WorldWideScience

Sample records for abejas apis mellifera

  1. Impacto de la introducción de la abeja doméstica (Apis mellifera, Apidae en el Parque Nacional del Teide (Tenerife, Islas Canarias

    Directory of Open Access Journals (Sweden)

    A. Valido

    2014-01-01

    Full Text Available En el Parque Nacional del Teide (Tenerife, Islas Canarias se autoriza, cada primavera, la introducción de unas 3000 colmenas de abeja doméstica (Apis mellifera, Apidae. Esto implica que unos 100 millones de abejas melíferas compiten por néctar y polen con la fauna polinizadora nativa (insectos, aves y lagartos de este ecosistema peculiar de alta montaña. Si tenemos en cuenta que A. mellifera es considerada como un polinizador poco eficaz, la masiva presencia de abejas domésticas puede además incidir negativamente tanto en la producción de frutos y semillas como en la viabilidad de las semillas y el vigor de las plántulas. El objetivo de este artículo es señalar las consecuencias ecológicas de la introducción de A. mellifera en la red de interacciones mutualistas en esta área protegida (con un elevado porcentaje de especies endémicas, además de revisar el impacto de la abeja doméstica sobre la flora y fauna nativa en otros sistemas insulares. Los resultados obtenidos muestran que la diversidad de polinizadores disminuye sustancialmente tras la introducción de A. mellifera. Además, se detecta una reducción significativa en la eficacia reproductiva de aquellas plantas (Echium wildpretii, Spartocytisus supranubius frecuentemente visitadas por A. mellifera. Por todo ello, y en base a los resultados obtenidos, se recomienda eliminar completamente la presencia de colmenas en el interior del Parque Nacional del Teide con el fin de proteger su flora y fauna endémica.

  2. Micoflora asociada a granos de polen recolectados por abejas domésticas (Apis mellifera L

    Directory of Open Access Journals (Sweden)

    Carlos Manuel Bucio Villalobos

    2010-01-01

    Full Text Available Introducción: El polen cosechado de las explotaciones apícolas puede verse colonizado con hongos potencialmente toxigénicos durante su producción o almacenamiento, cuyas toxinas pueden tener consecuencias graves sobre la salud de las personas que lo consuman. El objetivo del presente trabajo fue cuantificar el grado de contaminación con hongos en 19 muestras de polen recolectado por las abejas, obtenidas en la ciudad de León, Gto. Método: 19 muestras de polen en diferentes presentaciones comerciales fueron obtenidas en tiendas naturistas de León, Gto., y fueron procesadas por triplicado colocando 100 gránulos sobre el medio de cultivo Papa Dextrosa Agar, e incubados por siete días a 25 °C. Al final del período de incubación se cuantificó el número de gránulos colonizados por los diferentes hongos. Resultados y Discusión: Los resultados mostraron que las tres muestras con mayor contaminación de hongos (98, 100 y 100 % fueron manejadas a granel, resultado similar al obtenido en un estudio previo realizado en 2007 con muestras recolectadas en la ciudad de Irapuato, Gto. Por otro lado, la contaminación de las muestras empacadas en envases de plástico duro (con y sin sellos en sus tapas tendieron a ser bajas, en contraste con lo encontrado en el estudio previo ya citado, donde hubo muestras envasadas de esa forma con más del 90 % de contaminación, lo que indica que el grado de contaminación no es consecuencia solamente de la forma de envasar el polen. La incidencia de los hongos encontrados fue en general baja: Aspergillus (3.6 %, Alternaria (3.6 %, Mucor (3.1 %, Fusarium (2.9 %, Penicillium (2.9 % y Rhizopus (0.7 %, habiéndose encontrado dentro del género Aspergillus la especie A. flavus, la cual puede incluir cepas capaces de producir aflatoxinas. Esta especie fue detectada en 4 de las 19 muestras analizadas, con incidencias de 27, 14, 10 y 1 %, las cuales fueron más altas que las encontradas en el estudio previo hecho en

  3. Evaluation of Yield Component Traits of Honeybee-Pollinated (Apis mellifera L.Rapeseed Canola (Brassica napus L. Evaluación de Parámetros de Rendimiento del Raps (Brassica napus L. Polinizado por Abejas (Apis mellifera L.

    Directory of Open Access Journals (Sweden)

    Ximena Araneda Durán

    2010-06-01

    Full Text Available Recent introduction of hybrid varieties raises the question if bees (Apis mellifera L. contribute as pollinator agents in developing the full yield potential of rapeseed (Brassica napus L.. In order to evaluate the yield achieved by B. napus cv. Artus pollinated by A. mellifera testing was carried out in the district of Freire, La Araucanía Region, Chile. This consisted in isolating or excluding rapeseed plants from pollinators with exclusion cages. Treatments applied were total exclusion (T1, partial exclusion (T2 and free pollination (T0 with a density of 6.5 hives ha-1, in order to determine the following yield components traits: grains per silique, siliques per plant, 1000 grain weight and yield. The experimental design used was randomized complete blocks with three treatments and three replicates. Results obtained show that the parameter least affected by bee intervention was the grains per silique variable. In contrast, siliques per plant and 1000 grain weight parameters presented significant differences, contributing to a yield greater than 5 t ha-1; which represented a figure 50.34% higher than in the treatment without bees. It may be concluded that the inclusion of bees in crops is fully justified as a production tool.La reciente introducción de variedades híbridas plantea la interrogante de la contribución que pueda tener la presencia de abejas (Apis mellifera L. como agentes polinizadores para desarrollar en pleno el potencial productivo del raps (Brassica napus L.. Con el objetivo de evaluar el rendimiento alcanzado por B. napus cv. Artus polinizado por A. mellifera, se realizó un ensayo en la localidad de Freire, Región de La Araucanía, Chile. Éste consistió en aislar o excluir las plantas de raps de los polinizadores mediante el uso de jaulas excluidoras. Los tratamientos consistieron en la exclusión total (T1, exclusión parcial (T2 y libre polinización (T0 con una densidad de 6,5 colmenas ha-1, con el fin de determinar

  4. Estudio de la actividad antifúngica de un extracto de propóleo de la abeja Apis mellifera proveniente del estado de México

    Directory of Open Access Journals (Sweden)

    Amparo Londoño Orozco

    2013-05-01

    Full Text Available El objetivo del presente trabajo fue evaluar la acción inhibitoria de un extracto etanólico al 15% de propóleo de la abeja Apis mellifera, procedente del apiario de la Facultad de Estudios Superiores Cuautitlán, UNAM, sobre el crecimiento de Candida albicans (ATCC 14055, Cryptococcus neoformans, y Aspergillus fumigatus, mediante dos pruebas de susceptibilidad: difusión en agar y microdilución. Se impregnaron los discos con el extracto de propóleo. Las pruebas de difusión fueron efectuadas sobre agar dextrosa Sabouraud (SDA, Müeller-Hinton con 2% de glucosa y 0,5 μg/mL de azul de metileno (MHAM: documento NCCLS M-44ª y RPMI 1640 con agar noble. Para obtener la concentración inhibitoria mínima (CIM, se realizaron pruebas de microdilución según los métodos M27-A2 (levaduras y M38-A (filamentosos del NCCLS (National Committee for Clinical Laboratory Standard: ahora Institute for Clinical Laboratory Standard. Se observó actividad inhibitoria sobre el desarrollo de todos los hongos estudiados. Estos resultados sugieren el posible potencial del propóleo como un tratamiento alternativo contra las infecciones por hongos, tanto levaduriformes como filamentosos.

  5. Producción del manzano (Malus sp. cv Anna en el oriente Antioqueño con la abeja melífera, Apis mellifera L. (hymenoptera: apidae.

    Directory of Open Access Journals (Sweden)

    Botero Garcés Natalia

    2000-06-01

    Full Text Available La necesidad de diversificar cultivos ha marcado el comienzo de otras alternativas agronómicas en nuestro país tales como la producción de manzano. Hace unos 6 años se inició en Colombia la plantación de cultivares comerciales mejorados de cuya biología y necesidades poco se sabe. Se planteó un estudio sobre la influencia de la polinización entomófila en la producción de manzana Anna. El trabajo se desarrolló en un cultivo de manzano en el Municipio del Carmen de Viboral (Oriente Antioqueño, correspondiente a la zona de vida bosque húmedo montano bajo (bh-MB, con temperatura promedio anual de 14-24°C, altura de 2200 msnm y precipitación promedio anual de 1800 mm. Se propuso estimar el efecto de los insectos polinizadores en la producción, comparando ésta en ramas enjauladas excluidas de todos los visitantes florales, con la de ramas expuestas a éstos durante la floración, en árboles escogidos al azar. Se encontró que las ramas que habían sido visitadas por insectos producían significativamente más manzanas (t = 2,95, para t0.05 con 18 g.l., con mayor pesos (t=2,21, para t0.05 con 18 g.l. y mayor número de semillas (t=3.75, para t0.05 con 18 g.l., que ramas sin acceso de visitantes florales. Una medición de índices de diversidad mostró que la abeja melífera (Apis mellifera L. constituyó el 76% de los visitantes florales y que la diversidad fue muy baja (λ=0.7439. Se concluyó que el manzano Anna requiere polinización entomófila, que la abeja melífera fue el polinizador más importante y que se incrementó significativamente la producción de frutos bajo la influencia de esta especie de abeja. Se recomienda la introducción al cultivo de Apis mellifera al momento de la floración, para garantizar una producción adecuada.

  6. Eficacia de dos acaricidas naturales, ácido fórmico y timol, para el control del ácaro Varroa destructor de las abejas (Apis mellifera L.) en Villa Guerrero, Estado de México, México

    OpenAIRE

    Laura G. Espinosa Montaño; Ernesto Guzmán Novoa

    2007-01-01

    This study was conducted to determine the effectiveness of two natural miticides, formic acid and thymol, for controlling infestations of the mite Varroa destructor in honey bee colonies (Apis mellifera L.). An apiary with 36 infested colonies was established and four groups of nine colonies each were formed. Treatments were assigned randomly to those groups as follows: 65% formic acid (group 1), 12.5 g of thymol per application (group 2), 25 g of thymol per application (group 3), and control...

  7. Detección de Malpighamoeba mellifcae (Protista: Amoebozoa) en Apis mellifera (Hymenoptera: Apidae)de Argentina Detection of Malpighamoeba mellifcae (Protista: Amoebozoa) in Apis mellifera (Hymenoptera: Apidae) of Argentina

    OpenAIRE

    Santiago Plischuk; Carlos E. Lange

    2010-01-01

    Debido a su rol como polinizador y productor de miel, la abeja Apis mellifera L. es considerado un insecto beneficioso. Si bien Argentina juega un papel de liderazgo en la producción de miel, existe un considerable vacío en el conocimiento acerca de las enfermedades de etiología protista que afectan las abejas en el país. La ameba Malpighamoeba mellificae Prell es un protista entomopatógeno que invade los túbulos de Malpighi de las abejas e interfiere con el proceso de excreción, debilitando ...

  8. Evidence of Apis cerana sacbrood virus infection in Apis mellifera

    Science.gov (United States)

    Sacbrood virus (SBV) is one of the most serious threats to Apis cerana but is much less destructive to Apis mellifera. In previous studies, SBV isolates infecting A. cerana and A. mellifera were identified as different serotypes, suggesting a species-barrier of SBV infection. In order to clarify whe...

  9. Control del parásito Varroa destructor (Acari: Varroidae) en colmenas de la abeja Apis mellifera (Hymenoptera: Apidae) mediante la aplicación de la técnica de entrampado Control of the parasite Varroa destructor (Acari: Varroidae) in honeybee colonies of Apis mellifera (Hymenoptera: Apidae) applying brood trap combs

    OpenAIRE

    Natalia Damiani; Jorge Marcangeli

    2006-01-01

    La parasitosis causada por el ácaro Varroa destructor (Anderson & Trueman) es, actualmente considerada el mayor escollo para el desarrollo de la apicultura. El objetivo del presente trabajo fue evaluar la técnica del entrampamiento de ácaros en panales de cría, como posible método de control de la parasitosis. El trabajo se llevó a cabo en Coronel Vidal, provincia de Buenos Aires. Se trabajó sobre colmenas tipo Langstroth del híbrido regional de Apis mellifera (Linneaus). En cada colmena expe...

  10. Evaluacion del efecto de Beauveria bassiana en el control biológico de Varroa destructor, parasito de la abeja melífera (Apis mellifera en la finca Felisa en el municipio de los Patios, Norte de Santander - Evaluacion del efecto de Beauveria bassiana en el control biológico de Varroa destructor, parasito de la abeja melífera (Apis mellifera en la finca Felisa en el municipio de los Patios, Norte de Santander

    Directory of Open Access Journals (Sweden)

    Francy Liliana Duarte

    2013-08-01

    Full Text Available Beekeeping is an activity that produces significant benefits to agriculture and the environment; Through the pollination action of bees helps to increase productivity as well as biodiversity in the ecosystem. In recent years, has significantly increased prevalence of parasites in this species, particularly the Varroasis, a disease caused by the mite Varroa destructor. The causal agent produces losses between 30% and 50% of total production and in turn can cause damage to the quality of honey by the excessive use of chemicals for disease control and the slow and progressive deterioration health of producers. Noting this, we evaluated the incidence of fungus Beauveria bassiana in natural populations of Varroa destructor in acarofauna associated, and the remains of the hive by pathogenicity tests in laboratory conditions to evaluate the effect of the biocontrol entomopathogenic then enter in apiaries infected with the disease. According to the results obtained in the adult infestation of V. destructor in Apis mellifera Africanized sampling Felisa made on the farm in the municipality of Los Patios, recorded rates of infestation in hives from 3.4% to 8.3% on the infection status of breeding was 4.5% to 13.7%. In laboratory tests it was possible to observe thatthe fungus B. bassiana attacked by an effective control mites without harming bees, propolis and honey allowing the insect to continue their normal activities, controlling the disease in a biological, not chemical.

  11. Control del parásito Varroa destructor (Acari: Varroidae en colmenas de la abeja Apis mellifera (Hymenoptera: Apidae mediante la aplicación de la técnica de entrampado

    Directory of Open Access Journals (Sweden)

    Natalia DAMIANI

    2006-01-01

    Full Text Available La parasitosis causada por el ácaro Varroa destructor (Anderson & Trueman es, actualmente considerada el mayor escollo para el desarrollo de la apicultura. El objetivo del presente trabajo fue evaluar la técnica del entrampamiento de ácaros en panales de cría, como posible método de control de la parasitosis. El trabajo se llevó a cabo en Coronel Vidal, provincia de Buenos Aires. Se trabajó sobre colmenas tipo Langstroth del híbrido regional de Apis mellifera (Linneaus. En cada colmena experimental se procedió a confinar a la reina en panales trampa específicos, con el fin de poder controlar la oviposición. Estos panales, luego de ser operculados por las obreras, fueron llevados al laboratorio donde se desoperculó cada una de las celdas de cría, y se contabilizó el número de ácaros presentes. Esta técnica se aplicó variando el número de panales trampa (1-3 colocados, tanto para los constituidos por celdas de cría de obreras como de zánganos. También, se evaluó el impacto de la aplicación de esta técnica sobre el desarrollo de las colonias, mediante la medición de su productividad. Los resultados indican, que la técnica empleada sólo es efectiva, cuando se aplican tres panales de cría de zánganos de manera consecutiva alcanzando una efectividad máxima de 84%. Cuando se aplican tres panales de obreras, la técnica mostró niveles de efectividad muy inferiores (14%. En las colonias sobre las que se aplicó esta técnica, la productividad de miel se redujo significativamente, comparada con las colonias control. Esta técnica resulta ideal para ser combinada con otros mecanismos de control, disminuyendo la aplicación de sustancias químicas que puedan contaminar la miel, y la generación de resistencia por parte del ácaro frente a los principios activos utilizados para su control.

  12. Control del parásito Varroa destructor (Acari: Varroidae en colmenas de la abeja Apis mellifera (Hymenoptera: Apidae mediante la aplicación de la técnica de entrampado Control of the parasite Varroa destructor (Acari: Varroidae in honeybee colonies of Apis mellifera (Hymenoptera: Apidae applying brood trap combs

    Directory of Open Access Journals (Sweden)

    Natalia Damiani

    2006-07-01

    Full Text Available La parasitosis causada por el ácaro Varroa destructor (Anderson & Trueman es, actualmente considerada el mayor escollo para el desarrollo de la apicultura. El objetivo del presente trabajo fue evaluar la técnica del entrampamiento de ácaros en panales de cría, como posible método de control de la parasitosis. El trabajo se llevó a cabo en Coronel Vidal, provincia de Buenos Aires. Se trabajó sobre colmenas tipo Langstroth del híbrido regional de Apis mellifera (Linneaus. En cada colmena experimental se procedió a confinar a la reina en panales trampa específicos, con el fin de poder controlar la oviposición. Estos panales, luego de ser operculados por las obreras, fueron llevados al laboratorio donde se desoperculó cada una de las celdas de cría, y se contabilizó el número de ácaros presentes. Esta técnica se aplicó variando el número de panales trampa (1-3 colocados, tanto para los constituidos por celdas de cría de obreras como de zánganos. También, se evaluó el impacto de la aplicación de esta técnica sobre el desarrollo de las colonias, mediante la medición de su productividad. Los resultados indican, que la técnica empleada sólo es efectiva, cuando se aplican tres panales de cría de zánganos de manera consecutiva, alcanzando una efectividad máxima de 84%. Cuando se aplican tres panales de obreras, la técnica mostró niveles de efectividad muy inferiores (14%. En las colonias sobre las que se aplicó esta técnica, la productividad de miel se redujo significativamente, comparada con las colonias control. Esta técnica resulta ideal para ser combinada con otros mecanismos de control, disminuyendo la aplicación de sustancias químicas que puedan contaminar la miel, y la generación de resistencia por parte del ácaro frente a los principios activos utilizados para su control.At present, Varroosis is considered the major problem to beekeeping development. The aim of this work was to evaluate brood tramp combs

  13. The Apis mellifera filamentous virus genome

    Science.gov (United States)

    A complete reference genome of the Apis mellifera Filamentous virus (AmFV) was determined using Illumina Hiseq sequencing. The AmFV genome is a double strand DNA molecule of approximately 498’500 nucleotides with a GC content of 50.8%. It encompasses 251 non overlapping open reading frames (ORFs), e...

  14. Standard methods for Apis mellifera propolis research

    Science.gov (United States)

    Propolis is one of the most fascinating honey bee (Apis mellifera L.) products. It is a plant derived product that bees produce from resins that they collect from different plant organs and with which they mix beeswax. Propolis is a building material and a protective agent in the beehive. It also pl...

  15. Efecto de la cantidad de cría de abeja Apis mellifera (Apidae sobre la eficacia del Oxavar® para el control del ácaro Varroa destructor (Varroidae Effect of Apis mellifera (Apidae honeybee brood amount on Oxavar® acaricide efficacy against the mite Varroa destructor (Varroidae

    Directory of Open Access Journals (Sweden)

    Jorge Marcangeli

    2004-12-01

    Full Text Available El objetivo del presente trabajo fue evaluar la eficacia acaricida del Oxavar® en el control del ácaro ectoparásito Varroa destructor (Anderson & Trueman. El trabajo fue realizado en el apiario experimental del Centro de Extensión Apícola ubicado en Coronel Vidal, provincia de Buenos Aires. Se seleccionaron diez colmenas tipo Langstroth que fueron divididas en dos grupos: a cinco colmenas con tres cuadros cubiertos completamente de cría en desarrollo y b cinco colmenas con seis cuadros cubiertos por cría. Ambos grupos recibieron cinco ml of Oxavar® (Apilab, Argentina; 64,6 g/l de ácido oxálico en agua destilada por cuadro cubierto por abejas adultas en tres dosis a intervalos de siete días. Semanalmente, se colectaron los ácaros muertos de los pisos especiales provistos a las colmenas de estudio con el objeto de evitar su remoción por parte de las abejas. Una vez concluido el tratamiento, en cada colmena se introdujeron dos tiras plásticas de Apistan® (Roteh, Argentina para eliminar los ácaros remanentes y poder así calcular la eficacia acaricida del Oxavar®. Los resultados mostraron que la eficacia del Oxavar® en el primer grupo (85,6% ± 1,4 resultó significativamente superior a la registrada en el segundo grupo (75,7 ± 1,7. Estas diferencias fueron testeadas a partir del número total de ácaros eliminados por el Oxavar® y Apistan® en ambos grupos de colmenas (pThe aim of this work was to evaluate the effect of honeybee brood on acaricide efficacy of Oxavar® to control the ectoparasitic mite Varroa destructor (Anderson & Trueman. Work was done at Centro de Extensión Apícola experimental apiary located at Coronel Vidal, province of Buenos Aires. Ten Langstroth hives were selected and divided in two groups: a hives containing three honeybee combs full of brood and b hives containing six honeybee brood combs. Both groups received five ml of Oxavar® (Laboratorio Apilab, Argentina; 64.6 g/l oxalic acid in destilled water

  16. Detección de Malpighamoeba mellificae (Protista: Amoebozoa en Apis mellifera (Hymenoptera: Apidae de Argentina

    Directory of Open Access Journals (Sweden)

    Santiago PLISCHUK

    2010-01-01

    Full Text Available Debido a su rol como polinizador y productor de miel, la abeja Apis mellifera L. es considerado un insecto beneficioso. Si bien Argentina juega un papel de liderazgo en la producción de miel, existe un considerable vacío en el conocimiento acerca de las enfermedades de etiología protista que afectan las abejas en el país. La ameba Malpighamoeba mellificae Prell es un protista entomopatógeno que invade los túbulos de Malpighi de las abejas e interfiere con el proceso de excreción, debilitando al huésped y posiblemente facilitando la acción de otros patógenos. En esta contribución se presentan los primeros hallazgos de M. mellificae en Argentina y se brindan datos iniciales acerca de su frecuencia, intensidad de las infecciones, y co-ocurrencia con Nosema sp. Malpighamoeba mellificae se halló en dos de 36 localidades prospectadas: San Cayetano, al Sur de la provincia de Buenos Aires y San Carlos de Bariloche, en el Oeste de la provincia de Río Negro.

  17. Detección de Malpighamoeba mellifcae (Protista: Amoebozoa en Apis mellifera (Hymenoptera: Apidaede Argentina Detection of Malpighamoeba mellifcae (Protista: Amoebozoa in Apis mellifera (Hymenoptera: Apidae of Argentina

    Directory of Open Access Journals (Sweden)

    Santiago Plischuk

    2010-12-01

    Full Text Available Debido a su rol como polinizador y productor de miel, la abeja Apis mellifera L. es considerado un insecto beneficioso. Si bien Argentina juega un papel de liderazgo en la producción de miel, existe un considerable vacío en el conocimiento acerca de las enfermedades de etiología protista que afectan las abejas en el país. La ameba Malpighamoeba mellificae Prell es un protista entomopatógeno que invade los túbulos de Malpighi de las abejas e interfiere con el proceso de excreción, debilitando al huésped y posiblemente facilitando la acción de otros patógenos. En esta contribución se presentan los primeros hallazgos de M. mellificae en Argentina y se brindan datos iniciales acerca de su frecuencia, intensidad de las infecciones, y co-ocurrencia con Nosema sp. Malpighamoeba mellificae se halló en dos de 36 localidades prospectadas: San Cayetano, al Sur de la provincia de Buenos Aires y San Carlos de Bariloche, en el Oeste de la provincia de Río Negro.Due to its role as a pollinator and honey producer, the honey bee Apis mellifera L. is considered a beneficial insect. Although Argentina plays a leading role in honey production, there is a considerable gap in knowledge regarding protistan diseases that affect honey bees in the country. The amoeba Malpighamoeba mellificae Prell is an entomopathogenic protist that invades the Malpighian tubules of honey bees and interferes with the excretory process, debilitating the host and possibly facilitating the action of other pathogens. In this contribution, we present the first reports of M. mellificae in Argentina, and provide some initial data about its frecuency, infection intensity, and co-occurrence with Nosema sp. Malpighamoeba mellificae was found in two out of 36 localities surveyed: San Cayetano, in southern Buenos Aires province, and San Carlos de Bariloche, in western Río Negro province.

  18. CONTENIDO MICROBIOLÓGICO CULTIVABLE DEL TRACTO INTESTINAL Y POLEN ALMACENADO DE Apis mellifera (Hymenoptera: Apidae Cultured Microbiological Content of the Intestinal Tract and Stored Pollen of Apis mellifera (Hymenoptera: Apidae

    Directory of Open Access Journals (Sweden)

    DUBERNEY GARCÍA GARCÍA

    2006-06-01

    Full Text Available Se caracterizaron los microorganismos cultivables asociados con Apis mellifera. Las muestras fueron tomadas a partir de polen almacenado (joven y maduro y transportado en corbículas y tracto digestivo de las abejas (forrajeras y recién nacidas. Se aislaron bacterias pertenecientes a los géneros Pseudomonas, Streptococcus, Micrococcus, Lactobacillus, Klebsiella, Proteus, Yersinia y Arthrobacter y hongos de los géneros Rhizopus, Alternaria y Epicoccum. De acuerdo a sus propiedades bioquímicas, algunas de estas bacterias pueden estar involucradas en la degradación de los compuestos de la capa externa del polen y son adquiridas por las abejas a través del alimento y contacto con otros individuos de la colmena. La presencia de los hongos se explica por su amplia distribución en el ambiente, ya que los tres géneros se encuentran comúnmente en el suelo y en las plantas que las abejas pueden seleccionar como fuente de alimento.Microorganisms associated with Apis mellifera were characterized. Samples were collected from storage pollen (young pollen and ripe pollen and carried in corbiculas, and bee’s gut of newly born and adult workers. Bacteria belonging to Pseudomonas, Streptococcus, Micrococcus, Lactobacillus, Klebsiella, Proteus, Yersinia and Arthrobacter genus and molds of Rhizopus, Alternaria and Epicoccum genus were isolated. According to their biochemical properties some of these microbes may be involved in the outer pollen walls degradation and could have been acquired by the bees through food ingestion or contact with other bees. The molds presence is explicated by their wide environmental distribution; they are typically found in soil and plants chosen as food source by bees.

  19. Cultured Microbiological Content of the Intestinal Tract and Stored Pollen of Apis mellifera (Hymenoptera: Apidae Contenido microbiológico cultivable del tracto intestinal y polen almacenado de Apis mellifera (Hymenoptera: Apidae

    Directory of Open Access Journals (Sweden)

    García García Duberney

    2006-06-01

    Full Text Available Microorganisms associated with Apis mellifera were characterized. Samples were collected from storage pollen (young pollen and ripe pollen and carried in corbiculas, and bee's gut of newly born and adult workers. Bacteria belonging to Pseudomonas, Streptococcus, Micrococcus, Lactobacillus, Klebsiella, Proteus, Yersinia and Arthrobacter genus and molds of Rhizopus, Alternaria and Epicoccum genus were isolated. According to their biochemical properties some of these microbes may be involved in the outer pollen walls degradation and could have been acquired by the bees through food ingestion or contact with other bees. The molds presence is explicated by their wide environmental distribution; they are typically found in soil and plants chosen as food source by bees.Se caracterizaron los microorganismos cultivables asociados con Apis mellifera. Las muestras fueron tomadas a partir de polen almacenado (joven y maduro y transportado en corbículas y tracto digestivo de las abejas (forrajeras y recién nacidas. Se aislaron bacterias pertenecientes a los géneros Pseudomonas, Streptococcus, Micrococcus, Lactobacillus, Klebsiella, Proteus, y Arthrobacter y hongos de los géneros Rhizopus, Alternaria y Epicoccum. De acuerdo a sus propiedades bioquímicas, algunas de estas bacteriaspueden estar involucradas en la degradación de los compuestos de la capa externa del polen y son adquiridas por las abejas a través del alimento y contacto con otros individuos de la colmena. La presencia de los hongos se explica por su amplia distribución en el ambiente, ya que los tres géneros se encuentran comúnmente en el suelo y en las
    plantas que las abejas pueden seleccionar como fuente de alimento.

  20. Contenido microbiológico cultivable del tracto intestinal y polen almacenado de Apis mellifera (Hymenoptera: Apidae

    Directory of Open Access Journals (Sweden)

    Sánchez Nieves Jimena

    2005-12-01

    Full Text Available Se caracterizaron los microorganismos cultivables asociados con Apis mellifera. Las muestras fueron tomadas a partir de polen almacenado (joven y maduro y transportado en corbículas y
    tracto digestivo de abejas forrajeras y recién nacidas. Se aislaron bacterias pertenecientes a los géneros Pseudomonas, Streptococcus, Micrococcus, Lactobacillus, Klebsiella, Yersinia, Proteus y Arthrobacter y hongos de los géneros Rhizopus, Alternaria y Epicoccum. De acuerdo a sus propiedades bioquímicas, algunas de estas bacterias pueden estar involucradas en la degradación de los compuestos de la capa externa del polen y son adquiridas por las abejas a través del alimento y contacto con otros individuos de la colmena. La presencia de los hongos se explica por su amplia distribución
    en el ambiente, ya que los tres géneros se encuentran comúnmente en el suelo y en las plantas que las abejas pueden seleccionar como fuente de alimento.

  1. The Apis mellifera Filamentous Virus Genome

    Directory of Open Access Journals (Sweden)

    Laurent Gauthier

    2015-07-01

    Full Text Available A complete reference genome of the Apis mellifera Filamentous virus (AmFV was determined using Illumina Hiseq sequencing. The AmFV genome is a double stranded DNA molecule of approximately 498,500 nucleotides with a GC content of 50.8%. It encompasses 247 non-overlapping open reading frames (ORFs, equally distributed on both strands, which cover 65% of the genome. While most of the ORFs lacked threshold sequence alignments to reference protein databases, twenty-eight were found to display significant homologies with proteins present in other large double stranded DNA viruses. Remarkably, 13 ORFs had strong similarity with typical baculovirus domains such as PIFs (per os infectivity factor genes: pif-1, pif-2, pif-3 and p74 and BRO (Baculovirus Repeated Open Reading Frame. The putative AmFV DNA polymerase is of type B, but is only distantly related to those of the baculoviruses. The ORFs encoding proteins involved in nucleotide metabolism had the highest percent identity to viral proteins in GenBank. Other notable features include the presence of several collagen-like, chitin-binding, kinesin and pacifastin domains. Due to the large size of the AmFV genome and the inconsistent affiliation with other large double stranded DNA virus families infecting invertebrates, AmFV may belong to a new virus family.

  2. Honeybee (Apis mellifera ligustica) drone embryo proteomes.

    Science.gov (United States)

    Li, Jianke; Fang, Yu; Zhang, Lan; Begna, Desalegn

    2011-03-01

    Little attention has been paid to the drone honeybee (Apis mellifera ligustica) which is a haploid individual carrying only the set of alleles that it inherits from its mother. Molecular mechanisms underlying drone embryogenesis are poorly understood. This study evaluated protein expression profiles of drone embryogenesis at embryonic ages of 24, 48 and 72h. More than 100 reproducible proteins were analyzed by mass spectrometry on 2D electrophoresis gels. Sixty-two proteins were significantly changed at the selected three experimental age points. Expression of the metabolic energy requirement-related protein peaked at the embryonic age of 48h, whereas development and metabolizing amino acid-related proteins expressed optimally at 72h. Cytoskeleton, protein folding and antioxidant-related proteins were highly expressed at 48 and 72h. Protein networks of the identified proteins were constructed and protein expressions were validated at the transcription level. This first proteomic study of drone embryogenesis in the honeybee may provide geneticists an exact timetable and candidate protein outline for further manipulations of drone stem cells. PMID:21172355

  3. Comparative Foraging Behavior of Apis Cerana F. and Apis Mellifera L. in Rapeseed under Cage Condition in Chitwan, Nepal

    Directory of Open Access Journals (Sweden)

    Rameshwor Pudasaini

    2014-12-01

    Full Text Available An experiment was conducted to determine the foraging behavior of Apis mellifera L. and Apis cerana F. in rapeseed under cage condition in Chitwan, Nepal during 2012-2013. This experiment showed that Apis cerana F. foraged extra 42 minute per day as compared to Apis mellifera L. Apis cerana F. were more attracted to nectar, whereas Apis mellifera L. were more attracted to pollen collection throughout the day. The activities, in into hives and out from hives, for both species were recorded more at 2:00 pm and least at 8:00 am. The highest in-out were observed at 2:00 pm on both species as Apis mellifera L. 44.33 bees entered into hives and 49.66 bees went out of hives, whereas lower number of Apis cerana F. 43.66 bees entered into hives and 48.16 bees were out of hives. Apis mellifera L. collect 1.22:1 and 0.41:1 pollen nectar ratio at 10:00 am and 4:00 am whereas at same hours Apis cerana collect 1.16:1 and 0.30:1 pollen nectar ratio. Apis cerana F. foraged significantly higher number of rapeseed flowers and plants as compared to Apis mellifera L. under caged condition. It shows that Apis cerana F. was more efficient pollinator as compared to Apis mellifera L. under caged condition.

  4. Fertile diploid drones in africanized honeybees, Apis mellifera adansonii.

    Science.gov (United States)

    Chaud-Netto, J

    1977-02-15

    59 diploid drones of Apis mellifera adansonii, 12-37 days old, were tested for the presence of semen after provoked ejaculation; 13 drones ejaculated semen enough to be used in an instrumental insemination, but only three on them (5%) furnished 1 mm3 of semen. The problems referring to the attainment of descendants from the 2n drones are briefly discussed.

  5. Sperm use economy of honeybee (Apis mellifera) queens

    DEFF Research Database (Denmark)

    Baer, Boris; Collins, Jason; Maalaps, Kristiina;

    2016-01-01

    the fecundity and longevity of queens and therefore colony fitness. We quantified the number of sperm that honeybee (Apis mellifera) queens use to fertilize eggs. We examined sperm use in naturally mated queens of different ages and in queens artificially inseminated with different volumes of semen. We found...

  6. Biophysics of the subgenual organ of the honeybee, Apis mellifera

    DEFF Research Database (Denmark)

    Kilpinen, Ole; Storm, Jesper

    1997-01-01

    The subgenual organ of the honeybee (Apis mellifera) is suspended in a haemolymph channel in the tibia of each leg. When the leg is accelerated, inertia causes the haemolymph (and the subgenual organ) to lag behind the movement of the rest of the leg. The magnitude of this phase lag determines...

  7. Standard methods for research on apis mellifera gut symbionts

    Science.gov (United States)

    Gut microbes can play an important role in digestion, disease resistance, and the general health of animals, but little is known about the biology of gut symbionts in Apis mellifera. This paper is part of a series on honey bee research methods, providing protocols for studying gut symbionts. We desc...

  8. Standard methods for research on Apis mellifera gut symbionts

    Science.gov (United States)

    Gut microbes can play an important role in digestion, disease resistance, and the general health of animals, but little is known about the biology of gut symbionts in Apis mellifera. This paper is part of a series on honey bee research methods, providing protocols for studying gut symbionts. We desc...

  9. Registro de Nephridiophaga sp. (Protista: Nephridiophagidae en Apis mellifera (Hymenoptera: Apidae del Sur de la región Pampeana

    Directory of Open Access Journals (Sweden)

    Santiago PLISCHUK

    2011-01-01

    Full Text Available Durante estudios prospectivos tendientes a la detección de protistas asociados a ápidos en la región Pampeana, se observó la presencia de esporos ovales bicóncavos y grupos de esporos (cúmulos en los túbulos de Malpighi de abejas de Dufaur, partido de Saavedra, sudoeste de la provincia de Buenos Aires. Los esporos maduros midieron 4,8 ± 0,05 x 2,4 ± 0,03 μm y la carga (intensidad promedió 5,71 ± 1,49 x 106 esporos/abeja. Las detecciones se efectuaron entre julio y octubre de 2006 y la prevalencia en las colmenas positivas osciló entre 1 y 16,7 %. Las características morfológicas de los esporos, el lugar de desarrollo y la especie huésped involucrada sugieren que el microorganismo en cuestión, pertenece al género Nephridiophaga y sería N. apis Ivanić, especie tipo cuyo conocimiento es extremadamente limitado. El hallazgo constituye el primer registro de un nefridiofágido asociado a A. mellifera fuera del continente europeo.

  10. Draft genome sequence of the Algerian bee Apis mellifera intermissa.

    Science.gov (United States)

    Haddad, Nizar Jamal; Loucif-Ayad, Wahida; Adjlane, Noureddine; Saini, Deepti; Manchiganti, Rushiraj; Krishnamurthy, Venkatesh; AlShagoor, Banan; Batainh, Ahmed Mahmud; Mugasimangalam, Raja

    2015-06-01

    Apis mellifera intermissa is the native honeybee subspecies of Algeria. A. m. intermissa occurs in Tunisia, Algeria and Morocco, between the Atlas and the Mediterranean and Atlantic coasts. This bee is very important due to its high ability to adapt to great variations in climatic conditions and due to its preferable cleaning behavior. Here we report the draft genome sequence of this honey bee, its Whole Genome Shotgun project has been deposited at DDBJ/EMBL/GenBank under the accession JSUV00000000. The 240-Mb genome is being annotated and analyzed. Comparison with the genome of other Apis mellifera sub-species promises to yield insights into the evolution of adaptations to high temperature and resistance to Varroa parasite infestation. PMID:26484171

  11. Draft genome sequence of the Algerian bee Apis mellifera intermissa

    Directory of Open Access Journals (Sweden)

    Nizar Jamal Haddad

    2015-06-01

    Full Text Available Apis mellifera intermissa is the native honeybee subspecies of Algeria. A. m. intermissa occurs in Tunisia, Algeria and Morocco, between the Atlas and the Mediterranean and Atlantic coasts. This bee is very important due to its high ability to adapt to great variations in climatic conditions and due to its preferable cleaning behavior. Here we report the draft genome sequence of this honey bee, its Whole Genome Shotgun project has been deposited at DDBJ/EMBL/GenBank under the accession JSUV00000000. The 240-Mb genome is being annotated and analyzed. Comparison with the genome of other Apis mellifera sub-species promises to yield insights into the evolution of adaptations to high temperature and resistance to Varroa parasite infestation.

  12. Antibacterial Activity of a Cardanol from Thai Apis mellifera Propolis

    OpenAIRE

    Boonsai, Pattaraporn; Phuwapraisirisan, Preecha; Chanchao, Chanpen

    2014-01-01

    Background: Propolis is a sticky, dark brown resinous residue made by bees that is derived from plant resins. It is used to construct and repair the nest, and in addition possesses several diverse bioactivities. Here, propolis from Apis mellifera from Nan province, Thailand, was tested for antibacterial activity against Gram+ve (Staphylococcus aureus and Paenibacillus larvae) and Gram-ve (Escherichia coli) bacteria. Materials and methods: The three bacterial isolates were confirmed for specie...

  13. Analisis Finansial Dan Pemasaran Usaha Lebah Madu (Apis mellifera)

    OpenAIRE

    Agustini, Rini

    2012-01-01

    This research aims to determine the financial analysis and marketing margins beekeeping businesses (Apis mellifera) in the village of Samura, Subdistrict Gung Negri, District Kabanjahe, Karo. The analysis method used was descriptive analysis and financial analysis with multiple criteria: Net Present Value (NPV), Benefit Cost Ratio (BCR) and Internal Rate of Returns (IRR). The results showed the beekeeping business have value NPV, BCR, and IRR indicating that the beekeeping business worth ...

  14. Genetic characterization of a polymorphic dipeptidyl aminopeptidase of Apis mellifera

    OpenAIRE

    Marco Antonio Del Lama,; Boraschi, Daniele; Ademilson Espencer Egea Soares,; Duran, Ximena

    2004-01-01

    International audience Dipeptidyl aminopeptidase (DAP) activity towards L-leucylglycine-$\\beta$-naphthylamide (Leu-Gly NA) was characterized in pupae and adult extracts of Apis mellifera. Enzyme activity was more conspicuous in pupae than in adult extracts and it seemed to be concentrated in digestive tract tissues. Two genetically determined electrophoretic variants were observed in honeybee samples from the USA and Chile; in Brazilian Africanized bees, two additional variants were observ...

  15. Reevaluation of honeybee (Apis mellifera) microtaxonomy: a geometric morphometric approach

    OpenAIRE

    Kandemir, Irfan; Özkan, Ayça; FUCHS, Stefan

    2011-01-01

    International audience In the present study, the microtaxonomy of honeybee (Apis mellifera L.) subspecies was reevaluated based on a geometric morphometric method. Wing images of honeybee subspecies, obtained from the Morphometric Bee Data Bank in Oberursel, Germany, were assigned to four honeybee lineages from the indivudial images, and 40 Cartesian coordinates were obtained. Honeybee lineages were significantly different based on individual and colony consensus average wing shapes of hon...

  16. Variation morphogeometrics of Africanized honey bees (Apis mellifera in Brazil

    Directory of Open Access Journals (Sweden)

    Lorena A. Nunes

    2012-09-01

    Full Text Available The morphometrics of the honey bee Apis mellifera L., 1758 has been widely studied mainly because this species has great ecological importance, high adaptation capacity, wide distribution and capacity to effectively adapt to different regions. The current study aimed to investigate the morphometric variations of wings and pollen baskets of honey bees Apis mellifera scutellata Lepeletier, 1836 from the five regions in Brazil. We used geometric morphometrics to identify the existence of patterns of variations of shape and size in Africanized honey bees in Brazil 16 years after the classic study with this species, allowing a temporal and spatial comparative analysis using new technological resources to assess morphometrical data. Samples were collected in 14 locations in Brazil, covering the five geographical regions of the country. The shape analysis and multivariate analyses of the wing allowed to observe that there is a geographical pattern among the population of Apis mellifera in Brazil. The geographical variations may be attributed to the large territorial extension of the country in addition to the differences between the bioregions.

  17. Aggressiveness index of Apis Mellifera (Hymenoptera: Aapidae) Índice de agresividad en Apis mellifera ( Hymenoptera: Aapidae )

    OpenAIRE

    Sierra Omar Danilo; Insuasty Torres Jennyfer

    2004-01-01

    An index measuring the aggressiveness among ten colonies of Apis mellifera was elaborated based on the third generation synthetic indices by Charum et al. (1999). The index values are subject to a fixed parameter used as the beginning or standard value, and correspond to the aggressive features of some Africans colonies studied by Rothenbuler et al. (1968). In the ten colonies the index values are notably smaller than those of African colonies and are biased to the lowest values. This indicat...

  18. Nosema ceranae in drone honey bees (Apis mellifera).

    Science.gov (United States)

    Traver, Brenna E; Fell, Richard D

    2011-07-01

    Nosema ceranae is a microsporidian intracellular parasite of honey bees, Apis mellifera. Previously Nosema apis was thought to be the only cause of nosemosis, but it has recently been proposed that N. ceranae is displacing N. apis. The rapid spread of N. ceranae could be due to additional transmission mechanisms, as well as higher infectivity. We analyzed drones for N. ceranae infections using duplex qPCR with species specific primers and probes. We found that both immature and mature drones are infected with N. ceranae at low levels. This is the first report detecting N. ceranae in immature bees. Our data suggest that because drones are known to drift from their parent hives to other hives, they could provide a means for disease spread within and between apiaries. PMID:21621543

  19. Differential gene expression of the honey bee Apis mellifera associated with Varroa destructor infection.

    Science.gov (United States)

    The parasitic mite, Varroa destructor, is the most serious pest of the western honey bee, Apis mellifera, and has caused the death of millions of colonies worldwide. We investigated whether Varroa infestation induces changes in Apis mellifera gene expression, and whether there are genotypic differen...

  20. Population Genetics of Nosema apis and Nosema ceranae: One Host (Apis mellifera) and Two Different Histories

    Science.gov (United States)

    Maside, Xulio; Gómez-Moracho, Tamara; Jara, Laura; Martín-Hernández, Raquel; De la Rúa, Pilar; Higes, Mariano; Bartolomé, Carolina

    2015-01-01

    Two microsporidians are known to infect honey bees: Nosema apis and Nosema ceranae. Whereas population genetics data for the latter have been released in the last few years, such information is still missing for N. apis. Here we analyze the patterns of nucleotide polymorphism at three single-copy loci (PTP2, PTP3 and RPB1) in a collection of Apis mellifera isolates from all over the world, naturally infected either with N. apis (N = 22) or N. ceranae (N = 23), to provide new insights into the genetic diversity, demography and evolution of N. apis, as well as to compare them with evidence from N. ceranae. Neutral variation in N. apis and N. ceranae is of the order of 1%. This amount of diversity suggests that there is no substantial differentiation between the genetic content of the two nuclei present in these parasites, and evidence for genetic recombination provides a putative mechanism for the flow of genetic information between chromosomes. The analysis of the frequency spectrum of neutral variants reveals a significant surplus of low frequency variants, particularly in N. ceranae, and suggests that the populations of the two pathogens are not in mutation-drift equilibrium and that they have experienced a population expansion. Most of the variation in both species occurs within honey bee colonies (between 62%-90% of the total genetic variance), although in N. apis there is evidence for differentiation between parasites isolated from distinct A. mellifera lineages (20%-34% of the total variance), specifically between those collected from lineages A and C (or M). This scenario is consistent with a long-term host-parasite relationship and contrasts with the lack of differentiation observed among host-lineages in N. ceranae (< 4% of the variance), which suggests that the spread of this emergent pathogen throughout the A. mellifera worldwide population is a recent event. PMID:26720131

  1. Population Genetics of Nosema apis and Nosema ceranae: One Host (Apis mellifera and Two Different Histories.

    Directory of Open Access Journals (Sweden)

    Xulio Maside

    Full Text Available Two microsporidians are known to infect honey bees: Nosema apis and Nosema ceranae. Whereas population genetics data for the latter have been released in the last few years, such information is still missing for N. apis. Here we analyze the patterns of nucleotide polymorphism at three single-copy loci (PTP2, PTP3 and RPB1 in a collection of Apis mellifera isolates from all over the world, naturally infected either with N. apis (N = 22 or N. ceranae (N = 23, to provide new insights into the genetic diversity, demography and evolution of N. apis, as well as to compare them with evidence from N. ceranae. Neutral variation in N. apis and N. ceranae is of the order of 1%. This amount of diversity suggests that there is no substantial differentiation between the genetic content of the two nuclei present in these parasites, and evidence for genetic recombination provides a putative mechanism for the flow of genetic information between chromosomes. The analysis of the frequency spectrum of neutral variants reveals a significant surplus of low frequency variants, particularly in N. ceranae, and suggests that the populations of the two pathogens are not in mutation-drift equilibrium and that they have experienced a population expansion. Most of the variation in both species occurs within honey bee colonies (between 62%-90% of the total genetic variance, although in N. apis there is evidence for differentiation between parasites isolated from distinct A. mellifera lineages (20%-34% of the total variance, specifically between those collected from lineages A and C (or M. This scenario is consistent with a long-term host-parasite relationship and contrasts with the lack of differentiation observed among host-lineages in N. ceranae (< 4% of the variance, which suggests that the spread of this emergent pathogen throughout the A. mellifera worldwide population is a recent event.

  2. Host Specificity in the Honeybee Parasitic Mite, Varroa spp. in Apis mellifera and Apis cerana.

    Science.gov (United States)

    Beaurepaire, Alexis L; Truong, Tuan A; Fajardo, Alejandro C; Dinh, Tam Q; Cervancia, Cleofas; Moritz, Robin F A

    2015-01-01

    The ectoparasitic mite Varroa destructor is a major global threat to the Western honeybee Apis mellifera. This mite was originally a parasite of A. cerana in Asia but managed to spill over into colonies of A. mellifera which had been introduced to this continent for honey production. To date, only two almost clonal types of V. destructor from Korea and Japan have been detected in A. mellifera colonies. However, since both A. mellifera and A. cerana colonies are kept in close proximity throughout Asia, not only new spill overs but also spill backs of highly virulent types may be possible, with unpredictable consequences for both honeybee species. We studied the dispersal and hybridisation potential of Varroa from sympatric colonies of the two hosts in Northern Vietnam and the Philippines using mitochondrial and microsatellite DNA markers. We found a very distinct mtDNA haplotype equally invading both A. mellifera and A. cerana in the Philippines. In contrast, we observed a complete reproductive isolation of various Vietnamese Varroa populations in A. mellifera and A. cerana colonies even if kept in the same apiaries. In light of this variance in host specificity, the adaptation of the mite to its hosts seems to have generated much more genetic diversity than previously recognised and the Varroa species complex may include substantial cryptic speciation. PMID:26248192

  3. Host Specificity in the Honeybee Parasitic Mite, Varroa spp. in Apis mellifera and Apis cerana.

    Directory of Open Access Journals (Sweden)

    Alexis L Beaurepaire

    Full Text Available The ectoparasitic mite Varroa destructor is a major global threat to the Western honeybee Apis mellifera. This mite was originally a parasite of A. cerana in Asia but managed to spill over into colonies of A. mellifera which had been introduced to this continent for honey production. To date, only two almost clonal types of V. destructor from Korea and Japan have been detected in A. mellifera colonies. However, since both A. mellifera and A. cerana colonies are kept in close proximity throughout Asia, not only new spill overs but also spill backs of highly virulent types may be possible, with unpredictable consequences for both honeybee species. We studied the dispersal and hybridisation potential of Varroa from sympatric colonies of the two hosts in Northern Vietnam and the Philippines using mitochondrial and microsatellite DNA markers. We found a very distinct mtDNA haplotype equally invading both A. mellifera and A. cerana in the Philippines. In contrast, we observed a complete reproductive isolation of various Vietnamese Varroa populations in A. mellifera and A. cerana colonies even if kept in the same apiaries. In light of this variance in host specificity, the adaptation of the mite to its hosts seems to have generated much more genetic diversity than previously recognised and the Varroa species complex may include substantial cryptic speciation.

  4. Comparative virulence and competition between Nosema apis and Nosema ceranae in honey bees (Apis mellifera).

    Science.gov (United States)

    Milbrath, Meghan O; van Tran, Toan; Huang, Wei-Fong; Solter, Leellen F; Tarpy, David R; Lawrence, Frank; Huang, Zachary Y

    2015-02-01

    Honey bees (Apis mellifera) are infected by two species of microsporidia: Nosema apis and Nosemaceranae. Epidemiological evidence indicates that N. ceranae may be replacing N. apis globally in A. mellifera populations, suggesting a potential competitive advantage of N. ceranae. Mixed infections of the two species occur, and little is known about the interactions among the host and the two pathogens that have allowed N. ceranae to become dominant in most geographical areas. We demonstrated that mixed Nosema species infections negatively affected honey bee survival (median survival=15-17days) more than single species infections (median survival=21days and 20days for N. apis and N. ceranae, respectively), with median survival of control bees of 27days. We found similar rates of infection (percentage of bees with active infections after inoculation) for both species in mixed infections, with N. apis having a slightly higher rate (91% compared to 86% for N. ceranae). We observed slightly higher spore counts in bees infected with N. ceranae than in bees infected with N. apis in single microsporidia infections, especially at the midpoint of infection (day 10). Bees with mixed infections of both species had higher spore counts than bees with single infections, but spore counts in mixed infections were highly variable. We did not see a competitive advantage for N. ceranae in mixed infections; N. apis spore counts were either higher or counts were similar for both species and more N. apis spores were produced in 62% of bees inoculated with equal dosages of the two microsporidian species. N. ceranae does not, therefore, appear to have a strong within-host advantage for either infectivity or spore growth, suggesting that direct competition in these worker bee mid-guts is not responsible for its apparent replacement of N. apis. PMID:25527406

  5. Hymenoptera venom review focusing on Apis mellifera

    Directory of Open Access Journals (Sweden)

    P. R. de Lima

    2003-01-01

    Full Text Available Hymenoptera venoms are complex mixtures containing simple organic molecules, proteins, peptides, and other bioactive elements. Several of these components have been isolated and characterized, and their primary structures determined by biochemical techniques. These compounds are responsible for many toxic or allergic reactions in different organisms, such as local pain, inflammation, itching, irritation, and moderate or severe allergic reactions. The most extensively characterized Hymenoptera venoms are bee venoms, mainly from the Apis genus and also from social wasps and ant species. However, there is little information about other Hymenoptera groups. The Apis venom presents high molecular weight molecules - enzymes with a molecular weight higher than 10.0 kDa - and peptides. The best studied enzymes are phospholipase A2, responsible for cleaving the membrane phospholipids, hyaluronidase, which degrades the matrix component hyaluronic acid into non-viscous segments and acid phosphatase acting on organic phosphates. The main peptide compounds of bee venom are lytic peptide melittin, apamin (neurotoxic, and mastocyte degranulating peptide (MCD.

  6. Inhibiting DNA methylation alters olfactory extinction but not acquisition learning in Apis cerana and Apis mellifera.

    Science.gov (United States)

    Gong, Zhiwen; Wang, Chao; Nieh, James C; Tan, Ken

    2016-07-01

    DNA methylation plays a key role in invertebrate acquisition and extinction memory. Honey bees have excellent olfactory learning, but the role of DNA methylation in memory formation has, to date, only been studied in Apis mellifera. We inhibited DNA methylation by inhibiting DNA methyltransferase (DNMT) with zebularine (zeb) and studied the resulting effects upon olfactory acquisition and extinction memory in two honey bee species, Apis cerana and A. mellifera. We used the proboscis extension reflex (PER) assay to measure memory. We provide the first demonstration that DNA methylation is also important in the olfactory extinction learning of A. cerana. DNMT did not reduce acquisition learning in either species. However, zeb bidirectionally and differentially altered extinction learning in both species. In particular, zeb provided 1h before acquisition learning improved extinction memory retention in A. mellifera, but reduced extinction memory retention in A. cerana. The reasons for these differences are unclear, but provide a basis for future studies to explore species-specific differences in the effects of methylation on memory formation.

  7. Inhibiting DNA methylation alters olfactory extinction but not acquisition learning in Apis cerana and Apis mellifera.

    Science.gov (United States)

    Gong, Zhiwen; Wang, Chao; Nieh, James C; Tan, Ken

    2016-07-01

    DNA methylation plays a key role in invertebrate acquisition and extinction memory. Honey bees have excellent olfactory learning, but the role of DNA methylation in memory formation has, to date, only been studied in Apis mellifera. We inhibited DNA methylation by inhibiting DNA methyltransferase (DNMT) with zebularine (zeb) and studied the resulting effects upon olfactory acquisition and extinction memory in two honey bee species, Apis cerana and A. mellifera. We used the proboscis extension reflex (PER) assay to measure memory. We provide the first demonstration that DNA methylation is also important in the olfactory extinction learning of A. cerana. DNMT did not reduce acquisition learning in either species. However, zeb bidirectionally and differentially altered extinction learning in both species. In particular, zeb provided 1h before acquisition learning improved extinction memory retention in A. mellifera, but reduced extinction memory retention in A. cerana. The reasons for these differences are unclear, but provide a basis for future studies to explore species-specific differences in the effects of methylation on memory formation. PMID:27262427

  8. Insights into social insects from the genome of the honeybee Apis mellifera

    DEFF Research Database (Denmark)

    Hauser, Frank; Cazzamali, Giuseppe; Williamson, Michael;

    2006-01-01

    Here we report the genome sequence of the honeybee Apis mellifera, a key model for social behaviour and essential to global ecology through pollination. Compared with other sequenced insect genomes, the A. mellifera genome has high A+T and CpG contents, lacks major transposon families, evolves more...

  9. Effects of Nosema apis, N. ceranae, and coinfections on honey bee (Apis mellifera) learning and memory.

    Science.gov (United States)

    Charbonneau, Lise R; Hillier, Neil Kirk; Rogers, Richard E L; Williams, Geoffrey R; Shutler, Dave

    2016-01-01

    Western honey bees (Apis mellifera) face an increasing number of challenges that in recent years have led to significant economic effects on apiculture, with attendant consequences for agriculture. Nosemosis is a fungal infection of honey bees caused by either Nosema apis or N. ceranae. The putative greater virulence of N. ceranae has spurred interest in understanding how it differs from N. apis. Little is known of effects of N. apis or N. ceranae on honey bee learning and memory. Following a Pavlovian model that relies on the proboscis extension reflex, we compared acquisition learning and long-term memory recall of uninfected (control) honey bees versus those inoculated with N. apis, N. ceranae, or both. We also tested whether spore intensity was associated with variation in learning and memory. Neither learning nor memory differed among treatments. There was no evidence of a relationship between spore intensity and learning, and only limited evidence of a negative effect on memory; this occurred only in the co-inoculation treatment. Our results suggest that if Nosema spp. are contributing to unusually high colony losses in recent years, the mechanism by which they may affect honey bees is probably not related to effects on learning or memory, at least as assessed by the proboscis extension reflex. PMID:26961062

  10. Differential gene expression of the honey bee Apis mellifera associated with Varroa destructor infection

    OpenAIRE

    Evans JD; Robinson GE; Martin-Magniette ML; Alaux C; Migeon A; Navajas M; Cros-Arteil S; Crauser D; Le Conte Y

    2008-01-01

    Abstract Background The parasitic mite, Varroa destructor, is the most serious pest of the western honey bee, Apis mellifera, and has caused the death of millions of colonies worldwide. This mite reproduces in brood cells and parasitizes immature and adult bees. We investigated whether Varroa infestation induces changes in Apis mellifera gene expression, and whether there are genotypic differences that affect gene expression relevant to the bee's tolerance, as first steps toward unravelling m...

  11. Individual Variability of Nosema ceranae Infections in Apis mellifera Colonies

    Directory of Open Access Journals (Sweden)

    Richard D. Fell

    2012-11-01

    Full Text Available Since 2006, beekeepers have reported increased losses of Apis mellifera colonies, and one factor that has been potentially implicated in these losses is the microsporidian Nosema ceranae. Since N. ceranae is a fairly recently discovered parasite, there is little knowledge of the variation in infection levels among individual workers within a colony. In this study we examined the levels of infection in individual bees from five colonies over three seasons using both spore counting and quantitative real-time PCR. The results show considerable intra-colony variation in infection intensity among individual workers with a higher percentage of low-level infections detected by PCR than by spore counting. Colonies generally had the highest percentage of infected bees in early summer (June and the lowest levels in the fall (September. Nosema apis was detected in only 16/705 bees (2.3% and always as a low-level co-infection with N. ceranae. The results also indicate that intra-colony variation in infection levels could influence the accuracy of Nosema diagnosis.

  12. Brood-cell size has no influence on the population dynamics of Varroa destructor mites in the native western honey bee, Apis mellifera mellifera

    OpenAIRE

    Coffey, Mary F.; Breen, John; Brown, Mark J.F.; Mcmullan, John B.

    2010-01-01

    The varroa mite (Varroa destructor) is an ectoparasite of the western honeybee Apis mellifera that reproduces in the brood cells. The mite will generally kill colonies unless treatment is given, and this almost universally involves the use of chemicals. This study was undertaken to examine the effect of small cell size on the reproductive success of the mite, as a method of non-chemical control in the Northern European honeybee Apis mellifera mellifera. Test colonies with alternating small an...

  13. Registro de Nephridiophaga sp. (Protista: Nephridiophagidae en Apis mellifera (Hymenoptera: Apidae del Sur de la región Pampeana Record of Nephridiophaga sp. (Protista: Nephridiophagidae in Apis mellifera (Hymenoptera: Apidae of the southern Pampas

    Directory of Open Access Journals (Sweden)

    Santiago Plischuk

    2011-12-01

    Full Text Available Durante estudios prospectivos tendientes a la detección de protistas asociados a ápidos en la región Pampeana, se observó la presencia de esporos ovales bicóncavos y grupos de esporos (cúmulos en los túbulos de Malpighi de abejas de Dufaur, partido de Saavedra, sudoeste de la provincia de Buenos Aires. Los esporos maduros midieron 4,8 ± 0,05 x 2,4 ± 0,03 μm y la carga (intensidad promedió 5,71 ± 1,49 x 10(6 esporos/abeja. Las detecciones se efectuaron entre julio y octubre de 2006 y la prevalencia en las colmenas positivas osciló entre 1 y 16,7 %. Las características morfológicas de los esporos, el lugar de desarrollo y la especie huésped involucrada sugieren que el microorganismo en cuestión, pertenece al género Nephridiophaga y sería N. apis Ivani, especie tipo cuyo conocimiento es extremadamente limitado. El hallazgo constituye el primer registro de un nefridiofágido asociado a A mellifera fuera del continente europeo.During surveys for the detection of protists associated to Apidae in the Pampas region, biconcave oval spores, and spore clumps were observed in the Malpighian tubules of honeybees from Dufaur, Saavedra county, southwestern Buenos Aires province. Mature spores measured 4.8 ± 0.05 x 2.4 ± 0.03 μm, and mean spore load was 5.71 ± 1.49 x 10(6 per honeybee. Detections were from July to October 2006, and prevalence in positive colonies ranged from 1 to 16.7%. Morphology of the spores, the site of development, and the identity of the host species suggest that the isolated microorganism belongs to the genus Nephridiophaga and would be N apis Ivani, the type species, knowledge on which is extremely limited. The finding constitutes the first record of a nephridiophagid in honeybees outside of Europe.

  14. The effects of Bt Cry1Ah toxin on worker honeybees (Apis mellifera ligustica and Apis cerana cerana)

    OpenAIRE

    Dai, Ping-Li; Wei ZHOU; Zhang, Jie; Jiang, Wei-Yu; Wang, Qiang; Cui, Hong-Juan; Sun, Ji-Hu; Wu, Yan-Yan; Zhou, Ting

    2012-01-01

    International audience We conducted feeding trials in a laboratory setting to test for possible adverse effects of Cry1Ah toxin mixed thoroughly into sugar syrup (60% w/v sucrose solution) at three concentrations (10 μg/mL, 10 ng/mL, and 1 ng/mL) on the survival, pollen consumption, and hypopharyngeal gland mass of Apis mellifera ligustica and Apis cerana cerana. No significant differences in the survival of A. mellifera or A. cerana were found among groups fed on sugar syrup with or witho...

  15. Abejas cleptoparasitas, con énfasis en las abejas hospederas colectoras de aceites (Hymenoptera: Apoidea ECOLOGICAL IMPACT ON NATIVE BEES BY THE INVASIVE AFRICANIZED HONEY BEE

    Directory of Open Access Journals (Sweden)

    DAVID W ROUBIK

    Full Text Available Pocos estudios han considerado la dinámica de poblaciones de abejas en bosques o hábitats no alterados por el hombre. La presencia de abejas silvestres Africanizadas de Apis mellifera (Apidae fue estudiado por 10-17 años en áreas previamente sin esta especie. Aquí presento e interpreto resultados de tres bosques neotropicales: Guyana Francesa, Panamá y Yucatán, México (5° a 19° N. latitud. La abeja Africanizada exótica no produjo efecto negativo en las abejas nativas, incluyendo especies altamente sociales y solitarias. Diferencias mayores a través del tiempo fueron encontradas en la abundancia de las abejas de miel en flores cerca de hábitat con mayor grado de disturbio, comparado con el bosque espeso. Al nivel poblacional, muestreado en bloques de nidos trampa, en flores o con trampas ultravioletas de insectos, no hubo disminución pronta de abejas, y sí hubo una población relativamente estable o sinusoidal. Sin embargo, las abejas nativas cambiaron su hora de buscar provisiones o su selección de especies florales. Una conclusión principal es que esta competencia por los recursos es ‘silenciosa';, en las áreas florísticamente ricas estudiadas, porque las mismas abejas compensan con su comportamiento. Otros factores rigen sus poblaciones.Very little effort has been made to investigate bee population dynamics among intact wilderness areas. The presence of newly-arrived feral Africanized honey bee (AHB, Apis mellifera (Apidae, populations was studied for 10-17 years in areas previously with few or no escaped European apiary honey bees. Here I describe and interpret the major results from studies in three neotropical forests: French Guiana, Panama and Yucatan, Mexico (5° to 19° N. latitude. The exotic Africanized honey bees did not produce a negative effect on native bees, including species that were solitary or highly eusocial. Major differences over time were found in honey bee abundance on flowers near habitat

  16. Produtos naturais no comportamento defensivo de Apis mellifera L. = Natural products in the defensive behaviour of Apis mellifera L.

    Directory of Open Access Journals (Sweden)

    Renata Leonardo Lomele

    2010-07-01

    Full Text Available Os objetivos do estudo foram investigar a influência de produtos naturais como capim-limão (Cymbopogon citratus, folhas de abacateiro (Persea americana, casca de café (Coffea arabica e sementes de mamona (Ricinus communis na defensividade de Apis mellifera, e avaliar o efeito destes produtos no desenvolvimento populacional da colmeia. O comportamento defensivo foi avaliado por meio do tempo da primeira ferroada (TPF, número de ferrões (NFB e, o desenvolvimento populacional, pela área de cria aberta e fechada. Observou-se que o tratamento fumaça + sete sementes de mamona apresentou aumento significativo no TPF, em relação ao tratamento sem e com fumaça de maravalha. Com relação ao NFB, verificou-se que os tratamentos fumaça de maravalha + sete sementes de mamona e fumaça de maravalha + 20% de folhas de café foram diferentes do tratamento sem e com fumaça. Os demais tratamentos não diferiram significativamente em relação ao uso da fumaça ou sua ausência. A casca de café e a semente de mamona nãointerferiram no desenvolvimento populacional, sugerindo que estes compostos não foram tóxicos. Pode-se concluir que o uso de sementes de mamona e casca de café na fumaça pode representar importante ferramenta para a redução da defensividade, sem promover toxicidade para A. mellifera.The goal was to investigate the influence of natural products such as lemongrass (Cymbopogon citratus, dried avocado leaves (Persea americana, coffee husk (Coffea arabica and castor bean (Ricinus communis in the defense of Apis mellifera, as well the effect of these products on the population development of the beehive. Defensive behavior was evaluated by time of first sting (TFS and number of stingers (NS, and population development, by open brood area and operculated brood. It was observed that the treatment with smoke + seven castor beans presented significant increase in the TFS, for treatment without and with smoke. Regarding NS, it was verified

  17. Índices de prevalencia del ácaro Varroa destructor (Acari: Varroidae en cuadros de cría nuevos o previamente utilizados por Apis mellifera (Hymenoptera: Apidae

    Directory of Open Access Journals (Sweden)

    Jorge, A. MARCANGELI

    2007-01-01

    Full Text Available El objetivo de esta investigación fue comparar los niveles de infestación de Varroa destructor (Anderson & Trueman en panales de cría nuevos y viejos, en colonias de la abeja criolla (híbrido de Apis mellifera mellifera (Linnaeus y Apis mellifera ligustica Spinola. El trabajo se llevó a cabo en un apiario ubicado en Coronel Vidal, provincia de Buenos Aires, durante la primavera del año 2005. Se trabajó sobre 20 colmenas tipo Langstroth, de un híbrido de Apis mellifera (Linnaeus infestadas naturalmente por el ácaro Varroa destructor, y seleccionadas al azar. En cada una de ellas se escogió un panal de 2 años (viejo que se colocó en el centro del nido de cría, junto con un panal recientemente labrado por las abejas (nuevo. Luego de que ambos cuadros fueran operculados, se los extrajo y se llevaron al laboratorio para su posterior análisis. Cada una de las celdas de cría se desoperculó e inspeccionó en busca de ácaros, registrándose el número de hembras de ácaros que habían ingresado para su reproducción, se calculó el nivel de infestación como el cociente entre el número de celdas infestadas por ácaros y el número total de celdas inspeccionadas. Los resultados mostraron que los panales viejos presentaron niveles de infestación significativamente superiores a los registrados en panales nuevos (13,52% ± 3,35 y 6,18% ± 2,12 respectivamente; t = 10,62; p = 1,9 E-9; g. l.= 19. El mismo patrón fue observado en el número promedio de ácaros por panal (443,3 ± 70,54 y 217,85 ± 51,76 para panales viejos y nuevos respectivamente; t = 23,87; p = 1,24 E-15; g. l.= 19. Los ácaros presentan una marcada preferencia por los panales viejos. Esta selección estaría guiada por olores propios de las celdas, que actuarían como atrayentes. Además, posiblemente enmascaran su presencia de esta manera y evitan así ser detectados y eliminados por las abejas nodrizas mediante los comportamientos higiénicos.

  18. Mating flights select for symmetry in honeybee drones ( Apis mellifera)

    Science.gov (United States)

    Jaffé, Rodolfo; Moritz, Robin F. A.

    2010-03-01

    Males of the honeybee ( Apis mellifera) fly to specific drone congregation areas (DCAs), which virgin queens visit in order to mate. From the thousands of drones that are reared in a single colony, only very few succeed in copulating with a queen, and therefore, a strong selection is expected to act on adult drones during their mating flights. In consequence, the gathering of drones at DCAs may serve as an indirect mate selection mechanism, assuring that queens only mate with those individuals having a better flight ability and a higher responsiveness to the queen’s visual and chemical cues. Here, we tested this idea relying on wing fluctuating asymmetry (FA) as a measure of phenotypic quality. By recapturing marked drones at a natural DCA and comparing their size and FA with a control sample of drones collected at their maternal hives, we were able to detect any selection on wing size and wing FA occurring during the mating flights. Although we found no solid evidence for selection on wing size, wing FA was found to be significantly lower in the drones collected at the DCA than in those collected at the hives. Our results demonstrate the action of selection during drone mating flights for the first time, showing that developmental stability can influence the mating ability of honeybee drones. We therefore conclude that selection during honeybee drone mating flights may confer some fitness advantages to the queens.

  19. Custom synthesis of isotope-labelled Apis mellifera Pheromone

    International Nuclear Information System (INIS)

    The object of this study is to determine the optimum conditions for the synthesis of the isotope-labelled isopentyl acetate. Isopentyl acetate is widely used as a raw material in industries, in syntheses, and is utilized as a sex attractant (pheromone) by the bee species, Apis mellifera. The isotope labelling of isopentyl acetate will allow tracking of the fate and movement of the isopentyl acetate in the environment, in chemical transformations, and in biological systems. Esterification by alcoholysis of acetic acid was optimized for the preparation of Carbon-14(14C)-labelled isopentyl acetate from 14C-labelled acetic acid and isoamyl alcohol. The different conditions studied were: (1) The effects of acid catalysis and/or reflux on the incorporation and retention of the isotope label on the product. The efficiency of label incorporation and retention was determined through the beta radioactivity of Carbon 14 in each of the synthetic constructs. Determination of the beta radioactivity concentration of 14C in the isopentyl acetate product was done using low level liquid scintillation spectrometry. Each of the synthetic products was mixed with Ultima Gold scintillation cocktail in a low potassium glass scintillation vial, and analysed in a low-level Wallac 1414 scintillation counter. The application of catalysis without reflux resulted in the highest yield (35%). The same condition also resulted in the highest abundance of carbon isotope label with 2.40 Bequerels per cubic centimetre, Bq/cc (measurement unit for radioactivity). (author)

  20. Mating flights select for symmetry in honeybee drones (Apis mellifera).

    Science.gov (United States)

    Jaffé, Rodolfo; Moritz, Robin F A

    2010-03-01

    Males of the honeybee (Apis mellifera) fly to specific drone congregation areas (DCAs), which virgin queens visit in order to mate. From the thousands of drones that are reared in a single colony, only very few succeed in copulating with a queen, and therefore, a strong selection is expected to act on adult drones during their mating flights. In consequence, the gathering of drones at DCAs may serve as an indirect mate selection mechanism, assuring that queens only mate with those individuals having a better flight ability and a higher responsiveness to the queen's visual and chemical cues. Here, we tested this idea relying on wing fluctuating asymmetry (FA) as a measure of phenotypic quality. By recapturing marked drones at a natural DCA and comparing their size and FA with a control sample of drones collected at their maternal hives, we were able to detect any selection on wing size and wing FA occurring during the mating flights. Although we found no solid evidence for selection on wing size, wing FA was found to be significantly lower in the drones collected at the DCA than in those collected at the hives. Our results demonstrate the action of selection during drone mating flights for the first time, showing that developmental stability can influence the mating ability of honeybee drones. We therefore conclude that selection during honeybee drone mating flights may confer some fitness advantages to the queens.

  1. Molecular characterization of hemoglobin from the honeybee Apis mellifera.

    Science.gov (United States)

    Hankeln, Thomas; Klawitter, Sabine; Krämer, Melanie; Burmester, Thorsten

    2006-07-01

    Due to the prevailing importance of the tracheal system for insect respiration, hemoglobins had been considered rare exceptions in this arthropod subphylum. Here we report the identification, cloning and expression analysis of a true hemoglobin gene in the honeybee Apis mellifera (Hymenoptera). The deduced amino acid sequence covers 171 residues (19.5kDa) and harbors all globin-typical features, including the proximal and the distal histidines. The protein has no signal peptide for transmembrane transport and was predicted to localize in the cytoplasm. The honeybee hemoglobin gene shows an ancient structure, with introns in positions B12.2 and G7.0, while most other insect globins have divergent intron positions. In situ hybridization studies showed that hemoglobin expression in the honeybee is mainly associated with the tracheal system. We also observe hemoglobin expression in the Malpighi tubes and testis. We further demonstrated that hemoglobins occur in other insect orders (Hemiptera, Coleoptera, Lepidoptera), suggesting that such genes belong to the standard repertoire of an insect genome. Phylogenetic analyses show that globins evolved along with the accepted insect systematics, with a remarkable diversification within the Diptera. Although insect hemoglobins may be in fact involved in oxygen metabolism, it remains uncertain whether they carry out a myoglobin-like function in oxygen storage and delivery. PMID:16698031

  2. Activity of telomerase and telomeric length in Apis mellifera.

    Science.gov (United States)

    Korandová, Michala; Frydrychová, Radmila Čapková

    2016-06-01

    Telomerase is an enzyme that adds repeats of DNA sequences to the ends of chromosomes, thereby preventing their shortening. Telomerase activity is associated with proliferative status of cells, organismal development, and aging. We report an analysis of telomerase activity and telomere length in the honeybee, Apis mellifera. Telomerase activity was found to be regulated in a development and caste-specific manner. During the development of somatic tissues of larval drones and workers, telomerase activity declined to 10 % of its level in embryos and remained low during pupal and adult stages but was upregulated in testes of late pupae, where it reached 70 % of the embryo level. Upregulation of telomerase activity was observed in the ovaries of late pupal queens, reaching 160 % of the level in embryos. Compared to workers and drones, queens displayed higher levels of telomerase activity. In the third larval instar of queens, telomerase activity reached the embryo level, and an enormous increase was observed in adult brains of queens, showing a 70-fold increase compared to a brain of an adult worker. Southern hybridization of terminal TTAGG fragments revealed a high variability of telomeric length between different individuals, although the same pattern of hybridization signals was observed in different tissues of each individual. PMID:26490169

  3. Nosema Tolerant Honeybees (Apis mellifera Escape Parasitic Manipulation of Apoptosis.

    Directory of Open Access Journals (Sweden)

    Christoph Kurze

    Full Text Available Apoptosis is not only pivotal for development, but also for pathogen defence in multicellular organisms. Although numerous intracellular pathogens are known to interfere with the host's apoptotic machinery to overcome this defence, its importance for host-parasite coevolution has been neglected. We conducted three inoculation experiments to investigate in the apoptotic respond during infection with the intracellular gut pathogen Nosema ceranae, which is considered as potential global threat to the honeybee (Apis mellifera and other bee pollinators, in sensitive and tolerant honeybees. To explore apoptotic processes in the gut epithelium, we visualised apoptotic cells using TUNEL assays and measured the relative expression levels of subset of candidate genes involved in the apoptotic machinery using qPCR. Our results suggest that N. ceranae reduces apoptosis in sensitive honeybees by enhancing inhibitor of apoptosis protein-(iap-2 gene transcription. Interestingly, this seems not be the case in Nosema tolerant honeybees. We propose that these tolerant honeybees are able to escape the manipulation of apoptosis by N. ceranae, which may have evolved a mechanism to regulate an anti-apoptotic gene as key adaptation for improved host invasion.

  4. Tranų (apis mellifera l.) skraidymo ritmai

    OpenAIRE

    Katinienė, Aurelija

    2007-01-01

    2004 ir 2006 m. birželio – rugpjūčio mėn. buvo tiriama medunešių bičių (Apis mellifera L.) tranų skraidymo pradžia, tranų skraidymo dinamika dienos metu ir kokią įtaką jai daro aplinkos temperatūra. Įvertintas išskrendančių ir atskrendančių į tą pačią bičių šeimą tranų skaičius bei tranų skridimas į svetimas bi��ių šeimas. Ištirta 6 stipresnės ir 5 silpnesnės bičių šeimos. Buvo skaičiuojami per 2 min. iš avilio išskridę, po to per 2 min. į avilį atskridę tranai. Kiekvienos bičių šeimos tranai...

  5. Cytosine modifications in the honey bee (Apis mellifera) worker genome.

    Science.gov (United States)

    Rasmussen, Erik M K; Amdam, Gro V

    2015-01-01

    Epigenetic changes enable genomes to respond to changes in the environment, such as altered nutrition, activity, or social setting. Epigenetic modifications, thereby, provide a source of phenotypic plasticity in many species. The honey bee (Apis mellifera) uses nutritionally sensitive epigenetic control mechanisms in the development of the royal caste (queens) and the workers. The workers are functionally sterile females that can take on a range of distinct physiological and/or behavioral phenotypes in response to environmental changes. Honey bees have a wide repertoire of epigenetic mechanisms which, as in mammals, include cytosine methylation, hydroxymethylated cytosines, together with the enzymatic machinery responsible for these cytosine modifications. Current data suggests that honey bees provide an excellent system for studying the "social repertoire" of the epigenome. In this review, we elucidate what is known so far about the honey bee epigenome and its mechanisms. Our discussion includes what may distinguish honey bees from other model animals, how the epigenome can influence worker behavioral task separation, and how future studies can answer central questions about the role of the epigenome in social behavior. PMID:25705215

  6. Relatedness among honeybees (Apis mellifera) of a drone congregation

    Science.gov (United States)

    Baudry, E.; Solignac, M.; Garnery, L.; Gries, M.; Cornuet, J.-M.; Koeniger, N.

    1998-01-01

    The honeybee (Apis mellifera) queen mates during nuptial flights, in the so-called drone congregation area where many males from surrounding colonies gather. Using 20 highly polymorphic microsatellite loci, we studied a sample of 142 drones captured in a congregation close to Oberursel (Germany). A parentage test based on lod score showed that this sample contained one group of four brothers, six groups of three brothers, 20 groups of two brothers and 80 singletons. These values are very close to a Poisson distribution. Therefore, colonies were apparently equally represented in the drone congregation, and calculations showed that the congregation comprised males that originated from about 240 different colonies. This figure is surprisingly high. Considering the density of colonies around the congregation area and the average flight range of males, it suggests that most colonies within the recruitment perimeter delegated drones to the congregation with an equal probability, resulting in an almost perfect panmixis. Consequently, the relatedness between a queen and her mates, and hence the inbreeding coefficient of the progeny, should be minimized. The relatedness among the drones mated to the same queen is also very low, maximizing the genetic diversity among the different patrilines of a colony.

  7. Cytosine modifications in the honey bee (Apis mellifera worker genome

    Directory of Open Access Journals (Sweden)

    Erik Magne Koscielniak Rasmussen

    2015-02-01

    Full Text Available Epigenetic changes enable genomes to respond to changes in the environment, such as altered nutrition, activity, or social setting. Epigenetic modifications, thereby, provides a source of phenotypic plasticity in many species. The honey bee (Apis mellifera uses nutritionally sensitive epigenetic control mechanisms in the development of the royal caste (queens and the workers. The workers are functionally sterile females that can take on a range of distinct physiological and/or behavioral phenotypes in response to environmental changes. Honey bees have a wide repertoire of epigenetic mechanisms which, as in mammals, includes cytosine methylation, hydroxymethylated cytosines, together with the enzymatic machinery responsible for these cytosine modifications. Current data suggests that honey bees provide an excellent system for studying the social repertoire of the epigenome. In this review, we elucidate what is known so far about the honey bee epigenome and its mechanisms. Our discussion includes what may distinguish honey bees from other model animals, how the epigenome can influence worker behavioral task separation, and how future studies can answer central questions about the role of the epigenome in social behavior.

  8. Sperm use economy of honeybee (Apis mellifera) queens.

    Science.gov (United States)

    Baer, Boris; Collins, Jason; Maalaps, Kristiina; den Boer, Susanne P A

    2016-05-01

    The queens of eusocial ants, bees, and wasps only mate during a very brief period early in life to acquire and store a lifetime supply of sperm. As sperm cannot be replenished, queens have to be highly economic when using stored sperm to fertilize eggs, especially in species with large and long-lived colonies. However, queen fertility has not been studied in detail, so that we have little understanding of how economic sperm use is in different species, and whether queens are able to influence their sperm use. This is surprising given that sperm use is a key factor of eusocial life, as it determines the fecundity and longevity of queens and therefore colony fitness. We quantified the number of sperm that honeybee (Apis mellifera) queens use to fertilize eggs. We examined sperm use in naturally mated queens of different ages and in queens artificially inseminated with different volumes of semen. We found that queens are remarkably efficient and only use a median of 2 sperm per egg fertilization, with decreasing sperm use in older queens. The number of sperm in storage was always a significant predictor for the number of sperm used per fertilization, indicating that queens use a constant ratio of spermathecal fluid relative to total spermathecal volume of 2.364 × 10(-6) to fertilize eggs. This allowed us to calculate a lifetime fecundity for honeybee queens of around 1,500,000 fertilized eggs. Our data provide the first empirical evidence that honeybee queens do not manipulate sperm use, and fertilization failures in worker-destined eggs are therefore honest signals that workers can use to time queen replacement, which is crucial for colony performance and fitness. PMID:27217944

  9. Acaricide, fungicide and drug interactions in honey bees (Apis mellifera.

    Directory of Open Access Journals (Sweden)

    Reed M Johnson

    Full Text Available BACKGROUND: Chemical analysis shows that honey bees (Apis mellifera and hive products contain many pesticides derived from various sources. The most abundant pesticides are acaricides applied by beekeepers to control Varroa destructor. Beekeepers also apply antimicrobial drugs to control bacterial and microsporidial diseases. Fungicides may enter the hive when applied to nearby flowering crops. Acaricides, antimicrobial drugs and fungicides are not highly toxic to bees alone, but in combination there is potential for heightened toxicity due to interactive effects. METHODOLOGY/PRINCIPAL FINDINGS: Laboratory bioassays based on mortality rates in adult worker bees demonstrated interactive effects among acaricides, as well as between acaricides and antimicrobial drugs and between acaricides and fungicides. Toxicity of the acaricide tau-fluvalinate increased in combination with other acaricides and most other compounds tested (15 of 17 while amitraz toxicity was mostly unchanged (1 of 15. The sterol biosynthesis inhibiting (SBI fungicide prochloraz elevated the toxicity of the acaricides tau-fluvalinate, coumaphos and fenpyroximate, likely through inhibition of detoxicative cytochrome P450 monooxygenase activity. Four other SBI fungicides increased the toxicity of tau-fluvalinate in a dose-dependent manner, although possible evidence of P450 induction was observed at the lowest fungicide doses. Non-transitive interactions between some acaricides were observed. Sublethal amitraz pre-treatment increased the toxicity of the three P450-detoxified acaricides, but amitraz toxicity was not changed by sublethal treatment with the same three acaricides. A two-fold change in the toxicity of tau-fluvalinate was observed between years, suggesting a possible change in the genetic composition of the bees tested. CONCLUSIONS/SIGNIFICANCE: Interactions with acaricides in honey bees are similar to drug interactions in other animals in that P450-mediated detoxication

  10. Detection of Illicit Drugs by Trained Honeybees (Apis mellifera.

    Directory of Open Access Journals (Sweden)

    Matthias Schott

    Full Text Available Illegal drugs exacerbate global social challenges such as substance addiction, mental health issues and violent crime. Police and customs officials often rely on specially-trained sniffer dogs, which act as sensitive biological detectors to find concealed illegal drugs. However, the dog "alert" is no longer sufficient evidence to allow a search without a warrant or additional probable cause because cannabis has been legalized in two US states and is decriminalized in many others. Retraining dogs to recognize a narrower spectrum of drugs is difficult and training new dogs is time consuming, yet there are no analytical devices with the portability and sensitivity necessary to detect substance-specific chemical signatures. This means there is currently no substitute for sniffer dogs. Here we describe an insect screening procedure showing that the western honeybee (Apis mellifera can sense volatiles associated with pure samples of heroin and cocaine. We developed a portable electroantennographic device for the on-site measurement of volatile perception by these insects, and found a positive correlation between honeybee antennal responses and the concentration of specific drugs in test samples. Furthermore, we tested the ability of honeybees to learn the scent of heroin and trained them to show a reliable behavioral response in the presence of a highly-diluted scent of pure heroin. Trained honeybees could therefore be used to complement or replace the role of sniffer dogs as part of an automated drug detection system. Insects are highly sensitive to volatile compounds and provide an untapped resource for the development of biosensors. Automated conditioning as presented in this study could be developed as a platform for the practical detection of illicit drugs using insect-based sensors.

  11. Viruses associated with ovarian degeneration in Apis mellifera L. queens.

    Directory of Open Access Journals (Sweden)

    Laurent Gauthier

    Full Text Available Queen fecundity is a critical issue for the health of honeybee (Apis mellifera L. colonies, as she is the only reproductive female in the colony and responsible for the constant renewal of the worker bee population. Any factor affecting the queen's fecundity will stagnate colony development, increasing its susceptibility to opportunistic pathogens. We discovered a pathology affecting the ovaries, characterized by a yellow discoloration concentrated in the apex of the ovaries resulting from degenerative lesions in the follicles. In extreme cases, marked by intense discoloration, the majority of the ovarioles were affected and these cases were universally associated with egg-laying deficiencies in the queens. Microscopic examination of the degenerated follicles showed extensive paracrystal lattices of 30 nm icosahedral viral particles. A cDNA library from degenerated ovaries contained a high frequency of deformed wing virus (DWV and Varroa destructor virus 1 (VDV-1 sequences, two common and closely related honeybee Iflaviruses. These could also be identified by in situ hybridization in various parts of the ovary. A large-scale survey for 10 distinct honeybee viruses showed that DWV and VDV-1 were by far the most prevalent honeybee viruses in queen populations, with distinctly higher prevalence in mated queens (100% and 67%, respectively for DWV and VDV-1 than in virgin queens (37% and 0%, respectively. Since very high viral titres could be recorded in the ovaries and abdomens of both functional and deficient queens, no significant correlation could be made between viral titre and ovarian degeneration or egg-laying deficiency among the wider population of queens. Although our data suggest that DWV and VDV-1 have a role in extreme cases of ovarian degeneration, infection of the ovaries by these viruses does not necessarily result in ovarian degeneration, even at high titres, and additional factors are likely to be involved in this pathology.

  12. Detection of Illicit Drugs by Trained Honeybees (Apis mellifera).

    Science.gov (United States)

    Schott, Matthias; Klein, Birgit; Vilcinskas, Andreas

    2015-01-01

    Illegal drugs exacerbate global social challenges such as substance addiction, mental health issues and violent crime. Police and customs officials often rely on specially-trained sniffer dogs, which act as sensitive biological detectors to find concealed illegal drugs. However, the dog "alert" is no longer sufficient evidence to allow a search without a warrant or additional probable cause because cannabis has been legalized in two US states and is decriminalized in many others. Retraining dogs to recognize a narrower spectrum of drugs is difficult and training new dogs is time consuming, yet there are no analytical devices with the portability and sensitivity necessary to detect substance-specific chemical signatures. This means there is currently no substitute for sniffer dogs. Here we describe an insect screening procedure showing that the western honeybee (Apis mellifera) can sense volatiles associated with pure samples of heroin and cocaine. We developed a portable electroantennographic device for the on-site measurement of volatile perception by these insects, and found a positive correlation between honeybee antennal responses and the concentration of specific drugs in test samples. Furthermore, we tested the ability of honeybees to learn the scent of heroin and trained them to show a reliable behavioral response in the presence of a highly-diluted scent of pure heroin. Trained honeybees could therefore be used to complement or replace the role of sniffer dogs as part of an automated drug detection system. Insects are highly sensitive to volatile compounds and provide an untapped resource for the development of biosensors. Automated conditioning as presented in this study could be developed as a platform for the practical detection of illicit drugs using insect-based sensors. PMID:26083377

  13. First Detection of Nosema ceranae, a Microsporidian Protozoa of European Honey­bees (Apis mellifera) In Iran

    OpenAIRE

    Gerami Sadeghian, A; S Nabian; Ahmadi, K; MH Nazem Shirazi

    2011-01-01

    Background: Nosemosis of European honey bee (Apis mellifera) is present in bee colonies world­wide. Until recently, Nosema apis had been regarded as the causative agent of the disease, that causes heavy economic losses in apicultures. Nosema ceranae is an emerging microsporidian para­site of European honeybees, A. mellifera, but its distribution is not well known. Previously, nosemosis in honeybees in Iran was attributed exclusively to N. apis.Methods: Six Nosema positive samples (determined ...

  14. Heterosis en la longevidad de obreras Apis mielífera

    Directory of Open Access Journals (Sweden)

    Soares AE.

    2001-06-01

    Full Text Available Se estimó la media y la heterosis de la longevidad en obreras de abejas Apis mellifera. El expe-rimento fue desarrollado en el Apiario del Departamento de Genética de la Facultad de Medi-cina de la USP-Ribeirão Preto-Brasil y en Jaboticabal-SP, de 03/1997 a 05/1999. Seleccionamos 8 matrices inseminadas del apiário-USP (2africanizadas, 2italianas, 2cárnicasy 2italianas*cárnicos y 2 matrices (grupo-testigo de abejas Africanizadas-Silvestres.

  15. Involvement of Phosphorylated "Apis Mellifera" CREB in Gating a Honeybee's Behavioral Response to an External Stimulus

    Science.gov (United States)

    Gehring, Katrin B.; Heufelder, Karin; Feige, Janina; Bauer, Paul; Dyck, Yan; Ehrhardt, Lea; Kühnemund, Johannes; Bergmann, Anja; Göbel, Josefine; Isecke, Marlene; Eisenhardt, Dorothea

    2016-01-01

    The transcription factor cAMP-response element-binding protein (CREB) is involved in neuronal plasticity. Phosphorylation activates CREB and an increased level of phosphorylated CREB is regarded as an indicator of CREB-dependent transcriptional activation. In honeybees ("Apis mellifera") we recently demonstrated a particular high…

  16. Responses of Varroa-resistant honey bees (Apis mellifera L.) to Deformed wing virus

    Science.gov (United States)

    The negative impact of Deformedwing virus (DWV) on European honey bees Apis mellifera is magnified by Varroa destructor parasitism. This study compared the responses of two Varroa-resistant honey bee stocks, pure Russian honey bees (RHB) and out-crossed Varroa Sensitive Hygienic bees, Pol-line (POL)...

  17. Morphotypes of Varroa destructor collected in Apis mellifera colonies from different geographic locations of Argentina.

    Science.gov (United States)

    Maggi, Matías D; Sardella, Norma H; Ruffinengo, Sergio R; Eguaras, Martín J

    2009-11-01

    Parasites display considerable phenotypic plasticity in life-history traits such as, body size. Varroa destructor is an ectoparasitic mite of the western honey bee Apis mellifera. Several studies have reported that in V. destructor, there is a wide phenotypic plasticity within a population of mites. However, it is unknown if there are morphologic variations in V. destructor populations affecting different A. mellifera populations. A morphometric study of V. destructor populations was conducted to provide information concerned to the relationships among parasite populations found in different geographic locations from A. mellifera colonies of Argentina. The hypothesis tested was different morphotypes of V. destructor populations parasitizing different A. mellifera populations from Argentina exist. A discriminant analysis employing eight morphologic variables revealed that it is possible to differentiate morphotypes of mites in Argentina. However, the level of discrimination detected among mites population varied according to the grouping of mite's population. Possible causes explaining the morphometric variability in the V. destructor populations were discussed.

  18. Variation morphogeometrics of Africanized honey bees (Apis mellifera in Brazil Variação morfogeométrica das abelhas africanizadas (Apis mellifera no Brasil

    Directory of Open Access Journals (Sweden)

    Lorena A. Nunes

    2012-09-01

    Full Text Available The morphometrics of the honey bee Apis mellifera L., 1758 has been widely studied mainly because this species has great ecological importance, high adaptation capacity, wide distribution and capacity to effectively adapt to different regions. The current study aimed to investigate the morphometric variations of wings and pollen baskets of honey bees Apis mellifera scutellata Lepeletier, 1836 from the five regions in Brazil. We used geometric morphometrics to identify the existence of patterns of variations of shape and size in Africanized honey bees in Brazil 16 years after the classic study with this species, allowing a temporal and spatial comparative analysis using new technological resources to assess morphometrical data. Samples were collected in 14 locations in Brazil, covering the five geographical regions of the country. The shape analysis and multivariate analyses of the wing allowed to observe that there is a geographical pattern among the population of Apis mellifera in Brazil. The geographical variations may be attributed to the large territorial extension of the country in addition to the differences between the bioregions.Apis mellifera L., 1758 têm sido alvo de muitos estudos morfométricos principalmente pela sua importância ecológica, pela sua grande capacidade de adaptação, sua ampla distribuição e por serem capazes de se estabelecer eficientemente em diversas regiões. O presente trabalho teve como objetivo estudar as variações da forma em asas e corbículas de operárias de Apis mellifera scutellata Lepeletier, 1836 provenientes das cinco regiões biogeográficas do Brasil utilizando análises morfogeométricas, a fim de verificar a existência de padrões de variação de forma e tamanho das abelhas africanizadas no Brasil após 16 anos do estudo clássico realizado com esta espécie, possibilitando uma análise espaço-temporal comparativa utilizando recursos tecnológicos atuais para a avaliação de dados morfom

  19. MEMORIA Y APRENDIZAJE EN LA ESCOGENCIA FLORAL DE LAS ABEJAS

    Directory of Open Access Journals (Sweden)

    AMAYA MARISOL

    2009-08-01

    Full Text Available RESUMEN

    Los polinizadores altamente especializados en su dieta, no hacen escogencias florales, ellos visitan un recurso específico siguiendo el dictado de la información almacenada en sus genes. En contraste, para la abeja social Apis mellifera una escogencia floral implica, la toma de una decisión, usualmente con criterio económico, basada en información aprendida y almacenada en alguna forma de memoria. Aunque existen numerosos estudios y modelos sobre la escogencia floral en abejas, la gran mayoría de éstos, han derivado sus conclusiones a partir de condiciones temporalmente fijas de la interacción. Muy pocos estudios han abordado la dinámica propia del contexto ecológico, en el cual el mercado floral de las abejas cambia con las estaciones del año y con los patrones diarios de antesis floral. Este cambio en la disponibilidad de especies florales enfrenta a los polinizadores, a realizar escogencias secuenciales acerca del alimento a explotar. En este trabajo abordo el tema del forrajeo secuencial en parches florales heterospecíficos, enfocándome en el uso que la abeja melífera hace de la información previamente aprendida en un contexto, cuando se enfrenta a la explotación de alimento en un contexto ecológicamente diferente. He realizado experimentos sobre escogencia floral simulando las condiciones de cambio del paisaje floral, exponiendo abejas individuales de A. mellifera a decidir sobre cuales especies forrajear en cada parche. Los resultados indican que la abeja invierte en procesos de aprendizaje en un muestreo inicial, pero una vez almacenada la información, utiliza una pieza de la información previamente aprendida (color para explotar parches florales heteroespecíficos siguiendo una imagen de búsqueda de color. En esta revisión discuto situaciones biológicas de la interacción planta-abeja, las cuales apoyan la idea que en la naturaleza el uso de imágenes de búsqueda de color por parte de abejas

  20. Polinização de morangueiro por Apis mellifera em ambiente protegido Strawberry polinization through Apis mellifera in protected environment

    Directory of Open Access Journals (Sweden)

    Eunice Oliveira Calvete

    2010-03-01

    Full Text Available Este trabalho objetivou comparar a produtividade e a qualidade dos frutos comerciáveis no morangueiro, em ambiente protegido, utilizando a espécie de abelha Apis mellifera em relação à ausência de um agente polinizador. Foram instalados dois experimentos, utilizando-se das cultivares Camarosa, Oso Grande, Diamante e Aromas (tratamentos, no período de 05 de maio a 19 de dezembro de 2006. No primeiro experimento, não havia polinizadores (testemunha. O segundo foi polinizado pela espécie de abelha Apis mellifera. Os tratamentos (cultivares foram dispostos, em cada experimento, em um delineamento completamente casualizado, com seis repetições. Foram avaliadas características de rendimento, bem como análise físico-química dos frutos de cada cultivar. Quanto ao rendimento, a maior produção obtida foi com a cultivar Camarosa tanto na ausência quanto na presença de polinizadores (907,46 g. planta-1 e 1.054,93 g. planta-1, respectivamente, ao passo que a cultivar Oso Grande apresentou menor número de frutos deformados.This work objectified to compare the productivity and the quality of the strawberry marketable fruits in protected environment, using the species of bee Apis mellifera in relation of the absence of a polinizator agent. It was installed two experiments using the cultivates Camarosa, Oso Grande, Diamante and Aromas (treatments, in the period of May 5 th until December 19th of 2006. The first experiment did not have polinizatores agents (control. The second was polinizated by the species of bee Apis mellifera. The treatments (cultivars had been arranged, in each experiment in a randomized blocks with 6 repetitions. They were evaluated income characteristics, as well as analysis physicist-chemistry of the fruits of each cultivar. For the income, the biggest production was gotten in cultivar Camarosa, for the first and the second experiment (907,46 g. plant-1 and 1054,93 g. plant-1, respectively, in the way that the cultivate

  1. Histochemical Comparison of the Hypopharyngeal Gland in Apis cerana Fabricius, 1793 Workers and Apis mellifera Linnaeus, 1758 Workers

    Directory of Open Access Journals (Sweden)

    Guntima Suwannapong

    2010-01-01

    Full Text Available Hypopharyngeal glands of honeybee are age-dependent structures that change with the size of acini and are correlated with various social behaviors. The histochemical structure of Apis cerana and A. mellifera worker hypopharyngeal glands in four different developmental stages wes stained with ninhydrin Schiff's and periodic acid Schiff's reagents (PAS for localization of proteins and carbohydrates, respectively, and examined with light microscopy. Nurse bees of both honeybee species had significantly larger glands as compared to guards and forgers, but there were no statistically significant differences between these two species after accounting for caste. Gland protein concentration increased progressively in nurse bees, and this was correlated with the appearance of enriched protein granules in the cytoplasm. In addition, the hypopharyngeal gland protein concentration of A. mellifera was higher than that of A. cerana even though gland size was not significantly different between species. However, gland size was shown to have decreased progressively in foragers and guards.

  2. Infra-Population and -Community Dynamics of the Parasites Nosema apis and Nosema ceranae, and Consequences for Honey Bee (Apis mellifera) Hosts

    OpenAIRE

    Williams, Geoffrey R; Dave Shutler; Burgher-MacLellan, Karen L.; Rogers, Richard E. L.

    2014-01-01

    Nosema spp. fungal gut parasites are among myriad possible explanations for contemporary increased mortality of western honey bees (Apis mellifera, hereafter honey bee) in many regions of the world. Invasive Nosema ceranae is particularly worrisome because some evidence suggests it has greater virulence than its congener N. apis. N. ceranae appears to have recently switched hosts from Asian honey bees (Apis cerana) and now has a nearly global distribution in honey bees, apparently displacing ...

  3. Foraging behavior and pollinating effectiveness of Osmia cornuta (Hymenoptera: Megachilidae) and Apis mellifera (Hymenoptera: Apidae) on "Comice" pear

    OpenAIRE

    Monzón, Víctor; Bosch, Jordi; Retana, Javier

    2004-01-01

    We studied the pollinating effectiveness of Osmia cornuta and Apis mellifera on 'Comice' pear. Osmia cornuta visited more flowers per minute (13.8) than A. mellifera (7.1-9.8). Both species visited similar numbers of flowers per tree (6.7-7.9), and switched rows with similar frequency (4.0-7.9%). Rate of stigma contact was 98.7% for O. cornuta, 51.8% for A. mellifera pollen-nectar foragers, and 19.0% for A. mellifera nectar foragers. Fruit-set in flowers visited once was 28.9, 29.3, and 12.9%...

  4. The nicotinic acetylcholine receptor gene family of the honey bee, Apis mellifera

    OpenAIRE

    Jones, Andrew K.; Raymond-Delpech, Valerie; Steeve H Thany; Gauthier, Monique; Sattelle, David B.

    2006-01-01

    Nicotinic acetylcholine receptors (nAChRs) mediate fast cholinergic synaptic transmission and play roles in many cognitive processes. They are under intense research as potential targets of drugs used to treat neurodegenerative diseases and neurological disorders such as Alzheimer's disease and schizophrenia. Invertebrate nAChRs are targets of anthelmintics as well as a major group of insecticides, the neonicotinoids. The honey bee, Apis mellifera, is one of the most beneficial insects worldw...

  5. Galenics: studies of the toxicity and distribution of sugar substitutes on Apis mellifera

    OpenAIRE

    RADEMACHER, Eva; Fahlberg, Anja; Raddatz, Marlene; Schneider, Saskia; Voigt, Kathrin

    2013-01-01

    International audience The aim of this study was to find a substitute to sugar water in medicinal treatments of honey bee colonies with the same properties but without being ingested by bees or being toxic to them. Tylose MH, sorbitol and glycerol were tested for their attractiveness to Apis mellifera, their application ability, toxicity via individual application and distribution in small groups respectively a small colony. Neither of the substances proved attractive or toxic. All had goo...

  6. Function and distribution of 5-HT2 receptors in the honeybee (Apis mellifera)

    OpenAIRE

    Markus Thamm; Daniel Rolke; Nadine Jordan; Sabine Balfanz; Christian Schiffer; Arnd Baumann; Wolfgang Blenau

    2013-01-01

    BACKGROUND: Serotonin plays a pivotal role in regulating and modulating physiological and behavioral processes in both vertebrates and invertebrates. In the honeybee (Apis mellifera), serotonin has been implicated in division of labor, visual processing, and learning processes. Here, we present the cloning, heterologous expression, and detailed functional and pharmacological characterization of two honeybee 5-HT2 receptors. METHODS: Honeybee 5-HT2 receptor cDNAs were amplified from brain cDNA...

  7. Molekulare und pharmakologische Charakterisierung von Serotonin-Rezeptoren der Honigbiene Apis mellifera

    OpenAIRE

    Schlenstedt, Jana

    2006-01-01

    Die Honigbiene Apis mellifera gilt seit langem als Modell-Organismus zur Untersuchung von Lern- und Gedächtnisvorgängen sowie zum Studium des Sozialverhaltens und der Arbeitsteilung. Bei der Steuerung und Regulation dieser Verhaltensweisen spielt das Indolalkylamin Serotonin eine wesentliche Rolle. Serotonin entfaltet seine Wirkung durch die Bindung an G-Protein-gekoppelte Rezeptoren (GPCRs). In der vorliegenden Arbeit wird der erste Serotonin-Rezeptor aus der Honigbiene molekular charakteris...

  8. Gut Pathology and Responses to the Microsporidium Nosema ceranae in the Honey Bee Apis mellifera

    OpenAIRE

    Claudia Dussaubat; Jean-Luc Brunet; Mariano Higes; Colbourne, John K.; Jacqueline Lopez; Jeong-Hyeon Choi; Raquel Martín-Hernández; Cristina Botías; Marianne Cousin; Cynthia McDonnell; Marc Bonnet; Luc P Belzunces; Moritz, Robin F.A.; Yves Le Conte; Cédric Alaux

    2012-01-01

    The microsporidium Nosema ceranae is a newly prevalent parasite of the European honey bee (Apis mellifera). Although this parasite is presently spreading across the world into its novel host, the mechanisms by it which affects the bees and how bees respond are not well understood. We therefore performed an extensive characterization of the parasite effects at the molecular level by using genetic and biochemical tools. The transcriptome modifications at the midgut level were characterized seve...

  9. Characterization of an Unusually Conserved Alui Highly Reiterated DNA Sequence Family from the Honeybee, Apis Mellifera

    OpenAIRE

    Tares, S.; Cornuet, J. M.; Abad, P.

    1993-01-01

    An AluI family of highly reiterated nontranscribed sequences has been found in the genome of the honeybee Apis mellifera. This repeated sequence is shown to be present at approximately 23,000 copies per haploid genome constituting about 2% of the total genomic DNA. The nucleotide sequence of 10 monomers was determined. The consensus sequence is 176 nucleotides long and has an A + T content of 58%. There are clusters of both direct and inverted repeats. Internal subrepeating units ranging from...

  10. Eph Receptor and Ephrin Signaling in Developing and Adult Brain of the Honeybee (Apis mellifera)

    OpenAIRE

    Vidovic, Maria; Nighorn, Alan; Koblar, Simon; Maleszka, Ryszard

    2007-01-01

    Roles for Eph receptor tyrosine kinase and ephrin signaling in vertebrate brain development are well established. Their involvement in the modulation of mammalian synaptic structure and physiology is also emerging. However, less is known of their effects on brain development and their function in adult invertebrate nervous systems. Here, we report on the characterization of Eph receptor and ephrin orthologs in the honeybee, Apis mellifera (Am), and their role in learning and memory. In situ h...

  11. How Varroa Parasitism Affects the Immunological and Nutritional Status of the Honey Bee, Apis mellifera

    OpenAIRE

    Katherine A. Aronstein; Eduardo Saldivar; Rodrigo Vega; Stephanie Westmiller; Douglas, Angela E.

    2012-01-01

    We investigated the effect of the parasitic mite Varroa destructor on the immunological and nutritional condition of honey bees, Apis mellifera, from the perspective of the individual bee and the colony. Pupae, newly-emerged adults and foraging adults were sampled from honey bee colonies at one site in S. Texas, USA. Varroa‑infested bees displayed elevated titer of Deformed Wing Virus (DWV), suggestive of depressed capacity to lim...

  12. Characteristics of honey bee colonies (Apis mellifera) in Sweden surviving Varroa destructor infestation

    OpenAIRE

    Locke, Barbara; Fries, Ingemar

    2011-01-01

    International audience A population of European honey bees (Apis mellifera) surviving Varroa destructor mite infestation in Sweden for over 10 years without treatment, demonstrate that a balanced host-parasite relationship may evolve over time. Colony-level adaptive traits linked to Varroa tolerance were investigated in this population to identify possible characteristics that may be responsible for colony survival in spite of mite infestations. Brood removal rate, adult grooming rate, and...

  13. Viral epidemiology of the adult Apis Mellifera infested by the Varroa destructor mite

    OpenAIRE

    Bernardi, Sara; Venturino, Ezio

    2015-01-01

    The ectoparasitic mite Varroa destructor has become one of the major worldwide threats for apiculture. Varroa destructor attacks the honey bee Apis mellifera weakening its host by sucking hemolymph. However, the damage to bee colonies is not strictly related to the parasitic action of the mite but it derives, above all, from its action as vector increasing the trasmission of many viral diseases such as acute paralysis (ABPV) and deformed wing viruses (DWV), that are considered among the main ...

  14. Morphometric identification of queens, workers, intermediates in in vitro reared honey bees (Apis mellifera)

    OpenAIRE

    De Souza, Daiana A.; Ying Wang; Osman Kaftanoglu; David De Jong; Amdam, Gro V.; Lionel S. Gonçalves; Francoy, Tiago M.

    2015-01-01

    In vitro rearing is an important and useful tool for honey bee (Apis mellifera L.) studies. However, it often results in intercastes between queens and workers, which are normally are not seen in hive-reared bees, except when larvae older than three days are grafted for queen rearing. Morphological classification (queen versus worker or intercastes) of bees produced by this method can be subjective and generally depends on size differences. Here, we propose an alternative method for caste cla...

  15. Comparative Toxicities and Synergism of Apple Orchard Pesticides to Apis mellifera (L.) and Osmia cornifrons (Radoszkowski)

    OpenAIRE

    Biddinger, David J.; Jacqueline L Robertson; Chris Mullin; James Frazier; Ashcraft, Sara A.; Edwin G Rajotte; Joshi, Neelendra K.; Mace Vaughn

    2013-01-01

    The topical toxicities of five commercial grade pesticides commonly sprayed in apple orchards were estimated on adult worker honey bees, Apis mellifera (L.) (Hymenoptera: Apidae) and Japanese orchard bees, Osmia cornifrons (Radoszkowski) (Hymenoptera: Megachilidae). The pesticides were acetamiprid (Assail 30SG), λ-cyhalothrin (Warrior II), dimethoate (Dimethoate 4EC), phosmet (Imidan 70W), and imidacloprid (Provado 1.6F). At least 5 doses of each chemical, diluted in distilled water, were app...

  16. Non-lethal sampling of honey bee, Apis mellifera, DNA using wing tips

    OpenAIRE

    Chaline, N.; F.L.W. Ratnieks; Raine, N. E.; Badcock, N.S.; Burke, T

    2004-01-01

    DNA sampling of insects frequently relies upon lethal or invasive methods. Because insect colonies contain numerous workers it is often possible to destructively sample workers for genetic analysis. However, this is not possible if queens or workers must remain alive after sampling. Neither is it possible to remove an entire leg, wing or other appendage as this will often hinder normal behaviour. This study investigates the possibility of genotyping queen honey bees Apis mellifera using DNA e...

  17. Differential insecticide susceptibility of the Neotropical stingless bee Melipona quadrifasciata and the honey bee Apis mellifera

    OpenAIRE

    Sarto, Mário; Oliveira, Eugênio; Guedes,Raul; Campos, Lúcio

    2014-01-01

    International audience The toxicity of three insecticides frequently used in Neotropical tomato cultivation (abamectin, deltamethrin, and methamidophos) was estimated on foragers of the Neotropical stingless bee Melipona quadrifasciata (Lep.) and the honey bee Apis mellifera (L.). Our results showed that the susceptibility varied significantly with the type of exposure (ingestion, topical, or contact), and there were significant differences between species. While M. quadrifasciata was usua...

  18. Influence of processing in the physicochemical quality of Apis mellifera honey from Mato Grosso State, Brazil

    OpenAIRE

    Karina Renostro DUCATTI; Carmen WOBETO; Juliana Aparecida da SILVA; Claudineli Cássia Bueno da ROSA; Márcio Roggia ZANUZO; Angelo POLIZEL NETO

    2014-01-01

    Objective: In this study, the quality of the Apis mellifera honey produced by 12 beekeepers from four associations in the north of Mato Grosso state was investigated during processing, Materials and Methods: The samples were collected at three different stages of processing: a) in the honeycomb at the honey house reception (S1), b) after centrifugation (S2), c) after packaging (S3), The levels of free acidity, moisture, ash, insoluble solids, diastase activity, hydroxymethylfurfural, reducing...

  19. Viral Infection Affects Sucrose Responsiveness and Homing Ability of Forager Honey Bees, Apis mellifera L.

    OpenAIRE

    Zhiguo Li; Yanping Chen; Shaowu Zhang; Shenglu Chen; Wenfeng Li; Limin Yan; Liangen Shi; Lyman Wu; Alex Sohr; Songkun Su

    2013-01-01

    Honey bee health is mainly affected by Varroa destructor, viruses, Nosema spp., pesticide residues and poor nutrition. Interactions between these proposed factors may be responsible for the colony losses reported worldwide in recent years. In the present study, the effects of a honey bee virus, Israeli acute paralysis virus (IAPV), on the foraging behaviors and homing ability of European honey bees (Apis mellifera L.) were investigated based on proboscis extension response (PER) assays and ra...

  20. Use of oxalic acid to control Varroa destructor in honeybee (Apis mellifera L.) colonies

    OpenAIRE

    AKYOL, Ethem; YENİNAR, Halil

    2009-01-01

    This study was carried out to determine the effects of oxalic acid (OA) on reducing Varroa mite (Varroa destructor) populations in honeybee (Apis mellifera L.) colonies in the fall. Twenty honeybee colonies, in wooden Langstroth hives, were used in this experiment. Average Varroa infestation levels (%) of the OA and control groups were 25.87% and 24.57% on adult workers before the treatments. The OA treatments were applied twice, on 3 November and 13 November 2006. Average Varroa infestation ...

  1. A comparative study of relational learning capacity in honeybees (Apis mellifera and stingless bees (Melipona rufiventris.

    Directory of Open Access Journals (Sweden)

    Antonio Mauricio Moreno

    Full Text Available BACKGROUND: Learning of arbitrary relations is the capacity to acquire knowledge about associations between events or stimuli that do not share any similarities, and use this knowledge to make behavioural choices. This capacity is well documented in humans and vertebrates, and there is some evidence it exists in the honeybee (Apis mellifera. However, little is known about whether the ability for relational learning extends to other invertebrates, although many insects have been shown to possess excellent learning capacities in spite of their small brains. METHODOLOGY/PRINCIPAL FINDINGS: Using a symbolic matching-to-sample procedure, we show that the honeybee Apis mellifera rapidly learns arbitrary relations between colours and patterns, reaching 68.2% correct choice for pattern-colour relations and 73.3% for colour-pattern relations. However, Apis mellifera does not transfer this knowledge to the symmetrical relations when the stimulus order is reversed. A second bee species, the stingless bee Melipona rufiventris from Brazil, seems unable to learn the same arbitrary relations between colours and patterns, although it exhibits excellent discrimination learning. CONCLUSIONS/SIGNIFICANCE: Our results confirm that the capacity for learning arbitrary relations is not limited to vertebrates, but even insects with small brains can perform this learning task. Interestingly, it seems to be a species-specific ability. The disparity in relational learning performance between the two bee species we tested may be linked to their specific foraging and recruitment strategies, which evolved in adaptation to different environments.

  2. Genomic survey of the ectoparasitic mite Varroa destructor, a major pest of the honey bee Apis mellifera

    OpenAIRE

    Elsik Chris; Bourgeois Lanie; Hunt Greg; Pettis Jeff; Chen Yan-Ping; Johnston Spencer J; Schatz Michael C; Cornman Scott R; Anderson Denis; Grozinger Christina M; Evans Jay D

    2010-01-01

    Background: The ectoparasitic mite Varroa destructor has emerged as the primary pest of domestic honey bees (Apis mellifera). Here we present an initial survey of the V. destructor genome carried out to advance our understanding of Varroa biology and to identify new avenues for mite control. This sequence survey provides immediate resources for molecular and population-genetic analyses of Varroa-Apis interactions ...

  3. Índices de prevalencia del ácaro Varroa destructor (Acari: Varroidae en cuadros de cría nuevos o previamente utilizados por Apis mellifera (Hymenoptera: Apidae Infestation levels of the mite Varroa destructor (Acari: Varroidae in new and old honeybee brood combs of Apis mellifera (Hymenoptera: Apidae

    Directory of Open Access Journals (Sweden)

    Jorge, A. Marcangeli

    2007-07-01

    Full Text Available El objetivo de esta investigación fue comparar los niveles de infestación de Varroa destructor (Anderson & Trueman en panales de cría nuevos y viejos, en colonias de la abeja criolla (híbrido de Apis mellifera mellifera (Linnaeus y Apis mellifera ligustica Spinola. El trabajo se llevó a cabo en un apiario ubicado en Coronel Vidal, provincia de Buenos Aires, durante la primavera del año 2005. Se trabajó sobre 20 colmenas tipo Langstroth, de un híbrido de Apis mellifera (Linnaeus infestadas naturalmente por el ácaro Varroa destructor, y seleccionadas al azar. En cada una de ellas se escogió un panal de 2 años (viejo que se colocó en el centro del nido de cría, junto con un panal recientemente labrado por las abejas (nuevo. Luego de que ambos cuadros fueran operculados, se los extrajo y se llevaron al laboratorio para su posterior análisis. Cada una de las celdas de cría se desoperculó e inspeccionó en busca de ácaros, registrándose el número de hembras de ácaros que habían ingresado para su reproducción, se calculó el nivel de infestación como el cociente entre el número de celdas infestadas por ácaros y el número total de celdas inspeccionadas. Los resultados mostraron que los panales viejos presentaron niveles de infestación significativamente superiores a los registrados en panales nuevos (13,52% ± 3,35 y 6,18% ± 2,12 respectivamente; t = 10,62; p = 1,9 E-9; g. l.= 19. El mismo patrón fue observado en el número promedio de ácaros por panal (443,3 ± 70,54 y 217,85 ± 51,76 para panales viejos y nuevos respectivamente; t = 23,87; p = 1,24 E-15; g. l.= 19. Los ácaros presentan una marcada preferencia por los panales viejos. Esta selección estaría guiada por olores propios de las celdas, que actuarían como atrayentes. Además, posiblemente enmascaran su presencia de esta manera y evitan así ser detectados y eliminados por las abejas nodrizas mediante los comportamientos higiénicos.The aim of this work was to

  4. Reproduction of Varroa destructor in sealed worker bee brood cells of Apis mellifera carnica and Apis mellifera syriaca in Jordan

    OpenAIRE

    Alattal, Yehya; Rosenkranz, Peter; Zebitz, Claus Paul Walter

    2008-01-01

    The reproduction of the honey bee mite, Varroa destructor in sealed worker bee brood cells represents an important factor for the population development of this parasite in honey bee colonies. In this study, the relative infestation levels of worker brood cells, mite fertility (mites that lay at least one egg) and reproductive rate (number of viable adult daughters per mother mite) of Varroa mite in worker brood cells of Apis m. carnica and Apis m. syriaca were compared in fall 2003 and summe...

  5. A SNP based high-density linkage map of Apis cerana reveals a high recombination rate similar to Apis mellifera.

    Directory of Open Access Journals (Sweden)

    Yuan Yuan Shi

    Full Text Available BACKGROUND: The Eastern honey bee, Apis cerana Fabricius, is distributed in southern and eastern Asia, from India and China to Korea and Japan and southeast to the Moluccas. This species is also widely kept for honey production besides Apis mellifera. Apis cerana is also a model organism for studying social behavior, caste determination, mating biology, sexual selection, and host-parasite interactions. Few resources are available for molecular research in this species, and a linkage map was never constructed. A linkage map is a prerequisite for quantitative trait loci mapping and for analyzing genome structure. We used the Chinese honey bee, Apis cerana cerana to construct the first linkage map in the Eastern honey bee. RESULTS: F2 workers (N = 103 were genotyped for 126,990 single nucleotide polymorphisms (SNPs. After filtering low quality and those not passing the Mendel test, we obtained 3,000 SNPs, 1,535 of these were informative and used to construct a linkage map. The preliminary map contains 19 linkage groups, we then mapped the 19 linkage groups to 16 chromosomes by comparing the markers to the genome of A. mellfiera. The final map contains 16 linkage groups with a total of 1,535 markers. The total genetic distance is 3,942.7 centimorgans (cM with the largest linkage group (180 loci measuring 574.5 cM. Average marker interval for all markers across the 16 linkage groups is 2.6 cM. CONCLUSION: We constructed a high density linkage map for A. c. cerana with 1,535 markers. Because the map is based on SNP markers, it will enable easier and faster genotyping assays than randomly amplified polymorphic DNA or microsatellite based maps used in A. mellifera.

  6. Honeybee, Apis mellifera (Hymenoptera: Apidae), leaf damage on Alnus species in Uganda: a blessing or curse in agroforestry?

    Science.gov (United States)

    Nyeko, P; Edwards-Jones, G; Day, R K

    2002-10-01

    It is a dictum that Apis mellifera Linnaeus is innocuous in agricultural ecosystems. This study provides the first record of A. mellifera as a significant defoliator of Alnus species. Careful field observations coupled with microscopic examination provided convincing evidence implicating A. mellifera as the cause of leaf perforation on Alnus species in Uganda. Apis mellifera was observed foraging selectively on young Alnus leaves and buds in search of a sticky substance, apparently propolis. In so doing, the bee created wounds that enlarged and caused tattering of Alnus leaves as they matured. Biological surveys indicated that the damage was prevalent and occurred widely, particularly on Alnus acuminata Kunth in Uganda. Incidence of the Apis mellifera damage on Alnus acuminata peaked in the dry season, with up to 90% of leaves emerging per shoot per month damaged, and was lowest in the wet months during peak leaf emergence. Apis mellifera leaf damage was consistently higher on Alnus acuminata than A. nepalensis D. Don., on saplings than mature trees, and on sun exposed than shaded leaves. The activity of honeybees may be detrimental to the productivity of Alnus, yet the substance for which the insect forages on Alnus is a resource with potential economic importance. PMID:12241565

  7. Reduced SNP Panels for Genetic Identification and Introgression Analysis in the Dark Honey Bee (Apis mellifera mellifera)

    DEFF Research Database (Denmark)

    Muñoz, Irene; Henriques, Dora; Johnston, J. Spencer;

    2015-01-01

    Beekeeping activities, especially queen trading, have shaped the distribution of honey bee (Apis mellifera) subspecies in Europe, and have resulted in extensive introductions of two eastern European C-lineage subspecies (A. m. ligustica and A. m. carnica) into the native range of the M-lineage A. m...... and conservation of honey bee subspecies. Previous studies have monitored introgression by using microsatellite, PCR-RFLP markers and most recently, high density assays using single nucleotide polymorphism (SNP) markers. While the latter are almost prohibitively expensive, the information gained to date can...... individuals to the correct origin and calculates the admixture level with a high degree of accuracy. These panels provide an essential tool in Europe for genetic stock identification and estimation of admixture levels which can assist management strategies and monitor honey bee conservation programs....

  8. Apicystis bombi (Apicomplexa: Neogregarinorida) parasitizing Apis mellifera and Bombus terrestris (Hymenoptera: Apidae) in Argentina.

    Science.gov (United States)

    Plischuk, Santiago; Meeus, Ivan; Smagghe, Guy; Lange, Carlos E

    2011-10-01

    The neogregarine Apicystis bombi is considered a low prevalence parasite of Bombus spp. Before our work it has only once been detected in one single specimen of the Western honeybee Apis mellifera. This contribution reports the presence of A. bombi parasitizing both A. mellifera and Bombus terrestris at a site in Northwestern Argentine Patagonia (Bariloche, close to the border with Chile) and analyses its possible absence in the Pampas region, the most important beekeeping region of the country. In Bariloche, prevalence of A. bombi in A. mellifera was 7.6% in 2009, and 13.6% in 2010, whereas in B. terrestris it was 12.1%. Infections were not detected in 302 bee hives periodically prospected along 3 years (almost 400 000 honeybee specimens) in the Pampas. Analysis with the probability program FreeCalc2 suggested a possible absence of A. bombi in this area. Because of high virulence showed in several species of Bombus in the Northern hemisphere, A. bombi should be closely monitored in A. mellifera and in native Bombus species or other Apidae. PMID:23761336

  9. Functional characterization of naturally occurring melittin peptide isoforms in two honey bee species, Apis mellifera and Apis cerana.

    Science.gov (United States)

    Park, Doori; Jung, Je Won; Lee, Mi Ok; Lee, Si Young; Kim, Boyun; Jin, Hye Jun; Kim, Jiyoung; Ahn, Young-Joon; Lee, Ki Won; Song, Yong Sang; Hong, Seunghun; Womack, James E; Kwon, Hyung Wook

    2014-03-01

    Insect-derived antimicrobial peptides (AMPs) have diverse effects on antimicrobial properties and pharmacological activities such as anti-inflammation and anticancer properties. Naturally occurring genetic polymorphism have a direct and/or indirect influence on pharmacological effect of AMPs, therefore information on single nucleotide polymorphism (SNP) occurring in natural AMPs provides an important clue to therapeutic applications. Here we identified nucleotide polymorphisms in melittin gene of honey bee populations, which is one of the potent AMP in bee venoms. We found that the novel SNP of melittin gene exists in these two honey bee species, Apis mellifera and Apis cerana. Nine polymorphisms were identified within the coding region of the melittin gene, of which one polymorphism that resulted in serine (Ser) to asparagine (Asp) substitution that can potentially effect on biological activities of melittin peptide. Serine-substituted melittin (Mel-S) showed more cytotoxic effect than asparagine-substituted melittin (Mel-N) against E. coli. Also, Mel-N and Mel-S had different inhibitory effects on the production of inflammatory factors such as IL-6 and TNF-α in BV-2 cells. Moreover, Mel-S showed stronger cytotoxic activities than Mel-N peptide against two human ovarian cancer cell lines. Using carbon nanotube-based transistor, we here characterized that Mel-S interacted with small unilamellar liposomes more strongly than Mel-N. Taken together, our present study demonstrates that there exist different characteristics of the gene frequency and the biological activities of the melittin peptide in two honey bee species, Apis mellifera and A. cerana. PMID:24512991

  10. Genetic characterization of the honeybee (Apis mellifera) population of Rodrigues Island, based on microsatellite and mitochondrial DNA

    OpenAIRE

    Techer, Maéva Angélique; Clémencet, Johanna; Turpin, Patrick; Volbert, Nicolas; Reynaud, Bernard; Delatte, Hélène

    2015-01-01

    International audience AbstractApis mellifera is present in Rodrigues, an island in the South-West Indian Ocean. The history of the established honeybee population is poorly known, and its biodiversity has never been studied. In this study, maternal origins of A. mellifera in Rodrigues have been assessed with the DraI test and sequencing of the mitochondrial COI-COII region. Nuclear genetic diversity was investigated with 18 microsatellite markers. A total of 524 colonies were sampled from...

  11. Effect of pollination of strawberry by Apis mellifera L. and Chrysoperla carnea S. on quality of the fruits

    OpenAIRE

    Iván Interiano Zapata; Carlos M. Bucio Villalobos; Manuel D. Salas Araiza; Eduardo Salazar Solís; Oscar A. Martínez Jaime; Robert Wallace Jones

    2014-01-01

    Se evaluó la contribución de Apis mellifera L. y Chrysoperla carnea S. como polinizadores del cultivo de la fresa, utilizando flores primarias de la variedad Festival en un experimento realizado en Irapuato, Guanajuato, México. Los tratamientos utilizados fueron: autogamia (SF), polinización abierta (OP), Apis mellifera (AM) y Chrysoperla carnea (CC). La tasa de polinización mostró que hubo diferencias significativas en el tratamiento AM (85.20 ± 2.41) en comparación con SF (41.51 ± 3.92), OP...

  12. Social encapsulation of beetle parasites by Cape honeybee colonies (Apis mellifera capensis Esch.)

    Science.gov (United States)

    Neumann, P.; Pirk, C. W. W.; Hepburn, H. R.; Solbrig, A. J.; Ratnieks, F. L. W.; Elzen, P. J.; Baxter, J. R.

    2001-05-01

    Worker honeybees (Apis mellifera capensis) encapsulate the small hive beetle (Aethina tumida), a nest parasite, in propolis (tree resin collected by the bees). The encapsulation process lasts 1-4 days and the bees have a sophisticated guarding strategy for limiting the escape of beetles during encapsulation. Some encapsulated beetles died (4.9%) and a few escaped (1.6%). Encapsulation has probably evolved because the small hive beetle cannot easily be killed by the bees due to its hard exoskeleton and defensive behaviour.

  13. Energetic feedings influence beeswax production by Apis mellifera L. honeybees

    OpenAIRE

    Marcela Pedraza Carrillo; Samir Moura Kadri; Nabor Veiga; Ricardo de Oliveira Orsi

    2015-01-01

    The effect of different types of energy feeding (sugar syrup, inverted sugar and juice of sugar-cane) on beeswax production and its economic feasibility are evaluated. Twenty beehives of Africanized Apis mellifera were selected, and five were used for each type of feeding. The treatments were T1 (sugar-cane juice), T2 (sugar syrup) and T3 (inverted sugar). Feedings was provided by Boardman feeders and the amount was adjusted according to consumption. A layer of beeswax was manually set up int...

  14. Charakterisierung der Serotonin-Rezeptoren der Honigbiene Apis mellifera : von den Genen zum Verhalten

    OpenAIRE

    Thamm, Markus

    2010-01-01

    Das serotonerge System besitzt sowohl bei Invertebraten als auch bei Vertebraten eine große Bedeutung für die Kontrolle und Modulation vieler physiologischer Prozesse und Verhaltensleistungen. Bei der Honigbiene Apis mellifera spielt Serotonin (5-Hydroxytryptamin, 5-HT) eine wichtige Rolle bei der Arbeitsteilung und dem Lernen. Die 5-HT-Rezeptoren, die überwiegend zur Familie der G-Protein gekoppelten Rezeptoren (GPCRs) gehören, besitzen eine Schlüsselstellung für das Verständnis der molekula...

  15. Genetic structure of Apis mellifera macedonica in the Balkan Peninsula based on microsatellite DNA polymorphism

    DEFF Research Database (Denmark)

    Uzunov, Aleksandar; Meixner, Marina D; Kiprijanovska, Hrisula;

    2014-01-01

    of introgression with A. m. carnica alleles could be observed, probably as a consequence of propagating imported queens. Within A. m. macedonica, a certain degree of subdivision between the honey bee populations from Bulgaria and the other regions was detected, confirming earlier reports of variation within...... and spatial analyses of the microsatellite data showed a clear distinction between the Slovenian bees and all other populations, and confirmed the existence of Apis mellifera macedonica as an indigenous honey bee population in the regions that were sampled. In most areas however, varying degrees...

  16. El polen recogido por "Apis mellifera" L. en Hinojos (Huelva) durante la primavera

    OpenAIRE

    ORTIZ, PEDRO LUIS

    1994-01-01

    El polen recogido por Apis mellifera L. en Hinojos (Huelva) durante la primavera. Durante la primavera de 1986, periódicamente, se ha usado una trampilla cazapolen para obtener muestras de las cargas de polen recogidas por dos colmenas instaladas en Hinojos (Huelva). Dichas muestras se han pesado y se han estudiado microscópicamente. En cada una se han identificado los tipos polínicos encontrados y se han calculado sus porcentajes respecto al volumen; además se ha calculado un índice propo...

  17. Behavioral studies of learning in the Africanized honey bee (Apis mellifera L.).

    Science.gov (United States)

    Abramson, Charles I; Aquino, Italo S

    2002-01-01

    Experiments on basic classical conditioning phenomena in adult and young Africanized honey bees (Apis mellifera L.) are described. Phenomena include conditioning to various stimuli, extinction (both unpaired and CS only), conditioned inhibition, color and odor discrimination. In addition to work on basic phenomena, experiments on practical applications of conditioning methodology are illustrated with studies demonstrating the effects of insecticides on learning and the reaction of bees to consumer products. Electron microscope photos are presented of Africanized workers, drones, and queen bees. Possible sub-species differences between Africanized and European bees are discussed.

  18. Skin Sensitization Study of Bee Venom (Apis mellifera L.) in Guinea Pigs

    OpenAIRE

    Han, Sang Mi; Lee, Gwang Gill; Park, Kyun Kyu

    2012-01-01

    Bee venom (Apis mellifera L., BV) has been used as a cosmetic ingredient for antiaging, anti-inflammatory and antibacterial functions. The aim of this study was to access the skin sensitization of BV, a Buehler test was conducted fifty healthy male Hartley guinea pigs with three groups; Group G1 (BVsensitization group, 20 animals), group G2 (the positive control-sensitization group, 20 animals), and group G3 (the ethyl alcohol-sensitization group, 10 animals). The exposure on the left flank f...

  19. The microsporidian Nosema ceranae, the antibiotic Fumagilin-B®, and western honey bee (Apis mellifera) colony strength

    OpenAIRE

    Williams, Geoffrey,; Shutler, Dave; Little, Catherine; Burgher-Maclellan, Karen; Rogers, Richard

    2011-01-01

    International audience Western honey bees (Apis mellifera) are under threat from a number of emerging pathogens, including the microsporidian Nosema ceranae historically of Asian honey bees (Apis cerana). Because of its recent detection, very little is known about the biology, pathology, and control of N. ceranae in western honey bees. Here we investigated effects of the antibiotic Fumagilin-B®, which is commonly used to control the historical Nosema parasite of western honey bees Nosema a...

  20. Assessing hygienic behavior of Apis mellifera unicolor (Hymenoptera: Apidae), the endemic honey bee from Madagascar.

    Science.gov (United States)

    Rasolofoarivao, H; Delatte, H; Raveloson Ravaomanarivo, L H; Reynaud, B; Clémencet, J

    2015-06-01

    Hygienic behavior (HB) is one of the natural mechanisms of honey bee for limiting the spread of brood diseases and Varroa destructor parasitic mite. Objective of our study was to measure HB of Apis mellifera unicolor colonies (N = 403) from three geographic regions (one infested and two free of V. destructor) in Madagascar. The pin-killing method was used for evaluation of the HB. Responses were measured from 3 h 30 min to 7 h after perforation of the cells. Colonies were very effective in detecting perforated cells. In the first 4 h, on average, they detected at least 50% of the pin-killed brood. Six hours after cell perforation, colonies tested (N = 91) showed a wide range of uncapped (0 to 100%) and cleaned cells (0 to 82%). Global distribution of the rate of cleaned cells at 6 h was multimodal and hygienic responses could be split in three classes. Colonies from the three regions showed a significant difference in HB responses. Three hypotheses (geographic, genetic traits, presence of V. destructor) are further discussed to explain variability of HB responses among the regions. Levels of HB efficiency of A. mellifera unicolor colonies are among the greatest levels reported for A. mellifera subspecies. Presence of highly hygienic colonies is a great opportunity for future breeding program in selection for HB.

  1. Assessing hygienic behavior of Apis mellifera unicolor (Hymenoptera: Apidae), the endemic honey bee from Madagascar.

    Science.gov (United States)

    Rasolofoarivao, H; Delatte, H; Raveloson Ravaomanarivo, L H; Reynaud, B; Clémencet, J

    2015-01-01

    Hygienic behavior (HB) is one of the natural mechanisms of honey bee for limiting the spread of brood diseases and Varroa destructor parasitic mite. Objective of our study was to measure HB of Apis mellifera unicolor colonies (N = 403) from three geographic regions (one infested and two free of V. destructor) in Madagascar. The pin-killing method was used for evaluation of the HB. Responses were measured from 3 h 30 min to 7 h after perforation of the cells. Colonies were very effective in detecting perforated cells. In the first 4 h, on average, they detected at least 50% of the pin-killed brood. Six hours after cell perforation, colonies tested (N = 91) showed a wide range of uncapped (0 to 100%) and cleaned cells (0 to 82%). Global distribution of the rate of cleaned cells at 6 h was multimodal and hygienic responses could be split in three classes. Colonies from the three regions showed a significant difference in HB responses. Three hypotheses (geographic, genetic traits, presence of V. destructor) are further discussed to explain variability of HB responses among the regions. Levels of HB efficiency of A. mellifera unicolor colonies are among the greatest levels reported for A. mellifera subspecies. Presence of highly hygienic colonies is a great opportunity for future breeding program in selection for HB. PMID:26125787

  2. Nectar Sources for the Honey Bee (Apis mellifera adansonii Revealed by Pollen Content

    Directory of Open Access Journals (Sweden)

    Olusola ADEKANMBI

    2009-11-01

    Full Text Available Nectar sources for the African honeybee Apis mellifera adansonii were investigated. The work involved analysis of three honey samples bought from open markets in Lagos, Nigeria. The pollen sediment of the honeys was acetolysed, mounted on slides and pollen types were identified and counted to determine the relative frequency of the different pollen types in the honey samples. The proportion of pollen from each of the honey samples varied from 196 in sample A, 280 in sample B to 238 in sample C. The most abundant taxa identified from the honey samples were Tridax procumbens and Elaeis guineensis belonging to the families Asteraceae and Palmae. The highest proportion of Palm pollen grain was recorded in sample B with one hundred and ten (110 pollen grains per slide. The pollen grains in the families Palmae and Asteraceae are of great importance to the bees for honey production, this can be seen in the abundance displayed in sample B and C. Other pollen taxa recovered belong to the families Mimosaceae, Euphorbiaceae, Sapotaceae and Anacardiaceae providing a clue on the ecological origin of the pollen grains in the honey sample. Pollen analysis of honey proved to be useful in deciphering nectar sources of Apis mellifera adansonii.

  3. The nicotinic acetylcholine receptor gene family of the honey bee, Apis mellifera.

    Science.gov (United States)

    Jones, Andrew K; Raymond-Delpech, Valerie; Thany, Steeve H; Gauthier, Monique; Sattelle, David B

    2006-11-01

    Nicotinic acetylcholine receptors (nAChRs) mediate fast cholinergic synaptic transmission and play roles in many cognitive processes. They are under intense research as potential targets of drugs used to treat neurodegenerative diseases and neurological disorders such as Alzheimer's disease and schizophrenia. Invertebrate nAChRs are targets of anthelmintics as well as a major group of insecticides, the neonicotinoids. The honey bee, Apis mellifera, is one of the most beneficial insects worldwide, playing an important role in crop pollination, and is also a valuable model system for studies on social interaction, sensory processing, learning, and memory. We have used the A. mellifera genome information to characterize the complete honey bee nAChR gene family. Comparison with the fruit fly Drosophila melanogaster and the malaria mosquito Anopheles gambiae shows that the honey bee possesses the largest family of insect nAChR subunits to date (11 members). As with Drosophila and Anopheles, alternative splicing of conserved exons increases receptor diversity. Also, we show that in one honey bee nAChR subunit, six adenosine residues are targeted for RNA A-to-I editing, two of which are evolutionarily conserved in Drosophila melanogaster and Heliothis virescens orthologs, and that the extent of editing increases as the honey bee lifecycle progresses, serving to maximize receptor diversity at the adult stage. These findings on Apis mellifera enhance our understanding of nAChR functional genomics and provide a useful basis for the development of improved insecticides that spare a major beneficial insect species.

  4. Differential gene expression of the honey bee Apis mellifera associated with Varroa destructor infection

    Directory of Open Access Journals (Sweden)

    Evans JD

    2008-06-01

    Full Text Available Abstract Background The parasitic mite, Varroa destructor, is the most serious pest of the western honey bee, Apis mellifera, and has caused the death of millions of colonies worldwide. This mite reproduces in brood cells and parasitizes immature and adult bees. We investigated whether Varroa infestation induces changes in Apis mellifera gene expression, and whether there are genotypic differences that affect gene expression relevant to the bee's tolerance, as first steps toward unravelling mechanisms of host response and differences in susceptibility to Varroa parasitism. Results We explored the transcriptional response to mite parasitism in two genetic stocks of A. mellifera which differ in susceptibility to Varroa, comparing parasitized and non-parasitized full-sister pupae from both stocks. Bee expression profiles were analyzed using microarrays derived from honey bee ESTs whose annotation has recently been enhanced by results from the honey bee genome sequence. We measured differences in gene expression in two colonies of Varroa-susceptible and two colonies of Varroa-tolerant bees. We identified a set of 148 genes with significantly different patterns of expression: 32 varied with the presence of Varroa, 116 varied with bee genotype, and 2 with both. Varroa parasitism caused changes in the expression of genes related to embryonic development, cell metabolism and immunity. Bees tolerant to Varroa were mainly characterized by differences in the expression of genes regulating neuronal development, neuronal sensitivity and olfaction. Differences in olfaction and sensitivity to stimuli are two parameters that could, at least in part, account for bee tolerance to Varroa; differences in olfaction may be related to increased grooming and hygienic behavior, important behaviors known to be involved in Varroa tolerance. Conclusion These results suggest that differences in behavior, rather than in the immune system, underlie Varroa tolerance in honey

  5. Molecular Mechanisms Underlying Formation of Long-Term Reward Memories and Extinction Memories in the Honeybee ("Apis Mellifera")

    Science.gov (United States)

    Eisenhardt, Dorothea

    2014-01-01

    The honeybee ("Apis mellifera") has long served as an invertebrate model organism for reward learning and memory research. Its capacity for learning and memory formation is rooted in the ecological need to efficiently collect nectar and pollen during summer to ensure survival of the hive during winter. Foraging bees learn to associate a…

  6. Queen survival and oxalic acid residues in sugar stores after summer application against Varroa destructor in honey bees (Apis mellifera)

    NARCIS (Netherlands)

    Cornelissen, B.; Donders, J.N.L.C.; Stratum, van P.; Blacquière, T.; Dooremalen, van C.

    2012-01-01

    Methods using oxalic acid (OA) to control Varroa destructor in honey bee (Apis mellifera) colonies are widely applied. In this study, the effects of an OA spray application in early summer on the survival of young and old queens, and on OA residues in sugar stores were investigated. A questionnaire

  7. Beehold : the colony of the honeybee (Apis mellifera L) as a bio-sampler for pollutants and plant pathogens

    NARCIS (Netherlands)

    Steen, van der J.J.M.

    2016-01-01

    Bio-sampling is a function of bio-indication. Bio-indication with honeybee colonies (Apis mellifera L) is where the research fields of environmental technology and apiculture overlap. The honeybees are samplers of the environment by collecting unintentionally and simultaneously, along with nectar, p

  8. Efeito tóxico de alimentos alternativos para abelhas Apis mellifera Toxic effect of alternative feeds for honeybees Apis mellifera

    Directory of Open Access Journals (Sweden)

    Fábia de Mello Pereira

    2007-04-01

    Full Text Available Esta pesquisa foi realizada com o objetivo de avaliar a existência de efeito tóxico em alimentos protéicos alternativos fornecidos para abelhas Apis mellifera. Medindo-se o tempo médio de mortalidade e o índice de mortalidade de abelhas confinadas, avaliou-se a existência de efeito tóxico do: (a feno das folhas de mandioca (Manihot esculenta; (b feno das folhas de leucena (Leucaena leococephala; (c farinha de vagem de algaroba (Prosopis juliflora; (d farinha de vagem de bordão-de-velho (Pithecellobium cf. saman; (e farelo de babaçu (Orbygnia martiana e (f sucedâneo do leite para bezerros da marca Purina®. O tempo médio de mortalidade variou de 4,46 a 11,74 e o índice de mortalidade variou de 4,58 a 12,80. Durante o experimento, obsevou-se que as abelhas alimentadas com farinha de bordão-de-velho ficavam envoltas em uma crosta de alimento, morrendo asfixiadas posteriormente. Os resultados demonstraram que a farinha de bordão-de-velho não deve ser fornecida às abelhas. Não foi observado efeito tóxico nos demais alimentos estudados.The objective of this research was to study toxic effects of alternative feeds for honeybees Apis mellifera. The average mortality time and the mortality index of cagged honeybees were assessed to evaluate any possible toxic effect of: (a cassava hay (Manihot esculenta; (b leucaena hay (Leucaena leococephala; (c mesquite pod meal (Prosopis juliflora; (d "bordão-de-velho" pod meal (Pithecellobium cf. saman; (e babassu bran (Orbygnia martiana and (f succedaneous for calfskin from Purina®. The mortality time average varied from 4.46 to 11.74 and the mortality index varied between 4.58 and 12.80. It was obseved that honeybees fed with "bordão-de-velho" pod meal got involved by stichy layer of food and died asphyxiated. Results showed that the flour of Pithecellobium cf. saman should not be used for feeding honeybees, considering the early mortality of workers fed with this meal. The other food studied

  9. First Detection of Nosema ceranae, a Microsporidian Protozoa of European Honey­bees (Apis mellifera In Iran

    Directory of Open Access Journals (Sweden)

    A Gerami Sadeghian

    2011-09-01

    Full Text Available Background: Nosemosis of European honey bee (Apis mellifera is present in bee colonies world­wide. Until recently, Nosema apis had been regarded as the causative agent of the disease, that causes heavy economic losses in apicultures. Nosema ceranae is an emerging microsporidian para­site of European honeybees, A. mellifera, but its distribution is not well known. Previously, nosemosis in honeybees in Iran was attributed exclusively to N. apis.Methods: Six Nosema positive samples (determined from light microscopy of spores of adult worker bees from one province of Iran (Savadkouh- Mazandaran, northern Iran were tested to determine Nosema species using previously- developed PCR primers of the 16 S rRNA gene. As it is difficult to distinguish N. ceranae and N. apis morphologically, a PCR assay based on 16 S ribosomal RNA has been used to differentiate N. apis and N. ceranae.Results: Only N. ceranae was found in all samples, indicating that this species present in Iran apiar­ies.Conclusion: This is the first report of N. ceranae in colonies of A. mellifera in Iran. It seems that intensive surveys are needed to determine the distribution and prevalence of N. ceranae in differ­ent regions of Iran.

  10. Un escaneo explorativo del genoma de la abeja ibérica para detectar loci candidatos a selección

    OpenAIRE

    Chavez-Galarza, Julio; Henriques, Dora; Muñoz, Irene; De La Rúa, Pilar; Azevedo, João; Patton, John C.; Johnston, J. Spencer; Pinto, M. Alice

    2012-01-01

    Estudios explorativos del genoma se ha convertido en un abordaje popular para detectar selección permitiendo un análisis de la adaptación local y especiación a nivel molecular en poblaciones. La abeja ibérica (Apis mellifera iberiensis) ha sido estudiada con una variedad de marcadores genéticos como alozimas, DNA mitocondrial y microsatélites, pero estos han revelado complejos patrones y procesos que aún deben ser analizados minuciosamente. En los últimos años, las nuevas tecnologias han faci...

  11. GENÉTICA DEL COMPORTAMIENTO:: ABEJAS COMO MODELO Behavior Genetics:: Bees as Model

    Directory of Open Access Journals (Sweden)

    GUIOMAR NATES-PARRA

    Full Text Available La abeja de miel (género Apis, Familia Apidae es uno de los organismos utilizados en estudios de comportamiento, debido a su forma de vida social, la cual requiere de coordinación entre todos los individuos de la comunidad. La división de trabajo dentro de una colonia de abejas es consecuencia de cambios fisiológicos relacionados con la edad de las obreras y con la variación genética entre ellas que hace que realicen diferentes tareas. Con los progresos en biología molecular, genómica y secuenciación del genoma de Apis mellifera, han surgido nuevas herramientas que permiten desentrañar las bases moleculares del comportamiento, en particular el comportamiento social. Numerosos estudios han mostrado que muchas de las conductas realizadas por las obreras están determinadas genéticamente (comportamiento defensivo, comportamiento higiénico y además que hay variación genética entre poblaciones en el desempeño de tareas como recolección de agua, néctar y polen. Igualmente algunos aspectos del comportamiento social, como el control de la reproducción en las castas estériles, también están bajo influjo genético. En este trabajo se hace una revisión de las metodologías utilizadas para estudiar la genética del comportamiento, así como la base genética de algunas de las conductas más sobresalientes de abejas.The honeybee Apis mellifera (Apidae is a model widely used in behavior because of its elaborate social life requiring coordinate actions among the members of the society. Within a colony, division of labor, the performance of tasks by different individuals, follows genetically determined physiological changes that go along with aging. Modern advances in tools of molecular biology and genomics, as well as the sequentiation of A. mellifera genome, have enabled a better understanding of honeybee behaviour, in particular social behaviour. Numerous studies show that aspects of worker behaviour are genetically determined

  12. Variance in spermatozoa number among Apis dorsata drones and among Apis mellifera drones

    OpenAIRE

    Koeniger, Gudrun; KOENIGER, Nikolaus; TINGEK, Salim; Phiancharoen, Mananya

    2005-01-01

    International audience Published estimates of the mean spermatozoa numbers for Apis dorsata drones vary from 1.2 × 106 and 2.4 × 106; the number of spermatozoa per individual drone vary from 0.22 × 106 to 2.65 × 106. Counts presented here revealed 1.19 × 106 + 0.25 × 106 spermatozoa in drones sampled near a colony and 1.59 × 106 + 0.18 × 106 in drones sampled at a drone congregation area (DCA) in Sabah, Borneo. The difference between the two sites is significant. Further, the degree of var...

  13. Genomic Analyses Reveal Demographic History and Temperate Adaptation of the Newly Discovered Honey Bee Subspecies Apis mellifera sinisxinyuan n. ssp.

    Science.gov (United States)

    Chen, Chao; Liu, Zhiguang; Pan, Qi; Chen, Xiao; Wang, Huihua; Guo, Haikun; Liu, Shidong; Lu, Hongfeng; Tian, Shilin; Li, Ruiqiang; Shi, Wei

    2016-05-01

    Studying the genetic signatures of climate-driven selection can produce insights into local adaptation and the potential impacts of climate change on populations. The honey bee (Apis mellifera) is an interesting species to study local adaptation because it originated in tropical/subtropical climatic regions and subsequently spread into temperate regions. However, little is known about the genetic basis of its adaptation to temperate climates. Here, we resequenced the whole genomes of ten individual bees from a newly discovered population in temperate China and downloaded resequenced data from 35 individuals from other populations. We found that the new population is an undescribed subspecies in the M-lineage of A. mellifera (Apis mellifera sinisxinyuan). Analyses of population history show that long-term global temperature has strongly influenced the demographic history of A. m. sinisxinyuan and its divergence from other subspecies. Further analyses comparing temperate and tropical populations identified several candidate genes related to fat body and the Hippo signaling pathway that are potentially involved in adaptation to temperate climates. Our results provide insights into the demographic history of the newly discovered A. m. sinisxinyuan, as well as the genetic basis of adaptation of A. mellifera to temperate climates at the genomic level. These findings will facilitate the selective breeding of A. mellifera to improve the survival of overwintering colonies. PMID:26823447

  14. Infra-population and -community dynamics of the parasites Nosema apis and Nosema ceranae, and consequences for honey bee (Apis mellifera hosts.

    Directory of Open Access Journals (Sweden)

    Geoffrey R Williams

    Full Text Available Nosema spp. fungal gut parasites are among myriad possible explanations for contemporary increased mortality of western honey bees (Apis mellifera, hereafter honey bee in many regions of the world. Invasive Nosema ceranae is particularly worrisome because some evidence suggests it has greater virulence than its congener N. apis. N. ceranae appears to have recently switched hosts from Asian honey bees (Apis cerana and now has a nearly global distribution in honey bees, apparently displacing N. apis. We examined parasite reproduction and effects of N. apis, N. ceranae, and mixed Nosema infections on honey bee hosts in laboratory experiments. Both infection intensity and honey bee mortality were significantly greater for N. ceranae than for N. apis or mixed infections; mixed infection resulted in mortality similar to N. apis parasitism and reduced spore intensity, possibly due to inter-specific competition. This is the first long-term laboratory study to demonstrate lethal consequences of N. apis and N. ceranae and mixed Nosema parasitism in honey bees, and suggests that differences in reproduction and intra-host competition may explain apparent heterogeneous exclusion of the historic parasite by the invasive species.

  15. Antennal malformations in light ocelli drones of Apis mellifera (Hymenoptera, Apidae).

    Science.gov (United States)

    Chaud-Netto, J

    2000-02-01

    Malformed antennae of Apis mellifera light ocelli drones were drawn, dissected and mounted permanently on slides containing Canada balsam, in order to count the olfactory discs present in each segment, in comparison with the number of those structures in normal antennae of their brothers. Some drones presented morphological abnormalities in a single segment of the right or left antenna, but others had two or more malformed segments in a same antenna. Drones with malformations in both antennae were also observed. The 4th and 5th flagellum segments were the most frequently affected. In a low number of cases the frequency of olfactory discs in malformed segments did not differ from that one recorded for normal segments. However, in most cases studied, the antennal malformations brought about a significant reduction in the number of olfactory discs from malformed segments.

  16. Genetic characterization of slow bee paralysis virus of the honeybee (Apis mellifera L.).

    Science.gov (United States)

    de Miranda, Joachim R; Dainat, Benjamin; Locke, Barbara; Cordoni, Guido; Berthoud, Helène; Gauthier, Laurent; Neumann, Peter; Budge, Giles E; Ball, Brenda V; Stoltz, Don B

    2010-10-01

    Complete genome sequences were determined for two distinct strains of slow bee paralysis virus (SBPV) of honeybees (Apis mellifera). The SBPV genome is approximately 9.5 kb long and contains a single ORF flanked by 5'- and 3'-UTRs and a naturally polyadenylated 3' tail, with a genome organization typical of members of the family Iflaviridae. The two strains, labelled 'Rothamsted' and 'Harpenden', are 83% identical at the nucleotide level (94% identical at the amino acid level), although this variation is distributed unevenly over the genome. The two strains were found to co-exist at different proportions in two independently propagated SBPV preparations. The natural prevalence of SBPV for 847 colonies in 162 apiaries across five European countries was <2%, with positive samples found only in England and Switzerland, in colonies with variable degrees of Varroa infestation. PMID:20519455

  17. Ecology of Varroa destructor, the Major Ectoparasite of the Western Honey Bee, Apis mellifera.

    Science.gov (United States)

    Nazzi, Francesco; Le Conte, Yves

    2016-01-01

    Varroa destructor is the most important ectoparasite of Apis mellifera. This review addresses the interactions between the varroa mite, its environment, and the honey bee host, mediated by an impressive number of cues and signals, including semiochemicals regulating crucial steps of the mite's life cycle. Although mechanical stimuli, temperature, and humidity play an important role, chemical communication is the most important channel. Kairomones are used at all stages of the mite's life cycle, and the exploitation of bees' brood pheromones is particularly significant given these compounds function as primer and releaser signals that regulate the social organization of the honey bee colony. V. destructor is a major problem for apiculture, and the search for novel control methods is an essential task for researchers. A detailed study of the ecological interactions of V. destructor is a prerequisite for creating strategies to sustainably manage the parasite. PMID:26667378

  18. EFFECTS OF C60 FULLERENE — CISPLATIN COMPLEX ON HONEYBEE Apis mellifera L.

    Directory of Open Access Journals (Sweden)

    Kuznietsova H. M.

    2015-08-01

    Full Text Available The toxicity of С60 fullerene, traditional cytostatic cisplatin and С60 fullerene-cisplatin complex on honeybee Apis mellifera L. toxicity estimation test system was assessed. Water-soluble pristine C60 fullerenes were nontoxic for honeybee when consumed with the food in doses equivalent nontoxic and effective ones for mammalian. Cisplatin toxicity for honeybee in the doses exceed the same for mammalian in 2 times was observed as fallows: honeybee 56% death occurred after consumption of 60 mg/kg of bee weight. С60 fullerene-cisplatin complex proved to be more toxic for honeybee in comparison with free cisplatin and caused honeybee 50% lethality after consumption of 40 mg/kg bee weight.

  19. Lethal infection thresholds of Paenibacillus larvae for honeybee drone and worker larvae (Apis mellifera).

    Science.gov (United States)

    Behrens, Dieter; Forsgren, Eva; Fries, Ingemar; Moritz, Robin F A

    2010-10-01

    We compared the mortality of honeybee (Apis mellifera) drone and worker larvae from a single queen under controlled in vitro conditions following infection with Paenibacillus larvae, a bacterium causing the brood disease American Foulbrood (AFB). We also determined absolute P. larvae cell numbers and lethal titres in deceased individuals of both sexes up to 8 days post infection using quantitative real-time PCR (qPCR). Our results show that in drones the onset of infection induced mortality is delayed by 1 day, the cumulative mortality is reduced by 10% and P. larvae cell numbers are higher than in worker larvae. Since differences in bacterial cell titres between sexes can be explained by differences in body size, larval size appears to be a key parameter for a lethal threshold in AFB tolerance. Both means and variances for lethal thresholds are similar for drone and worker larvae suggesting that drone resistance phenotypes resemble those of related workers. PMID:20545737

  20. Modelling the subgenual organ of the honeybee, Apis mellifera

    DEFF Research Database (Denmark)

    Storm, Jesper; Kilpinen, Ole

    1998-01-01

    In a recent study on the honeybee (Apis mellifera), the subgenual organ was observed moving inside the leg during sinusoidal vibrations of the leg (Kilpinen and Storm 1997). The subgenual organ of the honeybee is suspended in a haemolymph channel in the tibia of each leg. When the leg accelerates...... mass-spring model and a newly developed tube model consisting of an open-ended, fluid-filled tube occluded by an elastic structure midway. Both models suggest that the subgenual organ included in the haemolymph channel resembles that of an overdamped system. In resembling the biophysics...... of the subgenual organ system in the honeybee, we consider the tube model to be the better of the two because it simulates a mechanical response which complies best with the experimental data, and the physical parameters in the model can be related to the␣constituent parts of the subgenual organ included...

  1. Definitive identification of magnetite nanoparticles in the abdomen of the honeybee Apis mellifera

    Energy Technology Data Exchange (ETDEWEB)

    Desoil, M [Biological Physics Department, University of Mons-Hainaut (Belgium); Gillis, P [Biological Physics Department, University of Mons-Hainaut (Belgium); Gossuin, Y [Biological Physics Department, University of Mons-Hainaut (Belgium); Pankhurst, Q A [London Centre for Nanotechnology, University College London, London WC1E 7HN (United Kingdom); Hautot, D [London Centre for Nanotechnology, University College London, London WC1E 7HN (United Kingdom); Institute for Science and Technology in Medicine, Keele University, Thornburrow Drive, Hartshill, Stoke-en-Trent, ST4 7QB (United Kingdom)

    2005-01-01

    The biogenic magnetic properties of the honeybee Apis mellifera were investigated with a view to understanding the bee's physiological response to magnetic fields. The magnetisations of bee abdomens on one hand, and heads and thoraxes on the other hand, were measured separately as functions of temperature and field. Both the antiferromagnetic responses of the ferrihydrite cores of the iron storage protein ferritin, and the ferrimagnetic responses of nanoscale magnetite (Fe{sub 3}O{sub 4}) particles, were observed. Relatively large magnetite particles (ca. 30 nm or more), capable of retaining a remanent magnetisation at room temperature, were found in the abdomens, but were absent in the heads and thoraxes. In both samples, more than 98% of the iron atoms were due to ferritin.

  2. Effects of captan on Apis mellifera brood development under field conditions in California almond orchards.

    Science.gov (United States)

    Everich, R; Schiller, C; Whitehead, J; Beavers, M; Barrett, K

    2009-02-01

    Three almond field trials were conducted during 2003 and 2004 at two locations in central (Fresno County) and northern (Yolo County) California to evaluate the potential effects of commercial applications of Captan on honey bees, Apis mellifera L. Captan was applied at 5.0 kg (AI)/ha during bloom. Hives were evaluated for hive health and brood development parameters for approximately 2 mo after application. This study showed that the application of Captan was not harmful to foraging honey bees or their brood. No treatment-related effects were noted on hive weights, dead bee deformity, number of dead bees, survival of individual larvae, weight of individual emerging adults, and other hive health parameters.

  3. Heritable variation for latent inhibition and its correlation with reversal learning in honeybees (Apis mellifera).

    Science.gov (United States)

    Chandra, S B; Hosler, J S; Smith, B H

    2000-03-01

    Latent inhibition (LI) in honeybees (Apis mellifera) was studied by using a proboscis extension response conditioning procedure. Individual queens, drones, and workers differed in the degree to which they revealed LI. The authors hypothesized that individual differences would have a substantial genetic basis. Two sets of progeny were established by crossing virgin queens and individual drones, both of which had been selected for differential expression of inhibition. LI was stronger in the progeny from the queens and drones that had shown greater inhibition. The expression of LI was also dependent on environmental factors that are most likely associated with age, foraging experience outside of the colony, or both. Furthermore, there was a correlated response in the speed at which progeny reversed a learned discrimination of 2 odors. These genetic analyses may reveal underlying mechanisms that these 2 learning paradigms have in common.

  4. Comparative toxicities and synergism of apple orchard pesticides to Apis mellifera (L. and Osmia cornifrons (Radoszkowski.

    Directory of Open Access Journals (Sweden)

    David J Biddinger

    Full Text Available The topical toxicities of five commercial grade pesticides commonly sprayed in apple orchards were estimated on adult worker honey bees, Apis mellifera (L. (Hymenoptera: Apidae and Japanese orchard bees, Osmia cornifrons (Radoszkowski (Hymenoptera: Megachilidae. The pesticides were acetamiprid (Assail 30SG, λ-cyhalothrin (Warrior II, dimethoate (Dimethoate 4EC, phosmet (Imidan 70W, and imidacloprid (Provado 1.6F. At least 5 doses of each chemical, diluted in distilled water, were applied to freshly-eclosed adult bees. Mortality was assessed after 48 hr. Dose-mortality regressions were analyzed by probit analysis to test the hypotheses of parallelism and equality by likelihood ratio tests. For A. mellifera, the decreasing order of toxicity at LD₅₀ was imidacloprid, λ-cyhalothrin, dimethoate, phosmet, and acetamiprid. For O. cornifrons, the decreasing order of toxicity at LD₅₀ was dimethoate, λ-cyhalothrin, imidacloprid, acetamiprid, and phosmet. Interaction of imidacloprid or acetamiprid with the fungicide fenbuconazole (Indar 2F was also tested in a 1∶1 proportion for each species. Estimates of response parameters for each mixture component applied to each species were compared with dose-response data for each mixture in statistical tests of the hypothesis of independent joint action. For each mixture, the interaction of fenbuconazole (a material non-toxic to both species was significant and positive along the entire line for the pesticide. Our results clearly show that responses of A. mellifera cannot be extrapolated to responses of O.cornifrons, and that synergism of neonicotinoid insecticides and fungicides occurs using formulated product in mixtures as they are commonly applied in apple orchards.

  5. Comparative toxicities and synergism of apple orchard pesticides to Apis mellifera (L.) and Osmia cornifrons (Radoszkowski).

    Science.gov (United States)

    Biddinger, David J; Robertson, Jacqueline L; Mullin, Chris; Frazier, James; Ashcraft, Sara A; Rajotte, Edwin G; Joshi, Neelendra K; Vaughn, Mace

    2013-01-01

    The topical toxicities of five commercial grade pesticides commonly sprayed in apple orchards were estimated on adult worker honey bees, Apis mellifera (L.) (Hymenoptera: Apidae) and Japanese orchard bees, Osmia cornifrons (Radoszkowski) (Hymenoptera: Megachilidae). The pesticides were acetamiprid (Assail 30SG), λ-cyhalothrin (Warrior II), dimethoate (Dimethoate 4EC), phosmet (Imidan 70W), and imidacloprid (Provado 1.6F). At least 5 doses of each chemical, diluted in distilled water, were applied to freshly-eclosed adult bees. Mortality was assessed after 48 hr. Dose-mortality regressions were analyzed by probit analysis to test the hypotheses of parallelism and equality by likelihood ratio tests. For A. mellifera, the decreasing order of toxicity at LD₅₀ was imidacloprid, λ-cyhalothrin, dimethoate, phosmet, and acetamiprid. For O. cornifrons, the decreasing order of toxicity at LD₅₀ was dimethoate, λ-cyhalothrin, imidacloprid, acetamiprid, and phosmet. Interaction of imidacloprid or acetamiprid with the fungicide fenbuconazole (Indar 2F) was also tested in a 1∶1 proportion for each species. Estimates of response parameters for each mixture component applied to each species were compared with dose-response data for each mixture in statistical tests of the hypothesis of independent joint action. For each mixture, the interaction of fenbuconazole (a material non-toxic to both species) was significant and positive along the entire line for the pesticide. Our results clearly show that responses of A. mellifera cannot be extrapolated to responses of O.cornifrons, and that synergism of neonicotinoid insecticides and fungicides occurs using formulated product in mixtures as they are commonly applied in apple orchards. PMID:24039783

  6. MRJP microsatellite markers in Africanized Apis mellifera colonies selected on the basis of royal jelly production.

    Science.gov (United States)

    Parpinelli, R S; Ruvolo-Takasusuki, M C C; Toledo, V A A

    2014-01-01

    It is important to select the best honeybees that produce royal jelly to identify important molecular markers, such as major royal jelly proteins (MRJPs), and hence contribute to the development of new breeding strategies to improve the production of this substance. Therefore, this study focused on evaluating the genetic variability of mrjp3, mrjp5, and mrjp8 and associated allele maintenance during the process of selective reproduction in Africanized Apis mellifera individuals, which were chosen based on royal jelly production. The three loci analyzed were polymorphic, and produced a total of 16 alleles, with 4 new alleles, which were identified at mrjp5. The effective number of alleles at mrjp3 was 3.81. The observed average heterozygosity was 0.4905, indicating a high degree of genetic variability at these loci. The elevated FIS values for mrjp3, mrjp5, and mrjp8 (0.4188, 0.1077, and 0.2847, respectively) indicate an excess of homozygotes. The selection of Africanized A. mellifera queens for royal jelly production has maintained the mrjp3 C, D, and E alleles; although, the C allele occurred at a low frequency. The heterozygosity and FIS values show that the genetic variability of the queens is decreasing at the analyzed loci, generating an excess of homozygotes. However, the large numbers of drones that fertilize the queens make it difficult to develop homozygotes at mrjp3. Mating through instrumental insemination using the drones of known genotypes is required to increase the efficiency of Africanized A. mellifera-breeding programs, and to improve the quality and efficiency of commercial royal jelly apiaries. PMID:25177952

  7. Genome-wide characterization of long intergenic non-coding RNAs (lincRNAs) provides new insight into viral diseases in honey bees Apis cerana and Apis mellifera

    OpenAIRE

    Jayakodi, Murukarthick; Jung, Je Won; Park, Doori; Ahn, Young-Joon; Lee, Sang-Choon; Shin, Sang-Yoon; Shin, Chanseok; Yang, Tae-Jin; Kwon, Hyung Wook

    2015-01-01

    Background Long non-coding RNAs (lncRNAs) are a class of RNAs that do not encode proteins. Recently, lncRNAs have gained special attention for their roles in various biological process and diseases. Results In an attempt to identify long intergenic non-coding RNAs (lincRNAs) and their possible involvement in honey bee development and diseases, we analyzed RNA-seq datasets generated from Asian honey bee (Apis cerana) and western honey bee (Apis mellifera). We identified 2470 lincRNAs with an a...

  8. Patterns of Apis mellifera infection by Nosema ceranae support the parasite hypothesis for the evolution of extreme polyandry in eusocial insects.

    Science.gov (United States)

    The microsporidian Nosema ceranae has recently invaded managed honey bee (Apis mellifera) colonies beyond Asia. The presence of this emergent parasite in lineages of A. mellifera that are naïve to its selection pressure (“Italian”) and that have co-evolved with the parasite over ca. 150 generations ...

  9. Developing an in vivo toxicity assay for RNAi risk assessment in honey bees, Apis mellifera L.

    Science.gov (United States)

    Vélez, Ana María; Jurzenski, Jessica; Matz, Natalie; Zhou, Xuguo; Wang, Haichuan; Ellis, Marion; Siegfried, Blair D

    2016-02-01

    Maize plants expressing dsRNA for the management of Diabrotica virgifera virgifera are likely to be commercially available by the end of this decade. Honey bees, Apis mellifera, can potentially be exposed to pollen from transformed maize expressing dsRNA. Consequently, evaluation of the biological impacts of RNAi in honey bees is a fundamental component for ecological risk assessment. The insecticidal activity of a known lethal dsRNA target for D. v. virgifera, the vATPase subunit A, was evaluated in larval and adult honey bees. Activity of both D. v. virgifera (Dvv)- and A. mellifera (Am)-specific dsRNA was tested by dietary exposure to dsRNA. Larval development, survival, adult eclosion, adult life span and relative gene expression were evaluated. The results of these tests indicated that Dvv vATPase-A dsRNA has limited effects on larval and adult honey bee survival. Importantly, no effects were observed upon exposure of Am vATPase-A dsRNA suggesting that the lack of response involves factors other than sequence specificity. The results from this study provide guidance for future RNAi risk analyses and for the development of a risk assessment framework that incorporates similar hazard assessments.

  10. Morphometric and genetic changes in a population of Apis mellifera after 34 years of Africanization.

    Science.gov (United States)

    Francoy, T M; Wittmann, D; Steinhage, V; Drauschke, M; Müller, S; Cunha, D R; Nascimento, A M; Figueiredo, V L C; Simões, Z L P; De Jong, D; Arias, M C; Gonçalves, L S

    2009-01-01

    Though the replacement of European bees by Africanized honey bees in tropical America has attracted considerable attention, little is known about the temporal changes in morphological and genetic characteristics in these bee populations. We examined the changes in the morphometric and genetic profiles of an Africanized honey bee population collected near where the original African swarms escaped, after 34 years of Africanization. Workers from colonies sampled in 1968 and in 2002 were morphometrically analyzed using relative warps analysis and an Automatic Bee Identification System (ABIS). All the colonies had their mitochondrial DNA identified. The subspecies that mixed to form the Africanized honey bees were used as a comparison for the morphometric analysis. The two morphometric approaches showed great similarity of Africanized bees with the African subspecies, Apis mellifera scutellata, corroborating with other markers. We also found the population of 1968 to have the pattern of wing venation to be more similar to A. m. scutellata than the current population. The mitochondrial DNA of European origin, which was very common in the 1968 population, was not found in the current population, indicating selective pressure replacing the European with the African genome in this tropical region. Both morphometric methodologies were very effective in discriminating the A. mellifera groups; the non-linear analysis of ABIS was the most successful in identifying the bees, with more than 94% correct classifications. PMID:19554770

  11. Genetic structure of Varroa destructor populations infesting Apis mellifera colonies in Argentina.

    Science.gov (United States)

    Maggi, M; Medici, S; Quintana, S; Ruffinengo, S; Marcángeli, J; Gimenez Martinez, P; Fuselli, S; Eguaras, M

    2012-04-01

    Although mitochondrial DNA mapping of Varroa destructor revealed the presence of several haplotypes, only two of them (Korean and Japanese haplotypes) were capable to infest Apis mellifera populations. Even though the Korean haplotype is the only one that has been reported in Argentina, these conclusions were based on mites sampled in apiaries from a specific geographical place (Buenos Aires province). To study mites from several sites of Argentina could reveal the presence of the Japanese genotype, especially considering sites near to Brazil, where Japanese haplotype was already detected. The aim of this work was to study the genetic structure of V. destructor populations from apiaries located in various provinces of Argentina, in order to determine the presence of different haplotypes. The study was carried out between January 2006 and December 2009. Phoretic adult Varroa mites were collected from honey bee workers sampled from colonies of A. mellifera located in Entre Ríos, Buenos Aires, Corrientes, Río Negro, Santa Cruz and Neuquén provinces. Twenty female mites from each sampling site were used to carry out the genetic analysis. For DNA extraction a nondestructive method was used. DNA sequences were compared to Korean haplotype (AF106899) and Japanese haplotype (AF106897). All DNA sequences obtained from mite populations sampled in Argentina, share 98% of similitude with Korean Haplotype (AF106899). Taking into account these results, we are able to conclude that Korean haplotype is cosmopolite in Argentina.

  12. Honey Bee Venom (Apis mellifera Contains Anticoagulation Factors and Increases the Blood-clotting Time

    Directory of Open Access Journals (Sweden)

    Hossein Zolfagharian

    2015-12-01

    Full Text Available Objectives: Bee venom (BV is a complex mixture of proteins and contains proteins such as phospholipase and melittin, which have an effect on blood clotting and blood clots. The mechanism of action of honey bee venom (HBV, Apis mellifera on human plasma proteins and its anti-thrombotic effect were studied. The purpose of this study was to investigate the anti-coagulation effect of BV and its effects on blood coagulation and purification. Methods: Crude venom obtained from Apis mellifera was selected. The anti-coagulation factor of the crude venom from this species was purified by using gel filtration chromatography (sephadex G-50, and the molecular weights of the anti-coagulants in this venom estimated by using sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE. Blood samples were obtained from 10 rabbits, and the prothrombin time (PT and the partial thromboplastin time (PTT tests were conducted. The approximate lethal dose (LD values of BV were determined. Results: Crude BV increased the blood clotting time. For BV concentrations from 1 to 4 mg/mL, clotting was not observed even at more than 300 seconds, standard deviations (SDs = ± 0.71; however, clotting was observed in the control group 13.8 s, SDs = ± 0.52. Thus, BV can be considered as containing anti-coagulation factors. Crude BV is composed 4 protein bands with molecular weights of 3, 15, 20 and 41 kilodalton (kDa, respectively. The LD50 of the crude BV was found to be 177.8 μg/mouse. Conclusion: BV contains anti-coagulation factors. The fraction extracted from the Iranian bees contains proteins that are similar to anti-coagulation proteins, such as phospholipase A2 (PLA2 and melittin, and that can increase the blood clotting times in vitro.

  13. Métodos para atrair a abelha Apis mellifera L. em cultura de abacate (Persea americana Mill. Methods to attract honeybee Apis mellifera L. to avocado tree (Persea americana Mill

    Directory of Open Access Journals (Sweden)

    Darclet Terezinha Malerbo Souza

    2002-04-01

    Full Text Available O presente experimento teve como objetivo avaliar métodos de atração da abelha Apis mellifera L. (Hymenoptera, Apidae em duas variedades de abacate (Persea americana Mill.. Os atrativos utilizados foram extratos de Cymbopogon citratus, Ocimum basilicum, Lippia alba, folha de Citrus sp, folha de Eucaliptus sp. e o eugenol e o linalol (SIGMA. Os tratamentos utilizados foram: coberto; descoberto pulverizado (DP; descoberto com tubos e descoberto não pulverizado (DNP. Observou-se que a atratividade das substâncias testadas desapareceu minutos após a sua aplicação, utilizando ou não a glicerina, em ambas as variedades. A pulverização dos extratos de falsa melissa, folhas de eucalipto e folhas de laranja apresentaram um aumento no número de abelhas Apis mellifera, na variedade Quintal. Os dados mostraram que a freqüência das abelhas A. mellifera foi maior na variedade Quintal comparada à variedade Fortuna. Isto pode ter ocorrido devido à maior concentração de açúcares do néctar de suas flores. Observou-se que as abelhas A. mellifera preferiram visitar as flores do abacateiro da variedade Quintal, tanto para néctar quanto para coleta de pólen, comparada à variedade Fortuna. Com relação aos frutos, nenhuma das características apresentou diferença significativa entre os tratamentos, em ambas as variedades. Entretanto, observou-se que na variedade Quintal os frutos decorrentes dos tratamentos DP e DNP foram mais pesados, mais compridos e com maior espessura da polpa, comparados ao único fruto obtido do tratamento coberto. Os produtos testados em tubos não foram eficientes para atrair a abelha Apis mellifera, em ambas as variedades.The present experiment was carried out to evaluate some methods to attract honeybee Apis mellifera L. (Hymenoptera, Apidae to two avocado varieties (Persea americana Mill.. Extracts of Cymbopogon citratus, Ocimum basilicum, Lippia alba, Citrus sp leaf, Eucalyptus sp leaf, the eugenol and linalol

  14. Germ cell development in the Honeybee (Apis mellifera; Vasa and Nanos expression

    Directory of Open Access Journals (Sweden)

    Dearden Peter K

    2006-02-01

    Full Text Available Abstract Background Studies of specification of germ-cells in insect embryos has indicated that in many taxa the germ cells form early in development, and their formation is associated with pole plasm, germ plasm or an organelle called the oosome. None of these morphological features associated with germ cell formation have been identified in the Honeybee Apis mellifera. In this study I report the cloning and expression analysis of Honeybee homologues of vasa and nanos, germ cell markers in insects and other animals. Results Apis vasa and nanos RNAs are present in early honeybee embryos, but the RNAs clear rapidly, without any cells expressing these germ cell markers past stage 2. These genes are then only expressed in a line of cells in the abdomen from stage 9 onwards. These cells are the developing germ cells that are moved dorsally by dorsal closure and are placed in the genital ridge. Conclusion This study of the expression of germ cell markers in the honeybee implies that in this species either germ cells are formed by an inductive event, late in embryogenesis, or they are formed early in development in the absence of vasa and nanos expression. This contrasts with germ cell development in other members of the Hymenoptera, Diptera and Lepidoptera.

  15. Sex-specific differences in pathogen susceptibility in honey bees (Apis mellifera.

    Directory of Open Access Journals (Sweden)

    Gina Retschnig

    Full Text Available Sex-related differences in susceptibility to pathogens are a common phenomenon in animals. In the eusocial Hymenoptera the two female castes, workers and queens, are diploid and males are haploid. The haploid susceptibility hypothesis predicts that haploid males are more susceptible to pathogen infections compared to females. Here we test this hypothesis using adult male (drone and female (worker honey bees (Apis mellifera, inoculated with the gut endoparasite Nosema ceranae and/or black queen cell virus (BQCV. These pathogens were chosen due to previously reported synergistic interactions between Nosema apis and BQCV. Our data do not support synergistic interactions between N. ceranae and BQCV and also suggest that BQCV has limited effect on both drone and worker health, regardless of the infection level. However, the data clearly show that, despite lower levels of N. ceranae spores in drones than in workers, Nosema-infected drones had both a higher mortality and a lower body mass than non-infected drones, across all treatment groups, while the mortality and body mass of worker bees were largely unaffected by N. ceranae infection, suggesting that drones are more susceptible to this pathogen than workers. In conclusion, the data reveal considerable sex-specific differences in pathogen susceptibility in honey bees and highlight the importance of ultimate measures for determining susceptibility, such as mortality and body quality, rather than mere infection levels.

  16. Seasonal prevalence of pathogens and parasites in the savannah honeybee (Apis mellifera scutellata).

    Science.gov (United States)

    Strauss, Ursula; Human, Hannelie; Gauthier, Laurent; Crewe, Robin M; Dietemann, Vincent; Pirk, Christian W W

    2013-09-01

    The loss of Apis mellifera L. colonies in recent years has, in many regions of the world, been alarmingly high. No single cause has been identified for these losses, but the interactions between several factors (mostly pathogens and parasites) have been held responsible. Work in the Americas on honeybees originating mainly from South Africa indicates that Africanised honeybees are less affected by the interplay of pathogens and parasites. However, little is known about the health status of South African honeybees (A. m. scutellata and A. m. capensis) in relation to pathogens and parasites. We therefore compared the seasonal prevalence of honeybee pathogens (viruses, bacteria, fungi) and parasites (mites, bee lice, wax moth, small hive beetles, A. m. capensis social parasites) between sedentary and migratory A. m. scutellata apiaries situated in the Gauteng region of South Africa. No significant differences were found in the prevalence of pathogens and parasites between sedentary and migratory apiaries. Three (Black queen cell virus, Varroa destructor virus 1 and Israeli acute paralysis virus) of the eight viruses screened were detected, a remarkable difference compared to European honeybees. Even though no bacterial pathogens were detected, Nosema apis and Chalkbrood were confirmed. All of the honeybee parasites were found in the majority of the apiaries with the most common parasite being the Varroa mite. In spite of hosting few pathogens, yet most parasites, A. m. scutellata colonies appeared to be healthy. PMID:23702244

  17. Sex-specific differences in pathogen susceptibility in honey bees (Apis mellifera).

    Science.gov (United States)

    Retschnig, Gina; Williams, Geoffrey R; Mehmann, Marion M; Yañez, Orlando; de Miranda, Joachim R; Neumann, Peter

    2014-01-01

    Sex-related differences in susceptibility to pathogens are a common phenomenon in animals. In the eusocial Hymenoptera the two female castes, workers and queens, are diploid and males are haploid. The haploid susceptibility hypothesis predicts that haploid males are more susceptible to pathogen infections compared to females. Here we test this hypothesis using adult male (drone) and female (worker) honey bees (Apis mellifera), inoculated with the gut endoparasite Nosema ceranae and/or black queen cell virus (BQCV). These pathogens were chosen due to previously reported synergistic interactions between Nosema apis and BQCV. Our data do not support synergistic interactions between N. ceranae and BQCV and also suggest that BQCV has limited effect on both drone and worker health, regardless of the infection level. However, the data clearly show that, despite lower levels of N. ceranae spores in drones than in workers, Nosema-infected drones had both a higher mortality and a lower body mass than non-infected drones, across all treatment groups, while the mortality and body mass of worker bees were largely unaffected by N. ceranae infection, suggesting that drones are more susceptible to this pathogen than workers. In conclusion, the data reveal considerable sex-specific differences in pathogen susceptibility in honey bees and highlight the importance of ultimate measures for determining susceptibility, such as mortality and body quality, rather than mere infection levels. PMID:24465518

  18. Seasonal prevalence of pathogens and parasites in the savannah honeybee (Apis mellifera scutellata).

    Science.gov (United States)

    Strauss, Ursula; Human, Hannelie; Gauthier, Laurent; Crewe, Robin M; Dietemann, Vincent; Pirk, Christian W W

    2013-09-01

    The loss of Apis mellifera L. colonies in recent years has, in many regions of the world, been alarmingly high. No single cause has been identified for these losses, but the interactions between several factors (mostly pathogens and parasites) have been held responsible. Work in the Americas on honeybees originating mainly from South Africa indicates that Africanised honeybees are less affected by the interplay of pathogens and parasites. However, little is known about the health status of South African honeybees (A. m. scutellata and A. m. capensis) in relation to pathogens and parasites. We therefore compared the seasonal prevalence of honeybee pathogens (viruses, bacteria, fungi) and parasites (mites, bee lice, wax moth, small hive beetles, A. m. capensis social parasites) between sedentary and migratory A. m. scutellata apiaries situated in the Gauteng region of South Africa. No significant differences were found in the prevalence of pathogens and parasites between sedentary and migratory apiaries. Three (Black queen cell virus, Varroa destructor virus 1 and Israeli acute paralysis virus) of the eight viruses screened were detected, a remarkable difference compared to European honeybees. Even though no bacterial pathogens were detected, Nosema apis and Chalkbrood were confirmed. All of the honeybee parasites were found in the majority of the apiaries with the most common parasite being the Varroa mite. In spite of hosting few pathogens, yet most parasites, A. m. scutellata colonies appeared to be healthy.

  19. Using Errors by Guard Honeybees (Apis mellifera) to Gain New Insights into Nestmate Recognition Signals.

    Science.gov (United States)

    Pradella, Duccio; Martin, Stephen J; Dani, Francesca R

    2015-11-01

    Although the honeybee (Apis mellifera) is one of the world most studied insects, the chemical compounds used in nestmate recognition, remains an open question. By exploiting the error prone recognition system of the honeybee, coupled with genotyping, we studied the correlation between cuticular hydrocarbon (CHC) profile of returning foragers and acceptance or rejection behavior by guards. We revealed an average recognition error rate of 14% across 3 study colonies, that is, allowing a non-nestmate colony entry, or preventing a nestmate from entry, which is lower than reported in previous studies. By analyzing CHCs, we found that CHC profile of returning foragers correlates with acceptance or rejection by guarding bees. Although several CHC were identified as potential recognition cues, only a subset of 4 differed consistently for their relative amount between accepted and rejected individuals in the 3 studied colonies. These include a unique group of 2 positional alkene isomers (Z-8 and Z-10), which are almost exclusively produced by the bees Bombus and Apis spp, and may be candidate compounds for further study. PMID:26385960

  20. Morphological changes in the cephalic salivary glands of females and males of Apis mellifera and Scaptotrigona postica (Hymenoptera, Apidae)

    Indian Academy of Sciences (India)

    Silvana Beani Poiani; Carminda Da Cruz-Landim

    2010-06-01

    The cephalic salivary glands of some species of bees are exclusive and well developed only in Apinae. These glands were studied with light and scanning electron microscopy in workers, queens and males from the honey bee Apis mellifera, and the stingless bee Scaptotrigona postica in different life phases. The results show that the cephalic salivary glands are present in females of both the species, and in males of S. postica. Nevertheless, they are poorly developed in young males of A. mellifera. In both species, gland growth is progressive from the time of emergence to the oldest age but, in A. mellifera males, the gland degenerates with age. Scanning electron microscopy shows that the secretory units of newly emerged workers are collapsed while in older workers they are turgid. Some pits on the surface of the secretory units correspond to open intercellular spaces. The possible functions of these glands in females and males of both species are discussed.

  1. Honey bee Apis mellifera parasites in the absence of Nosema ceranae fungi and Varroa destructor mites.

    Science.gov (United States)

    Shutler, Dave; Head, Krista; Burgher-MacLellan, Karen L; Colwell, Megan J; Levitt, Abby L; Ostiguy, Nancy; Williams, Geoffrey R

    2014-01-01

    Few areas of the world have western honey bee (Apis mellifera) colonies that are free of invasive parasites Nosema ceranae (fungi) and Varroa destructor (mites). Particularly detrimental is V. destructor; in addition to feeding on host haemolymph, these mites are important vectors of several viruses that are further implicated as contributors to honey bee mortality around the world. Thus, the biogeography and attendant consequences of viral communities in the absence of V. destructor are of significant interest. The island of Newfoundland, Province of Newfoundland and Labrador, Canada, is free of V. destructor; the absence of N. ceranae has not been confirmed. Of 55 Newfoundland colonies inspected visually for their strength and six signs of disease, only K-wing had prevalence above 5% (40/55 colonies = 72.7%). Similar to an earlier study, screenings again confirmed the absence of V. destructor, small hive beetles Aethina tumida (Murray), tracheal mites Acarapis woodi (Rennie), and Tropilaelaps spp. ectoparasitic mites. Of a subset of 23 colonies screened molecularly for viruses, none had Israeli acute paralysis virus, Kashmir bee virus, or sacbrood virus. Sixteen of 23 colonies (70.0%) were positive for black queen cell virus, and 21 (91.3%) had some evidence for deformed wing virus. No N. ceranae was detected in molecular screens of 55 colonies, although it is possible extremely low intensity infections exist; the more familiar N. apis was found in 53 colonies (96.4%). Under these conditions, K-wing was associated (positively) with colony strength; however, viruses and N. apis were not. Furthermore, black queen cell virus was positively and negatively associated with K-wing and deformed wing virus, respectively. Newfoundland honey bee colonies are thus free of several invasive parasites that plague operations in other parts of the world, and they provide a unique research arena to study independent pathology of the parasites that are present. PMID:24955834

  2. Honey bee Apis mellifera parasites in the absence of Nosema ceranae fungi and Varroa destructor mites.

    Directory of Open Access Journals (Sweden)

    Dave Shutler

    Full Text Available Few areas of the world have western honey bee (Apis mellifera colonies that are free of invasive parasites Nosema ceranae (fungi and Varroa destructor (mites. Particularly detrimental is V. destructor; in addition to feeding on host haemolymph, these mites are important vectors of several viruses that are further implicated as contributors to honey bee mortality around the world. Thus, the biogeography and attendant consequences of viral communities in the absence of V. destructor are of significant interest. The island of Newfoundland, Province of Newfoundland and Labrador, Canada, is free of V. destructor; the absence of N. ceranae has not been confirmed. Of 55 Newfoundland colonies inspected visually for their strength and six signs of disease, only K-wing had prevalence above 5% (40/55 colonies = 72.7%. Similar to an earlier study, screenings again confirmed the absence of V. destructor, small hive beetles Aethina tumida (Murray, tracheal mites Acarapis woodi (Rennie, and Tropilaelaps spp. ectoparasitic mites. Of a subset of 23 colonies screened molecularly for viruses, none had Israeli acute paralysis virus, Kashmir bee virus, or sacbrood virus. Sixteen of 23 colonies (70.0% were positive for black queen cell virus, and 21 (91.3% had some evidence for deformed wing virus. No N. ceranae was detected in molecular screens of 55 colonies, although it is possible extremely low intensity infections exist; the more familiar N. apis was found in 53 colonies (96.4%. Under these conditions, K-wing was associated (positively with colony strength; however, viruses and N. apis were not. Furthermore, black queen cell virus was positively and negatively associated with K-wing and deformed wing virus, respectively. Newfoundland honey bee colonies are thus free of several invasive parasites that plague operations in other parts of the world, and they provide a unique research arena to study independent pathology of the parasites that are present.

  3. Honey bee Apis mellifera parasites in the absence of Nosema ceranae fungi and Varroa destructor mites.

    Science.gov (United States)

    Shutler, Dave; Head, Krista; Burgher-MacLellan, Karen L; Colwell, Megan J; Levitt, Abby L; Ostiguy, Nancy; Williams, Geoffrey R

    2014-01-01

    Few areas of the world have western honey bee (Apis mellifera) colonies that are free of invasive parasites Nosema ceranae (fungi) and Varroa destructor (mites). Particularly detrimental is V. destructor; in addition to feeding on host haemolymph, these mites are important vectors of several viruses that are further implicated as contributors to honey bee mortality around the world. Thus, the biogeography and attendant consequences of viral communities in the absence of V. destructor are of significant interest. The island of Newfoundland, Province of Newfoundland and Labrador, Canada, is free of V. destructor; the absence of N. ceranae has not been confirmed. Of 55 Newfoundland colonies inspected visually for their strength and six signs of disease, only K-wing had prevalence above 5% (40/55 colonies = 72.7%). Similar to an earlier study, screenings again confirmed the absence of V. destructor, small hive beetles Aethina tumida (Murray), tracheal mites Acarapis woodi (Rennie), and Tropilaelaps spp. ectoparasitic mites. Of a subset of 23 colonies screened molecularly for viruses, none had Israeli acute paralysis virus, Kashmir bee virus, or sacbrood virus. Sixteen of 23 colonies (70.0%) were positive for black queen cell virus, and 21 (91.3%) had some evidence for deformed wing virus. No N. ceranae was detected in molecular screens of 55 colonies, although it is possible extremely low intensity infections exist; the more familiar N. apis was found in 53 colonies (96.4%). Under these conditions, K-wing was associated (positively) with colony strength; however, viruses and N. apis were not. Furthermore, black queen cell virus was positively and negatively associated with K-wing and deformed wing virus, respectively. Newfoundland honey bee colonies are thus free of several invasive parasites that plague operations in other parts of the world, and they provide a unique research arena to study independent pathology of the parasites that are present.

  4. Ensayo a campo sobre la eficacia del Colmesan® contra el ácaro Varroa destructor (Varroidae en colmenas de Apis mellifera (Apidae Field assay of Colmesan® efficacy against the mite Varroa destructor (Varroidae in honey bee colonies of Apis mellifera (Apidae

    Directory of Open Access Journals (Sweden)

    Jorge Marcangeli

    2004-12-01

    Full Text Available El objetivo del trabajo fue evaluar la eficacia del producto Colmesan® para el control del ácaro Varroa destructor (Anderson &Trueman en colmenas de abejas durante el otoño de 2003. El trabajo se llevó a cabo en el apiario experimental ubicado en la ciudad de La Plata, provincia de Buenos Aires. Se trabajó sobre un total de 10 colmenas tipo "Langstroth" que se dividieron en dos grupos iguales. El primer grupo recibió dos dosis de Colmesan® (amitraz, 2,05 g, aplicadas a intervalos de 10 días. El segundo grupo, no recibió ningún tipo de tratamiento. Semanalmente, se recolectaron los ácaros muertos caídos en pisos especiales que evitaban que las abejas los eliminen. Posteriormente, los dos grupos recibieron tres dosis semanales de 5 ml del producto Oxavar® (64,6g/l ácido oxálico en agua destilada por cuadro cubierto por abejas para eliminar los ácaros remanentes en las colonias y poder así calcular la eficacia del tratamiento. El producto Colmesan® presentó una eficacia promedio de 70,92% ± 11,93 (rango = 57,92 - 85,42, registrándose diferencias significativas frente al grupo control (pThe aim of this work was to evaluate the acaricide efficacy of Colmesan® to control Varroa destructor (Anderson & Trueman in Apis mellifera (L. colonies during the autumn 2003. Work was done at an experimental apiary located in La Plata city, province of Buenos Aires. Ten Langstroth hives were used divided in two equal groups. The first group received Colmesan® (amitraz, 2,05 g in 2 doses at 10 days period. The second one represented the control group. Dead mites were collected weekly from special floors designed to avoid mite removal by adult honeybees. Then, 3 weekly doses of 5 ml of Oxavar® (64.6 g/l oxalic acid in destilled water were placed in each colony to kill remanent mites and the acaricide efficacy was calculated. Colmesan® showed an average acaricide efficacy of 70.92% ± 11.93 (range = 57.92 -85.42, showing significant

  5. Estudio sobre la Eficacia a Campo del Amivar® contra Varroa destructor (Mesostigmata: Varroidae en Colmenas de Apis mellifera (Hymenoptera: Apidae Research on Amivar® efficacy against Varroa destructor (Mesostigmata: Varroidae in honey bee colonies of Apis mellifera (Hymenoptera: Apidae

    Directory of Open Access Journals (Sweden)

    Jorge Marcangeli

    2005-07-01

    Full Text Available El objetivo del trabajo fue evaluar la eficacia del producto Amivar® para el control del ácaro Varroa destructor Anderson & Trueman, en colmenas de abejas durante el otoño de 2003. El trabajo se llevó a cabo en el apiario experimental del Centro de Extensión Apícola ubicado en Coronel Vidal, provincia de Buenos Aires. Se trabajó sobre un total de 20 colmenas tipo Langstroth que se dividieron en dos grupos iguales. En el primer grupo se introdujo una tira de Amivar® (amitraz, 1gr, Apilab, Argentina en el centro del nido de cría de las colmenas. El segundo grupo, sólo recibió el tratamiento de Oxavar® para determinar el número total de ácaros presentes en las colmenas. Semanalmente, se recolectaron los ácaros muertos caídos en pisos especiales que evitaban que las abejas los eliminen. Posteriormente, los dos grupos recibieron tres dosis en total a intervalos de siete días de 5 ml del producto Oxavar® (Apilab-INTA, Argentina; 64,6 g/l; ácido oxálico en agua destilada por cuadro cubierto por abejas para eliminar los ácaros remanentes en las colonias y poder así calcular la eficacia del tratamiento. El producto Amivar® presentó una eficacia promedio de 85,05%±3,39 (rango=79,5 91,6, registrándose diferencias significativas frente al grupo control (pThe aim of this work was to evaluate the acaricide efficacy of Amivar® (amitraz, Apilab, Argentina to control Varroa destructor Anderson & Trueman, in Apis mellifera colonies during the autumn 2003. Work was done at "Centro de Extensión Apícola" experimental apiary located in Coronel Vidal, province of Buenos Aires. Twenty Langstroth hives were used divided in two equal groups. The first group received one strip of Amivar® (amitraz, 1 gr in the center of brood area. The second one represented the control group. Dead mites were collected weekly from special floors designed to avoid mite removal by adult honeybees. Then, a total of three doses of 5 ml of Oxavar® at seven days

  6. Go East for Better Honey Bee Health: Apis cerana Is Faster at Hygienic Behavior than A. mellifera.

    Science.gov (United States)

    Lin, Zheguang; Page, Paul; Li, Li; Qin, Yao; Zhang, Yingying; Hu, Fuliang; Neumann, Peter; Zheng, Huoqing; Dietemann, Vincent

    2016-01-01

    The poor health status of the Western honey bee, Apis mellifera, compared to its Eastern counterpart, Apis cerana, is remarkable. This has been attributed to lower pathogen prevalence in A. cerana colonies and to their ability to survive infestations with the ectoparasitic mite, Varroa destructor. These properties have been linked to an enhanced removal of dead or unhealthy immature bees by adult workers in this species. Although such hygienic behavior is known to contribute to honey bee colony health, comparative data of A. mellifera and A. cerana in performing this task are scarce. Here, we compare for the first time the removal of freeze-killed brood in one population of each species and over two seasons in China. Our results show that A. cerana was significantly faster than A. mellifera at both opening cell caps and removing freeze-killed brood. The fast detection and removal of diseased brood is likely to limit the proliferation of pathogenic agents. Given our results can be generalized to the species level, a rapid hygienic response could contribute to the better health of A. cerana. Promoting the fast detection and removal of worker brood through adapted breeding programs could further improve the social immunity of A. mellifera colonies and contribute to a better health status of the Western honey bee worldwide. PMID:27606819

  7. Go East for Better Honey Bee Health: Apis cerana Is Faster at Hygienic Behavior than A. mellifera

    Science.gov (United States)

    Li, Li; Qin, Yao; Zhang, Yingying; Hu, Fuliang; Neumann, Peter; Zheng, Huoqing; Dietemann, Vincent

    2016-01-01

    The poor health status of the Western honey bee, Apis mellifera, compared to its Eastern counterpart, Apis cerana, is remarkable. This has been attributed to lower pathogen prevalence in A. cerana colonies and to their ability to survive infestations with the ectoparasitic mite, Varroa destructor. These properties have been linked to an enhanced removal of dead or unhealthy immature bees by adult workers in this species. Although such hygienic behavior is known to contribute to honey bee colony health, comparative data of A. mellifera and A. cerana in performing this task are scarce. Here, we compare for the first time the removal of freeze-killed brood in one population of each species and over two seasons in China. Our results show that A. cerana was significantly faster than A. mellifera at both opening cell caps and removing freeze-killed brood. The fast detection and removal of diseased brood is likely to limit the proliferation of pathogenic agents. Given our results can be generalized to the species level, a rapid hygienic response could contribute to the better health of A. cerana. Promoting the fast detection and removal of worker brood through adapted breeding programs could further improve the social immunity of A. mellifera colonies and contribute to a better health status of the Western honey bee worldwide. PMID:27606819

  8. The Effect of Prebiotic and Probiotic Feed Supplementation on the Wax Glands of Worker Bees (Apis Mellifera)

    OpenAIRE

    Silvia Pătruică; Gabi Dumitrescu; Adrian Stancu; Marian Bura; Ioan Bănăţean Dunea

    2012-01-01

    This paper presents the effects of acidifying substances (lactic acid or acetic acid), Enterobiotics products(Lactobacillus acidophilus LA-14 and Bifidobacterium lactis BI-04) and Enterolactis Plus (Lactobacillus casei) onthe wax glands of worker bees. The research was conducted in Timis County, Romania, between March 25 and April20, 2011, on 110 colonies of bees (Apis mellifera carpatica), allocated to 11 experimental treatment groups. Coloniesin the experimental groups were given three week...

  9. Response of the small hive beetle (Aethina tumida) to honey bee (Apis mellifera) and beehive-produced volatiles

    OpenAIRE

    Suazo, Alonso; Torto, Baldwyn; Teal, Peter; Tumlinson, James

    2003-01-01

    International audience The response of male and female Small Hive Beetle (SHB), Aethina tumida, to air-borne volatiles from adult worker bees, (Apis mellifera), pollen, unripe honey, beeswax, wax by-products ("slumgum"), and bee brood, was investigated in olfactometric and flight-tunnel choice bioassays. In both bioassay systems, males and females responded strongly to the volatiles from worker bees, freshly collected pollen and slumgum but not to those from commercially available pollen, ...

  10. Removal of small hive beetle (Aethina tumida) eggs and larvae by African honeybee colonies (Apis mellifera scutellata)

    OpenAIRE

    Neumann, Peter; Härtel, Stephan

    2004-01-01

    International audience The removal of small hive beetle [SHB] eggs and larvae was studied in seven Apis mellifera scutellata colonies. Because female beetles can protect their eggs by oviposition in small cracks we introduced unprotected eggs and protected eggs into these colonies. Whereas all unprotected eggs were removed within 24 hours, $66 \\pm 12$% of the protected eggs remained, showing that SHB eggs are likely to hatch in infested colonies. However, all larvae introduced into the sam...

  11. Genome Characterization, Prevalence and Distribution of a Macula-Like Virus from Apis mellifera and Varroa destructor

    OpenAIRE

    de Miranda, Joachim R.; R. Scott Cornman; Evans, Jay D; Emilia Semberg; Nizar Haddad; Peter Neumann; Laurent Gauthier

    2015-01-01

    Around 14 distinct virus species-complexes have been detected in honeybees, each with one or more strains or sub-species. Here we present the initial characterization of an entirely new virus species-complex discovered in honeybee (Apis mellifera L.) and varroa mite (Varroa destructor) samples from Europe and the USA. The virus has a naturally poly-adenylated RNA genome of about 6500 nucleotides with a genome organization and sequence similar to the Tymoviridae (Tymovirales; Tymoviridae), a p...

  12. Characterization of selected Gram-negative non-fermenting bacteria isolated from honey bees (Apis mellifera carnica)

    OpenAIRE

    Loncaric, Igor; Ruppitsch, Werner; Licek, Elisabeth; Moosbeckhofer, Rudolf; Busse, Hans-Jürgen; Rosengarten, Renate

    2011-01-01

    International audience This study was conducted to improve the knowledge about bacteria associated with honey bees, Apis mellifera carnica. In this survey, the diversity of Gram-negative non-fermenting bacteria isolated and cultivated from pollen loads, honey sac, freshly stored nectar, and honey was investigated. Bacteria were characterized by a polyphasic approach. Based on morphological and physiological characteristics and comparison of isolates protein patterns after sodium dodecyl su...

  13. Three QTL in the honey bee Apis mellifera L. suppress reproduction of the parasitic mite Varroa destructor

    OpenAIRE

    Behrens, Dieter; Huang, Qiang; Geßner, Cornelia; Rosenkranz, Peter; Frey, Eva; Locke, Barbara; Moritz, Robin F.A.; Kraus, F B

    2011-01-01

    Varroa destructor is a highly virulent ectoparasitic mite of the honey bee Apis mellifera and a major cause of colony losses for global apiculture. Typically, chemical treatment is essential to control the parasite population in the honey bee colony. Nevertheless a few honey bee populations survive mite infestation without any treatment. We used one such Varroa mite tolerant honey bee lineage from the island of Gotland, Sweden, to identify quantitative trait loci (QTL) controlling reduced mit...

  14. Varroa jacobsoni infestation of adult Africanized and Italian honey bees (Apis mellifera) in mixed colonies in Brazil

    OpenAIRE

    Moretto Geraldo; Mello Jr. Leonidas João de

    1999-01-01

    Different levels of infestation with the mite Varroa jacobsoni have been observed in the various Apis mellifera races. In general, bees of European races are more susceptible to the mite than African honey bees and their hybrids. In Brazil honey bee colonies are not treated against the mite, though apparently both climate and bee race influence the mite infestation. Six mixed colonies were made with Italian and Africanized honey bees. The percentage infestation by this parasite was found to b...

  15. Characterizing the Impact of Commercial Pollen Substitute Diets on the Level of Nosema spp. in Honey Bees (Apis mellifera L.)

    OpenAIRE

    Fleming, James C.; Schmehl, Daniel R.; Ellis, James D.

    2015-01-01

    Western honey bee (Apis mellifera L.) populations face declines commonly attributed to pesticide, pathogen, and parasite stress. One way beekeepers combat these stressors is by providing supplemental protein diets to honey bee colonies to ensure adequate colony nutrition. However Nosema spp., a microsporidian parasite of the honey bee, is thought to be associated closely with a colony's nutritional intake, thus possibly negating any benefit the bees otherwise would have received from a nutrit...

  16. Effects of some insecticides on longevity of the foragers honey bee worker of local honey bee race Apis mellifera jemenatica

    OpenAIRE

    Aljedani, Dalal Musleh; Almehmadi, Roqaya Mohammed

    2016-01-01

    Introduction Honeybees are constantly exposed to a wide range of vital and non-vital pressures that may interact with each other and affect the health or survival of the insects. Pesticides are the main danger for the insects, and they subsequently have impacts on human and environmental health. Methods Field research was conducted in the apiary of Hada Al Sham Research Station, where the worker honeybees forager Apis mellifera jemenatica were selected to examine the effect of pesticides on w...

  17. Toxicity of insecticides used in the Brazilian melon crop to the honey bee Apis mellifera under laboratory conditions

    OpenAIRE

    Costa, Ewerton; Araujo, Elton; Maia, André; Silva, Francisco; Bezerra, Carlos; Silva,Janisete

    2013-01-01

    International audience This study aimed at evaluating the toxicity of insecticides used in melon crop (Cucumis melo L.) on adults of Apis mellifera L. (Hymenoptera: Apidae) under laboratory conditions. Three ways of exposure were used: direct spraying, feeding with insecticide contaminated diet, and contact with sprayed leaves. Bees were exposed to the insecticides abamectin, acetamiprid, cartap chloride, chlorfenapyr, cyromazin, deltamethrin, thiamethoxam, flufenoxuron, and pyriproxyfen a...

  18. Effects of spinosad on honey bees (Apis mellifera): Findings from over ten years of testing and commercial use

    OpenAIRE

    Miles, Mark J.; Alix, Anne; Bourgouin, Chloe; Schmitzer, Stephan

    2012-01-01

    Background: Spinosad is widely used as an insecticide in crop protection against thysanopteran, lepidopteran and dipteran species. As such it is intrinsically toxic to insects and among them to the honey bee (Apis mellifera). An updated risk assessment is presented in the context of the regulatory evaluation of spinosad products and is in accordance with the latest recommendation of regulatory guidance documents. Results: The intrinsic toxicity to the honey bee as observed in laboratory condi...

  19. Nosema and imidacloprid synergy affects immune-strength-related enzyme activity in the honey bee, Apis mellifera

    OpenAIRE

    Mondet, Fanny

    2009-01-01

    The dramatic depopulation of honey bee colonies has not yet been associated to a single culprit, although many potential contributing factors have been identified. In an attempt to address the impact of an association of two factors on the honey bee, Apis mellifera, we studied the effects of a joint exposure to the microsporidian Nosema and the systemic insecticide imidacloprid, in the context of parasitisation by the mite Varroa destructor. Young adult bees ...

  20. Aspects of neuronal plasticity in the mushroom body calyx during adult maturation in the honeybee Apis mellifera

    OpenAIRE

    Münz, Thomas Sebastian

    2015-01-01

    Division of labor represents a major advantage of social insect communities that accounts for their enormous ecological success. In colonies of the honeybee, Apis mellifera, division of labor comprises different tasks of fertile queens and drones (males) and, in general, sterile female workers. Division of labor also occurs among workers in form of an age-related polyethism. This helps them to deal with the great variety of tasks within the colony. After adult eclosion, workers spend around t...

  1. Western honeybee drones and workers (Apis mellifera ligustica) have different olfactory mechanisms than eastern honeybees (Apis cerana cerana).

    Science.gov (United States)

    Woltedji, Dereje; Song, Feifei; Zhang, Lan; Gala, Alemayehu; Han, Bin; Feng, Mao; Fang, Yu; Li, Jianke

    2012-09-01

    The honeybees Apis mellifera ligustica (Aml) and Apis cerana cerana (Acc) are two different western and eastern bee species that evolved in distinct ecologies and developed specific antennal olfactory systems for their survival. Knowledge of how their antennal olfactory systems function in regards to the success of each respective bee species is scarce. We compared the antennal morphology and proteome between respective sexually mature drones and foraging workers of both species using a scanning electron microscope, two-dimensional electrophoresis, mass spectrometry, bioinformatics, and quantitative real-time polymerase chain reaction. Despite the general similarities in antennal morphology of the drone and worker bees between the two species, a total of 106 and 100 proteins altered their expression in the drones' and the workers' antennae, respectively. This suggests that the differences in the olfactory function of each respective bee are supported by the change of their proteome. Of the 106 proteins that altered their expression in the drones, 72 (68%) and 34 (32%) were overexpressed in the drones of Aml and Acc, respectively. The antennae of the Aml drones were built up by the highly expressed proteins that were involved in carbohydrate metabolism and energy production, molecular transporters, antioxidation, and fatty acid metabolism in contrast to the Acc drones. This is believed to enhance the antennal olfactory functions of the Aml drones as compared to the Acc drones during their mating flight. Likewise, of the 100 proteins with expression changes between the worker bees of the two species, 67% were expressed in higher levels in the antennae of Aml worker contrasting to 33% in the Acc worker. The overall higher expressions of proteins related to carbohydrate metabolism and energy production, molecular transporters, and antioxidation in the Aml workers compared with the Acc workers indicate the Aml workers require more antennal proteins for their olfactory

  2. Acute Contact Toxicity Test of Oxalic Acid on Honeybees in the Southwestern Zone of Uruguay Prueba de Toxicidad Aguda por Contacto de Ácido Oxálico en Abejas de la Zona Sudoeste de Uruguay

    Directory of Open Access Journals (Sweden)

    Leonidas Carrasco-Letelier

    2012-06-01

    Full Text Available This work studies the acute contact toxicity of oxalic acid (OA on a honeybee polyhybrid subspecies (Apis mellifera, which is the dominant biotype in southwestern zone of Uruguay (SWZU and the country's most important honey-producing region. We determined the mean lethal dose (LD50, as well as the no observed effect level (NOEL and the lowest observed effect level (LOEL values. We also estimated the total number of honeybees per hive in the test area. The aim was to assess the relationship between the maximum OA dose used in Uruguay (3.1 g OA per hive and the toxicological parameters of honeybees from SWZU. The current dose of 3.1 g OA per hive corresponds to 132.8 OA per honeybee since determined NOEL is 400 OA per honeybee; our results indicate that the current dose could be increased to 9.3 g OA per hive. The results also highlight some differences between the LD50 value in SWZU honeybees (548.95 OA per honeybee and some published LD50 values for other honeybee subspecies.Este trabajo estudió la toxicidad aguda por contacto del ácido oxálico (AO sobre una subespecie poli-híbrida de abejas (Apis mellifera, la cual es el biotipo dominante en la zona sudoeste de Uruguay (SWZU, la región más importante para la producción de miel en este país. Este estudio determinó la dosis letal 50 (DL50, así como el nivel de efecto no observado (NOEL, el nivel de efecto mínimo observado (LOEL, y el número total de individuos por colmena. El propósito fue evaluar la relación entre la dosis máxima de AO usada en Uruguay (3.1 g AO por colmena y los parámetros toxicológicos de las abejas de la SWZU. Los resultados mostraron que es posible elevar la dosis actual de AO por colmena a 9.3 g, ya que la dosis actual de 3.1 g de AO corresponde a 132.8 AO por abeja, y el NOEL determinado es 400 AO por abeja. Los resultados también destacaron algunas diferencias entre la DL50 de las abejas del SWZU (548.95 AO por abeja y algunos valores de DL50 publicados

  3. Pollination services provided by bees in pumpkin fields supplemented with either Apis mellifera or Bombus impatiens or not supplemented.

    Science.gov (United States)

    Petersen, Jessica D; Reiners, Stephen; Nault, Brian A

    2013-01-01

    Pollinators provide an important service in many crops. Managed honey bees (Apis mellifera L.) are used to supplement pollination services provided by wild bees with the assumption that they will enhance pollination, fruit set and crop yield beyond the levels provided by the wild bees. Recent declines in managed honey bee populations have stimulated interest in finding alternative managed pollinators to service crops. In the eastern U.S., managed hives of the native common eastern bumble bee (Bombus impatiens Cresson) may be an excellent choice. To examine this issue, a comprehensive 2-yr study was conducted to compare fruit yield and bee visits to flowers in pumpkin (Cucurbita pepo L.) fields that were either supplemented with A. mellifera hives, B. impatiens hives or were not supplemented. We compared pumpkin yield, A. mellifera flower visitation frequency and B. impatiens flower visitation frequency between treatments. Results indicated that supplementing pumpkin fields with either A. mellifera or B. impatiens hives did not increase their visitation to pumpkin flowers or fruit yield compared with those that were not supplemented. Next, the relationship between frequency of pumpkin flower visitation by the most prominent bee species (Peponapis pruinosa (Say), B. impatiens and A. mellifera) and fruit yield was determined across all pumpkin fields sampled. Fruit yield increased as the frequency of flower visits by A. mellifera and B. impatiens increased in 2011 and 2012, respectively. These results suggest that supplementation with managed bees may not improve pumpkin production and that A. mellifera and B. impatiens are important pollinators of pumpkin in our system. PMID:23894544

  4. Regular dorsal dimples and damaged mites of Varroa destructor in some Iranian honey bees (Apis mellifera).

    Science.gov (United States)

    Ardestani, Masoud M; Ebadi, Rahim; Tahmasbi, Gholamhossein

    2011-07-01

    The frequency of damaged Varroa destructor Anderson and Trueman (Mesostigmata: Varroidae) found on the bottom board of hives of the honey bee, Apis mellifera L. (Hymenoptera: Apidae) has been used as an indicator of the degree of tolerance or resistance of honey bee colonies against mites. However, it is not clear that this measure is adequate. These injuries should be separated from regular dorsal dimples that have a developmental origin. To investigate damage to Varroa mites and regular dorsal dimples, 32 honey bee (A. mellifera) colonies were selected from four Iranian provinces: Isfahan, Markazi, Qazvin, and Tehran. These colonies were part of the National Honey bee Breeding Program that resulted in province-specific races. In April, Varroa mites were collected from heavily infested colonies and used to infest the 32 experimental colonies. In August, 20 of these colonies were selected (five colonies from each province). Adult bees from these colonies were placed in cages and after introducing mites, damaged mites were collected from each cage every day. The average percentage of injured mites ranged from 0.6 to 3.0% in four provinces. The results did not show any statistical differences between the colonies within provinces for injuries to mites, but there were some differences among province-specific lines. Two kinds of injuries to the mites were observed: injuries to legs and pedipalps, and injuries to other parts of the body. There were also some regular dorsal dimples on dorsal idiosoma of the mites that were placed in categories separate from mites damaged by bees. This type of classification helps identifying damage to mites and comparing them with developmental origin symptoms, and may provide criteria for selecting bees tolerant or resistant to this mite.

  5. Floral biology and behavior of Africanized honeybees Apis mellifera in soybean (Glycine max L. Merril

    Directory of Open Access Journals (Sweden)

    Wainer César Chiari

    2005-05-01

    Full Text Available This research was carried out to evaluate the pollination by Africanized honeybees Apis mellifera, the floral biology and to observe the hoarding behavior in the soybean flowers (Glycine max Merril, var. BRS-133. The treatments were constituted of demarcated areas for free visitation of insects, covered areas by cages with a honeybee colony (A. mellifera and also covered areas by cage without insects visitation. All areas had 24 m² (4m x 6m. The soybean flowers stayed open for a larger time (82.82 ± 3.48 hours in covered area without honeybees. The stigma of the flowers was also more receptive (P=0.0021 in covered area without honeybees (87.3 ± 33.0% and at 10:42 o'clock was the schedule of greater receptivity. The pollen stayed viable in all treatments, the average was 99.60 ± 0.02%, which did not present differences among treatments. The percentage of abortion of the flowers was 82.91% in covered area without honeybees, this result was superior (P=0.0002 to the 52.66% and 53.95% of the treatments uncovered and covered with honeybees, respectively. Honeybees were responsible for 87.7% of the pollination accomplished by the insects. The medium amounts of total sugar and glucose measured in the nectar of the flowers were, 14.33 ± 0.96 mg/flower and 3.61 ± 0.36 mg/ flower, respectively, not showing differences (PEste experimento teve como objetivos avaliar a polinização realizada por abelhas Apis mellifera, estudar a biologia floral e observar o comportamento de coleta nas flores de soja (Glycine max L. Merril, variedade BRS-133 plantadas na região de Maringá-PR. Os tratamentos constituíram de áreas demarcadas de livre visitação por insetos, áreas cobertas por gaiolas, com uma colônia de abelhas (A. mellifera no seu interior e plantas também cobertas por gaiola que impedia a visitação por insetos. Todas as áreas possuíam 24 m² (4 m x 6 m. As flores de soja permaneceram abertas por um tempo maior (82,82 ± 3,48 horas no

  6. Apis mellifera pollination improves agronomic productivity of anemophilous castor bean (Ricinus communis

    Directory of Open Access Journals (Sweden)

    Rômulo A.G. Rizzardo

    2012-12-01

    Full Text Available Castor bean (Ricinus communis L. is cultivated mainly for biodiesel production because of its oil-rich seeds; it is assumed to be an anemophylous species. But pollination deficit can lead to low productivity often attributed to other reasons. In this paper, we investigated pollination requirements, pollination mechanism, occurrence of pollination deficit, and the role of biotic pollinators in a large commercial plantation of castor bean. Our results show that R. communis bears a mixed breeding system favoring selfing by geitonogamy, although the wind promotes mostly outcrossing. We also found that the honey bee (Apis mellifera L. foraging on castor bean can both transfer pollen from male to female flowers within the same raceme and boost the release of airborne pollen by male flowers. Both situations increase geitonogamy rates, raising significantly fruit set and seed yield. This is the first report of an animal foraging activity increasing seed yield in an anemophilous and geitonogamous crop and elucidates the role of biotic pollinators in castor bean reproduction.A mamoneira (Ricinus communis L. é cultivada principalmente para produção de biodiesel devido ao alto teor de óleo de suas sementes e considerada como sendo de polinização anemófila. Mas déficits de polinização podem levar a baixos índices de produtividade geralmente atribuídos a outros fatores. Neste trabalho foram investigados os requerimentos, mecanismos e déficit de polinização e o papel dos polinizadores bióticos em um monocultivo comercial de mamona. Os resultados mostram que R. communis possui um sistema de polinização misto, favorecendo a autopolinização por geitonogamia, embora o vento normalmente promova polinização cruzada. Observou-se também que a abelha melífera (Apis mellifera L. forrageando na mamoneira pode tanto transferir pólen das flores estaminadas para as pistiladas do mesmo racemo, quanto aumentar consideravelmente a liberação de p

  7. Evaluación ecotoxicológica de dos derivados del Nim en lombriz de tierra y abejas

    Directory of Open Access Journals (Sweden)

    A Mancebo Rodríguez

    2011-01-01

    Full Text Available La utilización de productos con bajo o nulo impacto en organismos circundantes y el ambiente, constituye parte del nuevo concepto de protección de cultivos. Los productos NeoNim 60 y OleoNim 80, obtenidos del árbol del Nim, están propuestos para su uso como insecticida, nematicida y acaricida. Con el objetivo de realizar la evaluación ecotoxicológica de estos productos, se realizaron los ensayos de toxicidad aguda en lombriz de tierra Eisenia andrei y de toxicidad aguda por contacto en abejas Apis mellifera. Cada ensayo contó con un grupo control y dos tratados. El ensayo en lombrices se realizó durante 14 días utilizando suelo artificial, realizando observaciones clínicas, conteo de animales y estudio del comportamiento de la biomasa. La prueba en abejas se prolongó por 48 horas, realizándose observaciones clínicas y conteo de animales. Se obtuvo un 100% de supervivencia en las lombrices de los grupos tratados, obteniendo en el NeoNim 60 valores de disminución de la biomasa significativamente inferiores al grupo control, mientras que el grupo tratado con OleoNim 80 mostró aumento en la biomasa del inicio al final del ensayo. En el ensayo en abejas, la comparación estadística no mostró diferencias entre grupos en cuanto a la mortalidad. Teniendo en cuenta el conjunto de los resultados obtenidos, se pudo concluir que los derivados del Nim NeoNim 60 y OleoNim 80 no producen efecto tóxico sobre las lombrices de tierra y las abejas.

  8. A Look into the Cell: Honey Storage in Honey Bees, Apis mellifera

    Science.gov (United States)

    Eyer, Michael; Neumann, Peter; Dietemann, Vincent

    2016-01-01

    Honey bees, Apis species, obtain carbohydrates from nectar and honeydew. These resources are ripened into honey in wax cells that are capped for long-term storage. These stores are used to overcome dearth periods when foraging is not possible. Despite the economic and ecological importance of honey, little is known about the processes of its production by workers. Here, we monitored the usage of storage cells and the ripening process of honey in free-flying A. mellifera colonies. We provided the colonies with solutions of different sugar concentrations to reflect the natural influx of nectar with varying quality. Since the amount of carbohydrates in a solution affects its density, we used computer tomography to measure the sugar concentration of cell content over time. The data show the occurrence of two cohorts of cells with different provisioning and ripening dynamics. The relocation of the content of many cells before final storage was part of the ripening process, because sugar concentration of the content removed was lower than that of content deposited. The results confirm the mixing of solutions of different concentrations in cells and show that honey is an inhomogeneous matrix. The last stage of ripening occurred when cell capping had already started, indicating a race against water absorption. The storage and ripening processes as well as resource use were context dependent because their dynamics changed with sugar concentration of the food. Our results support hypotheses regarding honey production proposed in earlier studies and provide new insights into the mechanisms involved. PMID:27560969

  9. Characters that differ between diploid and haploid honey bee (Apis mellifera) drones.

    Science.gov (United States)

    Herrmann, Matthias; Trenzcek, Tina; Fahrenhorst, Hartmut; Engels, Wolf

    2005-12-30

    Diploid males have long been considered a curiosity contradictory to the haplo-diploid mode of sex determination in the Hymenoptera. In Apis mellifera, 'false' diploid male larvae are eliminated by worker cannibalism immediately after hatching. A 'cannibalism substance' produced by diploid drone larvae to induce worker-assisted suicide has been hypothesized, but it has never been detected. Diploid drones are only removed some hours after hatching. Older larvae are evidently not regarded as 'false males' and instead are regularly nursed by the brood-attending worker bees. As the pheromonal cues presumably are located on the surface of newly hatched bee larvae, we extracted the cuticular secretions and analyzed their chemical composition by gas chromatograph-mass spectrometry (GC-MS) analyses. Larvae were sexed and then reared in vitro for up to three days. The GC-MS pattern that was obtained, with alkanes as the major compounds, was compared between diploid and haploid drone larvae. We also examined some physical parameters of adult drones. There was no difference between diploid and haploid males in their weight at the day of emergence. The diploid adult drones had fewer wing hooks and smaller testes. The sperm DNA content was 0.30 and 0.15 pg per nucleus, giving an exact 2:1 ratio for the gametocytes of diploid and haploid drones, respectively. Vitellogenin was found in the hemolymph of both types of imaginal drones at 5 to 6 days, with a significantly lower titer in the diploids.

  10. Aversive conditioning in honey bees (Apis mellifera anatolica): a comparison of drones and workers.

    Science.gov (United States)

    Dinges, Christopher W; Avalos, Arian; Abramson, Charles I; Craig, David Philip Arthur; Austin, Zoe M; Varnon, Christopher A; Dal, Fatima Nur; Giray, Tugrul; Wells, Harrington

    2013-11-01

    Honey bees provide a model system to elucidate the relationship between sociality and complex behaviors within the same species, as females (workers) are highly social and males (drones) are more solitary. We report on aversive learning studies in drone and worker honey bees (Apis mellifera anatolica) in escape, punishment and discriminative punishment situations. In all three experiments, a newly developed electric shock avoidance assay was used. The comparisons of expected and observed responses were performed with conventional statistical methods and a systematic randomization modeling approach called object oriented modeling. The escape experiment consisted of two measurements recorded in a master-yoked paradigm: frequency of response and latency to respond following administration of shock. Master individuals could terminate an unavoidable shock triggered by a decrementing 30 s timer by crossing the shuttlebox centerline following shock activation. Across all groups, there was large individual response variation. When assessing group response frequency and latency, master subjects performed better than yoked subjects for both workers and drones. In the punishment experiment, individuals were shocked upon entering the shock portion of a bilaterally wired shuttlebox. The shock portion was spatially static and unsignalled. Only workers effectively avoided the shock. The discriminative punishment experiment repeated the punishment experiment but included a counterbalanced blue and yellow background signal and the side of shock was manipulated. Drones correctly responded less than workers when shock was paired with blue. However, when shock was paired with yellow there was no observable difference between drones and workers.

  11. Establishment of a bacterial infection model using the European honeybee, Apis mellifera L.

    Directory of Open Access Journals (Sweden)

    Kenichi Ishii

    Full Text Available Injection of human pathogenic bacteria (Pseudomonas aeruginosa, Serratia marcescens, Salmonella enterica, Staphylococcus aureus, and Listeria monocytogenes into the hemocoel of honeybee (Apis mellifera L. workers kills the infected bees. The bee-killing effects of the pathogens were affected by temperature, and the LD₅₀ values at 37°C were more than 100-fold lower than those at 15°C. Gene-disrupted S. aureus mutants of virulence genes such as agrA, saeS, arlR, srtA, hla, and hlb had attenuated bee-killing ability. Nurse bees were less susceptible than foragers and drones to S. aureus infection. Injection of antibiotics clinically used for humans had therapeutic effects against S. aureus infections of bees, and the ED₅₀ values of these antibiotics were comparable with those determined in mammalian models. Moreover, the effectiveness of orally administered antibiotics was consistent between honeybees and mammals. These findings suggest that the honeybee could be a useful model for assessing the pathogenesis of human-infecting bacteria and the effectiveness of antibiotics.

  12. Glycogen in honeybee queens, workers and drones (Apis mellifera carnica Pollm.).

    Science.gov (United States)

    Crailsheim, K; Panzenböck, U

    1997-02-21

    Honey bees (Apis mellifera carnica Pollm.) have low glycogen reserves in summer. Upon emergence drones have significantly larger amounts per unit weight when emerging, than workers; perhaps as adaption to the risk of not being fed as intensely as young workers. Maximum content was 0.23mg for workers (28d), and 0.59mg for drones (after emergence). Workers have relatively constant glycogen contents during their life, and very young drones have more glycogen than older ones. Young queens are similar to workers. In workers and queens in summer the greatest amounts of glycogen are found in the thorax. When the bees start flying (6th-8th day of life), drones have the highest amounts in the head (probably to supply their eyes), and upon maturity, drones have the least glycogen in the abdomen.Workers in winter show different glycogen values depending on whether they are active bees from the core area (0.23mg) or inactive ones from the outer surface of the winter cluster (0.37mg). They use glycogen from the thorax and the abdomen for their ongoing energy need.

  13. Apis mellifera pollination improves agronomic productivity of anemophilous castor bean (Ricinus communis).

    Science.gov (United States)

    Rizzardo, Rômulo A G; Milfont, Marcelo O; Silva, Eva M S da; Freitas, Breno M

    2012-12-01

    Castor bean (Ricinus communis L.) is cultivated mainly for biodiesel production because of its oil-rich seeds; it is assumed to be an anemophylous species. But pollination deficit can lead to low productivity often attributed to other reasons. In this paper, we investigated pollination requirements, pollination mechanism, occurrence of pollination deficit, and the role of biotic pollinators in a large commercial plantation of castor bean. Our results show that R. communis bears a mixed breeding system favoring selfing by geitonogamy, although the wind promotes mostly outcrossing. We also found that the honey bee (Apis mellifera L.) foraging on castor bean can both transfer pollen from male to female flowers within the same raceme and boost the release of airborne pollen by male flowers. Both situations increase geitonogamy rates, raising significantly fruit set and seed yield. This is the first report of an animal foraging activity increasing seed yield in an anemophilous and geitonogamous crop and elucidates the role of biotic pollinators in castor bean reproduction.

  14. Aversive conditioning in honey bees (Apis mellifera anatolica): a comparison of drones and workers.

    Science.gov (United States)

    Dinges, Christopher W; Avalos, Arian; Abramson, Charles I; Craig, David Philip Arthur; Austin, Zoe M; Varnon, Christopher A; Dal, Fatima Nur; Giray, Tugrul; Wells, Harrington

    2013-11-01

    Honey bees provide a model system to elucidate the relationship between sociality and complex behaviors within the same species, as females (workers) are highly social and males (drones) are more solitary. We report on aversive learning studies in drone and worker honey bees (Apis mellifera anatolica) in escape, punishment and discriminative punishment situations. In all three experiments, a newly developed electric shock avoidance assay was used. The comparisons of expected and observed responses were performed with conventional statistical methods and a systematic randomization modeling approach called object oriented modeling. The escape experiment consisted of two measurements recorded in a master-yoked paradigm: frequency of response and latency to respond following administration of shock. Master individuals could terminate an unavoidable shock triggered by a decrementing 30 s timer by crossing the shuttlebox centerline following shock activation. Across all groups, there was large individual response variation. When assessing group response frequency and latency, master subjects performed better than yoked subjects for both workers and drones. In the punishment experiment, individuals were shocked upon entering the shock portion of a bilaterally wired shuttlebox. The shock portion was spatially static and unsignalled. Only workers effectively avoided the shock. The discriminative punishment experiment repeated the punishment experiment but included a counterbalanced blue and yellow background signal and the side of shock was manipulated. Drones correctly responded less than workers when shock was paired with blue. However, when shock was paired with yellow there was no observable difference between drones and workers. PMID:24133154

  15. The dynamic DNA methylation cycle from egg to sperm in the honey bee Apis mellifera.

    Science.gov (United States)

    Drewell, Robert A; Bush, Eliot C; Remnant, Emily J; Wong, Garrett T; Beeler, Suzannah M; Stringham, Jessica L; Lim, Julianne; Oldroyd, Benjamin P

    2014-07-01

    In honey bees (Apis mellifera), the epigenetic mark of DNA methylation is central to the developmental regulation of caste differentiation, but may also be involved in additional biological functions. In this study, we examine the whole genome methylation profiles of three stages of the haploid honey bee genome: unfertilised eggs, the adult drones that develop from these eggs and the sperm produced by these drones. These methylomes reveal distinct patterns of methylation. Eggs and sperm show 381 genes with significantly different CpG methylation patterns, with the vast majority being more methylated in eggs. Adult drones show greatly reduced levels of methylation across the genome when compared with both gamete samples. This suggests a dynamic cycle of methylation loss and gain through the development of the drone and during spermatogenesis. Although fluxes in methylation during embryogenesis may account for some of the differentially methylated sites, the distinct methylation patterns at some genes suggest parent-specific epigenetic marking in the gametes. Extensive germ line methylation of some genes possibly explains the lower-than-expected frequency of CpG sites in these genes. We discuss the potential developmental and evolutionary implications of methylation in eggs and sperm in this eusocial insect species. PMID:24924193

  16. Cheaters sometimes prosper: targeted worker reproduction in honeybee (Apis mellifera) colonies during swarming.

    Science.gov (United States)

    Holmes, Michael J; Oldroyd, Benjamin P; Duncan, Michael; Allsopp, Michael H; Beekman, Madeleine

    2013-08-01

    Kin selection theory predicts that honeybee (Apis mellifera) workers should largely refrain from producing their own offspring, as the workers collectively have higher inclusive fitness if they rear the sons of their mother, the queen. Studies that have quantified levels of ovary activation and reproduction among workers have largely supported this prediction. We sampled pre-emergent male pupae and adult workers from seven colonies at regular intervals throughout the reproductive part of the season. We show that the overall contribution of workers to male (drone) production is 4.2%, nearly 40 times higher than is generally reported, and is highest during reproductive swarming, when an average of 6.2% of the males genotyped are worker-produced. Similarly, workers in our samples were 100 times more likely to have active ovaries than previously assumed. Worker reproduction is seasonally influenced and peaks when colonies are rearing new queens. Not all worker subfamilies contribute equally to reproduction. Instead, certain subfamilies are massively over-represented in drone brood. By laying eggs within the period in which many colonies produce virgin queens, these rare worker subfamilies increase their direct fitness via their well-timed sons. PMID:23889604

  17. Focal and temporal release of glutamate in the mushroom bodies improves olfactory memory in Apis mellifera.

    Science.gov (United States)

    Locatelli, Fernando; Bundrock, Gesine; Müller, Uli

    2005-12-14

    In contrast to vertebrates, the role of the neurotransmitter glutamate in learning and memory in insects has hardly been investigated. The reason is that a pharmacological characterization of insect glutamate receptors is still missing; furthermore, it is difficult to locally restrict pharmacological interventions. In this study, we overcome these problems by using locally and temporally defined photo-uncaging of glutamate to study its role in olfactory learning and memory formation in the honeybee, Apis mellifera. Uncaging glutamate in the mushroom bodies immediately after a weak training protocol induced a higher memory rate 2 d after training, mimicking the effect of a strong training protocol. Glutamate release before training does not facilitate memory formation, suggesting that glutamate mediates processes triggered by training and required for memory formation. Uncaging glutamate in the antennal lobes shows no effect on memory formation. These results provide the first direct evidence for a temporally and locally restricted function of glutamate in memory formation in honeybees and insects. PMID:16354919

  18. Differential gene expression of two extreme honey bee (Apis mellifera) colonies showing varroa tolerance and susceptibility.

    Science.gov (United States)

    Jiang, S; Robertson, T; Mostajeran, M; Robertson, A J; Qiu, X

    2016-06-01

    Varroa destructor, an ectoparasitic mite of honey bees (Apis mellifera), is the most serious pest threatening the apiculture industry. In our honey bee breeding programme, two honey bee colonies showing extreme phenotypes for varroa tolerance/resistance (S88) and susceptibility (G4) were identified by natural selection from a large gene pool over a 6-year period. To investigate potential defence mechanisms for honey bee tolerance to varroa infestation, we employed DNA microarray and real time quantitative (PCR) analyses to identify differentially expressed genes in the tolerant and susceptible colonies at pupa and adult stages. Our results showed that more differentially expressed genes were identified in the tolerant bees than in bees from the susceptible colony, indicating that the tolerant colony showed an increased genetic capacity to respond to varroa mite infestation. In both colonies, there were more differentially expressed genes identified at the pupa stage than at the adult stage, indicating that pupa bees are more responsive to varroa infestation than adult bees. Genes showing differential expression in the colony phenotypes were categorized into several groups based on their molecular functions, such as olfactory signalling, detoxification processes, exoskeleton formation, protein degradation and long-chain fatty acid metabolism, suggesting that these biological processes play roles in conferring varroa tolerance to naturally selected colonies. Identification of differentially expressed genes between the two colony phenotypes provides potential molecular markers for selecting and breeding varroa-tolerant honey bees. PMID:26919127

  19. The proboscis extension reflex to evaluate learning and memory in honeybees ( Apis mellifera): some caveats

    Science.gov (United States)

    Frost, Elisabeth H.; Shutler, Dave; Hillier, Neil Kirk

    2012-09-01

    The proboscis extension reflex (PER) is widely used in a classical conditioning (Pavlovian) context to evaluate learning and memory of a variety of insect species. The literature is particularly prodigious for honeybees ( Apis mellifera) with more than a thousand publications. Imagination appears to be the only limit to the types of challenges to which researchers subject honeybees, including all the sensory modalities and a broad diversity of environmental treatments. Accordingly, some remarkable insights have been achieved using PER. However, there are several challenges to evaluating the PER literature that warrant a careful and thorough review. We assess here variation in methods that makes interpretation of studies, even those researching the same question, tenuous. We suggest that the numerous variables that might influence experimental outcomes from PER be thoroughly detailed by researchers. Moreover, the influence of individual variables on results needs to carefully evaluated, as well as among two or more variables. Our intent is to encourage investigation of the influence of numerous variables on PER results.

  20. Evaluation of Apis mellifera syriaca Levant region honeybee conservation using comparative genome hybridization.

    Science.gov (United States)

    Haddad, Nizar Jamal; Batainh, Ahmed; Saini, Deepti; Migdadi, Osama; Aiyaz, Mohamed; Manchiganti, Rushiraj; Krishnamurthy, Venkatesh; Al-Shagour, Banan; Brake, Mohammad; Bourgeois, Lelania; De Guzman, Lilia; Rinderer, Thomas; Hamouri, Zayed Mahoud

    2016-06-01

    Apis mellifera syriaca is the native honeybee subspecies of Jordan and much of the Levant region. It expresses behavioral adaptations to a regional climate with very high temperatures, nectar dearth in summer, attacks of the Oriental wasp and is resistant to Varroa mites. The A. m. syriaca control reference sample (CRS) in this study was originally collected and stored since 2001 from "Wadi Ben Hammad", a remote valley in the southern region of Jordan. Morphometric and mitochondrial DNA markers of these honeybees had shown highest similarity to reference A. m. syriaca samples collected in 1952 by Brother Adam of samples collected from the Middle East. Samples 1-5 were collected from the National Center for Agricultural Research and Extension breeding apiary which was established for the conservation of A. m. syriaca. Our objective was to determine the success of an A. m. syriaca honey bee conservation program using genomic information from an array-based comparative genomic hybridization platform to evaluate genetic similarities to a historic reference collection (CRS). Our results had shown insignificant genomic differences between the current population in the conservation program and the CRS indicated that program is successfully conserving A. m. syriaca. Functional genomic variations were identified which are useful for conservation monitoring and may be useful for breeding programs designed to improve locally adapted strains of A. m. syriaca. PMID:27010806

  1. A Causal Analysis of Observed Declines in Managed Honey Bees (Apis mellifera).

    Science.gov (United States)

    Staveley, Jane P; Law, Sheryl A; Fairbrother, Anne; Menzie, Charles A

    2014-02-01

    The European honey bee (Apis mellifera) is a highly valuable, semi-free-ranging managed agricultural species. While the number of managed hives has been increasing, declines in overwinter survival, and the onset of colony collapse disorder in 2006, precipitated a large amount of research on bees' health in an effort to isolate the causative factors. A workshop was convened during which bee experts were introduced to a formal causal analysis approach to compare 39 candidate causes against specified criteria to evaluate their relationship to the reduced overwinter survivability observed since 2006 of commercial bees used in the California almond industry. Candidate causes were categorized as probable, possible, or unlikely; several candidate causes were categorized as indeterminate due to lack of information. Due to time limitations, a full causal analysis was not completed at the workshop. In this article, examples are provided to illustrate the process and provide preliminary findings, using three candidate causes. Varroa mites plus viruses were judged to be a "probable cause" of the reduced survival, while nutrient deficiency was judged to be a "possible cause." Neonicotinoid pesticides were judged to be "unlikely" as the sole cause of this reduced survival, although they could possibly be a contributing factor. PMID:24363549

  2. Genome-Wide Association Study of a Varroa-Specific Defense Behavior in Honeybees (Apis mellifera).

    Science.gov (United States)

    Spötter, Andreas; Gupta, Pooja; Mayer, Manfred; Reinsch, Norbert; Bienefeld, Kaspar

    2016-05-01

    Honey bees are exposed to many damaging pathogens and parasites. The most devastating is Varroa destructor, which mainly affects the brood. A promising approach for preventing its spread is to breed Varroa-resistant honey bees. One trait that has been shown to provide significant resistance against the Varroa mite is hygienic behavior, which is a behavioral response of honeybee workers to brood diseases in general. Here, we report the use of an Affymetrix 44K SNP array to analyze SNPs associated with detection and uncapping of Varroa-parasitized brood by individual worker bees (Apis mellifera). For this study, 22 000 individually labeled bees were video-monitored and a sample of 122 cases and 122 controls was collected and analyzed to determine the dependence/independence of SNP genotypes from hygienic and nonhygienic behavior on a genome-wide scale. After false-discovery rate correction of the P values, 6 SNP markers had highly significant associations with the trait investigated (α < 0.01). Inspection of the genomic regions around these SNPs led to the discovery of putative candidate genes. PMID:26774061

  3. Silk formation mechanisms in the larval salivary glands of Apis mellifera (Hymenoptera: Apidae)

    Indian Academy of Sciences (India)

    Elaine C M Silva-Zacarin; Regina L M Silva De Moraes; S R Taboga

    2003-12-01

    The mechanism of silk formation in Apis mellifera salivary glands, during the 5th instar, was studied. Larval salivary glands were dissected and prepared for light and polarized light microscopy, as well as for scanning and transmission electron microscopy. The results showed that silk formation starts at the middle of the 5th instar and finishes at the end of the same instar. This process begins in the distal secretory portion of the gland, going towards the proximal secretory portion; and from the periphery to the center of the gland lumen. The silk proteins are released from the secretory cells as a homogeneous substance that polymerizes in the lumen to form compact birefringent tactoids. Secondly, the water absorption from the lumen secretion, carried out by secretory and duct cells, promotes aggregation of the tactoids that form a spiral-shape filament with a zigzag pattern. This pattern is also the results of the silk compression in the gland lumen and represents a high concentration of macromolecularly well-oriented silk proteins.

  4. Physiology of reproductive worker honey bees (Apis mellifera): insights for the development of the worker caste.

    Science.gov (United States)

    Peso, Marianne; Even, Naïla; Søvik, Eirik; Naeger, Nicholas L; Robinson, Gene E; Barron, Andrew B

    2016-02-01

    Reproductive and behavioural specialisations characterise advanced social insect societies. Typically, the honey bee (Apis mellifera) shows a pronounced reproductive division of labour between worker and queen castes, and a clear division of colony roles among workers. In a queenless condition, however, both of these aspects of social organisation break down. Queenless workers reproduce, forage and maintain their colony operating in a manner similar to communal bees, rather than as an advanced eusocial group. This plasticity in social organisation provides a natural experiment for exploring physiological mechanisms of division of labour. We measured brain biogenic amine (BA) levels and abdominal fat body vitellogenin gene expression levels of workers in queenright and queenless colonies. Age, ovary activation and social environment influenced brain BA levels in honey bees. BA levels were most influenced by ovary activation state in queenless bees. Vitellogenin expression levels were higher in queenless workers than queenright workers, but in both colony environments vitellogenin expression was lower in foragers than non-foragers. We propose this plasticity in the interacting signalling systems that influence both reproductive and behavioural development allows queenless workers to deviate significantly from the typical worker bee reaction norm and develop as reproductively active behavioural generalists. PMID:26715114

  5. SELECTION CRITERIA IN AN APIARY OF CARNIOLAN HONEY BEE (APIS MELLIFERA CARNICA COLONIES FOR QUEEN REARING

    Directory of Open Access Journals (Sweden)

    Aleš Gregorc

    2011-01-01

    Full Text Available Thirty six honey bee (Apis mellifera carnica colonies were tested for gentleness, swarming behaviour, colony strength, racial characteristics, Cubital index (Ci, honey production, extension of capped brood, hygienic behaviour and the presence of Nosema spp. spores. The average value of Ci of all measures was 2.7 (±0.40. The average honey production was 9.5 kg (±6.6 and the area of capped brood was 7061 cm2 (±2813. Colonies expressed hygienic behaviour observed 24 hours after killing pupae twice in May and July at the level of 83.4% (±11.2. Each of twelve colonies uncapped and removed more than 90% of killed pupae, and of these, eight colonies cleaned more than 96% of killed pupae. The highest Nosema spp. spore load was found during September. We conclude that establishing the colony performance factors, with maximal level of 34 points, is a suitable tool for ranking and selection of colonies in each queen rearing apiary.

  6. Distance Between Honey Bee Apis mellifera Colonies Regulates Populations of Varroa destructor at a Landscape Scale

    Science.gov (United States)

    Nolan, Maxcy P.; Delaplane, Keith S.

    2016-01-01

    Inter-colony distance of Apis mellifera significantly affects colony numbers of the parasitic mite Varroa destructor. We set up 15 apiaries, each consisting of two colonies. Each apiary pair was assigned an inter-colony distance of 0, 10, or 100 m. Colonies were rendered nearly mite-free, then one colony in each pair was seeded with 300 female mites (mite-donor colony), while the other remained uninoculated (mite-recipient colony). After four months of monitoring, a whole model analysis showed that apiaries in which colonies were spaced 100 m apart contained lower average mite numbers than 0 m or 10 m apiaries. There were interactions among colony type, distance, and sampling date; however, when there were significant differences mite numbers were always lower in 100 m apiaries than 10 m apiaries. These findings pose the possibility that Varroa populations are resource regulated at a landscape scale: near-neighbor colonies constitute reproductive resource for mites in the form of additional bee brood. PMID:27812228

  7. Viral infection affects sucrose responsiveness and homing ability of forager honey bees, Apis mellifera L.

    Directory of Open Access Journals (Sweden)

    Zhiguo Li

    Full Text Available Honey bee health is mainly affected by Varroa destructor, viruses, Nosema spp., pesticide residues and poor nutrition. Interactions between these proposed factors may be responsible for the colony losses reported worldwide in recent years. In the present study, the effects of a honey bee virus, Israeli acute paralysis virus (IAPV, on the foraging behaviors and homing ability of European honey bees (Apis mellifera L. were investigated based on proboscis extension response (PER assays and radio frequency identification (RFID systems. The pollen forager honey bees originated from colonies that had no detectable level of honey bee viruses and were manually inoculated with IAPV to induce the viral infection. The results showed that IAPV-inoculated honey bees were more responsive to low sucrose solutions compared to that of non-infected foragers. After two days of infection, around 10⁷ copies of IAPV were detected in the heads of these honey bees. The homing ability of IAPV-infected foragers was depressed significantly in comparison to the homing ability of uninfected foragers. The data provided evidence that IAPV infection in the heads may enable the virus to disorder foraging roles of honey bees and to interfere with brain functions that are responsible for learning, navigation, and orientation in the honey bees, thus, making honey bees have a lower response threshold to sucrose and lose their way back to the hive.

  8. Practical sampling plans for Varroa destructor (Acari: Varroidae) in Apis mellifera (Hymenoptera: Apidae) colonies and apiaries.

    Science.gov (United States)

    Lee, K V; Moon, R D; Burkness, E C; Hutchison, W D; Spivak, M

    2010-08-01

    The parasitic mite Varroa destructor Anderson & Trueman (Acari: Varroidae) is arguably the most detrimental pest of the European-derived honey bee, Apis mellifera L. Unfortunately, beekeepers lack a standardized sampling plan to make informed treatment decisions. Based on data from 31 commercial apiaries, we developed sampling plans for use by beekeepers and researchers to estimate the density of mites in individual colonies or whole apiaries. Beekeepers can estimate a colony's mite density with chosen level of precision by dislodging mites from approximately to 300 adult bees taken from one brood box frame in the colony, and they can extrapolate to mite density on a colony's adults and pupae combined by doubling the number of mites on adults. For sampling whole apiaries, beekeepers can repeat the process in each of n = 8 colonies, regardless of apiary size. Researchers desiring greater precision can estimate mite density in an individual colony by examining three, 300-bee sample units. Extrapolation to density on adults and pupae may require independent estimates of numbers of adults, of pupae, and of their respective mite densities. Researchers can estimate apiary-level mite density by taking one 300-bee sample unit per colony, but should do so from a variable number of colonies, depending on apiary size. These practical sampling plans will allow beekeepers and researchers to quantify mite infestation levels and enhance understanding and management of V. destructor.

  9. Dynamics of Persistent and Acute Deformed Wing Virus Infections in Honey Bees, Apis mellifera

    Directory of Open Access Journals (Sweden)

    Jay D. Evans

    2011-12-01

    Full Text Available The dynamics of viruses are critical to our understanding of disease pathogenesis. Using honey bee Deformed wing virus (DWV as a model, we conducted field and laboratory studies to investigate the roles of abiotic and biotic stress factors as well as host health conditions in dynamics of virus replication in honey bees. The results showed that temperature decline could lead to not only significant decrease in the rate for pupae to emerge as adult bees, but also an increased severity of the virus infection in emerged bees, partly explaining the high levels of winter losses of managed honey bees, Apis mellifera, around the world. By experimentally exposing adult bees with variable levels of parasitic mite Varroa destructor, we showed that the severity of DWV infection was positively correlated with the density and time period of Varroa mite infestation, confirming the role of Varroa mites in virus transmission and activation in honey bees. Further, we showed that host conditions have a significant impact on the outcome of DWV infection as bees that originate from strong colonies resist DWV infection and replication significantly better than bee originating from weak colonies. The information obtained from this study has important implications for enhancing our understanding of host‑pathogen interactions and can be used to develop effective disease control strategies for honey bees.

  10. Gene expression in honey bee (Apis mellifera) larvae exposed to pesticides and Varroa mites (Varroa destructor).

    Science.gov (United States)

    Gregorc, Aleš; Evans, Jay D; Scharf, Mike; Ellis, James D

    2012-08-01

    Honey bee (Apis mellifera) larvae reared in vitro were exposed to one of nine pesticides and/or were challenged with the parasitic mite, Varroa destructor. Total RNA was extracted from individual larvae and first strand cDNAs were generated. Gene-expression changes in larvae were measured using quantitative PCR (qPCR) targeting transcripts for pathogens and genes involved in physiological processes, bee health, immunity, and/or xenobiotic detoxification. Transcript levels for Peptidoglycan Recognition Protein (PGRPSC), a pathogen recognition gene, increased in larvae exposed to Varroa mites (PVarroa-parasitized brood had higher transcripts of Deformed Wing Virus than did control larvae (PVarroa parasitism, arguably coupled with virus infection, resulted in significantly higher transcript abundances for the antimicrobial peptides abaecin, hymenoptaecin, and defensin1. Transcript levels for Prophenoloxidase-activating enzyme (PPOact), an immune end product, were elevated in larvae treated with myclobutanil and chlorothalonil (both are fungicides) (PVarroa parasitism on honey bee larval gene expression were demonstrated. Interactions between larval treatments and gene expression for the targeted genes are discussed.

  11. Impact of Varroa destructor on honeybee (Apis mellifera scutellata) colony development in South Africa.

    Science.gov (United States)

    Strauss, Ursula; Pirk, Christian W W; Crewe, Robin M; Human, Hannelie; Dietemann, Vincent

    2015-01-01

    The devastating effects of Varroa destructor Anderson & Trueman on European honeybee colonies (Apis mellifera L.) have been well documented. Not only do these mites cause physical damage to parasitised individuals when they feed on them, they also transmit viruses and other pathogens, weaken colonies and can ultimately cause their death. Nevertheless, not all honeybee colonies are doomed once Varroa mites become established. Some populations, such as the savannah honeybee, A. m. scutellata, have become tolerant after the introduction of the parasite and are able to withstand the presence of these mites without the need for acaricides. In this study, we measured daily Varroa mite fall, Varroa infestation rates of adult honeybees and worker brood, and total Varroa population size in acaricide treated and untreated honeybee colonies. In addition, honeybee colony development was compared between these groups in order to measure the cost incurred by Varroa mites to their hosts. Daily Varroa mite fall decreased over the experimental period with different dynamics in treated and untreated colonies. Varroa infestation rates in treated adult honeybees and brood were lower than in untreated colonies, but not significantly so. Thus, indicating a minimal benefit of treatment thereby suggesting that A. m. scutellata have the ability to maintain mite populations at low levels. We obtained baseline data on Varroa population dynamics in a tolerant honeybee over the winter period. Varroa mites appeared to have a low impact on this honeybee population, given that colony development was similar in the treated and untreated colonies.

  12. Viral infection affects sucrose responsiveness and homing ability of forager honey bees, Apis mellifera L.

    Science.gov (United States)

    Li, Zhiguo; Chen, Yanping; Zhang, Shaowu; Chen, Shenglu; Li, Wenfeng; Yan, Limin; Shi, Liangen; Wu, Lyman; Sohr, Alex; Su, Songkun

    2013-01-01

    Honey bee health is mainly affected by Varroa destructor, viruses, Nosema spp., pesticide residues and poor nutrition. Interactions between these proposed factors may be responsible for the colony losses reported worldwide in recent years. In the present study, the effects of a honey bee virus, Israeli acute paralysis virus (IAPV), on the foraging behaviors and homing ability of European honey bees (Apis mellifera L.) were investigated based on proboscis extension response (PER) assays and radio frequency identification (RFID) systems. The pollen forager honey bees originated from colonies that had no detectable level of honey bee viruses and were manually inoculated with IAPV to induce the viral infection. The results showed that IAPV-inoculated honey bees were more responsive to low sucrose solutions compared to that of non-infected foragers. After two days of infection, around 10⁷ copies of IAPV were detected in the heads of these honey bees. The homing ability of IAPV-infected foragers was depressed significantly in comparison to the homing ability of uninfected foragers. The data provided evidence that IAPV infection in the heads may enable the virus to disorder foraging roles of honey bees and to interfere with brain functions that are responsible for learning, navigation, and orientation in the honey bees, thus, making honey bees have a lower response threshold to sucrose and lose their way back to the hive. PMID:24130876

  13. Mitochondrial structure and dynamics as critical factors in honey bee (Apis mellifera L.) caste development.

    Science.gov (United States)

    Santos, Douglas Elias; Alberici, Luciane Carla; Hartfelder, Klaus

    2016-06-01

    The relationship between nutrition and phenotype is an especially challenging question in cases of facultative polyphenism, like the castes of social insects. In the honey bee, Apis mellifera, unexpected modifications in conserved signaling pathways revealed the hypoxia response as a possible mechanism underlying the regulation of body size and organ growth. Hence, the current study was designed to investigate possible causes of why the three hypoxia core genes are overexpressed in worker larvae. Parting from the hypothesis that this has an endogenous cause and is not due to differences in external oxygen levels we investigated mitochondrial numbers and distribution, as well as mitochondrial oxygen consumption rates in fat body cells of queen and worker larvae during the caste fate-critical larval stages. By immunofluorescence and electron microscopy we found higher densities of mitochondria in queen larval fat body, a finding further confirmed by a citrate synthase assay quantifying mitochondrial functional units. Oxygen consumption measurements by high-resolution respirometry revealed that queen larvae have higher maximum capacities of ATP production at lower physiological demand. Finally, the expression analysis of mitogenesis-related factors showed that the honey bee TFB1 and TFB2 homologs, and a nutritional regulator, ERR, are overexpressed in queen larvae. These results are strong evidence that the differential nutrition of queen and worker larvae by nurse bees affects mitochondrial dynamics and functionality in the fat body of these larvae, hence explaining their differential hypoxia response. PMID:27058771

  14. A Look into the Cell: Honey Storage in Honey Bees, Apis mellifera.

    Science.gov (United States)

    Eyer, Michael; Neumann, Peter; Dietemann, Vincent

    2016-01-01

    Honey bees, Apis species, obtain carbohydrates from nectar and honeydew. These resources are ripened into honey in wax cells that are capped for long-term storage. These stores are used to overcome dearth periods when foraging is not possible. Despite the economic and ecological importance of honey, little is known about the processes of its production by workers. Here, we monitored the usage of storage cells and the ripening process of honey in free-flying A. mellifera colonies. We provided the colonies with solutions of different sugar concentrations to reflect the natural influx of nectar with varying quality. Since the amount of carbohydrates in a solution affects its density, we used computer tomography to measure the sugar concentration of cell content over time. The data show the occurrence of two cohorts of cells with different provisioning and ripening dynamics. The relocation of the content of many cells before final storage was part of the ripening process, because sugar concentration of the content removed was lower than that of content deposited. The results confirm the mixing of solutions of different concentrations in cells and show that honey is an inhomogeneous matrix. The last stage of ripening occurred when cell capping had already started, indicating a race against water absorption. The storage and ripening processes as well as resource use were context dependent because their dynamics changed with sugar concentration of the food. Our results support hypotheses regarding honey production proposed in earlier studies and provide new insights into the mechanisms involved. PMID:27560969

  15. Honeybees (Apis mellifera) learn to discriminate the smell of organic compounds from their respective deuterated isotopomers.

    Science.gov (United States)

    Gronenberg, Wulfila; Raikhelkar, Ajay; Abshire, Eric; Stevens, Jennifer; Epstein, Eric; Loyola, Karin; Rauscher, Michael; Buchmann, Stephen

    2014-03-01

    The understanding of physiological and molecular processes underlying the sense of smell has made considerable progress during the past three decades, revealing the cascade of molecular steps that lead to the activation of olfactory receptor (OR) neurons. However, the mode of primary interaction of odorant molecules with the OR proteins within the sensory cells is still enigmatic. Two different concepts try to explain these interactions: the 'odotope hypothesis' suggests that OR proteins recognize structural aspects of the odorant molecule, whereas the 'vibration hypothesis' proposes that intra-molecular vibrations are the basis for the recognition of the odorant by the receptor protein. The vibration hypothesis predicts that OR proteins should be able to discriminate compounds containing deuterium from their common counterparts which contain hydrogen instead of deuterium. This study tests this prediction in honeybees (Apis mellifera) using the proboscis extension reflex learning in a differential conditioning paradigm. Rewarding one odour (e.g. a deuterated compound) with sucrose and not rewarding the respective analogue (e.g. hydrogen-based odorant) shows that honeybees readily learn to discriminate hydrogen-based odorants from their deuterated counterparts and supports the idea that intra-molecular vibrations may contribute to odour discrimination. PMID:24452031

  16. The Acute Oral Toxicity of Commonly Used Pesticides in Iran, to Honeybees (Apis Mellifera Meda

    Directory of Open Access Journals (Sweden)

    Rasuli Farhang

    2015-06-01

    Full Text Available The honey bee is credited with approximately 85% of the pollinating activity necessary to supply about one-third of the world’s food supply. Well over 50 major crops depend on these insects for pollination. The crops produce more abundantly when honey bees are plentiful. Worker bees are the ones primarily affected by pesticides. Poisoning symptoms can vary depending on the developmental stage of the individual bee, and the kind of chemical employed. The oral toxicity of these insecticides: (phosalone and pirimicarb, acaricide (propargite, insecticide and acaricide (fenpropathrin, fungicides, and bactericides (copper oxychloride and the Bordeaux mixture, were evaluated for the purposes of this research. The results showed that fenpropathrin had high acute oral toxicity (LC50-24h and LC50-48 were 0.54 and 0.3 ppm, respectively. Propargite had 7785 ppm (active ingredient for LC50-24h and 6736 ppm (active ingredient for LC50-48h in honeybees and is therefore, non-toxic to Apis mellifera. On the other hand, copper oxychloride had minimum acute oral toxicity to honeybees (LC50-24h and LC50-48 were 4591.5 and 5407.9 ppm, respectively and was therefore considered non-toxic. Also, the Bordeaux mixture was safe to use around honeybees. Phosalone and primicarb were considered highly and moderately toxic to honeybees, respectively.

  17. Brood development of different carniolan bee ecotypes (Apis mellifera carnica Pollmann, 1879

    Directory of Open Access Journals (Sweden)

    Dragan Bubalo

    2002-09-01

    Full Text Available Brood development of different carniolan honeybee ecotypes (Apis mellifera carnica Pollmann, 1879 was carried out in condition of pannonian and alpine climate. The colonies on both experimental apiaries were divided in the three groups, each 12 queens, of alpine (Austria, subalpine (Slovenia and pannonian (Croatia ecotype. The experiment was designed to monitor development of brood, the total number of laid cells and colony strength. In particular part of the year, experimental ecotypes shown significant differences in area of unsealed and sealed brood in both climate. In the whole season there was not established significant difference between ecotypes regarding to development of drone brood. In pannonian climate, in comparison to alpine climate, the number of laid eggs was higher for all ecotypes. Pannonian ecotype did not recognize all food sources in the new environment, which could be seen in the lack of pollen in the colonies at the alpine climate during last two measuriments. The lack of pollen affected the weakening of the colonies laiter in the season.

  18. Drone and Worker Brood Microclimates Are Regulated Differentially in Honey Bees, Apis mellifera.

    Directory of Open Access Journals (Sweden)

    Zhiyong Li

    Full Text Available Honey bee (Apis mellifera drones and workers show differences in morphology, physiology, and behavior. Because the functions of drones are more related to colony reproduction, and those of workers relate to both survival and reproduction, we hypothesize that the microclimate for worker brood is more precisely regulated than that of drone brood.We assessed temperature and relative humidity (RH inside honey bee colonies for both drone and worker brood throughout the three-stage development period, using digital HOBO® Data Loggers. The major findings of this study are that 1 both drone and worker castes show the highest temperature for eggs, followed by larvae and then pupae; 2 temperature in drones are maintained at higher precision (smaller variance in drone eggs and larvae, but at a lower precision in pupae than the corresponding stages of workers; 3 RH regulation showed higher variance in drone than workers across all brood stages; and 4 RH regulation seems largely due to regulation by workers, as the contribution from empty honey combs are much smaller compared to that from adult workers.We conclude that honey bee colonies maintain both temperature and humidity actively; that the microclimate for sealed drone brood is less precisely regulated than worker brood; and that combs with honey contribute very little to the increase of RH in honey bee colonies. These findings increase our understanding of microclimate regulation in honey bees and may have implications for beekeeping practices.

  19. A method for distinctly marking honey bees, Apis mellifera, originating from multiple apiary locations.

    Science.gov (United States)

    Hagler, James; Mueller, Shannon; Teuber, Larry R; Van Deynze, Allen; Martin, Joe

    2011-01-01

    Inexpensive and non-intrusive marking methods are essential to track natural behavior of insects for biological experiments. An inexpensive, easy to construct, and easy to install bee marking device is described in this paper. The device is mounted at the entrance of a standard honey bee Apis mellifera L. (Hymenoptera: Apidae) hive and is fitted with a removable tube that dispenses a powdered marker. Marking devices were installed on 80 honey bee colonies distributed in nine separate apiaries. Each device held a tube containing one of five colored fluorescent powders, or a combination of a fluorescent powder (either green or magenta) plus one of two protein powders, resulting in nine unique marks. The powdered protein markers included egg albumin from dry chicken egg whites and casein from dry powdered milk. The efficacy of the marking procedure for each of the unique markers was assessed on honey bees exiting each apiary. Each bee was examined, first by visual inspection for the presence of colored fluorescent powder and then by egg albumin and milk casein specific enzyme-linked immunosorbent assays (ELISA). Data indicated that all five of the colored fluorescent powders and both of the protein powders were effective honey bee markers. However, the fluorescent powders consistently yielded more reliable marks than the protein powders. In general, there was less than a 1% chance of obtaining a false positive colored or protein-marked bee, but the chance of obtaining a false negative marked bee was higher for "protein-marked" bees. PMID:22236037

  20. Effect of proline as a nutrient on hypopharyngeal glands during development of Apis mellifera (Hymenoptera: Apidae

    Directory of Open Access Journals (Sweden)

    Ali Darvishzadeh

    2015-12-01

    Full Text Available Proline is known to be an energy source for protein synthesis and appears to have a major role in insect flying metabolism. Insects can detect proline in their food and use it as an energy substrate to start flight and other high energy consuming activities. Honey bee has a feeding preference for nectars with higher concentrations of this amino acid. In this research we present evidence that L-proline can be utilized as a phagostimulant for the honeybee worker (Apis mellifera. We reported the L-proline increase hypopharyngeal glands acini diameter and syrup consumption at the experimental cage. Honeybee workers fed on 1000 ppm treatment prolin consumed 773.9±31.8 ul/bee after 18-days. It is obvious that the honeybee workers consumed 1000 ppm the more than other treatment. The feeding decreased when concentration of L-proline increased to 10000 ppm. The hypopharyngeal glands development increased gradually from honeybee workers emergence and started to decrease after 9 days old. The maximum acini diameter (0.1439±0.001 mm was recorded in the 9th day when newly emerged bees were fed on 1000 ppm proline syrup.

  1. Establishment of a bacterial infection model using the European honeybee, Apis mellifera L.

    Science.gov (United States)

    Ishii, Kenichi; Hamamoto, Hiroshi; Sekimizu, Kazuhisa

    2014-01-01

    Injection of human pathogenic bacteria (Pseudomonas aeruginosa, Serratia marcescens, Salmonella enterica, Staphylococcus aureus, and Listeria monocytogenes) into the hemocoel of honeybee (Apis mellifera L.) workers kills the infected bees. The bee-killing effects of the pathogens were affected by temperature, and the LD₅₀ values at 37°C were more than 100-fold lower than those at 15°C. Gene-disrupted S. aureus mutants of virulence genes such as agrA, saeS, arlR, srtA, hla, and hlb had attenuated bee-killing ability. Nurse bees were less susceptible than foragers and drones to S. aureus infection. Injection of antibiotics clinically used for humans had therapeutic effects against S. aureus infections of bees, and the ED₅₀ values of these antibiotics were comparable with those determined in mammalian models. Moreover, the effectiveness of orally administered antibiotics was consistent between honeybees and mammals. These findings suggest that the honeybee could be a useful model for assessing the pathogenesis of human-infecting bacteria and the effectiveness of antibiotics. PMID:24587122

  2. Effects of sublethal doses of imidacloprid in Malpighian tubules of Africanized Apis mellifera (Hymenoptera, Apidae).

    Science.gov (United States)

    Rossi, Caroline de Almeida; Roat, Thaisa Cristina; Tavares, Daiana Antonia; Cintra-Socolowski, Priscila; Malaspina, Osmar

    2013-05-01

    In Brazil, imidacloprid is a widely used insecticide on agriculture and can harm bees, which are important pollinators. The active ingredient imidacloprid has action on the nervous system of the insects. However, little has been studied about the actions of the insecticide on nontarget organs of insects, such as the Malpighian tubules that make up the excretory and osmoregulatory system. Hence, in this study, we evaluated the effects of chronic exposure to sublethal doses of imidacloprid in Malpighian tubules of Africanized Apis mellifera. In the tubules of treated bees, we found an increase in the number of cells with picnotic nuclei, the lost of part of the cell into the lumen, and a homogenization of coloring cytoplasm. Furthermore, we observed the presence of cytoplasmic vacuolization. We confirmed the increased occurrence of picnotic nuclei by using the Feulgan reaction, which showed the chromatin compaction was more intense in the tubules of bees exposed to the insecticide. We observed an intensification of the staining of the nucleus with Xylidine Ponceau, further verifying the cytoplasmic negative regions that may indicate autophagic activity. Additionally, immunocytochemistry experiments showed TUNEL positive nuclei in exposed bees, implicating increased cell apoptosis after chronic imidacloprid exposure. In conclusion, our results indicate that very low concentrations of imidacloprid lead to cytotoxic activity in the Malpighian tubules of exposed bees at all tested times for exposure and imply that this insecticide can alter honey bee physiology. PMID:23483717

  3. Influence of the insecticide pyriproxyfen on the flight muscle differentiation of Apis mellifera (Hymenoptera, Apidae).

    Science.gov (United States)

    Corrêa Fernandez, Fernanda; Da Cruz-Landim, Carminda; Malaspina, Osmar

    2012-06-01

    The Brazilian africanized Apis mellifera is currently considered as one of the most important pollinators threatened by the use of insecticides due to its frequent exposition to their toxic action while foraging in the crops it pollinated. Among the insecticides, the most used in the control of insect pragues has as active agent the pyriproxyfen, analogous to the juvenile hormone (JH). Unfortunately the insecticides used in agriculture affect not only the target insects but also beneficial nontarget ones as bees compromising therefore, the growth rate of their colonies at the boundaries of crop fields. Workers that forage for provisions in contaminated areas can introduce contaminated pollen or/and nectar inside the beehives. As analogous to JH the insecticide pyriproxyfen acts in the bee's larval growth and differentiation during pupation or metamorphosis timing. The flighty muscle is not present in the larvae wingless organisms, but differentiates during pupation/metamorphosis. This work aimed to investigate the effect of pyriproxyfen insecticide on differentiation of such musculature in workers of Brazilian africanized honey bees fed with artificial diet containing the pesticide. The results show that the bees fed with contaminated diet, independent of the insecticide concentration used, show a delay in flight muscle differentiation when compared to the control. PMID:22223201

  4. In vitro effects of thiamethoxam on larvae of Africanized honey bee Apis mellifera (Hymenoptera: Apidae).

    Science.gov (United States)

    Tavares, Daiana Antonia; Roat, Thaisa Cristina; Carvalho, Stephan Malfitano; Silva-Zacarin, Elaine Cristina Mathias; Malaspina, Osmar

    2015-09-01

    Several investigations have revealed the toxic effects that neonicotinoids can have on Apis mellifera, while few studies have evaluated the impact of these insecticides can have on the larval stage of the honeybee. From the lethal concentration (LC50) of thiamethoxam for the larvae of the Africanized honeybee, we evaluated the sublethal effects of this insecticide on morphology of the brain. After determine the LC50 (14.34 ng/μL of diet) of thiamethoxam, larvae were exposed to a sublethal concentration of thiamethoxam equivalent to 1.43 ng/μL by acute and subchronic exposure. Morphological and immunocytochemistry analysis of the brains of the exposed bees, showed condensed cells and early cell death in the optic lobes. Additional dose-related effects were observed on larval development. Our results show that the sublethal concentrations of thiamethoxam tested are toxic to Africanized honeybees larvae and can modulate the development and consequently could affect the maintenance and survival of the colony. These results represent the first assessment of the effects of thiamethoxam in Africanized honeybee larvae and should contribute to studies on honey bee colony decline. PMID:25985214

  5. Brain morphophysiology of Africanized bee Apis mellifera exposed to sublethal doses of imidacloprid.

    Science.gov (United States)

    de Almeida Rossi, Caroline; Roat, Thaisa Cristina; Tavares, Daiana Antonia; Cintra-Socolowski, Priscila; Malaspina, Osmar

    2013-08-01

    Several synthetic substances are used in agricultural areas to combat insect pests; however, the indiscriminate use of these products may affect nontarget insects, such as bees. In Brazil, one of the most widely used insecticides is imidacloprid, which targets the nervous system of insects. Therefore, the aim of this study was to evaluate the effects of chronic exposure to sublethal doses of imidacloprid on the brain of the Africanized Apis mellifera. The organs of both control bees and bees exposed to insecticide were subjected to morphological, histochemical and immunocytochemical analysis after exposure to imidacloprid, respectively, for 1, 3, 5, 7, and 10 days. In mushroom bodies of bees exposed to imidacloprid concentrations of LD50/10 and in optic lobes of bees exposed to imidacloprid concentrations of LD50/10, LD50/100, and LD50/50, we observed the presence of condensed cells. The Feulgen reaction revealed the presence of some cells with pyknotic nuclei, whereas Xylidine Ponceau stain revealed strongly stained cells. These characteristics can indicate the occurrence of cell death. Furthermore, cells in mushroom bodies of bees exposed to imidacloprid concentrations of LD50/10 appeared to be swollen. Cell death was confirmed by immunocytochemical technique. Therefore, it was concluded that sublethal doses of imidacloprid have cytotoxic effects on exposed bee brains and that optic lobes are more sensitive to the insecticide than other regions of the brain. PMID:23563487

  6. MALDI imaging analysis of neuropeptides in the Africanized honeybee (Apis mellifera) brain: effect of ontogeny.

    Science.gov (United States)

    Pratavieira, Marcel; da Silva Menegasso, Anally Ribeiro; Garcia, Ana Maria Caviquioli; Dos Santos, Diego Simões; Gomes, Paulo Cesar; Malaspina, Osmar; Palma, Mario Sergio

    2014-06-01

    The occurrence and spatial distribution of the neuropeptides AmTRP-5 and AST-1 in the honeybee brain were monitored via MALDI spectral imaging according to the ontogeny of Africanized Apis mellifera. The levels of these peptides increased in the brains of 0-15 day old honeybees, and this increase was accompanied by an increase in the number of in-hive activities performed by the nurse bees, followed by a decrease in the period from 15 to 25 days of age, in which the workers began to perform activities outside the nest (guarding and foraging). The results obtained in the present investigation suggest that AmTRP-5 acts in the upper region of both pedunculi of young workers, possibly regulating the cell cleaning and brood capping activities. Meanwhile, the localized occurrence of AmTRP-5 and AST-1 in the antennal lobes, subesophageal ganglion, upper region of the medulla, both lobula, and α- and β-lobes of both brain hemispheres in 20 to 25 day old workers suggest that the action of both neuropeptides in these regions may be related to their localized actions in these regions, regulating foraging and guarding activities. Thus, these neuropeptides appear to have some functions in the honeybee brain that are specifically related to the age-related division of labor.

  7. Influence of processing in the physicochemical quality of Apis mellifera honey from Mato Grosso State, Brazil

    Directory of Open Access Journals (Sweden)

    Karina Renostro DUCATTI

    2014-01-01

    Full Text Available Objective: In this study, the quality of the Apis mellifera honey produced by 12 beekeepers from four associations in the north of Mato Grosso state was investigated during processing, Materials and Methods: The samples were collected at three different stages of processing: a in the honeycomb at the honey house reception (S1, b after centrifugation (S2, c after packaging (S3, The levels of free acidity, moisture, ash, insoluble solids, diastase activity, hydroxymethylfurfural, reducing sugars, and apparent sucrose were measured, Results: It was observed that all the samples analyzed were within the standards required for marketing with regard to levels of moisture, insoluble solids, hydroxymethylfurfural, diastase activity, and total reducing sugars, Whereas for free acidity (40.81−193.09 g/100 g-1, ash (0.18−2.38 g/100 g-1, and sucrose (3.2−7.2 g/100 g-1, 33%, 17%, and 17% of the samples, respectively, were not within the approved limits, Conclusion: In this study, ash contamination in the analyzed honey occurred during the decantation and packaging stages, whereas high levels of acidity and sucrose were elevated in the first extraction stage, and this occurred due to inappropriate hive management or during honey harvest or transportation.

  8. The HEX 110 Hexamerin Is a Cytoplasmic and Nucleolar Protein in the Ovaries of Apis mellifera

    Science.gov (United States)

    Martins, Juliana Ramos; Bitondi, Márcia Maria Gentile

    2016-01-01

    Hexamerins are insect storage proteins abundantly secreted by the larval fat body into the haemolymph. The canonical role of hexamerins consists of serving as an amino acid reserve for development toward the adult stage. However, in Apis mellifera, immunofluorescence assays coupled to confocal laser-scanning microscopy, and high-throughput sequencing, have recently shown the presence of hexamerins in other organs than the fat body. These findings have led us to study these proteins with the expectation of uncovering additional functions in insect development. We show here that a honeybee hexamerin, HEX 110, localizes in the cytoplasm and nucleus of ovarian cells. In the nucleus of somatic and germline cells, HEX 110 colocalized with a nucleolar protein, fibrillarin, suggesting a structural or even regulatory function in the nucleolus. RNase A provoked the loss of HEX 110 signals in the ovarioles, indicating that the subcellular localization depends on RNA. This was reinforced by incubating ovaries with pyronin Y, a RNA-specific dye. Together, the colocalization with fibrillarin and pyronin Y, and the sensitivity to RNase, highlight unprecedented roles for HEX110 in the nucleolus, the nuclear structure harbouring the gene cluster involved in ribosomal RNA production. However, the similar patterns of HEX 110 foci distribution in the active and inactive ovaries of queens and workers preclude its association with the functional status of these organs. PMID:26954256

  9. Evaluation of Apis mellifera syriaca Levant region honeybee conservation using comparative genome hybridization.

    Science.gov (United States)

    Haddad, Nizar Jamal; Batainh, Ahmed; Saini, Deepti; Migdadi, Osama; Aiyaz, Mohamed; Manchiganti, Rushiraj; Krishnamurthy, Venkatesh; Al-Shagour, Banan; Brake, Mohammad; Bourgeois, Lelania; De Guzman, Lilia; Rinderer, Thomas; Hamouri, Zayed Mahoud

    2016-06-01

    Apis mellifera syriaca is the native honeybee subspecies of Jordan and much of the Levant region. It expresses behavioral adaptations to a regional climate with very high temperatures, nectar dearth in summer, attacks of the Oriental wasp and is resistant to Varroa mites. The A. m. syriaca control reference sample (CRS) in this study was originally collected and stored since 2001 from "Wadi Ben Hammad", a remote valley in the southern region of Jordan. Morphometric and mitochondrial DNA markers of these honeybees had shown highest similarity to reference A. m. syriaca samples collected in 1952 by Brother Adam of samples collected from the Middle East. Samples 1-5 were collected from the National Center for Agricultural Research and Extension breeding apiary which was established for the conservation of A. m. syriaca. Our objective was to determine the success of an A. m. syriaca honey bee conservation program using genomic information from an array-based comparative genomic hybridization platform to evaluate genetic similarities to a historic reference collection (CRS). Our results had shown insignificant genomic differences between the current population in the conservation program and the CRS indicated that program is successfully conserving A. m. syriaca. Functional genomic variations were identified which are useful for conservation monitoring and may be useful for breeding programs designed to improve locally adapted strains of A. m. syriaca.

  10. Viral infection affects sucrose responsiveness and homing ability of forager honey bees, Apis mellifera L.

    Science.gov (United States)

    Li, Zhiguo; Chen, Yanping; Zhang, Shaowu; Chen, Shenglu; Li, Wenfeng; Yan, Limin; Shi, Liangen; Wu, Lyman; Sohr, Alex; Su, Songkun

    2013-01-01

    Honey bee health is mainly affected by Varroa destructor, viruses, Nosema spp., pesticide residues and poor nutrition. Interactions between these proposed factors may be responsible for the colony losses reported worldwide in recent years. In the present study, the effects of a honey bee virus, Israeli acute paralysis virus (IAPV), on the foraging behaviors and homing ability of European honey bees (Apis mellifera L.) were investigated based on proboscis extension response (PER) assays and radio frequency identification (RFID) systems. The pollen forager honey bees originated from colonies that had no detectable level of honey bee viruses and were manually inoculated with IAPV to induce the viral infection. The results showed that IAPV-inoculated honey bees were more responsive to low sucrose solutions compared to that of non-infected foragers. After two days of infection, around 10⁷ copies of IAPV were detected in the heads of these honey bees. The homing ability of IAPV-infected foragers was depressed significantly in comparison to the homing ability of uninfected foragers. The data provided evidence that IAPV infection in the heads may enable the virus to disorder foraging roles of honey bees and to interfere with brain functions that are responsible for learning, navigation, and orientation in the honey bees, thus, making honey bees have a lower response threshold to sucrose and lose their way back to the hive.

  11. How Varroa Parasitism Affects the Immunological and Nutritional Status of the Honey Bee, Apis mellifera.

    Science.gov (United States)

    Aronstein, Katherine A; Saldivar, Eduardo; Vega, Rodrigo; Westmiller, Stephanie; Douglas, Angela E

    2012-06-27

    We investigated the effect of the parasitic mite Varroa destructor on the immunological and nutritional condition of honey bees, Apis mellifera, from the perspective of the individual bee and the colony. Pupae, newly-emerged adults and foraging adults were sampled from honey bee colonies at one site in S. Texas, USA. Varroa‑infested bees displayed elevated titer of Deformed Wing Virus (DWV), suggestive of depressed capacity to limit viral replication. Expression of genes coding three anti-microbial peptides (defensin1, abaecin, hymenoptaecin) was either not significantly different between Varroa-infested and uninfested bees or was significantly elevated in Varroa-infested bees, varying with sampling date and bee developmental age. The effect of Varroa on nutritional indices of the bees was complex, with protein, triglyceride, glycogen and sugar levels strongly influenced by life-stage of the bee and individual colony. Protein content was depressed and free amino acid content elevated in Varroa-infested pupae, suggesting that protein synthesis, and consequently growth, may be limited in these insects. No simple relationship between the values of nutritional and immune-related indices was observed, and colony-scale effects were indicated by the reduced weight of pupae in colonies with high Varroa abundance, irrespective of whether the individual pupa bore Varroa.

  12. Structural differences in the drone olfactory system of two phylogenetically distant Apis species, A. florea and A. mellifera

    Science.gov (United States)

    Brockmann, Axel; Brückner, Dorothea

    2001-01-01

    Male insects that are attracted by sex pheromones to find their female mates over long distances have specialized olfactory subsystems. Morphologically, these subsystems are characterized by a large number of receptor neurons sensitive to components of the female's pheromones and hypertrophied glomerular subunits ('macroglomeruli' or 'macroglomerular complexes') in the antennal lobes, in which the axons of the receptor neurons converge. The olfactory subsystems are adapted for an increased sensitivity to perceive minute amounts of pheromones. In Apis mellifera, drones have 18,600 olfactory poreplate sensilla per antenna, each equipped with receptor neurons sensitive to the queen's sex pheromone, and four voluminous macroglomeruli (MG1-MG4) in the antennal lobes. In contrast, we show that drones of the phylogenetically distant species, Apis florea, have only 1,200 poreplate sensilla per antenna and only two macroglomeruli in their antennal lobes. These macroglomeruli are homologous in anatomical position to the two most prominent macroglomeruli in A. mellifera, the MG1 and MG2, but they are much smaller in size. The morphological and anatomical differences described here suggest major modifications in the sex-pheromone processing subsystem of both species: (1) less pheromone sensitivity in A. florea and (2) a more complex sex-pheromone processing and thus a more complex sex-pheromone communication in A. mellifera.

  13. Microsatellite Variation in Honey Bee (Apis Mellifera L.) Populations: Hierarchical Genetic Structure and Test of the Infinite Allele and Stepwise Mutation Models

    OpenAIRE

    Estoup, A.; Garnery, L.; Solignac, M.; Cornuet, J. M.

    1995-01-01

    Samples from nine populations belonging to three African (intermissa, scutellata and capensis) and four European (mellifera, ligustica, carnica and cecropia) Apis mellifera subspecies were scored for seven microsatellite loci. A large amount of genetic variation (between seven and 30 alleles per locus) was detected. Average heterozygosity and average number of alleles were significantly higher in African than in European subspecies, in agreement with larger effective population sizes in Afric...

  14. Differences in mushroom bodies morphogenesis in workers, queens and drones of Apis mellifera: neuroblasts proliferation and death.

    Science.gov (United States)

    Roat, Thaisa Cristina; da Cruz Landim, Carminda

    2010-06-01

    Apis mellifera is an interesting model to neurobiological studies. It has a relatively small brain that commands the complex learning and memory tasks demanded by the social organization. An A. mellifera colony is made up of a queen, thousands of workers and a varying number of drones. The latter are males, whereas the former are the two female castes. These three phenotypes differ in morphology, physiology and behavior, correlated with their respective functions in the society. Such differences include the morphology and architecture of their brains. To understand the processes generating such polymorphic brains we characterized the cell division and cell death dynamics which underlie the morphogenesis of the mushroom bodies, through several methods suitable for evidence the time and place of occurrence. Cell death was detected in mushroom bodies of last larval instar and mainly in black-eyed pupae. Cell division was observed in mushroom bodies, primarily at the start of metamorphosis, exhibiting temporal differences among workers, queens and males.

  15. APRENDIZAGEM DA EXTENSÃO DA PROBÓSCIDE EM ZANGÕES AFRICANIZADOS (APIS MELLIFERA L. CONFINADOS

    Directory of Open Access Journals (Sweden)

    Italo Souza Aquino

    2015-01-01

    Full Text Available Studies on the olfactive learning in honey bees (Apis mellifera L. are predominantly performed with worker bees. In this study, we used the classical conditioning of proboscis extension (PER to evaluate the effectiveness of 5 scents as conditioned stimuli (CS. Ten groups of 20 drones (A. mellifera L. each were used. The conditioned stimuli were the odors of Citral, Hexanal, Geraniol, beeswax (comb, and beeswax (foundation sheet. In addition to the acquisition of learning, we measured the persistence of conditioning when the unconditioned stimulus was no longer presented (i.e., extinction. The intertrial interval, the CS duration and US duration were 10 min, 2 sec, and 3 sec, respectively. The drones were able to demonstrate conditioning and storage of information. Citral, Hexanal, and beeswax (comb were the most efficient stimuli in classical conditioning with drones.

  16. Field assessment of Bt cry1Ah corn pollen on the survival, development and behavior of Apis mellifera ligustica.

    Science.gov (United States)

    Dai, Ping-Li; Zhou, Wei; Zhang, Jie; Cui, Hong-Juan; Wang, Qiang; Jiang, Wei-Yu; Sun, Ji-Hu; Wu, Yan-Yan; Zhou, Ting

    2012-05-01

    Honeybees may be exposed to insecticidal proteins from transgenic plants via pollen. An assessment of the impact of such exposures on the honeybee is an essential part of the risk assessment process for transgenic Bacillus thuringiensis corn. A field trial was conducted to evaluate the effect of transgenic Bt cry1Ah corn on the honeybee Apis mellifera ligustica. Colonies of honeybees were moved to Bt or non-Bt corn fields during anthesis and then sampled to record their survival, development and behavior. No differences in immature stages, worker survival, bee body weight, hypopharyngeal gland weight, colony performance, foraging activity or olfactory learning abilities were detected between colonies that were placed in non-Bt corn fields and those placed in Bt corn fields. We conclude that cry1Ah corn carries no risk for the survival, development, colony performance or behavior of the honeybee A. mellifera ligustica. PMID:22364780

  17. Frequency and foraging behavior of Apis mellifera in two melon hybrids in Juazeiro, state of Bahia, Brazil

    Directory of Open Access Journals (Sweden)

    LÚCIA H.P. KIILL

    2014-12-01

    Full Text Available The study was carried out to verify if there are differences in foraging frequency and behavior of Apis mellifera in two melon hybrids (10:00 – ‘Yellow melon’ and Sancho -‘Piel de Sapo’ in the municipality of Juazeiro, state of Bahia, Brazil. The frequency, behavior of visitors and the floral resource foraged were registered from 5:00 am to 6:00 pm. There was a significant difference in the frequency of visits when comparing hydrids (F = 103.74, p <0.0001, floral type (F = 47.25, p <0.0001 and resource foraged (F = 239.14, p <0.0001. The flowers of Sancho were more attractive to A. mellifera when compared with hybrid 10:00, which may be correlated to the morphology and floral resources available. This could be solved with scaled planting, avoiding the overlapping of flowering of both types.

  18. Frequency and foraging behavior of Apis mellifera in two melon hybrids in Juazeiro, state of Bahia, Brazil.

    Science.gov (United States)

    Kiill, Lúcia H P; Siqueira, Kátia M M; Coelho, Márcia S; Silva, Tamires A; Gama, Diego R S; Araújo, Diego C S; Pereira Neto, Joaquim

    2014-12-01

    The study was carried out to verify if there are differences in foraging frequency and behavior of Apis mellifera in two melon hybrids (10:00 - 'Yellow melon' and Sancho -'Piel de Sapo') in the municipality of Juazeiro, state of Bahia, Brazil. The frequency, behavior of visitors and the floral resource foraged were registered from 5:00 am to 6:00 pm. There was a significant difference in the frequency of visits when comparing hydrids (F = 103.74, p <0.0001), floral type (F = 47.25, p <0.0001) and resource foraged (F = 239.14, p <0.0001). The flowers of Sancho were more attractive to A. mellifera when compared with hybrid 10:00, which may be correlated to the morphology and floral resources available. This could be solved with scaled planting, avoiding the overlapping of flowering of both types.

  19. Selección bidireccional de Apis mellifera (Hymenoptera: Apidae para aumento de la resistencia y la susceptibilidad a la nosemosis

    Directory of Open Access Journals (Sweden)

    Yamandú MENDOZA

    2014-01-01

    Full Text Available La nosemosis es una enfermedad que afecta las funciones digestivas de las abejas melíferas causada por los microsporidios Nosema apis y Nosema ceranae. En Uruguay la única especie detectada es N. ceranae. Para determinar si la incidencia de N. ceranae en las colonias tiene un componente genético se realizó una selección bidireccional para aumento de la resistencia y la susceptibilidad a este parásito sin control de la paternidad. Las colonias fueron evaluadas en una forestación de Eucalyptus grandis en otoño. La infección de las colonias se determinó como 1 el porcentaje de abejas pecoreadoras infectadas y 2 el número promedio de esporas por campo en 10 campos. El trabajo se inició con 138 colonias y se evaluaron dos generaciones de 30 y 63 colonias. La respuesta a la selección fue muy limitada, solo en la primera generación las colonias de la línea resistente presentaron menos esporas por abejas que las colonias de la línea susceptible (19,6 ± 5,8 y 26,8 ± 10,4, respectivamente, W = 41,5; P = 0.03. Esto indicaría que la resistencia a la nosemosis está fuertemente afectada por el ambiente. Futuros esfuerzos para aumentar la resistencia de las abejas a N. ceranae a través de mejora genética deberán incluir el control de la paternidad.

  20. Pollen resources and trophic niche breadth of Apis mellifera and Melipona obscurior (Hymenoptera, Apidae) in a subtropical climate in the Atlantic rain forest of southern Brazil

    OpenAIRE

    Hilgert-Moreira, Suzane; Nascher, Carla; Callegari-Jacques, Sidia; Blochtein, Betina

    2013-01-01

    Pollen sources that comprise the trophic niche of native bee species Melipona obscurior and introduced Apis mellifera and the breadth of this niche were studied in two areas in the Atlantic rain forest of southern Brazil. Pollen obtained from the forager bees during a period of 12 months showed that the richness of pollen types found in each sample varied from 5 to 21 for A. mellifera and from 1 to 10 for M. obscurior. In both areas, A. mellifera had higher niche breadth. M. obscurior demonst...

  1. Efeitos de atrativos e repelentes sobre o comportamento da abelha (Apis mellifera, l. Effect of attractants and repellents on the behavior of honey bees (Apis mellipera, L.

    Directory of Open Access Journals (Sweden)

    D.T. MALERBO-SOUZA

    1998-01-01

    Full Text Available O objetivo do presente ensaio foi testar diversas substâncias e verificar sua atratividade e repelência para abelhas, Apis mellifera, L. Para isso, foram realizados testes em discos próximos às colméias e em cana picada oferecida como alimentação para gado bovino confinado. Nos discos próximos à colméia, o produto mais atrativo foi Bee-Here e o mais repelente foi o óleo de citronela. No cocho para bovinos, o repelente mais efetivo foi n-octyl-acetato.The experiment aimed to study honey bee (Apis mellifera attractants and repellents in vitro and on chopped sugar cane for bovine feeding. Tests were performed on plates located near to the hives and on bovine-hods. On plates, Bee-Here® was the most attractive and citronela oil the most repellent. On bovine-hods the most effective was n-octyl-acetate.

  2. Effect of pollination of strawberry by Apis mellifera L. and Chrysoperla carnea S. on quality of the fruits

    Directory of Open Access Journals (Sweden)

    Iván Interiano Zapata

    2014-01-01

    Full Text Available Se evaluó la contribución de Apis mellifera L. y Chrysoperla carnea S. como polinizadores del cultivo de la fresa, utilizando flores primarias de la variedad Festival en un experimento realizado en Irapuato, Guanajuato, México. Los tratamientos utilizados fueron: autogamia (SF, polinización abierta (OP, Apis mellifera (AM y Chrysoperla carnea (CC. La tasa de polinización mostró que hubo diferencias significativas en el tratamiento AM (85.20 ± 2.41 en comparación con SF (41.51 ± 3.92, OP (77.98 ± 2.11 y CC (48.46 ± 2.97. Igualmente se encontraron diferencias significativas en el grado de malformación en AM (16.78 ± 1.20 en comparación con el SF (52.53 ± 1.54, OP (23.34 ± 1.03 y CC (47.88 ± 2.02. El total de antocianinas, peso, diámetro y sólidos totales solubles de los frutos fueron significativamente mayores en AM comparados con los tratamientos SF, OP y CC. El número de óvulos fertilizados se correlacionó positivamente con el peso de la fruta. Se considera a Chrysoperla carnea como deficiente polinizador, pero en contraparte se concluye que la utilización de Apis mellifera puede ser una alternativa para incrementar la producción y calidad de la fruta en los cultivos de la fresa establecidos en Irapuato, Guanajuato, México.

  3. Antagonistic Effect of Gut Bacteria in the Hybrid Carniolan Honey Bee, Apis Mellifera Carnica, Against Ascosphaera Apis, the Causal Organism of Chalkbrood Disease

    Directory of Open Access Journals (Sweden)

    Omar Mohamed O. M.

    2014-06-01

    Full Text Available The objective of this study was to isolate and characterize bacterial strains associated with the gut of the hybrid Carniolan honey bee, Apis mellifera carnica, and to determine their in vitro and in vivo potential against Ascosphaera apis, the causal organism of chalkbrood disease, with the purpose of exploring feasible biological control. Six bacterial strains were isolated from healthy worker honey bees by culture-dependent methods. Six fungal strains (A3, A4, A7, A8, A9, and A15 of A. apis were isolated from larvae suffering from chalkbrood disease on Yeast-Glucose-Starch agar (YGPSA medium. All bacteria were identified by a combination of morphology, Gram stain, and 16S rRNA sequence analysis, and fungal strains were identified by morphology and 5.8S rRNA. In vitro and in vivo inhibition assays were carried out to determine the ability of bacterial isolates to inhibit A. apis, the causal agent of chalkbrood disease. The analysis of 16S rRNA sequences revealed that four bacterial strains (B2, B4, B10, and B100 belong to Bacillus subtilis species, and two strains (P1 and P5 belong to Pseudomonas fluorescence. Significant differences in antagonistic activity of all bacterial strains were observed. B. subtilis isolate B2 showed the highest antagonistic activity, as measured by the inhibition zone against A. apis, followed by the P1 strain of P. fluorescence. SEM analysis also supports the antagonistic activity of these bacteria against A. apis. This study provides a theoretical basis for biological control of honey bee chalkbrood disease.

  4. Detection of viral sequences in semen of honeybees (Apis mellifera): evidence for vertical transmission of viruses through drones.

    Science.gov (United States)

    Yue, Constanze; Schröder, Marion; Bienefeld, Kaspar; Genersch, Elke

    2006-06-01

    Honeybees (Apis mellifera) can be attacked by many eukaryotic parasites, and bacterial as well as viral pathogens. Especially in combination with the ectoparasitic mite Varroa destructor, viral honeybee diseases are becoming a major problem in apiculture, causing economic losses worldwide. Several horizontal transmission routes are described for some honeybee viruses. Here, we report for the first time the detection of viral sequences in semen of honeybee drones suggesting mating as another horizontal and/or vertical route of virus transmission. Since artificial insemination and controlled mating is widely used in honeybee breeding, the impact of our findings for disease transmission is discussed.

  5. Identification and characterization of an Egr ortholog as a neural immediate early gene in the European honeybee (Apis mellifera L.).

    Science.gov (United States)

    Ugajin, Atsushi; Kunieda, Takekazu; Kubo, Takeo

    2013-10-01

    To date, there are only few reports of immediate early genes (IEGs) available in insects. Aiming at identifying a conserved IEG in insects, we characterized an Egr homolog of the honeybee (AmEgr: Apis mellifera Egr). AmEgr was transiently induced in whole worker brains after seizure induction. In situ hybridization for AmEgr indicated that neural activity of a certain mushroom body (a higher brain center) neuron subtype, which is the same as that we previously identified using another non-coding IEG, termed kakusei, is more enhanced in forager brains. These findings suggest that Egr can be utilized as an IEG in insects. PMID:23994532

  6. Effect of Apis mellifera bee venom and gamma radiation on bone marrow cells of wistar rats treated in vivo

    International Nuclear Information System (INIS)

    To determine whether the venom of Apis mellifera can exert a radioprotective effect, by reducing the frequency of chromosomal aberrations induced by radiation, five different experiments were performed on bone marrow cells of Wistar rats. Animals weighing about 100 g were injected intraperitoneally with different venom concentrations (1.0 or 0.5 μ1) 1 or 24 h before, or 30 min after being submitted to three or four Gy of gamma radiation, and sacrificed 24 h after the last treatment. (author)

  7. Frequency and foraging behavior of Apis mellifera in two melon hybrids in Juazeiro, state of Bahia, Brazil.

    Science.gov (United States)

    Kiill, Lúcia H P; Siqueira, Kátia M M; Coelho, Márcia S; Silva, Tamires A; Gama, Diego R S; Araújo, Diego C S; Pereira Neto, Joaquim

    2014-12-01

    The study was carried out to verify if there are differences in foraging frequency and behavior of Apis mellifera in two melon hybrids (10:00 - 'Yellow melon' and Sancho -'Piel de Sapo') in the municipality of Juazeiro, state of Bahia, Brazil. The frequency, behavior of visitors and the floral resource foraged were registered from 5:00 am to 6:00 pm. There was a significant difference in the frequency of visits when comparing hydrids (F = 103.74, p floral type (F = 47.25, p floral resources available. This could be solved with scaled planting, avoiding the overlapping of flowering of both types. PMID:25590739

  8. A review of neurohormone GPCRs present in the fruitfly Drosophila melanogaster and the honey bee Apis mellifera

    DEFF Research Database (Denmark)

    Hauser, Frank; Cazzamali, Giuseppe; Williamson, Michael;

    2006-01-01

    in the recently sequenced genome from the honey bee Apis mellifera. We found 35 neuropeptide receptor genes in the honey bee (44 in Drosophila) and two genes, coding for leucine-rich repeats-containing protein hormone GPCRs (4 in Drosophila). In addition, the honey bee has 19 biogenic amine receptor genes (21...... in Drosophila). The larger numbers of neurohormone receptors in Drosophila are probably due to gene duplications that occurred during recent evolution of the fly. Our analyses also yielded the likely ligands for 40 of the 56 honey bee neurohormone GPCRs identified in this study. In addition, we made some...

  9. Discrimination of closed shapes by two species of bee, Apis mellifera and Megachile rotundata.

    Science.gov (United States)

    Campan, Raymond; Lehrer, Miriam

    2002-02-01

    In the present study, the performance of two bee species, the honeybee Apis mellifera and the leaf-cutter bee Megachile rotundata, in discriminating among various closed (convex) shapes was examined systematically for the first time. Bees were trained to each of five different shapes, a disc, a square, a diamond and two different triangles, all of the same area, using fresh bees in each experiment. In subsequent tests, the trained bees were given a choice between the learned shape and each of the other four shapes. Two sets of experiments were conducted with both species. In the first, solid black shapes were presented against a white background, thus providing a high luminance contrast. In the second, the shapes carried a random black-and-white pattern and were presented 5 cm in front of a similar pattern, thus producing motion contrast, rather than luminance contrast, against the background. The results obtained with the solid shapes reveal that both bee species accomplish the discrimination, although the performance of the honeybee is significantly better than that of the leaf-cutter bee. Furthermore, the effectiveness of the various shapes differs between the two species. However, in neither species is the discrimination performance correlated with the amount of overlap of the black areas contained in the various pairs of shapes, suggesting that, in our experiments, shape discrimination is not based on a template-matching process. We propose that it is based on the use of local parameters situated at the outline of the shape, such as the position of angles or acute points and, in particular, the position and orientation of edges. This conclusion is supported by the finding that bees of both species accomplish the discrimination even with the patterned shapes. These shapes are visible only because of the discontinuity of the speed of image motion perceived at the edge between the shape and the background. PMID:11893770

  10. Gut pathology and responses to the microsporidium Nosema ceranae in the honey bee Apis mellifera.

    Directory of Open Access Journals (Sweden)

    Claudia Dussaubat

    Full Text Available The microsporidium Nosema ceranae is a newly prevalent parasite of the European honey bee (Apis mellifera. Although this parasite is presently spreading across the world into its novel host, the mechanisms by it which affects the bees and how bees respond are not well understood. We therefore performed an extensive characterization of the parasite effects at the molecular level by using genetic and biochemical tools. The transcriptome modifications at the midgut level were characterized seven days post-infection with tiling microarrays. Then we tested the bee midgut response to infection by measuring activity of antioxidant and detoxification enzymes (superoxide dismutases, glutathione peroxidases, glutathione reductase, and glutathione-S-transferase. At the gene-expression level, the bee midgut responded to N. ceranae infection by an increase in oxidative stress concurrent with the generation of antioxidant enzymes, defense and protective response specifically observed in the gut of mammals and insects. However, at the enzymatic level, the protective response was not confirmed, with only glutathione-S-transferase exhibiting a higher activity in infected bees. The oxidative stress was associated with a higher transcription of sugar transporter in the gut. Finally, a dramatic effect of the microsporidia infection was the inhibition of genes involved in the homeostasis and renewal of intestinal tissues (Wnt signaling pathway, a phenomenon that was confirmed at the histological level. This tissue degeneration and prevention of gut epithelium renewal may explain early bee death. In conclusion, our integrated approach not only gives new insights into the pathological effects of N. ceranae and the bee gut response, but also demonstrate that the honey bee gut is an interesting model system for studying host defense responses.

  11. Programmed cell death in the larval salivary glands of Apis mellifera (Hymenoptera, Apidae)

    Indian Academy of Sciences (India)

    E C M Silva-Zacarin; G A Tomaino; M R Brocheto-Braga; S R Taboga; R L M Silva De Moraes

    2007-03-01

    The morphological and histochemical features of degeneration in honeybee (Apis mellifera) salivary glands were investigated in 5th instar larvae and in the pre-pupal period. The distribution and activity patterns of acid phosphatase enzyme were also analysed. As a routine, the larval salivary glands were fixed and processed for light microscopy and transmission electron microscopy. Tissue sections were subsequently stained with haematoxylin–eosin, bromophenol blue, silver, or a variant of the critical electrolyte concentration (CEC) method. Ultrathin sections were contrasted with uranyl acetate and lead citrate. Glands were processed for the histochemical and cytochemical localization of acid phosphatase, as well as biochemical assay to detect its activity pattern. Acid phosphatase activity was histochemically detected in all the salivary glands analysed. The cytochemical results showed acid phosphatase in vesicles, Golgi apparatus and lysosomes during the secretory phase and, additionally, in autophagic structures and luminal secretion during the degenerative phase. These findings were in agreement with the biochemical assay. At the end of the 5th instar, the glandular cells had a vacuolated cytoplasm and pyknotic nuclei, and epithelial cells were shed into the glandular lumen. The transition phase from the 5th instar to the pre-pupal period was characterized by intense vacuolation of the basal cytoplasm and release of parts of the cytoplasm into the lumen by apical blebbing; these blebs contained cytoplasmic RNA, rough endoplasmic reticule and, occasionally, nuclear material. In the pre-pupal phase, the glandular epithelium showed progressive degeneration so that at the end of this phase only nuclei and remnants of the cytoplasm were observed. The nuclei were pyknotic, with peripheral chromatin and blebs. The gland remained in the haemolymph and was recycled during metamorphosis. The programmed cell death in this gland represented a morphological form

  12. Protein and Peptide Composition of Male Accessory Glands of Apis mellifera Drones Investigated by Mass Spectrometry.

    Science.gov (United States)

    Gorshkov, Vladimir; Blenau, Wolfgang; Koeniger, Gudrun; Römpp, Andreas; Vilcinskas, Andreas; Spengler, Bernhard

    2015-01-01

    In honeybees, reproductive females usually mate early in their life with more than 10 males in free flight, often within 10 minutes, and then store male gametes for up to five years. Because of the extreme polyandry and mating in free flight special adaptations in males are most likely. We present here the results of an investigation of the protein content of four types of male reproductive glands from the Western honeybee (Apis mellifera) drone, namely seminal vesicles (secretion in ejaculate), as well as bulbus, cornua and mucus glands (secretions for the mating plug). Using high resolution and accuracy mass spectrometry and a combination of database searching and de novo sequencing techniques it was possible to identify 50 different proteins in total, inside all mentioned glands, except in the mucus gland. Most of the proteins are unique for a specific gland type, only one of them (H9KEY1/ATP synthase subunit O) was found in three glands, and 7 proteins were found in two types of glands. The identified proteins represent a wide variety of biological functions and can be assigned to several physiological classes, such as protection, energy generation, maintaining optimal conditions, associated mainly with vesicula seminalis; signaling, cuticle proteins, icarpin and apolipoproteins located mainly in the bulbus and cornua glands; and some other classes. Most of the discovered proteins were not found earlier during investigation of semen, seminal fluid and tissue of reproductive glands of the bee drone. Moreover, we provide here the origin of each protein. Thus, the presented data might shed light on the role of each reproductive gland.

  13. Protein and Peptide Composition of Male Accessory Glands of Apis mellifera Drones Investigated by Mass Spectrometry.

    Directory of Open Access Journals (Sweden)

    Vladimir Gorshkov

    Full Text Available In honeybees, reproductive females usually mate early in their life with more than 10 males in free flight, often within 10 minutes, and then store male gametes for up to five years. Because of the extreme polyandry and mating in free flight special adaptations in males are most likely. We present here the results of an investigation of the protein content of four types of male reproductive glands from the Western honeybee (Apis mellifera drone, namely seminal vesicles (secretion in ejaculate, as well as bulbus, cornua and mucus glands (secretions for the mating plug. Using high resolution and accuracy mass spectrometry and a combination of database searching and de novo sequencing techniques it was possible to identify 50 different proteins in total, inside all mentioned glands, except in the mucus gland. Most of the proteins are unique for a specific gland type, only one of them (H9KEY1/ATP synthase subunit O was found in three glands, and 7 proteins were found in two types of glands. The identified proteins represent a wide variety of biological functions and can be assigned to several physiological classes, such as protection, energy generation, maintaining optimal conditions, associated mainly with vesicula seminalis; signaling, cuticle proteins, icarpin and apolipoproteins located mainly in the bulbus and cornua glands; and some other classes. Most of the discovered proteins were not found earlier during investigation of semen, seminal fluid and tissue of reproductive glands of the bee drone. Moreover, we provide here the origin of each protein. Thus, the presented data might shed light on the role of each reproductive gland.

  14. Function and distribution of 5-HT2 receptors in the honeybee (Apis mellifera.

    Directory of Open Access Journals (Sweden)

    Markus Thamm

    Full Text Available BACKGROUND: Serotonin plays a pivotal role in regulating and modulating physiological and behavioral processes in both vertebrates and invertebrates. In the honeybee (Apis mellifera, serotonin has been implicated in division of labor, visual processing, and learning processes. Here, we present the cloning, heterologous expression, and detailed functional and pharmacological characterization of two honeybee 5-HT2 receptors. METHODS: Honeybee 5-HT2 receptor cDNAs were amplified from brain cDNA. Recombinant cell lines were established constitutively expressing receptor variants. Pharmacological properties of the receptors were investigated by Ca(2+ imaging experiments. Quantitative PCR was applied to explore the expression patterns of receptor mRNAs. RESULTS: The honeybee 5-HT2 receptor class consists of two subtypes, Am5-HT2α and Am5-HT2β. Each receptor gene also gives rise to alternatively spliced mRNAs that possibly code for truncated receptors. Only activation of the full-length receptors with serotonin caused an increase in the intracellular Ca(2+ concentration. The effect was mimicked by the agonists 5-methoxytryptamine and 8-OH-DPAT at low micromolar concentrations. Receptor activities were blocked by established 5-HT receptor antagonists such as clozapine, methiothepin, or mianserin. High transcript numbers were detected in exocrine glands suggesting that 5-HT2 receptors participate in secretory processes in the honeybee. CONCLUSIONS: This study marks the first molecular and pharmacological characterization of two 5-HT2 receptor subtypes in the same insect species. The results presented should facilitate further attempts to unravel central and peripheral effects of serotonin mediated by these receptors.

  15. Eph receptor and ephrin signaling in developing and adult brain of the honeybee (Apis mellifera).

    Science.gov (United States)

    Vidovic, Maria; Nighorn, Alan; Koblar, Simon; Maleszka, Ryszard

    2007-02-01

    Roles for Eph receptor tyrosine kinase and ephrin signaling in vertebrate brain development are well established. Their involvement in the modulation of mammalian synaptic structure and physiology is also emerging. However, less is known of their effects on brain development and their function in adult invertebrate nervous systems. Here, we report on the characterization of Eph receptor and ephrin orthologs in the honeybee, Apis mellifera (Am), and their role in learning and memory. In situ hybridization for mRNA expression showed a uniform distribution of expression of both genes across the developing pupal and adult brain. However, in situ labeling with Fc fusion proteins indicated that the AmEphR and Amephrin proteins were differentially localized to cell body regions in the mushroom bodies and the developing neuropiles of the antennal and optic lobes. In adults, AmEphR protein was localized to regions of synaptic contacts in optic lobes, in the glomeruli of antennal lobes, and in the medial lobe of the mushroom body. The latter two regions are involved in olfactory learning and memory in the honeybee. Injections of EphR-Fc and ephrin-Fc proteins into the brains of adult bees, 1 h before olfactory conditioning of the proboscis extension reflex, significantly reduced memory 24 h later. Experimental amnesia in the group injected with ephrin-Fc was apparent 1 h post-training. Experimental amnesia was also induced by post-training injections with ephrin-Fc suggesting a role in recall. This is the first demonstration that Eph molecules function to regulate the formation of memory in insects. PMID:17443785

  16. Gut pathology and responses to the microsporidium Nosema ceranae in the honey bee Apis mellifera.

    Science.gov (United States)

    Dussaubat, Claudia; Brunet, Jean-Luc; Higes, Mariano; Colbourne, John K; Lopez, Jacqueline; Choi, Jeong-Hyeon; Martín-Hernández, Raquel; Botías, Cristina; Cousin, Marianne; McDonnell, Cynthia; Bonnet, Marc; Belzunces, Luc P; Moritz, Robin F A; Le Conte, Yves; Alaux, Cédric

    2012-01-01

    The microsporidium Nosema ceranae is a newly prevalent parasite of the European honey bee (Apis mellifera). Although this parasite is presently spreading across the world into its novel host, the mechanisms by it which affects the bees and how bees respond are not well understood. We therefore performed an extensive characterization of the parasite effects at the molecular level by using genetic and biochemical tools. The transcriptome modifications at the midgut level were characterized seven days post-infection with tiling microarrays. Then we tested the bee midgut response to infection by measuring activity of antioxidant and detoxification enzymes (superoxide dismutases, glutathione peroxidases, glutathione reductase, and glutathione-S-transferase). At the gene-expression level, the bee midgut responded to N. ceranae infection by an increase in oxidative stress concurrent with the generation of antioxidant enzymes, defense and protective response specifically observed in the gut of mammals and insects. However, at the enzymatic level, the protective response was not confirmed, with only glutathione-S-transferase exhibiting a higher activity in infected bees. The oxidative stress was associated with a higher transcription of sugar transporter in the gut. Finally, a dramatic effect of the microsporidia infection was the inhibition of genes involved in the homeostasis and renewal of intestinal tissues (Wnt signaling pathway), a phenomenon that was confirmed at the histological level. This tissue degeneration and prevention of gut epithelium renewal may explain early bee death. In conclusion, our integrated approach not only gives new insights into the pathological effects of N. ceranae and the bee gut response, but also demonstrate that the honey bee gut is an interesting model system for studying host defense responses. PMID:22623972

  17. Protein and Peptide Composition of Male Accessory Glands of Apis mellifera Drones Investigated by Mass Spectrometry.

    Science.gov (United States)

    Gorshkov, Vladimir; Blenau, Wolfgang; Koeniger, Gudrun; Römpp, Andreas; Vilcinskas, Andreas; Spengler, Bernhard

    2015-01-01

    In honeybees, reproductive females usually mate early in their life with more than 10 males in free flight, often within 10 minutes, and then store male gametes for up to five years. Because of the extreme polyandry and mating in free flight special adaptations in males are most likely. We present here the results of an investigation of the protein content of four types of male reproductive glands from the Western honeybee (Apis mellifera) drone, namely seminal vesicles (secretion in ejaculate), as well as bulbus, cornua and mucus glands (secretions for the mating plug). Using high resolution and accuracy mass spectrometry and a combination of database searching and de novo sequencing techniques it was possible to identify 50 different proteins in total, inside all mentioned glands, except in the mucus gland. Most of the proteins are unique for a specific gland type, only one of them (H9KEY1/ATP synthase subunit O) was found in three glands, and 7 proteins were found in two types of glands. The identified proteins represent a wide variety of biological functions and can be assigned to several physiological classes, such as protection, energy generation, maintaining optimal conditions, associated mainly with vesicula seminalis; signaling, cuticle proteins, icarpin and apolipoproteins located mainly in the bulbus and cornua glands; and some other classes. Most of the discovered proteins were not found earlier during investigation of semen, seminal fluid and tissue of reproductive glands of the bee drone. Moreover, we provide here the origin of each protein. Thus, the presented data might shed light on the role of each reproductive gland. PMID:25955586

  18. Viral epidemiology of the adult Apis Mellifera infested by the Varroa destructor mite.

    Science.gov (United States)

    Bernardi, Sara; Venturino, Ezio

    2016-05-01

    The ectoparasitic mite Varroa destructor has become one of the major worldwide threats for apiculture. Varroa destructor attacks the honey bee Apis mellifera weakening its host by sucking hemolymph. However, the damage to bee colonies is not strictly related to the parasitic action of the mite but it derives, above all, from its action as vector increasing the transmission of many viral diseases such as acute paralysis (ABPV) and deformed wing viruses (DWV), that are considered among the main causes of CCD (Colony Collapse Disorder). In this work we discuss an [Formula: see text] model that describes how the presence of the mite affects the epidemiology of these viruses on adult bees. The acronym [Formula: see text] means that the disease affects both populations. In fact it accounts for the bee and mite populations, that are each divided among the S (susceptible) and I (infected) states. We characterize the system behavior, establishing that ultimately either only healthy bees survive, or the disease becomes endemic and mites are wiped out. Another dangerous alternative is the Varroa invasion scenario with the extinction of healthy bees. The final possible configuration is the coexistence equilibrium in which honey bees share their infected hive with mites. The analysis is in line with some observed facts in natural honey bee colonies. Namely, these diseases are endemic. Further, if the mite population is present, necessarily the viral infection occurs. The findings of this study indicate that a low horizontal transmission rate of the virus among honey bees in beehives will help in protecting bee colonies from Varroa infestation and viral epidemics. PMID:27441276

  19. A selective sweep in a Varroa destructor resistant honeybee (Apis mellifera) population.

    Science.gov (United States)

    Lattorff, H Michael G; Buchholz, Josephine; Fries, Ingemar; Moritz, Robin F A

    2015-04-01

    The mite Varroa destructor is one of the most dangerous parasites of the Western honeybee (Apis mellifera) causing enormous colony losses worldwide. Various chemical treatments for the control of the Varroa mite are currently in use, which, however, lead to residues in bee products and often to resistance in mites. This facilitated the exploration of alternative treatment methods and breeding for mite resistant honeybees has been in focus for breeders in many parts of the world with variable results. Another approach has been applied to a honeybee population on Gotland (Sweden) that was exposed to natural selection and survived Varroa-infestation for more than 10years without treatment. Eventually this population became resistant to the parasite by suppressing the reproduction of the mite. A previous QTL mapping study had identified a region on chromosome 7 with major loci contributing to the mite resistance. Here, a microsatellite scan of the significant candidate QTL regions was used to investigate potential footprints of selection in the original population by comparing the study population on Gotland before (2000) and after selection (2007). Genetic drift had caused an extreme loss of genetic diversity in the 2007 population for all genetic markers tested. In addition to this overall reduction of heterozygosity, two loci on chromosome 7 showed an even stronger and significant reduction in diversity than expected from genetic drift alone. Within the selective sweep eleven genes are annotated, one of them being a putative candidate to interfere with reduced mite reproduction. A glucose-methanol-choline oxidoreductase (GMCOX18) might be involved in changing volatiles emitted by bee larvae that might be essential to trigger oogenesis in Varroa.

  20. Curcumin Stimulates Biochemical Mechanisms of Apis Mellifera Resistance and Extends the Apian Life-Span

    Directory of Open Access Journals (Sweden)

    Strachecka Aneta J.

    2015-06-01

    Full Text Available We examined the influence of curcumin-supplemented feeding on worker lifespan, Nosema resistance, key enzyme activities, metabolic compound concentrations and percentage of the global DNA methylation. Two worker groups (Apis mellifera were set up: 1 control group; workers were fed ad libitum with sucrose syrup; 2 workers were fed with the syrup with the addition of curcumin. Dead workers were removed every two days and the Nosema spp. infection levels were assessed. Hemolymph was taken from living workers for biochemical analyses. The global DNA methylation level was analysed using DNA from worker heads and thoraces. The bees that consumed curcumin lived longer and were less infested with Nosema spp. The curcumin-treated workers had higher concentrations of proteins, non-enzymatic biomarkers (triglycerides, glucose, cholesterol, Mg2+ and Ca2+, uric acid and creatinine, as well as elevated activities of antioxidant enzymes (SOD , GPx, CAT , GST , neutral proteases, protease inhibitors, enzymatic biomarkers (AST , ALT , ALP . The concentrations of albumin and urea, and the activities of acidic and alkaline proteases were higher in the control group. Curcumin decreased global DNA methylation levels especially in older bees in which the natural, age-related level increase was observed. Most of the parameters increased over the apian youth and adulthood, and decreased in older bees. The decrease was markedly delayed in the bees fed with curcumin. Curcumin appeared to be an unexpectedly effective natural bio-stimulator, improving apian health and vitality. This multifactorial effect is caused by the activation of many biochemical processes involved in the formation of apian resistance.

  1. Foraging range of honey bees, Apis mellifera, in alfalfa seed production fields.

    Science.gov (United States)

    Hagler, James R; Mueller, Shannon; Teuber, Larry R; Machtley, Scott A; Van Deynze, Allen

    2011-01-01

    A study was conducted in 2006 and 2007 designed to examine the foraging range of honey bees, Apis mellifera (Hymenoptera: Apidae), in a 15.2 km(2) area dominated by a 128.9 ha glyphosate-resistant Roundup Ready® alfalfa seed production field and several non-Roundup Ready alfalfa seed production fields (totaling 120.2 ha). Each year, honey bee self-marking devices were placed on 112 selected honey bee colonies originating from nine different apiary locations. The foraging bees exiting each apiary location were uniquely marked so that the apiary of origin and the distance traveled by the marked (field-collected) bees into each of the alfalfa fields could be pinpointed. Honey bee self-marking devices were installed on 14.4 and 11.2% of the total hives located within the research area in 2006 and 2007, respectively. The frequency of field-collected bees possessing a distinct mark was similar, averaging 14.0% in 2006 and 12.6% in 2007. A grand total of 12,266 bees were collected from the various alfalfa fields on seven sampling dates over the course of the study. The distances traveled by marked bees ranged from a minimum of 45 m to a maximum of 5983 m. On average, marked bees were recovered ~ 800 m from their apiary of origin and the recovery rate of marked bees decreased exponentially as the distance from the apiary of origin increased. Ultimately, these data will be used to identify the extent of pollen-mediated gene flow from Roundup Ready to conventional alfalfa. PMID:22224495

  2. Honey Bees (Apis mellifera, L. as Active Samplers of Airborne Particulate Matter.

    Directory of Open Access Journals (Sweden)

    Ilaria Negri

    Full Text Available Honey bees (Apis mellifera L. are bioindicators of environmental pollution levels. During their wide-ranging foraging activity, these hymenopterans are exposed to pollutants, thus becoming a useful tool to trace the environmental contaminants as heavy metals, pesticides, radionuclides and volatile organic compounds. In the present work we demonstrate that bees can also be used as active samplers of airborne particulate matter. Worker bees were collected from hives located in a polluted postmining area in South West Sardinia (Italy that is also exposed to dust emissions from industrial plants. The area is included in an official list of sites of national interest for environmental remediation, and has been characterized for the effects of pollutants on the health of the resident population. The head, wings, hind legs and alimentary canal of the bees were investigated with Scanning Electron Microscopy coupled with X-ray spectroscopy (SEM-EDX. The analyses pointed to specific morphological and chemical features of the particulate, and resulted into the identification of three categories of particles: industry-, postmining-, and soil-derived. With the exception of the gut, all the analyzed body districts displayed inorganic particles, mostly concentrated in specific areas of the body (i.e. along the costal margin of the fore wings, the medial plane of the head, and the inner surface of the hind legs. The role of both past mining activities and the industrial activity close to the study area as sources of the particulate matter is also discussed. We conclude that honey bees are able to collect samples of the main airborne particles emitted from different sources, therefore could be an ideal tool for monitoring such a kind of pollutants.

  3. Characteristics of Honey Bee (Apis Mellifera Carnica, Pollman 1879 Queens Reared in Slovenian Commercial Breeding Stations

    Directory of Open Access Journals (Sweden)

    Gregorc Aleš

    2015-12-01

    Full Text Available In this three-year-trial study, we examined the quality of mated queens based on morphological and physiology traits. At each location, sister queen bees were reared each year from one Apis mellifera carnica breeder queen. Queens were also reared and mated in different locations. Altogether, we sampled and analysed 324 queens from 27 apiaries in 2006, 288 queens from 24 apiaries in 2008, and 276 queens from 23 apiaries in 2010. Nine queens from each apiary were sampled and dissected for morphological analyses and Nosema ceranae (N. ceranae spores, if present, were quantified. Three queens from each apiary were prepared and tested for four viruses: acute bee paralysis virus (ABPV, black queen cell virus (BQCV, deformed wing virus (DWV, and sacbrood virus (SBV. The highest average queen weight of 209.49 ± 9.82 mg was detected in 2008. The highest average ovary weight of 78.67 ± 11.86 mg was detected in 2010, and the highest number of ovarioles was 161.59 ± 8.70 in 2006. The average number of spermatozoa in queens ranged from 3.30 x 106 in 2006 to 5.23 x 106 in 2010. Nosema ceranae spores were found in queens sampled in 2008 and 2010. Viruses were discovered sporadically during the queen testing periods from 2006 - 2010. This study importantly demonstrates that queens from rearing stations require regular evaluation for morphological and physiological changes as well as for infection from harmful pathogens. These results could also be used in establishing relevant commercial standards for rearing quality queens.

  4. Chemical composition and antimicrobial activity of honeybee ( Apis mellifera ligustica) propolis from subtropical eastern Australia

    Science.gov (United States)

    Massaro, Carmelina Flavia; Simpson, Jack Bruce; Powell, Daniel; Brooks, Peter

    2015-12-01

    Propolis is a material manufactured by bees and contains beeswax, bee salivary secretions and plant resins. Propolis preparations have been used for millennia by humans in food, cosmetics and medicines due to its antibacterial effects. Within the hive, propolis plays an important role in bees' health, with much of its bioactivity largely dependent on the plant resins the bees select for its production. Few chemical studies are available on the chemistry of propolis produced by Australian honeybees ( Apis mellifera, Apidae). This study aimed to determine the chemical composition as well as in vitro antimicrobial effects of propolis harvested from honeybees in subtropical eastern Australia. Honeybee propolis was produced using plastic frames and multiple beehives in two subtropical sites in eastern Australia. Methanolic extracts of propolis were analysed by liquid chromatography with ultraviolet detection and high-resolution mass spectrometry (ultra-high-pressure liquid chromatography (UHPLC)-UV-high-resolution tandem mass spectrometry (HR-MS/MS)) and by gas chromatography mass spectrometry (GC-MS). The resulting chemical data were dereplicated for compound characterisation. The two crude extracts in abs. ethanol were tested in vitro by the agar diffusion and broth dilution methods, using a phenol standard solution as the positive control and abs. ethanol as the negative control. Chemical constituents were identified to be pentacyclic triterpenoids and C-prenylated flavonoids, including Abyssinoflavanone VII, Propolin C and Nymphaeol C. The two propolis crude extracts showed bactericidal effects at the minimal inhibitory concentrations of 0.37-2.04 mg mL-1 against Staphylococcus aureus ATCC 25923. However, the extracts were inactive against Klebsiella pneumoniae ATCC 13883 and Candida albicans ATCC 10231. The antistaphylococcal potential of propolis was discussed, also in relation to honeybees' health, as it warrants further investigations on the social and

  5. Cytotoxic effects of thiamethoxam in the midgut and malpighian tubules of Africanized Apis mellifera (Hymenoptera: Apidae).

    Science.gov (United States)

    Catae, Aline Fernanda; Roat, Thaisa Cristina; De Oliveira, Regiane Alves; Nocelli, Roberta Cornélio Ferreira; Malaspina, Osmar

    2014-04-01

    Due to its expansion, agriculture has become increasingly dependent on the use of pesticides. However, the indiscriminate use of insecticides has had additional effects on the environment. These products have a broad spectrum of action, and therefore the insecticide affects not only the pests but also non-target insects such as bees, which are important pollinators of agricultural crops and natural environments. Among the most used pesticides, the neonicotinoids are particularly harmful. One of the neonicotinoids of specific concern is thiamethoxam, which is used on a wide variety of crops and is toxic to bees. Thus, this study aimed to analyze the effects of this insecticide in the midgut and Malpighian tubule cells of Africanized Apis mellifera. Newly emerged workers were exposed until 8 days to a diet containing a sublethal dose of thiamethoxam equal to 1/10 of LC₅₀ (0.0428 ng a.i./l L of diet). The bees were dissected and the organs were processed for transmission electron microscopy. The results showed that thiamethoxam is cytotoxic to midgut and Malpighian tubules. In the midgut, the damage was more evident in bees exposed to the insecticide on the first day. On the eighth day, the cells were ultrastructurally intact suggesting a recovery of this organ. The Malpighian tubules showed pronounced alterations on the eighth day of exposure of bees to the insecticide. This study demonstrates that the continuous exposure to a sublethal dose of thiamethoxam can impair organs that are used during the metabolism of the insecticide. PMID:24470251

  6. Viral epidemiology of the adult Apis Mellifera infested by the Varroa destructor mite.

    Science.gov (United States)

    Bernardi, Sara; Venturino, Ezio

    2016-05-01

    The ectoparasitic mite Varroa destructor has become one of the major worldwide threats for apiculture. Varroa destructor attacks the honey bee Apis mellifera weakening its host by sucking hemolymph. However, the damage to bee colonies is not strictly related to the parasitic action of the mite but it derives, above all, from its action as vector increasing the transmission of many viral diseases such as acute paralysis (ABPV) and deformed wing viruses (DWV), that are considered among the main causes of CCD (Colony Collapse Disorder). In this work we discuss an [Formula: see text] model that describes how the presence of the mite affects the epidemiology of these viruses on adult bees. The acronym [Formula: see text] means that the disease affects both populations. In fact it accounts for the bee and mite populations, that are each divided among the S (susceptible) and I (infected) states. We characterize the system behavior, establishing that ultimately either only healthy bees survive, or the disease becomes endemic and mites are wiped out. Another dangerous alternative is the Varroa invasion scenario with the extinction of healthy bees. The final possible configuration is the coexistence equilibrium in which honey bees share their infected hive with mites. The analysis is in line with some observed facts in natural honey bee colonies. Namely, these diseases are endemic. Further, if the mite population is present, necessarily the viral infection occurs. The findings of this study indicate that a low horizontal transmission rate of the virus among honey bees in beehives will help in protecting bee colonies from Varroa infestation and viral epidemics.

  7. Nutritional Effect of Alpha-Linolenic Acid on Honey Bee Colony Development (Apis Mellifera L.

    Directory of Open Access Journals (Sweden)

    Ma Lanting

    2015-12-01

    Full Text Available Alpha-linolenic acid (ALA, which is an n-3 polyunsaturated fatty acid (PUFA, influences honey bee feed intake and longevity. The objective of this study was to research the effect of six dietary ALA levels on the growth and development of Apis mellifera ligustica colonies. In the early spring, a total of 36 honey bee colonies of equal size and queen quality were randomly allocated into 6 groups. The six groups of honey bees were fed a basal diet with supplementation of ALA levels at 0 (group A, 2 (group B, 4 (group C, 6 (group D, 8 (group E, and 10% (group F. In this study, there were significant effects of pollen substitute ALA levels on the feeding amounts of the bee colony, colony population, sealed brood amount, and weight of newly emerged workers (P<0.05. The workers’ midgut Lipase (LPS activity of group C was significantly lower than that of the other groups (P<0.01. The worker bees in groups B, C, and D had significantly longer lifespans than those in the other groups (P<0.05. However, when the diets had ALA concentrations of more than 6%, the mortality of the honey bees increased (P<0.01. These results indicate that ALA levels of 2 ~ 4% of the pollen substitute were optimal for maintaining the highest reproductive performance and the digestion and absorption of fatty acids in honey bees during the period of spring multiplication. Additionally, ALA levels of 2 ~ 6% of the pollen substitute, improved worker bee longevity.

  8. Learning and memory in workers reared by nutritionally stressed honey bee (Apis mellifera L.) colonies.

    Science.gov (United States)

    Mattila, Heather R; Smith, Brian H

    2008-12-15

    Chronic nutritional stress can have a negative impact on an individual's learning ability and memory. However, in social animals that share food among group members, such as the honey bee (Apis mellifera L.), it is unknown whether group-level nutritional stress is manifested in the learning performance of individuals. Accordingly, we examined learning and memory in honey bee workers reared by colonies exposed to varying degrees of long-term pollen stress. Pollen provides honey bee workers with almost all of the proteins, lipids, vitamins, and minerals that they require as larvae and adults. Colonies were created that were either chronically pollen poor or pollen rich, or were intermediate in pollen supply; treatments altered colonies' pollen stores and brood-rearing capacity. Workers from these colonies were put through a series of olfactory-conditioning assays using proboscis-extension response (PER). PER thresholds were determined, then workers learned in olfactory-conditioning trials to associate two floral odors (one novel and the other presented previously without reward) with stimulation with sucrose and a sucrose reward. The strength of the memory that was formed for the odor/sucrose association was tested after olfactory-conditioning assays ended. Colony-level nutritional status had no effect on worker learning or memory (response threshold of workers to sucrose, acquisition of the odor/sucrose association, occurrence of latent inhibition, or memory retention over 72 h). We conclude that potential effects of chronic, colony-wide nutrient deprivation on learning and memory are not found in workers, probably because colonies use brood-rearing capacity to buffer nutrient stress at the level of the individual.

  9. Selenium toxicity to honey bee (Apis mellifera L. pollinators: effects on behaviors and survival.

    Directory of Open Access Journals (Sweden)

    Kristen R Hladun

    Full Text Available We know very little about how soil-borne pollutants such as selenium (Se can impact pollinators, even though Se has contaminated soils and plants in areas where insect pollination can be critical to the functioning of both agricultural and natural ecosystems. Se can be biotransferred throughout the food web, but few studies have examined its effects on the insects that feed on Se-accumulating plants, particularly pollinators. In laboratory bioassays, we used proboscis extension reflex (PER and taste perception to determine if the presence of Se affected the gustatory response of honey bee (Apis mellifera L., Hymenoptera: Apidae foragers. Antennae and proboscises were stimulated with both organic (selenomethionine and inorganic (selenate forms of Se that commonly occur in Se-accumulating plants. Methionine was also tested. Each compound was dissolved in 1 M sucrose at 5 concentrations, with sucrose alone as a control. Antennal stimulation with selenomethionine and methionine reduced PER at higher concentrations. Selenate did not reduce gustatory behaviors. Two hours after being fed the treatments, bees were tested for sucrose response threshold. Bees fed selenate responded less to sucrose stimulation. Mortality was higher in bees chronically dosed with selenate compared with a single dose. Selenomethionine did not increase mortality except at the highest concentration. Methionine did not significantly impact survival. Our study has shown that bees fed selenate were less responsive to sucrose, which may lead to a reduction in incoming floral resources needed to support coworkers and larvae in the field. If honey bees forage on nectar containing Se (particularly selenate, reductions in population numbers may occur due to direct toxicity. Given that honey bees are willing to consume food resources containing Se and may not avoid Se compounds in the plant tissues on which they are foraging, they may suffer similar adverse effects as seen in other

  10. A selective sweep in a Varroa destructor resistant honeybee (Apis mellifera) population.

    Science.gov (United States)

    Lattorff, H Michael G; Buchholz, Josephine; Fries, Ingemar; Moritz, Robin F A

    2015-04-01

    The mite Varroa destructor is one of the most dangerous parasites of the Western honeybee (Apis mellifera) causing enormous colony losses worldwide. Various chemical treatments for the control of the Varroa mite are currently in use, which, however, lead to residues in bee products and often to resistance in mites. This facilitated the exploration of alternative treatment methods and breeding for mite resistant honeybees has been in focus for breeders in many parts of the world with variable results. Another approach has been applied to a honeybee population on Gotland (Sweden) that was exposed to natural selection and survived Varroa-infestation for more than 10years without treatment. Eventually this population became resistant to the parasite by suppressing the reproduction of the mite. A previous QTL mapping study had identified a region on chromosome 7 with major loci contributing to the mite resistance. Here, a microsatellite scan of the significant candidate QTL regions was used to investigate potential footprints of selection in the original population by comparing the study population on Gotland before (2000) and after selection (2007). Genetic drift had caused an extreme loss of genetic diversity in the 2007 population for all genetic markers tested. In addition to this overall reduction of heterozygosity, two loci on chromosome 7 showed an even stronger and significant reduction in diversity than expected from genetic drift alone. Within the selective sweep eleven genes are annotated, one of them being a putative candidate to interfere with reduced mite reproduction. A glucose-methanol-choline oxidoreductase (GMCOX18) might be involved in changing volatiles emitted by bee larvae that might be essential to trigger oogenesis in Varroa. PMID:25660040

  11. Vitellogenins are new high molecular weight components and allergens (Api m 12 and Ves v 6 of Apis mellifera and Vespula vulgaris venom.

    Directory of Open Access Journals (Sweden)

    Simon Blank

    Full Text Available BACKGROUND/OBJECTIVES: Anaphylaxis due to hymenoptera stings is one of the most severe clinical outcomes of IgE-mediated hypersensitivity reactions. Although allergic reactions to hymenoptera stings are often considered as a general model for the underlying principles of allergic disease, venom immunotherapy is still hampered by severe systemic side effects and incomplete protection. The identification and detailed characterization of all allergens of hymenoptera venoms might result in an improvement in this field and promote the detailed understanding of the allergological mechanism. Our aim was the identification and detailed immunochemical and allergological characterization of the low abundant IgE-reactive 200 kDa proteins of Apis mellifera and Vespula vulgaris venom. METHODS/PRINCIPAL FINDINGS: Tandem mass spectrometry-based sequencing of a 200 kDa venom protein yielded peptides that could be assigned to honeybee vitellogenin. The coding regions of the honeybee protein as well as of the homologue from yellow jacket venom were cloned from venom gland cDNA. The newly identified 200 kDa proteins share a sequence identity on protein level of 40% and belong to the family of vitellogenins, present in all oviparous animals, and are the first vitellogenins identified as components of venom. Both vitellogenins could be recombinantly produced as soluble proteins in insect cells and assessed for their specific IgE reactivity. The particular vitellogenins were recognized by approximately 40% of sera of venom-allergic patients even in the absence of cross-reactive carbohydrate determinants. CONCLUSION: With the vitellogenins of Apis mellifera and Vespula vulgaris venom a new homologous pair of venom allergens was identified and becomes available for future applications. Due to their allergenic properties the honeybee and the yellow jacket venom vitellogenin were designated as allergens Api m 12 and Ves v 6, respectively.

  12. CARACTERIZACIÓN ANTIMICROBIANA Y FISICOQUÍMICA DE PROPÓLEOS DE Apis mellifera L. (HYMENOPTERA: APIDAE DE LA REGIÓN ANDINA COLOMBIANA Antimicrobial and Physico-Chemical Characterization of Propolis of Apis mellifera L. (Hymenoptera: Apidae from the Colombian Andes

    Directory of Open Access Journals (Sweden)

    ESTHER MARGARIDA ALVES FERREIRA BASTOS

    Full Text Available El propóleo es un material resinoso producido por las abejas a partir de diversos materiales vegetales. El objetivo de este trabajo fue caracterizar muestras de propóleos de Apis mellifera provenientes de la región Andina colombiana respecto a su perfil antimicrobiano y fisicoquímico. Fueron empleados extractos etanólicos de propóleos por la técnica de disco-difusión, frente a las especies Escherichia coli, Staphylococcus aureus y Candida albicans. Para la caracterización fisicoquímica se evaluaron el porcentaje de extracto seco, contenido de cera, índice de oxidación y determinación cuantitativa de compuestos fenólicos y flavonoides. Todas las muestras presentaron actividad antibacteriana, con halos de inhibición comprendidos entre 8 y 12 mm para E. coli y entre 8,3 y 23,5 mm para S. aureus. No se observó ninguna actividad contra C. albicans. Los parámetros fisicoquímicos citados anteriormente presentaron una variación de 2,72 a 9,17%, 0 a 2%, 3 a 51s, 0,1 a 0,5 (p/p y 0,02 a 0,95 (p/p, respectivamente. El perfil antimicrobiano observado, relacionado al fisicoquímico, sugiere la necesidad de nuevos estudios para la determinación del origen botánico y geográfico de las muestras estudiadas.Propolis is a resinous material produced by bees from various plant sources. The objective of this study was to characterize propolis samples of Apis mellifera from the Colombian Andean region, regarding the antimicrobial and physicochemical profiles. We used the technique of disk diffusion with ethanol extracts of propolis against Escherichia coli, Staphylococcus aureus and Candida albicans. The physicochemical characterization included percentage of solids content, wax, oxidation index and quantitative determination of phenolic and flavonoids compounds. All samples showed antibacterial activity, with inhibition zones between 8,0 and 12,0 mm for E. coli and between 8,3 and 23,5 mm for S. aureus. We did not observe any activity against C

  13. A scientific note on the lactic acid bacterial flora within the honeybee subspecies Apis mellifera (Buckfast), A.m. scutellata, A.m. mellifera, and A.m. monticola

    Science.gov (United States)

    It was discovered by Olofsson and Vásquez (2008) that a novel lactic acid bacteria (LAB) microbiota with numerous LAB, comprising the genera Lactobacillus and Bifidobacterium, live in a symbiotic relationship with honeybees (Apis mellifera) in their honey stomach. Previous results from 16S rRNA gene...

  14. Large pathogen screening reveals first report of Megaselia scalaris (Diptera: Phoridae) parasitizing Apis mellifera intermissa (Hymenoptera: Apidae).

    Science.gov (United States)

    Menail, Ahmed Hichem; Piot, Niels; Meeus, Ivan; Smagghe, Guy; Loucif-Ayad, Wahida

    2016-06-01

    As it is most likely that global warming will also lead to a shift in pollinator-habitats northwards, the study of southern species becomes more and more important. Pathogen screenings in subspecies of Apis mellifera capable of withstanding higher temperatures, provide an insight into future pathogen host interactions. Screenings in different climate regions also provide a global perspective on the prevalence of certain pathogens. In this project, we performed a pathogen screening in Apis mellifera intermissa, a native subspecies of Algeria in northern Africa. Colonies were sampled from different areas in the region of Annaba over a period of two years. Several pathogens were detected, among them Apicystis bombi, Crithidia mellificae, Nosema ceranae, Paenibacillus larvae, Lake Sinai Virus, Sacbrood Virus and Deformed Wing Virus (DWV). Our screening also revealed a phoroid fly, Megaselia scalaris, parasitizing honey bee colonies, which we report here for the first time. In addition, we found DWV to be present in the adult flies and replicating virus in the larval stages of the fly, which could indicate that M. scalaris acts as a vector of DWV. PMID:27130035

  15. Resistance rather than tolerance explains survival of savannah honeybees (Apis mellifera scutellata) to infestation by the parasitic mite Varroa destructor.

    Science.gov (United States)

    Strauss, Ursula; Dietemann, Vincent; Human, Hannelie; Crewe, Robin M; Pirk, Christian W W

    2016-03-01

    Varroa destructor is considered the most damaging parasite affecting honeybees (Apis mellifera L.). However, some honeybee populations such as the savannah honeybee (Apis mellifera scutellata) can survive mite infestation without treatment. It is unclear if survival is due to resistance mechanisms decreasing parasite reproduction or to tolerance mechanisms decreasing the detrimental effects of mites on the host. This study investigates both aspects by quantifying the reproductive output of V. destructor and its physiological costs at the individual host level. Costs measured were not consistently lower when compared with susceptible honeybee populations, indicating a lack of tolerance. In contrast, reproduction of V. destructor mites was distinctly lower than in susceptible populations. There was higher proportion of infertile individuals and the reproductive success of fertile mites was lower than measured to date, even in surviving populations. Our results suggest that survival of savannah honeybees is based on resistance rather than tolerance to this parasite. We identified traits that may be useful for breeding programmes aimed at increasing the survival of susceptible populations. African honeybees may have benefited from a lack of human interference, allowing natural selection to shape a population of honeybees that is more resistant to Varroa mite infestation. PMID:26690678

  16. Scientific Opinion on the science behind the development of a risk assessment of Plant Protection Products on bees (Apis mellifera, Bombus spp. and solitary bees)

    NARCIS (Netherlands)

    Luttik, R.; Arnold, G.; Boesten, J.J.T.I.; Cresswell, J.; Hart, A.; Pistorius, J.; Sgolastra, F.; Delso, N.S.; Steurbaut, W.; Thompson, H.

    2012-01-01

    The PPR Panel was asked to deliver a scientific opinion on the science behind the development of a risk assessment of plant protection products on bees (Apis mellifera, Bombus spp. and solitary bees). Specific protection goals options were suggested based on the ecosystem services approach. The diff

  17. A monitoring study to assess the acute mortality effects of indoxacarb on honey bees (Apis mellifera L.) in flowering apple orchards

    NARCIS (Netherlands)

    Steen, van der J.J.M.; Dinter, A.

    2007-01-01

    To evaluate the effect of the indoxacarb 300 g kg-1 WG, Steward 30WDGTM, on the honey bee (Apis mellifera L.) in apple orchards, a monitoring study was conducted in Dutch apple orchards in April/May 2004. Before apple flowering began, two honey bee colonies were placed in each orchard to investigate

  18. Use of repellents for honeybees (Apis mellifera L. in vitro in the yellow passion-fruit (Passiflora edulis Deg crop and in confined beef cattle feeders

    Directory of Open Access Journals (Sweden)

    D. Nicodemo

    2004-01-01

    Full Text Available The presence of Apis mellifera in places such as candy and soft drink factories, restaurants, and ice-cream shops has been a concern to many people. In the yellow passion-fruit crop, Apis mellifera is able to collect all anther pollen but has no active role in pollination. Honeybees also visit animal feeders with chopped sugar cane, preventing the cattle from eating. This work studied the effect of natural and synthetic substances as Apis mellifera repellents in vitro in the yellow passion-fruit crop and in confined beef cattle feeders. There was a repellent effect in vitro with the following substances in decreasing order: tobacco, rue, garlic, parsley, and century plant extracts; average effect was twenty-five minutes. For the yellow passion-fruit, garlic extracts and 2-heptanone were equally efficient with a two and a half hour repellent action. Garlic and citronella extracts were efficient in repelling Apis mellifera from confined beef cattle feeder for six hours. Garlic repellent action was higher than citronella.

  19. Molecular characterization and functional expression of the Apis mellifera voltage-dependent Ca2+ channels.

    Science.gov (United States)

    Cens, Thierry; Rousset, Matthieu; Collet, Claude; Charreton, Mercedes; Garnery, Lionel; Le Conte, Yves; Chahine, Mohamed; Sandoz, Jean-Christophe; Charnet, Pierre

    2015-03-01

    Voltage-gated Ca(2+) channels allow the influx of Ca(2+) ions from the extracellular space upon membrane depolarization and thus serve as a transducer between membrane potential and cellular events initiated by Ca(2+) transients. Most insects are predicted to possess three genes encoding Cavα, the main subunit of Ca(2+) channels, and several genes encoding the two auxiliary subunits, Cavβ and Cavα2δ; however very few of these genes have been cloned so far. Here, we cloned three full-length cDNAs encoding the three Cavα subunits (AmelCav1a, AmelCav2a and AmelCav3a), a cDNA encoding a novel variant of the Cavβ subunit (AmelCavβc), and three full-length cDNAs encoding three Cavα2δ subunits (AmelCavα2δ1 to 3) of the honeybee Apis mellifera. We identified several alternative or mutually exclusive exons in the sequence of the AmelCav2 and AmelCav3 genes. Moreover, we detected a stretch of glutamine residues in the C-terminus of the AmelCav1 subunit that is reminiscent of the motif found in the human Cav2.1 subunit of patients with Spinocerebellar Ataxia type 6. All these subunits contain structural domains that have been identified as functionally important in their mammalian homologues. For the first time, we could express three insect Cavα subunits in Xenopus oocytes and we show that AmelCav1a, 2a and 3a form Ca(2+) channels with distinctive properties. Notably, the co-expression of AmelCav1a or AmelCav2a with AmelCavβc and AmCavα2δ1 produces High Voltage-Activated Ca(2+) channels. On the other hand, expression of AmelCav3a alone leads to Low Voltage-Activated Ca(2+) channels. PMID:25602183

  20. Reproductive biology of Varroa destructor in Africanized honey bees (Apis mellifera).

    Science.gov (United States)

    Calderón, R A; van Veen, J W; Sommeijer, M J; Sanchez, L A

    2010-04-01

    Since its first contact with Apis mellifera, the population dynamics of the parasitic mite Varroa destructor varies from one region to another. In many regions of the world, apiculture has come to depend on the use of acaricides, because of the extensive damage caused by varroa to bee colonies. At present, the mite is considered to contribute to the recent decline of honey bee colonies in North America and Europe. Because in tropical climates worker brood rearing and varroa reproduction occurs all year round, it could be expected that here the impact of the parasite will be even more devastating. Yet, this has not been the case in tropical areas of South America. In Brazil, varroa was introduced more than 30 years ago and got established at low levels of infestation, without causing apparent damage to apiculture with Africanized honey bees (AHB). The tolerance of AHB to varroa is apparently attributable, at least in part, to resistance in the bees. The low fertility of this parasite in Africanized worker brood and the grooming and hygienic behavior of the bees are referred as important factors in keeping mite infestation low in the colonies. It has also been suggested that the type of mite influences the level of tolerance in a honey bee population. The Korea haplotype is predominant in unbalanced host-parasite systems, as exist in Europe, whereas in stable systems, as in Brazil, the Japan haplotype used to predominate. However, the patterns of varroa genetic variation have changed in Brazil. All recently sampled mites were of the Korea haplotype, regardless whether the mites had reproduced or not. The fertile mites on AHB in Brazil significantly increased from 56% in the 1980s to 86% in recent years. Nevertheless, despite the increased fertility, no increase in mite infestation rates in the colonies has been detected so far. A comprehensive literature review of varroa reproduction data, focusing on fertility and production of viable female mites, was conducted to

  1. Toxic Tripterygium hypoglaucum Honey Effect the Lifespan of Apis mellifera and Apis cerana%昆明山海崇蜜对中蜂和意蜂生命力的影响

    Institute of Scientific and Technical Information of China (English)

    曲玉凤; 汪正威; 杨爽; 胡宗文; 谭垦

    2011-01-01

    Two groups of honeybees (Apis cerana cerana and Apis mellifera ligustica) were fed with the normal and toxic honey respectively in the same concentration in order to compare their lethal rate in this experiment. The results demonstrated the lethal rate of A.cerana fed with the toxic honey was the highest (100%), while that of A. mellifera fed with the normal honey was the lowest in the later period, and they could survive with an extraordinary long time. The results suggested that the lethal rate of honeybees, no matter it's A.cerana or A. mellifera with the toxic honey was significantly higher than those with the normal honey.%用相似糖浓度的昆明山海棠蜜与藿香蜜分别饲喂中蜂和意蜂(Apis cerana cerana,Apis mellifera ligustica),比较2种蜜蜂的致死率,结果表明在第6天时饲喂山海棠蜜的中蜂致死率高达100%,饲喂藿香蜜的意蜂致死率则为(35.08±0.91)%,且存活时间最长。无论是中蜂还是意蜂,

  2. Evaluación ecotoxicológica del FitoMas-H en lombriz de tierra y abejas

    Directory of Open Access Journals (Sweden)

    Axel Mancebo

    2008-01-01

    Full Text Available Aunque constituye una necesidad el aumento de las producciones agrícolas, y actualmente se estimula la disminución del uso de productos químicos, mediante su sustitución por fertilizantes orgánicos y biológicos, es preciso evaluar el impacto de éstos sobre las especies del ecosistema en el cual se liberan. Con el objetivo de realizar la evaluación ecotoxicológica en sistemas terrestres del FitoMas-H, se realizaron los ensayos de toxicidad aguda en lombriz de tierra (Eisenia foetida y de toxicidad aguda por contacto en abejas (Apis mellifera. Se evaluó una concentración de 1000 mg de FitoMas-H /Kg de suelo artificial en el primer caso, mientras en el ensayo con abejas se utilizó una dosis de 100 g de FitoMas - H/animal. El ensayo en lombrices culminó con un 97,5 % de supervivencia en el grupo Tratado, sin diferencias significativas en la mortalidad y la variación de biomasa del grupo Control contra el Tratado. Por otra parte, el estudio por contacto en abejas terminó con una supervivencia del 95.45%, sin diferencias entre la mortalidad del grupo Control contra el Tratado. En ambos casos, se pudo concluir que la exposición al FitoMas-H no produce efectos tóxicos en los invertebrados terrestres utilizados.

  3. Varroa jacobsoni infestation of adult Africanized and Italian honey bees (Apis mellifera in mixed colonies in Brazil

    Directory of Open Access Journals (Sweden)

    Geraldo Moretto

    1999-09-01

    Full Text Available Different levels of infestation with the mite Varroa jacobsoni have been observed in the various Apis mellifera races. In general, bees of European races are more susceptible to the mite than African honey bees and their hybrids. In Brazil honey bee colonies are not treated against the mite, though apparently both climate and bee race influence the mite infestation. Six mixed colonies were made with Italian and Africanized honey bees. The percentage infestation by this parasite was found to be significantly lower in adult Africanized (1.69 ± 0.44 than Italian bees (2.79 ± 0.65. This ratio was similar to that found in Mexico, even though the Africanized bees tested there had not been in contact with varroa, compared to more than 20 years of the coexistence in Brazil. However, mean mite infestation in Brazil on both kinds of bees was only about a third of that found in Mexico.Desde o contato inicial entre o ácaro Varroa jacobsoni e a abelha Apis mellifera, diferentes níveis de infestação foram verificados entre as diversas raças dessa espécie de abelhas. O presente trabalho teve como objetivo verificar o grau de infestação determinado pelo acaro Varroa jacobsoni em abelhas Apis mellifera, africanizadas e italianas puras, quando criadas numa mesma colméia. Para isso, o grau de infestação foi obtido em seis colônias de abelhas constituídas de operárias de ambas as raças. O resultado de dezesseis repetições mostrou que as abelhas africanizadas foram menos infestadas que as abelhas italianas. Esse resultado sugere que, nas condições naturais de infestação, as abelhas africanizadas são mais defensivas ao parasita Varroa jacobsoni, garantindo a essa raça de abelhas a resistência à praga varroosis.

  4. GENÉTICA DEL COMPORTAMIENTO: ABEJAS, un ejemplo.

    Directory of Open Access Journals (Sweden)

    Nates Parra Guiomar

    2011-12-01

    Full Text Available El concepto de que el comportamiento de los animales esta determinado genéticamente no es nuevo si se considera que ya Darwin en su famosa obra El origen del hombre, en 1871 mencionaba que… “los rasgos del temperamento de los animales son heredados”. Pero solo hasta hace casi 50 años fue que la genética del comportamiento surgió como una especialidad importante dentro de la Genética; desde esa época muchos son los avances que refuerzan la idea generalmente aceptada de que todos los patrones comportamentales están determinados por componentes tanto ambientales como genotípicos. El análisis del control genético de un determinado comportamiento es complicado por el hecho de que las acciones primarias de un gene pueden afectar: 1. Los órganos sensoriales, cambiando la información recibida. 2. Sistemas intermedios (nervioso, endocrino, alterando capacidades de coordinación y percepción y 3. Órganos efectores, alterando la respuesta. Las mutaciones inducidas, que bloquean o alteran los patrones normales de comportamiento, proporcionan una herramienta muy útil para entender como los genes influencian la conducta (Hall et al, 1982. Al respecto hay muchos ejemplos, cuyo conocimiento ha servido para controlar o seleccionar caracteres indeseables o deseables (respectivamente, importantes para el mejoramiento en algunas especies animales. Por ejemplo, con la llegada de la abeja africanizada a América del Sur (Brasil,1958 (Kerr, 1967 llegaron también varios inconvenientes generados por el fuerte comportamiento defensivo de la nueva subespecie introducida (Apis mellifera scutellata , lo cual hizo que se iniciaran programas de investigación tendientes a conocer la biología y el comportamiento de la nueva especie introducida, de manera que se pudieran establecer cepas de abejas menos defensivas, conjuntamente con otras características como productividad o comportamiento higiénico. El establecimiento de las bases

  5. Tipos polínicos encontrados em amostras de méis de Apis mellifera em Picos, Estado do Piauí Pollinic types found in honey samples of Apis mellifera from Picos, State of Piaui

    Directory of Open Access Journals (Sweden)

    Geni da Silva Sodré

    2008-06-01

    Full Text Available Com o objetivo de determinar os tipos polínicos de méis produzidos por Apis mellifera L., 1758, no município de Picos, Estado do Piauí, foram realizadas análises polínicas de 35 amostras de méis coletadas entre novembro e dezembro de 2001 no Laboratório de Apicultura do Departamento de Entomologia, Fitopatologia e Zoologia Agrícola da Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo. A identificação dos tipos polínicos foi realizada por meio de descrições obtidas em literatura especializada. Os resultados demonstraram que foram encontrados 36 tipos polínicos, distribuídos em 18 famílias botânicas, sendo consideradas como pólen dominante Piptadenia sp. (Mimosaceae, Mimosa caesalpiniiaefolia Benth. (Mimosaceae, M. verrucosa Benth. (Mimosaceae e Croton urucurana Baill. (Euphorbiaceae.This research deals with the pollinic types of honeys produced by Apis mellifera L., 1758 in the municipality of Picos, State of Piaui were determined in the Laboratory of Apiculture, Department of Entomology, Phytopathology and Agricultural Zoology, College of Agriculture ‘Luiz de Queiroz', University of São Paulo, in Piracicaba, State of São Paulo, pollinic analysis of 36 honey samples collected in November and December of 2001. The identification of e pthollinic made by types was specialized literature. The results showed that 36 types of pollen were found, distributed in 18 botanical families, and the following plant species were considered as dominant Piptadenia sp. (Mimosaceae, Mimosa caesalpiniiaefolia Benth. (Mimosaceae, M. verrucosa Benth. (Mimosaceae and Croton urucurana Baill. (Euphorbiaceae.

  6. MEMORIA Y APRENDIZAJE EN LA ESCOGENCIA FLORAL DE LAS ABEJAS Memory And Learning In Bees' Floral Choices

    Directory of Open Access Journals (Sweden)

    MARISOL AMAYA MÁRQUEZ

    Full Text Available Los polinizadores altamente especializados en su dieta, no hacen escogencias florales, ellos visitan un recurso específico siguiendo el dictado de la información almacenada en sus genes. En contraste, para la abeja social Apis mellifera una escogencia floral implica, la toma de una decisión, usualmente con criterio económico, basada en información aprendida y almacenada en alguna forma de memoria. Aunque existen numerosos estudios y modelos sobre la escogencia floral en abejas, la gran mayoría de éstos, han derivado sus conclusiones a partir de condiciones temporalmente fijas de la interacción. Muy pocos estudios han abordado la dinámica propia del contexto ecológico, en el cual el mercado floral de las abejas cambia con las estaciones del año y con los patrones diarios de antesis floral. Este cambio en la disponibilidad de especies florales enfrenta a los polinizadores, a realizar escogencias secuenciales acerca del alimento a explotar. En este trabajo abordo el tema del forrajeo secuencial en parches florales heterospecíficos, enfocándome en el uso que la abeja melífera hace de la información previamente aprendida en un contexto, cuando se enfrenta a la explotación de alimento en un contexto ecológicamente diferente. He realizado experimentos sobre escogencia floral simulando las condiciones de cambio del paisaje floral, exponiendo abejas individuales de A. mellifera a decidir sobre cuales especies forrajear en cada parche. Los resultados indican que la abeja invierte en procesos de aprendizaje en un muestreo inicial, pero una vez almacenada la información, utiliza una pieza de la información previamente aprendida (color para explotar parches florales heteroespecíficos siguiendo una imagen de búsqueda de color. En esta revisión discuto situaciones biológicas de la interacción planta-abeja, las cuales apoyan la idea que en la naturaleza el uso de imágenes de búsqueda de color por parte de abejas sociales puede ser m

  7. Four quantitative trait loci associated with low Nosema ceranae (Microsporidia) spore load in the honeybee Apis mellifera

    DEFF Research Database (Denmark)

    Huang, Qiang; Kryger, Per; Le Conte, Yves;

    2014-01-01

    Nosema ceranae has been recently introduced into the honeybee Apis mellifera as a novel microsporidian gut parasite. To locate the genetic region involved in N. ceranae infection tolerance, we fed N. ceranae spores to haploid drones of a F1 hybrid queen produced from a cross between a queen...... of a Nosema-resistant bred strain and drones of susceptible colonies. The spore loads of the infected F1 drones were used as the phenotype to identify quantitative trait loci (QTLs) associated with N. ceranae spore load. One hundred forty-eight infected drones were individually genotyped with microsatellite...... markers at an average marker distance of 20 cM along the genome. Four QTLs were significantly associated with low spore load, explaining 20.4 % of total spore load variance. Moreover, a candidate gene Aubergine (Aub) within the major QTL region was significantly overexpressed in drones with low spore...

  8. Caracterización polinica estacional de miel inmadura de Apis mellifera L. en el Estado de Tabasco

    OpenAIRE

    Castellanos Potenciano, Blanca Patricia

    2010-01-01

    La presente investigación es una contribución al conocimiento de la flora de interés apícola y a los hábitos de pecoreo de Apis mellifera L. basado en análisis melisopalinológicos de miel inmadura colectada de Febrero a Mayo del 2009, en las principales subregiones apícolas del estado de Tabasco: subregión Centro (municipio Centro); subregión Chontalpa (municipios Cárdenas y Paraíso); subregión Ríos (municipios Balancán y Tenosique) y subregión Sierra (municipio Tacotalpa). Se encontró que 29...

  9. Composition of fatty acids in the Varroa destructor mites and their hosts, Apis mellifera drone-prepupae.

    Science.gov (United States)

    Dmitryjuk, Małgorzata; Zalewski, Kazimierz; Raczkowski, Marek; Żółtowska, Krystyna

    2015-01-01

    The fatty acid (FA) profile of lipids extracted from the Varroa destructor parasitic mite and its host, drone-prepupae of Apis mellifera, was determined by gas chromatography (GC). The percentages of saturated fatty acids (SFAs), monounsaturated fatty acids (MUFAs) and polyunsaturated fatty acids (PUFAs) were generally similar in parasites and their hosts. Fatty acids were arranged in the following descending order based on their content: MUFAs (ca. 52-55%), SFAs (ca. 41%) and PUFAs (ca. 3%). The predominant fatty acids were oleic acid (46% in mites, 44% in prepupae) and palmitic acid (23% and 30%, respectively). Varroa parasites differed from their hosts in the quantity of individual FAs and in their FA profiles. Three PUFAs noted in the host were not observed in parasitic mites, whereas the presence of C21:0, C24:0 and C22:1 FAs was reported in mites, but not in drones. PMID:25911034

  10. Fine scale population genetic structure of Varroa destructor, an ectoparasitic mite of the honey bee (Apis mellifera)

    Science.gov (United States)

    Dynes, Travis L.; De Roode, Jacobus C.; Lyons, Justine I.; Berry, Jennifer A.; Delaplane, Keith S.; Brosi, Berry J.

    2016-01-01

    Varroa destructor is an obligate ectoparasitic mite and the most important biotic threat currently facing honey bees (Apis mellifera). We used neutral microsatellites to analyze previously unreported fine scale population structure of V. destructor, a species characterized by extreme lack of genetic diversity owing to multiple bottleneck events, haplodiploidy, and primarily brother-sister matings. Our results surprisingly indicate that detectable hierarchical genetic variation exists between apiaries, between colonies within an apiary, and even within colonies. This finding of within-colony parasite diversity provides empirical evidence that the spread of V. destructor is not accomplished solely by vertical transmission but that horizontal transmission (natural or human-mediated) must occur regularly. PMID:27812229

  11. Composition of fatty acids in the Varroa destructor mites and their hosts, Apis mellifera drone-prepupae.

    Science.gov (United States)

    Dmitryjuk, Małgorzata; Zalewski, Kazimierz; Raczkowski, Marek; Żółtowska, Krystyna

    2015-01-01

    The fatty acid (FA) profile of lipids extracted from the Varroa destructor parasitic mite and its host, drone-prepupae of Apis mellifera, was determined by gas chromatography (GC). The percentages of saturated fatty acids (SFAs), monounsaturated fatty acids (MUFAs) and polyunsaturated fatty acids (PUFAs) were generally similar in parasites and their hosts. Fatty acids were arranged in the following descending order based on their content: MUFAs (ca. 52-55%), SFAs (ca. 41%) and PUFAs (ca. 3%). The predominant fatty acids were oleic acid (46% in mites, 44% in prepupae) and palmitic acid (23% and 30%, respectively). Varroa parasites differed from their hosts in the quantity of individual FAs and in their FA profiles. Three PUFAs noted in the host were not observed in parasitic mites, whereas the presence of C21:0, C24:0 and C22:1 FAs was reported in mites, but not in drones.

  12. Effects of seasonal variations and collection methods on the mineral composition of propolis from Apis mellifera Linnaeus Beehives.

    Science.gov (United States)

    Souza, E A; Zaluski, R; Veiga, N; Orsi, R O

    2016-06-01

    The effects of seasonal variations and the methods of collection of propolis produced by Africanized honey bees Apis mellifera Linnaeus, 1758, on the composition of constituent minerals such as magnesium (Mg), zinc (Zn), iron (Fe), sodium (Na), calcium (Ca), copper (Cu), and potassium (K) were evaluated. Propolis was harvested from 25 beehives by scraping or by means of propolis collectors (screen, "intelligent" collector propolis [ICP], lateral opening of the super [LOS], and underlay method). During the one-year study, the propolis produced was harvested each month, ground, homogenized, and stored in a freezer at -10 ºC. Seasonal analyses of the mineral composition were carried out by atomic absorption spectrophotometry and the results were evaluated by analysis of variance (ANOVA), followed by Tukey-Kramer's test to compare the mean values (pminerals (Mg, Fe, Na, Ca, and Cu), and the propolis harvesting method affects the contents of 4 minerals (Mg, Zn, Fe, and Ca). PMID:26934152

  13. The indigenous honey bees of Saudi Arabia (Hymenoptera, Apidae, Apis mellifera jemenitica Ruttner: Their natural history and role in beekeeping

    Directory of Open Access Journals (Sweden)

    Abdulaziz Alqarni

    2011-10-01

    Full Text Available Apis mellifera jemenitica Ruttner (= yemenitica auctorum: vide Engel 1999 has been used in apiculture throughout the Arabian Peninsula since at least 2000 BC. Existing literature demonstrates that these populations are well adapted for the harsh extremes of the region. Populations of A. m. jemenitica native to Saudi Arabia are far more heat tolerant than the standard races often imported from Europe. Central Saudi Arabia has the highest summer temperatures for the Arabian Peninsula, and it is in this region where only A. m. jemenitica survives, while other subspecies fail to persist. The indigenous race of Saudi Arabia differs from other subspecies in the region in some morphological, biological, and behavioral characteristics. Further taxonomic investigation, as well as molecular studies, is needed in order to confirm whether the Saudi indigenous bee populations represent a race distinct from A. m. jemenitica, or merely an ecotype of this subspecies.

  14. The total protein content, protein fractions and proteases activities of drone prepupae of Apis mellifera due to varrosis.

    Science.gov (United States)

    Zółtowska, Krystyna; Lipiński, Zbigniew; Dmitryjuk, Małgorzata

    2005-01-01

    The proteins level and activities of acid and alkaline proteases in whole body extracts of drone prepupae of Apis mellifera naturally infested with Varroa destructor were studied. The infested and a non-infested group did not differ significantly in their total protein content. However, some differences in protein profiles were found. A lack of three protein fractions of moderate and lower molecular weight in infested prepupae was noted. Moreover, some differences in the quantity of protein in most of the fractions were observed. The activity of acid proteases from infested prepupae was lower (p < 0.05) compared with the activity of these proteases from the non-infested one group. The infested drone had higher activity of alkaline proteases than non-infested but this difference was not statisticaly significant. PMID:16841690

  15. Concentrations of neonicotinoid insecticides in honey, pollen and honey bees (Apis mellifera L.) in central Saskatchewan, Canada.

    Science.gov (United States)

    Codling, Garry; Al Naggar, Yahya; Giesy, John P; Robertson, Albert J

    2016-02-01

    Neonicotinoid insecticides (NIs) and their transformation products were detected in honey, pollen and honey bees, (Apis mellifera) from hives located within 30 km of the City of Saskatoon, Saskatchewan, Canada. Clothianidin and thiamethoxam were the most frequently detected NIs, found in 68 and 75% of honey samples at mean concentrations of 8.2 and 17.2 ng g(-1) wet mass, (wm), respectively. Clothianidin was also found in >50% of samples of bees and pollen. Concentrations of clothianidin in bees exceed the LD50 in 2 of 28 samples, while for other NIs concentrations were typically 10-100-fold less than the oral LD50. Imidaclorpid was detected in ∼30% of samples of honey, but only 5% of pollen and concentrations were honey and pollen by bees over winter, during which worker bees live longer than in summer, suggested that, in some hives, consumption of honey and pollen during over-wintering might have adverse effects on bees.

  16. Physico-chemical characteristics of honey produced by Apis mellifera in the Picos region, state of Piauí, Brazil

    Directory of Open Access Journals (Sweden)

    Geni da Silva Sodré

    2011-08-01

    Full Text Available The objectives of this research were to determine physico-chemical characteristics of 1,758 Apis mellifera L. honey samples produced by in the productive pole of Picos, state of Piauí, to understand, based on these characteristics, how they are grouped and to determine the percentage of honey that fit the specifications determined by Brazilian legislation. Thirty-five honey samples were collected directly from beekeepers for determination of total sugars, reducing sugars, apparent sucrose, humidity, diastase activity, hydroxymethylfurfural (HMF, protein, ash, pH, acidity, formol index, electrical conductivity, viscosity and color. Mean values of each one of the analyzed physico-chemical parameters are within the limits established by the current Brazilian legislation, but it was verified for apparent sacarosis, diastase activity and HMF, values different from the established ones. Protein and HMF were the traits that contributed most for group formation.

  17. Guidance on the risk assessment of plant protection products on bees (Apis mellifera, Bombus spp. and solitary bees

    Directory of Open Access Journals (Sweden)

    European Food Safety Authority

    2013-07-01

    Full Text Available The Guidance is intended to provide guidance for notifiers and authorities in the context of the review of plant protection products (PPPs and their active substances under Regulation (EC 1107/2009. The scientific opinion on the science behind the development of a risk assessment of plant protection products on bees (Apis mellifera, Bombus spp. and solitary bees provided the scientific basis for the development of the Guidance. Specific Protection Goals were agreed in consultation with the Standing Committee on the Food Chain and Animal Health. The Guidance suggests a tiered risk assessment scheme with a simple and cost-effective first tier to more complex higher tier studies under field conditions. Each of the tiers will have to ensure that the appropriate level of protection is achieved.

  18. Biological activity of some plant essential oils against Varroa destructor (Acari: Varroidae), an ectoparasitic mite of Apis mellifera (Hymenoptera: Apidae).

    Science.gov (United States)

    Ghasemi, Vahid; Moharramipour, Saeid; Tahmasbi, Gholamhosein

    2011-10-01

    This experiment was conducted to evaluate acaricidal activity of the essential oils of Thymus kotschyanus, Ferula assa-foetida and Eucalyptus camaldulensis against Varroa destructor under laboratory conditions. Moreover, fumigant toxicity of these oils was tested on Apis mellifera. After preliminary dose-setting experiments, mites and honey bees were exposed to different concentrations of the oil, with 10 h exposure time. Essential oil of T. kotschyanus appeared the most potent fumigant for V. destructor (LC(50) = 1.07, 95% confidence limit (CL) = 0.87-1.26 μl/l air), followed by E. camaldulensis (LC(50) = 1.74, 95% CL = 0.96-2.50 μl/l air). The lowest acaricidal activity (LC(50) = 2.46, 95% CL = 2.10-2.86 μl/l air) was attributed to essential oil of F. assa-foetida. Surprisingly, among the three oils tested, essential oil of T. kotschyanus had the lowest insecticidal activity against A. mellifera (LC(50) = 5.08, 95% CL = 4.54-5.06 μl/l air). These findings proved that essential oil of T. kotschyanus has potential of practical value for use as alternative acaricide in the management of varroa in apiaries.

  19. Sequence recombination and conservation of Varroa destructor virus-1 and deformed wing virus in field collected honey bees (Apis mellifera.

    Directory of Open Access Journals (Sweden)

    Hui Wang

    Full Text Available We sequenced small (s RNAs from field collected honeybees (Apis mellifera and bumblebees (Bombuspascuorum using the Illumina technology. The sRNA reads were assembled and resulting contigs were used to search for virus homologues in GenBank. Matches with Varroadestructor virus-1 (VDV1 and Deformed wing virus (DWV genomic sequences were obtained for A. mellifera but not B. pascuorum. Further analyses suggested that the prevalent virus population was composed of VDV-1 and a chimera of 5'-DWV-VDV1-DWV-3'. The recombination junctions in the chimera genomes were confirmed by using RT-PCR, cDNA cloning and Sanger sequencing. We then focused on conserved short fragments (CSF, size > 25 nt in the virus genomes by using GenBank sequences and the deep sequencing data obtained in this study. The majority of CSF sites confirmed conservation at both between-species (GenBank sequences and within-population (dataset of this study levels. However, conserved nucleotide positions in the GenBank sequences might be variable at the within-population level. High mutation rates (Pi>10% were observed at a number of sites using the deep sequencing data, suggesting that sequence conservation might not always be maintained at the population level. Virus-host interactions and strategies for developing RNAi treatments against VDV1/DWV infections are discussed.

  20. Sequence recombination and conservation of Varroa destructor virus-1 and deformed wing virus in field collected honey bees (Apis mellifera).

    Science.gov (United States)

    Wang, Hui; Xie, Jiazheng; Shreeve, Tim G; Ma, Jinmin; Pallett, Denise W; King, Linda A; Possee, Robert D

    2013-01-01

    We sequenced small (s) RNAs from field collected honeybees (Apis mellifera) and bumblebees (Bombuspascuorum) using the Illumina technology. The sRNA reads were assembled and resulting contigs were used to search for virus homologues in GenBank. Matches with Varroadestructor virus-1 (VDV1) and Deformed wing virus (DWV) genomic sequences were obtained for A. mellifera but not B. pascuorum. Further analyses suggested that the prevalent virus population was composed of VDV-1 and a chimera of 5'-DWV-VDV1-DWV-3'. The recombination junctions in the chimera genomes were confirmed by using RT-PCR, cDNA cloning and Sanger sequencing. We then focused on conserved short fragments (CSF, size > 25 nt) in the virus genomes by using GenBank sequences and the deep sequencing data obtained in this study. The majority of CSF sites confirmed conservation at both between-species (GenBank sequences) and within-population (dataset of this study) levels. However, conserved nucleotide positions in the GenBank sequences might be variable at the within-population level. High mutation rates (Pi>10%) were observed at a number of sites using the deep sequencing data, suggesting that sequence conservation might not always be maintained at the population level. Virus-host interactions and strategies for developing RNAi treatments against VDV1/DWV infections are discussed.

  1. Profile Analysis of the Proteome of the Egg of the High Royal Jelly Producing Bees (Apis mellifera L.)

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The protein composition of the egg development in the high royal jelly producing bees (Apis mellifera L.) was investigated. This pioneer study was to separate and quantify the proteins in the egg of the high royal jelly producing worker bees (Apis mellifera L.) by using two-dimensional gel electrophoresis along with their three-day development. The results showed that 160, 195, and 176 proteins, with a wide range of molecular weight (17-80 KDa) and relatively narrow scope of pI (4.00-8.40) could be detected on day 1, day 2, and day 3, respectively, during the developmental process of the egg. Meanwhile 44 protein spots were constantly detected along with the egg development. Among them 36% were in the uptrend along with the egg development, 14% were in the downtrend, and 39% were of the largest expressed volume on day 2. In addition, the specific proteins were expressed on day 1, day 2, and day 3 (89, 77, and 80, respectively). Besides the coexistent and specific proteins, 24 proteins were expressed on day 1 and day 2, but silenced on day 3, 49 proteins were expressed on day 2 and day 3, but silenced on day 1, only 3 proteins were expressed on day 1 and day 3, but silenced on day 2. The result indicates that egg development is a sequential and complex gene controlled process, where the eggs of day 2 express the most active proteins. The coexistent proteins suggest that it is conservative and indispensable for this event. These specific proteins suggest that the different developmental stage needs specific proteins to regulate it.

  2. MICROSATELLITE ANALYSIS OF THE SLOVAK CARNIOLAN HONEY BEE (APIS MELLIFERA CARNICA

    Directory of Open Access Journals (Sweden)

    Dušan Paál

    2013-02-01

    Full Text Available The aim of this study was the selection and testing of suitable microsatellite markers for evaluation of the Slovak carniolan honey bee, particularly the population structure, genetic diversity, breed assignment and paternity testing of honey bee queens in Slovakia. Fourteen microsatellite markers running in two multiplex PCR reactions have been tested on 40 randomly selected workers and queens and further verified by PIC index, expected heterozygosity (HE and observed heterozygosity (HO. Chi-squared test of goodness of fit (α = 0,05 was used to check the Hardy-Weinberg equilibrium (HWE of genotype for each marker. For the comparison tests the workers of A. mellifera mellifera x ligurica, A. mellifera macedonica and A. mellifera iberica were analyzed, using the same set of markers. We identified a total of 123 alleles in the Slovak carniolan honey bee samples, with the mean value of 8,78 allele per locus. Eleven markers showed the PIC value greater than 0,5 and thus were highly informative. The mean value of expected heterozygosity HE for all loci was 0,705 ± 0,15, the mean value of observed heterozygosity HO was 0,704 ± 0,18. The frequencies of genotypes for most tested markers were in The aim of this study was the selection and testing of suitable microsatellite markers for evaluation of the Slovak carniolan honey bee, particularly the population structure, genetic diversity, breed assignment and paternity testing of honey bee queens in Slovakia. Fourteen microsatellite markers running in two multiplex PCR reactions have been tested on 40 randomly selected workers and queens and further verified by PIC index, expected heterozygosity (HE and observed heterozygosity (HO. Chi-squared test of goodness of fit (α = 0,05 was used to check the Hardy-Weinberg equilibrium (HWE of genotype for each marker. For the comparison tests the workers of A. mellifera mellifera x ligurica, A. mellifera macedonica and A. mellifera iberica were analyzed, using

  3. Effects of Microsatellite Genetic Polymorphisms of Apis mellifera ligustica on Nutritional Crossbreed between Apis cerana cerana and Apis mellifera ligustica%中蜂与意蜂营养杂交对意蜂微卫星遗传多态性的影响

    Institute of Scientific and Technical Information of China (English)

    何旭江; 汪志平; 秦秋红; 吴小波; 陈利华

    2011-01-01

    In this paper,we breed hybridizing queen of the Jiangshan honey bee No. 2 and French Apis mellifera ligustica through the technology of artificially feeding royal jelly of Apis cerana cerana, and then the genetic polymorphisms of microsatellite of the workers were measured. The workers were from the Jiangshan honey bee No. 2 colonies, French Apis mellifera ligustica colonies, local Apis cerana cerana colonies, the 1 hybridizing offspring as well as the 4 consecutive hybridizing offspring of nutritional crossbreeding French Apis. merllifera. L queen and the Jiangshan honey bee No. 2 drone colonies. The results showed that the genetic distance of parents and hybridizing offspring was varied, and the unique DNA bands of Apis cerana cerana and Apis melli fera ligustica were shifted.%通过人工添加中华蜜蜂王浆技术来培育江山2号与法国意蜂的杂交蜂王,并测定江山2号、法国意蜂、中华蜜蜂、营养杂交子1代和子4代工蜂的微卫星遗传多态性.结果表明,经过营养杂交,亲本蜜蜂与营养杂交子代的遗传距离发生明显的变化,中华蜜蜂和意大利蜜蜂的特有DNA条带发生了转移.说明通过蜂种之间的营养杂交可以改变其微卫星多态性.

  4. Influence of Apis mellifera L. (Hymenoptera: Apidae) on the Use of the Most Abundant and Attractive Floral Resources in a Plant Community.

    Science.gov (United States)

    Polatto, L P; Chaud-Netto, J

    2013-12-01

    Some factors influence the distribution of abundance of floral visitors, especially the amount and quality of the floral resources available, the size of the area occupied by the visitor, habitat heterogeneity, and the impact caused by natural enemies and introduced species. The objective of this research was to evaluate the distribution of abundance of the foraging activity of native floral visitors and Apis mellifera L. in the most abundant and attractive food sources in a secondary forest fragment with features of Cerrado-Atlantic Forest. Some plant species were selected and the frequency of foraging made by floral visitors was recorded. A high abundance of visits in flowers was performed by A. mellifera. Two factors may have influenced this result: (1) the occupation of the forest fragment predominantly by vines and shrubs at the expenses of vegetation with arboreal characteristics that favored the encounter of the flowering plants by A. mellifera; (2) rational beekeeping of A. mellifera, causing the number of natural swarms which originate annually from colonies of commercial apiaries and colonies previously established in the environment to be very high, thus leading to an increase in the population size of this bee species in the study site. The frequent occurrence of human-induced fire and deforestation within the forest fragment may have reduced the population size of the bee species, including A. mellifera. As the populations of A. mellifera have the capacity to quickly occupy the environment, this species possibly became dominant after successive disturbances made in the forest fragment. PMID:27193275

  5. Tropilaelaps mercedesae and Varroa destructor: prevalence and reproduction in concurrently infested Apis mellifera colonies

    Science.gov (United States)

    The prevalence of Tropilaelaps mercedesae and Varroa destructor in concurrently infested A. mellifera colonies in Thailand was monitored. We also assessed the reproductive ability of T. mercedesae and V. destructor in naturally infested brood and in brood cells deliberately infested with both mite g...

  6. Prevalence and reproduction of Tropilaelaps mercedesae and Varroa destructor in concurrently infested Apis mellifera colonies

    Science.gov (United States)

    The prevalence of Tropilaelaps mercedesae and Varroa destructor in concurrently infested A. mellifera colonies in Thailand was monitored. We also assessed the fecundity of T. mercedesae and V. destructor in naturally infested brood and in brood cells deliberately infested with both mite genera. Resu...

  7. Distribution, epidemiological characteristics and control methods of the pathogen Nosema ceranae Fries in honey bees Apis mellifera L. (Hymenoptera, Apidae

    Directory of Open Access Journals (Sweden)

    X Araneda

    2015-01-01

    Full Text Available Up until a few years ago, the microsporidian parasite Nosema ceranae was considered to be a pathogen of Apis cerana exclusively; however, only recently it has shown to be very virulent to Apis mellifera. Therefore, it has been named as apathogenic agent active in the disappearance of honey bee colonies globally, infecting all members of the colony. Honey bees are widely used for pollination and honey production, hence their importance in agriculture. They also play an important ecological role in plant pollination: a third of human food crops are pollinated by bees as well as many plants consumed by other animals. In this context, the object of this review is to summarise the information published by different authors on the geographical distribution and the morphological and genetic characteristics of this parasite, the symptomatology of the disease and the control methods used in those countries where N. ceranae is present, in order to identify better tools to confront this new bee disease.

  8. Cardanol isolated from Thai Apis mellifera propolis induces cell cycle arrest and apoptosis of BT-474 breast cancer cells via p21 upregulation

    OpenAIRE

    Buahorm, Sureerat; Puthong, Songchan; Palaga, Tanapat; Lirdprapamongkol, Kriengsak; Phuwapraisirisan, Preecha; Svasti, Jisnuson; Chanchao, Chanpen

    2015-01-01

    Background Cardanol was previously reported to be an antiproliferative compound purified from Thai Apis mellifera propolis. By morphology, it could induce the cell death to many cancer cell lines but not the control (non-transformed human foreskin fibroblast cell line, Hs27). Here, it was aimed to evaluate the molecular effects of cardanol on breast cancer derived cell line (BT-474). Methods Morphological changes in BT-474 cells induced by cardanol compared to doxorubicin were evaluated by li...

  9. Effets de Nosema ceranae (Microsporidia) sur la santé de l'abeille domestique Apis mellifera L. : changements physiologiques et comportementaux

    OpenAIRE

    Dussaubat-Arriagada, Claudia Marcela

    2012-01-01

    Nosema ceranae is an emergent parasite of the honey bee Apis mellifera. In some regions it has been found to be the main reason for bee mortality, while in others it is suspected of weakening honey bee colonies by interacting with other environmental stressors. In the context of worldwide colony losses, we focus our research on the study of N. ceranae, with the hypothesis that this parasite is able to induce behavioral changes in bees through physiological modifications, which could alter soc...

  10. Nucleotide Variability at Its Limit? Insights into the Number and Evolutionary Dynamics of the Sex-Determining Specificities of the Honey Bee Apis mellifera

    OpenAIRE

    Lechner, Sarah; Ferretti, Luca; Schöning, Caspar; Kinuthia, Wanja; Willemsen, David; Hasselmann, Martin

    2013-01-01

    Deciphering the evolutionary processes driving nucleotide variation in multiallelic genes is limited by the number of genetic systems in which such genes occur. The complementary sex determiner (csd) gene in the honey bee Apis mellifera is an informative example for studying allelic diversity and the underlying evolutionary forces in a well-described model of balancing selection. Acting as the primary signal of sex determination, diploid individuals heterozygous for csd develop into females, ...

  11. Taxonomic Characterization of Honey Bee (Apis mellifera) Pollen Foraging Based on Non-Overlapping Paired-End Sequencing of Nuclear Ribosomal Loci

    OpenAIRE

    R. Scott Cornman; Otto, Clint R. V.; Deborah Iwanowicz; Pettis, Jeffery S.

    2015-01-01

    Identifying plant taxa that honey bees (Apis mellifera) forage upon is of great apicultural interest, but traditional methods are labor intensive and may lack resolution. Here we evaluate a high-throughput genetic barcoding approach to characterize trap-collected pollen from multiple North Dakota apiaries across multiple years. We used the Illumina MiSeq platform to generate sequence scaffolds from non-overlapping 300-bp paired-end sequencing reads of the ribosomal internal transcribed spacer...

  12. A virulent strain of Deformed Wing Virus (DWV) of Honeybees (Apis mellifera) prevails after Varroa destructor-mediated, or in vitro, transmission

    OpenAIRE

    Ryabov, Eugene V.; Graham R. Wood; Fannon, Jessica M.; Moore, Jonathan D.; Bull, James C.; Dave Chandler; Andrew Mead; Nigel Burroughs; Evans, David J.

    2014-01-01

    Date of Acceptance: 30/04/2014 The globally distributed ectoparasite Varroa destructor is a vector for viral pathogens of the Western honeybee (Apis mellifera), in particular the Iflavirus Deformed Wing Virus (DWV). In the absence of Varroa low levels DWV occur, generally causing asymptomatic infections. Conversely, Varroa-infested colonies show markedly elevated virus levels, increased overwintering colony losses, with impairment of pupal development and symptomatic workers. To determine ...

  13. Short communication. First field assessment of Bacillus thuringiensis subsp. kurstaki aerial application on the colony performance of Apis mellifera L. (Hymenoptera: Apidae)

    OpenAIRE

    Maria del Mar Leza Salord; Gregori Llado; Ana Belen Petro; Ana Alemany

    2014-01-01

    Honeybee populations around the world are experiencing a decrease in colony numbers probably due to a combination of different causes, such as diseases, poor nutrition and frequent applications of insecticides to control pests. Previous studies about the effect of pesticide Bacillus thuringiensis subsp. kurstaki (Btk) on Apis mellifera L. report different results. The aim of this study was to analyze the effect of field aerial applications of Btk on bee colony performance, specifically on the...

  14. In-Depth N-Glycosylation Reveals Species-Specific Modifications and Functions of the Royal Jelly Protein from Western (Apis mellifera) and Eastern Honeybees (Apis cerana).

    Science.gov (United States)

    Feng, Mao; Fang, Yu; Han, Bin; Xu, Xiang; Fan, Pei; Hao, Yue; Qi, Yuping; Hu, Han; Huo, Xinmei; Meng, Lifeng; Wu, Bin; Li, Jianke

    2015-12-01

    Royal jelly (RJ), secreted by honeybee workers, plays diverse roles as nutrients and defense agents for honeybee biology and human health. Despite being reported to be glycoproteins, the glycosylation characterization and functionality of RJ proteins in different honeybee species are largely unknown. An in-depth N-glycoproteome analysis and functional assay of RJ produced by Apis mellifera lingustica (Aml) and Apis cerana cerana (Acc) were conducted. RJ produced by Aml yielded 80 nonredundant N-glycoproteins carrying 190 glycosites, of which 23 novel proteins harboring 35 glycosites were identified. For Acc, all 43 proteins glycosylated at 138 glycosites were reported for the first time. Proteins with distinct N-glycoproteomic characteristics in terms of glycoprotein species, number of N-glycosylated sites, glycosylation motif, abundance level of glycoproteins, and N-glycosites were observed in this two RJ samples. The fact that the low inhibitory efficiency of N-glycosylated major royal jelly protein 2 (MRJP2) against Paenibacillus larvae (P. larvae) and the absence of antibacterial related glycosylated apidaecin, hymenoptaecin, and peritrophic matrix in the Aml RJ compared to Acc reveal the mechanism for why the Aml larvae are susceptible to P. larvae, the causative agent of a fatal brood disease (American foulbrood, AFB). The observed antihypertension activity of N-glycosylated MRJP1 in two RJ samples and a stronger activity found in Acc than in Aml reveal that specific RJ protein and modification are potentially useful for the treatment of hypertensive disease for humans. Our data gain novel understanding that the western and eastern bees have evolved species-specific strategies of glycosylation to fine-tune protein activity for optimizing molecular function as nutrients and immune agents for the good of honeybee and influence on the health promoting activity for human as well. This serves as a valuable resource for the targeted probing of the biological

  15. In-Depth N-Glycosylation Reveals Species-Specific Modifications and Functions of the Royal Jelly Protein from Western (Apis mellifera) and Eastern Honeybees (Apis cerana).

    Science.gov (United States)

    Feng, Mao; Fang, Yu; Han, Bin; Xu, Xiang; Fan, Pei; Hao, Yue; Qi, Yuping; Hu, Han; Huo, Xinmei; Meng, Lifeng; Wu, Bin; Li, Jianke

    2015-12-01

    Royal jelly (RJ), secreted by honeybee workers, plays diverse roles as nutrients and defense agents for honeybee biology and human health. Despite being reported to be glycoproteins, the glycosylation characterization and functionality of RJ proteins in different honeybee species are largely unknown. An in-depth N-glycoproteome analysis and functional assay of RJ produced by Apis mellifera lingustica (Aml) and Apis cerana cerana (Acc) were conducted. RJ produced by Aml yielded 80 nonredundant N-glycoproteins carrying 190 glycosites, of which 23 novel proteins harboring 35 glycosites were identified. For Acc, all 43 proteins glycosylated at 138 glycosites were reported for the first time. Proteins with distinct N-glycoproteomic characteristics in terms of glycoprotein species, number of N-glycosylated sites, glycosylation motif, abundance level of glycoproteins, and N-glycosites were observed in this two RJ samples. The fact that the low inhibitory efficiency of N-glycosylated major royal jelly protein 2 (MRJP2) against Paenibacillus larvae (P. larvae) and the absence of antibacterial related glycosylated apidaecin, hymenoptaecin, and peritrophic matrix in the Aml RJ compared to Acc reveal the mechanism for why the Aml larvae are susceptible to P. larvae, the causative agent of a fatal brood disease (American foulbrood, AFB). The observed antihypertension activity of N-glycosylated MRJP1 in two RJ samples and a stronger activity found in Acc than in Aml reveal that specific RJ protein and modification are potentially useful for the treatment of hypertensive disease for humans. Our data gain novel understanding that the western and eastern bees have evolved species-specific strategies of glycosylation to fine-tune protein activity for optimizing molecular function as nutrients and immune agents for the good of honeybee and influence on the health promoting activity for human as well. This serves as a valuable resource for the targeted probing of the biological

  16. Espectro polínico de amostras de mel de Apis mellifera L., coletadas na Bahia Pollen spectrum of samples of Apis mellifera L., honey collected in Bahia State, Brazil

    Directory of Open Access Journals (Sweden)

    AUGUSTA CAROLINA DE CAMARGO CARMELLO MORETI

    2000-01-01

    Full Text Available O espectro polínico encontrado em amostras de mel provenientes de seis municípios do Estado da Bahia foi analisado com o objetivo de contribuir para o conhecimento da flora visitada por Apis mellifera L. 1758 (Hymenoptera: ApidaeA identificação dos tipos polínicos foi feita por meio de literatura especializada e de informações de campo. Foram encontrados 43 tipos de pólen, sendo consideradas como dominantes as espécies Eucalyptus sp. (Myrtaceae, Mimosa verrucosa Benth. (Mimosaceae, M. scabrella Benth. (Mimosaceae e Bauhinia sp. (Caesalpiniaceae. Os tipos acessórios foram Alternanthera ficoidea R.Br. (Amaranthaceae, tipo Compositae (Asteraceae e Cecropia sp. (Moraceae. Destacou-se a participação de Mimosa sp. (Mimosaceae e de outras espécies silvestres na composição dos méis nos municípios considerados, registrando-se ainda a espécie Eucalyptus sp. (Myrtaceae como uma das principais fontes de alimento das abelhas dessa região.Pollen spectrum found in honey samples from six localities of Bahia State, Brazil, was analyzed with the objective to contribute for the knowledge of the plants used by Apis mellifera L., 1758 (Hymenoptera: Apidae. The identification of the pollen types was made by specialized literature and by field information. Two hundred pollen grains were studied in order to determine the percentage and the occurrence of each type. Forty three pollen types were identified, being considered as the predominant types Eucalyptus sp. (Myrtaceae, Mimosa verrucosa Benth. (Mimosaceae, M. scabrella Benth. (Mimosaceae and Bauhinia sp. (Caesalpiniaceae. The accessory pollen types were Alternanthera ficoidea R.Br. (Amaranthaceae, Compositae type (Asteraceae and Cecropia sp. (Moraceae. It is intense the participation of Mimosa sp. (Mimosaceae and other wild species in the honey composition of the six localities considered. Eucalyptus sp. (Myrtaceae is one of the dominant sources of bee food in some regions of Bahia State.

  17. Development of biomarkers of exposure to xenobiotics in the honey bee Apis mellifera: application to the systemic insecticide thiamethoxam.

    Science.gov (United States)

    Badiou-Bénéteau, Alexandra; Carvalho, Stephan M; Brunet, Jean-Luc; Carvalho, Geraldo A; Buleté, Audrey; Giroud, Barbara; Belzunces, Luc P

    2012-08-01

    This study describes the development of acetylcholinesterase (AChE), carboxylesterases (CaE1, CaE2, CaE3), glutathion-S-transferase (GST), alkaline phosphatase (ALP) and catalase (CAT) as enzyme biomarkers of exposure to xenobiotics such as thiamethoxam in the honey bee Apis mellifera. Extraction efficiency, stability under freezing and biological variability were studied. The extraction procedure achieved good recovery rates in one extraction step and ranged from 65 percent (AChE) to 97.3 percent (GST). Most of the enzymes were stable at -20°C, except ALP that displayed a slight but progressive decrease in its activity. Modifications of enzyme activities were considered after exposure to thiamethoxam at the lethal dose 50 percent (LD(50), 51.16 ng bee(-1)) and two sublethal doses, LD(50)/10 (5.12 ng bee(-1)) and LD(50)/20 (2.56 ng bee(-1)). The biomarker responses revealed that, even at the lowest dose used, exposure to thiamethoxam elicited sublethal effects and modified the activity of CaEs, GST, CAT and ALP. Different patterns of biomarker responses were observed: no response for AChE, an increase for GST and CAT, and differential effects for CaEs isoforms with a decrease in CaE1 and CaE3 and an increase in CaE2. ALP and CaE3 displayed contrasting variations but only at 2.56 ng bee(-1). We consider that this profile of biomarker variation could represent a useful fingerprint to characterise exposure to thiamethoxam in the honey bee A. mellifera. This battery of honey bee biomarkers might be a promising option to biomonitor the health of aerial and terrestrial ecosystems and to generate valuable information on the modes of action of pesticides. PMID:22683234

  18. Next generation sequencing of Apis mellifera syriaca identifies genes for Varroa resistance and beneficial bee keeping traits.

    Science.gov (United States)

    Haddad, Nizar; Mahmud Batainh, Ahmed; Suleiman Migdadi, Osama; Saini, Deepti; Krishnamurthy, Venkatesh; Parameswaran, Sriram; Alhamuri, Zaid

    2016-08-01

    Apis mellifera syriaca exhibits a high degree of tolerance to pests and pathogens including varroa mites. This native honey bee subspecies of Jordan expresses behavioral adaptations to high temperature and dry seasons typical of the region. However, persistent honey bee imports of commercial breeder lines are endangering local honey bee population. This study reports the use of next-generation sequencing (NGS) technology to study the A. m. syriaca genome and to identify genetic factors possibly contributing toward mite resistance and other favorable traits. We obtained a total of 46.2 million raw reads by applying the NGS to sequence A. m. syriaca and used extensive bioinformatics approach to identify several candidate genes for Varroa mite resistance, behavioral and immune responses characteristic for these bees. As a part of characterizing the functional regulation of molecular genetic pathway, we have mapped the pathway genes potentially involved using information from Drosophila melanogaster and present possible functional changes implicated in responses to Varroa destructor mite infestation toward this. We performed in-depth functional annotation methods to identify ∼600 candidates that are relevant, genes involved in pathways such as microbial recognition and phagocytosis, peptidoglycan recognition protein family, Gram negative binding protein family, phagocytosis receptors, serpins, Toll signaling pathway, Imd pathway, Tnf, JAK-STAT and MAPK pathway, heamatopioesis and cellular response pathways, antiviral, RNAi pathway, stress factors, etc. were selected. Finally, we have cataloged function-specific polymorphisms between A. mellifera and A. m. syriaca that could give better understanding of varroa mite resistance mechanisms and assist in breeding. We have identified immune related embryonic development (Cactus, Relish, dorsal, Ank2, baz), Varroa hygiene (NorpA2, Zasp, LanA, gasp, impl3) and Varroa resistance (Pug, pcmt, elk, elf3-s10, Dscam2, Dhc64C, gro

  19. Physicochemical characteristics and pollen spectra of organic and non-organic honey samples of Apis mellifera L.

    Directory of Open Access Journals (Sweden)

    Maria Josiane Sereia

    2011-09-01

    Full Text Available The aim of this research was to analyze and compare 17 honey samples, 11 organic and six non-organic Apis mellifera honey. The samples were analyzed concerning moisture, hydroxymethylfurfural, diastase index, water activity, color, total sugar, reducing sugar, sucrose, ash, viscosity, electrical conductivity, pH, acidity, and formol index. With the exception of acidity, reducing sugar and diastase index, the averages of other parameters were different between the two groups. All samples of organic honey presented moisture values between 23.50 and 24.40%. Among the nonorganic honey samples, two presented apparent sucrose amount upper the maximum limit established by the Brazilian Legislation. According to the quantitative analysis of pollen sediments in the honey samples and frequency of pollen types in 17 honey samples, 41.20% were classified as unifioral, and the remainder as polifioral.O objetivo deste trabalho foi analisar e comparar 17 amostras de Apis mellifera mel, sendo 11 orgânicos e seis não orgânicos. As amostras foram analisadas quanto à umidade, hidroximetilfurfural, índice de diastase, atividade de água, cor, açúcares totais, açúcares redutores, sacarose, cinzas, viscosidade, condutividade elétrica, pH, acidez e índice de formol. Com exceção da acidez, açúcar redutor e índice de diastase as médias dos demais parâmetros analisados diferiram entre os dois grupos. Todas as amostras de mel orgânico analisadas apresentaram valores de umidade entre 23,50 to 24,40%. Das amostras de mel não orgânico analisadas, duas apresentaram quantidades de sacarose aparente acima do limite máximo estabelecido pela legislação brasileira. De acordo com as análises quantitativas dos sedimentos polínicos e a frequência dos tipos polínicos observados nas 17 amostras de mel analisadas, 41,20% foram classificadas como monofloral e o restante como polifloral.

  20. Assessing delayed and acute toxicity of five formulated fungicides to Osmia lignaria Say and Apis mellifera

    OpenAIRE

    Ladurner, Edith; Bosch, Jordi; P. Kemp, William; Maini, Stefano

    2005-01-01

    International audience The delayed and acute toxicity of benomyl (Benlate®), captan (Captan 50WP), iprodione (Rovral®), propiconazole (OrbitTM), and neem oil (Trilogy®) to two crop pollinators, A. mellifera and O. lignaria, was evaluated. Survival after contact and oral single exposure to high doses of the pesticides was compared to survival of controls with the dosing vehicle. LD50 values at 24, 48 and 72 h from exposure were determined. Contact and oral exposure to benomyl and iprodione ...

  1. Determinación geográfica y botánica de miel de abeja (Apis mellifera L.) del Estado de Tabasco, México

    OpenAIRE

    Córdova Córdova, Claudia Ivette

    2012-01-01

    Para caracterizar la miel existen diferentes métodos destructivos y no destructivos, donde se puede obtener información útil sobre las sustancias que la componen. Los métodos destructivos que se utilizaron en esta investigación fueron el análisis fisicoquímico y el análisis melisopalinológico. El objetivo de este trabajo fue caracterizar mieles tabasqueñas procedentes de diferentes regiones geográficas y diferente vegetación, mediante las técnicas antes mencionadas. Se analizaron 12 ti...

  2. Evaluation of the distribution and impacts of parasites, pathogens, and pesticides on honey bee (Apis mellifera) populations in East Africa.

    Science.gov (United States)

    Muli, Elliud; Patch, Harland; Frazier, Maryann; Frazier, James; Torto, Baldwyn; Baumgarten, Tracey; Kilonzo, Joseph; Kimani, James Ng'ang'a; Mumoki, Fiona; Masiga, Daniel; Tumlinson, James; Grozinger, Christina

    2014-01-01

    In East Africa, honey bees (Apis mellifera) provide critical pollination services and income for small-holder farmers and rural families. While honey bee populations in North America and Europe are in decline, little is known about the status of honey bee populations in Africa. We initiated a nationwide survey encompassing 24 locations across Kenya in 2010 to evaluate the numbers and sizes of honey bee colonies, assess the presence of parasites (Varroa mites and Nosema microsporidia) and viruses, identify and quantify pesticide contaminants in hives, and assay for levels of hygienic behavior. Varroa mites were present throughout Kenya, except in the remote north. Levels of Varroa were positively correlated with elevation, suggesting that environmental factors may play a role in honey bee host-parasite interactions. Levels of Varroa were negatively correlated with levels of hygienic behavior: however, while Varroa infestation dramatically reduces honey bee colony survival in the US and Europe, in Kenya Varroa presence alone does not appear to impact colony size. Nosema apis was found at three sites along the coast and one interior site. Only a small number of pesticides at low concentrations were found. Of the seven common US/European honey bee viruses, only three were identified but, like Varroa, were absent from northern Kenya. The number of viruses present was positively correlated with Varroa levels, but was not correlated with colony size or hygienic behavior. Our results suggest that Varroa, the three viruses, and Nosema have been relatively recently introduced into Kenya, but these factors do not yet appear to be impacting Kenyan bee populations. Thus chemical control for Varroa and Nosema are not necessary for Kenyan bees at this time. This study provides baseline data for future analyses of the possible mechanisms underlying resistance to and the long-term impacts of these factors on African bee populations. PMID:24740399

  3. Evaluation of the distribution and impacts of parasites, pathogens, and pesticides on honey bee (Apis mellifera populations in East Africa.

    Directory of Open Access Journals (Sweden)

    Elliud Muli

    Full Text Available In East Africa, honey bees (Apis mellifera provide critical pollination services and income for small-holder farmers and rural families. While honey bee populations in North America and Europe are in decline, little is known about the status of honey bee populations in Africa. We initiated a nationwide survey encompassing 24 locations across Kenya in 2010 to evaluate the numbers and sizes of honey bee colonies, assess the presence of parasites (Varroa mites and Nosema microsporidia and viruses, identify and quantify pesticide contaminants in hives, and assay for levels of hygienic behavior. Varroa mites were present throughout Kenya, except in the remote north. Levels of Varroa were positively correlated with elevation, suggesting that environmental factors may play a role in honey bee host-parasite interactions. Levels of Varroa were negatively correlated with levels of hygienic behavior: however, while Varroa infestation dramatically reduces honey bee colony survival in the US and Europe, in Kenya Varroa presence alone does not appear to impact colony size. Nosema apis was found at three sites along the coast and one interior site. Only a small number of pesticides at low concentrations were found. Of the seven common US/European honey bee viruses, only three were identified but, like Varroa, were absent from northern Kenya. The number of viruses present was positively correlated with Varroa levels, but was not correlated with colony size or hygienic behavior. Our results suggest that Varroa, the three viruses, and Nosema have been relatively recently introduced into Kenya, but these factors do not yet appear to be impacting Kenyan bee populations. Thus chemical control for Varroa and Nosema are not necessary for Kenyan bees at this time. This study provides baseline data for future analyses of the possible mechanisms underlying resistance to and the long-term impacts of these factors on African bee populations.

  4. APIs

    CERN Document Server

    Jacobson, Daniel; Woods, Dan

    2011-01-01

    Programmers used to be the only people excited about APIs, but now a growing number of companies see them as a hot new product channel. This concise guide describes the tremendous business potential of APIs, and demonstrates how you can use them to provide valuable services to clients, partners, or the public via the Internet. You'll learn all the steps necessary for building a cohesive API business strategy from experts in the trenches. Facebook and Twitter APIs continue to be extremely successful, and many other companies find that API demand greatly exceeds website traffic. This book offe

  5. Honey bee (Apis mellifera) drones survive oxidative stress due to increased tolerance instead of avoidance or repair of oxidative damage.

    Science.gov (United States)

    Li-Byarlay, Hongmei; Huang, Ming Hua; Simone-Finstrom, Michael; Strand, Micheline K; Tarpy, David R; Rueppell, Olav

    2016-10-01

    Oxidative stress can lead to premature aging symptoms and cause acute mortality at higher doses in a range of organisms. Oxidative stress resistance and longevity are mechanistically and phenotypically linked; considerable variation in oxidative stress resistance exists among and within species and typically covaries with life expectancy. However, it is unclear whether stress-resistant, long-lived individuals avoid, repair, or tolerate molecular damage to survive longer than others. The honey bee (Apis mellifera L.) is an emerging model system that is well-suited to address this question. Furthermore, this species is the most economically important pollinator, whose health may be compromised by pesticide exposure, including oxidative stressors. Here, we develop a protocol for inducing oxidative stress in honey bee males (drones) via Paraquat injection. After injection, individuals from different colony sources were kept in common social conditions to monitor their survival compared to saline-injected controls. Oxidative stress was measured in susceptible and resistant individuals. Paraquat drastically reduced survival but individuals varied in their resistance to treatment within and among colony sources. Longer-lived individuals exhibited higher levels of lipid peroxidation than individuals dying early. In contrast, the level of protein carbonylation was not significantly different between the two groups. This first study of oxidative stress in male honey bees suggests that survival of an acute oxidative stressor is due to tolerance, not prevention or repair, of oxidative damage to lipids. It also demonstrates colony differences in oxidative stress resistance that might be useful for breeding stress-resistant honey bees.

  6. Expression of the Prophenoloxidase Gene and Phenoloxidase Activity, During the Development of Apis Mellifera Brood Infected with Varroa Destructor

    Directory of Open Access Journals (Sweden)

    Zaobidna Ewa A.

    2015-12-01

    Full Text Available The pathogenesis of varroasis has not been fully explained despite intensive research. Earlier studies suggested that parasitic infections caused by Varroa destructor mites were accompanied by immunosuppression in the host organism. The objective of this study was to analyse the influence of varroasis on one of the immune pathway in Apis mellifera measured by the expression of the prophenoloxidase (proPO gene and the enzymatic activity of this gene’s product, phenoloxidase (EC 1.14.18.1. An evaluation was done of five developmental stages of honey bee workers and drones. The relative expression of proPO decreased in infected individuals. The only exceptions were worker prepupae (PP and drone pupae with brown eyes and dark brown thorax (P5 where propo gene expression was 1.8-fold and 1.5-fold higher, respectively, than in the control. Phenoloxidase (PO activity was 2.8-fold higher in infected pp workers and 2-fold higher in p5 drones in comparison with uninfected bees. Phenoloxidase activity was reduced in the remaining developmental stages of infected workers and drones. The relative expression of proPO was positively correlated with the relative PO activity in both workers (r = 0.988 and drones (r = 0.996. The results of the study indicate that V. destructor significantly influences the phenoloxidase-dependent immune pathway in honey bees.

  7. Expression analysis of putative vitellogenin and lipophorin receptors in honey bee (Apis mellifera L.) queens and workers.

    Science.gov (United States)

    Guidugli-Lazzarini, Karina Rosa; do Nascimento, Adriana Mendes; Tanaka, Erica Donato; Piulachs, Maria Dolors; Hartfelder, Klaus; Bitondi, Márcia Gentile; Simões, Zilá Luz Paulino

    2008-07-01

    Two members of the low density lipoprotein receptor (LDLR) family were identified as putative orthologs for a vitellogenin receptor (Amvgr) and a lipophorin receptor (Amlpr) in the Apis mellifera genome. Both receptor sequences have the structural motifs characteristic of LDLR family members and show a high degree of similarity with sequences of other insects. RT-PCR analysis of Amvgr and Amlpr expression detected the presence of both transcripts in different tissues of adult female (ovary, fat body, midgut, head and specifically hypopharyngeal gland), as well as in embryos. In the head RNA samples we found two variant forms of AmLpR: a full length one and a shorter one lacking 29 amino acids in the O-linked sugar domain. In ovaries the expression levels of the two honey bee LDLR members showed opposing trends: whereas Amvgr expression was upregulated as the ovaries became activated, Amlpr transcript levels gradually declined. In situ hybridization analysis performed on ovaries detected Amvgr mRNA exclusively in germ line cells and corroborated the qPCR results showing an increase in Amvgr gene expression concomitant with follicle growth.

  8. Effect of Olfactory Stimulus on the Flight Course of a Honeybee, Apis mellifera, in a Wind Tunnel.

    Science.gov (United States)

    Ikeno, Hidetoshi; Akamatsu, Tadaaki; Hasegawa, Yuji; Ai, Hiroyuki

    2013-12-31

    It is known that the honeybee, Apis mellifera, uses olfactory stimulus as important information for orienting to food sources. Several studies on olfactory-induced orientation flight have been conducted in wind tunnels and in the field. From these studies, optical sensing is used as the main information with the addition of olfactory signals and the navigational course followed by these sensory information. However, it is not clear how olfactory information is reflected in the navigation of flight. In this study, we analyzed the detailed properties of flight when oriented to an odor source in a wind tunnel. We recorded flying bees with a video camera to analyze the flight area, speed, angular velocity and trajectory. After bees were trained to be attracted to a feeder, the flight trajectories with or without the olfactory stimulus located upwind of the feeder were compared. The results showed that honeybees flew back and forth in the proximity of the odor source, and the search range corresponded approximately to the odor spread area. It was also shown that the angular velocity was different inside and outside the odor spread area, and trajectories tended to be bent or curved just outside the area.

  9. Genome Characterization, Prevalence and Distribution of a Macula-Like Virus from Apis mellifera and Varroa destructor

    Directory of Open Access Journals (Sweden)

    Joachim R. de Miranda

    2015-07-01

    Full Text Available Around 14 distinct virus species-complexes have been detected in honeybees, each with one or more strains or sub-species. Here we present the initial characterization of an entirely new virus species-complex discovered in honeybee (Apis mellifera L. and varroa mite (Varroa destructor samples from Europe and the USA. The virus has a naturally poly-adenylated RNA genome of about 6500 nucleotides with a genome organization and sequence similar to the Tymoviridae (Tymovirales; Tymoviridae, a predominantly plant-infecting virus family. Literature and laboratory analyses indicated that the virus had not previously been described. The virus is very common in French apiaries, mirroring the results from an extensive Belgian survey, but could not be detected in equally-extensive Swedish and Norwegian bee disease surveys. The virus appears to be closely linked to varroa, with the highest prevalence found in varroa samples and a clear seasonal distribution peaking in autumn, coinciding with the natural varroa population development. Sub-genomic RNA analyses show that bees are definite hosts, while varroa is a possible host and likely vector. The tentative name of Bee Macula-like virus (BeeMLV is therefore proposed. A second, distantly related Tymoviridae-like virus was also discovered in varroa transcriptomes, tentatively named Varroa Tymo-like virus (VTLV.

  10. Genome Characterization, Prevalence and Distribution of a Macula-Like Virus from Apis mellifera and Varroa destructor.

    Science.gov (United States)

    de Miranda, Joachim R; Cornman, R Scott; Evans, Jay D; Semberg, Emilia; Haddad, Nizar; Neumann, Peter; Gauthier, Laurent

    2015-07-01

    Around 14 distinct virus species-complexes have been detected in honeybees, each with one or more strains or sub-species. Here we present the initial characterization of an entirely new virus species-complex discovered in honeybee (Apis mellifera L.) and varroa mite (Varroa destructor) samples from Europe and the USA. The virus has a naturally poly-adenylated RNA genome of about 6500 nucleotides with a genome organization and sequence similar to the Tymoviridae (Tymovirales; Tymoviridae), a predominantly plant-infecting virus family. Literature and laboratory analyses indicated that the virus had not previously been described. The virus is very common in French apiaries, mirroring the results from an extensive Belgian survey, but could not be detected in equally-extensive Swedish and Norwegian bee disease surveys. The virus appears to be closely linked to varroa, with the highest prevalence found in varroa samples and a clear seasonal distribution peaking in autumn, coinciding with the natural varroa population development. Sub-genomic RNA analyses show that bees are definite hosts, while varroa is a possible host and likely vector. The tentative name of Bee Macula-like virus (BeeMLV) is therefore proposed. A second, distantly related Tymoviridae-like virus was also discovered in varroa transcriptomes, tentatively named Varroa Tymo-like virus (VTLV). PMID:26154017

  11. Am5-HT7: molecular and pharmacological characterization of the first serotonin receptor of the honeybee (Apis mellifera).

    Science.gov (United States)

    Schlenstedt, Jana; Balfanz, Sabine; Baumann, Arnd; Blenau, Wolfgang

    2006-09-01

    The biogenic amine serotonin (5-HT) plays a key role in the regulation and modulation of many physiological and behavioural processes in both vertebrates and invertebrates. These functions are mediated through the binding of serotonin to its receptors, of which 13 subtypes have been characterized in vertebrates. We have isolated a cDNA from the honeybee Apis mellifera (Am5-ht7) sharing high similarity to members of the 5-HT(7) receptor family. Expression of the Am5-HT(7) receptor in HEK293 cells results in an increase in basal cAMP levels, suggesting that Am5-HT(7) is expressed as a constitutively active receptor. Serotonin application to Am5-ht7-transfected cells elevates cyclic adenosine 3',5'-monophosphate (cAMP) levels in a dose-dependent manner (EC(50) = 1.1-1.8 nm). The Am5-HT(7) receptor is also activated by 5-carboxamidotryptamine, whereas methiothepin acts as an inverse agonist. Receptor expression has been investigated by RT-PCR, in situ hybridization, and western blotting experiments. Receptor mRNA is expressed in the perikarya of various brain neuropils, including intrinsic mushroom body neurons, and in peripheral organs. This study marks the first comprehensive characterization of a serotonin receptor in the honeybee and should facilitate further analysis of the role(s) of the receptor in mediating the various central and peripheral effects of 5-HT. PMID:16945110

  12. Characterization of royal jelly proteins in both Africanized and European honeybees (Apis mellifera) by two-dimensional gel electrophoresis.

    Science.gov (United States)

    Sano, Osamu; Kunikata, Toshio; Kohno, Keizo; Iwaki, Kanso; Ikeda, Masao; Kurimoto, Masashi

    2004-01-14

    In this study, the proteins contained in royal jelly (RJ) produced by Africanized honeybees and European honeybees (Apis mellifera) haven been analyzed in detail and compared using two-dimensional gel electrophoresis, and the N-terminal amino acid sequence of each spot has been determined. Most spots were assigned to major royal jelly proteins (MRJPs). Remarkable differences were found in the heterogeneity of the MRJPs, in particular MRJP3, in terms of molecular weights and isoelectric points between the two species of RJ. Furthermore, during the determination of the N-terminal amino acid sequence of each spot, for the first time, MRJP4 protein has been identified, the existence of which had been only implied by cloning of its cDNA sequence. The presence of heterogeneous bands of glucose oxidase was also identified. Thus, the results suggest that two-dimensional gel electrophoresis provides a suitable method for the qualitative analysis of the proteins contained in RJ derived from different honeybee species. PMID:14709007

  13. Africanized honey bees (Apis mellifera) have low infestation levels of the mite Varroa destructor in different ecological regions in Mexico.

    Science.gov (United States)

    Medina-Flores, C A; Guzmán-Novoa, E; Hamiduzzaman, M M; Aréchiga-Flores, C F; López-Carlos, M A

    2014-01-01

    Honey bee (Apis mellifera) colonies of African and European descent were compared for levels of Varroa destructor infestation in 3 different ecological regions in Mexico. The 300 colonies that were studied were located in subtropical, temperate sub-humid, and temperate dry climates. The morphotype and mitotype of adult bees as well as their rates of infestation by varroa mites were determined. Additionally, the number of combs with brood and covered with bees was recorded for each colony. The highest frequency of colonies that were classified as African-derived was found in the subtropical environment, whereas the lowest occurred in the temperate dry region. Overall, the colonies of African genotype had significantly lower mite infestation rates (3.5±0.34%) than the colonies of European genotype (4.7±0.49%) regardless of the region sampled. Significant effects of genotype and region on Varroa infestation rates were evident, and there were no differences in bee population or capped brood between genotypes. Mite infestation levels were significantly lower in the colonies of the temperate dry region than in the colonies of the other 2 regions. These results are discussed within the context of results from studies that were previously conducted in Brazil. This is the first study that demonstrates the effects of Africanization and ecological environment on V. destructor infestation rates in honey bee colonies in North America. PMID:24634296

  14. Differences in Varroa destructor infestation rates of two indigenous subspecies of Apis mellifera in the Republic of South Africa.

    Science.gov (United States)

    Mortensen, Ashley N; Schmehl, Daniel R; Allsopp, Mike; Bustamante, Tomas A; Kimmel, Chase B; Dykes, Mark E; Ellis, James D

    2016-04-01

    Varroa destructor Anderson & Trueman (Varroa) is a damaging pest of the Western honey bee, Apis mellifera, in North America, Europe, and Asia. However, Varroa infestations have not produced equivalent colony losses of African subspecies of honey bee throughout Africa and parts of the Americas. We surveyed the Varroa infestation rates (number of Varroa per 100 adult honey bees) in colonies of A. m. scutellata, A. m. capensis, and hybrids of the two subspecies throughout the Republic of South Africa in the fall of 2014. We found that A. m. scutellata colonies had significantly higher Varroa infestations than did A. m. capensis colonies. Furthermore, hybridized colonies of the two subspecies had Varroa infestations intermediate to those of A. m. scutellata and A. m. capensis. This is the first documentation of a clear difference in Varroa infestation rates of A. m. scutellata, A. m. capensis, and hybridized colonies in South Africa. Furthermore, our data confirm that Varroa populations in A. m. scutellata colonies are within the range of populations that are damaging to European honey bees. PMID:26704261

  15. Mating frequencies of honey bee queens (Apis mellifera L.) in a population of feral colonies in the Northeastern United States.

    Science.gov (United States)

    Tarpy, David R; Delaney, Deborah A; Seeley, Thomas D

    2015-01-01

    Across their introduced range in North America, populations of feral honey bee (Apis mellifera L.) colonies have supposedly declined in recent decades as a result of exotic parasites, most notably the ectoparasitic mite Varroa destructor. Nonetheless, recent studies have documented several wild populations of colonies that have persisted. The extreme polyandry of honey bee queens-and the increased intracolony genetic diversity it confers-has been attributed, in part, to improved disease resistance and may be a factor in the survival of these populations of feral colonies. We estimated the mating frequencies of queens in feral colonies in the Arnot Forest in New York State to determine if the level of polyandry of these queens is especially high and so might contribute to their survival success. We genotyped the worker offspring from 10 feral colonies in the Arnot Forest of upstate New York, as well as those from 20 managed colonies closest to this forest. We found no significant differences in mean mating frequency between the feral and managed queens, suggesting that queens in the remote, low-density population of colonies in the Arnot Forest are neither mate-limited nor adapted to mate at an especially high frequency. These findings support the hypothesis that the hyperpolyandry of honey bees has been shaped on an evolutionary timescale rather than on an ecological one. PMID:25775410

  16. Differential responses of Africanized and European honey bees (Apis mellifera) to viral replication following mechanical transmission or Varroa destructor parasitism.

    Science.gov (United States)

    Hamiduzzaman, Mollah Md; Guzman-Novoa, Ernesto; Goodwin, Paul H; Reyes-Quintana, Mariana; Koleoglu, Gun; Correa-Benítez, Adriana; Petukhova, Tatiana

    2015-03-01

    For the first time, adults and brood of Africanized and European honey bees (Apis mellifera) were compared for relative virus levels over 48 h following Varroa destructor parasitism or injection of V. destructor homogenate. Rates of increase of deformed wing virus (DWV) for Africanized versus European bees were temporarily lowered for 12h with parasitism and sustainably lowered over the entire experiment (48 h) with homogenate injection in adults. The rates were also temporarily lowered for 24h with parasitism but were not affected by homogenate injection in brood. Rates of increase of black queen cell virus (BQCV) for Africanized versus European bees were similar with parasitism but sustainably lowered over the entire experiment with homogenate injection in adults and were similar for parasitism and homogenate injection in brood. Analyses of sac brood bee virus and Israeli acute paralysis virus were limited as detection did not occur after both homogenate injection and parasitism treatment, or levels were not significantly higher than those following control buffer injection. Lower rates of replication of DWV and BQCV in Africanized bees shows that they may have greater viral resistance, at least early after treatment. PMID:25527405

  17. Analysis of moisture content, acidity and contamination by yeast and molds in Apis mellifera L. honey from central Brazil.

    Science.gov (United States)

    Ananias, Karla Rubia; de Melo, Adriane Alexandre Machado; de Moura, Celso José

    2013-01-01

    The development of mold of environmental origin in honey affects its quality and leads to its deterioration, so yeasts and molds counts have been used as an important indicator of hygiene levels during its processing, transportation and storage. The aim of this study was to evaluate the levels of yeasts and molds contamination and their correlation with moisture and acidity levels in Apis mellifera L. honey from central Brazil. In 20% of the samples, the yeasts and molds counts exceeded the limit established by legislation for the marketing of honey in the MERCOSUR, while 42.8% and 5.7% presented above-standard acidity and moisture levels, respectively. Although samples showed yeasts and molds counts over 1.0 × 10(2) UFC.g(-1), there was no correlation between moisture content and the number of microorganisms, since, in part of the samples with above-standard counts, the moisture level was below 20%. In some samples the acidity level was higher than that established by legislation, but only one sample presented a yeasts and molds count above the limit established by MERCOSUR, which would suggest the influence of the floral source on this parameter. In general, of the 35 samples analyzed, the quality was considered inadequate in 45.7% of cases.

  18. Antimicrobial activity of apitoxin, melittin and phospholipase A2 of honey bee (Apis mellifera venom against oral pathogens

    Directory of Open Access Journals (Sweden)

    Luís F. Leandro

    2015-03-01

    Full Text Available In this work, we used the Minimum Inhibitory Concentration (MIC technique to evaluate the antibacterial potential of the apitoxin produced by Apis mellifera bees against the causative agents of tooth decay. Apitoxin was assayed in naturaand in the commercially available form. The antibacterial actions of the main components of this apitoxin, phospholipase A2, and melittin were also assessed, alone and in combination. The following bacteria were tested: Streptococcus salivarius, S. sobrinus, S. mutans, S. mitis, S. sanguinis, Lactobacillus casei, and Enterococcus faecalis. The MIC results obtained for the commercially available apitoxin and for the apitoxin in natura were close and lay between 20 and 40µg / mL, which indicated good antibacterial activity. Melittin was the most active component in apitoxin; it displayed very promising MIC values, from 4 to 40µg / mL. Phospholipase A2 presented MIC values higher than 400µg / mL. Association of mellitin with phospholipase A2 yielded MIC values ranging between 6 and 80µg / mL. Considering that tooth decay affects people's health, apitoxin and its component melittin have potential application against oral pathogens.

  19. The Effect of an Organic Pesticide on Mortality and Learning in Africanized Honey Bees (Apis mellifera L. in Brasil

    Directory of Open Access Journals (Sweden)

    Charles I.   Abramson

    2006-01-01

    Full Text Available Seven experiments were conducted. First, the influence of the consumption of different concentrations of the organic pesticide Bioganic® on mortality was assessed at 11 different time intervals in Africanized honey bees (Apis mellifera L. as was direct application of the pesticide to the abdomen. Results indicated that the pesticide was not lethal to bees regardless of concentration at any intervals tested whether consumed directly or applied to the abdomen. Second, the effects of different concentrations of the pesticide on Pavlovian conditioning and complex learning were examined in harnessed foragers. Results suggest that the pesticide affected learning; however, this conclusion may be erroneous because the bees would not feed on the pesticide, thus making it impossible to properly assess Pavlovian conditioning and complex learning. Consequently, the effect of the agrochemical on complex learning was examined in free flying bees trained to land on targets. The results of free flying experiments indicated that bees did not avoid a target associated with the smell of the pesticide but did avoid the target if they had to drink the pesticide.

  20. Mating frequencies of honey bee queens (Apis mellifera L. in a population of feral colonies in the Northeastern United States.

    Directory of Open Access Journals (Sweden)

    David R Tarpy

    Full Text Available Across their introduced range in North America, populations of feral honey bee (Apis mellifera L. colonies have supposedly declined in recent decades as a result of exotic parasites, most notably the ectoparasitic mite Varroa destructor. Nonetheless, recent studies have documented several wild populations of colonies that have persisted. The extreme polyandry of honey bee queens-and the increased intracolony genetic diversity it confers-has been attributed, in part, to improved disease resistance and may be a factor in the survival of these populations of feral colonies. We estimated the mating frequencies of queens in feral colonies in the Arnot Forest in New York State to determine if the level of polyandry of these queens is especially high and so might contribute to their survival success. We genotyped the worker offspring from 10 feral colonies in the Arnot Forest of upstate New York, as well as those from 20 managed colonies closest to this forest. We found no significant differences in mean mating frequency between the feral and managed queens, suggesting that queens in the remote, low-density population of colonies in the Arnot Forest are neither mate-limited nor adapted to mate at an especially high frequency. These findings support the hypothesis that the hyperpolyandry of honey bees has been shaped on an evolutionary timescale rather than on an ecological one.

  1. Supplementing with vitamin C the diet of honeybees (Apis mellifera carnica) parasitized with Varroa destructor: effects on antioxidative status.

    Science.gov (United States)

    Farjan, Marek; Łopieńska-Biernat, Elżbieta; Lipiński, Zbigniew; Dmitryjuk, Małgorzata; Żółtowska, Krystyna

    2014-05-01

    We studied a total of eight developmental stages of capped brood and newly emerged workers of Apis mellifera carnica colonies naturally parasitized with Varroa destructor. During winter and early spring four colonies were fed syrup containing 1.8 mg vitamin C kg(-1) (ascorbic acid group; group AA) while four colonies were fed syrup without the vitamin C (control group C). Selected elements of the antioxidative system were analysed including total antioxidant status (TAS), glutathione content and antioxidative enzyme activities (superoxide dismutase, catalase, peroxidase and glutathione S-transferase). Body weight, protein content and indices of infestation were also determined. The prevalence (8.11%) and intensity (1·15 parasite per bee) of the infestation were lower in group AA compared with group C (11.3% and 1.21, respectively). Changes in the indicators of antioxidative stress were evidence for the strengthening of the antioxidative system in the brood by administration of vitamin C. In freshly emerged worker bees of group AA, despite the infestation, protein content, TAS, and the activity of all antioxidative enzymes had significantly higher values in relation to group C.

  2. Acaricidal and insecticidal activity of essential oils on Varroa destructor (Acari: Varroidae) and Apis mellifera (Hymenoptera: Apidae).

    Science.gov (United States)

    Damiani, Natalia; Gende, Liesel B; Bailac, Pedro; Marcangeli, Jorge A; Eguaras, Martín J

    2009-12-01

    Varroa destructor is an external parasitic mite that is a serious pest of honeybees and has caused severe losses of colonies worldwide. One of the feasible alternative treatments being used for their control is essential oils. The aim of this work was to evaluate the bioactivity of some essential oils on V. destructor and Apis mellifera in relation with their chemical composition and physicochemical properties. Lavender, lavendin and laurel essential oils showed linalool as main compound in their composition. 1,8-Cineole was also present as a predominant component in the laurel essential oil. However, thyme oil was characterized by a high concentration of thymol. Mites and bees toxicity was tested by means of complete exposure method. For mites, LC(50) values for laurel, lavender and lavendin essential oil did not show significant variation throughout all observation times. However, the LC(50) values for thyme oil at 48 and 72 h were lower than at 24 h. Bee mortality was evident only in treatment with thyme oil. At 48 and 72 h, lavender essential oil presented better selectivity indexes. In this research, all essential oils caused mite mortality without severe harmful effects on adult bees. The simultaneous evaluation of the physicochemical analysis of the essential oils, the characterization of the dosage response relationships among them, and the mortality effects on mite and bees, give us the possibility to obtain comparative results for future research in Varroa control.

  3. Genome Characterization, Prevalence and Distribution of a Macula-Like Virus from Apis mellifera and Varroa destructor.

    Science.gov (United States)

    de Miranda, Joachim R; Cornman, R Scott; Evans, Jay D; Semberg, Emilia; Haddad, Nizar; Neumann, Peter; Gauthier, Laurent

    2015-07-06

    Around 14 distinct virus species-complexes have been detected in honeybees, each with one or more strains or sub-species. Here we present the initial characterization of an entirely new virus species-complex discovered in honeybee (Apis mellifera L.) and varroa mite (Varroa destructor) samples from Europe and the USA. The virus has a naturally poly-adenylated RNA genome of about 6500 nucleotides with a genome organization and sequence similar to the Tymoviridae (Tymovirales; Tymoviridae), a predominantly plant-infecting virus family. Literature and laboratory analyses indicated that the virus had not previously been described. The virus is very common in French apiaries, mirroring the results from an extensive Belgian survey, but could not be detected in equally-extensive Swedish and Norwegian bee disease surveys. The virus appears to be closely linked to varroa, with the highest prevalence found in varroa samples and a clear seasonal distribution peaking in autumn, coinciding with the natural varroa population development. Sub-genomic RNA analyses show that bees are definite hosts, while varroa is a possible host and likely vector. The tentative name of Bee Macula-like virus (BeeMLV) is therefore proposed. A second, distantly related Tymoviridae-like virus was also discovered in varroa transcriptomes, tentatively named Varroa Tymo-like virus (VTLV).

  4. ULTRASTRUCURAL STUDY OF BEE LOUSE VARROA DESTRUCTOR ANDERSON & TRUEMAN 2000 (ACARI: VARROIDAE) WITH RESISTANCE MODELS FROM APIS MELLIFERA L.

    Science.gov (United States)

    Ammar, Khalaf Nour Abd El-Wahed

    2015-08-01

    The ectoparasitic mite Varroa destructor is the most dangerous pest of honeybee Egyptian race Apis mellifera L., as it causes many losses in apiculture worldwide. Adult female mites are flattened with a dome-shaped dorsal shield. The present SEM study revealed that the flat ventral surface is composed of series of plates. There are 5 rows of small, chemoreceptor papillae posterior to the genito-ventro anal shield, and a unique respiratory structure (peritreme) is located laterally above Coxa III. Peritreme is a chitinized elongated area surrounding stigma opening, provided by a lid that looks like a rose with a curly thick inner membrane which has numerous teeth-like projections. Mite' legs appeared to be modified for parasitism and each is tipped by one distal empodium. The pretarsus of the first pair of legs becomes a concave sucker and the pretarsus of the 3 pairs of the posterior legs consists of membranous amblacral pad (the caruncle). The mouthparts appeared well modified for its diet on bee hernolymph with its' powerful pedipalp for host attachment. High magnification revealed different types of setae distributed on the body, the mechano-receptor pedipalp short. and long anal setae and dorsal shield sensory simple setae.

  5. Differential responses of Africanized and European honey bees (Apis mellifera) to viral replication following mechanical transmission or Varroa destructor parasitism.

    Science.gov (United States)

    Hamiduzzaman, Mollah Md; Guzman-Novoa, Ernesto; Goodwin, Paul H; Reyes-Quintana, Mariana; Koleoglu, Gun; Correa-Benítez, Adriana; Petukhova, Tatiana

    2015-03-01

    For the first time, adults and brood of Africanized and European honey bees (Apis mellifera) were compared for relative virus levels over 48 h following Varroa destructor parasitism or injection of V. destructor homogenate. Rates of increase of deformed wing virus (DWV) for Africanized versus European bees were temporarily lowered for 12h with parasitism and sustainably lowered over the entire experiment (48 h) with homogenate injection in adults. The rates were also temporarily lowered for 24h with parasitism but were not affected by homogenate injection in brood. Rates of increase of black queen cell virus (BQCV) for Africanized versus European bees were similar with parasitism but sustainably lowered over the entire experiment with homogenate injection in adults and were similar for parasitism and homogenate injection in brood. Analyses of sac brood bee virus and Israeli acute paralysis virus were limited as detection did not occur after both homogenate injection and parasitism treatment, or levels were not significantly higher than those following control buffer injection. Lower rates of replication of DWV and BQCV in Africanized bees shows that they may have greater viral resistance, at least early after treatment.

  6. Differences in Varroa destructor infestation rates of two indigenous subspecies of Apis mellifera in the Republic of South Africa.

    Science.gov (United States)

    Mortensen, Ashley N; Schmehl, Daniel R; Allsopp, Mike; Bustamante, Tomas A; Kimmel, Chase B; Dykes, Mark E; Ellis, James D

    2016-04-01

    Varroa destructor Anderson & Trueman (Varroa) is a damaging pest of the Western honey bee, Apis mellifera, in North America, Europe, and Asia. However, Varroa infestations have not produced equivalent colony losses of African subspecies of honey bee throughout Africa and parts of the Americas. We surveyed the Varroa infestation rates (number of Varroa per 100 adult honey bees) in colonies of A. m. scutellata, A. m. capensis, and hybrids of the two subspecies throughout the Republic of South Africa in the fall of 2014. We found that A. m. scutellata colonies had significantly higher Varroa infestations than did A. m. capensis colonies. Furthermore, hybridized colonies of the two subspecies had Varroa infestations intermediate to those of A. m. scutellata and A. m. capensis. This is the first documentation of a clear difference in Varroa infestation rates of A. m. scutellata, A. m. capensis, and hybridized colonies in South Africa. Furthermore, our data confirm that Varroa populations in A. m. scutellata colonies are within the range of populations that are damaging to European honey bees.

  7. Africanized honey bees (Apis mellifera) have low infestation levels of the mite Varroa destructor in different ecological regions in Mexico.

    Science.gov (United States)

    Medina-Flores, C A; Guzmán-Novoa, E; Hamiduzzaman, M M; Aréchiga-Flores, C F; López-Carlos, M A

    2014-02-21

    Honey bee (Apis mellifera) colonies of African and European descent were compared for levels of Varroa destructor infestation in 3 different ecological regions in Mexico. The 300 colonies that were studied were located in subtropical, temperate sub-humid, and temperate dry climates. The morphotype and mitotype of adult bees as well as their rates of infestation by varroa mites were determined. Additionally, the number of combs with brood and covered with bees was recorded for each colony. The highest frequency of colonies that were classified as African-derived was found in the subtropical environment, whereas the lowest occurred in the temperate dry region. Overall, the colonies of African genotype had significantly lower mite infestation rates (3.5±0.34%) than the colonies of European genotype (4.7±0.49%) regardless of the region sampled. Significant effects of genotype and region on Varroa infestation rates were evident, and there were no differences in bee population or capped brood between genotypes. Mite infestation levels were significantly lower in the colonies of the temperate dry region than in the colonies of the other 2 regions. These results are discussed within the context of results from studies that were previously conducted in Brazil. This is the first study that demonstrates the effects of Africanization and ecological environment on V. destructor infestation rates in honey bee colonies in North America.

  8. Towards a better understanding of Apis mellifera and Varroa destructor microbiomes: introducing 'phyloh' as a novel phylogenetic diversity analysis tool.

    Science.gov (United States)

    Sandionigi, A; Vicario, S; Prosdocimi, E M; Galimberti, A; Ferri, E; Bruno, A; Balech, B; Mezzasalma, V; Casiraghi, M

    2015-07-01

    The study of diversity in biological communities is an intriguing field. Huge amount of data are nowadays available (provided by the innovative DNA sequencing techniques), and management, analysis and display of results are not trivial. Here, we propose for the first time the use of phylogenetic entropy as a measure of bacterial diversity in studies of microbial community structure. We then compared our new method (i.e. the web tool phyloh) for partitioning phylogenetic diversity with the traditional approach in diversity analyses of bacteria communities. We tested phyloh to characterize microbiome in the honeybee (Apis mellifera, Insecta: Hymenoptera) and its parasitic mite varroa (Varroa destructor, Arachnida: Parasitiformes). The rationale is that the comparative analysis of honeybee and varroa microbiomes could open new perspectives concerning the role of the parasites on honeybee colonies health. Our results showed a dramatic change of the honeybee microbiome when varroa occurs, suggesting that this parasite is able to influence host microbiome. Among the different approaches used, only the entropy method, in conjunction with phylogenetic constraint as implemented in phyloh, was able to discriminate varroa microbiome from that of parasitized honeybees. In conclusion, we foresee that the use of phylogenetic entropy could become a new standard in the analyses of community structure, in particular to prove the contribution of each biological entity to the overall diversity.

  9. Starvation stress during larval development facilitates an adaptive response in adult worker honey bees (Apis mellifera L.).

    Science.gov (United States)

    Wang, Ying; Kaftanoglu, Osman; Brent, Colin S; Page, Robert E; Amdam, Gro V

    2016-04-01

    Most organisms are constantly faced with environmental changes and stressors. In diverse organisms, there is an anticipatory mechanism during development that can program adult phenotypes. The adult phenotype would be adapted to the predicted environment that occurred during organism maturation. However, whether this anticipatory mechanism is present in eusocial species is questionable because eusocial organisms are largely shielded from exogenous conditions by their stable nest environment. In this study, we tested whether food deprivation during development of the honey bee (Apis mellifera), a eusocial insect model, can shift adult phenotypes to better cope with nutritional stress. After subjecting fifth instar worker larvae to short-term starvation, we measured nutrition-related morphology, starvation resistance, physiology, endocrinology and behavior in the adults. We found that the larval starvation caused adult honey bees to become more resilient toward starvation. Moreover, the adult bees were characterized by reduced ovary size, elevated glycogen stores and juvenile hormone (JH) titers, and decreased sugar sensitivity. These changes, in general, can help adult insects survive and reproduce in food-poor environments. Overall, we found for the first time support for an anticipatory mechanism in a eusocial species, the honey bee. Our results suggest that this mechanism may play a role in honey bee queen-worker differentiation and worker division of labor, both of which are related to the responses to nutritional stress. PMID:27030775

  10. An assessment of fixed interval timing in free-flying honey bees (Apis mellifera ligustica): an analysis of individual performance.

    Science.gov (United States)

    Craig, David Philip Arthur; Varnon, Christopher A; Sokolowski, Michel B C; Wells, Harrington; Abramson, Charles I

    2014-01-01

    Interval timing is a key element of foraging theory, models of predator avoidance, and competitive interactions. Although interval timing is well documented in vertebrate species, it is virtually unstudied in invertebrates. In the present experiment, we used free-flying honey bees (Apis mellifera ligustica) as a model for timing behaviors. Subjects were trained to enter a hole in an automated artificial flower to receive a nectar reinforcer (i.e. reward). Responses were continuously reinforced prior to exposure to either a fixed interval (FI) 15-sec, FI 30-sec, FI 60-sec, or FI 120-sec reinforcement schedule. We measured response rate and post-reinforcement pause within each fixed interval trial between reinforcers. Honey bees responded at higher frequencies earlier in the fixed interval suggesting subject responding did not come under traditional forms of temporal control. Response rates were lower during FI conditions compared to performance on continuous reinforcement schedules, and responding was more resistant to extinction when previously reinforced on FI schedules. However, no "scalloped" or "break-and-run" patterns of group or individual responses reinforced on FI schedules were observed; no traditional evidence of temporal control was found. Finally, longer FI schedules eventually caused all subjects to cease returning to the operant chamber indicating subjects did not tolerate the longer FI schedules. PMID:24983960

  11. Morphological and Chemical Characterization of the Invasive Ants in Hives of Apis mellifera scutellata Lepeletier (Hymenoptera: Apidae).

    Science.gov (United States)

    Simoes, M R; Giannotti, E; Tofolo, V C; Pizano, M A; Firmino, E L B; Antonialli-Junior, W F; Andrade, L H C; Lima, S M

    2016-02-01

    Apiculture in Brazil is quite profitable and has great potential for expansion because of the favorable climate and abundancy of plant diversity. However, the occurrence of pests, diseases, and parasites hinders the growth and profitability of beekeeping. In the interior of the state of São Paulo, apiaries are attacked by ants, especially the species Camponotus atriceps (Smith) (Hymenoptera: Formicidae), which use the substances produced by Apis mellifera scutellata (Lepeletier) (Hymenoptera: Apidae), like honey, wax, pollen, and offspring as a source of nourishment for the adult and immature ants, and kill or expel the adult bees during the invasion. This study aimed to understand the invasion of C. atriceps in hives of A. m. scutellata. The individuals were classified into castes and subcastes according to morphometric analyses, and their cuticular chemical compounds were identified using Photoacoustic Fourier transform infrared spectroscopy (FTIR-PAS). The morphometric analyses were able to classify the individuals into reproductive castes (queen and gynes), workers (minor and small ants), and the soldier subcaste (medium and major ants). Identification of cuticular hydrocarbons of these individuals revealed that the eight beehives were invaded by only three colonies of C. atriceps; one of the colonies invaded only one beehive, and the other two colonies underwent a process called sociotomy and were responsible for the invasion of the other seven beehives. The lack of preventive measures and the nocturnal behavior of the ants favored the invasion and attack on the bees. PMID:26563402

  12. The Effect of Prebiotic and Probiotic Feed Supplementation on the Wax Glands of Worker Bees (Apis Mellifera

    Directory of Open Access Journals (Sweden)

    Silvia Pătruică

    2012-10-01

    Full Text Available This paper presents the effects of acidifying substances (lactic acid or acetic acid, Enterobiotics products(Lactobacillus acidophilus LA-14 and Bifidobacterium lactis BI-04 and Enterolactis Plus (Lactobacillus casei onthe wax glands of worker bees. The research was conducted in Timis County, Romania, between March 25 and April20, 2011, on 110 colonies of bees (Apis mellifera carpatica, allocated to 11 experimental treatment groups. Coloniesin the experimental groups were given three weekly feeds of sugar syrup supplemented with acidifying substances(lactic acid or cider vinegar and/or probiotic products (Enterobiotics or Enterolactis Plus. Three weeks after theadministration of the experimental diets, 10 worker bees from each treatment group were sampled for histologicalexamination of their wax glands. Gland development was shown to be influenced by administration of prebioticand/or probiotic supplements. Wax gland cell sizes ranged from 25.1 microns for the control group to between 27.8and 31.8 microns in the group fed with acidifying substances and between 26.9 and 29.2 microns in bees fed withprobiotic products. Bees supplemented with both lactic acid and probiotic product (group LE9 and LE10 showedmean wax cell sizes of 31.8 microns.

  13. Neurophysiological mechanisms underlying sex- and maturation-related variation in pheromone responses in honey bees (Apis mellifera).

    Science.gov (United States)

    Villar, Gabriel; Baker, Thomas C; Patch, Harland M; Grozinger, Christina M

    2015-07-01

    In the honey bee (Apis mellifera), social organization is primarily mediated by pheromones. Queen-produced 9-oxo-2-decenoic acid (9-ODA) functions as both a social and sex pheromone, eliciting attraction in both female workers and male drones, but also affecting other critical aspects of worker physiology and behavior. These effects are also maturation related, as younger workers and sexually mature drones are most receptive to 9-ODA. While changes in the peripheral nervous system drive sex-related differences in sensitivity to 9-ODA, the mechanisms driving maturation-related shifts in receptivity to 9-ODA remain unknown. Here, we investigate the hypothesis that changes at the peripheral nervous system may be mediating plastic responses to 9-ODA by characterizing expression levels of AmOR11 (the olfactory receptor tuned to 9-ODA) and electrophysiological responses to 9-ODA. We find that receptor expression correlates significantly with behavioral receptivity to 9-ODA, with nurses and sexually mature drones exhibiting higher levels of expression than foragers and immature drones, respectively. Electrophysiological responses to 9-ODA were not found to correlate with behavioral receptivity or receptor expression, however. Thus, while receptor expression at the periphery exhibits a level of plasticity that correlates with behavior, the mechanisms driving maturation-dependent responsiveness to 9-ODA appear to function primarily in the central nervous system. PMID:25840687

  14. Induced thiacloprid insensitivity in honeybees (Apis mellifera L.) is associated with up-regulation of detoxification genes.

    Science.gov (United States)

    Alptekin, S; Bass, C; Nicholls, C; Paine, M J I; Clark, S J; Field, L; Moores, G D

    2016-04-01

    Honey bees, Apis mellifera, are markedly less sensitive to neonicotinoid insecticides containing a cyanoimino pharmacophore than to those with a nitroimino group. Although previous work has suggested that this results from enhanced metabolism of the former by detoxification enzymes, the specific enzyme(s) involved remain to be characterized. In this work, a pretreatment of honey bees with a sublethal dose of thiacloprid resulted in induced insensitivity to the same compound immediately following thiacloprid feeding. A longer pretreatment time resulted in no, or increased, sensitivity. Transcriptome profiling, using microarrays, identified a number of genes encoding detoxification enzymes that were over-expressed significantly in insecticide-treated bees compared with untreated controls. These included five P450s, CYP6BE1, CYP305D1, CYP6AS5, CYP315A1, CYP301A1, and a carboxyl/cholinesterase (CCE) CCE8. Four of these P450s were functionally expressed in Escherichia coli and their ability to metabolize thiacloprid examined by liquid chromatography-mass spectrometry (LC-MS) analysis. PMID:26790026

  15. An assessment of fixed interval timing in free-flying honey bees (Apis mellifera ligustica: an analysis of individual performance.

    Directory of Open Access Journals (Sweden)

    David Philip Arthur Craig

    Full Text Available Interval timing is a key element of foraging theory, models of predator avoidance, and competitive interactions. Although interval timing is well documented in vertebrate species, it is virtually unstudied in invertebrates. In the present experiment, we used free-flying honey bees (Apis mellifera ligustica as a model for timing behaviors. Subjects were trained to enter a hole in an automated artificial flower to receive a nectar reinforcer (i.e. reward. Responses were continuously reinforced prior to exposure to either a fixed interval (FI 15-sec, FI 30-sec, FI 60-sec, or FI 120-sec reinforcement schedule. We measured response rate and post-reinforcement pause within each fixed interval trial between reinforcers. Honey bees responded at higher frequencies earlier in the fixed interval suggesting subject responding did not come under traditional forms of temporal control. Response rates were lower during FI conditions compared to performance on continuous reinforcement schedules, and responding was more resistant to extinction when previously reinforced on FI schedules. However, no "scalloped" or "break-and-run" patterns of group or individual responses reinforced on FI schedules were observed; no traditional evidence of temporal control was found. Finally, longer FI schedules eventually caused all subjects to cease returning to the operant chamber indicating subjects did not tolerate the longer FI schedules.

  16. Dynamics of Apis mellifera Filamentous Virus (AmFV) Infections in Honey Bees and Relationships with Other Parasites.

    Science.gov (United States)

    Hartmann, Ulrike; Forsgren, Eva; Charrière, Jean-Daniel; Neumann, Peter; Gauthier, Laurent

    2015-05-01

    Apis mellifera filamentous virus (AmFV) is a large double stranded DNA virus of honey bees, but its relationship with other parasites and prevalence are poorly known. We analyzed individual honey bees from three colonies at different times post emergence in order to monitor the dynamics of the AmFV gut colonization under natural conditions. Prevalence and loads of microsporidia and trypanosomes were also recorded, as well as five common honey bee RNA viruses. The results show that a high proportion of bees get infected with AmFV during the first week post-emergence (75%) and that AmFV DNA levels remained constant. A similar pattern was observed for microsporidia while trypanosomes seem to require more time to colonize the gut. No significant associations between these three infections were found, but significant positive correlations were observed between AmFV and RNA viruses. In parallel, the prevalence of AmFV in France and Sweden was assessed from pooled honey bee workers. The data indicate that AmFV is almost ubiquitous, and does not seem to follow seasonal patterns, although higher viral loads were significantly detected in spring. A high prevalence of AmFV was also found in winter bees, without obvious impact on overwintering of the colonies.

  17. Dynamics of Apis mellifera Filamentous Virus (AmFV Infections in Honey Bees and Relationships with Other Parasites

    Directory of Open Access Journals (Sweden)

    Ulrike Hartmann

    2015-05-01

    Full Text Available Apis mellifera filamentous virus (AmFV is a large double stranded DNA virus of honey bees, but its relationship with other parasites and prevalence are poorly known. We analyzed individual honey bees from three colonies at different times post emergence in order to monitor the dynamics of the AmFV gut colonization under natural conditions. Prevalence and loads of microsporidia and trypanosomes were also recorded, as well as five common honey bee RNA viruses. The results show that a high proportion of bees get infected with AmFV during the first week post-emergence (75% and that AmFV DNA levels remained constant. A similar pattern was observed for microsporidia while trypanosomes seem to require more time to colonize the gut. No significant associations between these three infections were found, but significant positive correlations were observed between AmFV and RNA viruses. In parallel, the prevalence of AmFV in France and Sweden was assessed from pooled honey bee workers. The data indicate that AmFV is almost ubiquitous, and does not seem to follow seasonal patterns, although higher viral loads were significantly detected in spring. A high prevalence of AmFV was also found in winter bees, without obvious impact on overwintering of the colonies.

  18. Starvation stress during larval development facilitates an adaptive response in adult worker honey bees (Apis mellifera L.).

    Science.gov (United States)

    Wang, Ying; Kaftanoglu, Osman; Brent, Colin S; Page, Robert E; Amdam, Gro V

    2016-04-01

    Most organisms are constantly faced with environmental changes and stressors. In diverse organisms, there is an anticipatory mechanism during development that can program adult phenotypes. The adult phenotype would be adapted to the predicted environment that occurred during organism maturation. However, whether this anticipatory mechanism is present in eusocial species is questionable because eusocial organisms are largely shielded from exogenous conditions by their stable nest environment. In this study, we tested whether food deprivation during development of the honey bee (Apis mellifera), a eusocial insect model, can shift adult phenotypes to better cope with nutritional stress. After subjecting fifth instar worker larvae to short-term starvation, we measured nutrition-related morphology, starvation resistance, physiology, endocrinology and behavior in the adults. We found that the larval starvation caused adult honey bees to become more resilient toward starvation. Moreover, the adult bees were characterized by reduced ovary size, elevated glycogen stores and juvenile hormone (JH) titers, and decreased sugar sensitivity. These changes, in general, can help adult insects survive and reproduce in food-poor environments. Overall, we found for the first time support for an anticipatory mechanism in a eusocial species, the honey bee. Our results suggest that this mechanism may play a role in honey bee queen-worker differentiation and worker division of labor, both of which are related to the responses to nutritional stress.

  19. Effect of Olfactory Stimulus on the Flight Course of a Honeybee, Apis mellifera, in a Wind Tunnel

    Directory of Open Access Journals (Sweden)

    Hidetoshi Ikeno

    2013-12-01

    Full Text Available It is known that the honeybee, Apis mellifera, uses olfactory stimulus as important information for orienting to food sources. Several studies on olfactory-induced orientation flight have been conducted in wind tunnels and in the field. From these studies, optical sensing is used as the main information with the addition of olfactory signals and the navigational course followed by these sensory information. However, it is not clear how olfactory information is reflected in the navigation of flight. In this study, we analyzed the detailed properties of flight when oriented to an odor source in a wind tunnel. We recorded flying bees with a video camera to analyze the flight area, speed, angular velocity and trajectory. After bees were trained to be attracted to a feeder, the flight trajectories with or without the olfactory stimulus located upwind of the feeder were compared. The results showed that honeybees flew back and forth in the proximity of the odor source, and the search range corresponded approximately to the odor spread area. It was also shown that the angular velocity was different inside and outside the odor spread area, and trajectories tended to be bent or curved just outside the area.

  20. Effects of Nosema ceranae and thiametoxam in Apis mellifera: A comparative study in Africanized and Carniolan honey bees.

    Science.gov (United States)

    Gregorc, Ales; Silva-Zacarin, Elaine C M; Carvalho, Stephan Malfitano; Kramberger, Doris; Teixeira, Erica W; Malaspina, Osmar

    2016-03-01

    Multiple stressors, such as chemicals and pathogens, are likely to be detrimental for the health and lifespan of Apis mellifera, a bee species frequently exposed to both factors in the field and inside hives. The main objective of the present study was to evaluate comparatively the health of Carniolan and Africanized honey bees (AHB) co-exposed to thiamethoxam and Nosema ceranae (N. ceranae) spores. Newly-emerged worker honey bees were exposed solely with different sublethal doses of thiamethoxam (2% and 0.2% of LD50 for AHB), which could be consumed by bees under field conditions. Toxicity tests for the Carniolan bees were performed, and the LD50 of thiamethoxam for Carniolan honey bees was 7.86 ng bee(-1). Immunohistological analyses were also performed to detect cell death in the midgut of thiamethoxam and/or N. ceranae treated bees. Thiamethoxam exposure had no negative impact on Nosema development in experimental conditions, but it clearly inhibited cell death in the midgut of thiamethoxam and Nosema-exposed bees, as demonstrated by immunohistochemical data. Indeed, thiamethoxam exposure only had a minor synergistic toxic effect on midgut tissue when applied as a low dose simultaneously with N. ceranae to AHB and Carniolan honey bees, in comparison with the effect caused by both stressors separately. Our data provides insights into the effects of the neonicotenoid thiamethoxam on the AHB and Carniolan honey bee life span, as well as the effects of simultaneous application of thiamethoxam and N. ceranae spores to honey bees. PMID:26774296

  1. The effects of Bt Cry1Ie toxin on bacterial diversity in the midgut of Apis mellifera ligustica (Hymenoptera: Apidae).

    Science.gov (United States)

    Jia, Hui-Ru; Geng, Li-Li; Li, Yun-He; Wang, Qiang; Diao, Qing-Yun; Zhou, Ting; Dai, Ping-Li

    2016-01-01

    The honey bee has been regarded as a key species in the environmental risk assessment of biotech crops. Here, the potential adverse effects of Cry1Ie toxin on the midgut bacteria of the worker bees (Apis mellifera ligustica) were investigated under laboratory conditions. Newly emerged bees were fed with different concentrations of Cry1Ie toxin syrups (20 ng/mL, 200 ng/mL, and 20 μg/mL), pure sugar syrup, and 48 ppb of imidacloprid syrups, then sampled after 15 and 30 d. We characterized the dominant midgut bacteria and compared the composition and structure of the midgut bacterial community in all samples using the Illumina MiSeq platform targeting the V3-V4 regions of 16S rDNA. No significant differences in the diversity of the midgut bacteria were observed between the five treatments. This work was the first to show the effects of Cry1Ie toxin on honey bees, and our study provided a theoretical basis for the biosafety assessment of transgenic Cry1Ie maize. PMID:27090812

  2. Towards a better understanding of Apis mellifera and Varroa destructor microbiomes: introducing 'phyloh' as a novel phylogenetic diversity analysis tool.

    Science.gov (United States)

    Sandionigi, A; Vicario, S; Prosdocimi, E M; Galimberti, A; Ferri, E; Bruno, A; Balech, B; Mezzasalma, V; Casiraghi, M

    2015-07-01

    The study of diversity in biological communities is an intriguing field. Huge amount of data are nowadays available (provided by the innovative DNA sequencing techniques), and management, analysis and display of results are not trivial. Here, we propose for the first time the use of phylogenetic entropy as a measure of bacterial diversity in studies of microbial community structure. We then compared our new method (i.e. the web tool phyloh) for partitioning phylogenetic diversity with the traditional approach in diversity analyses of bacteria communities. We tested phyloh to characterize microbiome in the honeybee (Apis mellifera, Insecta: Hymenoptera) and its parasitic mite varroa (Varroa destructor, Arachnida: Parasitiformes). The rationale is that the comparative analysis of honeybee and varroa microbiomes could open new perspectives concerning the role of the parasites on honeybee colonies health. Our results showed a dramatic change of the honeybee microbiome when varroa occurs, suggesting that this parasite is able to influence host microbiome. Among the different approaches used, only the entropy method, in conjunction with phylogenetic constraint as implemented in phyloh, was able to discriminate varroa microbiome from that of parasitized honeybees. In conclusion, we foresee that the use of phylogenetic entropy could become a new standard in the analyses of community structure, in particular to prove the contribution of each biological entity to the overall diversity. PMID:25367306

  3. ULTRASTRUCURAL STUDY OF BEE LOUSE VARROA DESTRUCTOR ANDERSON & TRUEMAN 2000 (ACARI: VARROIDAE) WITH RESISTANCE MODELS FROM APIS MELLIFERA L.

    Science.gov (United States)

    Ammar, Khalaf Nour Abd El-Wahed

    2015-08-01

    The ectoparasitic mite Varroa destructor is the most dangerous pest of honeybee Egyptian race Apis mellifera L., as it causes many losses in apiculture worldwide. Adult female mites are flattened with a dome-shaped dorsal shield. The present SEM study revealed that the flat ventral surface is composed of series of plates. There are 5 rows of small, chemoreceptor papillae posterior to the genito-ventro anal shield, and a unique respiratory structure (peritreme) is located laterally above Coxa III. Peritreme is a chitinized elongated area surrounding stigma opening, provided by a lid that looks like a rose with a curly thick inner membrane which has numerous teeth-like projections. Mite' legs appeared to be modified for parasitism and each is tipped by one distal empodium. The pretarsus of the first pair of legs becomes a concave sucker and the pretarsus of the 3 pairs of the posterior legs consists of membranous amblacral pad (the caruncle). The mouthparts appeared well modified for its diet on bee hernolymph with its' powerful pedipalp for host attachment. High magnification revealed different types of setae distributed on the body, the mechano-receptor pedipalp short. and long anal setae and dorsal shield sensory simple setae. PMID:26485856

  4. The Occurrence of Varroa destructor Anderson and Trueman, 2000 on Honey Bees (Apis mellifera) in Turkey

    OpenAIRE

    Aydin, Levent; GÜLEĞEN, Ender; ÇAKMAK, İbrahim; GİRİŞGİN, A. Onur

    2007-01-01

    The mite formerly known as Varroa jacobsoni is one of the major problems in beekeeping worldwide. Recently, it was shown that this pest is not V. jacobsoni, which chiefly infests the nests of Apis cerana in the Malaysia-Indonesia region, and the widespread pest was recognized with the new name, V. destructor. Morphometric analysis was performed on collected Varroa specimens from various regions in Turkey and identified as V. destructor.

  5. Registro de Nephridiophaga sp. (Protista: Nephridiophagidae) en Apis mellifera (Hymenoptera: Apidae) del Sur de la región Pampeana Record of Nephridiophaga sp. (Protista: Nephridiophagidae) in Apis mellifera (Hymenoptera: Apidae) of the southern Pampas

    OpenAIRE

    Santiago Plischuk; Carlos E. Lange

    2011-01-01

    Durante estudios prospectivos tendientes a la detección de protistas asociados a ápidos en la región Pampeana, se observó la presencia de esporos ovales bicóncavos y grupos de esporos (cúmulos) en los túbulos de Malpighi de abejas de Dufaur, partido de Saavedra, sudoeste de la provincia de Buenos Aires. Los esporos maduros midieron 4,8 ± 0,05 x 2,4 ± 0,03 μm y la carga (intensidad) promedió 5,71 ± 1,49 x 10(6) esporos/abeja. Las detecciones se efectuaron entre julio y octubre de 2006 y l...

  6. Genome sequencing and analysis of the first complete genome of Lactobacillus kunkeei strain MP2, an Apis mellifera gut isolate.

    Science.gov (United States)

    Asenjo, Freddy; Olmos, Alejandro; Henríquez-Piskulich, Patricia; Polanco, Victor; Aldea, Patricia; Ugalde, Juan A; Trombert, Annette N

    2016-01-01

    Background. The honey bee (Apis mellifera) is the most important pollinator in agriculture worldwide. However, the number of honey bees has fallen significantly since 2006, becoming a huge ecological problem nowadays. The principal cause is CCD, or Colony Collapse Disorder, characterized by the seemingly spontaneous abandonment of hives by their workers. One of the characteristics of CCD in honey bees is the alteration of the bacterial communities in their gastrointestinal tract, mainly due to the decrease of Firmicutes populations, such as the Lactobacilli. At this time, the causes of these alterations remain unknown. We recently isolated a strain of Lactobacillus kunkeei (L. kunkeei strain MP2) from the gut of Chilean honey bees. L. kunkeei, is one of the most commonly isolated bacterium from the honey bee gut and is highly versatile in different ecological niches. In this study, we aimed to elucidate in detail, the L. kunkeei genetic background and perform a comparative genome analysis with other Lactobacillus species. Methods. L. kunkeei MP2 was originally isolated from the guts of Chilean A. mellifera individuals. Genome sequencing was done using Pacific Biosciences single-molecule real-time sequencing technology. De novo assembly was performed using Celera assembler. The genome was annotated using Prokka, and functional information was added using the EggNOG 3.1 database. In addition, genomic islands were predicted using IslandViewer, and pro-phage sequences using PHAST. Comparisons between L. kunkeei MP2 with other L. kunkeei, and Lactobacillus strains were done using Roary. Results. The complete genome of L. kunkeei MP2 comprises one circular chromosome of 1,614,522 nt. with a GC content of 36,9%. Pangenome analysis with 16 L. kunkeei strains, identified 113 unique genes, most of them related to phage insertions. A large and unique region of L. kunkeei MP2 genome contains several genes that encode for phage structural protein and replication components

  7. Genome sequencing and analysis of the first complete genome of Lactobacillus kunkeei strain MP2, an Apis mellifera gut isolate

    Science.gov (United States)

    Asenjo, Freddy; Olmos, Alejandro; Henríquez-Piskulich, Patricia; Polanco, Victor; Aldea, Patricia

    2016-01-01

    Background. The honey bee (Apis mellifera) is the most important pollinator in agriculture worldwide. However, the number of honey bees has fallen significantly since 2006, becoming a huge ecological problem nowadays. The principal cause is CCD, or Colony Collapse Disorder, characterized by the seemingly spontaneous abandonment of hives by their workers. One of the characteristics of CCD in honey bees is the alteration of the bacterial communities in their gastrointestinal tract, mainly due to the decrease of Firmicutes populations, such as the Lactobacilli. At this time, the causes of these alterations remain unknown. We recently isolated a strain of Lactobacillus kunkeei (L. kunkeei strain MP2) from the gut of Chilean honey bees. L. kunkeei, is one of the most commonly isolated bacterium from the honey bee gut and is highly versatile in different ecological niches. In this study, we aimed to elucidate in detail, the L. kunkeei genetic background and perform a comparative genome analysis with other Lactobacillus species. Methods. L. kunkeei MP2 was originally isolated from the guts of Chilean A. mellifera individuals. Genome sequencing was done using Pacific Biosciences single-molecule real-time sequencing technology. De novo assembly was performed using Celera assembler. The genome was annotated using Prokka, and functional information was added using the EggNOG 3.1 database. In addition, genomic islands were predicted using IslandViewer, and pro-phage sequences using PHAST. Comparisons between L. kunkeei MP2 with other L. kunkeei, and Lactobacillus strains were done using Roary. Results. The complete genome of L. kunkeei MP2 comprises one circular chromosome of 1,614,522 nt. with a GC content of 36,9%. Pangenome analysis with 16 L. kunkeei strains, identified 113 unique genes, most of them related to phage insertions. A large and unique region of L. kunkeei MP2 genome contains several genes that encode for phage structural protein and replication components

  8. Características das colônias de abelhas africanizadas (Apis mellifera L., coletadas de alojamentos naturais em Jaboticabal, Estado de São Paulo Characteristics of african honeybee colonies (Apis mellifera L. in nature, in Jaboticabal - SP

    Directory of Open Access Journals (Sweden)

    Regina Helena Nogueira-Couto

    2002-04-01

    Full Text Available No presente experimento analisou-se as características de 70 enxames de abelhas africanizadas, Apis mellifera L. (Hymenoptera Apidae, coletados na natureza, durante 16 anos (1981 a 1996, em Jaboticabal, Estado de São Paulo e arredores. Durante a coleta foram feitas avaliações sobre o enxame quanto à: localização, posição (favos expostos ou em cavidades, presença de rainha, defensividade, áreas de cria e alimento e quantidade de abelhas presentes. Foi observada a posição dos favos em relação à entrada da colônia, classificando-os em perpendicular e paralelo. Observou-se que metade dos enxames (51,4% foi coletada dentro do Câmpus da Faculdade de Ciências Agrárias e Veterinárias de Jaboticabal - Unesp, especialmente na área de reflorestamento e no horto. Apenas 18,6% dos enxames coletados estavam expostos ao ar livre, estando preferencialmente em galhos, e 81,4% estavam alojados no interior de cavidades. Foi observado que, nos alojados em cavidades, as abelhas preferiram instalar seus enxames sob telhados (30%, ocos de árvores (20%, dentro de cavidades de cimento (12,9% e buracos no solo (10%. Observou-se que as abelhas não foram consideradas defensivas em 86,2% dos enxames coletados e que preferiram construir seus favos em posição perpendicular (70,4% à entrada da colméia, em relação à posição paralela (29,6%. Em relação à quantidade de indivíduos, cria e alimento, observou-se que 54,7% dos 70 enxames tinham grande quantidade de abelhas, 43,9% tinham área de cria considerada média e 51,7% apresentaram pouco alimento estocado. A rainha foi observada em 56,4% dos enxames coletados.The experiment was conducted to observe characteristics of African honey bee, Apis mellifera L. (Hymenoptera Apidae swarms collected in nature, for 16 years (1981 to 1996, in Jaboticabal, state of São Paulo -Brasil. During the collection, location, presence of queen, position of the swarms in the nature (exposed or housed, brood and

  9. Physicochemical and microbiological characterization of Apis mellifera sp. honey from Southwest of Antioquia in Colombia Caracterización físico-química y microbiológica de la miel de Apis mellifera sp. del Suroeste de Antioquia, Colombia

    OpenAIRE

    A V Velásquez Giraldo

    2013-01-01

    Characterizations of Apis mellifera honey produced in Southwest of Antioquia, an important coffee region of Colombia, have not been published in recent years. In the present work, seven samples of honey collected in the mentioned region, were physically (refractive index, specific rotation, density), chemically (moisture content, water activity, pH, free acidity, carbohydrates) and microbiologically (Clostridium, fungi and yeast) analyzed. The results show that the analyzed honeys meet both n...

  10. 毒死蜱和吡虫啉对意大利工蜂(Apis mellifera L.)的慢性经口毒性%Chronic Oral Toxicity of Chlorpyrifos and Imidacloprid to Adult Honey Bees (Apis mellifera L.)

    Institute of Scientific and Technical Information of China (English)

    程燕; 谭丽超; 卜元卿; 葛春男; 周军英; 单正军

    2016-01-01

    文章以毒死蜱和吡虫啉为受试农药,以4日龄内的意大利工蜂(Apis mellifera L.)为受试生物,研究2种农药对意大利工蜂的10 d经口慢性毒性.结果显示:参比物质乐果对意大利工蜂的10 d半致死浓度(10 d-LC50)为0.550 μg a.i.·g-1食物,平均每天半致死剂量(LDD50)为0.019μg a.i.·蜂-1·天-1;在有效试验条件下,毒死蜱对意大利工蜂的10 d LC50为0.582 μg a.i.·g-1食物,LDD50为0.021 μg a.i.·蜂-1·天-1;吡虫啉对意大利工蜂的10 d LC50为0.055 μg a.i.·g-1食物,LDD50为1.542 ng a.i.·蜂-1·天-1.试验结果可为毒死蜱和吡虫啉的安全使用提供科学参考,同时可促进我国农药对蜜蜂的安全性评价体系的完善.

  11. Proteomic Comparison of Sexual Matured Queen between Apis cerana cerana and Apis mellifera ligustica%中华蜜蜂与意大利蜜蜂性成熟处女蜂王蛋白质组比较分析

    Institute of Scientific and Technical Information of China (English)

    吴小波; 王子龙; 李淑云; 颜伟玉; 曾志将

    2015-01-01

    为了比较分析中华蜜蜂和意大利蜜蜂两蜂种处女蜂王性成熟期蛋白表达差异。试验采用双向电泳法建立中华蜜蜂和意大利蜜蜂处女蜂王性成熟期蛋白质表达谱,通过质谱分析与数据库检索,鉴定部分差异蛋白。研究发现:在中华蜜蜂蜂王和意大利蜜蜂蜂王中分别检测到2205、2417个蛋白点,两者之间的差异表达蛋白点有168个。其中,在中华蜜蜂蜂王高度表达的蛋白点有90个;在意大利蜜蜂蜂王中高度表达的蛋白点有78个。对部分差异蛋白进行质谱分析,共鉴定了19个蛋白点,其中在中华蜜蜂性成熟处女蜂王中上调表达的蛋白有副肌球蛋白、肌钙蛋白T、ATP合成酶以及丙酮酸脱氢酶等;在意大利蜜蜂性成熟处女蜂王中上调表达的蛋白有NADH辅酶Q氧化还原酶、保幼激素酸甲基转移酶、肌钙蛋白以及气味结合蛋白19前体等。中华蜜蜂与意大利蜜蜂性成熟处女蜂王体内存在大量蛋白表达差异,这些差异表达的蛋白质可能与两蜂种蜜蜂行为生物学有关。%This study aims to investigate the differentially expressed proteins of sexual matured queens be⁃tween Apis cerana cerana and Apis mellifera ligustica by comparison of proteome profiles.Two⁃dimensional gel e⁃lectrophoresis (2⁃DE) was used to establish the proteomic maps of the two species of sexual matured queens. Part of differentially expressed proteins were identified by mass spectrometry and database search. The results showed that 2 205 and 2 417 proteins spots were detected respectively in the sexual matured queens of Apis cer⁃ana cerana and Apis mellifera ligustica,and 168 differentially expressed protein spots were found.90 proteins were significantly up⁃expressed in the sexual matured queens of Apis cerana cerana while 78 proteins were sig⁃nificantly up⁃expressed in the sexual matured queens of Apis mellifera ligustica.19 differentially

  12. Estudo das glândulas mandibulares e ovários de operárias de Apis mellifera L. (Hymenoptera, Apidae mantidas em condiçoes artificiais

    Directory of Open Access Journals (Sweden)

    Claudia Regina de Salvo

    1988-01-01

    Full Text Available Foram estudados os ovários e as glândulas mandibulares de Apis mellifera mantidas em condições artificiais e foi observado que em pequenos grupos (menos de 20 abelhas os órgãos analisados não se desenvolveram.The ovaries and mandibular glands in workers of Apis mellifera under artificial conditions were studied and was observed that in small groups (less than 20 bees the analyzed organs did not develop.

  13. Effect of pretreatment with venom of Apis mellifera bees on the yield of gamma-ray induced chromosome aberrations in human blood lymphocytes

    International Nuclear Information System (INIS)

    Venom of the honey bee Apis mellifera induced a protective effect against the induction of dicentric chromosomes by gamma radiation (2.0 Gy) in human peripheral blood lymphocytes when the cultures were treated with 0.00015 μl venom/1 ml medium 6 h before irradiation. In cultures to which the venom was added immediately before irradiation with 0.25, 1.0 and 2.0 Gy, no significant differences in number of dicentric chromosomes induced was observed when compared to cultures submitted to irradiation only. The venom did not induce clastogenic effects nor did it increase the frequency of sister chromatid exchanges. (author)

  14. No transmission of Potato spindle tuber viroid shown in experiments with thrips (Frankliniella occidentalis, Thrips tabaci), honey bees (Apis mellifera) and bumblebees (Bombus terrestris)

    DEFF Research Database (Denmark)

    Nielsen, Steen Lykke; Enkegaard, Annie; Nicolaisen, Mogens;

    2012-01-01

    Experiments were carried out to investigate whether Potato spindle tuber viroid (PSTVd) can be transmitted intra- and inter-species from infected Solanum jasminoides to non-infected S. jasminoides and S. esculentum and from infected Brugmansia sp. to S. esculentum by Frankliniella occidentalis...... and Thrips tabaci by leaf sucking. The F. occidentalis experiments also included feeding on pollen prior to feeding on PSTVd-infected leaf. No thrips-mediated transmission of PSTVd was recorded. The possibility of PSTVd transmission by Apis mellifera and Bombus terrestris during their feeding...

  15. Genomic survey of the ectoparasitic mite Varroa destructor, a major pest of the honey bee Apis mellifera

    Directory of Open Access Journals (Sweden)

    Elsik Chris

    2010-10-01

    Full Text Available Abstract Background The ectoparasitic mite Varroa destructor has emerged as the primary pest of domestic honey bees (Apis mellifera. Here we present an initial survey of the V. destructor genome carried out to advance our understanding of Varroa biology and to identify new avenues for mite control. This sequence survey provides immediate resources for molecular and population-genetic analyses of Varroa-Apis interactions and defines the challenges ahead for a comprehensive Varroa genome project. Results The genome size was estimated by flow cytometry to be 565 Mbp, larger than most sequenced insects but modest relative to some other Acari. Genomic DNA pooled from ~1,000 mites was sequenced to 4.3× coverage with 454 pyrosequencing. The 2.4 Gbp of sequencing reads were assembled into 184,094 contigs with an N50 of 2,262 bp, totaling 294 Mbp of sequence after filtering. Genic sequences with homology to other eukaryotic genomes were identified on 13,031 of these contigs, totaling 31.3 Mbp. Alignment of protein sequence blocks conserved among V. destructor and four other arthropod genomes indicated a higher level of sequence divergence within this mite lineage relative to the tick Ixodes scapularis. A number of microbes potentially associated with V. destructor were identified in the sequence survey, including ~300 Kbp of sequence deriving from one or more bacterial species of the Actinomycetales. The presence of this bacterium was confirmed in individual mites by PCR assay, but varied significantly by age and sex of mites. Fragments of a novel virus related to the Baculoviridae were also identified in the survey. The rate of single nucleotide polymorphisms (SNPs in the pooled mites was estimated to be 6.2 × 10-5per bp, a low rate consistent with the historical demography and life history of the species. Conclusions This survey has provided general tools for the research community and novel directions for investigating the biology and control of

  16. High-performance liquid chromatography combined with intrinsic fluorescence detection to analyse melittin in individual honeybee (Apis mellifera) venom sac.

    Science.gov (United States)

    Dong, Jiangtao; Ying, Bihua; Huang, Shaokang; Ma, Shuangqin; Long, Peng; Tu, Xijuan; Yang, Wenchao; Wu, Zhenhong; Chen, Wenbin; Miao, Xiaoqing

    2015-10-01

    Melittin is the major toxin peptide in bee venom, which has diverse biological effects. In the present study, melittin was separated by reverse-phase high-performance liquid chromatography, and was then detected using intrinsic fluorescence signal of tryptophan residue. The accuracy, linearity, limit of quantitation (LOQ), intra-day and inter-day precision of the method were carefully validated in this study. Results indicate that the intrinsic fluorescence signal of melittin has linear range from 0.04μg/mL to 20μg/mL with LOQ of 0.04μg/mL. The recovery range of spiked samples is between 81.93% and 105.25%. The precision results are expressed as relative standard deviation (RSD), which is in the range of 2.1-7.4% for intra-day precision and 6.2-10.8% for inter-day precision. Because of the large linear dynamic range and the high sensitivity, intrinsic fluorescence detection (IFD) can be used for analyzing melittin contents in individual venom sac of honeybee (Apis mellifera). The detected contents of melittin in individual bee venom sac are 0.18±0.25μg for one-day old honeybees (n=30), and 114.98±43.51μg for 25-day old (n=30) honeybees, respectively. Results indicate that there is large bee-to-bee difference in melittin contents. The developed method can be useful for discovering the melittin related honeybee biology information, which might be covered in the complex samples. PMID:26319802

  17. Atividade antimicrobiana de própolis de Apis mellifera obtidas em três regiões do Brasil

    Directory of Open Access Journals (Sweden)

    Fernandes Júnior Ary

    2006-01-01

    Full Text Available As propriedades biológicas da própolis de Apis mellifera são amplamente relatadas sendo comuns variações nas mesmas em função da região onde foram produzidas. A ação antimicrobiana de própolis obtidas em três regiões do Brasil (Botucatu-SP, Mossoró-RN e Urubici-SC foi investigada sobre linhagens isoladas de infecções clínicas humanas (Staphylococcus aureus, Escherichia coli, Enterococcus sp, Pseudomonas aeruginosa e Candida albicans. Foram preparados extratos alcoólicos de própolis (EAP e determinada a Concentração Inibitória Mínima (CIM seguida do cálculo da CIM90%. A própolis de Botucatu foi a mais eficiente sobre S. aureus (0,3%v/v, Enterococcus sp (1,1%v/v e C. albicans (2,1% v/v. Para E. coli, a própolis eficiente foi de Urubici (7,0%v/v e para P. aeruginosa a de Mossoró (5,3%v/v. Os resultados mostram maior sensibilidade das bactérias Gram positivas e levedura em relação às Gram negativas. É possível concluir que, para os microrganismos testados e amostras de própolis testadas, há diferenças na atividade antimicrobiana em função do local de produção e que isso se explica pela diferença de composição química da própolis.

  18. Africanization of a feral honey bee (Apis mellifera) population in South Texas: does a decade make a difference?

    Science.gov (United States)

    Rangel, Juliana; Giresi, Melissa; Pinto, Maria Alice; Baum, Kristen A; Rubink, William L; Coulson, Robert N; Johnston, John Spencer

    2016-04-01

    The arrival to the United States of the Africanized honey bee, a hybrid between European subspecies and the African subspecies Apis mellifera scutellata, is a remarkable model for the study of biological invasions. This immigration has created an opportunity to study the dynamics of secondary contact of honey bee subspecies from African and European lineages in a feral population in South Texas. An 11-year survey of this population (1991-2001) showed that mitochondrial haplotype frequencies changed drastically over time from a resident population of eastern and western European maternal ancestry, to a population dominated by the African haplotype. A subsequent study of the nuclear genome showed that the Africanization process included bidirectional gene flow between European and Africanized honey bees, giving rise to a new panmictic mixture of A. m. scutellata- and European-derived genes. In this study, we examined gene flow patterns in the same population 23 years after the first hybridization event occurred. We found 28 active colonies inhabiting 92 tree cavities surveyed in a 5.14 km(2) area, resulting in a colony density of 5.4 colonies/km(2). Of these 28 colonies, 25 were of A. m. scutellata maternal ancestry, and three were of western European maternal ancestry. No colonies of eastern European maternal ancestry were detected, although they were present in the earlier samples. Nuclear DNA revealed little change in the introgression of A. m. scutellata-derived genes into the population compared to previous surveys. Our results suggest this feral population remains an admixed swarm with continued low levels of European ancestry and a greater presence of African-derived mitochondrial genetic composition. PMID:27069571

  19. Effect of stacked insecticidal Cry proteins from maize pollen on nurse bees (Apis mellifera carnica and their gut bacteria.

    Directory of Open Access Journals (Sweden)

    Harmen P Hendriksma

    Full Text Available Honey bee pollination is a key ecosystem service to nature and agriculture. However, biosafety research on genetically modified crops rarely considers effects on nurse bees from intact colonies, even though they receive and primarily process the largest amount of pollen. The objective of this study was to analyze the response of nurse bees and their gut bacteria to pollen from Bt maize expressing three different insecticidal Cry proteins (Cry1A.105, Cry2Ab2, and Cry3Bb1. Naturally Cry proteins are produced by bacteria (Bacillus thuringiensis. Colonies of Apis mellifera carnica were kept during anthesis in flight cages on field plots with the Bt maize, two different conventionally bred maize varieties, and without cages, 1-km outside of the experimental maize field to allow ad libitum foraging to mixed pollen sources. During their 10-days life span, the consumption of Bt maize pollen had no effect on their survival rate, body weight and rates of pollen digestion compared to the conventional maize varieties. As indicated by ELISA-quantification of Cry1A.105 and Cry3Bb1, more than 98% of the recombinant proteins were degraded. Bacterial population sizes in the gut were not affected by the genetic modification. Bt-maize, conventional varieties and mixed pollen sources selected for significantly different bacterial communities which were, however, composed of the same dominant members, including Proteobacteria in the midgut and Lactobacillus sp. and Bifidobacterium sp. in the hindgut. Surprisingly, Cry proteins from natural sources, most likely B. thuringiensis, were detected in bees with no exposure to Bt maize. The natural occurrence of Cry proteins and the lack of detectable effects on nurse bees and their gut bacteria give no indication for harmful effects of this Bt maize on nurse honey bees.

  20. Removal of drone brood from Apis mellifera (Hymenoptera: Apidae) colonies to control Varroa destructor (Acari: Varroidae) and retain adult drones.

    Science.gov (United States)

    Wantuch, Holly A; Tarpy, David R

    2009-12-01

    The parasitic mite Varroa destructor Anderson & Trueman (Acari: Varroidae) has plagued European honey bees, Apis mellifera L. (Hymenoptera: Apidae), in the Americas since its introduction in the 1980s. For many years, these mites were sufficiently controlled using synthetic acaricides. Recently, however, beekeepers have experienced increased resistance by mites to chemical pesticides, which are also known to leave residues in hive products such as wax and honey. Thus there has been increased emphasis on nonchemical integrated pest management control tactics for Varroa. Because mites preferentially reproduce in drone brood (pupal males), we developed a treatment strategy focusing on salvaging parasitized drones while removing mites from them. We removed drone brood from colonies in which there was no acaricidal application and banked them in separate "drone-brood receiving" colonies treated with pesticides to kill mites emerging with drones. We tested 20 colonies divided into three groups: 1) negative control (no mite treatment), 2) positive control (treatment with acaricides), and 3) drone-brood removal and placement into drone-brood receiving colonies. We found that drone-brood trapping significantly lowered mite numbers during the early months of the season, eliminating the need for additional control measures in the spring. However, mite levels in the drone-brood removal group increased later in the summer, suggesting that this benefit does not persist throughout the entire season. Our results suggest that this method of drone-brood trapping can be used as an element of an integrated control strategy to control varroa mites, eliminating a large portion of the Varroa population with limited chemical treatments while retaining the benefits of maintaining adult drones in the population.

  1. Acute exposure to selenium disrupts associative conditioning and long-term memory recall in honey bees (Apis mellifera).

    Science.gov (United States)

    Burden, Christina M; Elmore, Christopher; Hladun, Kristen R; Trumble, John T; Smith, Brian H

    2016-05-01

    A plethora of toxic compounds - including pesticides, heavy metals, and metalloids - have been detected in honey bees (Apis mellifera) and their colonies. One such compound is selenium, which bees are exposed to by consuming nectar and pollen from flowers grown in contaminated areas. Though selenium is lethal at high concentrations, sublethal exposure may also impair honey bees' ability to function normally. Examining the effect of selenium exposure on learning and memory provides a sensitive assay with which to identify sublethal effects on honey bee health and behavior. To determine whether sublethal selenium exposure causes learning and memory deficits, we used proboscis extension reflex conditioning coupled with recall tests 30min and 24h post-conditioning. We exposed forager honey bees to a single sublethal dose of selenium, and 3h later we used an olfactory conditioning assay to train the bees to discriminate between one odor associated with sucrose-reinforcement and a second unreinforced odor. Following conditioning we tested short- and long-term recall of the task. Acute exposure to as little as 1.8ng of an inorganic form of selenium (sodium selenate) before conditioning caused a reduction in behavioral performance during conditioning. And, exposure to 18ng of either an inorganic form (sodium selenate) or an organic form (methylseleno-l-cysteine) of selenium caused a reduction in the bees' performance during the long-term recall test. These concentrations of selenium are lower than those found in the nectar of plants grown in selenium-contaminated soil, indicating that even low-grade selenium toxicity produces significant learning and memory impairments. This may reduce foragers' ability to effectively gather resources for the colony or nurse bees' ability to care for and maintain a healthy colony.

  2. Frischella perrara gen. nov., sp. nov., a gammaproteobacterium isolated from the gut of the honeybee, Apis mellifera.

    Science.gov (United States)

    Engel, Philipp; Kwong, Waldan K; Moran, Nancy A

    2013-10-01

    The gut of the Western honeybee, Apis mellifera, is colonized by a characteristic set of bacteria. Two distinct gammaproteobacteria are consistent members of this unique microbial community, and one has recently been described in a new genus and species with the name Gilliamella apicola. Here, we present the isolation and characterization of PEB0191(T), a strain belonging to the second gammaproteobacterial species present in the honeybee gut microbiota, formerly referred to as 'Gammaproteobacterium-2'. Cells of strain PEB0191(T) were mesophilic and had a mean length of around 2 µm, and optimal growth was achieved under anaerobic conditions. Growth was not obtained under aerobic conditions and was reduced in a microaerophilic environment. Based on 16S rRNA gene sequence analysis, strain PEB0191(T) belongs to the family Orbaceae, and its closest relatives, with around 95 % sequence similarity, are species of the genera Orbus and Gilliamella. Phylogenetic analyses suggest that PEB0191(T) is more closely related to the genus Orbus than to the genus Gilliamella. In accordance with its evolutionary relationship, further similarities between strain PEB0191(T) and other members of the family Orbaceae were revealed based on the respiratory quinone type (ubiquinone 8), the fatty acid profile and the DNA G+C content. Interestingly, like strains of the genus Gilliamella, PEB0191(T) exhibited a high level of resistance to oxytetracycline. The similar levels of sequence divergence from the genera Gilliamella and Orbus and its uncertain phylogenetic position within the family Orbaceae indicate that strain PEB0191(T) represents a novel species of a new genus, with the proposed name Frischella perrara gen. nov., sp. nov. The type strain of Frischella perrara is PEB0191(T) ( = NCIMB 14821(T) = ATCC BAA-2450(T)). PMID:23606484

  3. Honey bee (Apis mellifera) drones survive oxidative stress due to increased tolerance instead of avoidance or repair of oxidative damage.

    Science.gov (United States)

    Li-Byarlay, Hongmei; Huang, Ming Hua; Simone-Finstrom, Michael; Strand, Micheline K; Tarpy, David R; Rueppell, Olav

    2016-10-01

    Oxidative stress can lead to premature aging symptoms and cause acute mortality at higher doses in a range of organisms. Oxidative stress resistance and longevity are mechanistically and phenotypically linked; considerable variation in oxidative stress resistance exists among and within species and typically covaries with life expectancy. However, it is unclear whether stress-resistant, long-lived individuals avoid, repair, or tolerate molecular damage to survive longer than others. The honey bee (Apis mellifera L.) is an emerging model system that is well-suited to address this question. Furthermore, this species is the most economically important pollinator, whose health may be compromised by pesticide exposure, including oxidative stressors. Here, we develop a protocol for inducing oxidative stress in honey bee males (drones) via Paraquat injection. After injection, individuals from different colony sources were kept in common social conditions to monitor their survival compared to saline-injected controls. Oxidative stress was measured in susceptible and resistant individuals. Paraquat drastically reduced survival but individuals varied in their resistance to treatment within and among colony sources. Longer-lived individuals exhibited higher levels of lipid peroxidation than individuals dying early. In contrast, the level of protein carbonylation was not significantly different between the two groups. This first study of oxidative stress in male honey bees suggests that survival of an acute oxidative stressor is due to tolerance, not prevention or repair, of oxidative damage to lipids. It also demonstrates colony differences in oxidative stress resistance that might be useful for breeding stress-resistant honey bees. PMID:27422326

  4. Characterizing the Impact of Commercial Pollen Substitute Diets on the Level of Nosema spp. in Honey Bees (Apis mellifera L.).

    Science.gov (United States)

    Fleming, James C; Schmehl, Daniel R; Ellis, James D

    2015-01-01

    Western honey bee (Apis mellifera L.) populations face declines commonly attributed to pesticide, pathogen, and parasite stress. One way beekeepers combat these stressors is by providing supplemental protein diets to honey bee colonies to ensure adequate colony nutrition. However Nosema spp., a microsporidian parasite of the honey bee, is thought to be associated closely with a colony's nutritional intake, thus possibly negating any benefit the bees otherwise would have received from a nutritional supplement. Through three objectives, we examined how adult bees' consumption of wildflower pollen or commercial pollen substitute diets affected Nosema levels in the bees' midguts. For our first objective, we investigated how method of inoculation with Nosema affects infection levels in inoculated bees. Bees were infected with spores of Nosema four days after emergence. On day 15, bees were collected from the cages and Nosema spores were quantified. We found that inoculation through the pollen diet resulted in the highest Nosema levels in inoculated bees. In our second and third objectives, we provided the test diets to caged, newly emerged bees for a period of 15 days. Bees consuming pollen and a sucrose solution had more Nosema in their midguts than did bees consuming the sucrose solution alone (control). The overall volume of diet consumed by the bees did not correlate with the level of Nosema in their midguts. The level of Nosema was higher in bees fed certain commercial pollen substitute diets than in bees fed wildflower pollen. Our study illustrates how providing nutritional supplements to adult honey bees can impact the intensity of Nosema in their midguts. PMID:26226229

  5. Removal of drone brood from Apis mellifera (Hymenoptera: Apidae) colonies to control Varroa destructor (Acari: Varroidae) and retain adult drones.

    Science.gov (United States)

    Wantuch, Holly A; Tarpy, David R

    2009-12-01

    The parasitic mite Varroa destructor Anderson & Trueman (Acari: Varroidae) has plagued European honey bees, Apis mellifera L. (Hymenoptera: Apidae), in the Americas since its introduction in the 1980s. For many years, these mites were sufficiently controlled using synthetic acaricides. Recently, however, beekeepers have experienced increased resistance by mites to chemical pesticides, which are also known to leave residues in hive products such as wax and honey. Thus there has been increased emphasis on nonchemical integrated pest management control tactics for Varroa. Because mites preferentially reproduce in drone brood (pupal males), we developed a treatment strategy focusing on salvaging parasitized drones while removing mites from them. We removed drone brood from colonies in which there was no acaricidal application and banked them in separate "drone-brood receiving" colonies treated with pesticides to kill mites emerging with drones. We tested 20 colonies divided into three groups: 1) negative control (no mite treatment), 2) positive control (treatment with acaricides), and 3) drone-brood removal and placement into drone-brood receiving colonies. We found that drone-brood trapping significantly lowered mite numbers during the early months of the season, eliminating the need for additional control measures in the spring. However, mite levels in the drone-brood removal group increased later in the summer, suggesting that this benefit does not persist throughout the entire season. Our results suggest that this method of drone-brood trapping can be used as an element of an integrated control strategy to control varroa mites, eliminating a large portion of the Varroa population with limited chemical treatments while retaining the benefits of maintaining adult drones in the population. PMID:20069828

  6. The expression and phylogenetics of the Inhibitor Cysteine Knot peptide OCLP1 in the honey bee Apis mellifera.

    Science.gov (United States)

    Bloch, Guy; Cohen, Mira

    2014-06-01

    Small cysteine-rich peptides have diverse functions in insects including antimicrobial defense, phenoloxidase activity regulation, and toxic inhibition of ion channels of prey or predator. We combined bioinformatics and measurements of transcript abundance to start characterizing AmOCLP1, a recently discovered Inhibitor Cysteine Knot peptide in the honey bee Apis mellifera. We found that the genomes of ants, bees, and the wasp Nasonia vitripennis encode orthologous sequences indicating that OCLP1 is a conserved peptide and not unique to the honey bee. Search of available EST libraries and quantitative real time PCR analyses indicate that the transcript of AmOCLP1 is ubiquitous with expression in life stages ranging from embryos to adults and in all tested tissues. In worker honey bees AmOCLP1 expression was not associated with age or task and did not show clear enrichment in any of the tested tissues. There was however a consistent trend toward higher transcript levels in the abdomen of foragers relative to levels in the head or thorax, and compared to levels in the abdomen of younger worker bees. By contrast, in drones AmOCLP1 transcript levels appeared higher in the head relative to the abdomen. Finer analyses of the head and abdomen indicated that the AmOCLP1 transcript is not enriched in the stinger and the associated venom sac or in cephalic exocrine glands. The evolutionary conservation in the Hymenoptera, the ubiquitous expression, and the lack of enrichment in the venom gland, stinger, exocrine glands, and the brain are not consistent with the hypotheses that OCLP1 is a secreted honeybee toxin or an endotoxin acting in the central nervous system. Rather we hypothesize that OCLP1 is a conserved antimicrobial or phenoloxidase inhibitor peptide. PMID:24721445

  7. Genetic analysis of Apis mellifera macedonica (type rodopica populations selectively reared for purposive production of honey bee queens in Bulgaria

    Directory of Open Access Journals (Sweden)

    VIDA H. GEORGIEVA

    2016-04-01

    Full Text Available The genetic polymorphism in selectively reared in Bulgaria, local honey bee populations of Apis mellifera macedonica subspecies (type rodopica, has been studied, using analysis of six enzyme systems (MDH-1, ME, EST-3, ALP, PGM and HK corresponding to 6 loci. Totally 458 worker bees from 12 bee breeding bases for artificially inseminated queens were used for this study. All these stations are part of the National Bee Breeding Association which officially implements a National Program for sustainable beekeeping in Bulgaria. All of the six loci were found to be polymorphic. Only EST-3 locus was established as fixed in one of the investigated populations. Polymorphism with three alleles was ascertained for MDH, ME, ALP, PGM and HK loci and with five alleles for EST-3 locus. The most common alleles in almost all of the populations were MDH-1 100, ME 100, EST-3 100, PGM 100 and HK 100. Two private alleles (frequency < 0.05 were found for two of the populations. The calculated level of polymorphism was 88.33% in only one of the populations and 100% - in all others. The observed and expected heterozygosities (Ho and He ranged from 0.157 to 0.250 and from 0.206 to 0.272, respectively. The estimated mean FST value from allozyme data was 0.035. On the bases of the allele frequencies of the studied allozyme loci the Nei's (1972 genetic distance was estimated. It ranged between 0.002 and 0.060 among the populations studied.

  8. Characterizing the Impact of Commercial Pollen Substitute Diets on the Level of Nosema spp. in Honey Bees (Apis mellifera L.).

    Science.gov (United States)

    Fleming, James C; Schmehl, Daniel R; Ellis, James D

    2015-01-01

    Western honey bee (Apis mellifera L.) populations face declines commonly attributed to pesticide, pathogen, and parasite stress. One way beekeepers combat these stressors is by providing supplemental protein diets to honey bee colonies to ensure adequate colony nutrition. However Nosema spp., a microsporidian parasite of the honey bee, is thought to be associated closely with a colony's nutritional intake, thus possibly negating any benefit the bees otherwise would have received from a nutritional supplement. Through three objectives, we examined how adult bees' consumption of wildflower pollen or commercial pollen substitute diets affected Nosema levels in the bees' midguts. For our first objective, we investigated how method of inoculation with Nosema affects infection levels in inoculated bees. Bees were infected with spores of Nosema four days after emergence. On day 15, bees were collected from the cages and Nosema spores were quantified. We found that inoculation through the pollen diet resulted in the highest Nosema levels in inoculated bees. In our second and third objectives, we provided the test diets to caged, newly emerged bees for a period of 15 days. Bees consuming pollen and a sucrose solution had more Nosema in their midguts than did bees consuming the sucrose solution alone (control). The overall volume of diet consumed by the bees did not correlate with the level of Nosema in their midguts. The level of Nosema was higher in bees fed certain commercial pollen substitute diets than in bees fed wildflower pollen. Our study illustrates how providing nutritional supplements to adult honey bees can impact the intensity of Nosema in their midguts.

  9. Characterizing the Impact of Commercial Pollen Substitute Diets on the Level of Nosema spp. in Honey Bees (Apis mellifera L..

    Directory of Open Access Journals (Sweden)

    James C Fleming

    Full Text Available Western honey bee (Apis mellifera L. populations face declines commonly attributed to pesticide, pathogen, and parasite stress. One way beekeepers combat these stressors is by providing supplemental protein diets to honey bee colonies to ensure adequate colony nutrition. However Nosema spp., a microsporidian parasite of the honey bee, is thought to be associated closely with a colony's nutritional intake, thus possibly negating any benefit the bees otherwise would have received from a nutritional supplement. Through three objectives, we examined how adult bees' consumption of wildflower pollen or commercial pollen substitute diets affected Nosema levels in the bees' midguts. For our first objective, we investigated how method of inoculation with Nosema affects infection levels in inoculated bees. Bees were infected with spores of Nosema four days after emergence. On day 15, bees were collected from the cages and Nosema spores were quantified. We found that inoculation through the pollen diet resulted in the highest Nosema levels in inoculated bees. In our second and third objectives, we provided the test diets to caged, newly emerged bees for a period of 15 days. Bees consuming pollen and a sucrose solution had more Nosema in their midguts than did bees consuming the sucrose solution alone (control. The overall volume of diet consumed by the bees did not correlate with the level of Nosema in their midguts. The level of Nosema was higher in bees fed certain commercial pollen substitute diets than in bees fed wildflower pollen. Our study illustrates how providing nutritional supplements to adult honey bees can impact the intensity of Nosema in their midguts.

  10. The Effect of Application Rate of GF-120 (Spinosad) and Malathion on the Mortality of Apis mellifera (Hymenoptera: Apidae) Foragers.

    Science.gov (United States)

    Cabrera-Marín, Nina Vanessa; Liedo, Pablo; Sánchez, Daniel

    2016-04-01

    Beneficial organisms like the honey bee, Apis mellifera L. (Hymenoptera: Apidae), are heavily affected by pest control practices that incorporate insecticides. Safer alternatives as the spinosad-based formulation GF-120 have been developed to overcome this issue. Though both the low concentration of spinosad and the ultra-low-volume application rate of GF-120 are supposed to have a low acute toxicity in honey bee foragers, to our knowledge such claims have not been explicitly proven. We thus carried out a series of experiments to assess the effect of GF-120, malathion, and Spintor (spinosad) on honey bee foragers when applied at two concentrations (80 and 1,500 ppm) and two application rates (low density rate [LDR]—80 drops of 5 mm diameter per square meter; high density rate [HDR]—thousands of 200 -µm-diameter droplets per square meter). Interestingly, the three pesticides caused low mortality on foragers when applied at LDR-80, LDR-1,500, or HDR-80. However, HDR-1,500 caused a very high mortality. Based upon these results, we developed a computer program to estimate the average number of foragers that are exposed at LDR and HDR. We found that more foragers receive a lethal dose when exposed at HDR than at the other rates. Our results support the hypothesis that the impact of GF-120 and malathion upon honey bees is minimal when applied at LDR and that computer simulation can help greatly in understanding the effects of pesticides upon nontarget species. PMID:26739308

  11. Acute exposure to selenium disrupts associative conditioning and long-term memory recall in honey bees (Apis mellifera).

    Science.gov (United States)

    Burden, Christina M; Elmore, Christopher; Hladun, Kristen R; Trumble, John T; Smith, Brian H

    2016-05-01

    A plethora of toxic compounds - including pesticides, heavy metals, and metalloids - have been detected in honey bees (Apis mellifera) and their colonies. One such compound is selenium, which bees are exposed to by consuming nectar and pollen from flowers grown in contaminated areas. Though selenium is lethal at high concentrations, sublethal exposure may also impair honey bees' ability to function normally. Examining the effect of selenium exposure on learning and memory provides a sensitive assay with which to identify sublethal effects on honey bee health and behavior. To determine whether sublethal selenium exposure causes learning and memory deficits, we used proboscis extension reflex conditioning coupled with recall tests 30min and 24h post-conditioning. We exposed forager honey bees to a single sublethal dose of selenium, and 3h later we used an olfactory conditioning assay to train the bees to discriminate between one odor associated with sucrose-reinforcement and a second unreinforced odor. Following conditioning we tested short- and long-term recall of the task. Acute exposure to as little as 1.8ng of an inorganic form of selenium (sodium selenate) before conditioning caused a reduction in behavioral performance during conditioning. And, exposure to 18ng of either an inorganic form (sodium selenate) or an organic form (methylseleno-l-cysteine) of selenium caused a reduction in the bees' performance during the long-term recall test. These concentrations of selenium are lower than those found in the nectar of plants grown in selenium-contaminated soil, indicating that even low-grade selenium toxicity produces significant learning and memory impairments. This may reduce foragers' ability to effectively gather resources for the colony or nurse bees' ability to care for and maintain a healthy colony. PMID:26802564

  12. The expression and phylogenetics of the Inhibitor Cysteine Knot peptide OCLP1 in the honey bee Apis mellifera.

    Science.gov (United States)

    Bloch, Guy; Cohen, Mira

    2014-06-01

    Small cysteine-rich peptides have diverse functions in insects including antimicrobial defense, phenoloxidase activity regulation, and toxic inhibition of ion channels of prey or predator. We combined bioinformatics and measurements of transcript abundance to start characterizing AmOCLP1, a recently discovered Inhibitor Cysteine Knot peptide in the honey bee Apis mellifera. We found that the genomes of ants, bees, and the wasp Nasonia vitripennis encode orthologous sequences indicating that OCLP1 is a conserved peptide and not unique to the honey bee. Search of available EST libraries and quantitative real time PCR analyses indicate that the transcript of AmOCLP1 is ubiquitous with expression in life stages ranging from embryos to adults and in all tested tissues. In worker honey bees AmOCLP1 expression was not associated with age or task and did not show clear enrichment in any of the tested tissues. There was however a consistent trend toward higher transcript levels in the abdomen of foragers relative to levels in the head or thorax, and compared to levels in the abdomen of younger worker bees. By contrast, in drones AmOCLP1 transcript levels appeared higher in the head relative to the abdomen. Finer analyses of the head and abdomen indicated that the AmOCLP1 transcript is not enriched in the stinger and the associated venom sac or in cephalic exocrine glands. The evolutionary conservation in the Hymenoptera, the ubiquitous expression, and the lack of enrichment in the venom gland, stinger, exocrine glands, and the brain are not consistent with the hypotheses that OCLP1 is a secreted honeybee toxin or an endotoxin acting in the central nervous system. Rather we hypothesize that OCLP1 is a conserved antimicrobial or phenoloxidase inhibitor peptide.

  13. Physiological and behavioral changes in honey bees (Apis mellifera) induced by Nosema ceranae infection.

    Science.gov (United States)

    Goblirsch, Mike; Huang, Zachary Y; Spivak, Marla

    2013-01-01

    Persistent exposure to mite pests, poor nutrition, pesticides, and pathogens threaten honey bee survival. In healthy colonies, the interaction of the yolk precursor protein, vitellogenin (Vg), and endocrine factor, juvenile hormone (JH), functions as a pacemaker driving the sequence of behaviors that workers perform throughout their lives. Young bees perform nursing duties within the hive and have high Vg and low JH; as older bees transition to foraging, this trend reverses. Pathogens and parasites can alter this regulatory network. For example, infection with the microsporidian, Nosema apis, has been shown to advance behavioral maturation in workers. We investigated the effects of infection with a recent honey bee pathogen on physiological factors underlying the division of labor in workers. Bees infected with N. ceranae were nearly twice as likely to engage in precocious foraging and lived 9 days less, on average, compared to controls. We also show that Vg transcript was low, while JH titer spiked, in infected nurse-aged bees in cages. This pattern of expression is atypical and the reverse of what would be expected for healthy, non-infected bees. Disruption of the basic underpinnings of temporal polyethism due to infection may be a contributing factor to recent high colony mortality, as workers may lose flexibility in their response to colony demands. PMID:23483987

  14. Physiological and behavioral changes in honey bees (Apis mellifera) induced by Nosema ceranae infection.

    Science.gov (United States)

    Goblirsch, Mike; Huang, Zachary Y; Spivak, Marla

    2013-01-01

    Persistent exposure to mite pests, poor nutrition, pesticides, and pathogens threaten honey bee survival. In healthy colonies, the interaction of the yolk precursor protein, vitellogenin (Vg), and endocrine factor, juvenile hormone (JH), functions as a pacemaker driving the sequence of behaviors that workers perform throughout their lives. Young bees perform nursing duties within the hive and have high Vg and low JH; as older bees transition to foraging, this trend reverses. Pathogens and parasites can alter this regulatory network. For example, infection with the microsporidian, Nosema apis, has been shown to advance behavioral maturation in workers. We investigated the effects of infection with a recent honey bee pathogen on physiological factors underlying the division of labor in workers. Bees infected with N. ceranae were nearly twice as likely to engage in precocious foraging and lived 9 days less, on average, compared to controls. We also show that Vg transcript was low, while JH titer spiked, in infected nurse-aged bees in cages. This pattern of expression is atypical and the reverse of what would be expected for healthy, non-infected bees. Disruption of the basic underpinnings of temporal polyethism due to infection may be a contributing factor to recent high colony mortality, as workers may lose flexibility in their response to colony demands.

  15. Physiological and behavioral changes in honey bees (Apis mellifera induced by Nosema ceranae infection.

    Directory of Open Access Journals (Sweden)

    Mike Goblirsch

    Full Text Available Persistent exposure to mite pests, poor nutrition, pesticides, and pathogens threaten honey bee survival. In healthy colonies, the interaction of the yolk precursor protein, vitellogenin (Vg, and endocrine factor, juvenile hormone (JH, functions as a pacemaker driving the sequence of behaviors that workers perform throughout their lives. Young bees perform nursing duties within the hive and have high Vg and low JH; as older bees transition to foraging, this trend reverses. Pathogens and parasites can alter this regulatory network. For example, infection with the microsporidian, Nosema apis, has been shown to advance behavioral maturation in workers. We investigated the effects of infection with a recent honey bee pathogen on physiological factors underlying the division of labor in workers. Bees infected with N. ceranae were nearly twice as likely to engage in precocious foraging and lived 9 days less, on average, compared to controls. We also show that Vg transcript was low, while JH titer spiked, in infected nurse-aged bees in cages. This pattern of expression is atypical and the reverse of what would be expected for healthy, non-infected bees. Disruption of the basic underpinnings of temporal polyethism due to infection may be a contributing factor to recent high colony mortality, as workers may lose flexibility in their response to colony demands.

  16. Direct effect of acaricides on pathogen loads and gene expression levels in honey bees Apis mellifera.

    Science.gov (United States)

    Boncristiani, Humberto; Underwood, Robyn; Schwarz, Ryan; Evans, Jay D; Pettis, Jeffery; vanEngelsdorp, Dennis

    2012-05-01

    The effect of using acaricides to control varroa mites has long been a concern to the beekeeping industry due to unintended negative impacts on honey bee health. Irregular ontogenesis, suppression of immune defenses, and impairment of normal behavior have been linked to pesticide use. External stressors, including parasites and the pathogens they vector, can confound studies on the effects of pesticides on the metabolism of honey bees. This is the case of Varroa destructor, a mite that negatively affects honey bee health on many levels, from direct parasitism, which diminishes honey bee productivity, to vectoring and/or activating other pathogens, including many viruses. Here we present a gene expression profile comprising genes acting on diverse metabolic levels (detoxification, immunity, and development) in a honey bee population that lacks the influence of varroa mites. We present data for hives treated with five different acaricides; Apiguard (thymol), Apistan (tau-fluvalinate), Checkmite (coumaphos), Miteaway (formic acid) and ApiVar (amitraz). The results indicate that thymol, coumaphos and formic acid are able to alter some metabolic responses. These include detoxification gene expression pathways, components of the immune system responsible for cellular response and the c-Jun amino-terminal kinase (JNK) pathway, and developmental genes. These could potentially interfere with the health of individual honey bees and entire colonies. PMID:22212860

  17. Mitosis and cell death in the optic lobes of workers, queens and drones of the honey bee (Apis mellifera) during metamorphosis

    Indian Academy of Sciences (India)

    Thaisa Cristina Roat; Carminda Da Cruz Landim

    2010-09-01

    Colonies of the honey bee, Apis mellifera, consist of males and two female castes: workers and queens. The castes and males from A. mellifera have a distinct morphology, physiology and behaviour that correlate with their roles in the society and are characterized by some brain polymorphisms. Compound eyes are one of the characteristics that differ among the castes and sexes. A. mellifera is a holometabolous insect; therefore, the development of adult organs during metamorphosis, which will produce these differences, requires the precise coordination of three main programmed cellular processes: proliferation, differentiation and death. These processes take place simultaneously during pupation. Our purpose was to investigate cell division and death in the optic lobes (OL) of workers, queens and males during pupation to identify how the differences in the compound eyes in adults of these classes are achieved. The results showed that OL differentiation follows a similar pattern in the three classes of individuals studied, without structural differences in their development. The main non-structural differences involve cell division, mortality rates and timing. The results suggest a modelling of the brain during differentiation, which contributes to the specific functions of each individual class.

  18. Mitosis and cell death in the optic lobes of workers, queens and drones of the honey bee (Apis mellifera) during metamorphosis.

    Science.gov (United States)

    Roat, Thaisa Cristina; Landim, Carminda da Cruz

    2010-09-01

    Colonies of the honey bee, Apis mellifera, consist of males and two female castes: workers and queens. The castes and males from A. mellifera have a distinct morphology, physiology and behaviour that correlate with their roles in the society and are characterized by some brain polymorphisms. Compound eyes are one of the characteristics that differ among the castes and sexes. A. mellifera is a holometabolous insect; therefore, the development of adult organs during metamorphosis, which will produce these differences, requires the precise coordination of three main programmed cellular processes: proliferation, differentiation and death. These processes take place simultaneously during pupation. Our purpose was to investigate cell division and death in the optic lobes (OL) of workers, queens and males during pupation to identify how the differences in the compound eyes in adults of these classes are achieved. The results showed that OL differentiation follows a similar pattern in the three classes of individuals studied, without structural differences in their development. The main non-structural differences involve cell division, mortality rates and timing. The results suggest a modelling of the brain during differentiation, which contributes to the specific functions of each individual class.

  19. Characterization of Two Species of Trypanosomatidae from the Honey Bee Apis mellifera: Crithidia mellificae Langridge and McGhee, and Lotmaria passim n. gen., n. sp.

    Science.gov (United States)

    Schwarz, Ryan S; Bauchan, Gary R; Murphy, Charles A; Ravoet, Jorgen; de Graaf, Dirk C; Evans, Jay D

    2015-01-01

    Trypanosomatids are increasingly recognized as prevalent in European honey bees (Apis mellifera) and by default are attributed to one recognized species, Crithidia mellificae Langridge and McGhee, 1967. We provide reference genetic and ultrastructural data for type isolates of C. mellificae (ATCC 30254 and 30862) in comparison with two recent isolates from A. mellifera (BRL and SF). Phylogenetics unambiguously identify strains BRL/SF as a novel taxonomic unit distinct from C. mellificae strains 30254/30862 and assign all four strains as lineages of a novel clade within the subfamily Leishmaniinae. In vivo analyses show strains BRL/SF preferably colonize the hindgut, lining the lumen as adherent spheroids in a manner identical to previous descriptions from C. mellificae. Microscopy images show motile forms of C. mellificae are distinct from strains BRL/SF. We propose the binomial Lotmaria passim n. gen., n. sp. for this previously undescribed taxon. Analyses of new and previously accessioned genetic data show C. mellificae is still extant in bee populations, however, L. passim n. gen., n. sp. is currently the predominant trypanosomatid in A. mellifera globally. Our findings require that previous reports of C. mellificae be reconsidered and that subsequent trypanosomatid species designations from Hymenoptera provide genetic support. PMID:25712037

  20. Similar Comparative Low and High Doses of Deltamethrin and Acetamiprid Differently Impair the Retrieval of the Proboscis Extension Reflex in the Forager Honey Bee (Apis mellifera)

    Science.gov (United States)

    Thany, Steeve H.; Bourdin, Céline M.; Graton, Jérôme; Laurent, Adèle D.; Mathé-Allainmat, Monique; Lebreton, Jacques; Le Questel, Jean-Yves

    2015-01-01

    In the present study, the effects of low (10 ng/bee) and high (100 ng/bee) doses of acetamiprid and deltamethrin insecticides on multi-trial learning and retrieval were evaluated in the honey bee Apis mellifera. After oral application, acetamiprid and deltamethrin at the concentrations used were not able to impair learning sessions. When the retention tests were performed 1 h, 6 h, and 24 h after learning, we found a significant difference between bees after learning sessions when drugs were applied 24 h before learning. Deltamethrin-treated bees were found to be more sensitive at 10 ng/bee and 100 ng/bee doses compared to acetamiprid-treated bees, only with amounts of 100 ng/bee and at 6 h and 24 h delays. When insecticides were applied during learning sessions, none of the tested insecticides was able to impair learning performance at 10 ng/bee or 100 ng/bee but retention performance was altered 24 h after learning sessions. Acetamiprid was the only one to impair retrieval at 10 ng/bee, whereas at 100 ng/bee an impairment of retrieval was found with both insecticides. The present results therefore suggest that acetamiprid and deltamethrin are able to impair retrieval performance in the honey bee Apis mellifera. PMID:26466901

  1. Influence of agrochemicals fipronil and imidacloprid on the learning behavior of Apis mellifera L. honeybees - doi: 10.4025/actascianimsci.v35i4.18683

    Directory of Open Access Journals (Sweden)

    Marcela Pedraza Carrillo

    2013-10-01

    Full Text Available Agrochemicals on crop cultivated areas is a source of contamination for bees and may cause physiological and behavioral disorders and mortality. The LD50 of the pesticides fipronil and imidacloprid was determined and their effect on the learning behavior of Apis mellifera L. honeybee evaluated. LD50 was determined by the ingestion of contaminated food with different concentrations of insecticide concentrations: Fipronil (0, 0.8, 0.4, 0.2, 0.1 and 0.05 µg bee-1 and imidacloprid (0, 0.4, 0.2, 0.1, 0.05 and 0.025 µg bee-1. The method of proboscis extension reflection (PER and learning through citral odor evaluated their responses to food stimulation. LD50 obtained were 0.28 ± 0.11 and 0.10 ± 0.04 µg bee-1 for fipronil and imidacloprid, respectively. The PER test showed no significant difference (p Apis mellifera bees.  

  2. Daily number of bee louse (Braula coeca) in honey bee (Apis mellifera camica and A. m. syriaca) colonies maintained under semi-arid conditions

    Institute of Scientific and Technical Information of China (English)

    Shahera Zaitoun; Abd AI-Majeed AI-Ghzawi

    2008-01-01

    Experimental work was conducted at two apiaries located in Irbid district and in Shuna North, Jordan, during the years 2004-2006. The aims of these investigations were to estimate the seasonal changes in the infestation rates of the bee louse (Braula sp.) and to develop an easy and rapid method of estimating the infestation rate on workers with bee Braula. Two major honey bee subspecies are reared in Jordan; Apis mellifera carnica and Apis mellifera syriaca were used in this study. The results showed that the infestation rate began to increase rapidly in May, reaching the season's maximum rate of 16.2%, 15.8% and 17.4% forA. ra. carnica and 22.6%, 23.9% and 22.9% forA. m. syr/aca in December of 2004,2005 and 2006, respectively. The maximum adult numbers of bees were found in April and June, whereas the minimum for the year was in January in both honey bee subspecies colonies during the study period. The actual population of the bee louse could be estimated by counting the daily dropped lice and multiplying by a factor of 158. This factor is valid for the experimental colonies of both subspecies kept for 3 years under semi-arid Mediterranean conditions.

  3. Genetic integrity of the Dark European honey bee (Apis mellifera mellifera) from protected populations: a genome-wide assessment using SNPs and mtDNA sequence data

    DEFF Research Database (Denmark)

    Pinto, M Alice; Henriques, Dora; Chávez-Galarza, Julio;

    2014-01-01

    to preserve the genetic integrity of A. m. mellifera, protected populations had a measurable component of their gene pool derived from commercial C-lineage honey bees. Here we used both sequence data from the tRNAleu-cox2 intergenic mtDNA region and a genome-wide scan, with over 1183 single nucleotide...

  4. 中蜂与意蜂营养杂交对其后代抗农药性能的影响%The Effect of Nutritional Crossbreeding between Apis cerana cerana and Apis mellifera ligustica on Anti-pesticide Performance

    Institute of Scientific and Technical Information of China (English)

    汪志平; 何旭江; 陈利华; 颜伟玉

    2011-01-01

    通过人工添加中华蜜蜂王浆来培育江山2号意蜂与法国意蜂的杂交蜂王,并检测了敌敌畏对江山2号意蜂、高加索蜜蜂、营养杂交子一代(F1)和子四代(F4)群势的影响,同时检测了江山2号意蜂、中华蜜蜂、F1代和F4代工蜂对敌百虫、啶虫脒和桃病康的抗性.结果表明:营养杂交意蜂敌敌畏中毒后群势削减率显著低于江山2号意蜂与高加索蜜蜂;营养杂交意蜂F4代对敌百虫的抗性均显著强于中蜂与江山2号.营养杂交意蜂F1代和F4代工蜂对啶虫脒和高剂量的桃病康抗性均显著强于中蜂与江山2号,且F4代显著强于F1代.中意蜂营养杂交的意蜂对敌敌畏、敌百虫、啶虫脒和桃病康等农药的抗性显著增强.%The hybridized queens were bred with Jiangshan Honey Bee No. 2 and French Apis mellifera ligustica by feeding the royal jelly of Apis cerana cerana artificially. The effcet of dichlorvos poisoning on the population of Jiangshan Honey Bee No. 2, Apis mellifera caucasicag, first and forth genernation of nutritional crossbred colony( F1 and F4 ) was measured. And the effcets of dichlorvos, trichlorfon, acetamiprid and Tao Bing Kang poisoning on workers of Jiangshan Honey Bee No. 2, Apis cerana cerana, F1 and F4 were measured.The results showed that the population reduction rates of F1 and F4 were significant lower than those of Jiangshan Honey Bee No. 2 and Apis cerana cerana fed with dichlorvos; while by trichlorfon poisoning, the mortality rate of F4 was significant lower than those of others. The resistance of F1 and F4 was significant stronger than those of Jiangshan Honey Bee No. 2 and Apis cerana cerana to acetamiprid and high dose of Tao Bing Kang poisoning, and the resistance of F4 was stronger than that of F1. The resistance of the offspring of nutritional crossbreed Apis mellifera ligustica to pesticides-dichlorvos, trichlorfon, acetamiprid and Tao Bing Kang was enhanced significantly.

  5. Caracterização físico-química de amostras de méis produzidas por Apis mellifera L. em fragmento de cerrado no município de Itirapina, São Paulo Physicochemical characterization of honey samples produced by Apis mellifera L. in a fragment of savannah area in Itirapina county, São Paulo State, Brazil

    OpenAIRE

    Kiára Mendonça; Luís Carlos Marchini; Bruno de Almeida Souza; Daniela de Almeida-Anacleto; Augusta Carolina de Camargo Carmello Moreti

    2008-01-01

    A fisionomia vegetal mais representativa do país, depois da floresta amazônica, é o cerrado, que ocupa atualmente dois milhões de km² do território brasileiro. Este trabalho teve como objetivo determinar as características físico-químicas de amostras de mel produzidas por Apis mellifera em um fragmento de cerrado, localizado em Itirapina, SP (22°14'S e 47°49'W). As amostras foram coletadas mensalmente, em cinco colméias, entre fevereiro e outubro de 2005 e as características avaliadas...

  6. Efecto antiinflamatorio de apitoxina de Apis mellifera sobre prostaglandina E2 del fluido crevicular gingival de pacientes con y sin enfermedad periodontal, sometidos a apiterapia: ensayo preliminar Anti-inflammatory effect of apitoxin and Apis mellifera on prostaglandin E2 in gingival crevicular fluid of patients with and without periodontal disease, submitted to apitherapy: preliminary test

    OpenAIRE

    W Faúndez Poblete; CG Narváez Carrasco; A Burgos Arias

    2011-01-01

    Introducción: La apitoxina que es producida por la Apis mellifera posee efecto antiinflamatorio sobre una serie de marcadores biológicos. La prostaglandina E2 forma parte de ellos, estando presente en el fluido gingival crevicular (FGC). La prostaglandina E2 es evidenciada en la enfermedad periodontal. Objetivo: En este estudio se evaluó el efecto antiinflamatorio de la apitoxina sobre la concentración de prostaglandina E2 del FGC de un paciente sin enfermedad periodontal (SEP) y otro con enf...

  7. Effets de Nosema ceranae (Microsporidia) sur la santé de l’abeille domestique Apis mellifera L. : changements physiologiques et comportementaux

    OpenAIRE

    Dussaubat, Claudia

    2012-01-01

    Nosema ceranae est un parasite émergeant d’Apis mellifera décrit dans certaines régions comme la cause majeure de la mortalité des abeilles. Dans d’autres cas, il est soupçonné d’affaiblir les colonies par l’interaction avec d’autres facteurs de pression de l’environnement. Dans le cadre du phénomène global de la mortalité des abeilles, nous avons orienté nos recherches vers l’étude des effets N. ceranae, en faisant l’hypothèse que ce parasite est capable d’induire des changements comportemen...

  8. The activity of carbohydrate-degrading enzymes in the development of brood and newly emerged workers and drones of the Carniolan honeybee, Apis mellifera carnica.

    Science.gov (United States)

    Żółtowska, Krystyna; Lipiński, Zbigniew; Łopieńska-Biernat, Elżbieta; Farjan, Marek; Dmitryjuk, Małgorzata

    2012-01-01

    The activity of glycogen Phosphorylase and carbohydrate hydrolyzing enzymes α-amylase, glucoamylase, trehalase, and sucrase was studied in the development of the Carniolan honey bee, Apis mellifera carnica Pollman (Hymenoptera: Apidae), from newly hatched larva to freshly emerged imago of worker and drone. Phosphorolytic degradation of glycogen was significantly stronger than hydrolytic degradation in all developmental stages. Developmental profiles of hydrolase activity were similar in both sexes of brood; high activity was found in unsealed larvae, the lowest in prepupae followed by an increase in enzymatic activity. Especially intensive increases in activity occurred in the last stage of pupae and newly emerged imago. Besides α-amylase, the activities of other enzymes were higher in drone than in worker broods. Among drones, activity of glucoamylase was particularly high, ranging from around three times higher in the youngest larvae to 13 times higher in the oldest pupae. This confirms earlier suggestions about higher rates of metabolism in drone broods than in worker broods.

  9. Observation of the Mating Behavior of Honey Bee (Apis mellifera L.) Queens Using Radio-Frequency Identification (RFID): Factors Influencing the Duration and Frequency of Nuptial Flights.

    Science.gov (United States)

    Heidinger, Ina Monika Margret; Meixner, Marina Doris; Berg, Stefan; Büchler, Ralph

    2014-01-01

    We used radio-frequency identification (RFID) to record the duration and frequency of nuptial flights of honey bee queens (Apis mellifera carnica) at two mainland mating apiaries. We investigated the effect of a number of factors on flight duration and frequency: mating apiary, number of drone colonies, queen's age and temperature. We found significant differences between the two locations concerning the number of flights on the first three days. We also observed an effect of the ambient temperature, with queens flying less often but longer at high temperatures compared to lower temperatures. Increasing the number of drone colonies from 33 to 80 colonies had no effect on the duration or on the frequency of nuptial flights. Since our results agree well with the results of previous studies, we suggest RFID as an appropriate tool to investigate the mating behavior of honey bee queens. PMID:26462822

  10. Caractérisation cinétique et moléculaire du biomarqueur acétylcholinesterase chez l'abeille, Apis mellifera

    OpenAIRE

    Badiou, Alexandra

    2007-01-01

    L’acétylcholinesterase (AChE, EC 3.1.1.7) est un marqueur biologique de contamination environnementale très étudiée et très utilisée dans les milieux aquatiques. La nécessité de développer des outils de surveillance de la qualité des milieux terrestres et aériens nous a conduit à approfondir les connaissances de l’AChE de l’abeille, Apis mellifera. L’identification et la purification des différentes formes d’AChE présentes ont révélé l’existence de deux formes membranaires, AChEm1 et AChEm2, ...

  11. Observation of the Mating Behavior of Honey Bee (Apis mellifera L. Queens Using Radio-Frequency Identification (RFID: Factors Influencing the Duration and Frequency of Nuptial Flights

    Directory of Open Access Journals (Sweden)

    Ina Monika Margret Heidinger

    2014-07-01

    Full Text Available We used radio-frequency identification (RFID to record the duration and frequency of nuptial flights of honey bee queens (Apis mellifera carnica at two mainland mating apiaries. We investigated the effect of a number of factors on flight duration and frequency: mating apiary, number of drone colonies, queen’s age and temperature. We found significant differences between the two locations concerning the number of flights on the first three days. We also observed an effect of the ambient temperature, with queens flying less often but longer at high temperatures compared to lower temperatures. Increasing the number of drone colonies from 33 to 80 colonies had no effect on the duration or on the frequency of nuptial flights. Since our results agree well with the results of previous studies, we suggest RFID as an appropriate tool to investigate the mating behavior of honey bee queens.

  12. Deformed wing virus in western honey bees (Apis mellifera) from Atlantic Canada and the first description of an overtly-infected emerging queen.

    Science.gov (United States)

    Williams, Geoffrey R; Rogers, Richard E L; Kalkstein, Abby L; Taylor, Benjamin A; Shutler, Dave; Ostiguy, Nancy

    2009-04-01

    Deformed wing virus (DWV) in western honey bees (Apis mellifera) often remains asymptomatic in workers and drones, and symptoms have never been described from queens. However, intense infections linked to parasitism by the mite Varroa destructor can cause worker wing deformity and death within 67 h of emergence. Ten workers (eight with deformed wings and two with normal wings) and three drones (two with deformed wings and one with normal wings) from two colonies infected with V. destructor from Nova Scotia, Canada, and two newly-emerged queens (one with deformed wings and one with normal wings) from two colonies infected with V. destructor from Prince Edward Island, Canada, were genetically analyzed for DWV. We detected DWV in all workers and drones, regardless of wing morphology, but only in the deformed-winged queen. This is the first report of DWV from Atlantic Canada and the first detection of a symptomatic queen with DWV from anywhere.

  13. Study of the flight range and ideal density of the africanized honeybees, Apis mellifera L., 1758 (Hymenoptera: Apidae) labelled with 32 P on an apple orchard

    International Nuclear Information System (INIS)

    The ideal density, the flight range, the choice for any flight direction, the influence of temperature and relative humidity of air about the honeybee's activity, Apis mellifera L.. 1758 (Hymenoptera: Apidae) were studied in an apple orchard, utilizing nuclear techniques. Five hives, with 35,000 bees each, were labelled with syrup (50%) content (2,5 μCi 32 P/ml) and taken one by one, every two days to the blossomed orchard. A circumference area of 100 m diameter (0,8 ha) W staked each 10 m from the center to the limit (50 m), making a cross, pointing out to North, South, East and West. The honeybees were collected on apple flowers, during 5 minutes in each stake, at 10:00 a.m. and 12:30 p.m. (author)

  14. Long-term storage of Ascosphaera aggregata and Ascosphaera apis, pathogens of the leafcutting bee (Megachile rotundata) and the honey bee (Apis mellifera).

    Science.gov (United States)

    Jensen, A B; James, R R; Eilenberg, J

    2009-06-01

    Survival rates of Ascosphaera aggregata and Ascosphaera apis over the course of a year were tested using different storage treatments. For spores, the storage methods tested were freeze-drying and ultra-low temperatures, and for hyphae, freeze-drying, agar slants, and two methods of ultra-low temperatures. Spores of A. aggregata and A. apis stored well at -80 degrees C and after freeze-drying. A. aggregata hyphae did not store well under any of the methods tested while A. apis hyphae survived well using cryopreservation. Spores produced from cryopreserved A. apis hyphae were infective. Long-term storage of these two important fungal bee diseases is thus possible. PMID:19332075

  15. MtDNA COI-COII marker and drone congregation area: an efficient method to establish and monitor honeybee (Apis mellifera L.) conservation centres.

    Science.gov (United States)

    Bertrand, Bénédicte; Alburaki, Mohamed; Legout, Hélène; Moulin, Sibyle; Mougel, Florence; Garnery, Lionel

    2015-05-01

    Honeybee subspecies have been affected by human activities in Europe over the past few decades. One such example is the importation of nonlocal subspecies of bees which has had an adverse impact on the geographical repartition and subsequently on the genetic diversity of the black honeybee Apis mellifera mellifera. To restore the original diversity of this local honeybee subspecies, different conservation centres were set up in Europe. In this study, we established a black honeybee conservation centre Conservatoire de l'Abeille Noire d'Ile de France (CANIF) in the region of Ile-de-France, France. CANIF's honeybee colonies were intensively studied over a 3-year period. This study included a drone congregation area (DCA) located in the conservation centre. MtDNA COI-COII marker was used to evaluate the genetic diversity of CANIF's honeybee populations and the drones found and collected from the DCA. The same marker (mtDNA) was used to estimate the interactions and the haplotype frequency between CANIF's honeybee populations and 10 surrounding honeybee apiaries located outside of the CANIF. Our results indicate that the colonies of the conservation centre and the drones of the DCA show similar stable profiles compared to the surrounding populations with lower level of introgression. The mtDNA marker used on both DCA and colonies of the conservation centre seems to be an efficient approach to monitor and maintain the genetic diversity of the protected honeybee populations. PMID:25335970

  16. Limitations to the use of Apis mellifera (Hymenoptera: Apidae for driven pollination of cultivars: a case study with European pear (Pyrus communis L. cv. Rocha

    Directory of Open Access Journals (Sweden)

    André Amarildo Sezerino

    2015-05-01

    Full Text Available The existence of pollinators able to promote xenogamy is a decisive factor in the yield of orchards. As it is allogamous, due to gametophytic self-incompatibility, most European pear cultivars do not produce fruits with seeds in the absence of pollinating insects. Therefore, the correct management and quality of Apis mellifera hives installed in the orchards are indispensable to ensure economically viable yields. In this context, we aimed to evaluate some aspects of the driven pollination system with A. mellifera that can decisively interfere with pollination effectiveness in a commercial orchard of European pear under the ecological conditions of Santa Catarina’s Mountain Plateau, in Brazil’s South region. We observed low visitation of bees on the pear flowers, possibly due to two factors: floral competition and insufficient density of hives installed in the orchard. No pollen deposition was observed on the stigmas, something which confirms pollination failure in the area. The quality of rented hives showed differences between years, with presence of the mite Varroa destructor and the microsporidian Nosema ceranae, which may have contributed to the depopulation of hives within the flowering period and, consequently, the decreased pollen deposition on the stigmas of flowers of the main fruit-producing cultivar.

  17. Effects of the organic acids produced by a lactic acid bacterium in Apis mellifera colony development, Nosema ceranae control and fumagillin efficiency.

    Science.gov (United States)

    Maggi, Matías; Negri, Pedro; Plischuk, Santiago; Szawarski, Nicolás; De Piano, Fiorella; De Feudis, Leonardo; Eguaras, Martín; Audisio, Carina

    2013-12-27

    The European honey bee Apis mellifera is known to be affected by many parasites and pathogens that have great impact over the insect development. Among parasites affecting bee health, Nosema ceranae is one of the main biotic factors affecting colony populations. As honey bee populations decline, interest in pathogenic and mutualistic relationships between bees and microorganisms has increased. The main goal of the current study was to assess the effect of the oral administration of the metabolites produced by Lactobacillus johnsonii CRL1647 (mainly organic acids) supplemented in syrup, on: (I) N. ceranae sporulation dynamics before and after fumagillin application, and (II) performance of A. mellifera colonies. Different experiments were conducted to evaluate the effects of these bacterial metabolites on bees: in vitro administration revealed no toxic effects against bees. Colonies fed with the lactic acids incremented their beehive population and also the amount of fat bodies per bee. Finally, the organic acids reduced the intensity of the pathogen after the second application of treatment as well as enhanced the fumagillin efficiency. This study provides important information for the development of new control substances against nosemosis. PMID:23978352

  18. TELA EXCLUIDORA DE RAINHA NA PRODUÇÃO DE MEL E NA LONGEVIDADE DAS OPERÁRIAS EM COLMEIAS DE Apis mellifera

    Directory of Open Access Journals (Sweden)

    Rusig Alexandre

    2002-01-01

    Full Text Available Este trabalho tem como objetivos verificar as áreas de cria e alimento e a longevidade de operárias em colmeias de Apis mellifera, em apicultura fixa (mata e migratória (laranja e eucalipto, sem (T1 e com (T2 tela excluidora de rainha. Foram utilizadas colmeias modelo Langstroth, com sobrecaixa. Na apicultura fixa, estas colmeias foram analisadas durante 476 dias e mapeadas a cada 30 a 45 dias para obtenção das áreas de cria e alimento. Na migratória, as colmeias foram analisadas antes e após a florada. Foi estudada também a longevidade das operárias, nos dois tratamentos. Os dados mostraram que em fluxo baixo de néctar (apicultura fixa, em mata, o uso de tela excluidora apresentou maior eficiência na separação do mel das crias. Entretanto, quando o fluxo de néctar foi alto (floradas de laranja e eucalipto, a tela excluidora não foi eficiente, pois as abelhas rapidamente preencheram os favos disponíveis no ninho inferior, misturando-o com cria. Observou-se também redução na longevidade das operárias das colmeias com tela excluidora, em dois dos três testes realizados. Este trabalho, desenvolvido em três locais diferentes, com plantas apícolas distintas evidenciou também a variabilidade e a grande influência ambiental no desenvolvimento das colônias de Apis mellifera.

  19. Morphological, molecular, and phylogenetic characterization of Nosema cerana, a microsporidian parasite isolated from the European honey bee, Apis mellifera

    Science.gov (United States)

    Nosema ceranae, a microsporidian parasite originally described from Apis cerana, has been found to infect Apis melllifera and is highly pathogenic to its new host. In the present study, data on N. ceranae ultrastructure, host tissue tropism, secondary structures of ribosomal RNA, and phylogenetic ...

  20. Varroa destructor mite mortality rate according to the amount of worker broods in africanized honey bee (Apis mellifera L. colonies = Taxa de mortalidade do ácaro Varroa destructor de acordo com a quantidade de crias em colônias de abelhas africanizadas (Apis mellifera L.

    Directory of Open Access Journals (Sweden)

    Geraldo Moretto

    2007-07-01

    Full Text Available The Varroa destructor mite has caused the death of hundreds of thousands of Apis mellifera colonies in several countries worldwide. However, the effects determined by the Varroa mite change according to the A. mellifera subspecies. In Africanized bee colonies from South and Central America, the parasite causes little damage, as the infestation levels are relatively stable and low, thus treatments against the pest are not required. Among several factors, the grooming behavior of Africanized worker bees plays an important role in the maintenance of the low infestation levels. This study determined the daily rate of live and dead mites found at the bottom of the hive in five Africanized honey bee colonies. During fifteen days of observations, a significant increase was verified in the number of live and dead mites at the bottom of the hive as the amount of worker broods from each honey bee colony decreased. This suggests a more intense grooming activity as the Varroa concentration in the adult honey bee population increases.O ácaro Varroa destructor tem causado a mortalidade de centenas de milhares de colônias de abelhas Apis mellifera em várias partes do mundo. Os efeitos determinados pelo ácaro Varroa variam com a subespécie de Apis mellifera. Nas Américas do Sul e Central, o parasita causa poucos danos às colônias de abelhas africanizadas, a taxa de infestação é estável e baixa, não sendo necessário o tratamento químico contra a praga. Entre vários fatores que são responsáveis pela tolerância das abelhas africanizadas a esse parasita, o comportamento de grooming executado pelas operárias deve exercer importante papel na manutenção dos baixos níveis deinfestação. Neste estudo, foram avaliadas as taxas diárias de ácaros vivos e mortos encontrados no fundo das colméias de cinco colônias de abelhas africanizadas. Durante 15 dias de observações, foi verificado significativo aumento de ácaros no fundo da colméia

  1. ABEJAS VISITANTES DE Aspilia tenella (KUNTH S. F. BLAKE (ASTERACEAE: COMPORTAMIENTO DE FORRAJEO Y CARGAS POLÍNICAS BEES VISITING Aspilia tenella (KUNTH S .F. BLAKE (ASTERACEAE: FORAGING BEHAVIOR AND POLLEN LOADS

    Directory of Open Access Journals (Sweden)

    Clara Isabel Aguilar Sierra

    2008-12-01

    Full Text Available En cuatro localidades de la zona de influencia del embalse Porce II (Antioquia, Colombia, se observó el comportamiento de 23 taxones de abejas durante sus visitas a Aspilia tenella (Kunth S. F. Blake; se registró el número de individuos y el tiempo total de visita y se midieron la temperatura y la humedad relativa. Los análisis de varianza indican que hubo una relación estadísticamente significativa en cuanto a los atributos considerados para las especies de abejas y una covariación significativa con las variables ambientales. Las pruebas de rangos múltiples muestran que Trigona nigerrima es la especie con los mayores valores promedio para el número de individuos y el tiempo de visita. En el estudio de las cargas polínicas se encontraron 30 tipos polínicos, dentro de los cuales A. tenella presentó el mayor porcentaje; Piper aduncum, Miconia minuti flora, Psidium guajava, Rapanea sp., Mimosa pudica y Psychotria sp., en su orden, son otras fuentes de polen importantes para varias de las especies de abejas. El análisis de agrupamiento para las abejas capturadas permitió diferenciar dos grupos: el primero incluye a 18 especies cuyas cargas polínicas que poseían una abundancia relativa de granos de polen de A. tenella por encima de 77%; el segundo grupo estaba conformado por cinco especies de abejas que recolectaron porcentajes mayores de otros tipos polínicos: Exomalopsis sp. 1 (90,4% de M. minuti flora; Lasioglossum sp. 1 y Coelioxys aff. mexicana (77,4% y 64,1% de P. aduncum, respectivamente; Exomalopsis sp. 2 (67,1% de P. guajava y Auglochloropsis vesta (55,5% de Rapanea sp.. Trigona fulviventris y Apis mellifera presentaron los valores más altos de riqueza de tipos polínicos en las cargas de polen; ello evidencia sus nichos tróficos amplios y su comportamiento generalista de visita.We observed the behavior of 23 species of wild bees visiting Aspilia tenella (Kunth S .F. Blake in four different localities of the Porce II dam

  2. İran bal arıları (Apis mellifera meda)’nın varroa paraziti (Varroa destructor)’ne karşı korunma yeteneğinin değerlendirilmesi

    OpenAIRE

    NAJI KHOEI, Amir

    2012-01-01

    Varroa destructor, bal arılarının (Apis mellifera L.) en önemli parazitlerinden biridir. Bu araştırmada İran bal arılarının (Apis mellifera meda) Varroa destructor'e karşı direnç özelliklerini araştırmak amacıyla, İran'ın Doğu Azerbaycan ilinin 5 farklı ilçesinden materyal olarak 60 bal arısı kolonisi ile Tebriz Üniversitesi Ziraat Fakültesi’nde deneme kurulmuştur. Çalışmada; tıma...

  3. In vitro antiproliferative/cytotoxic activity on cancer cell lines of a cardanol and a cardol enriched from Thai Apis mellifera propolis

    OpenAIRE

    Teerasripreecha Dungporn; Phuwapraisirisan Preecha; Puthong Songchan; Kimura Kiyoshi; Okuyama Masayuki; Mori Haruhide; Kimura Atsuo; Chanchao Chanpen

    2012-01-01

    Abstract Background Propolis is a complex resinous honeybee product. It is reported to display diverse bioactivities, such as antimicrobial, anti-inflammatory and anti-tumor properties, which are mainly due to phenolic compounds, and especially flavonoids. The diversity of bioactive compounds depends on the geography and climate, since these factors affect the floral diversity. Here, Apis mellifera propolis from Nan province, Thailand, was evaluated for potential anti-cancer activity. Methods...

  4. Nature clinale de la fréquence des ovarioles et des spermathèques observée chez les ouvrières de l'abeille du Cap, Apis mellifera capensis

    OpenAIRE

    Phiancharoen, Mananya; Christian W W Pirk; Radloff, Sarah E.; Hepburn, Randall

    2010-01-01

    International audience It was determined that 300 Cape workers, Apis mellifera capensis (collected from each of 6 colonies at each of 5 localities about 200 km apart along an 800 km transect in the Western and Eastern Cape Provinces, South Africa) was the sample size required to statistically estimate the proportions of workers with spermathecae at each location at 95% confidence levels. Because of the extremely clinal nature of this honeybee population, we tested the hypotheses that (1) o...

  5. Managed European-Derived Honey Bee, Apis mellifera sspp, Colonies Reduce African-Matriline Honey Bee, A. m. scutellata, Drones at Regional Mating Congregations.

    Science.gov (United States)

    Mortensen, Ashley N; Ellis, James D

    2016-01-01

    African honey bees (Apis mellifera scutellata) dramatically changed the South American beekeeping industry as they rapidly spread through the Americas following their introduction into Brazil. In the present study, we aimed to determine if the management of European-derived honey bees (A. mellifera sspp.) could reduce the relative abundance of African-matriline drones at regional mating sites known as drone congregation areas (DCAs). We collected 2,400 drones at six DCAs either 0.25 km or >2.8 km from managed European-derived honey bee apiaries. The maternal ancestry of each drone was determined by Bgl II enzyme digestion of an amplified portion of the mitochondrial Cytochrome b gene. Furthermore, sibship reconstruction via nuclear microsatellites was conducted for a subset of 1,200 drones to estimate the number of colonies contributing drones to each DCA. Results indicate that DCAs distant to managed European apiaries (>2.8 km) had significantly more African-matriline drones (34.33% of the collected drones had African mitochondrial DNA) than did DCAs close (0.25 km) to managed European apiaries (1.83% of the collected drones had African mitochondrial DNA). Furthermore, nuclear sibship reconstruction demonstrated that the reduction in the proportion of African matriline drones at DCAs near apiaries was not simply an increase in the number of European matriline drones at the DCAs but also the result of fewer African matriline colonies contributing drones to the DCAs. Our data demonstrate that the management of European honey bee colonies can dramatically influence the proportion of drones with African matrilines at nearby drone congregation areas, and would likely decreasing the probability that virgin European queens will mate with African drones at those drone congregation areas.

  6. Managed European-Derived Honey Bee, Apis mellifera sspp, Colonies Reduce African-Matriline Honey Bee, A. m. scutellata, Drones at Regional Mating Congregations.

    Science.gov (United States)

    Mortensen, Ashley N; Ellis, James D

    2016-01-01

    African honey bees (Apis mellifera scutellata) dramatically changed the South American beekeeping industry as they rapidly spread through the Americas following their introduction into Brazil. In the present study, we aimed to determine if the management of European-derived honey bees (A. mellifera sspp.) could reduce the relative abundance of African-matriline drones at regional mating sites known as drone congregation areas (DCAs). We collected 2,400 drones at six DCAs either 0.25 km or >2.8 km from managed European-derived honey bee apiaries. The maternal ancestry of each drone was determined by Bgl II enzyme digestion of an amplified portion of the mitochondrial Cytochrome b gene. Furthermore, sibship reconstruction via nuclear microsatellites was conducted for a subset of 1,200 drones to estimate the number of colonies contributing drones to each DCA. Results indicate that DCAs distant to managed European apiaries (>2.8 km) had significantly more African-matriline drones (34.33% of the collected drones had African mitochondrial DNA) than did DCAs close (0.25 km) to managed European apiaries (1.83% of the collected drones had African mitochondrial DNA). Furthermore, nuclear sibship reconstruction demonstrated that the reduction in the proportion of African matriline drones at DCAs near apiaries was not simply an increase in the number of European matriline drones at the DCAs but also the result of fewer African matriline colonies contributing drones to the DCAs. Our data demonstrate that the management of European honey bee colonies can dramatically influence the proportion of drones with African matrilines at nearby drone congregation areas, and would likely decreasing the probability that virgin European queens will mate with African drones at those drone congregation areas. PMID:27518068

  7. 安徽省七种蜜蜂病毒的发生与流行研究%Occurrence and distribution of seven bee viruses in Apis mellifera andApis cerana in Anhui Province, China

    Institute of Scientific and Technical Information of China (English)

    汪天澍; 施腾飞; 刘芳; 余林生; 齐磊; 孟祥金

    2015-01-01

    [目的]调查安徽省内7种常见蜜蜂病毒:蜜蜂畸翅病毒(Deformed wing virus,DWV)、以色列急性麻痹病毒(Israeli acute paralysis virus,IAPV)、急性蜜蜂麻痹病毒(Acute bee paralysis virus,ABPV)、慢性麻痹病毒(Chronic bee paralysis virus,CBPV)、黑蜂王台病毒(Black queen cell virus,BQCV)、囊状幼虫病病毒(Sacbrood virus,SBV)、克什米尔病毒(Kashmir bee virus,KBV)的感染发生情况,为安徽养蜂业可持续健康发展提供理论依据.[方法] 运用反转录 RT-PCR 和序列分析比对的方法对安徽省内 21 个乡镇中的 38 个蜂场蜜蜂样品进行研究分析,以获得以上 7 种蜜蜂病毒的特异性发生情况.[结果]意大利蜜蜂Apis mellifera蜂场感染率:DWV(64%),IAPV(43%),CBPV(32%),ABPV(14%), BQCV(11%);中华蜜蜂Apis cerana蜂场感染率:DWV (80%),IAPV (40%),CBPV (30%),ABPV (10%), BQCV(0).SBV和KBV在所有的蜜蜂样品中均未检测到.[结论] DWV,IAPV,CBPV,ABPV,BQCV在安徽省内大范围都存在发生流行现象,SBV和KBV对安徽蜜蜂的潜在危害可能性小.%[Objectives] To conduct the first detailed survey of seven bee viruses; deformed wing virus (DWV), sacbrood virus (SBV), chronic bee paralysis virus (CBPV), acute bee paralysis virus (ABPV), black queen cell virus (BQCV), Kashmir bee virus (KBV), and Israeli acute paralysis virus (IAPV), inApis mellifera andA. Cerana in Anhui. We hope this work will help bee researchers and related institutions monitor honey bee health in Anhui, and warn them of the potential threat from bee viruses to the sustainable development of apiculture in that province.[Methods] We used reverse transcriptase PCR and sequence analysis to survey the above seven honey bee viruses in most of Anhui. Samples of worker bees were collected from apiaries in 21 towns, including 28 samples ofA. Mellifera and 10 ofA. Cerana.[Results] Virus frequencies inA. Mellifera samples were as follows; 64% of apiaries were infected with DWV, 43% with IAPV, 32

  8. Investigation on Postembryonic Growth of Apis mellifera L.%意大利蜜蜂胚后发育的观察与研究

    Institute of Scientific and Technical Information of China (English)

    余林生; 孟祥金

    2001-01-01

    在安徽江淮地区,意大利蜜蜂胚后发育期:蜂王平均为15.38 d(355~376 h),工蜂平均为20.49 d(477~498 h),雄蜂平均为23.87 d(560~583 h);周年季节(春、夏、秋)不同,意大利蜜蜂三型蜂的胚后发育历期存在差异。意大利蜜蜂初生重蜂王平均为231.8 mg,工蜂平均为109.3 mg,雄蜂平均为189.5 mg。意大利蜜蜂受精卵与未受精卵的外部形态无明显差异;未封盖幼虫期,由于3日龄后幼虫食料的改变,造成三型分化和幼虫生长发育的差异;封盖子期分为封盖幼虫期和蛹期,复眼、腹节、螫针、绒毛的出现与变化是蛹期的重要特征;未封盖幼虫期与前蛹期虫体生长发育经过5次蜕皮。%In Jianghui region of Anhui province,the postembryonic growth period and weight of Apis mellifera L.were as follows:The queen was 15.38 days (355~376 h) and 231.8 mg,the worker bee was 20.49 days (477~498 h) and 109.3 mg and the drone was 23.87 days (560~583 h) and 189.5 mg,respectively.With the changes of anniversary seasons,the postembryonic growth course of three types of Apis mellifera L.existed differently.No siginificant defference of external form was found between zygotes and non-zygotes.In larve period without closing cell,the difference of three types of differentiation and larva's growth existed due to the change at forage.The appearance and change of compocind eyes,abdominal jiont,sting and fine hair were important characteristics of worm stage.In larva stage without closing and early worm stage,bee grew with five ecdysises.

  9. Effects of queen ages on Varroa (Varroa destructor) infestation level in honey bee (Apis mellifera caucasica) colonies and colony performance

    OpenAIRE

    Duran Özkök; Bilge Karatepe; Mustafa Karatepe; Halil Yeninar; Ethem Akyol

    2010-01-01

    This study was conducted to determine the effects of queen age on varroa population levels in hives and performance of honey bee (A. mellifera caucasica) colonies. Levels of varroa infestation and performances of the colonies which had 0, 1- and 2-year-old queens were compared in mild climate conditions. Varroa numbers on adults and drone brood, number of frames covered with bees and brood areas were determined every month between 10 May and 10 October 2004. Overall average (± S.E.) % ...

  10. Caracterização físico-química de méis de Apis mellifera L. da região noroeste do Estado do Rio Grande do Sul Physicochemical characterization of Apis mellifera L. honeys from the northwest region of Rio Grande do Sul State

    OpenAIRE

    Juliane Elisa Welke; Sabrina Reginatto; Débora Ferreira; Raul Vicenzi; José Maria Soares

    2008-01-01

    O objetivo deste trabalho foi determinar a composição físico-química de méis de Apis mellifera L. produzidos em dois anos consecutivos na região noroeste do Estado do Rio Grande do Sul, Brasil. As características físico-químicas de 36 amostras de mel foram comparadas utilizando o teste T de Student e a adequação aos padrões da legislação brasileira da qualidade do mel foi verificada. Os resultados das análises dos méis variaram para as características analisadas conforme segue: pH (3,3-4,4), ...

  11. Fenologia reprodutiva e sistema de polinização de Ziziphus joazeiro Mart. (Rhamnaceae: atuação de Apis mellifera e de visitantes florais autóctones como polinizadores Reproductive phenology and pollination system of Ziziphus joazeiro Mart. (Rhamnaceae: the role of Apis mellifera and autochthonous floral visitors as pollinators

    Directory of Open Access Journals (Sweden)

    Tarcila de Lima Nadia

    2007-12-01

    Full Text Available (Fenologia reprodutiva e sistema de polinização de Ziziphus joazeiro Mart. (Rhamnaceae: atuação de Apis mellifera e de visitantes florais autóctones como polinizadores. Ziziphus joazeiro é uma espécie endêmica da Caatinga, com grande utilidade econômica, cuja biologia reprodutiva é pouco conhecida. Este estudo aborda a fenologia reprodutiva, a biologia floral e o sistema de polinização de Ziziphus joazeiro no Cariri Paraibano, Nordeste do Brasil. Os períodos de floração e de frutificação ocorreram no fim da estação seca e início da chuvosa, com picos nos meses de dezembro (floração e fevereiro (frutificação. As flores são do tipo disco, esverdeadas, duram cerca de 12 horas e possuem disco nectarífero largo e amarelo, o qual circunda o gineceu. Ocorre protandria associada a outro tipo de dicogamia, a heterodicogamia. Ziziphus joazeiro produz néctar em pequena quantidade (1 µl, com alta concentração de açúcares (75%. Os visitantes florais observados foram vespas, abelhas e moscas. Apis mellifera apresentou maior freqüência de visitas (77,5%, seguida pelo grupo das vespas (20,4%, ambos considerados polinizadores efetivos. As moscas e as outras espécies de abelhas apresentaram baixo percentual de visitas (2,1% e foram consideradas pilhadoras de néctar. A elevada taxa de desenvolvimento inicial de frutos por inflorescência pode sugerir alta eficiência dos polinizadores, uma vez que o mecanismo de dicogamia presente na espécie praticamente impede a ocorrência de autopolinização espontânea e de geitonogamia.(Reproductive phenology and pollination system of Ziziphus joazeiro Mart. (Rhamnaceae: the role of Apis mellifera and autochthonous floral visitors as pollinators. Ziziphus joazeiro is an endemic species of the Caatinga with great economic importance, whose reproductive biology is poorly understood. This paper analyses the reproductive phenology, floral biology and pollination system of Ziziphus joazeiro at

  12. Multiple Virus Infections and the Characteristics of Chronic Bee Paralysis Virus in Diseased Honey Bees (Apis Mellifera L. in China

    Directory of Open Access Journals (Sweden)

    Wu Yan Y.

    2015-12-01

    Full Text Available China has the largest number of managed honey bee colonies globally, but there is currently no data on viral infection in diseased A. mellifera L. colonies in China. In particular, there is a lack of data on chronic bee paralysis virus (CBPV in Chinese honey bee colonies. Consequently, the present study investigated the occurrence and frequency of several widespread honey bee viruses in diseased Chinese apiaries, and we used the reverse transcription-polymerase chain reaction (RT-PCR assay. Described was the relationship between the presence of CBPV and diseased colonies (with at least one of the following symptoms: depopulation, paralysis, dark body colorings and hairless, or a mass of dead bees on the ground surrounding the beehives. Phylogenetic analyses of CBPV were employed. The prevalence of multiple infections of honey bee viruses in diseased Chinese apiaries was 100%, and the prevalence of infections with even five and six viruses were higher than expected. The incidence of CBPV in diseased colonies was significantly higher than that in apparently healthy colonies in Chinese A. mellifera aparies, and CBPV isolates from China can be separated into Chinese-Japanese clade 1 and 2. The results indicate that beekeeping in China may be threatened by colony decline due to the high prevalence of multiple viruses with CBPV.

  13. Indoor winter fumigation of Apis mellifera (Hymenoptera: Apidae) colonies infested with Varroa destructor (Acari: Varroidae) with formic acid is a potential control alternative in northern climates.

    Science.gov (United States)

    Underwood, Robyn M; Currie, Robert W

    2004-04-01

    Formic acid treatment for the control of the ectoparasitic varroa mite, Varroa destructor Anderson & Trueman, infesting honey bee, Apis mellifera L., colonies is usually carried out as an in-hive outdoor treatment. This study examined the use of formic acid on wintered colonies kept indoors at 5 degrees C from 24 November 1999 to 24 March 2000. Colonies were placed in small treatment rooms that were not treated (control) or fumigated at three different concentrations of formic acid: low (mean 11.9 +/- 1.2 ppm), medium (mean 25.8 +/- 1.4 ppm), or high (mean 41.2 +/- 3.3 ppm), for 48 h on 22-24 January 2000. Queen bee, worker bee, and varroa mite mortality were monitored throughout the winter, and tracheal mite, Acarapis woodi (Rennie), prevalence and mean abundance of nosema, Nosema apis Zander, spores were assessed. This study revealed that formic acid fumigation of indoor-wintered honey bees is feasible and effective. The highest concentration significantly reduced the mean abundance of varroa mites and nosema spores without increasing bee mortality. Tracheal mite prevalence did not change significantly at any concentration, although we did not measure mortality directly. The highest concentration treatment killed 33.3% of queens compared with 4.8% loss in the control. Repeated fumigation periods at high concentrations or extended fumigation at low concentrations may increase the efficacy of this treatment method and should be tested in future studies. An understanding of the cause of queen loss and methods to prevent it must be developed for this method to be generally accepted. PMID:15154434

  14. Physicochemical and microbiological characterization of Apis mellifera sp. honey from Southwest of Antioquia in Colombia Caracterización físico-química y microbiológica de la miel de Apis mellifera sp. del Suroeste de Antioquia, Colombia

    Directory of Open Access Journals (Sweden)

    A V Velásquez Giraldo

    2013-11-01

    Full Text Available Characterizations of Apis mellifera honey produced in Southwest of Antioquia, an important coffee region of Colombia, have not been published in recent years. In the present work, seven samples of honey collected in the mentioned region, were physically (refractive index, specific rotation, density, chemically (moisture content, water activity, pH, free acidity, carbohydrates and microbiologically (Clostridium, fungi and yeast analyzed. The results show that the analyzed honeys meet both national (Resolución 1057 of 2010 and International (Codex-Stan 12 of 1981 standards for moisture content, free acidity, sucrose content and microbiological parameters, indicating their good quality. Fructose/glucose ratio, pH and specific rotation values indicate that the samples are blossom honeys.Caracterizaciones de miel de Apis mellifera producida en el Suroeste de Antioquia, una región cafetera de Colombia, no se han publicado recientemente. En el presente trabajo, siete muestras de miel recolectadas en la región mencionada, fueron físicamente (índice de refracción, rotación específica, densidad, químicamente (contenido de humedad, actividad acuosa, pH, acidez libre, carbohidratos, y microbiológicamente (Clostridium, hongos y levaduras analizadas. Los resultados muestran que las mieles analizadas cumplen tanto los estándares nacionales (Resolución 1057 de 2010 como internacionales (Codex-Stan 12 de 1981 para contenido de humedad, acidez libre, contenido de sacarosa y los parámetros microbiológicos, indicando su buena calidad. Los valores de relación fructosa/glucosa, pH y rotación específica indican que las muestras son mieles florales.

  15. 在意蜂群内培育中蜂王抗中蜂囊状幼虫病的效果及其抗病机制探索%The Mechanism Reseach about the Apis cerana Queen Anti- Chinesescabrood when She was Breeding in the Swarm of Apis mellifera

    Institute of Scientific and Technical Information of China (English)

    王庆容; 魏福伦; 徐晓舒

    2012-01-01

    中华蜜蜂和意大利蜜蜂是两个较为接近的物种,其形态学特征和生物学特性有许多相似之处,但它们之间无法进行生殖杂交,存在生殖隔离。应用营养杂交技术,将中华蜜蜂受精卵发育的早期幼虫介绍到意大利蜜蜂蜂群中进行适当培养饲喂,结果培育的蜂王后代具有抗中蜂囊状幼虫病病毒的特性。作者就营养杂交王的抗病效果和抗病机制进行探讨,以期为广大蜜蜂饲养者和研究者提供研究思路。%The morphological characteristic and biological property are approximate about Apis cerana and Apis mellifera.They exists productive isolation between Apis cerana and Apis mellifera, so common cross-breeding is very difficult. By technology of nutritional crossbreed,Apis cerana's early stage insects from spermatovum devolopmental are introduced to Apis mellifera's swarm appropriate feeding, and the result is that the descendant of being cultivate queen have the characteristic of anti-Chinesescabrood. This text discusses the anti-disease effect and mechanism of nutritional crossbreed queen, in order to provide studing mentality for bee feeder and researcher.

  16. No impact of DvSnf7 RNA on honey bee (Apis mellifera L.) adults and larvae in dietary feeding tests.

    Science.gov (United States)

    Tan, Jianguo; Levine, Steven L; Bachman, Pamela M; Jensen, Peter D; Mueller, Geoffrey M; Uffman, Joshua P; Meng, Chen; Song, Zihong; Richards, Kathy B; Beevers, Michael H

    2016-02-01

    The honey bee (Apis mellifera L.) is the most important managed pollinator species worldwide and plays a critical role in the pollination of a diverse range of economically important crops. This species is important to agriculture and historically has been used as a surrogate species for pollinators to evaluate the potential adverse effects for conventional, biological, and microbial pesticides, as well as for genetically engineered plants that produce pesticidal products. As part of the ecological risk assessment of MON 87411 maize, which expresses a double-stranded RNA targeting the Snf7 ortholog (DvSnf7) in western corn rootworm (Diabrotica virgifera virgifera), dietary feeding studies with honey bee larvae and adults were conducted. Based on the mode of action of the DvSnf7 RNA in western corn rootworm, the present studies were designed to be of sufficient duration to evaluate the potential for adverse effects on larval survival and development through emergence and adult survival to a significant portion of the adult stage. Testing was conducted at concentrations of DvSnf7 RNA that greatly exceeded environmentally relevant exposure levels based on expression levels in maize pollen. No adverse effects were observed in either larval or adult honey bees at these high exposure levels, providing a large margin of safety between environmental exposure levels and no-observed-adverse-effect levels. PMID:26011006

  17. Virus present in the reproductive tract of asymptomatic drones of honey bee (Apis mellifera l.), and possible infection of queen during mating.

    Science.gov (United States)

    Da Cruz-Landim, Carminda; Roat, Thaisa C; Fernadez, Fernanda C

    2012-07-01

    Virus particles and viral inclusions were detected by transmission electron microscopy examination of sections of the seminal vesicles and mucus gland of asymptomatic young drones from colonies of Apis mellifera lightly infested by Varroa mite. In the mucus gland the infection was found in the muscular sheath and epithelium, while in the seminal vesicle in cells of the outer serosa. Isolated viral particles were also observed in the hemolymph occupying the intercellular spaces of the muscular sheath fibers. In the muscle the virus appeared as polygonal crystalloid inclusions, while in the epithelium mainly inside cytoplasmic vesicles. The infected cells apparently are not damaged. The virus particles are present in the hemolymph and forming more mature structures, as crystalloids, in the muscle. This suggests that the virus is liberated in the body fluid and infects the tissues penetrating the cells through endocytosis. The presence of virus in mucus gland epithelial vesicles raise the possibility of its transference to the gland secretion and therefore, to the semen.

  18. Natural Larval Diet Differently Influences the Pattern of Developmental Changes in DNA 5-Methylcytosine Levels in Apis mellifera Queens as Compared with Workers and Drones.

    Science.gov (United States)

    Strachecka, A; Olszewski, K; Bajda, M; Demetraki-Paleolog, J

    2015-08-01

    The principal mechanism of gene activation/silencing is DNA 5-methylcytosine methylation. This study was aimed at determining global DNA methylation levels in larvae, prepupae, pupae, and 1-day-old adults of Apis mellifera queens, workers and drones. The Imprint Methylated DNA Quantification Kit MDQ1 was used. Percentages of DNA 5-methylcytosine were low and relatively similar in the larvae of all the castes until 4th day of larval development (3-5%). However, they were higher in the drone and worker larvae than in the queen larvae. Generally, the developmental patterns of changes in the DNA methylation levels were different in the queens in comparison with the drones and workers. While methylation increased in the queens, it decreased in the drones and workers. Methylated DNA methylcytosine percentages and weights in the queen prepupae (15%, 9.18 ng) and pupae (21%, 10.74 ng) were, respectively, three and four times higher than in the worker/drone brood of the same age (2.5-4%, 0.03-0.07 ng). Only in the queens, after a substantial increase, did DNA methylation decrease almost twice between the pupal stage and queen emergence (from 21% and 10.74 ng to 12% and 6.78 ng). This finding seems very interesting, particularly for experimental gerontology.

  19. Temporal and morphological differences in post-embryonic differentiation of the mushroom bodies in the brain of workers, queens, and drones of Apis mellifera (Hymenoptera, Apidae).

    Science.gov (United States)

    Roat, Thaisa Cristina; da Cruz Landim, Carminda

    2008-12-01

    The mushroom bodies are structures present in the insect brain described as centers for the neural basis of learning, memory, and other higher functions. Honeybees (Apis mellifera) are insects with a sophisticated system of spatial orientation and possess well-developed learning and memory capabilities, which are associated with neural and brain structures. Thus, the present study aimed to compare the mushroom bodies during post-embryonic development and in newly emerged males, workers, and queens using light and transmission electron microscopy to examine how differential morphological characteristics are established during development. Measurements of structures were also taken in several post-embryonic developmental phases in order to evaluate size differences during the process and in the adult organs. The results show that workers, queens, and males exhibit temporal and size differences during the post-embryonic development of mushroom bodies, probably as adaptations to differences in behavior complexity. The mushroom bodies of workers are precociously formed and are larger than those of queens and drones. Thus, workers have the largest mushroom bodies resulting from differential development during metamorphosis.

  20. Natural Larval Diet Differently Influences the Pattern of Developmental Changes in DNA 5-Methylcytosine Levels in Apis mellifera Queens as Compared with Workers and Drones.

    Science.gov (United States)

    Strachecka, A; Olszewski, K; Bajda, M; Demetraki-Paleolog, J

    2015-08-01

    The principal mechanism of gene activation/silencing is DNA 5-methylcytosine methylation. This study was aimed at determining global DNA methylation levels in larvae, prepupae, pupae, and 1-day-old adults of Apis mellifera queens, workers and drones. The Imprint Methylated DNA Quantification Kit MDQ1 was used. Percentages of DNA 5-methylcytosine were low and relatively similar in the larvae of all the castes until 4th day of larval development (3-5%). However, they were higher in the drone and worker larvae than in the queen larvae. Generally, the developmental patterns of changes in the DNA methylation levels were different in the queens in comparison with the drones and workers. While methylation increased in the queens, it decreased in the drones and workers. Methylated DNA methylcytosine percentages and weights in the queen prepupae (15%, 9.18 ng) and pupae (21%, 10.74 ng) were, respectively, three and four times higher than in the worker/drone brood of the same age (2.5-4%, 0.03-0.07 ng). Only in the queens, after a substantial increase, did DNA methylation decrease almost twice between the pupal stage and queen emergence (from 21% and 10.74 ng to 12% and 6.78 ng). This finding seems very interesting, particularly for experimental gerontology. PMID:26547070

  1. Changes in the structure and pigmentation of the eyes of honeybee (Apis mellifera L. queens with the "limão" mutation

    Directory of Open Access Journals (Sweden)

    Chaud-Netto José

    2000-01-01

    Full Text Available This study describes the ultrastructural differences between the compound eyes of ch li/ch li and Ch/ch li honeybee queens. Heterozygous "limão" bees had an almost normal ultrastructural organization of the ommatidia, but there were some alterations, including small vacuoles in the crystalline cones and a loss of pigment by primary pigmentary cells. In homozygous bees many ommatidia had very deformed crystalline cones and there were some bipartite rhabdoma. There was a reduction in the amount of pigment in the primary and secondary pigmentary cells and receptor cells (retinulae of mutant eyes. However, the eyes of both heterozygous and homozygous queens had the same type of pigment granules. Certain membrane-limited structures containing pigment granules and electron-dense material appeared to be of lysosomal nature. Since these structures occurred in the retinular cells of mutant eyes, they were considered to be multivesicular bodies responsible for the reduction in rhabdom volume in the presence of light, as a type of adaptation to brightness. The reduction of pigment in the pigmentary and retinular cells and the morphological changes seen in the rhabdom of the ommatidia may originate visual deficiencies, which could explain the behavioral modifications reported for Apis mellifera queens with mutant eye color.

  2. How Varroa Parasitism Affects the Immunological and Nutritional Status of the Honey Bee, Apis mellifera

    Directory of Open Access Journals (Sweden)

    Katherine A. Aronstein

    2012-06-01

    Full Text Available We investigated the effect of the parasitic mite Varroa destructor on the immunological and nutritional condition of honey bees, Apis mellifera, from the perspective of the individual bee and the colony. Pupae, newly-emerged adults and foraging adults were sampled from honey bee colonies at one site in S. Texas, USA. Varroa‑infested bees displayed elevated titer of Deformed Wing Virus (DWV, suggestive of depressed capacity to limit viral replication. Expression of genes coding three anti-microbial peptides (defensin1, abaecin, hymenoptaecin was either not significantly different between Varroa-infested and uninfested bees or was significantly elevated in Varroa-infested bees, varying with sampling date and bee developmental age. The effect of Varroa on nutritional indices of the bees was complex, with protein, triglyceride, glycogen and sugar levels strongly influenced by life-stage of the bee and individual colony. Protein content was depressed and free amino acid content elevated in Varroa-infested pupae, suggesting that protein synthesis, and consequently growth, may be limited in these insects. No simple relationship between the values of nutritional and immune-related indices was observed, and colony-scale effects were indicated by the reduced weight of pupae in colonies with high Varroa abundance, irrespective of whether the individual pupa bore Varroa.

  3. Controlling Varroa destructor (Acari: Varroidae in honeybee Apis mellifera (Hymenoptera: Apidae colonies by using Thymovar® and BeeVital®

    Directory of Open Access Journals (Sweden)

    Halil Yeninar

    2010-01-01

    Full Text Available This study was carried out to determine the effects of Thymovar® and BeeVital® on reducing Varroa mite (Varroa destructor damage in honey bee (Apis mellifera L. colonies in spring season. Average percentage of Varroa infestation level was determined as 24.27 on adult workers before the treatments. The drugs were applied two times on 25 September and 16 October 2006. Average percentage of Varroa infestation levels were determined as 5.18%, 10.78% and 35.45% after the first application, 1.90%, 7.05% and 61.15% after the second application in Thymovar®, BeeVital® and control groups, respectively. Average efficacies of Thymovar® and BeeVital® were found to be 96.91% and 88.66%, respectively. Difference between drug efficacies on Varroa mite was found significant (P<0.01. There was no queen, brood and adult honeybee mortality in all group colonies during the research.

  4. Genotypic variability and relationships between mite infestation levels, mite damage, grooming intensity, and removal of Varroa destructor mites in selected strains of worker honey bees (Apis mellifera L.).

    Science.gov (United States)

    Guzman-Novoa, Ernesto; Emsen, Berna; Unger, Peter; Espinosa-Montaño, Laura G; Petukhova, Tatiana

    2012-07-01

    The objective of this study was to demonstrate genotypic variability and analyze the relationships between the infestation levels of the parasitic mite Varroa destructor in honey bee (Apis mellifera) colonies, the rate of damage of fallen mites, and the intensity with which bees of different genotypes groom themselves to remove mites from their bodies. Sets of paired genotypes that are presumably susceptible and resistant to the varroa mite were compared at the colony level for number of mites falling on sticky papers and for proportion of damaged mites. They were also compared at the individual level for intensity of grooming and mite removal success. Bees from the "resistant" colonies had lower mite population rates (up to 15 fold) and higher percentages of damaged mites (up to 9 fold) than bees from the "susceptible" genotypes. At the individual level, bees from the "resistant" genotypes performed significantly more instances of intense grooming (up to 4 fold), and a significantly higher number of mites were dislodged from the bees' bodies by intense grooming than by light grooming (up to 7 fold) in all genotypes. The odds of mite removal were high and significant for all "resistant" genotypes when compared with the "susceptible" genotypes. The results of this study strongly suggest that grooming behavior and the intensity with which bees perform it, is an important component in the resistance of some honey bee genotypes to the growth of varroa mite populations. The implications of these results are discussed.

  5. Ratios of colony mass to thermal conductance of tree and man-made nest enclosures of Apis mellifera: implications for survival, clustering, humidity regulation and Varroa destructor

    Science.gov (United States)

    Mitchell, Derek

    2016-05-01

    In the absence of human intervention, the honeybee ( Apis mellifera L.) usually constructs its nest in a tree within a tall, narrow, thick-walled cavity high above the ground (the enclosure); however, most research and apiculture is conducted in the thin-walled, squat wooden enclosures we know as hives. This experimental research, using various hives and thermal models of trees, has found that the heat transfer rate is approximately four to seven times greater in the hives in common use, compared to a typical tree enclosure in winter configuration. This gives a ratio of colony mass to lumped enclosure thermal conductance (MCR) of less than 0.8 kgW-1 K for wooden hives and greater than 5 kgW-1 K for tree enclosures. This result for tree enclosures implies higher levels of humidity in the nest, increased survival of smaller colonies and lower Varroa destructor breeding success. Many honeybee behaviours previously thought to be intrinsic may only be a coping mechanism for human intervention; for example, at an MCR of above 2 kgW-1 K, clustering in a tree enclosure may be an optional, rare, heat conservation behaviour for established colonies, rather than the compulsory, frequent, life-saving behaviour that is in the hives in common use. The implied improved survival in hives with thermal properties of tree nests may help to solve some of the problems honeybees are currently facing in apiculture.

  6. Behavioural and electrophysiological lateralization in a social (Apis mellifera) but not in a non-social (Osmia cornuta) species of bee.

    Science.gov (United States)

    Anfora, Gianfranco; Frasnelli, Elisa; Maccagnani, Bettina; Rogers, Lesley J; Vallortigara, Giorgio

    2010-01-20

    Recent evidence suggests that asymmetry between the left and right sides of the brain is not limited to vertebrates but extends to invertebrates as well. We compared olfactory lateralization in two species of Hymenoptera Apoidea, the honeybee (Apis mellifera), a social species, and the mason bee (Osmia cornuta), a solitary species. Recall of the olfactory memory 1 h after training to associate an odour with a sugar reward, as revealed by the bee extending its proboscis when presented with the trained odour, was better in honeybees trained with their right than with their left antenna. No such asymmetry was observed in mason bees. Similarly, electroantennographic responses to a floral volatile compound and to an alarm pheromone component were higher in the right than in the left antenna in honeybees but not in mason bees. These findings seem to support recent game-theoretical models suggesting that population-level lateralization is more likely to have evolved in social than in non-social species. PMID:19766143

  7. Temporal variation in the genetic structure of a drone congregation area: an insight into the population dynamics of wild African honeybees (Apis mellifera scutellata).

    Science.gov (United States)

    Jaffé, R; Dietemann, V; Crewe, R M; Moritz, R F A

    2009-04-01

    The mating system of the honeybee (Apis mellifera) has been regarded as one of the most panmictic in the animal kingdom, with thousands of males aggregating in drone congregation areas (DCAs) that virgin queens visit to mate with tens of partners. Although males from many colonies gather at such congregations, the temporal changes in the colonies contributing drones remain unknown. Yet, changes in the DCAs' genetic structure will ultimately determine population gene flow and effective population size. By repeatedly sampling drones from an African DCA over a period of 3 years, we studied the temporal changes in the genetic structure of a wild honeybee population. Using three sets of tightly linked microsatellite markers, we were able to reconstruct individual queen genotypes with a high accuracy, follow them through time and estimate their rate of replacement. The number of queens contributing drones to the DCA varied from 12 to 72 and was correlated with temperature and rainfall. We found that more than 80% of these queens were replaced by mostly unrelated ones in successive eight months sampling intervals, which resulted in a clear temporal genetic differentiation of the DCA. Our results suggest that the frequent long-range migration of colonies without nest-site fidelity is the main driver of this high queen turnover. DCAs of African honeybees should thus be regarded as extremely dynamic systems which together with migration boost the effective population size and maintain a high genetic diversity in the population. PMID:19368651

  8. Impact of naled on honey bee Apis mellifera L. survival and productivity: aerial ULV application using a flat-fan nozzle system.

    Science.gov (United States)

    Zhong, H; Latham, M; Hester, P G; Frommer, R L; Brock, C

    2003-08-01

    A study was conducted to evaluate the impact of naled on honey bees as a result of their exposure to aerial ULV applications of this insecticide during three routine mosquito spray missions by Manatee County Mosquito Control District in Florida during the summer of 1999. Naled deposits were collected on filter paper and subsequently analyzed by gas chromatography. Mortality of adult honey bees Apis mellifera L. was estimated based on numbers from dead bee collectors placed in front of the entrance of the beehives. We found that honey bees clustering outside of the beehives were subject to naled exposure. Bee mortality increased when higher naled residues were found around the hives. The highest average naled deposit was 6,227 +/- 696 microg/m2 at the site 1 forest area following the mosquito spray mission on July 15, 1999. The range of naled deposition for this application was 2,818-7,101 microg/m2. The range of dead bees per hive was 0-39 prior to spraying and 9-200 within 24 h following this spray mission. The average yield of honey per hive was significantly lower (p naled-exposed hives compared with unexposed hives. Because reduction of honey yield also may be affected by other factors, such as location of the hives relative to a food source and vigor of the queen bee, the final assessment of honey yield was complicated. PMID:14565579

  9. Modification of the brain proteome of Africanized honeybees (Apis mellifera) exposed to a sub-lethal doses of the insecticide fipronil.

    Science.gov (United States)

    Roat, T C; dos Santos-Pinto, J R A; Dos Santos, L D; Santos, K S; Malaspina, O; Palma, M S

    2014-11-01

    Fipronil is a phenylpyrazole insecticide that is widely used in Brazilian agriculture for pest control. Although honeybees are not targets of fipronil, studies indicate that this pesticide can be harmful to honeybees. To assess the effects of fipronil in the brain of Africanized Apis mellifera workers, this study focused on the toxico-proteome profiling of the brain of newly emerged and aged honeybee workers that were exposed to a sub-lethal dose (10 pg fipronil per day. i.e. (1)/100 of LD50/bee/day during 5 days) of the insecticide. Proteomic analysis identified 25 proteins that were differentially up-regulated or down-regulated when the fipronil-exposed and non-exposed groups were compared. These proteins are potentially related to pathogen susceptibility, neuronal chemical stress, neuronal protein misfolding, and occurrence of apoptosis, ischemia, visual impairment, damaged synapse formation, brain degeneration, memory and learning impairment. The exposure of honeybees to a very low dose of fipronil, even for a short period of time (5 days), was sufficient to cause a series of important neuroproteomic changes in the brains of honeybees. PMID:25139030

  10. Evaluation of pesticide toxicity at their field recommended doses to honeybees, Apis cerana and A. mellifera through laboratory, semi-field and field studies.

    Science.gov (United States)

    Stanley, Johnson; Sah, Khushboo; Jain, S K; Bhatt, J C; Sushil, S N

    2015-01-01

    A series of experiments were carried out to determine the acute toxicity of pesticides in the laboratory, toxicity through spray on flowering plants of mustard (Tier II evaluation) and field on both Apis cerana and A. mellifera bees. The overall mortality of honey bees through topical (direct contact) were found significantly higher than that of indirect filter paper contamination assays. Insecticides viz., chlorpyriphos, dichlorvos, malathion, profenofos, monocrotophos and deltamethrin when exposed directly or indirectly at their field recommended doses caused very high mortality up to 100% to both the bees at 48 HAT. The insecticides that caused less mortality through filter paper contamination viz., flubendiamide, methyl demeton, imidacloprid and thiamethoxam caused very high morality through direct exposure. Apart from all the fungicides tested, carbendazim, mancozeb, chlorothalonil and propiconazole, insecticides acetamiprid and endosulfan were found safer to both the bees either by direct or indirect exposures. Tier II evaluation by spray of pesticides at their field recommended doses on potted mustard plants showed monocrotophos as the highly toxic insecticide with 100% mortality even with 1h of exposure followed by thiamethoxam, dichlorvos, profenofos and chlorpyriphos which are not to be recommended for use in pollinator attractive flowering plants. Acetamiprid and endosulfan did not cause any repellent effect on honey bees in the field trials endorse the usage of acetamiprid against sucking pest in flowering plants. PMID:25150969

  11. Fipronil promotes motor and behavioral changes in honey bees (Apis mellifera) and affects the development of colonies exposed to sublethal doses.

    Science.gov (United States)

    Zaluski, Rodrigo; Kadri, Samir Moura; Alonso, Diego Peres; Martins Ribolla, Paulo Eduardo; de Oliveira Orsi, Ricardo

    2015-05-01

    Bees play a crucial role in pollination and generate honey and other hive products; therefore, their worldwide decline is cause for concern. New broad-spectrum systemic insecticides such as fipronil can harm bees and their use has been discussed as a potential threat to bees' survival. In the present study, the authors evaluate the in vitro toxicity of fipronil and note behavioral and motor activity changes in Africanized adult Apis mellifera that ingest or come into contact with lethal or sublethal doses of fipronil. The effects of sublethal doses on brood viability, population growth, behavior, and the expression of the defensin 1 gene in adult bees were studied in colonies fed with contaminated sugar syrup (8 µg fipronil L(-1) ). Fipronil is highly toxic to bees triggering agitation, seizures, tremors, and paralysis. Bees that are exposed to a lethal or sublethal doses showed reduced motor activity. The number of eggs that hatched, the area occupied by worker eggs, and the number of larvae and pupae that developed were reduced, adult bees showed lethargy, and colonies were abandoned when they were exposed to sublethal doses of fipronil. No change was seen in the bees' expression of defensin 1. The authors conclude that fipronil is highly toxic to honey bees and even sublethal doses may negatively affect the development and maintenance of colonies.

  12. Effects of juvenile hormone and ecdysone on the timing of vitellogenin appearance in hemolymph of queen and worker pupae of Apis mellifera

    Directory of Open Access Journals (Sweden)

    Angel Roberto Barchuk

    2002-01-01

    Full Text Available The caste-specific regulation of vitellogenin synthesis in the honeybee represents a problem with many yet unresolved details. We carried out experiments to determine when levels of vitellogenin are first detected in hemolymph of female castes of Apis mellifera, and whether juvenile hormone and ecdysteroids modulate this process. Vitellogenin levels were measured in hemolymph using immunological techniques. We show that in both castes the appearance of vitellogenin in the hemolymph occurs during the pupal period, but the timing was different in the queen and worker. Vitellogenin appears in queens during an early phase of cuticle pigmentation approximately 60h before eclosion, while in workers the appearance of vitellogenin is more delayed, initiating in the pharate adult stage, approximately 10h before eclosion. The timing of vitellogenin appearance in both castes coincides with a slight increase in endogenous levels of juvenile hormone that occurs at the end of pupal development. The correlation between these events was corroborated by topical application of juvenile hormone. Exogenous juvenile hormone advanced the timing of vitellogenin appearance in both castes, but caste-specific differences in timing were maintained. Injection of actinomycin D prevented the response to juvenile hormone. In contrast, queen and worker pupae that were treated with ecdysone showed a delay in the appearance of vitellogenin. These data suggest that queens and workers share a common control mechanism for the timing of vitellogenin synthesis, involving an increase in juvenile hormone titers in the presence of low levels of ecdysteroids.

  13. Short communication. First field assessment of Bacillus thuringiensis subsp. kurstaki aerial application on the colony performance of Apis mellifera L. (Hymenoptera: Apidae

    Directory of Open Access Journals (Sweden)

    Maria del Mar Leza Salord

    2014-05-01

    Full Text Available Honeybee populations around the world are experiencing a decrease in colony numbers probably due to a combination of different causes, such as diseases, poor nutrition and frequent applications of insecticides to control pests. Previous studies about the effect of pesticide Bacillus thuringiensis subsp. kurstaki (Btk on Apis mellifera L. report different results. The aim of this study was to analyze the effect of field aerial applications of Btk on bee colony performance, specifically on the brood cell percentage evolution, which can be used as an indicator of queen health and brood development breeding rates. To achieve it, the brood cell surface was photographed in every sampling, and data were analyzed using a method based on image treatment software. A total of 480 pictures were examined from two groups of four nucleus hives in two areas, one receiving aerial spraying with Btk and the other without treatment. A mixed factorial design was realized to analyse the data showing no differences in colony performance between the two groups of colonies either before the treatment, during and at the end of the assay. Furthermore, the brood surface ratio of Btk-treated/untreated increased along the experiment. Therefore, the results of the present study suggest that Btk aerial applications did not affect the brood development of honeybees under natural conditions. Nevertheless further field studies are required to ascertain a safe use of Btk in forest pest management.

  14. Produção e desenvolvimento de colônias de abelhas africanizadas (Apis mellifera l. a partir de diferentes áreas e idades de cria Production and development of africanized honey bee (Apis mellifera l. colonies departing from different comb brood areas and brood ages

    Directory of Open Access Journals (Sweden)

    Roberto Henrique Dias da Silva

    2004-04-01

    Full Text Available A apicultura brasileira usa da captura de enxames silvestres de abelhas melíferas africanizadas (Apis mellifera L. para repor e/ou aumentar o número de colônias dos apiários, possuindo inconvenientes como a dependência da natureza para captura dos enxames, a heterogeneidade genética das colônias capturadas e a possibilidade desses enxames serem portadores de doenças e parasitas prejudiciais à sanidade das abelhas. O presente trabalho testa e apresenta uma técnica de divisão de colônias de abelhas melíferas africanizadas para a produção de novas colônias fortes em curto espaço de tempo, a partir de recursos mínimos de cera, cria e alimento. Os resultados mostraram que núcleos de A. mellifera formados inicialmente com uma rainha jovem e fecundada, 1 kg de operárias, um quadro de cria fechada, um quadro de favo puxado e vazio e dois quadros com cera alveolada permitem a produção de novas colônias em 42 dias. Portanto, pode-se concluir que a técnica de divisão de colônias por formação de núcleos como descrito acima, oferece aos apicultores uma alternativa viável para a produção e comercialização em larga escala de novas colônias de abelhas melíferas africanizadas.The Brazilian apiculture relies upon collecting wild swarms of Africanized honey bees (Apis mellifera L. to replace and/or increase the number of colonies in the apiaries. This practice brings problems such as dependence on nature to capture any swarm, diverse genetic make-up of the colonies captured and the possibility of these swarms be carrying diseases and parasites harmful to the bees. The present work tests and presents a technique to split colonies of Africanized honey bees to produce new strong colonies in short time, departing from little resources of wax, brood and food stores. Results showed that A. mellifera nuclei formed by a young and mated queen, 1kg of workers, a frame of sealed brood, an empty frame of drawn beeswax and two frames

  15. In vitro antiproliferative/cytotoxic activity on cancer cell lines of a cardanol and a cardol enriched from Thai Apis mellifera propolis

    Directory of Open Access Journals (Sweden)

    Teerasripreecha Dungporn

    2012-03-01

    Full Text Available Abstract Background Propolis is a complex resinous honeybee product. It is reported to display diverse bioactivities, such as antimicrobial, anti-inflammatory and anti-tumor properties, which are mainly due to phenolic compounds, and especially flavonoids. The diversity of bioactive compounds depends on the geography and climate, since these factors affect the floral diversity. Here, Apis mellifera propolis from Nan province, Thailand, was evaluated for potential anti-cancer activity. Methods Propolis was sequentially extracted with methanol, dichloromethane and hexane and the cytotoxic activity of each crude extract was assayed for antiproliferative/cytotoxic activity in vitro against five human cell lines derived from duet carcinoma (BT474, undifferentiated lung (Chaco, liver hepatoblastoma (Hep-G2, gastric carcinoma (KATO-III and colon adenocarcinoma (SW620 cancers. The human foreskin fibroblast cell line (Hs27 was used as a non-transformed control. Those crude extracts that displayed antiproliferative/cytotoxic activity were then further fractionated by column chromatography using TLC-pattern and MTT-cytotoxicity bioassay guided selection of the fractions. The chemical structure of each enriched bioactive compound was analyzed by nuclear magnetic resonance and mass spectroscopy. Results The crude hexane and dichloromethane extracts of propolis displayed antiproliferative/cytotoxic activities with IC50 values across the five cancer cell lines ranging from 41.3 to 52.4 μg/ml and from 43.8 to 53.5 μg/ml, respectively. Two main bioactive components were isolated, one cardanol and one cardol, with broadly similar in vitro antiproliferation/cytotoxicity IC50 values across the five cancer cell lines and the control Hs27 cell line, ranging from 10.8 to 29.3 μg/ml for the cardanol and . Conclusion This is the first report that Thai A. mellifera propolis contains at least two potentially new compounds (a cardanol and a cardol with potential anti

  16. Chemical constituents and free radical scavenging activity of corn pollen collected from Apis mellifera hives compared to floral corn pollen at Nan, Thailand

    Directory of Open Access Journals (Sweden)

    Chantarudee Atip

    2012-04-01

    Full Text Available Abstract Background Bee pollen is composed of floral pollen mixed with nectar and bee secretion that is collected by foraging honey (Apis sp. and stingless bees. It is rich in nutrients, such as sugars, proteins, lipids, vitamins and flavonoids, and has been ascribed antiproliferative, anti-allergenic, anti-angiogenic and free radical scavenging activities. This research aimed at a preliminary investigation of the chemical constituents and free radical scavenging activity in A. mellifera bee pollen. Methods Bee pollen was directly collected from A. mellifera colonies in Nan province, Thailand, in June, 2010, whilst floral corn (Zea mays L. pollen was collected from the nearby corn fields. The pollen was then sequentially extracted with methanol, dichloromethane (DCM and hexane, and each crude extract was tested for free radical scavenging activity using the DPPH assay, evaluating the percentage scavenging activity and the effective concentration at 50% (EC50. The most active crude fraction from the bee pollen was then further enriched for bioactive components by silica gel 60 quick and adsorption or Sephadex LH-20 size exclusion chromatography. The purity of all fractions in each step was observed by thin layer chromatography and the bioactivity assessed by the DPPH assay. The chemical structures of the most active fractions were analyzed by nuclear magnetic resonance. Results The crude DCM extract of both the bee corn pollen and floral corn pollen provided the highest active free radical scavenging activity of the three solvent extracts, but it was significantly (over 28-fold higher in the bee corn pollen (EC50 = 7.42 ± 0.12 μg/ml, than the floral corn pollen (EC50 = 212 ± 13.6% μg/ml. After fractionation to homogeneity, the phenolic hydroquinone and the flavone 7-O-R-apigenin were found as the minor and major bioactive compounds, respectively. Bee corn pollen contained a reasonably diverse array of nutritional components, including

  17. Effect of High Fructose Syrup Diet Exposure on the Activities of Detoxifying Enzymes in Honey Bees Apis mellifera ligustica%饲喂果葡糖浆对意大利蜜蜂解毒酶的影响

    Institute of Scientific and Technical Information of China (English)

    孟丽峰; 靳三省; 刁青云

    2013-01-01

    为了探讨果葡糖浆饲喂蜜蜂的安全性,以意大利蜜蜂(Apis mellifera ligustica)为实验材料,蔗糖作为对照,饲喂果葡糖浆2个月后,检测意大利蜜蜂体内解毒酶的变化情况.结果表明:饲喂果葡糖浆后,意大利蜜蜂大幼虫体内细胞色素P450比活力、成年工蜂腹部谷胱甘肽-S-转移酶和羧酸酯酶比活力均与对照无显著差异.短期饲喂果葡糖浆对蜜蜂是安全的,长期影响还有待于继续研究.%The activities of Cytochrome-P450,glutathione S-transferase and carboxylesterase in the worker bees of Apis mellifera ligustica were investigated after the bees were fed orally with high fructose syrup in two consecutive months.The results showed that compared with sucrose diet,high fructose syrup diet did not significantly affect the activities of three detoxifying enzymes.Feeding with high fructose syrups is safe to Apis mellifera ligustica in short time and long-time effects need further research.The results can be used to assess the security of high fructose syrups used as bee feed.

  18. Estudio sobre la Eficacia a Campo del Amivar® contra Varroa destructor (Mesostigmata: Varroidae en Colmenas de Apis mellifera (Hymenoptera: Apidae

    Directory of Open Access Journals (Sweden)

    Jorge MARCANGELI

    2005-01-01

    Full Text Available El objetivo del trabajo fue evaluar la eficacia del producto Amivar® para el control del ácaro Varroa destructor Anderson & Trueman, en colmenas de abejas durante el otoño de 2003. El trabajo se llevó a cabo en el apiario experimental del Centro de Extensión Apícola ubicado en Coronel Vidal, provincia de Buenos Aires. Se trabajó sobre un total de 20 colmenas tipo Langstroth que se dividieron en dos grupos iguales. En el primer grupo se introdujo una tira de Amivar® (amitraz, 1gr, Apilab, Argentina en el centro del nido de cría de las colmenas. El segundo grupo, sólo recibió el tratamiento de Oxavar® para determinar el número total de ácaros presentes en las colmenas. Semanalmente, se recolectaron los ácaros muertos caídos en pisos especiales que evitaban que las abejas los eliminen. Posteriormente, los dos grupos recibieron tres dosis en total a intervalos de siete días de 5 ml del producto Oxavar® (Apilab-INTA, Argentina; 64,6 g/l; ácido oxálico en agua destilada por cuadro cubierto por abejas para eliminar los ácaros remanentes en las colonias y poder así calcular la eficacia del tratamiento. El producto Amivar® presentó una eficacia promedio de 85,05% ± 3,39 (rango = 79,5 – 91,6, registrándose diferencias significativas frente al grupo control (p< 0,05. No seobservaron efectos negativos del producto sobre la cría de abejas en desarrollo. Estos resultados demuestran que este producto es efectivo para el control de la parasitosis.

  19. Produtos naturais no comportamento defensivo de Apis mellifera L. - doi: 10.4025/actascianimsci.v32i3.8486 Natural products in the defensive behaviour of Apis mellifera L. - doi: 10.4025/actascianimsci.v32i3.8486

    Directory of Open Access Journals (Sweden)

    Silvia Maria Alves Gomes

    2010-09-01

    Full Text Available Os objetivos do estudo foram investigar a influência de produtos naturais como capim-limão (Cymbopogon citratus, folhas de abacateiro (Persea americana, casca de café (Coffea arabica e sementes de mamona (Ricinus communis na defensividade de Apis mellifera, e avaliar o efeito destes produtos no desenvolvimento populacional da colmeia. O comportamento defensivo foi avaliado por meio do tempo da primeira ferroada (TPF, número de ferrões (NFB e, o desenvolvimento populacional, pela área de cria aberta e fechada. Observou-se que o tratamento fumaça + sete sementes de mamona apresentou aumento significativo no TPF, em relação ao tratamento sem e com fumaça de maravalha. Com relação ao NFB, verificou-se que os tratamentos fumaça de maravalha + sete sementes de mamona e fumaça de maravalha + 20% de folhas de café foram diferentes do tratamento sem e com fumaça. Os demais tratamentos não diferiram significativamente em relação ao uso da fumaça ou sua ausência. A casca de café e a semente de mamona não interferiram no desenvolvimento populacional, sugerindo que estes compostos não foram tóxicos. Pode-se concluir que o uso de sementes de mamona e casca de café na fumaça pode representar importante ferramenta para a redução da defensividade, sem promover toxicidade para A. mellifera.The goal was to investigate the influence of natural products such as lemongrass (Cymbopogon citratus, dried avocado leaves (Persea americana, coffee husk (Coffea arabica and castor bean (Ricinus communis in the defense of Apis mellifera, as well the effect of these products on the population development of the beehive. Defensive behavior was evaluated by time of first sting (TFS and number of stingers (NS, and population development, by open brood area and operculated brood. It was observed that the treatment with smoke + seven castor beans presented significant increase in the TFS, for treatment without and with smoke. Regarding NS, it was

  20. Abelhas africanizadas Apis mellifera scutellata Lepeletier, 1836 (Hymenoptera: Apidae: Apinae exploram recursos na floresta amazônica? Do Africanized honeybees explore resources in the amazonian forest?

    Directory of Open Access Journals (Sweden)

    Marcio Luiz de Oliveira

    2005-09-01

    Full Text Available As abelhas africanas (Apis mellifera scutellata foram trazidas para o Brasil na década de 1950 e, por acidente, cruzaram-se com outras subespécies de abelhas melíferas européias introduzidas no século XIX. Isso proporcionou o surgimento de híbridos com características predominantes das abelhas africanas, tais como rusticidade e maior capacidade de enxamear, o que lhes permitiu uma rápida adaptação e expansão por quase todo continente americano. Até hoje existem controvérsias se essas abelhas, denominadas africanizadas, causam algum impacto sobre a fauna de abelhas nativas. Nas Américas, as africanizadas estão restritas a regiões de baixas altitudes e de invernos amenos; no Brasil, ocorrem principalmente em áreas urbanas e formações vegetacionais abertas ou adulteradas, sendo dificilmente vistas ou coletadas no interior de florestas densas como a amazônica. Diante dessa observação, diversas iscas foram disponibilizadas no interior de fragmentos de florestas e de florestas contínuas na Amazônia central, para testar se operárias de abelhas africanizadas seriam capazes de penetrar nos mesmos. Nenhuma operária foi vista visitando as iscas na floresta contínua ou mesmo nos fragmentos de floresta, ocorrendo visitas somente nas áreas desmatadas e capoeiras próximas. Esse resultado, além de indicar a inexistência de competição por recursos com as abelhas nativas no interior da floresta amazônica, também indica que uma apicultura em grande escala na região seria inviável, uma vez que a floresta não é sequer visitada por essas abelhas.The African honeybees (Apis mellifera scutellata were introduced accidentally to Brazil in 1956 where it subsequently interbred with other subspecies of European honeybee here introduced in the 19th century. This resulted in hybrids with predominantly African honeybee characteristics, such as higher capacity of swarming and survival in inhospitable conditions, allowing them to adapt

  1. Influence of agrochemicals fipronil and imidacloprid on the learning behavior of Apis mellifera L. honeybees - doi: 10.4025/actascianimsci.v35i4.18683

    OpenAIRE

    Marcela Pedraza Carrillo; Thaís de Souza Bovi; Adriana Fava Negrão; Ricardo Oliveira Orsi

    2013-01-01

    Agrochemicals on crop cultivated areas is a source of contamination for bees and may cause physiological and behavioral disorders and mortality. The LD50 of the pesticides fipronil and imidacloprid was determined and their effect on the learning behavior of Apis mellifera L. honeybee evaluated. LD50 was determined by the ingestion of contaminated food with different concentrations of insecticide concentrations: Fipronil (0, 0.8, 0.4, 0.2, 0.1 and 0.05 µg bee-1) and imidacloprid (0, 0.4, 0.2, ...

  2. Microbial ecology of the hive and pollination landscape: bacterial associates from floral nectar, the alimentary tract and stored food of honey bees (Apis mellifera.

    Directory of Open Access Journals (Sweden)

    Kirk E Anderson

    Full Text Available Nearly all eukaryotes are host to beneficial or benign bacteria in their gut lumen, either vertically inherited, or acquired from the environment. While bacteria core to the honey bee gut are becoming evident, the influence of the hive and pollination environment on honey bee microbial health is largely unexplored. Here we compare bacteria from floral nectar in the immediate pollination environment, different segments of the honey bee (Apis mellifera alimentary tract, and food stored in the hive (honey and packed pollen or "beebread". We used cultivation and sequencing to explore bacterial communities in all sample types, coupled with culture-independent analysis of beebread. We compare our results from the alimentary tract with both culture-dependent and culture-independent analyses from previous studies. Culturing the foregut (crop, midgut and hindgut with standard media produced many identical or highly similar 16S rDNA sequences found with 16S rDNA clone libraries and next generation sequencing of 16S rDNA amplicons. Despite extensive culturing with identical media, our results do not support the core crop bacterial community hypothesized by recent studies. We cultured a wide variety of bacterial strains from 6 of 7 phylogenetic groups considered core to the honey bee hindgut. Our results reveal that many bacteria prevalent in beebread and the crop are also found in floral nectar, suggesting frequent horizontal transmission. From beebread we uncovered a variety of bacterial phylotypes, including many possible pathogens and food spoilage organisms, and potentially beneficial bacteria including Lactobacillus kunkeei, Acetobacteraceae and many different groups of Actinobacteria. Contributions of these bacteria to colony health may include general hygiene, fungal and pathogen inhibition and beebread preservation. Our results are important for understanding the contribution to pollinator health of both environmentally vectored and core microbiota

  3. Revisiting the Iberian honey bee (Apis mellifera iberiensis) contact zone: maternal and genome-wide nuclear variations provide support for secondary contact from historical refugia.

    Science.gov (United States)

    Chávez-Galarza, Julio; Henriques, Dora; Johnston, J Spencer; Carneiro, Miguel; Rufino, José; Patton, John C; Pinto, M Alice

    2015-06-01

    Dissecting diversity patterns of organisms endemic to Iberia has been truly challenging for a variety of taxa, and the Iberian honey bee is no exception. Surveys of genetic variation in the Iberian honey bee are among the most extensive for any honey bee subspecies. From these, differential and complex patterns of diversity have emerged, which have yet to be fully resolved. Here, we used a genome-wide data set of 309 neutrally tested single nucleotide polymorphisms (SNPs), scattered across the 16 honey bee chromosomes, which were genotyped in 711 haploid males. These SNPs were analysed along with an intergenic locus of the mtDNA, to reveal historical patterns of population structure across the entire range of the Iberian honey bee. Overall, patterns of population structure inferred from nuclear loci by multiple clustering approaches and geographic cline analysis were consistent with two major clusters forming a well-defined cline that bisects Iberia along a northeastern-southwestern axis, a pattern that remarkably parallels that of the mtDNA. While a mechanism of primary intergradation or isolation by distance could explain the observed clinal variation, our results are more consistent with an alternative model of secondary contact between divergent populations previously isolated in glacial refugia, as proposed for a growing list of other Iberian taxa. Despite current intense honey bee management, human-mediated processes have seemingly played a minor role in shaping Iberian honey bee genetic structure. This study highlights the complexity of the Iberian honey bee patterns and reinforces the importance of Iberia as a reservoir of Apis mellifera diversity. PMID:25930679

  4. Mars is close to venus--female reproductive proteins are expressed in the fat body and reproductive tract of honey bee (Apis mellifera L.) drones.

    Science.gov (United States)

    Colonello-Frattini, Nínive Aguiar; Guidugli-Lazzarini, Karina Rosa; Simões, Zilá Luz Paulino; Hartfelder, Klaus

    2010-11-01

    Vitellogenin (Vg) and lipophorin (Lp) are lipoproteins which play important roles in female reproductive physiology of insects. Both are actively taken up by growing oocytes and especially Vg and its receptor are considered as female-specifically expressed. The finding that the fat body of in honey bee (Apis mellifera) drones synthesizes Vg and is present in hemolymph has long been viewed as a curiosity. The recent paradigm change concerning the role played by Vg in honey bee life history, especially social division of labor, has now led us to investigate whether a physiological constellation similar to that seen in female reproduction may also be represented in the male sex. By means of Western blot analysis we could show that both Vg and Lp are present in the reproductive tract of adult drones, including the accessory (mucus) glands, but apparently are not secreted. Furthermore, we analyzed the transcript levels of the genes encoding these proteins (vg and lp), as well as their putative receptors (Amvgr and Amlpr) in fat body and accessory glands. Whereas lp, vg and Amlpr transcript levels decreased with age in both tissues, Amvgr mRNA levels increased with age in fat body. To our knowledge this is the first report that vitellogenin and its receptor are co-expressed in the reproductive system of a male insect. We interpret these findings as a cross-sexual transfer of a social physiological trait, associated with the rewiring of the juvenile hormone/vitellogenin circuitry that occurred in the female sex of honey bees.

  5. Nível tecnológico e rentabilidade de produção de mel de abelha (Apis mellifera no Ceará

    Directory of Open Access Journals (Sweden)

    Débora Gaspar Feitosa Freitas

    2004-01-01

    Full Text Available O presente estudo procurou analisar a apicultura no Estado do Ceará, enfocando a produção de mel de abelhas (Apis mellifera nos principais municípios produtores do Estado, mais precisamente fazendo uma análise do nível tecnológico empregado na produção, bem como avaliando a rentabilidade da atividade. A pesquisa se realizou através de coleta de dados primários por meio de entrevistas diretas com os produtores nos municípios de Mombaça, Pacajús e Chorozinho, no mês de outubro de 2002. Para avaliação do nível tecnológico, dividiu-se o sistema de produção de mel em cinco componentes: uso de equipamentos, manejo, colheita, pós-colheita e gestão; daí foram desenvolvidos índices tecnológicos para cada um separadamente e para o conjunto deles, com base na respectiva tecnologia recomendada, sendo que, quanto mais próximo da tecnologia recomendada, maior é o valor deste índice e, portanto, melhor o nível tecnológico. A avaliação da rentabilidade foi feita utilizando-se a metodologia do Sistema Integrado de Custos Agropecuários - CUSTAGRI. Os principais resultados obtidos mostram que o nível tecnológico dos produtores de mel é considerado bom, sendo que na pós-colheita apresenta melhores índices, enquanto na gestão foram encontrados os mais baixos índices. No que se refere à rentabilidade, a produção de mel é uma atividade muito rentável, envolvendo baixos custos e podendo chegar a elevados índices de lucratividade.

  6. Desenvolvimento de núcleos de Apis mellifera alimentados com suplemento aminoácido vitamínico, Promotor L®

    Directory of Open Access Journals (Sweden)

    Castagnino Guido Laércio

    2006-01-01

    Full Text Available Estudou-se o desenvolvimento na área de cria de 14 núcleos com quatro favos a partir da divisão de nove colméias de abelhas Apis mellifera africanizada, distribuídos em dois tratamentos: TPL - núcleos alimentados com açúcar invertido + 3,5ml do suplemento de aminoácido vitamínico (Promotor L®, composto por seis núcleos e o TAI - núcleos alimentados com açúcar invertido, composto por oito núcleos. Os núcleos foram alimentados semanalmente em alimentadores individuais tipo bandeja, e as avaliações realizadas em quatro períodos, totalizando 74 dias Os tratamentos não apresentaram diferença significativa, sendo que, numericamente, o TPL apresentou área de cria inferior ao TAI (233,63 vs. 273,02cmsuperscript two, respectivamente. Quanto aos períodos o quarto período foi superior (P<0,05 ao primeiro e ao segundo, sendo que o terceiro período não apresentou diferença significativa (P<0,05 em relação aos demais. A utilização do TAI foi economicamente mais favorável em relação ao TPL em R$0,21 em relação ao custo para produção de 1kg de alimento.

  7. Unique honey bee (Apis mellifera hive component-based communities as detected by a hybrid of phospholipid fatty-acid and fatty-acid methyl ester analyses.

    Directory of Open Access Journals (Sweden)

    Kirk J Grubbs

    Full Text Available Microbial communities (microbiomes are associated with almost all metazoans, including the honey bee Apis mellifera. Honey bees are social insects, maintaining complex hive systems composed of a variety of integral components including bees, comb, propolis, honey, and stored pollen. Given that the different components within hives can be physically separated and are nutritionally variable, we hypothesize that unique microbial communities may occur within the different microenvironments of honey bee colonies. To explore this hypothesis and to provide further insights into the microbiome of honey bees, we use a hybrid of fatty acid methyl ester (FAME and phospholipid-derived fatty acid (PLFA analysis to produce broad, lipid-based microbial community profiles of stored pollen, adults, pupae, honey, empty comb, and propolis for 11 honey bee hives. Averaging component lipid profiles by hive, we show that, in decreasing order, lipid markers representing fungi, Gram-negative bacteria, and Gram-positive bacteria have the highest relative abundances within honey bee colonies. Our lipid profiles reveal the presence of viable microbial communities in each of the six hive components sampled, with overall microbial community richness varying from lowest to highest in honey, comb, pupae, pollen, adults and propolis, respectively. Finally, microbial community lipid profiles were more similar when compared by component than by hive, location, or sampling year. Specifically, we found that individual hive components typically exhibited several dominant lipids and that these dominant lipids differ between components. Principal component and two-way clustering analyses both support significant grouping of lipids by hive component. Our findings indicate that in addition to the microbial communities present in individual workers, honey bee hives have resident microbial communities associated with different colony components.

  8. Dimorphic ovary differentiation in honeybee (Apis mellifera) larvae involves caste-specific expression of homologs of ark and buffy cell death genes.

    Science.gov (United States)

    Dallacqua, Rodrigo Pires; Bitondi, Márcia Maria Gentile

    2014-01-01

    The establishment of the number of repeated structural units, the ovarioles, in the ovaries is one of the critical events that shape caste polyphenism in social insects. In early postembryonic development, honeybee (Apis mellifera) larvae have a pair of ovaries, each one consisting of almost two hundred ovariole primordia. While practically all these ovarioles continue developing in queen-destined larvae, they undergo massive programmed cell death (PCD) in worker-destined larvae. So as to gain insight into the molecular basis of this fundamental process in caste differentiation we used quantitative PCR (qPCR) and fluorescent in situ hybridization (FISH) to investigate the expression of the Amark and Ambuffy genes in the ovaries of the two honeybee castes throughout the fifth larval instar. These are the homologs of ark and buffy Drosophila melanogaster genes, respectively, involved in activating and inhibiting PCD. Caste-specific expression patterns were found during this time-window defining ovariole number. Amark transcript levels were increased when ovariole resorption was intensified in workers, but remained at low levels in queen ovaries. The transcripts were mainly localized at the apical end of all the worker ovarioles, but appeared in only a few queen ovarioles, thus strongly suggesting a function in mediating massive ovariolar cell death in worker larvae. Ambuffy was mainly expressed in the peritoneal sheath cells covering each ovariole. The levels of Ambuffy transcripts increased earlier in the developing ovaries of queens than in workers. Consistent with a protective role against cell death, Ambuffy transcripts were localized in practically all queen ovarioles, but only in few worker ovarioles. The results are indicative of a functional relationship between the expression of evolutionary conserved cell death genes and the morphological events leading to caste-specific ovary differentiation in a social insect.

  9. Dimorphic ovary differentiation in honeybee (Apis mellifera larvae involves caste-specific expression of homologs of ark and buffy cell death genes.

    Directory of Open Access Journals (Sweden)

    Rodrigo Pires Dallacqua

    Full Text Available The establishment of the number of repeated structural units, the ovarioles, in the ovaries is one of the critical events that shape caste polyphenism in social insects. In early postembryonic development, honeybee (Apis mellifera larvae have a pair of ovaries, each one consisting of almost two hundred ovariole primordia. While practically all these ovarioles continue developing in queen-destined larvae, they undergo massive programmed cell death (PCD in worker-destined larvae. So as to gain insight into the molecular basis of this fundamental process in caste differentiation we used quantitative PCR (qPCR and fluorescent in situ hybridization (FISH to investigate the expression of the Amark and Ambuffy genes in the ovaries of the two honeybee castes throughout the fifth larval instar. These are the homologs of ark and buffy Drosophila melanogaster genes, respectively, involved in activating and inhibiting PCD. Caste-specific expression patterns were found during this time-window defining ovariole number. Amark transcript levels were increased when ovariole resorption was intensified in workers, but remained at low levels in queen ovaries. The transcripts were mainly localized at the apical end of all the worker ovarioles, but appeared in only a few queen ovarioles, thus strongly suggesting a function in mediating massive ovariolar cell death in worker larvae. Ambuffy was mainly expressed in the peritoneal sheath cells covering each ovariole. The levels of Ambuffy transcripts increased earlier in the developing ovaries of queens than in workers. Consistent with a protective role against cell death, Ambuffy transcripts were localized in practically all queen ovarioles, but only in few worker ovarioles. The results are indicative of a functional relationship between the expression of evolutionary conserved cell death genes and the morphological events leading to caste-specific ovary differentiation in a social insect.

  10. A virulent strain of deformed wing virus (DWV of honeybees (Apis mellifera prevails after Varroa destructor-mediated, or in vitro, transmission.

    Directory of Open Access Journals (Sweden)

    Eugene V Ryabov

    2014-06-01

    Full Text Available The globally distributed ectoparasite Varroa destructor is a vector for viral pathogens of the Western honeybee (Apis mellifera, in particular the Iflavirus Deformed Wing Virus (DWV. In the absence of Varroa low levels DWV occur, generally causing asymptomatic infections. Conversely, Varroa-infested colonies show markedly elevated virus levels, increased overwintering colony losses, with impairment of pupal development and symptomatic workers. To determine whether changes in the virus population were due Varroa amplifying and introducing virulent virus strains and/or suppressing the host immune responses, we exposed Varroa-naïve larvae to oral and Varroa-transmitted DWV. We monitored virus levels and diversity in developing pupae and associated Varroa, the resulting RNAi response and transcriptome changes in the host. Exposed pupae were stratified by Varroa association (presence/absence and virus levels (low/high into three groups. Varroa-free pupae all exhibited low levels of a highly diverse DWV population, with those exposed per os (group NV exhibiting changes in the population composition. Varroa-associated pupae exhibited either low levels of a diverse DWV population (group VL or high levels of a near-clonal virulent variant of DWV (group VH. These groups and unexposed controls (C could be also discriminated by principal component analysis of the transcriptome changes observed, which included several genes involved in development and the immune response. All Varroa tested contained a diverse replicating DWV population implying the virulent variant present in group VH, and predominating in RNA-seq analysis of temporally and geographically separate Varroa-infested colonies, was selected upon transmission from Varroa, a conclusion supported by direct injection of pupae in vitro with mixed virus populations. Identification of a virulent variant of DWV, the role of Varroa in its transmission and the resulting host transcriptome changes furthers

  11. Variable induction of vitellogenin genes in the varroa mite, Varroa destructor (Anderson & Trueman), by the honeybee, Apis mellifera L, host and its environment.

    Science.gov (United States)

    Cabrera Cordon, A R; Shirk, P D; Duehl, A J; Evans, J D; Teal, P E A

    2013-02-01

    Transcript levels of vitellogenins (Vgs) in the varroa mite, Varroa destructor (Anderson & Trueman), were variably induced by interactions between the developing honeybee, Apis mellifera L, as a food source and the capped honeybee cell environment. Transcripts for two Vgs of varroa mites were sequenced and putative Vg protein products characterized. Sequence analysis of VdVg1 and VdVg2 proteins showed that each had greater similarity with Vg1 and Vg2 proteins from ticks, respectively, than between themselves and were grouped separately by phylogenetic analyses. This suggests there was a duplication of the ancestral acarine Vg gene prior to the divergence of the mites and ticks. Low levels of transcript were detected in immature mites, males and phoretic females. Following cell invasion by phoretic females, VdVg1 and VdVg2 transcript levels were up-regulated after cell capping to a maximum at the time of partial cocoon formation by the honeybee. During oviposition the two transcripts were differentially expressed with higher levels of VdVg2 being observed. A bioassay based on assessing the transcript levels was established. Increases in VdVg1 and VdVg2 transcripts were induced experimentally in phoretic females when they were placed inside a cell containing an early metamorphosing last instar bee but not when exposed to the metamorphosing bee alone. The variable response of Vg expression to the food source as well as environmental cues within the capped cell demonstrates that perturbation of host-parasite interactions may provide avenues to disrupt the reproductive cycle of the varroa mites and prevent varroasis.

  12. The use of RNA-dependent RNA polymerase for the taxonomic assignment of Picorna-like viruses (order Picornavirales infecting Apis mellifera L. populations

    Directory of Open Access Journals (Sweden)

    Schroeder Declan C

    2008-01-01

    Full Text Available Abstract Background Single-stranded RNA viruses, infectious to the European honeybee, Apis mellifera L. are known to reside at low levels in colonies, with typically no apparent signs of infection observed in the honeybees. Reverse transcription-PCR (RT-PCR of regions of the RNA-dependent RNA polymerase (RdRp is often used to diagnose their presence in apiaries and also to classify the type of virus detected. Results Analysis of RdRp conserved domains was undertaken on members of the newly defined order, the Picornavirales; focusing in particular on the amino acid residues and motifs known to be conserved. Consensus sequences were compiled using partial and complete honeybee virus sequences published to date. Certain members within the iflaviruses, deformed wing virus (DWV, Kakugo virus (KV and Varroa destructor virus (VDV; and the dicistroviruses, acute bee paralysis virus (ABPV, Israeli paralysis virus (IAPV and Kashmir bee virus (KBV, shared greater than 98% and 92% homology across the RdRp conserved domains, respectively. Conclusion RdRp was validated as a suitable taxonomic marker for the assignment of members of the order Picornavirales, with the potential for use independent of other genetic or phenotypic markers. Despite the current use of the RdRp as a genetic marker for the detection of specific honeybee viruses, we provide overwhelming evidence that care should be taken with the primer set design. We demonstrated that DWV, VDV and KV, or ABPV, IAPV and KBV, respectively are all recent descendents or variants of each other, meaning caution should be applied when assigning presence or absence to any of these viruses when using current RdRp primer sets. Moreover, it is more likely that some primer sets (regardless of what gene is used are too specific and thus are underestimating the diversity of honeybee viruses.

  13. Evaluation of Mite-Away-II for fall control of Varroa destructor (Acari: Varroidae) in colonies of the honey bee Apis mellifera (Hymenoptera: Apidae) in the northeastern USA.

    Science.gov (United States)

    Calderone, Nicholas W

    2010-02-01

    Mite-Away II, a recently-registered product with a proprietary formulation of formic acid, was evaluated under field conditions in commercial apiaries in upstate New York (USA) for the fall control of Varroa destructor Anderson & Trueman in colonies of the honey bee, Apis mellifera L. Ambient temperatures during the treatment period were in the lower half of the range recommended on the label, but were typical for early fall in upstate New York. Average mite mortality was 60.2 +/- 2.2% in the Mite-Away II group and 23.3 +/- 2.6% in the untreated control group. These means were significantly different from each other, but the level of control was only moderate. These results demonstrate that Mite-Away II may not always provide an adequate level of control even when the temperature at the time of application falls within the recommended range stated on the product's label. To make the best use of temperature-sensitive products, I suggest that the current, single-value, economic treatment threshold be replaced with an economic treatment range. The limits for this range are specified by two pest density values. The lower limit is the usual pest density that triggers a treatment. The upper limit is the maximum pest density that one can expect to reduce to a level below the lower limit given the temperatures expected during the treatment period. When the actual pest density exceeds the upper limit, the product should not be recommended; or, a warning should be included indicating that acceptable control may not be achieved.

  14. On the front line: quantitative virus dynamics in honeybee (Apis mellifera L.) colonies along a new expansion front of the parasite Varroa destructor.

    Science.gov (United States)

    Mondet, Fanny; de Miranda, Joachim R; Kretzschmar, Andre; Le Conte, Yves; Mercer, Alison R

    2014-08-01

    Over the past fifty years, annual honeybee (Apis mellifera) colony losses have been steadily increasing worldwide. These losses have occurred in parallel with the global spread of the honeybee parasite Varroa destructor. Indeed, Varroa mite infestations are considered to be a key explanatory factor for the widespread increase in annual honeybee colony mortality. The host-parasite relationship between honeybees and Varroa is complicated by the mite's close association with a range of honeybee viral pathogens. The 10-year history of the expanding front of Varroa infestation in New Zealand offered a rare opportunity to assess the dynamic quantitative and qualitative changes in honeybee viral landscapes in response to the arrival, spread and level of Varroa infestation. We studied the impact of de novo infestation of bee colonies by Varroa on the prevalence and titres of seven well-characterised honeybee viruses in both bees and mites, using a large-scale molecular ecology approach. We also examined the effect of the number of years since Varroa arrival on honeybee and mite viral titres. The dynamic shifts in the viral titres of black queen cell virus and Kashmir bee virus mirrored the patterns of change in Varroa infestation rates along the Varroa expansion front. The deformed wing virus (DWV) titres in bees continued to increase with Varroa infestation history, despite dropping infestation rates, which could be linked to increasing DWV titres in the mites. This suggests that the DWV titres in mites, perhaps boosted by virus replication, may be a major factor in maintaining the DWV epidemic after initial establishment. Both positive and negative associations were identified for several pairs of viruses, in response to the arrival of Varroa. These findings provide important new insights into the role of the parasitic mite Varroa destructor in influencing the viral landscape that affects honeybee colonies.

  15. A virulent strain of deformed wing virus (DWV) of honeybees (Apis mellifera) prevails after Varroa destructor-mediated, or in vitro, transmission.

    Science.gov (United States)

    Ryabov, Eugene V; Wood, Graham R; Fannon, Jessica M; Moore, Jonathan D; Bull, James C; Chandler, Dave; Mead, Andrew; Burroughs, Nigel; Evans, David J

    2014-06-01

    The globally distributed ectoparasite Varroa destructor is a vector for viral pathogens of the Western honeybee (Apis mellifera), in particular the Iflavirus Deformed Wing Virus (DWV). In the absence of Varroa low levels DWV occur, generally causing asymptomatic infections. Conversely, Varroa-infested colonies show markedly elevated virus levels, increased overwintering colony losses, with impairment of pupal development and symptomatic workers. To determine whether changes in the virus population were due Varroa amplifying and introducing virulent virus strains and/or suppressing the host immune responses, we exposed Varroa-naïve larvae to oral and Varroa-transmitted DWV. We monitored virus levels and diversity in developing pupae and associated Varroa, the resulting RNAi response and transcriptome changes in the host. Exposed pupae were stratified by Varroa association (presence/absence) and virus levels (low/high) into three groups. Varroa-free pupae all exhibited low levels of a highly diverse DWV population, with those exposed per os (group NV) exhibiting changes in the population composition. Varroa-associated pupae exhibited either low levels of a diverse DWV population (group VL) or high levels of a near-clonal virulent variant of DWV (group VH). These groups and unexposed controls (C) could be also discriminated by principal component analysis of the transcriptome changes observed, which included several genes involved in development and the immune response. All Varroa tested contained a diverse replicating DWV population implying the virulent variant present in group VH, and predominating in RNA-seq analysis of temporally and geographically separate Varroa-infested colonies, was selected upon transmission from Varroa, a conclusion supported by direct injection of pupae in vitro with mixed virus populations. Identification of a virulent variant of DWV, the role of Varroa in its transmission and the resulting host transcriptome changes furthers our

  16. Minimizing the impact of the mosquito adulticide naled on honey bees, Apis mellifera (Hymenoptera: Apidae): aerial ultra-low-volume application using a high-pressure nozzle system.

    Science.gov (United States)

    Zhong, He; Latham, Mark; Payne, Steve; Brock, Cate

    2004-02-01

    The impact of the mosquito adulticide naled on honey bees, Apis mellifera L., was evaluated by exposing test beehives to nighttime aerial ultra-low-volume (ULV) applications using a high-pressure nozzle system. The tests were conducted during routine mosquito control missions at Manatee County, Florida, in summer 2000. Two treatment sites were sprayed a total of four times over a 10-wk period. Honey bees, which clustered outside of the hive entrances, were subjected to naled exposure during these mosquito control sprays. The highest average naled ground deposition was 2,688 microg/m2 at the Port Manatee site, which resulted in statistically significant bee mortality (118) compared with the controls. At the Terra Ceia Road site, an intermediate level of naled deposition was found (1,435 microg/m2). For this spray mission, the range of dead bees per hive at Terra Ceia was 2 to 9 before spraying and 5 to 36 after naled application. Means of all other naled ground depositions were 100 dead bees) resulted when naled residue levels were > 2,000 kg/m2 and honey bees were clustered outside of the hive entrances during mosquito adulticide applications. Compared with the flat-fan nozzle systems currently used by most of Florida's mosquito control programs, the high-pressure nozzle system used in this experiment substantially reduced environmental insecticide contamination and lead to decreased bee mortality. Statistical analysis also showed that average honey yield at the end of the season was not significantly reduced for those hives that were exposed to the insecticide. PMID:14998120

  17. Conservation of honey bee (Apis mellifera) sperm phospholipids during storage in the bee queen--a TLC/MALDI-TOF MS study.

    Science.gov (United States)

    Wegener, Jakob; Zschörnig, Kristin; Onischke, Kristin; Fuchs, Beate; Schiller, Jürgen; Müller, Karin

    2013-02-01

    The honey bee (Apis mellifera) is characterized by a high degree of phenotypic plasticity of senescence-related processes, and has therefore become a model organism of gerontological research. Sperm of honey bee drones can remain fertile for several years within the storage organ of queens. The reason for this longevity is unknown, but the suppression of lipid peroxidation seems to play a decisive role. Here, we examined the questions of whether spermatheca- and in vitro-stored honey bee sperm are indeed resistant to lipid peroxidation, and whether the nature of sperm lipids could explain this resistance. The lipid composition of bee sperm was determined by matrix-assisted laser desorption and ionization time-of-flight (MALDI-TOF) mass spectrometry (MS) combined with thin-layer chromatography (TLC). The positive ion mass spectra of drone sperm lipids are dominated by two glycerophosphocholine (GPC) species, although small amounts of sphingomyelins (SM) and glycerophosphoethanolamines (GPE) are also detectable after TLC. Alkyl/acyl and alkenyl/acyl compounds of GPC, and alkyl/acyl as well as diacyl compounds of GPE were detected containing oleyl, oleoyl, palmityl and palmitoyl as the most abundant residues. Assignments of all compounds have been additionally verified by enzymatic digestion and exposition to HCl. During incubation of sperm in the presence of air, characteristic lipid oxidation products such as lysophosphatidylcholine (LPC) appear. Inside the spermatheca, however, sperm lipids are obviously protected from oxidation and their composition does not change, even if they are stored over years. Our data support the view that the membrane composition of honey bee sperm could help to explain the extraordinary longevity of these cells. PMID:23279974

  18. Physicochemical attributes of Nigerian natural honey from honeybees (Apis mellifera adansonii) (Hymenoptera: Apidae) and its shelf life in storage at room temperature.

    Science.gov (United States)

    Fasasi, K A

    2012-11-01

    Nigerian honey competes globally in the world honey market. The physicochemical parameters of honey samples sourced from colonies of Apis mellifera adansonii were studied with the effect of storage-time over a period of two years. This was done by analyzing and evaluating eleven common physicochemical parameters including colour, moisture content, ash content, sugar content, acidity, pH value, hydroxymethylfurfural, diastase activity, nitrogen content, insoluble matter and viscosity of honey samples with the effect of storage-time on the physicochemical parameters using Association of Official Analytical Chemists methods. Most of the honey samples showed proper maturity considering the moisture content (17.9 +/- 2.0%). The total acidity (21.5 +/- 5.6 meq kg(-1)) indicated absence of undesirable fermentation after harvest and extraction. The Mean +/- SD pH value (3.9 +/- 0.2) of the honey samples was within acceptable standards of Economic European Community (EEC) and Codex. The ash content (0.4 +/- 0.2%) (0.2-0.6%) was slightly higher than 0-0.50% of EEC and Codex standards. The fructose and glucose mean values were 38.9 +/- 0.8% and 28.3 +/- 2.4%, respectively. The Mean +/- S.D value of hydroxymethylfurfural content (8.5 +/- 2.7 mg kg(-1)) was low, while the Mean +/- SD value of diastase activity was high depicting freshness. The evaluated physicochemical parameters of two years old honey samples exhibited no significant deviation (p > 0.05) from that of the fresh samples. This study showed that natural honey if properly harvested, extracted hygienically, preserved and stored can maintain their stability relatively for at least two years at room temperature without undue interference. PMID:24163945

  19. Differential expressions of nuclear proteomes between honeybee (Apis mellifera L.) Queen and Worker Larvae: a deep insight into caste pathway decisions.

    Science.gov (United States)

    Begna, Desalegn; Han, Bin; Feng, Mao; Fang, Yu; Li, Jianke

    2012-02-01

    Honeybees (Apis mellifera L.) possess individuals (castes) in their colonies, to which specific tasks are allocated. Owing to a difference in nutrition, the young female larvae develop into either a fertile queen or a sterile worker. Despite a series of investigations on the underlying mechanisms of honeybee caste polyphenism, information on proteins and enzymes involved in DNA and RNA regulation in the nucleus is still missing. The techniques of nuclear protein enrichment, two-dimensional electrophoresis, mass spectrometry and bioinformatics were applied to understand the nuclear proteome changes in response to changes in environmental settings (nutrition and time) during the early developmental stages at the third (72 h), fourth (96 h), and fifth (120 h) instars of the two caste intended larvae. A total of 120 differentially expressed nuclear proteins were identified in both caste intended larvae during these developmental stages. The third, fourth and fifth instars of queen prospective larvae expressed 69%, 84%, and 68% of the proteins that had altered expression, respectively. Particularly, the prospective queen larvae up-regulated most of the proteins with nuclear functions. In general, this changing nuclear proteome of the two caste intended larvae over the three developmental stages suggests variations in DNA and RNA regulating proteins and enzymes. These variations of proteins and enzymes involved in DNA and RNA regulation in response to differential nutrition between the two caste intended larvae lead the two caste larvae to pursue different developmental trajectories. Hence, this first data set of the nuclear proteome helps us to explore the innermost biological makings of queen and worker bee castes as early as before the 72 h (3rd instar). Also, it provides new insights into the honeybee's polymorphism at nuclear proteome level and paves new ways to understand mechanisms of caste decision in other eusocial insects.

  20. 不同分蜂方法的繁蜂效果研宄%Study on the Breeding Effect with Different Swarming Methods of Apis mellifera

    Institute of Scientific and Technical Information of China (English)

    余玉生; 张祖芸; 梁铖; 卢焕仙; 张学文

    2012-01-01

    In order to know the breeding effect and production performance with two swarming methods of Apis mellifera in nectar source Flow honey period before a month. The first method is Through the study of the 2011 pomegranates flowering 1 month before swarm around to set up 11 feet after the comb spleen. After taking old queen and part bee spleen of honey super allopatry swarming. Stay buzzers stable and haul back reproduction. Original hive and honey super introduced queen cells at the same time and waited to Virgin Queen mate. The queen and bee spleen of honey super all carried into cut-and-dried the hive to swarm. The second one is directly in the bees to field to take young bees swarming. The original group continued to add spleen breeding, After off-test to bee colonies proliferation and honey production carry on analysis. The result show that the first kind of swarming method is better than the second one. And the swarming bee breed fast, gather honey good, so it is a kind of ideal swarming method.%为了弄清西方蜜蜂在不同方法下进行分蜂后的繁蜂效果和生产性能,对2011年石榴花期前1个月左右已达ll脾的蜂群,采取异地和本地分蜂两种方法进行人工分蜂,并对两种分蜂方法的蜂群增殖情况和蜂蜜产量进行了分析。结果表明,第1种分蜂方法优于第2种分蜂方法。第1种分蜂方法分出的蜂繁殖快、进蜜好,是一种理想的分蜂方法。

  1. Evaluation of Mite-Away-II for fall control of Varroa destructor (Acari: Varroidae) in colonies of the honey bee Apis mellifera (Hymenoptera: Apidae) in the northeastern USA.

    Science.gov (United States)

    Calderone, Nicholas W

    2010-02-01

    Mite-Away II, a recently-registered product with a proprietary formulation of formic acid, was evaluated under field conditions in commercial apiaries in upstate New York (USA) for the fall control of Varroa destructor Anderson & Trueman in colonies of the honey bee, Apis mellifera L. Ambient temperatures during the treatment period were in the lower half of the range recommended on the label, but were typical for early fall in upstate New York. Average mite mortality was 60.2 +/- 2.2% in the Mite-Away II group and 23.3 +/- 2.6% in the untreated control group. These means were significantly different from each other, but the level of control was only moderate. These results demonstrate that Mite-Away II may not always provide an adequate level of control even when the temperature at the time of application falls within the recommended range stated on the product's label. To make the best use of temperature-sensitive products, I suggest that the current, single-value, economic treatment threshold be replaced with an economic treatment range. The limits for this range are specified by two pest density values. The lower limit is the usual pest density that triggers a treatment. The upper limit is the maximum pest density that one can expect to reduce to a level below the lower limit given the temperatures expected during the treatment period. When the actual pest density exceeds the upper limit, the product should not be recommended; or, a warning should be included indicating that acceptable control may not be achieved. PMID:19588256

  2. Effective fall treatment of Varroa jacobsoni (Acari: Varroidae) with a new formulation of formic acid in colonies of Apis mellifera (Hymenoptera: Apidae) in the northeastern United States.

    Science.gov (United States)

    Calderone, N W

    2000-08-01

    New formulations of formic acid and thymol, both individually and in combination with various essential oils, were compared with Apistan to determine their efficacy as fall treatments for control of Varroa jacobsoni (Oudemans), a parasitic mite of the honey bee, Apis mellifera L. Percent mite mortality in colonies treated with 300 ml of 65% formic acid averaged 94.2 +/- 1.41% (least square means +/- SE, n = 24), equivalent to those receiving four, 10% strips of Apistan (92.6 +/- 1.79%, n = 6). Treatment with thymol (n = 24) resulted in an average mite mortality of 75.4 +/- 5.79%, significantly less than that attained with Apistan or formic acid. The addition of essential oils did not affect treatment efficacy of either formic acid or thymol. The ratio of the coefficients of variation for percentage mortality for the formic acid (CVFA) and Apistan (CVA) groups was CVFA/CVA = 0.66. This indicates that the formic acid treatment was as consistent as the Apistan treatment. Thymol treatments did not provide as consistent results as Apistan or formic acid. Coefficient variation ratios for percentage mortality for the thymol group (CVT) with the Apistan and formic acid groups were CVT/CVA = 4.47 and CVT/CVFA = 6.76, respectively. In a second experiment, colonies received a 4-wk fall treatment of either 300 ml of 65% formic acid (n = 24) or four, 10% strips of Apistan (n = 6). The next spring, mite levels in the formic acid group (554.3 +/- 150.20 mites) were similar to those in the Apistan treatment group (571.3 +/- 145.05 mites) (P = 0.93). Additionally, the quantities of bees, brood, pollen, and nectar/honey in the two treatment groups were not significantly different (P > or = 0.50 each variable). These results suggest that formic acid is an effective alternative to Apistan as a fall treatment for varroa mites in temperate climates. PMID:10985013

  3. Effects of queen ages on Varroa (Varroa destructor infestation level in honey bee (Apis mellifera caucasica colonies and colony performance

    Directory of Open Access Journals (Sweden)

    Duran Özkök

    2010-01-01

    Full Text Available This study was conducted to determine the effects of queen age on varroa population levels in hives and performance of honey bee (A. mellifera caucasica colonies. Levels of varroa infestation and performances of the colonies which had 0, 1- and 2-year-old queens were compared in mild climate conditions. Varroa numbers on adults and drone brood, number of frames covered with bees and brood areas were determined every month between 10 May and 10 October 2004. Overall average (± S.E. % infestation levels of varroa were found to be 5.96 ± 1.42, 11.58 ± 1.46 and 15.87 ± 1.39% on adult bees and 21.55 ± 1.43, 31.96 ± 1.44 and 37.55 ± 1.45% in drone brood cells for 0, 1- and 2-year-old queen colonies, respectively. The colonies which had 0, 1- and 2-year-old queens produced 2673.58 ± 39.69, 2711.75 ± 39.68, and 1815.08 ± 39.70 cm2 overall average (± S.E. sealed brood and 10.35 ± 0.24, 10.43 ± 0.26 and 7.51 ± 0.21 numbers of frame adult bees, respectively. Honey harvested from 0, 1- and 2-year-old queen colonies averaged 21.60 ± 5.25, 22.20 ± 6.55, and 14.70 ± 2.50 kg/colony, respectively. The colonies headed by young queens had a lower level of varroa infestation, a greater brood area, longer worker bee population and greater honey yield in comparison to colonies headed by old queens.

  4. Caracterização físico-química de amostras de méis produzidas por Apis mellifera L. em fragmento de cerrado no município de Itirapina, São Paulo Physicochemical characterization of honey samples produced by Apis mellifera L. in a fragment of savannah area in Itirapina county, São Paulo State, Brazil

    Directory of Open Access Journals (Sweden)

    Kiára Mendonça

    2008-09-01

    Full Text Available A fisionomia vegetal mais representativa do país, depois da floresta amazônica, é o cerrado, que ocupa atualmente dois milhões de km² do território brasileiro. Este trabalho teve como objetivo determinar as características físico-químicas de amostras de mel produzidas por Apis mellifera em um fragmento de cerrado, localizado em Itirapina, SP (22°14'S e 47°49'W. As amostras foram coletadas mensalmente, em cinco colméias, entre fevereiro e outubro de 2005 e as características avaliadas foram: açúcares redutores, redutores totais, sacarose, umidade, hidroximetilfurfural (HMF, cor, condutividade elétrica, pH, acidez, índice de formol, teor de cinzas, proteínas e viscosidade, além da análise polínica. Os resultados obtidos indicam que os limites estabelecidos pela legislação brasileira para parâmetros físico-químicos analisados são atendidos pela maioria das amostras de mel. Com relação à análise polínica, foi verificada a presença de Eucalyptus sp. como pólen dominante nos meses de fevereiro a julho e o de Citrus sp. no mês de outubro, em virtude da maior atratividade destes dois cultivos sobre as abelhas.The most representative vegetation type of the country after the Amazonian forest is the "cerrado" (savannah area, which currently occupies two million square kilometer of the Brazilian territory. This paper deals with the physicochemical characteristics of honey samples produced by Apis mellifera in a fragment of savannah area located in Itirapina, São Paulo State (22°14'S and 47°49'W, Brazil. The samples were collected monthly, in five beehives, from February to October 2005 and the following characters were determined: reducing sugars, total reducing sugars, apparent sucrose, moisture content, hydroxymethylfurfural (HMF, color, electrical conductivity, pH, acidity, formol index, ashes, protein and viscosity, beyond the pollinic analysis. The results indicate that the limits established by the current

  5. Caracterização físico-química de amostras de méis de Apis mellifera L. (Hymenoptera: Apidae do Estado do Ceará Physical-chemical characterization of honey samples of Apis mellifera L. (Hymenoptera: Apidae from Ceará State

    Directory of Open Access Journals (Sweden)

    Geni da Silva Sodré

    2007-08-01

    Full Text Available Com o objetivo de verificar as características físico-químicas de amostras de méis coletadas em cidades do Estado do Ceará (Araripe, Santana do Cariri, Assaré, Iguatu, Crato, Missão Velha e Pacajús, foram determinados no Laboratório de Apicultura do Departamento de Entomologia, Fitopatologia e Zoologia Agrícola da Escola Superior de Agricultura "Luiz de Queiroz", USP: açúcares totais, açúcares redutores, sacarose aparente, umidade, atividade diastásica, hidroximetilfurfural, proteína, cinzas, pH, acidez, índice de formol, condutividade elétrica, viscosidade e cor de 20 amostras de méis Apis mellifera L., 1758, coletadas entre março de 2002 e agosto de 2002. A maioria das amostras de méis analisadas (65% encontra-se dentro das especificações brasileiras para as características físico-químicas, com exceção das características sacarose aparente (10% das amostras, umidade (10% das amostras, atividade diastásica (35% das amostras e HMF (20% das amostras. Os resultados indicaram condutividade elétrica e a sacarose aparente como as características que mais influenciaram no agrupamento das amostras.This research was aimed at to determining physico-chemical characteristics honey samples collected in cities of Ceara States (Araripe; Santana do Cariri 1 sample; Assaré 1 sample; Iguatu 8 samples; Crato 4 samples; Missão Velha 2 samples and Pacajús 3 samples, they were determined at the laboratory of Apiculture in the "Escola Superior de Agricultura Luiz de Queiroz" (ESALQ University of São Paulo, in Piracicaba, São Paulo State: total sugar, reducing sugars, apparent sucrose, humidity, diastase activity, hydroxymethylfurfural (HMF, protein, ash, pH, acidity, formol index, electrical conductivity, viscosity and color of 20 samples of Apis mellifera L., 1758 honey collected between March of 2002 and August of 2002. Most of the samples of honey analyzed (65% are inside of the Brazilian specifications for the characteristics

  6. Caracterização físico-química de méis de Apis mellifera L. da região noroeste do Estado do Rio Grande do Sul Physicochemical characterization of Apis mellifera L. honeys from the northwest region of Rio Grande do Sul State

    Directory of Open Access Journals (Sweden)

    Juliane Elisa Welke

    2008-09-01

    Full Text Available O objetivo deste trabalho foi determinar a composição físico-química de méis de Apis mellifera L. produzidos em dois anos consecutivos na região noroeste do Estado do Rio Grande do Sul, Brasil. As características físico-químicas de 36 amostras de mel foram comparadas utilizando o teste T de Student e a adequação aos padrões da legislação brasileira da qualidade do mel foi verificada. Os resultados das análises dos méis variaram para as características analisadas conforme segue: pH (3,3-4,4, umidade (14,7-19,8%, acidez total (16,9-49,2meq kg-1, hidroximetilfurfural (0,15-48,3mg kg-1, açúcares redutores (60,1-75,9%, açúcares não-redutores (1,35-5,99%, cinzas (0,05-0,47% e sólidos insolúveis (0,016-0,27g kg-1. A análise estatística das amostras de mel produzidas em dois anos consecutivos mostrou que houve diferença significativa na umidade, na acidez e na hidroximetilfurfural. Os méis produzidos nesta região apresentam boa qualidade e características físico-químicas compatíveis aos padrões da legislação brasileira.The objective of this research was to determine the physicochemical composition of Apis mellifera L. honeys produced in two consecutive years in the northwest region of Rio Grande do Sul State, Brazil. The physicochemical characteristics of 36 honey samples were compared using Student’s T-test and their adequacy to standards established by the Brazilian legislation for honey quality was checked. The results varied as follows: pH (3.3-4.4, moisture (14.7-19.8%, acidity (16.9-49.2meq kg-1, hydroxymethylfurfural content (0.15-48.3mg kg-1, reducing sugar (60.1-75.9%, non-reducing sugar (1.35-5.99%, ashes (0.05-0.47% and solids non-soluble in water (0.016-0.27g kg-1. The statistical analyses of honey samples produced in two consecutive years showed that the moisture, acidity and hydroxymethylfurfural content varied significantly. The honey samples produced in this region were in accordance with the

  7. Control del Ácaro Varroa destructor (Mesostigmata: Varroidae en Colmenas de Apis mellifera (Hymenoptera: Apidae mediante la Aplicación de distintos Principios Activos Control of Varroa destructor (Mesostigmata: Varroidae in honeybee colonies of Apis mellifera Hymenoptera: Apidae by means of different active agents

    Directory of Open Access Journals (Sweden)

    Jorge Augusto Marcangeli

    2003-12-01

    Full Text Available El objetivo de este trabajo fue evaluar la eficacia acaricida de cuatro productos utilizados para el control del ácaro Varroa destructor (Anderson & Trueman en colmenas de Apis mellifera (L.. Se seleccionaron 25 colmenas dividivas en cinco lotes iguales a las que se les suministró Apistan®, Bayvarol®, Apitol® y Folbex®. El último lote representó el control. Los ácaros muertos se recolectaron en pisos especiales que se controlaron semanalmente. Finalizada la experiencia cada lote fue sometido a un cruzamiento con otros productos con el fin de eliminar los ácaros remanentes y poder calcular las eficacias. El producto Apistan® fue el más efectivo con un valor promedio de 85,38% seguido por el Bayvarol® (83,83%, Apitol® (71,77% y Folbex® (62,78%. En todos los casos, los valores obtenidos resultaron inferiores a los estipulados por los laboratorios productores. Estos resultados alertan sobre la posible generación de resistencias por parte de las poblaciones del ácaro y la necesidad de buscar nuevos agentes de control eficaces para esta enfermedad.The aim of this work was to evaluate the acaricide efficacy of four commercial products against the mite Varroa destructor (Anderson & Trueman in honeybee colonies of Apis mellifera (L.. Twenty five honeybee colonies divided in five equal groups were selected. Groups received Apistan®, Bayvarol®, Apitol® and Folbex®. Final group was the control. Dead mites were collected weekly in special floors. After treatment, each colony received a shock treatment with the other three products to kill remnant mites and to obtain acaricide efficacy. Average values of efficacy were Apistan® 85,38%, Bayvarol® 83,83%, Apitol® 71,77% and Folbex® 62,78%. In all cases these values were lower than those reported by the laboratories that produce them. These results alert about the possible generation of resistant mite populations and justify research directed to search for alternative products for the

  8. Efeitos da aplicação tópica de hormônio juvenil sobre o desenvolvimento dos ovários de larvas de operárias de Apis mellifera Linnaeus (Hymenoptera, Apidae Effect of topic application of juvenile hormone on the ovarian development of worker larvae of Apis mellifera Linnaeus (Hymenoptera, Apidae

    Directory of Open Access Journals (Sweden)

    William Fernando Antonialli-Junior

    2009-01-01

    Full Text Available A influência do hormônio juvenil sobre o desenvolvimento do ovário de larvas de operárias de Apis mellifera foi analisada levando em conta a determinação trófica das castas, segundo a qual a alimentação larval é controlada pelas operárias de maneira a promover uma diferenciação de castas controlada pela produção e disponibilidade desse hormônio. A hipótese testada é que a ação do hormônio juvenil seja capaz de proteger ou prevenir a degeneração nos ovários das larvas de operárias. Foi feita aplicação tópica de 1 ml de hormônio dissolvido em hexano na concentração de 1 mg/ml do segundo até o quinto dia de vida larval, e a morfologia dos ovários avaliada nos dias subseqüentes à aplicação até ao sexto dia de vida larval. Como controles foram utilizadas larvas nas quais se aplicou 1 ml de hexano e larvas que não receberam nenhum tratamento. Constatou-se que o efeito do hormônio juvenil varia conforme a idade larval em que é aplicado e que este efeito foi maior quando a aplicação foi feita no terceiro dia de vida larval.The influence of juvenile hormone (JH on the ovarian development of worker larvae of Apis mellifera was analyzed, taking into account the trophic determination of the castes. The workers control the larval feeding in order to promote caste differentiation, which is regulated by the production and availability of this hormone. The hypothesis tested was that the action of juvenile hormone is capable of protecting or preventing the degeneration of the ovaries in worker larvae. A preparation of 1 ml of juvenile hormone dissolved in hexane at a concentration of 1 mg/ml was applied topically to 2- to 5-day-old larvae. The morphology of the ovaries was evaluated on the days following the application, until the larvae were 6 days old. The controls consisted of larvae to which 1 ml of hexane was applied, and larvae that received no treatment. The effect of juvenile hormone varied according to the age

  9. Análise físico-química dos méis das abelhas Apis mellifera e Melipona scutellaris produzidos em regiões distintas no Estado da Paraíba Physical-Chemical analysis of honeybee Apis mellifera and Melipona scutellaris on two regions at Paraiba State, Brazil

    Directory of Open Access Journals (Sweden)

    Adriana Evangelista-Rodrigues

    2005-10-01

    Full Text Available O mel de abelhas é um produto muito apreciado, no entanto, de fácil adulteração com açúcares ou xaropes. Desta forma, é necessário que haja algumas análises para a determinação da sua qualidade para que seja comercializado. Este trabalho teve como objetivo fazer a análise físico-química dos méis de abelha Apis mellifera. e Melipona scutellaris para a comparação entre as espécies e entre as localidades do Brejo e do Cariri (regiões do Estado da Paraíba. Observou-se que o mel de abelha nativa apresenta um maior teor de água (umidade de 25,25% quando comparado com o mel de abelha africanizada (18,76%, dificultando o seu armazenamento, pois o alto teor de água do produto diminui a sua vida útil de prateleira. Para as análises de hidroximetilfurfural, o valor mais alto foi para o mel produzido na região do Cariri, quando comparado com o mel produzido na região do Brejo, o que pode ser explicado pela diferença de temperatura, sendo mais alta no Cariri. Para os valores de pH, obteve-se diferença significativa entre os méis, com o mel do Cariri apresentando valor mais baixo (3,8. Para Acidez Total, o mel de abelha africanizada do Brejo Paraibano apresentou 41,6 meq/kg de mel, enquanto o mel de abelha nativa apresentou 28,3 meq/kg de mel. Para os demais parâmetros estudados, não houve diferença significativa entre os tratamentos. Conclui-se que os méis produzidos pelas abelhas africanizadas (A. mellifera e pela abelha nativa Melipona scutellaris na Estação Experimental do Cariri e da Chã-de-Jardim pertencentes ao CCA/UFPB apresentam valores diferentes dos padrões da Regulamento Técnico de Identidade e Qualidade do Mel (Ministério da Agricultura e do Abastecimento para alguns parâmetros, o que pode dificultar o seu armazenamento por um longo período.The honeybee is a product very appreciated, however, of easy adulteration with sugars or boiled musts. Then, it is necessary that it has some analyses for the

  10. Taxa de mortalidade do ácaro Varroa destructor de acordo com a quantidade de crias em colônias de abelhas africanizadas (Apis mellifera L. - DOI: 10.4025/actascibiolsci.v29i3.487 Varroa destructor mite mortality rate according to the amount of worker broods in africanized honey bee (Apis mellifera L. colonies - DOI: 10.4025/actascibiolsci.v29i3.487

    Directory of Open Access Journals (Sweden)

    José Carlos Vieira Guerra Junior

    2007-12-01

    Full Text Available O ácaro Varroa destructor tem causado a mortalidade de centenas de milhares de colônias de abelhas Apis mellifera em várias partes do mundo. Os efeitos determinados pelo ácaro Varroa variam com a subespécie de Apis mellifera. Nas Américas do Sul e Central, o parasita causa poucos danos às colônias de abelhas africanizadas, a taxa de infestação é estável e baixa, não sendo necessário o tratamento químico contra a praga. Entre vários fatores que são responsáveis pela tolerância das abelhas africanizadas a esse parasita, o comportamento de grooming executado pelas operárias deve exercer importante papel na manutenção dos baixos níveis de infestação. Neste estudo, foram avaliadas as taxas diárias de ácaros vivos e mortos encontrados no fundo das colméias de cinco colônias de abelhas africanizadas. Durante 15 dias de observações, foi verificado significativo aumento de ácaros no fundo da colméia à medida que diminui a quantidade de crias de operárias das colônias de abelhas. Isso sugere que a atividade de grooming é incrementada à medida que aumenta a concentração de ácaros na população de abelhas adultas.The Varroa destructor mite has caused the death of hundreds of thousands of Apis mellifera colonies in several countries worldwide. However, the effects determined by the Varroa mite change according to the A. mellifera subspecies. In Africanized bee colonies from South and Central America, the parasite causes little damage, as the infestation levels are relatively stable and low, thus treatments against the pest are not required. Among several factors, the grooming behavior of Africanized worker bees plays an important role in the maintenance of the low infestation levels. This study determined the daily rate of live and dead mites found at the bottom of the hive in five Africanized honey bee colonies. During fifteen days of observations, a significant increase was verified in the number of live and dead

  11. Producción del manzano (Malus sp. cv Anna) en el oriente Antioqueño con la abeja melífera, Apis mellifera L. (hymenoptera: apidae).

    OpenAIRE

    Botero Garcés Natalia; Morales Soto Gilberto

    2000-01-01

    La necesidad de diversificar cultivos ha marcado el comienzo de otras alternativas agronómicas en nuestro país tales como la producción de manzano. Hace unos 6 años se inició en Colombia la plantación de cultivares comerciales mejorados de cuya biología y necesidades poco se sabe. Se planteó un estudio sobre la influencia de la polinización entomófila en la producción de manzana Anna. El trabajo se desarrolló en un cultivo de manzano en el Municipio del Carmen de Viboral (Oriente Antioqueño),...

  12. Producción del manzano (malus sp. cv anna) en el oriente antioqueño con la abeja melífera, apis mellifera l. (hymenoptera: apidae).

    OpenAIRE

    Botero Garcés, Natalia; Morales Soto, Gilberto

    2011-01-01

    La necesidad de diversificar cultivos ha marcado el comienzo de otras alternativas agronómicas en nuestro país tales como la producción de manzano. Hace unos 6 años se inició en Colombia la plantación de cultivares comerciales mejorados de cuya biología y necesidades poco se sabe. Se planteó un estudio sobre la influencia de la polinización entomófila en la producción de manzana Anna. El trabajo se desarrolló en un cultivo de manzano en el Municipio del Carmen de Viboral (Oriente Antioqueño),...

  13. Taxonomic characterization of honey bee (Apis mellifera) pollen foraging based on non-overlapping paired-end sequencing of nuclear ribosomal loci

    Science.gov (United States)

    2015-01-01

    Identifying plant taxa that honey bees (Apis mellifera) forage upon is of great apicultural interest, but traditional methods are labor intensive and may lack resolution. Here we evaluate a high-throughput genetic barcoding approach to characterize trap-collected pollen from multiple North Dakota apiaries across multiple years. We used the Illumina MiSeq platform to generate sequence scaffolds from non-overlapping 300-bp paired-end sequencing reads of the ribosomal internal transcribed spacers (ITS). Full-length sequence scaffolds represented ~530 bp of ITS sequence after adapter trimming, drawn from the 5’ of ITS1 and the 3’ of ITS2, while skipping the uninformative 5.8S region. Operational taxonomic units (OTUs) were picked from scaffolds clustered at 97% identity, searched by BLAST against the nt database, and given taxonomic assignments using the paired-read lowest common ancestor approach. Taxonomic assignments and quantitative patterns were consistent with known plant distributions, phenology, and observational reports of pollen foraging, but revealed an unexpected contribution from non-crop graminoids and wetland plants. The mean number of plant species assignments per sample was 23.0 (+/- 5.5) and the mean species diversity (effective number of equally abundant species) was 3.3 (+/- 1.2). Bray-Curtis similarities showed good agreement among samples from the same apiary and sampling date. Rarefaction plots indicated that fewer than 50,000 reads are typically needed to characterize pollen samples of this complexity. Our results show that a pre-compiled, curated reference database is not essential for genus-level assignments, but species-level assignments are hindered by database gaps, reference length variation, and probable errors in the taxonomic assignment, requiring post-hoc evaluation. Although the effective per-sample yield achieved using custom MiSeq amplicon primers was less than the machine maximum, primarily due to lower “read2” quality

  14. Developmental regulation of ecdysone receptor (EcR and EcR-controlled gene expression during pharate-adult development of honeybees (Apis mellifera.

    Directory of Open Access Journals (Sweden)

    Tathyana Rachel Palo Mello

    2014-12-01

    Full Text Available Major developmental transitions in multicellular organisms are driven by steroid hormones. In insects, these, together with juvenile hormone (JH, control development, metamorphosis, reproduction and aging, and are also suggested to play an important role in caste differentiation of social insects. Here, we aimed to determine how EcR transcription and ecdysteroid titers are related during honeybee postembryonic development and what may actually be the role of EcR in caste development of this social insect. In addition, we expected that knocking-down EcR gene expression would give us information on the participation of the respective protein in regulating downstream targets of EcR. We found that in Apis mellifera females, EcR-A is the predominantly expressed variant in postembryonic development, while EcR-B transcript levels are higher in embryos, indicating an early developmental switch in EcR function. During larval and pupal stages, EcR-B expression levels are very low, while EcR-A transcripts are more variable and abundant in workers compared to queens. Strikingly, these transcript levels are opposite to the ecdysteroid titer profile. 20-hydroxyecdysone (20E application experiments revealed that low 20E levels induce EcR expression during development, whereas high ecdysteroid titers seem to be repressive. By means of RNAi-mediated knockdown (KD of both EcR transcript variants we detected the differential expression of 234 poly-A+ transcripts encoding genes such as CYPs, MRJPs and certain hormone response genes (Kr-h1 and ftz-f1. EcR-KD also promoted the differential expression of 70 miRNAs, including highly conserved ones (e.g. miR-133 and miR-375, as well honeybee-specific ones (e.g. miR-3745 and miR-3761. Our results put in evidence a broad spectrum of EcR-controlled gene expression during postembryonic development of honeybees, revealing new facets of EcR biology in this social insect.

  15. Molecular cloning and characterization of juvenile hormone acid methyltransferase in the honey bee, Apis mellifera, and its differential expression during caste differentiation.

    Science.gov (United States)

    Li, Wenfeng; Huang, Zachary Y; Liu, Fang; Li, Zhiguo; Yan, Limin; Zhang, Shaowu; Chen, Shenglu; Zhong, Boxiong; Su, Songkun

    2013-01-01

    Juvenile hormone acid methyltransferase (JHAMT) is an enzyme involved in one of the final steps of juvenile hormone biosynthesis in insects. It transfers a methyl group from S-adenosyl-L-methionine (SAM) to the carboxyl group of either farnesoic acid (FA) or JH acid (JHA). Several genes coding for JHAMT have been cloned and characterized from insects from different or