, K.; Sachs, K.; Saeki, T.; Sahr, O.; Sarkisyan, E.K.G.; Schaile, A.D.; Schaile, O.; Scharff-Hansen, P.; Schieck, J.; Schoerner-Sadenius, Thomas; Schroder, Matthias; Schumacher, M.; Schwick, C.; Scott, W.G.; Seuster, R.; Shears, T.G.; Shen, B.C.; Shepherd-Themistocleous, C.H.; Sherwood, P.; Siroli, G.; Skuja, A.; Smith, A.M.; Sobie, R.; Soldner-Rembold, S.; Spagnolo, S.; Spano, F.; Stahl, A.; Stephens, K.; Strom, David M.; Strohmer, R.; Tarem, S.; Tasevsky, M.; Taylor, R.J.; Teuscher, R.; Thomson, M.A.; Torrence, E.; Toya, D.; Tran, P.; Trefzger, T.; Tricoli, A.; Trigger, I.; Trocsanyi, Z.; Tsur, E.; Turner-Watson, M.F.; Ueda, I.; Ujvari, B.; Vachon, B.; Vollmer, C.F.; Vannerem, P.; Verzocchi, M.; Voss, H.; Vossebeld, J.; Waller, D.; Ward, C.P.; Ward, D.R.; Watkins, P.M.; Watson, A.T.; Watson, N.K.; Wells, P.S.; Wengler, T.; Wermes, N.; Wetterling, D.; Wilson, G.W.; Wilson, J.A.; Wolf, G.; Wyatt, T.R.; Yamashita, S.; Zer-Zion, D.; Zivkovic, Lidija

    2003-01-01

    This paper summarises the search for the Standard Model Higgs boson in e+e- collisions at centre-of-mass energies up to 209 GeV performed by the OPAL Collaboration at LEP. The consistency of the data with the background hypothesis and various Higgs boson mass hypotheses is examined. No indication of a signal is found in the data and a lower bound of 112.7GeV/C^2 is obtained on the mass of the Standard Model Higgs boson at the 95% CL.

  18. Vector-like bottom quarks in composite Higgs models

    DEFF Research Database (Denmark)

    Gillioz, M.; Grober, R.; Kapuvari, A.

    2014-01-01

    Like many other models, Composite Higgs Models feature the existence of heavy vector-like quarks. Mixing effects between the Standard Model fields and the heavy states, which can be quite large in case of the top quark, imply deviations from the SM. In this work we investigate the possibility of ...

  19. LHC benchmark scenarios for the real Higgs singlet extension of the standard model

    International Nuclear Information System (INIS)

    Robens, Tania; Stefaniak, Tim

    2016-01-01

    We present benchmark scenarios for searches for an additional Higgs state in the real Higgs singlet extension of the Standard Model in Run 2 of the LHC. The scenarios are selected such that they fulfill all relevant current theoretical and experimental constraints, but can potentially be discovered at the current LHC run. We take into account the results presented in earlier work and update the experimental constraints from relevant LHC Higgs searches and signal rate measurements. The benchmark scenarios are given separately for the low-mass and high-mass region, i.e. the mass range where the additional Higgs state is lighter or heavier than the discovered Higgs state at around 125 GeV. They have also been presented in the framework of the LHC Higgs Cross Section Working Group. (orig.)

  20. Central extensions of some Abelian finite gauge groups

    International Nuclear Information System (INIS)

    Combe, Ph.; Rodriguez, R.; Sirugue, M.; Sirugue-Collin, M.

    1981-01-01

    The authors describe central extensions of Abelian finite gauge groups on lattices which are permutation invariant. Moreover some remarks are made on the gauge models on lattice associated with these non-commutative central extensions. (Auth.)

  1. Stationary configurations of the Standard Model Higgs potential

    DEFF Research Database (Denmark)

    Iacobellis, Giuseppe; Masina, Isabella

    2016-01-01

    the stability of the SM electroweak minimum and ii) the value of the Higgs potential at a rising inflection point. We examine in detail and reappraise the experimental and theoretical uncertainties which plague their determination, finding that i) the stability of the SM is compatible with the present data...... at the 1.5σ level and ii) despite the large theoretical error plaguing the value of the Higgs potential at a rising inflection point, the application of such a configuration to models of primordial inflation displays a 3σ tension with the recent bounds on the tensor-to-scalar ratio of cosmological...

  2. The minimal linear σ model for the Goldstone Higgs

    International Nuclear Information System (INIS)

    Feruglio, F.; Gavela, M.B.; Kanshin, K.; Machado, P.A.N.; Rigolin, S.; Saa, S.

    2016-01-01

    In the context of the minimal SO(5) linear σ-model, a complete renormalizable Lagrangian -including gauge bosons and fermions- is considered, with the symmetry softly broken to SO(4). The scalar sector describes both the electroweak Higgs doublet and the singlet σ. Varying the σ mass would allow to sweep from the regime of perturbative ultraviolet completion to the non-linear one assumed in models in which the Higgs particle is a low-energy remnant of some strong dynamics. We analyze the phenomenological implications and constraints from precision observables and LHC data. Furthermore, we derive the d≤6 effective Lagrangian in the limit of heavy exotic fermions.

  3. Higgs boson couplings in multi-doublet models with natural flavour conservation

    Directory of Open Access Journals (Sweden)

    Kei Yagyu

    2016-12-01

    Full Text Available We investigate the deviation in the couplings of the standard model (SM like Higgs boson (h with a mass of 125 GeV from the prediction of the SM in multi-doublet models within the framework where flavour changing neutral currents at the tree level are naturally forbidden. After we present the general expressions for the modified gauge and Yukawa couplings for h, we show the correlation between the deviation in the Yukawa coupling for the tau lepton hτ+τ− and that for the bottom quark hbb¯ under the assumption of a non-zero deviation in the hVV (V=W,Z couplings in two Higgs doublet models (2HDMs and three Higgs doublet models (3HDMs as simple examples. We clarify the possible allowed prediction of the deviations in the 3HDMs which cannot be explained in the 2HDMs even taking into account the one-loop electroweak corrections to the Yukawa coupling.

  4. Higgs boson hunting

    International Nuclear Information System (INIS)

    Dawson, S.; Haber, H.E.; Rindani, S.D.

    1989-05-01

    This is the summary report of the Higgs Boson Working Group. We discuss a variety of search techniques for a Higgs boson which is lighter than the Z. The processes K → πH, η prime → ηH,Υ → Hγ and e + e - → ZH are examined with particular attention paid to theoretical uncertainties in the calculations. We also briefly examine new features of Higgs phenomenology in a model which contains Higgs triplets as well as the usual doublet of scalar fields. 33 refs., 6 figs., 1 tab

  5. Electroweak symmetry breaking: Higgs/whatever

    International Nuclear Information System (INIS)

    Chanowitz, M.S.

    1990-01-01

    In these two lectures the author discusses electroweak symmetry breaking from a general perspective, stressing properties that are model independent and follow just from the assumption that the electroweak interactions are described by a spontaneously broken gauge theory. This means he assumes the Higgs mechanism though not necessarily the existence of Higgs bosons. The first lecture presents the general framework of a spontaneously broken gauge theory: (1) the Higgs mechanism sui generis, with or without Higgs boson(s) and (2) the implications of symmetry and unitarity for the mass scale and interaction strength of the new physics that the Higgs mechanism requires. In addition he reviews a softer theoretical argument based on the naturalness problem which leads to a prejudice against Higgs bosons unless they are supersymmetric. This is a prejudice, not a theorem, and it could be overturned in the future by a clever new idea. In the second lecture he illustrates the general framework by reviewing some specific models: (1) the Weinberg-Salam model of the Higgs sector; (2) the minimal supersymmetric extension of the Weinberg-Salam model; and (3) technicolor as an example of the Higgs mechanism without Higgs bosons. He concludes the second lecture with a discussion of strong WW scattering that must occur if L SB lives above 1 TeV. In particular he describes some of the experimental signals and backgrounds at the SSC. 57 refs., 12 figs

  6. Simplified dark matter models with two Higgs doublets. I. Pseudoscalar mediators

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, Martin [Heidelberg Univ. (Germany). Inst. fuer Theoretische Physik; Haisch, Ulrich [Oxford Univ. (United Kingdom). Rudolf Peierls Centre for Theoretical Physics; CERN, Geneva (Switzerland). Theoretical Physics Dept.; Kahlhoefer, Felix [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2017-01-15

    We study a new class of renormalisable simplified models for dark matter searches at the LHC that are based on two Higgs doublet models with an additional pseudoscalar mediator. In contrast to the spin-0 simplified models employed in analyses of Run I data these models are self-consistent, unitary and bounds from Higgs physics typically pose no constraints. Predictions for various missing transverse energy (E{sub T,miss}) searches are discussed and the reach of the 13 TeV LHC is explored. It is found that the proposed models provide a rich spectrum of complementary observables that lead to non-trivial constraints. We emphasise in this context the sensitivity of the t anti t+E{sub T,miss}, mono-Z and mono-Higgs channels, which yield stronger limits than mono-jet searches in large parts of the parameter space. Constraints from spin-0 resonance searches, electroweak precision measurements and flavour observables are also derived and shown to provide further important handles to constraint and to test the considered dark matter models.

  7. Mesons from (non) Abelian T-dual backgrounds

    Energy Technology Data Exchange (ETDEWEB)

    Itsios, Georgios [Instituto de Física Teórica, UNESP-Universidade Estadual Paulista, R. Dr. Bento T. Ferraz 271, Bl. II, Sao Paulo 01140-070, SP (Brazil); Department of Physics, University of Oviedo,Avda. Calvo Sotelo 18, 33007 Oviedo (Spain); Núñez, Carlos [Department of Physics, Swansea University,Swansea SA2 8PP (United Kingdom); Zoakos, Dimitrios [Centro de Física do Porto, Universidade do Porto,Rua do Campo Alegre 687, 4169-007 Porto (Portugal)

    2017-01-03

    In this work we study mesonic excitations in a Quantum Field Theory dual to the non Abelian T-dual of AdS{sub 5}×S{sup 5}, using a D6 brane probe on the Sfetsos-Thompson background. Before and after the duality, we observe interesting differences between the spectra and interpret them. The spectrum of masses and the interactions between mesonic excitations teach valuable lessons about the character of non-Abelian T-duality and its implications for Holography. The case of Abelian T-duality is also studied.

  8. Top quark and Higgs physics in standard model extensions

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, Patrick Jose

    2012-05-25

    In this thesis we have studied several extensions of the SM and their implications on the strength and structure of the tbW vertex, on the production and decays of pseudoscalar and heavy Higgs scalars at the LHC, and the effects that models with a fourth generation have on electroweak precision observables. Apart from the SM with a fourth generation of chiral fermions, the extensions we studied all feature an extended electroweak symmetry breaking (EWSB) sector. In the case of the type-II 2HDM and the MSSM, the extended EWSB sector consists of elementary Higgs fields. In the case of Topcolor assisted Technicolor (TC2), which is a model of dynamical EWSB, the scalar and pseudoscalar fields are composite. By scanning over the phenomenologically and theoretically allowed regions of the respective parameters spaces, we determined the largest possible cross sections σ(pp→φ→VV{sup '}) where VV{sup p}rime element of {W"+W"-, ZZγγ, Zγ} for both the heavy scalar and pseudoscalar states in the above models. We found that non-SUSY models with an extended Higgs sector and only three generations, namely the type-II 2HDM and the TC2, still allow for observable pseudoscalar cross sections σ(pp → A → VV') at the LHC. In particular for the final states W{sup +}W{sup -} and γγ. In the MSSM, the discovery of the pseudoscalar A through its decays into electroweak gauge bosons is very unlikely. However, scalar cross sections σ(pp→H→W{sup +}W{sup -}) can still be of observable size at the LHC in large parts of the MSSM parameter space. SM extensions with an extended EWSB sector and four chiral generations are strongly disfavoured; direct Higgs boson searches exclude large parts of the parameter space and it is challenging to bring such an extension into accordance with electroweak precision data. On the other hand, models with additional vector-like quarks and an extended Higgs sector are still viable. The SM with four chiral generations is (still) not

  9. Abelian groups

    CERN Document Server

    Fuchs, László

    2015-01-01

    Written by one of the subject’s foremost experts, this book focuses on the central developments and modern methods of the advanced theory of abelian groups, while remaining accessible, as an introduction and reference, to the non-specialist. It provides a coherent source for results scattered throughout the research literature with lots of new proofs. The presentation highlights major trends that have radically changed the modern character of the subject, in particular, the use of homological methods in the structure theory of various classes of abelian groups, and the use of advanced set-theoretical methods in the study of undecidability problems. The treatment of the latter trend includes Shelah’s seminal work on the undecidability in ZFC of Whitehead’s Problem; while the treatment of the former trend includes an extensive (but non-exhaustive) study of p-groups, torsion-free groups, mixed groups, and important classes of groups arising from ring theory. To prepare the reader to tackle these topics, th...

  10. Non-Abelian duality and confinement in N=2 supersymmetric QCD

    International Nuclear Information System (INIS)

    Shifman, M.; Yung, A.

    2009-01-01

    In N=2 supersymmetric QCD with the U(N) gauge group and N f >N we study the crossover transition from the weak coupling regime at large ξ to strong coupling at small ξ, where ξ is the Fayet-Iliopoulos parameter. We find that at strong coupling a dual non-Abelian weakly coupled N=2 theory exists, which describes low-energy physics at small ξ. The dual gauge group is U(N f -N), and the dual theory has N f flavors of light dyons, to be compared with N f quarks in the originalU(N) theory. Both, the original and dual theories are Higgsed and share the same global symmetry SU(N)xSU(N f -N)xU(1), albeit the physical meaning of the SU(N) and SU(N f -N) factors is different in the large- and small-ξ regimes. Both regimes support non-Abelian semilocal strings. In each of these two regimes particles that are in the adjoint representations with respect to one of the factor groups exist in two varieties: elementary fields and composite states bound by strings. These varieties interchange upon transition from one regime to the other. We conjecture that the composite stringy states can be related to Seiberg's M fields. The bulk duality that we observed translates into a two-dimensional duality on the world sheet of the non-Abelian strings. At large ξ the internal dynamics of the semilocal non-Abelian strings is described by the sigma model of N orientational and (N f -N) size moduli, while at small ξ the roles of orientational and size moduli interchange. The Bogomol'nyi-Prasad-Sommerfield spectra of two dual sigma models (describing confined monopoles/dyons of the bulk theory) coincide. It would be interesting to trace parallels between the non-Abelian duality we found and string theory constructions.

  11. Collision dynamics of two-dimensional non-Abelian vortices

    Science.gov (United States)

    Mawson, Thomas; Petersen, Timothy C.; Simula, Tapio

    2017-09-01

    We study computationally the collision dynamics of vortices in a two-dimensional spin-2 Bose-Einstein condensate. In contrast to Abelian vortex pairs, which annihilate or pass through each other, we observe non-Abelian vortex pairs to undergo rungihilation—an event that converts the colliding vortices into a rung vortex. The resulting rung defect subsequently decays to another pair of non-Abelian vortices of different type, accompanied by a magnetization reversal.

  12. One-loop radiative correction to the triple Higgs coupling in the Higgs singlet model

    Directory of Open Access Journals (Sweden)

    Shi-Ping He

    2017-01-01

    Full Text Available Though the 125 GeV Higgs boson is consistent with the standard model (SM prediction until now, the triple Higgs coupling can deviate from the SM value in the physics beyond the SM (BSM. In this paper, the radiative correction to the triple Higgs coupling is calculated in the minimal extension of the SM by adding a real gauge singlet scalar. In this model there are two scalars h and H and both of them are mixing states of the doublet and singlet. Provided that the mixing angle is set to be zero, namely the SM limit, h is the pure left-over of the doublet and its behavior is the same as that of the SM at the tree level. However the loop corrections can alter h-related couplings. In this SM limit case, the effect of the singlet H may show up in the h-related couplings, especially the triple h coupling. Our numerical results show that the deviation is sizable. For λΦS=1 (see text for the parameter definition, the deviation δhhh(1 can be 40%. For λΦS=1.5, the δhhh(1 can reach 140%. The sizable radiative correction is mainly caused by three reasons: the magnitude of the coupling λΦS, light mass of the additional scalar and the threshold enhancement. The radiative corrections for the hVV, hff couplings are from the counter-terms, which are the universal correction in this model and always at O(1%. The hZZ coupling, which can be precisely measured, may be a complementarity to the triple h coupling to search for the BSM. In the optimal case, the triple h coupling is very sensitive to the BSM physics, and this model can be tested at future high luminosity hadron colliders and electron–positron colliders.

  13. Searching for additional Higgs bosons via Higgs cascades

    Science.gov (United States)

    Gao, Christina; Luty, Markus A.; Mulhearn, Michael; Neill, Nicolás A.; Wang, Zhangqier

    2018-04-01

    The discovery of a 125 GeV Higgs boson at the Large Hadron Collider strongly motivates direct searches for additional Higgs bosons. In a type I two Higgs doublet model there is a large region of parameter space at tan β ≳5 that is currently unconstrained experimentally. We show that the process g g →H →A Z →Z Z h can probe this region, and can be the discovery mode for an extended Higgs sector at the LHC. We analyze 9 promising decay modes for the Z Z h state, and we find that the most sensitive final states are ℓℓℓℓb b , ℓℓj j b b , ℓℓν ν γ γ and ℓℓℓℓ+ missing energy.

  14. Beyond the standard Higgs after the 125 GeV Higgs discovery.

    Science.gov (United States)

    Grojean, C

    2015-01-13

    An elementary weakly coupled and solitary Higgs boson allows one to extend the validity of the Standard Model up to very high energy, maybe as high as the Planck scale. Nonetheless, this scenario fails to fill the universe with dark matter and does not explain the matter-antimatter asymmetry. However, amending the Standard Model tends to destabilize the weak scale by large quantum corrections to the Higgs potential. New degrees of freedom, new forces, new organizing principles are required to provide a consistent and natural description of physics beyond the standard Higgs.

  15. Review of searches for Higgs bosons and beyond the standard model physics at the Tevatron

    International Nuclear Information System (INIS)

    Duperrin, Arnaud

    2009-01-01

    The energy frontier is currently at the Fermilab Tevatron accelerator, which collides protons and antiprotons at a center-of-mass energy of 1.96 TeV. The luminosity delivered to the CDF and DOe experiments has now surpassed the 4 fb -1 . This paper reviews the most recent direct searches for Higgs bosons and beyond-the-standard-model (BSM) physics at the tevatron. The results reported correspond to an integrated luminosity of up to 2.5 fb -1 of Run II data collected by the two Collaborations. Searches covered include the standard model (SM) Higgs boson (including sensitivity projections), the neutral Higgs bosons in the minimal supersymmetric extension of the standard model (MSSM), charged Higgs bosons and extended Higgs models, supersymmetric decays that conserve or violate R-parity, gauge-mediated supersymmetric breaking models, long-lived particles, leptoquarks, compositeness, extra gauge bosons, extra dimensions, and finally signature-based searches. Given the excellent performance of the collider and the continued productivity of the experiments, the Tevatron physics potential looks promising for discovery with the coming larger data sets. In particular, evidence for the SM Higgs boson could be obtained if its mass is light or near 160 GeV. The observed (expected) upper limits are currently a factor of 3.7 (3.3) higher than the expected SM Higgs boson cross section at m H =115 GeV and 1.1(1.6) at m H =160 GeV at 95% C.L. (orig.)

  16. Dynamical chaos of non-Abelian gauge fields

    International Nuclear Information System (INIS)

    Matinyan, S.G.

    1985-01-01

    The review studies a special class of Yang--Mills fields: spatially homogeneous fields (classical Yang--Mills mechanics), which have no analog in linear Abelian electrodynamics. Computer and analytic approaches show that such fields possess dynamical stochasticity, on the basis of which it may be asserted that the classical Yang--Mills equations without external sources constitute a nonintegrable system. The Higgs mechanism eliminates this stochasticity, and at a certain value of the vacuum expectation of the scalar field there is a phase transition of the disorder-order (confinement-deconfinement) type. The system with external sources apparently behaves similarly. The connection between this stochasticity and the mechanism of dimensional reduction in macroscopic systems and with the color-confinement phenomenon is considered. It is shown that the presence in the vacuum of random (Gaussian) currents leads to confinement of the fields generated by these currents. Attention is drawn to the possible manifestation of the stochasticity of the classical fields in multiparticle hadron-production processes. Such manifestation reflects universal stochastic features characteristic of systems of very different natures (statistics of the counting of thermoelectrons from random sources and photoelectrons from laser radiation that passes through a liquid in the critical state, developed turbulence in hydrodynamics, stellar systems, and KNO scaling in multiparticle production)

  17. Search for Minimal Standard Model and Minimal Supersymmetric Model Higgs Bosons in e+ e- Collisions with the OPAL detector at LEP

    International Nuclear Information System (INIS)

    Ganel, Ofer

    1993-06-01

    When LEP machine was turned on in August 1989, a new era had opened. For the first time, direct, model-independent searches for Higgs boson could be carried out. The Minimal Standard Model Higgs boson is expected to be produced in e + e - collisions via the H o Z o . The Minimal Supersymmetric Model Higgs boson are expected to be produced in the analogous e + e - -> h o Z o process or in pairs via the process e + e - -> h o A o . In this thesis we describe the search for Higgs bosons within the framework of the Minimal Standard Model and the Minimal Supersymmetric Model, using the data accumulated by the OPAL detector at LEP in the 1989, 1990, 1991 and part of the 1992 running periods at and around the Z o pole. An MInimal Supersymmetric Model Higgs boson generator is described as well as its use in several different searches. As a result of this work, the Minimal Standard Model Higgs boson mass is bounded from below by 54.2 GeV/c 2 at 95% C.L. This is, at present, the highest such bound. A novel method of overcoming the m τ and m s dependence of Minimal Supersymmetric Higgs boson production and decay introduced by one-loop radiative corrections is used to obtain model-independent exclusion. The thesis describes also an algorithm for off line identification of calorimeter noise in the OPAL detector. (author)

  18. Predictions of the Higgs mass and the weak mixing angle in the 6D gauge-Higgs unification

    International Nuclear Information System (INIS)

    Hasegawa, Kouhei; Lim, Chong-Sa; Maru, Nobuhito

    2016-01-01

    In the gauge-Higgs unification with multiple extra spaces, the Higgs self-coupling is on the order of g 2 and the Higgs boson is predicted to be light, being consistent with the LHC results. When the gauge group is simple, the weak mixing angle is also predictable. We address a question on whether there exists a model of gauge-Higgs unification in six-dimensional space-time, which successfully predicts the mass ratios of the Higgs boson and weak gauge bosons. First, using a useful formula, we give a general argument on the condition for obtaining a realistic prediction of the weak mixing angle sin 2 θ W = 1/4, and find that triplet and sextet representations of the minimal SU(3) gauge group lead to the realistic prediction. Concerning the Higgs mass, we notice that, in the models with one Higgs doublet, the predicted Higgs mass is always the same: M H = 2M W . However, by extending our discussion to the models with two Higgs doublets, the situation changes: we obtain an interesting prediction M H ≤ 2M W at the leading order of the perturbation. Thus, it is possible to recover the observed Higgs mass, 125 GeV, for a suitable choice of the parameter. The situation is in clear contrast to the case of the minimal supersymmetric standard model, where M H ≤ M Z at the classical level and the predicted Higgs mass cannot recover the observed value. (author)

  19. Higgs production at future e + e - colliders in the Georgi-Machacek model

    Science.gov (United States)

    Li, Bin; Han, Zhi-Long; Liao, Yi

    2018-02-01

    We study how the dominant single and double SM-like Higgs ( h) production at future e + e - colliders is modified in the Georgi-Machacek (GM) model. On imposing theoretical, indirect and direct constraints, significant deviations of h-couplings from their SM values are still possible; for instance, the Higgs-gauge coupling can be corrected by a factor κ hV V ∈ [0 .93 , 1 .15] in the allowed parameter space. For the Higgs-strahlung e + e - → hZ and vector boson fusion processes {e}+{e}-\\to hν \\overline{ν} , he + e -, the cross section could increase by 32% or decrease by 13%. In the case of associated production with a top quark pair {e}+{e}-\\to ht\\overline{t} , the cross section can be enhanced up to several times when the custodial triplet scalar H 3 0 is resonantly produced. In the meanwhile, the double Higgs production {e}+{e}-\\to hhZ(hhν \\overline{ν}) can be maximally enhanced by one order of magnitude at the resonant H 1,3 0 production. We also include exclusion limits expected from future LHC runs at higher energy and luminosity and discuss their further constraints on the relevant model parameters. We find that the GM model can result in likely measurable deviations of Higgs production from the SM at future e + e - colliders.

  20. Muon g−2 in the aligned two Higgs doublet model

    Energy Technology Data Exchange (ETDEWEB)

    Han, Tao [Department of Physics and Astronomy, University of Pittsburgh,Pittsburgh, PA 15260 (United States); Physics Department, Collaborative Innovation Center of Quantum Matter, Tsinghua University,Beijing 100084 (China); Korea Institute for Advanced Study,Seoul 130-722 (Korea, Republic of); Kang, Sin Kyu [School of Liberal Arts, Seoul National University of Science and Technology,Seoul 139-743 (Korea, Republic of); Sayre, Joshua [Department of Physics and Astronomy, University of Pittsburgh,Pittsburgh, PA 15260 (United States)

    2016-02-16

    We study the Two-Higgs-Doublet Model with the aligned Yukawa sector (A2HDM) in light of the observed excess measured in the muon anomalous magnetic moment. We take into account the existing theoretical and experimental constraints with up-to-date values and demonstrate that a phenomenologically interesting region of parameter space exists. With a detailed parameter scan, we show a much larger region of viable parameter space in this model beyond the limiting case Type X 2HDM as obtained before. It features the existence of light scalar states with masses 3 GeV≲m{sub H}≲50 GeV, or  10 GeV≲m{sub A}≲130 GeV, with enhanced couplings to tau leptons. The charged Higgs boson is typically heavier, with 200 GeV≲m{sub H{sup +}}≲630 GeV. The surviving parameter space is forced into the CP-conserving limit by EDM constraints. Some Standard Model observables may be significantly modified, including a possible new decay mode of the SM-like Higgs boson to four taus. We comment on future measurements and direct searches for those effects at the LHC as tests of the model.

  1. Higgs-boson and Z-boson flavor-changing neutral-current decays correlated with B-meson decays in the littlest Higgs model with T parity

    International Nuclear Information System (INIS)

    Han Xiaofang; Wang Lei; Yang Jinmin

    2008-01-01

    In the littlest Higgs model with T-parity new flavor-changing interactions between mirror fermions and the standard model (SM) fermions can induce various flavor-changing neutral-current decays for B-mesons, the Z-boson, and the Higgs boson. Since all these decays induced in the littlest Higgs with T-parity model are correlated, in this work we perform a collective study for these decays, namely, the Z-boson decay Z→bs, the Higgs-boson decay h→bs, and the B-meson decays B→X s γ, B s →μ + μ - , and B→X s μ + μ - . We find that under the current experimental constraints from the B-decays, the branching ratios of both Z→bs and h→bs can still deviate from the SM predictions significantly. In the parameter space allowed by the B-decays, the branching ratio of Z→bs can be enhanced up to 10 -7 (about one order above the SM prediction) while h→bs can be much suppressed relative to the SM prediction (about one order below the SM prediction).

  2. Higgs bosons in the standard model, the MSSM and beyond

    Indian Academy of Sciences (India)

    Abstract. I summarize the basic theory and selected phenomenology for the Higgs boson(s) of the standard model, the minimal supersymmetric model and some extensions thereof, including the next-to-minimal supersymmetric model.

  3. Higgs physics at CMS

    Energy Technology Data Exchange (ETDEWEB)

    Holzner, André G., E-mail: andre.georg.holzner@cern.ch [University of California at San Diego (United States); Collaboration: on behalf of the CMS collaboration

    2016-12-15

    This article reviews recent measurements of the properties of the standard model (SM) Higgs boson using data recorded with the CMS detector at the LHC: its mass, width and couplings to other SM particles. We also summarise highlights from searches for new physical phenomena in the Higgs sector as they are proposed in many extensions of the SM: flavour violating and invisible decay modes, resonances decaying into Higgs bosons and searches for additional Higgs bosons.

  4. Results on Standard Model Higgs Boson searches at high mass at the LHC

    International Nuclear Information System (INIS)

    Gao, Yanyan

    2014-01-01

    We present results from searches for the standard model Higgs boson with a mass greater than 200 GeV in pp collisions at √(s)=7 TeV. The data are collected at the LHC with both ATLAS and CMS detectors, and correspond to integrated luminosity of 5 fb -1 each. Searches are performed in the 2 main decay modes WW and ZZ. No significant excess of events above the standard model background expectations is observed, and upper limits on the Higgs boson production relative to the standard model expectation are derived. A standard model Higgs boson is excluded in the mass range up to 539 GeV or 600 GeV at 95% confidence level by the ATLAS or CMS experiments respectively. (author)

  5. Observation of the Meissner effect in a lattice Higgs model

    Science.gov (United States)

    Damgaard, Poul H.; Heller, Urs M.

    1988-01-01

    The lattice-regularized U(1) Higgs model in an external electromagnetic field is studied by Monte Carlo techniques. In the Coulomb phase, magnetic flux can flow through uniformly. The Higgs phase splits into a region where magnetic flux can penetrate only in the form of vortices and a region where the magnetic flux is completely expelled, the relativistic analog of the Meissner effect in superconductivity. Evidence is presented for symmetry restoration in strong external fields.

  6. Three-body decays of Higgs bosons at LEP2 and application to a hidden fermiophobic Higgs

    International Nuclear Information System (INIS)

    Akeroyd, A.G.

    1999-01-01

    We study the decays of Higgs bosons to a lighter Higgs boson and a virtual gauge boson in the context of the non-supersymmetric two-Higgs doublet model (2HDM). We consider the phenomenological impact at LEP2 and find that such decays, when open, may be dominant in regions of parameter space and thus affect current Higgs boson search techniques. Three-body decays would be a way of producing light neutral Higgs bosons which have so far escaped detection at LEP due to suppressed couplings to the Z, and are of particular importance in the 2HDM (Model I) which allows both a light fermiophobic Higgs and a light charged scalar

  7. Higgs physics

    Indian Academy of Sciences (India)

    The theoretical aspects of the physics of Higgs bosons are reviewed focussing on the elements that are relevant for the production and detection at present hadron colliders. After briefly summarizing the basics of electroweak symmetry breaking in the Standard Model, the Higgs production at the LHC and at the Tevatron is ...

  8. Cosmological Signature of the Standard Model Higgs Vacuum Instability: Primordial Black Holes as Dark Matter

    Science.gov (United States)

    Espinosa, J. R.; Racco, D.; Riotto, A.

    2018-03-01

    For the current central values of the Higgs boson and top quark masses, the standard model Higgs potential develops an instability at a scale of the order of 1 011 GeV . We show that a cosmological signature of such instability could be dark matter in the form of primordial black holes seeded by Higgs fluctuations during inflation. The existence of dark matter might not require physics beyond the standard model.

  9. Reconstructing neutrino properties from collider experiments in a Higgs triplet neutrino mass model

    International Nuclear Information System (INIS)

    Aristizabal Sierra, D.; Hirsch, M.; Valle, J. W. F.; Villanova del Moral, A.

    2003-01-01

    We extend the minimal supersymmetric standard model with bilinear R-parity violation to include a pair of Higgs triplet superfields. The neutral components of the Higgs triplets develop small vacuum expectation values (VEVs) quadratic in the bilinear R-parity breaking parameters. In this scheme the atmospheric neutrino mass scale arises from bilinear R-parity breaking while for reasonable values of parameters the solar neutrino mass scale is generated from the small Higgs triplet VEVs. We calculate neutrino masses and mixing angles in this model and show how the model can be tested at future colliders. The branching ratios of the doubly charged triplet decays are related to the solar neutrino angle via a simple formula

  10. Higgs decays and brane gravi-vectors

    International Nuclear Information System (INIS)

    Clark, T. E.; Liu Boyang; Love, S. T.; Xiong, C.; Veldhuis, T. ter

    2008-01-01

    Higgs boson decays in flexible brane world models with stable, massive gravi-vectors are considered. Such vectors couple bilinearly to the standard model fields through either the standard model energy-momentum tensor, the weak hypercharge field strength, or the Higgs scalar. The role of the coupling involving the extrinsic curvature is highlighted. It is found that within the presently allowed parameter space, the decay rate of the Higgs into two gravi-vectors (which would appear as an invisible Higgs decay) can be comparable to the rate for any of the standard model decay modes.

  11. Strongly Coupled Models with a Higgs-like Boson

    Science.gov (United States)

    Pich, Antonio; Rosell, Ignasi; José Sanz-Cillero, Juan

    2013-11-01

    Considering the one-loop calculation of the oblique S and T parameters, we have presented a study of the viability of strongly-coupled scenarios of electroweak symmetry breaking with a light Higgs-like boson. The calculation has been done by using an effective Lagrangian, being short-distance constraints and dispersive relations the main ingredients of the estimation. Contrary to a widely spread believe, we have demonstrated that strongly coupled electroweak models with massive resonances are not in conflict with experimentalconstraints on these parameters and the recently observed Higgs-like resonance. So there is room for these models, but they are stringently constrained. The vector and axial-vector states should be heavy enough (with masses above the TeV scale), the mass splitting between them is highly preferred to be small and the Higgs-like scalar should have a WW coupling close to the Standard Model one. It is important to stress that these conclusions do not depend critically on the inclusion of the second Weinberg sum rule. We wish to thank the organizers of LHCP 2013 for the pleasant conference. This work has been supported in part by the Spanish Government and the European Commission [FPA2010-17747, FPA2011- 23778, AIC-D-2011-0818, SEV-2012-0249 (Severo Ochoa Program), CSD2007-00042 (Consolider Project CPAN)], the Generalitat Valenciana [PrometeoII/2013/007] and the Comunidad de Madrid [HEPHACOS S2009/ESP-1473].

  12. Non-Abelian anyons: when Ising meets Fibonacci

    NARCIS (Netherlands)

    Grosfeld, E.; Schoutens, K.

    2009-01-01

    We consider an interface between two non-Abelian quantum Hall states: the Moore-Read state, supporting Ising anyons, and the k=2 non-Abelian spin-singlet state, supporting Fibonacci anyons. It is shown that the interface supports neutral excitations described by a (1+1)-dimensional conformal field

  13. Oscillator as a hidden non-Abelian monopole

    International Nuclear Information System (INIS)

    Mardoyan, L.G.; Sisakyan, A.N.; Ter-Antonyan, V.M.

    1996-01-01

    A non-Abelian SU(2) model is constructed for a five-dimensional bound system 'charge-dyon' on the basis of the Hurwitz-transformed eight-dimensional isotropic quantum oscillator. The principle of dyon-oscillator duality is formulated; the energy spectrum and wave functions of the system 'charge-dyon' are calculated. 20 refs

  14. Non-SM Exotic Higgs: Beyond SM and MSSM

    Directory of Open Access Journals (Sweden)

    Lacaprara Stefano

    2013-05-01

    Full Text Available A review of the searches for exotic Higgs boson beyond standard model and minimal supersymmetric standard model (MSSM, from experiments at the Tevatron and LHC, is presented. Several different models have been considered, including extensions to standard model with fourth generation of fermions, fermiophobic Higgs, next-to-MSSM models, seesaw type-II, and rare decay of Higgs boson to hidden sector. For next-to- MSSM models several final states have been considered, including light pseudo-scalar Higgs decay into taus, muons, and photons, as well as charged Higgs boson. The searches has been performed with re-interpretation of results from standard model Higgs search as well as on new signatures.

  15. Probing the Higgs sector of high-scale SUSY-breaking models at the Tevatron

    Energy Technology Data Exchange (ETDEWEB)

    Carena, Marcela [Fermi National Accelerator Laboratory, Batavia, IL (United States); Chicago Univ., Chicago, IL (United States). Enrico Fermi Inst.; Draper, Patrick [Chicago Univ., Chicago, IL (United States). Enrico Fermi Inst.; Heinemeyer, Sven [Instituto de Fisica de Cantabria (CSIC-UC), Santander (Spain); Liu, Tao [Chicago Univ., Chicago, IL (United States). Enrico Fermi Inst.; California Univ., Santa Barbara, CA (United States). Dept. of Physics; Wagner, Carlos E.M. [Chicago Univ., Chicago, IL (United States). Enrico Fermi Inst.; Argonne National Laboratory, Argonne, IL (United States). HEP Div.; Chicago Univ., Chicago, IL (United States). KICP and Dept. of Physics; Weiglein, Georg [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2010-12-15

    A canonical signature of the Minimal Supersymmetric Standard Model (MSSM) is the presence of a neutral Higgs boson with mass bounded from above by about 135 GeV and Standard Model (SM)-like couplings to the electroweak gauge bosons. In this note we investigate the reach of the Tevatron collider for the MSSM Higgs sector parameter space associated with a variety of high-scale minimal models of supersymmetry (SUSY)-breaking, including the Constrained MSSM (CMSSM), minimal Gauge Mediated SUSY-breaking (mGMSB), and minimal Anomaly Mediated SUSY-breaking (mAMSB). We find that the Tevatron can provide strong constraints on these models via Higgs boson searches. Considering a simple projection for the efficiency improvements in the Tevatron analyses, we find that with an integrated luminosity of 16 fb{sup -1} per detector and an efficiency improvement of 20% compared to the present situation, these models could be probed essentially over their entire ranges of validity. With 40% analysis improvements and 16 fb{sup -1}, our projection shows that evidence at the 3{sigma} level for the light Higgs boson could be expected in extended regions of parameter space. (orig.)

  16. Probing the Higgs sector of high-scale SUSY-breaking models at the Tevatron

    International Nuclear Information System (INIS)

    Carena, Marcela; Liu, Tao

    2010-12-01

    A canonical signature of the Minimal Supersymmetric Standard Model (MSSM) is the presence of a neutral Higgs boson with mass bounded from above by about 135 GeV and Standard Model (SM)-like couplings to the electroweak gauge bosons. In this note we investigate the reach of the Tevatron collider for the MSSM Higgs sector parameter space associated with a variety of high-scale minimal models of supersymmetry (SUSY)-breaking, including the Constrained MSSM (CMSSM), minimal Gauge Mediated SUSY-breaking (mGMSB), and minimal Anomaly Mediated SUSY-breaking (mAMSB). We find that the Tevatron can provide strong constraints on these models via Higgs boson searches. Considering a simple projection for the efficiency improvements in the Tevatron analyses, we find that with an integrated luminosity of 16 fb -1 per detector and an efficiency improvement of 20% compared to the present situation, these models could be probed essentially over their entire ranges of validity. With 40% analysis improvements and 16 fb -1 , our projection shows that evidence at the 3σ level for the light Higgs boson could be expected in extended regions of parameter space. (orig.)

  17. 125 GeV Higgs boson mass from 5D gauge-Higgs unification

    Science.gov (United States)

    Carson, Jason; Okada, Nobuchika

    2018-03-01

    In the context of a simple gauge-Higgs unification (GHU) scenario based on the gauge group SU(3)×U(1)^' in a 5D flat space-time, we investigate the possibility of reproducing the observed Higgs boson mass of around 125 GeV. We introduce bulk fermion multiplets with a bulk mass and a (half-)periodic boundary condition. In our analysis, we adopt a low-energy effective theoretical approach of the GHU scenario, where the running Higgs quartic coupling is required to vanish at the compactification scale. Under this "gauge-Higgs condition," we investigate the renormalization group evolution of the Higgs quartic coupling and find a relation between the bulk mass and the compactification scale so as to reproduce the 125 GeV Higgs boson mass. Through quantum corrections at the one-loop level, the bulk fermions contribute to the Higgs boson production and decay processes and deviate the Higgs boson signal strengths at the Large Hadron Collider experiments from the Standard Model (SM) predictions. Employing the current experimental data that show that the Higgs boson signal strengths for a variety of Higgs decay modes are consistent with the SM predictions, we obtain lower mass bounds on the lightest mode of the bulk fermions to be around 1 TeV.

  18. Fermions and vortex solutions in Abelian and non-Abelian gauge theories

    International Nuclear Information System (INIS)

    de Vega, H.J.

    1978-01-01

    The interaction of fermions with an extended vortex solution of the Higgs model is investigated. It is found that this interaction has long-range inverse-square tail. It is caused by the coupling of the fermion angular momentum with the vortex gauge field itself. The fermion-vortex bound states present at the threshold and the fermion-vortex scattering are studied. The scattering phase shifts and the Jost functions are obtained for large and small fermion momenta as well as the low-energy cross section which diverges at zero momentum. The quantum field theory in the one-vortex sectors is developed. It is found that, in the presence of fermions, a vortex with an even (odd) number of flux quanta has a half-integer (integer) fermionic number. It follows that a two-quantum vortex is stable. Finally, the stable vortex solution of an SU(2) Higgs model is investigated. The appropriate ansatz for the field is given and radial equations are discussed. It is shown that the interaction of a vortex with any nonsinglet particle has a long-range inverse-square tail

  19. Asymptotically Safe Standard Model Extensions arXiv

    CERN Document Server

    Pelaggi, Giulio Maria; Salvio, Alberto; Sannino, Francesco; Smirnov, Juri; Strumia, Alessandro

    We consider theories with a large number NF of charged fermions and compute the renormalisation group equations for the gauge, Yukawa and quartic couplings resummed at leading order in NF. We construct extensions of the Standard Model where SU(2) and/or SU(3) are asymptotically safe. When the same procedure is applied to the Abelian U(1) factor, we find that the Higgs quartic can not be made asymptotically safe and stay perturbative at the same time.

  20. arXiv Asymptotically Safe Standard Model Extensions?

    CERN Document Server

    Pelaggi, Giulio Maria; Salvio, Alberto; Sannino, Francesco; Smirnov, Juri; Strumia, Alessandro

    2018-05-15

    We consider theories with a large number NF of charged fermions and compute the renormalization group equations for the gauge, Yukawa and quartic couplings resummed at leading order in 1/NF. We construct extensions of the standard model where SU(2) and/or SU(3) are asymptotically safe. When the same procedure is applied to the Abelian U(1) factor, we find that the Higgs quartic can not be made asymptotically safe and stay perturbative at the same time.

  1. Cosmological Signature of the Standard Model Higgs Vacuum Instability: Primordial Black Holes as Dark Matter.

    Science.gov (United States)

    Espinosa, J R; Racco, D; Riotto, A

    2018-03-23

    For the current central values of the Higgs boson and top quark masses, the standard model Higgs potential develops an instability at a scale of the order of 10^{11}  GeV. We show that a cosmological signature of such instability could be dark matter in the form of primordial black holes seeded by Higgs fluctuations during inflation. The existence of dark matter might not require physics beyond the standard model.

  2. HiggsBounds-4. Improved tests of extended Higgs sectors against exclusion bounds from LEP, the Tevatron and the LHC

    Energy Technology Data Exchange (ETDEWEB)

    Bechtle, Philip [Bonn Univ. (Germany). Physikalisches Inst.; Heinemeyer, Sven [Instituto de Fisica de Cantabria (CSIC-UC), Santander (Spain); Staal, Oscar [Stockholm Univ. (Sweden). Dept. of Physics; Stefaniak, Tim; Williams, Karina E. [Bonn Univ. (Germany). Physikalisches Inst.; Bonn Univ. (Germany). Bethe Center for Theoretical Physics; Weiglein, Georg [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Brein, Oliver

    2013-12-15

    We describe the new developments in version 4 of the public computer code HiggsBounds. HiggsBounds is a tool to test models with arbitrary Higgs sectors, containing both neutral and charged Higgs bosons, against the published exclusion bounds from Higgs searches at the LEP, Tevatron and LHC experiments. From the model predictions for the Higgs masses, branching ratios, production cross sections and total decay widths - which are specified by the user in the input for the program - the code calculates the predicted signal rates for the search channels considered in the experimental data. The signal rates are compared to the expected and observed cross section limits from the Higgs searches to determine whether a point in the model parameter space is excluded at 95% confidence level. In this paper we present a modification of the HiggsBounds main algorithm that extends the exclusion test in order to ensure that it provides useful results in the presence of one or more significant excesses in the data, corresponding to potential Higgs signals. We also describe a new method to test whether the limits from an experimental search performed under certain model assumptions can be applied to a different theoretical model. Further developments discussed here include a framework to take into account theoretical uncertainties on the Higgs mass predictions, and the possibility to obtain the {chi}{sup 2} likelihood of Higgs exclusion limits from LEP. Extensions to the user subroutines from earlier versions of HiggsBounds are described. The new features are demonstrated by additional example programs.

  3. HiggsBounds-4. Improved tests of extended Higgs sectors against exclusion bounds from LEP, the Tevatron and the LHC

    International Nuclear Information System (INIS)

    Bechtle, Philip; Staal, Oscar; Brein, Oliver

    2013-12-01

    We describe the new developments in version 4 of the public computer code HiggsBounds. HiggsBounds is a tool to test models with arbitrary Higgs sectors, containing both neutral and charged Higgs bosons, against the published exclusion bounds from Higgs searches at the LEP, Tevatron and LHC experiments. From the model predictions for the Higgs masses, branching ratios, production cross sections and total decay widths - which are specified by the user in the input for the program - the code calculates the predicted signal rates for the search channels considered in the experimental data. The signal rates are compared to the expected and observed cross section limits from the Higgs searches to determine whether a point in the model parameter space is excluded at 95% confidence level. In this paper we present a modification of the HiggsBounds main algorithm that extends the exclusion test in order to ensure that it provides useful results in the presence of one or more significant excesses in the data, corresponding to potential Higgs signals. We also describe a new method to test whether the limits from an experimental search performed under certain model assumptions can be applied to a different theoretical model. Further developments discussed here include a framework to take into account theoretical uncertainties on the Higgs mass predictions, and the possibility to obtain the χ 2 likelihood of Higgs exclusion limits from LEP. Extensions to the user subroutines from earlier versions of HiggsBounds are described. The new features are demonstrated by additional example programs.

  4. Are Higgs particles strongly interacting(question mark)

    International Nuclear Information System (INIS)

    Shanker, O.

    1982-02-01

    The order of magnitude of Yukawa couplings in some theories with flavour violating Higgs particles is estimated. Based on these couplings, mass bounds for flavour violating Higgs particles are derived from the Ksub(L)-Ksub(S) mass difference. The Higgs particles have to be very heavy, implying that the Higgs sector quartic couplings are very large. Thus, these theories seem to require a strongly interacting Higgs sector unless one adjusts to the Higgs-fermion Yukawa couplings to within two orders of magnitude, so as to suppress the coupling of Higgs particles to the flavour-violating anti sd current. Most models with flavour violating Higgs particles have the same general features, so the conclusions are likely to hold for a wide class of models with flavour violating Higgs particles

  5. A comparison of the Higgs sectors of the CMSSM and NMSSM for a 126 GeV Higgs boson

    International Nuclear Information System (INIS)

    Beskidt, C.; Boer, W. de; Kazakov, D.I.

    2013-01-01

    The recent discovery of a Higgs-like boson at the LHC with a mass of 126 GeV has revived the interest in supersymmetric models, which predicted a Higgs boson mass below 130 GeV long before its discovery. We compare systematically the allowed parameter space in the constrained Minimal Supersymmetric Standard Model (CMSSM) and the Next-to-Minimal Supersymmetric Model (NMSSM) by minimizing the χ 2 function with respect to all known constraints from accelerators and cosmology using GUT scale parameters. For the CMSSM the Higgs boson mass at tree level is below the Z 0 boson mass and large radiative corrections are needed to obtain a Higgs boson mass of 126 GeV, which requires stop squark masses in the multi-TeV range. In contrast, for the NMSSM light stop quarks are allowed, since in the NMSSM at tree level the Higgs boson mass can be above the Z 0 boson mass from mixing with the additional singlet Higgs boson. Predictions for the scalar boson masses are given in both models with emphasis on the unique signatures of the NMSSM, where the heaviest scalar Higgs boson decays in the two lighter scalar Higgs bosons with a significant branching ratio, in which case one should observe double Higgs boson production at the LHC. Such a signal is strongly suppressed in the CMSSM. In addition, since the LSP is higgsino-like, Higgs boson decays into LSPs can be appreciable, thus leading to invisible Higgs decays

  6. A Higgs-bozon

    CERN Document Server

    Dezso, Horvath

    2017-01-01

    A részecskefizika általánosan elfogadott és az elmúlt 40 év alatt sokszorosan igazolt elmélete, a standard modell valamennyi alkatrészét sikerült megfigyelni és tanulmányozni a Higgs-bozon kivételével. A CERN nagy hadronütköztetője (LHC), a világ legnagyobb részecskegyorsítója is elsősorban a Higgs-részecske kimutatására épült. 2012 közepére az LHC két óriási mérőberendezése, a sok ezer fizikus részvételével épült CMS és ATLAS megfigyelt egy - a Higgs-bozon elméletileg megjósolt tulajdonságaival rendelkező - új részecskét. A könyv áttekinti a standard modell elméletét és a Higgs-részecske feltételezett tulajdonságait, majd összefoglalja az LHC Higgs-keresési eredményeit és a hozzájuk vezető utat. Függelékben ismerteti a könyvben előforduló fizikusok életrajzát és bizonyos fizikai fogalmak részletesebb leírását. A 2013-as fizikai Nobel-díjat Peter Higgs és François Englert kapták megosztva a Higgs-mechanizmus és a Higgs-bozon elmé...

  7. The Standard Model Higgs as the origin of the hot Big Bang

    CERN Document Server

    Figueroa, Daniel G.

    2017-04-10

    If the Standard Model (SM) Higgs is weakly coupled to the inflationary sector, the Higgs is expected to be universally in the form of a condensate towards the end of inflation. The Higgs decays rapidly after inflation -- via non-perturbative effects -- into an out-of-equilibrium distribution of SM species, which thermalize soon afterwards. If the post-inflationary equation of state of the universe is stiff, $w \\simeq +1$, the SM species eventually dominate the total energy budget. This provides a natural origin for the relativistic thermal plasma of SM species, required for the onset the `hot Big Bang' era. The viability of this scenario requires the inflationary Hubble scale $H_*$ to be lower than the instability scale for Higgs vacuum decay, the Higgs not to generate too large curvature perturbations at cosmological scales, and the SM dominance to occur before Big Bang Nucleosynthesis. We show that successful reheating into the SM can only be obtained in the presence of a non-minimal coupling to gravity $\\x...

  8. Higgs boson search at ATLAS

    International Nuclear Information System (INIS)

    Hanninger, Guilherme Nunes

    2012-01-01

    Full text: The Standard Model of particle physics (SM) has been extremely successful describing the elementary particles and their interactions. It also features a theory describing the origin of particle masses: the 'Higgs mechanism', which postulates the existence of a new particle called the 'Higgs boson'. In 2011 and 2012, tantalising hints of the Higgs boson were reported by the experiments at the Large Hadron Collider (LHC). The results of the search for the Standard Model Higgs Boson with the ATLAS detector in proton-proton collisions at the LHC at 7 and 8 TeV center-of-mass energies are presented. A large number of the Higgs Boson decay channels, such as photon, tau, W and Z pairs, as well as for combined channels in the mass range from 110 GeV to 600 GeV are reviewed and discussed. The combined upper limits on the production cross section as a function of the Higgs Boson mass are derived. Practical methods to estimate the backgrounds using control samples in real data are discussed. Validation of some of the data driven background estimation methods using the early 7 TeV ATLAS data at the LHC is also presented. In addition, searches for Higgs Bosons in scenarios beyond the Standard Model (BSM) lead to improved constraints on the Higgs sector of BSM theories such as Supersymmetry. (author)

  9. Hunting the dark Higgs

    Energy Technology Data Exchange (ETDEWEB)

    Duerr, Michael; Grohsjean, Alexander; Kahlhoefer, Felix; Schmidt-Hoberg, Kai; Schwanenberger, Christian [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Penning, Bjoern [Bristol Univ. (United Kingdom). H.H. Wills Physics Lab.

    2017-05-15

    We discuss a novel signature of dark matter production at the LHC resulting from the emission of an additional Higgs boson in the dark sector. The presence of such a dark Higgs boson is motivated simultaneously by the need to generate the masses of the particles in the dark sector and the possibility to relax constraints from the dark matter relic abundance by opening up a new annihilation channel. If the dark Higgs boson decays into Standard Model states via a small mixing with the Standard Model Higgs boson, one obtains characteristic large-radius jets in association with missing transverse momentum that can be used to efficiently discriminate signal from backgrounds. We present the sensitivities achievable in LHC searches for dark Higgs bosons with already collected data and demonstrate that such searches can probe large regions of parameter space that are inaccessible to conventional mono-jet or di-jet searches.

  10. Hunting the dark Higgs

    International Nuclear Information System (INIS)

    Duerr, Michael; Grohsjean, Alexander; Kahlhoefer, Felix; Schmidt-Hoberg, Kai; Schwanenberger, Christian; Penning, Bjoern

    2017-05-01

    We discuss a novel signature of dark matter production at the LHC resulting from the emission of an additional Higgs boson in the dark sector. The presence of such a dark Higgs boson is motivated simultaneously by the need to generate the masses of the particles in the dark sector and the possibility to relax constraints from the dark matter relic abundance by opening up a new annihilation channel. If the dark Higgs boson decays into Standard Model states via a small mixing with the Standard Model Higgs boson, one obtains characteristic large-radius jets in association with missing transverse momentum that can be used to efficiently discriminate signal from backgrounds. We present the sensitivities achievable in LHC searches for dark Higgs bosons with already collected data and demonstrate that such searches can probe large regions of parameter space that are inaccessible to conventional mono-jet or di-jet searches.

  11. Graceful exit from Higgs G-inflation

    Energy Technology Data Exchange (ETDEWEB)

    Kamada, Kohei [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Kobayashi, Tsutomu [Rikkyo Univ., Tokyo (Japan). Dept. of Physics; Kunimitsu, Taro [Tokyo Univ. (Japan). Dept. of Physics; Tokyo Univ. (Japan). Research Center for the Early Universe (RESCEU); Yamaguchi, Masahide [Tokyo Institute of Technology (Japan). Dept. of Physics; Yokoyama, Jun' ichi [Tokyo Univ. (Japan). Research Center for the Early Universe (RESCEU); Tokyo Univ., Chiba (Japan). Kavli Inst. for the Physics and Mathematics of the Universe (Kavli IPMU)

    2013-09-15

    Higgs G-inflation is a Higgs inflation model with a generalized Galileon term added to the standard model Higgs field, which realizes inflation compatible with observations. Recently, it was claimed that the generalized Galileon term induces instabilities during the oscillation phase, and that the simplest Higgs G-inflation model inevitably suffers from this problem. In this paper, we extend the original Higgs G-inflation Lagrangian to a more general form, namely introducing a higher-order kinetic term and generalizing the form of the Galileon term, so that the Higgs field can oscillate after inflation without encountering instabilities. Moreover, it accommodates a large region of the n{sub s}-r plane, most of which is consistent with current observations, leading us to expect the detection of B-mode polarization in the cosmic microwave background in the near future.

  12. Two Higgs doublets in SO(10) model

    International Nuclear Information System (INIS)

    Asatryan, G.M.

    1989-01-01

    An SO(10) grand unification model is suggested with two light Higgs doublets, whose vacuum expectation values are connected with the SU(2) L xU(1) Y electroweak group breaking. Taking into account the naturality condition associated with absence of flavor changing neutral currents, a certain form of the quark mass matrices. As a result, the proton lifetime in the SO(10) model turns to be strongly restrained

  13. Variations of little Higgs models and their electroweak constraints

    International Nuclear Information System (INIS)

    Csaki, Csaba; Hubisz, Jay; Meade, Patrick; Kribs, Graham D.; Terning, John

    2003-01-01

    We calculate the tree-level electroweak precision constraints on a wide class of little Higgs models including variations of the littlest Higgs SU(5)/SO(5), SU(6)/Sp(6), and SU(4) 4 /SU(3) 4 models. By performing a global fit to the precision data we find that for generic regions of the parameter space the bound on the symmetry breaking scale f is several TeV, where we have kept the normalization of f constant in the different models. For example, the 'minimal' implementation of SU(6)/Sp(6) is bounded by f>3.0 TeV throughout most of the parameter space, and SU(4) 4 /SU(3) 4 is bounded by f 2 ≡f 1 2 +f 2 2 >(4.2 TeV) 2 . In certain models, such as SU(4) 4 /SU(3) 4 , a large f does not directly imply a large amount of fine-tuning since the heavy-fermion masses that contribute to the Higgs boson mass can be lowered below f for a carefully chosen set of parameters. We also find that for certain models (or variations) there exist regions of parameter space in which the bound on f can be lowered into the range 1-2 TeV. These regions are typically characterized by a small mixing between heavy and standard model gauge bosons and a small (or vanishing) coupling between heavy U(1) gauge bosons and light fermions. Whether such a region of parameter space is natural or not is ultimately contingent on the UV completion

  14. Searches of exotic Higgs bosons in general mass spectra of the Georgi-Machacek model at the LHC

    International Nuclear Information System (INIS)

    Chiang, Cheng-Wei; Kuo, An-Li; Yamada, Toshifumi

    2016-01-01

    We derive the most general sets of viable mass spectra of the exotic Higgs bosons in the Georgi-Machacek model that are consistent with the theoretical constraints of vacuum stability and perturbative unitarity and the experimental constraints of electroweak precision observables, Zbb̄ coupling and Higgs boson signal strengths. Branching ratios of various cascade decay channels of the doubly-charged Higgs boson in the 5 representation, the singly-charged Higgs boson in 3, and the singlet Higgs boson are further computed. As one of the most promising channels for discovering the model, we study the prospects for detecting the doubly-charged Higgs boson that is produced via the vector boson fusion process and decays into final states containing a pair of same-sign leptons at the 14-TeV LHC and a 100-TeV future pp collider. For this purpose, we evaluate acceptance times efficiency for signals of the doubly-charged Higgs boson with general viable mass spectra and compare it with the standard model background estimates.

  15. Discriminating between Higgs Boson models using e+e- → tt-bar h and Zh at the NLC

    International Nuclear Information System (INIS)

    Gunion, J. F.; He, X. G.

    1997-01-01

    In extensions of the Standard Model (SM) there are multiple neutral Higgs bosons. Their masses and couplings are often dependent upon many parameters; CP-violating mixing of CP-even with CP-odd neutral Higgs fields is generally possible. It is demonstrated that the process e + e - → tt-bar h at the NLC provides a powerful tool for extracting the tt-bar (Yukawa) couplings of the h. In combination with the e + e - → Zh process, an accurate determination of the ZZ coupling of the H is also possible. The resulting ability to distinguish different models of the Higgs sector is illustrated by detailed studies for two-Higgs-doublet models, for which the masses and couplings of the three neutral Higgs bosons are all free parameters. It is concluded that it is very possible that the SM is not correct. In this case, and if there is a weakly-coupled Higgs sector, there will certainly be Higgs bosons that do not have SM-like couplings. 3 refs., 3 figs

  16. Searches for neutral Higgs bosons in extended models

    NARCIS (Netherlands)

    Abdallah, J.; Blom, M.R.; Drees, J.; Palacios, J.; van der Pol, M.; Siebel, M.; van Dam, P.A.; Zupan, M.

    2004-01-01

    Searches for neutral Higgs bosons produced at LEP in association with Z bosons, in pairs and in the Yukawa process are presented in this paper. Higgs boson decays into b quarks, τ leptons, or other Higgs bosons are considered, giving rise to four-b, four-b+jets, six-b and four-τ final states, as

  17. Higgs physics

    International Nuclear Information System (INIS)

    Rindani, Saurabh D.

    2002-07-01

    Higgs physics is at present poised at an interesting juncture, when a light Higgs boson of the standard model (henceforth to be referred to as SM), a spin-zero particle which would signal spontaneous gauge symmetry breaking in the simplest form, has not been seen until the conclusion of experiments at LEP and LEP2 electron-positron collider at CERN, Geneva. From a theoretical point of view, the developments until the present time are complex and interesting. While some of the basic principles underlying spontaneous symmetry breaking of gauge symmetry and the Higgs mechanism are now commonly known, the actual realization of this mechanism in nature is still a subject of investigation. The mass of the SM Higgs boson is an unknown parameter and the phenomenology is sensitively dependent on the mass. Thus the properties and discovery strategies for the Higgs vary greatly depending on the supposed mass, and the phenomenology rapidly gets complex as the range of the Higgs mass is increased. Branching rations for various channels and the total decay width are shown as a function of the Higgs mass. We can get the total width of the Higgs by adding up all the decay channels. Up to masses of about 140 GeV, the Higgs is very narrow, Γ(H) H ∼ 200 GeV. The width cannot be measured directly in the intermediate mass region at LHC or e + e - colliders. However, it could be measured at μ + μ - colliders. Above a mass of about 250 GeV, the state is wide enough to be observable, in general. Above the two-vector-boson threshold, the width is Γ(H) ∼ 1/2m H 3 (TeV). For m H ∼ 1 TeV, Γ H ∼ 1/2 TeV. (author)

  18. Precision Higgs Boson Physics and Implications for Beyond the Standard Model Physics Theories

    International Nuclear Information System (INIS)

    Wells, James

    2015-01-01

    The discovery of the Higgs boson is one of science's most impressive recent achievements. We have taken a leap forward in understanding what is at the heart of elementary particle mass generation. We now have a significant opportunity to develop even deeper understanding of how the fundamental laws of nature are constructed. As such, we need intense focus from the scientific community to put this discovery in its proper context, to realign and narrow our understanding of viable theory based on this positive discovery, and to detail the implications the discovery has for theories that attempt to answer questions beyond what the Standard Model can explain. This project's first main object is to develop a state-of-the-art analysis of precision Higgs boson physics. This is to be done in the tradition of the electroweak precision measurements of the LEP/SLC era. Indeed, the electroweak precision studies of the past are necessary inputs to the full precision Higgs program. Calculations will be presented to the community of Higgs boson observables that detail just how well various couplings of the Higgs boson can be measured, and more. These will be carried out using state-of-the-art theory computations coupled with the new experimental results coming in from the LHC. The project's second main objective is to utilize the results obtained from LHC Higgs boson experiments and the precision analysis, along with the direct search studies at LHC, and discern viable theories of physics beyond the Standard Model that unify physics to a deeper level. Studies will be performed on supersymmetric theories, theories of extra spatial dimensions (and related theories, such as compositeness), and theories that contain hidden sector states uniquely accessible to the Higgs boson. In addition, if data becomes incompatible with the Standard Model's low-energy effective lagrangian, new physics theories will be developed that explain the anomaly and put it into a more

  19. Where is the Higgs boson?

    International Nuclear Information System (INIS)

    Aranda, A.; Balazs, C.; Diaz-Cruz, J.L.

    2003-01-01

    Electroweak precision measurements indicate that the standard model Higgs boson is light and that it could have already been discovered at LEP 2, or might be found at the Tevatron run 2. In the context of a TeV -1 size extra-dimensional model, we argue that the Higgs boson production rates at LEP and the Tevatron are suppressed, while they might be enhanced at the LHC or at CLIC. This is due to the possible mixing between brane and bulk components of the Higgs boson, that is, the non-trivial brane-bulk 'location' of the lightest Higgs. To parametrize this mixing, we consider two Higgs doublets, one confined to the usual space dimensions and the other propagating in the bulk. Calculating the production and decay rates for the lightest Higgs boson, we find that compared to the standard model (SM), the cross section receives a suppression well below but an enhancement close to and above the compactification scale M c . This impacts the discovery of the lightest (SM like) Higgs boson at colliders. To find a Higgs signal in this model at the Tevatron run 2 or at the LC with √s=1.5 TeV, a higher luminosity would be required than in the SM case. Meanwhile, at the LHC or at CLIC with √s∼3-5 TeV one might find highly enhanced production rates. This will enable the latter experiments to distinguish between the extra-dimensional and the SM for M c up to about 6 TeV

  20. Searching for beyond-the-Standard Model Higgs bosons at ATLAS and CMS

    CERN Document Server

    Beacham, James; The ATLAS collaboration

    2018-01-01

    Searches for scalar, Higgs-like particles beyond the Standard Model --- as well as non-standard decays of the newly discovered scalar with a mass of 125 GeV (h125) --- with the ATLAS and CMS detectors at the Large Hadron Collider are presented. Extensions of the SM scalar sector are ubiquitous in new physics scenarios, and motivate a wide variety of experimental searches at the LHC. Signatures mentioned include those sensitive to new higher- or lower- mass scalars or pseudoscalars in two-Higgs doublet models (h/A/H); new particles leading to Vh resonances (where V is a SM vector boson); pair production of h125 from a new, higher-mass particle (di-Higgs); charged Higgs bosons (H+/- or H++/--); lepton flavor violating decays of h125; new, high-mass scalars decaying to V+photon or di-photon final states; exotic decays of h125 to light, intermediate particles that decay to SM final states; and either h125 or new scalars decaying to new long-lived particles that yield atypical detector signatures.

  1. High Mass Standard Model Higgs searches at the Tevatron

    Directory of Open Access Journals (Sweden)

    Petridis Konstantinos A.

    2012-06-01

    Full Text Available We present the results of searches for the Standard Model Higgs boson decaying predominantly to W+W− pairs, at a center-of-mass energy of √s = 1.96 TeV, using up to 8.2 fb−1 of data collected with the CDF and D0 detectors at the Fermilab Tevatron collider. The analysis techniques and the various channels considered are discussed. These searches result in exclusions across the Higgs mass range of 156.5< mH <173.7 GeV for CDF and 161< mH <170 GeV for D0.

  2. Quantum Critical Higgs

    Science.gov (United States)

    Bellazzini, Brando; Csáki, Csaba; Hubisz, Jay; Lee, Seung J.; Serra, Javi; Terning, John

    2016-10-01

    The appearance of the light Higgs boson at the LHC is difficult to explain, particularly in light of naturalness arguments in quantum field theory. However, light scalars can appear in condensed matter systems when parameters (like the amount of doping) are tuned to a critical point. At zero temperature these quantum critical points are directly analogous to the finely tuned standard model. In this paper, we explore a class of models with a Higgs near a quantum critical point that exhibits non-mean-field behavior. We discuss the parametrization of the effects of a Higgs emerging from such a critical point in terms of form factors, and present two simple realistic scenarios based on either generalized free fields or a 5D dual in anti-de Sitter space. For both of these models, we consider the processes g g →Z Z and g g →h h , which can be used to gain information about the Higgs scaling dimension and IR transition scale from the experimental data.

  3. The standard Higgs-model on the lattice

    International Nuclear Information System (INIS)

    Montvay, I.

    1985-06-01

    Some recent Monte Carlo calcuations in the SU(2) Higgs-model with a scalar doublet field are reviewed. Questions about the dependence on the scalar self-coupling are discussed in the framework of a strong self-coupling expansion. The numerical results are consistent with an asymptotically free continuum limit at vanishing bare gauge coupling. (orig.)

  4. Workshop on CP Studies and Non-Standard Higgs Physics

    CERN Document Server

    Accomando, E.; Akhmetzyanova, E.; Albert, J.; Alves, A.; Amapane, N.; Aoki, M.; Azuelos, G.; Baffioni, S.; Ballestrero, A.; Barger, V.; Bartl, A.; Bechtle, P.; Blanger, G.; Belhouari, A.; Bellan, R.; Belyaev, A.; Benes, Petr; Benslama, K.; Bernreuther, W.; Besanon, M.; Bevilacqua, G.; Beyer, M.; Bluj, M.; Bolognesi, S.; Boonekamp, M.; Borzumati, Francesca; Boudjema, F.; Brandenburg, A.; Brauner, Tomas; Buszello, C.P.; Butterworth, J.M.; Carena, Marcela; Cavalli, D.; Cerminara, G.; Choi, S.Y.; Clerbaux, B.; Collard, C.; Conley, John A.; Deandrea, A.; De Curtis, S.; Dermisek, R.; De Roeck, A.; Dewhirst, G.; Diaz, M.A.; Diaz-Cruz, J.L.; Dietrich, D.D.; Dolgopolov, M.; Dominici, D.; Dubinin, M.; Eboli, O.; Ellis, John R.; Evans, N.; Fano, L.; Ferland, J.; Ferrag, S.; Fitzgerald, S.P.; Fraas, H.; Franke, F.; Gennai, S.; Ginzburg, I.F.; Godbole, R.M.; Gregoire, T.; Grenier, Gerald Jean; Grojean, C.; Gudnason, S.B.; Gunion, J.F.; Haber, H.E.; Hahn, T.; Han, T.; Hankele, V.; Hays, Christopher Paul; Heinemeyer, S.; Hesselbach, S.; Hewett, J.L.; Hidaka, K.; Hirsch, M.; Hollik, W.; Hooper, D.; Hosek, J.; Hubisz, J.; Hugonie, C.; Kalinowski, J.; Kanemura, S.; Kashkan, V.; Kernreiter, T.; Khater, W.; Khoze, V.A.; Kilian, W.; King, S.F.; Kittel, O.; Klamke, G.; Kneur, J.L.; Kouvaris, C.; Kraml, S.; Krawczyk, M.; Krstonoic, P.; Kyriakis, A.; Langacker, P.; Le, M.P.; Lee, H.-S.; Lee, J.S.; Lemaire, M.C.; Liao, Y.; Lillie, B.; Litvine, Vladimir A.; Logan, H.E.; McElrath, Bob; Mahmoud, T.; Maina, E.; Mariotti, C.; Marquard, P.; Martin, A.D.; Mazumdar, K.; Miller, D.J.; Min, P.; Monig, Klaus; Moortgat-Pick, G.; Moretti, S.; Muhlleitner, M.M.; Munir, S.; Nevzorov, R.; Newman, H.; Niezurawski, P.; Nikitenko, A.; Noriega-Papaqui, R.; Okada, Y.; Osland, P.; Pilaftsis, A.; Porod, W.; Przysiezniak, H.; Pukhov, A.; Rainwater, D.; Raspereza, A.; Reuter, J.; Riemann, S.; Rindani, S.; Rizzo, T.G.; Ros, E.; Rosado, A.; Rousseau, D.; Roy, D.P.; Ryskin, M.G.; Rzehak, H.; Sannino, F.; Schmidt, E.; Schrder, H.; Schumacher, M.; Semenov, A.; Senaha, E.; Shaughnessy, G.; Singh, R.K.; Terning, J.; Vacavant, L.; Velasco, M.; Villanova del Moral, Albert; von der Pahlen, F.; Weiglein, G.; Williams, J.; Williams, K.E.; Zarnecki, A.F.; Zeppenfeld, D.; Zerwas, D.; Zerwas, P.M.; Zerwekh, A.R.; Ziethe, J.; 2nd Workshop on CP Studies and Non-standard Higgs Physics; 3rd Workshop on CP Studies and Non-standard Higgs Physics; 4th Workshop on CP Studies and Non-standard Higgs Physics; CPNSH; Workshop on CP Studies and Non-standard Higgs Physics; CP Studies and Non-Standard Higgs Physics

    2006-01-01

    There are many possibilities for new physics beyond the Standard Model that feature non-standard Higgs sectors. These may introduce new sources of CP violation, and there may be mixing between multiple Higgs bosons or other new scalar bosons. Alternatively, the Higgs may be a composite state, or there may even be no Higgs at all. These non-standard Higgs scenarios have important implications for collider physics as well as for cosmology, and understanding their phenomenology is essential for a full comprehension of electroweak symmetry breaking. This report discusses the most relevant theories which go beyond the Standard Model and its minimal, CP-conserving supersymmetric extension: two-Higgs-doublet models and minimal supersymmetric models with CP violation, supersymmetric models with an extra singlet, models with extra gauge groups or Higgs triplets, Little Higgs models, models in extra dimensions, and models with technicolour or other new strong dynamics. For each of these scenarios, this report presents ...

  5. Finite-Temperature Higgs Potentials

    International Nuclear Information System (INIS)

    Dolgopolov, M.V.; Gurskaya, A.V.; Rykova, E.N.

    2016-01-01

    In the present article we consider the short description of the “Finite-Temperature Higgs Potentials” program for calculating loop integrals at vanishing external momenta and applications for extended Higgs potentials reconstructions. Here we collect the analytic forms of the relevant loop integrals for our work in reconstruction of the effective Higgs potential parameters in extended models (MSSM, NMSSM and etc.)

  6. Consequences of an Abelian family symmetry

    International Nuclear Information System (INIS)

    Ramond, P.

    1996-01-01

    The addition of an Abelian family symmetry to the Minimal Super-symmetric Standard Model reproduces the observed hierarchies of quark and lepton masses and quark mixing angles, only if it is anomalous. Green-Schwarz compensation of its anomalies requires the electroweak mixing angle to be sin 2 θ ω = 3/8 at the string scale, without any assumed GUT structure, suggesting a superstring origin for the standard model. The analysis is extended to neutrino masses and the lepton mixing matrix

  7. Direct and indirect signals of natural composite Higgs models

    Science.gov (United States)

    Niehoff, Christoph; Stangl, Peter; Straub, David M.

    2016-01-01

    We present a comprehensive numerical analysis of a four-dimensional model with the Higgs as a composite pseudo-Nambu-Goldstone boson that features a calculable Higgs potential and protective custodial and flavour symmetries to reduce electroweak fine-tuning. We employ a novel numerical technique that allows us for the first time to study constraints from radiative electroweak symmetry breaking, Higgs physics, electroweak precision tests, flavour physics, and direct LHC bounds on fermion and vector boson resonances in a single framework. We consider four different flavour symmetries in the composite sector, one of which we show to not be viable anymore in view of strong precision constraints. In the other cases, all constraints can be passed with a sub-percent electroweak fine-tuning. The models can explain the excesses recently observed in WW, WZ, Wh and ℓ + ℓ - resonance searches by ATLAS and CMS and the anomalies in angular observables and branching ratios of rare semi-leptonic B decays observed by LHCb. Solving the B physics anomalies predicts the presence of a dijet or toverline{t} resonance around 1 TeV just below the sensitivity of LHC run 1. We discuss the prospects to probe the models at run 2 of the LHC. As a side product, we identify several gaps in the searches for vector-like quarks at hadron colliders, that could be closed by reanalyzing existing LHC data.

  8. Characterizing Higgs portal dark matter models at the ILC

    Energy Technology Data Exchange (ETDEWEB)

    Kamon, Teruki [Texas A and M University, Department of Physics and Astronomy, Mitchell Institute for Fundamental Physics and Astronomy, College Station, TX (United States); Ko, P.; Li, Jinmian [Korea Institute for Advanced Study, School of Physics, Seoul (Korea, Republic of)

    2017-09-15

    We study the dark matter (DM) discovery prospect and its spin discrimination in the theoretical framework of gauge invariant and renormalizable Higgs portal DM models at the ILC with √(s) = 500 GeV. In such models, the DM pair is produced in association with a Z boson. In the case of the singlet scalar DM, the mediator is just the SM Higgs boson, whereas for the fermion or vector DM there is an additional singlet scalar mediator that mixes with the SM Higgs boson, which produces significant observable differences. After careful investigation of the signal and backgrounds both at parton level and at detector level, we find the signal with hadronically decaying Z boson provides a better search sensitivity than the signal with leptonically decaying Z boson. Taking the fermion DM model as a benchmark scenario, when the DM-mediator coupling g{sub χ} is relatively small, the DM signals are discoverable only for benchmark points with relatively light scalar mediator H{sub 2}. The spin discriminating from scalar DM is always promising, while it is difficult to discriminate from vector DM. As for g{sub χ} approaching the perturbative limit, benchmark points with the mediator H{sub 2} in the full mass region of interest are discoverable. The spin discriminating aspects from both the scalar and the fermion DM are quite promising. (orig.)

  9. Abelian Chern-Simons theory as the strong large-mass limit of topologically massive abelian gauge theory: the Wilson loop

    International Nuclear Information System (INIS)

    Giavarini, G.; Martin, C.P.; Ruiz Ruiz, F.

    1993-01-01

    We show that the renormalized vacuum expectation value of the Wilson loop for topologically massive abelian gauge theory in bbfR 3 can be defined so that its large-mass limit be the renormalized vaccum expectation value of the Wilson loop for abelian Chern-Simons theory also in bbfR 3 . (orig.)

  10. A model of neutrino and Higgs physics at the electroweak scale

    International Nuclear Information System (INIS)

    Aranda, Alfredo; Blanno, Omar; Diaz-Cruz, J. Lorenzo

    2008-01-01

    We present and explore the Higgs physics of a model that in addition to the Standard Model fields includes a lepton number violating singlet scalar field. Based on the fact that the only experimental data we have so far for physics beyond the Standard Model is that of neutrino physics, we impose a constraint for any addition not to introduce new higher scales. As such, we introduce right-handed neutrinos with an electroweak scale mass. We study the Higgs decay H→νν and show that it leads to different signatures compared to those in the Standard Model, making it possible to detect them and to probe the nature of their couplings

  11. Higgs portal inflation

    Energy Technology Data Exchange (ETDEWEB)

    Lebedev, Oleg [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Lee, Hyun Min [European Organization for Nuclear Research (CERN), Geneva (Switzerland)

    2011-05-15

    The Higgs sector of the Standard Model offers a unique opportunity to probe the hidden sector. The Higgs squared operator is the only dimension two operator which is Lorentz and gauge invariant. It can therefore couple both to scalar curvature and the hidden sector at the dim-4 level. We consider the possibility that a combination of the Higgs and a singlet from the hidden sector plays the role of inflaton, due to their large couplings to gravity. This implies that the quartic couplings satisfy certain constraints which leads to distinct low energy phenomenology, including Higgs signals at the LHC. We also address the unitarity issues and show that our analysis survives the unitarization procedure. (orig.)

  12. Higgs Portal Inflation

    CERN Document Server

    Lebedev, Oleg

    2011-01-01

    The Higgs sector of the Standard Model offers a unique opportunity to probe the hidden sector. The Higgs squared operator is the only dimension two operator which is Lorentz and gauge invariant. It can therefore couple both to scalar curvature and the hidden sector at the dim--4 level. We consider the possibility that a combination of the Higgs and a singlet from the hidden sector plays the role of inflaton, due to their large couplings to gravity. This implies that the quartic couplings satisfy certain constraints which leads to distinct low energy phenomenology, including Higgs signals at the LHC. We also address the unitarity issues and show that our analysis survives the unitarization procedure.

  13. Non-Abelian vortices in N=1* gauge theory

    International Nuclear Information System (INIS)

    Markov, V.; Marshakov, A.; Yung, A.

    2005-01-01

    We consider the N=1* supersymmetric SU(2) gauge theory and demonstrate that the Z2 vortices in this theory acquire orientational zero modes, associated with the rotation of magnetic flux inside SU(2) group, and turn into the non-Abelian strings, when the masses of all chiral fields become equal. These non-Abelian strings are not BPS-saturated. We study the effective theory on the string world sheet and show that it is given by two-dimensional non-supersymmetric O(3) sigma model. The confined 't Hooft-Polyakov monopole is seen as a junction of the Z2-string and anti-string, and as a kink in the effective world sheet sigma model. We calculate its mass and show that besides the four-dimensional confinement of monopoles, they are also confined in the two-dimensional theory: the monopoles stick to anti-monopoles to form the meson-like configurations on the strings they are attached to

  14. Higgs searches and prospects at CDF

    International Nuclear Information System (INIS)

    Pavel A Murat

    2003-01-01

    The Standard model of electroweak interactions (SM) has been extremely successful in describing interactions of elementary particles over the last decades. The Higgs scalar boson is one of the key elements of the SM: Higgs interactions with the other particles generate the particle masses and allow to keep the theory renormalizable at electroweak scale. All the particles predicted by the SM but the Higgs boson have already been observed experimentally and therefore search for the Higgs is one of the most important scientific goals for high energy physics. The current lower limit on the SM Higgs mass M H > 114.4 GeV at 95% CL has been established by LEP experiments. In this paper we review CDF Run I results on Higgs searches including the Higgs bosons predicted by the minimal supersymmetric extention of the Standard Model (MSSM) and discuss the Run II prospects

  15. Global fits of the two-loop renormalized Two-Higgs-Doublet model with soft Z 2 breaking

    Science.gov (United States)

    Chowdhury, Debtosh; Eberhardt, Otto

    2015-11-01

    We determine the next-to-leading order renormalization group equations for the Two-Higgs-Doublet model with a softly broken Z 2 symmetry and CP conservation in the scalar potential. We use them to identify the parameter regions which are stable up to the Planck scale and find that in this case the quartic couplings of the Higgs potential cannot be larger than 1 in magnitude and that the absolute values of the S-matrix eigenvalues cannot exceed 2 .5 at the electroweak symmetry breaking scale. Interpreting the 125 GeV resonance as the light CP -even Higgs eigenstate, we combine stability constraints, electroweak precision and flavour observables with the latest ATLAS and CMS data on Higgs signal strengths and heavy Higgs searches in global parameter fits to all four types of Z 2 symmetry. We quantify the maximal deviations from the alignment limit and find that in type II and Y the mass of the heavy CP -even ( CP -odd) scalar cannot be smaller than 340 GeV (360 GeV). Also, we pinpoint the physical parameter regions compatible with a stable scalar potential up to the Planck scale. Motivated by the question how natural a Higgs mass of 125 GeV can be in the context of a Two-Higgs-Doublet model, we also address the hierarchy problem and find that the Two-Higgs-Doublet model does not offer a perturbative solution to it beyond 5 TeV.

  16. Gaugephobic Higgs Signals at the LHC

    CERN Document Server

    Galloway, Jamison; McRaven, John; Terning, John

    2009-01-01

    The Gaugephobic Higgs model provides an interpolation between three different models of electroweak symmetry breaking: Higgsless models, Randall-Sundrum models, and the Standard Model. At parameter points between the extremes, Standard Model Higgs signals are present at reduced rates, and Higgsless Kaluza-Klein excitations are present with shifted masses and couplings, as well as signals from exotic quarks necessary to protect the Zbb coupling. Using a new implementation of the model in SHERPA, we show the LHC signals which differentiate the generic Gaugephobic Higgs model from its limiting cases. These are all signals involving a Higgs coupling to a Kaluza-Klein gauge boson or quark. We identify the clean signal $p p \\to W^(i) \\to W H$ mediated by a Kaluza-Klein W, which can be present at large rates and is enhanced for even Kaluza-Klein numbers. Due to the very hard lepton coming from the W decay, this signature has little background, and provides a better discovery channel for the Higgs than any of the Sta...

  17. Non-Abelian Gauge Theory in the Lorentz Violating Background

    Science.gov (United States)

    Ganai, Prince A.; Shah, Mushtaq B.; Syed, Masood; Ahmad, Owais

    2018-03-01

    In this paper, we will discuss a simple non-Abelian gauge theory in the broken Lorentz spacetime background. We will study the partial breaking of Lorentz symmetry down to its sub-group. We will use the formalism of very special relativity for analysing this non-Abelian gauge theory. Moreover, we will discuss the quantisation of this theory using the BRST symmetry. Also, we will analyse this theory in the maximal Abelian gauge.

  18. Renormalizable Abelian-projected effective gauge theory derived from quantum chromodynamics

    International Nuclear Information System (INIS)

    Kondo, Kei-ichi; Shinohara, Toru

    2001-01-01

    We show that an effective Abelian gauge theory can be obtained as a renormalizable theory from QCD in the maximal Abelian gauge. The derivation improves in a systematic manner the previous version that was obtained by one of the authors and was referred to as the Abelian-projected effective gauge theory. This result supports the view that we can construct an effective Abelian gauge theory from QCD without losing characteristic features of the original non-Abelian gauge theory. In fact, it is shown that the effective coupling constant in the resulting renormalizable theory has a renormalization-scale dependence governed by the β-function that is exactly the same as that of the original Yang-Mills theory, irrespective of the choice of gauge fixing parameters of the maximal Abelian gauge and the parameters used for identifying the dual variables. Moreover, we evaluate the anomalous dimensions of the fields and parameters in the resultant theory. By choosing the renormalized parameters appropriately, we can switch the theory into an electric or a magnetic theory. (author)

  19. The Higgs particle and higher-dimensional theories

    International Nuclear Information System (INIS)

    Lim, C. S.

    2014-01-01

    In spite of the great success of LHC experiments, we do not know whether the discovered “standard model-like” Higgs particle is really what the standard model predicts, or a particle that some new physics has in its low-energy effective theory. Also, the long-standing problems concerning the property of the Higgs and its interactions are still there, and we still do not have any conclusive argument on the origin of the Higgs itself. In this article we focus on higher-dimensional theories as new physics. First we give a brief review of their representative scenarios and closely related 4D scenarios. Among them, we mainly discuss two interesting possibilities of the origin of the Higgs: the Higgs as a gauge boson and the Higgs as a (pseudo) Nambu–Goldstone boson. Next, we argue that theories of new physics are divided into two categories, i.e., theories with normal Higgs interactions and those with anomalous Higgs interactions. Interestingly, both the candidates for the origin of the Higgs mentioned above predict characteristic “anomalous” Higgs interactions, such as the deviation of the Yukawa couplings from the standard model predictions. Such deviations can hopefully be investigated by precision tests of Higgs interactions at the planned ILC experiment. Also discussed is the main decay mode of the Higgs, H→γγ. Again, theories belonging to different categories are known to predict remarkably different new physics contributions to this important process

  20. A new gauge for supersymmetric abelian gauge theories

    International Nuclear Information System (INIS)

    Smith, A.W.; Barcelos Neto, J.

    1984-01-01

    A new gauge for supersymmetric abelian gauge theories is presented. It is shown that this new gauge allows us to obtain terms which usually come as radiative corrections to the supersymmetric abelian gauge theories when one uses the Wess-Zumino gauge. (Author) [pt

  1. Renormalization of gauge fields models

    International Nuclear Information System (INIS)

    Becchi, C.; Rouet, A.; Stora, R.

    1974-01-01

    A new approach to gauge field models is described. It is based on the Bogoliubov-Parasiuk-Hepp-Zimmermann (BPHZ) renormalization scheme making extensive use of the quantum action principle, and the Slavnov invariance. The quantum action principle being first summarized in the framework of the BPHZ is then applied to a global symmetry problem. The symmetry property of the gauge field Lagrangians in the tree approximation is exhibited, and the preservation of this property at the quantum level is discussed. The main results relative to the Abelian and SU(2) Higgs-Kibble models are briefly reviewed [fr

  2. Search for rare and exotic Higgs Boson decay modes and Higgs Boson pair production with the ATLAS detector

    CERN Document Server

    Tong, Baojia; The ATLAS collaboration

    2018-01-01

    An enhanced production of double Higgs bosons or exotic decays of the Higgs boson would be two clear signs of beyond Standard Model physics. A search is performed for resonant and non-resonant Higgs boson pair production, where the two Higgs bosons decay to four bottom quarks. Another search is conducted for a Higgs boson decay to XX to four leptons. Both analyses use up to 36 ifb of p-p collision data collected by the ATLAS detector at 13 TeV. No significant excess is found. The observed 95% confidence level upper limit on the non-resonant Higgs boson pair production is 13 times the Standard Model prediction.

  3. Exploring collider aspects of a neutrinophilic Higgs doublet model in multilepton channels

    Science.gov (United States)

    Huitu, Katri; Kärkkäinen, Timo J.; Mondal, Subhadeep; Rai, Santosh Kumar

    2018-02-01

    We consider a neutrinophilic Higgs scenario where the Standard Model is extended by one additional Higgs doublet and three generations of singlet right-handed Majorana neutrinos. Light neutrino masses are generated through mixing with the heavy neutrinos via the Type-I seesaw mechanism when the neutrinophilic Higgs gets a vacuum expectation value (VEV). The Dirac neutrino Yukawa coupling in this scenario can be sizable compared to those in the canonical Type-I seesaw mechanism owing to the small neutrinophilic Higgs VEV giving rise to interesting phenomenological consequences. We have explored various signal regions likely to provide a hint of such a scenario at the LHC as well as at future e+e- colliders. We have also highlighted the consequences of light neutrino mass hierarchies in collider phenomenology that can complement the findings of neutrino oscillation experiments.

  4. HiggsBounds 2.0.0. Confronting neutral and charged Higgs sector predictions with exclusion bounds from LEP and the Tevatron

    Energy Technology Data Exchange (ETDEWEB)

    Bechtle, P.; Weiglein, G. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Brein, O. [Freiburg Univ. (Germany). Physikalisches Inst.; Heinemeyer, S. [Instituto de Fisica de Cantabria (CSIC-UC), Santander (Spain); Williams, K.E. [Bonn Univ. (Germany). Bethe Center for Theoretical Physics

    2011-03-15

    HiggsBounds 2.0.0 is a computer code which tests both neutral and charged Higgs sectors of arbitrary models against the current exclusion bounds from the Higgs searches at LEP and the Tevatron. As input, it requires a selection of model predictions, such as Higgs masses, branching ratios, effective couplings and total decay widths. HiggsBounds 2.0.0 then uses the expected and observed topological cross section limits from the Higgs searches to determine whether a given parameter scenario of a model is excluded at the 95% C.L. by those searches. Version 2.0.0 represents a significant extension of the code since its first release (1.0.0). It includes now 28/53 LEP/Tevatron Higgs search analyses, compared to the 11/22 in the first release, of which many of the ones from the Tevatron are replaced by updates. As a major extension, the code allows now the predictions for (singly) charged Higgs bosons to be confronted with LEP and Tevatron searches. Furthermore, the newly included analyses contain LEP searches for neutral Higgs bosons (H) decaying invisibly or into (non flavour tagged) hadrons as well as decay-mode independent searches for neutral Higgs bosons, LEP searches via the production modes {tau}{sup +}{tau}{sup -}H and b anti bH, and Tevatron searches via t anti tH. Also, all Tevatron results presented at the ICHEP'10 are included in version 2.0.0. As physics applications of HiggsBounds 2.0.0 we study the allowed Higgs mass range for model scenarios with invisible Higgs decays and we obtain exclusion results for the scalar sector of the Randall-Sundrum model using up-to-date LEP and Tevatron direct search results. (orig.)

  5. Working Group Report: Higgs Boson

    Energy Technology Data Exchange (ETDEWEB)

    Dawson, Sally; Gritsan, Andrei; Logan, Heather; Qian, Jianming; Tully, Chris; Van Kooten, Rick [et al.

    2013-10-30

    This report summarizes the work of the Energy Frontier Higgs Boson working group of the 2013 Community Summer Study (Snowmass). We identify the key elements of a precision Higgs physics program and document the physics potential of future experimental facilities as elucidated during the Snowmass study. We study Higgs couplings to gauge boson and fermion pairs, double Higgs production for the Higgs self-coupling, its quantum numbers and $CP$-mixing in Higgs couplings, the Higgs mass and total width, and prospects for direct searches for additional Higgs bosons in extensions of the Standard Model. Our report includes projections of measurement capabilities from detailed studies of the Compact Linear Collider (CLIC), a Gamma-Gamma Collider, the International Linear Collider (ILC), the Large Hadron Collider High-Luminosity Upgrade (HL-LHC), Very Large Hadron Colliders up to 100 TeV (VLHC), a Muon Collider, and a Triple-Large Electron Positron Collider (TLEP).

  6. Large scale structure from the Higgs fields of the supersymmetric standard model

    International Nuclear Information System (INIS)

    Bastero-Gil, M.; Di Clemente, V.; King, S.F.

    2003-01-01

    We propose an alternative implementation of the curvaton mechanism for generating the curvature perturbations which does not rely on a late decaying scalar decoupled from inflation dynamics. In our mechanism the supersymmetric Higgs scalars are coupled to the inflaton in a hybrid inflation model, and this allows the conversion of the isocurvature perturbations of the Higgs fields to the observed curvature perturbations responsible for large scale structure to take place during reheating. We discuss an explicit model which realizes this mechanism in which the μ term in the Higgs superpotential is generated after inflation by the vacuum expectation value of a singlet field. The main prediction of the model is that the spectral index should deviate significantly from unity, vertical bar n-1 vertical bar ∼0.1. We also expect relic isocurvature perturbations in neutralinos and baryons, but no significant departures from Gaussianity and no observable effects of gravity waves in the CMB spectrum

  7. Strongly interacting Higgs sector without technicolor

    International Nuclear Information System (INIS)

    Liu Chuan; Kuti, J.

    1994-12-01

    Simulation results are presented on Higgs mass calculations in the spontaneously broken phase of the Higgs sector in the minimal Standard Model with a higher derviative regulator. A heavy Higgs particle is found in the TeV mass range in the presence of a complex conjugate ghost pair at higher energies. The ghost pair evades easy experimental detection. As a finite and unitary theory in the continuum, this model serves as an explicit and simple example of a strong interacting Higgs sector without technicolor. (orig.)

  8. A theoretical limit on the Higgs mass

    International Nuclear Information System (INIS)

    Temiraliev, A.T.

    2007-01-01

    Full text: The standard model of particle physics, which describes masses through the Higgs mechanism, contains parameters - such as particle masses - whose origins are still unknown and which cannot be exactly predicted, but whose values are constrained through their interactions. In particular, the masses of the top quark and W boson constrain the mass of the long-hypothesized, but thus far not observed, Higgs boson. Several more or less precise arguments can set the upper limit for a standard model Higgs particle. All of them follows the line that the standard model breaks down of the Higgs mass is pushed too far upwards. The theoretical bounds will be reviewed. With gauge-top quark Yukawa coupling unification the standard model Higgs boson mass is estimated to be about 135 GeV. In the article will be consider an approximation of 4-fermion interactions. And as a result, the most likely Higgs mass is 150 GeV. The upper limit on the Higgs mass at the 90 % confidence level is about 250 GeV

  9. Introduction to Abelian varieties

    CERN Document Server

    Murty, V Kumar

    1993-01-01

    The book represents an introduction to the theory of abelian varieties with a view to arithmetic. The aim is to introduce some of the basics of the theory as well as some recent arithmetic applications to graduate students and researchers in other fields. The first part contains proofs of the Abel-Jacobi theorem, Riemann's relations and the Lefschetz theorem on projective embeddings over the complex numbers in the spirit of S. Lang's book Introduction to algebraic and abelian functions. Then the Jacobians of Fermat curves as well as some modular curves are discussed. Finally, as an application, Faltings' proof of the Mordell conjecture and its intermediate steps, the Tate conjecture and the Shafarevich conjecture, are sketched. - H. Lange for MathSciNet.

  10. The quasi-abelian limit

    International Nuclear Information System (INIS)

    Fried, H.M.; Avan, J.

    2000-01-01

    A new, non-perturbative, eikonal method called the ''quasi abelian limit'' (QAL) is suggested for high energy quark (nucleon) scattering involving the exchange of all possible, non-interacting, non-abelian gluons (mesons). With this method, those functional integrals defining, e.g., the exchange of color coordinates in quark-quark scattering, are replaced by a finite number of quadratures over a subset of their coordinates. Mathematically, this procedure is not rigourous, because an unjustified interchange of limits has been performed; physically, it corresponds to the observation that the non-perturbative sum over all color-moment fluctuations can vanish at arbitrarily high energies. The QAL generates a result in agreement with a corrected, ''contiguity'' calculation, when the latter is summed over all perturbative orders. (orig.)

  11. Supersymmetric Higgs bosons and beyond

    International Nuclear Information System (INIS)

    Carena, Marcela; Kong, Kyoungchul; Ponton, Eduardo; Zurita, Jose

    2010-01-01

    We consider supersymmetric models that include particles beyond the minimal supersymmetric standard model (MSSM) with masses in the TeV range, and that couple significantly to the MSSM Higgs sector. We perform a model-independent analysis of the spectrum and couplings of the MSSM Higgs fields, based on an effective theory of the MSSM degrees of freedom. The tree-level mass of the lightest CP-even state can easily be above the LEP bound of 114 GeV, thus allowing for a relatively light spectrum of superpartners, restricted only by direct searches. The Higgs spectrum and couplings can be significantly modified compared to the MSSM ones, often allowing for interesting new decay modes. We also observe that the gluon fusion production cross section of the SM-like Higgs can be enhanced with respect to both the standard model and the MSSM.

  12. Dark side of the Higgs boson

    International Nuclear Information System (INIS)

    Low, I.; Schwaller, P.; Shaughnessy, G.; Wagner, C.E.M.

    2012-01-01

    Current limits from the Large Hadron Collider exclude a standard model-like Higgs mass above 150 GeV, by placing an upper bound on the Higgs production rate. We emphasize that, alternatively, the limit could be interpreted as a lower bound on the total decay width of the Higgs boson. If the invisible decay width of the Higgs is of the same order as the visible decay width, a heavy Higgs boson could be consistent with null results from current searches. We propose a method to infer the invisible decay of the Higgs by using the width of the measured h → ZZ → 4 (ell) line shape, and study the effect on the width extraction due to a reduced signal strength. Assuming the invisible decay product is the dark matter, we show that minimal models are tightly constrained by limits from Higgs searches at the LHC and direct detection experiments of dark matter, unless the relic density constraint is relaxed.

  13. More on Higgs bosons in SU(5)

    International Nuclear Information System (INIS)

    Hueffel, H.

    1980-01-01

    In the framework of the minimal SU(5) model of Georgi and Glashow the explicit couplings between the various mass eigenstate Higgs bosons and the gauge fields as well as the Higgs boson self couplings are presented. As an application bounds for the parameters of the Higgs potential and for the Higgs boson masses are derived by applying partial wave unitarity to the tree graphs of Higgs-Higgs scattering. (Auth.)

  14. Evading direct dark matter detection in Higgs portal models

    Energy Technology Data Exchange (ETDEWEB)

    Arcadi, Giorgio [Max Planck Institut für Kernphysik, Saupfercheckweg 1, D-69117 Heidelberg (Germany); Gross, Christian, E-mail: christian.gross@helsinki.fi [Department of Physics and Helsinki Institute of Physics, Gustaf Hällströmin katu 2, FI-00014 Helsinki (Finland); Lebedev, Oleg [Department of Physics and Helsinki Institute of Physics, Gustaf Hällströmin katu 2, FI-00014 Helsinki (Finland); Pokorski, Stefan [Institute of Theoretical Physics, University of Warsaw, Pasteura 5, PL-02-093 Warsaw (Poland); Toma, Takashi [Physik-Department T30d, Technische Universität München, James-Franck-Straße, D-85748 Garching (Germany)

    2017-06-10

    Many models of Higgs portal Dark Matter (DM) find themselves under pressure from increasingly tight direct detection constraints. In the framework of gauge field DM, we study how such bounds can be relaxed while retaining the thermal WIMP paradigm. When the hidden sector gauge symmetry is broken via the Higgs mechanism, the hidden sector generally contains unstable states which are lighter than dark matter. These states provide DM with an efficient annihilation channel. As a result, the DM relic abundance and the direct detection limits are controlled by different parameters, and the two can easily be reconciled. This simple setup realizes the idea of “secluded” dark matter naturally.

  15. Off-the-Wall Higgs in the universal Randall-Sundrum model

    International Nuclear Information System (INIS)

    Davoudiasl, Hooman; Lillie, Ben; Rizzo, Thomas G.

    2006-01-01

    We outline a consistent Randall-Sundrum (RS) framework in which a fundamental 5-dimensional Higgs doublet induces electroweak symmetry breaking (EWSB). In this framework of a warped Universal Extra Dimension, the lightest Kaluza-Klein (KK) mode of the bulk Higgs is tachyonic leading to a vacuum expectation value (vev) at the TeV scale. The consistency of this picture imposes a set of constraints on the parameters in the Higgs sector. A novel feature of our scenario is the emergence of an adjustable bulk profile for the Higgs vev. We also find a tower of non-tachyonic Higgs KK modes at the weak scale. We consider an interesting implementation of this 'Off-the-Wall Higgs' mechanism where the 5-dimensional curvature-scalar coupling alone generates the tachyonic mode responsible for EWSB. In this case, additional relations among the parameters of the Higgs and gravitational sectors are established. We discuss the experimental signatures of the bulk Higgs in general, and those of the 'Gravity-Induced' EWSB in particular

  16. Classification of NLO operators for composite Higgs models

    Science.gov (United States)

    Alanne, Tommi; Bizot, Nicolas; Cacciapaglia, Giacomo; Sannino, Francesco

    2018-04-01

    We provide a general classification of template operators, up to next-to-leading order, that appear in chiral perturbation theories based on the two flavor patterns of spontaneous symmetry breaking SU (NF)/Sp (NF) and SU (NF)/SO (NF). All possible explicit-breaking sources parametrized by spurions transforming in the fundamental and in the two-index representations of the flavor symmetry are included. While our general framework can be applied to any model of strong dynamics, we specialize to composite-Higgs models, where the main explicit breaking sources are a current mass, the gauging of flavor symmetries, and the Yukawa couplings (for the top). For the top, we consider both bilinear couplings and linear ones à la partial compositeness. Our templates provide a basis for lattice calculations in specific models. As a special example, we consider the SU (4 )/Sp (4 )≅SO (6 )/SO (5 ) pattern which corresponds to the minimal fundamental composite-Higgs model. We further revisit issues related to the misalignment of the vacuum. In particular, we shed light on the physical properties of the singlet η , showing that it cannot develop a vacuum expectation value without explicit C P violation in the underlying theory.

  17. APS Quantum Critical Higgs

    CERN Document Server

    Bellazzini, Brando; Hubisz, Jay; Lee, Seung J.; Serra, Javi; Terning, John

    2016-01-01

    The appearance of the light Higgs boson at the LHC is difficult to explain, particularly in light of naturalness arguments in quantum field theory. However light scalars can appear in condensed matter systems when parameters (like the amount of doping) are tuned to a critical point. At zero temperature these quantum critical points are directly analogous to the finely tuned standard model. In this paper we explore a class of models with a Higgs near a quantum critical point that exhibits non-mean-field behavior. We discuss the parametrization of the effects of a Higgs emerging from such a critical point in terms of form factors, and present two simple realistic scenarios based on either generalized free fields or a 5D dual in AdS space. For both of these models we consider the processes $gg\\to ZZ$ and $gg\\to hh$, which can be used to gain information about the Higgs scaling dimension and IR transition scale from the experimental data.

  18. Non-Abelian magnetized blackholes and unstable attractors

    International Nuclear Information System (INIS)

    Mosaffa, A.E.; Randjbar-Daemi, S.; Sheikh-Jabbari, M.M.

    2006-12-01

    Fluctuations of non-Abelian gauge fields in a background magnetic flux contain tachyonic modes and hence the background is unstable. We extend these results to the cases where the background flux is coupled to Einstein gravity and show that the corresponding spherically symmetric geometries, which in the absence of a cosmological constant are of the form of Reissner-Nordstroem blackholes or the AdS 2 x S 2 , are also unstable. We discuss the relevance of these instabilities to several places in string theory including various string compactifications and the attractor mechanism. Our results for the latter imply that the attractor mechanism shown to work for the extremal Abelian charged blackholes, cannot be applied in a straightforward way to the extremal non-Abelian colored blackholes. (author)

  19. Higgs mass range from standard model false vacuum inflation in scalar-tensor gravity

    DEFF Research Database (Denmark)

    Masina, I.; Notari, A.

    2012-01-01

    If the standard model is valid up to very high energies it is known that the Higgs potential can develop a local minimum at field values around 10(15)-10(17) GeV, for a narrow band of values of the top quark and Higgs masses. We show that in a scalar-tensor theory of gravity such Higgs false vacu....... This prediction could be soon tested at the Large Hadron Collider. Our inflationary scenario could also be further checked by better constraining the spectral index and the tensor-to-scalar ratio....

  20. The triple Higgs coupling: a new probe of low-scale seesaw models

    Energy Technology Data Exchange (ETDEWEB)

    Baglio, Julien [Institute for Theoretical Physics, University of Tübingen,Auf der Morgenstelle 14, 72076 Tübingen (Germany); Weiland, Cédric [Institute for Particle Physics Phenomenology, Department of Physics, Durham University,South Road, Durham DH1 3LE (United Kingdom)

    2017-04-07

    The measure of the triple Higgs coupling is one of the major goals of the high-luminosity run of the CERN Large Hadron Collider (HL-LHC) as well as the future colliders, either leptonic such as the International Linear Collider (ILC) or hadronic such as the 100 TeV Future Circular Collider in hadron-hadron mode (FCC-hh). We have recently proposed this observable as a test of neutrino mass generating mechanisms in a regime where heavy sterile neutrino masses are hard to be probed otherwise. We present in this article a study of the one-loop corrected triple Higgs coupling in the inverse seesaw model, taking into account all relevant constraints on the model. This is the first study of the impact on the triple Higgs coupling of heavy neutrinos in a realistic, renormalizable neutrino mass model. We obtain deviations from the Standard Model as large as to ∼+30% that are at the current limit of the HL-LHC sensitivity, but would be clearly visible at the ILC or at the FCC-hh.

  1. Study of the Standard Model Higgs boson decaying to taus at CMS

    CERN Document Server

    Botta, Valeria

    2017-01-01

    The most recent search for the Standard Model Higgs boson decaying to a pair of $\\tau$ leptons is performed using proton-proton collision events at a centre-of-mass energy of 13~TeV, recorded by the CMS experiment at the LHC. The full 2016 dataset, corresponding to an integrated luminosity of 35.9~fb$^{-1}$, has been analysed. The Higgs boson signal in the $\\tau^{+}\\tau^{-}$ decay mode is observed with a significance of 4.9 standard deviations, to be compared to an expected significance of 4.7 standard deviations. This measurement is the first observation of the Higgs boson decay into fermions by a single experiment.

  2. Charged and neutral minimal supersymmetric standard model Higgs ...

    Indian Academy of Sciences (India)

    physics pp. 759–763. Charged and neutral minimal supersymmetric standard model Higgs boson decays and measurement of tan β at the compact linear collider. E CONIAVITIS and A FERRARI∗. Department of Nuclear and Particle Physics, Uppsala University, 75121 Uppsala, Sweden. ∗E-mail: ferrari@tsl.uu.se. Abstract.

  3. The hunt for the Higgs particle

    CERN Multimedia

    CERN. Geneva

    2007-01-01

    With the advent of the LHC, the hunt for the Higgs boson enters its crucial phase. These three lectures will review: the Higgs mechanism; its implementation in the minimal Standard Model; possible alternatives with and without elementary scalar fields; the presently available information on electroweak gauge symmetry breaking and the Higgs particle; the properties of the Higgs boson(s) in the Standard Model and its supersymmetric extensions; the strategies for direct searches at colliders, with emphasis on the LHC, and comments on the possible scenarios that may emerge.

  4. New Physics and novel Higgs signals

    International Nuclear Information System (INIS)

    Diaz-Cruz, J. Lorenzo

    2003-01-01

    We review some of the results of our recent work dealing with the novel type of Higgs signals that arise when one considers extensions of the standard model. We discuss first possible deviations on the Higgs couplings due to heavy particles, in the context of the MSSM and with large extra-dimensions. Then, we present several models where it is possible to induce flavor violating Higgs couplings, and probe them at future hadron colliders through the LFV Higgs decay h → τμ or with rare top decays

  5. Higgs physics as a proble of new physics

    International Nuclear Information System (INIS)

    KANEMURA, S.

    2014-01-01

    The discovery of the Higgs boson at the LHC has opened the door to clarifying the mechanism of electroweak symmetry breaking and the origin of particle masses. The Higgs sector in the SM is the simplest possible one but is not based on a fundamental theoretical principle, so that there is also the possibility of non-minimal Higgs sectors. While the standard model is not in contradiction with current LHC data within the errors, many extended Higgs sectors can also reproduce these data. An extended Higgs sector often appears in new physics models beyond the standard model, so that this allows to determine new physics from the Higgs sector. In this talk, we discuss various aspects of extended Higgs sectors, in particular their phenomenological properties and testability at future experiments, as the International Linear Collider.

  6. Suppression of flavor violation in an A4 warped extra dimensional model

    International Nuclear Information System (INIS)

    Kadosh, Avihay

    2011-01-01

    In an attempt to simultaneously explain the observed masses and mixing patterns of both quarks and leptons, we recently proposed a model (JHEP08(2010)115) based on the non abelian discrete flavor group A 4 , implemented in a custodial RS setup with a bulk Higgs. We showed that the standard model flavor structure can be realized within the zero mode approximation (ZMA), with nearly TBM neutrino mixing and a realistic CKM matrix with rather mild assumptions. An important advantage of this framework with respect to flavor anarchic models is the vanishing of the dangerous tree level KK gluon contribution to ε K and the suppression of the new physics one loop contributions to the neutron EDM, ε'/ε, b → Sγ and Higgs mediated flavor changing neutral current (FCNC) processes. These results are obtained beyond the ZMA, in order to account for the the full flavor structure and mixing of the zero modes and first Kaluza-Klein (KK) modes of all generations. The resulting constraints on the KK mass scale are shown to be significantly relaxed compared to the flavour anarchic case, showing explicitly the role of non abelian discrete flavor symmetries in relaxing flavor violation bounds within the RS setup. As a byproduct of our analysis we also obtain the same contributions for the custodial anarchic case with two SU(2) R doublets for each fermion generation.

  7. Higgs Tasting Workshop 2016: Higgs and flavor in the LHC Run 2 era

    CERN Document Server

    2016-01-01

    The discovery of a Higgs particle by the LHC experiments has launched the exploration of electroweak symmetry breaking and potentially opened a new window into beyond Standard Model physics. Measurements of Higgs boson properties during Run 1 of the LHC are broadly consistent with the Standard Model predictions, although they leave significant room for New Physics contributions. At the same time, a number of exciting anomalies in low-energy precision flavor observables have cumulated over the years, whose potential implications are yet to be fully gauged. One of the most pressing questions in high energy physics is the origin of flavor and it is undeniably linked in an intimate way to the physics of the Higgs boson. The Standard Model comes with definite predictions for the structure of the couplings between the Higgs boson and the fermions. Probing this structure or observing any deviation will have long-reaching implications on our understanding on how Nature works at its most fundamental level, including c...

  8. Quasi-degenerate neutrinos from an abelian family symmetry

    International Nuclear Information System (INIS)

    Binetruy, P.; Lavignac, S.; Petcov, S.; Ist. Nazionale di Fisica Nucleare, Trieste; Ramond, P.

    1996-01-01

    The authors show that models with an abelian family symmetry which accounts for the observed hierarchies of masses and mixings in the quark sector may also accommodate quasi-degeneracies in the neutrino mass spectrum. Such approximate degeneracies are, in this context, associated with large mixing angles. The parameters of this class of models are constrained. The authors discuss their phenomenological implications for present and foreseen neutrino experiments

  9. Higgs Boson Properties and Search for Additional Resonances

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00435709

    The Higgs boson was predicted by the Standard Model of particle physics and jointly discovered by the CMS and ATLAS experiments at LHC, in 2012. Following its discovery, the property measurements of the Higgs boson and the search for additional resonances become important research goals. The Standard Model is not the complete theory and leaves many questions unanswered, therefore it is important to search for any evidence of new physics beyond the SM. This thesis will briefly introduce the theoretical motivation for the Higgs boson, the production and decay mechanisms of the Higgs boson, and the methods used for analysis of the Higgs boson properties. The spin-1 and spin-2 Higgs hypotheses are tested in H->ZZ->4l channel, using the data recorded by CMS in Run1 of LHC. The exotic spin models were excluded and the Higgs boson is shown to agree with the Standard Model prediction of spin-0. The search for high-mass Higgs-like resonance is performed in H->ZZ->4l and H->ZZ->2l2q channels, using data recorded by CMS...

  10. Scrutinizing the alignment limit in two-Higgs-doublet models. II. mH=125 GeV

    Science.gov (United States)

    Bernon, Jérémy; Gunion, John F.; Haber, Howard E.; Jiang, Yun; Kraml, Sabine

    2016-02-01

    In the alignment limit of a multidoublet Higgs sector, one of the Higgs mass eigenstates aligns in field space with the direction of the scalar field vacuum expectation values, and its couplings approach those of the Standard Model (SM) Higgs boson. We consider C P -conserving two-Higgs-doublet models (2HDMs) of type I and type II near the alignment limit in which the heavier of the two C P -even Higgs bosons, H , is the SM-like state observed with a mass of 125 GeV, and the couplings of H to gauge bosons approach those of the SM. We review the theoretical structure and analyze the phenomenological implications of this particular realization of the alignment limit, where decoupling of the extra states cannot occur given that the lighter C P -even state h must, by definition, have a mass below 125 GeV. For the numerical analysis, we perform scans of the 2HDM parameter space employing the software packages 2hdmc and lilith, taking into account all relevant pre-LHC constraints, constraints from the measurements of the 125 GeV Higgs signal at the LHC, as well as the most recent limits coming from searches for other Higgs-like states. Implications for Run 2 at the LHC, including expectations for observing the other scalar states, are also discussed.

  11. Heavy Higgs searches. Flavour matters

    International Nuclear Information System (INIS)

    Gori, Stefania; Paul, Ayan

    2017-10-01

    We point out that the stringent lower bounds on the masses of additional electrically neutral and charged Higgs bosons crucially depend on the flavour structure of their Yukawa interactions. We show that these bounds can easily be evaded by the introduction of flavour-changing neutral currents in the Higgs sector. As an illustration, we study the phenomenology of a two Higgs doublet model with a Yukawa texture singling out the third family of quarks and leptons. We combine constraints from low-energy flavour physics measurements, LHC measurements of the 125 GeV Higgs boson rates, and LHC searches for new heavy Higgs bosons. We propose novel LHC searches that could be performed in the coming years to unravel the existence of these new Higgs bosons.

  12. Heavy Higgs searches. Flavour matters

    Energy Technology Data Exchange (ETDEWEB)

    Gori, Stefania [Cincinnati Univ., OH (United States). Dept. of Physics; Grojean, Christophe [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Humboldt-Universitaet, Berlin (Germany). Inst. fuer Physik; Juste, Aurelio [Institut de Fisica d' Altes Energies (IFAE), Barcelona (Spain); Institucio Catalanade Recerca i Estudis Avancats (ICREA), Barcelona (Spain); Paul, Ayan [INFN, Sezione di Roma (Italy)

    2017-10-15

    We point out that the stringent lower bounds on the masses of additional electrically neutral and charged Higgs bosons crucially depend on the flavour structure of their Yukawa interactions. We show that these bounds can easily be evaded by the introduction of flavour-changing neutral currents in the Higgs sector. As an illustration, we study the phenomenology of a two Higgs doublet model with a Yukawa texture singling out the third family of quarks and leptons. We combine constraints from low-energy flavour physics measurements, LHC measurements of the 125 GeV Higgs boson rates, and LHC searches for new heavy Higgs bosons. We propose novel LHC searches that could be performed in the coming years to unravel the existence of these new Higgs bosons.

  13. Associated central exclusive production of charged Higgs bosons

    International Nuclear Information System (INIS)

    Enberg, Rikard; Pasechnik, Roman

    2011-01-01

    We propose central exclusive production of a charged Higgs boson in association with a W boson as a possible signature of certain types of extended Higgs sectors. We calculate the cross section and find that the rate at the LHC could be large enough to allow observation in some models with two-Higgs doublets, where the charged Higgs and at least one of the neutral scalars can be light enough. We use the two-Higgs doublet model as a prototype and consider two distinct regions of parameter space, but we also briefly discuss the prospects for the next-to-minimal supersymmetric standard model, where the charged Higgs may very well be quite light.

  14. Partially composite Goldstone Higgs boson

    DEFF Research Database (Denmark)

    Alanne, Tommi; Franzosi, Diogo Buarque; Frandsen, Mads T.

    2017-01-01

    We consider a model of dynamical electroweak symmetry breaking with a partially composite Goldstone Higgs boson. The model is based on a strongly interacting fermionic sector coupled to a fundamental scalar sector via Yukawa interactions. The SU(4)×SU(4) global symmetry of these two sectors...... is broken to a single SU(4) via Yukawa interactions. Electroweak symmetry breaking is dynamically induced by condensation due to the strong interactions in the new fermionic sector which further breaks the global symmetry SU(4)→Sp(4). The Higgs boson arises as a partially composite state which is an exact...... Goldstone boson in the limit where SM interactions are turned off. Terms breaking the SU(4) global symmetry explicitly generate a mass for the Goldstone Higgs boson. The model realizes in different limits both (partially) composite Higgs and (bosonic) technicolor models, thereby providing a convenient...

  15. Constraints on the Lee-Wick Higgs sector

    International Nuclear Information System (INIS)

    Carone, Christopher D.; Primulando, Reinard

    2009-01-01

    Lee-Wick partners to the standard model Higgs doublet may appear at a mass scale that is significantly lower than that of the remaining Lee-Wick partner states. The relevant effective theory is a two-Higgs doublet model in which one doublet has wrong-sign kinetic and mass terms. We determine bounds on this effective theory, including those from neutral B-meson mixing, b→X s γ, and Z→bb. The results differ from those of conventional two-Higgs doublet models and lead to meaningful constraints on the Lee-Wick Higgs sector.

  16. Non-Abelian tensor gauge fields and higher-spin extension of standard model

    International Nuclear Information System (INIS)

    Savvidy, G.

    2006-01-01

    We suggest an extension of the gauge principle which includes non-Abelian tensor gauge fields. The invariant Lagrangian is quadratic in the field strength tensors and describes interaction of charged tensor gauge bosons of arbitrary large integer spin 1,2,l. Non-Abelian tensor gauge fields can be viewed as a unique gauge field with values in the infinite-dimensional current algebra associated with compact Lie group. The full Lagrangian exhibits also enhanced local gauge invariance with double number of gauge parameters which allows to eliminate all negative norm states of the nonsymmetric second-rank tensor gauge field, which describes therefore two polarizations of helicity-two massless charged tensor gauge boson and the helicity-zero ''axion'' The geometrical interpretation of the enhanced gauge symmetry with double number of gauge parameters is not yet known. (Abstract Copyright [2006], Wiley Periodicals, Inc.)

  17. Beyond the SM with nonlinearly realized gauge theories

    International Nuclear Information System (INIS)

    ERRARI, R.

    2014-01-01

    A Stuckelberg Mass Term (SMT) is introduced in a SU(2) non-abelian gauge theory as an alternative to the Higgs mechanism. A lattice model is used in order to investigate the mass spectrum of the theory, in particular the presence of Higgs-like bound states. Simulations indicate the presence of neutral bound states. Further investigations are needed in order to compare the model with experiments.

  18. Explaining the Higgs decays at the LHC with an extended electroweak model

    International Nuclear Information System (INIS)

    Alves, Alexandre; Ramirez Barreto, E.; Dias, A.G.; Pires, S.C.A. de; Rodrigues da Silva, P.S.; Queiroz, Farinaldo S.

    2013-01-01

    We show that the observed enhancement in the diphoton decays of the recently discovered new boson at the LHC, which we assume to be a Higgs boson, can be naturally explained by a new doublet of charged vector bosons from extended electroweak models with SU(3) C x SU(3) L x U(1) X symmetry. These models are also rather economical in explaining the measured signal strengths, within the current experimental errors, demanding fewer assumptions and less parameters tuning. Our results show a good agreement between the theoretical expected sensitivity to a 126-125 GeV Higgs boson, and the experimental significance observed in the diphoton channel at the 8 TeV LHC. Effects of an invisible decay channel for the Higgs boson are also taken into account, in order to anticipate a possible confirmation of deficits in the branching ratios into ZZ * , WW * , bottom quarks, and tau leptons. (orig.)

  19. Higgs boson masses in a non-minimal supersymmetric model

    International Nuclear Information System (INIS)

    Tiesi, Alessandro

    2002-01-01

    A study of the neutral Higgs spectrum in a general Z 3 -breaking Next to Minimal Supersymmetric Standard Model (NMSSM) is reported in several significant contexts. Particular attention has been devoted to the upper bound on lightest Higgs boson. In the CP-conserving case we show that the extra terms involved in the general Z 3 -breaking superpotential do not affect the upper bound which remains unchanged: it is ∼ 136 GeV when tan β = 2.7. The Spontaneous CP Violation scenario in the Z 3 -breaking NMSSM can occur at tree-level. When the phases of the fields are small the spectrum shows the lightest Higgs particle to be an almost singlet CP-odd. The second lightest particle, a doublet almost-CP-even state, still manifests the upper bound of the CP-conserving case. When the CP-violating phases are large the lightest particle is a doublet with no definite CP parity and its mass shows the usual upper bound at ∼ 136 GeV. The large number of parameters involved in the effective potential can be significantly reduced in the Infrared Quasi Fixed Point (IRQFP) resulting after solving the Renormalization Group (RG) equations assuming universality for the soft SUSY breaking masses. In the Z 3 -breaking NMSSM, unlike the Z 3 -conserving NMSSM, it is possible to find a Higgs spectrum which is still compatible with both experiment and universality at the unification scale. Because in the IRQFP regime tan β ∼ 1.8 and the stop mixing parameter is reduced then the upper bound on the lightest Higgs boson turns out to be ∼ 121 GeV. This result is compatible with experimental data coming from LEPII and might be one of the next predictions to be tested at hadron collider experiments. (author)

  20. Stabilization of the extra dimension size in RS model by bulk Higgs field

    International Nuclear Information System (INIS)

    Egorov, V O; Volobuev, I P

    2017-01-01

    An extension of the Standard Model is considered, which is built on the basis of a stabilized Randall-Sundrum model with two branes. The stabilization of the extra dimension size is achieved with the help of a five-dimensional Higgs field, which plays the role of the Goldberger-Wise field. The stabilization makes the radion massive, and all the fermion fields, which are assumed to be localized on the TeV brane, get their masses due to the interaction with the boundary value of the Higgs field. The gauge invariance of the theory demands that the electroweak gauge fields also live in the bulk. The equations of motion for the background field configurations and for the field fluctuations against a background solution are obtained. The interaction of the bulk Higgs field with the multidimensional gauge field is studied and possible values of the model parameters are estimated. (paper)

  1. Cosmological bounds on non-Abelian dark forces

    Science.gov (United States)

    Forestell, Lindsay; Morrissey, David E.; Sigurdson, Kris

    2018-04-01

    Non-Abelian dark gauge forces that do not couple directly to ordinary matter may be realized in nature. The minimal form of such a dark force is a pure Yang-Mills theory. If the dark sector is reheated in the early Universe, it will be realized as a set of dark gluons at high temperatures and as a collection of dark glueballs at lower temperatures, with a cosmological phase transition from one form to the other. Despite being dark, the gauge fields of the new force can connect indirectly to the standard model through nonrenormalizable operators. These operators will transfer energy between the dark and visible sectors, and they allow some or all of the dark glueballs to decay. In this work we investigate the cosmological evolution and decays of dark glueballs in the presence of connector operators to the standard model. Dark glueball decays can modify cosmological and astrophysical observables, and we use these considerations to put very strong limits on the existence of pure non-Abelian dark forces. On the other hand, if one or more of the dark glueballs are stable, we find that they can potentially make up the dark matter of the Universe.

  2. Probing the non-minimal Higgs sector at the SSC

    International Nuclear Information System (INIS)

    Gunion, J.F.; Haber, H.E.; Komamiya, S.; Yamamoto, H.; Barbaro-Galtieri, A.

    1987-11-01

    Non-minimal Higgs sectors occur in the Standard Model with more than one Higgs doublet, as well as in theories that go beyond the Standard Model. In this report, we discuss how Higgs search strategies must be altered, with respect to the Standard Model approaches, in order to probe the non-minimal Higgs sectors at the SSC

  3. A search for the standard model Higgs boson using the DELPHI detector at LEP2

    International Nuclear Information System (INIS)

    Sheridan, A.E.

    1998-11-01

    A search for the Standard Model Higgs boson is performed using the 51.59 pb -1 of data collected by the DELPHI detector at a centre-of-mass energy of 182.7 GeV. A search is made for the production of Higgs bosons with an on-shell Z boson, with the Higgs boson decaying to b-quarks and the Z to either a dielectron or dimuon pair. No significant excess is seen in the data and hence a 95% CL upper cross- section limit is set as a function of the Higgs boson mass. The results from these leptonic channels are combined with those from other Higgs and Z decay channel analyses using DELPHI data and a 95% CL lower mass limit for the Higgs boson of 87.6 GeV/c 2 is set. This limit significantly improves the limit obtained with previous data. (author)

  4. Off-Shell Higgs Probe of Naturalness

    Science.gov (United States)

    Gonçalves, Dorival; Han, Tao; Mukhopadhyay, Satyanarayan

    2018-03-01

    Examining the Higgs sector at high energy scales through off-shell Higgs production can potentially shed light on the naturalness problem of the Higgs boson mass. We propose such a study at the LHC by utilizing a representative model with a new scalar field (S ) coupled to the standard model Higgs doublet (H ) in a form |S |2|H |2. In the process p p →h*→Z Z , the dominant momentum-dependent part of the one-loop scalar singlet corrections, especially above the new threshold at 2 mS, leads to a measurable deviation in the differential distribution of the Z -pair invariant mass, in accordance with the quadratic divergence cancellation to the Higgs mass. We find that it is conceivable to probe such new physics at the 5 σ level at the high-luminosity LHC, improving further with the upgraded 27 TeV LHC, without requiring the precise measurement of the Higgs boson total width. The discovery of such a Higgs portal could also have important implications for thermal dark matter as well as for electroweak baryogenesis.

  5. Finding the Higgs boson: A status report

    International Nuclear Information System (INIS)

    Dawson, S.

    1995-01-01

    The search for the Higgs boson of the minimal Standard Model has been a major focus of experimental high energy physics for some years now. Here, the authors review the current experimental limits and discuss the prospects for finding the Higgs boson at future accelerators, such as LEPII and the LHC. They consider only the Standard Model Higgs boson. Since a null result which definitively excluded a Higgs boson below some mass scale would be extremely important, they emphasize the case where the Higgs boson is much heavier than the relevant collider energy (or where there is no Higgs boson at all). Many of the results given here are a summary of those obtained by the DPF Committee on Long Term Planning

  6. Tevatron constraints on models of the Higgs boson with exotic spin and parity using decays to bottom-antibottom quark pairs.

    Science.gov (United States)

    Aaltonen, T; Abazov, V M; Abbott, B; Acharya, B S; Adams, M; Adams, T; Agnew, J P; Alexeev, G D; Alkhazov, G; Alton, A; Amerio, S; Amidei, D; Anastassov, A; Annovi, A; Antos, J; Apollinari, G; Appel, J A; Arisawa, T; Artikov, A; Asaadi, J; Ashmanskas, W; Askew, A; Atkins, S; Auerbach, B; Augsten, K; Aurisano, A; Avila, C; Azfar, F; Badaud, F; Badgett, W; Bae, T; Bagby, L; Baldin, B; Bandurin, D V; Banerjee, S; Barbaro-Galtieri, A; Barberis, E; Baringer, P; Barnes, V E; Barnett, B A; Barria, P; Bartlett, J F; Bartos, P; Bassler, U; Bauce, M; Bazterra, V; Bean, A; Bedeschi, F; Begalli, M; Behari, S; Bellantoni, L; Bellettini, G; Bellinger, J; Benjamin, D; Beretvas, A; Beri, S B; Bernardi, G; Bernhard, R; Bertram, I; Besançon, M; Beuselinck, R; Bhat, P C; Bhatia, S; Bhatnagar, V; Bhatti, A; Bland, K R; Blazey, G; Blessing, S; Bloom, K; Blumenfeld, B; Bocci, A; Bodek, A; Boehnlein, A; Boline, D; Boos, E E; Borissov, G; Bortoletto, D; Borysova, M; Boudreau, J; Boveia, A; Brandt, A; Brandt, O; Brigliadori, L; Brock, R; Bromberg, C; Bross, A; Brown, D; Brucken, E; Bu, X B; Budagov, J; Budd, H S; Buehler, M; Buescher, V; Bunichev, V; Burdin, S; Burkett, K; Busetto, G; Bussey, P; Buszello, C P; Butti, P; Buzatu, A; Calamba, A; Camacho-Pérez, E; Camarda, S; Campanelli, M; Canelli, F; Carls, B; Carlsmith, D; Carosi, R; Carrillo, S; Casal, B; Casarsa, M; Casey, B C K; Castilla-Valdez, H; Castro, A; Catastini, P; Caughron, S; Cauz, D; Cavaliere, V; Cerri, A; Cerrito, L; Chakrabarti, S; Chan, K M; Chandra, A; Chapon, E; Chen, G; Chen, Y C; Chertok, M; Chiarelli, G; Chlachidze, G; Cho, K; Cho, S W; Choi, S; Chokheli, D; Choudhary, B; Cihangir, S; Claes, D; Clark, A; Clarke, C; Clutter, J; Convery, M E; Conway, J; Cooke, M; Cooper, W E; Corbo, M; Corcoran, M; Cordelli, M; Couderc, F; Cousinou, M-C; Cox, C A; Cox, D J; Cremonesi, M; Cruz, D; Cuevas, J; Culbertson, R; Cutts, D; Das, A; d'Ascenzo, N; Datta, M; Davies, G; de Barbaro, P; de Jong, S J; De La Cruz-Burelo, E; Déliot, F; Demina, R; Demortier, L; Deninno, M; Denisov, D; Denisov, S P; D'Errico, M; Desai, S; Deterre, C; DeVaughan, K; Devoto, F; Di Canto, A; Di Ruzza, B; Diehl, H T; Diesburg, M; Ding, P F; Dittmann, J R; Dominguez, A; Donati, S; D'Onofrio, M; Dorigo, M; Driutti, A; Dubey, A; Dudko, L V; Duperrin, A; Dutt, S; Eads, M; Ebina, K; Edgar, R; Edmunds, D; Elagin, A; Ellison, J; Elvira, V D; Enari, Y; Erbacher, R; Errede, S; Esham, B; Evans, H; Evdokimov, V N; Farrington, S; Fauré, A; Feng, L; Ferbel, T; Fernández Ramos, J P; Fiedler, F; Field, R; Filthaut, F; Fisher, W; Fisk, H E; Flanagan, G; Forrest, R; Fortner, M; Fox, H; Franklin, M; Freeman, J C; Frisch, H; Fuess, S; Funakoshi, Y; Galloni, C; Garbincius, P H; Garcia-Bellido, A; García-González, J A; Garfinkel, A F; Garosi, P; Gavrilov, V; Geng, W; Gerber, C E; Gerberich, H; Gerchtein, E; Gershtein, Y; Giagu, S; Giakoumopoulou, V; Gibson, K; Ginsburg, C M; Ginther, G; Giokaris, N; Giromini, P; Glagolev, V; Glenzinski, D; Gogota, O; Gold, M; Goldin, D; Golossanov, A; Golovanov, G; Gomez, G; Gomez-Ceballos, G; Goncharov, M; González López, O; Gorelov, I; Goshaw, A T; Goulianos, K; Gramellini, E; Grannis, P D; Greder, S; Greenlee, H; Grenier, G; Gris, Ph; Grivaz, J-F; Grohsjean, A; Grosso-Pilcher, C; Group, R C; Grünendahl, S; Grünewald, M W; Guillemin, T; Guimaraes da Costa, J; Gutierrez, G; Gutierrez, P; Hahn, S R; Haley, J; Han, J Y; Han, L; Happacher, F; Hara, K; Harder, K; Hare, M; Harel, A; Harr, R F; Harrington-Taber, T; Hatakeyama, K; Hauptman, J M; Hays, C; Hays, J; Head, T; Hebbeker, T; Hedin, D; Hegab, H; Heinrich, J; Heinson, A P; Heintz, U; Hensel, C; Heredia-De La Cruz, I; Herndon, M; Herner, K; Hesketh, G; Hildreth, M D; Hirosky, R; Hoang, T; Hobbs, J D; Hocker, A; Hoeneisen, B; Hogan, J; Hohlfeld, M; Holzbauer, J L; Hong, Z; Hopkins, W; Hou, S; Howley, I; Hubacek, Z; Hughes, R E; Husemann, U; Hussein, M; Huston, J; Hynek, V; Iashvili, I; Ilchenko, Y; Illingworth, R; Introzzi, G; Iori, M; Ito, A S; Ivanov, A; Jabeen, S; Jaffré, M; James, E; Jang, D; Jayasinghe, A; Jayatilaka, B; Jeon, E J; Jeong, M S; Jesik, R; Jiang, P; Jindariani, S; Johns, K; Johnson, E; Johnson, M; Jonckheere, A; Jones, M; Jonsson, P; Joo, K K; Joshi, J; Jun, S Y; Jung, A W; Junk, T R; Juste, A; Kajfasz, E; Kambeitz, M; Kamon, T; Karchin, P E; Karmanov, D; Kasmi, A; Kato, Y; Katsanos, I; Kaur, M; Kehoe, R; Kermiche, S; Ketchum, W; Keung, J; Khalatyan, N; Khanov, A; Kharchilava, A; Kharzheev, Y N; Kilminster, B; Kim, D H; Kim, H S; Kim, J E; Kim, M J; Kim, S H; Kim, S B; Kim, Y J; Kim, Y K; Kimura, N; Kirby, M; Kiselevich, I; Knoepfel, K; Kohli, J M; Kondo, K; Kong, D J; Konigsberg, J; Kotwal, A V; Kozelov, A V; Kraus, J; Kreps, M; Kroll, J; Kruse, M; Kuhr, T; Kumar, A; Kupco, A; Kurata, M; Kurča, T; Kuzmin, V A; Laasanen, A T; Lammel, S; Lammers, S; Lancaster, M; Lannon, K; Latino, G; Lebrun, P; Lee, H S; Lee, H S; Lee, J S; Lee, S W; Lee, W M; Lei, X; Lellouch, J; Leo, S; Leone, S; Lewis, J D; Li, D; Li, H; Li, L; Li, Q Z; Lim, J K; Limosani, A; Lincoln, D; Linnemann, J; Lipaev, V V; Lipeles, E; Lipton, R; Lister, A; Liu, H; Liu, H; Liu, Q; Liu, T; Liu, Y; Lobodenko, A; Lockwitz, S; Loginov, A; Lokajicek, M; Lopes de Sa, R; Lucchesi, D; Lucà, A; Lueck, J; Lujan, P; Lukens, P; Luna-Garcia, R; Lungu, G; Lyon, A L; Lys, J; Lysak, R; Maciel, A K A; Madar, R; Madrak, R; Maestro, P; Magaña-Villalba, R; Malik, S; Malik, S; Malyshev, V L; Manca, G; Manousakis-Katsikakis, A; Mansour, J; Marchese, L; Margaroli, F; Marino, P; Martínez-Ortega, J; Matera, K; Mattson, M E; Mazzacane, A; Mazzanti, P; McCarthy, R; McGivern, C L; McNulty, R; Mehta, A; Mehtala, P; Meijer, M M; Melnitchouk, A; Menezes, D; Mercadante, P G; Merkin, M; Mesropian, C; Meyer, A; Meyer, J; Miao, T; Miconi, F; Mietlicki, D; Mitra, A; Miyake, H; Moed, S; Moggi, N; Mondal, N K; Moon, C S; Moore, R; Morello, M J; Mukherjee, A; Mulhearn, M; Muller, Th; Murat, P; Mussini, M; Nachtman, J; Nagai, Y; Naganoma, J; Nagy, E; Nakano, I; Napier, A; Narain, M; Nayyar, R; Neal, H A; Negret, J P; Nett, J; Neu, C; Neustroev, P; Nguyen, H T; Nigmanov, T; Nodulman, L; Noh, S Y; Norniella, O; Nunnemann, T; Oakes, L; Oh, S H; Oh, Y D; Oksuzian, I; Okusawa, T; Orava, R; Orduna, J; Ortolan, L; Osman, N; Osta, J; Pagliarone, C; Pal, A; Palencia, E; Palni, P; Papadimitriou, V; Parashar, N; Parihar, V; Park, S K; Parker, W; Partridge, R; Parua, N; Patwa, A; Pauletta, G; Paulini, M; Paus, C; Penning, B; Perfilov, M; Peters, Y; Petridis, K; Petrillo, G; Pétroff, P; Phillips, T J; Piacentino, G; Pianori, E; Pilot, J; Pitts, K; Plager, C; Pleier, M-A; Podstavkov, V M; Pondrom, L; Popov, A V; Poprocki, S; Potamianos, K; Pranko, A; Prewitt, M; Price, D; Prokopenko, N; Prokoshin, F; Ptohos, F; Punzi, G; Qian, J; Quadt, A; Quinn, B; Ratoff, P N; Razumov, I; Redondo Fernández, I; Renton, P; Rescigno, M; Rimondi, F; Ripp-Baudot, I; Ristori, L; Rizatdinova, F; Robson, A; Rodriguez, T; Rolli, S; Rominsky, M; Ronzani, M; Roser, R; Rosner, J L; Ross, A; Royon, C; Rubinov, P; Ruchti, R; Ruffini, F; Ruiz, A; Russ, J; Rusu, V; Sajot, G; Sakumoto, W K; Sakurai, Y; Sánchez-Hernández, A; Sanders, M P; Santi, L; Santos, A S; Sato, K; Savage, G; Saveliev, V; Savitskyi, M; Savoy-Navarro, A; Sawyer, L; Scanlon, T; Schamberger, R D; Scheglov, Y; Schellman, H; Schlabach, P; Schmidt, E E; Schwanenberger, C; Schwarz, T; Schwienhorst, R; Scodellaro, L; Scuri, F; Seidel, S; Seiya, Y; Sekaric, J; Semenov, A; Severini, H; Sforza, F; Shabalina, E; Shalhout, S Z; Shary, V; Shaw, S; Shchukin, A A; Shears, T; Shepard, P F; Shimojima, M; Shochet, M; Shreyber-Tecker, I; Simak, V; Simonenko, A; Skubic, P; Slattery, P; Sliwa, K; Smirnov, D; Smith, J R; Snider, F D; Snow, G R; Snow, J; Snyder, S; Söldner-Rembold, S; Song, H; Sonnenschein, L; Sorin, V; Soustruznik, K; St Denis, R; Stancari, M; Stark, J; Stentz, D; Stoyanova, D A; Strauss, M; Strologas, J; Sudo, Y; Sukhanov, A; Suslov, I; Suter, L; Svoisky, P; Takemasa, K; Takeuchi, Y; Tang, J; Tecchio, M; Teng, P K; Thom, J; Thomson, E; Thukral, V; Titov, M; Toback, D; Tokar, S; Tokmenin, V V; Tollefson, K; Tomura, T; Tonelli, D; Torre, S; Torretta, D; Totaro, P; Trovato, M; Tsai, Y-T; Tsybychev, D; Tuchming, B; Tully, C; Ukegawa, F; Uozumi, S; Uvarov, L; Uvarov, S; Uzunyan, S; Van Kooten, R; van Leeuwen, W M; Varelas, N; Varnes, E W; Vasilyev, I A; Vázquez, F; Velev, G; Vellidis, C; Verkheev, A Y; Vernieri, C; Vertogradov, L S; Verzocchi, M; Vesterinen, M; Vidal, M; Vilanova, D; Vilar, R; Vizán, J; Vogel, M; Vokac, P; Volpi, G; Wagner, P; Wahl, H D; Wallny, R; Wang, M H L S; Wang, S M; Warchol, J; Waters, D; Watts, G; Wayne, M; Weichert, J; Welty-Rieger, L; Wester, W C; Whiteson, D; Wicklund, A B; Wilbur, S; Williams, H H; Williams, M R J; Wilson, G W; Wilson, J S; Wilson, P; Winer, B L; Wittich, P; Wobisch, M; Wolbers, S; Wolfe, H; Wood, D R; Wright, T; Wu, X; Wu, Z; Wyatt, T R; Xie, Y; Yamada, R; Yamamoto, K; Yamato, D; Yang, S; Yang, T; Yang, U K; Yang, Y C; Yao, W-M; Yasuda, T; Yatsunenko, Y A; Ye, W; Ye, Z; Yeh, G P; Yi, K; Yin, H; Yip, K; Yoh, J; Yorita, K; Yoshida, T; Youn, S W; Yu, G B; Yu, I; Yu, J M; Zanetti, A M; Zeng, Y; Zennamo, J; Zhao, T G; Zhou, B; Zhou, C; Zhu, J; Zielinski, M; Zieminska, D; Zivkovic, L; Zucchelli, S

    2015-04-17

    Combined constraints from the CDF and D0 Collaborations on models of the Higgs boson with exotic spin J and parity P are presented and compared with results obtained assuming the standard model value JP=0+. Both collaborations analyzed approximately 10  fb(-) of proton-antiproton collisions with a center-of-mass energy of 1.96 TeV collected at the Fermilab Tevatron. Two models predicting exotic Higgs bosons with JP=0- and JP=2+ are tested. The kinematic properties of exotic Higgs boson production in association with a vector boson differ from those predicted for the standard model Higgs boson. Upper limits at the 95% credibility level on the production rates of the exotic Higgs bosons, expressed as fractions of the standard model Higgs boson production rate, are set at 0.36 for both the JP=0- hypothesis and the JP=2+ hypothesis. If the production rate times the branching ratio to a bottom-antibottom pair is the same as that predicted for the standard model Higgs boson, then the exotic bosons are excluded with significances of 5.0 standard deviations and 4.9 standard deviations for the JP=0- and JP=2+ hypotheses, respectively.

  7. Coleman-Weinberg phase transition in extended Higgs models

    International Nuclear Information System (INIS)

    Sher, M.

    1996-01-01

    In Coleman-Weinberg symmetry breaking, all dimensionful parameters vanish and the symmetry is broken by loop corrections. Before Coleman-Weinberg symmetry breaking in the standard model was experimentally ruled out, it had already been excluded on cosmological grounds. In this Brief Report, the cosmological analysis is carried out for Coleman-Weinberg models with extended Higgs sectors, which are not experimentally ruled out, and general constraints on such models are given. copyright 1996 The American Physical Society

  8. Fermion zero modes in the vortex background of a Chern-Simons-Higgs theory with a hidden sector

    Energy Technology Data Exchange (ETDEWEB)

    Lozano, Gustavo [Departamento de Física, FCEYN Universidad de Buenos Aires & IFIBA CONICET,Pabellón 1 Ciudad Universitaria, 1428 Buenos Aires (Argentina); Mohammadi, Azadeh [Departamento de Física, Universidade Federal da Paraíba,58.059-970, Caixa Postal 5.008, João Pessoa, PB (Brazil); Schaposnik, Fidel A. [Departamento de Física, Universidad Nacional de La Plata/IFLP/CICBA,CC 67, 1900 La Plata (Argentina)

    2015-11-06

    In this paper we study a 2+1 dimensional system in which fermions are coupled to the self-dual topological vortex in U(1)×U(1) Chern-Simons theory, where both U(1) gauge symmetries are spontaneously broken. We consider two Abelian Higgs scalars with visible and hidden sectors coupled to a fermionic field through three interaction Lagrangians, where one of them violates the fermion number. Using a fine tuning procedure, we could obtain the number of the fermionic zero modes which is equal to the absolute value of the sum of the vortex numbers in the visible and hidden sectors.

  9. Scalar dark matter in leptophilic two-Higgs-doublet model

    Science.gov (United States)

    Bandyopadhyay, Priyotosh; Chun, Eung Jin; Mandal, Rusa

    2018-04-01

    Two-Higgs-Doublet Model of Type-X in the large tan ⁡ β limit becomes leptophilic to allow a light pseudo-scalar A and thus provides an explanation of the muon g - 2 anomaly. Introducing a singlet scalar dark matter S in this context, one finds that two important dark matter properties, nucleonic scattering and self-annihilation, are featured separately by individual couplings of dark matter to the two Higgs doublets. While one of the two couplings is strongly constrained by direct detection experiments, the other remains free to be adjusted for the relic density mainly through the process SS → AA. This leads to the 4τ final states which can be probed by galactic gamma ray detections.

  10. Mass matrix ansatz and lepton flavor violation in the two-Higgs doublet model-III

    International Nuclear Information System (INIS)

    Diaz-Cruz, J.L.; Noriega-Papaqui, R.; Rosado, A.

    2004-01-01

    Predictive Higgs-boson-fermion couplings can be obtained when a specific texture for the fermion mass matrices is included in the general two-Higgs doublet model. We derive the form of these couplings in the charged lepton sector using a Hermitian mass matrix ansatz with four-texture zeros. The presence of unconstrained phases in the vertices φ i l i l j modifies the pattern of flavor-violating Higgs boson interactions. Bounds on the model parameters are obtained from present limits on rare lepton flavor-violating processes, which could be extended further by the search for the decay τ→μμμ and μ-e conversion at future experiments. The signal from Higgs boson decays φ i →τμ could be searched for at the CERN Large Hadron Collider, while e-μ transitions could produce a detectable signal at a future eμ collider, through the reaction e + μ - →h 0 →τ + τ -

  11. Search for BSM Higgs bosons in fermion decay modes with ATLAS

    CERN Document Server

    Straessner, Arno; The ATLAS collaboration

    2017-01-01

    Many physics models beyond the Standard Model (BSM) predict an extension of the Higgs sector, like the general 2-Higgs Doublet Model (2HDM) or supersymmetric models. In case of one additional Higgs doublet, there are five physical Higgs bosons: two CP neutral states (h,H), one CP odd state (A) and two charged Higgs bosons (H±). Typically, the already observed Higgs boson is identified with the h Higgs boson, while the others are assumed to be heavy. This presentation is reporting on recent results of direct searches for heavy neutral and charged Higgs bosons by the ATLAS Collaboration, in particular analyzing direct Higgs boson decays to fermions, like $H^\\pm \\to \\tau\

  12. Composite Higgs-mediated flavor-changing neutral current

    International Nuclear Information System (INIS)

    Agashe, Kaustubh; Contino, Roberto

    2009-01-01

    We discuss how, in the presence of higher-dimensional operators, the standard model fermion masses can be misaligned in flavor space with the Yukawa couplings to the Higgs boson, even with only one Higgs doublet. Such misalignment results in flavor-violating couplings to the Higgs and hence flavor-changing neutral current processes from tree-level Higgs exchange. We perform a model-independent analysis of such an effect. Specializing to the framework of a composite Higgs with partially composite standard model gauge and fermion fields, we show that the constraints on the compositeness scale implied by ε K can be generically as strong as those from the exchange of heavy spin-1 resonances if the Higgs is light and strongly coupled to the new states. In the special and well-motivated case of a composite pseudo-Goldstone Higgs, we find that the shift symmetry acting on the Higgs forces an alignment of the fermion mass terms with their Yukawa couplings at leading order in the fermions' degree of compositeness, thus implying much milder bounds. As a consequence of the flavor-violating Higgs couplings, we estimate BR(t→ch)∼10 -4 and BR(h→tc)∼5x10 -3 both for a pseudo-Goldstone (if t R is fully composite) and for a generic composite Higgs. By virtue of the AdS/CFT correspondence, our results directly apply to 5-dimensional Randall-Sundrum compactifications.

  13. Probing the Standard Model with Higgs signal rates from the Tevatron, the LHC and a future ILC

    International Nuclear Information System (INIS)

    Bechtle, P.; Staal, O.

    2014-03-01

    We explore the room for possible deviations from the Standard Model (SM) Higgs boson coupling structure in a systematic study of Higgs coupling scale factor (κ) benchmark scenarios using the latest signal rate measurements from the Tevatron and LHC experiments. We employ a profile likelihood method based on a χ 2 test performed with HiggsSignals, which takes into account detailed information on signal efficiencies and major correlations of theoretical and experimental uncertainties. All considered scenarios allow for additional non-standard Higgs boson decay modes, and various assumptions for constraining the total decay width are discussed. No significant deviations from the SM Higgs boson coupling structure are found in any of the investigated benchmark scenarios. We derive upper limits on an additional (undetectable) Higgs decay mode under the assumption that the Higgs couplings to weak gauge bosons do not exceed the SM prediction. We furthermore discuss the capabilities of future facilities for probing deviations from the SM Higgs couplings, comparing the high luminosity upgrade of the LHC with a future International Linear Collider (ILC), where for the latter various energy and luminosity scenarios are considered. At the ILC model-independent measurements of the coupling structure can be performed, and we provide estimates of the precision that can be achieved.

  14. New LUX and PandaX-II results illuminating the simplest Higgs-portal dark matter models

    International Nuclear Information System (INIS)

    He, Xiao-Gang; Tandean, Jusak

    2016-01-01

    Direct searches for dark matter (DM) by the LUX and PandaX-II Collaborations employing xenon-based detectors have recently come up with the most stringent limits to date on the spin-independent elastic scattering of DM off nucleons. For Higgs-portal scalar DM models, the new results have precluded any possibility of accommodating low-mass DM as suggested by the DAMA and CDMS II Si experiments utilizing other target materials, even after invoking isospin-violating DM interactions with nucleons. In the simplest model, SM+D, which is the standard model plus a real singlet scalar named darkon acting as the DM candidate, the LUX and PandaX-II limits rule out DM masses roughly from 4 to 450 GeV, except a small range around the resonance point at half of the Higgs mass where the interaction cross-section is near the neutrino-background floor. In the THDM II+D, which is the type-II two-Higgs-doublet model combined with a darkon, the region excluded in the SM+D by the direct searches can be recovered due to suppression of the DM effective interactions with nucleons at some values of the ratios of Higgs couplings to the up and down quarks, making the interactions significantly isospin-violating. However, in either model, if the 125-GeV Higgs boson is the portal between the dark and SM sectors, DM masses less than 50 GeV or so are already ruled out by the LHC constraint on the Higgs invisible decay. In the THDM II+D, if the heavier CP-even Higgs boson is the portal, theoretical restrictions from perturbativity, vacuum stability, and unitarity requirements turn out to be important instead and exclude much of the region below 100 GeV. For larger DM masses, the THDM II+D has plentiful parameter space that corresponds to interaction cross-sections under the neutrino-background floor and therefore is likely to be beyond the reach of future direct searches without directional sensitivity.

  15. Standard Model Higgs boson searches with the ATLAS detector

    Indian Academy of Sciences (India)

    The experimental results on the search of the Standard Model Higgs boson with 1 to 2 fb-1 of proton–proton collision data at s = 7 TeV recorded by the ATLAS detector are presented and discussed. No significant excess of events is found with respect to the expectations from Standard Model processes, and the production ...

  16. Search for Higgs portal DM at the ILC

    Energy Technology Data Exchange (ETDEWEB)

    Ko, P. [School of Physics, KIAS,Seoul 02455 (Korea, Republic of); Quantum Universe Center, KIAS,Seoul 02455 (Korea, Republic of); Yokoya, Hiroshi [Quantum Universe Center, KIAS,Seoul 02455 (Korea, Republic of)

    2016-08-18

    Higgs portal dark matter (DM) models are simple interesting and viable DM models. There are three types of the models depending on the DM spin: scalar, fermion and vector DM models. In this paper, we consider renormalizable, unitary and gauge invariant Higgs portal DM models, and study how large parameter regions can be surveyed at the International Linear Collider (ILC) experiment at √s=500 GeV. For the Higgs portal singlet fermion and vector DM cases, the force mediator involves two scalar propagators, the SM-like Higgs boson and the dark Higgs boson. We show that their interference generates interesting and important patterns in the mono-Z plus missing E{sub T} signatures at the ILC, and the results are completely different from those obtained from the Higgs portal DM models within the effective field theories. In addition, we show that it would be possible to distinguish the spin of DM in the Higgs portal scenarios, if the shape of the recoil-mass distribution is observed. We emphasize that the interplay between these collider observations and those in the direct detection experiments has to be performed in the model with renomalizability and unitarity to combine the model analyses in different scales.

  17. Pseudo-Goldstone Higgs Doublets from Non-Vectorlike Grand Unified Higgs Sector

    CERN Document Server

    Hernández, A E Cárcamo

    2016-01-01

    We present a novel way of realizing the pseudo-Nambu-Goldstone boson mechanism for the doublet-triplet splitting in supersymmetric grand unified theories. The global symmetries of the Higgs sector are attributed to a non-vectorlike Higgs content, which is consistent with unbroken supersymmetry in a scenario with flat extra dimensions and branes. We also show how in such a model one can naturally obtain a realistic pattern for the Standard Model fermion masses and mixings.

  18. Are there hidden scalars in LHC Higgs results?

    International Nuclear Information System (INIS)

    Arhrib, A.; Ferreira, P.M.; Santos, Rui

    2014-01-01

    The Higgs boson recently discovered at the Large Hadron Collider has shown to have couplings to the remaining particles well within what is predicted by the Standard Model. The search for other new heavy scalar states has so far revealed to be fruitless, imposing constraints on the existence of new scalar particles. However, it is still possible that any existing heavy scalars would preferentially decay to final states involving the light Higgs boson thus evading the current LHC bounds on heavy scalar states. Moreover, decays of the heavy scalars could increase the number of light Higgs bosons being produced. Since the number of light Higgs bosons decaying to Standard Model particles is within the predicted range, this could mean that part of the light Higgs bosons could have their origin in heavy scalar decays. This situation would occur if the light Higgs couplings to Standard Model particles were reduced by a concomitant amount. Using a very simple extension of the SM — the two-Higgs doublet model — we show that in fact we could already be observing the effect of the heavy scalar states even if all results related to the Higgs are in excellent agreement with the Standard Model predictions

  19. Higgs particle searches at LEP

    International Nuclear Information System (INIS)

    Martin, J.P.

    1996-01-01

    Results on searches for the Higgs particle performed by the four LEP experiments are received in the framework of the Standard Model, Two Doublet Model, and Minimal Supersymmetric Model. The combined mass lower limit for the standard Higgs boson is 66 GeV/c 2 at 95 % CL for a statistics of 14.6 Million hadronic Z decays. (authors)

  20. Derived categories of coherent sheaves on Abelian varieties and equivalences between them

    International Nuclear Information System (INIS)

    Orlov, D O

    2002-01-01

    We study derived categories of coherent sheaves on Abelian varieties. We give a criterion for the equivalence of the derived categories on two Abelian varieties and describe the autoequivalence group for the derived category of coherent sheaves of an Abelian variety