WorldWideScience

Sample records for abelian higgs cosmic

  1. Abelian versus non-abelian Higgs model in three dimensions

    International Nuclear Information System (INIS)

    Buchmueller, W.; Philipsen, O.

    1995-04-01

    We study the phase structure of the abelian Higgs model in three dimensions based on perturbation theory and a set of gauge independent gap equations for Higgs boson and vector boson masses. Contrary to the non-abelian Higgs model, the vector boson mass vanishes in the symmetric phase. In the Higgs phase the gap equations yield masses consistent with perturbation theory. The phase transition is first-order for small values of the scalar self-coupling λ, where the employed loop expansion is applicable. (orig.)

  2. The Vortex Oscillations and Abelian Higgs Model

    International Nuclear Information System (INIS)

    Karkowski, J.; Swierczynski, Z.

    2000-01-01

    The excitations of the vortex in Abelian Higgs model with small ratio of vector and Higgs particle masses are considered. Three main modes encountered in numerical computations are described in detail. They are also compared to analytic results obtained recently by Arodz and Hadasz in Phys. Rev. D54, 4004 (1996). (author)

  3. Stability of infinite derivative Abelian Higgs models

    Science.gov (United States)

    Ghoshal, Anish; Mazumdar, Anupam; Okada, Nobuchika; Villalba, Desmond

    2018-04-01

    Motivated by the stringy effects by modifying the local kinetic term of an Abelian Higgs field by the Gaussian kinetic term, we show that the Higgs field does not possess any instability; the Yukawa coupling between the scalar and the fermion, the gauge coupling, and the self interaction of the Higgs yields exponentially suppressed running at high energies, showing that such class of theory never suffers from vacuum instability. We briefly discuss its implications for the early Universe cosmology.

  4. String tension in the three-dimensional Abelian Higgs model

    International Nuclear Information System (INIS)

    Farakos, K.; Koutsoumbas, G.; Sarantakos, S.

    1988-01-01

    We measure the expectation values of the Wilson loops for the radially active Abelian Higgs model in three dimensions with Higgs charge q = 1 and q = 2. We observe a drastic fall-off of the area term as we pass to the Higgs phase, as well as a peak of the perimetric term at the phase transition. Implications of our results for other Higgs models are also discussed. (orig.)

  5. Fun with the Abelian Higgs model

    International Nuclear Information System (INIS)

    Malinsky, Michal

    2013-01-01

    In calculations of the elementary scalar spectra of spontaneously broken gauge theories there are a number of subtleties which, though it is often unnecessary to deal with them in the order-of-magnitude type of calculations, have to be taken into account if fully consistent results are sought for. Within the ''canonical'' effective-potential approach these are, for instance: the need to handle infinite series of nested commutators of derivatives of field-dependent mass matrices, the need to cope with spurious IR divergences emerging in the consistent leading-order approximation and, in particular, the need to account for the fine interplay between the renormalization effects in the one- and two-point Green functions which, indeed, is essential for the proper stable vacuum identification and, thus, for the correct interpretation of the results. In this note we illustrate some of these issues in the realm of the minimal Abelian Higgs model and two of its simplest extensions including extra heavy scalars in the spectrum in attempt to exemplify the key aspects of the usual ''hierarchy problem'' lore in a very specific and simple setting. We emphasize that, regardless of the omnipresent polynomial cut-off dependence in the one-loop corrections to the scalar two-point function, the physical Higgs boson mass is always governed by the associated symmetry-breaking VEV and, as such, it is generally as UV-robust as all other VEV-driven masses in the theory. (orig.)

  6. Effective action and cluster properties of the abelian Higgs model

    Energy Technology Data Exchange (ETDEWEB)

    Balaban, T; Imbrie, J Z; Jaffe, A

    1988-02-01

    We continue our program to establish the Higgs mechanism and mass gap for the abelian Higgs model in two and three dimensions. We develop a multiscale cluster expansion for the high frequency modes of the theory, within a framework of iterated renormalization group transformations. The expansions yield decoupling properties needed for a proof of exponential decay of correlations. The result of this analysis is a gauge invariant unit lattice theory with a deep Higgs potential of the shape required to exhibit the Higgs mechanism.

  7. ABELIAN-HIGGS HAIR FOR BLACK-HOLES

    NARCIS (Netherlands)

    ACHUCARRO, A; GREGORY, R; KUIJKEN, K

    1995-01-01

    We find evidence for the existence of solutions of the Einstein and Abelian Higgs field equations describing a black hole pierced by a Nielsen-Olesen vortex. This situation falls outside the scope of the usual no-hair arguments due to the nontrivial topology of the vortex configuration and the

  8. Diffusion of massive particles around an Abelian-Higgs string

    Science.gov (United States)

    Saha, Abhisek; Sanyal, Soma

    2018-03-01

    We study the diffusion of massive particles in the space time of an Abelian Higgs string. The particles in the early universe plasma execute Brownian motion. This motion of the particles is modeled as a two dimensional random walk in the plane of the Abelian Higgs string. The particles move randomly in the space time of the string according to their geodesic equations. We observe that for certain values of their energy and angular momentum, an overdensity of particles is observed close to the string. We find that the string parameters determine the distribution of the particles. We make an estimate of the density fluctuation generated around the string as a function of the deficit angle. Though the thickness of the string is small, the length is large and the overdensity close to the string may have cosmological consequences in the early universe.

  9. Abelian Higgs mechanism in the Schroedinger picture

    International Nuclear Information System (INIS)

    Kim, S.K.; Namgung, W.; Soh, K.S.; Yee, J.H.

    1990-01-01

    We have studied symmetry-breaking phenomena in scalar electrodynamics by evaluating the effective potential at one-loop order in the Schroedinger picture. Contributions to the effective potential by the Higgs particle and the transverse and longitudinal components of a photon are compared with other previous works, and they are found to be consistent

  10. Lattice vortices in the two-dimensional Abelian Higgs model

    International Nuclear Information System (INIS)

    Grunewald, S.; Ilgenfritz, E.-M.; Mueller-Preussker, M.

    1986-01-01

    Multi-vortices of the 2D Abelian Higgs model on a finite lattice by relaxation of Monte-Carlo equilibrium configurations are generated and identified. The lattice vortices have action and a uniquely defined topological charge corresponding to the continuum ones. They exhibit the expected exponential decay behaviour and satisfy approximately the classical equations of motion. Vortex-antivortex superpositions are seen as well, supporting the dilute gas picture. Single vortices finally relax into ''dislocations'' and dissapear. A background charge construction turns out nearly insensitive with respect to dislocations

  11. Radiation from an excited vortex in the Abelian Higgs model

    Science.gov (United States)

    Arodź, H.; Hadasz, L.

    1996-09-01

    An excited vortex in the Abelian Higgs model is investigated with the help of a polynomial approximation. The excitation consists of the longitudinal component of a vector field trapped by the vortex. The energy and profile of the excitation as well as its back reaction on the vortex are found in the case of small κ. It turns out that the width of the excited vortex oscillates in time. Moreover, the vector field has a radiative long range component. Also, an upper bound on the amplitude of the excitation is found.

  12. Radiation from an excited vortex in the Abelian Higgs model

    International Nuclear Information System (INIS)

    Arodz, H.; Hadasz, L.

    1996-01-01

    An excited vortex in the Abelian Higgs model is investigated with the help of a polynomial approximation. The excitation consists of the longitudinal component of a vector field trapped by the vortex. The energy and profile of the excitation as well as its back reaction on the vortex are found in the case of small κ. It turns out that the width of the excited vortex oscillates in time. Moreover, the vector field has a radiative long range component. Also, an upper bound on the amplitude of the excitation is found. copyright 1996 The American Physical Society

  13. Gauge invariance and the effective potential: the Abelian Higgs model

    International Nuclear Information System (INIS)

    Ramaswamy, S.

    1995-01-01

    The gauge invariance of the effective potential in the Abelian Higgs model is examined. The Nielsen identities, which ensure gauge independence of the effective potential and other physical quantities, are shown to hold at finite temperature and in the presence of the chemical potential. It is also shown that, as a consequence of the Nielsen identities, the standard order parameter for symmetry breaking, namely the scalar field vacuum expectation value, has a non-zero parametric dependence on the gauge choice employed. These are then verified to one loop at finite temperature. High-temperature symmetry breaking is considered. In the leading high-temperature limit, the potential agrees with the previous calculations. (orig.)

  14. Higgs phase in non-Abelian gauge theories

    International Nuclear Information System (INIS)

    Kaymakcalan, O.S.

    1981-06-01

    A non-Abelian gauge theory involving scalar fields with non-tachyonic mass terms in the Lagrangian is considered, in order to construct a finite energy density trial vacuum for this theory. The usual scalar potential arguments suggest that the vacuum of such a theory would be in the perturbative phase. However, the obvious choices for a vacuum in this phase, the Axial gauge and the Coulomb gauge bare vacua, do not have finite energy densities even with an ultraviolet cutoff. Indeed, it is a non-trivial problem to construct finite energy density vacua for non-Abelian gauge theories and this is intimately connected with the gauge fixing degeneracies of these theories. Since the gauge fixing is achieved in the Unitary gauge, this suggests that the Unitary gauge bare vacuum might be a finite energy trial vacuum and, despite the form of the scalar potential, the vacuum of this theory might be in a Higgs phase rather than the perturbative phase

  15. Dyon Condensation and Dual Superconductivity in Abelian Higgs Model of QCD

    Directory of Open Access Journals (Sweden)

    B. S. Rajput

    2010-01-01

    Full Text Available Constructing the effective action for dyonic field in Abelian projection of QCD, it has been demonstrated that any charge (electrical or magnetic of dyon screens its own direct potential to which it minimally couples and antiscreens the dual potential leading to dual superconductivity in accordance with generalized Meissner effect. Taking the Abelian projection of QCD, an Abelian Higgs model, incorporating dual superconductivity and confinement, has been constructed and its representation has been obtained in terms of average of Wilson loop.

  16. Construction of quantized gauge fields: continuum limit of the Abelian Higgs model in two dimensions

    International Nuclear Information System (INIS)

    Seiler, E.

    1981-01-01

    The author proves the existence of the continuum limit of the two-dimensional Higgs model for two cases: External gauge fields that are Hoelder continuous and may be non-Abelian, and the fully quantized Abelian model. In the latter case all Wightman axioms are verified except clustering. Important ingredients are a universal diamagnetic bound and correlation inequalities. (Auth.)

  17. A non-perturbative argument for the non-abelian Higgs mechanism

    Energy Technology Data Exchange (ETDEWEB)

    De Palma, G. [Scuola Normale Superiore, Pisa (Italy); INFN, Sezione di Pisa, Pisa (Italy); Strocchi, F., E-mail: franco.strocchi@sns.it [INFN, Sezione di Pisa, Pisa (Italy)

    2013-09-15

    The evasion of massless Goldstone bosons by the non-abelian Higgs mechanism is proved by a non-perturbative argument in the local BRST gauge. -- Highlights: •The perturbative explanation of the Higgs mechanism (HM) is not under mathematical control. •We offer a non-perturbative proof of the absence of Goldstone bosons from the non-abelian HM. •Our non-perturbative proof in the BRST gauge avoids a mean field ansatz and expansion.

  18. A non-perturbative argument for the non-abelian Higgs mechanism

    International Nuclear Information System (INIS)

    De Palma, G.; Strocchi, F.

    2013-01-01

    The evasion of massless Goldstone bosons by the non-abelian Higgs mechanism is proved by a non-perturbative argument in the local BRST gauge. -- Highlights: •The perturbative explanation of the Higgs mechanism (HM) is not under mathematical control. •We offer a non-perturbative proof of the absence of Goldstone bosons from the non-abelian HM. •Our non-perturbative proof in the BRST gauge avoids a mean field ansatz and expansion

  19. Topological excitations and Monte-Carlo simulation of the Abelian-Higgs model

    International Nuclear Information System (INIS)

    Ranft, J.

    1981-01-01

    The phase structure and topological excitations, in particular the magnetic monopole current density, are investigated in a Monte-Carlo simulation of the lattice version of the four-dimensional Abelian-Higgs model. The monopole current density is found to be large in the confinement phase and rapidly decreasing in the Coulomb and Higgs phases. This result supports the view that confinement is neglected with the condensation of monopole-antimonopole pairs

  20. Temperature dependence of critical magnetic fields for the Abelian Higgs model

    International Nuclear Information System (INIS)

    Magpantay, J.; Mukku, C.; Sayed, W.A.

    1981-05-01

    One loop temperature and external electromagnetic field effects on the Abelian Higgs model are studied using the momentum space heat kernel. We obtain expressions for the critical fields necessary for symmetry restoration at some finite temperature and display the critical B vs. T curve separating the broken and restored phases in the B-T plane. (author)

  1. Phase structure, magnetic monopoles and vortices in the lattice Abelian Higgs model

    International Nuclear Information System (INIS)

    Ranft, J.; Kripfganz, J.; Ranft, G.

    1982-04-01

    We present Monte Carlo calculations of lattice Abelian Higgs models in 4 dimensions and with charges of the Higgs particles equal to q = 1, 2 and 6. The phase transitions are studied in the plane of the two coupling constants considering separately average plaquette and average link expectation values. The density of topological excitations is studied. In the confinement phase we find finite densities of magnetic monopole currents, electric currents and vortex currents. The magnetic monopole currents vanish exponentially in the Coulomb phase. The density of electric currents and vortex currents is finite in the Coulomb phase and vanishes exponentially in the Higgs phase. (author)

  2. Chaos based on Riemannian geometric approach to Abelian-Higgs dynamical system

    International Nuclear Information System (INIS)

    Kawabe, Tetsuji

    2003-01-01

    Based on the Riemannian geometric approach, we study chaos of the Abelian-Higgs dynamical system derived from a classical field equation consisting of a spatially homogeneous Abelian gauge field and Higgs field. Using the global indicator of chaos formulated by the sectional curvature of the ambient manifold, we show that this approach brings the same qualitative and quantitative information about order and chaos as has been provided by the Lyapunov exponents in the conventional and phenomenological approach. We confirm that the mechanism of chaos is a parametric instability of the system. By analyzing a close relation between the sectional curvature and the Gaussian curvature, we point out that the Toda-Brumer criterion becomes a sufficient condition to the criterion based on this geometric approach as to the stability condition

  3. Compact Q=2 Abelian Higgs model in the London limit: Vortex-monopole chains and the photon propagator

    International Nuclear Information System (INIS)

    Chernodub, M.N.; Feldmann, R.; Schiller, A.; Ilgenfritz, E.-M.

    2005-01-01

    The confining and topological properties of the compact Abelian Higgs model with doubly-charged Higgs field in three space-time dimensions are studied. We consider the London limit of the model. We show that the monopoles are forming chainlike structures (kept together by Abrikosov-Nielsen-Olesen vortices), the presence of which is essential for getting simultaneously permanent confinement of singly-charged particles and breaking of the string spanned between doubly-charged particles. In the confinement phase, the chains are forming percolating clusters, while in the deconfinement (Higgs) phase, the chains are of finite size. The described picture is in close analogy with the synthesis of the Abelian monopole and the center vortex pictures in confining non-Abelian gauge models. The screening properties of the vacuum are studied by means of the photon propagator in the Landau gauge

  4. Aspects of quantum corrections in a Lorentz-violating extension of the abelian Higgs Model

    Energy Technology Data Exchange (ETDEWEB)

    Brito, L.C.T.; Fargnoli, H.G. [Universidade Federal de Lavras, MG (Brazil); Scarpelli, A.P. Baeta [Departamento de Policia Federal, Rio de Janeiro, RJ (Brazil)

    2013-07-01

    Full text: We have investigated new aspects related to the four-dimensional abelian gauge-Higgs model with the addition of the Carroll-Field-Jackiw term (CFJ). We have focused on one-loop quantum corrections to the photon and Higgs sectors and we have analyzed what kind of effects are induced at the quantum level by spontaneous gauge symmetry breaking due the presence of the CFJ term. We have shown that new finite and non-ambiguous Lorentz-breaking terms are induced in both sectors at second order in the background vector. Specifically in the pure gauge sector, a CPT-even aether term (free from ambiguities) is induced. A CPT-even term is also induced in the pure Higgs sector. Both terms have been mapped in the Standard Model Extension. Besides, aspects of the one-loop renormalization of the background vector dependent terms have been studied. The new divergences due the presence of the CFJ term were shown to be worked out by the renormalization condition which requires the vanishing of the vacuum expectation value of the Higgs field. So at one loop the CFJ term does not spoil the well known renormalizability of the model without Lorentz symmetry breaking terms. The calculations have been done within dimensional methods and in an arbitrary gauge choice. (author)

  5. Symmetric solitonic excitations of the (1 + 1)-dimensional Abelian-Higgs classical vacuum.

    Science.gov (United States)

    Diakonos, F K; Katsimiga, G C; Maintas, X N; Tsagkarakis, C E

    2015-02-01

    We study the classical dynamics of the Abelian-Higgs model in (1 + 1) space-time dimensions for the case of strongly broken gauge symmetry. In this limit the wells of the potential are almost harmonic and sufficiently deep, presenting a scenario far from the associated critical point. Using a multiscale perturbation expansion, the equations of motion for the fields are reduced to a system of coupled nonlinear Schrödinger equations. Exact solutions of the latter are used to obtain approximate analytical solutions for the full dynamics of both the gauge and Higgs field in the form of oscillons and oscillating kinks. Numerical simulations of the exact dynamics verify the validity of these solutions. We explore their persistence for a wide range of the model's single parameter, which is the ratio of the Higgs mass (m(H)) to the gauge-field mass (m(A)). We show that only oscillons oscillating symmetrically with respect to the "classical vacuum," for both the gauge and the Higgs field, are long lived. Furthermore, plane waves and oscillating kinks are shown to decay into oscillon-like patterns, due to the modulation instability mechanism.

  6. Peristaltic modes of a single vortex in the Abelian Higgs model

    International Nuclear Information System (INIS)

    Kojo, Toru; Suganuma, Hideo; Tsumura, Kyosuke

    2007-01-01

    Using the Abelian Higgs model, we study the radial excitations of single vortex and their propagation modes along the vortex line. We call such beyond-stringy modes peristaltic modes of single vortex. With the profile of the static vortex, we derive the vortex-induced potential, i.e., single-particle potential for the Higgs and the photon field fluctuations around the static vortex, and investigate the coherently propagating fluctuations which correspond to the vibration of the vortex. We derive, analyze, and numerically solve the field equations of the Higgs and the photon field fluctuations around the static vortex with various Ginzburg-Landau parameter κ and topological charge n. Around the Bogomol'nyi-Prasad-Sommerfield value or critical coupling κ 2 =1/2, there appears a significant correlation between the Higgs and the photon field fluctuations mediated by the static vortex. As a result, for κ 2 =1/2, we find the characteristic new-type discrete pole of the peristaltic mode corresponding to the quasibound state of coherently fluctuating fields and the static vortex. We investigate its excitation energy, correlation energy of coherent fluctuations, spatial distributions, and the resulting magnetic flux behavior in detail. Our investigation covers not only usual type-II vortices with n=1 but also type-I and type-II vortices with n set-membership sign Z for the application to various general systems where the vortexlike objects behave as the essential degrees of freedom

  7. A simple model for the evolution of a non-Abelian cosmic string network

    Energy Technology Data Exchange (ETDEWEB)

    Cella, G. [Istituto Nazionale di Fisica Nucleare, sez. Pisa, Largo Bruno Pontecorvo 3, 56126 Pisa (Italy); Pieroni, M., E-mail: giancarlo.cella@pi.infn.it, E-mail: mauro.pieroni@apc.univ-paris7.fr [AstroParticule et Cosmologie, Université Paris Diderot, CNRS, CEA, Observatoire de Paris, Sorbonne Paris Cité, F-75205 Paris Cedex 13 (France)

    2016-06-01

    In this paper we present the results of numerical simulations intended to study the behavior of non-Abelian cosmic strings networks. In particular we are interested in discussing the variations in the asymptotic behavior of the system as we variate the number of generators for the topological defects. A simple model which allows for cosmic strings is presented and its lattice discretization is discussed. The evolution of the generated cosmic string networks is then studied for different values for the number of generators for the topological defects. Scaling solution appears to be approached in most cases and we present an argument to justify the lack of scaling for the residual cases.

  8. Hydrodynamics of defects in the Abelian-Higgs model: An application to nematic liquid crystals

    International Nuclear Information System (INIS)

    Kurz, Guenter; Sarkar, Sarben

    2000-01-01

    The Abelian-Higgs model is the basis for a gauge covariant form of the distortion free energy for nematic liquid crystals. This is used to derive a new form of the Ericksen-Leslie equations incorporating the dynamics of disclinations in nematic films. The zero liquid flow case is treated in detail for simplicity. The equations are reduced to dynamic equations for disclination points in moduli space for a small deviation from the Bogomol'nyi limit. We are able to derive analytically the dynamics of disclinations with winding numbers of the same sign. A set of such disclinations close to one another, i.e., with overlapping cores, can result from the disintegration of a larger disclination, and they repel one another. For a pair of such dis- clinations far apart from one another we find that they move on a straight line where their separation increases logarithmically over time

  9. Self-Dual Configurations in a Generalized Abelian Chern-Simons-Higgs Model with Explicit Breaking of the Lorentz Covariance

    International Nuclear Information System (INIS)

    Sourrouille, Lucas; Casana, Rodolfo

    2016-01-01

    We have studied the existence of self-dual solitonic solutions in a generalization of the Abelian Chern-Simons-Higgs model. Such a generalization introduces two different nonnegative functions, ω_1(|ϕ|) and ω(|ϕ|), which split the kinetic term of the Higgs field, |D_μϕ|"2→ω_1(|ϕ|)|D_0ϕ|"2-ω(|ϕ|)|D_kϕ|"2, breaking explicitly the Lorentz covariance. We have shown that a clean implementation of the Bogomolnyi procedure only can be implemented whether ω(|ϕ|)∝β|ϕ|"2"β"-"2 with β≥1. The self-dual or Bogomolnyi equations produce an infinity number of soliton solutions by choosing conveniently the generalizing function ω_1(|ϕ|) which must be able to provide a finite magnetic field. Also, we have shown that by properly choosing the generalizing functions it is possible to reproduce the Bogomolnyi equations of the Abelian Maxwell-Higgs and Chern-Simons-Higgs models. Finally, some new self-dual |ϕ|"6-vortex solutions have been analyzed from both theoretical and numerical point of view.

  10. Vortex dynamics in nonrelativistic version of Abelian Higgs model: Effects of the medium on the vortex motion

    Directory of Open Access Journals (Sweden)

    Kozhevnikov Arkadii

    2016-01-01

    Full Text Available The closed vortex dynamics is considered in the nonrelativistic version of the Abelian Higgs Model. The effect of the exchange of excitations propagating in the medium on the vortex string motion is taken into account. The obtained are the effective action and the equation of motion both including the exchange of the propagating excitations between the distant segments of the vortex and the possibility of its interaction with the static fermion asymmetric background. They are applied to the derivation of the time dependence of the basic geometrical contour characteristics.

  11. Gravitational waves from Abelian gauge fields and cosmic strings at preheating

    International Nuclear Information System (INIS)

    Dufaux, Jean-Francois; Figueroa, Daniel G.; Garcia-Bellido, Juan

    2010-01-01

    Primordial gravitational waves provide a very important stochastic background that could be detected soon with interferometric gravitational wave antennas or indirectly via the induced patterns in the polarization anisotropies of the cosmic microwave background. The detection of these waves will open a new window into the early Universe, and therefore it is important to characterize in detail all possible sources of primordial gravitational waves. In this paper we develop theoretical and numerical methods to study the production of gravitational waves from out-of-equilibrium gauge fields at preheating. We then consider models of preheating after hybrid inflation, where the symmetry breaking field is charged under a local U(1) symmetry. We analyze in detail the dynamics of the system in both momentum and configuration space. We show that gauge fields leave specific imprints in the resulting gravitational wave spectra, mainly through the appearance of new peaks at characteristic frequencies that are related to the mass scales in the problem. We also show how these new features in the spectra correlate with stringlike spatial configurations in both the Higgs and gauge fields that arise due to the appearance of topological winding numbers of the Higgs around Nielsen-Olesen strings. We study in detail the time evolution of the spectrum of gauge fields and gravitational waves as these strings evolve and decay before entering a turbulent regime where the gravitational wave energy density saturates.

  12. New bounds on the phase transition line in a non-compact abelian lattice Higgs model

    International Nuclear Information System (INIS)

    Nill, F.

    1987-01-01

    The Higgs expectation value and the 't Hooft loop are investigated as order respectively disorder parameters in a fixed-length Higgs model of Villain type with gauge group R. Based on either observable the phase transition line is shown to be monotonically decreasing and Lipschitz continuous with Lipschitz constant 4d in dimension d ≥ 3. This gives new bounds on the phase transition line in terms of its endpoints, i.e. the critical couplings of the Z-gauge model and the XY-model with Villain action, respectively. (orig.)

  13. Real-Time Dynamics in the (1+1)-D Abelian Higgs Model with Fermions

    NARCIS (Netherlands)

    Aarts, G.; Smit, J.

    2000-01-01

    In approximate dynamical equations, inhomogenous classical (mean) gauge and Higgs fields are coupled to quantized fermions. The equations are solved numerically on a spacetime lattice. The fermions appear to equilibrate according to the Fermi-Dirac distribution with time-dependent temperature and

  14. Self-dual configurations in Abelian Higgs models with k-generalized gauge field dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Casana, R.; Cavalcante, A. [Departamento de Física, Universidade Federal do Maranhão,65080-805, São Luís, Maranhão (Brazil); Hora, E. da [Departamento de Física, Universidade Federal do Maranhão,65080-805, São Luís, Maranhão (Brazil); Coordenadoria Interdisciplinar de Ciência e Tecnologia, Universidade Federal do Maranhão,65080-805, São Luís, Maranhão (Brazil)

    2016-12-14

    We have shown the existence of self-dual solutions in new Maxwell-Higgs scenarios where the gauge field possesses a k-generalized dynamic, i.e., the kinetic term of gauge field is a highly nonlinear function of F{sub μν}F{sup μν}. We have implemented our proposal by means of a k-generalized model displaying the spontaneous symmetry breaking phenomenon. We implement consistently the Bogomol’nyi-Prasad-Sommerfield formalism providing highly nonlinear self-dual equations whose solutions are electrically neutral possessing total energy proportional to the magnetic flux. Among the infinite set of possible configurations, we have found families of k-generalized models whose self-dual equations have a form mathematically similar to the ones arising in the Maxwell-Higgs or Chern-Simons-Higgs models. Furthermore, we have verified that our proposal also supports infinite twinlike models with |ϕ|{sup 4}-potential or |ϕ|{sup 6}-potential. With the aim to show explicitly that the BPS equations are able to provide well-behaved configurations, we have considered a test model in order to study axially symmetric vortices. By depending of the self-dual potential, we have shown that the k-generalized model is able to produce solutions that for long distances have a exponential decay (as Abrikosov-Nielsen-Olesen vortices) or have a power-law decay (characterizing delocalized vortices). In all cases, we observe that the generalization modifies the vortex core size, the magnetic field amplitude and the bosonic masses but the total energy remains proportional to the quantized magnetic flux.

  15. Classical dynamics of the Abelian Higgs model from the critical point and beyond

    Directory of Open Access Journals (Sweden)

    G.C. Katsimiga

    2015-09-01

    Full Text Available We present two different families of solutions of the U(1-Higgs model in a (1+1 dimensional setting leading to a localization of the gauge field. First we consider a uniform background (the usual vacuum, which corresponds to the fully higgsed-superconducting phase. Then we study the case of a non-uniform background in the form of a domain wall which could be relevantly close to the critical point of the associated spontaneous symmetry breaking. For both cases we obtain approximate analytical nodeless and nodal solutions for the gauge field resulting as bound states of an effective Pöschl–Teller potential created by the scalar field. The two scenaria differ only in the scale of the characteristic localization length. Numerical simulations confirm the validity of the obtained analytical solutions. Additionally we demonstrate how a kink may be used as a mediator driving the dynamics from the critical point and beyond.

  16. Inert two-Higgs-doublet model strongly coupled to a non-Abelian vector resonance

    Science.gov (United States)

    Rojas-Abatte, Felipe; Mora, Maria Luisa; Urbina, Jose; Zerwekh, Alfonso R.

    2017-11-01

    We study the possibility of a dark matter candidate having its origin in an extended Higgs sector which, at least partially, is related to a new strongly interacting sector. More concretely, we consider an i2HDM (i.e., a Type-I two Higgs doublet model supplemented with a Z2 under which the nonstandard scalar doublet is odd) based on the gauge group S U (2 )1×S U (2 )2×U (1 )Y . We assume that one of the scalar doublets and the standard fermion transform nontrivially under S U (2 )1 while the second doublet transforms under S U (2 )2. Our main hypothesis is that standard sector is weakly coupled while the gauge interactions associated to the second group is characterized by a large coupling constant. We explore the consequences of this construction for the phenomenology of the dark matter candidate and we show that the presence of the new vector resonance reduces the relic density saturation region, compared to the usual i2DHM, in the high dark matter mass range. In the collider side, we argue that the mono-Z production is the channel which offers the best chances to manifest the presence of the new vector field. We study the departures from the usual i2HDM predictions and show that the discovery of the heavy vector at the LHC is challenging even in the mono-Z channel since the typical cross sections are of the order of 10-2 fb .

  17. Higgs force cosmic symmetry shattered : the story of the greatest scientific discovery for 50 years

    CERN Document Server

    Mee, Nicholas

    2012-01-01

    Higgs Force by Nicholas Mee is the definitive account of the science leading up to the discovery of the Higgs particle and the researchers involved in this quest. This discovery, by what is arguably the world's biggest and most expensive experiment - the Large Hadron Collider - represents the most important scientific breakthrough for 50 years. Higgs Force is a popular science book that is written in an accessible and engaging style with clear explanations for the general reader. The book is filled with stories about the eccentric characters that litter the history of science. These include a chemist who was addicted to the pleasures of laughing gas; the inventor of the kaleidoscope, whose business sense didn't match his scientific acumen; the weird looming apparition of the Brocken spectre - a ghostly giant who offered vital inspiration to a leading researcher; a physicist who compared his power to transmute the elements to the fabled alchemist Hermes Trismegistus and an astronomer who was captivated by the ...

  18. Abelian groups

    CERN Document Server

    Fuchs, László

    2015-01-01

    Written by one of the subject’s foremost experts, this book focuses on the central developments and modern methods of the advanced theory of abelian groups, while remaining accessible, as an introduction and reference, to the non-specialist. It provides a coherent source for results scattered throughout the research literature with lots of new proofs. The presentation highlights major trends that have radically changed the modern character of the subject, in particular, the use of homological methods in the structure theory of various classes of abelian groups, and the use of advanced set-theoretical methods in the study of undecidability problems. The treatment of the latter trend includes Shelah’s seminal work on the undecidability in ZFC of Whitehead’s Problem; while the treatment of the former trend includes an extensive (but non-exhaustive) study of p-groups, torsion-free groups, mixed groups, and important classes of groups arising from ring theory. To prepare the reader to tackle these topics, th...

  19. Abelian primitive words

    OpenAIRE

    Domaratzki, Michael; Rampersad, Narad

    2011-01-01

    We investigate Abelian primitive words, which are words that are not Abelian powers. We show that unlike classical primitive words, the set of Abelian primitive words is not context-free. We can determine whether a word is Abelian primitive in linear time. Also different from classical primitive words, we find that a word may have more than one Abelian root. We also consider enumeration problems and the relation to the theory of codes. Peer reviewed

  20. Updated constraints on the cosmic string tension

    International Nuclear Information System (INIS)

    Battye, Richard; Moss, Adam

    2010-01-01

    We reexamine the constraints on the cosmic string tension from cosmic microwave background (CMB) and matter power spectra, and also from limits on a stochastic background of gravitational waves provided by pulsar timing. We discuss the different approaches to modeling string evolution and radiation. In particular, we show that the unconnected segment model can describe CMB spectra expected from thin string (Nambu) and field theory (Abelian-Higgs) simulations using the computed values for the correlation length, rms string velocity and small-scale structure relevant to each variety of simulation. Applying the computed spectra in a fit to CMB and SDSS data we find that Gμ/c 2 -7 (2σ) if the Nambu simulations are correct and Gμ/c 2 -7 in the Abelian-Higgs case. The degeneracy between Gμ/c 2 and the power spectrum slope n S is substantially reduced from previous work. Inclusion of constraints on the baryon density from big bang nucleosynthesis (BBN) imply that n S 2 and loop production size, α, we find that Gμ/c 2 -7 for αc 2 /(ΓGμ) 2 -11 /α for αc 2 /(ΓGμ)>>1.

  1. Dark matter cosmic string in the gravitational field of a black hole

    Science.gov (United States)

    Nakonieczny, Łukasz; Nakonieczna, Anna; Rogatko, Marek

    2018-03-01

    We examined analytically and proposed a numerical model of an Abelian Higgs dark matter vortex in the spacetime of a stationary axisymmetric Kerr black hole. In analytical calculations the dark matter sector was modeled by an addition of a U(1)-gauge field coupled to the visible sector. The backreaction analysis revealed that the impact of the dark vortex presence is far more complicated than causing only a deficit angle. The vortex causes an ergosphere shift and the event horizon velocity is also influenced by its presence. These phenomena are more significant than in the case of a visible vortex sector. The area of the event horizon of a black hole is diminished and this decline is larger in comparison to the Kerr black hole with an Abelian Higgs vortex case. After analyzing the gravitational properties for the general setup, we focused on the subset of models that are motivated by particle physics. We retained the Abelian Higgs model as a description of the dark matter sector (this sector contained a heavy dark photon and an additional complex scalar) and added a real scalar representing the real component of the Higgs doublet in the unitary gauge, as well as an additional U(1)-gauge field representing an ordinary electromagnetic field. Moreover, we considered two coupling channels between the visible and dark sectors, which were the kinetic mixing between the gauge fields and a quartic coupling between the scalar fields. After solving the equations of motion for the matter fields numerically we analyzed properties of the cosmic string in the dark matter sector and its influence on the visible sector fields that are directly coupled to it. We found out that the presence of the cosmic string induced spatial variation in the vacuum expectation value of the Higgs field and a nonzero electromagnetic field around the black hole.

  2. Reflections on the Higgs system. Lectures given in the Academic Training Programme of CERN 1996-1997

    International Nuclear Information System (INIS)

    Veltmann, M.

    1997-01-01

    A detailed discussion of Higgs systems, including the Abelian Higgs model and the Higgs system of the Standard Model, is presented. The advantages and disadvantages of more complex Higgs systems, involving several doublets or higher representations, are scrutinized. The prospects for detecting Higgs-system-related effects at high energy are sketched. (orig.)

  3. Theory of Abelian projection

    International Nuclear Information System (INIS)

    Ogilvie, M.C.

    1999-01-01

    Analytic methods for Abelian projection are developed. A number of results are obtained related to string tension measurements. It is proven that even without gauge fixing, Abelian projection yields string tensions of the underlying non-Abelian theory. Strong arguments are given for similar results in the case where gauge fixing is employed. The methods used emphasize that the projected theory is derived from the underlying non-Abelian theory rather than vice versa. In general, the choice of subgroup used for projection is not very important, and need not be Abelian. While gauge fixing is shown to be in principle unnecessary for the success of Abelian projection, it is computationally advantageous for the same reasons that improved operators, e.g., the use of fat links, are advantageous in Wilson loop measurements. Two other issues, Casimir scaling and the conflict between projection and critical universality, are also discussed. copyright 1999 The American Physical Society

  4. Integrable Abelian vortex-like solitons

    Energy Technology Data Exchange (ETDEWEB)

    Contatto, Felipe, E-mail: felipe.contatto@damtp.cam.ac.uk [Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA (United Kingdom); CAPES Foundation, Ministry of Education of Brazil, Brasília, DF 70040-020 (Brazil)

    2017-05-10

    We propose a modified version of the Ginzburg–Landau energy functional admitting static solitons and determine all the Painlevé-integrable cases of its Bogomolny equations of a given class of models. Explicit solutions are determined in terms of the third Painlevé transcendents, allowing us to calculate physical quantities such as the vortex number and the vortex strength. These solutions can be interpreted as the usual Abelian-Higgs vortices on surfaces of non-constant curvature with conical singularity.

  5. Integrable Abelian vortex-like solitons

    Directory of Open Access Journals (Sweden)

    Felipe Contatto

    2017-05-01

    Full Text Available We propose a modified version of the Ginzburg–Landau energy functional admitting static solitons and determine all the Painlevé-integrable cases of its Bogomolny equations of a given class of models. Explicit solutions are determined in terms of the third Painlevé transcendents, allowing us to calculate physical quantities such as the vortex number and the vortex strength. These solutions can be interpreted as the usual Abelian-Higgs vortices on surfaces of non-constant curvature with conical singularity.

  6. Flavored gauge mediation with discrete non-Abelian symmetries

    Science.gov (United States)

    Everett, Lisa L.; Garon, Todd S.

    2018-05-01

    We explore the model building and phenomenology of flavored gauge-mediation models of supersymmetry breaking in which the electroweak Higgs doublets and the S U (2 ) messenger doublets are connected by a discrete non-Abelian symmetry. The embedding of the Higgs and messenger fields into representations of this non-Abelian Higgs-messenger symmetry results in specific relations between the Standard Model Yukawa couplings and the messenger-matter Yukawa interactions. Taking the concrete example of an S3 Higgs-messenger symmetry, we demonstrate that, while the minimal implementation of this scenario suffers from a severe μ /Bμ problem that is well known from ordinary gauge mediation, expanding the Higgs-messenger field content allows for the possibility that μ and Bμ can be separately tuned, allowing for the possibility of phenomenologically viable models of the soft supersymmetry-breaking terms. We construct toy examples of this type that are consistent with the observed 125 GeV Higgs boson mass.

  7. Global U(1 ) Y⊗BRST symmetry and the LSS theorem: Ward-Takahashi identities governing Green's functions, on-shell T -matrix elements, and the effective potential in the scalar sector of the spontaneously broken extended Abelian Higgs model

    Science.gov (United States)

    Lynn, Bryan W.; Starkman, Glenn D.

    2017-09-01

    The weak-scale U (1 )Y Abelian Higgs model (AHM) is the simplest spontaneous symmetry breaking (SSB) gauge theory: a scalar ϕ =1/√{2 }(H +i π )≡1/√{2 }H ˜ei π ˜/⟨H ⟩ and a vector Aμ. The extended AHM (E-AHM) adds certain heavy (MΦ2,Mψ2˜MHeavy2≫⟨H ⟩2˜mWeak2 ) spin S =0 scalars Φ and S =1/2 fermions ψ . In Lorenz gauge, ∂μAμ=0 , the SSB AHM (and E-AHM) has a global U (1 )Y conserved physical current, but no conserved charge. As shown by T. W. B. Kibble, the Goldstone theorem applies, so π ˜ is a massless derivatively coupled Nambu-Goldstone boson (NGB). Proof of all-loop-orders renormalizability and unitarity for the SSB case is tricky because the Becchi-Rouet-Stora-Tyutin (BRST)-invariant Lagrangian is not U (1 )Y symmetric. Nevertheless, Slavnov-Taylor identities guarantee that on-shell T-matrix elements of physical states Aμ,ϕ , Φ , ψ (but not ghosts ω , η ¯ ) are independent of anomaly-free local U (1 )Y gauge transformations. We observe here that they are therefore also independent of the usual anomaly-free U (1 )Y global/rigid transformations. It follows that the associated global current, which is classically conserved only up to gauge-fixing terms, is exactly conserved for amplitudes of physical states in the AHM and E-AHM. We identify corresponding "undeformed" [i.e. with full global U (1 )Y symmetry] Ward-Takahashi identities (WTI). The proof of renormalizability and unitarity, which relies on BRST invariance, is undisturbed. In Lorenz gauge, two towers of "1-soft-pion" SSB global WTI govern the ϕ -sector, and represent a new global U (1 )Y⊗BRST symmetry not of the Lagrangian but of the physics. The first gives relations among off-shell Green's functions, yielding powerful constraints on the all-loop-orders ϕ -sector SSB E-AHM low-energy effective Lagrangian and an additional global shift symmetry for the NGB: π ˜→π ˜+⟨H ⟩θ . A second tower, governing on-shell T-matrix elements, replaces the old Adler

  8. Some aspects of non-Abelian gauge theories

    International Nuclear Information System (INIS)

    Tyburski, L.J.

    1976-01-01

    Two aspects of the theory of non-Abelian gauge fields are considered. In the first part, the fermion-fermion scattering amplitude is calculated for a non-Abelian gauge theory with SU(N) gauge symmetry in the limit of high energy with fixed momentum transfer through sixth order in the coupling constant. Only the leading logarithmic terms in each order of perturbation theory are kept. To avoid the infrared problem, the Higgs mechanism is invoked to give masses to the vector bosons of the theory. It is found that the scattering amplitude exponentiates to a Regge form. This result is qualitatively different from an earlier published calculation. In the second part of the thesis, we consider fermion-fermion scattering in a non-Abelian gauge theory with massless vector bosons, and demonstrate that for physically measurable cross sections the infrared divergences of the theory cancel out to lowest nontrivial order

  9. Vector Higgs-portal dark matter and the invisible Higgs

    International Nuclear Information System (INIS)

    Lebedev, Oleg; Lee, Hyun Min; Mambrini, Yann

    2011-11-01

    The Higgs sector of the Standard Model offers a unique probe of the hidden sector. In this work, we explore the possibility of renormalizable Higgs couplings to the hidden sector vector fields which can constitute dark matter (DM). Abelian gauge sectors with minimal field content, necessary to render the gauge fields massive, have a natural Z 2 parity. This symmetry ensures stability of the vector fields making them viable dark matter candidates, while evading the usual electroweak constraints. We illustrate this idea with the Stueckelberg and Higgs mechanisms. Vector DM is consistent with the WMAP, XENON100, and LHC constraints, while it can affect significantly the invisible Higgs decay. Due to the enhanced branching ratio for the Higgs decay into the longitudinal components of the vector field, the vector Higgs portal provides an efficient way to hide the Higgs at the LHC. This could be the reason why the latest combined ATLAS/CMS data did not bring evidence for the existence of the Higgs boson. (orig.)

  10. Vector Higgs-portal dark matter and the invisible Higgs

    Energy Technology Data Exchange (ETDEWEB)

    Lebedev, Oleg [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Lee, Hyun Min [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Mambrini, Yann [Paris-Sud Univ., 91 - Orsay (France). Lab. de Physique Theorique

    2011-11-15

    The Higgs sector of the Standard Model offers a unique probe of the hidden sector. In this work, we explore the possibility of renormalizable Higgs couplings to the hidden sector vector fields which can constitute dark matter (DM). Abelian gauge sectors with minimal field content, necessary to render the gauge fields massive, have a natural Z{sub 2} parity. This symmetry ensures stability of the vector fields making them viable dark matter candidates, while evading the usual electroweak constraints. We illustrate this idea with the Stueckelberg and Higgs mechanisms. Vector DM is consistent with the WMAP, XENON100, and LHC constraints, while it can affect significantly the invisible Higgs decay. Due to the enhanced branching ratio for the Higgs decay into the longitudinal components of the vector field, the vector Higgs portal provides an efficient way to hide the Higgs at the LHC. This could be the reason why the latest combined ATLAS/CMS data did not bring evidence for the existence of the Higgs boson. (orig.)

  11. Vector Higgs portal dark matter and the invisible Higgs

    International Nuclear Information System (INIS)

    Lebedev, Oleg; Lee, Hyun Min; Mambrini, Yann

    2012-01-01

    The Higgs sector of the Standard Model offers a unique probe of the hidden sector. In this work, we explore the possibility of renormalizable Higgs couplings to the hidden sector vector fields which can constitute dark matter (DM). Abelian gauge sectors with minimal field content, necessary to render the gauge fields massive, have a natural Z 2 parity. This symmetry ensures stability of the vector fields making them viable dark matter candidates, while evading the usual electroweak constraints. We illustrate this idea with the Stückelberg and Higgs mechanisms. Vector DM is consistent with the WMAP, XENON100, and LHC constraints, while it can affect significantly the invisible Higgs decay. Due to the enhanced branching ratio for the Higgs decay into the longitudinal components of the vector field, the vector Higgs portal provides an efficient way to hide the Higgs at the LHC. This could be the reason why the latest combined ATLAS/CMS data did not bring evidence for the existence of the Higgs boson.

  12. Dual Higgs theory for color confinement

    International Nuclear Information System (INIS)

    Ichie, H.; Suganuma, H.

    1999-01-01

    We study theoretical bases of the dual Higgs theory for confinement physics in QCD in terms of monopoles and the gluon configuration in the maximally abelian (MA) gauge. Abelian dominance for the confinement force can be analytically proved by regarding the off-diagonal angle variable as a random variable in the lattice formalism. In the long-distance scale, the contribution of off-diagonal gluons to the Wilson loop cancels each other and exhibits a perimeter law behavior, which leads to exact abelian dominance on the string tension if the finite size effect of the Wilson loop is removed. We investigate the appearance of the monopole in the QCD vacuum, considering the role of off-diagonal gluons. The monopole carries a large fluctuation of the gluon field and provides a large abelian action in abelian projected QCD. Due to the partial cancellation between the abelian part and the off-diagonal part of the QCD action, the monopole can appear in QCD without large cost of the QCD action. The off-diagonal gluon is necessary for existence of the monopole at the short-distance scale. We study monopole condensation, which is the requirement of the dual Higgs theory, by comparing the QCD vacuum with the monopole-current system. We find that 'entropy' of monopole-current dominates than its 'energy', and the monopole seems to be condensed at the infrared scale in the QCD vacuum. Copyright (1999) World Scientific Publishing Co. Pte. Ltd

  13. Introduction to Abelian varieties

    CERN Document Server

    Murty, V Kumar

    1993-01-01

    The book represents an introduction to the theory of abelian varieties with a view to arithmetic. The aim is to introduce some of the basics of the theory as well as some recent arithmetic applications to graduate students and researchers in other fields. The first part contains proofs of the Abel-Jacobi theorem, Riemann's relations and the Lefschetz theorem on projective embeddings over the complex numbers in the spirit of S. Lang's book Introduction to algebraic and abelian functions. Then the Jacobians of Fermat curves as well as some modular curves are discussed. Finally, as an application, Faltings' proof of the Mordell conjecture and its intermediate steps, the Tate conjecture and the Shafarevich conjecture, are sketched. - H. Lange for MathSciNet.

  14. Metrically universal abelian groups

    Czech Academy of Sciences Publication Activity Database

    Doucha, Michal

    2017-01-01

    Roč. 369, č. 8 (2017), s. 5981-5998 ISSN 0002-9947 R&D Projects: GA AV ČR IAA100190902 Institutional support: RVO:67985840 Keywords : Abelian group Subject RIV: BA - General Mathematics OBOR OECD: Pure mathematics Impact factor: 1.426, year: 2016 http://www.ams.org/journals/tran/2017-369-08/S0002-9947-2017-07059-8/

  15. Curves and Abelian varieties

    CERN Document Server

    Alexeev, Valery; Clemens, C Herbert; Beauville, Arnaud

    2008-01-01

    This book is devoted to recent progress in the study of curves and abelian varieties. It discusses both classical aspects of this deep and beautiful subject as well as two important new developments, tropical geometry and the theory of log schemes. In addition to original research articles, this book contains three surveys devoted to singularities of theta divisors, of compactified Jacobians of singular curves, and of "strange duality" among moduli spaces of vector bundles on algebraic varieties.

  16. Gravitational waves from non-Abelian gauge fields at a tachyonic transition

    Science.gov (United States)

    Tranberg, Anders; Tähtinen, Sara; Weir, David J.

    2018-04-01

    We compute the gravitational wave spectrum from a tachyonic preheating transition of a Standard Model-like SU(2)-Higgs system. Tachyonic preheating involves exponentially growing IR modes, at scales as large as the horizon. Such a transition at the electroweak scale could be detectable by LISA, if these non-perturbatively large modes translate into non-linear dynamics sourcing gravitational waves. Through large-scale numerical simulations, we find that the spectrum of gravitational waves does not exhibit such IR features. Instead, we find two peaks corresponding to the Higgs and gauge field mass, respectively. We find that the gravitational wave production is reduced when adding non-Abelian gauge fields to a scalar-only theory, but increases when adding Abelian gauge fields. In particular, gauge fields suppress the gravitational wave spectrum in the IR. A tachyonic transition in the early Universe will therefore not be detectable by LISA, even if it involves non-Abelian gauge fields.

  17. Point-splitting as a regularization method for λφ4-type vertices: Abelian case

    International Nuclear Information System (INIS)

    Moura-Melo, Winder A.; Helayel Neto, J.A.

    1998-11-01

    We obtained regularized Abelian Lagrangians containing λφ 4 -type vertices by means of a suitable point-splitting procedure. The calculation is developed in details for a general Lagrangian, whose fields (gauge and matter ones) satisfy certain conditions. We illustrates our results by considering some special cases, such as the Abelian Higgs, the (ψ-barψ) 2 and the Avdeev-Chizov (real rank-2 antisymmetric tensor as matter fields) models. We also discuss some features of the obtained Lagrangian such as the regularity and non-locality of its new integrating terms. Moreover, the resolution of the Abelian case may teach us some useful technical aspects when dealing with the non-Abelian one. (author)

  18. Analytical results for Abelian projection

    International Nuclear Information System (INIS)

    Ogilivie, Michael C.

    1999-01-01

    Analytic methods for Abelian projection are developed, and a number of results related to string tension measurements are obtained. It is proven that even without gauge fixing, Abelian projection yields string tensions of the underlying non-Abelian theory. Strong arguments are given for similar results in the case where gauge fixing is employed. The subgroup used for projection need only contain the center of the gauge group, and need not be Abelian. While gauge fixing is shown to be in principle unnecessary for the success of Abelian projection, it is computationally advantageous for the same reasons that improved operators, e.g., the use of fat links, are advantageous in Wilson loop measurements

  19. Vortices and quark confinement in non-Abelian gauge theories

    International Nuclear Information System (INIS)

    Mandelstam, S.

    1976-01-01

    Non-Abelian vortices of the type proposed by Nielsen and Olesen are discussed. It is shown that the vortices must contain a single unit of quantized flux absorbed by a Dirac monopole at each end. The monopoles satisfy a confinement condition; if quark numbers are assigned to the monopoles, is is found that the model contains a natural explanation of quark confinement. The I-spin variables associated with the non-Abelian gauge field correspond to the colour degree freedom. An alternative model in which (colour) charges and monopoles are interchanged is also suggested. The Higgs field which breaks the degeneracy of the vacuum is replaced by an operator which creates monopoles of the type suggested by 't Hooft. In such a model colour might be confined. The investigations are at a very preliminary stage, but the model appears to offer a natural explanation of confinement without the explicit introduction of monopole fields. (Auth.)

  20. Maximal Abelian sets of roots

    CERN Document Server

    Lawther, R

    2018-01-01

    In this work the author lets \\Phi be an irreducible root system, with Coxeter group W. He considers subsets of \\Phi which are abelian, meaning that no two roots in the set have sum in \\Phi \\cup \\{ 0 \\}. He classifies all maximal abelian sets (i.e., abelian sets properly contained in no other) up to the action of W: for each W-orbit of maximal abelian sets we provide an explicit representative X, identify the (setwise) stabilizer W_X of X in W, and decompose X into W_X-orbits. Abelian sets of roots are closely related to abelian unipotent subgroups of simple algebraic groups, and thus to abelian p-subgroups of finite groups of Lie type over fields of characteristic p. Parts of the work presented here have been used to confirm the p-rank of E_8(p^n), and (somewhat unexpectedly) to obtain for the first time the 2-ranks of the Monster and Baby Monster sporadic groups, together with the double cover of the latter. Root systems of classical type are dealt with quickly here; the vast majority of the present work con...

  1. Classical and quantum mechanics of non-abelian gauge fields

    International Nuclear Information System (INIS)

    Savvidy, G.K.

    1984-01-01

    Classical and quantum mechanics of non-abelian gauge fields are investigated both with and without spontaneous symmetry breaking. The fundamental subsystem (FS) of Yang-Mills classical mechanics (YMCM) is considered. It is shown to be a Kolmogorov K-system, and hence to have strong statistical properties. Integrable systems are also found, to which in terms of KAM theory Yang-Mills-Higgs classical mechanics (YMHCM) is close. Quantum-mechanical properties of the YM system and their relation to the problem of confinement are discussed. (orig.)

  2. Non-Abelian duality in N = 4 supersymmetric gauge theories

    International Nuclear Information System (INIS)

    Dorey, Nicholas; Fraser, Christophe; Hollowood, Timithy J.; Kneipp, Marco A.C.

    1996-03-01

    A semi-classical check of the Goddard-Nuyts-Olive (GNO) generalized duality conjecture for gauge theories with adjoint Higgs fields is performed for the case where the unbroken gauge group is non-Abelian. The monopole solutions of the theory transform under the non-Abelian part of the unbroken global symmetry and the associated component of the moduli space is a Lie group coset space. The well-known problems in introducing collective coordinates for these degrees-of-freedom are solved by considering suitable multi monopole configurations in which the long-range non-Abelian fields cancel. In the context of an N = 4 supersymmetric gauge theory, the multiplicity of BPS saturated states is given by the number of ground-states of a supersymmetric quantum mechanics on the compact internal moduli space. The resulting degeneracy is expressed as the Euler character of the coset space. In all cases the number of states is consistent with the dimensions of the multiplets of the unbroken dual gauge group, and hence the results provide strong support for the GNO conjecture. (author). 39 refs

  3. Towards a realization of the condensed-matter-gravity correspondence in string theory via consistent Abelian truncation of the Aharony-Bergman-Jafferis-Maldacena model.

    Science.gov (United States)

    Mohammed, Asadig; Murugan, Jeff; Nastase, Horatiu

    2012-11-02

    We present an embedding of the three-dimensional relativistic Landau-Ginzburg model for condensed matter systems in an N = 6, U(N) × U(N) Chern-Simons-matter theory [the Aharony-Bergman-Jafferis-Maldacena model] by consistently truncating the latter to an Abelian effective field theory encoding the collective dynamics of O(N) of the O(N(2)) modes. In fact, depending on the vacuum expectation value on one of the Aharony-Bergman-Jafferis-Maldacena scalars, a mass deformation parameter μ and the Chern-Simons level number k, our Abelianization prescription allows us to interpolate between the Abelian Higgs model with its usual multivortex solutions and a Ø(4) theory. We sketch a simple condensed matter model that reproduces all the salient features of the Abelianization. In this context, the Abelianization can be interpreted as giving a dimensional reduction from four dimensions.

  4. Graceful exit from Higgs G-inflation

    Energy Technology Data Exchange (ETDEWEB)

    Kamada, Kohei [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Kobayashi, Tsutomu [Rikkyo Univ., Tokyo (Japan). Dept. of Physics; Kunimitsu, Taro [Tokyo Univ. (Japan). Dept. of Physics; Tokyo Univ. (Japan). Research Center for the Early Universe (RESCEU); Yamaguchi, Masahide [Tokyo Institute of Technology (Japan). Dept. of Physics; Yokoyama, Jun' ichi [Tokyo Univ. (Japan). Research Center for the Early Universe (RESCEU); Tokyo Univ., Chiba (Japan). Kavli Inst. for the Physics and Mathematics of the Universe (Kavli IPMU)

    2013-09-15

    Higgs G-inflation is a Higgs inflation model with a generalized Galileon term added to the standard model Higgs field, which realizes inflation compatible with observations. Recently, it was claimed that the generalized Galileon term induces instabilities during the oscillation phase, and that the simplest Higgs G-inflation model inevitably suffers from this problem. In this paper, we extend the original Higgs G-inflation Lagrangian to a more general form, namely introducing a higher-order kinetic term and generalizing the form of the Galileon term, so that the Higgs field can oscillate after inflation without encountering instabilities. Moreover, it accommodates a large region of the n{sub s}-r plane, most of which is consistent with current observations, leading us to expect the detection of B-mode polarization in the cosmic microwave background in the near future.

  5. Abelian projection at the multi-instanton

    International Nuclear Information System (INIS)

    Fukushima, M.

    2001-01-01

    We study full non-Abelian, Abelian projected lattice field configurations built up from random instanton gas configurations in the continuum. We study the instanton contribution to the Q-barQ force with respect to whether various versions of Abelian dominance hold. We show that the lattice used to discretize the instanton gas configurations has to be sufficiently coarse (a ≅ 2ρ-bar compared with the instanton size ρ-bar) such that maximal Abelian gauge projection as well as the monopole gas contribution to the Q-barQ force reproduce the non-Abelian instanton-mediated force in the intermediate range of linear quasi-confinement. (author)

  6. Abelian properties of Parry words

    Czech Academy of Sciences Publication Activity Database

    Turek, Ondřej

    2015-01-01

    Roč. 566, FEB (2015), s. 26-38 ISSN 0304-3975 R&D Projects: GA MŠk LG14004 Institutional support: RVO:61389005 Keywords : Abelian complexity * finite automata * recurrent word * balance function Subject RIV: BE - Theoretical Physics Impact factor: 0.643, year: 2015

  7. Higgs CAT

    Energy Technology Data Exchange (ETDEWEB)

    Passarino, Giampiero [Universita di Torino, Dipartimento di Fisica Teorica, Turin (Italy); INFN, Sezione di Torino, Turin (Italy)

    2014-05-15

    Higgs Computed Axial Tomography, an excerpt. The Higgs boson lineshape (..and the devil hath power to assume a pleasing shape, Hamlet, Act II, scene 2) is analyzed for the gg → ZZ process, with special emphasis on the off-shell tail which shows up for large values of the Higgs virtuality. The effect of including background and interference is also discussed. The main focus of this work is on residual theoretical uncertainties, discussing how much-improved constraint on the Higgs intrinsic width can be revealed by an improved approach to analysis. (orig.)

  8. Higgs CAT

    International Nuclear Information System (INIS)

    Passarino, Giampiero

    2014-01-01

    Higgs Computed Axial Tomography, an excerpt. The Higgs boson lineshape (..and the devil hath power to assume a pleasing shape, Hamlet, Act II, scene 2) is analyzed for the gg → ZZ process, with special emphasis on the off-shell tail which shows up for large values of the Higgs virtuality. The effect of including background and interference is also discussed. The main focus of this work is on residual theoretical uncertainties, discussing how much-improved constraint on the Higgs intrinsic width can be revealed by an improved approach to analysis. (orig.)

  9. Planck 2013 results. XXV. Searches for cosmic strings and other topological defects

    CERN Document Server

    Ade, P.A.R.; Armitage-Caplan, C.; Arnaud, M.; Ashdown, M.; Atrio-Barandela, F.; Aumont, J.; Baccigalupi, C.; Banday, A.J.; Barreiro, R.B.; Bartlett, J.G.; Bartolo, N.; Battaner, E.; Battye, R.; Benabed, K.; Benoit, A.; Benoit-Levy, A.; Bernard, J.P.; Bersanelli, M.; Bielewicz, P.; Bobin, J.; Bock, J.J.; Bonaldi, A.; Bonavera, L.; Bond, J.R.; Borrill, J.; Bouchet, F.R.; Bridges, M.; Bucher, M.; Burigana, C.; Butler, R.C.; Cardoso, J.F.; Catalano, A.; Challinor, A.; Chamballu, A.; Chiang, L.Y.; Chiang, H.C.; Christensen, P.R.; Church, S.; Clements, D.L.; Colombi, S.; Colombo, L.P.L.; Couchot, F.; Coulais, A.; Crill, B.P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R.D.; Davis, R.J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Delouis, J.M.; Desert, F.X.; Diego, J.M.; Dole, H.; Donzelli, S.; Dore, O.; Douspis, M.; Ducout, A.; Dunkley, J.; Dupac, X.; Efstathiou, G.; Ensslin, T.A.; Eriksen, H.K.; Fergusson, J.; Finelli, F.; Forni, O.; Frailis, M.; Franceschi, E.; Galeotta, S.; Ganga, K.; Giard, M.; Giardino, G.; Giraud-Heraud, Y.; Gonzalez-Nuevo, J.; Gorski, K.M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Hansen, F.K.; Hanson, D.; Harrison, D.; Henrot-Versille, S.; Hernandez-Monteagudo, C.; Herranz, D.; Hildebrandt, S.R.; Hivon, E.; Hobson, M.; Holmes, W.A.; Hornstrup, A.; Hovest, W.; Huffenberger, K.M.; Jaffe, T.R.; Jaffe, A.H.; Jones, W.C.; Juvela, M.; Keihanen, E.; Keskitalo, R.; Kisner, T.S.; Knoche, J.; Knox, L.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lahteenmaki, A.; Lamarre, J.M.; Lasenby, A.; Laureijs, R.J.; Lawrence, C.R.; Leahy, J.P.; Leonardi, R.; Lesgourgues, J.; Liguori, M.; Lilje, P.B.; Linden-Vornle, M.; Lopez-Caniego, M.; Lubin, P.M.; Macias-Perez, J.F.; Maffei, B.; Maino, D.; Mandolesi, N.; Maris, M.; Marshall, D.J.; Martin, P.G.; Martinez-Gonzalez, E.; Masi, S.; Matarrese, S.; Matthai, F.; Mazzotta, P.; McEwen, J.D.; Melchiorri, A.; Mendes, L.; Mennella, A.; Migliaccio, M.; Mitra, S.; Miville-Deschenes, M.A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Moss, A.; Munshi, D.; Naselsky, P.; Natoli, P.; Netterfield, C.B.; Norgaard-Nielsen, H.U.; Noviello, F.; Novikov, D.; Novikov, I.; Osborne, S.; Oxborrow, C.A.; Paci, F.; Pagano, L.; Pajot, F.; Paoletti, D.; Pasian, F.; Patanchon, G.; Peiris, H.V.; Perdereau, O.; Perotto, L.; Perrotta, F.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Ponthieu, N.; Popa, L.; Poutanen, T.; Pratt, G.W.; Prezeau, G.; Prunet, S.; Puget, J.L.; Rachen, J.P.; Rath, C.; Rebolo, R.; Remazeilles, M.; Renault, C.; Ricciardi, S.; Riller, T.; Ringeval, C.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Roudier, G.; Rowan-Robinson, M.; Rusholme, B.; Sandri, M.; Santos, D.; Savini, G.; Scott, D.; Seiffert, M.D.; Shellard, E.P.S.; Spencer, L.D.; Starck, J.L.; Stolyarov, V.; Stompor, R.; Sudiwala, R.; Sureau, F.; Sutton, D.; Suur-Uski, A.S.; Sygnet, J.F.; Tauber, J.A.; Tavagnacco, D.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Tuovinen, J.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Varis, J.; Vielva, P.; Villa, F.; Vittorio, N.; Wade, L.A.; Wandelt, B.D.; Yvon, D.; Zacchei, A.; Zonca, A.

    2014-01-01

    Planck data have been used to provide stringent new constraints on cosmic strings and other defects. We describe forecasts of the CMB power spectrum induced by cosmic strings, calculating these from network models and simulations using line-of-sight Boltzmann solvers. We have studied Nambu-Goto cosmic strings, as well as field theory strings for which radiative effects are important, thus spanning the range of theoretical uncertainty in strings models. We have added the angular power spectrum from strings to that for a simple adiabatic model, with the extra fraction defined as $f_{10}$ at multipole $\\ell=10$. This parameter has been added to the standard six parameter fit using COSMOMC with flat priors. For the Nambu-Goto string model, we have obtained a constraint on the string tension of $G\\mu/c^2 < 1.5 x 10^{-7}$ and $f_{10} < 0.015$ at 95% confidence that can be improved to $G\\mu/c^2 < 1.3 x 10^{-7}$ and $f_{10} < 0.010$ on inclusion of high-$\\ell$ CMB data. For the abelian-Higgs field theory ...

  10. Higgs physics

    Indian Academy of Sciences (India)

    The theoretical aspects of the physics of Higgs bosons are reviewed focussing on the elements that are relevant for the production and detection at present hadron colliders. After briefly summarizing the basics of electroweak symmetry breaking in the Standard Model, the Higgs production at the LHC and at the Tevatron is ...

  11. The quasi-abelian limit

    International Nuclear Information System (INIS)

    Fried, H.M.; Avan, J.

    2000-01-01

    A new, non-perturbative, eikonal method called the ''quasi abelian limit'' (QAL) is suggested for high energy quark (nucleon) scattering involving the exchange of all possible, non-interacting, non-abelian gluons (mesons). With this method, those functional integrals defining, e.g., the exchange of color coordinates in quark-quark scattering, are replaced by a finite number of quadratures over a subset of their coordinates. Mathematically, this procedure is not rigourous, because an unjustified interchange of limits has been performed; physically, it corresponds to the observation that the non-perturbative sum over all color-moment fluctuations can vanish at arbitrarily high energies. The QAL generates a result in agreement with a corrected, ''contiguity'' calculation, when the latter is summed over all perturbative orders. (orig.)

  12. Homological algebra in -abelian categories

    Indian Academy of Sciences (India)

    Deren Luo

    2017-08-16

    Aug 16, 2017 ... Homological algebra in n-abelian categories. 627. We recall the Comparison lemma, together with its dual, plays a central role in the sequel. Lemma 2.1 [13, Comparison lemma 2.1]. Let C be an additive category and X ∈ Ch. ≥0(C) a complex such that for all k ≥ 0the morphism dk+1. X is a weak cokernel ...

  13. Session Types in Abelian Logic

    Directory of Open Access Journals (Sweden)

    Yoichi Hirai

    2013-12-01

    Full Text Available There was a PhD student who says "I found a pair of wooden shoes. I put a coin in the left and a key in the right. Next morning, I found those objects in the opposite shoes." We do not claim existence of such shoes, but propose a similar programming abstraction in the context of typed lambda calculi. The result, which we call the Amida calculus, extends Abramsky's linear lambda calculus LF and characterizes Abelian logic.

  14. Heterotic non-Abelian orbifolds

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, Maximilian [Technische Univ. Muenchen, Garching (Germany). Physik-Department; Ramos-Sanchez, Saul [UNAM, Mexico (Mexico). Dept. of Theoretical Physics; Vaudrevange, Patrick K.S. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2013-04-15

    We perform the first systematic analysis of particle spectra obtained from heterotic string compactifications on non-Abelian toroidal orbifolds. After developing a new technique to compute the particle spectrum in the case of standard embedding based on higher dimensional supersymmetry, we compute the Hodge numbers for all recently classified 331 non-Abelian orbifold geometries which yield N=1 supersymmetry for heterotic compactifications. Surprisingly, most Hodge numbers follow the empiric pattern h{sup (1,1)}-h{sup (2,1)}=0 mod 6, which might be related to the number of three standard model generations. Furthermore, we study the fundamental groups in order to identify the possibilities for non-local gauge symmetry breaking. Three examples are discussed in detail: the simplest non-Abelian orbifold S{sub 3} and two more elaborated examples, T{sub 7} and {Delta}(27), which have only one untwisted Kaehler and no untwisted complex structure modulus. Such models might be especially interesting in the context of no-scale supergravity. Finally, we briefly discuss the case of orbifolds with vanishing Euler numbers in the context of enhanced (spontaneously broken) supersymmetry.

  15. Hypercyclic Abelian Semigroups of Matrices on Cn

    International Nuclear Information System (INIS)

    Ayadi, Adlene; Marzougui, Habib

    2010-07-01

    We give a complete characterization of existence of dense orbit for any abelian semigroup of matrices on C n . For finitely generated semigroups, this characterization is explicit and is used to determine the minimal number of matrices in normal form over C which forms a hypercyclic abelian semigroup on C n . In particular, we show that no abelian semigroup generated by n matrices on C n can be hypercyclic. (author)

  16. Abelian projection on the torus for general gauge groups

    International Nuclear Information System (INIS)

    Ford, C.; Tok, T.; Wipf, A.

    1999-01-01

    We consider Yang-Mills theories with general gauge groups G and twists of the four-torus. We find consistent boundary conditions for gauge fields in all instanton sectors. An extended abelian projection with respect to the Polyakov loop operator is presented, where A 0 is independent of time and in the Cartan subalgebra. Fundamental domains for the gauge fixed A 0 are constructed for arbitrary gauge groups. In the sectors with non-vanishing instanton number such gauge fixings are necessarily singular. The singularities can be restricted to Dirac strings joining magnetically charged defects. The magnetic charges of these monopoles take their values in the co-root lattice of the gauge group. We relate the magnetic charges of the defects and the windings of suitable Higgs fields about these defects to the instanton number

  17. Higgs physics

    International Nuclear Information System (INIS)

    Rindani, Saurabh D.

    2002-07-01

    Higgs physics is at present poised at an interesting juncture, when a light Higgs boson of the standard model (henceforth to be referred to as SM), a spin-zero particle which would signal spontaneous gauge symmetry breaking in the simplest form, has not been seen until the conclusion of experiments at LEP and LEP2 electron-positron collider at CERN, Geneva. From a theoretical point of view, the developments until the present time are complex and interesting. While some of the basic principles underlying spontaneous symmetry breaking of gauge symmetry and the Higgs mechanism are now commonly known, the actual realization of this mechanism in nature is still a subject of investigation. The mass of the SM Higgs boson is an unknown parameter and the phenomenology is sensitively dependent on the mass. Thus the properties and discovery strategies for the Higgs vary greatly depending on the supposed mass, and the phenomenology rapidly gets complex as the range of the Higgs mass is increased. Branching rations for various channels and the total decay width are shown as a function of the Higgs mass. We can get the total width of the Higgs by adding up all the decay channels. Up to masses of about 140 GeV, the Higgs is very narrow, Γ(H) H ∼ 200 GeV. The width cannot be measured directly in the intermediate mass region at LHC or e + e - colliders. However, it could be measured at μ + μ - colliders. Above a mass of about 250 GeV, the state is wide enough to be observable, in general. Above the two-vector-boson threshold, the width is Γ(H) ∼ 1/2m H 3 (TeV). For m H ∼ 1 TeV, Γ H ∼ 1/2 TeV. (author)

  18. Higgs Discovery

    DEFF Research Database (Denmark)

    Sannino, Francesco

    2013-01-01

    has been challenged by the discovery of a not-so-heavy Higgs-like state. I will therefore review the recent discovery \\cite{Foadi:2012bb} that the standard model top-induced radiative corrections naturally reduce the intrinsic non-perturbative mass of the composite Higgs state towards the desired...... via first principle lattice simulations with encouraging results. The new findings show that the recent naive claims made about new strong dynamics at the electroweak scale being disfavoured by the discovery of a not-so-heavy composite Higgs are unwarranted. I will then introduce the more speculative......I discuss the impact of the discovery of a Higgs-like state on composite dynamics starting by critically examining the reasons in favour of either an elementary or composite nature of this state. Accepting the standard model interpretation I re-address the standard model vacuum stability within...

  19. Spontaneously broken abelian gauge invariant supersymmetric model

    International Nuclear Information System (INIS)

    Mainland, G.B.; Tanaka, K.

    A model is presented that is invariant under an Abelian gauge transformation and a modified supersymmetry transformation. This model is broken spontaneously, and the interplay between symmetry breaking, Goldstone particles, and mass breaking is studied. In the present model, spontaneously breaking the Abelian symmetry of the vacuum restores the invariance of the vacuum under a modified supersymmetry transformation. (U.S.)

  20. Localization in abelian Chern-Simons theory

    DEFF Research Database (Denmark)

    McLellan, Brendan Donald Kenneth

    2013-01-01

    Chern-Simons theory on a closed contact three-manifold is studied when the Lie group for gauge transformations is compact, connected, and abelian. The abelian Chern-Simons partition function is derived using the Faddeev-Popov gauge fixing method. The partition function is then formally computed...

  1. Fermions and non-Abelian vortex

    International Nuclear Information System (INIS)

    Mello, E.R.B. de.

    1986-01-01

    Some aspectos of the fermion-non-Abelian vortex system are discussed. It is shown that this system presents properties analogous to the fermion-non-Abelian magnetic monopole one. But, differrently from the fermion-monopole case, this system does not present fermion condensate V = 0. (Author) [pt

  2. Non-Abelian gauge fields

    Science.gov (United States)

    Gerbier, Fabrice; Goldman, Nathan; Lewenstein, Maciej; Sengstock, Klaus

    2013-07-01

    Building a universal quantum computer is a central goal of emerging quantum technologies, which has the potential to revolutionize science and technology. Unfortunately, this future does not seem to be very close at hand. However, quantum computers built for a special purpose, i.e. quantum simulators , are currently developed in many leading laboratories. Many schemes for quantum simulation have been proposed and realized using, e.g., ultracold atoms in optical lattices, ultracold trapped ions, atoms in arrays of cavities, atoms/ions in arrays of traps, quantum dots, photonic networks, or superconducting circuits. The progress in experimental implementations is more than spectacular. Particularly interesting are those systems that simulate quantum matter evolving in the presence of gauge fields. In the quantum simulation framework, the generated (synthetic) gauge fields may be Abelian, in which case they are the direct analogues of the vector potentials commonly associated with magnetic fields. In condensed matter physics, strong magnetic fields lead to a plethora of fascinating phenomena, among which the most paradigmatic is perhaps the quantum Hall effect. The standard Hall effect consists in the appearance of a transverse current, when a longitudinal voltage difference is applied to a conducting sample. For quasi-two-dimensional semiconductors at low temperatures placed in very strong magnetic fields, the transverse conductivity, the ratio between the transverse current and the applied voltage, exhibits perfect and robust quantization, independent for instance of the material or of its geometry. Such an integer quantum Hall effect, is now understood as a deep consequence of underlying topological order. Although such a system is an insulator in the bulk, it supports topologically robust edge excitations which carry the Hall current. The robustness of these chiral excitations against backscattering explains the universality of the quantum Hall effect. Another

  3. Decay of the standard model Higgs field after inflation

    CERN Document Server

    Figueroa, Daniel G; Torrenti, Francisco

    2015-01-01

    We study the nonperturbative dynamics of the Standard Model (SM) after inflation, in the regime where the SM is decoupled from (or weakly coupled to) the inflationary sector. We use classical lattice simulations in an expanding box in (3+1) dimensions, modeling the SM gauge interactions with both global and Abelian-Higgs analogue scenarios. We consider different post-inflationary expansion rates. During inflation, the Higgs forms a condensate, which starts oscillating soon after inflation ends. Via nonperturbative effects, the oscillations lead to a fast decay of the Higgs into the SM species, transferring most of the energy into $Z$ and $W^{\\pm}$ bosons. All species are initially excited far away from equilibrium, but their interactions lead them into a stationary stage, with exact equipartition among the different energy components. From there on the system eventually reaches equilibrium. We have characterized in detail, in the different expansion histories considered, the evolution of the Higgs and of its ...

  4. Gauge turbulence, topological defect dynamics, and condensation in Higgs models

    International Nuclear Information System (INIS)

    Gasenzer, Thomas; McLerran, Larry; Pawlowski, Jan M.; Sexty, Dénes

    2014-01-01

    The real-time dynamics of topological defects and turbulent configurations of gauge fields for electric and magnetic confinement are studied numerically within a 2+1D Abelian Higgs model. It is shown that confinement is appearing in such systems equilibrating after a strong initial quench such as the overpopulation of the infrared modes. While the final equilibrium state does not support confinement, metastable vortex defect configurations appearing in the gauge field are found to be closely related to the appearance of physically observable confined electric and magnetic charges. These phenomena are seen to be intimately related to the approach of a non-thermal fixed point of the far-from-equilibrium dynamical evolution, signaled by universal scaling in the gauge-invariant correlation function of the Higgs field. Even when the parameters of the Higgs action do not support condensate formation in the vacuum, during this approach, transient Higgs condensation is observed. We discuss implications of these results for the far-from-equilibrium dynamics of Yang–Mills fields and potential mechanisms of how confinement and condensation in non-Abelian gauge fields can be understood in terms of the dynamics of Higgs models. These suggest that there is an interesting new class of dynamics of strong coherent turbulent gauge fields with condensates

  5. Gauge turbulence, topological defect dynamics, and condensation in Higgs models

    Energy Technology Data Exchange (ETDEWEB)

    Gasenzer, Thomas [Institut für Theoretische Physik, Universität Heidelberg, Philosophenweg 16, 69120 Heidelberg (Germany); ExtreMe Matter Institute EMMI, GSI, Planckstraße 1, D-64291 Darmstadt (Germany); McLerran, Larry [Physics Department, Bldg. 510A, Brookhaven National Laboratory, Upton, NY 11973 (United States); RIKEN BNL Research Center, Bldg. 510A, Brookhaven National Laboratory, Upton, NY 11973 (United States); Physics Department, China Central Normal University, Wuhan (China); Pawlowski, Jan M.; Sexty, Dénes [Institut für Theoretische Physik, Universität Heidelberg, Philosophenweg 16, 69120 Heidelberg (Germany); ExtreMe Matter Institute EMMI, GSI, Planckstraße 1, D-64291 Darmstadt (Germany)

    2014-10-15

    The real-time dynamics of topological defects and turbulent configurations of gauge fields for electric and magnetic confinement are studied numerically within a 2+1D Abelian Higgs model. It is shown that confinement is appearing in such systems equilibrating after a strong initial quench such as the overpopulation of the infrared modes. While the final equilibrium state does not support confinement, metastable vortex defect configurations appearing in the gauge field are found to be closely related to the appearance of physically observable confined electric and magnetic charges. These phenomena are seen to be intimately related to the approach of a non-thermal fixed point of the far-from-equilibrium dynamical evolution, signaled by universal scaling in the gauge-invariant correlation function of the Higgs field. Even when the parameters of the Higgs action do not support condensate formation in the vacuum, during this approach, transient Higgs condensation is observed. We discuss implications of these results for the far-from-equilibrium dynamics of Yang–Mills fields and potential mechanisms of how confinement and condensation in non-Abelian gauge fields can be understood in terms of the dynamics of Higgs models. These suggest that there is an interesting new class of dynamics of strong coherent turbulent gauge fields with condensates.

  6. Abelian 2-form gauge theory: special features

    International Nuclear Information System (INIS)

    Malik, R P

    2003-01-01

    It is shown that the four (3 + 1)-dimensional (4D) free Abelian 2-form gauge theory provides an example of (i) a class of field theoretical models for the Hodge theory, and (ii) a possible candidate for the quasi-topological field theory (q-TFT). Despite many striking similarities with some of the key topological features of the two (1 + 1)-dimensional (2D) free Abelian (and self-interacting non-Abelian) gauge theories, it turns out that the 4D free Abelian 2-form gauge theory is not an exact TFT. To corroborate this conclusion, some of the key issues are discussed. In particular, it is shown that the (anti-)BRST and (anti-)co-BRST invariant quantities of the 4D 2-form Abelian gauge theory obey recursion relations that are reminiscent of the exact TFTs but the Lagrangian density of this theory is not found to be able to be expressed as the sum of (anti-)BRST and (anti-)co-BRST exact quantities as is the case with the topological 2D free Abelian (and self-interacting non-Abelian) gauge theories

  7. Higgs Physics

    CERN Document Server

    Pomarol, Alex

    2016-01-01

    With the discovery of the Higgs, we have access to a plethora of new physical processes that allow us to further test the SM and beyond. We show a convenient way to parametrize these physics using an effective theory for Higgs couplings, discussing the importance of the basis selection, predictions from a SM effective field theory, and possible ways to measure these couplings with special attention to the high-energy regime. Predictions from the MSSM and MCHM, with the comparison with data, are also provided.

  8. Higgs Physics

    CERN Document Server

    Grojean, C.

    2016-01-01

    The cause of the screening of the weak interactions at long distances puzzled the high-energy community for more nearly half a century. With the discovery of the Higgs boson a new era started with direct experimental information on the physics behind the breaking of the electroweak symmetry. This breaking plays a fundamental role in our understanding of particle physics and sits at the high-energy frontier beyond which we expect new physics that supersedes the Standard Model. The Higgs boson (inclusive and differential) production and decay rates offer a new way to probe this frontier.

  9. Gauge field copies and Higgs mechanism

    International Nuclear Information System (INIS)

    Gleiser, M.

    1982-07-01

    From the algebric classification of the possible solutions of the necessary and sufficient condition for the existence of gauge field copies in two possible classes the Higgs mechanism for the potential obtained from the difference between two copied potentials is applied. It is shown that for class I 'electric type' it is possible to construct a vector field that satisfies an electromagnetic wave equation. For class I 'magnetic type', a vector field that satisfies a non-linear equation as a consequence of the non-abelianity of the theory, is obtained. It is shown that for class II it's not possible to apply the Higgs mechanism. A possible physical interpretation for the 'gauge field copies' phenomenon, is obtained. (author) [pt

  10. Non-Abelian vortex lattices

    Science.gov (United States)

    Tallarita, Gianni; Peterson, Adam

    2018-04-01

    We perform a numerical study of the phase diagram of the model proposed in [M. Shifman, Phys. Rev. D 87, 025025 (2013)., 10.1103/PhysRevD.87.025025], which is a simple model containing non-Abelian vortices. As per the case of Abrikosov vortices, we map out a region of parameter space in which the system prefers the formation of vortices in ordered lattice structures. These are generalizations of Abrikosov vortex lattices with extra orientational moduli in the vortex cores. At sufficiently large lattice spacing the low energy theory is described by a sum of C P (1 ) theories, each located on a vortex site. As the lattice spacing becomes smaller, when the self-interaction of the orientational field becomes relevant, only an overall rotation in internal space survives.

  11. Phenomenology of Higgs particles

    International Nuclear Information System (INIS)

    Jarlskog, C.; Stockholm Univ.

    1985-01-01

    These lecture notes are organized as follows: 1. Introduction, 2. Interactions and decay modes of the Standard Higgs phisub(O), 3. Nonstandard Higgs multiplets, 4. Upper limits on the Higgs mass, 5. Lower limits on the Higgs mass, 6. Production mechanisms for the Standard Higgs, 7. Outlook. (orig.)

  12. Observational constraints on the types of cosmic strings

    International Nuclear Information System (INIS)

    Sazhina, Olga S.; Sazhin, Mikhail V.; Scognamiglio, Diana

    2014-01-01

    This paper is aimed at setting observational limits to the number of cosmic strings (Nambu-Goto, Abelian-Higgs, semilocal) and other topological defects (textures). Radio maps of CMB anisotropy, provided by the space mission Planck for various frequencies, were filtered and then processed by the method of convolution with modified Haar functions (MHF) to search for cosmic string candidates. This method was designed to search for solitary strings, without additional assumptions as regards the presence of networks of such objects. The sensitivity of the MHF method is δT ∼ 10 μK in a background of δT ∼ 100 μK. The comparison of these with previously known results on search string network shows that strings can only be semilocal in the range of 1 / 5, with the upper restriction on individual string tension (linear density) of Gμ/c 2 ≤ 7.36 x 10 -7 . The texture model is also legal. There are no strings with Gμ/c 2 > 7.36 x 10 -7 . However, a comparison with the data for the search of non-Gaussian signals shows that the presence of several (up to three) Nambu-Goto strings is also possible. For Gμ/c 2 ≤ 4.83 x 10 -7 the MHF method is ineffective because of unverifiable spurious string candidates. Thus the existence of strings with tensions Gμ/c 2 ≤ 4.83 x 10 -7 is not prohibited but it is beyond the Planck data possibilities. The same string candidates have been found in the WMAP 9-year data. Independence of Planck and WMAP data sets serves as an additional argument to consider those string candidates as very promising. However, the final proof should be given by optical deep surveys. (orig.)

  13. Higgs cosmology.

    Science.gov (United States)

    Rajantie, Arttu

    2018-03-06

    The discovery of the Higgs boson in 2012 and other results from the Large Hadron Collider have confirmed the standard model of particle physics as the correct theory of elementary particles and their interactions up to energies of several TeV. Remarkably, the theory may even remain valid all the way to the Planck scale of quantum gravity, and therefore it provides a solid theoretical basis for describing the early Universe. Furthermore, the Higgs field itself has unique properties that may have allowed it to play a central role in the evolution of the Universe, from inflation to cosmological phase transitions and the origin of both baryonic and dark matter, and possibly to determine its ultimate fate through the electroweak vacuum instability. These connections between particle physics and cosmology have given rise to a new and growing field of Higgs cosmology, which promises to shed new light on some of the most puzzling questions about the Universe as new data from particle physics experiments and cosmological observations become available.This article is part of the Theo Murphy meeting issue 'Higgs cosmology'. © 2018 The Author(s).

  14. Higgs cosmology

    Science.gov (United States)

    Rajantie, Arttu

    2018-01-01

    The discovery of the Higgs boson in 2012 and other results from the Large Hadron Collider have confirmed the standard model of particle physics as the correct theory of elementary particles and their interactions up to energies of several TeV. Remarkably, the theory may even remain valid all the way to the Planck scale of quantum gravity, and therefore it provides a solid theoretical basis for describing the early Universe. Furthermore, the Higgs field itself has unique properties that may have allowed it to play a central role in the evolution of the Universe, from inflation to cosmological phase transitions and the origin of both baryonic and dark matter, and possibly to determine its ultimate fate through the electroweak vacuum instability. These connections between particle physics and cosmology have given rise to a new and growing field of Higgs cosmology, which promises to shed new light on some of the most puzzling questions about the Universe as new data from particle physics experiments and cosmological observations become available. This article is part of the Theo Murphy meeting issue `Higgs cosmology'.

  15. Elements of theory of abelian groups

    International Nuclear Information System (INIS)

    Lebedenko, V.M.

    1977-01-01

    Some methods and results of studies on the abelian group theory being an important branch of modern algebra are presented. Some examples of the application of the abelian groups in physics are given. A primary information on commutative groups is presented. The concepts of a group, a subgroup, homomorphism, an order of element are given; those of torsion, torsion-free and mixed groups are considered, as well as the concepts of direct and full direct sums. The concepts of a free group and defining relations, of linear dependence and a rank are given. The main classes of abelian groups and subgroup types are described. Some classical results on the abelian group theory are presented, its modern state is described, the links with other regions of algebra are presented

  16. Noncommuting fields and non-Abelian fluids

    International Nuclear Information System (INIS)

    Jackiw, R.

    2004-01-01

    The original ideas about noncommuting coordinates are recalled. The connection between U(1) gauge fields defined on noncommuting coordinates and fluid mechanics is explained. Non-Abelian fluid mechanics is described

  17. The Higgs Boson.

    Science.gov (United States)

    Veltman, Martinus J. G.

    1986-01-01

    Reports recent findings related to the particle Higgs boson and examines its possible contribution to the standard mode of elementary processes. Critically explores the strengths and uncertainties of the Higgs boson and proposed Higgs field. (ML)

  18. Abelian dominance in Einstein’s theory

    International Nuclear Information System (INIS)

    Cho, Y M; Oh, S H; Kim, Sang-Woo

    2012-01-01

    We conjecture the Abelian dominance in Einstein’s theory, that is, the Abelian part of the theory plays the central role in the dynamics. Treating Einstein’s theory as a gauge theory of the Lorentz group, we show that Einstein’s theory can be decomposed into the restricted part made up of the restricted connection which has the full Lorentz gauge invariance and the valence part made up of the valence connection which plays the role of gravitational source of the restricted gravity. In this decomposition, the role of the metric g μν is replaced by a four-index metric tensor g μν which transforms covariantly under the Lorentz group, and the metric-compatibility condition ∇ α g μν = 0 of the connection is replaced by the gauge and generally covariant condition D μ g μν = 0. We show that there are two different Abelian decompositions, the light-like (or null) decomposition and the non-light-like (or non-null) decomposition, because the Lorentz group has two maximal Abelian subgroups. The decomposition shows the existence of the restricted gravity which has the full general invariance but is much simpler than Einstein’s theory. Moreover, it tells us that the restricted gravity can be written as an Abelian gauge theory, which implies that the graviton can be described by a massless spin-1 field. This establishes the Abelian dominance in Einstein’s theory. (paper)

  19. Core structure and dynamics of non-Abelian vortices in a biaxial nematic spinor Bose-Einstein condensate

    Science.gov (United States)

    Borgh, Magnus O.; Ruostekoski, Janne

    2016-05-01

    We demonstrate that multiple interaction-dependent defect core structures as well as dynamics of non-Abelian vortices can be realized in the biaxial nematic (BN) phase of a spin-2 atomic Bose-Einstein condensate (BEC). An experimentally simple protocol may be used to break degeneracy with the uniaxial nematic phase. We show that a discrete spin-space symmetry in the core may be reflected in a breaking of its spatial symmetry. The discrete symmetry of the BN order parameter leads to non-commuting vortex charges. We numerically simulate reconnection of non-Abelian vortices, demonstrating formation of the obligatory rung vortex. In addition to atomic BECs, non-Abelian vortices are theorized in, e.g., liquid crystals and cosmic strings. Our results suggest the BN spin-2 BEC as a prime candidate for their realization. We acknowledge financial support from the EPSRC.

  20. On whole Abelian model dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Chauca, J.; Doria, R. [CBPF, Rio de Janeiro (Brazil); Aprendanet, Petropolis, 25600 (Brazil)

    2012-09-24

    Physics challenge is to determine the objects dynamics. However, there are two ways for deciphering the part. The first one is to search for the ultimate constituents; the second one is to understand its behaviour in whole terms. Therefore, the parts can be defined either from elementary constituents or as whole functions. Historically, science has been moving through the first aspect, however, quarks confinement and complexity are interrupting this usual approach. These relevant facts are supporting for a systemic vision be introduced. Our effort here is to study on the whole meaning through gauge theory. Consider a systemic dynamics oriented through the U(1) - systemic gauge parameter which function is to collect a fields set {l_brace}A{sub {mu}I}{r_brace}. Derive the corresponding whole gauge invariant Lagrangian, equations of motion, Bianchi identities, Noether relationships, charges and Ward-Takahashi equations. Whole Lorentz force and BRST symmetry are also studied. These expressions bring new interpretations further than the usual abelian model. They are generating a systemic system governed by 2N+ 10 classical equations plus Ward-Takahashi identities. A whole dynamics based on the notions of directive and circumstance is producing a set determinism where the parts dynamics are inserted in the whole evolution. A dynamics based on state, collective and individual equations with a systemic interdependence.

  1. Topological Higgs mechanism with ordinary Higgs mechanism

    International Nuclear Information System (INIS)

    Oda Ichiro; Yahikozawa Shigeaki.

    1989-12-01

    Topological Higgs mechanism in higher dimensions is analyzed when ordinary Higgs potential exists. It is shown that if one-form B-field becomes massive by the ordinary Higgs mechanism, another D-2 form C-field also becomes massive through topological term in addition to the topological mass generation by the topological Higgs mechanism. Moreover we investigate this mechanism in three dimensional theories, that is to say, Chern-Simons theory and more general theory. (author). 10 refs

  2. Non-Abelian bubbles in microstate geometries

    Energy Technology Data Exchange (ETDEWEB)

    Ramírez, Pedro F. [Instituto de Física Teórica UAM/CSIC,C/ Nicolás Cabrera, 13-15, C.University Cantoblanco, E-28049 Madrid (Spain); Institut de Physique Théorique, Université Paris Saclay, CEA, CNRS,Orme des Merisiers bâtiment 774, F-91191 Gif-sur-Yvette (France)

    2016-11-24

    We find the first smooth bubbling microstate geometries with non-Abelian fields. The solutions constitute an extension of the BPS three-charge smooth microstates. These consist in general families of regular supersymmetric solutions with non-trivial topology, i.e. bubbles, of N=1, d=5 Super-Einstein-Yang-Mills theory, having the asymptotic charges of a black hole or black ring but with no horizon. The non-Abelian fields make their presence at the very heart of the microstate structure: the physical size of the bubbles is affected by the non-Abelian topological charge they carry, which combines with the Abelian flux threading the bubbles to hold them up. Interestingly the non-Abelian fields carry a set of adjustable continuous parameters that do not alter the asymptotics of the solutions but modify the local geometry. This feature can be used to obtain a classically infinite number of microstate solutions with the asymptotics of a single black hole or black ring.

  3. Higgs physics at LHC

    OpenAIRE

    Unal, G

    2006-01-01

    This is a review of Higgs physics at LHC. The topics covered are the search of the Standard Model Higgs boson (with emphasis on the low mass region), the measurements of the Higgs boson properties (mass, width, spin, CP and couplings) and the Higgs sector of the MSSM.

  4. Dynamical chaos of non-Abelian gauge fields

    International Nuclear Information System (INIS)

    Matinyan, S.G.

    1985-01-01

    The review studies a special class of Yang--Mills fields: spatially homogeneous fields (classical Yang--Mills mechanics), which have no analog in linear Abelian electrodynamics. Computer and analytic approaches show that such fields possess dynamical stochasticity, on the basis of which it may be asserted that the classical Yang--Mills equations without external sources constitute a nonintegrable system. The Higgs mechanism eliminates this stochasticity, and at a certain value of the vacuum expectation of the scalar field there is a phase transition of the disorder-order (confinement-deconfinement) type. The system with external sources apparently behaves similarly. The connection between this stochasticity and the mechanism of dimensional reduction in macroscopic systems and with the color-confinement phenomenon is considered. It is shown that the presence in the vacuum of random (Gaussian) currents leads to confinement of the fields generated by these currents. Attention is drawn to the possible manifestation of the stochasticity of the classical fields in multiparticle hadron-production processes. Such manifestation reflects universal stochastic features characteristic of systems of very different natures (statistics of the counting of thermoelectrons from random sources and photoelectrons from laser radiation that passes through a liquid in the critical state, developed turbulence in hydrodynamics, stellar systems, and KNO scaling in multiparticle production)

  5. Higgs results from ATLAS

    International Nuclear Information System (INIS)

    Chen, Xin

    2016-01-01

    The updated Higgs measurements in various search channels with ATLAS Run 1 data are reviewed. Both the Standard Model (SM) Higgs results, such as H → γγ, ZZ, WW, ττ, μμ, bb-bar, and Beyond Standard Model (BSM) results, such as the charged Higgs, Higgs invisible decay and tensor couplings, are summarized. Prospects for future Higgs searches are briefly discussed

  6. Abelian groups with a minimal generating set | Ruzicka ...

    African Journals Online (AJOL)

    We study the existence of minimal generating sets in Abelian groups. We prove that Abelian groups with minimal generating sets are not closed under quotients, nor under subgroups, nor under infinite products. We give necessary and sufficient conditions for existence of a minimal generating set providing that the Abelian ...

  7. Signatures of Higgs dilaton and critical Higgs inflation.

    Science.gov (United States)

    García-Bellido, Juan

    2018-03-06

    We test the Higgs dilaton inflation model (HDM) using the latest cosmological datasets, including the cosmic microwave background temperature, polarization and lensing data from the Planck satellite (2015), the BICEP and Keck Array experiments, the type Ia supernovae from the JLA catalogue, the baryon acoustic oscillations from CMASS, LOWZ and 6dF, the weak lensing data from the CFHTLenS survey and the matter power spectrum measurements from the latest SDSS data release. We find that the values of all cosmological parameters allowed by the HDM are well within the Planck satellite (2015) constraints. In particular, we determine [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text] and [Formula: see text] (at 95.5% c.l.). We also place new stringent constraints on the couplings of the HDM, ξ χ Higgs inflation model, taking into account the running of both the self-coupling λ( μ ) and the non-minimal coupling to gravity ξ ( μ ). We find peaks in the curvature power spectrum at scales corresponding to the critical value μ that re-enter during the radiation era and collapse to form a broad distribution of clustered primordial black holes, which could constitute today the main component of dark matter.This article is part of the Theo Murphy meeting issue 'Higgs cosmology'. © 2018 The Author(s).

  8. Worldlines and worldsheets for non-abelian lattice field theories: Abelian color fluxes and Abelian color cycles

    Directory of Open Access Journals (Sweden)

    Gattringer Christof

    2018-01-01

    Full Text Available We discuss recent developments for exact reformulations of lattice field theories in terms of worldlines and worldsheets. In particular we focus on a strategy which is applicable also to non-abelian theories: traces and matrix/vector products are written as explicit sums over color indices and a dual variable is introduced for each individual term. These dual variables correspond to fluxes in both, space-time and color for matter fields (Abelian color fluxes, or to fluxes in color space around space-time plaquettes for gauge fields (Abelian color cycles. Subsequently all original degrees of freedom, i.e., matter fields and gauge links, can be integrated out. Integrating over complex phases of matter fields gives rise to constraints that enforce conservation of matter flux on all sites. Integrating out phases of gauge fields enforces vanishing combined flux of matter-and gauge degrees of freedom. The constraints give rise to a system of worldlines and worldsheets. Integrating over the factors that are not phases (e.g., radial degrees of freedom or contributions from the Haar measure generates additional weight factors that together with the constraints implement the full symmetry of the conventional formulation, now in the language of worldlines and worldsheets. We discuss the Abelian color flux and Abelian color cycle strategies for three examples: the SU(2 principal chiral model with chemical potential coupled to two of the Noether charges, SU(2 lattice gauge theory coupled to staggered fermions, as well as full lattice QCD with staggered fermions. For the principal chiral model we present some simulation results that illustrate properties of the worldline dynamics at finite chemical potentials.

  9. Worldlines and worldsheets for non-abelian lattice field theories: Abelian color fluxes and Abelian color cycles

    Science.gov (United States)

    Gattringer, Christof; Göschl, Daniel; Marchis, Carlotta

    2018-03-01

    We discuss recent developments for exact reformulations of lattice field theories in terms of worldlines and worldsheets. In particular we focus on a strategy which is applicable also to non-abelian theories: traces and matrix/vector products are written as explicit sums over color indices and a dual variable is introduced for each individual term. These dual variables correspond to fluxes in both, space-time and color for matter fields (Abelian color fluxes), or to fluxes in color space around space-time plaquettes for gauge fields (Abelian color cycles). Subsequently all original degrees of freedom, i.e., matter fields and gauge links, can be integrated out. Integrating over complex phases of matter fields gives rise to constraints that enforce conservation of matter flux on all sites. Integrating out phases of gauge fields enforces vanishing combined flux of matter-and gauge degrees of freedom. The constraints give rise to a system of worldlines and worldsheets. Integrating over the factors that are not phases (e.g., radial degrees of freedom or contributions from the Haar measure) generates additional weight factors that together with the constraints implement the full symmetry of the conventional formulation, now in the language of worldlines and worldsheets. We discuss the Abelian color flux and Abelian color cycle strategies for three examples: the SU(2) principal chiral model with chemical potential coupled to two of the Noether charges, SU(2) lattice gauge theory coupled to staggered fermions, as well as full lattice QCD with staggered fermions. For the principal chiral model we present some simulation results that illustrate properties of the worldline dynamics at finite chemical potentials.

  10. ILC Higgs White Paper

    CERN Document Server

    Asner, D.M.; Calancha, C.; Fujii, K.; Graf, N.; Haber, H.E.; Ishikawa, A.; Kanemura, S.; Kawada, S.; Kurata, M.; Miyamoto, A.; Neal, H.; Ono, H.; Potter, C.; Strube, J.; Suehara, T.; Tanabe, T.; Tian, J.; Tsumura, J.; Watanuki, S.; Weiglein, G.; Yagyu, K.; Yokoya, H.

    2013-01-01

    The ILC Higgs White Paper is a review of Higgs Boson theory and experiment at the International Linear Collider (ILC). Theory topics include the Standard Model Higgs, the two-Higgs doublet model, alternative approaches to electroweak symmetry breaking, and precision goals for Higgs boson experiments. Experimental topics include the measurement of the Higgs cross section times branching ratio for various Higgs decay modes at ILC center of mass energies of 250, 500, and 1000 GeV, and the extraction of Higgs couplings and the total Higgs width from these measurements. Luminosity scenarios based on the ILC TDR machine design are used throughout. The gamma-gamma collider option at the ILC is also discussed.

  11. Abelian tensor models on the lattice

    Science.gov (United States)

    Chaudhuri, Soumyadeep; Giraldo-Rivera, Victor I.; Joseph, Anosh; Loganayagam, R.; Yoon, Junggi

    2018-04-01

    We consider a chain of Abelian Klebanov-Tarnopolsky fermionic tensor models coupled through quartic nearest-neighbor interactions. We characterize the gauge-singlet spectrum for small chains (L =2 ,3 ,4 ,5 ) and observe that the spectral statistics exhibits strong evidence in favor of quasi-many-body localization.

  12. Non-abelian paracurrents and their generalizations

    International Nuclear Information System (INIS)

    Bardakci, K.

    1993-01-01

    Extending earlier work, the classical algebra of parafermions (paracurrents) of non-abelian coset models is quantized. The problems connected with non-associativity are resolved by generalizing the concept of factorization. Conformal generators are constructed and the associated conformal algebra with correct central charge is reproduced. It is also shown how to generalize the paracurrent algebra to arrive at new conformal models. (orig.)

  13. Abelian gauge theories on homogeneous spaces

    International Nuclear Information System (INIS)

    Vassilevich, D.V.

    1992-07-01

    An algebraic technique of separation of gauge modes in Abelian gauge theories on homogeneous spaces is proposed. An effective potential for the Maxwell-Chern-Simons theory on S 3 is calculated. A generalization of the Chern-Simons action is suggested and analysed with the example of SU(3)/U(1) x U(1). (author). 11 refs

  14. Abelian gauge potentials on cubic lattices

    DEFF Research Database (Denmark)

    Burrello, M.; Lepori, L.; Paganelli, S.

    2017-01-01

    The study of the properties of quantum particles in a periodic potential subjected to a magnetic field is an active area of research both in physics and mathematics, and it has been and is yet deeply investigated. In this chapter we discuss how to implement and describe tunable Abelian magnetic...... potentials in one-dimensional rings....

  15. Finiteness results for Abelian tree models

    NARCIS (Netherlands)

    Draisma, J.; Eggermont, R.H.

    2015-01-01

    Equivariant tree models are statistical models used in the reconstruction of phylogenetic trees from genetic data. Here equivariant refers to a symmetry group imposed on the root distribution and on the transition matrices in the model. We prove that if that symmetry group is Abelian, then the

  16. Finiteness results for Abelian tree models

    NARCIS (Netherlands)

    Draisma, J.; Eggermont, R.H.

    2012-01-01

    Equivariant tree models are statistical models used in the reconstruction of phylogenetic trees from genetic data. Here equivariant refers to a symmetry group imposed on the root distribution and on the transition matrices in the model. We prove that if that symmetry group is Abelian, then the

  17. Finiteness results for Abelian tree models

    NARCIS (Netherlands)

    Draisma, J.; Eggermont, R.H.

    2015-01-01

    Equivariant tree models are statistical models used in the reconstruction of phylogenetic trees from genetic data. Here equivariant§ refers to a symmetry group imposed on the root distribution and on the transition matrices in the model. We prove that if that symmetry group is Abelian, then the

  18. Abelian Complexity Function of the Tribonacci Word

    Czech Academy of Sciences Publication Activity Database

    Turek, Ondřej

    2015-01-01

    Roč. 18, č. 3 (2015), 15.3.4 ISSN 1530-7638 R&D Projects: GA MŠk LG14004 Institutional support: RVO:61389005 Keywords : 4-bonacci word * Abelian complexity * Finite automaton * Tribonacci word Subject RIV: BE - Theoretical Physics

  19. Non-abelian Born-Infeld revisited

    NARCIS (Netherlands)

    Roo, M. de

    2002-01-01

    We discuss the non-abelian Born-Infeld action, including fermions, as a series in α'. We review recent work establishing the complete result to α'2, and its impact on our earlier attempts to derive the Born-Infeld action using κ-symmetry.

  20. Equilibration of particles with abelian charges

    International Nuclear Information System (INIS)

    Redlich, K.; Tounsi, A.

    2002-01-01

    We formulate the kinetic equation for time evolution and chemical equilibration of particles that carries an abelian charge. We show that dependently on the thermal conditions inside a fireball the system approaches to different chemical equilibrium limits. The role of exact conservation of quantum numbers in the kinetic description of rarely produced particles is explained. (orig.)

  1. Hermitian self-dual quasi-abelian codes

    Directory of Open Access Journals (Sweden)

    Herbert S. Palines

    2017-12-01

    Full Text Available Quasi-abelian codes constitute an important class of linear codes containing theoretically and practically interesting codes such as quasi-cyclic codes, abelian codes, and cyclic codes. In particular, the sub-class consisting of 1-generator quasi-abelian codes contains large families of good codes. Based on the well-known decomposition of quasi-abelian codes, the characterization and enumeration of Hermitian self-dual quasi-abelian codes are given. In the case of 1-generator quasi-abelian codes, we offer necessary and sufficient conditions for such codes to be Hermitian self-dual and give a formula for the number of these codes. In the case where the underlying groups are some $p$-groups, the actual number of resulting Hermitian self-dual quasi-abelian codes are determined.

  2. Cosmic string in compactified gauge theory

    International Nuclear Information System (INIS)

    Nakamura, A.; Hirenzaki, S.; Shiraishi, K.

    1989-08-01

    A solution of the vortex type is given in a six-dimensional SU(2)xU(1) pure gauge theory coupled to Einstein gravity in a compactified background geometry. We construct the solution of an effective Abelian-Higgs model in terms of dimensional reduction. The solution, however, has a peculiarity in its physically relevant quantity, a deficit angle, which is given as a function of the ratio of the gauge couplings of SU(2) and U(1). The size of the extra space (sphere) is shown to vary with the distance from the axis of the 'string'. (author)

  3. Higgs physics at CMS

    Energy Technology Data Exchange (ETDEWEB)

    Holzner, André G., E-mail: andre.georg.holzner@cern.ch [University of California at San Diego (United States); Collaboration: on behalf of the CMS collaboration

    2016-12-15

    This article reviews recent measurements of the properties of the standard model (SM) Higgs boson using data recorded with the CMS detector at the LHC: its mass, width and couplings to other SM particles. We also summarise highlights from searches for new physical phenomena in the Higgs sector as they are proposed in many extensions of the SM: flavour violating and invisible decay modes, resonances decaying into Higgs bosons and searches for additional Higgs bosons.

  4. Future ATLAS Higgs Studies

    CERN Document Server

    Smart, Ben; The ATLAS collaboration

    2017-01-01

    The High-Luminosity LHC will prove a challenging environment to work in, with for example $=200$ expected. It will however also provide great opportunities for advancing studies of the Higgs boson. The ATLAS detector will be upgraded, and Higgs prospects analyses have been performed to assess the reach of ATLAS Higgs studies in the HL-LHC era. These analyses are presented, as are Run-2 ATLAS di-Higgs analyses for comparison.

  5. The Higgs hunter's guide

    CERN Document Server

    Gunion, John F; Haber, Howard E; Kane, Gordon L

    1989-01-01

    The Higgs Hunter's Guide is a definitive and comprehensive guide to the physics of Higgs bosons. In particular, it discusses the extended Higgs sectors required by those recent theoretical approaches that go beyond the Standard Model, including supersymmetry and superstring-inspired models.

  6. Unquenched flavor on the Higgs branch

    International Nuclear Information System (INIS)

    Faedo, Antón F.; Mateos, David; Pantelidou, Christiana; Tarrío, Javier

    2016-01-01

    We construct the gravity duals of the Higgs branches of three-dimensional (four-dimensional) super Yang-Mills theories coupled to N_f quark flavors. The effect of the quarks on the color degrees of freedom is included, and corresponds on the gravity side to the backreaction of N_f flavor D6-branes (D7-branes) on the background of N_c color D2-branes (D3-branes). The Higgsing of the gauge group arises from the dissolution of some color branes inside the flavor branes. The dissolved color branes are represented by non-Abelian instantons whose backreaction is also included. The result is a cascading-like solution in which the effective number of color branes varies along the holographic direction. In the three-dimensional case the solution may include an arbitrary number of quasi-conformal (walking) regions.

  7. Quantum field theory I foundations and Abelian and non-Abelian gauge theories

    CERN Document Server

    Manoukian, Edouard B

    2016-01-01

    This textbook covers a broad spectrum of developments in QFT, emphasizing those aspects that are now well consolidated and for which satisfactory theoretical descriptions have been provided. The book is unique in that it offers a new approach to the subject and explores many topics merely touched upon, if covered at all, in standard reference works. A detailed and largely non-technical introductory chapter traces the development of QFT from its inception in 1926. The elegant functional differential approach put forward by Schwinger, referred to as the quantum dynamical (action) principle, and its underlying theory are used systematically in order to generate the so-called vacuum-to-vacuum transition amplitude of both abelian and non-abelian gauge theories, in addition to Feynman’s well-known functional integral approach, referred to as the path-integral approach. Given the wealth of information also to be found in the abelian case, equal importance is put on both abelian and non-abelian gauge theories. Pa...

  8. Maxwell superalgebras and Abelian semigroup expansion

    Directory of Open Access Journals (Sweden)

    P.K. Concha

    2014-09-01

    Full Text Available The Abelian semigroup expansion is a powerful and simple method to derive new Lie algebras from a given one. Recently it was shown that the S-expansion of so(3,2 leads us to the Maxwell algebra M. In this paper we extend this result to superalgebras, by proving that different choices of abelian semigroups S lead to interesting D=4 Maxwell Superalgebras. In particular, the minimal Maxwell superalgebra sM and the N-extended Maxwell superalgebra sM(N recently found by the Maurer–Cartan expansion procedure, are derived alternatively as an S-expansion of osp(4|N. Moreover, we show that new minimal Maxwell superalgebras type sMm+2 and their N-extended generalization can be obtained using the S-expansion procedure.

  9. Restricted gravity: Abelian projection of Einstein's theory

    International Nuclear Information System (INIS)

    Cho, Y.M.

    2013-01-01

    Treating Einstein's theory as a gauge theory of Lorentz group, we decompose the gravitational connection Γμ into the restricted connection made of the potential of the maximal Abelian subgroup H of Lorentz group G and the valence connection made of G/H part of the potential which transforms covariantly under Lorentz gauge transformation. With this we show that Einstein's theory can be decomposed into the restricted gravity made of the restricted connection which has the full Lorentz gauge invariance which has the valence connection as gravitational source. The decomposition shows the existence of a restricted theory of gravitation which has the full general invariance but is much simpler than Einstein's theory. Moreover, it tells that the restricted gravity can be written as an Abelian gauge theory,

  10. Anomalous Abelian symmetry in the standard model

    International Nuclear Information System (INIS)

    Ramond, P.

    1995-01-01

    The observed hierarchy of quark and lepton masses can be parametrized by nonrenormalizable operators with dimensions determined by an anomalous Abelian family symmetry, a gauge extension to the minimal supersymmetric standard model. Such an Abelian symmetry is generic to compactified superstring theories, with its anomalies compensated by the Green-Schwarz mechanism. If we assume these two symmetries to be the same, we find the electroweak mixing angle to be sin 2 θ ω = 3/8 at the string scale, just by setting the ratio of the product of down quark to charged lepton masses equal to one at the string scale. This assumes no GUT structure. The generality of the result suggests a superstring origin for the standard model. We generalize our analysis to massive neutrinos, and mixings in the lepton sector

  11. Maxwell superalgebras and Abelian semigroup expansion

    Energy Technology Data Exchange (ETDEWEB)

    Concha, P.K.; Rodríguez, E.K. [Departamento de Física, Universidad de Concepción, Casilla 160-C, Concepción (Chile); Dipartimento di Scienza Applicata e Tecnologia (DISAT), Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino (Italy); Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Torino, Via Pietro Giuria, 1, 10125 Torino (Italy)

    2014-09-15

    The Abelian semigroup expansion is a powerful and simple method to derive new Lie algebras from a given one. Recently it was shown that the S-expansion of so(3,2) leads us to the Maxwell algebra M. In this paper we extend this result to superalgebras, by proving that different choices of abelian semigroups S lead to interesting D=4 Maxwell Superalgebras. In particular, the minimal Maxwell superalgebra sM and the N-extended Maxwell superalgebra sM{sup (N)} recently found by the Maurer–Cartan expansion procedure, are derived alternatively as an S-expansion of osp(4|N). Moreover, we show that new minimal Maxwell superalgebras type sM{sub m+2} and their N-extended generalization can be obtained using the S-expansion procedure.

  12. Non-Abelian strings and axions

    International Nuclear Information System (INIS)

    Gorsky, A.; Shifman, M.; Yung, A.

    2006-01-01

    We address two distinct but related issues: (i) the impact of (two-dimensional) axions in a two-dimensional theory known to model confinement, the CP(N-1) model; (ii) bulk axions in four-dimensional Yang-Mills theory supporting non-Abelian strings. In the first case n, n kinks play the role of 'quarks'. They are known to be confined. We show that introduction of axions leads to deconfinement (at very large distances). This is akin to the phenomenon of wall liberation in four-dimensional Yang-Mills theory. In the second case we demonstrate that the bulk axion does not liberate confined (anti)monopoles, in contradistinction with the two-dimensional model. A novel physical effect which we observe is the axion radiation caused by monopole-antimonopole pairs attached to the non-Abelian strings

  13. Non-Abelian states of matter.

    Science.gov (United States)

    Stern, Ady

    2010-03-11

    Quantum mechanics classifies all elementary particles as either fermions or bosons, and this classification is crucial to the understanding of a variety of physical systems, such as lasers, metals and superconductors. In certain two-dimensional systems, interactions between electrons or atoms lead to the formation of quasiparticles that break the fermion-boson dichotomy. A particularly interesting alternative is offered by 'non-Abelian' states of matter, in which the presence of quasiparticles makes the ground state degenerate, and interchanges of identical quasiparticles shift the system between different ground states. Present experimental studies attempt to identify non-Abelian states in systems that manifest the fractional quantum Hall effect. If such states can be identified, they may become useful for quantum computation.

  14. Consequences of an Abelian family symmetry

    International Nuclear Information System (INIS)

    Ramond, P.

    1996-01-01

    The addition of an Abelian family symmetry to the Minimal Super-symmetric Standard Model reproduces the observed hierarchies of quark and lepton masses and quark mixing angles, only if it is anomalous. Green-Schwarz compensation of its anomalies requires the electroweak mixing angle to be sin 2 θ ω = 3/8 at the string scale, without any assumed GUT structure, suggesting a superstring origin for the standard model. The analysis is extended to neutrino masses and the lepton mixing matrix

  15. Higgs field and cosmological parameters in the fractal quantum system

    Directory of Open Access Journals (Sweden)

    Abramov Valeriy

    2017-01-01

    Full Text Available For the fractal model of the Universe the relations of cosmological parameters and the Higgs field are established. Estimates of the critical density, the expansion and speed-up parameters of the Universe (the Hubble constant and the cosmological redshift; temperature and anisotropy of the cosmic microwave background radiation were performed.

  16. Holographic twin Higgs model.

    Science.gov (United States)

    Geller, Michael; Telem, Ofri

    2015-05-15

    We present the first realization of a "twin Higgs" model as a holographic composite Higgs model. Uniquely among composite Higgs models, the Higgs potential is protected by a new standard model (SM) singlet elementary "mirror" sector at the sigma model scale f and not by the composite states at m_{KK}, naturally allowing for m_{KK} beyond the LHC reach. As a result, naturalness in our model cannot be constrained by the LHC, but may be probed by precision Higgs measurements at future lepton colliders, and by direct searches for Kaluza-Klein excitations at a 100 TeV collider.

  17. Holographic Twin Higgs Model

    Science.gov (United States)

    Geller, Michael; Telem, Ofri

    2015-05-01

    We present the first realization of a "twin Higgs" model as a holographic composite Higgs model. Uniquely among composite Higgs models, the Higgs potential is protected by a new standard model (SM) singlet elementary "mirror" sector at the sigma model scale f and not by the composite states at mKK , naturally allowing for mKK beyond the LHC reach. As a result, naturalness in our model cannot be constrained by the LHC, but may be probed by precision Higgs measurements at future lepton colliders, and by direct searches for Kaluza-Klein excitations at a 100 TeV collider.

  18. Abelian faces of state spaces of C*-algebras

    International Nuclear Information System (INIS)

    Batty, C.J.K.

    1980-01-01

    Let F be a closed face of the weak* compact convex state space of a unital C*-algebra A. The class of F-abelian states, introduced earlier by the author, is studied further. It is shown (without any restriction on A or F) that F is a Choquet simplex if and only if every state in F is F-abelian, and that it is sufficient for this that every pure state in F is F-abelian. As a corollary, it is deduced that an arbitrary C*-dynamical system (A,G,α) is G-abelian if and only if every ergodic state is weakly clustering. Nevertheless the set of all F-abelian (or even G-abelian) states is not necessarily weak* compact. (orig.)

  19. Non-abelian dark sectors and their collider signatures

    International Nuclear Information System (INIS)

    Baumgart, Matthew; Cheung, Clifford; Ruderman, Joshua T.; Wang, Lian-Tao; Yavin, Itay

    2009-01-01

    Motivated by the recent proliferation of observed astrophysical anomalies, Arkani-Hamed et al. have proposed a model in which dark matter is charged under a non-abelian 'dark' gauge symmetry that is broken at ∼1 GeV. In this paper, we present a survey of concrete models realizing such a scenario, followed by a largely model-independent study of collider phenomenology relevant to the Tevatron and the LHC. We address some model building issues that are easily surmounted to accommodate the astrophysics. While SUSY is not necessary, we argue that it is theoretically well-motivated because the GeV scale is automatically generated. Specifically, we propose a novel mechanism by which mixed D-terms in the dark sector induce either SUSY breaking or a super-Higgs mechanism precisely at a GeV. Furthermore, we elaborate on the original proposal of Arkani-Hamed et al. in which the dark matter acts as a messenger of gauge mediation to the dark sector. In our collider analysis we present cross-sections for dominant production channels and lifetime estimates for primary decay modes. We find that dark gauge bosons can be produced at the Tevatron and the LHC, either through a process analogous to prompt photon production or through a rare Z decay channel. Dark gauge bosons will decay back to the SM via 'lepton jets' which typically contain >2 and as many as 8 leptons, significantly improving their discovery potential. Since SUSY decays from the MSSM will eventually cascade down to these lepton jets, the discovery potential for direct electroweak-ino production may also be improved. Exploiting the unique kinematics, we find that it is possible to reconstruct the mass of the MSSM LSP. We also present several non-SUSY and SUSY decay channels that have displaced vertices and lead to multiple leptons with partially correlated impact parameters.

  20. Collision dynamics of two-dimensional non-Abelian vortices

    Science.gov (United States)

    Mawson, Thomas; Petersen, Timothy C.; Simula, Tapio

    2017-09-01

    We study computationally the collision dynamics of vortices in a two-dimensional spin-2 Bose-Einstein condensate. In contrast to Abelian vortex pairs, which annihilate or pass through each other, we observe non-Abelian vortex pairs to undergo rungihilation—an event that converts the colliding vortices into a rung vortex. The resulting rung defect subsequently decays to another pair of non-Abelian vortices of different type, accompanied by a magnetization reversal.

  1. Non-Abelian Gauge Theory in the Lorentz Violating Background

    Science.gov (United States)

    Ganai, Prince A.; Shah, Mushtaq B.; Syed, Masood; Ahmad, Owais

    2018-03-01

    In this paper, we will discuss a simple non-Abelian gauge theory in the broken Lorentz spacetime background. We will study the partial breaking of Lorentz symmetry down to its sub-group. We will use the formalism of very special relativity for analysing this non-Abelian gauge theory. Moreover, we will discuss the quantisation of this theory using the BRST symmetry. Also, we will analyse this theory in the maximal Abelian gauge.

  2. Decoupling, effective Lagrangian, and gauge hierarchy in spontaneously broken non-Abelian gauge theories

    International Nuclear Information System (INIS)

    Kazama, Y.; Yao, Y.

    1982-01-01

    In spontaneously broken non-Abelian gauge theories which admit gauge hierarchy at the tree level, we show, to all orders in perturbation theory, that (i) the superheavy particles decouple from the light sector at low energies, (ii) an effective low-energy renormalizable theory emerges together with appropriate counterterms, and (iii) the gauge hierarchy can be consistently maintained in the presence of radiative corrections. These assertions are explicitly demonstrated for O(3) gauge theory with two triplets of Higgs particles in a manner easily applicable to more realistic grand unified theories. Furthermore, as a by-product of our analysis, we obtain a systematic method of computing the parameters of the effective low-energy theory via renormalization-group equations to any desired accuracy

  3. The universal Higgs fit

    DEFF Research Database (Denmark)

    Giardino, P. P.; Kannike, K.; Masina, I.

    2014-01-01

    We perform a state-of-the-art global fit to all Higgs data. We synthesise them into a 'universal' form, which allows to easily test any desired model. We apply the proposed methodology to extract from data the Higgs branching ratios, production cross sections, couplings and to analyse composite...... Higgs models, models with extra Higgs doublets, supersymmetry, extra particles in the loops, anomalous top couplings, and invisible Higgs decays into Dark Matter. Best fit regions lie around the Standard Model predictions and are well approximated by our 'universal' fit. Latest data exclude the dilaton...... as an alternative to the Higgs, and disfavour fits with negative Yukawa couplings. We derive for the first time the SM Higgs boson mass from the measured rates, rather than from the peak positions, obtaining M-h = 124.4 +/- 1.6 GeV....

  4. Unitarizing Higgs Inflation

    CERN Document Server

    Giudice, Gian F

    2011-01-01

    We consider a simple extension of the Standard Model Higgs inflation with one new real scalar field which preserves unitarity up to the Planck scale. The new scalar field (called sigma) completes in the ultraviolet the theory of Higgs inflation by linearizing the Higgs kinetic term in the Einstein frame, just as the non-linear sigma model is unitarized into its linear version. The unitarity cutoff of the effective theory, obtained by integrating out the sigma field, varies with the background value of the Higgs field. In our setup, both the Higgs field and the sigma field participate in the inflationary dynamics, following the flat direction of the potential. We obtain the same slow-roll parameters and spectral index as in the original Higgs inflation but we find that the Hubble rate during inflation depends not only on the Higgs self-coupling, but also on the unknown couplings of the sigma field.

  5. Unitarizing Higgs inflation

    International Nuclear Information System (INIS)

    Giudice, Gian F.; Lee, Hyun Min

    2011-01-01

    We consider a simple extension of the Standard Model Higgs inflation with one new real scalar field which preserves unitarity up to the Planck scale. The new scalar field (called sigma) completes in the ultraviolet the theory of Higgs inflation by linearizing the Higgs kinetic term in the Einstein frame, just as the non-linear sigma model is unitarized into its linear version. The unitarity cutoff of the effective theory, obtained by integrating out the sigma field, varies with the background value of the Higgs field. In our setup, both the Higgs field and the sigma field participate in the inflationary dynamics, following the flat direction of the potential. We obtain the same slow-roll parameters and spectral index as in the original Higgs inflation but we find that the Hubble rate during inflation depends not only on the Higgs self-coupling, but also on the unknown couplings of the sigma field.

  6. Cosmic strings and cosmic structure

    International Nuclear Information System (INIS)

    Albrecht, A.; Brandenberger, R.; Turok, N.

    1987-01-01

    The paper concerns the application of the theory of cosmic strings to explain the structure of the Universe. The formation of cosmic strings in the early Universe is outlined, along with the Big Bang theory, Grand Unified theories, and the first three minutes after the Big Bang. A description is given of the shaping of the Universe by cosmic strings, including the evolution of the string. The possibility for direct observation of cosmic strings is discussed. (U.K.)

  7. Signatures of Higgs dilaton and critical Higgs inflation

    Science.gov (United States)

    García-Bellido, Juan

    2018-01-01

    We test the Higgs dilaton inflation model (HDM) using the latest cosmological datasets, including the cosmic microwave background temperature, polarization and lensing data from the Planck satellite (2015), the BICEP and Keck Array experiments, the type Ia supernovae from the JLA catalogue, the baryon acoustic oscillations from CMASS, LOWZ and 6dF, the weak lensing data from the CFHTLenS survey and the matter power spectrum measurements from the latest SDSS data release. We find that the values of all cosmological parameters allowed by the HDM are well within the Planck satellite (2015) constraints. In particular, we determine , , , and (at 95.5% c.l.). We also place new stringent constraints on the couplings of the HDM, ξχ (at 95.5% c.l.). We find that the HDM is only slightly better than the w0waCDM model, with . Given that the HDM has two fewer parameters, we find Bayesian evidence favouring the HDM over the w0waCDM model. We also study the critical Higgs inflation model, taking into account the running of both the self-coupling λ(μ) and the non-minimal coupling to gravity ξ(μ). We find peaks in the curvature power spectrum at scales corresponding to the critical value μ that re-enter during the radiation era and collapse to form a broad distribution of clustered primordial black holes, which could constitute today the main component of dark matter. This article is part of the Theo Murphy meeting issue `Higgs cosmology'.

  8. Impact of a CP-violating Higgs sector: from LHC to baryogenesis.

    Science.gov (United States)

    Shu, Jing; Zhang, Yue

    2013-08-30

    We observe a generic connection between LHC Higgs data and electroweak baryogenesis: the particle that contributes to the CP-odd hgg or hγγ vertex would provide the CP-violating source during a first-order phase transition. It is illustrated in the two Higgs doublet model that a common complex phase controls the lightest Higgs properties at the LHC, electric dipole moments, and the CP-violating source for electroweak baryogenesis. We perform a general parametrization of Higgs effective couplings and a global fit to the LHC Higgs data. Current LHC measurements prefer a nonzero phase for tanβ≲1 and electric dipole moment constraints still allow an order-one phase for tanβ∼1, which gives sufficient room to generate the correct cosmic baryon asymmetry. We also give some prospects in the direct measurements of CP violation in the Higgs sector at the LHC.

  9. Phase structure and phase transition of the SU(2) Higgs model in three dimensions

    International Nuclear Information System (INIS)

    Buchmueller, W.; Philipsen, O.

    1994-11-01

    We derive a set of gauge independent gap equations for Higgs boson and vector boson masses for the SU(2) Higgs model in three dimensions. The solutions can be associated with the Higgs phase and the symmetric phase, respectively. In the Higgs phase the calculated masses are in agreement with results from perturbation theory. In the symmetric phase a non-perturbative vector boson mass is generated by the non-abelian gauge interactions, whose value is rather independent of the scalar self-coupling λ. For small values of λ the phase transition is first-order. Its strength decreases with increasing λ, and at a critical value λ c the first-order transition changes to a crossover. Based on a perturbative matching the three-dimensional theory is related to the four-dimensional theory at high temperatures. The critical Higgs mass m H c , corresponding to the critical coupling λ c , is estimated to be below 100 GeV. The ''symmetric phase'' of the theory can be interpreted as a Higgs phase whose parameters are determined non-perturbatively. The obtained Higgs boson and vector boson masses are compared with recent results from lattice Monte Carlo simulations. (orig.)

  10. Fractionalizing Majorana Fermions: Non-Abelian Statistics on the Edges of Abelian Quantum Hall States

    Directory of Open Access Journals (Sweden)

    Netanel H. Lindner

    2012-10-01

    Full Text Available We study the non-Abelian statistics characterizing systems where counterpropagating gapless modes on the edges of fractional quantum Hall states are gapped by proximity coupling to superconductors and ferromagnets. The most transparent example is that of a fractional quantum spin Hall state, in which electrons of one spin direction occupy a fractional quantum Hall state of ν=1/m, while electrons of the opposite spin occupy a similar state with ν=-1/m. However, we also propose other examples of such systems, which are easier to realize experimentally. We find that each interface between a region on the edge coupled to a superconductor and a region coupled to a ferromagnet corresponds to a non-Abelian anyon of quantum dimension sqrt[2m]. We calculate the unitary transformations that are associated with the braiding of these anyons, and we show that they are able to realize a richer set of non-Abelian representations of the braid group than the set realized by non-Abelian anyons based on Majorana fermions. We carry out this calculation both explicitly and by applying general considerations. Finally, we show that topological manipulations with these anyons cannot realize universal quantum computation.

  11. On the loop-loop scattering amplitudes in Abelian and non-Abelian gauge theories

    International Nuclear Information System (INIS)

    Meggiolaro, Enrico

    2005-01-01

    The high-energy elastic scattering amplitude of two colour-singlet qq-bar pairs is governed by the correlation function of two Wilson loops, which follow the classical straight lines for quark (antiquark) trajectories. This quantity is expected to be free of IR divergences, differently from what happens for the parton-parton elastic scattering amplitude, described, in the high-energy limit, by the expectation value of two Wilson lines. We shall explicitly test this IR finiteness by a direct non-perturbative computation of the loop-loop scattering amplitudes in the (pedagogic, but surely physically interesting) case of quenched QED. The results obtained for the Abelian case will be generalized to the case of a non-Abelian gauge theory with Nc colours, but stopping to the order O(g4) in perturbation theory. In connection with the above-mentioned IR finiteness, we shall also discuss some analytic properties of the loop-loop scattering amplitudes in both Abelian and non-Abelian gauge theories, when going from Minkowskian to Euclidean theory, which can be relevant to the still unsolved problem of the s-dependence of hadron-hadron total cross-sections

  12. The Higgs boson can delay reheating after inflation

    Science.gov (United States)

    Freese, Katherine; Sfakianakis, Evangelos I.; Stengel, Patrick; Visinelli, Luca

    2018-05-01

    The Standard Model Higgs boson, which has previously been shown to develop an effective vacuum expectation value during inflation, can give rise to large particle masses during inflation and reheating, leading to temporary blocking of the reheating process and a lower reheat temperature after inflation. We study the effects on the multiple stages of reheating: resonant particle production (preheating) as well as perturbative decays from coherent oscillations of the inflaton field. Specifically, we study both the cases of the inflaton coupling to Standard Model fermions through Yukawa interactions as well as to Abelian gauge fields through a Chern-Simons term. We find that, in the case of perturbative inflaton decay to SM fermions, reheating can be delayed due to Higgs blocking and the reheat temperature can decrease by up to an order of magnitude. In the case of gauge-reheating, Higgs-generated masses of the gauge fields can suppress preheating even for large inflaton-gauge couplings. In extreme cases, preheating can be shut down completely and must be substituted by perturbative decay as the dominant reheating channel. Finally, we discuss the distribution of reheat temperatures in different Hubble patches, arising from the stochastic nature of the Higgs VEV during inflation and its implications for the generation of both adiabatic and isocurvature fluctuations.

  13. A new gauge for supersymmetric abelian gauge theories

    International Nuclear Information System (INIS)

    Smith, A.W.; Barcelos Neto, J.

    1984-01-01

    A new gauge for supersymmetric abelian gauge theories is presented. It is shown that this new gauge allows us to obtain terms which usually come as radiative corrections to the supersymmetric abelian gauge theories when one uses the Wess-Zumino gauge. (Author) [pt

  14. Localization of abelian gauge fields on thick branes

    Energy Technology Data Exchange (ETDEWEB)

    Vaquera-Araujo, Carlos A. [Universidad de Colima, Facultad de Ciencias, CUICBAS, Colima (Mexico); Corradini, Olindo [Universidad Autonoma de Chiapas, Ciudad Universitaria, Facultad de Ciencias en Fisica y Matematicas, Tuxtla Gutierrez (Mexico); Universita di Modena e Reggio Emilia, Dipartimento di Scienze Fisiche, Informatiche e Matematiche, Modena (Italy)

    2015-02-01

    In this work, we explore a mechanism for abelian gauge field localization on thick branes based on a five-dimensional Stueckelberg-like action. A normalizable zero mode is found through the identification of a suitable coupling function between the brane and the gauge field. The same mechanism is studied for the localization of the abelian Kalb-Ramond field. (orig.)

  15. Toroidal groups line bundles, cohomology and quasi-Abelian varieties

    CERN Document Server

    Kopfermann, Klaus

    2001-01-01

    Toroidal groups are the connecting link between torus groups and any complex Lie groups. Many properties of complex Lie groups such as the pseudoconvexity and cohomology are determined by their maximal toroidal subgroups. Quasi-Abelian varieties are meromorphically separable toroidal groups. They are the natural generalisation of the Abelian varieties. Nevertheless, their behavior can be completely different as the wild groups show.

  16. Topological charge in non-abelian lattice gauge theory

    International Nuclear Information System (INIS)

    Lisboa, P.

    1983-01-01

    We report on a numerical calculation of topological charge densities in non-abelian gauge theory with gauge groups SU(2) and SU(3). The group manifold is represented by a discrete subset thereof which lies outside its finite subgroups. The results shed light on the usefulness of these representations in Monte Carlo evaluations of non-abelian lattice gauge theory. (orig.)

  17. Condensation of an ideal gas obeying non-Abelian statistics.

    Science.gov (United States)

    Mirza, Behrouz; Mohammadzadeh, Hosein

    2011-09-01

    We consider the thermodynamic geometry of an ideal non-Abelian gas. We show that, for a certain value of the fractional parameter and at the relevant maximum value of fugacity, the thermodynamic curvature has a singular point. This indicates a condensation such as Bose-Einstein condensation for non-Abelian statistics and we work out the phase transition temperature in various dimensions.

  18. Non-Abelian anyons: when Ising meets Fibonacci

    NARCIS (Netherlands)

    Grosfeld, E.; Schoutens, K.

    2009-01-01

    We consider an interface between two non-Abelian quantum Hall states: the Moore-Read state, supporting Ising anyons, and the k=2 non-Abelian spin-singlet state, supporting Fibonacci anyons. It is shown that the interface supports neutral excitations described by a (1+1)-dimensional conformal field

  19. Lorentz-violating alternative to the Higgs mechanism?

    International Nuclear Information System (INIS)

    Alexandre, Jean; Mavromatos, Nick E.

    2011-01-01

    We consider a four-dimensional field-theory model with two massless fermions, coupled to an Abelian vector field without flavor mixing, and to another Abelian vector field with flavor mixing. Both Abelian vectors have a Lorentz-violating kinetic term, introducing a Lorentz-violation mass scale M, from which fermions and the flavor-mixing vector get their dynamical masses, whereas the vector coupled without flavor mixing remains massless. When the two coupling constants have similar values in order of magnitude, a mass hierarchy pattern emerges, in which one fermion is very light compared to the other, while the vector mass is of the order of the heavy fermion mass. The work presented here may be considered as a Lorentz-symmetry-violating alternative to the Higgs mechanism, in the sense that no scalar particle (fundamental or composite) is necessary for the generation of the vector-meson mass. However, the model is not realistic given that, as a result of Lorentz violation, the maximal (light-cone) speed seen by the fermions is smaller than that of the massless gauge boson (which equals the speed of light in vacuo) by an amount which is unacceptably large to be compatible with the current tests of Lorentz invariance, unless the gauge couplings assume unnaturally small values. Possible ways out of this phenomenological drawback are briefly discussed, postponing a detailed construction of more realistic models for future work.

  20. A Lorentz-Violating Alternative to Higgs Mechanism?

    CERN Document Server

    Alexandre, Jean

    2011-01-01

    We consider a four-dimensional field-theory model with two massless fermions, coupled to an Abelian vector field without flavour mixing, and to another Abelian vector field with flavour mixing. Both Abelian vectors have a Lorentz-violating kinetic term, introducing a Lorentz-violation mass scale $M$, from which fermions and the flavour-mixing vector get their dynamical masses, whereas the vector coupled without flavour mixing remains massless. When the two coupling constants have similar values in order of magnitude, a mass hierarchy pattern emerges, in which one fermion is very light compared to the other, whilst the vector mass is larger than the mass of the heavy fermion. The work presented here may be considered as a Lorentz-symmetry-Violating alternative to the Higgs mechanism, in the sense that no scalar particle (fundamental or composite) is necessary for the generation of the vector-meson mass. However, the model is not realistic given that, as a result of Lorentz Violation, the maximal (light-cone) s...

  1. Emergent Abelian Gauge Fields from Noncommutative Gravity

    Directory of Open Access Journals (Sweden)

    Allen Stern

    2010-02-01

    Full Text Available We construct exact solutions to noncommutative gravity following the formulation of Chamseddine and show that they are in general accompanied by Abelian gauge fields which are first order in the noncommutative scale. This provides a mechanism for generating cosmological electromagnetic fields in an expanding space-time background, and also leads to multipole-like fields surrounding black holes. Exact solutions to noncommutative Einstein-Maxwell theory can give rise to first order corrections to the metric tensor, as well as to the electromagnetic fields. This leads to first order shifts in the horizons of charged black holes.

  2. Correlations between Abelian monopoles and center vortices

    Energy Technology Data Exchange (ETDEWEB)

    Hosseini Nejad, Seyed Mohsen, E-mail: smhosseininejad@ut.ac.ir; Deldar, Sedigheh, E-mail: sdeldar@ut.ac.ir

    2017-04-15

    We study the correlations between center vortices and Abelian monopoles for SU(3) gauge group. Combining fractional fluxes of monopoles, center vortex fluxes are constructed in the thick center vortex model. Calculating the potentials induced by fractional fluxes constructing the center vortex flux in a thick center vortex-like model and comparing with the potential induced by center vortices, we observe an attraction between fractional fluxes of monopoles constructing the center vortex flux. We conclude that the center vortex flux is stable, as expected. In addition, we show that adding a contribution of the monopole-antimonopole pairs in the potentials induced by center vortices ruins the Casimir scaling at intermediate regime.

  3. On Non-Abelian Symplectic Cutting

    DEFF Research Database (Denmark)

    Martens, Johan; Thaddeus, Michael

    2012-01-01

    We discuss symplectic cutting for Hamiltonian actions of non-Abelian compact groups. By using a degeneration based on the Vinberg monoid we give, in good cases, a global quotient description of a surgery construction introduced by Woodward and Meinrenken, and show it can be interpreted in algebro......-geometric terms. A key ingredient is the `universal cut' of the cotangent bundle of the group itself, which is identified with a moduli space of framed bundles on chains of projective lines recently introduced by the authors....

  4. Higgs boson hunting

    International Nuclear Information System (INIS)

    Dawson, S.; Haber, H.E.; Rindani, S.D.

    1989-05-01

    This is the summary report of the Higgs Boson Working Group. We discuss a variety of search techniques for a Higgs boson which is lighter than the Z. The processes K → πH, η prime → ηH,Υ → Hγ and e + e - → ZH are examined with particular attention paid to theoretical uncertainties in the calculations. We also briefly examine new features of Higgs phenomenology in a model which contains Higgs triplets as well as the usual doublet of scalar fields. 33 refs., 6 figs., 1 tab

  5. Cosmic radiation

    Energy Technology Data Exchange (ETDEWEB)

    Capdevielle, J N

    1984-01-01

    First, the different instruments and techniques of cosmic particle detection are presented. Then the passage of the cosmic particles through the atmosphere is studied: electrons, photons, muons. The collective behavior of the different categories is also studied, the electromagnetic cascade is distinguished from the hadron cascade. Through the principal physical properties of the radiation and the medium, the ''mean'' aspects of the radiation are then successively dealt with out of the atmosphere, at different altitudes until the sea level, then at great depths. A chapter is devoted to cosmic radiation of more than 10,000 GeV, studied separately. Then solar radiation in universe is studied through their propagation in solar system and their origin. At last, the cosmic radiation effects are studied in environment (cosmic biophysics) and some applications of cosmic radiation are presented.

  6. Abelian Chern-Simons theory and contact torsion

    DEFF Research Database (Denmark)

    McLellan, Brendan Donald Kenneth

    2013-01-01

    Chern-Simons theory on a closed contact three-manifold is studied when the Lie group for gauge transformations is compact, connected and abelian. A shift reduced abelian Chern-Simons partition function is introduced using an alternative formulation of the partition function using formal ideas in ...... in quantum field theory. We compare the shift reduced partition function with other formulations of the abelian Chern-Simons partition function. This study naturally motivates an Atiyah-Patodi-Singer type index problem in contact geometry.......Chern-Simons theory on a closed contact three-manifold is studied when the Lie group for gauge transformations is compact, connected and abelian. A shift reduced abelian Chern-Simons partition function is introduced using an alternative formulation of the partition function using formal ideas...

  7. Cosmic rays

    International Nuclear Information System (INIS)

    Tkachev, I.I.

    2014-01-01

    In this talk I will review results of cosmic ray observations at the highest energies. This year the new results on energy spectra, composition and the study of arrival directions of cosmic ray primaries came from the Telescope Array collaboration. I present these results in comparison with measurements done by other recent experiments and discuss their implications for the search of cosmic ray sources. Some related results in gamma-ray astronomy and selected recent advances in theory are also covered. (author)

  8. Quantized Abelian principle connections on Lorentzian manifolds

    International Nuclear Information System (INIS)

    Benini, Marco; Schenkel, Alexander

    2013-03-01

    We construct a covariant functor from a category of Abelian principal bundles over globally hyperbolic spacetimes to a category of *-algebras that describes quantized principal connections. We work within an appropriate differential geometric setting by using the bundle of connections and we study the full gauge group, namely the group of vertical principal bundle automorphisms. Properties of our functor are investigated in detail and, similar to earlier works, it is found that due to topological obstructions the locality property of locally covariant quantum field theory is violated. Furthermore, we prove that, for Abelian structure groups containing a nontrivial compact factor, the gauge invariant Borchers- Uhlmann algebra of the vector dual of the bundle of connections is not separating on gauge equivalence classes of principal connections. We introduce a topological generalization of the concept of locally covariant quantum fields. As examples, we construct for the full subcategory of principal U(1)-bundles two natural transformations from singular homology functors to the quantum field theory functor that can be interpreted as the Euler class and the electric charge. In this case we also prove that the electric charges can be consistently set to zero, which yields another quantum field theory functor that satisfies all axioms of locally covariant quantum field theory.

  9. Quantized Abelian principle connections on Lorentzian manifolds

    Energy Technology Data Exchange (ETDEWEB)

    Benini, Marco [Pavia Univ. (Italy); Istituto Nazionale di Fisica Nucleare, Pavia (Italy); Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Dappiaggi, Claudio [Pavia Univ. (Italy); Istituto Nazionale di Fisica Nucleare, Pavia (Italy); Schenkel, Alexander [Bergische Univ., Wuppertal (Germany). Fachgruppe Mathematik

    2013-03-15

    We construct a covariant functor from a category of Abelian principal bundles over globally hyperbolic spacetimes to a category of *-algebras that describes quantized principal connections. We work within an appropriate differential geometric setting by using the bundle of connections and we study the full gauge group, namely the group of vertical principal bundle automorphisms. Properties of our functor are investigated in detail and, similar to earlier works, it is found that due to topological obstructions the locality property of locally covariant quantum field theory is violated. Furthermore, we prove that, for Abelian structure groups containing a nontrivial compact factor, the gauge invariant Borchers- Uhlmann algebra of the vector dual of the bundle of connections is not separating on gauge equivalence classes of principal connections. We introduce a topological generalization of the concept of locally covariant quantum fields. As examples, we construct for the full subcategory of principal U(1)-bundles two natural transformations from singular homology functors to the quantum field theory functor that can be interpreted as the Euler class and the electric charge. In this case we also prove that the electric charges can be consistently set to zero, which yields another quantum field theory functor that satisfies all axioms of locally covariant quantum field theory.

  10. Signatures of a hidden cosmic microwave background.

    Science.gov (United States)

    Jaeckel, Joerg; Redondo, Javier; Ringwald, Andreas

    2008-09-26

    If there is a light Abelian gauge boson gamma' in the hidden sector its kinetic mixing with the photon can produce a hidden cosmic microwave background (HCMB). For meV masses, resonant oscillations gammagamma' happen after big bang nucleosynthesis (BBN) but before CMB decoupling, increasing the effective number of neutrinos Nnu(eff) and the baryon to photon ratio, and distorting the CMB blackbody spectrum. The agreement between BBN and CMB data provides new constraints. However, including Lyman-alpha data, Nnu(eff) > 3 is preferred. It is tempting to attribute this effect to the HCMB. The interesting parameter range will be tested in upcoming laboratory experiments.

  11. Where Is Higgs Boson?

    CERN Multimedia

    2008-01-01

    Quantum physicists think they know the answer. Probabilistic calculations reveal than the data provided by previous experiments has been miscalculated and that the Higgs boson has in fact been discovered. Weird! The Higgs boson is the only particle predicted by the Standard Model that hasn't been discovered yet.

  12. Higgs Boson Pizza Day

    CERN Document Server

    Stefania Pandolfi

    2016-01-01

    CERN celebrated the fourth anniversary of the historical Higgs boson announcement with special pizzas.    400 pizzas were served on Higgs pizza day in Restaurant 1 at CERN to celebrate the fourth anniversary of the announcement of the discovery of the Higgs Boson (Image: Maximilien Brice/ CERN) What do the Higgs boson and a pizza have in common? Pierluigi Paolucci, INFN and CMS collaboration member, together with INFN president Fernando Ferroni found out the answer one day in Naples: the pizza in front of them looked exactly like a Higgs boson event display. A special recipe was then created in collaboration with the chef of the historic “Ettore” pizzeria in the St. Lucia area of Naples, and two pizzas were designed to resemble two Higgs boson decay channel event displays. The “Higgs Boson Pizza Day” was held on Monday, 4 July 2016, on the fourth anniversary of the announcement of the discovery of the Higgs boso...

  13. Lattice Higgs models

    International Nuclear Information System (INIS)

    Jersak, J.

    1986-01-01

    This year has brought a sudden interest in lattice Higgs models. After five years of only modest activity we now have many new results obtained both by analytic and Monte Carlo methods. This talk is a review of the present state of lattice Higgs models with particular emphasis on the recent development

  14. Generalized Higgs inflation

    Energy Technology Data Exchange (ETDEWEB)

    Kamada, Kohei [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Kobayashi, Tsutomu [Kyoto Univ. (Japan). Hakubi Center; Kyoto Univ. (Japan). Dept. of Physics; Takahashi, Tomo [Saga Univ. (Japan). Dept. of Physics; Yamaguchi, Masahide [Tokyo Institute of Technology (Japan). Dept. of Physics; Yokoyama, Jun' ichi [Tokyo Univ. (JP). Research Center for the Early Universe (RESCEU); Tokyo Univ., Chiba (JP). Inst. for the Physics and Mathematics of the Universe (IPMU)

    2012-03-15

    We study Higgs inflation in the context of generalized G-inflation, i.e., the most general single-field inflation model with second-order field equations. The four variants of Higgs inflation proposed so far in the literature can be accommodated at one time in our framework. We also propose yet another class of Higgs inflation, the running Einstein inflation model, that can naturally arise from the generalized G-inflation framework. As a result, five Higgs inflation models in all should be discussed on an equal footing. Concise formulas for primordial fluctuations in these generalized Higgs inflation models are provided, which will be helpful to determine which model is favored from the future experiments and observations such as the Large Hadron Collider and the Planck satellite.

  15. Hunting the dark Higgs

    Energy Technology Data Exchange (ETDEWEB)

    Duerr, Michael; Grohsjean, Alexander; Kahlhoefer, Felix; Schmidt-Hoberg, Kai; Schwanenberger, Christian [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Penning, Bjoern [Bristol Univ. (United Kingdom). H.H. Wills Physics Lab.

    2017-05-15

    We discuss a novel signature of dark matter production at the LHC resulting from the emission of an additional Higgs boson in the dark sector. The presence of such a dark Higgs boson is motivated simultaneously by the need to generate the masses of the particles in the dark sector and the possibility to relax constraints from the dark matter relic abundance by opening up a new annihilation channel. If the dark Higgs boson decays into Standard Model states via a small mixing with the Standard Model Higgs boson, one obtains characteristic large-radius jets in association with missing transverse momentum that can be used to efficiently discriminate signal from backgrounds. We present the sensitivities achievable in LHC searches for dark Higgs bosons with already collected data and demonstrate that such searches can probe large regions of parameter space that are inaccessible to conventional mono-jet or di-jet searches.

  16. Strongly interacting Higgs bosons

    International Nuclear Information System (INIS)

    Appelquist, T.; Bernard, C.

    1980-01-01

    The sensitivity of present-energy weak interactions to a strongly interacting heavy-Higgs-boson sector is discussed. The gauged nonlinear sigma model, which is the limit of the linear model as the Higgs-boson mass goes to infinity, is used to organize and catalogue all possible heavy-Higgs-boson effects. As long as the SU(2)/sub L/ x SU(2)/sub R/ symmetry of the Higgs sector is preserved, these effects are found to be small, of the order of the square of the gauge coupling times logarithms (but not powers) of the Higgs-boson mass divided by the W mass. We work in the context of a simplified model with gauge group SU(2)/sub L/; the extension to SU(2)/sub L/ x U(1) is briefly discussed

  17. Boosted Higgs shapes

    International Nuclear Information System (INIS)

    Schlaffer, Matthias; Spannowsky, Michael; Wymant, Chris

    2014-05-01

    The inclusive Higgs production rate through gluon fusion has been measured to be in agreement with the Standard Model (SM). We show that even if the inclusive Higgs production rate is very SM-like, a precise determination of the boosted Higgs transverse momentum shape offers the opportunity to see effects of natural new physics. These measurements are generically motivated by effective field theory arguments and specifically in extensions of the SM with a natural weak scale, like composite Higgs models and natural supersymmetry. We show in detail how a measurement at high transverse momentum of H→2l+p T via H→ττ and H→WW * could be performed and demonstrate that it offers a compelling alternative to the t anti tH channel. We discuss the sensitivity to new physics in the most challenging scenario of an exactly SM-like inclusive Higgs cross-section.

  18. Hunting the dark Higgs

    International Nuclear Information System (INIS)

    Duerr, Michael; Grohsjean, Alexander; Kahlhoefer, Felix; Schmidt-Hoberg, Kai; Schwanenberger, Christian; Penning, Bjoern

    2017-05-01

    We discuss a novel signature of dark matter production at the LHC resulting from the emission of an additional Higgs boson in the dark sector. The presence of such a dark Higgs boson is motivated simultaneously by the need to generate the masses of the particles in the dark sector and the possibility to relax constraints from the dark matter relic abundance by opening up a new annihilation channel. If the dark Higgs boson decays into Standard Model states via a small mixing with the Standard Model Higgs boson, one obtains characteristic large-radius jets in association with missing transverse momentum that can be used to efficiently discriminate signal from backgrounds. We present the sensitivities achievable in LHC searches for dark Higgs bosons with already collected data and demonstrate that such searches can probe large regions of parameter space that are inaccessible to conventional mono-jet or di-jet searches.

  19. Vector superconductivity in cosmic strings

    International Nuclear Information System (INIS)

    Dvali, G.R.; Mahajan, S.M.

    1992-03-01

    We argue that in most realistic cases, the usual Witten-type bosonic superconductivity of the cosmic string is automatically (independent of the existence of superconducting currents) accompanied by the condensation of charged gauge vector bosons in the core giving rise to a new vector type superconductivity. The value of the charged vector condensate is related with the charged scalar expectation value, and vanishes only if the latter goes to zero. The mechanism for the proposed vector superconductivity, differing fundamentally from those in the literature, is delineated using the simplest realistic example of the two Higgs doublet standard model interacting with the extra cosmic string. It is shown that for a wide range of parameters, for which the string becomes scalarly superconducting, W boson condensates (the sources of vector superconductivity) are necessarily excited. (author). 14 refs

  20. Stringy origin of non-Abelian discrete flavor symmetries

    International Nuclear Information System (INIS)

    Kobayashi, Tatsuo; Nilles, Hans Peter; Ploeger, Felix; Raby, Stuart; Ratz, Michael

    2007-01-01

    We study the origin of non-Abelian discrete flavor symmetries in superstring theory. We classify all possible non-Abelian discrete flavor symmetries which can appear in heterotic orbifold models. These symmetries include D 4 and Δ(54). We find that the symmetries of the couplings are always larger than the symmetries of the compact space. This is because they are a consequence of the geometry of the orbifold combined with the space group selection rules of the string. We also study possible breaking patterns. Our analysis yields a simple geometric understanding of the realization of non-Abelian flavor symmetries

  1. Building Abelian Functions with Generalised Baker-Hirota Operators

    Directory of Open Access Journals (Sweden)

    Matthew England

    2012-06-01

    Full Text Available We present a new systematic method to construct Abelian functions on Jacobian varieties of plane, algebraic curves. The main tool used is a symmetric generalisation of the bilinear operator defined in the work of Baker and Hirota. We give explicit formulae for the multiple applications of the operators, use them to define infinite sequences of Abelian functions of a prescribed pole structure and deduce the key properties of these functions. We apply the theory on the two canonical curves of genus three, presenting new explicit examples of vector space bases of Abelian functions. These reveal previously unseen similarities between the theories of functions associated to curves of the same genus.

  2. Mesons from (non) Abelian T-dual backgrounds

    Energy Technology Data Exchange (ETDEWEB)

    Itsios, Georgios [Instituto de Física Teórica, UNESP-Universidade Estadual Paulista, R. Dr. Bento T. Ferraz 271, Bl. II, Sao Paulo 01140-070, SP (Brazil); Department of Physics, University of Oviedo,Avda. Calvo Sotelo 18, 33007 Oviedo (Spain); Núñez, Carlos [Department of Physics, Swansea University,Swansea SA2 8PP (United Kingdom); Zoakos, Dimitrios [Centro de Física do Porto, Universidade do Porto,Rua do Campo Alegre 687, 4169-007 Porto (Portugal)

    2017-01-03

    In this work we study mesonic excitations in a Quantum Field Theory dual to the non Abelian T-dual of AdS{sub 5}×S{sup 5}, using a D6 brane probe on the Sfetsos-Thompson background. Before and after the duality, we observe interesting differences between the spectra and interpret them. The spectrum of masses and the interactions between mesonic excitations teach valuable lessons about the character of non-Abelian T-duality and its implications for Holography. The case of Abelian T-duality is also studied.

  3. Abelian scalar theory at large global charge

    Energy Technology Data Exchange (ETDEWEB)

    Loukas, Orestis [Albert Einstein Center for Fundamental Physics, Institute for Theoretical Physics, University of Bern (Switzerland)

    2017-09-15

    We elaborate on Abelian complex scalar models, which are dictated by natural actions (all couplings are of order one), at fixed and large global U(1) charge in an arbitrary number of dimensions. The ground state vertical stroke v right angle is coherently constructed by the zero modes and the appearance of a centrifugal potential is quantum mechanically verified. Using the path integral formulation we systematically analyze the quantum fluctuations around vertical stroke v right angle in order to derive an effective action for the Goldstone mode, which becomes perturbatively meaningful when the charge is large. In this regime we explicitly show, by computing the first few loop corrections, that the whole construction is stable against quantum effects, in the sense that any higher derivative couplings to Goldstone's tree-level action are suppressed by appropriate powers of the large charge. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  4. Duality transformations for general abelian systems

    International Nuclear Information System (INIS)

    Savit, R.

    1982-01-01

    We describe the general structure of duality transformations for a very broad set of abelian statistical and field theoretic systems. This includes theories with many different types of fields and a large variety of kinds of interactions including, but not limited to nearest neighbor, next nearest neighbor, multi-spin interactions, etc. We find that the dual form of a theory does not depend directly on the dimensionality of the theory, but rather on the number of fields and number of different kinds of interactions. The dual forms we find have a generalized gauge symmetry and posses the usual property of having a temperature (or coupling constant) which is inverted from that of the original theory. Our results reduce to the well-known results in those particular cases that have heretofore been studied. Our procedure also suggests variations capable of generating other forms of the dual theory which may be useful in various specific cases. (orig.)

  5. Strength of the trilinear Higgs boson coupling in technicolor models

    International Nuclear Information System (INIS)

    Doff, A.; Natale, A.A.

    2006-01-01

    In the standard model of elementary particles the fermion and gauge boson masses are generated due to the interaction of these particles with elementary Higgs scalar bosons. Despite its success there are some points in the model as, for instance, the enormous range of masses between the lightest and heaviest fermions and other peculiarities that could be better explained at a deeper level. The nature of the Higgs boson is one of the most important problems in particle physics, and there are many questions that may be answered in the near future by LHC experiments, such as: Is the Higgs boson, if it exists at all, elementary or composite? What are the symmetries behind the Higgs mechanism? There are many variants for the Higgs mechanism. Our interest in this work will be focused in the models of electroweak symmetry breaking via strongly interacting theories of technicolor (TC) type. In these theories the Higgs boson is a composite of the so called technifermions, and at some extent any model where the Higgs boson is not an elementary field follows more or less the same ideas of the technicolor models. In extensions of the standard model the scalar self-couplings can be enhanced, like in the supersymmetric version. If the same happens in models of dynamical symmetry breaking, as far as we know, has not been investigated up to now, and this study is the motivation of our work. Although technicolor is a non-Abelian gauge theory it is not necessarily similar to QCD, and most of the work in this area try to find the TC dynamics dealing with the particle content of the theory in order to obtain a technifermion self-energy that does not lead to phenomenological problems as in the scheme known as walking technicolor. In this work we will consider a very general Ansatz for the technifermion self-energy, which is an essential ingredient to compute the scalar self-couplings. This Ansatz interpolates between all known forms of technifermionic self-energy. As we vary some

  6. Higgs Searches at DØ

    Science.gov (United States)

    Owen, Mark

    2009-09-01

    The Higgs boson is essential to achieve electroweak symmetry breaking in the Standard Model. Results on searches for the Higgs boson using data collected in pbar p collisions at √ s = 1.96 {TeV} with the DØ detector at the Fermilab Teva-tron collider are presented. The data, corresponding to integrated luminosities between 1 fb-1 and 2 fb-1 show no excess above the expected backgrounds and as such upper limits on the production cross section of Higgs bosons are set at the 95% confidence level.

  7. On the Chabauty space of locally compact abelian groups

    OpenAIRE

    Cornulier, Yves

    2010-01-01

    This paper contains several results about the Chabauty space of a general locally compact abelian group. Notably, we determine its topological dimension, we characterize when it is totally disconnected or connected; we characterize isolated points.

  8. Quaternionic non abelian relativistic quantum fields in four dimensions

    International Nuclear Information System (INIS)

    Albeverio, S.; Hoeegh-Krohn, R.

    1986-01-01

    We give a simple construction of certain Lie-group valued Euclidean Markov random fields and quantum fields in four dimensions. These fields can be looked upon as non abelian extensions of electromagnetic fields. (orig.)

  9. Central extensions of some Abelian finite gauge groups

    International Nuclear Information System (INIS)

    Combe, Ph.; Rodriguez, R.; Sirugue, M.; Sirugue-Collin, M.

    1981-01-01

    The authors describe central extensions of Abelian finite gauge groups on lattices which are permutation invariant. Moreover some remarks are made on the gauge models on lattice associated with these non-commutative central extensions. (Auth.)

  10. Dual potentials in non-Abelian gauge theories

    International Nuclear Information System (INIS)

    Caticha, A.

    1988-01-01

    Motivated by the possibility that confinement and superconductivity are similar phenomena, dual potentials are introduced into Yang-Mills theory in two different ways. Both are extensions of Zwanziger's two-potential formalism for Abelian charges and monopoles to the non-Abelian case. In the first approach the dual potentials carry a color index and there is a rather simple, although nonlocal, dual-variable formulation. In the second approach dual variables are introduced into the so-called Abelian projection of the SU(2) Yang-Mills theory. An interesting feature is that the quartic contact interactions are absent and there is a special gauge choice for which the theory takes on a ''purely electromagnetic'' form. More important, however, is the appearance of an additional Abelian magnetic gauge symmetry the dynamical breaking of which may be associated with confinement

  11. A new approach to non-Abelian hydrodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Fernández-Melgarejo, Jose J. [Center for the Fundamental Laws of Nature, Harvard University,Cambridge, MA 02138 (United States); Rey, Soo-Jong [School of Physics & Astronomy and Center for Theoretical Physics, Seoul National University,Seoul, 08826 (Korea, Republic of); Department of Fundamental Sciences, University of Science and Technology,Daejeon, 34113 (Korea, Republic of); Center for Gauge, Gravity & Strings, Institute for Basic Sciences,Daejeon, 34047 (Korea, Republic of); Surówka, Piotr [Center for the Fundamental Laws of Nature, Harvard University,Cambridge, MA 02138 (United States); Max-Planck-Institut für Physik (Werner-Heisenberg-Institut),Föhringer Ring 6, D-80805 Munich (Germany)

    2017-02-23

    We present a new approach to describe hydrodynamics carrying non-Abelian macroscopic degrees of freedom. Based on the Kaluza-Klein compactification of a higher-dimensional neutral dissipative fluid on a manifold of non-Abelian isometry, we obtain a four-dimensional colored dissipative fluid coupled to Yang-Mills gauge field. We derive transport coefficients of resulting colored fluid, which feature non-Abelian character of color charges. In particular, we obtain color-specific terms in the gradient expansions and response quantities such as the conductivity matrix and the chemical potentials. We argue that our Kaluza-Klein approach provides a robust description of non-Abelian hydrodynamics, and discuss some links between this system and quark-gluon plasma and fluid/gravity duality.

  12. A new approach to non-Abelian hydrodynamics

    International Nuclear Information System (INIS)

    Fernández-Melgarejo, Jose J.; Rey, Soo-Jong; Surówka, Piotr

    2017-01-01

    We present a new approach to describe hydrodynamics carrying non-Abelian macroscopic degrees of freedom. Based on the Kaluza-Klein compactification of a higher-dimensional neutral dissipative fluid on a manifold of non-Abelian isometry, we obtain a four-dimensional colored dissipative fluid coupled to Yang-Mills gauge field. We derive transport coefficients of resulting colored fluid, which feature non-Abelian character of color charges. In particular, we obtain color-specific terms in the gradient expansions and response quantities such as the conductivity matrix and the chemical potentials. We argue that our Kaluza-Klein approach provides a robust description of non-Abelian hydrodynamics, and discuss some links between this system and quark-gluon plasma and fluid/gravity duality.

  13. Cosmological Constraints on Decoupled Dark Photons and Dark Higgs

    Energy Technology Data Exchange (ETDEWEB)

    Berger, Joshua [Univ. of Wisconsin, Madison, WI (United States); Jedamzik, Karsten [Univ. Montpellier II (France). Lab. Univers. et Particules de Monpellier; Walker, Devin G.E. [Univ. of Washington, Seattle, WA (United States). Dept. of Physics

    2016-05-23

    Any neutral boson such as a dark photon or dark Higgs that is part of a non-standard sector of particles can mix with its standard model counterpart. When very weakly mixed with the Standard Model, these particles are produced in the early Universe via the freeze-in mechanism and subsequently decay back to standard model particles. In this work, we place constraints on such mediator decays by considering bounds from Big Bang nucleosynthesis and the cosmic microwave background radiation. We find both nucleosynthesis and CMB can constrain dark photons with a kinetic mixing parameter between log ϵ ~ -10 to -17 for masses between 1 MeV and 100 GeV. Similarly, the dark Higgs mixing angle ϵ with the Standard Model Higgs is constrained between log ϵ ~ -6 to -15. Dramatic improvement on the bounds from CMB spectral distortions can be achieved with proposed experiments such as PIXIE.

  14. Cosmological constraints on decoupled dark photons and dark Higgs

    Energy Technology Data Exchange (ETDEWEB)

    Berger, Joshua [Physics Department, University of Wisconsin-Madison,1150 University Ave, Madison, WI 53706 (United States); Jedamzik, Karsten [Laboratoire Univers et Particules de Montpellier, UMR5299-CNRS,Université Montpellier II,Place Eugène Bataillon, CC 72, 34095 Montpellier Cédex 05 (France); Walker, Devin G.E. [Department of Physics and Astronomy, Dartmouth College,6127 Wilder Laboratory, Hanover, NH 03755 (United States); Department of Physics, University of Washington,Box 351560, Seattle, WA 98195 (United States)

    2016-11-16

    Any neutral boson such as a dark photon or dark Higgs that is part of a non-standard sector of particles can mix with its standard model counterpart. When very weakly mixed with the Standard Model, these particles are produced in the early Universe via the freeze-in mechanism and subsequently decay back to standard model particles. In this work, we place constraints on such mediator decays by considering bounds from Big Bang nucleosynthesis and the cosmic microwave background radiation. We find both nucleosynthesis and CMB can constrain dark photons with a kinetic mixing parameter between log ϵ∼−10 to −17 for masses between 1 MeV and 100 GeV. Similarly, the dark Higgs mixing angle ϵ with the Standard Model Higgs is constrained between log ϵ∼−6 to −15. Dramatic improvement on the bounds from CMB spectral distortions can be achieved with proposed experiments such as PIXIE.

  15. Local observables in non-Abelian gauge theories

    International Nuclear Information System (INIS)

    Sharatchandra, H.S.

    1981-09-01

    Labelling of the physical states of a non-Abelian gauge theory on a lattice in terms of local observables in considered. The labelling is in terms of local color electric field observables and (separately) local color magnetic field observables. Matter field is also included. The non-local variables required when space is multiply-connected, are specified. Non-Abelian version of the Stokes' theorem is considered. Relevance to the continuum theory is discussed in detail. (orig.)

  16. Fourier-like frames on locally compact abelian groups

    DEFF Research Database (Denmark)

    Christensen, Ole; Goh, Say Song

    2015-01-01

    We consider a class of functions, defined on a locally compact abelian group by letting a class of modulation operators act on a countable collection of functions. We derive sufficient conditions for such a class of functions to form a Bessel sequence or a frame and for two such systems to be dual...... frames. Explicit constructions are obtained via various generalizations of the classical B-splines to the setting of locally compact abelian groups. (C) 2014 Elsevier Inc. All rights reserved....

  17. Higher Genus Abelian Functions Associated with Cyclic Trigonal Curves

    Directory of Open Access Journals (Sweden)

    Matthew England

    2010-03-01

    Full Text Available We develop the theory of Abelian functions associated with cyclic trigonal curves by considering two new cases. We investigate curves of genus six and seven and consider whether it is the trigonal nature or the genus which dictates certain areas of the theory. We present solutions to the Jacobi inversion problem, sets of relations between the Abelian function, links to the Boussinesq equation and a new addition formula.

  18. Vortex structure in abelian-projected lattice gauge theory

    International Nuclear Information System (INIS)

    Ambjoern, J.; Giedt, J.; Greensite, J.

    2000-01-01

    We report on a breakdown of both monopole dominance and positivity in abelian-projected lattice Yang-Mills theory. The breakdown is associated with observables involving two units of the abelian charge. We find that the projected lattice has at most a global Z 2 symmetry in the confined phase, rather than the global U(1) symmetry that might be expected in a dual superconductor or monopole Coulomb gas picture. Implications for monopole and center vortex theories of confinement are discussed

  19. Non Abelian T-duality in Gauged Linear Sigma Models

    Science.gov (United States)

    Bizet, Nana Cabo; Martínez-Merino, Aldo; Zayas, Leopoldo A. Pando; Santos-Silva, Roberto

    2018-04-01

    Abelian T-duality in Gauged Linear Sigma Models (GLSM) forms the basis of the physical understanding of Mirror Symmetry as presented by Hori and Vafa. We consider an alternative formulation of Abelian T-duality on GLSM's as a gauging of a global U(1) symmetry with the addition of appropriate Lagrange multipliers. For GLSMs with Abelian gauge groups and without superpotential we reproduce the dual models introduced by Hori and Vafa. We extend the construction to formulate non-Abelian T-duality on GLSMs with global non-Abelian symmetries. The equations of motion that lead to the dual model are obtained for a general group, they depend in general on semi-chiral superfields; for cases such as SU(2) they depend on twisted chiral superfields. We solve the equations of motion for an SU(2) gauged group with a choice of a particular Lie algebra direction of the vector superfield. This direction covers a non-Abelian sector that can be described by a family of Abelian dualities. The dual model Lagrangian depends on twisted chiral superfields and a twisted superpotential is generated. We explore some non-perturbative aspects by making an Ansatz for the instanton corrections in the dual theories. We verify that the effective potential for the U(1) field strength in a fixed configuration on the original theory matches the one of the dual theory. Imposing restrictions on the vector superfield, more general non-Abelian dual models are obtained. We analyze the dual models via the geometry of their susy vacua.

  20. Anomaly cancellation condition in abelian lattice gauge theories

    International Nuclear Information System (INIS)

    Suzuki, Hiroshi

    1999-11-01

    We analyze the general solution of the Wess-Zumino consistency condition in abelian lattice gauge theories, without taking the classical continuum limit. We find that, if the anomaly density is a local pseudo-scalar field on the lattice, the non-trivial anomaly is always proportional to the anomaly coefficient in the continuum theory. The possible extension of this result to non-abelian theories is briefly discussed. (author)

  1. Higgs portal inflation

    Energy Technology Data Exchange (ETDEWEB)

    Lebedev, Oleg [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Lee, Hyun Min [European Organization for Nuclear Research (CERN), Geneva (Switzerland)

    2011-05-15

    The Higgs sector of the Standard Model offers a unique opportunity to probe the hidden sector. The Higgs squared operator is the only dimension two operator which is Lorentz and gauge invariant. It can therefore couple both to scalar curvature and the hidden sector at the dim-4 level. We consider the possibility that a combination of the Higgs and a singlet from the hidden sector plays the role of inflaton, due to their large couplings to gravity. This implies that the quartic couplings satisfy certain constraints which leads to distinct low energy phenomenology, including Higgs signals at the LHC. We also address the unitarity issues and show that our analysis survives the unitarization procedure. (orig.)

  2. Partially composite Higgs models

    DEFF Research Database (Denmark)

    Alanne, Tommi; Buarque Franzosi, Diogo; Frandsen, Mads T.

    2018-01-01

    We study the phenomenology of partially composite-Higgs models where electroweak symmetry breaking is dynamically induced, and the Higgs is a mixture of a composite and an elementary state. The models considered have explicit realizations in terms of gauge-Yukawa theories with new strongly...... interacting fermions coupled to elementary scalars and allow for a very SM-like Higgs state. We study constraints on their parameter spaces from vacuum stability and perturbativity as well as from LHC results and find that requiring vacuum stability up to the compositeness scale already imposes relevant...... constraints. A small part of parameter space around the classically conformal limit is stable up to the Planck scale. This is however already strongly disfavored by LHC results. in different limits, the models realize both (partially) composite-Higgs and (bosonic) technicolor models and a dynamical extension...

  3. Hunting the mysterious Higgs

    CERN Multimedia

    Parker, Andy

    1996-01-01

    The Higgs boson is the most mysterious of all the fundamental particles. It accounts for how other particles acquired mass just after the beginning of the Universe. LEP-2 and the LHC at CERN will hunt it down between them

  4. Higgs Portal Inflation

    CERN Document Server

    Lebedev, Oleg

    2011-01-01

    The Higgs sector of the Standard Model offers a unique opportunity to probe the hidden sector. The Higgs squared operator is the only dimension two operator which is Lorentz and gauge invariant. It can therefore couple both to scalar curvature and the hidden sector at the dim--4 level. We consider the possibility that a combination of the Higgs and a singlet from the hidden sector plays the role of inflaton, due to their large couplings to gravity. This implies that the quartic couplings satisfy certain constraints which leads to distinct low energy phenomenology, including Higgs signals at the LHC. We also address the unitarity issues and show that our analysis survives the unitarization procedure.

  5. A Higgs-bozon

    CERN Document Server

    Dezso, Horvath

    2017-01-01

    A részecskefizika általánosan elfogadott és az elmúlt 40 év alatt sokszorosan igazolt elmélete, a standard modell valamennyi alkatrészét sikerült megfigyelni és tanulmányozni a Higgs-bozon kivételével. A CERN nagy hadronütköztetője (LHC), a világ legnagyobb részecskegyorsítója is elsősorban a Higgs-részecske kimutatására épült. 2012 közepére az LHC két óriási mérőberendezése, a sok ezer fizikus részvételével épült CMS és ATLAS megfigyelt egy - a Higgs-bozon elméletileg megjósolt tulajdonságaival rendelkező - új részecskét. A könyv áttekinti a standard modell elméletét és a Higgs-részecske feltételezett tulajdonságait, majd összefoglalja az LHC Higgs-keresési eredményeit és a hozzájuk vezető utat. Függelékben ismerteti a könyvben előforduló fizikusok életrajzát és bizonyos fizikai fogalmak részletesebb leírását. A 2013-as fizikai Nobel-díjat Peter Higgs és François Englert kapták megosztva a Higgs-mechanizmus és a Higgs-bozon elmé...

  6. Too big for Higgs

    CERN Multimedia

    Hawkes, N

    1999-01-01

    A conference in the US has suggested that the mass of the Higgs boson may not be as large as previously thought. It may be within the reach of the Tevatron at Fermilab if it operates for longer than the planned two years. If so, the LHC designed specifically to find the Higgs boson may be beaten to the discovery before it is even built (1/2 page).

  7. Higgs Physics at CLIC

    CERN Document Server

    AUTHOR|(CDS)2073690

    2016-01-01

    The Compact Linear Collider (CLIC) is an attractive option for a future multi-TeV linear electron-positron collider, offering the potential for a rich precision physics programme, combined with sensitivity to a wide range of new phenomena. The physics reach of CLIC has been studied in the context of three distinct centre-of-mass energies, √s = 350 GeV, 1.4 TeV and 3.0 TeV. This staged scenario provides an excellent environment for precise studies of the properties of the 126 GeV Higgs boson. Operation at √s = 350 GeV allows, on the one hand, for a determination of the couplings and width of the Higgs boson in a model-independent manner through the study of the Higgsstrahlung process, and on the other hand, for a study of Higgs bosons produced in W+W− fusion for the most common Higgs decay modes. Operation at higher centre-of-mass energies, √s = 1.4 TeV and 3 TeV, provides high statistics W+W− fusion samples allowing for high precision measurements of many Higgs couplings and a study of rare Higgs de...

  8. Induced gravity with Higgs potential. Elementary interactions and quantum processes

    Energy Technology Data Exchange (ETDEWEB)

    Bezares Roder, Nils Manuel

    2010-07-01

    relation between density and pressure in galactodynamics to that of solar-relativistic behavior appears for the dominance of phenomenological Dark Matter in galaxies. - Within spherical symmetry gravitationally repulsive issues of induced gravity are concluded. - Fundamental relations of cosmology within induced gravity with Higgs potential are derived for a Friedmann-Robertson-Walker symmetry. Cosmic acceleration and dark-matter phenomenology are analyzed in virtue of the generalized Friedmann equations, the equations of state, cosmic deceleration and density parameters. - Indications of a possible finite initial state of the Universe are achieved for a Friedmann cosmology together with accelerating behavior in such a state as well as in the current Universe. (orig.)

  9. Induced gravity with Higgs potential. Elementary interactions and quantum processes

    International Nuclear Information System (INIS)

    Bezares Roder, Nils Manuel

    2010-01-01

    density and pressure in galactodynamics to that of solar-relativistic behavior appears for the dominance of phenomenological Dark Matter in galaxies. - Within spherical symmetry gravitationally repulsive issues of induced gravity are concluded. - Fundamental relations of cosmology within induced gravity with Higgs potential are derived for a Friedmann-Robertson-Walker symmetry. Cosmic acceleration and dark-matter phenomenology are analyzed in virtue of the generalized Friedmann equations, the equations of state, cosmic deceleration and density parameters. - Indications of a possible finite initial state of the Universe are achieved for a Friedmann cosmology together with accelerating behavior in such a state as well as in the current Universe. (orig.)

  10. Nonperturbative construction of massive Yang-Mills fields without the Higgs field

    Science.gov (United States)

    Kondo, Kei-Ichi

    2013-01-01

    In order to understand the so-called decoupling solution for gluon and ghost propagators in QCD, we give a nonperturbative construction of a massive vector field describing a non-Abelian massive spin-one particle, which has the correct physical degrees of freedom and is invariant under a modified Becchi-Rouet-Stora-Tyutin transformation, in a massive Yang-Mills model without the Higgs field, i.e., the Curci-Ferrari model. The resulting non-Abelian massive vector boson field is written by using a nonlinear but local transformation from the original fields in the Curci-Ferrari model. As an application, we write down a local mass term for the Yang-Mills field and a dimension-two condensate, which are exactly invariant under the modified Becchi-Rouet-Stora-Tyutin transformation, Lorentz transformation, and color rotation.

  11. The valley method and its application to the instanton-induced phenomena in non-abelian gauge theories

    International Nuclear Information System (INIS)

    Khoze, V.V.

    1991-06-01

    The semiclassical evaluation of the functional integral on non-Abelian gauge theories is generalized by means of the so-called valley method. The physically very important example of the valley, the instanton-anti-instanton field configuration, is discussed in details and its contributions to the physical quantities for zero-temperature and for thermal field theories are investigated. The high-energy behaviour of the total cross-section σ Δ F for electroweak fermion number violating two particles collisions is studied using the optical theorem approach. The calculation is done at energies below the sphaleron mass (E<10TeV) where it leads to the most complete result for σ Δ F known to date. Some estimations and a qualitative physical picture are discussed for energies above the sphaleron mass for the confinement and Higgs phases of the gauge theory. The effects of instanton-anti-instanton interactions are also studied in thermal QCD. (au)

  12. SM Higgs decay branching ratios and total Higgs width

    CERN Multimedia

    Daniel Denegri

    2001-01-01

    Upper: Higgs decay ratios as a function of Higgs mass. The largest branching ratio is not necessarily the most usefull one. The most usefull ones are gamma gamma bbar ZZ and WW as in those modes latter signal to background ratios can be achieved. Lower: Total Higgs decay width versus Higgs mass. At low masses the natural width is extremely small, thus observability depends on instrumental resolution primarily.

  13. The Hawking effect in abelian gauge theories

    International Nuclear Information System (INIS)

    Stephens, C.R.

    1989-01-01

    In an effort to compare and contrast gravity with other field theories an investigation is made into whether the Hawking effect is a peculiarly gravitational phenomenon. It is found that the effect exists for a particular background abelian gauge field configuration, as well as certain background gravitational field configurations. Specifically, pair production in a uniform electric field is shown to admit a thermal interpretation. In an effort to find out just what is singular about gravity it is found that the Hawking temperature characteristic of a particular gravitational field configuration is independent of the properties of the quantum fields propagating theorem, in direct contrast to the gauge field case. This implies that if the one loop approximation is to be valid the electric field must be ''cold'' relative to the energy scales set by the quantum fields. In gravity, however, because of the existence of a fundamental scale, the Planck length, the gravitational field can be ''hot'' or ''cold'' and a one loop approximation still remain valid. copyright 1989 Academic Press, Inc

  14. New features of the maximal abelian projection

    International Nuclear Information System (INIS)

    Bornyakov, V.G.; Polikarpov, M.I.; Syritsyn, S.N.; Schierholz, G.; Suzuki, T.

    2005-12-01

    After fixing the Maximal Abelian gauge in SU(2) lattice gauge theory we decompose the nonabelian gauge field into the so called monopole field and the modified nonabelian field with monopoles removed. We then calculate respective static potentials and find that the potential due to the modified nonabelian field is nonconfining while, as is well known, the monopole field potential is linear. Furthermore, we show that the sum of these potentials approximates the nonabelian static potential with 5% or higher precision at all distances considered. We conclude that at large distances the monopole field potential describes the classical energy of the hadronic string while the modified nonabelian field potential describes the string fluctuations. Similar decomposition was observed to work for the adjoint static potential. A check was also made of the center projection in the direct center gauge. Two static potentials, determined by projected Z 2 and by modified nonabelian field without Z 2 component were calculated. It was found that their sum is a substantially worse approximation of the SU(2) static potential than that found in the monopole case. It is further demonstrated that similar decomposition can be made for the flux tube action/energy density. (orig.)

  15. Cosmic vacuum

    International Nuclear Information System (INIS)

    Chernin, Artur D

    2001-01-01

    Recent observational studies of distant supernovae have suggested the existence of cosmic vacuum whose energy density exceeds the total density of all the other energy components in the Universe. The vacuum produces the field of antigravity that causes the cosmological expansion to accelerate. It is this accelerated expansion that has been discovered in the observations. The discovery of cosmic vacuum radically changes our current understanding of the present state of the Universe. It also poses new challenges to both cosmology and fundamental physics. Why is the density of vacuum what it is? Why do the densities of the cosmic energy components differ in exact value but agree in order of magnitude? On the other hand, the discovery made at large cosmological distances of hundreds and thousands Mpc provides new insights into the dynamics of the nearby Universe, the motions of galaxies in the local volume of 10 - 20 Mpc where the cosmological expansion was originally discovered. (reviews of topical problems)

  16. Cosmic vacuum

    Energy Technology Data Exchange (ETDEWEB)

    Chernin, Artur D [P.K. Shternberg State Astronomical Institute at the M.V. Lomonosov Moscow State University, Moscow (Russian Federation)

    2001-11-30

    Recent observational studies of distant supernovae have suggested the existence of cosmic vacuum whose energy density exceeds the total density of all the other energy components in the Universe. The vacuum produces the field of antigravity that causes the cosmological expansion to accelerate. It is this accelerated expansion that has been discovered in the observations. The discovery of cosmic vacuum radically changes our current understanding of the present state of the Universe. It also poses new challenges to both cosmology and fundamental physics. Why is the density of vacuum what it is? Why do the densities of the cosmic energy components differ in exact value but agree in order of magnitude? On the other hand, the discovery made at large cosmological distances of hundreds and thousands Mpc provides new insights into the dynamics of the nearby Universe, the motions of galaxies in the local volume of 10 - 20 Mpc where the cosmological expansion was originally discovered. (reviews of topical problems)

  17. Cosmic strings

    International Nuclear Information System (INIS)

    Bennett, D.P.

    1988-07-01

    Cosmic strings are linear topological defects that are predicted by some grand unified theories to form during a spontaneous symmetry breaking phase transition in the early universe. They are the basis for the only theories of galaxy formation aside from quantum fluctuations from inflation that are based on fundamental physics. In contrast to inflation, they can also be observed directly through gravitational lensing and their characteristic microwave background anistropy. It has recently been discovered by F. Bouchet and myself that details of cosmic string evolution are very different from the so-called ''standard model'' that has been assumed in most of the string induced galaxy formation calculations. Therefore, the details of galaxy formation in the cosmic string models are currently very uncertain. 29 refs., 9 figs

  18. Working Group Report: Higgs Boson

    Energy Technology Data Exchange (ETDEWEB)

    Dawson, Sally; Gritsan, Andrei; Logan, Heather; Qian, Jianming; Tully, Chris; Van Kooten, Rick [et al.

    2013-10-30

    This report summarizes the work of the Energy Frontier Higgs Boson working group of the 2013 Community Summer Study (Snowmass). We identify the key elements of a precision Higgs physics program and document the physics potential of future experimental facilities as elucidated during the Snowmass study. We study Higgs couplings to gauge boson and fermion pairs, double Higgs production for the Higgs self-coupling, its quantum numbers and $CP$-mixing in Higgs couplings, the Higgs mass and total width, and prospects for direct searches for additional Higgs bosons in extensions of the Standard Model. Our report includes projections of measurement capabilities from detailed studies of the Compact Linear Collider (CLIC), a Gamma-Gamma Collider, the International Linear Collider (ILC), the Large Hadron Collider High-Luminosity Upgrade (HL-LHC), Very Large Hadron Colliders up to 100 TeV (VLHC), a Muon Collider, and a Triple-Large Electron Positron Collider (TLEP).

  19. Higgs boson transverse momentum distribution

    CERN Multimedia

    CERN. Geneva

    2018-01-01

    I will review  the recent progress in understanding Higgs boson transverse momentum distribution focusing on effects that go beyond the point-like approximation for the Higgs-glue interaction vertex.

  20. Tools for charged Higgs bosons

    International Nuclear Information System (INIS)

    Staal, Oscar

    2010-12-01

    We review the status of publicly available software tools applicable to charged Higgs physics. A selection of codes are highlighted in more detail, focusing on new developments that have taken place since the previous charged Higgs workshop in 2008. We conclude that phenomenologists now have the tools ready to face the LHC data. A new web page collecting charged Higgs resources is presented. (orig.)

  1. Finite-Temperature Higgs Potentials

    International Nuclear Information System (INIS)

    Dolgopolov, M.V.; Gurskaya, A.V.; Rykova, E.N.

    2016-01-01

    In the present article we consider the short description of the “Finite-Temperature Higgs Potentials” program for calculating loop integrals at vanishing external momenta and applications for extended Higgs potentials reconstructions. Here we collect the analytic forms of the relevant loop integrals for our work in reconstruction of the effective Higgs potential parameters in extended models (MSSM, NMSSM and etc.)

  2. Error Correction for Non-Abelian Topological Quantum Computation

    Directory of Open Access Journals (Sweden)

    James R. Wootton

    2014-03-01

    Full Text Available The possibility of quantum computation using non-Abelian anyons has been considered for over a decade. However, the question of how to obtain and process information about what errors have occurred in order to negate their effects has not yet been considered. This is in stark contrast with quantum computation proposals for Abelian anyons, for which decoding algorithms have been tailor-made for many topological error-correcting codes and error models. Here, we address this issue by considering the properties of non-Abelian error correction, in general. We also choose a specific anyon model and error model to probe the problem in more detail. The anyon model is the charge submodel of D(S_{3}. This shares many properties with important models such as the Fibonacci anyons, making our method more generally applicable. The error model is a straightforward generalization of those used in the case of Abelian anyons for initial benchmarking of error correction methods. It is found that error correction is possible under a threshold value of 7% for the total probability of an error on each physical spin. This is remarkably comparable with the thresholds for Abelian models.

  3. Qui attrapera le Higgs?

    CERN Multimedia

    Colas, Paul

    2003-01-01

    The Higgs boson was theoretically created about 40 years ago by a Scott Peter Higgs who wanted to explain why some particles get a mass. Since then the Higgs boson has taken consistency and has become an important point of the standard model theory. Its experimental discovery would be a milestone of modern physics. The search for the Higgs boson is an international challenge that takes place around 2 huge machines: the Tevatron near Chicago and the LHC (large hadron collider) that is being built in CERN. The Tevatron is in fact the upgrading of an old particle accelerator, it is a proton collider and its narrow range of energy is compensated by a low background noise. On the other hand the LHC will begin operating only in 2007 and its full power will be reached a few years later, the energy available to create particles will be then 7 times higher than for the Tevatron. Both machines have chance of succeeding by being the first to detect the Higgs boson. Time plays in favor of the Tevatron but in any case if ...

  4. On the origin of mass and the electroweak mass spectrum without Higgs

    International Nuclear Information System (INIS)

    Souza, Manoelito Martins de

    1994-01-01

    Full text: In a Causality Preserving Manifold Formalism, (CPMF), which is based on a model of spacetime with geometric and strict implementation of causality, masses are consequences of the spacetime symmetries. The mass spectrum of a set of non Abelian fields is solely determined from its Lagrangian kinematics term, in a way independent of any kind of interactions and without any extra field (no Higgs, no Yukawa coupling). The origin and meaning of mass in this formalism is discussed and then illustrated with the vector boson sector of the standard SU(2)x U(1) electroweak theory. (author)

  5. On the origin of mass and the electroweak mass spectrum without Higgs

    International Nuclear Information System (INIS)

    Souza, Manoelita Martins

    1995-01-01

    In a Causality Preserving Manifold Formalism (CPMF), which is based on a new model of spacetime, masses are consequences of spacetime structure symmetries. The mass spectrum of a set of non Abelian fields is solely determined from its Lagrangian kinematic term, in a way independent of any kind of interactions and without any extra field (no Higgs, no Yukawa couplings etc). After a brief review about this CPMF, the origin and meaning of mass is discussed and then illustrated with the vector boson sector of the SU(2) x U(1) electroweak theory. (author)

  6. Il Bosone di Higgs

    CERN Multimedia

    Hemmer, Sabine

    2018-01-01

    Poster di ATLAS sul bosone di Higgs indirizzato al pubblico generico, che spiega il meccanismo di Brout-Englert-Higgs e la sua importanza. Spiega anche il ruolo del Bosone di Higgs, come viene cercato, il percorso della sua scoperta e cosa viene dopo la scoperta. Disponibile anche in Francese (http://cds.cern.ch/record/1697501) e Inglese (http://cds.cern.ch/record/1697389). Non esitate a utilizzarlo nelle sedi dei vostri Istituti e negli eventi divulgativi! Il poster è in formato A0. Cliccate sull'immagine per scaricare il .pdf ad alta qualità e stamparlo dove preferite. Per qualisasi domanda o commento potete contattare atlas-outreach-coordination@cern.ch

  7. Higgs searches with CMS

    CERN Multimedia

    CERN. Geneva

    2011-01-01

    The excellent performances of the LHC in the 2011 run are setting the grounds for the final chase of the Higgs boson. The CMS experiment is recording high quality data that are being thoroughly scrutinized. Several decay channels are investigated to probe the entire possible Higgs mass spectrum, from 110 to 600 GeV/c^2. The study of the first 1.5/fb of collected data places already tight limits and excludes large fractions of the Higgs mass range, leaving however still open the search in the theoretically favored low mass region. In this seminar we will report on the diverse CMS analyses that yield to such results describing the experimental challenges that each had to meet.

  8. The Higgs boson

    CERN Multimedia

    Brunet, S

    2014-01-01

    ATLAS Higgs poster targeted to general public, explaining the Brout-Englert-Higgs mechanism and why it is important. It also explains the role of the Higgs Boson, how we look for it, the journey of the discovery and what comes after the discovery. Also available in French (http://cds.cern.ch/record/1697501). Don’t hesitate to use it in your institute’s corridors and in your outreach events! The poster is in A0 format. You can click on the image to download the high-quality .pdf version and print it at your favorite printshop. For any questions or comments you can contact atlas-outreach-coordination@cern.ch.

  9. Effective monopole potential for SU(2) lattice gluodynamics in spatial maximal Abelian gauge

    International Nuclear Information System (INIS)

    Chernodub, M.N.; Polikarpov, M.I.; Veselov, A.I.

    1999-01-01

    We investigate the dual superconductor hypothesis in finite-temperature SU(2) lattice gluodynamics in the Spatial Maximal Abelian gauge. This gauge is more physical than the ordinary Maximal Abelian gauge due to absence of non-localities in temporal direction. We shown numerically that in the Spatial Maximal Abelian gauge the probability distribution of the abelian monopole field is consistent with the dual superconductor mechanism of confinement [ru

  10. Abelian color cycles: A new approach to strong coupling expansion and dual representations for non-abelian lattice gauge theory

    Energy Technology Data Exchange (ETDEWEB)

    Gattringer, Christof, E-mail: christof.gattringer@uni-graz.at; Marchis, Carlotta, E-mail: carla.marchis@uni-graz.at

    2017-03-15

    We propose a new approach to strong coupling series and dual representations for non-abelian lattice gauge theories using the SU(2) case as an example. The Wilson gauge action is written as a sum over “abelian color cycles” (ACC) which correspond to loops in color space around plaquettes. The ACCs are complex numbers which can be commuted freely such that the strong coupling series and the dual representation can be obtained as in the abelian case. Using a suitable representation of the SU(2) gauge variables we integrate out all original gauge links and identify the constraints for the dual variables in the SU(2) case. We show that the construction can be generalized to the case of SU(2) gauge fields with staggered fermions. The result is a strong coupling series where all gauge integrals are known in closed form and we discuss its applicability for possible dual simulations. The abelian color cycle concept can be generalized to other non-abelian gauge groups such as SU(3).

  11. Non-Abelian magnetized blackholes and unstable attractors

    International Nuclear Information System (INIS)

    Mosaffa, A.E.; Randjbar-Daemi, S.; Sheikh-Jabbari, M.M.

    2006-12-01

    Fluctuations of non-Abelian gauge fields in a background magnetic flux contain tachyonic modes and hence the background is unstable. We extend these results to the cases where the background flux is coupled to Einstein gravity and show that the corresponding spherically symmetric geometries, which in the absence of a cosmological constant are of the form of Reissner-Nordstroem blackholes or the AdS 2 x S 2 , are also unstable. We discuss the relevance of these instabilities to several places in string theory including various string compactifications and the attractor mechanism. Our results for the latter imply that the attractor mechanism shown to work for the extremal Abelian charged blackholes, cannot be applied in a straightforward way to the extremal non-Abelian colored blackholes. (author)

  12. Problem of colour confinement in non-Abelian gauge theories

    International Nuclear Information System (INIS)

    Gribov, V.N.

    1978-01-01

    The problem of the colour confinement in the non-abelian gauge theories is studied. A more rigorous treatment of the Fadeev-Popov procedure for the quantization of the non-abelian gauge theories is presented. In the improved procedure one has to introduce additional bounds on the region of integration in the functional space of non-abelian fields. The integration is to be performed over the fields with positive-definite Faddeev-Popov determinant. This limitation has little influence on oscillations with high frequencies, but reduces drastically the amplitudes of low-frequency oscillations. This implies, that interaction of two colour charges does not go into infinity at finite distances, rather it is linearly rising with distance

  13. Non-Abelian gauge fields in two spatial dimensions

    International Nuclear Information System (INIS)

    Hagen, C.R.

    1987-01-01

    Generalizing an earlier work on the Abelian case the most general non-Abelian gauge theory in two spatial dimensions is derived. It is shown that local gauge invariance leads to a new term in the action which in turn requires that the gauge current operator have a part which is bilinear in the non-Abelian gauge field-strength tensor. Although a radiation (or axial) gauge quantization is possible, this approach is found not to yield the maximal set of commutation relations among the basic fields. The latter goal can be accomplished only by a rather unusual gauge choice which has not previously been studied. Quantization conditions on the coupling constant implied by invariance under large gauge transformations are also derived

  14. Higgs Inflation as a Mirage

    CERN Multimedia

    CERN. Geneva

    2015-01-01

    After reviewing the nice properties of Higgs inflation and some of its problems, I will discuss a simple unitarization of the scenario that is genuinely weakly coupled up to Planckian energies. A large non-minimal coupling between the Higgs and the Ricci curvature is induced dynamically at intermediate energies, as a simple ratio of mass scales. Inflationary dynamics is not dominated by the Higgs field, but 'Higgs inflation' arises as an approximate 'mirage' picture of the true dynamics. I will speculate on the generality of this phenomenon and show that, if Higgs-inflation arises as an effective description, the details of the UV completion are necessary to extract robust quantitative predictions.

  15. A magnetic instability of the non-Abelian Sakai-Sugimoto model

    International Nuclear Information System (INIS)

    Callebaut, Nele; Dudal, David

    2014-01-01

    In this follow-up paper of http://dx.doi.org/10.1007/JHEP03(2013)033 we further discuss the occurrence of a magnetically induced tachyonic instability of the rho meson in the two-flavour Sakai-Sugimoto model, uplifting two remaining approximations in the previous paper. That is, firstly, the magnetically induced splitting of the branes is now taken into account, evaluating without approximations the symmetrized trace which enters in the non-Abelian Dirac-Born-Infeld (DBI) action. This leads to an extra mass generating effect for the charged heavy-light rho meson through a holographic Higgs mechanism. Secondly, we compare the results in the approximation to second order in the field strength to the results using the full DBI-action. Both improvements cause an increase of the critical magnetic field for the onset of rho meson condensation. In addition, the stability in the scalar sector in the presence of the magnetic field is discussed

  16. Dyons, Superstrings, and Wormholes: Exact Solutions of the Non-Abelian Dirac-Born-Infeld Action

    Directory of Open Access Journals (Sweden)

    Edward A. Olszewski

    2015-01-01

    Full Text Available We construct dyon solutions on coincident D4-branes, obtained by applying T-duality transformations to type I SO(32 superstring theory in 10 dimensions. These solutions, which are exact, are obtained from an action comprising the non-Abelian Dirac-Born-Infeld action and a Wess-Zumino-like action. When one spatial dimension of the D4-branes is taken to be vanishingly small, the dyons are analogous to the ’t Hooft/Polyakov monopole residing in a 3+1-dimensional spacetime, where the component of the Yang-Mills potential transforming as a Lorentz scalar is reinterpreted as a Higgs boson transforming in the adjoint representation of the gauge group. Applying a T-duality transformation to the vanishingly small spatial dimension, we obtain a collection of D3-branes, not all of which are coincident. Two of the D3-branes, distinct from the others, acquire intrinsic, finite curvature and are connected by a wormhole. The dyons possess electric and magnetic charges whose values on each D3-brane are the negative of one another. The gravitational effects, which arise after the T-duality transformation, occur despite the fact that the action of the system does not explicitly include the gravitational interaction. These solutions provide a simple example of the subtle relationship between the Yang-Mills and gravitational interactions, that is, gauge/gravity duality.

  17. Higgs for the masses

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1986-03-15

    The unified theory of electromagnetism and the weak nuclear force, crowned with the discovery at CERN in 1983 of the W and Z bosons which carry the weak nuclear force, is one of the great triumphs of modern physics. But the picture is not yet complete. An essential but still elusive ingredient is the so-called 'Higgs boson' (after Edinburgh theorist Peter Higgs), responsible for the vital symmetry breaking in the theory. This gives the carriers of the weak force mass, while the photon, the carrier of electromagnetism, is massless.

  18. Derived categories of coherent sheaves on Abelian varieties and equivalences between them

    International Nuclear Information System (INIS)

    Orlov, D O

    2002-01-01

    We study derived categories of coherent sheaves on Abelian varieties. We give a criterion for the equivalence of the derived categories on two Abelian varieties and describe the autoequivalence group for the derived category of coherent sheaves of an Abelian variety

  19. Abelian Chern endash Simons theory. II. A functional integral approach

    International Nuclear Information System (INIS)

    Manoliu, M.

    1998-01-01

    Following Witten, [Commun. Math. Phys. 21, 351 endash 399 (1989)] we approach the Abelian quantum Chern endash Simons (CS) gauge theory from a Feynman functional integral point of view. We show that for 3-manifolds with and without a boundary the formal functional integral definitions lead to mathematically proper expressions that agree with the results from the rigorous construction [J. Math. Phys. 39, 170 endash 206 (1998)] of the Abelian CS topological quantum field theory via geometric quantization. copyright 1998 American Institute of Physics

  20. Physics of the Non-Abelian Coulomb Phase

    DEFF Research Database (Denmark)

    Ryttov, Thomas A.; Shrock, Robert

    2018-01-01

    are applied to obtain further estimates of $\\gamma_{\\bar\\psi\\psi,IR}$ and $\\beta'_{IR}$ for several SU($N_c$) groups and representations $R$, and comparisons are made with lattice measurements. We apply our results to obtain new estimates of the extent of the respective non-Abelian Coulomb phases in several....... It is shown that an expansion of $\\gamma_{\\bar\\psi\\psi,IR}$ to $O(\\Delta_f^4)$ is quite accurate throughout the entire non-Abelian Coulomb phase of this supersymmetric theory....

  1. Fluctuations from dissipation in a hot non-Abelian plasma

    CERN Document Server

    Litim, Daniel F; Litim, Daniel F.; Manuel, Cristina

    2000-01-01

    We consider a transport equation of the Boltzmann-Langevin type for non-Abelian plasmas close to equilibrium to derive the spectral functions of the underlying microscopic fluctuations from the entropy. The correlator of the stochastic source is obtained from the dissipative processes in the plasma. This approach, based on classical transport theory, exploits the well-known link between a linearized collision integral, the entropy and the spectral functions. Applied to the ultra-soft modes of a hot non-Abelian (classical or quantum) plasma, the resulting spectral functions agree with earlier findings obtained from the microscopic theory. As a by-product, it follows that theorem.

  2. A Finite Abelian Group of Two-Letter Inversions

    Directory of Open Access Journals (Sweden)

    Sherwin E. Balbuena

    2015-11-01

    Full Text Available In abstract algebra, the study of concrete groups is fundamentally important to beginners. Most commonly used groups as examples are integer addition modulo n, real number addition and multiplication, permutation groups, and groups of symmetry. The last two examples are finite non-abelian groups and can be investigated with the aid of concrete representations. This study presents a finite abelian group of inversions of two letter symbols with vertical and horizontal axes of symmetry and whose binary operation is established through motions like alternation, rotation, reflection, and a combination of two or all motions.

  3. Instantons and Gribov copies in the maximally Abelian gauge

    International Nuclear Information System (INIS)

    Bruckmann, F.; Heinzl, T.; Wipf, A.; Tok, T.

    2000-01-01

    We calculate the Faddeev-Popov operator corresponding to the maximally Abelian gauge for gauge group SU(N). Specializing to SU(2) we look for explicit zero modes of this operator. Within an illuminating toy model (Yang-Mills mechanics) the problem can be completely solved and understood. In the field theory case we are able to find an analytic expression for a normalizable zero mode in the background of a single 't Hooft instanton. Accordingly, such an instanton corresponds to a horizon configuration in the maximally Abelian gauge. Possible physical implications are discussed

  4. Non-Abelian gauge theory of fields associated with dyons

    International Nuclear Information System (INIS)

    Rajput, B.S.; Kumar, S.R.

    1983-01-01

    A suitable Lorentz invariant non-Abelian gauge theory of the fields associated with dyons has been constructed to describe the dual dynamics between colour isocharges and topological charges. It has been shown that the generalized particle current is gauge covariant and not conserved in non-Abelian theory. It has also been shown that in this theory the unphysical string variables and unphysical charged fields are not needed and that any extra constraint to maintain the dual symmetry of field equation and Lagrangian is also not needed. (author)

  5. High-energy behavior of non-Abelian gauge theories

    International Nuclear Information System (INIS)

    Nieh, H.T.; Yao, Y.

    1976-01-01

    This paper is a detailed account of a study in perturbation theory of the high-energy behavior of non-Abelian gauge theories. The fermion-fermion scattering amplitude is calculated up to sixth order in the coupling constant in the high-energy limit s → infinity with fixed t, in the approximation of keeping only the leading logarithmic terms. Results indicate that the high-energy behavior of non-Abelian gauge theories are complicated, and quite different from the known behaviors of other field theories studied so far

  6. Fermion-dyon dynamics in non-Abelian gauge theory

    International Nuclear Information System (INIS)

    Pant, P.C.; Pandey, V.P.; Rajput, B.S.

    1999-01-01

    The study of behaviour of a fermion in the field of non-Abelian dyon has been undertaken in Lagrangian and Hamiltonian formulation. Solving Dirac equation, expression for energy Eigen value has been obtained and the Hamiltonian of this system has been shown to involve spin as well as contribution of massive fields associated with these particles. By introducing suitable spinors, the Pauli equation for a dyon moving in the field of fermion has been solved in non-Abelian gauge gauge theory and it is shown that introduction of massive fields perceptibly modifies the energy Eigen value and Eigen function of bound states of the system. (author)

  7. Mapping of parent hamiltonians from abelian and non-abelian quantum hall states to exact models of critical spin chains

    CERN Document Server

    Greiter, Martin

    2011-01-01

    This monograph introduces an exact model for a critical spin chain with arbitrary spin S, which includes the Haldane--Shastry model as the special case S=1/2.  While spinons in the Haldane-Shastry model obey abelian half-fermi statistics, the spinons in the general model introduced here obey non-abelian statistics.  This manifests itself through topological choices for the fractional momentum spacings.  The general model is derived by mapping exact models of quantized Hall states onto spin chains.  The book begins with pedagogical review of all the relevant models including the non-abelian statistics in the Pfaffian Hall state, and is understandable to every student with a graduate course in quantum mechanics.

  8. Exact diagonalization of cubic lattice models in commensurate Abelian magnetic fluxes and translational invariant non-Abelian potentials

    DEFF Research Database (Denmark)

    Burrello, M.; Fulga, Ion Cosma; Lepori, L.

    2017-01-01

    of a translational invariant non-Abelian coupling for multi-component spinors does not affect the dimension of the minimal Hamiltonian blocks, nor the dimension of the magnetic Brillouin zone. General formulas are presented for the U(2) case and explicit examples are investigated involving π and 2π/3 magnetic fluxes......We present a general analytical formalism to determine the energy spectrum of a quantum particle in a cubic lattice subject to translationally invariant commensurate magnetic fluxes and in the presence of a general spaceindependent non-Abelian gauge potential. We first review and analyze the case...... of purely Abelian potentials, showing also that the so-called Hasegawa gauge yields a decomposition of the Hamiltonian into sub-matrices having minimal dimension. Explicit expressions for such matrices are derived, also for general anisotropic fluxes. Later on, we show that the introduction...

  9. Conformal symmetry and the Higgs effect in the Einstein-Weinberg-Salam unified theory

    International Nuclear Information System (INIS)

    Pervushin, V.N.; Smirichinski, V.I.; Pawlowski, M.M.

    1997-11-01

    We consider the unification of the Einstein theory of gravity with a conformal invariant version of the standard model for electroweak interaction without the Higgs potential. In this theory, the evolution of the Universe and the elementary particle masses have one and the same cosmological origin. In the flat space limit, we get the σ-model version of the standard model. The cosmological consequences of such a unification are studied. The red shift formula and Hubble law are obtained under the conventional Friedmann assumption of homogeneous matter distribution. We show that the considered theory leads to a very small vacuum density of the Higgs field ρ Cosmic φ = 10 -34 ρ cr in contrast with the theory with the Higgs potential ρ Higgs φ =0 54 ρ cr . (author)

  10. Higgs! Wo steckst du?

    CERN Multimedia

    Hein, Till

    2005-01-01

    CERN's physicists are worried by a great question: does the universe remain stable? Why does the world exist? To answer, they look for the infinitely small and are trying to find the "key": the hypothetical Higgs-boson (4½ pages)

  11. Disentangling a dynamical Higgs

    International Nuclear Information System (INIS)

    Brivio, I.; Corbett, T.; Éboli, O.J.P.; Gavela, M.B.; Gonzalez-Fraile, J.; Gonzalez-Garcia, M.C.; Merlo, L.; Rigolin, S.

    2014-01-01

    The pattern of deviations from Standard Model predictions and couplings is different for theories of new physics based on a non-linear realization of the SU(2) L ×U(1) Y gauge symmetry breaking and those assuming a linear realization. We clarify this issue in a model-independent way via its effective Lagrangian formulation in the presence of a light Higgs particle, up to first order in the expansions: dimension-six operators for the linear expansion and four derivatives for the non-linear one. Complete sets of gauge and gauge-Higgs operators are considered, implementing the renormalization procedure and deriving the Feynman rules for the non-linear expansion. We establish the theoretical relation and the differences in physics impact between the two expansions. Promising discriminating signals include the decorrelation in the non-linear case of signals correlated in the linear one: some pure gauge versus gauge-Higgs couplings and also between couplings with the same number of Higgs legs. Furthermore, anomalous signals expected at first order in the non-linear realization may appear only at higher orders of the linear one, and vice versa. We analyze in detail the impact of both type of discriminating signals on LHC physics

  12. APS Quantum Critical Higgs

    CERN Document Server

    Bellazzini, Brando; Hubisz, Jay; Lee, Seung J.; Serra, Javi; Terning, John

    2016-01-01

    The appearance of the light Higgs boson at the LHC is difficult to explain, particularly in light of naturalness arguments in quantum field theory. However light scalars can appear in condensed matter systems when parameters (like the amount of doping) are tuned to a critical point. At zero temperature these quantum critical points are directly analogous to the finely tuned standard model. In this paper we explore a class of models with a Higgs near a quantum critical point that exhibits non-mean-field behavior. We discuss the parametrization of the effects of a Higgs emerging from such a critical point in terms of form factors, and present two simple realistic scenarios based on either generalized free fields or a 5D dual in AdS space. For both of these models we consider the processes $gg\\to ZZ$ and $gg\\to hh$, which can be used to gain information about the Higgs scaling dimension and IR transition scale from the experimental data.

  13. Higgs physics at LHC

    Indian Academy of Sciences (India)

    The large hadron collider (LHC) and its detectors, ATLAS and CMS, are being built to study TeV scale physics, and to fully understand the electroweak symmetry breaking mechanism. The Monte-Carlo simulation results for the standard model and minimal super symmetric standard model Higgs boson searches and ...

  14. Quantum Critical Higgs

    Science.gov (United States)

    Bellazzini, Brando; Csáki, Csaba; Hubisz, Jay; Lee, Seung J.; Serra, Javi; Terning, John

    2016-10-01

    The appearance of the light Higgs boson at the LHC is difficult to explain, particularly in light of naturalness arguments in quantum field theory. However, light scalars can appear in condensed matter systems when parameters (like the amount of doping) are tuned to a critical point. At zero temperature these quantum critical points are directly analogous to the finely tuned standard model. In this paper, we explore a class of models with a Higgs near a quantum critical point that exhibits non-mean-field behavior. We discuss the parametrization of the effects of a Higgs emerging from such a critical point in terms of form factors, and present two simple realistic scenarios based on either generalized free fields or a 5D dual in anti-de Sitter space. For both of these models, we consider the processes g g →Z Z and g g →h h , which can be used to gain information about the Higgs scaling dimension and IR transition scale from the experimental data.

  15. Disentangling a dynamical Higgs

    Energy Technology Data Exchange (ETDEWEB)

    Brivio, I. [Departamento de Física Teórica and Instituto de Física Teórica, IFT-UAM/CSIC,Universidad Autónoma de Madrid, Cantoblanco, 28049, Madrid (Spain); Corbett, T. [C.N. Yang Institute for Theoretical Physics and Department of Physics and Astronomy,SUNY at Stony Brook, Stony Brook, NY 11794-3840 (United States); Éboli, O.J.P. [Instituto de Física, Universidade de São Paulo,C.P. 66318, 05315-970, São Paulo SP (Brazil); Gavela, M.B. [Departamento de Física Teórica and Instituto de Física Teórica, IFT-UAM/CSIC,Universidad Autónoma de Madrid, Cantoblanco, 28049, Madrid (Spain); Gonzalez-Fraile, J. [Departament d’Estructura i Constituents de la Matèria and ICC-UB, Universitat de Barcelona,647 Diagonal, E-08028 Barcelona (Spain); Gonzalez-Garcia, M.C. [Institució Catalana de Recerca i Estudis Avançats (ICREA),Passeig Lluís Companys, 23, E-08010 Barcelona (Spain); Departament d’Estructura i Constituents de la Matèria and ICC-UB, Universitat de Barcelona,647 Diagonal, E-08028 Barcelona (Spain); C.N. Yang Institute for Theoretical Physics and Department of Physics and Astronomy,SUNY at Stony Brook, Stony Brook, NY 11794-3840 (United States); Merlo, L. [Departamento de Física Teórica and Instituto de Física Teórica, IFT-UAM/CSIC,Universidad Autónoma de Madrid, Cantoblanco, 28049, Madrid (Spain); Rigolin, S. [Dipartimento di Fisica e Astronomia “G. Galilei”, Università di Padova and INFN, Sezione di Padova, Via Marzolo 8, I-35131 Padua (Italy)

    2014-03-05

    The pattern of deviations from Standard Model predictions and couplings is different for theories of new physics based on a non-linear realization of the SU(2){sub L}×U(1){sub Y} gauge symmetry breaking and those assuming a linear realization. We clarify this issue in a model-independent way via its effective Lagrangian formulation in the presence of a light Higgs particle, up to first order in the expansions: dimension-six operators for the linear expansion and four derivatives for the non-linear one. Complete sets of gauge and gauge-Higgs operators are considered, implementing the renormalization procedure and deriving the Feynman rules for the non-linear expansion. We establish the theoretical relation and the differences in physics impact between the two expansions. Promising discriminating signals include the decorrelation in the non-linear case of signals correlated in the linear one: some pure gauge versus gauge-Higgs couplings and also between couplings with the same number of Higgs legs. Furthermore, anomalous signals expected at first order in the non-linear realization may appear only at higher orders of the linear one, and vice versa. We analyze in detail the impact of both type of discriminating signals on LHC physics.

  16. Minimal mirror twin Higgs

    Energy Technology Data Exchange (ETDEWEB)

    Barbieri, Riccardo [Institute of Theoretical Studies, ETH Zurich,CH-8092 Zurich (Switzerland); Scuola Normale Superiore,Piazza dei Cavalieri 7, 56126 Pisa (Italy); Hall, Lawrence J.; Harigaya, Keisuke [Department of Physics, University of California,Berkeley, California 94720 (United States); Theoretical Physics Group, Lawrence Berkeley National Laboratory,Berkeley, California 94720 (United States)

    2016-11-29

    In a Mirror Twin World with a maximally symmetric Higgs sector the little hierarchy of the Standard Model can be significantly mitigated, perhaps displacing the cutoff scale above the LHC reach. We show that consistency with observations requires that the Z{sub 2} parity exchanging the Standard Model with its mirror be broken in the Yukawa couplings. A minimal such effective field theory, with this sole Z{sub 2} breaking, can generate the Z{sub 2} breaking in the Higgs sector necessary for the Twin Higgs mechanism. The theory has constrained and correlated signals in Higgs decays, direct Dark Matter Detection and Dark Radiation, all within reach of foreseen experiments, over a region of parameter space where the fine-tuning for the electroweak scale is 10-50%. For dark matter, both mirror neutrons and a variety of self-interacting mirror atoms are considered. Neutrino mass signals and the effects of a possible additional Z{sub 2} breaking from the vacuum expectation values of B−L breaking fields are also discussed.

  17. Cosmic Ether

    CERN Document Server

    Tomaschitz, R

    1998-01-01

    A prerelativistic approach to particle dynamics is explored in an expanding Robertson-Walker cosmology. The receding galactic background provides a distinguished frame of reference and a unique cosmic time. In this context the relativistic, purely geometric space-time concept is criticized. Physical space is regarded as a permeable medium, the cosmic ether, which effects the world-lines of particles and rays. We study in detail a Robertson-Walker universe with linear expansion factor and negatively curved, open three-space; we choose the permeability tensor of the ether in such a way that the semiclassical approximation is exact. Galactic red-shifts depend on the refractive index of the ether. In the local Minkowskian limit the ether causes a time variation of mass, which scales inversely proportional to cosmic time. In the globally geodesic rest frames of galactic observers the ether manifests itself in an unbounded speed of signal transfer, in bifurcations of world-lines, and in time inversion effects.

  18. Cosmic Topology

    Science.gov (United States)

    Luminet, Jean-Pierre

    2015-08-01

    Cosmic Topology is the name given to the study of the overall shape of the universe, which involves both global topological features and more local geometrical properties such as curvature. Whether space is finite or infinite, simply-connected or multi-connected like a torus, smaller or greater than the portion of the universe that we can directly observe, are questions that refer to topology rather than curvature. A striking feature of some relativistic, multi-connected "small" universe models is to create multiples images of faraway cosmic sources. While the most recent cosmological data fit the simplest model of a zero-curvature, infinite space model, they are also consistent with compact topologies of the three homogeneous and isotropic geometries of constant curvature, such as, for instance, the spherical Poincaré Dodecahedral Space, the flat hypertorus or the hyperbolic Picard horn. After a "dark age" period, the field of Cosmic Topology has recently become one of the major concerns in cosmology, not only for theorists but also for observational astronomers, leaving open a number of unsolved issues.

  19. Cosmic antimatter

    International Nuclear Information System (INIS)

    Tarle, G.; Swordy, S.

    1998-01-01

    In 1928 Paul Dirac forecasted the existence of antimatter and 4 years later Carl Anderson detected the first antiparticle: the positron in a cloud chamber while studying cosmic radiation. Antiprotons were more difficult to find but in 1955 physicists from Lawrence Berkeley Laboratory got some in a particle accelerator. In 1995 a team from the CERN synthesized atoms of anti-hydrogen by binding positrons to antiprotons in a particle accelerator. Astrophysicists have built more and more complex detectors to study cosmic rays. The detector HEAT (high energy antimatter telescope) has been designed to study positrons above the atmosphere. This detector has been launched for the first time in 1994 and has measured cosmic radiation for 32 hours at an altitude of 37000 meters. The results were challenging: whereas the number of low energy positrons detected agrees with the theory, the number of high energy positrons is too important. It suggests the existence of unknown sources of positrons somewhere in the universe. The massive particles that interact weakly (WIMP) could be such sources. This article draws the history of the quest for antimatter and its implications in cosmology, the detector HEAT is described. (A.C.)

  20. Cosmic inflation constrains scalar dark matter

    Directory of Open Access Journals (Sweden)

    Tommi Tenkanen

    2015-12-01

    Full Text Available In a theory containing scalar fields, a generic consequence is a formation of scalar condensates during cosmic inflation. The displacement of scalar fields out from their vacuum values sets specific initial conditions for post-inflationary dynamics and may lead to significant observational ramifications. In this work, we investigate how these initial conditions affect the generation of dark matter in the class of portal scenarios where the standard model fields feel new physics only through Higgs-mediated couplings. As a representative example, we will consider a $ Z_2 $ symmetric scalar singlet $ s $ coupled to Higgs via $ \\lambda \\Phi ^\\dagger \\Phi s^2 $. This simple extension has interesting consequences as the singlet constitutes a dark matter candidate originating from non-thermal production of singlet particles out from a singlet condensate, leading to a novel interplay between inflationary dynamics and dark matter properties.

  1. Electroweak Higgs production with HiggsPO at NLO QCD

    International Nuclear Information System (INIS)

    Greljo, Admir; Isidori, Gino; Zhang, Hantian; Lindert, Jonas M.; Marzocca, David

    2017-01-01

    We present the HiggsPO UFO model for Monte Carlo event generation of electroweak VH and VBF Higgs production processes at NLO in QCD in the formalism of Higgs pseudo-observables (PO). We illustrate the use of this tool by studying the QCD corrections, matched to a parton shower, for several benchmark points in the Higgs PO parameter space. We find that, while being sizable and thus important to be considered in realistic experimental analyses, the QCD higher-order corrections largely factorize. As an additional finding, based on the NLO results, we advocate to consider 2D distributions of the two-jet azimuthal-angle difference and the leading jet p T for new physics searches in VBF Higgs production. The HiggsPO UFO model is publicly available. (orig.)

  2. Electroweak Higgs production with HiggsPO at NLO QCD

    Science.gov (United States)

    Greljo, Admir; Isidori, Gino; Lindert, Jonas M.; Marzocca, David; Zhang, Hantian

    2017-12-01

    We present the HiggsPO UFO model for Monte Carlo event generation of electroweak VH and VBF Higgs production processes at NLO in QCD in the formalism of Higgs pseudo-observables (PO). We illustrate the use of this tool by studying the QCD corrections, matched to a parton shower, for several benchmark points in the Higgs PO parameter space. We find that, while being sizable and thus important to be considered in realistic experimental analyses, the QCD higher-order corrections largely factorize. As an additional finding, based on the NLO results, we advocate to consider 2D distributions of the two-jet azimuthal-angle difference and the leading jet p_T for new physics searches in VBF Higgs production. The HiggsPO UFO model is publicly available.

  3. Electroweak Higgs production with HiggsPO at NLO QCD

    Energy Technology Data Exchange (ETDEWEB)

    Greljo, Admir [Universitaet Zuerich, Physik-Institut, Zurich (Switzerland); Johannes Gutenberg-Universitaet Mainz, PRISMA Cluster of Excellence and Mainz Institute for Theoretical Physics, Mainz (Germany); University of Sarajevo, Faculty of Science, Sarajevo (Bosnia and Herzegovina); Isidori, Gino; Zhang, Hantian [Universitaet Zuerich, Physik-Institut, Zurich (Switzerland); Lindert, Jonas M. [Durham University, Department of Physics, Institute for Particle Physics Phenomenology, Durham (United Kingdom); Marzocca, David [Universitaet Zuerich, Physik-Institut, Zurich (Switzerland); INFN, Sezione di Trieste(Italy); SISSA, Trieste (Italy)

    2017-12-15

    We present the HiggsPO UFO model for Monte Carlo event generation of electroweak VH and VBF Higgs production processes at NLO in QCD in the formalism of Higgs pseudo-observables (PO). We illustrate the use of this tool by studying the QCD corrections, matched to a parton shower, for several benchmark points in the Higgs PO parameter space. We find that, while being sizable and thus important to be considered in realistic experimental analyses, the QCD higher-order corrections largely factorize. As an additional finding, based on the NLO results, we advocate to consider 2D distributions of the two-jet azimuthal-angle difference and the leading jet p{sub T} for new physics searches in VBF Higgs production. The HiggsPO UFO model is publicly available. (orig.)

  4. Co-compact Gabor Systems on Locally Compact Abelian Groups

    DEFF Research Database (Denmark)

    Jakobsen, Mads Sielemann; Lemvig, Jakob

    2016-01-01

    In this work we extend classical structure and duality results in Gabor analysis on the euclidean space to the setting of second countable locally compact abelian (LCA) groups. We formulate the concept of rationally oversampling of Gabor systems in an LCA group and prove corresponding characteriz...

  5. Oscillator as a hidden non-Abelian monopole

    International Nuclear Information System (INIS)

    Mardoyan, L.G.; Sisakyan, A.N.; Ter-Antonyan, V.M.

    1996-01-01

    A non-Abelian SU(2) model is constructed for a five-dimensional bound system 'charge-dyon' on the basis of the Hurwitz-transformed eight-dimensional isotropic quantum oscillator. The principle of dyon-oscillator duality is formulated; the energy spectrum and wave functions of the system 'charge-dyon' are calculated. 20 refs

  6. Integral pentavalent Cayley graphs on abelian or dihedral groups

    Indian Academy of Sciences (India)

    MOHSEN GHASEMI

    ghasemi@urmia.ac.ir. MS received 8 July 2015; revised 10 July 2016. Abstract. A graph is called integral, if all of its eigenvalues are integers. In this paper, we give some results about integral pentavalent Cayley graphs on abelian or dihedral.

  7. Hodge classes on abelian varieties of low dimension

    NARCIS (Netherlands)

    Moonen, B.J.J.; Zarhin, Y.G.

    1999-01-01

    In this paper we study Hodge classes on complex abelian varieties X If dimX then it is wellknown that every Hodge class on X is a linear combination of products of divisor classes In the authors showed that if X is simple of dimension then every Hodge class is a linear combination of products

  8. The Numerical Solution of an Abelian Ordinary Differential Equation ...

    African Journals Online (AJOL)

    In this paper we present a relatively new technique call theNew Hybrid of Adomian decomposition method (ADM) for solution of an Abelian Differential equation. The numerical results of the equation have been obtained in terms of convergent series with easily computable component. These methods are applied to solve ...

  9. The chiral bosonization in non-Abelian gauge theories

    International Nuclear Information System (INIS)

    Andrianov, A.A.; Novozhilov, Y.

    1985-01-01

    The chiral bosonization in non-Abelian gauge theories is described starting directly from the QCD functional. For a given mass scale Λ, the QCD may be equivalently represented by colour chiral fields, gauge fields and high energy fermions. The effective action for colour chiral fields may admit the existence of a colour Skyrmion-boson with the baryon number 2/3. (author)

  10. Perturbative analysis of non-Abelian Aharonov-Bohm scattering

    International Nuclear Information System (INIS)

    Bak, D.; Bergman, O.

    1995-01-01

    We perform a perturbative analysis of the non-Abelian Aharonov-Bohm problem to one loop in the framework of a local field theory, and show the necessity of contact interactions for renormalizability of perturbation theory. Moreover at critical values of the contact interaction strength the theory is finite and preserves classical conformal invariance

  11. Gauge invariance of color confinement due to the dual Meissner effect caused by Abelian monopoles

    International Nuclear Information System (INIS)

    Suzuki, Tsuneo; Hasegawa, Masayasu; Ishiguro, Katsuya; Koma, Yoshiaki; Sekido, Toru

    2009-01-01

    The mechanism of non-Abelian color confinement is studied in SU(2) lattice gauge theory in terms of the Abelian fields and monopoles extracted from non-Abelian link variables without adopting gauge fixing. First, the static quark-antiquark potential and force are computed with the Abelian and monopole Polyakov loop correlators, and the resulting string tensions are found to be identical to the non-Abelian string tension. These potentials also show the scaling behavior with respect to the change of lattice spacing. Second, the profile of the color-electric field between a quark and an antiquark is investigated with the Abelian and monopole Wilson loops. The color-electric field is squeezed into a flux tube due to monopole supercurrent with the same Abelian color direction. The parameters corresponding to the penetration and coherence lengths show the scaling behavior, and the ratio of these lengths, i.e., the Ginzburg-Landau parameter, indicates that the vacuum type is near the border of the type 1 and type 2 (dual) superconductors. These results are summarized in which the Abelian fundamental charge defined in an arbitrary color direction is confined inside a hadronic state by the dual Meissner effect. As the color-neutral state in any Abelian color direction corresponds to the physical color-singlet state, this effect explains non-Abelian color confinement and supports the existence of a gauge-invariant mechanism of color confinement due to the dual Meissner effect caused by Abelian monopoles.

  12. Abelian gauge symmetries in F-theory and dual theories

    Science.gov (United States)

    Song, Peng

    In this dissertation, we focus on important physical and mathematical aspects, especially abelian gauge symmetries, of F-theory compactifications and its dual formulations within type IIB and heterotic string theory. F-theory is a non-perturbative formulation of type IIB string theory which enjoys important dualities with other string theories such as M-theory and E8 x E8 heterotic string theory. One of the main strengths of F-theory is its geometrization of many physical problems in the dual string theories. In particular, its study requires a lot of mathematical tools such as advanced techniques in algebraic geometry. Thus, it has also received a lot of interests among mathematicians, and is a vivid area of research within both the physics and the mathematics community. Although F-theory has been a long-standing theory, abelian gauge symmetry in Ftheory has been rarely studied, until recently. Within the mathematics community, in 2009, Grassi and Perduca first discovered the possibility of constructing elliptically fibered varieties with non-trivial toric Mordell-Weil group. In the physics community, in 2012, Morrison and Park first made a major advancement by constructing general F-theory compactifications with U(1) abelian gauge symmetry. They found that in such cases, the elliptically-fibered Calabi-Yau manifold that F-theory needs to be compactified on has its fiber being a generic elliptic curve in the blow-up of the weighted projective space P(1;1;2) at one point. Subsequent developments have been made by Cvetic, Klevers and Piragua extended the works of Morrison and Park and constructed general F-theory compactifications with U(1) x U(1) abelian gauge symmetry. They found that in the U(1) x U(1) abelian gauge symmetry case, the elliptically-fibered Calabi-Yau manifold that F-theory needs to be compactified on has its fiber being a generic elliptic curve in the del Pezzo surface dP2. In chapter 2 of this dissertation, I bring this a step further by

  13. The static quark potential from the gauge independent Abelian decomposition

    Energy Technology Data Exchange (ETDEWEB)

    Cundy, Nigel, E-mail: ndcundy@gmail.com [Lattice Gauge Theory Research Center, FPRD, and CTP, Department of Physics & Astronomy, Seoul National University, Seoul 151-747 (Korea, Republic of); Cho, Y.M. [Administration Building 310-4, Konkuk University, Seoul 143-701 (Korea, Republic of); Department of Physics & Astronomy, Seoul National University, Seoul 151-747 (Korea, Republic of); Lee, Weonjong; Leem, Jaehoon [Lattice Gauge Theory Research Center, FPRD, and CTP, Department of Physics & Astronomy, Seoul National University, Seoul 151-747 (Korea, Republic of)

    2015-06-15

    We investigate the relationship between colour confinement and the gauge independent Cho–Duan–Ge Abelian decomposition. The decomposition is defined in terms of a colour field n; the principle novelty of our study is that we have used a unique definition of this field in terms of the eigenvectors of the Wilson Loop. This allows us to establish an equivalence between the path-ordered integral of the non-Abelian gauge fields and an integral over an Abelian restricted gauge field which is tractable both theoretically and numerically in lattice QCD. We circumvent path ordering without requiring an additional path integral. By using Stokes' theorem, we can compute the Wilson Loop in terms of a surface integral over a restricted field strength, and show that the restricted field strength may be dominated by certain structures, which occur when one of the quantities parametrising the colour field n winds itself around a non-analyticity in the colour field. If they exist, these structures will lead to an area law scaling for the Wilson Loop and provide a mechanism for quark confinement. Unlike most studies of confinement using the Abelian decomposition, we do not rely on a dual-Meissner effect to create the inter-quark potential. We search for these structures in quenched lattice QCD. We perform the Abelian decomposition, and compare the electric and magnetic fields with the patterns expected theoretically. We find that the restricted field strength is dominated by objects which may be peaks of a single lattice spacing in size or extended string-like lines of electromagnetic flux. The objects are not isolated monopoles, as they generate electric fields in addition to magnetic fields, and the fields are not spherically symmetric, but may be either caused by a monopole/anti-monopole condensate, some other types of topological objects, or a combination of these. Removing these peaks removes the area law scaling of the string tension, suggesting that they are

  14. The static quark potential from the gauge independent Abelian decomposition

    Science.gov (United States)

    Cundy, Nigel; Cho, Y. M.; Lee, Weonjong; Leem, Jaehoon

    2015-06-01

    We investigate the relationship between colour confinement and the gauge independent Cho-Duan-Ge Abelian decomposition. The decomposition is defined in terms of a colour field n; the principle novelty of our study is that we have used a unique definition of this field in terms of the eigenvectors of the Wilson Loop. This allows us to establish an equivalence between the path-ordered integral of the non-Abelian gauge fields and an integral over an Abelian restricted gauge field which is tractable both theoretically and numerically in lattice QCD. We circumvent path ordering without requiring an additional path integral. By using Stokes' theorem, we can compute the Wilson Loop in terms of a surface integral over a restricted field strength, and show that the restricted field strength may be dominated by certain structures, which occur when one of the quantities parametrising the colour field n winds itself around a non-analyticity in the colour field. If they exist, these structures will lead to an area law scaling for the Wilson Loop and provide a mechanism for quark confinement. Unlike most studies of confinement using the Abelian decomposition, we do not rely on a dual-Meissner effect to create the inter-quark potential. We search for these structures in quenched lattice QCD. We perform the Abelian decomposition, and compare the electric and magnetic fields with the patterns expected theoretically. We find that the restricted field strength is dominated by objects which may be peaks of a single lattice spacing in size or extended string-like lines of electromagnetic flux. The objects are not isolated monopoles, as they generate electric fields in addition to magnetic fields, and the fields are not spherically symmetric, but may be either caused by a monopole/anti-monopole condensate, some other types of topological objects, or a combination of these. Removing these peaks removes the area law scaling of the string tension, suggesting that they are responsible for

  15. More on Higgs bosons in SU(5)

    International Nuclear Information System (INIS)

    Hueffel, H.

    1980-01-01

    In the framework of the minimal SU(5) model of Georgi and Glashow the explicit couplings between the various mass eigenstate Higgs bosons and the gauge fields as well as the Higgs boson self couplings are presented. As an application bounds for the parameters of the Higgs potential and for the Higgs boson masses are derived by applying partial wave unitarity to the tree graphs of Higgs-Higgs scattering. (Auth.)

  16. Nonequilibrium formulation of abelian gauge theories

    Energy Technology Data Exchange (ETDEWEB)

    Zoeller, Thorsten

    2013-09-01

    This work is about a formulation of abelian gauge theories out-of-equilibrium. In contrast to thermal equilibrium, systems out-of-equilibrium are not constant in time, and the interesting questions in such systems refer to time evolution problems. After a short introduction to quantum electrodynamics (QED), the two-particle irreducible (2PI) effective action is introduced as an essential technique for the study of quantum field theories out-of-equilibrium. The equations of motion (EOMs) for the propagators of the theory are then derived from it. It follows a discussion of the physical degrees of freedom (DOFs) of the theory, in particular with respect to the photons, since in covariant formulations of gauge theories unphysical DOFs are necessarily contained. After that the EOMs for the photon propagator are examined more closely. It turns out that they are structurally complicated, and a reformulation of the equations is presented which for the untruncated theory leads to an essential structural simplification of the EOMs. After providing the initial conditions which are necessary in order to solve the EOMs, the free photon EOMs are solved with the help of the reformulated equations. It turns out that the solutions diverge in time, i.e. they are secular. This is a manifestation of the fact that gauge theories contain unphysical DOFs. It is reasoned that these secularities exist only in the free case and are therefore ''artificial''. It is however emphasized that they may not be a problem in principle, but certainly are in practice, in particular for the numerical solution of the EOMs. Further, the origin of the secularities, for which there exists an illustrative explanation, is discussed in more detail. Another characteristic feature of 2PI formulations of gauge theories is the fact that quantities calculated from approximations of the 2PI effective action, which are gauge invariant in the exact theory as well as in an approximated theory at

  17. The Higgs portal above threshold

    Energy Technology Data Exchange (ETDEWEB)

    Craig, Nathaniel [Department of Physics, University of California,Santa Barbara, CA 93106 (United States); Lou, Hou Keong [Department of Physics, Princeton University,Princeton, NJ 08540 (United States); McCullough, Matthew [Theory Division, CERN,1211 Geneva 23 (Switzerland); Thalapillil, Arun [Department of Physics and Astronomy, Rutgers University,Piscataway, NJ 08854 (United States)

    2016-02-18

    The discovery of the Higgs boson opens the door to new physics interacting via the Higgs Portal, including motivated scenarios relating to baryogenesis, dark matter, and electroweak naturalness. We systematically explore the collider signatures of singlet scalars produced via the Higgs Portal at the 14 TeV LHC and a prospective 100 TeV hadron collider. We focus on the challenging regime where the scalars are too heavy to be produced in the decays of an on-shell Higgs boson, and instead are produced primarily via an off-shell Higgs. Assuming these scalars escape the detector, promising channels include missing energy in association with vector boson fusion, monojets, and top pairs. We forecast the sensitivity of searches in these channels at √s=14 & 100 TeV and compare collider reach to the motivated parameter space of singlet-assisted electroweak baryogenesis, Higgs Portal dark matter, and neutral naturalness.

  18. Higgs inflation as a mirage

    Energy Technology Data Exchange (ETDEWEB)

    Barbón, J.L.F.; Casas, J.A. [IFT-UAM/CSIC, Universidad Autónoma de Madrid,C/Nicolás Cabrera 13, 28049 Madrid (Spain); Elias-Miró, J. [Departament de Física/IFAE, Universitat Autònoma de Barcelona,Edifici Cn, 08193 Bellaterra, Barcelona (Spain); Espinosa, J.R. [ICREA/IFAE, Universitat Autònoma de Barcelona,Edifici Cn, 08193 Bellaterra, Barcelona (Spain)

    2015-09-04

    We discuss a simple unitarization of Higgs inflation that is genuinely weakly coupled up to Planckian energies. A large non-minimal coupling between the Higgs and the Ricci curvature is induced dynamically at intermediate energies, as a simple ratio of mass scales. Despite not being dominated by the Higgs field, inflationary dynamics simulates the ‘Higgs inflation’ one would get by blind extrapolation of the low-energy effective Lagrangian, at least qualitatively. Hence, Higgs inflation arises as an approximate ‘mirage’ picture of the true dynamics. We further speculate on the generality of this phenomenon and show that, if Higgs-inflation arises as an effective description, the details of the UV completion are necessary to extract robust quantitative predictions.

  19. Heavy Higgs searches. Flavour matters

    International Nuclear Information System (INIS)

    Gori, Stefania; Paul, Ayan

    2017-10-01

    We point out that the stringent lower bounds on the masses of additional electrically neutral and charged Higgs bosons crucially depend on the flavour structure of their Yukawa interactions. We show that these bounds can easily be evaded by the introduction of flavour-changing neutral currents in the Higgs sector. As an illustration, we study the phenomenology of a two Higgs doublet model with a Yukawa texture singling out the third family of quarks and leptons. We combine constraints from low-energy flavour physics measurements, LHC measurements of the 125 GeV Higgs boson rates, and LHC searches for new heavy Higgs bosons. We propose novel LHC searches that could be performed in the coming years to unravel the existence of these new Higgs bosons.

  20. The Higgs portal above threshold

    International Nuclear Information System (INIS)

    Craig, Nathaniel; Lou, Hou Keong; McCullough, Matthew; Thalapillil, Arun

    2016-01-01

    The discovery of the Higgs boson opens the door to new physics interacting via the Higgs Portal, including motivated scenarios relating to baryogenesis, dark matter, and electroweak naturalness. We systematically explore the collider signatures of singlet scalars produced via the Higgs Portal at the 14 TeV LHC and a prospective 100 TeV hadron collider. We focus on the challenging regime where the scalars are too heavy to be produced in the decays of an on-shell Higgs boson, and instead are produced primarily via an off-shell Higgs. Assuming these scalars escape the detector, promising channels include missing energy in association with vector boson fusion, monojets, and top pairs. We forecast the sensitivity of searches in these channels at √s=14 & 100 TeV and compare collider reach to the motivated parameter space of singlet-assisted electroweak baryogenesis, Higgs Portal dark matter, and neutral naturalness.

  1. Heavy Higgs searches. Flavour matters

    Energy Technology Data Exchange (ETDEWEB)

    Gori, Stefania [Cincinnati Univ., OH (United States). Dept. of Physics; Grojean, Christophe [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Humboldt-Universitaet, Berlin (Germany). Inst. fuer Physik; Juste, Aurelio [Institut de Fisica d' Altes Energies (IFAE), Barcelona (Spain); Institucio Catalanade Recerca i Estudis Avancats (ICREA), Barcelona (Spain); Paul, Ayan [INFN, Sezione di Roma (Italy)

    2017-10-15

    We point out that the stringent lower bounds on the masses of additional electrically neutral and charged Higgs bosons crucially depend on the flavour structure of their Yukawa interactions. We show that these bounds can easily be evaded by the introduction of flavour-changing neutral currents in the Higgs sector. As an illustration, we study the phenomenology of a two Higgs doublet model with a Yukawa texture singling out the third family of quarks and leptons. We combine constraints from low-energy flavour physics measurements, LHC measurements of the 125 GeV Higgs boson rates, and LHC searches for new heavy Higgs bosons. We propose novel LHC searches that could be performed in the coming years to unravel the existence of these new Higgs bosons.

  2. Higgs inflation as a mirage

    International Nuclear Information System (INIS)

    Barbón, J.L.F.; Casas, J.A.; Elias-Miró, J.; Espinosa, J.R.

    2015-01-01

    We discuss a simple unitarization of Higgs inflation that is genuinely weakly coupled up to Planckian energies. A large non-minimal coupling between the Higgs and the Ricci curvature is induced dynamically at intermediate energies, as a simple ratio of mass scales. Despite not being dominated by the Higgs field, inflationary dynamics simulates the ‘Higgs inflation’ one would get by blind extrapolation of the low-energy effective Lagrangian, at least qualitatively. Hence, Higgs inflation arises as an approximate ‘mirage’ picture of the true dynamics. We further speculate on the generality of this phenomenon and show that, if Higgs-inflation arises as an effective description, the details of the UV completion are necessary to extract robust quantitative predictions.

  3. Cosmic Connections

    CERN Document Server

    Ellis, Jonathan Richard

    2003-01-01

    A National Research Council study on connecting quarks with the cosmos has recently posed a number of the more important open questions at the interface between particle physics and cosmology. These questions include the nature of dark matter and dark energy, how the Universe began, modifications to gravity, the effects of neutrinos on the Universe, how cosmic accelerators work, and whether there are new states of matter at high density and pressure. These questions are discussed in the context of the talks presented at this Summer Institute.

  4. Maximally Symmetric Composite Higgs Models.

    Science.gov (United States)

    Csáki, Csaba; Ma, Teng; Shu, Jing

    2017-09-29

    Maximal symmetry is a novel tool for composite pseudo Goldstone boson Higgs models: it is a remnant of an enhanced global symmetry of the composite fermion sector involving a twisting with the Higgs field. Maximal symmetry has far-reaching consequences: it ensures that the Higgs potential is finite and fully calculable, and also minimizes the tuning. We present a detailed analysis of the maximally symmetric SO(5)/SO(4) model and comment on its observational consequences.

  5. Fermions and vortex solutions in Abelian and non-Abelian gauge theories

    International Nuclear Information System (INIS)

    de Vega, H.J.

    1978-01-01

    The interaction of fermions with an extended vortex solution of the Higgs model is investigated. It is found that this interaction has long-range inverse-square tail. It is caused by the coupling of the fermion angular momentum with the vortex gauge field itself. The fermion-vortex bound states present at the threshold and the fermion-vortex scattering are studied. The scattering phase shifts and the Jost functions are obtained for large and small fermion momenta as well as the low-energy cross section which diverges at zero momentum. The quantum field theory in the one-vortex sectors is developed. It is found that, in the presence of fermions, a vortex with an even (odd) number of flux quanta has a half-integer (integer) fermionic number. It follows that a two-quantum vortex is stable. Finally, the stable vortex solution of an SU(2) Higgs model is investigated. The appropriate ansatz for the field is given and radial equations are discussed. It is shown that the interaction of a vortex with any nonsinglet particle has a long-range inverse-square tail

  6. Light Higgs from pole attractor

    International Nuclear Information System (INIS)

    Matsedonskyi, Oleksii; Montull, Marc

    2017-09-01

    We propose a new way of explaining the observed Higgs mass, within the cosmological relaxation framework. The key feature distinguishing it from other scanning scenarios is that the scanning field has a non-canonical kinetic term, whose role is to terminate the scan around the desired Higgs mass value. We propose a concrete realisation of this idea with two new singlet fields, one that scans the Higgs mass, and another that limits the time window in which the scan is possible. Within the provided time period, the scanning field does not significantly evolve after the Higgs field gets close to the Standard Model value, due to particle production friction.

  7. Light Higgs bosons at LEP

    International Nuclear Information System (INIS)

    Ekspong, G.

    1981-11-01

    Among possible production reactions for neutral Higgs bosons it is known that e + e - →Z 0 +H 0 offers advantages of relatively high production cross section and low background from other reactions. With Z 0 decaying to two electrons, which are measured, the existence of a Higgs candidate will be seen as a peak in the missing mass spectrum. It is shown that a sufficiently good mass resolution is obtainable to make a search for Higgs feasible at LEP. In its first phase, the energy of LEP limits the search to Higgs bosons of mass around 10 GeV. (Auth.)

  8. Higgs mass bounds from a chirally invariant lattice Higgs-Yukawa model with overlap fermions

    International Nuclear Information System (INIS)

    Gerhold, Philipp; Kallarackal, Jim

    2008-10-01

    We study the parameter dependence of the Higgs mass in a chirally invariant lattice Higgs-Yukawa model emulating the same Higgs-fermion coupling structure as in the Higgs sector of the electroweak Standard Model. Eventually, the aim is to establish upper and lower Higgs mass bounds. Here we present our preliminary results on the lower Higgs mass bound at several selected values for the cutoff and give a brief outlook towards the upper Higgs mass bound. (orig.)

  9. The limit of the Yang-Mills-Higgs flow on Higgs bundles

    OpenAIRE

    Li, Jiayu; Zhang, Xi

    2014-01-01

    In this paper, we consider the gradient flow of the Yang-Mills-Higgs functional for Higgs pairs on a Hermitian vector bundle $(E, H_{0})$ over a compact K\\"ahler manifold $(M, \\omega )$. We study the asymptotic behavior of the Yang-Mills-Higgs flow for Higgs pairs at infinity, and show that the limiting Higgs sheaf is isomorphic to the double dual of the graded Higgs sheaves associated to the Harder-Narasimhan-Seshadri filtration of the initial Higgs bundle.

  10. Higgs boson, renormalization group, and naturalness in cosmology

    International Nuclear Information System (INIS)

    Barvinsky, A.O.; Kamenshchik, A.Yu.; Kiefer, C.; Starobinsky, A.A.; Steinwachs, C.F.

    2012-01-01

    We consider the renormalization group improvement in the theory of the Standard Model (SM) Higgs boson playing the role of an inflaton with a strong non-minimal coupling to gravity. At the one-loop level with the running of constants taken into account, it leads to a range of the Higgs mass that is entirely determined by the lower WMAP bound on the cosmic microwave background (CMB) spectral index. We find that the SM phenomenology is sensitive to current cosmological data, which suggests to perform more precise CMB measurements as a SM test complementary to the LHC program. By using the concept of a field-dependent cutoff, we show the naturalness of the gradient and curvature expansion in this model within the conventional perturbation theory range of the SM. We also discuss the relation of these results to two-loop calculations and the limitations of the latter caused by parametrization and gauge dependence problems. (orig.)

  11. Integrating over Higgs branches

    International Nuclear Information System (INIS)

    Moore, G.; Shatashvili, S.

    2000-01-01

    We develop some useful techniques for integrating over Higgs branches in supersymmetric theories with 4 and 8 supercharges. In particular, we define a regularized volume for hyperkaehler quotients. We evaluate this volume for certain ALE and ALF spaces in terms of the hyperkaehler periods. We also reduce these volumes for a large class of hyperkaehler quotients to simpler integrals. These quotients include complex coadjoint orbits, instanton moduli spaces on R 4 and ALE manifolds, Hitchin spaces, and moduli spaces of (parabolic) Higgs bundles on Riemann surfaces. In the case of Hitchin spaces the evaluation of the volume reduces to a summation over solutions of Bethe ansatz equations for the non-linear Schroedinger system. We discuss some applications of our results. (orig.)

  12. DELPHI: Higgs candidate

    CERN Multimedia

    2001-01-01

    This track is an example of real data collected from the DELPHI detector on the Large Electron-Positron (LEP) collider at CERN, which ran between 1989 and 2000. Its topology is compatible with what is expected from the associated production of a Z boson and Higgs boson of mass 113 GeV that each decay into two jets. A different pairing of the jets could lead to an interpretation compatible with the production of two Z bosons.

  13. Higgs physics: Theory

    Indian Academy of Sciences (India)

    2012-10-06

    Oct 6, 2012 ... confidence level (CL) established at LEP2 [4]. ... particle is not self-consistent at high energies as it leads to ... matter and thus impact their density in the Universe today. ... s = 7 TeV LHC, lead to a K-factor KNLO ∼ 1.8 in the low Higgs mass ...... See Michael Spira, http://people.web.psi.ch/spira/proglist.html.

  14. Higgs-photon resonances

    Energy Technology Data Exchange (ETDEWEB)

    Dobrescu, Bogdan A.; Fox, Patrick J.; Kearney, John [Fermilab, Theoretical Physics Department, Batavia, IL (United States)

    2017-10-15

    We study models that produce a Higgs boson plus photon (h{sup 0}γ) resonance at the LHC. When the resonance is a Z{sup '} boson, decays to h{sup 0}γ occur at one loop. If the Z{sup '} boson couples at tree level to quarks, then the h{sup 0}γ branching fraction is typically of order 10{sup -5} or smaller. Nevertheless, there are models that would allow the observation of Z{sup '} → h{sup 0}γ at √(s) = 13 TeV with a cross section times branching fraction larger than 1 fb for a Z{sup '} mass in the 200-450 GeV range, and larger than 0.1 fb for a mass up to 800 GeV. The one-loop decay of the Z{sup '} into lepton pairs competes with h{sup 0}γ, even if the Z{sup '} couplings to leptons vanish at tree level. We also present a model in which a Z{sup '} boson decays into a Higgs boson and a pair of collimated photons, mimicking an h{sup 0}γ resonance. In this model, the h{sup 0}γ resonance search would be the discovery mode for a Z{sup '} as heavy as 2 TeV. When the resonance is a scalar, although decay to h{sup 0}γ is forbidden by angular momentum conservation, the h{sup 0} plus collimated photons channel is allowed. We comment on prospects of observing an h{sup 0}γ resonance through different Higgs decays, on constraints from related searches, and on models where h{sup 0} is replaced by a nonstandard Higgs boson. (orig.)

  15. Higgs and supersymmetry

    Energy Technology Data Exchange (ETDEWEB)

    Buchmueller, O. [Imperial College, London (United Kingdom). High Energy Physics Group; Cavanaugh, R. [Fermi National Accelerator Laboratory, Batavia, IL (United States); Illinois Univ, Chicago, IL (United States). Physics Dept.; Roeck, A. de [CERN, Geneva (Switzerland); Antwerp Univ., Wilrijk (BE)] (and others)

    2011-12-15

    Global frequentist fits to the CMSSM and NUHM1 using the MasterCode framework predicted M{sub h}{approx_equal}119 GeV in fits incorporating the (g-2){mu} constraint and {approx_equal}126 GeV without it. Recent results by ATLAS and CMS could be compatible with a Standard Model-like Higgs boson around M{sub h}{approx_equal}125 GeV. We use the previous MasterCode analysis to calculate the likelihood for a measurement of any nominal Higgs mass within the range of 115 to 130 GeV. Assuming a Higgs mass measurement at M{sub h}{approx_equal}125 GeV, we display updated global likelihood contours in the (m{sub 0},m{sub 1/2}) and other parameter planes of the CMSSM and NUHM1, and present updated likelihood functions for m{sub g}, m{sub q{sub R}}, BR(B{sub s} {yields} {mu}{sup +}{mu}{sup -}) and the spin-independent dark matter cross section {sigma}{sup SI}{sub p}. The implications of dropping (g-2){sub {mu}} from the fits are also discussed. We furthermore comment on a hypothetical measurement of M{sub h}{approx_equal}119 GeV. (orig.)

  16. Abelian Chern-Simons theory as the strong large-mass limit of topologically massive abelian gauge theory: the Wilson loop

    International Nuclear Information System (INIS)

    Giavarini, G.; Martin, C.P.; Ruiz Ruiz, F.

    1993-01-01

    We show that the renormalized vacuum expectation value of the Wilson loop for topologically massive abelian gauge theory in bbfR 3 can be defined so that its large-mass limit be the renormalized vaccum expectation value of the Wilson loop for abelian Chern-Simons theory also in bbfR 3 . (orig.)

  17. Higgs Physics and Cosmology

    Science.gov (United States)

    Roberts, Alex

    2016-08-01

    Recently, a new framework for describing the multiverse has been proposed which is based on the principles of quantum mechanics. The framework allows for well-defined predictions, both regarding global properties of the universe and outcomes of particular experiments, according to a single probability formula. This provides complete unification of the eternally inflating multiverse and many worlds in quantum mechanics. We elucidate how cosmological parameters can be calculated in this framework, and study the probability distribution for the value of the cosmological constant. We consider both positive and negative values, and find that the observed value is consistent with the calculated distribution at an order of magnitude level. In particular, in contrast to the case of earlier measure proposals, our framework prefers a positive cosmological constant over a negative one. These results depend only moderately on how we model galaxy formation and life evolution therein. We explore supersymmetric theories in which the Higgs mass is boosted by the non-decoupling D-terms of an extended U(1) X gauge symmetry, defined here to be a general linear combination of hypercharge, baryon number, and lepton number. Crucially, the gauge coupling, gX, is bounded from below to accommodate the Higgs mass, while the quarks and leptons are required by gauge invariance to carry non-zero charge under U(1)X. This induces an irreducible rate, sigmaBR, for pp → X → ll relevant to existing and future resonance searches, and gives rise to higher dimension operators that are stringently constrained by precision electroweak measurements. Combined, these bounds define a maximally allowed region in the space of observables, (sigmaBR, mX), outside of which is excluded by naturalness and experimental limits. If natural supersymmetry utilizes non-decoupling D-terms, then the associated X boson can only be observed within this window, providing a model independent 'litmus test' for this broad

  18. Learning from Higgs physics at future Higgs factories

    Energy Technology Data Exchange (ETDEWEB)

    Gu, Jiayin [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Chinese Academy of Sciences, Beijing (China). Center for Future High Energy Physics; Li, Honglei [Jinan Univ., Shandong (China). School of Physics and Technology; Arizona Univ., Tucson, AZ (United States). Dept. of Physics; Liu, Zhen [Fermi National Accelerator Laboratory, Batavia, IL (United States). Theoretical Physics Dept.; Su, Shufang [Arizona Univ., Tucson, AZ (United States). Dept. of Physics; Su, Wei [Arizona Univ., Tucson, AZ (United States). Dept. of Physics; Chinese Academy of Sciences, Beijing (China). Inst. of Theoretical Physics; Univ. of Chinese Academy of Sciences, Beijing (China). School of Physics

    2017-09-15

    Future Higgs factories can reach impressive precision on Higgs property measurements. In this paper, instead of conventional focus of Higgs precision in certain interaction bases, we explored its sensitivity to new physics models at the electron-positron colliders. In particular, we studied two categories of new physics models, Standard Model (SM) with a real scalar singlet extension, and Two Higgs Double Model (2HDM) as examples of weakly-interacting models, Minimal Composite Higgs Model (MCHM) and three typical patterns of the more general operator counting for strong interacting models as examples of strong dynamics. We performed a global fit to various Higgs search channels to obtain the 95% C.L. constraints on the model parameter space. In the SM with a singlet extension, we obtained the limits on the singlet-doublet mixing angle sinθ, as well as the more general Wilson coefficients of the induced higher dimensional operators. In the 2HDM, we analyzed tree level effects in tanβ vs. cos(β-α) plane, as well as the one-loop contributions from the heavy Higgs bosons in the alignment limit to obtain the constraints on heavy Higgs masses for different types of 2HDM. In strong dynamics models, we obtained lower limits on the strong dynamics scale. In addition, once deviations of Higgs couplings are observed, they can be used to distinguish different models. We also compared the sensitivity of various future Higgs factories, namely Circular Electron Positron Collider (CEPC), Future Circular Collider (FCC)-ee and International Linear Collider (ILC).

  19. Learning from Higgs physics at future Higgs factories

    International Nuclear Information System (INIS)

    Gu, Jiayin; Chinese Academy of Sciences, Beijing; Li, Honglei; Arizona Univ., Tucson, AZ; Liu, Zhen; Su, Shufang; Su, Wei; Chinese Academy of Sciences, Beijing; Univ. of Chinese Academy of Sciences, Beijing

    2017-09-01

    Future Higgs factories can reach impressive precision on Higgs property measurements. In this paper, instead of conventional focus of Higgs precision in certain interaction bases, we explored its sensitivity to new physics models at the electron-positron colliders. In particular, we studied two categories of new physics models, Standard Model (SM) with a real scalar singlet extension, and Two Higgs Double Model (2HDM) as examples of weakly-interacting models, Minimal Composite Higgs Model (MCHM) and three typical patterns of the more general operator counting for strong interacting models as examples of strong dynamics. We performed a global fit to various Higgs search channels to obtain the 95% C.L. constraints on the model parameter space. In the SM with a singlet extension, we obtained the limits on the singlet-doublet mixing angle sinθ, as well as the more general Wilson coefficients of the induced higher dimensional operators. In the 2HDM, we analyzed tree level effects in tanβ vs. cos(β-α) plane, as well as the one-loop contributions from the heavy Higgs bosons in the alignment limit to obtain the constraints on heavy Higgs masses for different types of 2HDM. In strong dynamics models, we obtained lower limits on the strong dynamics scale. In addition, once deviations of Higgs couplings are observed, they can be used to distinguish different models. We also compared the sensitivity of various future Higgs factories, namely Circular Electron Positron Collider (CEPC), Future Circular Collider (FCC)-ee and International Linear Collider (ILC).

  20. Inflation and cosmic strings in models with dynamical symmetry breaking

    International Nuclear Information System (INIS)

    Matheson, A.M.; Brandenberger, R.H.

    1989-01-01

    We derive the effective action for the composite field which in dynamical symmetry breaking plays the role of the Higgs field. We show that this effective action does not give rise to inflation. It is, however, possible to obtain topological defects such as cosmic strings. There will be fermionic zero modes trapped on the strings, and the strings will therefore be superconducting in a generalized sense. (orig.)

  1. Fundamental Composite (Goldstone) Higgs Dynamics

    DEFF Research Database (Denmark)

    Cacciapaglia, G.; Sannino, Francesco

    2014-01-01

    We provide a unified description, both at the effective and fundamental Lagrangian level, of models of composite Higgs dynamics where the Higgs itself can emerge, depending on the way the electroweak symmetry is embedded, either as a pseudo-Goldstone boson or as a massive excitation of the conden...... searches of new physics at the Large Hadron Collider....

  2. Origins of inert Higgs doublets

    Directory of Open Access Journals (Sweden)

    Thomas W. Kephart

    2016-05-01

    Full Text Available We consider beyond the standard model embedding of inert Higgs doublet fields. We argue that inert Higgs doublets can arise naturally in grand unified theories where the necessary associated Z2 symmetry can occur automatically. Several examples are discussed.

  3. Higgs particle searches at LEP

    International Nuclear Information System (INIS)

    Martin, J.P.

    1996-01-01

    Results on searches for the Higgs particle performed by the four LEP experiments are received in the framework of the Standard Model, Two Doublet Model, and Minimal Supersymmetric Model. The combined mass lower limit for the standard Higgs boson is 66 GeV/c 2 at 95 % CL for a statistics of 14.6 Million hadronic Z decays. (authors)

  4. Higgs Portal into Hidden Sectors

    CERN Multimedia

    CERN. Geneva

    2007-01-01

    Several attractive theoretical ideas suggest the existence of one or more 'hidden sectors' consisting of standard model singlet fields, some of which may not be too heavy. There is a profound reason to think that the Higgs sector might provide the first access to these hidden sectors. This scenario could affect Higgs phenomenology in drastic ways.

  5. Higgs physics at the LHC

    CERN Document Server

    Mariotti, Chiara

    2017-01-01

    The first measurements of the mass, the width, and the couplings of the newly discovered Higgs boson at LHC at 7 and 8 TeV center of mass energy will be reviewed. Recent results at 13 TeV center of mass energy will be presented. Finally, searches for additional Higgs bosons in models beyond the standard model will be summarised.

  6. Higgs boson search at ATLAS

    International Nuclear Information System (INIS)

    Hanninger, Guilherme Nunes

    2012-01-01

    Full text: The Standard Model of particle physics (SM) has been extremely successful describing the elementary particles and their interactions. It also features a theory describing the origin of particle masses: the 'Higgs mechanism', which postulates the existence of a new particle called the 'Higgs boson'. In 2011 and 2012, tantalising hints of the Higgs boson were reported by the experiments at the Large Hadron Collider (LHC). The results of the search for the Standard Model Higgs Boson with the ATLAS detector in proton-proton collisions at the LHC at 7 and 8 TeV center-of-mass energies are presented. A large number of the Higgs Boson decay channels, such as photon, tau, W and Z pairs, as well as for combined channels in the mass range from 110 GeV to 600 GeV are reviewed and discussed. The combined upper limits on the production cross section as a function of the Higgs Boson mass are derived. Practical methods to estimate the backgrounds using control samples in real data are discussed. Validation of some of the data driven background estimation methods using the early 7 TeV ATLAS data at the LHC is also presented. In addition, searches for Higgs Bosons in scenarios beyond the Standard Model (BSM) lead to improved constraints on the Higgs sector of BSM theories such as Supersymmetry. (author)

  7. Standard model without Higgs particles

    International Nuclear Information System (INIS)

    Kovalenko, S.G.

    1992-10-01

    A modification of the standard model of electroweak interactions with the nonlocal Higgs sector is proposed. Proper form of nonlocality makes Higgs particles unobservable after the electroweak symmetry breaking. They appear only as a virtual state because their propagator is an entire function. We discuss some specific consequences of this approach comparing it with the conventional standard model. (author). 12 refs

  8. Limits on light Higgs bosons

    International Nuclear Information System (INIS)

    Dawson, S.

    1988-01-01

    Experimental limits on light Higgs bosons (M/sub H/ < 5 GeV) are examined. Particular attention is paid to the process K → πH. It is shown that there may be an allowed window for light Higgs bosons between about 100 and 210 MeV. 13 refs., 2 figs

  9. Sasakian and Parabolic Higgs Bundles

    Science.gov (United States)

    Biswas, Indranil; Mj, Mahan

    2018-03-01

    Let M be a quasi-regular compact connected Sasakian manifold, and let N = M/ S 1 be the base projective variety. We establish an equivalence between the class of Sasakian G-Higgs bundles over M and the class of parabolic (or equivalently, ramified) G-Higgs bundles over the base N.

  10. Non-abelian bosonization and higher spin symmetries

    International Nuclear Information System (INIS)

    Zaikov, R.P.

    1995-03-01

    The higher spin properties of the non-abelian bosonization in the classical theory are investigated. Both the symmetry transformation algebra and the classical current algebra for the non-abelian free fermionic model are linear Gel'fand-Dickey type algebras. However, for the corresponding WZNW model these algebras are different. There exist symmetry transformations which algebra remains the linear Gel'fand-Dickey algebra while in the corresponding current algebra nonlinear terms arised. Moreover, this algebra is closed (in Casimir form) only in an extended current space in which nonlinear currents are included. In the affine sector, it is necessary to include higher isotopic spin current too. As result we have have a triple extended algebra. (author). 30 refs

  11. Commensurate scale relations and the Abelian correspondence principle

    International Nuclear Information System (INIS)

    Brodsky, S.J.

    1998-06-01

    Commensurate scale relations are perturbative QCD predictions which relate observable to observable at fixed relative scales, independent of the choice of intermediate renormalization scheme or other theoretical conventions. A prominent example is the generalized Crewther relation which connects the Bjorken and Gross-Llewellyn Smith deep inelastic scattering sum rules to measurements of the e + e - annihilation cross section. Commensurate scale relations also provide an extension of the standard minimal subtraction scheme which is analytic in the quark masses, has non-ambiguous scale-setting properties, and inherits the physical properties of the effective charge α V (Q 2 ) defined from the heavy quark potential. The author also discusses a property of perturbation theory, the Abelian correspondence principle, which provides an analytic constraint on non-Abelian gauge theory for N C → 0

  12. Maximal Abelian gauge and a generalized BRST transformation

    Directory of Open Access Journals (Sweden)

    Shinichi Deguchi

    2016-05-01

    Full Text Available We apply a generalized Becchi–Rouet–Stora–Tyutin (BRST formulation to establish a connection between the gauge-fixed SU(2 Yang–Mills (YM theories formulated in the Lorenz gauge and in the Maximal Abelian (MA gauge. It is shown that the generating functional corresponding to the Faddeev–Popov (FP effective action in the MA gauge can be obtained from that in the Lorenz gauge by carrying out an appropriate finite and field-dependent BRST (FFBRST transformation. In this procedure, the FP effective action in the MA gauge is found from that in the Lorenz gauge by incorporating the contribution of non-trivial Jacobian due to the FFBRST transformation of the path integral measure. The present FFBRST formulation might be useful to see how Abelian dominance in the MA gauge is realized in the Lorenz gauge.

  13. Topological insulating phases of non-Abelian anyonic chains

    Energy Technology Data Exchange (ETDEWEB)

    DeGottardi, Wade

    2014-08-01

    Boundary conformal field theory is brought to bear on the study of topological insulating phases of non- Abelian anyonic chains. These phases display protected anyonic end modes. We consider spin-1/2 su(2)t chains at any level k, focusing on the most prominent examples: the case k = 2 describes Ising anyons (equivalent to Majorana fermions) and k = 3 corresponds to Fibonacci anyons. The method we develop is quite general and rests on a deep connection between boundary conformal field theory and topological symmetry. This method tightly constrains the nature of the topological insulating phases of these chains for general k. Emergent anyons which arise at domain walls are shown to have the same braiding properties as the physical quasiparticles. This suggests a "solid-stat.e" topological quantum computation scheme in which emergent anyons are braided by tuning the couplings of non-Abelian quasiparticles in a fixed network.

  14. Fermion zero modes in the vortex background of a Chern-Simons-Higgs theory with a hidden sector

    Energy Technology Data Exchange (ETDEWEB)

    Lozano, Gustavo [Departamento de Física, FCEYN Universidad de Buenos Aires & IFIBA CONICET,Pabellón 1 Ciudad Universitaria, 1428 Buenos Aires (Argentina); Mohammadi, Azadeh [Departamento de Física, Universidade Federal da Paraíba,58.059-970, Caixa Postal 5.008, João Pessoa, PB (Brazil); Schaposnik, Fidel A. [Departamento de Física, Universidad Nacional de La Plata/IFLP/CICBA,CC 67, 1900 La Plata (Argentina)

    2015-11-06

    In this paper we study a 2+1 dimensional system in which fermions are coupled to the self-dual topological vortex in U(1)×U(1) Chern-Simons theory, where both U(1) gauge symmetries are spontaneously broken. We consider two Abelian Higgs scalars with visible and hidden sectors coupled to a fermionic field through three interaction Lagrangians, where one of them violates the fermion number. Using a fine tuning procedure, we could obtain the number of the fermionic zero modes which is equal to the absolute value of the sum of the vortex numbers in the visible and hidden sectors.

  15. Massive Abelian gauge fields coupled with nonconserved currents

    International Nuclear Information System (INIS)

    Nakazato, Hiromichi; Namiki, Mikio; Yamanaka, Yoshiya; Yokoyama, Kan-ichi.

    1985-04-01

    A massive Abelian gauge field coupled with a nonconserved mass-changing current is described within the framework of canonical quantum theory with indefinite metric. In addition to the conventional Lagrange multiplier fields, another ghost field is introduced to preserve gauge invariance and unitarity of a physical S-matrix in the case of the nonconserved current. The renormalizability of the theory is explicitly shown in the sense of superpropagator approach for nonpolynomial Lagrangian theories. (author)

  16. Pair creation by an external non-Abelian field

    International Nuclear Information System (INIS)

    Hamil, B; Chetouani, L

    2014-01-01

    The problem of the creation of particle pairs of spin 0 and 1/2 from the vacuum by an external field of a non-Abelian type plane wave on the light cone is considered following the approach of Schwinger. Using simple shifts and only by an algebraic calculation, it is shown that with this form of interaction, there is no creation of particles. (paper)

  17. Quasi-degenerate neutrinos from an abelian family symmetry

    International Nuclear Information System (INIS)

    Binetruy, P.; Lavignac, S.; Petcov, S.; Ist. Nazionale di Fisica Nucleare, Trieste; Ramond, P.

    1996-01-01

    The authors show that models with an abelian family symmetry which accounts for the observed hierarchies of masses and mixings in the quark sector may also accommodate quasi-degeneracies in the neutrino mass spectrum. Such approximate degeneracies are, in this context, associated with large mixing angles. The parameters of this class of models are constrained. The authors discuss their phenomenological implications for present and foreseen neutrino experiments

  18. Construction of non-Abelian gauge theories on noncommutative spaces

    International Nuclear Information System (INIS)

    Jurco, B.; Schupp, P.; Moeller, L.; Wess, J.; Max-Planck-Inst. fuer Physik, Muenchen; Humboldt-Univ., Berlin; Schraml, S.; Humboldt-Univ., Berlin

    2001-01-01

    We present a formalism to explicitly construct non-Abelian gauge theories on noncommutative spaces (induced via a star product with a constant Poisson tensor) from a consistency relation. This results in an expansion of the gauge parameter, the noncommutative gauge potential and fields in the fundamental representation, in powers of a parameter of the noncommutativity. This allows the explicit construction of actions for these gauge theories. (orig.)

  19. Construction of non-Abelian gauge theories on noncommutative spaces

    Energy Technology Data Exchange (ETDEWEB)

    Jurco, B.; Schupp, P. [Sektion Physik, Muenchen Univ. (Germany); Moeller, L.; Wess, J. [Sektion Physik, Muenchen Univ. (Germany); Max-Planck-Inst. fuer Physik, Muenchen (Germany); Humboldt-Univ., Berlin (Germany). Inst. fuer Physik; Schraml, S. [Sektion Physik, Muenchen Univ. (Germany)

    2001-06-01

    We present a formalism to explicitly construct non-Abelian gauge theories on noncommutative spaces (induced via a star product with a constant Poisson tensor) from a consistency relation. This results in an expansion of the gauge parameter, the noncommutative gauge potential and fields in the fundamental representation, in powers of a parameter of the noncommutativity. This allows the explicit construction of actions for these gauge theories. (orig.)

  20. Abelianization of the F-divided fundamental group scheme

    Indian Academy of Sciences (India)

    INDRANIL BISWAS

    Abelianization of the F-divided fundamental group scheme. 283. Restrict the Poincaré bundle to X × Pic0 red(X). Viewing this restriction as a line bundle on Pic0 red(X) parametrized by X, we ... which gives rise to an exact sequence of the projective systems considered in Definition. 2.3. Applying the projective limit functor ...

  1. Characteristic properties of large subgroups in primary abelian groups

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    1. Introduction. The main purpose of this article is to study the relations between the structures of primary abelian groups and their ..... Case 2. γ − 2 exists. Let Gγ −1 be a direct summand of Gγ . We remark, in connection with Case 1, that any pγ −1. -high subgroup of Gγ is isomorphic to Gγ −1. As far as Case 2 is concerned, ...

  2. Abelian Sandpile Model (ASM) and Infinite Volume Limit

    Indian Academy of Sciences (India)

    ASM- Properties. Any possible sequence of topplings leads to the same stable configuration [Dhar]. The result of particle addition at and subsequent relaxation is given by an operator. £ бвд £ евд £. , where вд £. ¢. ¦. ¤ззз ¤ вг иг . £. ©. ¢ йа£. (Abelian). 7-b ...

  3. Renormalization of an abelian gauge theory in stochastic quantization

    International Nuclear Information System (INIS)

    Chaturvedi, S.; Kapoor, A.K.; Srinivasan, V.

    1987-01-01

    The renormalization of an abelian gauge field coupled to a complex scalar field is discussed in the stochastic quantization method. The super space formulation of the stochastic quantization method is used to derive the Ward Takahashi identities associated with supersymmetry. These Ward Takahashi identities together with previously derived Ward Takahashi identities associated with gauge invariance are shown to be sufficient to fix all the renormalization constants in terms of scaling of the fields and of the parameters appearing in the stochastic theory. (orig.)

  4. An introduction to non-Abelian discrete symmetries for particle physicists

    CERN Document Server

    Ishimori, Hajime; Ohki, Hiroshi; Okada, Hiroshi; Shimizu, Yusuke; Tanimoto, Morimitsu

    2012-01-01

    These lecture notes provide a tutorial review of non-Abelian discrete groups and show some applications to issues in physics where discrete symmetries constitute an important principle for model building in particle physics. While Abelian discrete symmetries are often imposed in order to control couplings for particle physics - in particular model building beyond the standard model - non-Abelian discrete symmetries have been applied to understand the three-generation flavor structure in particular. Indeed, non-Abelian discrete symmetries are considered to be the most attractive choice for the flavor sector: model builders have tried to derive experimental values of quark and lepton masses, and mixing angles by assuming non-Abelian discrete flavor symmetries of quarks and leptons, yet, lepton mixing has already been intensively discussed in this context, as well. The possible origins of the non-Abelian discrete symmetry for flavors is another topic of interest, as they can arise from an underlying theory -...

  5. Non-Abelian magnetized blackholes and unstable attractors

    Energy Technology Data Exchange (ETDEWEB)

    Mosaffa, A.E. [Institute for Studies in Theoretical Physics and Mathematics (IPM), PO Box 19395-5531, Tehran (Iran, Islamic Republic of)], E-mail: mosaffa@theory.ipm.ac.ir; Randjbar-Daemi, S. [The Abdus Salam International Centre for Theoretical Physics, Strada Costiera 11 34014, Trieste (Italy)], E-mail: seif@ictp.trieste.it; Sheikh-Jabbari, M.M. [Institute for Studies in Theoretical Physics and Mathematics (IPM), PO Box 19395-5531, Tehran (Iran, Islamic Republic of)], E-mail: jabbari@theory.ipm.ac.ir

    2008-01-21

    Fluctuations of non-Abelian gauge fields in a background magnetic charge contain 'tachyonic' modes which as we will show cause an instability of the background. We extend this result to the cases where the background charge (flux) is coupled to four-dimensional Einstein gravity and show that the corresponding spherically symmetric geometries, which in the absence of a cosmological constant are of the form of (colored) Reissner-Nordstroem blackholes or the AdS{sub 2}xS{sup 2}, are also unstable unless the flux assumes its smallest allowed value, in which case the configuration is stable. We discuss the relevance of these instabilities to several places in string theory including various string compactifications and the attractor mechanism. Our results for the latter imply that the attractor mechanism shown to work for the extremal Abelian charged blackholes, cannot be applied in a straightforward way to the extremal non-Abelian colored blackholes, with the exception of the minimally charged stable ones.

  6. Free Abelian 2-form gauge theory: BRST approach

    International Nuclear Information System (INIS)

    Malik, R.P.

    2008-01-01

    We discuss various symmetry properties of the Lagrangian density of a four- (3+1)-dimensional (4D) free Abelian 2-form gauge theory within the framework of Becchi-Rouet-Stora-Tyutin (BRST) formalism. The present free Abelian gauge theory is endowed with a Curci-Ferrari type condition, which happens to be a key signature of the 4D non-Abelian 1-form gauge theory. In fact, it is due to the above condition that the nilpotent BRST and anti-BRST symmetries of our present theory are found to be absolutely anticommuting in nature. For the present 2-form theory, we discuss the BRST, anti-BRST, ghost and discrete symmetry properties of the Lagrangian densities and derive the corresponding conserved charges. The algebraic structure, obeyed by the above conserved charges, is deduced and the constraint analysis is performed with the help of physicality criteria, where the conserved and nilpotent (anti-)BRST charges play completely independent roles. These physicality conditions lead to the derivation of the above Curci-Ferrari type restriction, within the framework of the BRST formalism, from the constraint analysis. (orig.)

  7. Top quark asymmetry from a non-Abelian horizontal symmetry

    CERN Document Server

    Jung, Sunghoon; Wells, James D

    2011-01-01

    Motivated by the persistence of a large measured top quark forward-backward asymmetry at the Tevatron, we examine a model of non-Abelian flavor gauge symmetry. The exchange of the gauge bosons in the $t$-channel can give a large $\\Afb$ due to the forward Rutherford scattering peak. We address generic constraints on non-Abelian $t$-channel physics models including flavor diagonal resonances and potentially dangerous contributions to inclusive top pair cross sections. We caution on the general difficulty of comparing theoretical predictions for top quark signals to the existing experimental results due to potentially important acceptance effects. The first signature at the Large Hadron Collider can be a large inclusive top pair cross section, or like-sign dilepton events, although the latter signal is much smaller than in Abelian models. Deviations of the invariant mass distributions at the LHC will also be promising signatures. A more direct consistency check of the Tevatron asymmetry through the LHC asymmetry...

  8. Unparticle-Higgs field mixing: Mikheyev-Smirnov-Wolfenstein resonances, seesaw mechanism, and spinodal instabilities

    International Nuclear Information System (INIS)

    Boyanovsky, D.; Holman, R.; Hutasoit, Jimmy A.

    2009-01-01

    Motivated by slow-roll inflationary cosmology we study a scalar unparticle weakly coupled to a Higgs field in the broken symmetry phase. The mixing between the unparticle and the Higgs field results in a seesaw type matrix and the mixing angles feature a Mikheyev-Smirnov-Wolfenstein (MSW) effect as a consequence of the unparticle field being noncanonical. We find two (MSW) resonances for small and large spacelike momenta. The unparticlelike mode features a nearly flat potential with spinodal instabilities and a large expectation value. An effective potential for the unparticlelike field is generated from the Higgs potential, but with couplings suppressed by a large power of the small seesaw ratio. The dispersion relation for the Higgs-like mode features an imaginary part even at ''tree level'' as a consequence of the fact that the unparticle field describes a multiparticle continuum. Mixed unparticle-Higgs propagators reveal the possibility of oscillations, albeit with short coherence lengths. The results are generalized to the case in which the unparticle features a mass gap, in which case a low energy MSW resonance may occur for lightlike momenta depending on the scales. Unparticle-Higgs mixing leads to an effective unparticle potential of the new-inflation form. Slow-roll variables are suppressed by seesaw ratios and the anomalous dimensions and favor a red spectrum of scalar perturbations consistent with cosmic microwave background data.

  9. Unparticle-Higgs field mixing: Mikheyev-Smirnov-Wolfenstein resonances, seesaw mechanism, and spinodal instabilities

    Science.gov (United States)

    Boyanovsky, D.; Holman, R.; Hutasoit, Jimmy A.

    2009-04-01

    Motivated by slow-roll inflationary cosmology we study a scalar unparticle weakly coupled to a Higgs field in the broken symmetry phase. The mixing between the unparticle and the Higgs field results in a seesaw type matrix and the mixing angles feature a Mikheyev-Smirnov-Wolfenstein (MSW) effect as a consequence of the unparticle field being noncanonical. We find two (MSW) resonances for small and large spacelike momenta. The unparticlelike mode features a nearly flat potential with spinodal instabilities and a large expectation value. An effective potential for the unparticlelike field is generated from the Higgs potential, but with couplings suppressed by a large power of the small seesaw ratio. The dispersion relation for the Higgs-like mode features an imaginary part even at “tree level” as a consequence of the fact that the unparticle field describes a multiparticle continuum. Mixed unparticle-Higgs propagators reveal the possibility of oscillations, albeit with short coherence lengths. The results are generalized to the case in which the unparticle features a mass gap, in which case a low energy MSW resonance may occur for lightlike momenta depending on the scales. Unparticle-Higgs mixing leads to an effective unparticle potential of the new-inflation form. Slow-roll variables are suppressed by seesaw ratios and the anomalous dimensions and favor a red spectrum of scalar perturbations consistent with cosmic microwave background data.

  10. Future prospects of Higgs Physics at CMS

    OpenAIRE

    Marono, Miguel Vidal

    2014-01-01

    The Higgs boson physics reach of the CMS detector with 300(0) fb-1 of proton-proton collisions at sqrt{s} = 14 TeV is presented. Precision measurements of the Higgs boson properties, Higgs boson pair production and self-coupling, rare Higgs boson decays, and the potential for additional Higgs bosons are discussed. The Higgs boson physics reach of the CMS detector with 300(0) fb-1 of proton-proton collisions at sqrt{s} = 14 TeV is presented. Precision measurements of the Higgs boson propert...

  11. A Conclusive Test of Abelian Dominance Hypothesis for Topological Charge in the QCD Vacuum

    OpenAIRE

    Sasaki, Shoichi; Miyamura, Osamu

    1998-01-01

    We study the topological feature in the QCD vacuum based on the hypothesis of abelian dominance. The topological charge $Q_{\\rm SU(2)}$ can be explicitly represented in terms of the monopole current in the abelian dominated system. To appreciate its justification, we directly measure the corresponding topological charge $Q_{\\rm Mono}$, which is reconstructed only from the monopole current and the abelian component of gauge fields, by using the Monte Carlo simulation on SU(2) lattice. We find ...

  12. SU(2) gauge theory in the maximally Abelian gauge without monopoles

    International Nuclear Information System (INIS)

    Shmakov, S.Yu.; Zadorozhnyj, A.M.

    1995-01-01

    We present an algorithm for simulation of SU(2) lattice gauge theory under the maximally Abelian (MA) gauge and first numerical results for the theory without Abelian monopoles. The results support the idea that nonperturbative interaction arises between monopoles and residual Abelian field and the other interactions are perturbative. It is shown that the Gribov region for the theory with the MA gauge fixed is non-connected. 12 refs., 1 tab

  13. Non-Abelian formulation of a vector-tensor gauge theory with topological coupling

    International Nuclear Information System (INIS)

    Barcelos Neto, J.; Cabo, A.; Silva, M.B.D.

    1995-08-01

    We obtain a non-Abelian version of a theory involving vector and tensor and tensor gauge fields interacting via a massive topological coupling, besides the nonminimum one. The new fact is that the non-Abelian theory is not reducible and Stuckelberg fields are introduced in order to compatibilize gauge invariance, nontrivial physical degrees of freedom and the limit of the Abelian case. (author). 9 refs

  14. Higgs mass in the gauge-Higgs unification

    International Nuclear Information System (INIS)

    Haba, Naoyuki; Takenaga, Kazunori; Yamashita, Toshifumi

    2005-01-01

    The gauge-Higgs unification theory identifies the zero mode of the extra-dimensional component of the gauge field as the usual Higgs doublet. Since this degree of freedom is the Wilson line phase, the Higgs does not have the mass term nor quartic coupling at the tree level. Through quantum corrections, the Higgs can take a vacuum expectation value, and its mass is induced. The radiatively induced mass tends to be small, although it can be lifted to O(100) GeV by introducing the O(10) numbers of bulk fields. Perturbation theory becomes unreliable when a large number of bulk fields are introduced. We reanalyze the Higgs mass based on useful expansion formulae for the effective potential and find that even a small number of bulk field can have the suitable heavy Higgs mass. We show that a small (large) number of bulk fields are enough (needed) when the SUSY breaking mass is large (small). We also study the case of introducing the soft SUSY breaking scalar masses in addition to the Scherk-Schwarz SUSY breaking and obtain the heavy Higgs mass due to the effect of the scalar mass

  15. Handbook of LHC Higgs Cross Sections: 3. Higgs Properties

    Energy Technology Data Exchange (ETDEWEB)

    Heinemeyer, S; et al.

    2013-01-01

    This Report summarizes the results of the activities in 2012 and the first half of 2013 of the LHC Higgs Cross Section Working Group. The main goal of the working group was to present the state of the art of Higgs Physics at the LHC, integrating all new results that have appeared in the last few years. This report follows the first working group report Handbook of LHC Higgs Cross Sections: 1. Inclusive Observables (CERN-2011-002) and the second working group report Handbook of LHC Higgs Cross Sections: 2. Differential Distributions (CERN-2012-002). After the discovery of a Higgs boson at the LHC in mid-2012 this report focuses on refined prediction of Standard Model (SM) Higgs phenomenology around the experimentally observed value of 125-126 GeV, refined predictions for heavy SM-like Higgs bosons as well as predictions in the Minimal Supersymmetric Standard Model and first steps to go beyond these models. The other main focus is on the extraction of the characteristics and properties of the newly discovered particle such as couplings to SM particles, spin and CP-quantum numbers etc.

  16. Faddeev–Jackiw quantization of an Abelian and non-Abelian exotic action for gravity in three dimensions

    Energy Technology Data Exchange (ETDEWEB)

    Escalante, Alberto, E-mail: aescalan@ifuap.buap.mx; Manuel-Cabrera, J., E-mail: jmanuel@ifuap.buap.mx

    2015-10-15

    A detailed Faddeev–Jackiw quantization of an Abelian and non-Abelian exotic action for gravity in three dimensions is performed. We obtain for the theories under study the constraints, the gauge transformations, the generalized Faddeev–Jackiw brackets and we perform the counting of physical degrees of freedom. In addition, we compare our results with those found in the literature where the canonical analysis is developed, in particular, we show that both the generalized Faddeev–Jackiw brackets and Dirac’s brackets coincide to each other. Finally we discuss some remarks and prospects. - Highlights: • A detailed Faddeev–Jackiw analysis for exotic action of gravity is performed. • We show that Dirac’s brackets and Generalized [FJ] brackets are equivalent. • Without fixing the gauge exotic action is a non-commutative theory. • The fundamental gauge transformations of the theory are found. • Dirac and Faddeev–Jackiw approaches are compared.

  17. submitter LEP Higgs

    CERN Document Server

    Mori, T

    2001-01-01

    As the LEP experiments verified the gauge interactions more and more rigorously, searches for the Higgs boson, which forms the very basis of the gauge theories, were taking on more and more importance in LEP physics. How this last missing particle in the Standard Model may be discovered (or totally excluded) will be the key to new physics beyond the Standard Model. Here I briefly describe how the LEP experiments together have closed in on this God particle during their 11 year running.

  18. CMS Higgs boson results

    CERN Document Server

    Bluj, Michal Jacek

    2018-01-01

    In this report we review recent Higgs boson results obtained with pp collisions at $\\sqrt{s}=\\,$13 TeV recorded by the CMS detector in 2016 for an integrated luminosity of 35.9fb$^{\\text{-1}}$. The 2016 data allowed the observation of the $H \\to \\tau\\tau$ and $H \\to WW$ decays with high significance. We also present a combined measurement based on a full set of CMS analyses performed with 2016 data. These results are compatible with the standard model predictions with precision of several measurements exceeding results from combination of ATLAS and CMS data collected in 2011 and 2012.

  19. The static quark potential from the gauge independent Abelian decomposition

    Directory of Open Access Journals (Sweden)

    Nigel Cundy

    2015-06-01

    Full Text Available We investigate the relationship between colour confinement and the gauge independent Cho–Duan–Ge Abelian decomposition. The decomposition is defined in terms of a colour field n; the principle novelty of our study is that we have used a unique definition of this field in terms of the eigenvectors of the Wilson Loop. This allows us to establish an equivalence between the path-ordered integral of the non-Abelian gauge fields and an integral over an Abelian restricted gauge field which is tractable both theoretically and numerically in lattice QCD. We circumvent path ordering without requiring an additional path integral. By using Stokes' theorem, we can compute the Wilson Loop in terms of a surface integral over a restricted field strength, and show that the restricted field strength may be dominated by certain structures, which occur when one of the quantities parametrising the colour field n winds itself around a non-analyticity in the colour field. If they exist, these structures will lead to an area law scaling for the Wilson Loop and provide a mechanism for quark confinement. Unlike most studies of confinement using the Abelian decomposition, we do not rely on a dual-Meissner effect to create the inter-quark potential.We search for these structures in quenched lattice QCD. We perform the Abelian decomposition, and compare the electric and magnetic fields with the patterns expected theoretically. We find that the restricted field strength is dominated by objects which may be peaks of a single lattice spacing in size or extended string-like lines of electromagnetic flux. The objects are not isolated monopoles, as they generate electric fields in addition to magnetic fields, and the fields are not spherically symmetric, but may be either caused by a monopole/anti-monopole condensate, some other types of topological objects, or a combination of these. Removing these peaks removes the area law scaling of the string tension, suggesting that

  20. Cosmic odyssey

    International Nuclear Information System (INIS)

    Heidmann, J.

    1989-01-01

    The immensity of the cosmos, the richness of the universe, the limits of space and time: these are the themes of Cosmic Odyssey, which takes the reader on imaginary journeys through the past, present and future of our universe. After a first look at the starry night sky, the enigmas posed since ancient times by the universe are reviewed. There then follows a broadbrush view of the universe as we understand it today. Following this, a trio of chapters take us to ultimate questions about its nature. The author explores in turn the relativistic universe, the quantum universe and the inflationary universe. Finally the journey returns to questions that touch on our own presence in the universe. Cosmology, the science of understanding the nature of the universe as a whole, has gone through an extraordinary revolution in its approach. This book explains in detail the link between particle physics and cosmology, the very early universe, the significance of Grand Unified Theory and superstrings, the magical qualities of the inflationary universe, and the seemingly bleak scenarios for the farthest future. (author)

  1. Higgs and confinement phases in the fundamental SU(2) Higgs model: Mean field analysis

    International Nuclear Information System (INIS)

    Damgaard, P.H.; Heller, U.M.

    1985-01-01

    The phase diagram of the four-dimensional SU(2) gauge-Higgs model with Higgs field in the fundamental representation is derived by mean field techniques. When the Higgs field is allowed to fluctuate in. Magnitude, the analytic connection between Higgs and confinement phases breaks down for sufficiently small values of the quark Higgs coupling, indicating that the Higgs and confinement phases for these couplings are strictly distinct phases. (orig.)

  2. The Higgs Portal and Cosmology

    Energy Technology Data Exchange (ETDEWEB)

    Assamagan, Ketevi [Brookhaven National Lab. (BNL), Upton, NY (United States); Chen, Chien-Yi [Perimeter Inst. for Theoretical Physics, Waterloo, ON (Canada); Univ. of Victoria, BC (Canada); Chou, John Paul [Rutgers Univ., Piscataway, NJ (United States); Curtin, David [Univ. of Maryland, College Park, MD (United States); Fedderke, Michael A. [Univ. of Chicago, IL (United States); Gershtein, Yuri [Rutgers Univ., Piscataway, NJ (United States); He, Xiao-Gang [Shanghai Jiao Tong Univ. (China); Klute, Markus [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Kozaczuk, Jonathon [TRIUMF, Vancouver, BC (Canada); Kotwal, Ashutosh [Duke Univ., Durham, NC (United States); Lowette, Steven [Vrije Univ., Brussels (Belgium); No, Jose Miguel [Univ. of Sussex, Brighton (United Kingdom); Plehn, Tilman [Heidelberg Univ. (Germany); Qian, Jianming [Univ. of Michigan, Ann Arbor, MI (United States); Ramsey-Musolf, Michael [Univ. of Massachusetts, Amherst, MA (United States); Safonov, Alexei [Texas A & M Univ., College Station, TX (United States); Shelton, Jessie [Univ. of Illinois, Urbana-Champaign, IL (United States); Spannowsky, Michael [Durham Univ. (United Kingdom); Su, Shufang [Univ. of Arizona, Tucson, AZ (United States); Walker, Devin G. E. [Univ. of Washington, Seattle, WA (United States); Willocq, Stephane [Univ. of Massachusetts, Amherst, MA (United States); Winslow, Peter [Univ. of Massachusetts, Amherst, MA (United States)

    2016-04-18

    Higgs portal interactions provide a simple mechanism for addressing two open problems in cosmology: dark matter and the baryon asymmetry. In the latter instance, Higgs portal interactions may contain the ingredients for a strong first-order electroweak phase transition as well as new CP-violating interactions as needed for electroweak baryogenesis. These interactions may also allow for a viable dark matter candidate. We survey the opportunities for probing the Higgs portal as it relates to these questions in cosmology at the LHC and possible future colliders.

  3. Cosmological monopoles and non-Abelian black holes

    International Nuclear Information System (INIS)

    Brihaye, Yves; Hartmann, Betti; Radu, Eugen; Stelea, Cristian

    2007-01-01

    We discuss magnetic monopole solutions of the Einstein-Yang-Mills-Higgs equations with a positive cosmological constant. These configurations approach asymptotically the de Sitter spacetime background and exist only for a nonzero Higgs potential. We find that the total mass of the solutions within the cosmological horizon is finite. However, their mass evaluated by using the surface counterterm method outside the cosmological horizon at early/late time infinity generically diverges. Magnetic monopole solutions with finite mass and non-integer charge exist however in a truncation of the theory with a vanishing Higgs field. Both solutions with a regular origin and cosmological black holes are studied, special attention being paid to the computation of the global charges

  4. Searching for additional Higgs bosons via Higgs cascades

    Science.gov (United States)

    Gao, Christina; Luty, Markus A.; Mulhearn, Michael; Neill, Nicolás A.; Wang, Zhangqier

    2018-04-01

    The discovery of a 125 GeV Higgs boson at the Large Hadron Collider strongly motivates direct searches for additional Higgs bosons. In a type I two Higgs doublet model there is a large region of parameter space at tan β ≳5 that is currently unconstrained experimentally. We show that the process g g →H →A Z →Z Z h can probe this region, and can be the discovery mode for an extended Higgs sector at the LHC. We analyze 9 promising decay modes for the Z Z h state, and we find that the most sensitive final states are ℓℓℓℓb b , ℓℓj j b b , ℓℓν ν γ γ and ℓℓℓℓ+ missing energy.

  5. Baryonic Force for Accelerated Cosmic Expansion and Generalized U1b Gauge Symmetry in Particle-Cosmology

    Directory of Open Access Journals (Sweden)

    Khan Mehbub

    2018-01-01

    Full Text Available Based on baryon charge conservation and a generalized Yang-Mills symmetry for Abelian (and non-Abelian groups, we discuss a new baryonic gauge field and its linear potential for two point-like baryon charges. The force between two point-like baryons is repulsive, extremely weak and independent of distance. However, for two extended baryonic systems, we have a dominant linear force α r. Thus, only in the later stage of the cosmic evolution, when two baryonic galaxies are separated by an extremely large distance, the new repulsive baryonic force can overcome the gravitational attractive force. Such a model provides a gauge-field-theoretic understanding of the late-time accelerated cosmic expansion. The baryonic force can be tested by measuring the accelerated Wu-Doppler frequency shifts of supernovae at different distances.

  6. An asymptotic safety scenario for gauged chiral Higgs-Yukawa models

    International Nuclear Information System (INIS)

    Gies, Holger; Rechenberger, Stefan; Scherer, Michael M.; Zambelli, Luca

    2013-01-01

    We investigate chiral Higgs-Yukawa models with a non-abelian gauged left-handed sector reminiscent to a sub-sector of the standard model. We discover a new weak-coupling fixed-point behavior that allows for ultraviolet complete RG trajectories which can be connected with a conventional long-range infrared behavior in the Higgs phase. This non-trivial ultraviolet behavior is characterized by asymptotic freedom in all interaction couplings, but a quasi conformal behavior in all mass-like parameters. The stable microscopic scalar potential asymptotically approaches flatness in the ultraviolet, however, with a non-vanishing minimum increasing inversely proportional to the asymptotically free gauge coupling. This gives rise to non-perturbative - though weak-coupling - threshold effects which induce ultraviolet stability along a line of fixed points. Despite the weak-coupling properties, the system exhibits non-Gaussian features which are distinctly different from its standard perturbative counterpart: e.g., on a branch of the line of fixed points, we find linear instead of quadratically running renormalization constants. Whereas the Fermi constant and the top mass are naturally of the same order of magnitude, our model generically allows for light Higgs boson masses. Realistic mass ratios are related to particular RG trajectories with a ''walking'' mid-momentum regime. (orig.)

  7. An asymptotic safety scenario for gauged chiral Higgs-Yukawa models

    Science.gov (United States)

    Gies, Holger; Rechenberger, Stefan; Scherer, Michael M.; Zambelli, Luca

    2013-12-01

    We investigate chiral Higgs-Yukawa models with a non-abelian gauged left-handed sector reminiscent to a sub-sector of the standard model. We discover a new weak-coupling fixed-point behavior that allows for ultraviolet complete RG trajectories which can be connected with a conventional long-range infrared behavior in the Higgs phase. This non-trivial ultraviolet behavior is characterized by asymptotic freedom in all interaction couplings, but a quasi conformal behavior in all mass-like parameters. The stable microscopic scalar potential asymptotically approaches flatness in the ultraviolet, however, with a non-vanishing minimum increasing inversely proportional to the asymptotically free gauge coupling. This gives rise to non-perturbative—though weak-coupling—threshold effects which induce ultraviolet stability along a line of fixed points. Despite the weak-coupling properties, the system exhibits non-Gaußian features which are distinctly different from its standard perturbative counterpart: e.g., on a branch of the line of fixed points, we find linear instead of quadratically running renormalization constants. Whereas the Fermi constant and the top mass are naturally of the same order of magnitude, our model generically allows for light Higgs boson masses. Realistic mass ratios are related to particular RG trajectories with a "walking" mid-momentum regime.

  8. Solving the flavour problem in supersymmetric Standard Models with three Higgs families

    International Nuclear Information System (INIS)

    Howl, R.; King, S.F.

    2010-01-01

    We show how a non-Abelian family symmetry Δ 27 can be used to solve the flavour problem of supersymmetric Standard Models containing three Higgs families such as the Exceptional Supersymmetric Standard Model (E 6 SSM). The three 27-dimensional families of the E 6 SSM, including the three families of Higgs fields, transform in a triplet representation of the Δ 27 family symmetry, allowing the family symmetry to commute with a possible high energy E 6 symmetry. The Δ 27 family symmetry here provides a high energy understanding of the Z 2 H symmetry of the E 6 SSM, which solves the flavour changing neutral current problem of the three families of Higgs fields. The main phenomenological predictions of the model are tri-bi-maximal mixing for leptons, two almost degenerate LSPs and two almost degenerate families of colour triplet D-fermions, providing a clear prediction for the LHC. In addition the model predicts PGBs with masses below the TeV scale, and possibly much lighter, which appears to be a quite general and robust prediction of all models based on the D-term vacuum alignment mechanism.

  9. Higgs properties and decays, searches for high mass Higgs boson and di-Higgs production

    CERN Document Server

    Cadamuro, Luca

    2018-01-01

    The study of the scalar sector of the standard model of particle physics is one of the main goals of the LHC physics programme.A precise characterisation of the Higgs boson, searches for extensions of the scalar sector, and the study of Higgs boson pair production are complementary in this exploration.This document describes the status of Higgs boson physics analyses performed by the ATLAS and CMS Collaborations, focusing on the latest results from pp collisions at sqrt(s) = 13 TeV recorded in 2016, for an integrated luminosity of about 36 fb-1.

  10. Baryonic Higgs at the LHC

    Energy Technology Data Exchange (ETDEWEB)

    Duerr, Michael [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Fileviez Perez, Pavel [Case Western Reserve Univ., Cleveland, OH (United States). CERCA, Physics Dept.; Smirnov, Juri [INFN, Sezione di Firenze (Italy); Florence Univ., Sesto Fiorentino (Italy). Dept. of Physics and Astronomy

    2017-04-15

    We investigate the possible collider signatures of a new Higgs in simple extensions of the Standard Model where baryon number is a local symmetry spontaneously broken at the low scale. We refer to this new Higgs as ''Baryonic Higgs''. This Higgs has peculiar properties since it can decay into all Standard Model particles, the leptophobic gauge boson, and the vector-like quarks present in these theories to ensure anomaly cancellation. We investigate in detail the constraints from the γγ, Zγ, ZZ, and WW searches at the Large Hadron Collider, needed to find a lower bound on the scale at which baryon number is spontaneously broken. The di-photon channel turns out to be a very sensitive probe in the case of small scalar mixing and can severely constrain the baryonic scale. We also study the properties of the leptophobic gauge boson in order to understand the testability of these theories at the LHC.

  11. Supersymmetric Higgs bosons and beyond

    International Nuclear Information System (INIS)

    Carena, Marcela; Kong, Kyoungchul; Ponton, Eduardo; Zurita, Jose

    2010-01-01

    We consider supersymmetric models that include particles beyond the minimal supersymmetric standard model (MSSM) with masses in the TeV range, and that couple significantly to the MSSM Higgs sector. We perform a model-independent analysis of the spectrum and couplings of the MSSM Higgs fields, based on an effective theory of the MSSM degrees of freedom. The tree-level mass of the lightest CP-even state can easily be above the LEP bound of 114 GeV, thus allowing for a relatively light spectrum of superpartners, restricted only by direct searches. The Higgs spectrum and couplings can be significantly modified compared to the MSSM ones, often allowing for interesting new decay modes. We also observe that the gluon fusion production cross section of the SM-like Higgs can be enhanced with respect to both the standard model and the MSSM.

  12. Partially composite Goldstone Higgs boson

    DEFF Research Database (Denmark)

    Alanne, Tommi; Franzosi, Diogo Buarque; Frandsen, Mads T.

    2017-01-01

    We consider a model of dynamical electroweak symmetry breaking with a partially composite Goldstone Higgs boson. The model is based on a strongly interacting fermionic sector coupled to a fundamental scalar sector via Yukawa interactions. The SU(4)×SU(4) global symmetry of these two sectors...... is broken to a single SU(4) via Yukawa interactions. Electroweak symmetry breaking is dynamically induced by condensation due to the strong interactions in the new fermionic sector which further breaks the global symmetry SU(4)→Sp(4). The Higgs boson arises as a partially composite state which is an exact...... Goldstone boson in the limit where SM interactions are turned off. Terms breaking the SU(4) global symmetry explicitly generate a mass for the Goldstone Higgs boson. The model realizes in different limits both (partially) composite Higgs and (bosonic) technicolor models, thereby providing a convenient...

  13. ALICE Cosmic Ray Detector

    CERN Multimedia

    Fernandez Tellez, A; Martinez Hernandez, M; Rodriguez Cahuantzi, M

    2013-01-01

    The ALICE underground cavern provides an ideal place for the detection of high energy atmospheric muons coming from cosmic ray showers. ACORDE detects cosmic ray showers by triggering the arrival of muons to the top of the ALICE magnet.

  14. Phenomenology of the Higgs boson

    International Nuclear Information System (INIS)

    Ali, A.

    1981-09-01

    The phenomenology of the standard Weinberg-Salam Higgs boson is reviewed with particular emphasis on production mechanisms in high energy e + e - and hadron-hadron collisions. The production processes relevant for the ISABELLE and TEVATRON energies are discussed and their backgrounds estimated. It is argued that the toponium production and radiative decay provides the most hopeful reaction to detect a Higgs in both the e + e - and the hadron-hadron machines. (orig.)

  15. Phenomenologies of Higgs messenger models

    Energy Technology Data Exchange (ETDEWEB)

    Zheng Sibo; Yu Yao; Wu Xinggang [Department of Physics, Chongqing University, Chongqing 401331 (China)

    2011-08-11

    In this Letter, we investigate the phenomenologies of models where the Higgs sector plays the role of messengers in gauge mediation. The minimal Higgs sector and its extension are considered respectively. We find that there exist viable models when an appropriate parity is imposed. Phenomenological features in these kind of models include three sum rules for scalar masses, light gluino as well as one-loop {mu} and two-loop B{mu} terms.

  16. Where is the Higgs boson?

    International Nuclear Information System (INIS)

    Aranda, A.; Balazs, C.; Diaz-Cruz, J.L.

    2003-01-01

    Electroweak precision measurements indicate that the standard model Higgs boson is light and that it could have already been discovered at LEP 2, or might be found at the Tevatron run 2. In the context of a TeV -1 size extra-dimensional model, we argue that the Higgs boson production rates at LEP and the Tevatron are suppressed, while they might be enhanced at the LHC or at CLIC. This is due to the possible mixing between brane and bulk components of the Higgs boson, that is, the non-trivial brane-bulk 'location' of the lightest Higgs. To parametrize this mixing, we consider two Higgs doublets, one confined to the usual space dimensions and the other propagating in the bulk. Calculating the production and decay rates for the lightest Higgs boson, we find that compared to the standard model (SM), the cross section receives a suppression well below but an enhancement close to and above the compactification scale M c . This impacts the discovery of the lightest (SM like) Higgs boson at colliders. To find a Higgs signal in this model at the Tevatron run 2 or at the LC with √s=1.5 TeV, a higher luminosity would be required than in the SM case. Meanwhile, at the LHC or at CLIC with √s∼3-5 TeV one might find highly enhanced production rates. This will enable the latter experiments to distinguish between the extra-dimensional and the SM for M c up to about 6 TeV

  17. The Nobel Prize winner in physics 2013--Peter Higgs

    International Nuclear Information System (INIS)

    Liu Jinyan

    2014-01-01

    Peter Higgs is a famous English physicist who was known for his works on Higgs mechanism and Higgs particle. He won the 2013 Noble Prize in physics. This paper briefly outlines his life, the proposition of Higgs mechanism and the origin of the name of Higgs particle. The discovery of Higgs particle is also given here. (author)

  18. On generator systems for non-torsion Abelian groups of infinite free rank

    International Nuclear Information System (INIS)

    Lebedenko, V.M.

    1977-01-01

    The paper is further advance in solution of the Dlab problem related to the systems of generators of Abelian groups. Some existence criteria for hereditarily strongly reducible systems of generators of Abelian groups are presented. On this basis the distribution of non-torsion groups of infinite free rank on Dlab's classes is obtained

  19. Comment on the Adler-Bardeen theorem in non-Abelian gauge theories

    International Nuclear Information System (INIS)

    Fujikawa, Kazuo.

    1981-09-01

    It is pointed out that the constructive proof of the Adler-Bardeen theorem for the chiral and scale (counting identity) anomalies in non-Abelian gauge theories proceeds just as in the spinor electrodynamics, although several interesting features characteristic of non-Abelian theories appear. (author)

  20. Anatomy of isolated monopole in Abelian projection od SU(2) lattice gauge theory

    CERN Document Server

    Belavin, V A; Veselov, A I

    2001-01-01

    The structure of the isolated static monopolies in the maximum Abelian projection of the SU(2) gluodynamics on the lattice studied. The standard parametrization of the coupling matrix was used by determining the maximum Abelian projection of the R functional maximization relative to all scale transformations. The monopole radius R approx = 0.06 fm is evaluated

  1. Possible physical manifestation of the Weyl non-Abelian gauge field

    International Nuclear Information System (INIS)

    Barbashov, B.M.; Pestov, A.B.

    1998-01-01

    On the basis of the Weyl equations of congruent transference, we consider a possible influence of the Weyl non-Abelian gauge field defining the transference on the precession of a gyroscope. Plane-wave solutions to the equations of the Abelian gauge field are derived

  2. Non-Abelian Kubo formula and the multiple time-scale method

    International Nuclear Information System (INIS)

    Zhang, X.; Li, J.

    1996-01-01

    The non-Abelian Kubo formula is derived from the kinetic theory. That expression is compared with the one obtained using the eikonal for a Chern endash Simons theory. The multiple time-scale method is used to study the non-Abelian Kubo formula, and the damping rate for longitudinal color waves is computed. copyright 1996 Academic Press, Inc

  3. Mooses, topology and Higgs

    International Nuclear Information System (INIS)

    Gregoire, Thomas; Wacker, Jay G.

    2002-01-01

    New theories of electroweak symmetry breaking have recently been constructed that stabilize the weak scale and do not rely upon supersymmetry. In these theories the Higgs boson is a weakly coupled pseudo-Goldstone boson. In this note we study the class of theories that can be described by theory spaces and show that the fundamental group of theory space describes all the relevant classical physics in the low energy theory. The relationship between the low energy physics and the topological properties of theory space allow a systematic method for constructing theory spaces that give any desired low energy particle content and potential. This provides us with tools for analyzing and constructing new theories of electroweak symmetry breaking. (author)

  4. Searches for BSM Higgs Bosons with ATLAS

    CERN Document Server

    Navarro, Gabriela; The ATLAS collaboration

    2015-01-01

    The discovery of a Higgs-like boson with a mass of about 125GeV has prompted the question of whether or not this particle is part of a much larger and more complex Higgs sector than that envisioned in the Standard Model. In this talk, the current results from the ATLAS Experiment regarding Beyond-the-Standard Model (BSM) Higgs hypothesis tests are outlined. Searches for additional Higgs bosons are presented and interpreted in well-motivated BSM Higgs frameworks, such as two-Higgs-doublet Models and the Minimal Supersymmetric Standard Model.

  5. Vacuum stability in neutrinophilic Higgs doublet model

    International Nuclear Information System (INIS)

    Haba, Naoyuki; Horita, Tomohiro

    2011-01-01

    A neutrinophilic Higgs model has tiny vacuum expectation value (VEV), which can naturally explain tiny masses of neutrinos. There is a large energy scale hierarchy between a VEV of the neutrinophilic Higgs doublet and that of usual standard model-like Higgs doublet. In this Letter we at first analyze vacuum structures of Higgs potential in both supersymmetry (SUSY) and non-SUSY neutrinophilic Higgs models, and next investigate a stability of this VEV hierarchy against radiative corrections. We will show that the VEV hierarchy is stable against radiative corrections in both Dirac neutrino and Majorana neutrino scenarios in both SUSY and non-SUSY neutrinophilic Higgs doublet models.

  6. Semiclassical strings and non-Abelian T-duality

    Directory of Open Access Journals (Sweden)

    S. Zacarías

    2014-10-01

    Full Text Available We study semiclassical strings in the Klebanov–Witten and in the non-Abelian T-dual Klebanov–Witten backgrounds. We show that both backgrounds share a subsector of equivalent states up to conditions on the T-dual coordinates. We also analyse string configurations where the strings are stretched along the T-dual coordinates. This semiclassical analysis predicts the existence of (almost chiral primary operators for the dual superconformal field theory whose (anomalous bare dimensions depend on the T-dual coordinates. We briefly discuss the Penrose limit of the dualised background.

  7. KdV hierarchy via Abelian coverings and operator identities

    OpenAIRE

    Eichinger, Benjamin; VandenBoom, Tom; Yuditskii, Peter

    2018-01-01

    We establish precise spectral criteria for potential functions $V$ of reflectionless Schr\\"odinger operators $L_V = -\\partial_x^2 + V$ to admit solutions to the Korteweg de-Vries (KdV) hierarchy with $V$ as an initial value. More generally, our methods extend the classical study of algebro-geometric solutions for the KdV hierarchy to noncompact Riemann surfaces by defining generalized Abelian integrals and analogues of the Baker-Akhiezer function on infinitely connected domains with a uniform...

  8. Abelian groups and quadratic residues in weak arithmetic

    Czech Academy of Sciences Publication Activity Database

    Jeřábek, Emil

    2010-01-01

    Roč. 56, č. 3 (2010), s. 262-278 ISSN 0942-5616 R&D Projects: GA AV ČR IAA1019401; GA MŠk(CZ) 1M0545 Institutional research plan: CEZ:AV0Z10190503 Keywords : bounded arithmetic * abelian group * Fermat's little theorem * quadratic reciprocity Subject RIV: BA - General Mathematics Impact factor: 0.361, year: 2010 http://onlinelibrary.wiley.com/doi/10.1002/malq.200910009/abstract;jsessionid=9F636FFACB84C025FD90C7E6880350DD.f03t03

  9. On the abelianity of the stochastic sandpile model

    OpenAIRE

    Nunzi, François

    2016-01-01

    We consider a stochastic variant of the Abelian Sandpile Model (ASM) on a finite graph, introduced by Chan, Marckert and Selig. Even though it is a more general model, some nice properties still hold. We show that on a certain probability space, even if we lose the group structure due to topplings not being deterministic, some operators still commute. As a corollary, we show that the stationary distribution still does not depend on how sand grains are added onto the graph in our model, answer...

  10. Abelian realization of phenomenological two-zero neutrino textures

    Directory of Open Access Journals (Sweden)

    R. González Felipe

    2014-09-01

    Full Text Available In an attempt at explaining the observed neutrino mass-squared differences and leptonic mixing, lepton mass matrices with zero textures have been widely studied. In the weak basis where the charged lepton mass matrix is diagonal, various neutrino mass matrices with two zeros have been shown to be consistent with the current experimental data. Using the canonical and Smith normal form methods, we construct the minimal Abelian symmetry realizations of these phenomenological two-zero neutrino textures. The implementation of these symmetries in the context of the seesaw mechanism for Majorana neutrino masses is also discussed.

  11. The non-Abelian gauge theory of matrix big bangs

    Science.gov (United States)

    O'Loughlin, Martin; Seri, Lorenzo

    2010-07-01

    We study at the classical and quantum mechanical level the time-dependent Yang-Mills theory that one obtains via the generalisation of discrete light-cone quantization to singular homogeneous plane waves. The non-Abelian nature of this theory is known to be important for physics near the singularity, at least as far as the number of degrees of freedom is concerned. We will show that the quartic interaction is always subleading as one approaches the singularity and that close enough to t = 0 the evolution is driven by the diverging tachyonic mass term. The evolution towards asymptotically flat space-time also reveals some surprising features.

  12. Cosmic void clumps

    Science.gov (United States)

    Lares, M.; Luparello, H. E.; Garcia Lambas, D.; Ruiz, A. N.; Ceccarelli, L.; Paz, D.

    2017-10-01

    Cosmic voids are of great interest given their relation to the large scale distribution of mass and the way they trace cosmic flows shaping the cosmic web. Here we show that the distribution of voids has, in consonance with the distribution of mass, a characteristic scale at which void pairs are preferentially located. We identify clumps of voids with similar environments and use them to define second order underdensities. Also, we characterize its properties and analyze its impact on the cosmic microwave background.

  13. Ultrahigh-energy particles from cosmic strings

    International Nuclear Information System (INIS)

    Bhattacharjee, P.

    1991-02-01

    The idea of production of ultrahigh-energy particles in the present universe due to annihilation or collapse of topological defects is discussed. Topological defects, formed in symmetry-breaking phase transitions in the early universe, can survive till today owing to their topological stability. However, under certain circumstances, topological defects may be physically destroyed. When topological defects are destroyed, the energy contained in the defects can be released in the form of massive gauge- and Higgs bosons of the underlying spontaneously broken gauge theory. Subsequent decay of these massive particles can give rise to energetic particles ranging up to an energy on the order of the mass of the original particles released from the defects. This may give us a ''natural'' mechanism of production of extremely energetic cosmic ray particles in the universe today, without the need for any acceleration mechanism. To illustrate this idea, I describe in detail the calculation of the expected ultrahigh-energy proton spectrum due to a specific process which involves collapse or multiple self-intersections of a class of closed cosmic string loops formed in a phase transition at a grand unification energy scale. I discuss the possibility that some of the highest-energy cosmic ray particles are of this origin. By comparing with the observational results on the ultrahigh-energy cosmic rays, we derive an upper limit to the average fraction of the total energy in all ''primary'' cosmic string loops that may be released in the form of particles due to collapse or multiple self-intersections of these loops. No nuclei such as α's or Fe's are in the spectrum. 43 refs., 3 figs

  14. Cosmic Microwave Background Timeline

    Science.gov (United States)

    Cosmic Microwave Background Timeline 1934 : Richard Tolman shows that blackbody radiation in an will have a blackbody cosmic microwave background with temperature about 5 K 1955: Tigran Shmaonov anisotropy in the cosmic microwave background, this strongly supports the big bang model with gravitational

  15. Abelian embedding formulation of the Stueckelberg model and its power-counting renormalizable extension

    International Nuclear Information System (INIS)

    Quadri, Andrea

    2006-01-01

    We elucidate the geometry of the polynomial formulation of the non-Abelian Stueckelberg mechanism. We show that a natural off-shell nilpotent Becchi-Rouet-Stora-Tyutin (BRST) differential exists allowing to implement the constraint on the σ field by means of BRST techniques. This is achieved by extending the ghost sector by an additional U(1) factor (Abelian embedding). An important consequence is that a further BRST-invariant but not gauge-invariant mass term can be written for the non-Abelian gauge fields. As all versions of the Stueckelberg theory, also the Abelian embedding formulation yields a nonpower-counting renormalizable theory in D=4. We then derive its natural power-counting renormalizable extension and show that the physical spectrum contains a physical massive scalar particle. Physical unitarity is also established. This model implements the spontaneous symmetry breaking in the Abelian embedding formalism

  16. Metal-Insulator Transition Revisited for Cold Atoms in Non-Abelian Gauge Potentials

    International Nuclear Information System (INIS)

    Satija, Indubala I.; Dakin, Daniel C.; Clark, Charles W.

    2006-01-01

    We discuss the possibility of realizing metal-insulator transitions with ultracold atoms in two-dimensional optical lattices in the presence of artificial gauge potentials. For Abelian gauges, such transitions occur when the magnetic flux penetrating the lattice plaquette is an irrational multiple of the magnetic flux quantum. Here we present the first study of these transitions for non-Abelian U(2) gauge fields. In contrast to the Abelian case, the spectrum and localization transition in the non-Abelian case is strongly influenced by atomic momenta. In addition to determining the localization boundary, the momentum fragments the spectrum. Other key characteristics of the non-Abelian case include the absence of localization for certain states and satellite fringes around the Bragg peaks in the momentum distribution and an interesting possibility that the transition can be tuned by the atomic momenta

  17. Constraints on abelian extensions of the Standard Model from two-loop vacuum stability and U(1){sub B−L}

    Energy Technology Data Exchange (ETDEWEB)

    Corianò, Claudio [STAG Research Centre and Mathematical Sciences,University of Southampton, Southampton SO17 1BJ (United Kingdom); Dipartimento di Matematica e Fisica “Ennio De Giorgi' ,Università del Salento and INFN - Sezione di Lecce,Via Arnesano, 73100 Lecce (Italy); Rose, Luigi Delle; Marzo, Carlo [Dipartimento di Matematica e Fisica “Ennio De Giorgi' ,Università del Salento and INFN - Sezione di Lecce,Via Arnesano, 73100 Lecce (Italy)

    2016-02-19

    We present a renormalization group study of the scalar potential in a minimal U(1){sub B−L} extension of the Standard Model involving one extra heavier Higgs and three heavy right-handed neutrinos with family universal B-L charge assignments. We implement a type-I seesaw for the masses of the light neutrinos of the Standard Model. In particular, compared to a previous study, we perform a two-loop extension of the evolution, showing that two-loop effects are essential for the study of the stability of the scalar potential up to the Planck scale. The analysis includes the contribution of the kinetic mixing between the two abelian gauge groups, which is radiatively generated by the evolution, and the one-loop matching conditions at the electroweak scale. By requiring the stability of the potential up to the Planck mass, significant constraints on the masses of the heavy neutrinos, on the gauge couplings and the mixing in the Higgs sector are identified.

  18. Primordial black hole production in Critical Higgs Inflation

    Science.gov (United States)

    Ezquiaga, Jose María; García-Bellido, Juan; Ruiz Morales, Ester

    2018-01-01

    Primordial Black Holes (PBH) arise naturally from high peaks in the curvature power spectrum of near-inflection-point single-field inflation, and could constitute today the dominant component of the dark matter in the universe. In this letter we explore the possibility that a broad spectrum of PBH is formed in models of Critical Higgs Inflation (CHI), where the near-inflection point is related to the critical value of the RGE running of both the Higgs self-coupling λ (μ) and its non-minimal coupling to gravity ξ (μ). We show that, for a wide range of model parameters, a half-domed-shaped peak in the matter spectrum arises at sufficiently small scales that it passes all the constraints from large scale structure observations. The predicted cosmic microwave background spectrum at large scales is in agreement with Planck 2015 data, and has a relatively large tensor-to-scalar ratio that may soon be detected by B-mode polarization experiments. Moreover, the wide peak in the power spectrum gives an approximately lognormal PBH distribution in the range of masses 0.01- 100M⊙, which could explain the LIGO merger events, while passing all present PBH observational constraints. The stochastic background of gravitational waves coming from the unresolved black-hole-binary mergers could also be detected by LISA or PTA. Furthermore, the parameters of the CHI model are consistent, within 2σ, with the measured Higgs parameters at the LHC and their running. Future measurements of the PBH mass spectrum could allow us to obtain complementary information about the Higgs couplings at energies well above the EW scale, and thus constrain new physics beyond the Standard Model.

  19. Primordial black hole production in Critical Higgs Inflation

    Directory of Open Access Journals (Sweden)

    Jose María Ezquiaga

    2018-01-01

    Full Text Available Primordial Black Holes (PBH arise naturally from high peaks in the curvature power spectrum of near-inflection-point single-field inflation, and could constitute today the dominant component of the dark matter in the universe. In this letter we explore the possibility that a broad spectrum of PBH is formed in models of Critical Higgs Inflation (CHI, where the near-inflection point is related to the critical value of the RGE running of both the Higgs self-coupling λ(μ and its non-minimal coupling to gravity ξ(μ. We show that, for a wide range of model parameters, a half-domed-shaped peak in the matter spectrum arises at sufficiently small scales that it passes all the constraints from large scale structure observations. The predicted cosmic microwave background spectrum at large scales is in agreement with Planck 2015 data, and has a relatively large tensor-to-scalar ratio that may soon be detected by B-mode polarization experiments. Moreover, the wide peak in the power spectrum gives an approximately lognormal PBH distribution in the range of masses 0.01–100M⊙, which could explain the LIGO merger events, while passing all present PBH observational constraints. The stochastic background of gravitational waves coming from the unresolved black-hole-binary mergers could also be detected by LISA or PTA. Furthermore, the parameters of the CHI model are consistent, within 2σ, with the measured Higgs parameters at the LHC and their running. Future measurements of the PBH mass spectrum could allow us to obtain complementary information about the Higgs couplings at energies well above the EW scale, and thus constrain new physics beyond the Standard Model.

  20. Distinguishing a SM-like MSSM Higgs boson from SM Higgs boson ...

    Indian Academy of Sciences (India)

    We explore the possibility of distinguishing the SM-like MSSM Higgs boson from the SM Higgs boson via Higgs boson pair production at future muon collider. We study the behavior of the production cross-section in SM and MSSM with Higgs boson mass for various MSSM parameters tan and A. We observe that at fixed ...

  1. Directed Abelian algebras and their application to stochastic models.

    Science.gov (United States)

    Alcaraz, F C; Rittenberg, V

    2008-10-01

    With each directed acyclic graph (this includes some D-dimensional lattices) one can associate some Abelian algebras that we call directed Abelian algebras (DAAs). On each site of the graph one attaches a generator of the algebra. These algebras depend on several parameters and are semisimple. Using any DAA, one can define a family of Hamiltonians which give the continuous time evolution of a stochastic process. The calculation of the spectra and ground-state wave functions (stationary state probability distributions) is an easy algebraic exercise. If one considers D-dimensional lattices and chooses Hamiltonians linear in the generators, in finite-size scaling the Hamiltonian spectrum is gapless with a critical dynamic exponent z=D. One possible application of the DAA is to sandpile models. In the paper we present this application, considering one- and two-dimensional lattices. In the one-dimensional case, when the DAA conserves the number of particles, the avalanches belong to the random walker universality class (critical exponent sigma_(tau)=32 ). We study the local density of particles inside large avalanches, showing a depletion of particles at the source of the avalanche and an enrichment at its end. In two dimensions we did extensive Monte-Carlo simulations and found sigma_(tau)=1.780+/-0.005 .

  2. Abelian Toda field theories on the noncommutative plane

    Science.gov (United States)

    Cabrera-Carnero, Iraida

    2005-10-01

    Generalizations of GL(n) abelian Toda and GL with tilde above(n) abelian affine Toda field theories to the noncommutative plane are constructed. Our proposal relies on the noncommutative extension of a zero-curvature condition satisfied by algebra-valued gauge potentials dependent on the fields. This condition can be expressed as noncommutative Leznov-Saveliev equations which make possible to define the noncommutative generalizations as systems of second order differential equations, with an infinite chain of conserved currents. The actions corresponding to these field theories are also provided. The special cases of GL(2) Liouville and GL with tilde above(2) sinh/sine-Gordon are explicitly studied. It is also shown that from the noncommutative (anti-)self-dual Yang-Mills equations in four dimensions it is possible to obtain by dimensional reduction the equations of motion of the two-dimensional models constructed. This fact supports the validity of the noncommutative version of the Ward conjecture. The relation of our proposal to previous versions of some specific Toda field theories reported in the literature is presented as well.

  3. On discrete symmetries for a whole Abelian model

    International Nuclear Information System (INIS)

    Chauca, J.; Doria, R.

    2012-01-01

    Considering the whole concept applied to gauge theory a nonlinear abelian model is derived. A next step is to understand on the model properties. At this work, it will be devoted to discrete symmetries. For this, we will work based in two fields reference systems. This whole gauge symmetry allows to be analyzed through different sets which are the constructor basis {D μ ,X i μ } and the physical basis {G μI }. Taking as fields reference system the diagonalized spin-1 sector, P, C, T and PCT symmetries are analyzed. They show that under this systemic model there are conservation laws driven for the parts and for the whole. It develops the meaning of whole-parity, field-parity and so on. However it is the whole symmetry that rules. This means that usually forbidden particles as pseudovector photons can be introduced through such whole abelian system. As result, one notices that the fields whole {G μI } manifest a quanta diversity. It involves particles with different spins, masses and discrete quantum numbers under a same gauge symmetry. It says that without violating PCT symmetry different possibilities on discrete symmetries can be accommodated.

  4. Quantum coherence generating power, maximally abelian subalgebras, and Grassmannian geometry

    Science.gov (United States)

    Zanardi, Paolo; Campos Venuti, Lorenzo

    2018-01-01

    We establish a direct connection between the power of a unitary map in d-dimensions (d algebra). This set can be seen as a topologically non-trivial subset of the Grassmannian over linear operators. The natural distance over the Grassmannian induces a metric structure on Md, which quantifies the lack of commutativity between the pairs of subalgebras. Given a maximally abelian subalgebra, one can define, on physical grounds, an associated measure of quantum coherence. We show that the average quantum coherence generated by a unitary map acting on a uniform ensemble of quantum states in the algebra (the so-called coherence generating power of the map) is proportional to the distance between a pair of maximally abelian subalgebras in Md connected by the unitary transformation itself. By embedding the Grassmannian into a projective space, one can pull-back the standard Fubini-Study metric on Md and define in this way novel geometrical measures of quantum coherence generating power. We also briefly discuss the associated differential metric structures.

  5. Scalar formalism for non-Abelian gauge theory

    International Nuclear Information System (INIS)

    Hostler, L.C.

    1986-01-01

    The gauge field theory of an N-dimensional multiplet of spin- 1/2 particles is investigated using the Klein--Gordon-type wave equation ]Pi x (1+isigma) x Pi+m 2 ]Phi = 0, Pi/sub μ/equivalentpartial/partialix/sub μ/-eA/sub μ/, investigated before by a number of authors, to describe the fermions. Here Phi is a 2 x 1 Pauli spinor, and sigma repesents a Lorentz spin tensor whose components sigma/sub μ//sub ν/ are ordinary 2 x 2 Pauli spin matrices. Feynman rules for the scalar formalism for non-Abelian gauge theory are derived starting from the conventional field theory of the multiplet and converting it to the new description. The equivalence of the new and the old formalism for arbitrary radiative processes is thereby established. The conversion to the scalar formalism is accomplished in a novel way by working in terms of the path integral representation of the generating functional of the vacuum tau-functions, tau(2,1, xxx 3 xxx)equivalent , where Psi/sub in/ is a Heisenberg operator belonging to a 4N x 1 Dirac wave function of the multiplet. The Feynman rules obtained generalize earlier results for the Abelian case of quantum electrodynamics

  6. Cosmological bounds on non-Abelian dark forces

    Science.gov (United States)

    Forestell, Lindsay; Morrissey, David E.; Sigurdson, Kris

    2018-04-01

    Non-Abelian dark gauge forces that do not couple directly to ordinary matter may be realized in nature. The minimal form of such a dark force is a pure Yang-Mills theory. If the dark sector is reheated in the early Universe, it will be realized as a set of dark gluons at high temperatures and as a collection of dark glueballs at lower temperatures, with a cosmological phase transition from one form to the other. Despite being dark, the gauge fields of the new force can connect indirectly to the standard model through nonrenormalizable operators. These operators will transfer energy between the dark and visible sectors, and they allow some or all of the dark glueballs to decay. In this work we investigate the cosmological evolution and decays of dark glueballs in the presence of connector operators to the standard model. Dark glueball decays can modify cosmological and astrophysical observables, and we use these considerations to put very strong limits on the existence of pure non-Abelian dark forces. On the other hand, if one or more of the dark glueballs are stable, we find that they can potentially make up the dark matter of the Universe.

  7. Non-Abelian integrable hierarchies: matrix biorthogonal polynomials and perturbations

    Science.gov (United States)

    Ariznabarreta, Gerardo; García-Ardila, Juan C.; Mañas, Manuel; Marcellán, Francisco

    2018-05-01

    In this paper, Geronimus–Uvarov perturbations for matrix orthogonal polynomials on the real line are studied and then applied to the analysis of non-Abelian integrable hierarchies. The orthogonality is understood in full generality, i.e. in terms of a nondegenerate continuous sesquilinear form, determined by a quasidefinite matrix of bivariate generalized functions with a well-defined support. We derive Christoffel-type formulas that give the perturbed matrix biorthogonal polynomials and their norms in terms of the original ones. The keystone for this finding is the Gauss–Borel factorization of the Gram matrix. Geronimus–Uvarov transformations are considered in the context of the 2D non-Abelian Toda lattice and noncommutative KP hierarchies. The interplay between transformations and integrable flows is discussed. Miwa shifts, τ-ratio matrix functions and Sato formulas are given. Bilinear identities, involving Geronimus–Uvarov transformations, first for the Baker functions, then secondly for the biorthogonal polynomials and its second kind functions, and finally for the τ-ratio matrix functions, are found.

  8. Non-Abelian vortices in N=1* gauge theory

    International Nuclear Information System (INIS)

    Markov, V.; Marshakov, A.; Yung, A.

    2005-01-01

    We consider the N=1* supersymmetric SU(2) gauge theory and demonstrate that the Z2 vortices in this theory acquire orientational zero modes, associated with the rotation of magnetic flux inside SU(2) group, and turn into the non-Abelian strings, when the masses of all chiral fields become equal. These non-Abelian strings are not BPS-saturated. We study the effective theory on the string world sheet and show that it is given by two-dimensional non-supersymmetric O(3) sigma model. The confined 't Hooft-Polyakov monopole is seen as a junction of the Z2-string and anti-string, and as a kink in the effective world sheet sigma model. We calculate its mass and show that besides the four-dimensional confinement of monopoles, they are also confined in the two-dimensional theory: the monopoles stick to anti-monopoles to form the meson-like configurations on the strings they are attached to

  9. Invisible Higgs decays from Higgs-graviscalar mixing

    International Nuclear Information System (INIS)

    Dominici, Daniele; Gunion, John F.

    2009-01-01

    We recompute the invisible Higgs decay width arising from Higgs-graviscalar mixing in the Arkani-Hamed, Dimopoulos, Dvali model, comparing the original derivation in the nondiagonal mass basis to that in a diagonal mass basis. The results obtained are identical (and differ by a factor of 2 from the original calculation) but the diagonal-basis derivation is pedagogically useful for clarifying the physics of the invisible width from mixing. We emphasize that both derivations make it clear that a direct scan in energy for a process such as WW→WW mediated by Higgs plus graviscalar intermediate resonances would follow a single Breit-Wigner form with total width given by Γ tot =Γ h SM +Γ invisible . We also compute the additional contributions to the invisible width due to direct Higgs to graviscalar-pair decays. We find that the invisible width due to the latter is relatively small, unless the Higgs mass is comparable to or larger than the effective extra-dimensional Planck mass.

  10. The search for a heavy Higgs boson

    International Nuclear Information System (INIS)

    Dawson, S.

    1989-02-01

    Theoretical limits on the mass of the Higgs boson from vacuum stability and perturbative unitarity are examined. Search techniques for heavy Higgs bosons, M/sub H/ > 200 GeV, are also reviewed. 8 refs., 5 figs

  11. Cosmic Complexity

    Science.gov (United States)

    Mather, John C.

    2012-01-01

    neutrons, liberating a little energy and creating complexity. Then, the expanding universe cooled some more, and neutrons and protons, no longer kept apart by immense temperatures, found themselves unstable and formed helium nuclei. Then, a little more cooling, and atomic nuclei and electrons were no longer kept apart, and the universe became transparent. Then a little more cooling, and the next instability began: gravitation pulled matter together across cosmic distances to form stars and galaxies. This instability is described as a "negative heat capadty" in which extracting energy from a gravitating system makes it hotter -- clearly the 2nd law of thermodynamics does not apply here! (This is the physicist's part of the answer to e e cummings' question: what is the wonder that's keeping the stars apart?) Then, the next instability is that hydrogen and helium nuclei can fuse together to release energy and make stars burn for billions of years. And then at the end of the fuel source, stars become unstable and explode and liberate the chemical elements back into space. And because of that, on planets like Earth, sustained energy flows support the development of additional instabilities and all kinds of complex patterns. Gravitational instability pulls the densest materials into the core of the Earth, leaving a thin skin of water and air, and makes the interior churn incessantly as heat flows outwards. And the heat from the sun, received mostly near the equator and flowing towards the poles, supports the complex atmospheric and oceanic circulations. And because or that, the physical Earth is full of natural chemical laboratories, concentrating elements here, mixing them there, raising and lowering temperatures, ceaselessly experimenting with uncountable events where new instabilities can arise. At least one of them was the new experiment called life. Now that we know that there are at least as many planets as there are stars, it is hard to imagine that nature's ceasess

  12. Higgs Particle: The Origin of Mass

    OpenAIRE

    Okada, Yasuhiro

    2007-01-01

    The Higgs particle is a new elementary particle predicted in the Standard Model of the elementary particle physics. It plays a special role in the theory of mass generation of quarks, leptons, and gauge bosons. In this article, theoretical issues on the Higgs mechanism are first discussed, and then experimental prospects on the Higgs particle study at the future collider experiments, LHC and ILC, are reviewed. The Higgs coupling determination is an essential step to establish the mass generat...

  13. THE HIGGS WORKING GROUP: SUMMARY REPORT.

    Energy Technology Data Exchange (ETDEWEB)

    DAWSON, S.; ET AL.

    2005-08-01

    This working group has investigated Higgs boson searches at the Tevatron and the LHC. Once Higgs bosons are found their properties have to be determined. The prospects of Higgs coupling measurements at the LHC and a high-energy linear e{sup +}e{sup -} collider are discussed in detail within the Standard Model and its minimal supersymmetric extension (MSSM). Recent improvements in the theoretical knowledge of the signal and background processes are presented and taken into account. The residual uncertainties are analyzed in detail. Theoretical progress is discussed in particular for the gluon-fusion processes gg {yields} H(+j), Higgs-bremsstrahlung off bottom quarks and the weak vector-boson-fusion (VBF) processes. Following the list of open questions of the last Les Houches workshop in 2001 several background processes have been calculated at next-to-leading order, resulting in a significant reduction of the theoretical uncertainties. Further improvements have been achieved for the Higgs sectors of the MSSM and NMSSM. This report summarizes our work performed before and after the workshop in Les Houches. Part A describes the theoretical developments for signal and background processes. Part B presents recent progress in Higgs boson searches at the Tevatron collider. Part C addresses the determination of Higgs boson couplings, part D the measurement of tan {beta} and part E Higgs boson searches in the VBF processes at the LHC. Part F summarizes Higgs searches in supersymmetric Higgs decays, part G photonic Higgs decays in Higgs-strahlung processes at the LHC, while part H concentrates on MSSM Higgs bosons in the intense-coupling regime at the LHC. Part I presents progress in charged Higgs studies and part J the Higgs discovery potential in the NMSSM at the LHC. The last part K describes Higgs coupling measurements at a 1 TeV linear e{sup +}e{sup -} collider.

  14. THE HIGGS WORKING GROUP: SUMMARY REPORT

    International Nuclear Information System (INIS)

    DAWSON, S.

    2005-01-01

    This working group has investigated Higgs boson searches at the Tevatron and the LHC. Once Higgs bosons are found their properties have to be determined. The prospects of Higgs coupling measurements at the LHC and a high-energy linear e + e - collider are discussed in detail within the Standard Model and its minimal supersymmetric extension (MSSM). Recent improvements in the theoretical knowledge of the signal and background processes are presented and taken into account. The residual uncertainties are analyzed in detail. Theoretical progress is discussed in particular for the gluon-fusion processes gg → H(+j), Higgs-bremsstrahlung off bottom quarks and the weak vector-boson-fusion (VBF) processes. Following the list of open questions of the last Les Houches workshop in 2001 several background processes have been calculated at next-to-leading order, resulting in a significant reduction of the theoretical uncertainties. Further improvements have been achieved for the Higgs sectors of the MSSM and NMSSM. This report summarizes our work performed before and after the workshop in Les Houches. Part A describes the theoretical developments for signal and background processes. Part B presents recent progress in Higgs boson searches at the Tevatron collider. Part C addresses the determination of Higgs boson couplings, part D the measurement of tan β and part E Higgs boson searches in the VBF processes at the LHC. Part F summarizes Higgs searches in supersymmetric Higgs decays, part G photonic Higgs decays in Higgs-strahlung processes at the LHC, while part H concentrates on MSSM Higgs bosons in the intense-coupling regime at the LHC. Part I presents progress in charged Higgs studies and part J the Higgs discovery potential in the NMSSM at the LHC. The last part K describes Higgs coupling measurements at a 1 TeV linear e + e - collider

  15. Toponium and two-Higgs models

    International Nuclear Information System (INIS)

    Franzini, P.J.

    1986-04-01

    Bounds from B 0 - anti B 0 mixing on charged-Higgs-boson masses and couplings in two-Higgs-doublet models are presented. These bounds are comparable to those obtained, with additional assumptions, from the neutral-K-system. The effects of the neutral Higgs bosons of these models on the spectrum and wave function of toponium are discussed. These effects could, in the future, lead to limits on, or the discovery of, these Higgs bosons. 8 refs., 3 figs

  16. HiggsSignals. Confronting arbitrary Higgs sectors with measurements at the Tevatron and the LHC

    Energy Technology Data Exchange (ETDEWEB)

    Bechtle, Philip [Bonn Univ. (Germany). Physikalisches Inst.; Heinemeyer, Sven [Instituto de Fisica de Cantabria (CSIC-UC), Santander (Spain); Staal, Oscar [Stockholm Univ. (Sweden). The Oskar Klein Centre; Stefaniak, Tim [Bonn Univ. (Germany). Physikalisches Inst.; Bonn Univ. (Germany). Bethe Center for Theoretical Physics; Weiglein, Georg [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2013-05-15

    HiggsSignals is a Fortran90 computer code that allows to test the compatibility of Higgs sector predictions against Higgs rates and masses measured at the LHC or the Tevatron. Arbitrary models with any number of Higgs bosons can be investigated using a model-independent input scheme based on HiggsBounds. The test is based on the calculation of a {chi}{sup 2} measure from the predictions and the measured Higgs rates and masses, with the ability of fully taking into account systematics and correlations for the signal rate predictions, luminosity and Higgs mass predictions. It features two complementary methods for the test. First, the peak-centered method, in which each observable is defined by a Higgs signal rate measured at a specific hypothetical Higgs mass, corresponding to a tentative Higgs signal. Second, the mass-centered method, where the test is evaluated by comparing the signal rate measurement to the theory prediction at the Higgs mass predicted by the model. The program allows for the simultaneous use of both methods, which is useful in testing models with multiple Higgs bosons. The code automatically combines the signal rates of multiple Higgs bosons if their signals cannot be resolved by the experimental analysis. We compare results obtained with HiggsSignals to official ATLAS and CMS results for various examples of Higgs property determinations and find very good agreement. A few examples of HiggsSignals applications are provided, going beyond the scenarios investigated by the LHC collaborations. For models with more than one Higgs boson we recommend to use HiggsSignals and HiggsBounds in parallel to exploit the full constraining power of Higgs search exclusion limits and the measurements of the signal seen at m{sub H} {approx} 125.5 GeV.

  17. Higgs friends and counterfeits at hadron colliders

    International Nuclear Information System (INIS)

    Fox, Patrick J.; Tucker-Smith, David; Weiner, Neal

    2011-01-01

    We consider the possibility of 'Higgs counterfeits' - scalars that can be produced with cross sections comparable to the SM Higgs, and which decay with identical relative observable branching ratios, but which are nonetheless not responsible for electroweak symmetry breaking. We also consider a related scenario involving 'Higgs friends,' fields similarly produced through gg fusion processes, which would be discovered through diboson channels WW,ZZ,γγ, or even γZ, potentially with larger cross sections times branching ratios than for the Higgs. The discovery of either a Higgs friend or a Higgs counterfeit, rather than directly pointing towards the origin of the weak scale, would indicate the presence of new colored fields necessary for the sizable production cross section (and possibly new colorless but electroweakly charged states as well, in the case of the diboson decays of a Higgs friend). These particles could easily be confused for an ordinary Higgs, perhaps with an additional generation to explain the different cross section, and we emphasize the importance of vector boson fusion as a channel to distinguish a Higgs counterfeit from a true Higgs. Such fields would naturally be expected in scenarios with 'effective Z's,' where heavy states charged under the SM produce effective charges for SM fields under a new gauge force. We discuss the prospects for discovery of Higgs counterfeits, Higgs friends, and associated charged fields at the LHC.

  18. Goldstone bosons and a dynamical Higgs field

    NARCIS (Netherlands)

    Mooij, S.; Postma, M.

    2011-01-01

    Higgs inflation uses the gauge variant Higgs field as the inflaton. During inflation the Higgs field is displaced from its minimum, which results in associated Goldstone bosons that are apparently massive. Working in a minimally coupled U(1) toy model, we use the closed-time-path formalism to show

  19. Higgs physics at the Large Hadron Collider

    Indian Academy of Sciences (India)

    Higgs boson; Large Hadron Collider; electroweak symmetry; spin and CP of the Higgs boson ... I shall then give a short description of the pre-LHC constraints on the Higgs mass and the theoretical predictions for the LHC along with a discussion of the current experimental results, ending with prospects in the near future at ...

  20. Introduction to the physics of Higgs bosons

    International Nuclear Information System (INIS)

    Dawson, S.

    1994-11-01

    A basic introduction to the physics of the Standard Model Higgs boson is given. We discuss Higgs boson production in e + e - and hadronic collisions and survey search techniques at future accelerators. The Higgs bosons of the minimal SUSY model are briefly considered. Indirect limits from triviality arguments, vacuum stability and precision measurements at LEP are also presented

  1. Higgs into the heart of imagination

    CERN Document Server

    Van den Bergh, Hannie

    2010-01-01

    Higgs is the documentary about the quest for the Higgs particle, also known as "The God Particle". It is considered the missing link in particle physics. Higgs is a film about the curiosity, the passion, and the imaginative power of silence.

  2. Higgs bosons in extra dimensions

    Science.gov (United States)

    Quiros, Mariano

    2015-05-01

    In this paper, motivated by the recent discovery of a Higgs-like boson at the Large Hadron Collider (LHC) with a mass mH≃125 GeV, we review different models where the hierarchy problem is solved by means of a warped extra dimension. In the Randall-Sundrum (RS) model electroweak observables provide very strong bounds on the mass of KK modes which motivates extensions to overcome this problem. Two extensions are briefly discussed. One particular extension is based on the deformation of the metric such that it strongly departs from the AdS5 structure in the IR region while it goes asymptotically to AdS5 in the UV brane. This model has the IR brane close to a naked metric singularity (which is outside the physical interval) characteristic of soft-walls constructions. The proximity of the singularity provides a strong wave function renormalization for the Higgs field which suppresses the T and S parameters. The second class of considered extensions are based on the introduction of an extra gauge group in the bulk such that the custodial SU(2)R symmetry is gauged and protects the T parameter. By further enlarging the bulk gauge symmetry one can find models where the Higgs is identified with the fifth component of gauge fields and for which the Higgs potential along with the Higgs mass can be dynamically determined by the Coleman-Weinberg mechanism.

  3. The Higgs of the Higgs and the diphoton channel

    CERN Document Server

    Kannike, Kristjan

    2016-07-20

    LHC results do not confirm conventional natural solutions to the Higgs mass hierarchy problem, motivating alternative interpretations where a hierarchically small weak scale is generated from a dimension-less quantum dynamics. We propose weakly and strongly-coupled models where the field that breaks classical scale invariance giving mass to itself and to the Higgs is identified with a possible new resonance within the LHC reach. As an example, we identify such resonance with the 750 GeV diphoton excess recently reported by ATLAS and CMS. Such models can be extrapolated up to the Planck scale, provide Dark Matter candidates and eliminate the SM vacuum instability.

  4. Magnetic monopole solution in non-Abelian gauge theory

    International Nuclear Information System (INIS)

    Hietarinta, J.; Takasugi, E.; Tanaka, K.

    1976-01-01

    An approximate analytic solution of the equations of motion of the 't Hooft magnetic monopole model is proposed. Virial type global tests are carried out for the solution. Then, the monopole mass, energies of the vector field A/sub mu/sup a/, Higgs field phi/sup a/ and interaction are computed in closed form. The form factors of A/sub i/sup a/ and phi/sup a/ in a quantized version are also calculated

  5. Early Universe Higgs dynamics in the presence of the Higgs-inflaton and non-minimal Higgs-gravity couplings

    Energy Technology Data Exchange (ETDEWEB)

    Ema, Yohei [Department of Physics, Faculty of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033 (Japan); Karčiauskas, Mindaugas [University of Jyväskylä, Department of Physics, P.O. Box 35 (YFL), FI-40014, Jyväskylä (Finland); Lebedev, Oleg; Zatta, Marco, E-mail: ema@hep-th.phys.s.u-tokyo.ac.jp, E-mail: mindaugas.m.karciauskas@jyu.fi, E-mail: oleg.lebedev@helsinki.fi, E-mail: marco.zatta@helsinki.fi [University of Helsinki and Helsinki Institute of Physics, P.O. Box 64, FI-00014, Helsinki (Finland)

    2017-06-01

    Apparent metastability of the electroweak vacuum poses a number of cosmological questions. These concern evolution of the Higgs field to the current vacuum, and its stability during and after inflation. Higgs-inflaton and non-minimal Higgs-gravity interactions can make a crucial impact on these considerations potentially solving the problems. In this work, we allow for these couplings to be present simultaneously and study their interplay. We find that different combinations of the Higgs-inflaton and non-minimal Higgs-gravity couplings induce effective Higgs mass during and after inflation. This crucially affects the Higgs stability considerations during preheating. In particular, a wide range of the couplings leading to stable solutions becomes allowed.

  6. The 4D Composite Higgs

    CERN Document Server

    De Curtis, Stefania; Tesi, Andrea

    2012-01-01

    We propose a four dimensional description of Composite Higgs Models which represents a complete framework for the physics of the Higgs as a pseudo-Nambu-Goldstone boson. Our setup captures all the relevant features of 5D models and more in general of composite Higgs models with partial compositeness. We focus on the minimal scenario where we include a single multiplet of resonances of the composite sector, as these will be the only degrees of freedom which might be accessible at the LHC. This turns out to be sufficient to compute the effective potential and derive phenomenological consequences of the theory. Moreover our simplified approach is well adapted to simulate these models at the LHC. We also consider the impact of non-minimal terms in the effective lagrangian which do not descend from a 5D theory and could be of phenomenological relevance, for example contributing to the S-parameter.

  7. Semialigned two Higgs doublet model

    Science.gov (United States)

    Haba, Naoyuki; Umeeda, Hiroyuki; Yamada, Toshifumi

    2018-02-01

    In the left-right symmetric model based on S U (2 )L×S U (2 )R×U (1 )B -L gauge symmetry, there appear heavy neutral scalar particles mediating quark flavor changing neutral currents (FCNCs) at tree level. We consider a situation where such FCNCs give the only sign of the left-right model while WR gauge boson is decoupled, and name it "semialigned two Higgs doublet model" because the model resembles a two Higgs doublet model with mildly aligned Yukawa couplings to quarks. We predict a correlation among processes induced by quark FCNCs in the model, and argue that future precise calculation of meson-antimeson mixings and C P violation therein may hint at the semialigned two Higgs doublet model and the left-right model behind it.

  8. Unveiling a spinor field classification with non-Abelian gauge symmetries

    Science.gov (United States)

    Fabbri, Luca; da Rocha, Roldão

    2018-05-01

    A spinor fields classification with non-Abelian gauge symmetries is introduced, generalizing the U(1) gauge symmetries-based Lounesto's classification. Here, a more general classification, contrary to the Lounesto's one, encompasses spinor multiplets, corresponding to non-Abelian gauge fields. The particular case of SU(2) gauge symmetry, encompassing electroweak and electromagnetic conserved charges, is then implemented by a non-Abelian spinor classification, now involving 14 mixed classes of spinor doublets. A richer flagpole, dipole, and flag-dipole structure naturally descends from this general classification. The Lounesto's classification of spinors is shown to arise as a Pauli's singlet, into this more general classification.

  9. Four generations and Higgs physics

    Energy Technology Data Exchange (ETDEWEB)

    Kribs, Graham D. [Department of Physics and Institute of Theoretical Science, University of Oregon, Eugene (United States); Plehn, Tilman [SUPA, School of Physics, University of Edinburgh (United Kingdom); Spannowsky, Michael [Institut fuer Theoretische Physik, Universitaet Karlsruhe (Germany); Tait, Tim M.P. [HEP Division, Argonne National Laboratory (United States)

    2008-07-01

    A fourth generation has been considered and forgotten or discarded several times, wrongly leaving the impression that it is either ruled out or disfavored by experimental data. We revisit a fourth generation of chiral matter in the light of present electroweak precision data and deduce effects on Higgs phenomenology. We find a chiral fourth generation to be a viable model which can yield interesting signatures at the LHC, e.g. production rates are enhanced, weak-boson-fusion channels are suppressed, angular distributions are modified and Higgs pairs can be observed.

  10. Neutrino oscillations from discrete non-Abelian family symmetries

    International Nuclear Information System (INIS)

    Schmaltz, M.

    1994-11-01

    The author discusses a SUSY-GUT model with a non-Abelian discrete family symmetry that explains the observed hierarchical pattern of quark and lepton masses. This SO(10) x Δ(75) model predicts modified quadratic seesaw neutrino masses and mixing angles which are interesting for three reasons: (1) they offer a solution to the solar neutrino problem, (2) the tau neutrino has the right mass for a cosmologically interesting hot dark matter candidate, and (3) they suggest a positive result for the ν μ → ν τ oscillation searches by the CHORUS and NOMAD collaborations. However, the model shares some problems with many other predictive GUT models of quark and lepton masses. Well-known and once successful mass and angle relations, such as the SU(5) relation λ b GUT = λ t GUT , are found to be in conflict with the current experimental status. Attempts to correct these relations seem to lead to rather contrived models

  11. Critical string from non-Abelian vortex in four dimensions

    Directory of Open Access Journals (Sweden)

    M. Shifman

    2015-11-01

    Full Text Available In a class of non-Abelian solitonic vortex strings supported in certain N=2 super-Yang–Mills theories we search for the vortex which can behave as a critical fundamental string. We use the Polchinski–Strominger criterion of the ultraviolet completeness. We identify an appropriate four-dimensional bulk theory: it has the U(2 gauge group, the Fayet–Iliopoulos term and four flavor hypermultiplets. It supports semilocal vortices with the world-sheet theory for orientational (size moduli described by the weighted CP(2,2 model. The latter is superconformal. Its target space is six-dimensional. The overall Virasoro central charge is critical. We show that the world-sheet theory on the vortex supported in this bulk model is the bona fide critical string.

  12. Topological degeneracy of non-Abelian states for dummies

    International Nuclear Information System (INIS)

    Oshikawa, Masaki; Kim, Yong Baek; Shtengel, Kirill; Nayak, Chetan; Tewari, Sumanta

    2007-01-01

    We present a physical construction of degenerate groundstates of the Moore-Read Pfaffian states, which exhibits non-Abelian statistics, on general Riemann surface with genus g. The construction is given by a generalization of the recent argument [M.O., T. Senthil, Phys. Rev. Lett. 96 (2006) 060601] which relates fractionalization and topological order. The nontrivial groundstate degeneracy obtained by Read and Green [Phys. Rev. B 61 (2000) 10267] based on differential geometry is reproduced exactly. Some restrictions on the statistics, due to the fractional charge of the quasiparticle are also discussed. Furthermore, the groundstate degeneracy of the p + ip superconductor in two dimensions, which is closely related to the Pfaffian states, is discussed with a similar construction

  13. Topological degeneracy of non-Abelian states for dummies

    Science.gov (United States)

    Oshikawa, Masaki; Kim, Yong Baek; Shtengel, Kirill; Nayak, Chetan; Tewari, Sumanta

    2007-06-01

    We present a physical construction of degenerate groundstates of the Moore-Read Pfaffian states, which exhibits non-Abelian statistics, on general Riemann surface with genus g. The construction is given by a generalization of the recent argument [M.O., T. Senthil, Phys. Rev. Lett. 96 (2006) 060601] which relates fractionalization and topological order. The nontrivial groundstate degeneracy obtained by Read and Green [Phys. Rev. B 61 (2000) 10267] based on differential geometry is reproduced exactly. Some restrictions on the statistics, due to the fractional charge of the quasiparticle are also discussed. Furthermore, the groundstate degeneracy of the p + i p superconductor in two dimensions, which is closely related to the Pfaffian states, is discussed with a similar construction.

  14. Abelian tensor hierarchy in 4D, N=1 superspace

    International Nuclear Information System (INIS)

    Becker, Katrin; Becker, Melanie; III, William D. Linch; Robbins, Daniel

    2016-01-01

    With the goal of constructing the supersymmetric action for all fields, massless and massive, obtained by Kaluza-Klein compactification from type II theory or M-theory in a closed form, we embed the (Abelian) tensor hierarchy of p-forms in four-dimensional, N=1 superspace and construct its Chern-Simons-like invariants. When specialized to the case in which the tensors arise from a higher-dimensional theory, the invariants may be interpreted as higher-dimensional Chern-Simons forms reduced to four dimensions. As an application of the formalism, we construct the eleven-dimensional Chern-Simons form in terms of four-dimensional, N=1 superfields.

  15. Abelian tensor hierarchy in 4D, N=1 superspace

    Energy Technology Data Exchange (ETDEWEB)

    Becker, Katrin; Becker, Melanie; III, William D. Linch; Robbins, Daniel [George P. and Cynthia W. Mitchell Institute for Fundamental Physics and Astronomy,Texas A& M University, College Station, TX 77843 (United States)

    2016-03-09

    With the goal of constructing the supersymmetric action for all fields, massless and massive, obtained by Kaluza-Klein compactification from type II theory or M-theory in a closed form, we embed the (Abelian) tensor hierarchy of p-forms in four-dimensional, N=1 superspace and construct its Chern-Simons-like invariants. When specialized to the case in which the tensors arise from a higher-dimensional theory, the invariants may be interpreted as higher-dimensional Chern-Simons forms reduced to four dimensions. As an application of the formalism, we construct the eleven-dimensional Chern-Simons form in terms of four-dimensional, N=1 superfields.

  16. Abelian hidden sectors at a GeV

    International Nuclear Information System (INIS)

    Morrissey, David E.; Poland, David; Zurek, Kathryn M.

    2009-01-01

    We discuss mechanisms for naturally generating GeV-scale hidden sectors in the context of weak-scale supersymmetry. Such low mass scales can arise when hidden sectors are more weakly coupled to supersymmetry breaking than the visible sector, as happens when supersymmetry breaking is communicated to the visible sector by gauge interactions under which the hidden sector is uncharged, or if the hidden sector is sequestered from gravity-mediated supersymmetry breaking. We study these mechanisms in detail in the context of gauge and gaugino mediation, and present specific models of Abelian GeV-scale hidden sectors. In particular, we discuss kinetic mixing of a U(1) x gauge force with hypercharge, singlets or bi-fundamentals which couple to both sectors, and additional loop effects. Finally, we investigate the possible relevance of such sectors for dark matter phenomenology, as well as for low- and high-energy collider searches.

  17. Gabor frames on locally compact abelian groups and related topics

    DEFF Research Database (Denmark)

    Jakobsen, Mads Sielemann

    This thesis consists of four papers. The first one introduces generalized translation invariant systems and considers their frame properties, the second and third paper give new results on the theory of Gabor frames, and the fourth is a review paper with proofs and new results on the Feichtinger......- and shearlet-type and for (generalized) shift-invariant systems and their continuous formulations. This thesis advances the theory of both separable and non-separable, discrete, semicontinuous and continuous Gabor systems. In particular, the well established structure theory for separable lattice Gabor frames...... and Gabor Riesz bases. The theory of GTI systems and Gabor frames in this thesis is developed and presented in the setting of locally compact abelian groups, however, even in the euclidean setting the results given here improve the existing theory. Finally, the thesis contains a review paper with proofs...

  18. Path-integral invariants in abelian Chern–Simons theory

    International Nuclear Information System (INIS)

    Guadagnini, E.; Thuillier, F.

    2014-01-01

    We consider the U(1) Chern–Simons gauge theory defined in a general closed oriented 3-manifold M; the functional integration is used to compute the normalized partition function and the expectation values of the link holonomies. The non-perturbative path-integral is defined in the space of the gauge orbits of the connections which belong to the various inequivalent U(1) principal bundles over M; the different sectors of configuration space are labelled by the elements of the first homology group of M and are characterized by appropriate background connections. The gauge orbits of flat connections, whose classification is also based on the homology group, control the non-perturbative contributions to the mean values. The functional integration is carried out in any 3-manifold M, and the corresponding path-integral invariants turn out to be strictly related with the abelian Reshetikhin–Turaev surgery invariants

  19. Optimal Black-Box Secret Sharing over Arbitrary Abelian Groups

    DEFF Research Database (Denmark)

    Cramer, Ronald; Fehr, Serge

    2002-01-01

    A black-box secret sharing scheme for the threshold access structure T t,n is one which works over any finite Abelian group G. Briefly, such a scheme differs from an ordinary linear secret sharing scheme (over, say, a given finite field) in that distribution matrix and reconstruction vectors...... are defined over ℤ and are designed independently of the group G from which the secret and the shares are sampled. This means that perfect completeness and perfect privacy are guaranteed regardless of which group G is chosen. We define the black-box secret sharing problem as the problem of devising......, for an arbitrary given T t,n , a scheme with minimal expansion factor, i.e., where the length of the full vector of shares divided by the number of players n is minimal. Such schemes are relevant for instance in the context of distributed cryptosystems based on groups with secret or hard to compute group order...

  20. Hidden singularities in non-abelian gauge fields

    International Nuclear Information System (INIS)

    Bollini, C.G.; Giambiagi, J.J.; Tiomno, J.

    1978-01-01

    It is shown that the potential (and field) of a non-abelian gauge theory is not well determined when it has a singular point. When this is the cause, it is important to specify the regularization procedure used to give a precise definition of physical quantities at the singularity at any stage of the computation. The fact that a certain A sub(μ) (associated with the given regularization) represents the vacuum when F sub(μν) is a zero distribution not only on the global space but also in all its projections to arbitrary subspaces is discussed. The example used as a base for the discussion is A vetor = i (sigma vetor Λ r vetor / r 2 ). For this example it is shown that different regularizations give the same field in the global space but they give different distributions when projected to subspaces containing the singular point [pt

  1. Finite abelian subalgebra of W(sl(n))

    International Nuclear Information System (INIS)

    Niedermaier, M.

    1991-03-01

    A representation theoretical construction of the conservation laws of affine Toda-type systems is described. The construction employs the completely degenerate representations of the extended conformal algebras (W(sl(n)). The conserved charges are shown to generate an infinite dimensional abelian subalgebra of W(sl(n)). Different characterizations of this subalgebra are obtained: As space of physical Fock space operators with dihedral symmetry, as constants of commuting flows of quantum KdV-type equations and as subalgebra of the sl(n) singlets in affine sl(n) level 1 modules. The existence of the subalgebras is established for low rank cases by means of an algorithmic Fock space procedure. (orig.)

  2. Neutrino oscillations from discrete non-Abelian family symmetries

    International Nuclear Information System (INIS)

    Schmaltz, M.

    1995-01-01

    I disuss a SUSY GUT model with a non-Abelian discrete family symmetry that explains the observed hierarchical pattern of quark and lepton masses. This SO(10)xΔ(75) model predicts modified quadratic seesaw neutrino masses and mixing angles which are interesting for three reasons: (i) they offer a solution to the solar neutrino problem, (ii) the τ neutrino has the right mass for a cosmologically interesting hot dark matter candidate, and (iii) they suggest a positive result for the ν μ →ν τ oscillation searches by the CHORUS and NOMAD Collaborations. However, the model shares some problems with many other predictive GUT models of quark and lepton masses. The predictions from well-known mass and angle relations, such as the relation λ b GUT =λ τ GUT , fail in many cases. Attempts to correct these relations seem to lead to rather contrived models

  3. Relativized problems with abelian phase group in topological dynamics.

    Science.gov (United States)

    McMahon, D

    1976-04-01

    Let (X, T) be the equicontinuous minimal transformation group with X = pi(infinity)Z(2), the Cantor group, and S = [unk](infinity)Z(2) endowed with the discrete topology acting on X by right multiplication. For any countable group T we construct a function F:X x S --> T such that if (Y, T) is a minimal transformation group, then (X x Y, S) is a minimal transformation group with the action defined by (x, y)s = [xs, yF(x, s)]. If (W, T) is a minimal transformation group and varphi:(Y, T) --> (W, T) is a homomorphism, then identity x varphi:(X x Y, S) --> (X x W, S) is a homomorphism and has many of the same properties that varphi has. For this reason, one may assume that the phase group is abelian (or S) without loss of generality for many relativized problems in topological dynamics.

  4. Non-Abelian gauge field theory in scale relativity

    International Nuclear Information System (INIS)

    Nottale, Laurent; Celerier, Marie-Noeelle; Lehner, Thierry

    2006-01-01

    Gauge field theory is developed in the framework of scale relativity. In this theory, space-time is described as a nondifferentiable continuum, which implies it is fractal, i.e., explicitly dependent on internal scale variables. Owing to the principle of relativity that has been extended to scales, these scale variables can themselves become functions of the space-time coordinates. Therefore, a coupling is expected between displacements in the fractal space-time and the transformations of these scale variables. In previous works, an Abelian gauge theory (electromagnetism) has been derived as a consequence of this coupling for global dilations and/or contractions. We consider here more general transformations of the scale variables by taking into account separate dilations for each of them, which yield non-Abelian gauge theories. We identify these transformations with the usual gauge transformations. The gauge fields naturally appear as a new geometric contribution to the total variation of the action involving these scale variables, while the gauge charges emerge as the generators of the scale transformation group. A generalized action is identified with the scale-relativistic invariant. The gauge charges are the conservative quantities, conjugates of the scale variables through the action, which find their origin in the symmetries of the ''scale-space.'' We thus found in a geometric way and recover the expression for the covariant derivative of gauge theory. Adding the requirement that under the scale transformations the fermion multiplets and the boson fields transform such that the derived Lagrangian remains invariant, we obtain gauge theories as a consequence of scale symmetries issued from a geometric space-time description

  5. Dark side of the Higgs boson

    International Nuclear Information System (INIS)

    Low, I.; Schwaller, P.; Shaughnessy, G.; Wagner, C.E.M.

    2012-01-01

    Current limits from the Large Hadron Collider exclude a standard model-like Higgs mass above 150 GeV, by placing an upper bound on the Higgs production rate. We emphasize that, alternatively, the limit could be interpreted as a lower bound on the total decay width of the Higgs boson. If the invisible decay width of the Higgs is of the same order as the visible decay width, a heavy Higgs boson could be consistent with null results from current searches. We propose a method to infer the invisible decay of the Higgs by using the width of the measured h → ZZ → 4 (ell) line shape, and study the effect on the width extraction due to a reduced signal strength. Assuming the invisible decay product is the dark matter, we show that minimal models are tightly constrained by limits from Higgs searches at the LHC and direct detection experiments of dark matter, unless the relic density constraint is relaxed.

  6. Higgs searches and prospects at CDF

    International Nuclear Information System (INIS)

    Pavel A Murat

    2003-01-01

    The Standard model of electroweak interactions (SM) has been extremely successful in describing interactions of elementary particles over the last decades. The Higgs scalar boson is one of the key elements of the SM: Higgs interactions with the other particles generate the particle masses and allow to keep the theory renormalizable at electroweak scale. All the particles predicted by the SM but the Higgs boson have already been observed experimentally and therefore search for the Higgs is one of the most important scientific goals for high energy physics. The current lower limit on the SM Higgs mass M H > 114.4 GeV at 95% CL has been established by LEP experiments. In this paper we review CDF Run I results on Higgs searches including the Higgs bosons predicted by the minimal supersymmetric extention of the Standard Model (MSSM) and discuss the Run II prospects

  7. Higgs-Palatini inflation and unitarity

    International Nuclear Information System (INIS)

    Bauer, Florian; Demir, Durmus A.

    2011-01-01

    In the Higgs inflation scenario the Higgs field is strongly coupled to the Ricci scalar in order to drive primordial inflation. However, in its original form in pure metric formulation of gravity, the ultraviolet (UV) cutoff of the Higgs interactions and the Hubble rate are of the same magnitude, and this makes the whole inflationary evolution dependent of the unknown UV completion of the Higgs sector. This problem, the unitarity violation, plagues the Higgs inflation scenario. In this Letter we show that, in the Palatini formulation of gravitation, Higgs inflation does not suffer from unitarity violation since the UV cutoff lies parametrically much higher than the Hubble rate so that unknown UV physics does not disrupt the inflationary dynamics. Higgs-Palatini inflation, as we call it, is, therefore, UV-safe, minimal and endowed with predictive power.

  8. Cosmic Accelerators: An Introduction

    International Nuclear Information System (INIS)

    Kanbach, Gottfried

    2005-01-01

    High energy, relativistic, particles are an essential component of the Universe and play a major role in astrophysics. In a few years we will reach the centennial of the discovery of cosmic rays; all through this century the properties, origin, and effects of this radiation have intrigued researchers in astrophysics and elementary particles alike. We briefly review the history, current status, and future perspectives of cosmic ray research. Emphasis will be placed on the multitude of cosmic accelerators, direct observations of these objects, and the effects of cosmic rays in the Galaxy and beyond

  9. High energy cosmic rays

    CERN Document Server

    Stanev, Todor

    2010-01-01

    Offers an accessible text and reference (a cosmic-ray manual) for graduate students entering the field and high-energy astrophysicists will find this an accessible cosmic-ray manual Easy to read for the general astronomer, the first part describes the standard model of cosmic rays based on our understanding of modern particle physics. Presents the acceleration scenario in some detail in supernovae explosions as well as in the passage of cosmic rays through the Galaxy. Compares experimental data in the atmosphere as well as underground are compared with theoretical models

  10. Tight connection between direct and indirect detection of dark matter through Higgs portal couplings to a hidden sector

    International Nuclear Information System (INIS)

    Arina, Chiara; Josse-Michaux, Francois-Xavier; Sahu, Narendra

    2010-01-01

    We present a hidden Abelian extension of the standard model including a complex scalar as a dark matter candidate and a light scalar acting as a long range force carrier between dark matter particles. The Sommerfeld enhanced annihilation cross section of the dark matter explains the observed cosmic ray excesses. The light scalar field also gives rise to potentially large cross sections of dark matter on the nucleon, therefore providing an interesting way to probe this model simultaneously at direct and indirect dark matter search experiments. We constrain the parameter space of the model by taking into account the CDMS-II exclusion limit as well as PAMELA and Fermi LAT data.

  11. LEP Higgs boson searches beyond the standard model

    Indian Academy of Sciences (India)

    These include the searches for charged Higgs bosons, models with two Higgs field doublets, searches for 'fermiophobic' Higgs decay, invisible Higgs boson decays, decay-mode independent searches, and limits on Yukawa and anomalous Higgs couplings. I review the searches done by the four LEP experiments and ...

  12. New topological invariants for non-abelian antisymmetric tensor fields from extended BRS algebra

    International Nuclear Information System (INIS)

    Boukraa, S.; Maillet, J.M.; Nijhoff, F.

    1988-09-01

    Extended non-linear BRS and Gauge transformations containing Lie algebra cocycles, and acting on non-abelian antisymmetric tensor fields are constructed in the context of free differential algebras. New topological invariants are given in this framework. 6 refs

  13. The Weyl non-Abelian gauge field and the Thomas precession

    International Nuclear Information System (INIS)

    Barbashov, B.M.; Pestov, A.B.

    1998-01-01

    The connection between the Fermi-Walker transport and the Weyl non-Abelian gauge field is established. A theoretical possibility of detecting the Weyl gauge field caused by the Thomas precession of a gyroscope is discussed

  14. Stable Non-Abelian Semi-Superfluid Vortices in Dense QCD

    Science.gov (United States)

    Chatterjee, Chandrasekhar; Nitta, Muneto

    Color superconductivity is expected to be formed in high density quark matter where color symmetry is spontaneously broken in the presence of di-quark condensate. Stable non-Abelian vortices or color magnetic flux tubes exist in the color-flavor locked phase at asymptotically high density. CP2 Nambu-Goldstone (NG) bosons and Majorana fermions belonging to the triplet representation are localized around a non-Abelian vortex. We discuss the zero mode analysis and the low-energy effective world sheet theory of a non-Abelian vortex. We determine the interactions of these bosonic and fermionic modes by using the nonlinear realization method. We also discuss the Aharanov-Bohm (AB) phases of charged particles, such as, electrons, muons, and color-flavor locked mesons made of tetra-quarks encircling around a non-Abelian vortex in the presence of electro-magnetic fields. This is a review based on our recent works [1-3].

  15. Conformal field theory construction for non-Abelian hierarchy wave functions

    Science.gov (United States)

    Tournois, Yoran; Hermanns, Maria

    2017-12-01

    The fractional quantum Hall effect is the paradigmatic example of topologically ordered phases. One of its most fascinating aspects is the large variety of different topological orders that may be realized, in particular non-Abelian ones. Here we analyze a class of non-Abelian fractional quantum Hall model states which are generalizations of the Abelian Haldane-Halperin hierarchy. We derive their topological properties and show that the quasiparticles obey non-Abelian fusion rules of type su (q)k . For a subset of these states we are able to derive the conformal field theory description that makes the topological properties—in particular braiding—of the state manifest. The model states we study provide explicit wave functions for a large variety of interesting topological orders, which may be relevant for certain fractional quantum Hall states observed in the first excited Landau level.

  16. 7th Higgs Hunting 2016

    CERN Document Server

    2016-01-01

    A subject of major importance in fundamental physics is the investigation of the origin of Electroweak Symmetry Breaking. The mechanism of mass generation through the spontaneous breaking of a gauge symmetry is called the Brout-Englert-Higgs mechanism and is associated with the appearance of a physical scalar boson. The discovery announced at CERN on 4th July 2012 by the ATLAS and CMS Collaborations of a boson at a mass close to 125 GeV/c2, compatible with this scalar boson of the Standard Model, the so-called Higgs boson, mainly in γγ, ZZ and WW decay modes, with compatible evidence also found at Fermilab in the bb mode, changed the landscape. This important discovery was acknowledged as decisive for the attribution of the 2013 Nobel Prize in Physics awarded jointly to François Englert and Peter Higgs . This 7th workshop of the "Higgs Hunting" series organized in Paris on August 31 - September 2, 2016 will discuss the developments of LHC run 2 analyses, detailed studies of the new boson and possible de...

  17. New ATLAS Higgs physics results

    CERN Multimedia

    CERN. Geneva

    2014-01-01

    New Higgs physics results from the ATLAS experiment using the full Run-1 LHC dataset, corresponding to an integrated luminosity of approximately 25 fb-1, of proton-proton collisions at 7 TeV and 8 TeV, will be presented.

  18. Higgs mass determination in supersymmetry

    Energy Technology Data Exchange (ETDEWEB)

    Vega, Javier Pardo [Abdus Salam International Centre for Theoretical Physics, Strada Costiera 11, 34151, Trieste (Italy); SISSA International School for Advanced Studies and INFN Trieste, Via Bonomea 265, 34136, Trieste (Italy); Villadoro, Giovanni [Abdus Salam International Centre for Theoretical Physics, Strada Costiera 11, 34151, Trieste (Italy)

    2015-07-29

    We present the state-of-the-art of the effective field theory computation of the MSSM Higgs mass, improving the existing ones by including extra threshold corrections. We show that, with this approach, the theoretical uncertainty is within 1 GeV in most of the relevant parameter space. We confirm the smaller value of the Higgs mass found in the EFT computations, which implies a slightly heavier SUSY scale. We study the large tan β region, finding that sbottom thresholds might relax the upper bound on the scale of SUSY. We present SUSYHD, a fast computer code that computes the Higgs mass and its uncertainty for any SUSY scale, from the TeV to the Planck scale, even in Split SUSY, both in the (DR)-bar and in the on-shell schemes. Finally, we apply our results to derive bounds on some well motivated SUSY models, in particular we show how the value of the Higgs mass allows to determine the complete spectrum in minimal gauge mediation.

  19. A not so little Higgs?

    International Nuclear Information System (INIS)

    Sutherland, D.G.

    2005-01-01

    Most recent models assuming the Higgs boson is a pseudo-Nambu-Goldstone boson (pNGb) are motivated by the indication from Standard Model fits that its mass is = SU(3) model we use is briefly discussed. Some potential theoretical and phenomenological problems are mentioned briefly

  20. The Higgs boson and cosmology.

    Science.gov (United States)

    Shaposhnikov, Mikhail

    2015-01-13

    I will discuss how the Higgs field of the Standard Model may have played an important role in cosmology, leading to the homogeneity, isotropy and flatness of the Universe; producing the quantum fluctuations that seed structure formation; triggering the radiation-dominated era of the hot Big Bang; and contributing to the processes of baryogenesis and dark matter production.

  1. Higgs boson properties in ATLAS

    CERN Document Server

    Mansoulie, Bruno; The ATLAS collaboration

    2017-01-01

    The measurement by the ATLAS collaboration of Higgs boson properties is presented, in terms of production cross-sections, simplified template cross-sections, couplings. The measurements are based on the analysis of the H decay channels to diphoton and 4 leptons, using 36.1 fb-1 of 13 TeV data recorded in 2015 and 2016.

  2. Frequently Asked Questions: The Higgs!

    CERN Multimedia

    CERN Bulletin

    2012-01-01

    Why have we tried so hard to find the Higgs particle? How does the Higgs mechanism work? What is the difference in physics between strong evidence and a discovery? Why do physicists speak in terms of "sigmas"? Find out here!   Why have we tried so hard to find the Higgs particle? Because it could be the answer to the question: how does Nature decide whether or not to assign mass to particles? All the fundamental particles making up matter – the electron, the quarks, etc. – have masses. Moreover, quantum physics requires that forces are also carried by particles. The W and Z particles that carry the weak force responsible for radioactivity must also have masses, whereas the photon, the carrier of the electromagnetic force, has no mass at all. This is the root of the “Higgs problem”: how to give masses to the fundamental particles and break the symmetry between the massive W and Z and the massless photon? Just assigning masses by hand...

  3. The Higgs boson and cosmology

    CERN Document Server

    Shaposhnikov, Mikhail

    2015-01-01

    I will discuss how the Higgs field of the Standard Model may have played an important role in cosmology, leading to the homogeneity, isotropy and flatness of the Universe; producing the quantum fluctuations that seed structure formation; triggering the radiation-dominated era of the hot Big Bang; and contributing to the processes of baryogenesis and dark matter production.

  4. Dual transformations of the non-abelian fields in Minkowsky, Euclid, and Galilei-Newton spaces

    International Nuclear Information System (INIS)

    Tolkaehev, E.A.; Kurochkin, Y.A.; Trequbovich, A.Y.

    1991-01-01

    In this paper it is shown that the generalization of the Yang-Mills equations in Minkowsky space to the case of the biquaternions over dual and double numbers enables one to define the corresponding representations of the Galilei and SO(4) groups in a rather natural way. it makes construction of the non-Abelian field equations in Euclidean and Galilei-Newton spaces possible and proves their invariance under generalized dual transformations by use of the analogy with the Abelian gauge

  5. Anomalous Quasiparticle Symmetries and Non-Abelian Defects on Symmetrically Gapped Surfaces of Weak Topological Insulators.

    Science.gov (United States)

    Mross, David F; Essin, Andrew; Alicea, Jason; Stern, Ady

    2016-01-22

    We show that boundaries of 3D weak topological insulators can become gapped by strong interactions while preserving all symmetries, leading to Abelian surface topological order. The anomalous nature of weak topological insulator surfaces manifests itself in a nontrivial action of symmetries on the quasiparticles; most strikingly, translations change the anyon types in a manner impossible in strictly 2D systems with the same symmetry. As a further consequence, screw dislocations form non-Abelian defects that trap Z_{4} parafermion zero modes.

  6. $N=2^∗$ (non-)Abelian theory in the $\\Omega$ background from string theory

    CERN Document Server

    Samsonyan, Marine; Antoniadis, Ignatios

    2018-01-01

    We present a D-brane realisation of the Abelian and non-Abelian N = 2 ∗ theory both in five and four dimensions. We compute topological amplitudes in string theory for Ω deformed spacetime first with one and then with two parameters. In the field theory limit we recover the perturbative partition function of the deformed N = 2 ∗ theory in agreement with the existing literature.

  7. Vertex operators, non-abelian orbifolds and the Riemann-Hilbert problem

    International Nuclear Information System (INIS)

    Gato, B.; Massachusetts Inst. of Tech., Cambridge

    1990-01-01

    We show how to construct the oscillator part of vertex operators for the bosonic string moving on non-abelian orbifolds, using the conserved charges method. When the three-string vertices are twisted by non-commuting group elements, the construction of the conserved charges becomes the Riemann-Hilbert problem with monodromy matrices given by the twists. This is solvable for any given configuration and any non-abelian orbifold. (orig.)

  8. Marginal and non-commutative deformations via non-abelian T-duality

    Energy Technology Data Exchange (ETDEWEB)

    Hoare, Ben [Institut für Theoretische Physik, ETH Zürich,Wolfgang-Pauli-Strasse 27, 8093 Zürich (Switzerland); Thompson, Daniel C. [Theoretische Natuurkunde, Vrije Universiteit Brussel & The International Solvay Institutes, Pleinlaan 2, B-1050 Brussels (Belgium)

    2017-02-10

    In this short article we develop recent proposals to relate Yang-Baxter sigma-models and non-abelian T-duality. We demonstrate explicitly that the holographic space-times associated to both (multi-parameter)-β-deformations and non-commutative deformations of N=4 super Yang-Mills gauge theory including the RR fluxes can be obtained via the machinery of non-abelian T-duality in Type II supergravity.

  9. Renormalizable Abelian-projected effective gauge theory derived from quantum chromodynamics

    International Nuclear Information System (INIS)

    Kondo, Kei-ichi; Shinohara, Toru

    2001-01-01

    We show that an effective Abelian gauge theory can be obtained as a renormalizable theory from QCD in the maximal Abelian gauge. The derivation improves in a systematic manner the previous version that was obtained by one of the authors and was referred to as the Abelian-projected effective gauge theory. This result supports the view that we can construct an effective Abelian gauge theory from QCD without losing characteristic features of the original non-Abelian gauge theory. In fact, it is shown that the effective coupling constant in the resulting renormalizable theory has a renormalization-scale dependence governed by the β-function that is exactly the same as that of the original Yang-Mills theory, irrespective of the choice of gauge fixing parameters of the maximal Abelian gauge and the parameters used for identifying the dual variables. Moreover, we evaluate the anomalous dimensions of the fields and parameters in the resultant theory. By choosing the renormalized parameters appropriately, we can switch the theory into an electric or a magnetic theory. (author)

  10. Deepening Cosmic Education

    Science.gov (United States)

    Leonard, Gerard

    2013-01-01

    This article is a special blend of research, theory, and practice, with clear insight into the origins of Cosmic Education and cosmic task, while recalling memories of student explorations in botany, in particular, episodes from Mr. Leonard's teaching. Mr. Leonard speaks of a storytelling curriculum that eloquently puts perspective into dimensions…

  11. Primary cosmic ray flux

    Energy Technology Data Exchange (ETDEWEB)

    Stanev, Todor

    2001-05-01

    We discuss the primary cosmic ray flux from the point of view of particle interactions and production of atmospheric neutrinos. The overall normalization of the cosmic ray flux and its time variations and site dependence are major ingredients of the atmospheric neutrino predictions and the basis for the derivation of the neutrino oscillation parameters.

  12. Cosmic rays on earth

    International Nuclear Information System (INIS)

    Allkofer, O.C.; Grieder, P.K.F.

    1984-01-01

    A data collection is presented that covers cosmic rays on earth. Included are all relevant data on flux and intensity measurements, energy spectra, and related data of all primary and secondary components of the cosmic radiation at all levels in the atmosphere, at sea level and underground. In those cases where no useful experimental data have been available, theoretical predictions were substituted. (GSCH)

  13. Dark matter model with non-Abelian gauge symmetry

    International Nuclear Information System (INIS)

    Zhang Hao; Li Chongsheng; Cao Qinghong; Li Zhao

    2010-01-01

    We propose a dark-matter model in which the dark sector is gauged under a new SU(2) group. The dark sector consists of SU(2) dark gauge fields, two triplet dark Higgs fields, and two dark fermion doublets (dark-matter candidates in this model). The dark sector interacts with the standard model sector through kinetic and mass mixing operators. The model explains both PAMELA and Fermi LAT data very well and also satisfies constraints from both the dark-matter relic density and standard model precision observables. The phenomenology of the model at the LHC is also explored.

  14. Our Cosmic Insignificance

    Science.gov (United States)

    Kahane, Guy

    2014-01-01

    The universe that surrounds us is vast, and we are so very small. When we reflect on the vastness of the universe, our humdrum cosmic location, and the inevitable future demise of humanity, our lives can seem utterly insignificant. Many philosophers assume that such worries about our significance reflect a banal metaethical confusion. They dismiss the very idea of cosmic significance. This, I argue, is a mistake. Worries about cosmic insignificance do not express metaethical worries about objectivity or nihilism, and we can make good sense of the idea of cosmic significance and its absence. It is also possible to explain why the vastness of the universe can make us feel insignificant. This impression does turn out to be mistaken, but not for the reasons typically assumed. In fact, we might be of immense cosmic significance—though we cannot, at this point, tell whether this is the case. PMID:25729095

  15. NEEDS for LHC experiment planning from results of very high energy cosmic ray Investigations (NEEDS-2

    Directory of Open Access Journals (Sweden)

    Petrukhin A.A.

    2015-01-01

    Full Text Available 12 years ago, at 12th ISVHECRI, a special NEEDS workshop was held to discuss future LHC data required for interpretation of cosmic ray experiments. Now, when the main task of LHC is solved – the Higgs boson is discovered – the question “What will be the next?” is very actual. In this paper the results of cosmic ray experiments at LHC energies are considered. Their possible explanation in the frame of a new model of production of quark-gluon matter blobs is discussed. The necessity to pass in LHC experiments from investigations of pp-interactions to investigations of nucleus-nucleus interactions is underlined since cosmic rays consist mainly of nuclei (≈ 60% which interact with nuclei of air. But namely in these nucleus-nucleus interactions many unusual results were obtained in cosmic ray investigations. Corresponding tasks for future LHC experiments are proposed.

  16. Effect of multiple Higgs fields on the phase structure of the SU(2)-Higgs model

    International Nuclear Information System (INIS)

    Wurtz, Mark; Steele, T. G.; Lewis, Randy

    2009-01-01

    The SU(2)-Higgs model, with a single Higgs field in the fundamental representation and a quartic self-interaction, has a Higgs region and a confinement region which are analytically connected in the parameter space of the theory; these regions thus represent a single phase. The effect of multiple Higgs fields on this phase structure is examined via Monte Carlo lattice simulations. For the case of N≥2 identical Higgs fields, there is no remaining analytic connection between the Higgs and confinement regions, at least when Lagrangian terms that directly couple different Higgs flavors are omitted. An explanation of this result in terms of enhancement from overlapping phase transitions is explored for N=2 by introducing an asymmetry in the hopping parameters of the Higgs fields. It is found that an enhancement of the phase transitions can still occur for a moderate (10%) asymmetry in the resulting hopping parameters.

  17. Higher-order corrected Higgs bosons in FeynHiggs2.4

    Indian Academy of Sciences (India)

    treatment of loop-corrected Higgs-boson mass eigenstates as external (on-shell) or internal .... This gives rise to finite wave function normalization factors. [22]. .... The elements of Un can be interpreted as effective couplings of internal Higgs.

  18. Distinguishing a SM-like MSSM Higgs boson from SM Higgs boson at muon collider

    International Nuclear Information System (INIS)

    Singhal, Jai Kumar; Singh, Sardar; Nagawat, Ashok K.

    2007-01-01

    We explore the possibility of distinguishing the SM-like MSSM Higgs boson from the SM Higgs boson via Higgs boson pair production at future muon collider. We study the behavior of the production cross-section in SM and MSSM with Higgs boson mass for various MSSM parameters tanβ and m A . We observe that at fixed CM energy, in the SM, the total cross-section increases with the increase in Higgs boson mass whereas this trend is reversed for the MSSM. The changes that occur for the MSSM in comparison to the SM predictions are quantified in terms of the relative percentage deviation in cross-section. The observed deviations in cross-section for different choices of Higgs boson masses suggest that the measurements of the cross-section could possibly distinguish the SM-like MSSM Higgs boson from the SM Higgs boson. (author)

  19. Smoking-gun signatures for little Higgs models

    International Nuclear Information System (INIS)

    Han, Tao

    2004-01-01

    The little Higgs idea is a new way to solve the 'little hierarchy' problem by protecting the Higgs mass from quadratically divergent one-loop corrections. After a general introduction, I first describe the Littlest Higgs model to illustrate the little Higgs idea. I then present certain phenomenological signatures of two classes of little Higgs theories for future colliders. I emphasize to test the cancellation mechanism and how to distinguish different little Higgs models. (author)

  20. Finding the Higgs boson: A status report

    International Nuclear Information System (INIS)

    Dawson, S.

    1995-01-01

    The search for the Higgs boson of the minimal Standard Model has been a major focus of experimental high energy physics for some years now. Here, the authors review the current experimental limits and discuss the prospects for finding the Higgs boson at future accelerators, such as LEPII and the LHC. They consider only the Standard Model Higgs boson. Since a null result which definitively excluded a Higgs boson below some mass scale would be extremely important, they emphasize the case where the Higgs boson is much heavier than the relevant collider energy (or where there is no Higgs boson at all). Many of the results given here are a summary of those obtained by the DPF Committee on Long Term Planning

  1. Collider signatures of flavorful Higgs bosons

    International Nuclear Information System (INIS)

    Altmannshofer, Wolfgang; Eby, Joshua; Gori, Stefania; Lotito, Matteo

    2016-01-01

    Motivated by our limited knowledge of the Higgs couplings to the first two generation fermions, we analyze the collider phenomenology of a class of two Higgs doublet models (2HDMs) with a nonstandard Yukawa sector. One Higgs doublet is mainly responsible for the masses of the weak gauge bosons and the third-generation fermions, while the second Higgs doublet provides mass for the lighter fermion generations. The characteristic collider signatures of this setup differ significantly from well-studied 2HDMs with natural flavor conservation, flavor alignment, or minimal flavor violation. New production mechanisms for the heavy scalar, pseudoscalar, and charged Higgs involving second-generation quarks can become dominant. The most interesting decay modes include H/A → cc,tc,μμ,τμ and H"± → cb,cs,μν. As a result, searches for low-mass dimuon resonances are currently among the best probes of the heavy Higgs bosons in this setup.

  2. A Historical Profile of the Higgs Boson

    Energy Technology Data Exchange (ETDEWEB)

    Ellis, John; Gaillard, Mary K.; Nanopoulos, Dimitri V.

    2012-01-31

    The Higgs boson was postulated in 1964, and phenomenological studies of its possible production and decays started in the early 1970s, followed by studies of its possible productionin e{sup +} e{sup -}, {anti p}p and pp collisions, in particular. Until recently, the most sensitive searches for the Higgs boson were at LEP between 1989 and 2000, which have been complemented bysearches at the Fermilab Tevatron. The LHC has recently entered the hunt, excluding a Higgs boson over a large range of masses and revealing a tantalizing hint in the range 119 to125 GeV, and there are good prospects that the existence or otherwise of the Higgs boson will soon be established. One of the most attractive possibilities is that the Higgs bosonis accompanied by supersymmetry, though composite options have yet to be excluded. This article reviews some of the key historical developments in Higgs physics over the past half-century.

  3. Effective Field Theory with Two Higgs Doublets

    CERN Document Server

    Crivellin, Andreas; Procura, Massimiliano

    2016-01-01

    In this article we extend the effective field theory framework describing new physics effects to the case where the underlying low-energy theory is a Two-Higgs-Doublet model. We derive a complete set of independent operators up to dimension six assuming a $Z_2$-invariant CP-conserving Higgs potential. The effects on Higgs and gauge boson masses, mixing angles in the Higgs sector as well as couplings to fermions and gauge bosons are computed. At variance with the case of a single Higgs doublet, we find that pair production of SM-like Higgses, arising through dimension-six operators, is not fixed by fermion-fermion-Higgs couplings and can therefore be sizable.

  4. Machine Learning wins the Higgs Challenge

    CERN Multimedia

    Abha Eli Phoboo

    2014-01-01

    The winner of the four-month-long Higgs Machine Learning Challenge, launched on 12 May, is Gábor Melis from Hungary, followed closely by Tim Salimans from the Netherlands and Pierre Courtiol from France. The challenge explored the potential of advanced machine learning methods to improve the significance of the Higgs discovery.   Winners of the Higgs Machine Learning Challenge: Gábor Melis and Tim Salimans (top row), Tianqi Chen and Tong He (bottom row). Participants in the Higgs Machine Learning Challenge were tasked with developing an algorithm to improve the detection of Higgs boson signal events decaying into two tau particles in a sample of simulated ATLAS data* that contains few signal and a majority of non-Higgs boson “background” events. No knowledge of particle physics was required for the challenge but skills in machine learning - the training of computers to recognise patterns in data – were essential. The Challenge, hosted by Ka...

  5. Extended Higgs sectors in radiative neutrino models

    Directory of Open Access Journals (Sweden)

    Oleg Antipin

    2017-05-01

    Full Text Available Testable Higgs partners may be sought within the extensions of the SM Higgs sector aimed at generating neutrino masses at the loop level. We study a viability of extended Higgs sectors for two selected models of radiative neutrino masses: a one-loop mass model, providing the Higgs partner within a real triplet scalar representation, and a three-loop mass model, providing it within its two-Higgs-doublet sector. The Higgs sector in the one-loop model may remain stable and perturbative up to the Planck scale, whereas the three-loop model calls for a UV completion around 106 GeV. Additional vector-like lepton and exotic scalar fields, which are required to close one- and three-loop neutrino-mass diagrams, play a decisive role for the testability of the respective models. We constrain the parameter space of these models using LHC bounds on diboson resonances.

  6. Higgs bosons in supersymmetric models. Pt. 1

    International Nuclear Information System (INIS)

    Gunion, J.F.

    1986-01-01

    We describe the properties of Higgs bosons in a class of supersymmetric theories. We consider models in which the low-energy sector contains two weak complex doublets and perhaps one complex gauge-singlet Higgs field. Supersymmetry is assumed to be either softly or spontaneously broken, thereby imposing a number of restrictions on the Higgs boson parameters. We elucidate the Higgs boson masses and present Feynman rules for their couplings to the gauge bosons, fermions and scalars of the theory. We also present Feynman rules for vertices which are related by supersymmetry to the above couplings. Exact analytic expressions are given in two useful limits - one corresponding to the absence of the gauge-singlet Higgs field and the other corresponding to the absence of a supersymmetric Higgs mass term. (orig.)

  7. Cosmological perturbations in the new Higgs inflation

    Energy Technology Data Exchange (ETDEWEB)

    Germani, Cristiano [Arnold Sommerfeld Center, Ludwig-Maximilians-University, Theresienstr, 37 80333 Muenchen (Germany); Kehagias, Alex, E-mail: cristiano.germani@lmu.de, E-mail: kehagias@central.ntua.gr [Physics Division, National Technical University of Athens, 15780 Zografou Campus, Athens (Greece)

    2010-05-01

    We study the cosmological perturbations created during the New Higgs inflationary phase. In the New Higgs Inflation, the Higgs boson is kinetically coupled to the Einstein tensor and only three perturbative degrees of freedom, a scalar and two tensorial (gravitational waves), propagate during Inflation. Scalar perturbations are found to match the latest WMAP-7yrs data within Standard Model Higgs parameters. Primordial gravitational waves also, although propagating with superluminal speed, are consistent with present data. Finally, we estimate the values of the parameter of the New Higgs Inflation in relation to the Higgs mass, the spectral index and amplitude of the primordial scalar perturbations showing that the unitarity bound of the theory is not violated.

  8. Handbook of LHC Higgs Cross Sections: 4. Deciphering the Nature of the Higgs Sector

    Energy Technology Data Exchange (ETDEWEB)

    de Florian, D. [National Univ. of San Martin, Buenos Aires (Argentina); et al.

    2016-10-25

    This Report summarizes the results of the activities of the LHC Higgs Cross Section Working Group in the period 2014-2016. The main goal of the working group was to present the state-of-the-art of Higgs physics at the LHC, integrating all new results that have appeared in the last few years. The first part compiles the most up-to-date predictions of Higgs boson production cross sections and decay branching ratios, parton distribution functions, and off-shell Higgs boson production and interference effects. The second part discusses the recent progress in Higgs effective field theory predictions, followed by the third part on pseudo-observables, simplified template cross section and fiducial cross section measurements, which give the baseline framework for Higgs boson property measurements. The fourth part deals with the beyond the Standard Model predictions of various benchmark scenarios of Minimal Supersymmetric Standard Model, extended scalar sector, Next-to-Minimal Supersymmetric Standard Model and exotic Higgs boson decays. This report follows three previous working-group reports: Handbook of LHC Higgs Cross Sections: 1. Inclusive Observables (CERN-2011-002), Handbook of LHC Higgs Cross Sections: 2. Differential Distributions (CERN-2012-002), and Handbook of LHC Higgs Cross Sections: 3. Higgs properties (CERN-2013-004). The current report serves as the baseline reference for Higgs physics in LHC Run 2 and beyond.

  9. Distinguishing a SM-like MSSM Higgs boson from SM Higgs boson ...

    Indian Academy of Sciences (India)

    The Higgs sector of the MSSM contains two scalar doublet fields leading to five ... At tree level, the masses and couplings of the MSSM Higgs bosons ..... J F Gunion, H E Haber, G Kane and S Dawson, The Higgs Hunters Guide (Addison-.

  10. A very light Higgs at LEP

    International Nuclear Information System (INIS)

    Brown, N.

    1990-01-01

    If the standard Higgs particle is very light (≤50 MeV) then it will be sufficiently long lived that it could decay outside the detectors at LEP. This could give a signal of two final state leptons which are not back-to-back, with missing transverse momentum. We show that with suitable cuts this Higgs signal can be distinguished from backgrounds with a large enough rate that such a light Higgs will either be discovered or completely ruled out. (author)

  11. A Brief Survey of Higgs Bundles

    OpenAIRE

    Zúñiga-Rojas, Ronald Alberto

    2018-01-01

    Considering a compact Riemann surface of genus greater than two, a Higgs~bundle is a pair composed of a holomorphic bundle over the Riemann surface, joint with an auxiliar vector field, so-called Higgs field. This theory started around thirty years ago, with Hitchin's work, when he reduced the self-duality equations from dimension four to dimension two, and so, studied those equations over Riemann surfaces. Hitchin baptized those fields as "Higgs fields" beacuse in the context of physics and ...

  12. Improved formalism for precision Higgs coupling fits

    Science.gov (United States)

    Barklow, Tim; Fujii, Keisuke; Jung, Sunghoon; Karl, Robert; List, Jenny; Ogawa, Tomohisa; Peskin, Michael E.; Tian, Junping

    2018-03-01

    Future e+e- colliders give the promise of model-independent determinations of the couplings of the Higgs boson. In this paper, we present an improved formalism for extracting Higgs boson couplings from e+e- data, based on the effective field theory description of corrections to the Standard Model. We apply this formalism to give projections of Higgs coupling accuracies for stages of the International Linear Collider and for other proposed e+e- colliders.

  13. Improved formalism for precision Higgs coupling fits

    International Nuclear Information System (INIS)

    Barklow, Tim; Peskin, Michael E.; Jung, Sunghoon; Tian, Junping

    2017-08-01

    Future e + e - colliders give the promise of model-independent determinations of the couplings of the Higgs boson. In this paper, we present an improved formalism for extracting Higgs boson couplings from e + e - data, based on the Effective Field Theory description of corrections to the Standard Model. We apply this formalism to give projections of Higgs coupling accuracies for stages of the International Linear Collider and for other proposed e + e - colliders.

  14. arXiv The Hyperbolic Higgs

    CERN Document Server

    Cohen, Timothy; Giudice, Gian F.; Mccullough, Matthew

    2018-05-15

    We introduce the Hyperbolic Higgs, a novel solution to the little hierarchy problem that features Standard Model neutral scalar top partners. At one-loop order, the protection from ultraviolet sensitivity is due to an accidental non-compact symmetry of the Higgs potential that emerges in the infrared. Once the general features of the effective description are detailed, a completion that relies on a five dimensional supersymmetric framework is provided. Novel phenomenology is compared and contrasted with the Twin Higgs scenario.

  15. Spontaneous parity violation and minimal Higgs models

    International Nuclear Information System (INIS)

    Chavez, H.; Martins Simoes, J.A.

    2007-01-01

    In this paper we present a model for the spontaneous breaking of parity with two Higgs doublets and two neutral Higgs singlets which are even and odd under D-parity. The condition υ R >>υ L can be satisfied without introducing bidoublets, and it is induced by the breaking of D-parity through the vacuum expectation value of the odd Higgs singlet. Examples of left-right symmetric and mirror fermions models in grand unified theories are presented. (orig.)

  16. Light scattering by cosmic particles

    NARCIS (Netherlands)

    Hovenier, J.W.; Min, M.

    2008-01-01

    We define cosmic particles as particles outside the Earth. Two types of cosmic particles can be distinguished, namely liquid and solid particles. The solid particles are often called grains or cosmic dust particles. Cosmic particles occur in a great variety of astronomical objects and environments.

  17. 11. European cosmic ray symposium

    International Nuclear Information System (INIS)

    1989-03-01

    The biannual Symposium includes all aspects of cosmic ray research. The scientific programme was organized under three main headings: Cosmic rays in the heliosphere, Cosmic rays in the interstellar and extragalactic space, Properties of high-energy interactions as studied by cosmic rays. Seven invited talks were indexed seprately for the INIS database. (R.P.)

  18. Higgs Mass Textures in Flipped SU(5)

    CERN Document Server

    Ellis, Jonathan Richard; Rizos, J; Ellis, John

    1999-01-01

    We analyze the Higgs doublet-triplet mass splitting problem in the version of flipped SU(5) derived from string theory. Analyzing non-renormalizable terms up to tenth order in the superpotential, we identify a pattern of field vev's that keeps one pair of electroweak Higgs doublets light, while all other Higgs doublets and all Higgs triplets are kept heavy, with the aid of the economical missing-doublet mechanism found in the field-theoretical version of flipped SU(5). The solution predicts that second-generation charge -1/3 quarks and charged leptons are much lighter than those in the third generation.

  19. Higgs decays and brane gravi-vectors

    International Nuclear Information System (INIS)

    Clark, T. E.; Liu Boyang; Love, S. T.; Xiong, C.; Veldhuis, T. ter

    2008-01-01

    Higgs boson decays in flexible brane world models with stable, massive gravi-vectors are considered. Such vectors couple bilinearly to the standard model fields through either the standard model energy-momentum tensor, the weak hypercharge field strength, or the Higgs scalar. The role of the coupling involving the extrinsic curvature is highlighted. It is found that within the presently allowed parameter space, the decay rate of the Higgs into two gravi-vectors (which would appear as an invisible Higgs decay) can be comparable to the rate for any of the standard model decay modes.

  20. Higgs Particle: The Origin of Mass

    Science.gov (United States)

    Okada, Yasuhiro

    2007-11-01

    The Higgs particle is a new elementary particle predicted in the Standard Model of the elementary particle physics. It plays a special role in the theory of mass generation of quarks, leptons, and gauge bosons. In this article, theoretical issues on the Higgs mechanism are first discussed, and then experimental prospects on the Higgs particle study at the future collider experiments, LHC and ILC, are reviewed. The Higgs coupling determination is an essential step to establish the mass generation mechanism, which could lead to a deeper understanding of particle physics.

  1. Higgs particle. The origin of mass

    International Nuclear Information System (INIS)

    Okada, Yasuhiro

    2007-01-01

    The Higgs particle is a new elementary particle predicted in the Standard Model of the elementary particle physics. It plays a special role in the theory of mass generation of quarks, leptons, and gauge bosons. In this article, theoretical issues on the Higgs mechanism are first discussed, and then experimental prospects on the Higgs particle study at the future collider experiments. LHC and ILC, are reviewed. The Higgs coupling determination is an essential step to establish the mass generation mechanism, which could lead to a deeper understanding of particle physics. (author)

  2. Co-Higgs bundles on P^1

    OpenAIRE

    Rayan, Steven

    2010-01-01

    Co-Higgs bundles are Higgs bundles in the sense of Simpson, but with Higgs fields that take values in the tangent bundle instead of the cotangent bundle. Given a vector bundle on P^1, we find necessary and sufficient conditions on its Grothendieck splitting for it to admit a stable Higgs field. We characterize the rank-2, odd-degree moduli space as a universal elliptic curve with a globally-defined equation. For ranks r=2,3,4, we explicitly verify the conjectural Betti numbers emerging from t...

  3. New Physics and novel Higgs signals

    International Nuclear Information System (INIS)

    Diaz-Cruz, J. Lorenzo

    2003-01-01

    We review some of the results of our recent work dealing with the novel type of Higgs signals that arise when one considers extensions of the standard model. We discuss first possible deviations on the Higgs couplings due to heavy particles, in the context of the MSSM and with large extra-dimensions. Then, we present several models where it is possible to induce flavor violating Higgs couplings, and probe them at future hadron colliders through the LFV Higgs decay h → τμ or with rare top decays

  4. Strongly interacting Higgs sector without technicolor

    International Nuclear Information System (INIS)

    Liu Chuan; Kuti, J.

    1994-12-01

    Simulation results are presented on Higgs mass calculations in the spontaneously broken phase of the Higgs sector in the minimal Standard Model with a higher derviative regulator. A heavy Higgs particle is found in the TeV mass range in the presence of a complex conjugate ghost pair at higher energies. The ghost pair evades easy experimental detection. As a finite and unitary theory in the continuum, this model serves as an explicit and simple example of a strong interacting Higgs sector without technicolor. (orig.)

  5. The hunt for the Higgs particle

    CERN Multimedia

    CERN. Geneva

    2007-01-01

    With the advent of the LHC, the hunt for the Higgs boson enters its crucial phase. These three lectures will review: the Higgs mechanism; its implementation in the minimal Standard Model; possible alternatives with and without elementary scalar fields; the presently available information on electroweak gauge symmetry breaking and the Higgs particle; the properties of the Higgs boson(s) in the Standard Model and its supersymmetric extensions; the strategies for direct searches at colliders, with emphasis on the LHC, and comments on the possible scenarios that may emerge.

  6. Light Higgs bosons in phenomenological NMSSM

    Energy Technology Data Exchange (ETDEWEB)

    Mahmoudi, F. [CERN, Geneva (Switzerland); Clermont Univ., CNRS/IN2P3, LPC, Clermont-Ferrand (France); Rathsman, J. [Uppsala Univ. (Sweden). High-Energy Physics; Lund Univ. (Sweden). Theoretical High Energy Physics; Staal, O. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Zeune, L. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Goettingen Univ. (Germany). II. Physikalisches Inst.

    2010-12-15

    We consider scenarios in the next-to-minimal supersymmetric model (NMSSM) where the CP-odd and charged Higgs bosons are very light. As we demonstrate, these can be obtained as simple deformations of existing phenomenological MSSM benchmarks scenarios with parameters defined at the weak scale. This offers a direct and meaningful comparison to the MSSM case. Applying a wide set of up-to-date constraints from both high-energy collider and flavour physics, the Higgs boson masses and couplings are studied in viable parts of parameter space. The LHC phenomenology of the light Higgs scenario for neutral and charged Higgs boson searches is discussed. (orig.)

  7. Light Higgs bosons in phenomenological NMSSM

    International Nuclear Information System (INIS)

    Mahmoudi, F.; Rathsman, J.; Zeune, L.; Goettingen Univ.

    2010-12-01

    We consider scenarios in the next-to-minimal supersymmetric model (NMSSM) where the CP-odd and charged Higgs bosons are very light. As we demonstrate, these can be obtained as simple deformations of existing phenomenological MSSM benchmarks scenarios with parameters defined at the weak scale. This offers a direct and meaningful comparison to the MSSM case. Applying a wide set of up-to-date constraints from both high-energy collider and flavour physics, the Higgs boson masses and couplings are studied in viable parts of parameter space. The LHC phenomenology of the light Higgs scenario for neutral and charged Higgs boson searches is discussed. (orig.)

  8. Electroweak symmetry breaking: Higgs/whatever

    International Nuclear Information System (INIS)

    Chanowitz, M.S.

    1990-01-01

    In these two lectures the author discusses electroweak symmetry breaking from a general perspective, stressing properties that are model independent and follow just from the assumption that the electroweak interactions are described by a spontaneously broken gauge theory. This means he assumes the Higgs mechanism though not necessarily the existence of Higgs bosons. The first lecture presents the general framework of a spontaneously broken gauge theory: (1) the Higgs mechanism sui generis, with or without Higgs boson(s) and (2) the implications of symmetry and unitarity for the mass scale and interaction strength of the new physics that the Higgs mechanism requires. In addition he reviews a softer theoretical argument based on the naturalness problem which leads to a prejudice against Higgs bosons unless they are supersymmetric. This is a prejudice, not a theorem, and it could be overturned in the future by a clever new idea. In the second lecture he illustrates the general framework by reviewing some specific models: (1) the Weinberg-Salam model of the Higgs sector; (2) the minimal supersymmetric extension of the Weinberg-Salam model; and (3) technicolor as an example of the Higgs mechanism without Higgs bosons. He concludes the second lecture with a discussion of strong WW scattering that must occur if L SB lives above 1 TeV. In particular he describes some of the experimental signals and backgrounds at the SSC. 57 refs., 12 figs

  9. Non-Abelian strategies in quantum penny flip game

    Science.gov (United States)

    Mishima, Hiroaki

    2018-01-01

    In this paper, we formulate and analyze generalizations of the quantum penny flip game. In the penny flip game, one coin has two states, heads or tails, and two players apply alternating operations on the coin. In the original Meyer game, the first player is allowed to use quantum (i.e., non-commutative) operations, but the second player is still only allowed to use classical (i.e., commutative) operations. In our generalized games, both players are allowed to use non-commutative operations, with the second player being partially restricted in what operators they use. We show that even if the second player is allowed to use "phase-variable" operations, which are non-Abelian in general, the first player still has winning strategies. Furthermore, we show that even when the second player is allowed to choose one from two or more elements of the group U(2), the second player has winning strategies under certain conditions. These results suggest that there is often a method for restoring the quantum state disturbed by another agent.

  10. Topological Nematic States and Non-Abelian Lattice Dislocations

    Directory of Open Access Journals (Sweden)

    Maissam Barkeshli

    2012-08-01

    Full Text Available An exciting new prospect in condensed matter physics is the possibility of realizing fractional quantum Hall states in simple lattice models without a large external magnetic field. A fundamental question is whether qualitatively new states can be realized on the lattice as compared with ordinary fractional quantum Hall states. Here we propose new symmetry-enriched topological states, topological nematic states, which are a dramatic consequence of the interplay between the lattice translational symmetry and topological properties of these fractional Chern insulators. The topological nematic states are realized in a partially filled flat band with a Chern number N, which can be mapped to an N-layer quantum Hall system on a regular lattice. However, in the topological nematic states the lattice dislocations can act as wormholes connecting the different layers and effectively change the topology of the space. Consequently, lattice dislocations become defects with a nontrivial quantum dimension, even when the fractional quantum Hall state being realized is, by itself, Abelian. Our proposal leads to the possibility of realizing the physics of topologically ordered states on high-genus surfaces in the lab even though the sample has only the disk geometry.

  11. Topological Nematic States and Non-Abelian Lattice Dislocations

    Science.gov (United States)

    Barkeshli, Maissam; Qi, Xiao-Liang

    2012-07-01

    An exciting new prospect in condensed matter physics is the possibility of realizing fractional quantum Hall states in simple lattice models without a large external magnetic field. A fundamental question is whether qualitatively new states can be realized on the lattice as compared with ordinary fractional quantum Hall states. Here we propose new symmetry-enriched topological states, topological nematic states, which are a dramatic consequence of the interplay between the lattice translational symmetry and topological properties of these fractional Chern insulators. The topological nematic states are realized in a partially filled flat band with a Chern number N, which can be mapped to an N-layer quantum Hall system on a regular lattice. However, in the topological nematic states the lattice dislocations can act as wormholes connecting the different layers and effectively change the topology of the space. Consequently, lattice dislocations become defects with a nontrivial quantum dimension, even when the fractional quantum Hall state being realized is, by itself, Abelian. Our proposal leads to the possibility of realizing the physics of topologically ordered states on high-genus surfaces in the lab even though the sample has only the disk geometry.

  12. Numerical simulation of Higgs models

    International Nuclear Information System (INIS)

    Jaster, A.

    1995-10-01

    The SU(2) Higgs and the Schwinger model on the lattice were analysed. Numerical simulations of the SU(2) Higgs model were performed to study the finite temperature electroweak phase transition. With the help of the multicanonical method the distribution of an order parameter at the phase transition point was measured. This was used to obtain the order of the phase transition and the value of the interface tension with the histogram method. Numerical simulations were also performed at zero temperature to perform renormalization. The measured values for the Wilson loops were used to determine the static potential and from this the renormalized gauge coupling. The Schwinger model was simulated at different gauge couplings to analyse the properties of the Kaplan-Shamir fermions. The prediction that the mass parameter gets only multiplicative renormalization was tested and verified. (orig.)

  13. Discovery of the Higgs boson

    CERN Document Server

    Sharma, Vivek

    2016-01-01

    The recent observation of the Higgs boson has been hailed as the scientific discovery of the century and led to the 2013 Nobel Prize in physics. This book describes the detailed science behind the decades-long search for this elusive particle at the Large Electron Positron Collider at CERN and at the Tevatron at Fermilab and its subsequent discovery and characterization at the Large Hadron Collider at CERN. Written by physicists who played leading roles in this epic search and discovery, this book is an authoritative and pedagogical exposition of the portrait of the Higgs boson that has emerged from a large number of experimental measurements. As the first of its kind, this book should be of interest to graduate students and researchers in particle physics.

  14. LHCb Exotica and Higgs searches

    CERN Multimedia

    Lucchesi, Donatella

    2016-01-01

    The unique phase space coverage and features of the LHCb detector at the LHC makes it an ideal environment to probe complementary New Physics parameter regions. In particular, recently developed jet tagging algorithms are ideal for searches involving $b$ and $c$ jets. This poster will review different jet-related exotica searches together with the efforts in the search for a Higgs boson decaying to a pair of heavy quarks.

  15. Inflation and the Higgs Scalar

    Energy Technology Data Exchange (ETDEWEB)

    Green, Dan [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)

    2014-12-05

    This note makes a self-contained exposition of the basic facts of big bang cosmology as they relate to inflation. The fundamental problems with that model are then explored. A simple scalar model of inflation is evaluated which provides the solution of those problems and makes predictions which will soon be definitively tested. The possibility that the recently discovered fundamental Higgs scalar field drives inflation is explored.

  16. One or more Higgs bosons?

    CERN Document Server

    Barbieri, Riccardo; Kannike, Kristjan; Sala, Filippo; Tesi, Andrea

    2013-01-01

    Now that one has been found, the search for signs of more scalars is a primary task of current and future experiments. In the motivated hypothesis that the extra Higgs bosons of the next-to-minimal supersymmetric Standard Model (NMSSM) be the lightest new particles around, we outline a possible overall strategy to search for signs of the CP-even states. This work complements Ref. arXiv:1304.3670.

  17. Number theory meets Higgs physics

    CERN Multimedia

    CERN. Geneva

    2014-01-01

    Inspired by results from modern number theory and algebraic geometry, a lot of progress has recently been made regarding the computation of multi-loop integrals and scattering amplitudes. I will discuss various new approaches to the computation of loop integrals, and illustrate them on the first computation of a quantity at N3LO in perturbative QCD, the soft-virtual part of the inclusive Higgs-boson cross section in gluon fusion at N3LO.

  18. Commissioning of the Atlas pixel detector and search of the Higgs boson in the tt-H, H → bb- channel with the Atlas experiment at the LHC

    International Nuclear Information System (INIS)

    Aad, G.

    2009-09-01

    The global fit of Higgs boson quantum contributions to the electroweak experimental observables, computed within the Standard Model, favors a light Higgs boson with a mass of m H = 90 -27 +36 GeV, on the edge of the 95% Confidence Level region excluded by LEP. Finding a light Higgs boson at LHC is experimentally difficult and several channels with various signatures will be sought for. The associated production of the Higgs boson with a pair of top quarks, with the subsequent decay of the Higgs boson into b-quark pairs (dominant for m H <135 GeV), is one of the channels considered. This channel opens the possibility of measuring the top and b-quark Yukawa couplings. The potential of the ATLAS detector to observe this channel is described. Several ingredients are crucial: the reconstruction of the top-anti-top system with a high-purity, excellent b-tagging capabilities and good knowledge of the tt-bar+jets background. The pixel detector is the most important ATLAS sub-detectors for tagging b -jets. The ATLAS detector was commissioned with cosmic muon rays in autumn 2008. The pixel detector dead channels, calibration constants and slow control informations are described for this period. A detailed study about pixel noise determination and suppression is presented. Finally, the pixel detection efficiency is measured using cosmic muon rays. (author)

  19. Exploring holographic Composite Higgs models

    Energy Technology Data Exchange (ETDEWEB)

    Croon, Djuna [Department of Physics and Astronomy, University of Sussex,BN1 9QH Brighton (United Kingdom); Perimeter Institute for Theoretical Physics,Waterloo, ON (Canada); Dillon, Barry M.; Huber, Stephan J.; Sanz, Veronica [Department of Physics and Astronomy, University of Sussex,BN1 9QH Brighton (United Kingdom)

    2016-07-13

    Simple Composite Higgs models predict new vector-like fermions not too far from the electroweak scale, yet LHC limits are now sensitive to the TeV scale. Motivated by this tension, we explore the holographic dual of the minimal model, MCHM{sub 5}, to try and alleviate this tension without increasing the fine-tuning in the Higgs potential. Interestingly, we find that lowering the UV cutoff in the 5D picture allows for heavier top partners and less fine-tuning. In the 4D dual this corresponds to increasing the number of “colours” N, thus increasing the decay constant of the Goldstone Higgs. This is essentially a ‘Little Randall-Sundrum Model’, which are known to reduce some flavour and electroweak constraints. Furthermore, in anticipation of the ongoing efforts at the LHC to put bounds on the top Yukawa, we demonstrate that deviations from the SM can be suppressed or enhanced with respect to what is expected from mere symmetry arguments in 4D. We conclude that the 5D holographic realisation of the MCHM{sub 5} with a small UV cutoff is not in tension with the current experimental data.

  20. First Glimpses at Higgs' face

    CERN Document Server

    Espinosa, J.R.; Muhlleitner, M.; Trott, M.

    2012-01-01

    The 8 TeV LHC Higgs search data just released indicates the existence of a scalar resonance with mass ~ 125 GeV. We examine the implications of the data reported by ATLAS, CMS and the Tevatron collaborations on understanding the properties of this scalar by performing joint fits on its couplings to other Standard Model particles. We discuss and characterize to what degree this resonance has the properties of the Standard Model (SM) Higgs, and consider what implications can be extracted for New Physics in a (mostly) model-independent fashion. We find that, if the Higgs couplings to fermions and weak vector bosons are allowed to differ from their standard values, the SM is ~ 2 sigma from the best fit point to current data. Fitting to a possible invisible decay branching ratio, we find BR_{inv} = 0.05\\pm 0.32\\ (95% C.L.) We also discuss and develop some ways of using the data in order to bound or rule out models which modify significantly the properties of this scalar resonance and apply these techniques to the ...