WorldWideScience

Sample records for abeja apis mellifera

  1. Impacto de la introducción de la abeja doméstica (Apis mellifera, Apidae en el Parque Nacional del Teide (Tenerife, Islas Canarias

    Directory of Open Access Journals (Sweden)

    A. Valido

    2014-01-01

    Full Text Available En el Parque Nacional del Teide (Tenerife, Islas Canarias se autoriza, cada primavera, la introducción de unas 3000 colmenas de abeja doméstica (Apis mellifera, Apidae. Esto implica que unos 100 millones de abejas melíferas compiten por néctar y polen con la fauna polinizadora nativa (insectos, aves y lagartos de este ecosistema peculiar de alta montaña. Si tenemos en cuenta que A. mellifera es considerada como un polinizador poco eficaz, la masiva presencia de abejas domésticas puede además incidir negativamente tanto en la producción de frutos y semillas como en la viabilidad de las semillas y el vigor de las plántulas. El objetivo de este artículo es señalar las consecuencias ecológicas de la introducción de A. mellifera en la red de interacciones mutualistas en esta área protegida (con un elevado porcentaje de especies endémicas, además de revisar el impacto de la abeja doméstica sobre la flora y fauna nativa en otros sistemas insulares. Los resultados obtenidos muestran que la diversidad de polinizadores disminuye sustancialmente tras la introducción de A. mellifera. Además, se detecta una reducción significativa en la eficacia reproductiva de aquellas plantas (Echium wildpretii, Spartocytisus supranubius frecuentemente visitadas por A. mellifera. Por todo ello, y en base a los resultados obtenidos, se recomienda eliminar completamente la presencia de colmenas en el interior del Parque Nacional del Teide con el fin de proteger su flora y fauna endémica.

  2. Estudio de la actividad antifúngica de un extracto de propóleo de la abeja Apis mellifera proveniente del estado de México

    OpenAIRE

    Amparo Londoño Orozco; José Guillermo Pinieres Carrillo; Carlos Gerardo García Tovar; Liborio Carrillo M.; María Leonor Quintero Mora; Susana Elvira García Vásquez; Marco Antonio Mendoza Saavedra; To natiuh Antonio Cruz Sánchez

    2013-01-01

    El objetivo del presente trabajo fue evaluar la acción inhibitoria de un extracto etanólico al 15% de propóleo de la abeja Apis mellifera, procedente del apiario de la Facultad de Estudios Superiores Cuautitlán, UNAM, sobre el crecimiento de Candida albicans (ATCC 14055), Cryptococcus neoformans, y Aspergillus fumigatus, mediante dos pruebas de susceptibilidad: difusión en agar y microdilución. Se impregnaron los discos con el extracto de propóleo. Las pruebas de difusión fueron efectuadas so...

  3. Micoflora asociada a granos de polen recolectados por abejas domésticas (Apis mellifera L

    Directory of Open Access Journals (Sweden)

    Carlos Manuel Bucio Villalobos

    2010-01-01

    Full Text Available Introducción: El polen cosechado de las explotaciones apícolas puede verse colonizado con hongos potencialmente toxigénicos durante su producción o almacenamiento, cuyas toxinas pueden tener consecuencias graves sobre la salud de las personas que lo consuman. El objetivo del presente trabajo fue cuantificar el grado de contaminación con hongos en 19 muestras de polen recolectado por las abejas, obtenidas en la ciudad de León, Gto. Método: 19 muestras de polen en diferentes presentaciones comerciales fueron obtenidas en tiendas naturistas de León, Gto., y fueron procesadas por triplicado colocando 100 gránulos sobre el medio de cultivo Papa Dextrosa Agar, e incubados por siete días a 25 °C. Al final del período de incubación se cuantificó el número de gránulos colonizados por los diferentes hongos. Resultados y Discusión: Los resultados mostraron que las tres muestras con mayor contaminación de hongos (98, 100 y 100 % fueron manejadas a granel, resultado similar al obtenido en un estudio previo realizado en 2007 con muestras recolectadas en la ciudad de Irapuato, Gto. Por otro lado, la contaminación de las muestras empacadas en envases de plástico duro (con y sin sellos en sus tapas tendieron a ser bajas, en contraste con lo encontrado en el estudio previo ya citado, donde hubo muestras envasadas de esa forma con más del 90 % de contaminación, lo que indica que el grado de contaminación no es consecuencia solamente de la forma de envasar el polen. La incidencia de los hongos encontrados fue en general baja: Aspergillus (3.6 %, Alternaria (3.6 %, Mucor (3.1 %, Fusarium (2.9 %, Penicillium (2.9 % y Rhizopus (0.7 %, habiéndose encontrado dentro del género Aspergillus la especie A. flavus, la cual puede incluir cepas capaces de producir aflatoxinas. Esta especie fue detectada en 4 de las 19 muestras analizadas, con incidencias de 27, 14, 10 y 1 %, las cuales fueron más altas que las encontradas en el estudio previo hecho en

  4. Evaluation of Yield Component Traits of Honeybee-Pollinated (Apis mellifera L.Rapeseed Canola (Brassica napus L. Evaluación de Parámetros de Rendimiento del Raps (Brassica napus L. Polinizado por Abejas (Apis mellifera L.

    Directory of Open Access Journals (Sweden)

    Ximena Araneda Durán

    2010-06-01

    Full Text Available Recent introduction of hybrid varieties raises the question if bees (Apis mellifera L. contribute as pollinator agents in developing the full yield potential of rapeseed (Brassica napus L.. In order to evaluate the yield achieved by B. napus cv. Artus pollinated by A. mellifera testing was carried out in the district of Freire, La Araucanía Region, Chile. This consisted in isolating or excluding rapeseed plants from pollinators with exclusion cages. Treatments applied were total exclusion (T1, partial exclusion (T2 and free pollination (T0 with a density of 6.5 hives ha-1, in order to determine the following yield components traits: grains per silique, siliques per plant, 1000 grain weight and yield. The experimental design used was randomized complete blocks with three treatments and three replicates. Results obtained show that the parameter least affected by bee intervention was the grains per silique variable. In contrast, siliques per plant and 1000 grain weight parameters presented significant differences, contributing to a yield greater than 5 t ha-1; which represented a figure 50.34% higher than in the treatment without bees. It may be concluded that the inclusion of bees in crops is fully justified as a production tool.La reciente introducción de variedades híbridas plantea la interrogante de la contribución que pueda tener la presencia de abejas (Apis mellifera L. como agentes polinizadores para desarrollar en pleno el potencial productivo del raps (Brassica napus L.. Con el objetivo de evaluar el rendimiento alcanzado por B. napus cv. Artus polinizado por A. mellifera, se realizó un ensayo en la localidad de Freire, Región de La Araucanía, Chile. Éste consistió en aislar o excluir las plantas de raps de los polinizadores mediante el uso de jaulas excluidoras. Los tratamientos consistieron en la exclusión total (T1, exclusión parcial (T2 y libre polinización (T0 con una densidad de 6,5 colmenas ha-1, con el fin de determinar

  5. Producción de miel e infestación con Varroa destructor de abejas africanizadas (Apis mellifera con alto y bajo comportamiento higiénico

    Directory of Open Access Journals (Sweden)

    Carlos Aurelio Medina-Flores

    2014-01-01

    Full Text Available El objetivo del estudio fue comparar la producción de miel y los niveles de Varroa destructor entre colonias de abejas africanizadas (AA ( Apis mellifera con alto y bajo comportamiento higiénico (CH en el altiplano semiárido de México. Se midió el nivel de CH a 57 colonias por congelamiento de la cría con nitrógeno líquido (N 2 . Las colonias se clasificaron en dos grupos: alto CH (> 95 % y bajo CH (0.05. Estos resultados sugieren que aparentemente el comportamiento higiénico no tiene un efecto mayor en la resistencia de las AA al crecimiento poblaci onal del ácaro. También sugieren que el comportamiento higiénico alto podría contribuir a incrementar la producción de miel en épocas del año con flujo reducido de néctar.

  6. Estudio de la actividad antifúngica de un extracto de propóleo de la abeja Apis mellifera proveniente del estado de México

    Directory of Open Access Journals (Sweden)

    Amparo Londoño Orozco

    2013-05-01

    Full Text Available El objetivo del presente trabajo fue evaluar la acción inhibitoria de un extracto etanólico al 15% de propóleo de la abeja Apis mellifera, procedente del apiario de la Facultad de Estudios Superiores Cuautitlán, UNAM, sobre el crecimiento de Candida albicans (ATCC 14055, Cryptococcus neoformans, y Aspergillus fumigatus, mediante dos pruebas de susceptibilidad: difusión en agar y microdilución. Se impregnaron los discos con el extracto de propóleo. Las pruebas de difusión fueron efectuadas sobre agar dextrosa Sabouraud (SDA, Müeller-Hinton con 2% de glucosa y 0,5 μg/mL de azul de metileno (MHAM: documento NCCLS M-44ª y RPMI 1640 con agar noble. Para obtener la concentración inhibitoria mínima (CIM, se realizaron pruebas de microdilución según los métodos M27-A2 (levaduras y M38-A (filamentosos del NCCLS (National Committee for Clinical Laboratory Standard: ahora Institute for Clinical Laboratory Standard. Se observó actividad inhibitoria sobre el desarrollo de todos los hongos estudiados. Estos resultados sugieren el posible potencial del propóleo como un tratamiento alternativo contra las infecciones por hongos, tanto levaduriformes como filamentosos.

  7. Aspectos toxinológicos y biomédicos del veneno de las abejas Apis mellifera

    Directory of Open Access Journals (Sweden)

    Rafael Valderrama Hernández

    2003-03-01

    Full Text Available Bee venom includes organic components of low and high molecular weight such as simple peptides like apamin, polypeptides like mellitin and enzymes like phospholipase A2 and hyaluronidase. It was recently demonstrated that some citrates are also important components of this venom. Mellitin and phospholipase A2 are the main and more abundant components, around 75%, in a ratio of 3:1; mellitin interacts with human red blood cells membranes producing hemolysis; and phospholipase A2, the main allergen of the venom, may act as blocking agent causing respiratory paralysis. Apamin represents about 2% of the total venom; it is less toxic than the aforementioned substances and acts as a motor neurotoxin; it is also responsible for triggering a cardiostimulant effect similar to that of adrenergic drugs; it has antiarrhythmic properties as well. Peptide MCD (Mast Cell Degranulation factor constitutes 2% of the venom, and it is one of the components responsible for histamine and serotonin release. Additionally, other components have been identified such as acid phosphatase, norepinephrine, dopamine and histamine. This review discusses aspects of the conformation and function of the bee stinging apparatus, of venom composition and action and ofs the behavior and habits of these insects. Finally, handling and treatment of bees bites are discussed. Applied aspects of the European and Africanized bees are compared. El veneno de abejas incluye compuestos orgánicos de bajo y alto peso molecular. Se encuentran en él péptidos simples como la apamina, polipéptidos como la melitina y enzimas como la fosfolipasa A2 y la hialuronidasa; recientemente se demostró que algunos citratos son también componentes mayores del veneno. La melitina y la fosfolipasa A2 son los componentes principales y más abundantes, cerca del 75%, en una relación 3:1. La melitina se adhiere a las membranas de los glóbulos rojos, produciendo hemólisis; la fosfolipasa A2, el mayor de los

  8. Producción del manzano (Malus sp. cv Anna en el oriente Antioqueño con la abeja melífera, Apis mellifera L. (hymenoptera: apidae.

    Directory of Open Access Journals (Sweden)

    Botero Garcés Natalia

    2000-06-01

    Full Text Available La necesidad de diversificar cultivos ha marcado el comienzo de otras alternativas agronómicas en nuestro país tales como la producción de manzano. Hace unos 6 años se inició en Colombia la plantación de cultivares comerciales mejorados de cuya biología y necesidades poco se sabe. Se planteó un estudio sobre la influencia de la polinización entomófila en la producción de manzana Anna. El trabajo se desarrolló en un cultivo de manzano en el Municipio del Carmen de Viboral (Oriente Antioqueño, correspondiente a la zona de vida bosque húmedo montano bajo (bh-MB, con temperatura promedio anual de 14-24°C, altura de 2200 msnm y precipitación promedio anual de 1800 mm. Se propuso estimar el efecto de los insectos polinizadores en la producción, comparando ésta en ramas enjauladas excluidas de todos los visitantes florales, con la de ramas expuestas a éstos durante la floración, en árboles escogidos al azar. Se encontró que las ramas que habían sido visitadas por insectos producían significativamente más manzanas (t = 2,95, para t0.05 con 18 g.l., con mayor pesos (t=2,21, para t0.05 con 18 g.l. y mayor número de semillas (t=3.75, para t0.05 con 18 g.l., que ramas sin acceso de visitantes florales. Una medición de índices de diversidad mostró que la abeja melífera (Apis mellifera L. constituyó el 76% de los visitantes florales y que la diversidad fue muy baja (λ=0.7439. Se concluyó que el manzano Anna requiere polinización entomófila, que la abeja melífera fue el polinizador más importante y que se incrementó significativamente la producción de frutos bajo la influencia de esta especie de abeja. Se recomienda la introducción al cultivo de Apis mellifera al momento de la floración, para garantizar una producción adecuada.

  9. Aprendizaje olfativo temprano en la abeja (Apis mellifera) y su rol en la toma de decisiones relacionadas con la obtención de recursos

    OpenAIRE

    Arenas, Andrés

    2009-01-01

    Tempranamente en la vida de un animal las experiencias pueden moldear de forma dramática su comportamiento adulto. Utilizando a la abeja melífera nos propusimos entender la influencia de las experiencias olfativas precoces durante el estadio adulto sobre los comportamientos en individuos que hayan alcanzado edades en donde las actividades de recolección de recursos son frecuentes. Para ello evaluamos la retención de memorias olfativas establecidas en obreras de distintas edades observando que...

  10. Infestation levels of the mite Varroa jacobsoni in worker and drone honey bee (Apis mellifera) brood in France and Brazil

    OpenAIRE

    Ramírez B., William; Navarro F., Juan R

    2016-01-01

    En un muestreo de varios centenares de celdillas, las larvas de abejas obreras (Apis mellifera mellifera) en Francia. contenían un mayor número de hembras colonizadoras del ácaro Varroa jacobsoni que sus equivalentes "africanas" en Brasil (Apis mellifera scutellala). Las larvas de zángano de ambos subespecies fueron igualmente colonizadas por el ácaro. Cuando hubo larvas de zángano adyacentes a larvas de obrera en el mismo panal de abeja africana. se encontró un número mayor de ácaros en las ...

  11. Evidence of Apis cerana Sacbrood virus Infection in Apis mellifera

    Science.gov (United States)

    Gong, Hong-Ri; Chen, Xiu-Xian; Chen, Yan Ping; Hu, Fu-Liang; Zhang, Jiang-Lin; Lin, Zhe-Guang; Yu, Ji-Wei

    2016-01-01

    Sacbrood virus (SBV) is one of the most destructive viruses in the Asian honeybee Apis cerana but is much less destructive in Apis mellifera. In previous studies, SBV isolates infecting A. cerana (AcSBV) and SBV isolates infecting A. mellifera (AmSBV) were identified as different serotypes, suggesting a species barrier in SBV infection. In order to investigate this species isolation, we examined the presence of SBV infection in 318 A. mellifera colonies and 64 A. cerana colonies, and we identified the genotypes of SBV isolates. We also performed artificial infection experiments under both laboratory and field conditions. The results showed that 38 A. mellifera colonies and 37 A. cerana colonies were positive for SBV infection. Phylogenetic analysis based on RNA-dependent RNA polymerase (RdRp) gene sequences indicated that A. cerana isolates and most A. mellifera isolates formed two distinct clades but two strains isolated from A. mellifera were clustered with the A. cerana isolates. In the artificial-infection experiments, AcSBV negative-strand RNA could be detected in both adult bees and larvae of A. mellifera, although there were no obvious signs of the disease, demonstrating the replication of AcSBV in A. mellifera. Our results suggest that AcSBV is able to infect A. mellifera colonies with low prevalence (0.63% in this study) and pathogenicity. This work will help explain the different susceptibilities of A. cerana and A. mellifera to sacbrood disease and is potentially useful for guiding beekeeping practices. PMID:26801569

  12. Evaluacion del efecto de Beauveria bassiana en el control biológico de Varroa destructor, parasito de la abeja melífera (Apis mellifera en la finca Felisa en el municipio de los Patios, Norte de Santander - Evaluacion del efecto de Beauveria bassiana en el control biológico de Varroa destructor, parasito de la abeja melífera (Apis mellifera en la finca Felisa en el municipio de los Patios, Norte de Santander

    Directory of Open Access Journals (Sweden)

    Francy Liliana Duarte

    2013-08-01

    Full Text Available Beekeeping is an activity that produces significant benefits to agriculture and the environment; Through the pollination action of bees helps to increase productivity as well as biodiversity in the ecosystem. In recent years, has significantly increased prevalence of parasites in this species, particularly the Varroasis, a disease caused by the mite Varroa destructor. The causal agent produces losses between 30% and 50% of total production and in turn can cause damage to the quality of honey by the excessive use of chemicals for disease control and the slow and progressive deterioration health of producers. Noting this, we evaluated the incidence of fungus Beauveria bassiana in natural populations of Varroa destructor in acarofauna associated, and the remains of the hive by pathogenicity tests in laboratory conditions to evaluate the effect of the biocontrol entomopathogenic then enter in apiaries infected with the disease. According to the results obtained in the adult infestation of V. destructor in Apis mellifera Africanized sampling Felisa made on the farm in the municipality of Los Patios, recorded rates of infestation in hives from 3.4% to 8.3% on the infection status of breeding was 4.5% to 13.7%. In laboratory tests it was possible to observe thatthe fungus B. bassiana attacked by an effective control mites without harming bees, propolis and honey allowing the insect to continue their normal activities, controlling the disease in a biological, not chemical.

  13. Control del parásito Varroa destructor (Acari: Varroidae en colmenas de la abeja Apis mellifera (Hymenoptera: Apidae mediante la aplicación de la técnica de entrampado

    Directory of Open Access Journals (Sweden)

    Natalia DAMIANI

    2006-01-01

    Full Text Available La parasitosis causada por el ácaro Varroa destructor (Anderson & Trueman es, actualmente considerada el mayor escollo para el desarrollo de la apicultura. El objetivo del presente trabajo fue evaluar la técnica del entrampamiento de ácaros en panales de cría, como posible método de control de la parasitosis. El trabajo se llevó a cabo en Coronel Vidal, provincia de Buenos Aires. Se trabajó sobre colmenas tipo Langstroth del híbrido regional de Apis mellifera (Linneaus. En cada colmena experimental se procedió a confinar a la reina en panales trampa específicos, con el fin de poder controlar la oviposición. Estos panales, luego de ser operculados por las obreras, fueron llevados al laboratorio donde se desoperculó cada una de las celdas de cría, y se contabilizó el número de ácaros presentes. Esta técnica se aplicó variando el número de panales trampa (1-3 colocados, tanto para los constituidos por celdas de cría de obreras como de zánganos. También, se evaluó el impacto de la aplicación de esta técnica sobre el desarrollo de las colonias, mediante la medición de su productividad. Los resultados indican, que la técnica empleada sólo es efectiva, cuando se aplican tres panales de cría de zánganos de manera consecutiva alcanzando una efectividad máxima de 84%. Cuando se aplican tres panales de obreras, la técnica mostró niveles de efectividad muy inferiores (14%. En las colonias sobre las que se aplicó esta técnica, la productividad de miel se redujo significativamente, comparada con las colonias control. Esta técnica resulta ideal para ser combinada con otros mecanismos de control, disminuyendo la aplicación de sustancias químicas que puedan contaminar la miel, y la generación de resistencia por parte del ácaro frente a los principios activos utilizados para su control.

  14. The Apis mellifera filamentous virus genome

    Science.gov (United States)

    A complete reference genome of the Apis mellifera Filamentous virus (AmFV) was determined using Illumina Hiseq sequencing. The AmFV genome is a double strand DNA molecule of approximately 498’500 nucleotides with a GC content of 50.8%. It encompasses 251 non overlapping open reading frames (ORFs), e...

  15. Standard methods for Apis mellifera propolis research

    Science.gov (United States)

    Propolis is one of the most fascinating honey bee (Apis mellifera L.) products. It is a plant derived product that bees produce from resins that they collect from different plant organs and with which they mix beeswax. Propolis is a building material and a protective agent in the beehive. It also pl...

  16. Control del parásito Varroa destructor (Acari: Varroidae en colmenas de la abeja Apis mellifera (Hymenoptera: Apidae mediante la aplicación de la técnica de entrampado Control of the parasite Varroa destructor (Acari: Varroidae in honeybee colonies of Apis mellifera (Hymenoptera: Apidae applying brood trap combs

    Directory of Open Access Journals (Sweden)

    Natalia Damiani

    2006-07-01

    Full Text Available La parasitosis causada por el ácaro Varroa destructor (Anderson & Trueman es, actualmente considerada el mayor escollo para el desarrollo de la apicultura. El objetivo del presente trabajo fue evaluar la técnica del entrampamiento de ácaros en panales de cría, como posible método de control de la parasitosis. El trabajo se llevó a cabo en Coronel Vidal, provincia de Buenos Aires. Se trabajó sobre colmenas tipo Langstroth del híbrido regional de Apis mellifera (Linneaus. En cada colmena experimental se procedió a confinar a la reina en panales trampa específicos, con el fin de poder controlar la oviposición. Estos panales, luego de ser operculados por las obreras, fueron llevados al laboratorio donde se desoperculó cada una de las celdas de cría, y se contabilizó el número de ácaros presentes. Esta técnica se aplicó variando el número de panales trampa (1-3 colocados, tanto para los constituidos por celdas de cría de obreras como de zánganos. También, se evaluó el impacto de la aplicación de esta técnica sobre el desarrollo de las colonias, mediante la medición de su productividad. Los resultados indican, que la técnica empleada sólo es efectiva, cuando se aplican tres panales de cría de zánganos de manera consecutiva, alcanzando una efectividad máxima de 84%. Cuando se aplican tres panales de obreras, la técnica mostró niveles de efectividad muy inferiores (14%. En las colonias sobre las que se aplicó esta técnica, la productividad de miel se redujo significativamente, comparada con las colonias control. Esta técnica resulta ideal para ser combinada con otros mecanismos de control, disminuyendo la aplicación de sustancias químicas que puedan contaminar la miel, y la generación de resistencia por parte del ácaro frente a los principios activos utilizados para su control.At present, Varroosis is considered the major problem to beekeeping development. The aim of this work was to evaluate brood tramp combs

  17. Evidence of Apis cerana Sacbrood virus Infection in Apis mellifera.

    Science.gov (United States)

    Gong, Hong-Ri; Chen, Xiu-Xian; Chen, Yan Ping; Hu, Fu-Liang; Zhang, Jiang-Lin; Lin, Zhe-Guang; Yu, Ji-Wei; Zheng, Huo-Qing

    2016-04-01

    Sacbrood virus(SBV) is one of the most destructive viruses in the Asian honeybee Apis cerana but is much less destructive in Apis mellifera In previous studies, SBV isolates infecting A. cerana(AcSBV) and SBV isolates infecting A. mellifera(AmSBV) were identified as different serotypes, suggesting a species barrier in SBV infection. In order to investigate this species isolation, we examined the presence of SBV infection in 318A. mellifera colonies and 64A. cerana colonies, and we identified the genotypes of SBV isolates. We also performed artificial infection experiments under both laboratory and field conditions. The results showed that 38A. mellifera colonies and 37A. cerana colonies were positive for SBV infection. Phylogenetic analysis based on RNA-dependent RNA polymerase (RdRp) gene sequences indicated that A. cerana isolates and most A. mellifera isolates formed two distinct clades but two strains isolated fromA. mellifera were clustered with theA. cerana isolates. In the artificial-infection experiments, AcSBV negative-strand RNA could be detected in both adult bees and larvae ofA. mellifera, although there were no obvious signs of the disease, demonstrating the replication of AcSBV inA. mellifera Our results suggest that AcSBV is able to infectA. melliferacolonies with low prevalence (0.63% in this study) and pathogenicity. This work will help explain the different susceptibilities ofA. cerana and A. melliferato sacbrood disease and is potentially useful for guiding beekeeping practices.

  18. Dosis Letal Media (DL50 de algunos aceites esenciales y biocidas efectivos para el control de Ascosphaera apis en Apis mellifera L. - Median Lethal Dose (LD50 of some essential oils and biocides effective for the control of Ascosphaera apis on Apis mellifera L

    Directory of Open Access Journals (Sweden)

    Albo, Graciela N

    2010-10-01

    Full Text Available ResumenLa ascofaeriosis o cría yesificada, es una enfermedad de la abeja melífera (Apis mellifera L. causada por el hongo Ascosphaera apis que produce la momificación de las larvas. Los aceites esenciales poseen efectos antimicrobianos y han sido utilizados para el control de cría yesificada. Por otra parte, a nivel mundial se han probado gran cantidad de productos de síntesis, pero ninguno ha resultado 100 % eficaz. SummaryChalkbrood is a disease of the honeybee (Apis mellifera L caused by the fungus Ascosphaera apis that transforms larvae into mummies. Essential oils have showed antimicrobial activity and have been used in the control of chalkbrood. Moreover, world-wide, great number of synthesized products have been assayed but no one has resulted 100% effective.

  19. Efecto de la cantidad de cría de abeja Apis mellifera (Apidae sobre la eficacia del Oxavar® para el control del ácaro Varroa destructor (Varroidae Effect of Apis mellifera (Apidae honeybee brood amount on Oxavar® acaricide efficacy against the mite Varroa destructor (Varroidae

    Directory of Open Access Journals (Sweden)

    Jorge Marcangeli

    2004-12-01

    Full Text Available El objetivo del presente trabajo fue evaluar la eficacia acaricida del Oxavar® en el control del ácaro ectoparásito Varroa destructor (Anderson & Trueman. El trabajo fue realizado en el apiario experimental del Centro de Extensión Apícola ubicado en Coronel Vidal, provincia de Buenos Aires. Se seleccionaron diez colmenas tipo Langstroth que fueron divididas en dos grupos: a cinco colmenas con tres cuadros cubiertos completamente de cría en desarrollo y b cinco colmenas con seis cuadros cubiertos por cría. Ambos grupos recibieron cinco ml of Oxavar® (Apilab, Argentina; 64,6 g/l de ácido oxálico en agua destilada por cuadro cubierto por abejas adultas en tres dosis a intervalos de siete días. Semanalmente, se colectaron los ácaros muertos de los pisos especiales provistos a las colmenas de estudio con el objeto de evitar su remoción por parte de las abejas. Una vez concluido el tratamiento, en cada colmena se introdujeron dos tiras plásticas de Apistan® (Roteh, Argentina para eliminar los ácaros remanentes y poder así calcular la eficacia acaricida del Oxavar®. Los resultados mostraron que la eficacia del Oxavar® en el primer grupo (85,6% ± 1,4 resultó significativamente superior a la registrada en el segundo grupo (75,7 ± 1,7. Estas diferencias fueron testeadas a partir del número total de ácaros eliminados por el Oxavar® y Apistan® en ambos grupos de colmenas (pThe aim of this work was to evaluate the effect of honeybee brood on acaricide efficacy of Oxavar® to control the ectoparasitic mite Varroa destructor (Anderson & Trueman. Work was done at Centro de Extensión Apícola experimental apiary located at Coronel Vidal, province of Buenos Aires. Ten Langstroth hives were selected and divided in two groups: a hives containing three honeybee combs full of brood and b hives containing six honeybee brood combs. Both groups received five ml of Oxavar® (Laboratorio Apilab, Argentina; 64.6 g/l oxalic acid in destilled water

  20. Detección de Malpighamoeba mellificae (Protista: Amoebozoa en Apis mellifera (Hymenoptera: Apidae de Argentina

    Directory of Open Access Journals (Sweden)

    Santiago PLISCHUK

    2010-01-01

    Full Text Available Debido a su rol como polinizador y productor de miel, la abeja Apis mellifera L. es considerado un insecto beneficioso. Si bien Argentina juega un papel de liderazgo en la producción de miel, existe un considerable vacío en el conocimiento acerca de las enfermedades de etiología protista que afectan las abejas en el país. La ameba Malpighamoeba mellificae Prell es un protista entomopatógeno que invade los túbulos de Malpighi de las abejas e interfiere con el proceso de excreción, debilitando al huésped y posiblemente facilitando la acción de otros patógenos. En esta contribución se presentan los primeros hallazgos de M. mellificae en Argentina y se brindan datos iniciales acerca de su frecuencia, intensidad de las infecciones, y co-ocurrencia con Nosema sp. Malpighamoeba mellificae se halló en dos de 36 localidades prospectadas: San Cayetano, al Sur de la provincia de Buenos Aires y San Carlos de Bariloche, en el Oeste de la provincia de Río Negro.

  1. Rare royal families in honeybees, Apis mellifera

    Science.gov (United States)

    Moritz, Robin F. A.; Lattorff, H. Michael G.; Neumann, Peter; Kraus, F. Bernhard; Radloff, Sarah E.; Hepburn, H. Randall

    2005-10-01

    The queen is the dominant female in the honeybee colony, Apis mellifera, and controls reproduction. Queen larvae are selected by the workers and are fed a special diet (royal jelly), which determines caste. Because queens mate with many males a large number of subfamilies coexist in the colony. As a consequence, there is a considerable potential for conflict among the subfamilies over queen rearing. Here we show that honeybee queens are not reared at random but are preferentially reared from rare “royal” subfamilies, which have extremely low frequencies in the colony's worker force but a high frequency in the queens reared.

  2. Detección de Malpighamoeba mellifcae (Protista: Amoebozoa en Apis mellifera (Hymenoptera: Apidaede Argentina Detection of Malpighamoeba mellifcae (Protista: Amoebozoa in Apis mellifera (Hymenoptera: Apidae of Argentina

    Directory of Open Access Journals (Sweden)

    Santiago Plischuk

    2010-12-01

    Full Text Available Debido a su rol como polinizador y productor de miel, la abeja Apis mellifera L. es considerado un insecto beneficioso. Si bien Argentina juega un papel de liderazgo en la producción de miel, existe un considerable vacío en el conocimiento acerca de las enfermedades de etiología protista que afectan las abejas en el país. La ameba Malpighamoeba mellificae Prell es un protista entomopatógeno que invade los túbulos de Malpighi de las abejas e interfiere con el proceso de excreción, debilitando al huésped y posiblemente facilitando la acción de otros patógenos. En esta contribución se presentan los primeros hallazgos de M. mellificae en Argentina y se brindan datos iniciales acerca de su frecuencia, intensidad de las infecciones, y co-ocurrencia con Nosema sp. Malpighamoeba mellificae se halló en dos de 36 localidades prospectadas: San Cayetano, al Sur de la provincia de Buenos Aires y San Carlos de Bariloche, en el Oeste de la provincia de Río Negro.Due to its role as a pollinator and honey producer, the honey bee Apis mellifera L. is considered a beneficial insect. Although Argentina plays a leading role in honey production, there is a considerable gap in knowledge regarding protistan diseases that affect honey bees in the country. The amoeba Malpighamoeba mellificae Prell is an entomopathogenic protist that invades the Malpighian tubules of honey bees and interferes with the excretory process, debilitating the host and possibly facilitating the action of other pathogens. In this contribution, we present the first reports of M. mellificae in Argentina, and provide some initial data about its frecuency, infection intensity, and co-occurrence with Nosema sp. Malpighamoeba mellificae was found in two out of 36 localities surveyed: San Cayetano, in southern Buenos Aires province, and San Carlos de Bariloche, in western Río Negro province.

  3. Article original Agronomy Foraging behaviour of Apis mellifera ...

    African Journals Online (AJOL)

    Hilaire

    Foraging behaviour of Apis mellifera adansonii and its impact on pollination, fruit and .... temperature is about 25°C. ... area before November 15, sugar baby variety of ... abundance, direct observations of the foraging ..... 4 Cane J.H., 2002.

  4. The Apis mellifera Filamentous Virus Genome

    Directory of Open Access Journals (Sweden)

    Laurent Gauthier

    2015-07-01

    Full Text Available A complete reference genome of the Apis mellifera Filamentous virus (AmFV was determined using Illumina Hiseq sequencing. The AmFV genome is a double stranded DNA molecule of approximately 498,500 nucleotides with a GC content of 50.8%. It encompasses 247 non-overlapping open reading frames (ORFs, equally distributed on both strands, which cover 65% of the genome. While most of the ORFs lacked threshold sequence alignments to reference protein databases, twenty-eight were found to display significant homologies with proteins present in other large double stranded DNA viruses. Remarkably, 13 ORFs had strong similarity with typical baculovirus domains such as PIFs (per os infectivity factor genes: pif-1, pif-2, pif-3 and p74 and BRO (Baculovirus Repeated Open Reading Frame. The putative AmFV DNA polymerase is of type B, but is only distantly related to those of the baculoviruses. The ORFs encoding proteins involved in nucleotide metabolism had the highest percent identity to viral proteins in GenBank. Other notable features include the presence of several collagen-like, chitin-binding, kinesin and pacifastin domains. Due to the large size of the AmFV genome and the inconsistent affiliation with other large double stranded DNA virus families infecting invertebrates, AmFV may belong to a new virus family.

  5. Magnetoreception system in honeybees (Apis mellifera.

    Directory of Open Access Journals (Sweden)

    Chin-Yuan Hsu

    Full Text Available Honeybees (Apis mellifera undergo iron biomineralization, providing the basis for magnetoreception. We showed earlier the presence of superparamagnetic magnetite in iron granules formed in honeybees, and subscribed to the notion that external magnetic fields may cause expansion or contraction of the superparamagnetic particles in an orientation-specific manner, relaying the signal via cytoskeleton (Hsu and Li 1994. In this study, we established a size-density purification procedure, with which quantitative amount of iron granules was obtained from honey bee trophocytes and characterized; the density of iron granules was determined to be 1.25 g/cm(3. While we confirmed the presence of superparamagnetic magnetite in the iron granules, we observed changes in the size of the magnetic granules in the trophycytes upon applying additional magnetic field to the cells. A concomitant release of calcium ion was observed by confocal microscope. This size fluctuation triggered the increase of intracellular Ca(+2 , which was inhibited by colchicines and latrunculin B, known to be blockers for microtubule and microfilament syntheses, respectively. The associated cytoskeleton may thus relay the magnetosignal, initiating a neural response. A model for the mechanism of magnetoreception in honeybees is proposed, which may be applicable to most, if not all, magnetotactic organisms.

  6. Honeybee (Apis mellifera ligustica) drone embryo proteomes.

    Science.gov (United States)

    Li, Jianke; Fang, Yu; Zhang, Lan; Begna, Desalegn

    2011-03-01

    Little attention has been paid to the drone honeybee (Apis mellifera ligustica) which is a haploid individual carrying only the set of alleles that it inherits from its mother. Molecular mechanisms underlying drone embryogenesis are poorly understood. This study evaluated protein expression profiles of drone embryogenesis at embryonic ages of 24, 48 and 72h. More than 100 reproducible proteins were analyzed by mass spectrometry on 2D electrophoresis gels. Sixty-two proteins were significantly changed at the selected three experimental age points. Expression of the metabolic energy requirement-related protein peaked at the embryonic age of 48h, whereas development and metabolizing amino acid-related proteins expressed optimally at 72h. Cytoskeleton, protein folding and antioxidant-related proteins were highly expressed at 48 and 72h. Protein networks of the identified proteins were constructed and protein expressions were validated at the transcription level. This first proteomic study of drone embryogenesis in the honeybee may provide geneticists an exact timetable and candidate protein outline for further manipulations of drone stem cells.

  7. The Apis mellifera Filamentous Virus Genome.

    Science.gov (United States)

    Gauthier, Laurent; Cornman, Scott; Hartmann, Ulrike; Cousserans, François; Evans, Jay D; de Miranda, Joachim R; Neumann, Peter

    2015-07-09

    A complete reference genome of the Apis mellifera Filamentous virus (AmFV) was determined using Illumina Hiseq sequencing. The AmFV genome is a double stranded DNA molecule of approximately 498,500 nucleotides with a GC content of 50.8%. It encompasses 247 non-overlapping open reading frames (ORFs), equally distributed on both strands, which cover 65% of the genome. While most of the ORFs lacked threshold sequence alignments to reference protein databases, twenty-eight were found to display significant homologies with proteins present in other large double stranded DNA viruses. Remarkably, 13 ORFs had strong similarity with typical baculovirus domains such as PIFs (per os infectivity factor genes: pif-1, pif-2, pif-3 and p74) and BRO (Baculovirus Repeated Open Reading Frame). The putative AmFV DNA polymerase is of type B, but is only distantly related to those of the baculoviruses. The ORFs encoding proteins involved in nucleotide metabolism had the highest percent identity to viral proteins in GenBank. Other notable features include the presence of several collagen-like, chitin-binding, kinesin and pacifastin domains. Due to the large size of the AmFV genome and the inconsistent affiliation with other large double stranded DNA virus families infecting invertebrates, AmFV may belong to a new virus family.

  8. Cultured Microbiological Content of the Intestinal Tract and Stored Pollen of Apis mellifera (Hymenoptera: Apidae Contenido microbiológico cultivable del tracto intestinal y polen almacenado de Apis mellifera (Hymenoptera: Apidae

    Directory of Open Access Journals (Sweden)

    García García Duberney

    2006-06-01

    Full Text Available Microorganisms associated with Apis mellifera were characterized. Samples were collected from storage pollen (young pollen and ripe pollen and carried in corbiculas, and bee's gut of newly born and adult workers. Bacteria belonging to Pseudomonas, Streptococcus, Micrococcus, Lactobacillus, Klebsiella, Proteus, Yersinia and Arthrobacter genus and molds of Rhizopus, Alternaria and Epicoccum genus were isolated. According to their biochemical properties some of these microbes may be involved in the outer pollen walls degradation and could have been acquired by the bees through food ingestion or contact with other bees. The molds presence is explicated by their wide environmental distribution; they are typically found in soil and plants chosen as food source by bees.Se caracterizaron los microorganismos cultivables asociados con Apis mellifera. Las muestras fueron tomadas a partir de polen almacenado (joven y maduro y transportado en corbículas y tracto digestivo de las abejas (forrajeras y recién nacidas. Se aislaron bacterias pertenecientes a los géneros Pseudomonas, Streptococcus, Micrococcus, Lactobacillus, Klebsiella, Proteus, y Arthrobacter y hongos de los géneros Rhizopus, Alternaria y Epicoccum. De acuerdo a sus propiedades bioquímicas, algunas de estas bacteriaspueden estar involucradas en la degradación de los compuestos de la capa externa del polen y son adquiridas por las abejas a través del alimento y contacto con otros individuos de la colmena. La presencia de los hongos se explica por su amplia distribución en el ambiente, ya que los tres géneros se encuentran comúnmente en el suelo y en las
    plantas que las abejas pueden seleccionar como fuente de alimento.

  9. CONTENIDO MICROBIOLÓGICO CULTIVABLE DEL TRACTO INTESTINAL Y POLEN ALMACENADO DE Apis mellifera (Hymenoptera: Apidae Cultured Microbiological Content of the Intestinal Tract and Stored Pollen of Apis mellifera (Hymenoptera: Apidae

    Directory of Open Access Journals (Sweden)

    DUBERNEY GARCÍA GARCÍA

    2006-06-01

    Full Text Available Se caracterizaron los microorganismos cultivables asociados con Apis mellifera. Las muestras fueron tomadas a partir de polen almacenado (joven y maduro y transportado en corbículas y tracto digestivo de las abejas (forrajeras y recién nacidas. Se aislaron bacterias pertenecientes a los géneros Pseudomonas, Streptococcus, Micrococcus, Lactobacillus, Klebsiella, Proteus, Yersinia y Arthrobacter y hongos de los géneros Rhizopus, Alternaria y Epicoccum. De acuerdo a sus propiedades bioquímicas, algunas de estas bacterias pueden estar involucradas en la degradación de los compuestos de la capa externa del polen y son adquiridas por las abejas a través del alimento y contacto con otros individuos de la colmena. La presencia de los hongos se explica por su amplia distribución en el ambiente, ya que los tres géneros se encuentran comúnmente en el suelo y en las plantas que las abejas pueden seleccionar como fuente de alimento.Microorganisms associated with Apis mellifera were characterized. Samples were collected from storage pollen (young pollen and ripe pollen and carried in corbiculas, and bee’s gut of newly born and adult workers. Bacteria belonging to Pseudomonas, Streptococcus, Micrococcus, Lactobacillus, Klebsiella, Proteus, Yersinia and Arthrobacter genus and molds of Rhizopus, Alternaria and Epicoccum genus were isolated. According to their biochemical properties some of these microbes may be involved in the outer pollen walls degradation and could have been acquired by the bees through food ingestion or contact with other bees. The molds presence is explicated by their wide environmental distribution; they are typically found in soil and plants chosen as food source by bees.

  10. Contenido microbiológico cultivable del tracto intestinal y polen almacenado de Apis mellifera (Hymenoptera: Apidae

    Directory of Open Access Journals (Sweden)

    Sánchez Nieves Jimena

    2005-12-01

    Full Text Available Se caracterizaron los microorganismos cultivables asociados con Apis mellifera. Las muestras fueron tomadas a partir de polen almacenado (joven y maduro y transportado en corbículas y
    tracto digestivo de abejas forrajeras y recién nacidas. Se aislaron bacterias pertenecientes a los géneros Pseudomonas, Streptococcus, Micrococcus, Lactobacillus, Klebsiella, Yersinia, Proteus y Arthrobacter y hongos de los géneros Rhizopus, Alternaria y Epicoccum. De acuerdo a sus propiedades bioquímicas, algunas de estas bacterias pueden estar involucradas en la degradación de los compuestos de la capa externa del polen y son adquiridas por las abejas a través del alimento y contacto con otros individuos de la colmena. La presencia de los hongos se explica por su amplia distribución
    en el ambiente, ya que los tres géneros se encuentran comúnmente en el suelo y en las plantas que las abejas pueden seleccionar como fuente de alimento.

  11. Comparative Foraging Behavior of Apis Cerana F. and Apis Mellifera L. in Rapeseed under Cage Condition in Chitwan, Nepal

    Directory of Open Access Journals (Sweden)

    Rameshwor Pudasaini

    2014-12-01

    Full Text Available An experiment was conducted to determine the foraging behavior of Apis mellifera L. and Apis cerana F. in rapeseed under cage condition in Chitwan, Nepal during 2012-2013. This experiment showed that Apis cerana F. foraged extra 42 minute per day as compared to Apis mellifera L. Apis cerana F. were more attracted to nectar, whereas Apis mellifera L. were more attracted to pollen collection throughout the day. The activities, in into hives and out from hives, for both species were recorded more at 2:00 pm and least at 8:00 am. The highest in-out were observed at 2:00 pm on both species as Apis mellifera L. 44.33 bees entered into hives and 49.66 bees went out of hives, whereas lower number of Apis cerana F. 43.66 bees entered into hives and 48.16 bees were out of hives. Apis mellifera L. collect 1.22:1 and 0.41:1 pollen nectar ratio at 10:00 am and 4:00 am whereas at same hours Apis cerana collect 1.16:1 and 0.30:1 pollen nectar ratio. Apis cerana F. foraged significantly higher number of rapeseed flowers and plants as compared to Apis mellifera L. under caged condition. It shows that Apis cerana F. was more efficient pollinator as compared to Apis mellifera L. under caged condition.

  12. From where did the Western honeybee (Apis mellifera) originate?

    Science.gov (United States)

    Han, Fan; Wallberg, Andreas; Webster, Matthew T

    2012-08-01

    The native range of the honeybee Apis mellifera encompasses Europe, Africa, and the Middle East, whereas the nine other species of Apis are found exclusively in Asia. It is therefore commonly assumed that A. mellifera arose in Asia and expanded into Europe and Africa. However, other hypotheses for the origin of A. mellifera have also been proposed based on phylogenetic trees constructed from genetic markers. In particular, an analysis based on >1000 single-nucleotide polymorphism markers placed the root of the tree of A. mellifera subspecies among samples from Africa, suggestive of an out-of-Africa expansion. Here, we re-evaluate the evidence for this and other hypotheses by testing the robustness of the tree topology to different tree-building methods and by removing specimens with a potentially hybrid background. These analyses do not unequivocally place the root of the tree of A. mellifera subspecies within Africa, and are potentially consistent with a variety of hypotheses for honeybee evolution, including an expansion out of Asia. Our analyses also support high divergence between western and eastern European populations of A. mellifera, suggesting they are likely derived from two distinct colonization routes, although the sources of these expansions are still unclear.

  13. Fertile diploid drones in africanized honeybees, Apis mellifera adansonii.

    Science.gov (United States)

    Chaud-Netto, J

    1977-02-15

    59 diploid drones of Apis mellifera adansonii, 12-37 days old, were tested for the presence of semen after provoked ejaculation; 13 drones ejaculated semen enough to be used in an instrumental insemination, but only three on them (5%) furnished 1 mm3 of semen. The problems referring to the attainment of descendants from the 2n drones are briefly discussed.

  14. Biophysics of the subgenual organ of the honeybee, Apis mellifera

    DEFF Research Database (Denmark)

    Kilpinen, Ole; Storm, Jesper

    1997-01-01

    The subgenual organ of the honeybee (Apis mellifera) is suspended in a haemolymph channel in the tibia of each leg. When the leg is accelerated, inertia causes the haemolymph (and the subgenual organ) to lag behind the movement of the rest of the leg. The magnitude of this phase lag determines...

  15. Standard methods for research on apis mellifera gut symbionts

    Science.gov (United States)

    Gut microbes can play an important role in digestion, disease resistance, and the general health of animals, but little is known about the biology of gut symbionts in Apis mellifera. This paper is part of a series on honey bee research methods, providing protocols for studying gut symbionts. We desc...

  16. Sperm use economy of honeybee (Apis mellifera) queens

    DEFF Research Database (Denmark)

    Baer, Boris; Collins, Jason; Maalaps, Kristiina;

    2016-01-01

    the fecundity and longevity of queens and therefore colony fitness. We quantified the number of sperm that honeybee (Apis mellifera) queens use to fertilize eggs. We examined sperm use in naturally mated queens of different ages and in queens artificially inseminated with different volumes of semen. We found...

  17. Modelling the subgenual organ of the honeybee, Apis mellifera

    DEFF Research Database (Denmark)

    Storm, Jesper; Kilpinen, Ole

    1998-01-01

    In a recent study on the honeybee (Apis mellifera), the subgenual organ was observed moving inside the leg during sinusoidal vibrations of the leg (Kilpinen and Storm 1997). The subgenual organ of the honeybee is suspended in a haemolymph channel in the tibia of each leg. When the leg accelerates...

  18. Standard methods for Apis mellifera anatomy and dissection

    Science.gov (United States)

    An understanding of the anatomy and functions of internal and external structures are fundamental to many studies on the honey bee Apis mellifera. Similarly, proficiency in dissection techniques is vital for many more complex procedures. In this paper, which is a prelude to the other papers of the C...

  19. Comparison of learning and memory of Apis cerana and Apis mellifera.

    Science.gov (United States)

    Qin, Qiu-Hong; He, Xu-Jiang; Tian, Liu-Qing; Zhang, Shao-Wu; Zeng, Zhi-Jiang

    2012-10-01

    The honeybee is an excellent model organism for research on learning and memory among invertebrates. Learning and memory in honeybees has intrigued neuroscientists and entomologists in the last few decades, but attention has focused almost solely on the Western honeybee, Apis mellifera. In contrast, there have been few studies on learning and memory in the Eastern honeybee, Apis cerana. Here we report comparative behavioral data of color and grating learning and memory for A. cerana and A. mellifera in China, gathered using a Y-maze apparatus. We show for the first time that the learning and memory performance of A. cerana is significantly better on both color and grating patterns than that of A. mellifera. This study provides the first evidence of a learning and memory difference between A. cerana and A. mellifera under controlled conditions, and it is an important basis for the further study of the mechanism of learning and memory in honeybees.

  20. [New Approach to the Mitotype Classification in Black Honeybee Apis mellifera mellifera and Iberian Honeybee Apis mellifera iberiensis].

    Science.gov (United States)

    Ilyasov, R A; Poskryakov, A V; Petukhov, A V; Nikolenko, A G

    2016-03-01

    The black honeybee Apis mellifera mellifera L. is today the only subspecies of honeybee which is suitable for commercial breeding in the climatic conditions of Northern Europe with long cold winters. The main problem of the black honeybee in Russia and European countries is the preservation of the indigenous gene pool purity, which is lost as a result of hybridization with subspecies, A. m. caucasica, A. m. carnica, A. m. carpatica, and A. m. armeniaca, introduced from southern regions. Genetic identification of the subspecies will reduce the extent of hybridization and provide the gene pool conservation of the black honeybee. Modern classification of the honeybee mitotypes is mainly based on the combined use ofthe DraI restriction endonuclease recognition site polymorphism and sequence polymorphism of the mtDNA COI-COII region. We performed a comparative analysis of the mtDNA COI-COII region sequence polymorphism in the honeybees ofthe evolutionary lineage M from Ural and West European populations of black honeybee A. m. mellifera and Spanish bee A. m. iberiensis. A new approach to the classification of the honeybee M mitotypes was suggested. Using this approach and on the basis of the seven most informative SNPs of the mtDNA COI-COII region, eight honeybee mitotype groups were identified. In addition, it is suggested that this approach will simplify the previously proposed complicated mitotype classification and will make it possible to assess the level of the mitotype diversity and to identify the mitotypes that are the most valuable for the honeybee breeding and rearing.

  1. Comparative sucrose responsiveness in Apis mellifera and A. cerana foragers.

    Science.gov (United States)

    Yang, Wenchao; Kuang, Haiou; Wang, Shanshan; Wang, Jie; Liu, Wei; Wu, Zhenhong; Tian, Yuanyuan; Huang, Zachary Y; Miao, Xiaoqing

    2013-01-01

    In the European honey bee, Apis mellifera, pollen foragers have a higher sucrose responsiveness than nectar foragers when tested using a proboscis extension response (PER) assay. In addition, Africanized honey bees have a higher sucrose responsiveness than European honey bees. Based on the biology of the Eastern honey bee, A. cerana, we hypothesized that A. cerana should also have a higher responsiveness to sucrose than A. mellifera. To test this hypothesis, we compared the sucrose thresholds of pollen foragers and nectar foragers in both A. cerana and A. mellifera in Fujian Province, China. Pollen foragers were more responsive to sucrose than nectar foragers in both species, consistent with previous studies. However, contrary to our hypothesis, A. mellifera was more responsive than A. cerana. We also demonstrated that this higher sucrose responsiveness in A. mellifera was not due to differences in the colony environment by co-fostering two species of bees in the same mixed-species colonies. Because A. mellifera foragers were more responsive to sucrose, we predicted that their nectar foragers should bring in less concentrated nectar compared to that of A. cerana. However, we found no differences between the two species. We conclude that A. cerana shows a different pattern in sucrose responsiveness from that of Africanized bees. There may be other mechanisms that enable A. cerana to perform well in areas with sparse nectar resources.

  2. Draft genome sequence of the Algerian bee Apis mellifera intermissa

    Directory of Open Access Journals (Sweden)

    Nizar Jamal Haddad

    2015-06-01

    Full Text Available Apis mellifera intermissa is the native honeybee subspecies of Algeria. A. m. intermissa occurs in Tunisia, Algeria and Morocco, between the Atlas and the Mediterranean and Atlantic coasts. This bee is very important due to its high ability to adapt to great variations in climatic conditions and due to its preferable cleaning behavior. Here we report the draft genome sequence of this honey bee, its Whole Genome Shotgun project has been deposited at DDBJ/EMBL/GenBank under the accession JSUV00000000. The 240-Mb genome is being annotated and analyzed. Comparison with the genome of other Apis mellifera sub-species promises to yield insights into the evolution of adaptations to high temperature and resistance to Varroa parasite infestation.

  3. Draft genome sequence of the Algerian bee Apis mellifera intermissa.

    Science.gov (United States)

    Haddad, Nizar Jamal; Loucif-Ayad, Wahida; Adjlane, Noureddine; Saini, Deepti; Manchiganti, Rushiraj; Krishnamurthy, Venkatesh; AlShagoor, Banan; Batainh, Ahmed Mahmud; Mugasimangalam, Raja

    2015-06-01

    Apis mellifera intermissa is the native honeybee subspecies of Algeria. A. m. intermissa occurs in Tunisia, Algeria and Morocco, between the Atlas and the Mediterranean and Atlantic coasts. This bee is very important due to its high ability to adapt to great variations in climatic conditions and due to its preferable cleaning behavior. Here we report the draft genome sequence of this honey bee, its Whole Genome Shotgun project has been deposited at DDBJ/EMBL/GenBank under the accession JSUV00000000. The 240-Mb genome is being annotated and analyzed. Comparison with the genome of other Apis mellifera sub-species promises to yield insights into the evolution of adaptations to high temperature and resistance to Varroa parasite infestation.

  4. Polymorphism analysis of csd gene in six Apis mellifera subspecies.

    Science.gov (United States)

    Wang, Zilong; Liu, Zhiyong; Wu, Xiaobo; Yan, Weiyu; Zeng, Zhijiang

    2012-03-01

    The complementary sex determination (csd) gene is the primary gene determining the gender of honey bees (Apis spp). In this study we analyzed the polymorphism of csd gene in six Apis mellifera subspecies. The genomic region 3 of csd gene in these six A. mellifera was cloned, and identified. A total of 79 haplotypes were obtained from these six subspecies. Analysis showed that region 3 of csd gene has a high level of polymorphism in all the six A. mellifera subspecies. The A. m. anatolica subspecies has a slightly higher nucleotide diversity (π) than other subspecies, while the π values showed no significant difference among the other five subspecies. The phylogenetic tree showed that all the csd haplotypes from different A. mellifera subspecies are scattered throughout the tree, without forming six different clades. Population differentiation analysis showed that there are significant genetic differentiations among some of the subspecies. The NJ phylogenetic tree showed that the A. m. caucasica and A. m. carnica have the closest relationship, followed by A. m. ssp, A. m. ligustica, A. m. carpatica and A. m. anatolica that were gathered in the tree in turn.

  5. Toxicity of Dimorphandra mollis to Workers of Apis mellifera

    Directory of Open Access Journals (Sweden)

    Cintra Priscila

    2002-01-01

    Full Text Available In this communication we have evaluated the toxic properties of methanol extracts from flowers, peduncles, leaves, petioles and stem bark of Dimorphandra mollis to Apis mellifera workers. Astilbin (5,7,3',4'-tetrahydroxy--2,3-dihydroflavonol-3-beta-O-rhamnoside has been isolated from peduncles and flowers of this plant in large amounts. Astilbin presented insecticidal activity against confined bees. The results suggest that astilbin reduces the average survival of treated bees.

  6. Carbonic anhydrase from Apis mellifera: purification and inhibition by pesticides.

    Science.gov (United States)

    Soydan, Ercan; Güler, Ahmet; Bıyık, Selim; Şentürk, Murat; Supuran, Claudiu T; Ekinci, Deniz

    2017-12-01

    Carbonic anhydrase (CA) enzymes have been shown to play an important role in ion transport and in pH regulation in several organisms. Despite this information and the wealth of knowledge regarding the significance of CA enzymes, few studies have been reported about bee CA enzymes and the hazardous effects of chemicals. Using Apis mellifera as a model, this study aimed to determine the risk of pesticides on Apis mellifera Carbonic anhydrase enzyme (Am CA). CA was initially purified from Apis mellifera spermatheca for the first time in the literature. The enzyme was purified with an overall purification of ∼35-fold with a molecular weight of ∼32 kDa. The enzyme was then exposed to pesticides, including tebuconazole, propoxur, carbaryl, carbofuran, simazine and atrazine. The six pesticides dose-dependently inhibited in vitro AmCA activity at low micromolar concentrations. IC50 values for the pesticides were 0.0030, 0.0321, 0.0031, 0.0087, 0.0273 and 0.0165 μM, respectively. The AmCA inhibition mechanism of these compounds is unknown at this moment.

  7. Variation morphogeometrics of Africanized honey bees (Apis mellifera in Brazil

    Directory of Open Access Journals (Sweden)

    Lorena A. Nunes

    2012-09-01

    Full Text Available The morphometrics of the honey bee Apis mellifera L., 1758 has been widely studied mainly because this species has great ecological importance, high adaptation capacity, wide distribution and capacity to effectively adapt to different regions. The current study aimed to investigate the morphometric variations of wings and pollen baskets of honey bees Apis mellifera scutellata Lepeletier, 1836 from the five regions in Brazil. We used geometric morphometrics to identify the existence of patterns of variations of shape and size in Africanized honey bees in Brazil 16 years after the classic study with this species, allowing a temporal and spatial comparative analysis using new technological resources to assess morphometrical data. Samples were collected in 14 locations in Brazil, covering the five geographical regions of the country. The shape analysis and multivariate analyses of the wing allowed to observe that there is a geographical pattern among the population of Apis mellifera in Brazil. The geographical variations may be attributed to the large territorial extension of the country in addition to the differences between the bioregions.

  8. Aggressiveness index of Apis Mellifera (Hymenoptera: Aapidae) Índice de agresividad en Apis mellifera ( Hymenoptera: Aapidae )

    OpenAIRE

    Sierra Omar Danilo; Insuasty Torres Jennyfer

    2004-01-01

    An index measuring the aggressiveness among ten colonies of Apis mellifera was elaborated based on the third generation synthetic indices by Charum et al. (1999). The index values are subject to a fixed parameter used as the beginning or standard value, and correspond to the aggressive features of some Africans colonies studied by Rothenbuler et al. (1968). In the ten colonies the index values are notably smaller than those of African colonies and are biased to the lowest values. This indicat...

  9. Registro de Nephridiophaga sp. (Protista: Nephridiophagidae en Apis mellifera (Hymenoptera: Apidae del Sur de la región Pampeana

    Directory of Open Access Journals (Sweden)

    Santiago PLISCHUK

    2011-01-01

    Full Text Available Durante estudios prospectivos tendientes a la detección de protistas asociados a ápidos en la región Pampeana, se observó la presencia de esporos ovales bicóncavos y grupos de esporos (cúmulos en los túbulos de Malpighi de abejas de Dufaur, partido de Saavedra, sudoeste de la provincia de Buenos Aires. Los esporos maduros midieron 4,8 ± 0,05 x 2,4 ± 0,03 μm y la carga (intensidad promedió 5,71 ± 1,49 x 106 esporos/abeja. Las detecciones se efectuaron entre julio y octubre de 2006 y la prevalencia en las colmenas positivas osciló entre 1 y 16,7 %. Las características morfológicas de los esporos, el lugar de desarrollo y la especie huésped involucrada sugieren que el microorganismo en cuestión, pertenece al género Nephridiophaga y sería N. apis Ivanić, especie tipo cuyo conocimiento es extremadamente limitado. El hallazgo constituye el primer registro de un nefridiofágido asociado a A. mellifera fuera del continente europeo.

  10. Nosema ceranae in drone honey bees (Apis mellifera).

    Science.gov (United States)

    Traver, Brenna E; Fell, Richard D

    2011-07-01

    Nosema ceranae is a microsporidian intracellular parasite of honey bees, Apis mellifera. Previously Nosema apis was thought to be the only cause of nosemosis, but it has recently been proposed that N. ceranae is displacing N. apis. The rapid spread of N. ceranae could be due to additional transmission mechanisms, as well as higher infectivity. We analyzed drones for N. ceranae infections using duplex qPCR with species specific primers and probes. We found that both immature and mature drones are infected with N. ceranae at low levels. This is the first report detecting N. ceranae in immature bees. Our data suggest that because drones are known to drift from their parent hives to other hives, they could provide a means for disease spread within and between apiaries.

  11. The pheromones of laying workers in two honeybee sister species: Apis cerana and Apis mellifera.

    Science.gov (United States)

    Tan, Ken; Yang, Mingxian; Wang, Zhengwei; Radloff, Sarah E; Pirk, Christian W W

    2012-04-01

    When a honeybee colony loses its queen, workers activate their ovaries and begin to lay eggs. This is accompanied by a shift in their pheromonal bouquet, which becomes more queen like. Workers of the Asian hive bee Apis cerana show unusually high levels of ovary activation and this can be interpreted as evidence for a recent evolutionary arms race between queens and workers over worker reproduction in this species. To further explore this, we compared the rate of pheromonal bouquet change between two honeybee sister species of Apis cerana and Apis mellifera under queenright and queenless conditions. We show that in both species, the pheromonal components HOB, 9-ODA, HVA, 9-HDA, 10-HDAA and 10-HDA have significantly higher amounts in laying workers than in non-laying workers. In the queenright colonies of A. mellifera and A. cerana, the ratios (9-ODA)/(9-ODA + 9-HDA + 10-HDAA + 10-HDA) are not significantly different between the two species, but in queenless A. cerana colonies the ratio is significant higher than in A. mellifera, suggesting that in A. cerana, the workers' pheromonal bouquet is dominated by the queen compound, 9-ODA. The amount of 9-ODA in laying A. cerana workers increased by over 585% compared with the non-laying workers, that is 6.75 times higher than in A. mellifera where laying workers only had 86% more 9-ODA compared with non-laying workers.

  12. Population Genetics of Nosema apis and Nosema ceranae: One Host (Apis mellifera) and Two Different Histories.

    Science.gov (United States)

    Maside, Xulio; Gómez-Moracho, Tamara; Jara, Laura; Martín-Hernández, Raquel; De la Rúa, Pilar; Higes, Mariano; Bartolomé, Carolina

    2015-01-01

    Two microsporidians are known to infect honey bees: Nosema apis and Nosema ceranae. Whereas population genetics data for the latter have been released in the last few years, such information is still missing for N. apis. Here we analyze the patterns of nucleotide polymorphism at three single-copy loci (PTP2, PTP3 and RPB1) in a collection of Apis mellifera isolates from all over the world, naturally infected either with N. apis (N = 22) or N. ceranae (N = 23), to provide new insights into the genetic diversity, demography and evolution of N. apis, as well as to compare them with evidence from N. ceranae. Neutral variation in N. apis and N. ceranae is of the order of 1%. This amount of diversity suggests that there is no substantial differentiation between the genetic content of the two nuclei present in these parasites, and evidence for genetic recombination provides a putative mechanism for the flow of genetic information between chromosomes. The analysis of the frequency spectrum of neutral variants reveals a significant surplus of low frequency variants, particularly in N. ceranae, and suggests that the populations of the two pathogens are not in mutation-drift equilibrium and that they have experienced a population expansion. Most of the variation in both species occurs within honey bee colonies (between 62%-90% of the total genetic variance), although in N. apis there is evidence for differentiation between parasites isolated from distinct A. mellifera lineages (20%-34% of the total variance), specifically between those collected from lineages A and C (or M). This scenario is consistent with a long-term host-parasite relationship and contrasts with the lack of differentiation observed among host-lineages in N. ceranae (mellifera worldwide population is a recent event.

  13. Host Specificity in the Honeybee Parasitic Mite, Varroa spp. in Apis mellifera and Apis cerana.

    Directory of Open Access Journals (Sweden)

    Alexis L Beaurepaire

    Full Text Available The ectoparasitic mite Varroa destructor is a major global threat to the Western honeybee Apis mellifera. This mite was originally a parasite of A. cerana in Asia but managed to spill over into colonies of A. mellifera which had been introduced to this continent for honey production. To date, only two almost clonal types of V. destructor from Korea and Japan have been detected in A. mellifera colonies. However, since both A. mellifera and A. cerana colonies are kept in close proximity throughout Asia, not only new spill overs but also spill backs of highly virulent types may be possible, with unpredictable consequences for both honeybee species. We studied the dispersal and hybridisation potential of Varroa from sympatric colonies of the two hosts in Northern Vietnam and the Philippines using mitochondrial and microsatellite DNA markers. We found a very distinct mtDNA haplotype equally invading both A. mellifera and A. cerana in the Philippines. In contrast, we observed a complete reproductive isolation of various Vietnamese Varroa populations in A. mellifera and A. cerana colonies even if kept in the same apiaries. In light of this variance in host specificity, the adaptation of the mite to its hosts seems to have generated much more genetic diversity than previously recognised and the Varroa species complex may include substantial cryptic speciation.

  14. Host Specificity in the Honeybee Parasitic Mite, Varroa spp. in Apis mellifera and Apis cerana.

    Science.gov (United States)

    Beaurepaire, Alexis L; Truong, Tuan A; Fajardo, Alejandro C; Dinh, Tam Q; Cervancia, Cleofas; Moritz, Robin F A

    2015-01-01

    The ectoparasitic mite Varroa destructor is a major global threat to the Western honeybee Apis mellifera. This mite was originally a parasite of A. cerana in Asia but managed to spill over into colonies of A. mellifera which had been introduced to this continent for honey production. To date, only two almost clonal types of V. destructor from Korea and Japan have been detected in A. mellifera colonies. However, since both A. mellifera and A. cerana colonies are kept in close proximity throughout Asia, not only new spill overs but also spill backs of highly virulent types may be possible, with unpredictable consequences for both honeybee species. We studied the dispersal and hybridisation potential of Varroa from sympatric colonies of the two hosts in Northern Vietnam and the Philippines using mitochondrial and microsatellite DNA markers. We found a very distinct mtDNA haplotype equally invading both A. mellifera and A. cerana in the Philippines. In contrast, we observed a complete reproductive isolation of various Vietnamese Varroa populations in A. mellifera and A. cerana colonies even if kept in the same apiaries. In light of this variance in host specificity, the adaptation of the mite to its hosts seems to have generated much more genetic diversity than previously recognised and the Varroa species complex may include substantial cryptic speciation.

  15. Comparative virulence and competition between Nosema apis and Nosema ceranae in honey bees (Apis mellifera).

    Science.gov (United States)

    Milbrath, Meghan O; van Tran, Toan; Huang, Wei-Fong; Solter, Leellen F; Tarpy, David R; Lawrence, Frank; Huang, Zachary Y

    2015-02-01

    Honey bees (Apis mellifera) are infected by two species of microsporidia: Nosema apis and Nosemaceranae. Epidemiological evidence indicates that N. ceranae may be replacing N. apis globally in A. mellifera populations, suggesting a potential competitive advantage of N. ceranae. Mixed infections of the two species occur, and little is known about the interactions among the host and the two pathogens that have allowed N. ceranae to become dominant in most geographical areas. We demonstrated that mixed Nosema species infections negatively affected honey bee survival (median survival=15-17days) more than single species infections (median survival=21days and 20days for N. apis and N. ceranae, respectively), with median survival of control bees of 27days. We found similar rates of infection (percentage of bees with active infections after inoculation) for both species in mixed infections, with N. apis having a slightly higher rate (91% compared to 86% for N. ceranae). We observed slightly higher spore counts in bees infected with N. ceranae than in bees infected with N. apis in single microsporidia infections, especially at the midpoint of infection (day 10). Bees with mixed infections of both species had higher spore counts than bees with single infections, but spore counts in mixed infections were highly variable. We did not see a competitive advantage for N. ceranae in mixed infections; N. apis spore counts were either higher or counts were similar for both species and more N. apis spores were produced in 62% of bees inoculated with equal dosages of the two microsporidian species. N. ceranae does not, therefore, appear to have a strong within-host advantage for either infectivity or spore growth, suggesting that direct competition in these worker bee mid-guts is not responsible for its apparent replacement of N. apis.

  16. Toxicity of Dimorphandra mollis to Workers of Apis mellifera

    OpenAIRE

    Cintra Priscila; Malaspina Osmar; Petacci Fernando; Fernandes João B.; Bueno Odair C.; Vieira Paulo C.; Silva M. Fátima das G. F. da

    2002-01-01

    Nesta comunicação estamos reportando as propriedades tóxicas dos extratos metanólicos das flores, pedúnculos, folhas, pecíolo e casca do tronco de Dimorphandra mollis sobre as operárias de Apis mellifera. Astilbina (3-beta-O-rhamnosideo de 5,7,3',4'-- tetraidroxi-2,3-diidroflavonol) isolada dos pedúnculos e flores como o seu principal componente, apresentou atividade inseticida sobre abelhas confinadas. Os resultados obtidos indicam que a astilbina reduz a sobrevivência média das abelhas trat...

  17. Changes in Alternative Splicing in Apis Mellifera Bees Fed Apis Cerana Royal Jelly

    Directory of Open Access Journals (Sweden)

    Shi Yuan Yuan

    2014-12-01

    Full Text Available The Western honey bee (Apis mellifera is a social insect characterized by caste differentiation in which the queen bee and worker bees display marked differences in morphology, behavior, reproduction, and longevity despite their identical genomes. The main causative factor in caste differentiation is the food fed to queen larvae, termed royal jelly (RJ. Alternative splicing (AS is an important RNA-mediated post-transcriptional process in eukaryotes. Here we report AS changes in A. mellifera after being fed either A. mellifera RJ or A. cerana RJ. The results demonstrated that the RJ type affected 4 types of AS in adult A. mellifera: exon skipping, intron retention, alternative 5’ splice sites, and alternative 3’splice sites. After feeding with A. cerana RJ, AS occurred in many genes in adult A. mellifera that encode proteins involved in development, growth, the tricarboxylic acid cycle, and substance metabolism. This study provides the first evidence that heterospecific RJ can influence the AS of many genes related to honey bee development and growth.

  18. Genetic variation in natural honeybee populations, Apis mellifera capensis

    Science.gov (United States)

    Hepburn, Randall; Neumann, Peter; Radloff, Sarah E.

    2004-09-01

    Genetic variation in honeybee, Apis mellifera, populations can be considerably influenced by breeding and commercial introductions, especially in areas with abundant beekeeping. However, in southern Africa apiculture is based on the capture of wild swarms, and queen rearing is virtually absent. Moreover, the introduction of European subspecies constantly failed in the Cape region. We therefore hypothesize a low human impact on genetic variation in populations of Cape honeybees, Apis mellifera capensis. A novel solution to studying genetic variation in honeybee populations based on thelytokous worker reproduction is applied to test this hypothesis. Environmental effects on metrical morphological characters of the phenotype are separated to obtain a genetic residual component. The genetic residuals are then re-calculated as coefficients of genetic variation. Characters measured included hair length on the abdomen, width and length of wax plate, and three wing angles. The data show for the first time that genetic variation in Cape honeybee populations is independent of beekeeping density and probably reflects naturally occurring processes such as gene flow due to topographic and climatic variation on a microscale.

  19. Parasitic Cape honeybee workers, Apis mellifera capensis, evade policing

    Science.gov (United States)

    Martin, Stephen J.; Beekman, Madeleine; Wossler, Theresa C.; Ratnieks, Francis L. W.

    2002-01-01

    Relocation of the Cape honeybee, Apis mellifera capensis, by bee-keepers from southern to northern South Africa in 1990 has caused widespread death of managed African honeybee, A. m. scutellata, colonies. Apis mellifera capensis worker bees are able to lay diploid, female eggs without mating by means of automictic thelytoky (meiosis followed by fusion of two meiotic products to restore egg diploidy), whereas workers of other honeybee subspecies are able to lay only haploid, male eggs. The A. m. capensis workers, which are parasitizing and killing A. m. scutellata colonies in northern South Africa, are the asexual offspring of a single, original worker in which the small amount of genetic variation observed is due to crossing over during meiosis (P. Kryger, personal communication). Here we elucidate two principal mechanisms underlying this parasitism. Parasitic A. m. capensis workers activate their ovaries in host colonies that have a queen present (queenright colonies), and they lay eggs that evade being killed by other workers (worker policing)-the normal fate of worker-laid eggs in colonies with a queen. This unique parasitism by workers is an instance in which a society is unable to control the selfish actions of its members.

  20. Unión de los antibióticos tilosina, tilmicosina y oxitetraciclina a proteínas presentes en abejas, larvas y productos de la colmena de Apis mellifera L Binding of tylosin, tilmicosin and oxytetracycline to proteins from honeybees, larvae and beehive products

    Directory of Open Access Journals (Sweden)

    F. J. Reynaldi

    2010-12-01

    Full Text Available Las abejas melíferas son afectadas por gran cantidad de enfermedades infecciosas principalmente producidas por bacterias, hongos, virus y parásitos eucariotas. Dentro de las ocasionadas por procariotas, la loque americana es una enfermedad extremadamente grave que afecta a larvas y pupas de abejas; su agente causal es la bacteria esporulada Paenibacillus larvae. La administración de antibióticos es la principal alternativa para el control de esta enfermedad en colmenares con altos niveles de infección. El objetivo del presente trabajo fue determinar, mediante un método biológico, la unión de los antibióticos tilosina, tilmicosina y oxitetraciclina a las proteínas presentes en abejas adultas, larvas menores de 72 horas, larvas mayores de 72 horas, jalea de obreras, miel y polen, con la finalidad de diseñar un modelo de ruta cinética de los antibióticos. Los límites de sensibilidad de la técnica de valoración de estos antibióticos fueron 0,05 μg/ml para tilosina y tilmicosina, y 0,01 μg/ml para oxitetraciclina. Los coeficientes de correlación fueron superiores a 0,90 y los coeficientes de variación intra e inter-ensayo inferiores al 5%. Tanto tilosina como oxitetraciclina presentaron un porcentaje de unión a proteínas de un 15% en promedio en tejidos y subproductos de la colmena, lo cual resultó inferior a lo observado con tilmicosina (29% en promedio. En conclusión, por sus características químicas, su actividad antimicrobiana y su baja tasa de unión a las abejas, larvas y subproductos de la colmena, la tilosina presenta propiedades farmacocinéticas que podrían representar una ventaja terapéutica para el tratamiento de la loque americana en colmenas.American Foulbrood (AFB caused by the spore-forming bacterium Paenibacillus larvae is the most serious disease of bacterial origin affecting larvae and pupae of honeybees. Antibiotics are used in many countries for the control of AFB in high incidence areas, but their

  1. Beebread from Apis mellifera and Apis dorsata. Comparative Chemical Composition and Bioactivity

    Directory of Open Access Journals (Sweden)

    Otilia BOBIS

    2017-05-01

    Full Text Available Beebread is a valuable bee product, both for bee nutrition and for humans. The high nutritional and bioactive properties of beebread were evaluated by chemical composition analysis of beebread from Apis mellifera and Apis dorsata. Bee bread harvested from Romania and India, coming from Apis mellifera and Apis dorsata bees, were evaluated for their chemical composition. Analyses were made in APHIS Laboratory from USAMV Cluj, using validated methods for bee products. Lipids were determined by the Soxhlet extraction method, total protein content was determined by Kjehldahl method, sugar spectrum was determined by high performance liquid chromatography with refractive index detection (HPLC-IR. Water content of beebread samples were situated between 11.45 and 16.46%, total protein content between 16.84 and 19.19% and total lipids between 6.36 and 13.47%.  Beebread has high bioactive properties which can be expressed as antioxidant and/or antibacterial activity. Chemical composition and bioactive properties of beebread is influenced by floral origin of the pollen which the bees collect and place in combs for fermentation. Also the climatic conditions have an important role in developing different fermentation compounds, that may act as antioxidants or antibacterial agents.

  2. Neutralization of Apis mellifera bee venom activities by suramin.

    Science.gov (United States)

    El-Kik, Camila Z; Fernandes, Fabrício F A; Tomaz, Marcelo Amorim; Gaban, Glauco A; Fonseca, Tatiane F; Calil-Elias, Sabrina; Oliveira, Suellen D S; Silva, Claudia L M; Martinez, Ana Maria Blanco; Melo, Paulo A

    2013-06-01

    In this work we evaluated the ability of suramin, a polysulfonated naphthylurea derivative, to antagonize the cytotoxic and enzymatic effects of the crude venom of Apis mellifera. Suramin was efficient to decrease the lethality in a dose-dependent way. The hemoconcentration caused by lethal dose injection of bee venom was abolished by suramin (30 μg/g). The edematogenic activity of the venom (0.3 μg/g) was antagonized by suramin (10 μg/g) in all treatment protocols. The changes in the vascular permeability caused by A. mellifera (1 μg/g) venom were inhibited by suramin (30 μg/g) in the pre- and posttreatment as well as when the venom was preincubated with suramin. In addition, suramin also inhibited cultured endothelial cell lesion, as well as in vitro myotoxicity, evaluated in mouse extensor digitorum longus muscle, which was inhibited by suramin (10 and 25 μM), decreasing the rate of CK release, showing that suramin protected the sarcolemma against damage induced by components of bee venom (2.5 μg/mL). Moreover, suramin inhibited the in vivo myotoxicity induced by i.m. injection of A. mellifera venom in mice (0.5 μg/g). The analysis of the area under the plasma CK vs. time curve showed that preincubation, pre- and posttreatment with suramin (30 μg/g) inhibited bee venom myotoxic activity in mice by about 89%, 45% and 40%, respectively. Suramin markedly inhibited the PLA2 activity in a concentration-dependent way (1-30 μM). Being suramin a polyanion molecule, the effects observed may be due to the interaction of its charges with the polycation components present in A. mellifera bee venom.

  3. Identification of Complete Repertoire of Apis florea Odorant Receptors Reveals Complex Orthologous Relationships with Apis mellifera.

    Science.gov (United States)

    Karpe, Snehal D; Jain, Rikesh; Brockmann, Axel; Sowdhamini, Ramanathan

    2016-09-26

    We developed a computational pipeline for homology based identification of the complete repertoire of olfactory receptor (OR) genes in the Asian honey bee species, Apis florea Apis florea is phylogenetically the most basal honey bee species and also the most distant sister species to the Western honey bee Apis mellifera, for which all OR genes had been identified before. Using our pipeline, we identified 180 OR genes in A. florea, which is very similar to the number of ORs identified in A. mellifera (177 ORs). Many characteristics of the ORs including gene structure, synteny of tandemly repeated ORs and basic phylogenetic clustering are highly conserved. The composite phylogenetic tree of A. florea and A. mellifera ORs could be divided into 21 clades which are in harmony with the existing Hymenopteran tree. However, we found a few nonorthologous OR relationships between both species as well as independent pseudogenization of ORs suggesting separate evolutionary changes. Particularly, a subgroup of the OR gene clade XI, which had been hypothesized to code cuticular hydrocarbon receptors showed a high number of species-specific ORs RNAseq analysis detected a total number of 145 OR transcripts in male and 162 in female antennae. Most of the OR genes were highly expressed on the female antennae. However, we detected five distinct male-biased OR genes, out of which three genes (AfOr11, AfOr18, AfOr170P) were shown to be male-biased in A. mellifera, too, thus corroborating a behavioral function in sex-pheromone communication.

  4. Genetic structure of Apis mellifera macedonica in the Balkan Peninsula based on microsatellite DNA polymorphism

    DEFF Research Database (Denmark)

    Uzunov, Aleksandar; Meixner, Marina D; Kiprijanovska, Hrisula;

    2014-01-01

    The genetic variability of honey bees (Apis mellifera L.) from south eastern Europe was investigated using microsatellite analyses of 107 samples from Albania, the Republic of Macedonia, Greece and Bulgaria together with 42 reference samples (Apis mellifera carnica) from Slovenia. Genetic structure...... and spatial analyses of the microsatellite data showed a clear distinction between the Slovenian bees and all other populations, and confirmed the existence of Apis mellifera macedonica as an indigenous honey bee population in the regions that were sampled. In most areas however, varying degrees...

  5. Inhibiting DNA methylation alters olfactory extinction but not acquisition learning in Apis cerana and Apis mellifera.

    Science.gov (United States)

    Gong, Zhiwen; Wang, Chao; Nieh, James C; Tan, Ken

    2016-07-01

    DNA methylation plays a key role in invertebrate acquisition and extinction memory. Honey bees have excellent olfactory learning, but the role of DNA methylation in memory formation has, to date, only been studied in Apis mellifera. We inhibited DNA methylation by inhibiting DNA methyltransferase (DNMT) with zebularine (zeb) and studied the resulting effects upon olfactory acquisition and extinction memory in two honey bee species, Apis cerana and A. mellifera. We used the proboscis extension reflex (PER) assay to measure memory. We provide the first demonstration that DNA methylation is also important in the olfactory extinction learning of A. cerana. DNMT did not reduce acquisition learning in either species. However, zeb bidirectionally and differentially altered extinction learning in both species. In particular, zeb provided 1h before acquisition learning improved extinction memory retention in A. mellifera, but reduced extinction memory retention in A. cerana. The reasons for these differences are unclear, but provide a basis for future studies to explore species-specific differences in the effects of methylation on memory formation.

  6. Eficacia del Oxavar® para el Control del Ácaro Varroa destructor (Varroidae en Colmenas de Apis mellifera (Apidae Efficacy of Oxavar® to control the mite Varroa destructor (Varroidae in honeybee colonies of Apis mellifera (Apidae

    Directory of Open Access Journals (Sweden)

    Jorge Augusto Marcangeli

    2003-12-01

    Full Text Available El objetivo del trabajo fue evaluar la eficacia del producto Oxavar® para el control del ácaro Varroa destructor (Anderson & Trueman en colmenas de abejas Apis mellifera durante la primavera de 2002 y otoño de 2003. El trabajo se llevó a cabo en el apiario experimental del Centro de Extensión Apícola ubicado en Coronel Vidal, provincia de Buenos Aires. Se trabajó sobre un total de 20 colmenas tipo Langstroth que se dividieron en dos grupos iguales. El primer grupo recibió 5 ml de Oxavar® (323 g en 5000 ml de agua destilada por cuadro cubierto por abejas. El segundo grupo, el testigo, recibió 5 ml de agua destilada por cuadro cubierto por abejas. Ambos grupos recibieron tres dosis a intervalos de siete días. Semanalmente, se recolectaron los ácaros muertos caídos en pisos especiales que evitaban que las abejas los eliminen. Posteriormente, en los dos grupos se colocaron tiras del producto Apistan® para eliminar los ácaros remanentes en las colonias y poder así calcular la eficacia del tratamiento. El producto Oxavar® presentó una eficacia promedio de 85,5 % ± 2,8 durante la primavera y 86,1% ± 2,6 durante el otoño, no mostrando diferencias significativas entre las estaciones (p> 0,05. En ambos casos se registraron diferencias significativas frente al grupo control (pThe aim of this work was to evaluate the acaricide efficacy of Oxavar® to control Varroa destructor (Anderson & Trueman in Apis mellifera (L colonies during the spring 2002 and the autumn 2003. Work was done at “Centro de Extensión Apícola” experimental apiary located in Coronel Vidal, province of Buenos Aires. Twenty Langstroth hives were used divided in two equal groups. The first group received 5 ml of Oxavar® (323 g in 5000 ml of destiled water per comb covered by honeybees and the second one received 5 ml of destiled water. Both groups received three dosages at seven day periods. Dead mites were collected weekly from special floors in order to avoid

  7. First Identification of Nosema Ceranae (Microsporidia Infecting Apis Mellifera in Venezuela

    Directory of Open Access Journals (Sweden)

    Porrini Leonardo P.

    2017-06-01

    Full Text Available Nosema ceranae is a pathogen of Apis mellifera, which seems to have jumped from its original host Asiatic honey bee Apis ceranae. Nosemosis which affects the honey bee Apis mellifera is caused by two parasitic fungi described as etiologic agents of the disease. Nosema apis was the only microsporidian infection identified in A. mellifera until N. ceranae in Taiwan and Europe. Nosema spp. positive samples of adult worker bees from the Venezuelean state of Lara were determined through light microscopy of spores. Samples were then tested to determine Nosema species (N.apis/N.ceranae using previously reported PCR primers for the 16S rRNA gene. A multiplex PCR assay was used to differentiate both N. apis and N. ceranae species. Only N. ceranae was found in the analyzed samples and the percentage of infected foragers fluctuated between 18% and 60%.

  8. [New SNP markers of the honeybee vitellogenin gene (Vg) used for identification of subspecies Apis mellifera mellifera L].

    Science.gov (United States)

    Ilyasov, R A; Poskryakov, A V; Nikolenko, A G

    2015-02-01

    Preservation of the gene pool of honeybee subspecies Apis mellifera mellifera is of vital importance for successful beekeeping development in the northern regions of Eurasia. An effective method of genotyping honeybee colonies used in modern science is the mapping of sites of single nucleotide polymorphism (SNP). The honeybee vitellogenin gene (Vg) encodes a protein that affects reproductive function, behavior, immunity, longevity, and social organization in the honeybee Apis mellifera and is therefore a topical research subject. The results of comparative analysis of honeybee Vg sequences show that there are 26 SNP sites that differentiate M and C evolutionary branches and can be used as markers in selective breeding, DNA-barcoding, and the creation of genetic passports for A. m. mellifera colonies.

  9. Pheromonal contest between honeybee workers ( Apis mellifera capensis)

    Science.gov (United States)

    Moritz, R. F. A.; Simon, U. E.; Crewe, R. M.

    2000-10-01

    Queenless workers of the Cape honeybee ( Apis mellifera capensis) can develop into reproductives termed pseudoqueens. Although they morphologically remain workers they become physiologically queenlike, produce offspring, and secrete mandibular gland pheromones similar to those of true queens. However, after queen loss only very few workers gain pseudoqueen status. A strong intracolonial selection governs which workers start oviposition and which remain sterile. The "queen substance", 9-keto-2(E)-decenoic acid (9-ODA), the dominant compound of the queen's mandibular gland pheromones, suppresses the secretion of queenlike mandibular gland pheromones in workers. It may act as an important signal in pseudoqueen selection. By analysing the mandibular gland pheromones of workers kept in pairs, we found that A. m. capensis workers compete to produce the strongest queen-like signal.

  10. A non-policing honey bee colony (Apis mellifera capensis)

    Science.gov (United States)

    Beekman, Madeleine; Good, Gregory; Allsopp, Mike; Radloff, Sarah; Pirk, Chris; Ratnieks, Francis

    2002-09-01

    In the Cape honey bee Apis mellifera capensis, workers lay female eggs without mating by thelytokous parthenogenesis. As a result, workers are as related to worker-laid eggs as they are to queen-laid eggs and therefore worker policing is expected to be lower, or even absent. This was tested by transferring worker- and queen-laid eggs into three queenright A. m. capensis discriminator colonies and monitoring their removal. Our results show that worker policing is variable in A. m. capensis and that in one colony worker-laid eggs were not removed. This is the first report of a non-policing queenright honey bee colony. DNA microsatellite and morphometric analysis suggests that the racial composition of the three discriminator colonies was different. The variation in policing rates could be explained by differences in degrees of hybridisation between A. m. capensis and A. m. scutellata, although a larger survey is needed to confirm this.

  11. Sperm use economy of honeybee (Apis mellifera) queens

    DEFF Research Database (Denmark)

    Baer, Boris; Collins, Jason; Maalaps, Kristiina

    2016-01-01

    The queens of eusocial ants, bees, and wasps only mate during a very brief period early in life to acquire and store a lifetime supply of sperm. As sperm cannot be replenished, queens have to be highly economic when using stored sperm to fertilize eggs, especially in species with large and long......-lived colonies. However, queen fertility has not been studied in detail, so that we have little understanding of how economic sperm use is in different species, and whether queens are able to influence their sperm use. This is surprising given that sperm use is a key factor of eusocial life, as it determines...... the fecundity and longevity of queens and therefore colony fitness. We quantified the number of sperm that honeybee (Apis mellifera) queens use to fertilize eggs. We examined sperm use in naturally mated queens of different ages and in queens artificially inseminated with different volumes of semen. We found...

  12. Insights into social insects from the genome of the honeybee Apis mellifera

    DEFF Research Database (Denmark)

    Hauser, Frank; Cazzamali, Giuseppe; Williamson, Michael

    2006-01-01

    Here we report the genome sequence of the honeybee Apis mellifera, a key model for social behaviour and essential to global ecology through pollination. Compared with other sequenced insect genomes, the A. mellifera genome has high A+T and CpG contents, lacks major transposon families, evolves mo...

  13. Insights into social insects from the genome of the honeybee Apis mellifera

    DEFF Research Database (Denmark)

    Hauser, Frank; Cazzamali, Giuseppe; Williamson, Michael

    2006-01-01

    Here we report the genome sequence of the honeybee Apis mellifera, a key model for social behaviour and essential to global ecology through pollination. Compared with other sequenced insect genomes, the A. mellifera genome has high A+T and CpG contents, lacks major transposon families, evolves more...

  14. Molecular Identification of Chronic Bee Paralysis Virus Infection in Apis mellifera Colonies in Japan

    OpenAIRE

    Tomomi Morimoto; Yuriko Kojima; Mikio Yoshiyama; Kiyoshi Kimura; Bu Yang; Tatsuhiko Kadowaki

    2012-01-01

    Chronic bee paralysis virus (CBPV) infection causes chronic paralysis and loss of workers in honey bee colonies around the world. Although CBPV shows a worldwide distribution, it had not been molecularly detected in Japan. Our investigation of Apis mellifera and Apis cerana japonica colonies with RT-PCR has revealed CBPV infection in A. mellifera but not A. c. japonica colonies in Japan. The prevalence of CBPV...

  15. [Genetic Differentiation of Local Populations of the Dark European Bee Apis mellifera mellifera L. in the Urals].

    Science.gov (United States)

    Il'yasov, R A; Poskryakov, A V; Petukhov, A V; Nikolenko, A G

    2015-07-01

    For the last two centuries, beekeepers in Russia and Europe have been introducing bees from the southern regions to the northern ones, subjecting the genetic pool of the dark European bee Apis mellifera mellifera L. subspecies to extensive hybridization. In order to reconfirm on the genetic level the previously published morphological data on the native bee population in the Urals, the Bashkortostan Republic, and the Perm Krai, we analyzed the polymorphism of the mitochondrial (mtDNA COI-COII intergenic locus) and nuclear (two microsatellite loci, ap243 and 4a110) DNA markers. Four local populations of the dark European bee A. m. mellifera surviving in the Urals have been identified, and their principal genetic characteristics have been determined. Data on the genetic structure and geographical localization of the areals of the dark European bee local populations in the Urals may be of use in restoring the damaged genetic pool of A. m. mellifera in Russia and other northern countries.

  16. Produtos naturais no comportamento defensivo de Apis mellifera L. = Natural products in the defensive behaviour of Apis mellifera L.

    Directory of Open Access Journals (Sweden)

    Renata Leonardo Lomele

    2010-07-01

    Full Text Available Os objetivos do estudo foram investigar a influência de produtos naturais como capim-limão (Cymbopogon citratus, folhas de abacateiro (Persea americana, casca de café (Coffea arabica e sementes de mamona (Ricinus communis na defensividade de Apis mellifera, e avaliar o efeito destes produtos no desenvolvimento populacional da colmeia. O comportamento defensivo foi avaliado por meio do tempo da primeira ferroada (TPF, número de ferrões (NFB e, o desenvolvimento populacional, pela área de cria aberta e fechada. Observou-se que o tratamento fumaça + sete sementes de mamona apresentou aumento significativo no TPF, em relação ao tratamento sem e com fumaça de maravalha. Com relação ao NFB, verificou-se que os tratamentos fumaça de maravalha + sete sementes de mamona e fumaça de maravalha + 20% de folhas de café foram diferentes do tratamento sem e com fumaça. Os demais tratamentos não diferiram significativamente em relação ao uso da fumaça ou sua ausência. A casca de café e a semente de mamona nãointerferiram no desenvolvimento populacional, sugerindo que estes compostos não foram tóxicos. Pode-se concluir que o uso de sementes de mamona e casca de café na fumaça pode representar importante ferramenta para a redução da defensividade, sem promover toxicidade para A. mellifera.The goal was to investigate the influence of natural products such as lemongrass (Cymbopogon citratus, dried avocado leaves (Persea americana, coffee husk (Coffea arabica and castor bean (Ricinus communis in the defense of Apis mellifera, as well the effect of these products on the population development of the beehive. Defensive behavior was evaluated by time of first sting (TFS and number of stingers (NS, and population development, by open brood area and operculated brood. It was observed that the treatment with smoke + seven castor beans presented significant increase in the TFS, for treatment without and with smoke. Regarding NS, it was verified

  17. Registro de Nephridiophaga sp. (Protista: Nephridiophagidae en Apis mellifera (Hymenoptera: Apidae del Sur de la región Pampeana Record of Nephridiophaga sp. (Protista: Nephridiophagidae in Apis mellifera (Hymenoptera: Apidae of the southern Pampas

    Directory of Open Access Journals (Sweden)

    Santiago Plischuk

    2011-12-01

    Full Text Available Durante estudios prospectivos tendientes a la detección de protistas asociados a ápidos en la región Pampeana, se observó la presencia de esporos ovales bicóncavos y grupos de esporos (cúmulos en los túbulos de Malpighi de abejas de Dufaur, partido de Saavedra, sudoeste de la provincia de Buenos Aires. Los esporos maduros midieron 4,8 ± 0,05 x 2,4 ± 0,03 μm y la carga (intensidad promedió 5,71 ± 1,49 x 10(6 esporos/abeja. Las detecciones se efectuaron entre julio y octubre de 2006 y la prevalencia en las colmenas positivas osciló entre 1 y 16,7 %. Las características morfológicas de los esporos, el lugar de desarrollo y la especie huésped involucrada sugieren que el microorganismo en cuestión, pertenece al género Nephridiophaga y sería N. apis Ivani, especie tipo cuyo conocimiento es extremadamente limitado. El hallazgo constituye el primer registro de un nefridiofágido asociado a A mellifera fuera del continente europeo.During surveys for the detection of protists associated to Apidae in the Pampas region, biconcave oval spores, and spore clumps were observed in the Malpighian tubules of honeybees from Dufaur, Saavedra county, southwestern Buenos Aires province. Mature spores measured 4.8 ± 0.05 x 2.4 ± 0.03 μm, and mean spore load was 5.71 ± 1.49 x 10(6 per honeybee. Detections were from July to October 2006, and prevalence in positive colonies ranged from 1 to 16.7%. Morphology of the spores, the site of development, and the identity of the host species suggest that the isolated microorganism belongs to the genus Nephridiophaga and would be N apis Ivani, the type species, knowledge on which is extremely limited. The finding constitutes the first record of a nephridiophagid in honeybees outside of Europe.

  18. Bee-hawking by the wasp, Vespa velutina, on the honeybees Apis cerana and A. mellifera.

    Science.gov (United States)

    Tan, K; Radloff, S E; Li, J J; Hepburn, H R; Yang, M X; Zhang, L J; Neumann, P

    2007-06-01

    The vespine wasps, Vespa velutina, specialise in hawking honeybee foragers returning to their nests. We studied their behaviour in China using native Apis cerana and introduced A. mellifera colonies. When the wasps are hawking, A. cerana recruits threefold more guard bees to stave off predation than A. mellifera. The former also utilises wing shimmering as a visual pattern disruption mechanism, which is not shown by A. mellifera. A. cerana foragers halve the time of normal flight needed to dart into the nest entrance, while A. mellifera actually slows down in sashaying flight manoeuvres. V. velutina preferentially hawks A. mellifera foragers when both A. mellifera and A. cerana occur in the same apiary. The pace of wasp-hawking was highest in mid-summer but the frequency of hawking wasps was three times higher at A. mellifera colonies than at the A. cerana colonies. The wasps were taking A. mellifera foragers at a frequency eightfold greater than A. cerana foragers. The final hawking success rates of the wasps were about three times higher for A. mellifera foragers than for A. cerana. The relative success of native A. cerana over European A. mellifera in thwarting predation by the wasp V. velutina is interpreted as the result of co-evolution between the Asian wasp and honeybee, respectively.

  19. Bee-hawking by the wasp, Vespa velutina, on the honeybees Apis cerana and A. mellifera

    Science.gov (United States)

    Tan, K.; Radloff, S. E.; Li, J. J.; Hepburn, H. R.; Yang, M. X.; Zhang, L. J.; Neumann, P.

    2007-06-01

    The vespine wasps, Vespa velutina, specialise in hawking honeybee foragers returning to their nests. We studied their behaviour in China using native Apis cerana and introduced A. mellifera colonies. When the wasps are hawking, A. cerana recruits threefold more guard bees to stave off predation than A. mellifera. The former also utilises wing shimmering as a visual pattern disruption mechanism, which is not shown by A. mellifera. A. cerana foragers halve the time of normal flight needed to dart into the nest entrance, while A. mellifera actually slows down in sashaying flight manoeuvres. V. velutina preferentially hawks A. mellifera foragers when both A. mellifera and A. cerana occur in the same apiary. The pace of wasp-hawking was highest in mid-summer but the frequency of hawking wasps was three times higher at A. mellifera colonies than at the A. cerana colonies. The wasps were taking A. mellifera foragers at a frequency eightfold greater than A. cerana foragers. The final hawking success rates of the wasps were about three times higher for A. mellifera foragers than for A. cerana. The relative success of native A. cerana over European A. mellifera in thwarting predation by the wasp V. velutina is interpreted as the result of co-evolution between the Asian wasp and honeybee, respectively.

  20. Cytosine modifications in the honey bee (Apis mellifera worker genome

    Directory of Open Access Journals (Sweden)

    Erik Magne Koscielniak Rasmussen

    2015-02-01

    Full Text Available Epigenetic changes enable genomes to respond to changes in the environment, such as altered nutrition, activity, or social setting. Epigenetic modifications, thereby, provides a source of phenotypic plasticity in many species. The honey bee (Apis mellifera uses nutritionally sensitive epigenetic control mechanisms in the development of the royal caste (queens and the workers. The workers are functionally sterile females that can take on a range of distinct physiological and/or behavioral phenotypes in response to environmental changes. Honey bees have a wide repertoire of epigenetic mechanisms which, as in mammals, includes cytosine methylation, hydroxymethylated cytosines, together with the enzymatic machinery responsible for these cytosine modifications. Current data suggests that honey bees provide an excellent system for studying the social repertoire of the epigenome. In this review, we elucidate what is known so far about the honey bee epigenome and its mechanisms. Our discussion includes what may distinguish honey bees from other model animals, how the epigenome can influence worker behavioral task separation, and how future studies can answer central questions about the role of the epigenome in social behavior.

  1. Nosema Tolerant Honeybees (Apis mellifera) Escape Parasitic Manipulation of Apoptosis

    Science.gov (United States)

    Kurze, Christoph; Le Conte, Yves; Dussaubat, Claudia; Erler, Silvio; Kryger, Per; Lewkowski, Oleg; Müller, Thomas; Widder, Miriam; Moritz, Robin F. A.

    2015-01-01

    Apoptosis is not only pivotal for development, but also for pathogen defence in multicellular organisms. Although numerous intracellular pathogens are known to interfere with the host’s apoptotic machinery to overcome this defence, its importance for host-parasite coevolution has been neglected. We conducted three inoculation experiments to investigate in the apoptotic respond during infection with the intracellular gut pathogen Nosema ceranae, which is considered as potential global threat to the honeybee (Apis mellifera) and other bee pollinators, in sensitive and tolerant honeybees. To explore apoptotic processes in the gut epithelium, we visualised apoptotic cells using TUNEL assays and measured the relative expression levels of subset of candidate genes involved in the apoptotic machinery using qPCR. Our results suggest that N. ceranae reduces apoptosis in sensitive honeybees by enhancing inhibitor of apoptosis protein-(iap)-2 gene transcription. Interestingly, this seems not be the case in Nosema tolerant honeybees. We propose that these tolerant honeybees are able to escape the manipulation of apoptosis by N. ceranae, which may have evolved a mechanism to regulate an anti-apoptotic gene as key adaptation for improved host invasion. PMID:26445372

  2. Nosema Tolerant Honeybees (Apis mellifera Escape Parasitic Manipulation of Apoptosis.

    Directory of Open Access Journals (Sweden)

    Christoph Kurze

    Full Text Available Apoptosis is not only pivotal for development, but also for pathogen defence in multicellular organisms. Although numerous intracellular pathogens are known to interfere with the host's apoptotic machinery to overcome this defence, its importance for host-parasite coevolution has been neglected. We conducted three inoculation experiments to investigate in the apoptotic respond during infection with the intracellular gut pathogen Nosema ceranae, which is considered as potential global threat to the honeybee (Apis mellifera and other bee pollinators, in sensitive and tolerant honeybees. To explore apoptotic processes in the gut epithelium, we visualised apoptotic cells using TUNEL assays and measured the relative expression levels of subset of candidate genes involved in the apoptotic machinery using qPCR. Our results suggest that N. ceranae reduces apoptosis in sensitive honeybees by enhancing inhibitor of apoptosis protein-(iap-2 gene transcription. Interestingly, this seems not be the case in Nosema tolerant honeybees. We propose that these tolerant honeybees are able to escape the manipulation of apoptosis by N. ceranae, which may have evolved a mechanism to regulate an anti-apoptotic gene as key adaptation for improved host invasion.

  3. Energetic feedings influence beeswax production by Apis mellifera L. honeybees

    Directory of Open Access Journals (Sweden)

    Marcela Pedraza Carrillo

    2015-02-01

    Full Text Available The effect of different types of energy feeding (sugar syrup, inverted sugar and juice of sugar-cane on beeswax production and its economic feasibility are evaluated. Twenty beehives of Africanized Apis mellifera were selected, and five were used for each type of feeding. The treatments were T1 (sugar-cane juice, T2 (sugar syrup and T3 (inverted sugar. Feedings was provided by Boardman feeders and the amount was adjusted according to consumption. A layer of beeswax was manually set up into the honeybee nest and beeswax built area was measured weekly. Total reducing sugar, calorimetry, dry matter and ashes of all feedings were analyzed. Data were analyzed by analysis of variance with Tukey’s test to determine differences among averages. The average consumption of inverted sugar was significantly lower than that of other treatments. The highest beeswax production average occurred in the sugar syrup treatment. The highest average of ashes, dry matter and reducing sugar occurred, respectively, in sugar-cane juice, inverted sugar and sugar syrup. Sugar syrup may be an alternative energy source for beeswax production, although sugar-cane juice may be more profitable.

  4. Mating flights select for symmetry in honeybee drones (Apis mellifera).

    Science.gov (United States)

    Jaffé, Rodolfo; Moritz, Robin F A

    2010-03-01

    Males of the honeybee (Apis mellifera) fly to specific drone congregation areas (DCAs), which virgin queens visit in order to mate. From the thousands of drones that are reared in a single colony, only very few succeed in copulating with a queen, and therefore, a strong selection is expected to act on adult drones during their mating flights. In consequence, the gathering of drones at DCAs may serve as an indirect mate selection mechanism, assuring that queens only mate with those individuals having a better flight ability and a higher responsiveness to the queen's visual and chemical cues. Here, we tested this idea relying on wing fluctuating asymmetry (FA) as a measure of phenotypic quality. By recapturing marked drones at a natural DCA and comparing their size and FA with a control sample of drones collected at their maternal hives, we were able to detect any selection on wing size and wing FA occurring during the mating flights. Although we found no solid evidence for selection on wing size, wing FA was found to be significantly lower in the drones collected at the DCA than in those collected at the hives. Our results demonstrate the action of selection during drone mating flights for the first time, showing that developmental stability can influence the mating ability of honeybee drones. We therefore conclude that selection during honeybee drone mating flights may confer some fitness advantages to the queens.

  5. Activity of telomerase and telomeric length in Apis mellifera.

    Science.gov (United States)

    Korandová, Michala; Frydrychová, Radmila Čapková

    2016-06-01

    Telomerase is an enzyme that adds repeats of DNA sequences to the ends of chromosomes, thereby preventing their shortening. Telomerase activity is associated with proliferative status of cells, organismal development, and aging. We report an analysis of telomerase activity and telomere length in the honeybee, Apis mellifera. Telomerase activity was found to be regulated in a development and caste-specific manner. During the development of somatic tissues of larval drones and workers, telomerase activity declined to 10 % of its level in embryos and remained low during pupal and adult stages but was upregulated in testes of late pupae, where it reached 70 % of the embryo level. Upregulation of telomerase activity was observed in the ovaries of late pupal queens, reaching 160 % of the level in embryos. Compared to workers and drones, queens displayed higher levels of telomerase activity. In the third larval instar of queens, telomerase activity reached the embryo level, and an enormous increase was observed in adult brains of queens, showing a 70-fold increase compared to a brain of an adult worker. Southern hybridization of terminal TTAGG fragments revealed a high variability of telomeric length between different individuals, although the same pattern of hybridization signals was observed in different tissues of each individual.

  6. Mating flights select for symmetry in honeybee drones ( Apis mellifera)

    Science.gov (United States)

    Jaffé, Rodolfo; Moritz, Robin F. A.

    2010-03-01

    Males of the honeybee ( Apis mellifera) fly to specific drone congregation areas (DCAs), which virgin queens visit in order to mate. From the thousands of drones that are reared in a single colony, only very few succeed in copulating with a queen, and therefore, a strong selection is expected to act on adult drones during their mating flights. In consequence, the gathering of drones at DCAs may serve as an indirect mate selection mechanism, assuring that queens only mate with those individuals having a better flight ability and a higher responsiveness to the queen’s visual and chemical cues. Here, we tested this idea relying on wing fluctuating asymmetry (FA) as a measure of phenotypic quality. By recapturing marked drones at a natural DCA and comparing their size and FA with a control sample of drones collected at their maternal hives, we were able to detect any selection on wing size and wing FA occurring during the mating flights. Although we found no solid evidence for selection on wing size, wing FA was found to be significantly lower in the drones collected at the DCA than in those collected at the hives. Our results demonstrate the action of selection during drone mating flights for the first time, showing that developmental stability can influence the mating ability of honeybee drones. We therefore conclude that selection during honeybee drone mating flights may confer some fitness advantages to the queens.

  7. MEMORIA Y APRENDIZAJE EN LA ESCOGENCIA FLORAL DE LAS ABEJAS

    Directory of Open Access Journals (Sweden)

    MARISOL AMAYA MÁRQUEZ

    2009-01-01

    Full Text Available Los polinizadores altamente especializados en su dieta, no hacen escogencias florales, ellos visitan un recurso específico siguiendo el dictado de la información almacenada en sus genes. En contraste, para la abeja social Apis mellifera una escogencia floral implica, la toma de una decisión, usualmente con criterio económico, basada en información aprendida y almacenada en alguna forma de memoria. Aunque existen numerosos estudios y modelos sobre la escogencia floral en abejas, la gran mayoría de éstos, han derivado sus conclusiones a partir de condiciones temporalmente fijas de la interacción. Muy pocos estudios han abordado la dinámica propia del contexto ecológico, en el cual el mercado floral de las abejas cambia con las estaciones del año y con los patrones diarios de antesis floral. Este cambio en la disponibilidad de especies florales enfrenta a los polinizadores, a realizar escogencias secuenciales acerca del alimento a explotar. En este trabajo abordo el tema del forrajeo secuencial en parches florales heterospecíficos, enfocándome en el uso que la abeja melífera hace de la información previamente aprendida en un contexto, cuando se enfrenta a la explotación de alimento en un contexto ecológicamente diferente. He realizado experimentos sobre escogencia floral simulando las condiciones de cambio del paisaje floral, exponiendo abejas individuales de A. mellifera a decidir sobre cuales especies forrajear en cada parche. Los resultados indican que la abeja invierte en procesos de aprendizaje en un muestreo inicial, pero una vez almacenada la información, utiliza una pieza de la información previamente aprendida (color para explotar parches florales heteroespecíficos siguiendo una imagen de búsqueda de color. En esta revisión discuto situaciones biológicas de la interacción planta-abeja, las cuales apoyan la idea que en la naturaleza el uso de imágenes de búsqueda de color por parte de abejas sociales puede ser m

  8. Implication of infectious agents and parasites in the Colony Collapse Disorder of the bee Apis mellifera

    OpenAIRE

    Giménez Bonillo, Sara

    2014-01-01

    Pòster The Apis mellifera bee is a pollinator with a very important role and it is indispensable for the growth of the productivity of some agricultural crops. In the last years there is the worry for the increasing loss of mellifera bee colonies all over the world. The CCD (Colony Collapse Disorder) is a sudden death of bee colonies and, in many cases, swarm abandonment

  9. ТОЧКА КРИСТАЛЛИЗАЦИИ ТКАНЕЙ ТЕЛА МЕДОНОСНЫХ ПЧЕЛ APIS MELLIFERA MELLIFERA L. И APIS MELLIFERA CARNICA

    OpenAIRE

    Мурылёв, Александр; Петухов, Александр

    2011-01-01

    The year cycle of crystallization point of different departments of a body of honeybee is shown in dynamics. Distinction of crystallization point of tissues of honeybee in Apis mellifera mellifera and Apis mellifera carnica is noted. The given indicator will allow to explain the mechanism of adaptation of bees at physiological level to adverse winter conditions and acclimatization on the north of the range.

  10. Spiroplasma apis, a new species from the honey-bee Apis mellifera.

    Science.gov (United States)

    Mouches, C; Bové, J M; Tully, J G; Rose, D L; McCoy, R E; Carle-Junca, P; Garnier, M; Saillard, C

    1983-01-01

    Two spiroplasma strains (B31 and B39) recovered from diseased honey-bees (Apis mellifera) in southwestern France were similar in biochemical, serological and pathological properties. The organisms grew at 30 degrees C, required cholesterol for growth, fermented glucose, catabolized arginine and produced a film and spot reaction. The two spiroplasmas were serologically indistinguishable but were related to serogroup IV spiroplasmas, which had been previously isolated from flower surfaces and from insects. The isolates were distinct from the three previously established species of Spiroplasma and from other presently known serogroups. The G + C content of the DNA from strain B31 was 30 +/- 1 mol %. Both B31 and B39 strains were associated with a lethal infection ("May disease") of the honey-bee. On the basis of the characterization presented here, it is proposed that these spiroplasmal pathogens of bees and allied strains be classified as a new species, Spiroplasma apis, the type strain of which is B31 (ATCC 33834).

  11. Índices de prevalencia del ácaro Varroa destructor (Acari: Varroidae en cuadros de cría nuevos o previamente utilizados por Apis mellifera (Hymenoptera: Apidae

    Directory of Open Access Journals (Sweden)

    Jorge, A. MARCANGELI

    2007-01-01

    Full Text Available El objetivo de esta investigación fue comparar los niveles de infestación de Varroa destructor (Anderson & Trueman en panales de cría nuevos y viejos, en colonias de la abeja criolla (híbrido de Apis mellifera mellifera (Linnaeus y Apis mellifera ligustica Spinola. El trabajo se llevó a cabo en un apiario ubicado en Coronel Vidal, provincia de Buenos Aires, durante la primavera del año 2005. Se trabajó sobre 20 colmenas tipo Langstroth, de un híbrido de Apis mellifera (Linnaeus infestadas naturalmente por el ácaro Varroa destructor, y seleccionadas al azar. En cada una de ellas se escogió un panal de 2 años (viejo que se colocó en el centro del nido de cría, junto con un panal recientemente labrado por las abejas (nuevo. Luego de que ambos cuadros fueran operculados, se los extrajo y se llevaron al laboratorio para su posterior análisis. Cada una de las celdas de cría se desoperculó e inspeccionó en busca de ácaros, registrándose el número de hembras de ácaros que habían ingresado para su reproducción, se calculó el nivel de infestación como el cociente entre el número de celdas infestadas por ácaros y el número total de celdas inspeccionadas. Los resultados mostraron que los panales viejos presentaron niveles de infestación significativamente superiores a los registrados en panales nuevos (13,52% ± 3,35 y 6,18% ± 2,12 respectivamente; t = 10,62; p = 1,9 E-9; g. l.= 19. El mismo patrón fue observado en el número promedio de ácaros por panal (443,3 ± 70,54 y 217,85 ± 51,76 para panales viejos y nuevos respectivamente; t = 23,87; p = 1,24 E-15; g. l.= 19. Los ácaros presentan una marcada preferencia por los panales viejos. Esta selección estaría guiada por olores propios de las celdas, que actuarían como atrayentes. Además, posiblemente enmascaran su presencia de esta manera y evitan así ser detectados y eliminados por las abejas nodrizas mediante los comportamientos higiénicos.

  12. Acaricide, fungicide and drug interactions in honey bees (Apis mellifera.

    Directory of Open Access Journals (Sweden)

    Reed M Johnson

    Full Text Available BACKGROUND: Chemical analysis shows that honey bees (Apis mellifera and hive products contain many pesticides derived from various sources. The most abundant pesticides are acaricides applied by beekeepers to control Varroa destructor. Beekeepers also apply antimicrobial drugs to control bacterial and microsporidial diseases. Fungicides may enter the hive when applied to nearby flowering crops. Acaricides, antimicrobial drugs and fungicides are not highly toxic to bees alone, but in combination there is potential for heightened toxicity due to interactive effects. METHODOLOGY/PRINCIPAL FINDINGS: Laboratory bioassays based on mortality rates in adult worker bees demonstrated interactive effects among acaricides, as well as between acaricides and antimicrobial drugs and between acaricides and fungicides. Toxicity of the acaricide tau-fluvalinate increased in combination with other acaricides and most other compounds tested (15 of 17 while amitraz toxicity was mostly unchanged (1 of 15. The sterol biosynthesis inhibiting (SBI fungicide prochloraz elevated the toxicity of the acaricides tau-fluvalinate, coumaphos and fenpyroximate, likely through inhibition of detoxicative cytochrome P450 monooxygenase activity. Four other SBI fungicides increased the toxicity of tau-fluvalinate in a dose-dependent manner, although possible evidence of P450 induction was observed at the lowest fungicide doses. Non-transitive interactions between some acaricides were observed. Sublethal amitraz pre-treatment increased the toxicity of the three P450-detoxified acaricides, but amitraz toxicity was not changed by sublethal treatment with the same three acaricides. A two-fold change in the toxicity of tau-fluvalinate was observed between years, suggesting a possible change in the genetic composition of the bees tested. CONCLUSIONS/SIGNIFICANCE: Interactions with acaricides in honey bees are similar to drug interactions in other animals in that P450-mediated detoxication

  13. Detection of Illicit Drugs by Trained Honeybees (Apis mellifera.

    Directory of Open Access Journals (Sweden)

    Matthias Schott

    Full Text Available Illegal drugs exacerbate global social challenges such as substance addiction, mental health issues and violent crime. Police and customs officials often rely on specially-trained sniffer dogs, which act as sensitive biological detectors to find concealed illegal drugs. However, the dog "alert" is no longer sufficient evidence to allow a search without a warrant or additional probable cause because cannabis has been legalized in two US states and is decriminalized in many others. Retraining dogs to recognize a narrower spectrum of drugs is difficult and training new dogs is time consuming, yet there are no analytical devices with the portability and sensitivity necessary to detect substance-specific chemical signatures. This means there is currently no substitute for sniffer dogs. Here we describe an insect screening procedure showing that the western honeybee (Apis mellifera can sense volatiles associated with pure samples of heroin and cocaine. We developed a portable electroantennographic device for the on-site measurement of volatile perception by these insects, and found a positive correlation between honeybee antennal responses and the concentration of specific drugs in test samples. Furthermore, we tested the ability of honeybees to learn the scent of heroin and trained them to show a reliable behavioral response in the presence of a highly-diluted scent of pure heroin. Trained honeybees could therefore be used to complement or replace the role of sniffer dogs as part of an automated drug detection system. Insects are highly sensitive to volatile compounds and provide an untapped resource for the development of biosensors. Automated conditioning as presented in this study could be developed as a platform for the practical detection of illicit drugs using insect-based sensors.

  14. Acaricide, fungicide and drug interactions in honey bees (Apis mellifera).

    Science.gov (United States)

    Johnson, Reed M; Dahlgren, Lizette; Siegfried, Blair D; Ellis, Marion D

    2013-01-01

    Chemical analysis shows that honey bees (Apis mellifera) and hive products contain many pesticides derived from various sources. The most abundant pesticides are acaricides applied by beekeepers to control Varroa destructor. Beekeepers also apply antimicrobial drugs to control bacterial and microsporidial diseases. Fungicides may enter the hive when applied to nearby flowering crops. Acaricides, antimicrobial drugs and fungicides are not highly toxic to bees alone, but in combination there is potential for heightened toxicity due to interactive effects. Laboratory bioassays based on mortality rates in adult worker bees demonstrated interactive effects among acaricides, as well as between acaricides and antimicrobial drugs and between acaricides and fungicides. Toxicity of the acaricide tau-fluvalinate increased in combination with other acaricides and most other compounds tested (15 of 17) while amitraz toxicity was mostly unchanged (1 of 15). The sterol biosynthesis inhibiting (SBI) fungicide prochloraz elevated the toxicity of the acaricides tau-fluvalinate, coumaphos and fenpyroximate, likely through inhibition of detoxicative cytochrome P450 monooxygenase activity. Four other SBI fungicides increased the toxicity of tau-fluvalinate in a dose-dependent manner, although possible evidence of P450 induction was observed at the lowest fungicide doses. Non-transitive interactions between some acaricides were observed. Sublethal amitraz pre-treatment increased the toxicity of the three P450-detoxified acaricides, but amitraz toxicity was not changed by sublethal treatment with the same three acaricides. A two-fold change in the toxicity of tau-fluvalinate was observed between years, suggesting a possible change in the genetic composition of the bees tested. Interactions with acaricides in honey bees are similar to drug interactions in other animals in that P450-mediated detoxication appears to play an important role. Evidence of non-transivity, year-to-year variation

  15. Antibacterial Activity of a Cardanol from Thai Apis mellifera Propolis

    Science.gov (United States)

    Boonsai, Pattaraporn; Phuwapraisirisan, Preecha; Chanchao, Chanpen

    2014-01-01

    Background: Propolis is a sticky, dark brown resinous residue made by bees that is derived from plant resins. It is used to construct and repair the nest, and in addition possesses several diverse bioactivities. Here, propolis from Apis mellifera from Nan province, Thailand, was tested for antibacterial activity against Gram+ve (Staphylococcus aureus and Paenibacillus larvae) and Gram-ve (Escherichia coli) bacteria. Materials and methods: The three bacterial isolates were confirmed for species designation by Gram staining and analysis of the partial sequence of 16S rDNA. Propolis was sequentially extracted by methanol, dichloromethane and hexane. The antibacterial activity was determined by agar well diffusion and microbroth dilution assays using streptomycin as a positive control. The most active crude extract was further purified by quick column and adsorption chromatography. The apparent purity of each bioactive fraction was tested by thin layer chromatography. The chemical structure of the isolated bioactive compound was analyzed by nuclear magnetic resonance (NMR). Results: Crude methanol extract of propolis showed the best antibacterial activity with a minimum inhibition concentration (MIC) value of 5 mg/mL for S. aureus and E. coli and 6.25 mg/mL for P. larvae. After quick column chromatography, only three active fractions were inhibitory to the growth of S. aureus and E. coli with MIC values of 6.25 and 31.3 µg/mL, respectively. Further adsorption chromatography yielded one pure bioactive fraction (A1A) with an IC50 value of 0.175 µg/mL for E. coli and 0.683 µg/mL for P. larvae, and was determined to be cardanol by NMR analysis. Scanning and transmission electron microscopy analysis revealed unusual shaped (especially in dividing cells), damaged and dead cells in cardanol-treated E. coli. Conclusion: Thai propolis contains a promising antibacterial agent. PMID:24578609

  16. Viruses associated with ovarian degeneration in Apis mellifera L. queens.

    Directory of Open Access Journals (Sweden)

    Laurent Gauthier

    Full Text Available Queen fecundity is a critical issue for the health of honeybee (Apis mellifera L. colonies, as she is the only reproductive female in the colony and responsible for the constant renewal of the worker bee population. Any factor affecting the queen's fecundity will stagnate colony development, increasing its susceptibility to opportunistic pathogens. We discovered a pathology affecting the ovaries, characterized by a yellow discoloration concentrated in the apex of the ovaries resulting from degenerative lesions in the follicles. In extreme cases, marked by intense discoloration, the majority of the ovarioles were affected and these cases were universally associated with egg-laying deficiencies in the queens. Microscopic examination of the degenerated follicles showed extensive paracrystal lattices of 30 nm icosahedral viral particles. A cDNA library from degenerated ovaries contained a high frequency of deformed wing virus (DWV and Varroa destructor virus 1 (VDV-1 sequences, two common and closely related honeybee Iflaviruses. These could also be identified by in situ hybridization in various parts of the ovary. A large-scale survey for 10 distinct honeybee viruses showed that DWV and VDV-1 were by far the most prevalent honeybee viruses in queen populations, with distinctly higher prevalence in mated queens (100% and 67%, respectively for DWV and VDV-1 than in virgin queens (37% and 0%, respectively. Since very high viral titres could be recorded in the ovaries and abdomens of both functional and deficient queens, no significant correlation could be made between viral titre and ovarian degeneration or egg-laying deficiency among the wider population of queens. Although our data suggest that DWV and VDV-1 have a role in extreme cases of ovarian degeneration, infection of the ovaries by these viruses does not necessarily result in ovarian degeneration, even at high titres, and additional factors are likely to be involved in this pathology.

  17. [Melissopalynology and trophic niche of Apis cerana ceraca and Apis mellifera ligustica in Yunnan Province of Southwest China].

    Science.gov (United States)

    Liu, Yu-Jia; Zhao, Tian-Rui; Zhao, Feng-Yun

    2013-01-01

    In 2010 and 2011, the honey samples of Apis cerana cerana and A. mellifera ligustica were collected from Kunming and Mengzi of Yunnan Province, respectively, aimed to analyze the melissopalynology and tropic niche of the two bee species. The absolute pollen concentration of the honey of A. cerana cerana was 1.55 x 10(4) ind x g(-1), being significantly higher than that (1.01 x 10(4) ind x g(-1)) of A. mellifera ligustica, and the number of nectar plant species collected by A. cerana cerana was 12.9, also significantly higher than that (7.7) collected by A. mellifera ligustica, indicating that A. cerana cerana could utilize more nectar plants, while A. mellifera ligustica had stronger selectivity to the nectar plants. The trophic niche breadth of A. cerana cerana was 0.35, which was significantly higher than that (0.23) of A. mellifera ligustica. The trophic niche overlap index between the two bee species was 0.71, and the interspecific competition index was 0.93, suggesting that the food competition between A. cerana cerana and A. mellifera ligustica was fierce.

  18. Abejas cleptoparasitas, con énfasis en las abejas hospederas colectoras de aceites (Hymenoptera: Apoidea ECOLOGICAL IMPACT ON NATIVE BEES BY THE INVASIVE AFRICANIZED HONEY BEE

    Directory of Open Access Journals (Sweden)

    DAVID W ROUBIK

    Full Text Available Pocos estudios han considerado la dinámica de poblaciones de abejas en bosques o hábitats no alterados por el hombre. La presencia de abejas silvestres Africanizadas de Apis mellifera (Apidae fue estudiado por 10-17 años en áreas previamente sin esta especie. Aquí presento e interpreto resultados de tres bosques neotropicales: Guyana Francesa, Panamá y Yucatán, México (5° a 19° N. latitud. La abeja Africanizada exótica no produjo efecto negativo en las abejas nativas, incluyendo especies altamente sociales y solitarias. Diferencias mayores a través del tiempo fueron encontradas en la abundancia de las abejas de miel en flores cerca de hábitat con mayor grado de disturbio, comparado con el bosque espeso. Al nivel poblacional, muestreado en bloques de nidos trampa, en flores o con trampas ultravioletas de insectos, no hubo disminución pronta de abejas, y sí hubo una población relativamente estable o sinusoidal. Sin embargo, las abejas nativas cambiaron su hora de buscar provisiones o su selección de especies florales. Una conclusión principal es que esta competencia por los recursos es ‘silenciosa';, en las áreas florísticamente ricas estudiadas, porque las mismas abejas compensan con su comportamiento. Otros factores rigen sus poblaciones.Very little effort has been made to investigate bee population dynamics among intact wilderness areas. The presence of newly-arrived feral Africanized honey bee (AHB, Apis mellifera (Apidae, populations was studied for 10-17 years in areas previously with few or no escaped European apiary honey bees. Here I describe and interpret the major results from studies in three neotropical forests: French Guiana, Panama and Yucatan, Mexico (5° to 19° N. latitude. The exotic Africanized honey bees did not produce a negative effect on native bees, including species that were solitary or highly eusocial. Major differences over time were found in honey bee abundance on flowers near habitat

  19. The synergistic effects of almond protection fungicides on honey bee (Apis mellifera) forager survival

    Science.gov (United States)

    The honey bee (Apis mellifera) contributes approximately $17 billion annually in pollination services performed for major agricultural crops in the United States including almond, which is completely dependent on honey bee pollination for nut set. Almond growers face challenges to crop productivity ...

  20. Spatial and temporal variation of metal concentrations in adult honeybees (Apis mellifera L.)

    NARCIS (Netherlands)

    Steen, van der J.J.M.; Kraker, J.; Grotenhuis, J.T.C.

    2012-01-01

    Honeybees (Apis mellifera L.) have great potential for detecting and monitoring environmental pollution, given their wide-ranging foraging behaviour. Previous studies have demonstrated that concentrations of metals in adult honeybees were significantly higher at polluted than at control locations. T

  1. Concurrent infestations by Aethina tumida and Varroa destructor alters thermoregulation in Apis mellifera winter clusters

    Science.gov (United States)

    The small hive beetle, Aethina tumida, and the ectoparasitic mite, Varroa destructor, are parasites of the honeybee, Apis mellifera. Both parasites overwinter in honeybee colonies. The efficacy of thermoregulation might be reduced in beetle and mite infested clusters, due to altered activity of host...

  2. Sperm use economy of honeybee (Apis mellifera) queens

    DEFF Research Database (Denmark)

    Baer, Boris; Collins, Jason; Maalaps, Kristiina;

    2016-01-01

    the fecundity and longevity of queens and therefore colony fitness. We quantified the number of sperm that honeybee (Apis mellifera) queens use to fertilize eggs. We examined sperm use in naturally mated queens of different ages and in queens artificially inseminated with different volumes of semen. We found...

  3. Responses of Varroa-resistant honey bees (Apis mellifera L.) to Deformed wing virus

    Science.gov (United States)

    The negative impact of Deformedwing virus (DWV) on European honey bees Apis mellifera is magnified by Varroa destructor parasitism. This study compared the responses of two Varroa-resistant honey bee stocks, pure Russian honey bees (RHB) and out-crossed Varroa Sensitive Hygienic bees, Pol-line (POL)...

  4. Young and old honey bee (Apis mellifera) larvae differentially prime the developmental maturation of their caregivers

    Science.gov (United States)

    In eusocial insects daughters rear the offspring of the queen to adulthood. In the honey bee, Apis mellifera, nurses differentially regulate larval nutrition. Among worker-destined larvae, younger instars receive an unrestricted diet paralleling that of queen larvae in protein composition but with r...

  5. Involvement of Phosphorylated "Apis Mellifera" CREB in Gating a Honeybee's Behavioral Response to an External Stimulus

    Science.gov (United States)

    Gehring, Katrin B.; Heufelder, Karin; Feige, Janina; Bauer, Paul; Dyck, Yan; Ehrhardt, Lea; Kühnemund, Johannes; Bergmann, Anja; Göbel, Josefine; Isecke, Marlene; Eisenhardt, Dorothea

    2016-01-01

    The transcription factor cAMP-response element-binding protein (CREB) is involved in neuronal plasticity. Phosphorylation activates CREB and an increased level of phosphorylated CREB is regarded as an indicator of CREB-dependent transcriptional activation. In honeybees ("Apis mellifera") we recently demonstrated a particular high…

  6. Acinetobacter apis sp. nov., isolated from the intestinal tract of a honey bee, Apis mellifera.

    Science.gov (United States)

    Kim, Pil Soo; Shin, Na-Ri; Kim, Joon Yong; Yun, Ji-Hyun; Hyun, Dong-Wook; Bae, Jin-Woo

    2014-08-01

    A novel Gram-negative, obligate aerobic, non-motile, and both coccobacillus- and bacillus-shaped bacterium, designated strain HYN18(T), was isolated from the intestinal tract of a honey bee (Apis mellifera). The isolate was oxidase-negative and catalase-positive. Strain HYN18(T) showed optimum growth at 25°C, pH 6-7, and in the presence of 1% (w/v) NaCl in trypticase soy broth medium. The isolate was negative for hydrolyses of starch, casein, gelatin and urea, indole production from tryptone and hemolysis on sheep blood agar. A phylogenetic analysis based on the 16S rRNA gene and rpoB gene sequence showed that strain HYN18(T) was most closely related to Acinetobacter nectaris SAP 763.2(T) and A. boissieri SAP 284.1(T) with 98.3% and 98.1% similarity (16S rRNA gene), respectively, and 84.4% similarity with Acinetobacter nectaris SAP 763.2(T) (rpoB gene). The major cellular fatty acids were summed features 3 (comprising C16:1ω7c /C16:1ω6c ), C12:0 and C16:0. The main isoprenoid quinone was ubiquinone-9 (Q-9). The polar lipids of strain HYN18(T) were phosphatidylethanolamine, three unidentified lipids, an unidentified phospholipid and an unidentified glycolipid. The DNA G+C content was 40.6 mol%. DNA-DNA hybridization experiments indicated less than 33 ± 10% relatedness to the closest phylogenetic species, Acinetobacter nectaris SAP 763.2(T). Thus, the phenotypic, phylogenetic and genotypic analyses indicate that strain HYN18(T) is a novel species within the genus Acinetobacter, for which the name Acinetobacter apis is proposed. The type strain is HYN18(T) (=KACC 16906(T) =JCM 18575(T)).

  7. Morphotypes of Varroa destructor collected in Apis mellifera colonies from different geographic locations of Argentina.

    Science.gov (United States)

    Maggi, Matías D; Sardella, Norma H; Ruffinengo, Sergio R; Eguaras, Martín J

    2009-11-01

    Parasites display considerable phenotypic plasticity in life-history traits such as, body size. Varroa destructor is an ectoparasitic mite of the western honey bee Apis mellifera. Several studies have reported that in V. destructor, there is a wide phenotypic plasticity within a population of mites. However, it is unknown if there are morphologic variations in V. destructor populations affecting different A. mellifera populations. A morphometric study of V. destructor populations was conducted to provide information concerned to the relationships among parasite populations found in different geographic locations from A. mellifera colonies of Argentina. The hypothesis tested was different morphotypes of V. destructor populations parasitizing different A. mellifera populations from Argentina exist. A discriminant analysis employing eight morphologic variables revealed that it is possible to differentiate morphotypes of mites in Argentina. However, the level of discrimination detected among mites population varied according to the grouping of mite's population. Possible causes explaining the morphometric variability in the V. destructor populations were discussed.

  8. Heterosis en la longevidad de obreras Apis mielífera

    Directory of Open Access Journals (Sweden)

    Soares AE.

    2001-06-01

    Full Text Available Se estimó la media y la heterosis de la longevidad en obreras de abejas Apis mellifera. El expe-rimento fue desarrollado en el Apiario del Departamento de Genética de la Facultad de Medi-cina de la USP-Ribeirão Preto-Brasil y en Jaboticabal-SP, de 03/1997 a 05/1999. Seleccionamos 8 matrices inseminadas del apiário-USP (2africanizadas, 2italianas, 2cárnicasy 2italianas*cárnicos y 2 matrices (grupo-testigo de abejas Africanizadas-Silvestres.

  9. The indigenous honey bees of Saudi Arabia (Hymenoptera, Apidae, Apis mellifera jemenitica Ruttner): Their natural history and role in beekeeping.

    Science.gov (United States)

    Alqarni, Abdulaziz S; Hannan, Mohammed A; Owayss, Ayman A; Engel, Michael S

    2011-01-01

    Apis mellifera jemenitica Ruttner (= yemenitica auctorum: videEngel 1999) has been used in apiculture throughout the Arabian Peninsula since at least 2000 BC. Existing literature demonstrates that these populations are well adapted for the harsh extremes of the region. Populations of Apis mellifera jemenitica native to Saudi Arabia are far more heat tolerant than the standard races often imported from Europe. Central Saudi Arabia has the highest summer temperatures for the Arabian Peninsula, and it is in this region where only Apis mellifera jemenitica survives, while other subspecies fail to persist. The indigenous race of Saudi Arabia differs from other subspecies in the region in some morphological, biological, and behavioral characteristics. Further taxonomic investigation, as well as molecular studies, is needed in order to confirm whether the Saudi indigenous bee populations represent a race distinct from Apis mellifera jemenitica, or merely an ecotype of this subspecies.

  10. Hydrolases in the hypopharyngeal glands of workers of Scaptotrigona postica and Apis mellifera (Hymenoptera, Apinae).

    Science.gov (United States)

    Costa, Rosiléia A C; da Cruz-Landim, Carminda

    2005-12-30

    Hydrolytic enzymes from hypopharyngeal gland extracts of newly emerged, nurse and foraging workers of two eusocial bees, Scaptotrigona postica, a native Brazilian stingless bee, and the Africanized honey bee (Apis mellifera) in Brazil, were compared. The hypopharyngeal gland is rich in enzymes in both species. Fifteen different enzymes were found in the extracts, with only a few quantitative differences between the species. Some of the enzymes present in the extracts may have intracellular functions, while others seem to be digestive enzymes. Scaptotrigona postica, had lower beta-glucosidase and higher lipase esterase activities than A. mellifera. The differences may be due to different feeding habits and behavioral peculiarities of the two species.

  11. Performance of Apis mellifera, Bombus impatiens, and Peponapis pruinosa (Hymenoptera: Apidae) as pollinators of pumpkin.

    Science.gov (United States)

    Artz, Derek R; Nault, Brian A

    2011-08-01

    Pollination services of pumpkin, Cucurbita pepo L., provided by the European honey bee, Apis mellifera L., were compared with two native bee species, the common eastern bumble bee, Bombus impatiens (Cresson), and Peponapis pruinosa Say, in New York from 2008 to 2010. Performance of each species was determined by comparing single-visit pollen deposition, percentage of visits that contacted the stigma, flower-handling time, fruit and seed set, and fruit weight per number of visits. Fruit yield from small fields (0.6 ha) supplemented with commercial B. impatiens colonies was compared with yield from those not supplemented. A. mellifera spent nearly 2 and 3 times longer foraging on each pistillate flower compared with B. impatiens and P. pruinosa, respectively. A. mellifera also visited pistillate flowers 10-20 times more frequently than B. impatiens and P. pruinosa, respectively. Yet, B. impatiens deposited 3 times more pollen grains per stigma and contacted stigmas significantly more often than either A. mellifera or P. pruinosa. Fruit set and weight from flowers visited four to eight times by B. impatiens were similar to those from open-pollinated flowers, whereas flowers pollinated by A. mellifera and P. pruinosa produced fewer fruit and smaller fruit compared with those from open-pollinated flowers. Fields supplemented with B. impatiens produced significantly more pumpkins per plant than nonsupplemented fields. B. impatiens was a better pollinator of pumpkin than P. pruinosa and should be considered as a promising alternative to A. mellifera for pollinating this crop.

  12. Variation morphogeometrics of Africanized honey bees (Apis mellifera in Brazil Variação morfogeométrica das abelhas africanizadas (Apis mellifera no Brasil

    Directory of Open Access Journals (Sweden)

    Lorena A. Nunes

    2012-09-01

    Full Text Available The morphometrics of the honey bee Apis mellifera L., 1758 has been widely studied mainly because this species has great ecological importance, high adaptation capacity, wide distribution and capacity to effectively adapt to different regions. The current study aimed to investigate the morphometric variations of wings and pollen baskets of honey bees Apis mellifera scutellata Lepeletier, 1836 from the five regions in Brazil. We used geometric morphometrics to identify the existence of patterns of variations of shape and size in Africanized honey bees in Brazil 16 years after the classic study with this species, allowing a temporal and spatial comparative analysis using new technological resources to assess morphometrical data. Samples were collected in 14 locations in Brazil, covering the five geographical regions of the country. The shape analysis and multivariate analyses of the wing allowed to observe that there is a geographical pattern among the population of Apis mellifera in Brazil. The geographical variations may be attributed to the large territorial extension of the country in addition to the differences between the bioregions.Apis mellifera L., 1758 têm sido alvo de muitos estudos morfométricos principalmente pela sua importância ecológica, pela sua grande capacidade de adaptação, sua ampla distribuição e por serem capazes de se estabelecer eficientemente em diversas regiões. O presente trabalho teve como objetivo estudar as variações da forma em asas e corbículas de operárias de Apis mellifera scutellata Lepeletier, 1836 provenientes das cinco regiões biogeográficas do Brasil utilizando análises morfogeométricas, a fim de verificar a existência de padrões de variação de forma e tamanho das abelhas africanizadas no Brasil após 16 anos do estudo clássico realizado com esta espécie, possibilitando uma análise espaço-temporal comparativa utilizando recursos tecnológicos atuais para a avaliação de dados morfom

  13. Polinização de morangueiro por Apis mellifera em ambiente protegido Strawberry polinization through Apis mellifera in protected environment

    Directory of Open Access Journals (Sweden)

    Eunice Oliveira Calvete

    2010-03-01

    Full Text Available Este trabalho objetivou comparar a produtividade e a qualidade dos frutos comerciáveis no morangueiro, em ambiente protegido, utilizando a espécie de abelha Apis mellifera em relação à ausência de um agente polinizador. Foram instalados dois experimentos, utilizando-se das cultivares Camarosa, Oso Grande, Diamante e Aromas (tratamentos, no período de 05 de maio a 19 de dezembro de 2006. No primeiro experimento, não havia polinizadores (testemunha. O segundo foi polinizado pela espécie de abelha Apis mellifera. Os tratamentos (cultivares foram dispostos, em cada experimento, em um delineamento completamente casualizado, com seis repetições. Foram avaliadas características de rendimento, bem como análise físico-química dos frutos de cada cultivar. Quanto ao rendimento, a maior produção obtida foi com a cultivar Camarosa tanto na ausência quanto na presença de polinizadores (907,46 g. planta-1 e 1.054,93 g. planta-1, respectivamente, ao passo que a cultivar Oso Grande apresentou menor número de frutos deformados.This work objectified to compare the productivity and the quality of the strawberry marketable fruits in protected environment, using the species of bee Apis mellifera in relation of the absence of a polinizator agent. It was installed two experiments using the cultivates Camarosa, Oso Grande, Diamante and Aromas (treatments, in the period of May 5 th until December 19th of 2006. The first experiment did not have polinizatores agents (control. The second was polinizated by the species of bee Apis mellifera. The treatments (cultivars had been arranged, in each experiment in a randomized blocks with 6 repetitions. They were evaluated income characteristics, as well as analysis physicist-chemistry of the fruits of each cultivar. For the income, the biggest production was gotten in cultivar Camarosa, for the first and the second experiment (907,46 g. plant-1 and 1054,93 g. plant-1, respectively, in the way that the cultivate

  14. Histochemical Comparison of the Hypopharyngeal Gland in Apis cerana Fabricius, 1793 Workers and Apis mellifera Linnaeus, 1758 Workers

    Directory of Open Access Journals (Sweden)

    Guntima Suwannapong

    2010-01-01

    Full Text Available Hypopharyngeal glands of honeybee are age-dependent structures that change with the size of acini and are correlated with various social behaviors. The histochemical structure of Apis cerana and A. mellifera worker hypopharyngeal glands in four different developmental stages wes stained with ninhydrin Schiff's and periodic acid Schiff's reagents (PAS for localization of proteins and carbohydrates, respectively, and examined with light microscopy. Nurse bees of both honeybee species had significantly larger glands as compared to guards and forgers, but there were no statistically significant differences between these two species after accounting for caste. Gland protein concentration increased progressively in nurse bees, and this was correlated with the appearance of enriched protein granules in the cytoplasm. In addition, the hypopharyngeal gland protein concentration of A. mellifera was higher than that of A. cerana even though gland size was not significantly different between species. However, gland size was shown to have decreased progressively in foragers and guards.

  15. Complejidad social y aprendizaje de tareas de forrajeo en abejas

    Directory of Open Access Journals (Sweden)

    MARISOL AMAYA-MÁRQUEZ

    2008-12-01

    Full Text Available Las predicciones sobre aprendizaje derivadas de los modelos de complejidad social y forrajeo central, fueron sometidas a prueba usando una especie de abeja social (Apis mellifera y una especie de abeja solitaria (Osmia lignaria, a las cuales les fue ofrecida una tarea de aprendizaje en el contexto de forrajeo de néctar. Ambas especies fueron expuestas a las mismas condiciones de forrajeo, donde 1 se cambió únicamente la molaridad de la recompensa entre las formas florales, y 2 se cambió únicamente el volumen de la recompensa. Los experimentos se hicieron con parches de flores artificiales utilizando dos variedades de color floral (azul y blanco para estandarizar las recompensas de néctar en cada situación experimental. Aunque las abejas sociales aprendieron más rápido que las solitarias cuando se les presentó un problema de diferencia de molaridad en la recompensa, no hubo una diferencia significativa con respecto al aprendizaje de diferencias en volumen de néctar. Adicionalmente, la tasa a la cual O. lignaria aprendió diferencias en el volumen de la recompensa, no difirió de la tasa a la cual A. melifera aprendió las diferencias de concentración del néctar. Los resultados no apoyan las predicciones de la teoría de la complejidad social, pero soportan las del modelo de forrajeo central.

  16. Molecular detection of protozoan parasites infecting Apis mellifera colonies in Japan.

    Science.gov (United States)

    Morimoto, Tomomi; Kojima, Yuriko; Yoshiyama, Mikio; Kimura, Kiyoshi; Yang, Bu; Peng, Guangda; Kadowaki, Tatsuhiko

    2013-02-01

    The role of protozoan parasites in honey bee health and distribution in the world is not well understood. Therefore, we carried out a molecular survey for the presence of Crithidia mellificae and Apicystis bombi in the colonies of both non-native Apis mellifera and native Apis cerana japonica in Japan. We found that A. mellifera, but not A. c. japonica, colonies are parasitized with C. mellificae and A. bombi. Their absence in A. c. japonica colonies indicates that A. mellifera is their native host. Nevertheless, the prevalence in A. mellifera colonies is low compared with other pathogens such as viruses and Nosema microsporidia. Japanese C. mellificae isolates share well-conserved nuclear-encoded gene sequences with Swiss and US isolates. We have found two Japanese haplotypes (A and B) with two nucleotide differences in the kinetoplast-encoded cytochrome b sequence. The haplotype A is identical to Swiss isolate. These results demonstrate that C. mellificae and A. bombi distribute in Asia, Oceania, Europe, and South and North Americas.

  17. Sepsis and Hemocyte Loss in Honey Bees (Apis mellifera) Infected with Serratia marcescens Strain Sicaria

    OpenAIRE

    Burritt, Nancy L.; Foss, Nicole J.; Neeno-Eckwall, Eric C.; Church, James O.; Hilger, Anna M.; Hildebrand, Jacob A.; Warshauer, David M.; Perna, Nicole T.; Burritt, James B.

    2016-01-01

    Global loss of honey bee colonies is threatening the human food supply. Diverse pathogens reduce honey bee hardiness needed to sustain colonies, especially in winter. We isolated a free-living Gram negative bacillus from hemolymph of worker honey bees (Apis mellifera) found separated from winter clusters. In some hives, greater than 90% of the dying bees detached from the winter cluster were found to contain this bacterium in their hemolymph. Throughout the year, the same organism was rarely ...

  18. Galenics: studies of the toxicity and distribution of sugar substitutes on Apis mellifera

    OpenAIRE

    RADEMACHER, Eva; Fahlberg, Anja; Raddatz, Marlene; Schneider, Saskia; Voigt, Kathrin

    2013-01-01

    International audience; The aim of this study was to find a substitute to sugar water in medicinal treatments of honey bee colonies with the same properties but without being ingested by bees or being toxic to them. Tylose MH, sorbitol and glycerol were tested for their attractiveness to Apis mellifera, their application ability, toxicity via individual application and distribution in small groups respectively a small colony. Neither of the substances proved attractive or toxic. All had good ...

  19. Use of oxalic acid to control Varroa destructor in honeybee (Apis mellifera L.) colonies

    OpenAIRE

    Akyol, Ethem; YENİNAR, Halil

    2009-01-01

    This study was carried out to determine the effects of oxalic acid (OA) on reducing Varroa mite (Varroa destructor) populations in honeybee (Apis mellifera L.) colonies in the fall. Twenty honeybee colonies, in wooden Langstroth hives, were used in this experiment. Average Varroa infestation levels (%) of the OA and control groups were 25.87% and 24.57% on adult workers before the treatments. The OA treatments were applied twice, on 3 November and 13 November 2006. Average Varroa infestation ...

  20. Phosphorus 30 CH to control Varroa population in Apis mellifera colonies

    OpenAIRE

    Moscatelli, Francesca; Pietropaoli, Marco; Brocherel, Giuseppina; Martini, Andrea; Formato, Giovanni

    2016-01-01

    Varroa destructor is considered to be the main cause of European honeybee (Apis mellifera ssp. Linnaeus 1758) colony losses. The use of homeopathic products in veterinary practices has consistently increased in the last 50 years, but limited data are available on the application of homeopathic treatments to honeybees. The aims of this study were to investigate the acaricide efficacy and tolerability for honeybees treated for 35 days with the homeopathic product Phosphorus 30 CH. Methods...

  1. The nicotinic acetylcholine receptor gene family of the honey bee, Apis mellifera

    OpenAIRE

    Jones, Andrew K.; Raymond-Delpech, Valerie; Steeve H Thany; Gauthier, Monique; Sattelle, David B.

    2006-01-01

    Nicotinic acetylcholine receptors (nAChRs) mediate fast cholinergic synaptic transmission and play roles in many cognitive processes. They are under intense research as potential targets of drugs used to treat neurodegenerative diseases and neurological disorders such as Alzheimer's disease and schizophrenia. Invertebrate nAChRs are targets of anthelmintics as well as a major group of insecticides, the neonicotinoids. The honey bee, Apis mellifera, is one of the most beneficial insects worldw...

  2. Hydrocarbon Composition of Beeswax (Apis Mellifera) Collected from Light and Dark Coloured Combs

    OpenAIRE

    Waś Ewa; Szczęsna Teresa; Rybak-Chmielewska Helena

    2014-01-01

    The hydrocarbon composition of beeswax secreted by Apis mellifera was characterised. In the studies, analyses were made of virgin beeswax (obtained from light combs, socalled „wild-built combs“) that was collected at different dates, and beeswax obtained from dark combs („brood combs“). A qualitative analysis did not show any differences in the hydrocarbon composition of beeswax originating from light and dark coloured combs. The same hydrocarbons (n-alkanes, alkenes, and dienes) were identif...

  3. Transcriptional markers of sub-optimal nutrition in developing Apis mellifera nurse workers

    OpenAIRE

    Corby-Harris, Vanessa; Jones, Beryl M.; Walton, Alexander; Schwan, Melissa R; Kirk E Anderson

    2014-01-01

    Background Honey bees (Apis mellifera) contribute substantially to the worldwide economy and ecosystem health as pollinators. Pollen is essential to the bee’s diet, providing protein, lipids, and micronutrients. The dramatic shifts in physiology, anatomy, and behavior that accompany normal worker development are highly plastic and recent work demonstrates that development, particularly the transition from nurse to foraging roles, is greatly impacted by diet. However, the role that diet plays ...

  4. The Changes of Gene Expression in Honeybee (Apis mellifera) Brains Associated with Ages(Behavior Biology)

    OpenAIRE

    Mayumi, Tsuchimoto; Makoto, AOKI; Mamoru, Takada; Yoshinori, Kanou; Hiromi, Sasagawa; Yasuo, Kitagawa; Tatsuhiko, Kadowaki; Department of Applied Biological Sciences School of Agricultural Sciences, Nagoya University Chikusa; Tokyo Metropolitan Institute for Neuroscience; Graduate Program for Regulation of Biological Signals Graduate School of Bioagricultural Sciences, Nagoya University Chikusa

    2004-01-01

    Honeybee (Apis mellifera) worker bees (workers) are known to perform wide variety of tasks depending on their ages. The worker's brains also show the activity and behavior-dependent chemical and structural plasticity. To test if there are any changes of gene expression associated with different ages in the worker brains, we compared the gene expression patterns between the brains of newly emerged bees and old foraging workers (foragers) by macroarray analysis. The expression of genes encoding...

  5. A comparative study of relational learning capacity in honeybees (Apis mellifera and stingless bees (Melipona rufiventris.

    Directory of Open Access Journals (Sweden)

    Antonio Mauricio Moreno

    Full Text Available BACKGROUND: Learning of arbitrary relations is the capacity to acquire knowledge about associations between events or stimuli that do not share any similarities, and use this knowledge to make behavioural choices. This capacity is well documented in humans and vertebrates, and there is some evidence it exists in the honeybee (Apis mellifera. However, little is known about whether the ability for relational learning extends to other invertebrates, although many insects have been shown to possess excellent learning capacities in spite of their small brains. METHODOLOGY/PRINCIPAL FINDINGS: Using a symbolic matching-to-sample procedure, we show that the honeybee Apis mellifera rapidly learns arbitrary relations between colours and patterns, reaching 68.2% correct choice for pattern-colour relations and 73.3% for colour-pattern relations. However, Apis mellifera does not transfer this knowledge to the symmetrical relations when the stimulus order is reversed. A second bee species, the stingless bee Melipona rufiventris from Brazil, seems unable to learn the same arbitrary relations between colours and patterns, although it exhibits excellent discrimination learning. CONCLUSIONS/SIGNIFICANCE: Our results confirm that the capacity for learning arbitrary relations is not limited to vertebrates, but even insects with small brains can perform this learning task. Interestingly, it seems to be a species-specific ability. The disparity in relational learning performance between the two bee species we tested may be linked to their specific foraging and recruitment strategies, which evolved in adaptation to different environments.

  6. MEMORIA Y APRENDIZAJE EN LA ESCOGENCIA FLORAL DE LAS ABEJAS

    Directory of Open Access Journals (Sweden)

    AMAYA MARISOL

    2009-08-01

    Full Text Available RESUMEN

    Los polinizadores altamente especializados en su dieta, no hacen escogencias florales, ellos visitan un recurso específico siguiendo el dictado de la información almacenada en sus genes. En contraste, para la abeja social Apis mellifera una escogencia floral implica, la toma de una decisión, usualmente con criterio económico, basada en información aprendida y almacenada en alguna forma de memoria. Aunque existen numerosos estudios y modelos sobre la escogencia floral en abejas, la gran mayoría de éstos, han derivado sus conclusiones a partir de condiciones temporalmente fijas de la interacción. Muy pocos estudios han abordado la dinámica propia del contexto ecológico, en el cual el mercado floral de las abejas cambia con las estaciones del año y con los patrones diarios de antesis floral. Este cambio en la disponibilidad de especies florales enfrenta a los polinizadores, a realizar escogencias secuenciales acerca del alimento a explotar. En este trabajo abordo el tema del forrajeo secuencial en parches florales heterospecíficos, enfocándome en el uso que la abeja melífera hace de la información previamente aprendida en un contexto, cuando se enfrenta a la explotación de alimento en un contexto ecológicamente diferente. He realizado experimentos sobre escogencia floral simulando las condiciones de cambio del paisaje floral, exponiendo abejas individuales de A. mellifera a decidir sobre cuales especies forrajear en cada parche. Los resultados indican que la abeja invierte en procesos de aprendizaje en un muestreo inicial, pero una vez almacenada la información, utiliza una pieza de la información previamente aprendida (color para explotar parches florales heteroespecíficos siguiendo una imagen de búsqueda de color. En esta revisión discuto situaciones biológicas de la interacción planta-abeja, las cuales apoyan la idea que en la naturaleza el uso de imágenes de búsqueda de color por parte de abejas

  7. A SNP based high-density linkage map of Apis cerana reveals a high recombination rate similar to Apis mellifera.

    Directory of Open Access Journals (Sweden)

    Yuan Yuan Shi

    Full Text Available BACKGROUND: The Eastern honey bee, Apis cerana Fabricius, is distributed in southern and eastern Asia, from India and China to Korea and Japan and southeast to the Moluccas. This species is also widely kept for honey production besides Apis mellifera. Apis cerana is also a model organism for studying social behavior, caste determination, mating biology, sexual selection, and host-parasite interactions. Few resources are available for molecular research in this species, and a linkage map was never constructed. A linkage map is a prerequisite for quantitative trait loci mapping and for analyzing genome structure. We used the Chinese honey bee, Apis cerana cerana to construct the first linkage map in the Eastern honey bee. RESULTS: F2 workers (N = 103 were genotyped for 126,990 single nucleotide polymorphisms (SNPs. After filtering low quality and those not passing the Mendel test, we obtained 3,000 SNPs, 1,535 of these were informative and used to construct a linkage map. The preliminary map contains 19 linkage groups, we then mapped the 19 linkage groups to 16 chromosomes by comparing the markers to the genome of A. mellfiera. The final map contains 16 linkage groups with a total of 1,535 markers. The total genetic distance is 3,942.7 centimorgans (cM with the largest linkage group (180 loci measuring 574.5 cM. Average marker interval for all markers across the 16 linkage groups is 2.6 cM. CONCLUSION: We constructed a high density linkage map for A. c. cerana with 1,535 markers. Because the map is based on SNP markers, it will enable easier and faster genotyping assays than randomly amplified polymorphic DNA or microsatellite based maps used in A. mellifera.

  8. Índices de prevalencia del ácaro Varroa destructor (Acari: Varroidae en cuadros de cría nuevos o previamente utilizados por Apis mellifera (Hymenoptera: Apidae Infestation levels of the mite Varroa destructor (Acari: Varroidae in new and old honeybee brood combs of Apis mellifera (Hymenoptera: Apidae

    Directory of Open Access Journals (Sweden)

    Jorge, A. Marcangeli

    2007-07-01

    Full Text Available El objetivo de esta investigación fue comparar los niveles de infestación de Varroa destructor (Anderson & Trueman en panales de cría nuevos y viejos, en colonias de la abeja criolla (híbrido de Apis mellifera mellifera (Linnaeus y Apis mellifera ligustica Spinola. El trabajo se llevó a cabo en un apiario ubicado en Coronel Vidal, provincia de Buenos Aires, durante la primavera del año 2005. Se trabajó sobre 20 colmenas tipo Langstroth, de un híbrido de Apis mellifera (Linnaeus infestadas naturalmente por el ácaro Varroa destructor, y seleccionadas al azar. En cada una de ellas se escogió un panal de 2 años (viejo que se colocó en el centro del nido de cría, junto con un panal recientemente labrado por las abejas (nuevo. Luego de que ambos cuadros fueran operculados, se los extrajo y se llevaron al laboratorio para su posterior análisis. Cada una de las celdas de cría se desoperculó e inspeccionó en busca de ácaros, registrándose el número de hembras de ácaros que habían ingresado para su reproducción, se calculó el nivel de infestación como el cociente entre el número de celdas infestadas por ácaros y el número total de celdas inspeccionadas. Los resultados mostraron que los panales viejos presentaron niveles de infestación significativamente superiores a los registrados en panales nuevos (13,52% ± 3,35 y 6,18% ± 2,12 respectivamente; t = 10,62; p = 1,9 E-9; g. l.= 19. El mismo patrón fue observado en el número promedio de ácaros por panal (443,3 ± 70,54 y 217,85 ± 51,76 para panales viejos y nuevos respectivamente; t = 23,87; p = 1,24 E-15; g. l.= 19. Los ácaros presentan una marcada preferencia por los panales viejos. Esta selección estaría guiada por olores propios de las celdas, que actuarían como atrayentes. Además, posiblemente enmascaran su presencia de esta manera y evitan así ser detectados y eliminados por las abejas nodrizas mediante los comportamientos higiénicos.The aim of this work was to

  9. Honeybee, Apis mellifera (Hymenoptera: Apidae), leaf damage on Alnus species in Uganda: a blessing or curse in agroforestry?

    Science.gov (United States)

    Nyeko, P; Edwards-Jones, G; Day, R K

    2002-10-01

    It is a dictum that Apis mellifera Linnaeus is innocuous in agricultural ecosystems. This study provides the first record of A. mellifera as a significant defoliator of Alnus species. Careful field observations coupled with microscopic examination provided convincing evidence implicating A. mellifera as the cause of leaf perforation on Alnus species in Uganda. Apis mellifera was observed foraging selectively on young Alnus leaves and buds in search of a sticky substance, apparently propolis. In so doing, the bee created wounds that enlarged and caused tattering of Alnus leaves as they matured. Biological surveys indicated that the damage was prevalent and occurred widely, particularly on Alnus acuminata Kunth in Uganda. Incidence of the Apis mellifera damage on Alnus acuminata peaked in the dry season, with up to 90% of leaves emerging per shoot per month damaged, and was lowest in the wet months during peak leaf emergence. Apis mellifera leaf damage was consistently higher on Alnus acuminata than A. nepalensis D. Don., on saplings than mature trees, and on sun exposed than shaded leaves. The activity of honeybees may be detrimental to the productivity of Alnus, yet the substance for which the insect forages on Alnus is a resource with potential economic importance.

  10. Homology differences between complete Sacbrood virus genomes from infected Apis mellifera and Apis cerana honeybees in Korea.

    Science.gov (United States)

    Reddy, Kondreddy Eswar; Yoo, Mi Sun; Kim, Young-Ha; Kim, Nam-Hee; Ramya, Mummadireddy; Jung, Ha-Na; Thao, Le Thi Bich; Lee, Hee-Soo; Kang, Seung-Won

    2016-04-01

    Sacbrood virus (SBV) represents a serious threat to the health of managed honeybees. We determined four complete SBV genomic sequences (AmSBV-Kor1, AmSBV-Kor2, AcSBV-Kor3, and AcSBV-Kor4) isolated from Apis mellifera and Apis cerana in various regions of South Korea. A phylogenetic tree was constructed from the complete genomic sequences of these Korean SBVs (KSBVs) and 21 previously reported SBV sequences from other countries. Three KSBVs (not AmSBV-Kor1) clustered with previously reported Korean genomes, but separately from SBV genomes from other countries. The KSBVs shared 90-98 % identity, and 89-97 % identity with the genomes from other countries. AmSBV-Kor1 was least similar (~90 % identity) to the other KSBVs, and was most similar to previously reported strains AmSBV-Kor21 (97 %) and AmSBV-UK (93 %). Phylogenetic analysis of the partial VP1 region sequences indicated that SBVs clustered by host species and country of origin. The KSBVs were aligned with nine previously reported complete SBV genomes and compared. The KSBVs were most different from the other genomes at the end of the 5' untranslated region and in the entire open reading frame. A SimPlot graph of the VP1 region confirmed its high variability, especially between the SBVs infecting A. mellifera and A. cerana. In this genomic region, SBVs from A. mellifera species contain an extra continuous 51-nucleotide sequence relative to the SBVs from A. cerana. This genomic diversity may reflect the adaptation of SBV to specific hosts, viral cross-infections, and the spatial distances separating the KSBVs from other SBVs.

  11. Mitochondrial genome of the Levant Region honeybee, Apis mellifera syriaca (Hymenoptera: Apidae).

    Science.gov (United States)

    Haddad, Nizar Jamal

    2016-11-01

    The mitochondrial genome sequence of Levant Region honeybee, Apis mellifera syriaca, is analyzed and presented for the public for the first time. The genome of this honeybee is 15,428 bp in its length, containing 13 protein-coding genes, 22 transfer RNA genes and 2 ribosomal RNA genes. The overall base composition is A (42.88%), C (9.97%), G (5.85%), and T (41.3%), the percentage of A and T being higher than that of G and C. Percentage of non-ATGC characters is 0.007. All the genes are encoded on H-strand, except for four subunit genes (ND1, ND4, ND4L, and ND5), two rRNA genes and eight tRNA genes. The publication of the mitochondrial genome sequence will play a vital role in the conservation genetic projects of A. mellifera, in general, and Apis mellifera syriaca, in particular; moreover, it will be useful for further phylogenetic analysis.

  12. Molecular identification of chronic bee paralysis virus infection in Apis mellifera colonies in Japan.

    Science.gov (United States)

    Morimoto, Tomomi; Kojima, Yuriko; Yoshiyama, Mikio; Kimura, Kiyoshi; Yang, Bu; Kadowaki, Tatsuhiko

    2012-07-01

    Chronic bee paralysis virus (CBPV) infection causes chronic paralysis and loss of workers in honey bee colonies around the world. Although CBPV shows a worldwide distribution, it had not been molecularly detected in Japan. Our investigation of Apis mellifera and Apis cerana japonica colonies with RT-PCR has revealed CBPV infection in A. mellifera but not A. c. japonica colonies in Japan. The prevalence of CBPV is low compared with that of other viruses: deformed wing virus (DWV), black queen cell virus (BQCV), Israel acute paralysis virus (IAPV), and sac brood virus (SBV), previously reported in Japan. Because of its low prevalence (5.6%) in A. mellifera colonies, the incidence of colony losses by CBPV infection must be sporadic in Japan. The presence of the (-) strand RNA in dying workers suggests that CBPV infection and replication may contribute to their symptoms. Phylogenetic analysis demonstrates a geographic separation of Japanese isolates from European, Uruguayan, and mainland US isolates. The lack of major exchange of honey bees between Europe/mainland US and Japan for the recent 26 years (1985-2010) may have resulted in the geographic separation of Japanese CBPV isolates.

  13. Reduced SNP panels for genetic identification and introgression analysis in the dark honey bee (Apis mellifera mellifera).

    Science.gov (United States)

    Muñoz, Irene; Henriques, Dora; Johnston, J Spencer; Chávez-Galarza, Julio; Kryger, Per; Pinto, M Alice

    2015-01-01

    Beekeeping activities, especially queen trading, have shaped the distribution of honey bee (Apis mellifera) subspecies in Europe, and have resulted in extensive introductions of two eastern European C-lineage subspecies (A. m. ligustica and A. m. carnica) into the native range of the M-lineage A. m. mellifera subspecies in Western Europe. As a consequence, replacement and gene flow between native and commercial populations have occurred at varying levels across western European populations. Genetic identification and introgression analysis using molecular markers is an important tool for management and conservation of honey bee subspecies. Previous studies have monitored introgression by using microsatellite, PCR-RFLP markers and most recently, high density assays using single nucleotide polymorphism (SNP) markers. While the latter are almost prohibitively expensive, the information gained to date can be exploited to create a reduced panel containing the most ancestry-informative markers (AIMs) for those purposes with very little loss of information. The objective of this study was to design reduced panels of AIMs to verify the origin of A. m. mellifera individuals and to provide accurate estimates of the level of C-lineage introgression into their genome. The discriminant power of the SNPs using a variety of metrics and approaches including the Weir & Cockerham's FST, an FST-based outlier test, Delta, informativeness (In), and PCA was evaluated. This study shows that reduced AIMs panels assign individuals to the correct origin and calculates the admixture level with a high degree of accuracy. These panels provide an essential tool in Europe for genetic stock identification and estimation of admixture levels which can assist management strategies and monitor honey bee conservation programs.

  14. Reduced SNP Panels for Genetic Identification and Introgression Analysis in the Dark Honey Bee (Apis mellifera mellifera)

    DEFF Research Database (Denmark)

    Muñoz, Irene; Henriques, Dora; Johnston, J. Spencer

    2015-01-01

    Beekeeping activities, especially queen trading, have shaped the distribution of honey bee (Apis mellifera) subspecies in Europe, and have resulted in extensive introductions of two eastern European C-lineage subspecies (A. m. ligustica and A. m. carnica) into the native range of the M-lineage A....

  15. Chemical Composition of Different Botanical Origin Honeys Produced by Sicilian Black Honeybees (Apis mellifera ssp. sicula).

    Science.gov (United States)

    Mannina, Luisa; Sobolev, Anatoly P; Di Lorenzo, Arianna; Vista, Silvia; Tenore, Gian Carlo; Daglia, Maria

    2015-07-01

    In 2008 a Slow Food Presidium was launched in Sicily (Italy) for an early warning of the risk of extinction of the Sicilian native breed of black honeybee (Apis mellifera L. ssp sicula). Today, the honey produced by these honeybees is the only Sicilian honey produced entirely by the black honeybees. In view of few available data regarding the chemical composition of A. mellifera ssp. sicula honeys, in the present investigation the chemical compositions of sulla honey (Hedysarum coronarium L.) and dill honey (Anethum graveolens L.) were studied with a multimethodological approach, which consists of HPLC-PDA-ESI-MSn and NMR spectroscopy. Moreover, three unifloral honeys (lemon honey (obtained from Citrus limon (L.) Osbeck), orange honey (Citrus arantium L.), and medlar honey (Eriobotrya japonica (Thunb.) Lindl)), with known phenol and polyphenol compositions, were studied with NMR spectroscopy to deepen the knowledge about sugar and amino acid compositions.

  16. Apis mellifera capensis蜜蜂失控自复制导致的正常群落破坏%LOSE CONTROL OF SELF-REPRODUCTION OF APIS MELLIFERA CAPENSIS HONEYBEE AND THE REDUCED DEATH OF NORMAL COLONIES

    Institute of Scientific and Technical Information of China (English)

    张培培; 许田; 何阅; 何大韧

    2003-01-01

    提出对Apis mellifera capensis蜂造成Apis mellifera scutellata蜂群破坏的机制的一种新猜测,并根据logistic模型分别讨论这种猜测和已有的MARTIN猜测所导致的不同性质和规律,对2种猜测进行了比较.加强对社会成员之间信息网络的管理和监督,这也许是更加有效地防止破坏性子群体泛滥的途径.

  17. Influence of honey bee, Apis mellifera, hives and field size on foraging activity of native bee species in pumpkin fields.

    Science.gov (United States)

    Artz, Derek R; Hsu, Cynthia L; Nault, Brian A

    2011-10-01

    The purpose of this study was to identify bee species active in pumpkin fields in New York and to estimate their potential as pollinators by examining their foraging activity. In addition, we examined whether foraging activity was affected by either the addition of hives of the honey bee, Apis mellifera L., or by field size. Thirty-five pumpkin (Cucurbita spp.) fields ranging from 0.6 to 26.3 ha, 12 supplemented with A. mellifera hives and 23 not supplemented, were sampled during peak flowering over three successive weeks in 2008 and 2009. Flowers from 300 plants per field were visually sampled for bees on each sampling date. A. mellifera, Bombus impatiens Cresson, and Peponapis pruinosa (Say) accounted for 99% of all bee visits to flowers. A. mellifera and B. impatiens visited significantly more pistillate flowers than would be expected by chance, whereas P. pruinosa showed no preference for visiting pistillate flowers. There were significantly more A. mellifera visits per flower in fields supplemented with A. mellifera hives than in fields not supplemented, but there were significantly fewer P. pruinosa visits in supplemented fields. The number of B. impatiens visits was not affected by supplementation, but was affected by number of flowers per field. A. mellifera and P. pruinosa visits were not affected by field size, but B. impatiens visited fewer flowers as field size increased in fields that were not supplemented with A. mellifera hives. Declining A. mellifera populations may increase the relative importance of B. impatiens in pollinating pumpkins in New York.

  18. Drug Leads Agents from Methanol Extract of Nigerian Bee (Apis mellifera Propolis

    Directory of Open Access Journals (Sweden)

    Bashir Lawal

    2016-03-01

    Full Text Available ABSTRACT Background: Propolis is a Bee (Apis mellifera product of plant origin with varied chemical composition depending on the ecology of the botanical origin. It has been reported in literatures to possess various therapeutic effects both traditionally, clinical trial and animal study. Objectives In the present study bioactive principle in methanol extract of Nigerian bee (Apis mellifera propolis was determined GC-MS study. Methods The methanol extract of Nigerian bee (Apis mellifera propolis was characterized for its chemical composition by preliminary phytochemicals and GC and ndash;MS using standard procedures and methods. Results: Phytochemical screening revealed the presence of flavonoids, saponins, alkaloids, tannins, cardiac glycosides, anthraquinones phlobatannins and steroids while GC and ndash;MS chromatogram revealed nineteen peaks representing sixty (60 different chemical compounds. The first compounds identified with less retention time (13.33s were Methyl tetradecanoate, Tridecanoic acid, methyl ester, Decanoic acid, methyl ester while Squalene, All-trans-Squalene, 2,6,10-Dodecatrien-1-ol, 3,7,11-trimethyl-, (E,E- and Farnesol isomer a took longest retention time (23.647s to identify. Methyl 14-methylpentadecanoate, Hexadecanoic acid methyl ester, Methyl isoheptadecanoateand Methyl tridecanoate were the most concentrated constituent as revealed by there peak height (26.01% while eicosanoic acid was the least concentrated (Peak height 0.81% constituent of Nigerian bee propolis. Conclusion: The presence of these chemical principles is an indication that methanol extract of Nigeria bee propolis, if properly screened could yield a drug of pharmaceutical importance [J Intercult Ethnopharmacol 2016; 5(1.000: 43-48

  19. Social encapsulation of beetle parasites by Cape honeybee colonies (Apis mellifera capensis Esch.)

    Science.gov (United States)

    Neumann, P.; Pirk, C. W. W.; Hepburn, H. R.; Solbrig, A. J.; Ratnieks, F. L. W.; Elzen, P. J.; Baxter, J. R.

    2001-05-01

    Worker honeybees (Apis mellifera capensis) encapsulate the small hive beetle (Aethina tumida), a nest parasite, in propolis (tree resin collected by the bees). The encapsulation process lasts 1-4 days and the bees have a sophisticated guarding strategy for limiting the escape of beetles during encapsulation. Some encapsulated beetles died (4.9%) and a few escaped (1.6%). Encapsulation has probably evolved because the small hive beetle cannot easily be killed by the bees due to its hard exoskeleton and defensive behaviour.

  20. Behavioral studies of learning in the Africanized honey bee (Apis mellifera L.).

    Science.gov (United States)

    Abramson, Charles I; Aquino, Italo S

    2002-01-01

    Experiments on basic classical conditioning phenomena in adult and young Africanized honey bees (Apis mellifera L.) are described. Phenomena include conditioning to various stimuli, extinction (both unpaired and CS only), conditioned inhibition, color and odor discrimination. In addition to work on basic phenomena, experiments on practical applications of conditioning methodology are illustrated with studies demonstrating the effects of insecticides on learning and the reaction of bees to consumer products. Electron microscope photos are presented of Africanized workers, drones, and queen bees. Possible sub-species differences between Africanized and European bees are discussed.

  1. MORPHOMETRIC DIFFERENCES BETWEEN HONEY BEES (Apis mellifera carpatica POPULATIONS FROM TRANSYLVANIAN AREA

    Directory of Open Access Journals (Sweden)

    L. AL. MĂRGHITAS

    2013-12-01

    Full Text Available The result of the long evolutionary process formed, by natural selection, variable races and ecotypes which are biological and ecological differentiated. The Romanian, Apis mellifera carpatica is the most adapted and the most efficient species at the local conditions. Morphometric measurements were the major criteria for classification described by Ruttner (1988 and are the basis of our study. In this way 8 morphometric characters of honeybees from Transylvanian region were measured. The data obtained show that the honeybees’ ecotype genes are mixed due to the migratory beekeeping.

  2. Physicochemical composition of Apis mellifera honey samples from São Paulo State, Brazil

    Directory of Open Access Journals (Sweden)

    Luís Carlos Marchini

    2007-01-01

    Full Text Available This research, developed with Apis mellifera honey samples from producers of São Paulo State, Brazil, has the objective of verifying how eucalyptus, wild flower, and orange honey samples would be clustered, based on physicochemical characteristics. All the orange honey samples and some wild flower ones formed distinct groups, thus confirming that the floral source interferes with honey characteristics. Eucalyptus and some of the wild flower honey samples were clustered together because of the great floral source variation in the latter ones. The characteristics that influence sample clustering are acidity and electric conductivity on the X axis, and total sugars and pH on the Y axis.

  3. Population genomics and landscape genetics of the Iberian honey bee (Apis mellifera iberiensis)

    OpenAIRE

    Chávez Galarza, Julio César

    2016-01-01

    Tese de Doutoramento em Biologia Molecular e Ambiental - Especialidade em Evolução, Biodiversidade e Ecologia The goal of this study was to disentangle the complex variation patterns of the Iberian honey bee ( Apis mellifera iberiensis) hybrid zone using the highly polymorphic tRNAleu-cox2 mitochondrial region and nuclear genome-wide Single Nucleotide Polymorphisms (SNPs). Initially, a maternal analysis was performed using a PCR-RFLP marker, known as the DraI test, in the tRNAleu-...

  4. GENÉTICA DEL COMPORTAMIENTO: ABEJAS COMO MODELO

    Directory of Open Access Journals (Sweden)

    GUIOMAR NATES-PARRA

    2011-01-01

    Full Text Available La abeja de miel (género Apis, Familia Apidae es uno de los organismos utilizados en estudios de comportamiento, debido a su forma de vida social, la cual requiere de coordinación entre todos los individuos de la comunidad. La división de trabajo dentro de una colonia de abejas es consecuencia de cambios fisiológicos relacionados con la edad de las obreras y con la variación genética entre ellas que hace que realicen diferentes tareas. Con los progresos en biología molecular, genómica y secuenciación del genoma de Apis mellifera, han surgido nuevas herramientas que permiten desentrañar las bases moleculares del comportamiento, en particular el comportamiento social. Numerosos estudios han mostrado que muchas de las conductas realizadas por las obreras están determinadas genéticamente (comportamiento defensivo, comportamiento higiénico y además que hay variación genética entre poblaciones en el desempeño de tareas como recolección de agua, néctar y polen. Igualmente algunos aspectos del comportamiento social, como el control de la reproducción en las castas estériles, también están bajo influjo genético. En este trabajo se hace una revisión de las metodologías utilizadas para estudiar la genética del comportamiento, así como la base genética de algunas de las conductas más sobresalientes de abejas.

  5. Do agrochemicals used during soybean flowering affect the visits of Apis mellifera L.?

    Energy Technology Data Exchange (ETDEWEB)

    Fagúndez, G.A.; Blettler, D.C.; Krumrick, C.G.; Bertos, M.A.; Trujillo, C.G.

    2016-11-01

    In the Pampa region of Argentina, most beehives are situated near to soybean [Glycine max (L.) Merr.] crop and honey bees (Apis mellifera L.) use its floral resources. Soybean is often sprayed with pesticides but very little is known about their repellent action against bees. This study evaluates the visit of honey bees to crop after the application of agrochemicals aiming to check for repellency of them and estimate the possible impact on crop pollination. For this, six treatments were used (glyphosate + cypermethrin; glyphosate; cypermethrin; lambda-cyhalothrin; methoxyfenocide; Bacillus thuringiensis) and developed on plots of 625 m2, located in Oro Verde (Argentina), applying two sprays during the crop flowering. The bees were captured using entomological net every 4 days in three different times from the day after the first spraying and up the end of crop flowering. The results showed very little or no repellent action of pesticides on A. mellifera, noting that it foraged on soybean flowers regardless of the temporal proximity and the type of product used in sprays. Possible causes are discussed and the need for larger studies is evident in field conditions related to pesticides repellency and mixtures. Also, further evaluation of the effects of the different chemical formulations available on the market and used regionally where the subspecies A. mellifera can be found. Simultaneously some management practices that could help minimize the risk of contamination are mentioned; the use of defensive crop products of biological origin is encouraged as well as further research in this topic. (Author)

  6. Do agrochemicals used during soybean flowering affect the visits of Apis mellifera L.?

    Directory of Open Access Journals (Sweden)

    Guillermina A. Fagúndez

    2016-03-01

    Full Text Available In the Pampa region of Argentina, most beehives are situated near to soybean [Glycine max (L. Merr.] crop and honey bees (Apis mellifera L. use its floral resources. Soybean is often sprayed with pesticides but very little is known about their repellent action against bees. This study evaluates the visit of honey bees to crop after the application of agrochemicals aiming to check for repellency of them and estimate the possible impact on crop pollination. For this, six treatments were used (glyphosate + cypermethrin; glyphosate; cypermethrin; lambda-cyhalothrin; methoxyfenocide; Bacillus thuringiensis and developed on plots of 625 m2, located in Oro Verde (Argentina, applying two sprays during the crop flowering. The bees were captured using entomological net every 4 days in three different times from the day after the first spraying and up the end of crop flowering. The results showed very little or no repellent action of pesticides on A. mellifera, noting that it foraged on soybean flowers regardless of the temporal proximity and the type of product used in sprays. Possible causes are discussed and the need for larger studies is evident in field conditions related to pesticides repellency and mixtures. Also, further evaluation of the effects of the different chemical formulations available on the market and used regionally where the subspecies A. mellifera can be found. Simultaneously some management practices that could help minimize the risk of contamination are mentioned; the use of defensive crop products of biological origin is encouraged as well as further research in this topic.

  7. Assessing hygienic behavior of Apis mellifera unicolor (Hymenoptera: Apidae), the endemic honey bee from Madagascar.

    Science.gov (United States)

    Rasolofoarivao, H; Delatte, H; Raveloson Ravaomanarivo, L H; Reynaud, B; Clémencet, J

    2015-06-01

    Hygienic behavior (HB) is one of the natural mechanisms of honey bee for limiting the spread of brood diseases and Varroa destructor parasitic mite. Objective of our study was to measure HB of Apis mellifera unicolor colonies (N = 403) from three geographic regions (one infested and two free of V. destructor) in Madagascar. The pin-killing method was used for evaluation of the HB. Responses were measured from 3 h 30 min to 7 h after perforation of the cells. Colonies were very effective in detecting perforated cells. In the first 4 h, on average, they detected at least 50% of the pin-killed brood. Six hours after cell perforation, colonies tested (N = 91) showed a wide range of uncapped (0 to 100%) and cleaned cells (0 to 82%). Global distribution of the rate of cleaned cells at 6 h was multimodal and hygienic responses could be split in three classes. Colonies from the three regions showed a significant difference in HB responses. Three hypotheses (geographic, genetic traits, presence of V. destructor) are further discussed to explain variability of HB responses among the regions. Levels of HB efficiency of A. mellifera unicolor colonies are among the greatest levels reported for A. mellifera subspecies. Presence of highly hygienic colonies is a great opportunity for future breeding program in selection for HB.

  8. Nectar Sources for the Honey Bee (Apis mellifera adansonii Revealed by Pollen Content

    Directory of Open Access Journals (Sweden)

    Olusola ADEKANMBI

    2009-11-01

    Full Text Available Nectar sources for the African honeybee Apis mellifera adansonii were investigated. The work involved analysis of three honey samples bought from open markets in Lagos, Nigeria. The pollen sediment of the honeys was acetolysed, mounted on slides and pollen types were identified and counted to determine the relative frequency of the different pollen types in the honey samples. The proportion of pollen from each of the honey samples varied from 196 in sample A, 280 in sample B to 238 in sample C. The most abundant taxa identified from the honey samples were Tridax procumbens and Elaeis guineensis belonging to the families Asteraceae and Palmae. The highest proportion of Palm pollen grain was recorded in sample B with one hundred and ten (110 pollen grains per slide. The pollen grains in the families Palmae and Asteraceae are of great importance to the bees for honey production, this can be seen in the abundance displayed in sample B and C. Other pollen taxa recovered belong to the families Mimosaceae, Euphorbiaceae, Sapotaceae and Anacardiaceae providing a clue on the ecological origin of the pollen grains in the honey sample. Pollen analysis of honey proved to be useful in deciphering nectar sources of Apis mellifera adansonii.

  9. Exploring poisonous mechanism of honeybee, Apis mellifera ligustica Spinola, caused by pyrethroids.

    Science.gov (United States)

    Wang, Qiang; Diao, Qingyun; Dai, Pingli; Chu, Yanna; Wu, Yanyan; Zhou, Ting; Cai, Qingnian

    2017-01-01

    As the important intracellular secondary messengers, calcium channel is the target of many neurotoxic pesticides as calcium homeostasis in the neuroplasm play important role in neuronal functions and behavior in insects. This study investigated the effect of deltamethrin (DM) on calcium channel in the brain nerve cells of adult workers of Apis mellifera ligustica Spinola that were cultured in vitro. The results showed that the intracellular calcium concentration was significantly elevated even with a very low concentration of the DM (3.125×10(-2)mg/L). Further testing revealed that T-type voltage-gated calcium channels (VGCCs), except for sodium channels, was one of the target of DM on toxicity of Apis mellifera, while DM has no significant effect on the L-type VGCCs, N-methyl-d-aspartate receptor-gated calcium channels and calcium store. These results suggesting that the DM may act on T-type VGCCs in brain cells of honeybees and result in behavioral abnormalities including swarming, feeding, learning, and acquisition.

  10. The nicotinic acetylcholine receptor gene family of the honey bee, Apis mellifera.

    Science.gov (United States)

    Jones, Andrew K; Raymond-Delpech, Valerie; Thany, Steeve H; Gauthier, Monique; Sattelle, David B

    2006-11-01

    Nicotinic acetylcholine receptors (nAChRs) mediate fast cholinergic synaptic transmission and play roles in many cognitive processes. They are under intense research as potential targets of drugs used to treat neurodegenerative diseases and neurological disorders such as Alzheimer's disease and schizophrenia. Invertebrate nAChRs are targets of anthelmintics as well as a major group of insecticides, the neonicotinoids. The honey bee, Apis mellifera, is one of the most beneficial insects worldwide, playing an important role in crop pollination, and is also a valuable model system for studies on social interaction, sensory processing, learning, and memory. We have used the A. mellifera genome information to characterize the complete honey bee nAChR gene family. Comparison with the fruit fly Drosophila melanogaster and the malaria mosquito Anopheles gambiae shows that the honey bee possesses the largest family of insect nAChR subunits to date (11 members). As with Drosophila and Anopheles, alternative splicing of conserved exons increases receptor diversity. Also, we show that in one honey bee nAChR subunit, six adenosine residues are targeted for RNA A-to-I editing, two of which are evolutionarily conserved in Drosophila melanogaster and Heliothis virescens orthologs, and that the extent of editing increases as the honey bee lifecycle progresses, serving to maximize receptor diversity at the adult stage. These findings on Apis mellifera enhance our understanding of nAChR functional genomics and provide a useful basis for the development of improved insecticides that spare a major beneficial insect species.

  11. Differential gene expression of the honey bee Apis mellifera associated with Varroa destructor infection

    Directory of Open Access Journals (Sweden)

    Evans JD

    2008-06-01

    Full Text Available Abstract Background The parasitic mite, Varroa destructor, is the most serious pest of the western honey bee, Apis mellifera, and has caused the death of millions of colonies worldwide. This mite reproduces in brood cells and parasitizes immature and adult bees. We investigated whether Varroa infestation induces changes in Apis mellifera gene expression, and whether there are genotypic differences that affect gene expression relevant to the bee's tolerance, as first steps toward unravelling mechanisms of host response and differences in susceptibility to Varroa parasitism. Results We explored the transcriptional response to mite parasitism in two genetic stocks of A. mellifera which differ in susceptibility to Varroa, comparing parasitized and non-parasitized full-sister pupae from both stocks. Bee expression profiles were analyzed using microarrays derived from honey bee ESTs whose annotation has recently been enhanced by results from the honey bee genome sequence. We measured differences in gene expression in two colonies of Varroa-susceptible and two colonies of Varroa-tolerant bees. We identified a set of 148 genes with significantly different patterns of expression: 32 varied with the presence of Varroa, 116 varied with bee genotype, and 2 with both. Varroa parasitism caused changes in the expression of genes related to embryonic development, cell metabolism and immunity. Bees tolerant to Varroa were mainly characterized by differences in the expression of genes regulating neuronal development, neuronal sensitivity and olfaction. Differences in olfaction and sensitivity to stimuli are two parameters that could, at least in part, account for bee tolerance to Varroa; differences in olfaction may be related to increased grooming and hygienic behavior, important behaviors known to be involved in Varroa tolerance. Conclusion These results suggest that differences in behavior, rather than in the immune system, underlie Varroa tolerance in honey

  12. Beehold : the colony of the honeybee (Apis mellifera L) as a bio-sampler for pollutants and plant pathogens

    NARCIS (Netherlands)

    Steen, van der J.J.M.

    2016-01-01

    Bio-sampling is a function of bio-indication. Bio-indication with honeybee colonies (Apis mellifera L) is where the research fields of environmental technology and apiculture overlap. The honeybees are samplers of the environment by collecting unintentionally and simultaneously, along with nectar,

  13. Queen survival and oxalic acid residues in sugar stores after summer application against Varroa destructor in honey bees (Apis mellifera)

    NARCIS (Netherlands)

    Cornelissen, B.; Donders, J.N.L.C.; Stratum, van P.; Blacquière, T.; Dooremalen, van C.

    2012-01-01

    Methods using oxalic acid (OA) to control Varroa destructor in honey bee (Apis mellifera) colonies are widely applied. In this study, the effects of an OA spray application in early summer on the survival of young and old queens, and on OA residues in sugar stores were investigated. A questionnaire

  14. Molecular Mechanisms Underlying Formation of Long-Term Reward Memories and Extinction Memories in the Honeybee ("Apis Mellifera")

    Science.gov (United States)

    Eisenhardt, Dorothea

    2014-01-01

    The honeybee ("Apis mellifera") has long served as an invertebrate model organism for reward learning and memory research. Its capacity for learning and memory formation is rooted in the ecological need to efficiently collect nectar and pollen during summer to ensure survival of the hive during winter. Foraging bees learn to associate a…

  15. Beehold : the colony of the honeybee (Apis mellifera L) as a bio-sampler for pollutants and plant pathogens

    NARCIS (Netherlands)

    Steen, van der J.J.M.

    2016-01-01

    Bio-sampling is a function of bio-indication. Bio-indication with honeybee colonies (Apis mellifera L) is where the research fields of environmental technology and apiculture overlap. The honeybees are samplers of the environment by collecting unintentionally and simultaneously, along with nectar, p

  16. Beehold : the colony of the honeybee (Apis mellifera L) as a bio-sampler for pollutants and plant pathogens

    NARCIS (Netherlands)

    Steen, van der J.J.M.

    2016-01-01

    Bio-sampling is a function of bio-indication. Bio-indication with honeybee colonies (Apis mellifera L) is where the research fields of environmental technology and apiculture overlap. The honeybees are samplers of the environment by collecting unintentionally and simultaneously, along with nectar, p

  17. Queen survival and oxalic acid residues in sugar stores after summer application against Varroa destructor in honey bees (Apis mellifera)

    NARCIS (Netherlands)

    Cornelissen, B.; Donders, J.N.L.C.; Stratum, van P.; Blacquière, T.; Dooremalen, van C.

    2012-01-01

    Methods using oxalic acid (OA) to control Varroa destructor in honey bee (Apis mellifera) colonies are widely applied. In this study, the effects of an OA spray application in early summer on the survival of young and old queens, and on OA residues in sugar stores were investigated. A questionnaire

  18. Molecular Mechanisms Underlying Formation of Long-Term Reward Memories and Extinction Memories in the Honeybee ("Apis Mellifera")

    Science.gov (United States)

    Eisenhardt, Dorothea

    2014-01-01

    The honeybee ("Apis mellifera") has long served as an invertebrate model organism for reward learning and memory research. Its capacity for learning and memory formation is rooted in the ecological need to efficiently collect nectar and pollen during summer to ensure survival of the hive during winter. Foraging bees learn to associate a…

  19. Assessment of the Potential of Honeybees (Apis mellifera L.) in Biomonitoring of Air Pollution by Cadmium, Lead and Vanadium

    NARCIS (Netherlands)

    Steen, van der J.J.M.; Kraker, de J.; Grotenhuis, J.T.C.

    2015-01-01

    The aim of our study was to explore whether honeybees (Apis mellifera L.) could be used as a reliable alternative to the standard mechanical devices for monitoring of air quality, in particular with respect to the concentration of the heavy metals cadmium (Cd), lead (Pb) and vanadium (V). We therefo

  20. Efeito tóxico de alimentos alternativos para abelhas Apis mellifera Toxic effect of alternative feeds for honeybees Apis mellifera

    Directory of Open Access Journals (Sweden)

    Fábia de Mello Pereira

    2007-04-01

    Full Text Available Esta pesquisa foi realizada com o objetivo de avaliar a existência de efeito tóxico em alimentos protéicos alternativos fornecidos para abelhas Apis mellifera. Medindo-se o tempo médio de mortalidade e o índice de mortalidade de abelhas confinadas, avaliou-se a existência de efeito tóxico do: (a feno das folhas de mandioca (Manihot esculenta; (b feno das folhas de leucena (Leucaena leococephala; (c farinha de vagem de algaroba (Prosopis juliflora; (d farinha de vagem de bordão-de-velho (Pithecellobium cf. saman; (e farelo de babaçu (Orbygnia martiana e (f sucedâneo do leite para bezerros da marca Purina®. O tempo médio de mortalidade variou de 4,46 a 11,74 e o índice de mortalidade variou de 4,58 a 12,80. Durante o experimento, obsevou-se que as abelhas alimentadas com farinha de bordão-de-velho ficavam envoltas em uma crosta de alimento, morrendo asfixiadas posteriormente. Os resultados demonstraram que a farinha de bordão-de-velho não deve ser fornecida às abelhas. Não foi observado efeito tóxico nos demais alimentos estudados.The objective of this research was to study toxic effects of alternative feeds for honeybees Apis mellifera. The average mortality time and the mortality index of cagged honeybees were assessed to evaluate any possible toxic effect of: (a cassava hay (Manihot esculenta; (b leucaena hay (Leucaena leococephala; (c mesquite pod meal (Prosopis juliflora; (d "bordão-de-velho" pod meal (Pithecellobium cf. saman; (e babassu bran (Orbygnia martiana and (f succedaneous for calfskin from Purina®. The mortality time average varied from 4.46 to 11.74 and the mortality index varied between 4.58 and 12.80. It was obseved that honeybees fed with "bordão-de-velho" pod meal got involved by stichy layer of food and died asphyxiated. Results showed that the flour of Pithecellobium cf. saman should not be used for feeding honeybees, considering the early mortality of workers fed with this meal. The other food studied

  1. CARACTERIZACIÓN ANTIMICROBIANA Y FISICOQUÍMICA DE PROPÓLEOS DE Apis mellifera L. (HYMENOPTERA: APIDAE DE LA REGIÓN ANDINA COLOMBIANA

    Directory of Open Access Journals (Sweden)

    ESTHER MARGARIDA ALVES FERREIRA BASTOS

    2011-01-01

    Full Text Available El propóleo es un material resinoso producido por las abejas a partir de diversos materiales vegetales. El objetivo de este trabajo fue caracterizar muestras de propóleos de Apis mellifera provenientes de la región Andina colombiana respecto a su perfil antimicrobiano y fisicoquímico. Fueron empleados extractos etanólicos de propóleos por la técnica de disco-difusión, frente a las especies Escherichia coli , Staphylococcus aureus y Candida albicans . Para la caracterización fisicoquímica se evaluaron el porcentaje de extracto seco, contenido de cera, índice de oxidación y determinación cuantitativa de compuestos fenólicos y flavonoides. Todas las muestras presentaron actividad antibacteriana, con halos de inhibición comprendidos entre 8 y 12 mm para E. coli y entre 8,3 y 23,5 mm para S. aureus . No se observó ninguna actividad contra C. albicans . Los parámetros fisicoquímicos citados anteriormente presentaron una variación de 2,72 a 9,17%, 0 a 2%, 3 a 51s, 0,1 a 0,5 (p/p y 0,02 a 0,95 (p/p, respectivamente. El perfil antimicrobiano observado, relacionado al fisicoquímico, sugiere la necesidad de nuevos estudios para la determinación del origen botánico y geográfico de las muestras estudiadas.

  2. SNPs selected by information content outperform randomly selected microsatellite loci for delineating genetic identification and introgression in the endangered dark European honeybee (Apis mellifera mellifera).

    Science.gov (United States)

    Muñoz, Irene; Henriques, Dora; Jara, Laura; Johnston, J Spencer; Chávez-Galarza, Julio; De La Rúa, Pilar; Pinto, M Alice

    2016-11-14

    The honeybee (Apis mellifera) has been threatened by multiple factors including pests and pathogens, pesticides and loss of locally adapted gene complexes due to replacement and introgression. In western Europe, the genetic integrity of the native A. m. mellifera (M-lineage) is endangered due to trading and intensive queen breeding with commercial subspecies of eastern European ancestry (C-lineage). Effective conservation actions require reliable molecular tools to identify pure-bred A. m. mellifera colonies. Microsatellites have been preferred for identification of A. m. mellifera stocks across conservation centres. However, owing to high throughput, easy transferability between laboratories and low genotyping error, SNPs promise to become popular. Here, we compared the resolving power of a widely utilized microsatellite set to detect structure and introgression with that of different sets that combine a variable number of SNPs selected for their information content and genomic proximity to the microsatellite loci. Contrary to every SNP data set, microsatellites did not discriminate between the two lineages in the PCA space. Mean introgression proportions were identical across the two marker types, although at the individual level, microsatellites' performance was relatively poor at the upper range of Q-values, a result reflected by their lower precision. Our results suggest that SNPs are more accurate and powerful than microsatellites for identification of A. m. mellifera colonies, especially when they are selected by information content.

  3. Evaluación de la diversidad fenotípica y genotípica de cepas de Paenibacillus larvae patógenas de abejas melíferas e investigación de los mecanismos moleculares de la resistencia a tetraciclina

    OpenAIRE

    Alippi, Adriana Mónica

    2015-01-01

    La enfermedad más grave de la etapa larval de las abejas (Apis mellifera L.) es la loque americana, causada por la bacteria esporulada Gram (+) Paenibacillus larvae. Es muy contagiosa y posee problemas únicos para su prevención y control debido a que las esporas bacterianas mantienen su capacidad infectiva durante tiempo prolongado y sobreviven bajo condiciones ambientales adversas, no existiendo brotes estacionales ya que se manifiesta en cualquier época del a&nti...

  4. Variance in spermatozoa number among Apis dorsata drones and among Apis mellifera drones

    OpenAIRE

    Koeniger, Gudrun; KOENIGER, Nikolaus; Tingek, Salim; Phiancharoen, Mananya

    2005-01-01

    International audience; Published estimates of the mean spermatozoa numbers for Apis dorsata drones vary from 1.2 × 106 and 2.4 × 106; the number of spermatozoa per individual drone vary from 0.22 × 106 to 2.65 × 106. Counts presented here revealed 1.19 × 106 + 0.25 × 106 spermatozoa in drones sampled near a colony and 1.59 × 106 + 0.18 × 106 in drones sampled at a drone congregation area (DCA) in Sabah, Borneo. The difference between the two sites is significant. Further, the degree of varia...

  5. Genomic Analyses Reveal Demographic History and Temperate Adaptation of the Newly Discovered Honey Bee Subspecies Apis mellifera sinisxinyuan n. ssp.

    Science.gov (United States)

    Chen, Chao; Liu, Zhiguang; Pan, Qi; Chen, Xiao; Wang, Huihua; Guo, Haikun; Liu, Shidong; Lu, Hongfeng; Tian, Shilin; Li, Ruiqiang; Shi, Wei

    2016-05-01

    Studying the genetic signatures of climate-driven selection can produce insights into local adaptation and the potential impacts of climate change on populations. The honey bee (Apis mellifera) is an interesting species to study local adaptation because it originated in tropical/subtropical climatic regions and subsequently spread into temperate regions. However, little is known about the genetic basis of its adaptation to temperate climates. Here, we resequenced the whole genomes of ten individual bees from a newly discovered population in temperate China and downloaded resequenced data from 35 individuals from other populations. We found that the new population is an undescribed subspecies in the M-lineage of A. mellifera (Apis mellifera sinisxinyuan). Analyses of population history show that long-term global temperature has strongly influenced the demographic history of A. m. sinisxinyuan and its divergence from other subspecies. Further analyses comparing temperate and tropical populations identified several candidate genes related to fat body and the Hippo signaling pathway that are potentially involved in adaptation to temperate climates. Our results provide insights into the demographic history of the newly discovered A. m. sinisxinyuan, as well as the genetic basis of adaptation of A. mellifera to temperate climates at the genomic level. These findings will facilitate the selective breeding of A. mellifera to improve the survival of overwintering colonies.

  6. Infra-population and -community dynamics of the parasites Nosema apis and Nosema ceranae, and consequences for honey bee (Apis mellifera hosts.

    Directory of Open Access Journals (Sweden)

    Geoffrey R Williams

    Full Text Available Nosema spp. fungal gut parasites are among myriad possible explanations for contemporary increased mortality of western honey bees (Apis mellifera, hereafter honey bee in many regions of the world. Invasive Nosema ceranae is particularly worrisome because some evidence suggests it has greater virulence than its congener N. apis. N. ceranae appears to have recently switched hosts from Asian honey bees (Apis cerana and now has a nearly global distribution in honey bees, apparently displacing N. apis. We examined parasite reproduction and effects of N. apis, N. ceranae, and mixed Nosema infections on honey bee hosts in laboratory experiments. Both infection intensity and honey bee mortality were significantly greater for N. ceranae than for N. apis or mixed infections; mixed infection resulted in mortality similar to N. apis parasitism and reduced spore intensity, possibly due to inter-specific competition. This is the first long-term laboratory study to demonstrate lethal consequences of N. apis and N. ceranae and mixed Nosema parasitism in honey bees, and suggests that differences in reproduction and intra-host competition may explain apparent heterogeneous exclusion of the historic parasite by the invasive species.

  7. Heritable variation for latent inhibition and its correlation with reversal learning in honeybees (Apis mellifera).

    Science.gov (United States)

    Chandra, S B; Hosler, J S; Smith, B H

    2000-03-01

    Latent inhibition (LI) in honeybees (Apis mellifera) was studied by using a proboscis extension response conditioning procedure. Individual queens, drones, and workers differed in the degree to which they revealed LI. The authors hypothesized that individual differences would have a substantial genetic basis. Two sets of progeny were established by crossing virgin queens and individual drones, both of which had been selected for differential expression of inhibition. LI was stronger in the progeny from the queens and drones that had shown greater inhibition. The expression of LI was also dependent on environmental factors that are most likely associated with age, foraging experience outside of the colony, or both. Furthermore, there was a correlated response in the speed at which progeny reversed a learned discrimination of 2 odors. These genetic analyses may reveal underlying mechanisms that these 2 learning paradigms have in common.

  8. Depression of brain dopamine and its metabolite after mating in European honeybee (Apis mellifera) queens

    Science.gov (United States)

    Harano, Ken-Ichi; Sasaki, Ken; Nagao, Takashi

    2005-07-01

    To explore neuro-endocrinal changes in the brain of European honeybee (Apis mellifera) queens before and after mating, we measured the amount of several biogenic amines, including dopamine and its metabolite in the brain of 6- and 12-day-old virgins and 12-day-old mated queens. Twelve-day-old mated queens showed significantly lower amounts of dopamine and its metabolite (N-acetyldopamine) than both 6- and 12-day-old virgin queens, whereas significant differences in the amounts of these amines were not detected between 6- and 12-day-old virgin queens. These results are explained by down-regulation of both synthesis and secretion of brain dopamine after mating. It is speculated that higher amounts of brain dopamine in virgin queens might be involved in activation of ovarian follicles arrested in previtellogenic stages, as well as regulation of their characteristic behaviors.

  9. Gene expression in honey bee (Apis mellifera) larvae exposed to pesticides and Varroa mites (Varroa destructor).

    Science.gov (United States)

    Gregorc, Aleš; Evans, Jay D; Scharf, Mike; Ellis, James D

    2012-08-01

    Honey bee (Apis mellifera) larvae reared in vitro were exposed to one of nine pesticides and/or were challenged with the parasitic mite, Varroa destructor. Total RNA was extracted from individual larvae and first strand cDNAs were generated. Gene-expression changes in larvae were measured using quantitative PCR (qPCR) targeting transcripts for pathogens and genes involved in physiological processes, bee health, immunity, and/or xenobiotic detoxification. Transcript levels for Peptidoglycan Recognition Protein (PGRPSC), a pathogen recognition gene, increased in larvae exposed to Varroa mites (Ppesticide treated larvae. As expected, Varroa-parasitized brood had higher transcripts of Deformed Wing Virus than did control larvae (Ppesticides and Varroa parasitism on honey bee larval gene expression were demonstrated. Interactions between larval treatments and gene expression for the targeted genes are discussed.

  10. Definitive identification of magnetite nanoparticles in the abdomen of the honeybee Apis mellifera

    Energy Technology Data Exchange (ETDEWEB)

    Desoil, M [Biological Physics Department, University of Mons-Hainaut (Belgium); Gillis, P [Biological Physics Department, University of Mons-Hainaut (Belgium); Gossuin, Y [Biological Physics Department, University of Mons-Hainaut (Belgium); Pankhurst, Q A [London Centre for Nanotechnology, University College London, London WC1E 7HN (United Kingdom); Hautot, D [London Centre for Nanotechnology, University College London, London WC1E 7HN (United Kingdom); Institute for Science and Technology in Medicine, Keele University, Thornburrow Drive, Hartshill, Stoke-en-Trent, ST4 7QB (United Kingdom)

    2005-01-01

    The biogenic magnetic properties of the honeybee Apis mellifera were investigated with a view to understanding the bee's physiological response to magnetic fields. The magnetisations of bee abdomens on one hand, and heads and thoraxes on the other hand, were measured separately as functions of temperature and field. Both the antiferromagnetic responses of the ferrihydrite cores of the iron storage protein ferritin, and the ferrimagnetic responses of nanoscale magnetite (Fe{sub 3}O{sub 4}) particles, were observed. Relatively large magnetite particles (ca. 30 nm or more), capable of retaining a remanent magnetisation at room temperature, were found in the abdomens, but were absent in the heads and thoraxes. In both samples, more than 98% of the iron atoms were due to ferritin.

  11. Antennal malformations in light ocelli drones of Apis mellifera (Hymenoptera, Apidae).

    Science.gov (United States)

    Chaud-Netto, J

    2000-02-01

    Malformed antennae of Apis mellifera light ocelli drones were drawn, dissected and mounted permanently on slides containing Canada balsam, in order to count the olfactory discs present in each segment, in comparison with the number of those structures in normal antennae of their brothers. Some drones presented morphological abnormalities in a single segment of the right or left antenna, but others had two or more malformed segments in a same antenna. Drones with malformations in both antennae were also observed. The 4th and 5th flagellum segments were the most frequently affected. In a low number of cases the frequency of olfactory discs in malformed segments did not differ from that one recorded for normal segments. However, in most cases studied, the antennal malformations brought about a significant reduction in the number of olfactory discs from malformed segments.

  12. RNA-sequence analysis of gene expression from honeybees (Apis mellifera) infected with Nosema ceranae.

    Science.gov (United States)

    Badaoui, Bouabid; Fougeroux, André; Petit, Fabien; Anselmo, Anna; Gorni, Chiara; Cucurachi, Marco; Cersini, Antonella; Granato, Anna; Cardeti, Giusy; Formato, Giovanni; Mutinelli, Franco; Giuffra, Elisabetta; Williams, John L; Botti, Sara

    2017-01-01

    Honeybees (Apis mellifera) are constantly subjected to many biotic stressors including parasites. This study examined honeybees infected with Nosema ceranae (N. ceranae). N. ceranae infection increases the bees energy requirements and may contribute to their decreased survival. RNA-seq was used to investigate gene expression at days 5, 10 and 15 Post Infection (P.I) with N. ceranae. The expression levels of genes, isoforms, alternative transcription start sites (TSS) and differential promoter usage revealed a complex pattern of transcriptional and post-transcriptional gene regulation suggesting that bees use a range of tactics to cope with the stress of N. ceranae infection. N. ceranae infection may cause reduced immune function in the bees by: (i)disturbing the host amino acids metabolism (ii) down-regulating expression of antimicrobial peptides (iii) down-regulation of cuticle coatings and (iv) down-regulation of odorant binding proteins.

  13. Lethal infection thresholds of Paenibacillus larvae for honeybee drone and worker larvae (Apis mellifera).

    Science.gov (United States)

    Behrens, Dieter; Forsgren, Eva; Fries, Ingemar; Moritz, Robin F A

    2010-10-01

    We compared the mortality of honeybee (Apis mellifera) drone and worker larvae from a single queen under controlled in vitro conditions following infection with Paenibacillus larvae, a bacterium causing the brood disease American Foulbrood (AFB). We also determined absolute P. larvae cell numbers and lethal titres in deceased individuals of both sexes up to 8 days post infection using quantitative real-time PCR (qPCR). Our results show that in drones the onset of infection induced mortality is delayed by 1 day, the cumulative mortality is reduced by 10% and P. larvae cell numbers are higher than in worker larvae. Since differences in bacterial cell titres between sexes can be explained by differences in body size, larval size appears to be a key parameter for a lethal threshold in AFB tolerance. Both means and variances for lethal thresholds are similar for drone and worker larvae suggesting that drone resistance phenotypes resemble those of related workers.

  14. Effects of captan on Apis mellifera brood development under field conditions in California almond orchards.

    Science.gov (United States)

    Everich, R; Schiller, C; Whitehead, J; Beavers, M; Barrett, K

    2009-02-01

    Three almond field trials were conducted during 2003 and 2004 at two locations in central (Fresno County) and northern (Yolo County) California to evaluate the potential effects of commercial applications of Captan on honey bees, Apis mellifera L. Captan was applied at 5.0 kg (AI)/ha during bloom. Hives were evaluated for hive health and brood development parameters for approximately 2 mo after application. This study showed that the application of Captan was not harmful to foraging honey bees or their brood. No treatment-related effects were noted on hive weights, dead bee deformity, number of dead bees, survival of individual larvae, weight of individual emerging adults, and other hive health parameters.

  15. Short-sighted evolution of virulence in parasitic honeybee workers ( Apis mellifera capensis Esch.)

    Science.gov (United States)

    Moritz, Robin F. A.; Pirk, Christian W. W.; Hepburn, H. Randall; Neumann, Peter

    2008-06-01

    The short-sighted selection hypothesis for parasite virulence predicts that winners of within-host competition are poorer at transmission to new hosts. Social parasitism by self-replicating, female-producing workers occurs in the Cape honeybee Apis mellifera capensis, and colonies of other honeybee subspecies are susceptible hosts. We found high within-host virulence but low transmission rates in a clone of social parasitic A. m. capensis workers invading the neighbouring subspecies A. m. scutellata. In contrast, parasitic workers from the endemic range of A. m. capensis showed low within-host virulence but high transmission rates. This suggests a short-sighted selection scenario for the host-parasite co-evolution in the invasive range of the Cape honeybee, probably facilitated by beekeeping-assisted parasite transmission in apiaries.

  16. RNA-sequence analysis of gene expression from honeybees (Apis mellifera) infected with Nosema ceranae

    Science.gov (United States)

    Fougeroux, André; Petit, Fabien; Anselmo, Anna; Gorni, Chiara; Cucurachi, Marco; Cersini, Antonella; Granato, Anna; Cardeti, Giusy; Formato, Giovanni; Mutinelli, Franco; Giuffra, Elisabetta; Williams, John L.; Botti, Sara

    2017-01-01

    Honeybees (Apis mellifera) are constantly subjected to many biotic stressors including parasites. This study examined honeybees infected with Nosema ceranae (N. ceranae). N. ceranae infection increases the bees energy requirements and may contribute to their decreased survival. RNA-seq was used to investigate gene expression at days 5, 10 and 15 Post Infection (P.I) with N. ceranae. The expression levels of genes, isoforms, alternative transcription start sites (TSS) and differential promoter usage revealed a complex pattern of transcriptional and post-transcriptional gene regulation suggesting that bees use a range of tactics to cope with the stress of N. ceranae infection. N. ceranae infection may cause reduced immune function in the bees by: (i)disturbing the host amino acids metabolism (ii) down-regulating expression of antimicrobial peptides (iii) down-regulation of cuticle coatings and (iv) down-regulation of odorant binding proteins. PMID:28350872

  17. Complete mitochondrial genome of the Algerian honeybee, Apis mellifera intermissa (Hymenoptera: Apidae).

    Science.gov (United States)

    Hu, Peng; Lu, Zhi-Xiang; Haddad, Nizar; Noureddine, Adjlane; Loucif-Ayad, Wahida; Wang, Yong-Zhi; Zhao, Ren-Bin; Zhang, Ai-Ling; Guan, Xin; Zhang, Hai-Xi; Niu, Hua

    2016-05-01

    In this study, the complete mitochondrial genome sequence of Algerian honeybee, Apis mellifera intermissa, is analyzed for the first time. The results show that this genome is 16,336 bp in length, and contains 13 protein-coding genes, 22 transfer RNA genes, 2 ribosomal RNA genes, and 1 control region (D-loop). The overall base composition is A (43.2%), C (9.8%), G (5.6%), and T (41.4%), so the percentage of A and T (84.6%) is considerably higher than that of G and C. All the genes are encoded on H-strand, except for four subunit genes (ND1, ND4, ND4L, and ND5), two rRNA genes (12S and 16S rRNA), and eight tRNA genes. The complete mitochondrial genome sequence reported here would be useful for further phylogenetic analysis and conservation genetic studies in A. m. intermissa.

  18. Mimicry of queen Dufour's gland secretions by workers of Apis mellifera scutellata and A. m. capensis

    Science.gov (United States)

    Sole, Catherine; Kryger, Per; Hefetz, Abraham; Katzav-Gozansky, Tamar; Crewe, Robin

    2002-10-01

    The development of the Dufour's gland of workers of the two honey bee races Apis mellifera scutellata and A. m. capensis was measured. The Dufour's glands of A. m. capensis workers were longer and increased in length more rapidly than the glands of workers of A. m. scutellata at comparable ages. Analysis of the Dufour's gland secretions of workers and queens of both races revealed that there were caste and racial differences. Secretions of queenright A. m. scutellata workers were dominated by a series of long-chain hydrocarbons. In contrast the secretions of the A. m. capensis workers both under queenright and queenless conditions were a mixture of hydrocarbons and wax-type esters, as were those of queens. Multivariate analysis of the secretion profiles indicated that laying workers of both races mimic queens. The secretions of the A. m. capensis laying workers mimicked queen secretions most closely, enabling them to act as successful social parasites.

  19. Definitive identification of magnetite nanoparticles in the abdomen of the honeybee Apis mellifera

    Science.gov (United States)

    Desoil, M.; Gillis, P.; Gossuin, Y.; Pankhurst, Q. A.; Hautot, D.

    2005-01-01

    The biogenic magnetic properties of the honeybee Apis mellifera were investigated with a view to understanding the bee's physiological response to magnetic fields. The magnetisations of bee abdomens on one hand, and heads and thoraxes on the other hand, were measured separately as functions of temperature and field. Both the antiferromagnetic responses of the ferrihydrite cores of the iron storage protein ferritin, and the ferrimagnetic responses of nanoscale magnetite (Fe3O4) particles, were observed. Relatively large magnetite particles (ca. 30 nm or more), capable of retaining a remanent magnetisation at room temperature, were found in the abdomens, but were absent in the heads and thoraxes. In both samples, more than 98% of the iron atoms were due to ferritin.

  20. Comparative toxicities and synergism of apple orchard pesticides to Apis mellifera (L. and Osmia cornifrons (Radoszkowski.

    Directory of Open Access Journals (Sweden)

    David J Biddinger

    Full Text Available The topical toxicities of five commercial grade pesticides commonly sprayed in apple orchards were estimated on adult worker honey bees, Apis mellifera (L. (Hymenoptera: Apidae and Japanese orchard bees, Osmia cornifrons (Radoszkowski (Hymenoptera: Megachilidae. The pesticides were acetamiprid (Assail 30SG, λ-cyhalothrin (Warrior II, dimethoate (Dimethoate 4EC, phosmet (Imidan 70W, and imidacloprid (Provado 1.6F. At least 5 doses of each chemical, diluted in distilled water, were applied to freshly-eclosed adult bees. Mortality was assessed after 48 hr. Dose-mortality regressions were analyzed by probit analysis to test the hypotheses of parallelism and equality by likelihood ratio tests. For A. mellifera, the decreasing order of toxicity at LD₅₀ was imidacloprid, λ-cyhalothrin, dimethoate, phosmet, and acetamiprid. For O. cornifrons, the decreasing order of toxicity at LD₅₀ was dimethoate, λ-cyhalothrin, imidacloprid, acetamiprid, and phosmet. Interaction of imidacloprid or acetamiprid with the fungicide fenbuconazole (Indar 2F was also tested in a 1∶1 proportion for each species. Estimates of response parameters for each mixture component applied to each species were compared with dose-response data for each mixture in statistical tests of the hypothesis of independent joint action. For each mixture, the interaction of fenbuconazole (a material non-toxic to both species was significant and positive along the entire line for the pesticide. Our results clearly show that responses of A. mellifera cannot be extrapolated to responses of O.cornifrons, and that synergism of neonicotinoid insecticides and fungicides occurs using formulated product in mixtures as they are commonly applied in apple orchards.

  1. Drug leads agents from methanol extract of Nigerian bee (Apis mellifera) propolis

    Science.gov (United States)

    Lawal, Bashir; Shittu, Oluwatosin Kudirat; Abubakar, Asmau Niwoye; Olalekan, Ibrahim Azeez; Jimoh, Adisa Mohammed; Abdulazeez, Adeniyi Kamoru

    2016-01-01

    Background: Propolis is a bee (Apis mellifera) product of plant origin with varied chemical composition depending on the ecology of the botanical origin. It has been reported in literature to possess various therapeutic effects both traditionally, clinical trial, and animal study. Objectives: In the present study bioactive principle in methanol extract of Nigerian bee (A. mellifera) propolis was determined by gas chromatography-mass spectrometry (GC/MS) study. Materials and Methods: The methanol extract of Nigerian bee (A. mellifera) propolis was characterized for its chemical composition by preliminary phytochemicals screening and GC/MS analysis using standard procedures and methods. Results: Phytochemical screening revealed the presence of flavonoids, saponins, alkaloids, tannins, cardiac glycosides, anthraquinones phlobatannins, and steroids while GC/MS chromatogram revealed nineteen peaks representing 60 different chemical compounds. The first compounds identified with less retention time (RT) (13.33s) were methyl tetradecanoate, tridecanoic acid, methyl ester, decanoic acid, methyl ester while squalene, all-trans-squalene, 2,6,10-dodecatrien-1-ol, 3,7,11-trimethyl-, (E,E)- and farnesol isomer a took longest RT (23.647s) to identify. Methyl 14-methylpentadecanoate, hexadecanoic acid methyl ester, methyl isoheptadecanoate, and methyl tridecanoate were the most concentrated constituent as revealed by there peak height (26.01%) while eicosanoic acid was the least concentrated (peak height 0.81%) constituent of Nigerian bee propolis. Conclusion: The presence of these chemical principles is an indication that methanol extract of Nigeria bee propolis, if properly screened could yield a drug of pharmaceutical importance. PMID:27069724

  2. MRJP microsatellite markers in Africanized Apis mellifera colonies selected on the basis of royal jelly production.

    Science.gov (United States)

    Parpinelli, R S; Ruvolo-Takasusuki, M C C; Toledo, V A A

    2014-08-28

    It is important to select the best honeybees that produce royal jelly to identify important molecular markers, such as major royal jelly proteins (MRJPs), and hence contribute to the development of new breeding strategies to improve the production of this substance. Therefore, this study focused on evaluating the genetic variability of mrjp3, mrjp5, and mrjp8 and associated allele maintenance during the process of selective reproduction in Africanized Apis mellifera individuals, which were chosen based on royal jelly production. The three loci analyzed were polymorphic, and produced a total of 16 alleles, with 4 new alleles, which were identified at mrjp5. The effective number of alleles at mrjp3 was 3.81. The observed average heterozygosity was 0.4905, indicating a high degree of genetic variability at these loci. The elevated FIS values for mrjp3, mrjp5, and mrjp8 (0.4188, 0.1077, and 0.2847, respectively) indicate an excess of homozygotes. The selection of Africanized A. mellifera queens for royal jelly production has maintained the mrjp3 C, D, and E alleles; although, the C allele occurred at a low frequency. The heterozygosity and FIS values show that the genetic variability of the queens is decreasing at the analyzed loci, generating an excess of homozygotes. However, the large numbers of drones that fertilize the queens make it difficult to develop homozygotes at mrjp3. Mating through instrumental insemination using the drones of known genotypes is required to increase the efficiency of Africanized A. mellifera-breeding programs, and to improve the quality and efficiency of commercial royal jelly apiaries.

  3. Patterns of Apis mellifera infection by Nosema ceranae support the parasite hypothesis for the evolution of extreme polyandry in eusocial insects.

    Science.gov (United States)

    The microsporidian Nosema ceranae has recently invaded managed honey bee (Apis mellifera) colonies beyond Asia. The presence of this emergent parasite in lineages of A. mellifera that are naïve to its selection pressure (“Italian”) and that have co-evolved with the parasite over ca. 150 generations ...

  4. A variant reference data set for the Africanized honeybee, Apis mellifera

    Science.gov (United States)

    Kadri, Samir M.; Harpur, Brock A.; Orsi, Ricardo O.; Zayed, Amro

    2016-01-01

    The Africanized honeybee (AHB) is a population of Apis mellifera found in the Americas. AHBs originated in 1956 in Rio Clara, Brazil where imported African A. m. scutellata escaped and hybridized with local populations of European A. mellifera. Africanized populations can now be found from Northern Argentina to the Southern United States. AHBs—often referred to as ‘Killer Bees’— are a major concern to the beekeeping industry as well as a model for the evolutionary genetics of colony defence. We performed high coverage pooled-resequencing of 360 diploid workers from 30 Brazilian AHB colonies using Illumina Hi-Seq (150 bp PE). This yielded a high density SNP data set with an average read depth at each site of 20.25 reads. With 3,606,720 SNPs and 155,336 SNPs within 11,365 genes, this data set is the largest genomic resource available for AHBs and will enable high-resolution studies of the population dynamics, evolution, and genetics of this successful biological invader, in addition to facilitating the development of SNP-based tools for identifying AHBs. PMID:27824336

  5. Developing an in vivo toxicity assay for RNAi risk assessment in honey bees, Apis mellifera L.

    Science.gov (United States)

    Vélez, Ana María; Jurzenski, Jessica; Matz, Natalie; Zhou, Xuguo; Wang, Haichuan; Ellis, Marion; Siegfried, Blair D

    2016-02-01

    Maize plants expressing dsRNA for the management of Diabrotica virgifera virgifera are likely to be commercially available by the end of this decade. Honey bees, Apis mellifera, can potentially be exposed to pollen from transformed maize expressing dsRNA. Consequently, evaluation of the biological impacts of RNAi in honey bees is a fundamental component for ecological risk assessment. The insecticidal activity of a known lethal dsRNA target for D. v. virgifera, the vATPase subunit A, was evaluated in larval and adult honey bees. Activity of both D. v. virgifera (Dvv)- and A. mellifera (Am)-specific dsRNA was tested by dietary exposure to dsRNA. Larval development, survival, adult eclosion, adult life span and relative gene expression were evaluated. The results of these tests indicated that Dvv vATPase-A dsRNA has limited effects on larval and adult honey bee survival. Importantly, no effects were observed upon exposure of Am vATPase-A dsRNA suggesting that the lack of response involves factors other than sequence specificity. The results from this study provide guidance for future RNAi risk analyses and for the development of a risk assessment framework that incorporates similar hazard assessments.

  6. Prevalence, intensity and associated factor analysis of Tropilaelaps mercedesae infesting Apis mellifera in China.

    Science.gov (United States)

    Luo, Qi Hua; Zhou, Ting; Dai, Ping Li; Song, Huai Lei; Wu, Yan Yan; Wang, Qiang

    2011-10-01

    Tropilaelaps mercedesae is a serious ectoparasite of Apis mellifera in China. The aim of this study was to investigate the infestation rates and intensity of T. mercedesae in A. mellifera in China, and to explore the relative importance of climate, district, management practices and beekeeper characteristics that are assumed to be associated with the intensity of T. mercedesae. Of the 410 participating apiaries, 379 apiaries were included in analyses of seasonal infestation rates and 352 apiaries were included in multivariable regression analysis. The highest infestation rate (86.3%) of T. mercedesae was encountered in autumn, followed by summer (66.5%), spring (17.2%) and winter (14.8%). In autumn, 28.9% (93) of the infested apiaries were in the north (including the northeast and northwest of China), 71.1% (229) were in the central and south (including east, southeast and southwest China), and 306 apiaries (82.9%) were co-infested by both T. mercedesae and Varroa. Multivariable regression analysis showed that geographical location, season, royal jelly collection and Varroa infestation were the factors that influence the intensity of T. mercedesae. The influence of beekeeper's education, time of beekeeping, operation size, and hive migration on the intensity of T. mercedesa was not statistically significant. This study provided information about the establishment of the linkage of the environment and the parasite and could lead to better timing and methods of control.

  7. Genetic structure of Varroa destructor populations infesting Apis mellifera colonies in Argentina.

    Science.gov (United States)

    Maggi, M; Medici, S; Quintana, S; Ruffinengo, S; Marcángeli, J; Gimenez Martinez, P; Fuselli, S; Eguaras, M

    2012-04-01

    Although mitochondrial DNA mapping of Varroa destructor revealed the presence of several haplotypes, only two of them (Korean and Japanese haplotypes) were capable to infest Apis mellifera populations. Even though the Korean haplotype is the only one that has been reported in Argentina, these conclusions were based on mites sampled in apiaries from a specific geographical place (Buenos Aires province). To study mites from several sites of Argentina could reveal the presence of the Japanese genotype, especially considering sites near to Brazil, where Japanese haplotype was already detected. The aim of this work was to study the genetic structure of V. destructor populations from apiaries located in various provinces of Argentina, in order to determine the presence of different haplotypes. The study was carried out between January 2006 and December 2009. Phoretic adult Varroa mites were collected from honey bee workers sampled from colonies of A. mellifera located in Entre Ríos, Buenos Aires, Corrientes, Río Negro, Santa Cruz and Neuquén provinces. Twenty female mites from each sampling site were used to carry out the genetic analysis. For DNA extraction a nondestructive method was used. DNA sequences were compared to Korean haplotype (AF106899) and Japanese haplotype (AF106897). All DNA sequences obtained from mite populations sampled in Argentina, share 98% of similitude with Korean Haplotype (AF106899). Taking into account these results, we are able to conclude that Korean haplotype is cosmopolite in Argentina.

  8. Two novel viruses associated with the Apis mellifera pathogenic mite Varroa destructor.

    Science.gov (United States)

    Levin, Sofia; Sela, Noa; Chejanovsky, Nor

    2016-11-24

    Varroa destructor infestation of Apis mellifera colonies carries and/or promotes replication of honey bee viruses like the Deformed wing virus, the Varroa destructor virus-1, the Acute bee paralysis virus, the Israeli acute bee paralysis virus and the Kashmir bee virus that have been well described and characterized; but viruses exclusively associated with Varroa were not found. To look for viruses that may associate with- or infect V. destructor we performed deep sequencing (RNA-seq) of RNA extracted from honey bees and mites in Varroa-infested untreated colonies. Comparative bioinformatic analysis of the two separate contig-assemblies generated from the sequences' reads annotated using Blastx enabled identification of new viruses unique to Varroa and absent in A. mellifera: an Iflavirus and a virus with homology to Ixodes scapularis associated virus 2, that we named Varroa destructor virus 2 (VDV-2) and 3(VDV-3), respectively. We validated these findings sequencing the mite- and honey bee-viromes and in separate mites and honey bees randomly sampled. The complete genomes of VDV-2 and VDV-3 bear 9576 nucleotides and 4202 nucleotides, respectively. Phylogenetic analysis of VDV-3 suggests that it belongs to a new group of viruses. Our results open venues for investigating the pathogenicity of these V. destructor viruses.

  9. A variant reference data set for the Africanized honeybee, Apis mellifera.

    Science.gov (United States)

    Kadri, Samir M; Harpur, Brock A; Orsi, Ricardo O; Zayed, Amro

    2016-11-08

    The Africanized honeybee (AHB) is a population of Apis mellifera found in the Americas. AHBs originated in 1956 in Rio Clara, Brazil where imported African A. m. scutellata escaped and hybridized with local populations of European A. mellifera. Africanized populations can now be found from Northern Argentina to the Southern United States. AHBs-often referred to as 'Killer Bees'- are a major concern to the beekeeping industry as well as a model for the evolutionary genetics of colony defence. We performed high coverage pooled-resequencing of 360 diploid workers from 30 Brazilian AHB colonies using Illumina Hi-Seq (150 bp PE). This yielded a high density SNP data set with an average read depth at each site of 20.25 reads. With 3,606,720 SNPs and 155,336 SNPs within 11,365 genes, this data set is the largest genomic resource available for AHBs and will enable high-resolution studies of the population dynamics, evolution, and genetics of this successful biological invader, in addition to facilitating the development of SNP-based tools for identifying AHBs.

  10. Honey Bee Venom (Apis mellifera Contains Anticoagulation Factors and Increases the Blood-clotting Time

    Directory of Open Access Journals (Sweden)

    Hossein Zolfagharian

    2015-12-01

    Full Text Available Objectives: Bee venom (BV is a complex mixture of proteins and contains proteins such as phospholipase and melittin, which have an effect on blood clotting and blood clots. The mechanism of action of honey bee venom (HBV, Apis mellifera on human plasma proteins and its anti-thrombotic effect were studied. The purpose of this study was to investigate the anti-coagulation effect of BV and its effects on blood coagulation and purification. Methods: Crude venom obtained from Apis mellifera was selected. The anti-coagulation factor of the crude venom from this species was purified by using gel filtration chromatography (sephadex G-50, and the molecular weights of the anti-coagulants in this venom estimated by using sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE. Blood samples were obtained from 10 rabbits, and the prothrombin time (PT and the partial thromboplastin time (PTT tests were conducted. The approximate lethal dose (LD values of BV were determined. Results: Crude BV increased the blood clotting time. For BV concentrations from 1 to 4 mg/mL, clotting was not observed even at more than 300 seconds, standard deviations (SDs = ± 0.71; however, clotting was observed in the control group 13.8 s, SDs = ± 0.52. Thus, BV can be considered as containing anti-coagulation factors. Crude BV is composed 4 protein bands with molecular weights of 3, 15, 20 and 41 kilodalton (kDa, respectively. The LD50 of the crude BV was found to be 177.8 μg/mouse. Conclusion: BV contains anti-coagulation factors. The fraction extracted from the Iranian bees contains proteins that are similar to anti-coagulation proteins, such as phospholipase A2 (PLA2 and melittin, and that can increase the blood clotting times in vitro.

  11. DNA methylation is widespread and associated with differential gene expression in castes of the honeybee, Apis mellifera.

    Science.gov (United States)

    Elango, Navin; Hunt, Brendan G; Goodisman, Michael A D; Yi, Soojin V

    2009-07-07

    The recent, unexpected discovery of a functional DNA methylation system in the genome of the social bee Apis mellifera underscores the potential importance of DNA methylation in invertebrates. The extent of genomic DNA methylation and its role in A. mellifera remain unknown, however. Here we show that genes in A. mellifera can be divided into 2 distinct classes, one with low-CpG dinucleotide content and the other with high-CpG dinucleotide content. This dichotomy is explained by the gradual depletion of CpG dinucleotides, a well-known consequence of DNA methylation. The loss of CpG dinucleotides associated with DNA methylation also may explain the unusual mutational patterns seen in A. mellifera that lead to AT-rich regions of the genome. A detailed investigation of this dichotomy implicates DNA methylation in A. mellifera development. High-CpG genes, which are predicted to be hypomethylated in germlines, are enriched with functions associated with developmental processes, whereas low-CpG genes, predicted to be hypermethylated in germlines, are enriched with functions associated with basic biological processes. Furthermore, genes more highly expressed in one caste than another are overrepresented among high-CpG genes. Our results highlight the potential significance of epigenetic modifications, such as DNA methylation, in developmental processes in social insects. In particular, the pervasiveness of DNA methylation in the genome of A. mellifera provides fertile ground for future studies of phenotypic plasticity and genomic imprinting.

  12. Estudios organolépticos, fisicoquímicos, microbiológicos e interacción con excipientes farmacéuticos de un extracto purificado de cera de Apis mellifera Organoleptic, physicochemical and microbiological studies and its interaction with pharmaceutical excipients of a purified extract from Apis mellifera wax

    Directory of Open Access Journals (Sweden)

    Víctor Luis González Canavaciolo

    2010-09-01

    Full Text Available El D-002, ingrediente activo antioxidante extraído de la cera de abejas Apis mellifera, fue caracterizado desde el punto de vista físicoquímico, de igual forma se analizó su interacción con excipientes de interés farmacéutico. El D-002 es un polvo fluido inodoro de color blanco a crema, con pérdidas por secado £ 1 %; es insoluble en agua y etanol, y muy ligeramente soluble en otros disolventes orgánicos. Su composición, determinada por cromatografía de gases, fue: 1-tetracosanol (6-15 %, 1-hexacosanol (7-20 %, 1-octacosanol (12-20 %, 1-triacontanol (25-35 % 1-dotriacontanol (18-25 % y 1-tetratriacontanol (£ 7,5 %, para una pureza ³ 85 %. Fue estable durante 5 años en la zona climática IV y su análisis por calorimetría diferencial de barrido mostró 2 transiciones de fusión a 59,0 y 81,1 °C sin descomposición, una alta estabilidad térmica hasta 200 °C, así como la ausencia de interacciones con lactosa, almidón, croscarmelosa sódica, polivinil pirrolidona, celulosa microcristalina y estearato de magnesio, lo que posibilita el empleo de estos excipientes en la formulación de las tabletas.The D002, an antioxidant active ingredient extracted from the Apis mellifera bees wax was characterized from the physicochemical point of view analyzing its interaction with excipients of pharmaceutical interest. The D-002 is a creamy white odourless fluid powder with losses by £ 1 % dry; it is water and ethanol insoluble and very slightly soluble in other organic solvents. Its composition, determined by gas chromatography was: 1-tetracosanol (6-15 %, 1-hexacosanol (7-20 %, 1-octacosanol (12-20 %, 1-triacontanol (25-35 %, 1-dotriacontanol (18-25 % and 1-tetratriacontaol (£ 7,5 % for ³ 85 % of purity. It remained stable during 5 years in the IV climatic zone and its analysis by differential scanning calorimetry showed 2 fusion transitions at 59.0 and 81.1 °C. without decomposition, a high thermal stability up to 200 °C, as well as a

  13. Métodos para atrair a abelha Apis mellifera L. em cultura de abacate (Persea americana Mill. Methods to attract honeybee Apis mellifera L. to avocado tree (Persea americana Mill

    Directory of Open Access Journals (Sweden)

    Darclet Terezinha Malerbo Souza

    2002-04-01

    Full Text Available O presente experimento teve como objetivo avaliar métodos de atração da abelha Apis mellifera L. (Hymenoptera, Apidae em duas variedades de abacate (Persea americana Mill.. Os atrativos utilizados foram extratos de Cymbopogon citratus, Ocimum basilicum, Lippia alba, folha de Citrus sp, folha de Eucaliptus sp. e o eugenol e o linalol (SIGMA. Os tratamentos utilizados foram: coberto; descoberto pulverizado (DP; descoberto com tubos e descoberto não pulverizado (DNP. Observou-se que a atratividade das substâncias testadas desapareceu minutos após a sua aplicação, utilizando ou não a glicerina, em ambas as variedades. A pulverização dos extratos de falsa melissa, folhas de eucalipto e folhas de laranja apresentaram um aumento no número de abelhas Apis mellifera, na variedade Quintal. Os dados mostraram que a freqüência das abelhas A. mellifera foi maior na variedade Quintal comparada à variedade Fortuna. Isto pode ter ocorrido devido à maior concentração de açúcares do néctar de suas flores. Observou-se que as abelhas A. mellifera preferiram visitar as flores do abacateiro da variedade Quintal, tanto para néctar quanto para coleta de pólen, comparada à variedade Fortuna. Com relação aos frutos, nenhuma das características apresentou diferença significativa entre os tratamentos, em ambas as variedades. Entretanto, observou-se que na variedade Quintal os frutos decorrentes dos tratamentos DP e DNP foram mais pesados, mais compridos e com maior espessura da polpa, comparados ao único fruto obtido do tratamento coberto. Os produtos testados em tubos não foram eficientes para atrair a abelha Apis mellifera, em ambas as variedades.The present experiment was carried out to evaluate some methods to attract honeybee Apis mellifera L. (Hymenoptera, Apidae to two avocado varieties (Persea americana Mill.. Extracts of Cymbopogon citratus, Ocimum basilicum, Lippia alba, Citrus sp leaf, Eucalyptus sp leaf, the eugenol and linalol

  14. Toxicidade de produtos fitossanitários utilizados em citros para Apis mellifera Toxicity of pesticides used in citrus crop to Apis mellifera

    Directory of Open Access Journals (Sweden)

    Ana Paula Machado Baptista

    2009-07-01

    Full Text Available O objetivo deste trabalho foi avaliar a toxicidade de inseticidas/acaricidas utilizados em cultura de citros para operárias africanizadas de Apis mellifera Linnaeus. A exposição das abelhas aos compostos foi realizada usando-se técnicas de pulverização, contaminação da dieta e contato em superfícies tratadas (folhas de citros e placas de Petri, empregando-se as doses máximas recomendadas para a cultura. Os bioensaios foram realizados em laboratório a 25±2°C, UR 70±10% e fotofase de 12h, sendo os dados de mortalidade submetidos à análise estatística, e as médias comparadas por contraste, obtendo-se grupos de efeitos semelhantes. Independente do modo de exposição, o acefato foi extremamente tóxico, matando mais de 90,0% das abelhas 24h após a aplicação. Os produtos espirodiclofeno e piriproxifem, quando aplicados diretamente sobre as abelhas, causaram níveis de mortalidade de 11,0 e 15,0%, respectivamente; os compostos buprofezina, enxofre e tetradifona apresentaram níveis de mortalidade ainda menores, com média de 5,0% entre eles. Para os ensaios de contaminação de superfície (folhas de citros e placas de Petri e contaminação de alimento, foram obtidos dois grupos de toxicidade, um grupo somente com acefato e outro, com buprofezina, enxofre, espirodiclofeno, piriproxifem, tetradifona e água. A mortalidade média para esse segundo grupo, após 96h do início da exposição, foi de 31,0; 8,3 e 15,7%, respectivamente, para cada método de contaminação.The aim of this research was to evaluate the toxicity of several acaricides/insecticides used in Brazilian citrus crop to africanized workers of Apis mellifera Linnaeus. The exposition of honey bees to the chemicals was performed by direct spraying, contamination of food, and contact in treated surface (citrus leaves and Petri dishes, using recommended rates of application. The assays were carried out at 25±2°C, RH 70±10%, 12h of photophase and the data was

  15. Sex-specific differences in pathogen susceptibility in honey bees (Apis mellifera).

    Science.gov (United States)

    Retschnig, Gina; Williams, Geoffrey R; Mehmann, Marion M; Yañez, Orlando; de Miranda, Joachim R; Neumann, Peter

    2014-01-01

    Sex-related differences in susceptibility to pathogens are a common phenomenon in animals. In the eusocial Hymenoptera the two female castes, workers and queens, are diploid and males are haploid. The haploid susceptibility hypothesis predicts that haploid males are more susceptible to pathogen infections compared to females. Here we test this hypothesis using adult male (drone) and female (worker) honey bees (Apis mellifera), inoculated with the gut endoparasite Nosema ceranae and/or black queen cell virus (BQCV). These pathogens were chosen due to previously reported synergistic interactions between Nosema apis and BQCV. Our data do not support synergistic interactions between N. ceranae and BQCV and also suggest that BQCV has limited effect on both drone and worker health, regardless of the infection level. However, the data clearly show that, despite lower levels of N. ceranae spores in drones than in workers, Nosema-infected drones had both a higher mortality and a lower body mass than non-infected drones, across all treatment groups, while the mortality and body mass of worker bees were largely unaffected by N. ceranae infection, suggesting that drones are more susceptible to this pathogen than workers. In conclusion, the data reveal considerable sex-specific differences in pathogen susceptibility in honey bees and highlight the importance of ultimate measures for determining susceptibility, such as mortality and body quality, rather than mere infection levels.

  16. Germ cell development in the Honeybee (Apis mellifera; Vasa and Nanos expression

    Directory of Open Access Journals (Sweden)

    Dearden Peter K

    2006-02-01

    Full Text Available Abstract Background Studies of specification of germ-cells in insect embryos has indicated that in many taxa the germ cells form early in development, and their formation is associated with pole plasm, germ plasm or an organelle called the oosome. None of these morphological features associated with germ cell formation have been identified in the Honeybee Apis mellifera. In this study I report the cloning and expression analysis of Honeybee homologues of vasa and nanos, germ cell markers in insects and other animals. Results Apis vasa and nanos RNAs are present in early honeybee embryos, but the RNAs clear rapidly, without any cells expressing these germ cell markers past stage 2. These genes are then only expressed in a line of cells in the abdomen from stage 9 onwards. These cells are the developing germ cells that are moved dorsally by dorsal closure and are placed in the genital ridge. Conclusion This study of the expression of germ cell markers in the honeybee implies that in this species either germ cells are formed by an inductive event, late in embryogenesis, or they are formed early in development in the absence of vasa and nanos expression. This contrasts with germ cell development in other members of the Hymenoptera, Diptera and Lepidoptera.

  17. Sex-specific differences in pathogen susceptibility in honey bees (Apis mellifera.

    Directory of Open Access Journals (Sweden)

    Gina Retschnig

    Full Text Available Sex-related differences in susceptibility to pathogens are a common phenomenon in animals. In the eusocial Hymenoptera the two female castes, workers and queens, are diploid and males are haploid. The haploid susceptibility hypothesis predicts that haploid males are more susceptible to pathogen infections compared to females. Here we test this hypothesis using adult male (drone and female (worker honey bees (Apis mellifera, inoculated with the gut endoparasite Nosema ceranae and/or black queen cell virus (BQCV. These pathogens were chosen due to previously reported synergistic interactions between Nosema apis and BQCV. Our data do not support synergistic interactions between N. ceranae and BQCV and also suggest that BQCV has limited effect on both drone and worker health, regardless of the infection level. However, the data clearly show that, despite lower levels of N. ceranae spores in drones than in workers, Nosema-infected drones had both a higher mortality and a lower body mass than non-infected drones, across all treatment groups, while the mortality and body mass of worker bees were largely unaffected by N. ceranae infection, suggesting that drones are more susceptible to this pathogen than workers. In conclusion, the data reveal considerable sex-specific differences in pathogen susceptibility in honey bees and highlight the importance of ultimate measures for determining susceptibility, such as mortality and body quality, rather than mere infection levels.

  18. Using Errors by Guard Honeybees (Apis mellifera) to Gain New Insights into Nestmate Recognition Signals.

    Science.gov (United States)

    Pradella, Duccio; Martin, Stephen J; Dani, Francesca R

    2015-11-01

    Although the honeybee (Apis mellifera) is one of the world most studied insects, the chemical compounds used in nestmate recognition, remains an open question. By exploiting the error prone recognition system of the honeybee, coupled with genotyping, we studied the correlation between cuticular hydrocarbon (CHC) profile of returning foragers and acceptance or rejection behavior by guards. We revealed an average recognition error rate of 14% across 3 study colonies, that is, allowing a non-nestmate colony entry, or preventing a nestmate from entry, which is lower than reported in previous studies. By analyzing CHCs, we found that CHC profile of returning foragers correlates with acceptance or rejection by guarding bees. Although several CHC were identified as potential recognition cues, only a subset of 4 differed consistently for their relative amount between accepted and rejected individuals in the 3 studied colonies. These include a unique group of 2 positional alkene isomers (Z-8 and Z-10), which are almost exclusively produced by the bees Bombus and Apis spp, and may be candidate compounds for further study.

  19. Inconvenientes y beneficios del comportamiento higiénico de la abeja de la miel (Apis mellifera L.)

    NARCIS (Netherlands)

    Leclercq, Gil; Pannebakker, Bart; Gengler, Nicolas; Nguyen, Bach Kim; Francis, Frédéric

    2017-01-01

    The hygienic behavior of honey bee workers contributes to the social immunity of colonies. The ability of workers to detect and remove unhealthy or dead brood prevents the transmission of brood diseases inside the colony. Over the last five decades, this trait has been extensively studied and

  20. Inconvenientes y beneficios del comportamiento higiénico de la abeja de la miel (Apis mellifera L.)

    NARCIS (Netherlands)

    Leclercq, Gil; Pannebakker, Bart; Gengler, Nicolas; Nguyen, Bach Kim; Francis, Frédéric

    2017-01-01

    The hygienic behavior of honey bee workers contributes to the social immunity of colonies. The ability of workers to detect and remove unhealthy or dead brood prevents the transmission of brood diseases inside the colony. Over the last five decades, this trait has been extensively studied and imp

  1. Morphological changes in the cephalic salivary glands of females and males of Apis mellifera and Scaptotrigona postica (Hymenoptera, Apidae)

    Indian Academy of Sciences (India)

    Silvana Beani Poiani; Carminda Da Cruz-Landim

    2010-06-01

    The cephalic salivary glands of some species of bees are exclusive and well developed only in Apinae. These glands were studied with light and scanning electron microscopy in workers, queens and males from the honey bee Apis mellifera, and the stingless bee Scaptotrigona postica in different life phases. The results show that the cephalic salivary glands are present in females of both the species, and in males of S. postica. Nevertheless, they are poorly developed in young males of A. mellifera. In both species, gland growth is progressive from the time of emergence to the oldest age but, in A. mellifera males, the gland degenerates with age. Scanning electron microscopy shows that the secretory units of newly emerged workers are collapsed while in older workers they are turgid. Some pits on the surface of the secretory units correspond to open intercellular spaces. The possible functions of these glands in females and males of both species are discussed.

  2. Morphological changes in the cephalic salivary glands of females and males of Apis mellifera and Scaptotrigona postica (Hymenoptera, Apidae).

    Science.gov (United States)

    Poiani, Silvana Beani; Da Cruz-Landim, Carminda

    2010-06-01

    The cephalic salivary glands of some species of bees are exclusive and well developed only in Apinae. These glands were studied with light and scanning electron microscopy in workers, queens and males from the honey bee Apis mellifera, and the stingless bee Scaptotrigona postica in different life phases. The results show that the cephalic salivary glands are present in females of both the species, and in males of S. postica. Nevertheless, they are poorly developed in young males of A. mellifera. In both species, gland growth is progressive from the time of emergence to the oldest age but, in A. mellifera males, the gland degenerates with age. Scanning electron microscopy shows that the secretory units of newly emerged workers are collapsed while in older workers they are turgid. Some pits on the surface of the secretory units correspond to open intercellular spaces. The possible functions of these glands in females and males of both species are discussed.

  3. Honey bee Apis mellifera parasites in the absence of Nosema ceranae fungi and Varroa destructor mites.

    Science.gov (United States)

    Shutler, Dave; Head, Krista; Burgher-MacLellan, Karen L; Colwell, Megan J; Levitt, Abby L; Ostiguy, Nancy; Williams, Geoffrey R

    2014-01-01

    Few areas of the world have western honey bee (Apis mellifera) colonies that are free of invasive parasites Nosema ceranae (fungi) and Varroa destructor (mites). Particularly detrimental is V. destructor; in addition to feeding on host haemolymph, these mites are important vectors of several viruses that are further implicated as contributors to honey bee mortality around the world. Thus, the biogeography and attendant consequences of viral communities in the absence of V. destructor are of significant interest. The island of Newfoundland, Province of Newfoundland and Labrador, Canada, is free of V. destructor; the absence of N. ceranae has not been confirmed. Of 55 Newfoundland colonies inspected visually for their strength and six signs of disease, only K-wing had prevalence above 5% (40/55 colonies = 72.7%). Similar to an earlier study, screenings again confirmed the absence of V. destructor, small hive beetles Aethina tumida (Murray), tracheal mites Acarapis woodi (Rennie), and Tropilaelaps spp. ectoparasitic mites. Of a subset of 23 colonies screened molecularly for viruses, none had Israeli acute paralysis virus, Kashmir bee virus, or sacbrood virus. Sixteen of 23 colonies (70.0%) were positive for black queen cell virus, and 21 (91.3%) had some evidence for deformed wing virus. No N. ceranae was detected in molecular screens of 55 colonies, although it is possible extremely low intensity infections exist; the more familiar N. apis was found in 53 colonies (96.4%). Under these conditions, K-wing was associated (positively) with colony strength; however, viruses and N. apis were not. Furthermore, black queen cell virus was positively and negatively associated with K-wing and deformed wing virus, respectively. Newfoundland honey bee colonies are thus free of several invasive parasites that plague operations in other parts of the world, and they provide a unique research arena to study independent pathology of the parasites that are present.

  4. Honey bee Apis mellifera parasites in the absence of Nosema ceranae fungi and Varroa destructor mites.

    Directory of Open Access Journals (Sweden)

    Dave Shutler

    Full Text Available Few areas of the world have western honey bee (Apis mellifera colonies that are free of invasive parasites Nosema ceranae (fungi and Varroa destructor (mites. Particularly detrimental is V. destructor; in addition to feeding on host haemolymph, these mites are important vectors of several viruses that are further implicated as contributors to honey bee mortality around the world. Thus, the biogeography and attendant consequences of viral communities in the absence of V. destructor are of significant interest. The island of Newfoundland, Province of Newfoundland and Labrador, Canada, is free of V. destructor; the absence of N. ceranae has not been confirmed. Of 55 Newfoundland colonies inspected visually for their strength and six signs of disease, only K-wing had prevalence above 5% (40/55 colonies = 72.7%. Similar to an earlier study, screenings again confirmed the absence of V. destructor, small hive beetles Aethina tumida (Murray, tracheal mites Acarapis woodi (Rennie, and Tropilaelaps spp. ectoparasitic mites. Of a subset of 23 colonies screened molecularly for viruses, none had Israeli acute paralysis virus, Kashmir bee virus, or sacbrood virus. Sixteen of 23 colonies (70.0% were positive for black queen cell virus, and 21 (91.3% had some evidence for deformed wing virus. No N. ceranae was detected in molecular screens of 55 colonies, although it is possible extremely low intensity infections exist; the more familiar N. apis was found in 53 colonies (96.4%. Under these conditions, K-wing was associated (positively with colony strength; however, viruses and N. apis were not. Furthermore, black queen cell virus was positively and negatively associated with K-wing and deformed wing virus, respectively. Newfoundland honey bee colonies are thus free of several invasive parasites that plague operations in other parts of the world, and they provide a unique research arena to study independent pathology of the parasites that are present.

  5. Go East for Better Honey Bee Health: Apis cerana Is Faster at Hygienic Behavior than A. mellifera

    Science.gov (United States)

    Li, Li; Qin, Yao; Zhang, Yingying; Hu, Fuliang; Neumann, Peter; Zheng, Huoqing; Dietemann, Vincent

    2016-01-01

    The poor health status of the Western honey bee, Apis mellifera, compared to its Eastern counterpart, Apis cerana, is remarkable. This has been attributed to lower pathogen prevalence in A. cerana colonies and to their ability to survive infestations with the ectoparasitic mite, Varroa destructor. These properties have been linked to an enhanced removal of dead or unhealthy immature bees by adult workers in this species. Although such hygienic behavior is known to contribute to honey bee colony health, comparative data of A. mellifera and A. cerana in performing this task are scarce. Here, we compare for the first time the removal of freeze-killed brood in one population of each species and over two seasons in China. Our results show that A. cerana was significantly faster than A. mellifera at both opening cell caps and removing freeze-killed brood. The fast detection and removal of diseased brood is likely to limit the proliferation of pathogenic agents. Given our results can be generalized to the species level, a rapid hygienic response could contribute to the better health of A. cerana. Promoting the fast detection and removal of worker brood through adapted breeding programs could further improve the social immunity of A. mellifera colonies and contribute to a better health status of the Western honey bee worldwide. PMID:27606819

  6. Go East for Better Honey Bee Health: Apis cerana Is Faster at Hygienic Behavior than A. mellifera.

    Science.gov (United States)

    Lin, Zheguang; Page, Paul; Li, Li; Qin, Yao; Zhang, Yingying; Hu, Fuliang; Neumann, Peter; Zheng, Huoqing; Dietemann, Vincent

    2016-01-01

    The poor health status of the Western honey bee, Apis mellifera, compared to its Eastern counterpart, Apis cerana, is remarkable. This has been attributed to lower pathogen prevalence in A. cerana colonies and to their ability to survive infestations with the ectoparasitic mite, Varroa destructor. These properties have been linked to an enhanced removal of dead or unhealthy immature bees by adult workers in this species. Although such hygienic behavior is known to contribute to honey bee colony health, comparative data of A. mellifera and A. cerana in performing this task are scarce. Here, we compare for the first time the removal of freeze-killed brood in one population of each species and over two seasons in China. Our results show that A. cerana was significantly faster than A. mellifera at both opening cell caps and removing freeze-killed brood. The fast detection and removal of diseased brood is likely to limit the proliferation of pathogenic agents. Given our results can be generalized to the species level, a rapid hygienic response could contribute to the better health of A. cerana. Promoting the fast detection and removal of worker brood through adapted breeding programs could further improve the social immunity of A. mellifera colonies and contribute to a better health status of the Western honey bee worldwide.

  7. Adaptive evolution of a key gene affecting queen and worker traits in the honey bee, Apis mellifera.

    Science.gov (United States)

    Kent, Clement F; Issa, Amer; Bunting, Alexandra C; Zayed, Amro

    2011-12-01

    The vitellogenin egg yolk precursor protein represents a well-studied case of social pleiotropy in the model organism Apis mellifera. Vitellogenin is associated with fecundity in queens and plays a major role in controlling division of labour in workers, thereby affecting both individual and colony-level fitness. We studied the molecular evolution of vitellogenin and seven other genes sequenced in a large population panel of Apis mellifera and several closely related species to investigate the role of social pleiotropy on adaptive protein evolution. We found a significant excess of nonsynonymous fixed differences between A. mellifera, A. cerana and A. florea relative to synonymous sites indicating high rates of adaptive evolution at vitellogenin. Indeed, 88% of amino acid changes were fixed by selection in some portions of the gene. Further, vitellogenin exhibited hallmark signatures of selective sweeps in A. mellifera, including a significant skew in the allele frequency spectrum, extreme levels of genetic differentiation and linkage disequilibrium. Finally, replacement polymorphisms in vitellogenin were significantly enriched in parts of the protein involved in binding lipid, establishing a link between the gene's structure, function and effects on fitness. Our case study provides unequivocal evidence of historical and ongoing bouts of adaptive evolution acting on a key socially pleiotropic gene in the honey bee.

  8. Die Expression humoraler und zellulärer Immunreaktionen bei Drohnenlarven und adulten Drohnen der Honigbiene (Apis mellifera)

    OpenAIRE

    2012-01-01

    Soziale Insekten wie die Honigbiene (Apis mellifera) besitzen ein breites Spektrum an Abwehrmechanismen gegen Pathogenbefall, sowohl auf der Ebene der Kolonie (soziale Immunität) als auch auf der Stufe des Individuums (angeborenes Immunsystem). Die Hauptaufgabe der relativ kurzlebigen Drohnen besteht in der Begattung von Jungköniginnen. Daher stellte sich die Frage, ob auch die Drohnen ähnlich den Arbeiterinnen mit energieaufwendigen Immunreaktionen auf Infektionen reagieren. Wie im Folgenden...

  9. Beehold : the colony of the honeybee (Apis mellifera L) as a bio-sampler for pollutants and plant pathogens

    OpenAIRE

    2016-01-01

    Bio-sampling is a function of bio-indication. Bio-indication with honeybee colonies (Apis mellifera L) is where the research fields of environmental technology and apiculture overlap. The honeybees are samplers of the environment by collecting unintentionally and simultaneously, along with nectar, pollen, water and honeydew from the flowers or on the leaves, other matter (in bio-indication terms: target matter) and accumulating this in the colony. Collected target matter, in this thesis heavy...

  10. Western honeybee drones and workers (Apis mellifera ligustica) have different olfactory mechanisms than eastern honeybees (Apis cerana cerana).

    Science.gov (United States)

    Woltedji, Dereje; Song, Feifei; Zhang, Lan; Gala, Alemayehu; Han, Bin; Feng, Mao; Fang, Yu; Li, Jianke

    2012-09-07

    The honeybees Apis mellifera ligustica (Aml) and Apis cerana cerana (Acc) are two different western and eastern bee species that evolved in distinct ecologies and developed specific antennal olfactory systems for their survival. Knowledge of how their antennal olfactory systems function in regards to the success of each respective bee species is scarce. We compared the antennal morphology and proteome between respective sexually mature drones and foraging workers of both species using a scanning electron microscope, two-dimensional electrophoresis, mass spectrometry, bioinformatics, and quantitative real-time polymerase chain reaction. Despite the general similarities in antennal morphology of the drone and worker bees between the two species, a total of 106 and 100 proteins altered their expression in the drones' and the workers' antennae, respectively. This suggests that the differences in the olfactory function of each respective bee are supported by the change of their proteome. Of the 106 proteins that altered their expression in the drones, 72 (68%) and 34 (32%) were overexpressed in the drones of Aml and Acc, respectively. The antennae of the Aml drones were built up by the highly expressed proteins that were involved in carbohydrate metabolism and energy production, molecular transporters, antioxidation, and fatty acid metabolism in contrast to the Acc drones. This is believed to enhance the antennal olfactory functions of the Aml drones as compared to the Acc drones during their mating flight. Likewise, of the 100 proteins with expression changes between the worker bees of the two species, 67% were expressed in higher levels in the antennae of Aml worker contrasting to 33% in the Acc worker. The overall higher expressions of proteins related to carbohydrate metabolism and energy production, molecular transporters, and antioxidation in the Aml workers compared with the Acc workers indicate the Aml workers require more antennal proteins for their olfactory

  11. Pollination services provided by bees in pumpkin fields supplemented with either Apis mellifera or Bombus impatiens or not supplemented.

    Science.gov (United States)

    Petersen, Jessica D; Reiners, Stephen; Nault, Brian A

    2013-01-01

    Pollinators provide an important service in many crops. Managed honey bees (Apis mellifera L.) are used to supplement pollination services provided by wild bees with the assumption that they will enhance pollination, fruit set and crop yield beyond the levels provided by the wild bees. Recent declines in managed honey bee populations have stimulated interest in finding alternative managed pollinators to service crops. In the eastern U.S., managed hives of the native common eastern bumble bee (Bombus impatiens Cresson) may be an excellent choice. To examine this issue, a comprehensive 2-yr study was conducted to compare fruit yield and bee visits to flowers in pumpkin (Cucurbita pepo L.) fields that were either supplemented with A. mellifera hives, B. impatiens hives or were not supplemented. We compared pumpkin yield, A. mellifera flower visitation frequency and B. impatiens flower visitation frequency between treatments. Results indicated that supplementing pumpkin fields with either A. mellifera or B. impatiens hives did not increase their visitation to pumpkin flowers or fruit yield compared with those that were not supplemented. Next, the relationship between frequency of pumpkin flower visitation by the most prominent bee species (Peponapis pruinosa (Say), B. impatiens and A. mellifera) and fruit yield was determined across all pumpkin fields sampled. Fruit yield increased as the frequency of flower visits by A. mellifera and B. impatiens increased in 2011 and 2012, respectively. These results suggest that supplementation with managed bees may not improve pumpkin production and that A. mellifera and B. impatiens are important pollinators of pumpkin in our system.

  12. A cell line resource derived from honey bee (Apis mellifera embryonic tissues.

    Directory of Open Access Journals (Sweden)

    Michael J Goblirsch

    Full Text Available A major hindrance to the study of honey bee pathogens or the effects of pesticides and nutritional deficiencies is the lack of controlled in vitro culture systems comprised of honey bee cells. Such systems are important to determine the impact of these stress factors on the developmental and cell biology of honey bees. We have developed a method incorporating established insect cell culture techniques that supports sustained growth of honey bee cells in vitro. We used honey bee eggs mid to late in their embryogenesis to establish primary cultures, as these eggs contain cells that are progressively dividing. Primary cultures were initiated in modified Leibovitz's L15 medium and incubated at 32(°C. Serial transfer of material from several primary cultures was maintained and has led to the isolation of young cell lines. A cell line (AmE-711 has been established that is composed mainly of fibroblast-type cells that form an adherent monolayer. Most cells in the line are diploid (2n = 32 and have the Apis mellifera karyotype as revealed by Giemsa stain. The partial sequence for the mitochondrial-encoded cytochrome c oxidase subunit I (Cox 1 gene in the cell line is identical to those from honey bee tissues and a consensus sequence for A. mellifera. The population doubling time is approximately 4 days. Importantly, the cell line is continuously subcultured every 10-14 days when split at a 1:3 ratio and is cryopreserved in liquid nitrogen. The cell culture system we have developed has potential application for studies aimed at honey bee development, genetics, pathogenesis, transgenesis, and toxicology.

  13. A Cell Line Resource Derived from Honey Bee (Apis mellifera) Embryonic Tissues

    Science.gov (United States)

    Goblirsch, Michael J.; Spivak, Marla S.; Kurtti, Timothy J.

    2013-01-01

    A major hindrance to the study of honey bee pathogens or the effects of pesticides and nutritional deficiencies is the lack of controlled in vitro culture systems comprised of honey bee cells. Such systems are important to determine the impact of these stress factors on the developmental and cell biology of honey bees. We have developed a method incorporating established insect cell culture techniques that supports sustained growth of honey bee cells in vitro. We used honey bee eggs mid to late in their embryogenesis to establish primary cultures, as these eggs contain cells that are progressively dividing. Primary cultures were initiated in modified Leibovitz’s L15 medium and incubated at 32°C. Serial transfer of material from several primary cultures was maintained and has led to the isolation of young cell lines. A cell line (AmE-711) has been established that is composed mainly of fibroblast-type cells that form an adherent monolayer. Most cells in the line are diploid (2n = 32) and have the Apis mellifera karyotype as revealed by Giemsa stain. The partial sequence for the mitochondrial-encoded cytochrome c oxidase subunit I (Cox 1) gene in the cell line is identical to those from honey bee tissues and a consensus sequence for A. mellifera. The population doubling time is approximately 4 days. Importantly, the cell line is continuously subcultured every 10–14 days when split at a 1:3 ratio and is cryopreserved in liquid nitrogen. The cell culture system we have developed has potential application for studies aimed at honey bee development, genetics, pathogenesis, transgenesis, and toxicology. PMID:23894551

  14. Regular dorsal dimples and damaged mites of Varroa destructor in some Iranian honey bees (Apis mellifera).

    Science.gov (United States)

    Ardestani, Masoud M; Ebadi, Rahim; Tahmasbi, Gholamhossein

    2011-07-01

    The frequency of damaged Varroa destructor Anderson and Trueman (Mesostigmata: Varroidae) found on the bottom board of hives of the honey bee, Apis mellifera L. (Hymenoptera: Apidae) has been used as an indicator of the degree of tolerance or resistance of honey bee colonies against mites. However, it is not clear that this measure is adequate. These injuries should be separated from regular dorsal dimples that have a developmental origin. To investigate damage to Varroa mites and regular dorsal dimples, 32 honey bee (A. mellifera) colonies were selected from four Iranian provinces: Isfahan, Markazi, Qazvin, and Tehran. These colonies were part of the National Honey bee Breeding Program that resulted in province-specific races. In April, Varroa mites were collected from heavily infested colonies and used to infest the 32 experimental colonies. In August, 20 of these colonies were selected (five colonies from each province). Adult bees from these colonies were placed in cages and after introducing mites, damaged mites were collected from each cage every day. The average percentage of injured mites ranged from 0.6 to 3.0% in four provinces. The results did not show any statistical differences between the colonies within provinces for injuries to mites, but there were some differences among province-specific lines. Two kinds of injuries to the mites were observed: injuries to legs and pedipalps, and injuries to other parts of the body. There were also some regular dorsal dimples on dorsal idiosoma of the mites that were placed in categories separate from mites damaged by bees. This type of classification helps identifying damage to mites and comparing them with developmental origin symptoms, and may provide criteria for selecting bees tolerant or resistant to this mite.

  15. Floral biology and behavior of Africanized honeybees Apis mellifera in soybean (Glycine max L. Merril

    Directory of Open Access Journals (Sweden)

    Wainer César Chiari

    2005-05-01

    Full Text Available This research was carried out to evaluate the pollination by Africanized honeybees Apis mellifera, the floral biology and to observe the hoarding behavior in the soybean flowers (Glycine max Merril, var. BRS-133. The treatments were constituted of demarcated areas for free visitation of insects, covered areas by cages with a honeybee colony (A. mellifera and also covered areas by cage without insects visitation. All areas had 24 m² (4m x 6m. The soybean flowers stayed open for a larger time (82.82 ± 3.48 hours in covered area without honeybees. The stigma of the flowers was also more receptive (P=0.0021 in covered area without honeybees (87.3 ± 33.0% and at 10:42 o'clock was the schedule of greater receptivity. The pollen stayed viable in all treatments, the average was 99.60 ± 0.02%, which did not present differences among treatments. The percentage of abortion of the flowers was 82.91% in covered area without honeybees, this result was superior (P=0.0002 to the 52.66% and 53.95% of the treatments uncovered and covered with honeybees, respectively. Honeybees were responsible for 87.7% of the pollination accomplished by the insects. The medium amounts of total sugar and glucose measured in the nectar of the flowers were, 14.33 ± 0.96 mg/flower and 3.61 ± 0.36 mg/ flower, respectively, not showing differences (PEste experimento teve como objetivos avaliar a polinização realizada por abelhas Apis mellifera, estudar a biologia floral e observar o comportamento de coleta nas flores de soja (Glycine max L. Merril, variedade BRS-133 plantadas na região de Maringá-PR. Os tratamentos constituíram de áreas demarcadas de livre visitação por insetos, áreas cobertas por gaiolas, com uma colônia de abelhas (A. mellifera no seu interior e plantas também cobertas por gaiola que impedia a visitação por insetos. Todas as áreas possuíam 24 m² (4 m x 6 m. As flores de soja permaneceram abertas por um tempo maior (82,82 ± 3,48 horas no

  16. Apis mellifera pollination improves agronomic productivity of anemophilous castor bean (Ricinus communis

    Directory of Open Access Journals (Sweden)

    Rômulo A.G. Rizzardo

    2012-12-01

    Full Text Available Castor bean (Ricinus communis L. is cultivated mainly for biodiesel production because of its oil-rich seeds; it is assumed to be an anemophylous species. But pollination deficit can lead to low productivity often attributed to other reasons. In this paper, we investigated pollination requirements, pollination mechanism, occurrence of pollination deficit, and the role of biotic pollinators in a large commercial plantation of castor bean. Our results show that R. communis bears a mixed breeding system favoring selfing by geitonogamy, although the wind promotes mostly outcrossing. We also found that the honey bee (Apis mellifera L. foraging on castor bean can both transfer pollen from male to female flowers within the same raceme and boost the release of airborne pollen by male flowers. Both situations increase geitonogamy rates, raising significantly fruit set and seed yield. This is the first report of an animal foraging activity increasing seed yield in an anemophilous and geitonogamous crop and elucidates the role of biotic pollinators in castor bean reproduction.A mamoneira (Ricinus communis L. é cultivada principalmente para produção de biodiesel devido ao alto teor de óleo de suas sementes e considerada como sendo de polinização anemófila. Mas déficits de polinização podem levar a baixos índices de produtividade geralmente atribuídos a outros fatores. Neste trabalho foram investigados os requerimentos, mecanismos e déficit de polinização e o papel dos polinizadores bióticos em um monocultivo comercial de mamona. Os resultados mostram que R. communis possui um sistema de polinização misto, favorecendo a autopolinização por geitonogamia, embora o vento normalmente promova polinização cruzada. Observou-se também que a abelha melífera (Apis mellifera L. forrageando na mamoneira pode tanto transferir pólen das flores estaminadas para as pistiladas do mesmo racemo, quanto aumentar consideravelmente a liberação de p

  17. GENÉTICA DEL COMPORTAMIENTO:: ABEJAS COMO MODELO Behavior Genetics:: Bees as Model

    Directory of Open Access Journals (Sweden)

    GUIOMAR NATES-PARRA

    Full Text Available La abeja de miel (género Apis, Familia Apidae es uno de los organismos utilizados en estudios de comportamiento, debido a su forma de vida social, la cual requiere de coordinación entre todos los individuos de la comunidad. La división de trabajo dentro de una colonia de abejas es consecuencia de cambios fisiológicos relacionados con la edad de las obreras y con la variación genética entre ellas que hace que realicen diferentes tareas. Con los progresos en biología molecular, genómica y secuenciación del genoma de Apis mellifera, han surgido nuevas herramientas que permiten desentrañar las bases moleculares del comportamiento, en particular el comportamiento social. Numerosos estudios han mostrado que muchas de las conductas realizadas por las obreras están determinadas genéticamente (comportamiento defensivo, comportamiento higiénico y además que hay variación genética entre poblaciones en el desempeño de tareas como recolección de agua, néctar y polen. Igualmente algunos aspectos del comportamiento social, como el control de la reproducción en las castas estériles, también están bajo influjo genético. En este trabajo se hace una revisión de las metodologías utilizadas para estudiar la genética del comportamiento, así como la base genética de algunas de las conductas más sobresalientes de abejas.The honeybee Apis mellifera (Apidae is a model widely used in behavior because of its elaborate social life requiring coordinate actions among the members of the society. Within a colony, division of labor, the performance of tasks by different individuals, follows genetically determined physiological changes that go along with aging. Modern advances in tools of molecular biology and genomics, as well as the sequentiation of A. mellifera genome, have enabled a better understanding of honeybee behaviour, in particular social behaviour. Numerous studies show that aspects of worker behaviour are genetically determined

  18. Estudio sobre la Eficacia a Campo del Amivar® contra Varroa destructor (Mesostigmata: Varroidae en Colmenas de Apis mellifera (Hymenoptera: Apidae Research on Amivar® efficacy against Varroa destructor (Mesostigmata: Varroidae in honey bee colonies of Apis mellifera (Hymenoptera: Apidae

    Directory of Open Access Journals (Sweden)

    Jorge Marcangeli

    2005-07-01

    Full Text Available El objetivo del trabajo fue evaluar la eficacia del producto Amivar® para el control del ácaro Varroa destructor Anderson & Trueman, en colmenas de abejas durante el otoño de 2003. El trabajo se llevó a cabo en el apiario experimental del Centro de Extensión Apícola ubicado en Coronel Vidal, provincia de Buenos Aires. Se trabajó sobre un total de 20 colmenas tipo Langstroth que se dividieron en dos grupos iguales. En el primer grupo se introdujo una tira de Amivar® (amitraz, 1gr, Apilab, Argentina en el centro del nido de cría de las colmenas. El segundo grupo, sólo recibió el tratamiento de Oxavar® para determinar el número total de ácaros presentes en las colmenas. Semanalmente, se recolectaron los ácaros muertos caídos en pisos especiales que evitaban que las abejas los eliminen. Posteriormente, los dos grupos recibieron tres dosis en total a intervalos de siete días de 5 ml del producto Oxavar® (Apilab-INTA, Argentina; 64,6 g/l; ácido oxálico en agua destilada por cuadro cubierto por abejas para eliminar los ácaros remanentes en las colonias y poder así calcular la eficacia del tratamiento. El producto Amivar® presentó una eficacia promedio de 85,05%±3,39 (rango=79,5 91,6, registrándose diferencias significativas frente al grupo control (pThe aim of this work was to evaluate the acaricide efficacy of Amivar® (amitraz, Apilab, Argentina to control Varroa destructor Anderson & Trueman, in Apis mellifera colonies during the autumn 2003. Work was done at "Centro de Extensión Apícola" experimental apiary located in Coronel Vidal, province of Buenos Aires. Twenty Langstroth hives were used divided in two equal groups. The first group received one strip of Amivar® (amitraz, 1 gr in the center of brood area. The second one represented the control group. Dead mites were collected weekly from special floors designed to avoid mite removal by adult honeybees. Then, a total of three doses of 5 ml of Oxavar® at seven days

  19. Ensayo a campo sobre la eficacia del Colmesan® contra el ácaro Varroa destructor (Varroidae en colmenas de Apis mellifera (Apidae Field assay of Colmesan® efficacy against the mite Varroa destructor (Varroidae in honey bee colonies of Apis mellifera (Apidae

    Directory of Open Access Journals (Sweden)

    Jorge Marcangeli

    2004-12-01

    Full Text Available El objetivo del trabajo fue evaluar la eficacia del producto Colmesan® para el control del ácaro Varroa destructor (Anderson &Trueman en colmenas de abejas durante el otoño de 2003. El trabajo se llevó a cabo en el apiario experimental ubicado en la ciudad de La Plata, provincia de Buenos Aires. Se trabajó sobre un total de 10 colmenas tipo "Langstroth" que se dividieron en dos grupos iguales. El primer grupo recibió dos dosis de Colmesan® (amitraz, 2,05 g, aplicadas a intervalos de 10 días. El segundo grupo, no recibió ningún tipo de tratamiento. Semanalmente, se recolectaron los ácaros muertos caídos en pisos especiales que evitaban que las abejas los eliminen. Posteriormente, los dos grupos recibieron tres dosis semanales de 5 ml del producto Oxavar® (64,6g/l ácido oxálico en agua destilada por cuadro cubierto por abejas para eliminar los ácaros remanentes en las colonias y poder así calcular la eficacia del tratamiento. El producto Colmesan® presentó una eficacia promedio de 70,92% ± 11,93 (rango = 57,92 - 85,42, registrándose diferencias significativas frente al grupo control (pThe aim of this work was to evaluate the acaricide efficacy of Colmesan® to control Varroa destructor (Anderson & Trueman in Apis mellifera (L. colonies during the autumn 2003. Work was done at an experimental apiary located in La Plata city, province of Buenos Aires. Ten Langstroth hives were used divided in two equal groups. The first group received Colmesan® (amitraz, 2,05 g in 2 doses at 10 days period. The second one represented the control group. Dead mites were collected weekly from special floors designed to avoid mite removal by adult honeybees. Then, 3 weekly doses of 5 ml of Oxavar® (64.6 g/l oxalic acid in destilled water were placed in each colony to kill remanent mites and the acaricide efficacy was calculated. Colmesan® showed an average acaricide efficacy of 70.92% ± 11.93 (range = 57.92 -85.42, showing significant

  20. Africanización en Apis mellifera, estudio de toxicidad y enfermedades

    OpenAIRE

    Genchi García, María Laura

    2016-01-01

    La provincia de Buenos Aires concentra cerca del 50% de la producción apícola argentina, magnificando su importancia, no solo desde el punto de vista económico, sino también social y ecológico. En este sentido, el conocimiento de la introgresión de genes africanos en Buenos Aires permitiría no solo poder trazar medidas correctivas, sino también preservar la biodiversidad autóctona de abejas. Los objetivos de este trabajo son: -Realizar un relevamiento de poblaciones de abejas para determi...

  1. Sepsis and Hemocyte Loss in Honey Bees (Apis mellifera) Infected with Serratia marcescens Strain Sicaria.

    Science.gov (United States)

    Burritt, Nancy L; Foss, Nicole J; Neeno-Eckwall, Eric C; Church, James O; Hilger, Anna M; Hildebrand, Jacob A; Warshauer, David M; Perna, Nicole T; Burritt, James B

    2016-01-01

    Global loss of honey bee colonies is threatening the human food supply. Diverse pathogens reduce honey bee hardiness needed to sustain colonies, especially in winter. We isolated a free-living Gram negative bacillus from hemolymph of worker honey bees (Apis mellifera) found separated from winter clusters. In some hives, greater than 90% of the dying bees detached from the winter cluster were found to contain this bacterium in their hemolymph. Throughout the year, the same organism was rarely found in bees engaged in normal hive activities, but was detected in about half of Varroa destructor mites obtained from colonies that housed the septic bees. Flow cytometry of hemolymph from septic bees showed a significant reduction of plasmatocytes and other types of hemocytes. Interpretation of the16S rRNA sequence of the bacterium indicated that it belongs to the Serratia genus of Gram-negative Gammaproteobacteria, which has not previously been implicated as a pathogen of adult honey bees. Complete genome sequence analysis of the bacterium supported its classification as a novel strain of Serratia marcescens, which was designated as S. marcescens strain sicaria (Ss1). When compared with other strains of S. marcescens, Ss1 demonstrated several phenotypic and genetic differences, including 65 genes not previously found in other Serratia genomes. Some of the unique genes we identified in Ss1 were related to those from bacterial insect pathogens and commensals. Recovery of this organism extends a complex pathosphere of agents which may contribute to failure of honey bee colonies.

  2. The dynamic DNA methylation cycle from egg to sperm in the honey bee Apis mellifera.

    Science.gov (United States)

    Drewell, Robert A; Bush, Eliot C; Remnant, Emily J; Wong, Garrett T; Beeler, Suzannah M; Stringham, Jessica L; Lim, Julianne; Oldroyd, Benjamin P

    2014-07-01

    In honey bees (Apis mellifera), the epigenetic mark of DNA methylation is central to the developmental regulation of caste differentiation, but may also be involved in additional biological functions. In this study, we examine the whole genome methylation profiles of three stages of the haploid honey bee genome: unfertilised eggs, the adult drones that develop from these eggs and the sperm produced by these drones. These methylomes reveal distinct patterns of methylation. Eggs and sperm show 381 genes with significantly different CpG methylation patterns, with the vast majority being more methylated in eggs. Adult drones show greatly reduced levels of methylation across the genome when compared with both gamete samples. This suggests a dynamic cycle of methylation loss and gain through the development of the drone and during spermatogenesis. Although fluxes in methylation during embryogenesis may account for some of the differentially methylated sites, the distinct methylation patterns at some genes suggest parent-specific epigenetic marking in the gametes. Extensive germ line methylation of some genes possibly explains the lower-than-expected frequency of CpG sites in these genes. We discuss the potential developmental and evolutionary implications of methylation in eggs and sperm in this eusocial insect species.

  3. Drone and Worker Brood Microclimates Are Regulated Differentially in Honey Bees, Apis mellifera.

    Directory of Open Access Journals (Sweden)

    Zhiyong Li

    Full Text Available Honey bee (Apis mellifera drones and workers show differences in morphology, physiology, and behavior. Because the functions of drones are more related to colony reproduction, and those of workers relate to both survival and reproduction, we hypothesize that the microclimate for worker brood is more precisely regulated than that of drone brood.We assessed temperature and relative humidity (RH inside honey bee colonies for both drone and worker brood throughout the three-stage development period, using digital HOBO® Data Loggers. The major findings of this study are that 1 both drone and worker castes show the highest temperature for eggs, followed by larvae and then pupae; 2 temperature in drones are maintained at higher precision (smaller variance in drone eggs and larvae, but at a lower precision in pupae than the corresponding stages of workers; 3 RH regulation showed higher variance in drone than workers across all brood stages; and 4 RH regulation seems largely due to regulation by workers, as the contribution from empty honey combs are much smaller compared to that from adult workers.We conclude that honey bee colonies maintain both temperature and humidity actively; that the microclimate for sealed drone brood is less precisely regulated than worker brood; and that combs with honey contribute very little to the increase of RH in honey bee colonies. These findings increase our understanding of microclimate regulation in honey bees and may have implications for beekeeping practices.

  4. MALDI imaging analysis of neuropeptides in the Africanized honeybee (Apis mellifera) brain: effect of ontogeny.

    Science.gov (United States)

    Pratavieira, Marcel; da Silva Menegasso, Anally Ribeiro; Garcia, Ana Maria Caviquioli; Dos Santos, Diego Simões; Gomes, Paulo Cesar; Malaspina, Osmar; Palma, Mario Sergio

    2014-06-01

    The occurrence and spatial distribution of the neuropeptides AmTRP-5 and AST-1 in the honeybee brain were monitored via MALDI spectral imaging according to the ontogeny of Africanized Apis mellifera. The levels of these peptides increased in the brains of 0-15 day old honeybees, and this increase was accompanied by an increase in the number of in-hive activities performed by the nurse bees, followed by a decrease in the period from 15 to 25 days of age, in which the workers began to perform activities outside the nest (guarding and foraging). The results obtained in the present investigation suggest that AmTRP-5 acts in the upper region of both pedunculi of young workers, possibly regulating the cell cleaning and brood capping activities. Meanwhile, the localized occurrence of AmTRP-5 and AST-1 in the antennal lobes, subesophageal ganglion, upper region of the medulla, both lobula, and α- and β-lobes of both brain hemispheres in 20 to 25 day old workers suggest that the action of both neuropeptides in these regions may be related to their localized actions in these regions, regulating foraging and guarding activities. Thus, these neuropeptides appear to have some functions in the honeybee brain that are specifically related to the age-related division of labor.

  5. Expression of acetylcholinesterase 1 is associated with brood rearing status in the honey bee, Apis mellifera

    Science.gov (United States)

    Kim, Young Ho; Kim, Ju Hyeon; Kim, Kyungmun; Lee, Si Hyeock

    2017-01-01

    Acetylcholinesterase 1 (AmAChE1) of the honey bee, Apis mellifera, has been suggested to have non-neuronal functions. A systematic expression profiling of AmAChE1 over a year-long cycle on a monthly basis revealed that AmAChE1 was predominantly expressed in both head and abdomen during the winter months and was moderately expressed during the rainy summer months. Interestingly, AmAChE1 expression was inhibited when bees were stimulated for brood rearing by placing overwintering beehives in strawberry greenhouses with a pollen diet, whereas it resumed when the beehives were moved back to the cold field, thereby suppressing brood rearing. In early spring, pollen diet supplementation accelerated the induction of brood-rearing activity and the inhibition of AmAChE1 expression. When active beehives were placed in a screen tent in late spring, thereby artificially suppressing brood-rearing activity, AmAChE1 was highly expressed. In contrast, AmAChE1 expression was inhibited when beehives were allowed to restore brood rearing by removing the screen, supporting the hypothesis that brood rearing status is a main factor in the regulation of AmAChE1 expression. Since brood rearing status is influenced by various stress factors, including temperature and diet shortage, our finding discreetly suggests that AmAChE1 is likely involved in the stress response or stress management. PMID:28045085

  6. Drone and Worker Brood Microclimates Are Regulated Differentially in Honey Bees, Apis mellifera

    Science.gov (United States)

    Li, Zhiyong; Huang, Zachary Y.; Sharma, Dhruv B.; Xue, Yunbo; Wang, Zhi; Ren, Bingzhong

    2016-01-01

    Background Honey bee (Apis mellifera) drones and workers show differences in morphology, physiology, and behavior. Because the functions of drones are more related to colony reproduction, and those of workers relate to both survival and reproduction, we hypothesize that the microclimate for worker brood is more precisely regulated than that of drone brood. Methodology/Principal Findings We assessed temperature and relative humidity (RH) inside honey bee colonies for both drone and worker brood throughout the three-stage development period, using digital HOBO® Data Loggers. The major findings of this study are that 1) both drone and worker castes show the highest temperature for eggs, followed by larvae and then pupae; 2) temperature in drones are maintained at higher precision (smaller variance) in drone eggs and larvae, but at a lower precision in pupae than the corresponding stages of workers; 3) RH regulation showed higher variance in drone than workers across all brood stages; and 4) RH regulation seems largely due to regulation by workers, as the contribution from empty honey combs are much smaller compared to that from adult workers. Conclusions/Significance We conclude that honey bee colonies maintain both temperature and humidity actively; that the microclimate for sealed drone brood is less precisely regulated than worker brood; and that combs with honey contribute very little to the increase of RH in honey bee colonies. These findings increase our understanding of microclimate regulation in honey bees and may have implications for beekeeping practices. PMID:26882104

  7. Brood development of different carniolan bee ecotypes (Apis mellifera carnica Pollmann, 1879

    Directory of Open Access Journals (Sweden)

    Dragan Bubalo

    2002-09-01

    Full Text Available Brood development of different carniolan honeybee ecotypes (Apis mellifera carnica Pollmann, 1879 was carried out in condition of pannonian and alpine climate. The colonies on both experimental apiaries were divided in the three groups, each 12 queens, of alpine (Austria, subalpine (Slovenia and pannonian (Croatia ecotype. The experiment was designed to monitor development of brood, the total number of laid cells and colony strength. In particular part of the year, experimental ecotypes shown significant differences in area of unsealed and sealed brood in both climate. In the whole season there was not established significant difference between ecotypes regarding to development of drone brood. In pannonian climate, in comparison to alpine climate, the number of laid eggs was higher for all ecotypes. Pannonian ecotype did not recognize all food sources in the new environment, which could be seen in the lack of pollen in the colonies at the alpine climate during last two measuriments. The lack of pollen affected the weakening of the colonies laiter in the season.

  8. Evidence of immunocompetence reduction induced by cadmium exposure in honey bees (Apis mellifera).

    Science.gov (United States)

    Polykretis, P; Delfino, G; Petrocelli, I; Cervo, R; Tanteri, G; Montori, G; Perito, B; Branca, J J V; Morucci, G; Gulisano, M

    2016-11-01

    In the last decades a dramatic loss of Apis mellifera hives has been reported in both Europe and USA. Research in this field is oriented towards identifying a synergy of contributing factors, i.e. pathogens, pesticides, habitat loss and pollution to the weakening of the hive. Cadmium (Cd) is a hazardous anthropogenic pollutant whose effects are proving to be increasingly lethal. Among the multiple damages related to Cd contamination, some studies report that it causes immunosuppression in various animal species. The aim of this paper is to determine whether contamination by Cd, may have a similar effect on the honey bees' immunocompetence. Our results, obtained by immune challenge experiments and confirmed by structural and ultrastructural observations show that such metal causes a reduction in immunocompetence in 3 days Cd exposed bees. As further evidence of honey bee response to Cd treatment, Energy Dispersive X-ray Spectroscopy (X-EDS) has revealed the presence of zinc (Zn) in peculiar electron-dense granules in fat body cells. Zn is a characteristic component of metallothioneins (MTs), which are usually synthesized as anti-oxidant and scavenger tools against Cd contamination. Our findings suggest that honey bee colonies may have a weakened immune system in Cd polluted areas, resulting in a decreased ability in dealing with pathogens.

  9. Dynamics of persistent and acute deformed wing virus infections in honey bees, Apis mellifera.

    Science.gov (United States)

    Prisco, Gennaro Di; Zhang, Xuan; Pennacchio, Francesco; Caprio, Emilio; Li, Jilian; Evans, Jay D; Degrandi-Hoffman, Gloria; Hamilton, Michele; Chen, Yan Ping

    2011-12-01

    The dynamics of viruses are critical to our understanding of disease pathogenesis. Using honey bee Deformed wing virus (DWV) as a model, we conducted field and laboratory studies to investigate the roles of abiotic and biotic stress factors as well as host health conditions in dynamics of virus replication in honey bees. The results showed that temperature decline could lead to not only significant decrease in the rate for pupae to emerge as adult bees, but also an increased severity of the virus infection in emerged bees, partly explaining the high levels of winter losses of managed honey bees, Apis mellifera, around the world. By experimentally exposing adult bees with variable levels of parasitic mite Varroa destructor, we showed that the severity of DWV infection was positively correlated with the density and time period of Varroa mite infestation, confirming the role of Varroa mites in virus transmission and activation in honey bees. Further, we showed that host conditions have a significant impact on the outcome of DWV infection as bees that originate from strong colonies resist DWV infection and replication significantly better than bee originating from weak colonies. The information obtained from this study has important implications for enhancing our understanding of host‑pathogen interactions and can be used to develop effective disease control strategies for honey bees.

  10. Dynamics of Persistent and Acute Deformed Wing Virus Infections in Honey Bees, Apis mellifera

    Directory of Open Access Journals (Sweden)

    Jay D. Evans

    2011-12-01

    Full Text Available The dynamics of viruses are critical to our understanding of disease pathogenesis. Using honey bee Deformed wing virus (DWV as a model, we conducted field and laboratory studies to investigate the roles of abiotic and biotic stress factors as well as host health conditions in dynamics of virus replication in honey bees. The results showed that temperature decline could lead to not only significant decrease in the rate for pupae to emerge as adult bees, but also an increased severity of the virus infection in emerged bees, partly explaining the high levels of winter losses of managed honey bees, Apis mellifera, around the world. By experimentally exposing adult bees with variable levels of parasitic mite Varroa destructor, we showed that the severity of DWV infection was positively correlated with the density and time period of Varroa mite infestation, confirming the role of Varroa mites in virus transmission and activation in honey bees. Further, we showed that host conditions have a significant impact on the outcome of DWV infection as bees that originate from strong colonies resist DWV infection and replication significantly better than bee originating from weak colonies. The information obtained from this study has important implications for enhancing our understanding of host‑pathogen interactions and can be used to develop effective disease control strategies for honey bees.

  11. Utilization of bee (Apis mellifera) honey for vinegar production at laboratory scale.

    Science.gov (United States)

    Ilha, E C; Sant'Anna, E; Torres, R C; Porto, A C; Meinert, E M

    2000-01-01

    Vinegar was obtained from bee (Apis mellifera) honey. The wort was prepared by diluting honey in distilled water to 21% total solids and by adding ammonium sulfate and ammonium phosphate. Saccharomyces cerevisiae was inoculated to the wort (4 g/L). Ethanol production was carried out at room temperature during 84 hours. In this study, 1 Kg of honey yielded about 5 L of wine, containing 8% alcohol (v/v), from a wort with 17.11% total sugars (w/v). The efficiency of the alcoholic fermentation was 81.34%. The acetic fermentation with an inoculum of mixed acetic microorganisms was performed by quick process in a 15 L vertical fermenter. This resulted in a vinegar containing up to 9% of acetic acid (w/v) and about 1% of alcohol (v/v). The acetic fermentation yielded between 91.24 and 97.21%. Approximately 5 L of honey vinegar with 9% acetic acid (w/v) were obtained from 1 Kg of bee honey. All attributes of honey vinegar showed acceptability index over 70%: 95.37% for appearance, 94.81% for color, 79.07% for odor and 75.56% for flavor, indicating it would show good consumer acceptability.

  12. Differences in the sleep architecture of forager and young honeybees (Apis mellifera).

    Science.gov (United States)

    Eban-Rothschild, Ada D; Bloch, Guy

    2008-08-01

    Honeybee (Apis mellifera) foragers are among the first invertebrates for which sleep behavior has been described. Foragers (typically older than 21 days) have strong circadian rhythms; they are active during the day, and sleep during the night. We explored whether young bees (approximately 3 days of age), which are typically active around-the-clock with no circadian rhythms, also exhibit sleep behavior. We combined 24-hour video recordings, detailed behavioral observations, and analyses of response thresholds to a light pulse for individually housed bees in various arousal states. We characterized three sleep stages in foragers on the basis of differences in body posture, bout duration, antennae movements and response threshold. Young bees exhibited sleep behavior consisting of the same three stages as observed in foragers. Sleep was interrupted by brief awakenings, which were as frequent in young bees as in foragers. Beyond these similarities, we found differences in the sleep architecture of young bees and foragers. Young bees passed more frequently between the three sleep stages, and stayed longer in the lightest sleep stage than foragers. These differences in sleep architecture may represent developmental and/or environmentally induced variations in the neuronal network underlying sleep in honeybees. To the best of our knowledge, this is the first evidence for plasticity in sleep behavior in insects.

  13. Vasculature of the hive: heat dissipation in the honey bee ( Apis mellifera) hive

    Science.gov (United States)

    Bonoan, Rachael E.; Goldman, Rhyan R.; Wong, Peter Y.; Starks, Philip T.

    2014-06-01

    Eusocial insects are distinguished by their elaborate cooperative behavior and are sometimes defined as superorganisms. As a nest-bound superorganism, individuals work together to maintain favorable nest conditions. Residing in temperate environments, honey bees ( Apis mellifera) work especially hard to maintain brood comb temperature between 32 and 36 °C. Heat shielding is a social homeostatic mechanism employed to combat local heat stress. Workers press the ventral side of their bodies against heated surfaces, absorb heat, and thus protect developing brood. While the absorption of heat has been characterized, the dissipation of absorbed heat has not. Our study characterized both how effectively worker bees absorb heat during heat shielding, and where worker bees dissipate absorbed heat. Hives were experimentally heated for 15 min during which internal temperatures and heat shielder counts were taken. Once the heat source was removed, hives were photographed with a thermal imaging camera for 15 min. Thermal images allowed for spatial tracking of heat flow as cooling occurred. Data indicate that honey bee workers collectively minimize heat gain during heating and accelerate heat loss during cooling. Thermal images show that heated areas temporarily increase in size in all directions and then rapidly decrease to safe levels (heat shielding is reminiscent of bioheat removal via the cardiovascular system of mammals.

  14. First report of sacbrood virus in honey bee (Apis mellifera) colonies in Brazil.

    Science.gov (United States)

    Freiberg, M; De Jong, D; Message, D; Cox-Foster, D

    2012-09-13

    Sacbrood disease, an affliction of honey bees (Apis mellifera) characterized by brood that fails to pupate and subsequently dies, is an important threat to honey bee health. The disease is caused by the sacbrood virus (SBV), a positive-, single-stranded RNA virus in the order Picornavirales. Because of the economic importance of honey bees for both pollination and honey production, it is vital to understand and monitor the spread of viruses such as SBV. This virus has been found in many places across the globe, including recently in some South American countries, and it is likely that it will continue to spread. We performed a preliminary study to search for SBV in two apiaries of Africanized honey bees in the State of São Paulo, Brazil, using RT-PCR and Sanger sequencing and found the first evidence of SBV in honey bee colonies in Brazil. The virus was detected in larvae, foraging and nurse bees from two colonies, one of which had symptoms of sacbrood disease, at the beginning of the winter season in June 2011. No SBV was found in samples from nine other nearby colonies.

  15. Honey constituents up-regulate detoxification and immunity genes in the western honey bee Apis mellifera.

    Science.gov (United States)

    Mao, Wenfu; Schuler, Mary A; Berenbaum, May R

    2013-05-28

    As a managed pollinator, the honey bee Apis mellifera is critical to the American agricultural enterprise. Recent colony losses have thus raised concerns; possible explanations for bee decline include nutritional deficiencies and exposures to pesticides and pathogens. We determined that constituents found in honey, including p-coumaric acid, pinocembrin, and pinobanksin 5-methyl ether, specifically induce detoxification genes. These inducers are primarily found not in nectar but in pollen in the case of p-coumaric acid (a monomer of sporopollenin, the principal constituent of pollen cell walls) and propolis, a resinous material gathered and processed by bees to line wax cells. RNA-seq analysis (massively parallel RNA sequencing) revealed that p-coumaric acid specifically up-regulates all classes of detoxification genes as well as select antimicrobial peptide genes. This up-regulation has functional significance in that that adding p-coumaric acid to a diet of sucrose increases midgut metabolism of coumaphos, a widely used in-hive acaricide, by ∼60%. As a major component of pollen grains, p-coumaric acid is ubiquitous in the natural diet of honey bees and may function as a nutraceutical regulating immune and detoxification processes. The widespread apicultural use of honey substitutes, including high-fructose corn syrup, may thus compromise the ability of honey bees to cope with pesticides and pathogens and contribute to colony losses.

  16. Viral Infection Affects Sucrose Responsiveness and Homing Ability of Forager Honey Bees, Apis mellifera L.

    Science.gov (United States)

    Li, Zhiguo; Chen, Yanping; Zhang, Shaowu; Chen, Shenglu; Li, Wenfeng; Yan, Limin; Shi, Liangen; Wu, Lyman; Sohr, Alex; Su, Songkun

    2013-01-01

    Honey bee health is mainly affected by Varroa destructor, viruses, Nosema spp., pesticide residues and poor nutrition. Interactions between these proposed factors may be responsible for the colony losses reported worldwide in recent years. In the present study, the effects of a honey bee virus, Israeli acute paralysis virus (IAPV), on the foraging behaviors and homing ability of European honey bees (Apis mellifera L.) were investigated based on proboscis extension response (PER) assays and radio frequency identification (RFID) systems. The pollen forager honey bees originated from colonies that had no detectable level of honey bee viruses and were manually inoculated with IAPV to induce the viral infection. The results showed that IAPV-inoculated honey bees were more responsive to low sucrose solutions compared to that of non-infected foragers. After two days of infection, around 107 copies of IAPV were detected in the heads of these honey bees. The homing ability of IAPV-infected foragers was depressed significantly in comparison to the homing ability of uninfected foragers. The data provided evidence that IAPV infection in the heads may enable the virus to disorder foraging roles of honey bees and to interfere with brain functions that are responsible for learning, navigation, and orientation in the honey bees, thus, making honey bees have a lower response threshold to sucrose and lose their way back to the hive. PMID:24130876

  17. Differential gene expression of two extreme honey bee (Apis mellifera) colonies showing varroa tolerance and susceptibility.

    Science.gov (United States)

    Jiang, S; Robertson, T; Mostajeran, M; Robertson, A J; Qiu, X

    2016-06-01

    Varroa destructor, an ectoparasitic mite of honey bees (Apis mellifera), is the most serious pest threatening the apiculture industry. In our honey bee breeding programme, two honey bee colonies showing extreme phenotypes for varroa tolerance/resistance (S88) and susceptibility (G4) were identified by natural selection from a large gene pool over a 6-year period. To investigate potential defence mechanisms for honey bee tolerance to varroa infestation, we employed DNA microarray and real time quantitative (PCR) analyses to identify differentially expressed genes in the tolerant and susceptible colonies at pupa and adult stages. Our results showed that more differentially expressed genes were identified in the tolerant bees than in bees from the susceptible colony, indicating that the tolerant colony showed an increased genetic capacity to respond to varroa mite infestation. In both colonies, there were more differentially expressed genes identified at the pupa stage than at the adult stage, indicating that pupa bees are more responsive to varroa infestation than adult bees. Genes showing differential expression in the colony phenotypes were categorized into several groups based on their molecular functions, such as olfactory signalling, detoxification processes, exoskeleton formation, protein degradation and long-chain fatty acid metabolism, suggesting that these biological processes play roles in conferring varroa tolerance to naturally selected colonies. Identification of differentially expressed genes between the two colony phenotypes provides potential molecular markers for selecting and breeding varroa-tolerant honey bees. © 2016 The Royal Entomological Society.

  18. The impact of pollen consumption on honey bee (Apis mellifera) digestive physiology and carbohydrate metabolism.

    Science.gov (United States)

    Ricigliano, Vincent A; Fitz, William; Copeland, Duan C; Mott, Brendon M; Maes, Patrick; Floyd, Amy S; Dockstader, Arnold; Anderson, Kirk E

    2017-08-20

    Carbohydrate-active enzymes play an important role in the honey bee (Apis mellifera) due to its dietary specialization on plant-based nutrition. Secretory glycoside hydrolases (GHs) produced in worker head glands aid in the processing of floral nectar into honey and are expressed in accordance with age-based division of labor. Pollen utilization by the honey bee has been investigated in considerable detail, but little is known about the metabolic fate of indigestible carbohydrates and glycosides in pollen biomass. Here, we demonstrate that pollen consumption stimulates the hydrolysis of sugars that are toxic to the bee (xylose, arabinose, mannose). GHs produced in the head accumulate in the midgut and persist in the hindgut that harbors a core microbial community composed of approximately 10(8) bacterial cells. Pollen consumption significantly impacted total and specific bacterial abundance in the digestive tract. Bacterial isolates representing major fermentative gut phylotypes exhibited primarily membrane-bound GH activities that may function in tandem with soluble host enzymes retained in the hindgut. Additionally, we found that plant-originating β-galactosidase activity in pollen may be sufficient, in some cases, for probable physiological activity in the gut. These findings emphasize the potential relative contributions of host, bacteria, and pollen enzyme activities to carbohydrate breakdown, which may be tied to gut microbiome dynamics and associated host nutrition. © 2017 Wiley Periodicals, Inc.

  19. How Varroa Parasitism Affects the Immunological and Nutritional Status of the Honey Bee, Apis mellifera

    Science.gov (United States)

    Aronstein, Katherine A.; Saldivar, Eduardo; Vega, Rodrigo; Westmiller, Stephanie; Douglas, Angela E.

    2012-01-01

    We investigated the effect of the parasitic mite Varroadestructor on the immunological and nutritional condition of honey bees, Apis mellifera, from the perspective of the individual bee and the colony. Pupae, newly-emerged adults and foraging adults were sampled from honey bee colonies at one site in S. Texas, USA. Varroa‑infested bees displayed elevated titer of Deformed Wing Virus (DWV), suggestive of depressed capacity to limit viral replication. Expression of genes coding three anti-microbial peptides (defensin1, abaecin, hymenoptaecin) was either not significantly different between Varroa-infested and uninfested bees or was significantly elevated in Varroa-infested bees, varying with sampling date and bee developmental age. The effect of Varroa on nutritional indices of the bees was complex, with protein, triglyceride, glycogen and sugar levels strongly influenced by life-stage of the bee and individual colony. Protein content was depressed and free amino acid content elevated in Varroa-infested pupae, suggesting that protein synthesis, and consequently growth, may be limited in these insects. No simple relationship between the values of nutritional and immune-related indices was observed, and colony-scale effects were indicated by the reduced weight of pupae in colonies with high Varroa abundance, irrespective of whether the individual pupa bore Varroa. PMID:26466617

  20. The Acute Oral Toxicity of Commonly Used Pesticides in Iran, to Honeybees (Apis Mellifera Meda

    Directory of Open Access Journals (Sweden)

    Rasuli Farhang

    2015-06-01

    Full Text Available The honey bee is credited with approximately 85% of the pollinating activity necessary to supply about one-third of the world’s food supply. Well over 50 major crops depend on these insects for pollination. The crops produce more abundantly when honey bees are plentiful. Worker bees are the ones primarily affected by pesticides. Poisoning symptoms can vary depending on the developmental stage of the individual bee, and the kind of chemical employed. The oral toxicity of these insecticides: (phosalone and pirimicarb, acaricide (propargite, insecticide and acaricide (fenpropathrin, fungicides, and bactericides (copper oxychloride and the Bordeaux mixture, were evaluated for the purposes of this research. The results showed that fenpropathrin had high acute oral toxicity (LC50-24h and LC50-48 were 0.54 and 0.3 ppm, respectively. Propargite had 7785 ppm (active ingredient for LC50-24h and 6736 ppm (active ingredient for LC50-48h in honeybees and is therefore, non-toxic to Apis mellifera. On the other hand, copper oxychloride had minimum acute oral toxicity to honeybees (LC50-24h and LC50-48 were 4591.5 and 5407.9 ppm, respectively and was therefore considered non-toxic. Also, the Bordeaux mixture was safe to use around honeybees. Phosalone and primicarb were considered highly and moderately toxic to honeybees, respectively.

  1. A Causal Analysis of Observed Declines in Managed Honey Bees (Apis mellifera)

    Science.gov (United States)

    Staveley, Jane P.; Law, Sheryl A.; Fairbrother, Anne; Menzie, Charles A.

    2013-01-01

    The European honey bee (Apis mellifera) is a highly valuable, semi-free-ranging managed agricultural species. While the number of managed hives has been increasing, declines in overwinter survival, and the onset of colony collapse disorder in 2006, precipitated a large amount of research on bees' health in an effort to isolate the causative factors. A workshop was convened during which bee experts were introduced to a formal causal analysis approach to compare 39 candidate causes against specified criteria to evaluate their relationship to the reduced overwinter survivability observed since 2006 of commercial bees used in the California almond industry. Candidate causes were categorized as probable, possible, or unlikely; several candidate causes were categorized as indeterminate due to lack of information. Due to time limitations, a full causal analysis was not completed at the workshop. In this article, examples are provided to illustrate the process and provide preliminary findings, using three candidate causes. Varroa mites plus viruses were judged to be a “probable cause” of the reduced survival, while nutrient deficiency was judged to be a “possible cause.” Neonicotinoid pesticides were judged to be “unlikely” as the sole cause of this reduced survival, although they could possibly be a contributing factor. PMID:24363549

  2. Effect of proline as a nutrient on hypopharyngeal glands during development of Apis mellifera (Hymenoptera: Apidae

    Directory of Open Access Journals (Sweden)

    Ali Darvishzadeh

    2015-12-01

    Full Text Available Proline is known to be an energy source for protein synthesis and appears to have a major role in insect flying metabolism. Insects can detect proline in their food and use it as an energy substrate to start flight and other high energy consuming activities. Honey bee has a feeding preference for nectars with higher concentrations of this amino acid. In this research we present evidence that L-proline can be utilized as a phagostimulant for the honeybee worker (Apis mellifera. We reported the L-proline increase hypopharyngeal glands acini diameter and syrup consumption at the experimental cage. Honeybee workers fed on 1000 ppm treatment prolin consumed 773.9±31.8 ul/bee after 18-days. It is obvious that the honeybee workers consumed 1000 ppm the more than other treatment. The feeding decreased when concentration of L-proline increased to 10000 ppm. The hypopharyngeal glands development increased gradually from honeybee workers emergence and started to decrease after 9 days old. The maximum acini diameter (0.1439±0.001 mm was recorded in the 9th day when newly emerged bees were fed on 1000 ppm proline syrup.

  3. Cytotoxic effects of thiamethoxam in the midgut and malpighian tubules of Africanized Apis mellifera (Hymenoptera: Apidae).

    Science.gov (United States)

    Catae, Aline Fernanda; Roat, Thaisa Cristina; De Oliveira, Regiane Alves; Nocelli, Roberta Cornélio Ferreira; Malaspina, Osmar

    2014-04-01

    Due to its expansion, agriculture has become increasingly dependent on the use of pesticides. However, the indiscriminate use of insecticides has had additional effects on the environment. These products have a broad spectrum of action, and therefore the insecticide affects not only the pests but also non-target insects such as bees, which are important pollinators of agricultural crops and natural environments. Among the most used pesticides, the neonicotinoids are particularly harmful. One of the neonicotinoids of specific concern is thiamethoxam, which is used on a wide variety of crops and is toxic to bees. Thus, this study aimed to analyze the effects of this insecticide in the midgut and Malpighian tubule cells of Africanized Apis mellifera. Newly emerged workers were exposed until 8 days to a diet containing a sublethal dose of thiamethoxam equal to 1/10 of LC₅₀ (0.0428 ng a.i./l L of diet). The bees were dissected and the organs were processed for transmission electron microscopy. The results showed that thiamethoxam is cytotoxic to midgut and Malpighian tubules. In the midgut, the damage was more evident in bees exposed to the insecticide on the first day. On the eighth day, the cells were ultrastructurally intact suggesting a recovery of this organ. The Malpighian tubules showed pronounced alterations on the eighth day of exposure of bees to the insecticide. This study demonstrates that the continuous exposure to a sublethal dose of thiamethoxam can impair organs that are used during the metabolism of the insecticide.

  4. In vitro effects of thiamethoxam on larvae of Africanized honey bee Apis mellifera (Hymenoptera: Apidae).

    Science.gov (United States)

    Tavares, Daiana Antonia; Roat, Thaisa Cristina; Carvalho, Stephan Malfitano; Silva-Zacarin, Elaine Cristina Mathias; Malaspina, Osmar

    2015-09-01

    Several investigations have revealed the toxic effects that neonicotinoids can have on Apis mellifera, while few studies have evaluated the impact of these insecticides can have on the larval stage of the honeybee. From the lethal concentration (LC50) of thiamethoxam for the larvae of the Africanized honeybee, we evaluated the sublethal effects of this insecticide on morphology of the brain. After determine the LC50 (14.34 ng/μL of diet) of thiamethoxam, larvae were exposed to a sublethal concentration of thiamethoxam equivalent to 1.43 ng/μL by acute and subchronic exposure. Morphological and immunocytochemistry analysis of the brains of the exposed bees, showed condensed cells and early cell death in the optic lobes. Additional dose-related effects were observed on larval development. Our results show that the sublethal concentrations of thiamethoxam tested are toxic to Africanized honeybees larvae and can modulate the development and consequently could affect the maintenance and survival of the colony. These results represent the first assessment of the effects of thiamethoxam in Africanized honeybee larvae and should contribute to studies on honey bee colony decline.

  5. Programmed Cell Death in the Honey Bee (Apis mellifera) (Hymenoptera: Apidae) Worker Brain Induced by Imidacloprid.

    Science.gov (United States)

    Wu, Yan-Yan; Zhou, Ting; Wang, Qiang; Dai, Ping-Li; Xu, Shu-Fa; Jia, Hui-Ru; Wang, Xing

    2015-08-01

    Honey bees are at an unavoidable risk of exposure to neonicotinoid pesticides, which are used worldwide. Compared with the well-studied roles of these pesticides in nontarget site (including midgut, ovary, or salivary glands), little has been reported in the target sites, the brain. In the current study, laboratory-reared adult worker honey bees (Apis mellifera L.) were treated with sublethal doses of imidacloprid. Neuronal apoptosis was detected using the TUNEL technique for DNA labeling. We observed significantly increased apoptotic markers in dose- and time-dependent manners in brains of bees exposed to imidacloprid. Neuronal activated caspase-3 and mRNA levels of caspase-1, as detected by immunofluorescence and real-time quantitative PCR, respectively, were significantly increased, suggesting that sublethal doses of imidacloprid may induce the caspase-dependent apoptotic pathway. Additionally, the overlap of apoptosis and autophagy in neurons was confirmed by transmission electron microscopy. It further suggests that a relationship exists between neurotoxicity and behavioral changes induced by sublethal doses of imidacloprid, and that there is a need to determine reasonable limits for imidacloprid application in the field to protect pollinators.

  6. Honey bees (Apis mellifera ligustica) swing abdomen to dissipate residual flying energy landing on a wall

    Science.gov (United States)

    Zhao, Jieliang; Huang, He; Yan, Shaoze

    2017-03-01

    Whether for insects or for aircrafts, landing is one of the indispensable links in the verification of airworthiness safety. The mechanisms by which insects achieve a fast and stable landing remain unclear. An intriguing example is provided by honeybees (Apis mellifera ligustica), which use the swinging motion of their abdomen to dissipate residual flying energy and to achieve a smooth, stable, and quick landing. By using a high-speed camera, we observed that touchdown is initiated by honeybees extending their front legs or antennae and then landing softly on a wall. After touchdown, they swing the rest of their bodies until all flying energy is dissipated. We suggested a simplified model with mass-spring dampers for the body of the honeybee and revealed the mechanism of flying energy transfer and dissipation in detail. Results demonstrate that body translation and abdomen swinging help honeybees dissipate residual flying energy and orchestrate smooth landings. The initial kinetic energy of flying is transformed into the kinetic energy of the abdomen's rotary movement. Then, the kinetic energy of rotary movement is converted into thermal energy during the swinging cycle. This strategy provides more insight into the mechanism of insect flying, which further inspires better design on aerial vehicle with better landing performance.

  7. Glycogen in honeybee queens, workers and drones (Apis mellifera carnica Pollm.).

    Science.gov (United States)

    Crailsheim, K; Panzenböck, U

    1997-02-21

    Honey bees (Apis mellifera carnica Pollm.) have low glycogen reserves in summer. Upon emergence drones have significantly larger amounts per unit weight when emerging, than workers; perhaps as adaption to the risk of not being fed as intensely as young workers. Maximum content was 0.23mg for workers (28d), and 0.59mg for drones (after emergence). Workers have relatively constant glycogen contents during their life, and very young drones have more glycogen than older ones. Young queens are similar to workers. In workers and queens in summer the greatest amounts of glycogen are found in the thorax. When the bees start flying (6th-8th day of life), drones have the highest amounts in the head (probably to supply their eyes), and upon maturity, drones have the least glycogen in the abdomen.Workers in winter show different glycogen values depending on whether they are active bees from the core area (0.23mg) or inactive ones from the outer surface of the winter cluster (0.37mg). They use glycogen from the thorax and the abdomen for their ongoing energy need.

  8. The HEX 110 Hexamerin Is a Cytoplasmic and Nucleolar Protein in the Ovaries of Apis mellifera

    Science.gov (United States)

    Martins, Juliana Ramos; Bitondi, Márcia Maria Gentile

    2016-01-01

    Hexamerins are insect storage proteins abundantly secreted by the larval fat body into the haemolymph. The canonical role of hexamerins consists of serving as an amino acid reserve for development toward the adult stage. However, in Apis mellifera, immunofluorescence assays coupled to confocal laser-scanning microscopy, and high-throughput sequencing, have recently shown the presence of hexamerins in other organs than the fat body. These findings have led us to study these proteins with the expectation of uncovering additional functions in insect development. We show here that a honeybee hexamerin, HEX 110, localizes in the cytoplasm and nucleus of ovarian cells. In the nucleus of somatic and germline cells, HEX 110 colocalized with a nucleolar protein, fibrillarin, suggesting a structural or even regulatory function in the nucleolus. RNase A provoked the loss of HEX 110 signals in the ovarioles, indicating that the subcellular localization depends on RNA. This was reinforced by incubating ovaries with pyronin Y, a RNA-specific dye. Together, the colocalization with fibrillarin and pyronin Y, and the sensitivity to RNase, highlight unprecedented roles for HEX110 in the nucleolus, the nuclear structure harbouring the gene cluster involved in ribosomal RNA production. However, the similar patterns of HEX 110 foci distribution in the active and inactive ovaries of queens and workers preclude its association with the functional status of these organs. PMID:26954256

  9. Viral infection affects sucrose responsiveness and homing ability of forager honey bees, Apis mellifera L.

    Directory of Open Access Journals (Sweden)

    Zhiguo Li

    Full Text Available Honey bee health is mainly affected by Varroa destructor, viruses, Nosema spp., pesticide residues and poor nutrition. Interactions between these proposed factors may be responsible for the colony losses reported worldwide in recent years. In the present study, the effects of a honey bee virus, Israeli acute paralysis virus (IAPV, on the foraging behaviors and homing ability of European honey bees (Apis mellifera L. were investigated based on proboscis extension response (PER assays and radio frequency identification (RFID systems. The pollen forager honey bees originated from colonies that had no detectable level of honey bee viruses and were manually inoculated with IAPV to induce the viral infection. The results showed that IAPV-inoculated honey bees were more responsive to low sucrose solutions compared to that of non-infected foragers. After two days of infection, around 10⁷ copies of IAPV were detected in the heads of these honey bees. The homing ability of IAPV-infected foragers was depressed significantly in comparison to the homing ability of uninfected foragers. The data provided evidence that IAPV infection in the heads may enable the virus to disorder foraging roles of honey bees and to interfere with brain functions that are responsible for learning, navigation, and orientation in the honey bees, thus, making honey bees have a lower response threshold to sucrose and lose their way back to the hive.

  10. Establishment of a bacterial infection model using the European honeybee, Apis mellifera L.

    Directory of Open Access Journals (Sweden)

    Kenichi Ishii

    Full Text Available Injection of human pathogenic bacteria (Pseudomonas aeruginosa, Serratia marcescens, Salmonella enterica, Staphylococcus aureus, and Listeria monocytogenes into the hemocoel of honeybee (Apis mellifera L. workers kills the infected bees. The bee-killing effects of the pathogens were affected by temperature, and the LD₅₀ values at 37°C were more than 100-fold lower than those at 15°C. Gene-disrupted S. aureus mutants of virulence genes such as agrA, saeS, arlR, srtA, hla, and hlb had attenuated bee-killing ability. Nurse bees were less susceptible than foragers and drones to S. aureus infection. Injection of antibiotics clinically used for humans had therapeutic effects against S. aureus infections of bees, and the ED₅₀ values of these antibiotics were comparable with those determined in mammalian models. Moreover, the effectiveness of orally administered antibiotics was consistent between honeybees and mammals. These findings suggest that the honeybee could be a useful model for assessing the pathogenesis of human-infecting bacteria and the effectiveness of antibiotics.

  11. Morphometric Identification of Queens, Workers and Intermediates in In Vitro Reared Honey Bees (Apis mellifera)

    Science.gov (United States)

    A. De Souza, Daiana; Wang, Ying; Kaftanoglu, Osman; De Jong, David; V. Amdam, Gro; S. Gonçalves, Lionel; M. Francoy, Tiago

    2015-01-01

    In vitro rearing is an important and useful tool for honey bee (Apis mellifera L.) studies. However, it often results in intercastes between queens and workers, which are normally are not seen in hive-reared bees, except when larvae older than three days are grafted for queen rearing. Morphological classification (queen versus worker or intercastes) of bees produced by this method can be subjective and generally depends on size differences. Here, we propose an alternative method for caste classification of female honey bees reared in vitro, based on weight at emergence, ovariole number, spermatheca size and size and shape, and features of the head, mandible and basitarsus. Morphological measurements were made with both traditional morphometric and geometric morphometrics techniques. The classifications were performed by principal component analysis, using naturally developed queens and workers as controls. First, the analysis included all the characters. Subsequently, a new analysis was made without the information about ovariole number and spermatheca size. Geometric morphometrics was less dependent on ovariole number and spermatheca information for caste and intercaste identification. This is useful, since acquiring information concerning these reproductive structures requires time-consuming dissection and they are not accessible when abdomens have been removed for molecular assays or in dried specimens. Additionally, geometric morphometrics divided intercastes into more discrete phenotype subsets. We conclude that morphometric geometrics are superior to traditional morphometrics techniques for identification and classification of honey bee castes and intermediates. PMID:25894528

  12. Pesticide residues in beeswax samples collected from honey bee colonies (Apis mellifera L.) in France.

    Science.gov (United States)

    Chauzat, Marie-Pierre; Faucon, Jean-Paul

    2007-11-01

    In 2002 a field survey was initiated in French apiaries in order to monitor the health of honey bee colonies (Apis mellifera L.). Studied apiaries were evenly distributed across five sites located in continental France. Beeswax samples were collected once a year over 2 years from a total of 125 honey bee colonies. Multiresidue analyses were performed on these samples in order to identify residues of 16 insecticides and acaricides and two fungicides. Residues of 14 of the searched-for compounds were found in samples. Tau-fluvalinate, coumaphos and endosulfan residues were the most frequently occurring residues (61.9, 52.2 and 23.4% of samples respectively). Coumaphos was found in the highest average quantities (792.6 microg kg(-1)). Residues of cypermethrin, lindane and deltamethrin were found in 21.9, 4.3 and 2.4% of samples respectively. Statistical tests showed no difference between years of sampling, with the exception of the frequency of pyrethroid residues. Beeswax contamination was the result of both in-hive acaricide treatments and, to a much lesser extent, environmental pollution.

  13. Apis mellifera pollination improves agronomic productivity of anemophilous castor bean (Ricinus communis).

    Science.gov (United States)

    Rizzardo, Rômulo A G; Milfont, Marcelo O; Silva, Eva M S da; Freitas, Breno M

    2012-12-01

    Castor bean (Ricinus communis L.) is cultivated mainly for biodiesel production because of its oil-rich seeds; it is assumed to be an anemophylous species. But pollination deficit can lead to low productivity often attributed to other reasons. In this paper, we investigated pollination requirements, pollination mechanism, occurrence of pollination deficit, and the role of biotic pollinators in a large commercial plantation of castor bean. Our results show that R. communis bears a mixed breeding system favoring selfing by geitonogamy, although the wind promotes mostly outcrossing. We also found that the honey bee (Apis mellifera L.) foraging on castor bean can both transfer pollen from male to female flowers within the same raceme and boost the release of airborne pollen by male flowers. Both situations increase geitonogamy rates, raising significantly fruit set and seed yield. This is the first report of an animal foraging activity increasing seed yield in an anemophilous and geitonogamous crop and elucidates the role of biotic pollinators in castor bean reproduction.

  14. [Effect of Mexican propolis extracts from Apis mellifera on Candida albicans in vitro growth].

    Science.gov (United States)

    Quintero-Mora, María Leonor; Londoño-Orozco, Amparo; Hernández-Hernández, Francisca; Manzano-Gayosso, Patricia; López-Martínez, Rubén; Soto-Zárate, Carlos Ignacio; Carrillo-Miranda, Liborio; Penieres-Carrillo, Guillermo; García-Tovar, Carlos Gerardo; Cruz-Sánchez, Tonatiuh A

    2008-03-01

    Propolis is a resinous substance collected by bees (Apis mellifera) from different trees and bushes. Due to its antifungal, antibacterial, antiviral and antiparasitic properties, it has continued to be very popular throughout the time showing variable activity depending on its geographical origin. In Mexico, information about this product is very limited. The aim of this work was to evaluate the antifungal activity of four propolis ethanolic extracts from three different Mexican states, and four commercial extracts on Candida albicans growth. A reference strain (ATCC 10231) and 36 clinical isolates of C. albicans were used. The Minimal Inhibitory Concentration (MIC) was determined by the dilution on agar method. Growth curves on Sabouraud Dextrose broth with and without different propolis ethanolic extracts concentrations were performed. In addition, whether the effect was fungistatic or fungicide was determined. The propolis ethanolic extract obtained from Cuautitlán Izcalli, State of Mexico, showed the best biological activity, inhibiting 94.4% from the clinical isolates at 0.8 mg/ml; the reference strain was inhibited at 0.6 mg/ml. The propolis effect was fungistatic in low concentrations and fungicide in concentrations higher to MIC. The Mexican propolis ethanolic extract could be further investigated for its alternative use for the treatment of some C. albicans infections.

  15. Patterns of chromatic information processing in the lobula of the honeybee, Apis mellifera L.

    Science.gov (United States)

    Yang, En-Cheng; Lin, Hsiao-Chun; Hung, Yu-Shan

    2004-10-01

    The honeybee, Apis mellifera L., is one of the living creatures that has its colour vision proven through behavioural tests. Previous studies of honeybee colour vision has emphasized the relationship between the spectral sensitivities of photoreceptors and colour discrimination behaviour. The current understanding of the neural mechanisms of bee colour vision is, however, rather limited. The present study surveyed the patterns of chromatic information processing of visual neurons in the lobula of the honeybee, using intracellular recording stimulated by three light-emitting diodes, whose emission spectra approximately match the spectral sensitivity peaks of the honeybee. The recorded visual neurons can be divided into two groups: non-colour opponent cells and colour opponent cells. The non-colour opponent cells comprise six types of broad-band neurons and four response types of narrow-band neurons. The former might detect brightness of the environment or function as chromatic input channels, and the latter might supply specific chromatic input. Amongst the colour opponent cells, the principal neural mechanism of colour vision, eight response types were recorded. The receptive fields of these neurons were not centre surround as observed in primates. Some recorded neurons with tonic post-stimulus responses were observed, however, suggesting temporal defined spectral opponency may be part of the colour-coding mechanisms.

  16. Drone and Worker Brood Microclimates Are Regulated Differentially in Honey Bees, Apis mellifera.

    Science.gov (United States)

    Li, Zhiyong; Huang, Zachary Y; Sharma, Dhruv B; Xue, Yunbo; Wang, Zhi; Ren, Bingzhong

    2016-01-01

    Honey bee (Apis mellifera) drones and workers show differences in morphology, physiology, and behavior. Because the functions of drones are more related to colony reproduction, and those of workers relate to both survival and reproduction, we hypothesize that the microclimate for worker brood is more precisely regulated than that of drone brood. We assessed temperature and relative humidity (RH) inside honey bee colonies for both drone and worker brood throughout the three-stage development period, using digital HOBO® Data Loggers. The major findings of this study are that 1) both drone and worker castes show the highest temperature for eggs, followed by larvae and then pupae; 2) temperature in drones are maintained at higher precision (smaller variance) in drone eggs and larvae, but at a lower precision in pupae than the corresponding stages of workers; 3) RH regulation showed higher variance in drone than workers across all brood stages; and 4) RH regulation seems largely due to regulation by workers, as the contribution from empty honey combs are much smaller compared to that from adult workers. We conclude that honey bee colonies maintain both temperature and humidity actively; that the microclimate for sealed drone brood is less precisely regulated than worker brood; and that combs with honey contribute very little to the increase of RH in honey bee colonies. These findings increase our understanding of microclimate regulation in honey bees and may have implications for beekeeping practices.

  17. Distance Between Honey Bee Apis mellifera Colonies Regulates Populations of Varroa destructor at a Landscape Scale

    Science.gov (United States)

    Nolan, Maxcy P.; Delaplane, Keith S.

    2016-01-01

    Inter-colony distance of Apis mellifera significantly affects colony numbers of the parasitic mite Varroa destructor. We set up 15 apiaries, each consisting of two colonies. Each apiary pair was assigned an inter-colony distance of 0, 10, or 100 m. Colonies were rendered nearly mite-free, then one colony in each pair was seeded with 300 female mites (mite-donor colony), while the other remained uninoculated (mite-recipient colony). After four months of monitoring, a whole model analysis showed that apiaries in which colonies were spaced 100 m apart contained lower average mite numbers than 0 m or 10 m apiaries. There were interactions among colony type, distance, and sampling date; however, when there were significant differences mite numbers were always lower in 100 m apiaries than 10 m apiaries. These findings pose the possibility that Varroa populations are resource regulated at a landscape scale: near-neighbor colonies constitute reproductive resource for mites in the form of additional bee brood. PMID:27812228

  18. Practical sampling plans for Varroa destructor (Acari: Varroidae) in Apis mellifera (Hymenoptera: Apidae) colonies and apiaries.

    Science.gov (United States)

    Lee, K V; Moon, R D; Burkness, E C; Hutchison, W D; Spivak, M

    2010-08-01

    The parasitic mite Varroa destructor Anderson & Trueman (Acari: Varroidae) is arguably the most detrimental pest of the European-derived honey bee, Apis mellifera L. Unfortunately, beekeepers lack a standardized sampling plan to make informed treatment decisions. Based on data from 31 commercial apiaries, we developed sampling plans for use by beekeepers and researchers to estimate the density of mites in individual colonies or whole apiaries. Beekeepers can estimate a colony's mite density with chosen level of precision by dislodging mites from approximately to 300 adult bees taken from one brood box frame in the colony, and they can extrapolate to mite density on a colony's adults and pupae combined by doubling the number of mites on adults. For sampling whole apiaries, beekeepers can repeat the process in each of n = 8 colonies, regardless of apiary size. Researchers desiring greater precision can estimate mite density in an individual colony by examining three, 300-bee sample units. Extrapolation to density on adults and pupae may require independent estimates of numbers of adults, of pupae, and of their respective mite densities. Researchers can estimate apiary-level mite density by taking one 300-bee sample unit per colony, but should do so from a variable number of colonies, depending on apiary size. These practical sampling plans will allow beekeepers and researchers to quantify mite infestation levels and enhance understanding and management of V. destructor.

  19. Impact of Varroa destructor on honeybee (Apis mellifera scutellata) colony development in South Africa.

    Science.gov (United States)

    Strauss, Ursula; Pirk, Christian W W; Crewe, Robin M; Human, Hannelie; Dietemann, Vincent

    2015-01-01

    The devastating effects of Varroa destructor Anderson & Trueman on European honeybee colonies (Apis mellifera L.) have been well documented. Not only do these mites cause physical damage to parasitised individuals when they feed on them, they also transmit viruses and other pathogens, weaken colonies and can ultimately cause their death. Nevertheless, not all honeybee colonies are doomed once Varroa mites become established. Some populations, such as the savannah honeybee, A. m. scutellata, have become tolerant after the introduction of the parasite and are able to withstand the presence of these mites without the need for acaricides. In this study, we measured daily Varroa mite fall, Varroa infestation rates of adult honeybees and worker brood, and total Varroa population size in acaricide treated and untreated honeybee colonies. In addition, honeybee colony development was compared between these groups in order to measure the cost incurred by Varroa mites to their hosts. Daily Varroa mite fall decreased over the experimental period with different dynamics in treated and untreated colonies. Varroa infestation rates in treated adult honeybees and brood were lower than in untreated colonies, but not significantly so. Thus, indicating a minimal benefit of treatment thereby suggesting that A. m. scutellata have the ability to maintain mite populations at low levels. We obtained baseline data on Varroa population dynamics in a tolerant honeybee over the winter period. Varroa mites appeared to have a low impact on this honeybee population, given that colony development was similar in the treated and untreated colonies.

  20. Hydrocarbon Composition of Beeswax (Apis Mellifera Collected from Light and Dark Coloured Combs

    Directory of Open Access Journals (Sweden)

    Waś Ewa

    2014-12-01

    Full Text Available The hydrocarbon composition of beeswax secreted by Apis mellifera was characterised. In the studies, analyses were made of virgin beeswax (obtained from light combs, socalled „wild-built combs“ that was collected at different dates, and beeswax obtained from dark combs („brood combs“. A qualitative analysis did not show any differences in the hydrocarbon composition of beeswax originating from light and dark coloured combs. The same hydrocarbons (n-alkanes, alkenes, and dienes were identified in virgin beeswax and beeswax collected from brood combs. However, the studies showed differences in the content of n-alkanes in the beeswax obtained from light and dark coloured combs. In comparison to the virgin beeswax, the beeswax obtained from dark combs had higher content of the total n-alkanes, higher total contents of even-numbered alkanes and odd-numbered alkanes, and higher contents of certain alkanes. Furthermore, it has been found that the hydrocarbon composition of beeswax did not depend on the collection period.

  1. Authentication of beeswax (Apis mellifera) by high-temperature gas chromatography and chemometric analysis.

    Science.gov (United States)

    Maia, Miguel; Nunes, Fernando M

    2013-01-15

    Chemical characterization and authentication of beeswax of Apis mellifera was performed by high temperature capillary gas chromatography coupled to electron impact mass spectrometry or to flame ionisation detection and chemometric analysis. Many major components (>50) of beeswax, odd and even hydrocarbons, oleofin, palmitate, oleate and hydroxypalmitate monoesters were detected, and for the first time palmitate and oleate monoesters esterified with 1-octadecanol and 1-eicosanol are reported to be present in beeswax. Unsupervised pattern recognition procedures, cluster analysis and principal component analysis, were used to find data patterns and successfully differentiate authentic and paraffin adulterated beeswax based on the chemical profile obtained. Independent assessment of beeswax quality and performance of the unsupervised classification methods were performed using classical analytical parameters. The discrimination power of the chemometric unsupervised methods for detection of paraffin adulterated beeswax was superior to the discriminating power of classical analytical parameters. Using linear discriminant analysis, classification rules for authentic and paraffin adulterated beeswax samples were developed. The model was validated by leave-one-out cross validation and showed good recognition and prediction abilities, 100% and 99%, respectively.

  2. Characters that differ between diploid and haploid honey bee (Apis mellifera) drones.

    Science.gov (United States)

    Herrmann, Matthias; Trenzcek, Tina; Fahrenhorst, Hartmut; Engels, Wolf

    2005-12-30

    Diploid males have long been considered a curiosity contradictory to the haplo-diploid mode of sex determination in the Hymenoptera. In Apis mellifera, 'false' diploid male larvae are eliminated by worker cannibalism immediately after hatching. A 'cannibalism substance' produced by diploid drone larvae to induce worker-assisted suicide has been hypothesized, but it has never been detected. Diploid drones are only removed some hours after hatching. Older larvae are evidently not regarded as 'false males' and instead are regularly nursed by the brood-attending worker bees. As the pheromonal cues presumably are located on the surface of newly hatched bee larvae, we extracted the cuticular secretions and analyzed their chemical composition by gas chromatograph-mass spectrometry (GC-MS) analyses. Larvae were sexed and then reared in vitro for up to three days. The GC-MS pattern that was obtained, with alkanes as the major compounds, was compared between diploid and haploid drone larvae. We also examined some physical parameters of adult drones. There was no difference between diploid and haploid males in their weight at the day of emergence. The diploid adult drones had fewer wing hooks and smaller testes. The sperm DNA content was 0.30 and 0.15 pg per nucleus, giving an exact 2:1 ratio for the gametocytes of diploid and haploid drones, respectively. Vitellogenin was found in the hemolymph of both types of imaginal drones at 5 to 6 days, with a significantly lower titer in the diploids.

  3. Aversive conditioning in honey bees (Apis mellifera anatolica): a comparison of drones and workers.

    Science.gov (United States)

    Dinges, Christopher W; Avalos, Arian; Abramson, Charles I; Craig, David Philip Arthur; Austin, Zoe M; Varnon, Christopher A; Dal, Fatima Nur; Giray, Tugrul; Wells, Harrington

    2013-11-01

    Honey bees provide a model system to elucidate the relationship between sociality and complex behaviors within the same species, as females (workers) are highly social and males (drones) are more solitary. We report on aversive learning studies in drone and worker honey bees (Apis mellifera anatolica) in escape, punishment and discriminative punishment situations. In all three experiments, a newly developed electric shock avoidance assay was used. The comparisons of expected and observed responses were performed with conventional statistical methods and a systematic randomization modeling approach called object oriented modeling. The escape experiment consisted of two measurements recorded in a master-yoked paradigm: frequency of response and latency to respond following administration of shock. Master individuals could terminate an unavoidable shock triggered by a decrementing 30 s timer by crossing the shuttlebox centerline following shock activation. Across all groups, there was large individual response variation. When assessing group response frequency and latency, master subjects performed better than yoked subjects for both workers and drones. In the punishment experiment, individuals were shocked upon entering the shock portion of a bilaterally wired shuttlebox. The shock portion was spatially static and unsignalled. Only workers effectively avoided the shock. The discriminative punishment experiment repeated the punishment experiment but included a counterbalanced blue and yellow background signal and the side of shock was manipulated. Drones correctly responded less than workers when shock was paired with blue. However, when shock was paired with yellow there was no observable difference between drones and workers.

  4. Silk formation mechanisms in the larval salivary glands of Apis mellifera (Hymenoptera: Apidae)

    Indian Academy of Sciences (India)

    Elaine C M Silva-Zacarin; Regina L M Silva De Moraes; S R Taboga

    2003-12-01

    The mechanism of silk formation in Apis mellifera salivary glands, during the 5th instar, was studied. Larval salivary glands were dissected and prepared for light and polarized light microscopy, as well as for scanning and transmission electron microscopy. The results showed that silk formation starts at the middle of the 5th instar and finishes at the end of the same instar. This process begins in the distal secretory portion of the gland, going towards the proximal secretory portion; and from the periphery to the center of the gland lumen. The silk proteins are released from the secretory cells as a homogeneous substance that polymerizes in the lumen to form compact birefringent tactoids. Secondly, the water absorption from the lumen secretion, carried out by secretory and duct cells, promotes aggregation of the tactoids that form a spiral-shape filament with a zigzag pattern. This pattern is also the results of the silk compression in the gland lumen and represents a high concentration of macromolecularly well-oriented silk proteins.

  5. Latent inhibition in the honey bee, Apis mellifera: Is it a unitary phenomenon?

    Science.gov (United States)

    Chandra, Sathees B C; Wright, Geraldine A; Smith, Brian H

    2010-11-01

    Latent inhibition refers to learning that some stimuli are not signals of important events. It has been widely studied in vertebrates, but it has been substantially less well studied in invertebrates. We present an investigation into latent inhibition in the honey bee (Apis mellifera) using a proboscis extension response conditioning procedure that involved 'preexposure' of an odor without reinforcement prior to appetitive conditioning. A significant latent inhibition effect, measured in terms of a reduction in acquisition performance to the preexposed odor, was observed after 8 unreinforced presentations, and the effect continued to increase in strength up to 30 presentations. We also observed that memories formed for the preexposed odor lasted at least 24 h. Further manipulation of interstimulus interval and the visual conditioning context partially attenuated the effect. The latter results indicate that latent inhibition in honey bees may not be a unitary phenomenon. Two different mechanisms may be required, in which one mechanism is dependent on the visual context and the second is not.

  6. Viral infection affects sucrose responsiveness and homing ability of forager honey bees, Apis mellifera L.

    Science.gov (United States)

    Li, Zhiguo; Chen, Yanping; Zhang, Shaowu; Chen, Shenglu; Li, Wenfeng; Yan, Limin; Shi, Liangen; Wu, Lyman; Sohr, Alex; Su, Songkun

    2013-01-01

    Honey bee health is mainly affected by Varroa destructor, viruses, Nosema spp., pesticide residues and poor nutrition. Interactions between these proposed factors may be responsible for the colony losses reported worldwide in recent years. In the present study, the effects of a honey bee virus, Israeli acute paralysis virus (IAPV), on the foraging behaviors and homing ability of European honey bees (Apis mellifera L.) were investigated based on proboscis extension response (PER) assays and radio frequency identification (RFID) systems. The pollen forager honey bees originated from colonies that had no detectable level of honey bee viruses and were manually inoculated with IAPV to induce the viral infection. The results showed that IAPV-inoculated honey bees were more responsive to low sucrose solutions compared to that of non-infected foragers. After two days of infection, around 10⁷ copies of IAPV were detected in the heads of these honey bees. The homing ability of IAPV-infected foragers was depressed significantly in comparison to the homing ability of uninfected foragers. The data provided evidence that IAPV infection in the heads may enable the virus to disorder foraging roles of honey bees and to interfere with brain functions that are responsible for learning, navigation, and orientation in the honey bees, thus, making honey bees have a lower response threshold to sucrose and lose their way back to the hive.

  7. How Varroa Parasitism Affects the Immunological and Nutritional Status of the Honey Bee, Apis mellifera.

    Science.gov (United States)

    Aronstein, Katherine A; Saldivar, Eduardo; Vega, Rodrigo; Westmiller, Stephanie; Douglas, Angela E

    2012-06-27

    We investigated the effect of the parasitic mite Varroa destructor on the immunological and nutritional condition of honey bees, Apis mellifera, from the perspective of the individual bee and the colony. Pupae, newly-emerged adults and foraging adults were sampled from honey bee colonies at one site in S. Texas, USA. Varroa‑infested bees displayed elevated titer of Deformed Wing Virus (DWV), suggestive of depressed capacity to limit viral replication. Expression of genes coding three anti-microbial peptides (defensin1, abaecin, hymenoptaecin) was either not significantly different between Varroa-infested and uninfested bees or was significantly elevated in Varroa-infested bees, varying with sampling date and bee developmental age. The effect of Varroa on nutritional indices of the bees was complex, with protein, triglyceride, glycogen and sugar levels strongly influenced by life-stage of the bee and individual colony. Protein content was depressed and free amino acid content elevated in Varroa-infested pupae, suggesting that protein synthesis, and consequently growth, may be limited in these insects. No simple relationship between the values of nutritional and immune-related indices was observed, and colony-scale effects were indicated by the reduced weight of pupae in colonies with high Varroa abundance, irrespective of whether the individual pupa bore Varroa.

  8. The proboscis extension reflex to evaluate learning and memory in honeybees ( Apis mellifera): some caveats

    Science.gov (United States)

    Frost, Elisabeth H.; Shutler, Dave; Hillier, Neil Kirk

    2012-09-01

    The proboscis extension reflex (PER) is widely used in a classical conditioning (Pavlovian) context to evaluate learning and memory of a variety of insect species. The literature is particularly prodigious for honeybees ( Apis mellifera) with more than a thousand publications. Imagination appears to be the only limit to the types of challenges to which researchers subject honeybees, including all the sensory modalities and a broad diversity of environmental treatments. Accordingly, some remarkable insights have been achieved using PER. However, there are several challenges to evaluating the PER literature that warrant a careful and thorough review. We assess here variation in methods that makes interpretation of studies, even those researching the same question, tenuous. We suggest that the numerous variables that might influence experimental outcomes from PER be thoroughly detailed by researchers. Moreover, the influence of individual variables on results needs to carefully evaluated, as well as among two or more variables. Our intent is to encourage investigation of the influence of numerous variables on PER results.

  9. Toward an Upgraded Honey Bee (Apis mellifera L.) Genome Annotation Using Proteogenomics.

    Science.gov (United States)

    McAfee, Alison; Harpur, Brock A; Michaud, Sarah; Beavis, Ronald C; Kent, Clement F; Zayed, Amro; Foster, Leonard J

    2016-02-05

    The honey bee is a key pollinator in agricultural operations as well as a model organism for studying the genetics and evolution of social behavior. The Apis mellifera genome has been sequenced and annotated twice over, enabling proteomics and functional genomics methods for probing relevant aspects of their biology. One troubling trend that emerged from proteomic analyses is that honey bee peptide samples consistently result in lower peptide identification rates compared with other organisms. This suggests that the genome annotation can be improved, or atypical biological processes are interfering with the mass spectrometry workflow. First, we tested whether high levels of polymorphisms could explain some of the missed identifications by searching spectra against the reference proteome (OGSv3.2) versus a customized proteome of a single honey bee, but our results indicate that this contribution was minor. Likewise, error-tolerant peptide searches lead us to eliminate unexpected post-translational modifications as a major factor in missed identifications. We then used a proteogenomic approach with ~1500 raw files to search for missing genes and new exons, to revive discarded annotations and to identify over 2000 new coding regions. These results will contribute to a more comprehensive genome annotation and facilitate continued research on this important insect.

  10. Cold Ambient Temperature Promotes Nosema spp. Intensity in Honey Bees (Apis mellifera).

    Science.gov (United States)

    Retschnig, Gina; Williams, Geoffrey R; Schneeberger, Annette; Neumann, Peter

    2017-02-09

    Interactions between parasites and environmental factors have been implicated in the loss of managed Western honey bee (=HB, Apis mellifera) colonies. Although laboratory data suggest that cold temperature may limit the spread of Nosema ceranae, an invasive species and now ubiquitous endoparasite of Western HBs, the impact of weather conditions on the distribution of this microsporidian in the field is poorly understood. Here, we conducted a survey for Nosema spp. using 18 Swiss apiaries (four colonies per apiary) over a period of up to 18 months. Samples consisting of 60 workers were collected monthly from each colony to estimate Nosema spp. intensity, i.e., the number of spores in positive samples using microscopy. Ambient apiary temperature was measured daily to estimate the proportion of days enabling HB flight (>10 °C at midday). The results show that Nosema spp. intensities were negatively correlated with the proportion of days enabling HB flight, thereby suggesting a significant and unexpected positive impact of cold ambient temperature on intensities, probably via regulation of defecation opportunities for infected hosts.

  11. Distance Between Honey Bee Apis mellifera Colonies Regulates Populations of Varroa destructor at a Landscape Scale.

    Science.gov (United States)

    Nolan, Maxcy P; Delaplane, Keith S

    2016-01-01

    Inter-colony distance of Apis mellifera significantly affects colony numbers of the parasitic mite Varroa destructor. We set up 15 apiaries, each consisting of two colonies. Each apiary pair was assigned an inter-colony distance of 0, 10, or 100 m. Colonies were rendered nearly mite-free, then one colony in each pair was seeded with 300 female mites (mite-donor colony), while the other remained uninoculated (mite-recipient colony). After four months of monitoring, a whole model analysis showed that apiaries in which colonies were spaced 100 m apart contained lower average mite numbers than 0 m or 10 m apiaries. There were interactions among colony type, distance, and sampling date; however, when there were significant differences mite numbers were always lower in 100 m apiaries than 10 m apiaries. These findings pose the possibility that Varroa populations are resource regulated at a landscape scale: near-neighbor colonies constitute reproductive resource for mites in the form of additional bee brood.

  12. Cold Ambient Temperature Promotes Nosema spp. Intensity in Honey Bees (Apis mellifera

    Directory of Open Access Journals (Sweden)

    Gina Retschnig

    2017-02-01

    Full Text Available Interactions between parasites and environmental factors have been implicated in the loss of managed Western honey bee (=HB, Apis mellifera colonies. Although laboratory data suggest that cold temperature may limit the spread of Nosema ceranae, an invasive species and now ubiquitous endoparasite of Western HBs, the impact of weather conditions on the distribution of this microsporidian in the field is poorly understood. Here, we conducted a survey for Nosema spp. using 18 Swiss apiaries (four colonies per apiary over a period of up to 18 months. Samples consisting of 60 workers were collected monthly from each colony to estimate Nosema spp. intensity, i.e., the number of spores in positive samples using microscopy. Ambient apiary temperature was measured daily to estimate the proportion of days enabling HB flight (>10 °C at midday. The results show that Nosema spp. intensities were negatively correlated with the proportion of days enabling HB flight, thereby suggesting a significant and unexpected positive impact of cold ambient temperature on intensities, probably via regulation of defecation opportunities for infected hosts.

  13. Evaluation of Apis mellifera syriaca Levant region honeybee conservation using comparative genome hybridization.

    Science.gov (United States)

    Haddad, Nizar Jamal; Batainh, Ahmed; Saini, Deepti; Migdadi, Osama; Aiyaz, Mohamed; Manchiganti, Rushiraj; Krishnamurthy, Venkatesh; Al-Shagour, Banan; Brake, Mohammad; Bourgeois, Lelania; De Guzman, Lilia; Rinderer, Thomas; Hamouri, Zayed Mahoud

    2016-06-01

    Apis mellifera syriaca is the native honeybee subspecies of Jordan and much of the Levant region. It expresses behavioral adaptations to a regional climate with very high temperatures, nectar dearth in summer, attacks of the Oriental wasp and is resistant to Varroa mites. The A. m. syriaca control reference sample (CRS) in this study was originally collected and stored since 2001 from "Wadi Ben Hammad", a remote valley in the southern region of Jordan. Morphometric and mitochondrial DNA markers of these honeybees had shown highest similarity to reference A. m. syriaca samples collected in 1952 by Brother Adam of samples collected from the Middle East. Samples 1-5 were collected from the National Center for Agricultural Research and Extension breeding apiary which was established for the conservation of A. m. syriaca. Our objective was to determine the success of an A. m. syriaca honey bee conservation program using genomic information from an array-based comparative genomic hybridization platform to evaluate genetic similarities to a historic reference collection (CRS). Our results had shown insignificant genomic differences between the current population in the conservation program and the CRS indicated that program is successfully conserving A. m. syriaca. Functional genomic variations were identified which are useful for conservation monitoring and may be useful for breeding programs designed to improve locally adapted strains of A. m. syriaca.

  14. Selection on worker honeybee responses to queen pheromone (Apis mellifera L.)

    Science.gov (United States)

    Pankiw, T.; Winston, Mark L.; Fondrk, M. Kim; Slessor, Keith N.

    Disruptive selection for responsiveness to queen mandibular gland pheromone (QMP) in the retinue bioassay resulted in the production of high and low QMP responding strains of honeybees (Apis mellifera L.). Strains differed significantly in their retinue response to QMP after one generation of selection. By the third generation the high strain was on average at least nine times more responsive than the low strain. The strains showed seasonal phenotypic plasticity such that both strains were more responsive to the pheromone in the spring than in the fall. Directional selection for low seasonal variation indicated that phenotypic plasticity was an additional genetic component to retinue response to QMP. Selection for high and low retinue responsiveness to QMP was not an artifact of the synthetic blend because both strains were equally responsive or non-responsive to whole mandibular gland extracts compared with QMP. The use of these strains clearly pointed to an extra-mandibular source of retinue pheromones (Pankiw et al. 1995; Slessor et al. 1998; Keeling et al. 1999).

  15. Molecular Identification of Chronic Bee Paralysis Virus Infection in Apis mellifera Colonies in Japan

    Directory of Open Access Journals (Sweden)

    Tomomi Morimoto

    2012-06-01

    Full Text Available Chronic bee paralysis virus (CBPV infection causes chronic paralysis and loss of workers in honey bee colonies around the world. Although CBPV shows a worldwide distribution, it had not been molecularly detected in Japan. Our investigation of Apis mellifera and Apis cerana japonica colonies with RT-PCR has revealed CBPV infection in A. mellifera but not A. c. japonica colonies in Japan. The prevalence of CBPV is low compared with that of other viruses: deformed wing virus (DWV, black queen cell virus (BQCV, Israel acute paralysis virus (IAPV, and sac brood virus (SBV, previously reported in Japan. Because of its low prevalence (5.6% in A. mellifera colonies, the incidence of colony losses by CBPV infection must be sporadic in Japan. The presence of the (− strand RNA in dying workers suggests that CBPV infection and replication may contribute to their symptoms. Phylogenetic analysis demonstrates a geographic separation of Japanese isolates from European, Uruguayan, and mainland US isolates. The lack of major exchange of honey bees between Europe/mainland US and Japan for the recent 26 years (1985–2010 may have resulted in the geographic separation of Japanese CBPV isolates.

  16. Structural differences in the drone olfactory system of two phylogenetically distant Apis species, A. florea and A. mellifera

    Science.gov (United States)

    Brockmann, Axel; Brückner, Dorothea

    2001-01-01

    Male insects that are attracted by sex pheromones to find their female mates over long distances have specialized olfactory subsystems. Morphologically, these subsystems are characterized by a large number of receptor neurons sensitive to components of the female's pheromones and hypertrophied glomerular subunits ('macroglomeruli' or 'macroglomerular complexes') in the antennal lobes, in which the axons of the receptor neurons converge. The olfactory subsystems are adapted for an increased sensitivity to perceive minute amounts of pheromones. In Apis mellifera, drones have 18,600 olfactory poreplate sensilla per antenna, each equipped with receptor neurons sensitive to the queen's sex pheromone, and four voluminous macroglomeruli (MG1-MG4) in the antennal lobes. In contrast, we show that drones of the phylogenetically distant species, Apis florea, have only 1,200 poreplate sensilla per antenna and only two macroglomeruli in their antennal lobes. These macroglomeruli are homologous in anatomical position to the two most prominent macroglomeruli in A. mellifera, the MG1 and MG2, but they are much smaller in size. The morphological and anatomical differences described here suggest major modifications in the sex-pheromone processing subsystem of both species: (1) less pheromone sensitivity in A. florea and (2) a more complex sex-pheromone processing and thus a more complex sex-pheromone communication in A. mellifera.

  17. Effects of abiotic factors on the foraging activity of Apis mellifera Linnaeus, 1758 in inflorescences of Vernonia polyanthes Less (Asteraceae

    Directory of Open Access Journals (Sweden)

    Luis Henrique Soares Alves

    2015-10-01

    Full Text Available Knowledge on the foraging activity of Apis mellifera under the influence of abiotic factors has not been fully elucidated. Knowing the interactions between bees and plants with beekeeping relevance is fundamental to develop management strategies aimed at improving the beekeeping productivity. In this way, this study aimed to determine the foraging schedule of A. mellifera and to assess the influence of environmental factors on the foraging on inflorescences of Vernonia polyanthes. The study was conducted in the rural area of Valença, Rio de Janeiro State. Visits of A. mellifera workers to V. polyanthes inflorescences occurred from 9 am to 4 pm, especially between 11 am and 3 pm. Among the abiotic variables, relative humidity (rs = -0.691; p < 0.0001 and temperature (rs = 0.531; p < 0.0001 were correlated with foraging activity. Increase in temperature and decrease in humidity resulted in increased frequency in bee foraging activity, accounting for 46.9% of the activity in A. mellifera. This study provides subsidies to the development of apiculture, emphasizing the importance of V. polyanthes as a food resource during winter, representing a good alternative to increase the productivity, especially in areas of grasslands or abandoned crops, where ‘Assa-peixe’ is abundant.

  18. Phylogenetic relationship of Turkish Apis mellifera subspecies based on sequencing of mitochondrial cytochrome C oxidase I region.

    Science.gov (United States)

    Özdil, F; İlhan, F

    2012-04-27

    Mitochondrial DNA sequence variation can be used to infer honey bee evolutionary relationships. We examined DNA sequence diversity in the cytochrome C oxidase I (COI or Cox1) gene segment of the mitochondrial genome in 112 samples of Apis mellifera from 15 different populations in Turkey. Six novel haplotypes were found for the COI gene segment. There were eight variable sites in the COI gene, although only three were parsimony-informative sites. The mean pairwise genetic distance was 0.3% for the COI gene segment. Neighbor-joining (NJ) trees of the COI gene segment were constructed with the published sequences of A. mellifera haplotypes that are available in GenBank; the genetic variation was compared among the different honeybee haplotypes. The NJ dendogram based on the COI sequences available in GenBank showed that Eastern European races were clustered together, whereas the Mellifera and Iberian haplotypes were clustered far apart. The haplotypes found in this study were clustered together with A. mellifera ligustica and some of the Greek honey bees (accession Nos. GU056169 and GU056170) found in NCBI GenBank database. This study expands the knowledge about the mitochondrial COI region and presents the first comprehensive sequence analysis of this region in Turkish honeybees.

  19. The Assessment of DNA in Royal Jelly from Apis mellifera and Apis cerana by RAPD markers%中蜂与意蜂王浆中DNA的RAPD分析

    Institute of Scientific and Technical Information of China (English)

    邹阳; 黄康; 颜伟玉; 曾志将

    2007-01-01

    以中华蜜蜂(Apis cerana cerana)和意大利蜜蜂( Apis mellifera ligustica)王浆为材料,用改进的苯酚-氯仿法提取蜂王浆中的DNA,利用35个随机引物对提取出来的DNA进行RAPD扩增,结果表明:有6个随机引物能扩增出谱带,其中1个引物对所有王浆DNA样品的扩增结果完全相同,5个引物出现多态性.共检测到32条扩增谱带,其中24条为多态带.

  20. Susceptibility of Bee Larvae to Chalkbrood in Relation to Hygienic Behaviour of Worker Bees in Colonies of Chosen Races of Honeybee (Apis Mellifera

    Directory of Open Access Journals (Sweden)

    Panasiuk Beata

    2014-06-01

    Full Text Available The susceptibility of bee larvae to Ascosphaera apis infestation and the hygienic behaviour of worker bees in relation to A. apis infected and freeze-killed brood were evaluated in three races of bees: Apis mellifera carnica, Apis mellifera caucasica, and Apis mellifera mellifera. Experimental bee colonies were evaluated in field conditions during the three beekeeping seasons. The lowest percentage of infected larvae was observed in car GR1 and mel A colonies (8.5% and 15%, respectively and the highest in car Mr and cau P colonies (21% and 24.3%, respectively. Bees in the car GR1 and mel A colonies removed mummified brood in a shorter period of time (6.5 and 7.1 days on average, respectively than car Mr and cau P colonies (above 8 days. Bees in the mel A and car GR1 colonies cleaned significantly more cells with freeze-killed brood within 24 and 48 hours (above 70% and 80% on average, respectively than car Mr and cau P colonies (on average 10 - 20% lower cleaning rate. A low correlation coefficient was found for the susceptibility of larvae to A. apis infection and hygienic behaviour.

  1. Frequency and foraging behavior of Apis mellifera in two melon hybrids in Juazeiro, state of Bahia, Brazil

    Directory of Open Access Journals (Sweden)

    LÚCIA H.P. KIILL

    2014-12-01

    Full Text Available The study was carried out to verify if there are differences in foraging frequency and behavior of Apis mellifera in two melon hybrids (10:00 – ‘Yellow melon’ and Sancho -‘Piel de Sapo’ in the municipality of Juazeiro, state of Bahia, Brazil. The frequency, behavior of visitors and the floral resource foraged were registered from 5:00 am to 6:00 pm. There was a significant difference in the frequency of visits when comparing hydrids (F = 103.74, p <0.0001, floral type (F = 47.25, p <0.0001 and resource foraged (F = 239.14, p <0.0001. The flowers of Sancho were more attractive to A. mellifera when compared with hybrid 10:00, which may be correlated to the morphology and floral resources available. This could be solved with scaled planting, avoiding the overlapping of flowering of both types.

  2. Side-effects of pesticides used in the organic system of production on Apis mellifera Linnaeus, 1758

    Directory of Open Access Journals (Sweden)

    Caio Fábio Stoffel Efrom

    2012-02-01

    Full Text Available This study aimed to evaluate the effects of pesticides, used in the organic system, on Apis mellifera under laboratory conditions. Four multiple (0.25x, 0.5x, 1x and 2x concentrations as recommended by they manufacturers of the following products: Rotenat CE®, Pironat®, Biopirol 7M®, Organic neem®, Natuneem® and lime sulfur were tested by topical application and ingestion. Of all the products and concentrations tested, only the lime sulfur (5000 ml 100L-1 and 10000 mL 100L-1 of water by ingestion, and Rotenat CE® (1200ml 100L-1 of water on topical application were considered slightly harmful for A. mellifera, as the classification of IOBC/WPRS for the laboratory tests.

  3. Frequency and foraging behavior of Apis mellifera in two melon hybrids in Juazeiro, state of Bahia, Brazil.

    Science.gov (United States)

    Kiill, Lúcia H P; Siqueira, Kátia M M; Coelho, Márcia S; Silva, Tamires A; Gama, Diego R S; Araújo, Diego C S; Pereira Neto, Joaquim

    2014-12-01

    The study was carried out to verify if there are differences in foraging frequency and behavior of Apis mellifera in two melon hybrids (10:00 - 'Yellow melon' and Sancho -'Piel de Sapo') in the municipality of Juazeiro, state of Bahia, Brazil. The frequency, behavior of visitors and the floral resource foraged were registered from 5:00 am to 6:00 pm. There was a significant difference in the frequency of visits when comparing hydrids (F = 103.74, p <0.0001), floral type (F = 47.25, p <0.0001) and resource foraged (F = 239.14, p <0.0001). The flowers of Sancho were more attractive to A. mellifera when compared with hybrid 10:00, which may be correlated to the morphology and floral resources available. This could be solved with scaled planting, avoiding the overlapping of flowering of both types.

  4. APRENDIZAGEM DA EXTENSÃO DA PROBÓSCIDE EM ZANGÕES AFRICANIZADOS (APIS MELLIFERA L. CONFINADOS

    Directory of Open Access Journals (Sweden)

    Italo Souza Aquino

    2015-01-01

    Full Text Available Studies on the olfactive learning in honey bees (Apis mellifera L. are predominantly performed with worker bees. In this study, we used the classical conditioning of proboscis extension (PER to evaluate the effectiveness of 5 scents as conditioned stimuli (CS. Ten groups of 20 drones (A. mellifera L. each were used. The conditioned stimuli were the odors of Citral, Hexanal, Geraniol, beeswax (comb, and beeswax (foundation sheet. In addition to the acquisition of learning, we measured the persistence of conditioning when the unconditioned stimulus was no longer presented (i.e., extinction. The intertrial interval, the CS duration and US duration were 10 min, 2 sec, and 3 sec, respectively. The drones were able to demonstrate conditioning and storage of information. Citral, Hexanal, and beeswax (comb were the most efficient stimuli in classical conditioning with drones.

  5. Differences in mushroom bodies morphogenesis in workers, queens and drones of Apis mellifera: neuroblasts proliferation and death.

    Science.gov (United States)

    Roat, Thaisa Cristina; da Cruz Landim, Carminda

    2010-06-01

    Apis mellifera is an interesting model to neurobiological studies. It has a relatively small brain that commands the complex learning and memory tasks demanded by the social organization. An A. mellifera colony is made up of a queen, thousands of workers and a varying number of drones. The latter are males, whereas the former are the two female castes. These three phenotypes differ in morphology, physiology and behavior, correlated with their respective functions in the society. Such differences include the morphology and architecture of their brains. To understand the processes generating such polymorphic brains we characterized the cell division and cell death dynamics which underlie the morphogenesis of the mushroom bodies, through several methods suitable for evidence the time and place of occurrence. Cell death was detected in mushroom bodies of last larval instar and mainly in black-eyed pupae. Cell division was observed in mushroom bodies, primarily at the start of metamorphosis, exhibiting temporal differences among workers, queens and males.

  6. Transcriptional markers of sub-optimal nutrition in developing Apis mellifera nurse workers.

    Science.gov (United States)

    Corby-Harris, Vanessa; Jones, Beryl M; Walton, Alexander; Schwan, Melissa R; Anderson, Kirk E

    2014-02-15

    Honey bees (Apis mellifera) contribute substantially to the worldwide economy and ecosystem health as pollinators. Pollen is essential to the bee's diet, providing protein, lipids, and micronutrients. The dramatic shifts in physiology, anatomy, and behavior that accompany normal worker development are highly plastic and recent work demonstrates that development, particularly the transition from nurse to foraging roles, is greatly impacted by diet. However, the role that diet plays in the developmental transition of newly eclosed bees to nurse workers is poorly understood. To further understand honey bee nutrition and the role of diet in nurse development, we used a high-throughput screen of the transcriptome of 3 day and 8 day old worker bees fed either honey and stored pollen (rich diet) or honey alone (poor diet) within the hive. We employed a three factor (age, diet, age x diet) analysis of the transcriptome to determine whether diet affected nurse worker physiology and whether poor diet altered the developmental processes normally associated with aging. Substantial changes in gene expression occurred due to starvation. Diet-induced changes in gene transcription occurring in younger bees were largely a subset of those occurring in older bees, but certain signatures of starvation were only evident 8 day old workers. Of the 18,542 annotated transcripts in the A. mellifera genome, 150 transcripts exhibited differential expression due to poor diet at 3d of age compared with 17,226 transcripts that differed due to poor diet at 8d of age, and poor diet caused more frequent down-regulation of gene expression in younger bees compared to older bees. In addition, the age-related physiological changes that accompanied early adult development differed due to the diet these young adult bees were fed. More frequent down-regulation of gene expression was observed in developing bees fed a poor diet compared to those fed an adequate diet. Functional analyses also suggest that

  7. Efeitos de atrativos e repelentes sobre o comportamento da abelha (Apis mellifera, l. Effect of attractants and repellents on the behavior of honey bees (Apis mellipera, L.

    Directory of Open Access Journals (Sweden)

    D.T. MALERBO-SOUZA

    1998-01-01

    Full Text Available O objetivo do presente ensaio foi testar diversas substâncias e verificar sua atratividade e repelência para abelhas, Apis mellifera, L. Para isso, foram realizados testes em discos próximos às colméias e em cana picada oferecida como alimentação para gado bovino confinado. Nos discos próximos à colméia, o produto mais atrativo foi Bee-Here e o mais repelente foi o óleo de citronela. No cocho para bovinos, o repelente mais efetivo foi n-octyl-acetato.The experiment aimed to study honey bee (Apis mellifera attractants and repellents in vitro and on chopped sugar cane for bovine feeding. Tests were performed on plates located near to the hives and on bovine-hods. On plates, Bee-Here® was the most attractive and citronela oil the most repellent. On bovine-hods the most effective was n-octyl-acetate.

  8. Effect of pollination of strawberry by Apis mellifera L. and Chrysoperla carnea S. on quality of the fruits

    Directory of Open Access Journals (Sweden)

    Iván Interiano Zapata

    2014-01-01

    Full Text Available Se evaluó la contribución de Apis mellifera L. y Chrysoperla carnea S. como polinizadores del cultivo de la fresa, utilizando flores primarias de la variedad Festival en un experimento realizado en Irapuato, Guanajuato, México. Los tratamientos utilizados fueron: autogamia (SF, polinización abierta (OP, Apis mellifera (AM y Chrysoperla carnea (CC. La tasa de polinización mostró que hubo diferencias significativas en el tratamiento AM (85.20 ± 2.41 en comparación con SF (41.51 ± 3.92, OP (77.98 ± 2.11 y CC (48.46 ± 2.97. Igualmente se encontraron diferencias significativas en el grado de malformación en AM (16.78 ± 1.20 en comparación con el SF (52.53 ± 1.54, OP (23.34 ± 1.03 y CC (47.88 ± 2.02. El total de antocianinas, peso, diámetro y sólidos totales solubles de los frutos fueron significativamente mayores en AM comparados con los tratamientos SF, OP y CC. El número de óvulos fertilizados se correlacionó positivamente con el peso de la fruta. Se considera a Chrysoperla carnea como deficiente polinizador, pero en contraparte se concluye que la utilización de Apis mellifera puede ser una alternativa para incrementar la producción y calidad de la fruta en los cultivos de la fresa establecidos en Irapuato, Guanajuato, México.

  9. Antagonistic Effect of Gut Bacteria in the Hybrid Carniolan Honey Bee, Apis Mellifera Carnica, Against Ascosphaera Apis, the Causal Organism of Chalkbrood Disease

    Directory of Open Access Journals (Sweden)

    Omar Mohamed O. M.

    2014-06-01

    Full Text Available The objective of this study was to isolate and characterize bacterial strains associated with the gut of the hybrid Carniolan honey bee, Apis mellifera carnica, and to determine their in vitro and in vivo potential against Ascosphaera apis, the causal organism of chalkbrood disease, with the purpose of exploring feasible biological control. Six bacterial strains were isolated from healthy worker honey bees by culture-dependent methods. Six fungal strains (A3, A4, A7, A8, A9, and A15 of A. apis were isolated from larvae suffering from chalkbrood disease on Yeast-Glucose-Starch agar (YGPSA medium. All bacteria were identified by a combination of morphology, Gram stain, and 16S rRNA sequence analysis, and fungal strains were identified by morphology and 5.8S rRNA. In vitro and in vivo inhibition assays were carried out to determine the ability of bacterial isolates to inhibit A. apis, the causal agent of chalkbrood disease. The analysis of 16S rRNA sequences revealed that four bacterial strains (B2, B4, B10, and B100 belong to Bacillus subtilis species, and two strains (P1 and P5 belong to Pseudomonas fluorescence. Significant differences in antagonistic activity of all bacterial strains were observed. B. subtilis isolate B2 showed the highest antagonistic activity, as measured by the inhibition zone against A. apis, followed by the P1 strain of P. fluorescence. SEM analysis also supports the antagonistic activity of these bacteria against A. apis. This study provides a theoretical basis for biological control of honey bee chalkbrood disease.

  10. Ferritin in iron containing granules from the fat body of the honeybees Apis mellifera and Scaptotrigona postica.

    Science.gov (United States)

    Keim, C N; Cruz-Landim, C; Carneiro, F G; Farina, M

    2002-01-01

    It is already known that the behaviour of the honeybee Apis mellifera is influenced by the Earth's magnetic field. Recently it has been proposed that iron-rich granules found inside the fat body cells of this honeybee had small magnetite crystals that were responsible for this behaviour. In the present work, we studied the iron containing granules from queens of two species of honeybees (A. mellifera and Scaptotrigona postica) by electron microscopy methods in order to clarify this point. The granules were found inside rough endoplasmic reticulum cisternae. Energy dispersive X-ray analysis of granules from A. mellifera showed the presence of iron, phosphorus and calcium. The same analysis performed on the granules of S. postica also indicated the presence of these elements along with the additional element magnesium. The granules of A. mellifera were composed of apoferritin-like particles in the periphery while in the core, clusters of organised particles resembling holoferritin were seen. The larger and more mineralised granules of S. postica presented structures resembling ferritin cores in the periphery, and smaller electron dense particles inside the bulk. Electron spectroscopic images of the granules from A. mellifera showed that iron, oxygen and phosphorus were co-localised in the ferritin-like deposits. These results indicate that the iron-rich granules of these honeybees are formed by accumulation of ferritin and its degraded forms together with elements present inside the rough endoplasmic reticulum, such as phosphorus, calcium and magnesium. It is suggested that the high level of phosphate in the milieu would prevent the crystallisation of iron oxides in these structures, making very unlikely their participation in magnetoreception mechanisms. They are most probably involved in iron homeostasis.

  11. Atividade antibacteriana da própolis de Apis mellifera sobre Enterococcus faecalis : estudo in vitro e ex vivo

    OpenAIRE

    Melani, Andréa Carla Franchini

    2009-01-01

    O tratamento endodôntico pode não produzir a cura dos tecidos periapicais, levando a periodontite apical persistente causada principalmente pela bactéria Gram-positiva Enterococcus faecalis. O objetivo desse estudo foi avaliar, in vitro, uma solução hidroalcoólica de própolis verde de Apis mellifera quanto sua ação antibacteriana sobre Enterococcus faecalis (ATCC 29212), e compará-la com uma solução de hidróxido de cálcio. A atividade antimicrobiana foi verificada através da determinação da C...

  12. The total protein content, protein fractions and proteases activities of drone prepupae of Apis mellifera due to varrosis.

    Science.gov (United States)

    Zółtowska, Krystyna; Lipiński, Zbigniew; Dmitryjuk, Małgorzata

    2005-01-01

    The proteins level and activities of acid and alkaline proteases in whole body extracts of drone prepupae of Apis mellifera naturally infested with Varroa destructor were studied. The infested and a non-infested group did not differ significantly in their total protein content. However, some differences in protein profiles were found. A lack of three protein fractions of moderate and lower molecular weight in infested prepupae was noted. Moreover, some differences in the quantity of protein in most of the fractions were observed. The activity of acid proteases from infested prepupae was lower (p drone had higher activity of alkaline proteases than non-infested but this difference was not statisticaly significant.

  13. Detection of viral sequences in semen of honeybees (Apis mellifera): evidence for vertical transmission of viruses through drones.

    Science.gov (United States)

    Yue, Constanze; Schröder, Marion; Bienefeld, Kaspar; Genersch, Elke

    2006-06-01

    Honeybees (Apis mellifera) can be attacked by many eukaryotic parasites, and bacterial as well as viral pathogens. Especially in combination with the ectoparasitic mite Varroa destructor, viral honeybee diseases are becoming a major problem in apiculture, causing economic losses worldwide. Several horizontal transmission routes are described for some honeybee viruses. Here, we report for the first time the detection of viral sequences in semen of honeybee drones suggesting mating as another horizontal and/or vertical route of virus transmission. Since artificial insemination and controlled mating is widely used in honeybee breeding, the impact of our findings for disease transmission is discussed.

  14. Bacterial community associated with worker honeybees (Apis mellifera affected by European foulbrood

    Directory of Open Access Journals (Sweden)

    Tomas Erban

    2017-09-01

    Full Text Available Background Melissococcus plutonius is an entomopathogenic bacterium that causes European foulbrood (EFB, a honeybee (Apis mellifera L. disease that necessitates quarantine in some countries. In Czechia, positive evidence of EFB was absent for almost 40 years, until an outbreak in the Krkonose Mountains National Park in 2015. This occurrence of EFB gave us the opportunity to study the epizootiology of EFB by focusing on the microbiome of honeybee workers, which act as vectors of honeybee diseases within and between colonies. Methods The study included worker bees collected from brood combs of colonies (i with no signs of EFB (EFB0, (ii without clinical symptoms but located at an apiary showing clinical signs of EFB (EFB1, and (iii with clinical symptoms of EFB (EFB2. In total, 49 samples from 27 honeybee colonies were included in the dataset evaluated in this study. Each biological sample consisted of 10 surface-sterilized worker bees processed for DNA extraction. All subjects were analyzed using conventional PCR and by metabarcoding analysis based on the 16S rRNA gene V1–V3 region, as performed through Illumina MiSeq amplicon sequencing. Results The bees from EFB2 colonies with clinical symptoms exhibited a 75-fold-higher incidence of M. plutonius than those from EFB1 asymptomatic colonies. Melissococcus plutonius was identified in all EFB1 colonies as well as in some of the control colonies. The proportions of Fructobacillus fructosus, Lactobacillus kunkeei, Gilliamella apicola, Frischella perrara, and Bifidobacterium coryneforme were higher in EFB2 than in EFB1, whereas Lactobacillus mellis was significantly higher in EFB2 than in EFB0. Snodgrassella alvi and L. melliventris, L. helsingborgensis and, L. kullabergensis exhibited higher proportion in EFB1 than in EFB2 and EFB0. The occurrence of Bartonella apis and Commensalibacter intestini were higher in EFB0 than in EFB2 and EFB1. Enterococcus faecalis incidence was highest in EFB2

  15. RFID Tracking of Sublethal Effects of Two Neonicotinoid Insecticides on the Foraging Behavior of Apis mellifera

    Science.gov (United States)

    Schneider, Christof W.; Tautz, Jürgen; Grünewald, Bernd; Fuchs, Stefan

    2012-01-01

    The development of insecticides requires valid risk assessment procedures to avoid causing harm to beneficial insects and especially to pollinators such as the honeybee Apis mellifera. In addition to testing according to current guidelines designed to detect bee mortality, tests are needed to determine possible sublethal effects interfering with the animal's vitality and behavioral performance. Several methods have been used to detect sublethal effects of different insecticides under laboratory conditions using olfactory conditioning. Furthermore, studies have been conducted on the influence insecticides have on foraging activity and homing ability which require time-consuming visual observation. We tested an experimental design using the radiofrequency identification (RFID) method to monitor the influence of sublethal doses of insecticides on individual honeybee foragers on an automated basis. With electronic readers positioned at the hive entrance and at an artificial food source, we obtained quantifiable data on honeybee foraging behavior. This enabled us to efficiently retrieve detailed information on flight parameters. We compared several groups of bees, fed simultaneously with different dosages of a tested substance. With this experimental approach we monitored the acute effects of sublethal doses of the neonicotinoids imidacloprid (0.15–6 ng/bee) and clothianidin (0.05–2 ng/bee) under field-like circumstances. At field-relevant doses for nectar and pollen no adverse effects were observed for either substance. Both substances led to a significant reduction of foraging activity and to longer foraging flights at doses of ≥0.5 ng/bee (clothianidin) and ≥1.5 ng/bee (imidacloprid) during the first three hours after treatment. This study demonstrates that the RFID-method is an effective way to record short-term alterations in foraging activity after insecticides have been administered once, orally, to individual bees. We contribute further information on

  16. Gut pathology and responses to the microsporidium Nosema ceranae in the honey bee Apis mellifera.

    Directory of Open Access Journals (Sweden)

    Claudia Dussaubat

    Full Text Available The microsporidium Nosema ceranae is a newly prevalent parasite of the European honey bee (Apis mellifera. Although this parasite is presently spreading across the world into its novel host, the mechanisms by it which affects the bees and how bees respond are not well understood. We therefore performed an extensive characterization of the parasite effects at the molecular level by using genetic and biochemical tools. The transcriptome modifications at the midgut level were characterized seven days post-infection with tiling microarrays. Then we tested the bee midgut response to infection by measuring activity of antioxidant and detoxification enzymes (superoxide dismutases, glutathione peroxidases, glutathione reductase, and glutathione-S-transferase. At the gene-expression level, the bee midgut responded to N. ceranae infection by an increase in oxidative stress concurrent with the generation of antioxidant enzymes, defense and protective response specifically observed in the gut of mammals and insects. However, at the enzymatic level, the protective response was not confirmed, with only glutathione-S-transferase exhibiting a higher activity in infected bees. The oxidative stress was associated with a higher transcription of sugar transporter in the gut. Finally, a dramatic effect of the microsporidia infection was the inhibition of genes involved in the homeostasis and renewal of intestinal tissues (Wnt signaling pathway, a phenomenon that was confirmed at the histological level. This tissue degeneration and prevention of gut epithelium renewal may explain early bee death. In conclusion, our integrated approach not only gives new insights into the pathological effects of N. ceranae and the bee gut response, but also demonstrate that the honey bee gut is an interesting model system for studying host defense responses.

  17. Differential expression of hypoxia pathway genes in honey bee (Apis mellifera L.) caste development.

    Science.gov (United States)

    Azevedo, Sergio Vicente; Caranton, Omar Arvey Martinez; de Oliveira, Tatiane Lippi; Hartfelder, Klaus

    2011-01-01

    Diphenism in social bees is essentially contingent on nutrient-induced cellular and systemic physiological responses resulting in divergent gene expression patterns. Analyses of juvenile hormone (JH) titers and functional genomics assays of the insulin-insulin-like signaling (IIS) pathway and its associated branch, target-of-rapamycin (TOR), revealed systemic responses underlying honey bee (Apis mellifera) caste development. Nevertheless, little attention has been paid to cellular metabolic responses. Following up earlier investigations showing major caste differences in oxidative metabolism and mitochondrial physiology, we herein identified honey bee homologs of hypoxia signaling factors, HIFα/Sima, HIFβ/Tango and PHD/Fatiga and we investigated their transcript levels throughout critical stages of larval development. Amsima, Amtango and Amfatiga showed correlated transcriptional activity, with two peaks of occurring in both queens and workers, the first one shortly after the last larval molt and the second during the cocoon-spinning phase. Transcript levels for the three genes were consistently higher in workers. As there is no evidence for major microenvironmental differences in oxygen levels within the brood nest area, this appears to be an inherent caste character. Quantitative PCR analyses on worker brain, ovary, and leg imaginal discs showed that these tissues differ in transcript levels. Being a highly conserved pathway and linked to IIS/TOR, the hypoxia gene expression pattern seen in honey bee larvae denotes that the hypoxia pathway has undergone a transformation, at least during larval development, from a response to environmental oxygen concentrations to an endogenous regulatory factor in the diphenic development of honey bee larvae.

  18. Honey Bees (Apis mellifera, L.) as Active Samplers of Airborne Particulate Matter.

    Science.gov (United States)

    Negri, Ilaria; Mavris, Christian; Di Prisco, Gennaro; Caprio, Emilio; Pellecchia, Marco

    2015-01-01

    Honey bees (Apis mellifera L.) are bioindicators of environmental pollution levels. During their wide-ranging foraging activity, these hymenopterans are exposed to pollutants, thus becoming a useful tool to trace the environmental contaminants as heavy metals, pesticides, radionuclides and volatile organic compounds. In the present work we demonstrate that bees can also be used as active samplers of airborne particulate matter. Worker bees were collected from hives located in a polluted postmining area in South West Sardinia (Italy) that is also exposed to dust emissions from industrial plants. The area is included in an official list of sites of national interest for environmental remediation, and has been characterized for the effects of pollutants on the health of the resident population. The head, wings, hind legs and alimentary canal of the bees were investigated with Scanning Electron Microscopy coupled with X-ray spectroscopy (SEM-EDX). The analyses pointed to specific morphological and chemical features of the particulate, and resulted into the identification of three categories of particles: industry-, postmining-, and soil-derived. With the exception of the gut, all the analyzed body districts displayed inorganic particles, mostly concentrated in specific areas of the body (i.e. along the costal margin of the fore wings, the medial plane of the head, and the inner surface of the hind legs). The role of both past mining activities and the industrial activity close to the study area as sources of the particulate matter is also discussed. We conclude that honey bees are able to collect samples of the main airborne particles emitted from different sources, therefore could be an ideal tool for monitoring such a kind of pollutants.

  19. Honey Bees (Apis mellifera, L. as Active Samplers of Airborne Particulate Matter.

    Directory of Open Access Journals (Sweden)

    Ilaria Negri

    Full Text Available Honey bees (Apis mellifera L. are bioindicators of environmental pollution levels. During their wide-ranging foraging activity, these hymenopterans are exposed to pollutants, thus becoming a useful tool to trace the environmental contaminants as heavy metals, pesticides, radionuclides and volatile organic compounds. In the present work we demonstrate that bees can also be used as active samplers of airborne particulate matter. Worker bees were collected from hives located in a polluted postmining area in South West Sardinia (Italy that is also exposed to dust emissions from industrial plants. The area is included in an official list of sites of national interest for environmental remediation, and has been characterized for the effects of pollutants on the health of the resident population. The head, wings, hind legs and alimentary canal of the bees were investigated with Scanning Electron Microscopy coupled with X-ray spectroscopy (SEM-EDX. The analyses pointed to specific morphological and chemical features of the particulate, and resulted into the identification of three categories of particles: industry-, postmining-, and soil-derived. With the exception of the gut, all the analyzed body districts displayed inorganic particles, mostly concentrated in specific areas of the body (i.e. along the costal margin of the fore wings, the medial plane of the head, and the inner surface of the hind legs. The role of both past mining activities and the industrial activity close to the study area as sources of the particulate matter is also discussed. We conclude that honey bees are able to collect samples of the main airborne particles emitted from different sources, therefore could be an ideal tool for monitoring such a kind of pollutants.

  20. The paratransgenic potential of Lactobacillus kunkeei in the honey bee Apis mellifera.

    Science.gov (United States)

    Rangberg, A; Mathiesen, G; Amdam, G V; Diep, D B

    2015-01-01

    The honey bee (Apis mellifera) is a domestic insect of high value to human societies, as a crop pollinator in agriculture and a model animal in scientific research. The honey bee, however, has experienced massive mortality worldwide due to the phenomenon Colony Collapse Disorder (CCD), resulting in alarming prospects for crop failure in Europe and the USA. The reasons for CCD are complex and much debated, but several honey bee pathogens are believed to be involved. Paratransgenesis is a Trojan horse strategy, where endogenous microorganisms are used to express effector molecules that antagonise pathogen development. For use in honey bees, paratransgenesis must rely on a set of criteria that the candidate paratransgenic microorganism must fulfil in order to obtain a successful outcome: (1) the candidate must be genetically modifiable to express effector molecules; (2) the modified organism should have no adverse effects on honey bee health upon reintroduction; and (3) it must survive together with other non-pathogenic bee-associated microorganisms. Lactic acid bacteria (LAB) are common gut bacteria in vertebrates and invertebrates, and some have naturally beneficial properties in their host. In the present work we aimed to find a potential paratransgenic candidate within this bacterial group for use in honey bees. Among isolated LAB associated with bee gut microbiota, we found the fructophilic Lactobacillus kunkeei to be the most predominant species during foraging seasons. Four genetically different strains of L. kunkeei were selected for further assessment. We demonstrated (1) that L. kunkeei is transformable; (2) that the transformed cells had no obvious adverse effect on honey bee survival; and (3) that transformed cells survived well in the gut environment of bees upon reintroduction. Our study demonstrates that L. kunkeei fulfils the three criteria for paratransgenesis and can be a suitable candidate for further research on this strategy in honey bees.

  1. Extreme recombination frequencies shape genome variation and evolution in the honeybee, Apis mellifera.

    Directory of Open Access Journals (Sweden)

    Andreas Wallberg

    2015-04-01

    Full Text Available Meiotic recombination is a fundamental cellular process, with important consequences for evolution and genome integrity. However, we know little about how recombination rates vary across the genomes of most species and the molecular and evolutionary determinants of this variation. The honeybee, Apis mellifera, has extremely high rates of meiotic recombination, although the evolutionary causes and consequences of this are unclear. Here we use patterns of linkage disequilibrium in whole genome resequencing data from 30 diploid honeybees to construct a fine-scale map of rates of crossing over in the genome. We find that, in contrast to vertebrate genomes, the recombination landscape is not strongly punctate. Crossover rates strongly correlate with levels of genetic variation, but not divergence, which indicates a pervasive impact of selection on the genome. Germ-line methylated genes have reduced crossover rate, which could indicate a role of methylation in suppressing recombination. Controlling for the effects of methylation, we do not infer a strong association between gene expression patterns and recombination. The site frequency spectrum is strongly skewed from neutral expectations in honeybees: rare variants are dominated by AT-biased mutations, whereas GC-biased mutations are found at higher frequencies, indicative of a major influence of GC-biased gene conversion (gBGC, which we infer to generate an allele fixation bias 5 - 50 times the genomic average estimated in humans. We uncover further evidence that this repair bias specifically affects transitions and favours fixation of CpG sites. Recombination, via gBGC, therefore appears to have profound consequences on genome evolution in honeybees and interferes with the process of natural selection. These findings have important implications for our understanding of the forces driving molecular evolution.

  2. Temporal and preparation effects in the magnetic nanoparticles of Apis mellifera body parts

    Energy Technology Data Exchange (ETDEWEB)

    Chambarelli, L.L.; Pinho, M.A.; Abracado, L.G.; Esquivel, D.M.S. [Coordenacao de Fisica Aplicada, Centro Brasileiro de Pesquisas Fisicas, 22290-180 Rio de Janeiro (Brazil); Wajnberg, E. [Coordenacao de Fisica Aplicada, Centro Brasileiro de Pesquisas Fisicas, 22290-180 Rio de Janeiro (Brazil)], E-mail: elianew@cbpf.br

    2008-07-15

    Magnetic nanoparticles in the Apis mellifera abdomens are well accepted as involved in their magnetoreception mechanism. The effects of sample preparation on the time evolution of magnetic particles in the honeybee body parts (antennae, head, thorax and abdomen) were investigated by Ferromagnetic Resonance (FMR) at room temperature (RT), for about 100 days. Three preparations were tested: (a) washed with water (WT); (b) as (a), kept in glutaraldehyde 2.5% in 0.1 M cacodylate buffer (pH 7.4) for 24 h and washed with cacodylate buffer (C); (c) as (a), kept in glutaraldehyde 2.5% for 24 h and washed with glutaraldehyde 2.5% in cacodylate buffer (GLC). The four body parts of young and adult worker presented magnetic nanoparticles. The Mn{sup 2+} lines are observed except for the antennae spectra. The high field (HF) and low field (LF) components previously observed in the spectra of social insects, are confirmed in these spectra. The HF line is present in all spectra while the LF is easily observed in the spectra of the young bee and it appears as a baseline shift in spectra of some adult parts. The HF intensity of the abdomen is commonly one order of magnitude larger than any other body parts. This is the first systematic study on the conservation of magnetic material in all body parts of bees. The results show that the time evolution of the spectra depends on the body part, conserving solution and bee age. Further measurements are necessary to understand these effects and extend it to other social insects.

  3. Characteristics of Honey Bee (Apis Mellifera Carnica, Pollman 1879 Queens Reared in Slovenian Commercial Breeding Stations

    Directory of Open Access Journals (Sweden)

    Gregorc Aleš

    2015-12-01

    Full Text Available In this three-year-trial study, we examined the quality of mated queens based on morphological and physiology traits. At each location, sister queen bees were reared each year from one Apis mellifera carnica breeder queen. Queens were also reared and mated in different locations. Altogether, we sampled and analysed 324 queens from 27 apiaries in 2006, 288 queens from 24 apiaries in 2008, and 276 queens from 23 apiaries in 2010. Nine queens from each apiary were sampled and dissected for morphological analyses and Nosema ceranae (N. ceranae spores, if present, were quantified. Three queens from each apiary were prepared and tested for four viruses: acute bee paralysis virus (ABPV, black queen cell virus (BQCV, deformed wing virus (DWV, and sacbrood virus (SBV. The highest average queen weight of 209.49 ± 9.82 mg was detected in 2008. The highest average ovary weight of 78.67 ± 11.86 mg was detected in 2010, and the highest number of ovarioles was 161.59 ± 8.70 in 2006. The average number of spermatozoa in queens ranged from 3.30 x 106 in 2006 to 5.23 x 106 in 2010. Nosema ceranae spores were found in queens sampled in 2008 and 2010. Viruses were discovered sporadically during the queen testing periods from 2006 - 2010. This study importantly demonstrates that queens from rearing stations require regular evaluation for morphological and physiological changes as well as for infection from harmful pathogens. These results could also be used in establishing relevant commercial standards for rearing quality queens.

  4. Chemical composition and antimicrobial activity of honeybee ( Apis mellifera ligustica) propolis from subtropical eastern Australia

    Science.gov (United States)

    Massaro, Carmelina Flavia; Simpson, Jack Bruce; Powell, Daniel; Brooks, Peter

    2015-12-01

    Propolis is a material manufactured by bees and contains beeswax, bee salivary secretions and plant resins. Propolis preparations have been used for millennia by humans in food, cosmetics and medicines due to its antibacterial effects. Within the hive, propolis plays an important role in bees' health, with much of its bioactivity largely dependent on the plant resins the bees select for its production. Few chemical studies are available on the chemistry of propolis produced by Australian honeybees ( Apis mellifera, Apidae). This study aimed to determine the chemical composition as well as in vitro antimicrobial effects of propolis harvested from honeybees in subtropical eastern Australia. Honeybee propolis was produced using plastic frames and multiple beehives in two subtropical sites in eastern Australia. Methanolic extracts of propolis were analysed by liquid chromatography with ultraviolet detection and high-resolution mass spectrometry (ultra-high-pressure liquid chromatography (UHPLC)-UV-high-resolution tandem mass spectrometry (HR-MS/MS)) and by gas chromatography mass spectrometry (GC-MS). The resulting chemical data were dereplicated for compound characterisation. The two crude extracts in abs. ethanol were tested in vitro by the agar diffusion and broth dilution methods, using a phenol standard solution as the positive control and abs. ethanol as the negative control. Chemical constituents were identified to be pentacyclic triterpenoids and C-prenylated flavonoids, including Abyssinoflavanone VII, Propolin C and Nymphaeol C. The two propolis crude extracts showed bactericidal effects at the minimal inhibitory concentrations of 0.37-2.04 mg mL-1 against Staphylococcus aureus ATCC 25923. However, the extracts were inactive against Klebsiella pneumoniae ATCC 13883 and Candida albicans ATCC 10231. The antistaphylococcal potential of propolis was discussed, also in relation to honeybees' health, as it warrants further investigations on the social and

  5. Protein and Peptide Composition of Male Accessory Glands of Apis mellifera Drones Investigated by Mass Spectrometry.

    Directory of Open Access Journals (Sweden)

    Vladimir Gorshkov

    Full Text Available In honeybees, reproductive females usually mate early in their life with more than 10 males in free flight, often within 10 minutes, and then store male gametes for up to five years. Because of the extreme polyandry and mating in free flight special adaptations in males are most likely. We present here the results of an investigation of the protein content of four types of male reproductive glands from the Western honeybee (Apis mellifera drone, namely seminal vesicles (secretion in ejaculate, as well as bulbus, cornua and mucus glands (secretions for the mating plug. Using high resolution and accuracy mass spectrometry and a combination of database searching and de novo sequencing techniques it was possible to identify 50 different proteins in total, inside all mentioned glands, except in the mucus gland. Most of the proteins are unique for a specific gland type, only one of them (H9KEY1/ATP synthase subunit O was found in three glands, and 7 proteins were found in two types of glands. The identified proteins represent a wide variety of biological functions and can be assigned to several physiological classes, such as protection, energy generation, maintaining optimal conditions, associated mainly with vesicula seminalis; signaling, cuticle proteins, icarpin and apolipoproteins located mainly in the bulbus and cornua glands; and some other classes. Most of the discovered proteins were not found earlier during investigation of semen, seminal fluid and tissue of reproductive glands of the bee drone. Moreover, we provide here the origin of each protein. Thus, the presented data might shed light on the role of each reproductive gland.

  6. Curcumin Stimulates Biochemical Mechanisms of Apis Mellifera Resistance and Extends the Apian Life-Span

    Directory of Open Access Journals (Sweden)

    Strachecka Aneta J.

    2015-06-01

    Full Text Available We examined the influence of curcumin-supplemented feeding on worker lifespan, Nosema resistance, key enzyme activities, metabolic compound concentrations and percentage of the global DNA methylation. Two worker groups (Apis mellifera were set up: 1 control group; workers were fed ad libitum with sucrose syrup; 2 workers were fed with the syrup with the addition of curcumin. Dead workers were removed every two days and the Nosema spp. infection levels were assessed. Hemolymph was taken from living workers for biochemical analyses. The global DNA methylation level was analysed using DNA from worker heads and thoraces. The bees that consumed curcumin lived longer and were less infested with Nosema spp. The curcumin-treated workers had higher concentrations of proteins, non-enzymatic biomarkers (triglycerides, glucose, cholesterol, Mg2+ and Ca2+, uric acid and creatinine, as well as elevated activities of antioxidant enzymes (SOD , GPx, CAT , GST , neutral proteases, protease inhibitors, enzymatic biomarkers (AST , ALT , ALP . The concentrations of albumin and urea, and the activities of acidic and alkaline proteases were higher in the control group. Curcumin decreased global DNA methylation levels especially in older bees in which the natural, age-related level increase was observed. Most of the parameters increased over the apian youth and adulthood, and decreased in older bees. The decrease was markedly delayed in the bees fed with curcumin. Curcumin appeared to be an unexpectedly effective natural bio-stimulator, improving apian health and vitality. This multifactorial effect is caused by the activation of many biochemical processes involved in the formation of apian resistance.

  7. A selective sweep in a Varroa destructor resistant honeybee (Apis mellifera) population.

    Science.gov (United States)

    Lattorff, H Michael G; Buchholz, Josephine; Fries, Ingemar; Moritz, Robin F A

    2015-04-01

    The mite Varroa destructor is one of the most dangerous parasites of the Western honeybee (Apis mellifera) causing enormous colony losses worldwide. Various chemical treatments for the control of the Varroa mite are currently in use, which, however, lead to residues in bee products and often to resistance in mites. This facilitated the exploration of alternative treatment methods and breeding for mite resistant honeybees has been in focus for breeders in many parts of the world with variable results. Another approach has been applied to a honeybee population on Gotland (Sweden) that was exposed to natural selection and survived Varroa-infestation for more than 10years without treatment. Eventually this population became resistant to the parasite by suppressing the reproduction of the mite. A previous QTL mapping study had identified a region on chromosome 7 with major loci contributing to the mite resistance. Here, a microsatellite scan of the significant candidate QTL regions was used to investigate potential footprints of selection in the original population by comparing the study population on Gotland before (2000) and after selection (2007). Genetic drift had caused an extreme loss of genetic diversity in the 2007 population for all genetic markers tested. In addition to this overall reduction of heterozygosity, two loci on chromosome 7 showed an even stronger and significant reduction in diversity than expected from genetic drift alone. Within the selective sweep eleven genes are annotated, one of them being a putative candidate to interfere with reduced mite reproduction. A glucose-methanol-choline oxidoreductase (GMCOX18) might be involved in changing volatiles emitted by bee larvae that might be essential to trigger oogenesis in Varroa.

  8. Protein and Peptide Composition of Male Accessory Glands of Apis mellifera Drones Investigated by Mass Spectrometry.

    Science.gov (United States)

    Gorshkov, Vladimir; Blenau, Wolfgang; Koeniger, Gudrun; Römpp, Andreas; Vilcinskas, Andreas; Spengler, Bernhard

    2015-01-01

    In honeybees, reproductive females usually mate early in their life with more than 10 males in free flight, often within 10 minutes, and then store male gametes for up to five years. Because of the extreme polyandry and mating in free flight special adaptations in males are most likely. We present here the results of an investigation of the protein content of four types of male reproductive glands from the Western honeybee (Apis mellifera) drone, namely seminal vesicles (secretion in ejaculate), as well as bulbus, cornua and mucus glands (secretions for the mating plug). Using high resolution and accuracy mass spectrometry and a combination of database searching and de novo sequencing techniques it was possible to identify 50 different proteins in total, inside all mentioned glands, except in the mucus gland. Most of the proteins are unique for a specific gland type, only one of them (H9KEY1/ATP synthase subunit O) was found in three glands, and 7 proteins were found in two types of glands. The identified proteins represent a wide variety of biological functions and can be assigned to several physiological classes, such as protection, energy generation, maintaining optimal conditions, associated mainly with vesicula seminalis; signaling, cuticle proteins, icarpin and apolipoproteins located mainly in the bulbus and cornua glands; and some other classes. Most of the discovered proteins were not found earlier during investigation of semen, seminal fluid and tissue of reproductive glands of the bee drone. Moreover, we provide here the origin of each protein. Thus, the presented data might shed light on the role of each reproductive gland.

  9. Learning and memory in workers reared by nutritionally stressed honey bee (Apis mellifera L.) colonies.

    Science.gov (United States)

    Mattila, Heather R; Smith, Brian H

    2008-12-15

    Chronic nutritional stress can have a negative impact on an individual's learning ability and memory. However, in social animals that share food among group members, such as the honey bee (Apis mellifera L.), it is unknown whether group-level nutritional stress is manifested in the learning performance of individuals. Accordingly, we examined learning and memory in honey bee workers reared by colonies exposed to varying degrees of long-term pollen stress. Pollen provides honey bee workers with almost all of the proteins, lipids, vitamins, and minerals that they require as larvae and adults. Colonies were created that were either chronically pollen poor or pollen rich, or were intermediate in pollen supply; treatments altered colonies' pollen stores and brood-rearing capacity. Workers from these colonies were put through a series of olfactory-conditioning assays using proboscis-extension response (PER). PER thresholds were determined, then workers learned in olfactory-conditioning trials to associate two floral odors (one novel and the other presented previously without reward) with stimulation with sucrose and a sucrose reward. The strength of the memory that was formed for the odor/sucrose association was tested after olfactory-conditioning assays ended. Colony-level nutritional status had no effect on worker learning or memory (response threshold of workers to sucrose, acquisition of the odor/sucrose association, occurrence of latent inhibition, or memory retention over 72 h). We conclude that potential effects of chronic, colony-wide nutrient deprivation on learning and memory are not found in workers, probably because colonies use brood-rearing capacity to buffer nutrient stress at the level of the individual.

  10. Disruption of quercetin metabolism by fungicide affects energy production in honey bees (Apis mellifera).

    Science.gov (United States)

    Mao, Wenfu; Schuler, Mary A; Berenbaum, May R

    2017-02-13

    Cytochrome P450 monooxygenases (P450) in the honey bee, Apis mellifera, detoxify phytochemicals in honey and pollen. The flavonol quercetin is found ubiquitously and abundantly in pollen and frequently at lower concentrations in honey. Worker jelly consumed during the first 3 d of larval development typically contains flavonols at very low levels, however. RNA-Seq analysis of gene expression in neonates reared for three days on diets with and without quercetin revealed that, in addition to up-regulating multiple detoxifying P450 genes, quercetin is a negative transcriptional regulator of mitochondrion-related nuclear genes and genes encoding subunits of complexes I, III, IV, and V in the oxidative phosphorylation pathway. Thus, a consequence of inefficient metabolism of this phytochemical may be compromised energy production. Several P450s metabolize quercetin in adult workers. Docking in silico of 121 pesticide contaminants of American hives into the active pocket of CYP9Q1, a broadly substrate-specific P450 with high quercetin-metabolizing activity, identified six triazole fungicides, all fungal P450 inhibitors, that dock in the catalytic site. In adults fed combinations of quercetin and the triazole myclobutanil, the expression of five of six mitochondrion-related nuclear genes was down-regulated. Midgut metabolism assays verified that adult bees consuming quercetin with myclobutanil metabolized less quercetin and produced less thoracic ATP, the energy source for flight muscles. Although fungicides lack acute toxicity, they may influence bee health by interfering with quercetin detoxification, thereby compromising mitochondrial regeneration and ATP production. Thus, agricultural use of triazole fungicides may put bees at risk of being unable to extract sufficient energy from their natural food.

  11. Temporal and preparation effects in the magnetic nanoparticles of Apis mellifera body parts

    Science.gov (United States)

    Chambarelli, L. L.; Pinho, M. A.; Abraçado, L. G.; Esquivel, D. M. S.; Wajnberg, E.

    Magnetic nanoparticles in the Apis mellifera abdomens are well accepted as involved in their magnetoreception mechanism. The effects of sample preparation on the time evolution of magnetic particles in the honeybee body parts (antennae, head, thorax and abdomen) were investigated by Ferromagnetic Resonance (FMR) at room temperature (RT), for about 100 days. Three preparations were tested: (a) washed with water (WT); (b) as (a), kept in glutaraldehyde 2.5% in 0.1 M cacodylate buffer (pH 7.4) for 24 h and washed with cacodylate buffer (C); (c) as (a), kept in glutaraldehyde 2.5% for 24 h and washed with glutaraldehyde 2.5% in cacodylate buffer (GLC). The four body parts of young and adult worker presented magnetic nanoparticles. The Mn 2+ lines are observed except for the antennae spectra. The high field (HF) and low field (LF) components previously observed in the spectra of social insects, are confirmed in these spectra. The HF line is present in all spectra while the LF is easily observed in the spectra of the young bee and it appears as a baseline shift in spectra of some adult parts. The HF intensity of the abdomen is commonly one order of magnitude larger than any other body parts. This is the first systematic study on the conservation of magnetic material in all body parts of bees. The results show that the time evolution of the spectra depends on the body part, conserving solution and bee age. Further measurements are necessary to understand these effects and extend it to other social insects.

  12. Nutritional Effect of Alpha-Linolenic Acid on Honey Bee Colony Development (Apis Mellifera L.

    Directory of Open Access Journals (Sweden)

    Ma Lanting

    2015-12-01

    Full Text Available Alpha-linolenic acid (ALA, which is an n-3 polyunsaturated fatty acid (PUFA, influences honey bee feed intake and longevity. The objective of this study was to research the effect of six dietary ALA levels on the growth and development of Apis mellifera ligustica colonies. In the early spring, a total of 36 honey bee colonies of equal size and queen quality were randomly allocated into 6 groups. The six groups of honey bees were fed a basal diet with supplementation of ALA levels at 0 (group A, 2 (group B, 4 (group C, 6 (group D, 8 (group E, and 10% (group F. In this study, there were significant effects of pollen substitute ALA levels on the feeding amounts of the bee colony, colony population, sealed brood amount, and weight of newly emerged workers (P<0.05. The workers’ midgut Lipase (LPS activity of group C was significantly lower than that of the other groups (P<0.01. The worker bees in groups B, C, and D had significantly longer lifespans than those in the other groups (P<0.05. However, when the diets had ALA concentrations of more than 6%, the mortality of the honey bees increased (P<0.01. These results indicate that ALA levels of 2 ~ 4% of the pollen substitute were optimal for maintaining the highest reproductive performance and the digestion and absorption of fatty acids in honey bees during the period of spring multiplication. Additionally, ALA levels of 2 ~ 6% of the pollen substitute, improved worker bee longevity.

  13. Programmed cell death in the larval salivary glands of Apis mellifera (Hymenoptera, Apidae)

    Indian Academy of Sciences (India)

    E C M Silva-Zacarin; G A Tomaino; M R Brocheto-Braga; S R Taboga; R L M Silva De Moraes

    2007-03-01

    The morphological and histochemical features of degeneration in honeybee (Apis mellifera) salivary glands were investigated in 5th instar larvae and in the pre-pupal period. The distribution and activity patterns of acid phosphatase enzyme were also analysed. As a routine, the larval salivary glands were fixed and processed for light microscopy and transmission electron microscopy. Tissue sections were subsequently stained with haematoxylin–eosin, bromophenol blue, silver, or a variant of the critical electrolyte concentration (CEC) method. Ultrathin sections were contrasted with uranyl acetate and lead citrate. Glands were processed for the histochemical and cytochemical localization of acid phosphatase, as well as biochemical assay to detect its activity pattern. Acid phosphatase activity was histochemically detected in all the salivary glands analysed. The cytochemical results showed acid phosphatase in vesicles, Golgi apparatus and lysosomes during the secretory phase and, additionally, in autophagic structures and luminal secretion during the degenerative phase. These findings were in agreement with the biochemical assay. At the end of the 5th instar, the glandular cells had a vacuolated cytoplasm and pyknotic nuclei, and epithelial cells were shed into the glandular lumen. The transition phase from the 5th instar to the pre-pupal period was characterized by intense vacuolation of the basal cytoplasm and release of parts of the cytoplasm into the lumen by apical blebbing; these blebs contained cytoplasmic RNA, rough endoplasmic reticule and, occasionally, nuclear material. In the pre-pupal phase, the glandular epithelium showed progressive degeneration so that at the end of this phase only nuclei and remnants of the cytoplasm were observed. The nuclei were pyknotic, with peripheral chromatin and blebs. The gland remained in the haemolymph and was recycled during metamorphosis. The programmed cell death in this gland represented a morphological form

  14. Acute Contact Toxicity Test of Oxalic Acid on Honeybees in the Southwestern Zone of Uruguay Prueba de Toxicidad Aguda por Contacto de Ácido Oxálico en Abejas de la Zona Sudoeste de Uruguay

    Directory of Open Access Journals (Sweden)

    Leonidas Carrasco-Letelier

    2012-06-01

    Full Text Available This work studies the acute contact toxicity of oxalic acid (OA on a honeybee polyhybrid subspecies (Apis mellifera, which is the dominant biotype in southwestern zone of Uruguay (SWZU and the country's most important honey-producing region. We determined the mean lethal dose (LD50, as well as the no observed effect level (NOEL and the lowest observed effect level (LOEL values. We also estimated the total number of honeybees per hive in the test area. The aim was to assess the relationship between the maximum OA dose used in Uruguay (3.1 g OA per hive and the toxicological parameters of honeybees from SWZU. The current dose of 3.1 g OA per hive corresponds to 132.8 OA per honeybee since determined NOEL is 400 OA per honeybee; our results indicate that the current dose could be increased to 9.3 g OA per hive. The results also highlight some differences between the LD50 value in SWZU honeybees (548.95 OA per honeybee and some published LD50 values for other honeybee subspecies.Este trabajo estudió la toxicidad aguda por contacto del ácido oxálico (AO sobre una subespecie poli-híbrida de abejas (Apis mellifera, la cual es el biotipo dominante en la zona sudoeste de Uruguay (SWZU, la región más importante para la producción de miel en este país. Este estudio determinó la dosis letal 50 (DL50, así como el nivel de efecto no observado (NOEL, el nivel de efecto mínimo observado (LOEL, y el número total de individuos por colmena. El propósito fue evaluar la relación entre la dosis máxima de AO usada en Uruguay (3.1 g AO por colmena y los parámetros toxicológicos de las abejas de la SWZU. Los resultados mostraron que es posible elevar la dosis actual de AO por colmena a 9.3 g, ya que la dosis actual de 3.1 g de AO corresponde a 132.8 AO por abeja, y el NOEL determinado es 400 AO por abeja. Los resultados también destacaron algunas diferencias entre la DL50 de las abejas del SWZU (548.95 AO por abeja y algunos valores de DL50 publicados

  15. Vitellogenins are new high molecular weight components and allergens (Api m 12 and Ves v 6 of Apis mellifera and Vespula vulgaris venom.

    Directory of Open Access Journals (Sweden)

    Simon Blank

    Full Text Available BACKGROUND/OBJECTIVES: Anaphylaxis due to hymenoptera stings is one of the most severe clinical outcomes of IgE-mediated hypersensitivity reactions. Although allergic reactions to hymenoptera stings are often considered as a general model for the underlying principles of allergic disease, venom immunotherapy is still hampered by severe systemic side effects and incomplete protection. The identification and detailed characterization of all allergens of hymenoptera venoms might result in an improvement in this field and promote the detailed understanding of the allergological mechanism. Our aim was the identification and detailed immunochemical and allergological characterization of the low abundant IgE-reactive 200 kDa proteins of Apis mellifera and Vespula vulgaris venom. METHODS/PRINCIPAL FINDINGS: Tandem mass spectrometry-based sequencing of a 200 kDa venom protein yielded peptides that could be assigned to honeybee vitellogenin. The coding regions of the honeybee protein as well as of the homologue from yellow jacket venom were cloned from venom gland cDNA. The newly identified 200 kDa proteins share a sequence identity on protein level of 40% and belong to the family of vitellogenins, present in all oviparous animals, and are the first vitellogenins identified as components of venom. Both vitellogenins could be recombinantly produced as soluble proteins in insect cells and assessed for their specific IgE reactivity. The particular vitellogenins were recognized by approximately 40% of sera of venom-allergic patients even in the absence of cross-reactive carbohydrate determinants. CONCLUSION: With the vitellogenins of Apis mellifera and Vespula vulgaris venom a new homologous pair of venom allergens was identified and becomes available for future applications. Due to their allergenic properties the honeybee and the yellow jacket venom vitellogenin were designated as allergens Api m 12 and Ves v 6, respectively.

  16. A scientific note on the lactic acid bacterial flora within the honeybee subspecies Apis mellifera (Buckfast), A.m. scutellata, A.m. mellifera, and A.m. monticola

    Science.gov (United States)

    It was discovered by Olofsson and Vásquez (2008) that a novel lactic acid bacteria (LAB) microbiota with numerous LAB, comprising the genera Lactobacillus and Bifidobacterium, live in a symbiotic relationship with honeybees (Apis mellifera) in their honey stomach. Previous results from 16S rRNA gene...

  17. Selección bidireccional de Apis mellifera (Hymenoptera: Apidae para aumento de la resistencia y la susceptibilidad a la nosemosis

    Directory of Open Access Journals (Sweden)

    Yamandú MENDOZA

    2014-01-01

    Full Text Available La nosemosis es una enfermedad que afecta las funciones digestivas de las abejas melíferas causada por los microsporidios Nosema apis y Nosema ceranae. En Uruguay la única especie detectada es N. ceranae. Para determinar si la incidencia de N. ceranae en las colonias tiene un componente genético se realizó una selección bidireccional para aumento de la resistencia y la susceptibilidad a este parásito sin control de la paternidad. Las colonias fueron evaluadas en una forestación de Eucalyptus grandis en otoño. La infección de las colonias se determinó como 1 el porcentaje de abejas pecoreadoras infectadas y 2 el número promedio de esporas por campo en 10 campos. El trabajo se inició con 138 colonias y se evaluaron dos generaciones de 30 y 63 colonias. La respuesta a la selección fue muy limitada, solo en la primera generación las colonias de la línea resistente presentaron menos esporas por abejas que las colonias de la línea susceptible (19,6 ± 5,8 y 26,8 ± 10,4, respectivamente, W = 41,5; P = 0.03. Esto indicaría que la resistencia a la nosemosis está fuertemente afectada por el ambiente. Futuros esfuerzos para aumentar la resistencia de las abejas a N. ceranae a través de mejora genética deberán incluir el control de la paternidad.

  18. Ingestion of Bt rice pollen does not reduce the survival or hypopharyngeal gland development of Apis mellifera adults.

    Science.gov (United States)

    Wang, Yuanyuan; Dai, Pingli; Chen, Xiuping; Romeis, Jörg; Shi, Jianrong; Peng, Yufa; Li, Yunhe

    2016-10-07

    Because of its ecological and economic importance, the honey bee Apis mellifera is commonly used to assess the environmental risk of insect-resistant, genetically modified plants. In the current laboratory study, feeding-exposure experiments were used to determine whether pollen from transgenic rice harms A. mellifera worker bee. In one experiment, the survival and mean acinus diameter of hypopharyngeal glands of adult bees were similar when bees were fed on pollen from Bt rice lines or from a non-Bt rice line, but bee survival was significantly reduced when they received pollen that was mixed with potassium arsenate as a positive control. In a second experiment, bee survival and hypopharyngeal gland development were not reduced when adult bees were fed on non-Bt pollen and a sucrose solution supplemented with Cry2A at 400 µg/g, Cry1C at 50 µg/g, or bovine serum albumin (BSA) at 400 µg/g diet, but bee survival and hypopharyngeal gland development were reduced when the diet was supplemented with soybean trypsin inhibitor (SBTI) as a positive control. In both experiments, the uptake of Cry proteins by adult bees was confirmed. Overall, the results indicate that the planting of Bt rice lines expressing Cry2A or Cry1C protein poses a negligible risk to A. mellifera worker bees. This article is protected by copyright. All rights reserved.

  19. Antimicrobial and anti-inflammatory activities of Apis mellifera honey on the Helicobacter pylori infection of Wistar rats gastric mucosa

    Directory of Open Access Journals (Sweden)

    Thiago Yamamoto AMARAL

    Full Text Available Abstract Considering that Helicobacter pylori, a bacterium able to colonize the upper gastrointestinal tract and cause mucosal injury, not always can be effectively eradicated by the traditional approaches, there is an interest in alternative therapies until a vaccine be available. Honey is a food supplement with high carbohydrate content and antioxidant activity, as well as broad antimicrobial spectrum. After analyzing the physicochemical and in vitro antimicrobial properties of an Apis mellifera honey from the Atlantic forest of Alagoas / Brazil, the purpose of the present work was evaluate its in vivo effects against Helicobacter pylori in the gastric mucosa of Wistar rats. First, it was verified the success of inoculation/infection of the pathogen in the gastric mucosa of the rats, through the subsequent removal of their stomachs for histological analysis (hematoxylin and eosin stain and Giemsa stain. Then, four groups of animals were treated with sterilized distilled deionized water, the Apis mellifera honey, a combination of omeprazole, amoxicillin and clarithromycin, and an association of such medicines and honey (1:1. Except the control, all treatments were effective in combating infection, however, honey reduced the inflammatory process, whilst the antibiotics increase the number of eosinophils.

  20. Large pathogen screening reveals first report of Megaselia scalaris (Diptera: Phoridae) parasitizing Apis mellifera intermissa (Hymenoptera: Apidae).

    Science.gov (United States)

    Menail, Ahmed Hichem; Piot, Niels; Meeus, Ivan; Smagghe, Guy; Loucif-Ayad, Wahida

    2016-06-01

    As it is most likely that global warming will also lead to a shift in pollinator-habitats northwards, the study of southern species becomes more and more important. Pathogen screenings in subspecies of Apis mellifera capable of withstanding higher temperatures, provide an insight into future pathogen host interactions. Screenings in different climate regions also provide a global perspective on the prevalence of certain pathogens. In this project, we performed a pathogen screening in Apis mellifera intermissa, a native subspecies of Algeria in northern Africa. Colonies were sampled from different areas in the region of Annaba over a period of two years. Several pathogens were detected, among them Apicystis bombi, Crithidia mellificae, Nosema ceranae, Paenibacillus larvae, Lake Sinai Virus, Sacbrood Virus and Deformed Wing Virus (DWV). Our screening also revealed a phoroid fly, Megaselia scalaris, parasitizing honey bee colonies, which we report here for the first time. In addition, we found DWV to be present in the adult flies and replicating virus in the larval stages of the fly, which could indicate that M. scalaris acts as a vector of DWV.

  1. Resistance rather than tolerance explains survival of savannah honeybees (Apis mellifera scutellata) to infestation by the parasitic mite Varroa destructor.

    Science.gov (United States)

    Strauss, Ursula; Dietemann, Vincent; Human, Hannelie; Crewe, Robin M; Pirk, Christian W W

    2016-03-01

    Varroa destructor is considered the most damaging parasite affecting honeybees (Apis mellifera L.). However, some honeybee populations such as the savannah honeybee (Apis mellifera scutellata) can survive mite infestation without treatment. It is unclear if survival is due to resistance mechanisms decreasing parasite reproduction or to tolerance mechanisms decreasing the detrimental effects of mites on the host. This study investigates both aspects by quantifying the reproductive output of V. destructor and its physiological costs at the individual host level. Costs measured were not consistently lower when compared with susceptible honeybee populations, indicating a lack of tolerance. In contrast, reproduction of V. destructor mites was distinctly lower than in susceptible populations. There was higher proportion of infertile individuals and the reproductive success of fertile mites was lower than measured to date, even in surviving populations. Our results suggest that survival of savannah honeybees is based on resistance rather than tolerance to this parasite. We identified traits that may be useful for breeding programmes aimed at increasing the survival of susceptible populations. African honeybees may have benefited from a lack of human interference, allowing natural selection to shape a population of honeybees that is more resistant to Varroa mite infestation.

  2. Evaluación ecotoxicológica de dos derivados del Nim en lombriz de tierra y abejas

    Directory of Open Access Journals (Sweden)

    A Mancebo Rodríguez

    2011-01-01

    Full Text Available La utilización de productos con bajo o nulo impacto en organismos circundantes y el ambiente, constituye parte del nuevo concepto de protección de cultivos. Los productos NeoNim 60 y OleoNim 80, obtenidos del árbol del Nim, están propuestos para su uso como insecticida, nematicida y acaricida. Con el objetivo de realizar la evaluación ecotoxicológica de estos productos, se realizaron los ensayos de toxicidad aguda en lombriz de tierra Eisenia andrei y de toxicidad aguda por contacto en abejas Apis mellifera. Cada ensayo contó con un grupo control y dos tratados. El ensayo en lombrices se realizó durante 14 días utilizando suelo artificial, realizando observaciones clínicas, conteo de animales y estudio del comportamiento de la biomasa. La prueba en abejas se prolongó por 48 horas, realizándose observaciones clínicas y conteo de animales. Se obtuvo un 100% de supervivencia en las lombrices de los grupos tratados, obteniendo en el NeoNim 60 valores de disminución de la biomasa significativamente inferiores al grupo control, mientras que el grupo tratado con OleoNim 80 mostró aumento en la biomasa del inicio al final del ensayo. En el ensayo en abejas, la comparación estadística no mostró diferencias entre grupos en cuanto a la mortalidad. Teniendo en cuenta el conjunto de los resultados obtenidos, se pudo concluir que los derivados del Nim NeoNim 60 y OleoNim 80 no producen efecto tóxico sobre las lombrices de tierra y las abejas.

  3. CARACTERIZACIÓN ANTIMICROBIANA Y FISICOQUÍMICA DE PROPÓLEOS DE Apis mellifera L. (HYMENOPTERA: APIDAE DE LA REGIÓN ANDINA COLOMBIANA Antimicrobial and Physico-Chemical Characterization of Propolis of Apis mellifera L. (Hymenoptera: Apidae from the Colombian Andes

    Directory of Open Access Journals (Sweden)

    ESTHER MARGARIDA ALVES FERREIRA BASTOS

    Full Text Available El propóleo es un material resinoso producido por las abejas a partir de diversos materiales vegetales. El objetivo de este trabajo fue caracterizar muestras de propóleos de Apis mellifera provenientes de la región Andina colombiana respecto a su perfil antimicrobiano y fisicoquímico. Fueron empleados extractos etanólicos de propóleos por la técnica de disco-difusión, frente a las especies Escherichia coli, Staphylococcus aureus y Candida albicans. Para la caracterización fisicoquímica se evaluaron el porcentaje de extracto seco, contenido de cera, índice de oxidación y determinación cuantitativa de compuestos fenólicos y flavonoides. Todas las muestras presentaron actividad antibacteriana, con halos de inhibición comprendidos entre 8 y 12 mm para E. coli y entre 8,3 y 23,5 mm para S. aureus. No se observó ninguna actividad contra C. albicans. Los parámetros fisicoquímicos citados anteriormente presentaron una variación de 2,72 a 9,17%, 0 a 2%, 3 a 51s, 0,1 a 0,5 (p/p y 0,02 a 0,95 (p/p, respectivamente. El perfil antimicrobiano observado, relacionado al fisicoquímico, sugiere la necesidad de nuevos estudios para la determinación del origen botánico y geográfico de las muestras estudiadas.Propolis is a resinous material produced by bees from various plant sources. The objective of this study was to characterize propolis samples of Apis mellifera from the Colombian Andean region, regarding the antimicrobial and physicochemical profiles. We used the technique of disk diffusion with ethanol extracts of propolis against Escherichia coli, Staphylococcus aureus and Candida albicans. The physicochemical characterization included percentage of solids content, wax, oxidation index and quantitative determination of phenolic and flavonoids compounds. All samples showed antibacterial activity, with inhibition zones between 8,0 and 12,0 mm for E. coli and between 8,3 and 23,5 mm for S. aureus. We did not observe any activity against C

  4. Scientific Opinion on the science behind the development of a risk assessment of Plant Protection Products on bees (Apis mellifera, Bombus spp. and solitary bees)

    NARCIS (Netherlands)

    Luttik, R.; Arnold, G.; Boesten, J.J.T.I.; Cresswell, J.; Hart, A.; Pistorius, J.; Sgolastra, F.; Delso, N.S.; Steurbaut, W.; Thompson, H.

    2012-01-01

    The PPR Panel was asked to deliver a scientific opinion on the science behind the development of a risk assessment of plant protection products on bees (Apis mellifera, Bombus spp. and solitary bees). Specific protection goals options were suggested based on the ecosystem services approach. The diff

  5. A monitoring study to assess the acute mortality effects of indoxacarb on honey bees (Apis mellifera L.) in flowering apple orchards

    NARCIS (Netherlands)

    Steen, van der J.J.M.; Dinter, A.

    2007-01-01

    To evaluate the effect of the indoxacarb 300 g kg-1 WG, Steward 30WDGTM, on the honey bee (Apis mellifera L.) in apple orchards, a monitoring study was conducted in Dutch apple orchards in April/May 2004. Before apple flowering began, two honey bee colonies were placed in each orchard to investigate

  6. A monitoring study to assess the acute mortality effects of indoxacarb on honey bees (Apis mellifera L.) in flowering apple orchards

    NARCIS (Netherlands)

    Steen, van der J.J.M.; Dinter, A.

    2007-01-01

    To evaluate the effect of the indoxacarb 300 g kg-1 WG, Steward 30WDGTM, on the honey bee (Apis mellifera L.) in apple orchards, a monitoring study was conducted in Dutch apple orchards in April/May 2004. Before apple flowering began, two honey bee colonies were placed in each orchard to investigate

  7. Use of repellents for honeybees (Apis mellifera L. in vitro in the yellow passion-fruit (Passiflora edulis Deg crop and in confined beef cattle feeders

    Directory of Open Access Journals (Sweden)

    D. Nicodemo

    2004-01-01

    Full Text Available The presence of Apis mellifera in places such as candy and soft drink factories, restaurants, and ice-cream shops has been a concern to many people. In the yellow passion-fruit crop, Apis mellifera is able to collect all anther pollen but has no active role in pollination. Honeybees also visit animal feeders with chopped sugar cane, preventing the cattle from eating. This work studied the effect of natural and synthetic substances as Apis mellifera repellents in vitro in the yellow passion-fruit crop and in confined beef cattle feeders. There was a repellent effect in vitro with the following substances in decreasing order: tobacco, rue, garlic, parsley, and century plant extracts; average effect was twenty-five minutes. For the yellow passion-fruit, garlic extracts and 2-heptanone were equally efficient with a two and a half hour repellent action. Garlic and citronella extracts were efficient in repelling Apis mellifera from confined beef cattle feeder for six hours. Garlic repellent action was higher than citronella.

  8. Scientific Opinion on the science behind the development of a risk assessment of Plant Protection Products on bees (Apis mellifera, Bombus spp. and solitary bees)

    NARCIS (Netherlands)

    Luttik, R.; Arnold, G.; Boesten, J.J.T.I.; Cresswell, J.; Hart, A.; Pistorius, J.; Sgolastra, F.; Delso, N.S.; Steurbaut, W.; Thompson, H.

    2012-01-01

    The PPR Panel was asked to deliver a scientific opinion on the science behind the development of a risk assessment of plant protection products on bees (Apis mellifera, Bombus spp. and solitary bees). Specific protection goals options were suggested based on the ecosystem services approach. The

  9. No transmission of Potato spindle tuber viroid shown in experiments with thrips (Frankliniella occidentalis, Thrips tabaci), honey bees (Apis mellifera) and bumblebees (Bombus terrestris)

    DEFF Research Database (Denmark)

    Nielsen, Steen Lykke; Enkegaard, Annie; Nicolaisen, Mogens;

    2012-01-01

    and Thrips tabaci by leaf sucking. The F. occidentalis experiments also included feeding on pollen prior to feeding on PSTVd-infected leaf. No thrips-mediated transmission of PSTVd was recorded. The possibility of PSTVd transmission by Apis mellifera and Bombus terrestris during their feeding...

  10. Molecular characterization and functional expression of the Apis mellifera voltage-dependent Ca2+ channels.

    Science.gov (United States)

    Cens, Thierry; Rousset, Matthieu; Collet, Claude; Charreton, Mercedes; Garnery, Lionel; Le Conte, Yves; Chahine, Mohamed; Sandoz, Jean-Christophe; Charnet, Pierre

    2015-03-01

    Voltage-gated Ca(2+) channels allow the influx of Ca(2+) ions from the extracellular space upon membrane depolarization and thus serve as a transducer between membrane potential and cellular events initiated by Ca(2+) transients. Most insects are predicted to possess three genes encoding Cavα, the main subunit of Ca(2+) channels, and several genes encoding the two auxiliary subunits, Cavβ and Cavα2δ; however very few of these genes have been cloned so far. Here, we cloned three full-length cDNAs encoding the three Cavα subunits (AmelCav1a, AmelCav2a and AmelCav3a), a cDNA encoding a novel variant of the Cavβ subunit (AmelCavβc), and three full-length cDNAs encoding three Cavα2δ subunits (AmelCavα2δ1 to 3) of the honeybee Apis mellifera. We identified several alternative or mutually exclusive exons in the sequence of the AmelCav2 and AmelCav3 genes. Moreover, we detected a stretch of glutamine residues in the C-terminus of the AmelCav1 subunit that is reminiscent of the motif found in the human Cav2.1 subunit of patients with Spinocerebellar Ataxia type 6. All these subunits contain structural domains that have been identified as functionally important in their mammalian homologues. For the first time, we could express three insect Cavα subunits in Xenopus oocytes and we show that AmelCav1a, 2a and 3a form Ca(2+) channels with distinctive properties. Notably, the co-expression of AmelCav1a or AmelCav2a with AmelCavβc and AmCavα2δ1 produces High Voltage-Activated Ca(2+) channels. On the other hand, expression of AmelCav3a alone leads to Low Voltage-Activated Ca(2+) channels.

  11. Reproductive biology of Varroa destructor in Africanized honey bees (Apis mellifera).

    Science.gov (United States)

    Calderón, R A; van Veen, J W; Sommeijer, M J; Sanchez, L A

    2010-04-01

    Since its first contact with Apis mellifera, the population dynamics of the parasitic mite Varroa destructor varies from one region to another. In many regions of the world, apiculture has come to depend on the use of acaricides, because of the extensive damage caused by varroa to bee colonies. At present, the mite is considered to contribute to the recent decline of honey bee colonies in North America and Europe. Because in tropical climates worker brood rearing and varroa reproduction occurs all year round, it could be expected that here the impact of the parasite will be even more devastating. Yet, this has not been the case in tropical areas of South America. In Brazil, varroa was introduced more than 30 years ago and got established at low levels of infestation, without causing apparent damage to apiculture with Africanized honey bees (AHB). The tolerance of AHB to varroa is apparently attributable, at least in part, to resistance in the bees. The low fertility of this parasite in Africanized worker brood and the grooming and hygienic behavior of the bees are referred as important factors in keeping mite infestation low in the colonies. It has also been suggested that the type of mite influences the level of tolerance in a honey bee population. The Korea haplotype is predominant in unbalanced host-parasite systems, as exist in Europe, whereas in stable systems, as in Brazil, the Japan haplotype used to predominate. However, the patterns of varroa genetic variation have changed in Brazil. All recently sampled mites were of the Korea haplotype, regardless whether the mites had reproduced or not. The fertile mites on AHB in Brazil significantly increased from 56% in the 1980s to 86% in recent years. Nevertheless, despite the increased fertility, no increase in mite infestation rates in the colonies has been detected so far. A comprehensive literature review of varroa reproduction data, focusing on fertility and production of viable female mites, was conducted to

  12. Toxic Tripterygium hypoglaucum Honey Effect the Lifespan of Apis mellifera and Apis cerana%昆明山海崇蜜对中蜂和意蜂生命力的影响

    Institute of Scientific and Technical Information of China (English)

    曲玉凤; 汪正威; 杨爽; 胡宗文; 谭垦

    2011-01-01

    Two groups of honeybees (Apis cerana cerana and Apis mellifera ligustica) were fed with the normal and toxic honey respectively in the same concentration in order to compare their lethal rate in this experiment. The results demonstrated the lethal rate of A.cerana fed with the toxic honey was the highest (100%), while that of A. mellifera fed with the normal honey was the lowest in the later period, and they could survive with an extraordinary long time. The results suggested that the lethal rate of honeybees, no matter it's A.cerana or A. mellifera with the toxic honey was significantly higher than those with the normal honey.%用相似糖浓度的昆明山海棠蜜与藿香蜜分别饲喂中蜂和意蜂(Apis cerana cerana,Apis mellifera ligustica),比较2种蜜蜂的致死率,结果表明在第6天时饲喂山海棠蜜的中蜂致死率高达100%,饲喂藿香蜜的意蜂致死率则为(35.08±0.91)%,且存活时间最长。无论是中蜂还是意蜂,

  13. INFLUENCE OF THE BEES (Apis mellifera IN THE POLLINATION OF GABIROBA (Campomanesia spp.. INFLUÊNCIA DAS ABELHAS (Apis mellifera NA POLINIZAÇÃO DA GABIROBA (Campomanesia spp.

    Directory of Open Access Journals (Sweden)

    Ronaldo Veloso Naves

    2007-09-01

    Full Text Available

    In this work the influence of agents was analyzed in the pollination of the gabiroba and in the possible increasing of in fruits production. They were appraised gabiroba plants (Campomanesia spp. in Senador Canedo and Goiânia-GO. During the flowishing period some plants, or you leave of her, were covered with filó (a kind of tissue, impeding the visit of insects. In Senador Canedo beehives of bees Apis mellifera were placed at proximities of the plants. The frutification was differentiated in the two places of the experiment, ranging from 0,18% to 1,5% in the covered part and of 4,7% to 66,6% in the discovered part, being larger in Senador Canedo. The production of fruits was larger in the discovered plants compared with the covered ones, indicating the importance of the insects in the pollination of the gabiroba.

    KEY-WORDS: Brasilian savana; Campomanesia spp.; pollination.

    Neste trabalho analisou-se a influência de Apis mellifera na polinização e no aumento da produção de frutos da gabiroba (Campomanesia spp.. As avaliações foram realizadas nos municípios de Senador Canedo e Goiânia (GO. Durante o período de florescimento, algumas plantas, ou partes dela, foram cobertas com filó, impedindo a visita das abelhas e de outros insetos. Em Senador Canedo foram colocadas duas colmeias de Apis mellifera a aproximadamente 50 metros das plantas. A frutificação foi diferenciada nos dois locais do experimento, variando de 0,18% a 1,5% na parte coberta e de 4,7% a 66,6% na parte descoberta, sendo maior em Senador Canedo. A produção de frutos foi maior nas plantas descobertas comparadas com as cobertas, indicando a importância dos insetos na polinização da gabiroba.

  14. Flora de manutenÃÃo para apis mellifera no municÃpio de Paramoti-CearÃ-Brasil

    OpenAIRE

    Ãgor Torres Reis

    2009-01-01

    O experimento foi realizado na fazenda Rosa dos ventos, no municÃpio de Paramoti - Cearà - Brasil, no perÃodo de julho a dezembro de 2008, com o objetivo de identificar as espÃcies botÃnicas da caatinga que sÃo importantes fontes alimentares para a manutenÃÃo das colÃnias de Apis mellifera no municÃpio de Paramoti - CE. Foram escolhidas, ao acaso, quinze colÃnias de abelhas africanizadas (Apis mellifera) de um apiÃrio composto de trinta colÃnias, mantendo entre elas uniformidade em relaÃÃo à ...

  15. Tipos polínicos encontrados em amostras de méis de Apis mellifera em Picos, Estado do Piauí Pollinic types found in honey samples of Apis mellifera from Picos, State of Piaui

    Directory of Open Access Journals (Sweden)

    Geni da Silva Sodré

    2008-06-01

    Full Text Available Com o objetivo de determinar os tipos polínicos de méis produzidos por Apis mellifera L., 1758, no município de Picos, Estado do Piauí, foram realizadas análises polínicas de 35 amostras de méis coletadas entre novembro e dezembro de 2001 no Laboratório de Apicultura do Departamento de Entomologia, Fitopatologia e Zoologia Agrícola da Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo. A identificação dos tipos polínicos foi realizada por meio de descrições obtidas em literatura especializada. Os resultados demonstraram que foram encontrados 36 tipos polínicos, distribuídos em 18 famílias botânicas, sendo consideradas como pólen dominante Piptadenia sp. (Mimosaceae, Mimosa caesalpiniiaefolia Benth. (Mimosaceae, M. verrucosa Benth. (Mimosaceae e Croton urucurana Baill. (Euphorbiaceae.This research deals with the pollinic types of honeys produced by Apis mellifera L., 1758 in the municipality of Picos, State of Piaui were determined in the Laboratory of Apiculture, Department of Entomology, Phytopathology and Agricultural Zoology, College of Agriculture ‘Luiz de Queiroz', University of São Paulo, in Piracicaba, State of São Paulo, pollinic analysis of 36 honey samples collected in November and December of 2001. The identification of e pthollinic made by types was specialized literature. The results showed that 36 types of pollen were found, distributed in 18 botanical families, and the following plant species were considered as dominant Piptadenia sp. (Mimosaceae, Mimosa caesalpiniiaefolia Benth. (Mimosaceae, M. verrucosa Benth. (Mimosaceae and Croton urucurana Baill. (Euphorbiaceae.

  16. Comparative Analyses of Cu-Zn Superoxide Dismutase (SOD1) and Thioredoxin Reductase (TrxR) at the mRNA Level between Apis mellifera L. and Apis cerana F. (Hymenoptera: Apidae) Under Stress Conditions.

    Science.gov (United States)

    Koo, Hyun-Na; Lee, Soon-Gyu; Yun, Seung-Hwan; Kim, Hyun Kyung; Choi, Yong Soo; Kim, Gil-Hah

    2016-01-01

    This study compared stress-induced expression of Cu-Zn superoxide dismutase (SOD1) and thioredoxin reductase (TrxR) genes in the European honeybee Apis mellifera L. and Asian honeybee Apis cerana F. Expression of both SOD1 and TrxR rapidly increased up to 5 h after exposure to cold (4 °C) or heat (37 °C) treatment and then gradually decreased, with a stronger effect induced by cold stress in A. mellifera compared with A. cerana. Injection of stress-inducing substances (methyl viologen, [MV] and H2O2) also increased SOD1 and TrxR expression in both A. mellifera and A. cerana, and this effect was more pronounced with MV than H2O2. Additionally, we heterologously expressed the A. mellifera and A. cerana SOD1 and TrxR proteins in an Escherichia coli expression system, and detection by SDS-PAGE, confirmed by Western blotting using anti-His tag antibodies, revealed bands at 16 and 60 kDa, respectively. Our results show that the expression patterns of SOD1 and TrxR differ between A. mellifera and A. cerana under conditions of low or high temperature as well as oxidative stress.

  17. Guidance on the risk assessment of plant protection products on bees (Apis mellifera, Bombus spp. and solitary bees

    Directory of Open Access Journals (Sweden)

    European Food Safety Authority

    2013-07-01

    Full Text Available The Guidance is intended to provide guidance for notifiers and authorities in the context of the review of plant protection products (PPPs and their active substances under Regulation (EC 1107/2009. The scientific opinion on the science behind the development of a risk assessment of plant protection products on bees (Apis mellifera, Bombus spp. and solitary bees provided the scientific basis for the development of the Guidance. Specific Protection Goals were agreed in consultation with the Standing Committee on the Food Chain and Animal Health. The Guidance suggests a tiered risk assessment scheme with a simple and cost-effective first tier to more complex higher tier studies under field conditions. Each of the tiers will have to ensure that the appropriate level of protection is achieved.

  18. Physico-chemical characteristics of honey produced by Apis mellifera in the Picos region, state of Piauí, Brazil

    Directory of Open Access Journals (Sweden)

    Geni da Silva Sodré

    2011-08-01

    Full Text Available The objectives of this research were to determine physico-chemical characteristics of 1,758 Apis mellifera L. honey samples produced by in the productive pole of Picos, state of Piauí, to understand, based on these characteristics, how they are grouped and to determine the percentage of honey that fit the specifications determined by Brazilian legislation. Thirty-five honey samples were collected directly from beekeepers for determination of total sugars, reducing sugars, apparent sucrose, humidity, diastase activity, hydroxymethylfurfural (HMF, protein, ash, pH, acidity, formol index, electrical conductivity, viscosity and color. Mean values of each one of the analyzed physico-chemical parameters are within the limits established by the current Brazilian legislation, but it was verified for apparent sacarosis, diastase activity and HMF, values different from the established ones. Protein and HMF were the traits that contributed most for group formation.

  19. Four quantitative trait loci associated with low Nosema ceranae (Microsporidia) spore load in the honeybee Apis mellifera

    DEFF Research Database (Denmark)

    Huang, Qiang; Kryger, Per; Le Conte, Yves

    2014-01-01

    Nosema ceranae has been recently introduced into the honeybee Apis mellifera as a novel microsporidian gut parasite. To locate the genetic region involved in N. ceranae infection tolerance, we fed N. ceranae spores to haploid drones of a F1 hybrid queen produced from a cross between a queen...... of a Nosema-resistant bred strain and drones of susceptible colonies. The spore loads of the infected F1 drones were used as the phenotype to identify quantitative trait loci (QTLs) associated with N. ceranae spore load. One hundred forty-eight infected drones were individually genotyped with microsatellite...... markers at an average marker distance of 20 cM along the genome. Four QTLs were significantly associated with low spore load, explaining 20.4 % of total spore load variance. Moreover, a candidate gene Aubergine (Aub) within the major QTL region was significantly overexpressed in drones with low spore...

  20. Composition of fatty acids in the Varroa destructor mites and their hosts, Apis mellifera drone-prepupae.

    Science.gov (United States)

    Dmitryjuk, Małgorzata; Zalewski, Kazimierz; Raczkowski, Marek; Żółtowska, Krystyna

    2015-01-01

    The fatty acid (FA) profile of lipids extracted from the Varroa destructor parasitic mite and its host, drone-prepupae of Apis mellifera, was determined by gas chromatography (GC). The percentages of saturated fatty acids (SFAs), monounsaturated fatty acids (MUFAs) and polyunsaturated fatty acids (PUFAs) were generally similar in parasites and their hosts. Fatty acids were arranged in the following descending order based on their content: MUFAs (ca. 52-55%), SFAs (ca. 41%) and PUFAs (ca. 3%). The predominant fatty acids were oleic acid (46% in mites, 44% in prepupae) and palmitic acid (23% and 30%, respectively). Varroa parasites differed from their hosts in the quantity of individual FAs and in their FA profiles. Three PUFAs noted in the host were not observed in parasitic mites, whereas the presence of C21:0, C24:0 and C22:1 FAs was reported in mites, but not in drones.

  1. Effects of seasonal variations and collection methods on the mineral composition of propolis from Apis mellifera Linnaeus Beehives.

    Science.gov (United States)

    Souza, E A; Zaluski, R; Veiga, N; Orsi, R O

    2016-06-01

    The effects of seasonal variations and the methods of collection of propolis produced by Africanized honey bees Apis mellifera Linnaeus, 1758, on the composition of constituent minerals such as magnesium (Mg), zinc (Zn), iron (Fe), sodium (Na), calcium (Ca), copper (Cu), and potassium (K) were evaluated. Propolis was harvested from 25 beehives by scraping or by means of propolis collectors (screen, "intelligent" collector propolis [ICP], lateral opening of the super [LOS], and underlay method). During the one-year study, the propolis produced was harvested each month, ground, homogenized, and stored in a freezer at -10 ºC. Seasonal analyses of the mineral composition were carried out by atomic absorption spectrophotometry and the results were evaluated by analysis of variance (ANOVA), followed by Tukey-Kramer's test to compare the mean values (pminerals (Mg, Fe, Na, Ca, and Cu), and the propolis harvesting method affects the contents of 4 minerals (Mg, Zn, Fe, and Ca).

  2. The indigenous honey bees of Saudi Arabia (Hymenoptera, Apidae, Apis mellifera jemenitica Ruttner: Their natural history and role in beekeeping

    Directory of Open Access Journals (Sweden)

    Abdulaziz Alqarni

    2011-10-01

    Full Text Available Apis mellifera jemenitica Ruttner (= yemenitica auctorum: vide Engel 1999 has been used in apiculture throughout the Arabian Peninsula since at least 2000 BC. Existing literature demonstrates that these populations are well adapted for the harsh extremes of the region. Populations of A. m. jemenitica native to Saudi Arabia are far more heat tolerant than the standard races often imported from Europe. Central Saudi Arabia has the highest summer temperatures for the Arabian Peninsula, and it is in this region where only A. m. jemenitica survives, while other subspecies fail to persist. The indigenous race of Saudi Arabia differs from other subspecies in the region in some morphological, biological, and behavioral characteristics. Further taxonomic investigation, as well as molecular studies, is needed in order to confirm whether the Saudi indigenous bee populations represent a race distinct from A. m. jemenitica, or merely an ecotype of this subspecies.

  3. Concentrations of neonicotinoid insecticides in honey, pollen and honey bees (Apis mellifera L.) in central Saskatchewan, Canada.

    Science.gov (United States)

    Codling, Garry; Al Naggar, Yahya; Giesy, John P; Robertson, Albert J

    2016-02-01

    Neonicotinoid insecticides (NIs) and their transformation products were detected in honey, pollen and honey bees, (Apis mellifera) from hives located within 30 km of the City of Saskatoon, Saskatchewan, Canada. Clothianidin and thiamethoxam were the most frequently detected NIs, found in 68 and 75% of honey samples at mean concentrations of 8.2 and 17.2 ng g(-1) wet mass, (wm), respectively. Clothianidin was also found in >50% of samples of bees and pollen. Concentrations of clothianidin in bees exceed the LD50 in 2 of 28 samples, while for other NIs concentrations were typically 10-100-fold less than the oral LD50. Imidaclorpid was detected in ∼30% of samples of honey, but only 5% of pollen and concentrations were honey and pollen by bees over winter, during which worker bees live longer than in summer, suggested that, in some hives, consumption of honey and pollen during over-wintering might have adverse effects on bees.

  4. Four quantitative trait loci associated with low Nosema ceranae (Microsporidia) spore load in the honeybee Apis mellifera

    DEFF Research Database (Denmark)

    Huang, Qiang; Kryger, Per; Le Conte, Yves

    2014-01-01

    Nosema ceranae has been recently introduced into the honeybee Apis mellifera as a novel microsporidian gut parasite. To locate the genetic region involved in N. ceranae infection tolerance, we fed N. ceranae spores to haploid drones of a F1 hybrid queen produced from a cross between a queen...... of a Nosema-resistant bred strain and drones of susceptible colonies. The spore loads of the infected F1 drones were used as the phenotype to identify quantitative trait loci (QTLs) associated with N. ceranae spore load. One hundred forty-eight infected drones were individually genotyped with microsatellite...... markers at an average marker distance of 20 cM along the genome. Four QTLs were significantly associated with low spore load, explaining 20.4 % of total spore load variance. Moreover, a candidate gene Aubergine (Aub) within the major QTL region was significantly overexpressed in drones with low spore...

  5. Fine scale population genetic structure of Varroa destructor, an ectoparasitic mite of the honey bee (Apis mellifera)

    Science.gov (United States)

    Dynes, Travis L.; De Roode, Jacobus C.; Lyons, Justine I.; Berry, Jennifer A.; Delaplane, Keith S.; Brosi, Berry J.

    2016-01-01

    Varroa destructor is an obligate ectoparasitic mite and the most important biotic threat currently facing honey bees (Apis mellifera). We used neutral microsatellites to analyze previously unreported fine scale population structure of V. destructor, a species characterized by extreme lack of genetic diversity owing to multiple bottleneck events, haplodiploidy, and primarily brother-sister matings. Our results surprisingly indicate that detectable hierarchical genetic variation exists between apiaries, between colonies within an apiary, and even within colonies. This finding of within-colony parasite diversity provides empirical evidence that the spread of V. destructor is not accomplished solely by vertical transmission but that horizontal transmission (natural or human-mediated) must occur regularly. PMID:27812229

  6. Dynamique temporelle de la sélection alimentaire chez l'abeille domestique (Apis mellifera L.) en paysage agricole

    OpenAIRE

    Requier, Fabrice; Odoux, Jean Francois; Tamic, Thierry; Feuillet, Dalila; Henry, Mickaël; Aupinel, Pierrick; DECOURTYE, Axel; Bretagnolle, Vincent

    2012-01-01

    Lors de la seconde moitié du XXème siècle, les paysages agricoles ont été profondément modifiés en raison de l'intensification de l'agriculture. Des perturbations dans tous les compartiments de la biodiversité ont été observées provoquant un déclin chez de nombreux taxons. L’abeille domestique (Apis mellifera L.) fait partie de ces espèces en déclin or elle fournit un service écosystémique de pollinisation indispensable pour les plantes sauvages et cultivées. La cause de ce déclin est multifa...

  7. Frequency of Varroa destructor, Nosema spp and Acarapis woodi in commercial colonies of bees (Apis mellifera in Yucatan, Mexico

    Directory of Open Access Journals (Sweden)

    Martínez-Puc Jesús Froylán

    2015-10-01

    Full Text Available Today it has been observed that diseases affecting bees (Apis mellifera have caused significant economic losses in the European continent and in parts of the United States due to high mortality in honey bee colonies without a cause apparent, which is known as the syndrome of depopulation of hives. It is noteworthy that this mortality is not yet presented in Yucatan. In order to determine the frequency and levels of infestation Acarapis woodi and Varroa destructor, and the frequency and levels of infection Nosema spp. commercial colonies of bees (A. mellifera in Yucatan, was collected from June to December 2006, a total of 165 samples distributed in 13 towns of Yucatan. V. destructor frequency was 63.6%, with an average level of infestation of 2.85 ± 0.79 (mites / 100 bees. The frequency of Nosema spp. was 81.8%, with an average infection level = 1'234000 ± 118000 (spores / bee, the presence of A. woodi in the samples analyzed was detected. The existence of an association between V. destructor and Nosema spp was observed. (X2 = 6.53, df = 1, p = 0.01.

  8. Ultrastructural detection of lipids in the cephalic salivary glands of Apis mellifera and Scaptotrigona postica (Hymenoptera: Apidae workers

    Directory of Open Access Journals (Sweden)

    Silvana Beani Poiani

    Full Text Available ABSTRACT Secretory cells of the cephalic salivary glands (CSGs of eusocial bees produce and accumulate lipid-like secretion in the lumens of their alveoli. Correspondingly, secretory cells present typical ultrastructural features of lipid-compound producers. Previous work on bees has revealed inter-specific differences in the chemical composition of secretion, and the production mechanisms and secretory cycle of secretory cells. In this work a comparative analysis of the mechanisms of lipid storage in the CSGs of Apis mellifera (Linnaeus, 1758 and Scaptotrigona postica (Latreille, 1807 workers was carried out. The ultrastructural location of lipids was ascertained using imidazole-osmium (IO, using individuals in different stages of their life cycles. Lipid deposits were identified inside glandular cells and in the alveolar lumens in all individuals, but differences were observed between the species. The glandular cells of A. mellifera workers presented positive reactions to IO as droplets dispersed in the cytoplasm, as vesicles and in the channels formed by apical plasma membrane infolds. In S. postica , lipid compounds were detected inside the mitochondrial matrix and in smooth endoplasmic reticulum cisterns. In both species, forager workers exhibited the largest amounts of lipids stored in the alveolar lumen. The differences between the species are discussed, taking into account specific behavioral differences.

  9. Sequence recombination and conservation of Varroa destructor virus-1 and deformed wing virus in field collected honey bees (Apis mellifera.

    Directory of Open Access Journals (Sweden)

    Hui Wang

    Full Text Available We sequenced small (s RNAs from field collected honeybees (Apis mellifera and bumblebees (Bombuspascuorum using the Illumina technology. The sRNA reads were assembled and resulting contigs were used to search for virus homologues in GenBank. Matches with Varroadestructor virus-1 (VDV1 and Deformed wing virus (DWV genomic sequences were obtained for A. mellifera but not B. pascuorum. Further analyses suggested that the prevalent virus population was composed of VDV-1 and a chimera of 5'-DWV-VDV1-DWV-3'. The recombination junctions in the chimera genomes were confirmed by using RT-PCR, cDNA cloning and Sanger sequencing. We then focused on conserved short fragments (CSF, size > 25 nt in the virus genomes by using GenBank sequences and the deep sequencing data obtained in this study. The majority of CSF sites confirmed conservation at both between-species (GenBank sequences and within-population (dataset of this study levels. However, conserved nucleotide positions in the GenBank sequences might be variable at the within-population level. High mutation rates (Pi>10% were observed at a number of sites using the deep sequencing data, suggesting that sequence conservation might not always be maintained at the population level. Virus-host interactions and strategies for developing RNAi treatments against VDV1/DWV infections are discussed.

  10. ELABORAÇÃO DE BEBIDA TIPO NÉCTAR DE GRAVIOLA ADOÇADA COM MEL DE Apis mellifera

    Directory of Open Access Journals (Sweden)

    DYEGO DA COSTA SANTOS

    2014-01-01

    Full Text Available The objective of this st udy was to prepare drinks type soursop nectars sweetened with honey from Apis mellifera , by use of experimental planning, varying the concentrations of pulp and soluble solids content and evaluate the effect of these in the physical and chemical characteristics of processed drinks. Were used a factorial planning 2 2 with three experiments in central point resulting in seven experiments. The soursop pulp was diluted with potable water to obtain products in the concentrations of 25, 30 and 35% (w/w of pulp. The correction of soluble solids to 11, 12 and 13 °Brix was made using honey from A. mellifera . It was ob- served that all formulations of drinks type soursop nectar sweetened with honey were in accordance with bra- zilian legislation. The mathematical equations fitted to the data of titratable acidity, total sugar, ratio, brightness and intensity of yellow were significant, and only the models fitted to the values of titratable acidity, total sug- ars and ratio were predictive. The responses of titratable acidity, total sugar, ratio, brightness and yellow color intensity were influenced by factors pulp concentration and total soluble solids content, wherein the concentra- tion of soursop pulp had greater influence on the acidity and the ratio and the content final total soluble solids of the beverages, modified by the addition of honey, showed greater influence on the content of total sugars and lightness values. The yellow intensity response showed influences of both factors.

  11. Sequence recombination and conservation of Varroa destructor virus-1 and deformed wing virus in field collected honey bees (Apis mellifera).

    Science.gov (United States)

    Wang, Hui; Xie, Jiazheng; Shreeve, Tim G; Ma, Jinmin; Pallett, Denise W; King, Linda A; Possee, Robert D

    2013-01-01

    We sequenced small (s) RNAs from field collected honeybees (Apis mellifera) and bumblebees (Bombuspascuorum) using the Illumina technology. The sRNA reads were assembled and resulting contigs were used to search for virus homologues in GenBank. Matches with Varroadestructor virus-1 (VDV1) and Deformed wing virus (DWV) genomic sequences were obtained for A. mellifera but not B. pascuorum. Further analyses suggested that the prevalent virus population was composed of VDV-1 and a chimera of 5'-DWV-VDV1-DWV-3'. The recombination junctions in the chimera genomes were confirmed by using RT-PCR, cDNA cloning and Sanger sequencing. We then focused on conserved short fragments (CSF, size > 25 nt) in the virus genomes by using GenBank sequences and the deep sequencing data obtained in this study. The majority of CSF sites confirmed conservation at both between-species (GenBank sequences) and within-population (dataset of this study) levels. However, conserved nucleotide positions in the GenBank sequences might be variable at the within-population level. High mutation rates (Pi>10%) were observed at a number of sites using the deep sequencing data, suggesting that sequence conservation might not always be maintained at the population level. Virus-host interactions and strategies for developing RNAi treatments against VDV1/DWV infections are discussed.

  12. Differential flight muscle development in workers, queens and males of the eusocial bees, Apis mellifera and Scaptotrigona postica.

    Science.gov (United States)

    Correa-Fernandez, Fernanda; Cruz-Landim, Carminda

    2010-01-01

    The flight capability of the adult eusocial bees, Apis mellifera L. and Scaptotrigona postica Latreille (Hymenoptera: Apidae), is intrinsically linked to their colonial functions, such as the nuptial flight for mating in the case of queens and males, and the exploration of new habitats for nesting and food sources in the case of workers. Flight is achieved by the contraction of indirect flight muscles that produce changes in thoracic volume and, therefore, wing movement. The purpose of this work is to examine possible differences in muscle development that may be associated with the flying activity of individuals in a given life stage considering the behavioral and physiological differences among the stages and between the two species studied. Measurements of the muscle fibers obtained from light microscopy preparations of muscle were submitted to statistical analysis in order to detect the differences at a given time, or throughout the life of the individual. The results show that muscle morphology is similar in both species, but in A. mellifera the muscle fibers are thicker and more numerous than in S. postica. Differences in the fiber thickness according to life stage in all classes of individuals of both species were detected. These results are discussed in relation to the need for flying in each life stage.

  13. Biological activity of some plant essential oils against Varroa destructor (Acari: Varroidae), an ectoparasitic mite of Apis mellifera (Hymenoptera: Apidae).

    Science.gov (United States)

    Ghasemi, Vahid; Moharramipour, Saeid; Tahmasbi, Gholamhosein

    2011-10-01

    This experiment was conducted to evaluate acaricidal activity of the essential oils of Thymus kotschyanus, Ferula assa-foetida and Eucalyptus camaldulensis against Varroa destructor under laboratory conditions. Moreover, fumigant toxicity of these oils was tested on Apis mellifera. After preliminary dose-setting experiments, mites and honey bees were exposed to different concentrations of the oil, with 10 h exposure time. Essential oil of T. kotschyanus appeared the most potent fumigant for V. destructor (LC(50) = 1.07, 95% confidence limit (CL) = 0.87-1.26 μl/l air), followed by E. camaldulensis (LC(50) = 1.74, 95% CL = 0.96-2.50 μl/l air). The lowest acaricidal activity (LC(50) = 2.46, 95% CL = 2.10-2.86 μl/l air) was attributed to essential oil of F. assa-foetida. Surprisingly, among the three oils tested, essential oil of T. kotschyanus had the lowest insecticidal activity against A. mellifera (LC(50) = 5.08, 95% CL = 4.54-5.06 μl/l air). These findings proved that essential oil of T. kotschyanus has potential of practical value for use as alternative acaricide in the management of varroa in apiaries.

  14. Effects of Lactobacillus Johnsonii AJ5 Metabolites on Nutrition, Nosema Ceranae Development and Performance of Apis Mellifera L.

    Directory of Open Access Journals (Sweden)

    Piano Fiorella G. De

    2017-06-01

    Full Text Available The European honey bee (Apis mellifera L. is known to be affected by such stress factors as pathogen load, poor nutrition and depressed immunity. Nosema ceranae is one of the main parasites that affect colony populations. The relationship between the stress factors and honey bee-bacteria symbiosis appears as an alternative to enhance bee health. The aim of this study was to evaluate the effect of the oral administration of bacterial metabolites produced by Lactobacillus johnsonii AJ5 on nutritional parameters, the N. ceranae development and the performance of A. mellifera colonies. Laboratory assays were performed and demonstrated that the bacterial metabolites did not have a toxic effect on bees. Field trial showed an increase of colonies population over time. Also, a decreasing trend of fat bodies per bee was detected in all colonies but there were no evident changes on abdomen protein content at the end of the assay. Lastly, N. ceranae prevalence showed a tendency to reduce with the organic acids. Future studies should be performed to increase our knowledge of the physiological effects of bacterial metabolites on the health of bee colonies.

  15. Profile Analysis of the Proteome of the Egg of the High Royal Jelly Producing Bees (Apis mellifera L.)

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The protein composition of the egg development in the high royal jelly producing bees (Apis mellifera L.) was investigated. This pioneer study was to separate and quantify the proteins in the egg of the high royal jelly producing worker bees (Apis mellifera L.) by using two-dimensional gel electrophoresis along with their three-day development. The results showed that 160, 195, and 176 proteins, with a wide range of molecular weight (17-80 KDa) and relatively narrow scope of pI (4.00-8.40) could be detected on day 1, day 2, and day 3, respectively, during the developmental process of the egg. Meanwhile 44 protein spots were constantly detected along with the egg development. Among them 36% were in the uptrend along with the egg development, 14% were in the downtrend, and 39% were of the largest expressed volume on day 2. In addition, the specific proteins were expressed on day 1, day 2, and day 3 (89, 77, and 80, respectively). Besides the coexistent and specific proteins, 24 proteins were expressed on day 1 and day 2, but silenced on day 3, 49 proteins were expressed on day 2 and day 3, but silenced on day 1, only 3 proteins were expressed on day 1 and day 3, but silenced on day 2. The result indicates that egg development is a sequential and complex gene controlled process, where the eggs of day 2 express the most active proteins. The coexistent proteins suggest that it is conservative and indispensable for this event. These specific proteins suggest that the different developmental stage needs specific proteins to regulate it.

  16. Performance evaluation of indigenous and exotic honey bee (Apis mellifera L.) races in Assir region, southwestern Saudi Arabia.

    Science.gov (United States)

    Alqarni, Abdulaziz S; Balhareth, Hassan M; Owayss, Ayman A

    2014-07-01

    This study was conducted in the Assir region of southwestern Saudi Arabia to compare the activities of honeybee colonies of indigenous Apis mellifera jemenitica (AMJ) and imported Apis mellifera carnica (AMC) during the late summer and autumn of 2009 and 2010. The results showed that the workers of the two races exhibited relatively similar forage timings throughout the period of study (August-November). The highest numbers of foraged workers were recorded at 6:00 am, 10:00 am and 6:00 pm, while the lowest numbers were recorded at 8:00 am, 12:00 pm and 4:00 pm. Although foraging activity was negatively affected by decreased temperature, AMJ was more resistant to cold than AMC. In the first season, the smallest amount of worker brood rearing was recorded in August, and the highest amount of rearing occurred in November in both races. In the second season, the smallest amount of brood was observed in October, and the largest amount of brood was observed in November. Brood rearing and pollen collecting was significantly (P < 0.05) higher in AMJ compared with AMC, while AMC stored significantly (P < 0.05) more honey than AMJ during the tested periods. In AMJ colonies, a positive significant correlation was observed between the area of the sealed worker brood and stored pollen, while a negative but nonsignificant correlation was observed between the area of the sealed worker brood and surplus honey. In the AMC colonies, a positive significant correlation was observed between the area of the sealed brood and the stored pollen and surplus honey.

  17. Abundance of phosphorylated Apis mellifera CREB in the honeybee's mushroom body inner compact cells varies with age.

    Science.gov (United States)

    Gehring, Katrin B; Heufelder, Karin; Kersting, Isabella; Eisenhardt, Dorothea

    2016-04-15

    Hymenopteran eusociality has been proposed to be associated with the activity of the transcription factor CREB (cAMP-response element binding protein). The honeybee (Apis mellifera) is a eusocial insect displaying a pronounced age-dependent division of labor. In honeybee brains, CREB-dependent genes are regulated in an age-dependent manner, indicating that there might be a role for neuronal honeybee CREB (Apis mellifera CREB, or AmCREB) in the bee's division of labor. In this study, we further explore this hypothesis by asking where in the honeybee brain AmCREB-dependent processes might take place and whether they vary with age in these brain regions. CREB is activated following phosphorylation at a conserved serine residue. An increase of phosphorylated CREB is therefore regarded as an indicator of CREB-dependent transcriptional activation. Thus, we here examine the localization of phosphorylated AmCREB (pAmCREB) in the brain and its age-dependent variability. We report prominent pAmCREB staining in a subpopulation of intrinsic neurons of the mushroom bodies. In these neurons, the inner compact cells (IC), pAmCREB is located in the nuclei, axons, and dendrites. In the central bee brain, the IC somata and their dendritic region, we observed an age-dependent increase of pAmCREB. Our results demonstrate the IC to be candidate neurons involved in age-dependent division of labor. We hypothesize that the IC display a high level of CREB-dependent transcription that might be related to neuronal and behavioral plasticity underlying a bee's foraging behavior.

  18. A clinical trial protocol to treat massive Africanized honeybee (Apis mellifera) attack with a new apilic antivenom.

    Science.gov (United States)

    Barbosa, Alexandre Naime; Boyer, Leslie; Chippaux, Jean-Philippe; Medolago, Natalia Bronzatto; Caramori, Carlos Antonio; Paixão, Ariane Gomes; Poli, João Paulo Vasconcelos; Mendes, Mônica Bannwart; Dos Santos, Lucilene Delazari; Ferreira, Rui Seabra; Barraviera, Benedito

    2017-01-01

    Envenomation caused by multiple stings from Africanized honeybees Apis mellifera constitutes a public health problem in the Americas. In 2015, the Brazilian Ministry of Health reported 13,597 accidents (incidence of seven cases per 100,000 inhabitants) with 39 deaths (lethality of 0.25%). The toxins present in the venom, which include melittin and phospholipase A2, cause lesions in diverse organs and systems that may be fatal. As there has been no specific treatment to date, management has been symptomatic and supportive only. In order to evaluate the safety and neutralizing capacity of a new apilic antivenom, as well as to confirm its lowest effective dose, a clinical protocol was developed to be applied in a multicenter, non-randomized and open phase I/II clinical trial. Twenty participants with more than five stings, aged more than 18 years, of both sexes, who have not previously received the heterologous serum against bee stings, will be included for 24 months. The proposed dose was based on the antivenom neutralizing capacity and the number of stings. Treatment will be administered only in a hospital environment and the participants will be evaluated for a period up to 30 days after discharge for clinical and laboratory follow-up. This protocol, approved by the Brazilian regulatory agencies for ethics (National Commission for Ethics on Research - CONEP) and sanitation (National Health Surveillance Agency - ANVISA), is a guideline constituted by specific, adjuvant, symptomatic and complementary treatments, in addition to basic orientations for conducting a clinical trial involving heterologous sera. This is the first clinical trial protocol designed specifically to evaluate the preliminary efficacy and safety of a new antivenom against stings from the Africanized honeybee Apis mellifera. The results will support future studies to confirm a new treatment for massive bee attack that has a large impact on public health in the Americas.

  19. MICROSATELLITE ANALYSIS OF THE SLOVAK CARNIOLAN HONEY BEE (APIS MELLIFERA CARNICA

    Directory of Open Access Journals (Sweden)

    Dušan Paál

    2013-02-01

    Full Text Available The aim of this study was the selection and testing of suitable microsatellite markers for evaluation of the Slovak carniolan honey bee, particularly the population structure, genetic diversity, breed assignment and paternity testing of honey bee queens in Slovakia. Fourteen microsatellite markers running in two multiplex PCR reactions have been tested on 40 randomly selected workers and queens and further verified by PIC index, expected heterozygosity (HE and observed heterozygosity (HO. Chi-squared test of goodness of fit (α = 0,05 was used to check the Hardy-Weinberg equilibrium (HWE of genotype for each marker. For the comparison tests the workers of A. mellifera mellifera x ligurica, A. mellifera macedonica and A. mellifera iberica were analyzed, using the same set of markers. We identified a total of 123 alleles in the Slovak carniolan honey bee samples, with the mean value of 8,78 allele per locus. Eleven markers showed the PIC value greater than 0,5 and thus were highly informative. The mean value of expected heterozygosity HE for all loci was 0,705 ± 0,15, the mean value of observed heterozygosity HO was 0,704 ± 0,18. The frequencies of genotypes for most tested markers were in The aim of this study was the selection and testing of suitable microsatellite markers for evaluation of the Slovak carniolan honey bee, particularly the population structure, genetic diversity, breed assignment and paternity testing of honey bee queens in Slovakia. Fourteen microsatellite markers running in two multiplex PCR reactions have been tested on 40 randomly selected workers and queens and further verified by PIC index, expected heterozygosity (HE and observed heterozygosity (HO. Chi-squared test of goodness of fit (α = 0,05 was used to check the Hardy-Weinberg equilibrium (HWE of genotype for each marker. For the comparison tests the workers of A. mellifera mellifera x ligurica, A. mellifera macedonica and A. mellifera iberica were analyzed, using

  20. Effects of Microsatellite Genetic Polymorphisms of Apis mellifera ligustica on Nutritional Crossbreed between Apis cerana cerana and Apis mellifera ligustica%中蜂与意蜂营养杂交对意蜂微卫星遗传多态性的影响

    Institute of Scientific and Technical Information of China (English)

    何旭江; 汪志平; 秦秋红; 吴小波; 陈利华

    2011-01-01

    In this paper,we breed hybridizing queen of the Jiangshan honey bee No. 2 and French Apis mellifera ligustica through the technology of artificially feeding royal jelly of Apis cerana cerana, and then the genetic polymorphisms of microsatellite of the workers were measured. The workers were from the Jiangshan honey bee No. 2 colonies, French Apis mellifera ligustica colonies, local Apis cerana cerana colonies, the 1 hybridizing offspring as well as the 4 consecutive hybridizing offspring of nutritional crossbreeding French Apis. merllifera. L queen and the Jiangshan honey bee No. 2 drone colonies. The results showed that the genetic distance of parents and hybridizing offspring was varied, and the unique DNA bands of Apis cerana cerana and Apis melli fera ligustica were shifted.%通过人工添加中华蜜蜂王浆技术来培育江山2号与法国意蜂的杂交蜂王,并测定江山2号、法国意蜂、中华蜜蜂、营养杂交子1代和子4代工蜂的微卫星遗传多态性.结果表明,经过营养杂交,亲本蜜蜂与营养杂交子代的遗传距离发生明显的变化,中华蜜蜂和意大利蜜蜂的特有DNA条带发生了转移.说明通过蜂种之间的营养杂交可以改变其微卫星多态性.

  1. Influence of Apis mellifera L. (Hymenoptera: Apidae) on the Use of the Most Abundant and Attractive Floral Resources in a Plant Community.

    Science.gov (United States)

    Polatto, L P; Chaud-Netto, J

    2013-12-01

    Some factors influence the distribution of abundance of floral visitors, especially the amount and quality of the floral resources available, the size of the area occupied by the visitor, habitat heterogeneity, and the impact caused by natural enemies and introduced species. The objective of this research was to evaluate the distribution of abundance of the foraging activity of native floral visitors and Apis mellifera L. in the most abundant and attractive food sources in a secondary forest fragment with features of Cerrado-Atlantic Forest. Some plant species were selected and the frequency of foraging made by floral visitors was recorded. A high abundance of visits in flowers was performed by A. mellifera. Two factors may have influenced this result: (1) the occupation of the forest fragment predominantly by vines and shrubs at the expenses of vegetation with arboreal characteristics that favored the encounter of the flowering plants by A. mellifera; (2) rational beekeeping of A. mellifera, causing the number of natural swarms which originate annually from colonies of commercial apiaries and colonies previously established in the environment to be very high, thus leading to an increase in the population size of this bee species in the study site. The frequent occurrence of human-induced fire and deforestation within the forest fragment may have reduced the population size of the bee species, including A. mellifera. As the populations of A. mellifera have the capacity to quickly occupy the environment, this species possibly became dominant after successive disturbances made in the forest fragment.

  2. Harm of introducing the western honeybee Apis mellifera L. to the Chinese honeybee Apis cerana F. and its ecological impact%引入西方蜜蜂对中蜂的危害及生态影响

    Institute of Scientific and Technical Information of China (English)

    杨冠煌

    2005-01-01

    作者阐述自1896年中国引进西方蜜蜂Apis mellifera L.的优良品种如意大利蜂Apis mellifera ligustica Spinola和喀尼阿兰蜂Apis mellifera Carnica Pollmann以来,使当地的东方蜜蜂Apis cerana F.受到严重危害,其分布区域缩小75%以上,种群数量减少80%以上.使山林植物授粉总量减少,导致植物多样性减少.文中提出:建立自然保护区保存本地蜜蜂遗传特性,和采用基因转移等技术,培育具有西方蜜蜂优良生产性能的中蜂新品种,逐步恢复中蜂的种群数量.

  3. 中意蜂混合饲养对意蜂蜂螨寄生率的影响%Effect of Mixed Colony of Apis cerana cerana and Apis mellifera ligustica on the Percent of Mite Parasitism of Apis mellifera ligustica

    Institute of Scientific and Technical Information of China (English)

    刘益波; 曾志将

    2009-01-01

    In this study, four Apis mellifera ligustica colonies were established which were at the same level of population, then the percent of the mite parasitism was measured. After that two frames with Apis cerana cerana brood were inserted into two of the colonies. 30 days later, the percent of the mite parasitism was measured again. The results showed that the percent of mite parasitism decreased after inserting the frames with that brood and the mite - resistant ability of the colony was improved.%选取4群群势相当的意大利蜂群(Apis mellifera ligustica),测定其蜂螨寄生率.然后在其中两群蜂中各加入一块带封盖子脾的中华蜜蜂(Apis cerana cerana)巢脾,使中意蜂合群饲养,30 d后再次测定4群蜂的蜂螨寄生率.结果表明:与对照组相比,加入中蜂子脾的两群蜂的蜂螨寄生率显著(P<0.05)或者极显著(P<0.01)下降.这说明往意蜂群中加入中蜂封盖子脾,可以提高意蜂蜂群的抗螨力.

  4. Tropilaelaps mercedesae and Varroa destructor: prevalence and reproduction in concurrently infested Apis mellifera colonies

    Science.gov (United States)

    The prevalence of Tropilaelaps mercedesae and Varroa destructor in concurrently infested A. mellifera colonies in Thailand was monitored. We also assessed the reproductive ability of T. mercedesae and V. destructor in naturally infested brood and in brood cells deliberately infested with both mite g...

  5. Prevalence and reproduction of Tropilaelaps mercedesae and Varroa destructor in concurrently infested Apis mellifera colonies

    Science.gov (United States)

    The prevalence of Tropilaelaps mercedesae and Varroa destructor in concurrently infested A. mellifera colonies in Thailand was monitored. We also assessed the fecundity of T. mercedesae and V. destructor in naturally infested brood and in brood cells deliberately infested with both mite genera. Resu...

  6. Morphological alterations induced by boric acid and fipronil in the midgut of worker honeybee (Apis mellifera L.) larvae : Morphological alterations in the midgut of A. mellifera.

    Science.gov (United States)

    da Silva Cruz, Aline; da Silva-Zacarin, Elaine C M; Bueno, Odair C; Malaspina, Osmar

    2010-04-01

    Morphological alterations, by means of histological and ultrastructural analysis, have been used to determine the effects of boric acid and fipronil on midgut tissues of honeybee worker, Apis mellifera L. larvae. In order to observe possible morphological alterations in the midgut, two groups of bioassays were performed. In the first one, the larvae were chronically treated with different concentrations of boric acid added to the food (1.0, 2.5 and 7.5 mg/g). In the second group, the larvae were fed with diets containing different concentrations of fipronil (0.1 and 1 microg/g) and compared with control groups without these chemical compounds. In the first bioassay, the larvae were collected on day 3 and in the second bioassay on day 4, when the mortality rate obtained in the toxicological bioassay was not very high. The larval midguts were removed and processed for morphological analyses using a light and transmission electron microscopy. We observed cytoplasmic vacuolizations, with the absence of autophagic vacuoles, and chromatinic compacting in most of the cells in the groups treated with pesticides. The morphological alterations were far greater in the larvae treated with boric acid than in the larvae treated with fipronil. Our data suggest that the midgut cell death observed was in response to boric acid and fipronil action. This study significantly improves the understanding of the toxicological effect of these insecticides from the ecotoxicological perspective.

  7. Analysis of peptides in the brain and corpora cardiaca-corpora allata of the honey bee, Apis mellifera using MALDI-TOF mass spectrometry.

    Science.gov (United States)

    Audsley, Neil; Weaver, Robert J

    2006-03-01

    The neuropeptide profiles and diversity of the brain and retrocerebral organs (corpora cardiaca-corpora allata; CC-CA) of adult workers of the honey bee Apis mellifera carnica (dark European strain) were investigated using a combination of HPLC and matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) with post-source decay (PSD) and collision-induced dissociation (CID) fragmentation. Using evidence from genomic sources, including BLAST searches of the honey bee genome, comparisons with other species and de novo sequencing by PSD and CID fragmentation, a total of 13 mass ions could be assigned to peptides predicted from the A. mellifera genomic database. Peptides positively identified were A. mellifera tachykinin-related peptides 3 and 4 (APMGFQGMRa; APMGFYGTRa) and leucomyosuppressin (pEDVDHVFLRFa). Peptides tentatively identified were A. mellifera tachykinin-related peptides 2 and 5 (ALMGFQGVRa; ARMGFHGMRa), A. mellifera allatostatins 2, 3 and 4 (GRDYSFGLa; RQYSFGLa; GRQPYSFGLa), A1-SIFamide (AYRKPPFNGSIFa), Q1-leucomyosuppressin (QDVDHVFLRFa) and A. mellifera pyrokinins PK 1, PK 2 and Q1-PK 2 (TSQDITSGMWFGPRLa; pEITQFTPRLa; QITQFTPRLa). Allatostatins, tachykinin-related peptides and A1-SIFamide were not detected in CC-CA extract, which appears to contain predominantly leucomyosuppressin, Q1-leucomyosuppressin, PK 1, PK 2, Q1-PK 2 and some unidentified masses. No ion signal was detected that would correspond to the hypertrehalosaemic peptide (=Manse-AKH), which has been isolated from the Italian race of the honey bee (A. mellifera ligustica), but not from A. mellifera carnica.

  8. Risk assessment of various insecticides used for management of Asian citrus psyllid, Diaphorina citri in Florida citrus, against honey bee, Apis mellifera.

    Science.gov (United States)

    Chen, Xue Dong; Gill, Torrence A; Pelz-Stelinski, Kirsten S; Stelinski, Lukasz L

    2017-01-23

    The Asian citrus psyllid, Diaphorina citri Kuwayama (Hemiptera: Liviidae), is a major pest of citrus trees worldwide. A wide variety of insecticides are used to manage D. citri populations within citrus groves in Florida. However, in areas shared by citrus growers and beekeepers the use of insecticides may increase the risks of Apis mellifera  L. (Hymenoptera: Apidae) loss and contaminated honey. The objective of this research was to determine the environmental toxicity of insecticides, spanning five different modes of action used to control D. citri, to A. mellifera. The insecticides investigated were imidacloprid, fenpropathrin, dimethoate, spinetoram and diflubenzuron. In laboratory experiments, LD50 values were determined and ranged from 0.10 to 0.53 ng/μl for imidacloprid, fenpropathrin, dimethoate and spinetoram. LD50 values for diflubenzuron were >1000 ng/μl. Also, a hazard quotient was determined and ranged from 1130.43 to 10893.27 for imidacloprid, fenpropathrin, dimethoate, and spinetoram. This quotient was mellifera 3 and 7 days after application. Spinetoram and imidacloprid were moderately toxic to A. mellifera at the recommended rates for D. citri. Diflubenzuron was not toxic to A. mellifera in the field as compared with untreated control plots. Phenoloxidase (PO) activity of A. mellifera was higher than in untreated controls when A. mellifera were exposed to 14 days old residues. The results indicate that diflubenzuron may be safe to apply in citrus when A. mellifera are foraging, while most insecticides used for management of D. citri in citrus are likely hazardous under various exposure scenarios.

  9. Distribution, epidemiological characteristics and control methods of the pathogen Nosema ceranae Fries in honey bees Apis mellifera L. (Hymenoptera, Apidae

    Directory of Open Access Journals (Sweden)

    X Araneda

    2015-01-01

    Full Text Available Up until a few years ago, the microsporidian parasite Nosema ceranae was considered to be a pathogen of Apis cerana exclusively; however, only recently it has shown to be very virulent to Apis mellifera. Therefore, it has been named as apathogenic agent active in the disappearance of honey bee colonies globally, infecting all members of the colony. Honey bees are widely used for pollination and honey production, hence their importance in agriculture. They also play an important ecological role in plant pollination: a third of human food crops are pollinated by bees as well as many plants consumed by other animals. In this context, the object of this review is to summarise the information published by different authors on the geographical distribution and the morphological and genetic characteristics of this parasite, the symptomatology of the disease and the control methods used in those countries where N. ceranae is present, in order to identify better tools to confront this new bee disease.

  10. Evaluación de la diversidad fenotípica y genotípica de cepas de Paenibacillus larvae patógenas de abejas melíferas e investigación de los mecanismos moleculares de la resistencia a tetraciclina

    OpenAIRE

    Alippi, Adriana Mónica

    2015-01-01

    La enfermedad más grave de la etapa larval de las abejas (Apis mellifera L.) es la loque americana, causada por la bacteria esporulada Gram (+) Paenibacillus larvae. Es muy contagiosa y posee problemas únicos para su prevención y control debido a que las esporas bacterianas mantienen su capacidad infectiva durante tiempo prolongado y sobreviven bajo condiciones ambientales adversas, no existiendo brotes estacionales ya que se manifiesta en cualquier época del año con la condición que haya cr...

  11. Evaluación de la diversidad fenotípica y genotípica de cepas de Paenibacillus larvae patógenas de abejas melíferas e investigación de los mecanismos moleculares de la resistencia a tetraciclina

    OpenAIRE

    Alippi, Adriana Mónica

    2015-01-01

    La enfermedad más grave de la etapa larval de las abejas (Apis mellifera L.) es la loque americana, causada por la bacteria esporulada Gram (+) Paenibacillus larvae. Es muy contagiosa y posee problemas únicos para su prevención y control debido a que las esporas bacterianas mantienen su capacidad infectiva durante tiempo prolongado y sobreviven bajo condiciones ambientales adversas, no existiendo brotes estacionales ya que se manifiesta en cualquier época del año con la condición que haya cr...

  12. Ties between ageing plasticity and reproductive physiology in honey bees (Apis mellifera) reveal a positive relation between fecundity and longevity as consequence of advanced social evolution.

    Science.gov (United States)

    Rueppell, Olav; Aumer, Denise; Moritz, Robin Fa

    2016-08-01

    Honey bees (Apis mellifera) are the best studied model of ageing among the social insects. As in other social insects, the reproductive queen far outlives her non-reproductive workers despite developing from the same genome in the same colony environment. Thus, the different social roles of the two female castes are critical for the profound phenotypic plasticity. In several special cases, such as the reproductive workers of Apis mellifera capensis, within-caste plasticity enables further studies of the fecundity-longevity syndrome in honey bees. At present, molecular evidence suggests that a reorganization of physiological control pathways may facilitate longevity of reproductive individuals. However, the social role and social environment of the different colony members are also very important and one of the key future questions is how much social facilitation versus internal regulation is responsible for the positive association between fecundity and longevity in honey bees.

  13. In-Depth N-Glycosylation Reveals Species-Specific Modifications and Functions of the Royal Jelly Protein from Western (Apis mellifera) and Eastern Honeybees (Apis cerana).

    Science.gov (United States)

    Feng, Mao; Fang, Yu; Han, Bin; Xu, Xiang; Fan, Pei; Hao, Yue; Qi, Yuping; Hu, Han; Huo, Xinmei; Meng, Lifeng; Wu, Bin; Li, Jianke

    2015-12-04

    Royal jelly (RJ), secreted by honeybee workers, plays diverse roles as nutrients and defense agents for honeybee biology and human health. Despite being reported to be glycoproteins, the glycosylation characterization and functionality of RJ proteins in different honeybee species are largely unknown. An in-depth N-glycoproteome analysis and functional assay of RJ produced by Apis mellifera lingustica (Aml) and Apis cerana cerana (Acc) were conducted. RJ produced by Aml yielded 80 nonredundant N-glycoproteins carrying 190 glycosites, of which 23 novel proteins harboring 35 glycosites were identified. For Acc, all 43 proteins glycosylated at 138 glycosites were reported for the first time. Proteins with distinct N-glycoproteomic characteristics in terms of glycoprotein species, number of N-glycosylated sites, glycosylation motif, abundance level of glycoproteins, and N-glycosites were observed in this two RJ samples. The fact that the low inhibitory efficiency of N-glycosylated major royal jelly protein 2 (MRJP2) against Paenibacillus larvae (P. larvae) and the absence of antibacterial related glycosylated apidaecin, hymenoptaecin, and peritrophic matrix in the Aml RJ compared to Acc reveal the mechanism for why the Aml larvae are susceptible to P. larvae, the causative agent of a fatal brood disease (American foulbrood, AFB). The observed antihypertension activity of N-glycosylated MRJP1 in two RJ samples and a stronger activity found in Acc than in Aml reveal that specific RJ protein and modification are potentially useful for the treatment of hypertensive disease for humans. Our data gain novel understanding that the western and eastern bees have evolved species-specific strategies of glycosylation to fine-tune protein activity for optimizing molecular function as nutrients and immune agents for the good of honeybee and influence on the health promoting activity for human as well. This serves as a valuable resource for the targeted probing of the biological

  14. Uso da parafina incorporada à cera alveolada em colônias de abelhas Apis mellifera L. africanizadas para produção de mel Paraffin incorporation to beewax foundation in Apis mellifera L. Africanized colonies for honey production

    Directory of Open Access Journals (Sweden)

    Vagner de Alencar Arnaut de Toledo

    2002-04-01

    Full Text Available O objetivo foi avaliar favos construídos a partir de três tratamentos, lâminas de cera alveolada, lâminas de cera alveolada com parafina e parte do quadro sem cera. Foram utilizadas dez colônias de abelhas africanizadas, Apis mellifera L. (Hymenoptera, Apidae existentes na região de Marialva, Estado do Paraná. Foram efetuados mapeamentos da área construída e ocupada com mel, a intervalos de aproximadamente 20 dias. Três quadros, cada um contendo os três tratamentos foram colocados nas posições lateral esquerda, central e lateral direita da melgueira vista por trás da colméia. As abelhas construíram a maior área e ocuparam com mel (p The aim of this paper was the evaluation of combs from three experimental treatments: beeswax foundation, beeswax with paraffin and a gap frame, partially without wax. The experiment was carried out using ten Apis mellifera L. (Hymenoptera, Apidae Africanized honeybee colonies in Marialva - state of Paraná, in the south of Brazil. They were accomplished by mapping areas constructed and occupied with honey, at intervals of approximately 20 days. Three combs, containing, each one, the three treatments were placed at the positions right lateral, central and left lateral of the super observed the hive to the back. The honeybees built the greatest area and filled with honey (p < 0.05 when the comb was introduced in the central position of the hive, compared to other treatments in which differences were also observed (p < 0.05. The position of the wax comb mixed with paraffin produced the smallest area (p < 0.05 occupied with honey compared to the others. Results showed that paraffin mixed with wax comb should be used since the combs are placed in the central position and must be used for production of honey in sections.

  15. Desenvolvimento de núcleos de Apis mellifera alimentados com suplemento aminoácido vitamínico, Promotor L® Development of nuclei Apis mellifera fed with the vitaminic amino acid supplement Promotor L®

    Directory of Open Access Journals (Sweden)

    Guido Laércio Castagnino

    2006-04-01

    Full Text Available Estudou-se o desenvolvimento na área de cria de 14 núcleos com quatro favos a partir da divisão de nove colméias de abelhas Apis mellifera africanizada, distribuídos em dois tratamentos: TPL - núcleos alimentados com açúcar invertido + 3,5ml do suplemento de aminoácido vitamínico (Promotor L®, composto por seis núcleos e o TAI - núcleos alimentados com açúcar invertido, composto por oito núcleos. Os núcleos foram alimentados semanalmente em alimentadores individuais tipo bandeja, e as avaliações realizadas em quatro períodos, totalizando 74 dias Os tratamentos não apresentaram diferença significativa, sendo que, numericamente, o TPL apresentou área de cria inferior ao TAI (233,63 vs. 273,02cm², respectivamente. Quanto aos períodos o quarto período foi superior (PThe development in the area of creates was studied of 14 nuclei with four mass off cells from the division of nine beehives of africanized Apis mellifera honeybees, distributed in two treatments: TPL - nuclei fed with inverted sugar + 3.5ml of the vitaminic amino acid supplement (Promotor L®, composition for six nuclei and TAI - nuclei fed with composed inverted sugar for eight nuclei. The nuclei had been fed weekly in individual feeder's type tray, and the evaluations carried through in four periods, totalizing 74 days. The treatments had not presented significant difference, being that, number the TPL presented area of creates inferior to TAI (233.63 versus. 273.02cm², respectively. How much to the periods the four was superior (P<0.05 to the first and as second, being that the third did not present significant difference (P<0.05 in relation to the others. The use of the TAI was economically more favorable in relation to the TPL in R$0.21 in relation to the cost for production of 1kg of food.

  16. Espectro polínico de amostras de mel de Apis mellifera L., coletadas na Bahia Pollen spectrum of samples of Apis mellifera L., honey collected in Bahia State, Brazil

    Directory of Open Access Journals (Sweden)

    AUGUSTA CAROLINA DE CAMARGO CARMELLO MORETI

    2000-01-01

    Full Text Available O espectro polínico encontrado em amostras de mel provenientes de seis municípios do Estado da Bahia foi analisado com o objetivo de contribuir para o conhecimento da flora visitada por Apis mellifera L. 1758 (Hymenoptera: ApidaeA identificação dos tipos polínicos foi feita por meio de literatura especializada e de informações de campo. Foram encontrados 43 tipos de pólen, sendo consideradas como dominantes as espécies Eucalyptus sp. (Myrtaceae, Mimosa verrucosa Benth. (Mimosaceae, M. scabrella Benth. (Mimosaceae e Bauhinia sp. (Caesalpiniaceae. Os tipos acessórios foram Alternanthera ficoidea R.Br. (Amaranthaceae, tipo Compositae (Asteraceae e Cecropia sp. (Moraceae. Destacou-se a participação de Mimosa sp. (Mimosaceae e de outras espécies silvestres na composição dos méis nos municípios considerados, registrando-se ainda a espécie Eucalyptus sp. (Myrtaceae como uma das principais fontes de alimento das abelhas dessa região.Pollen spectrum found in honey samples from six localities of Bahia State, Brazil, was analyzed with the objective to contribute for the knowledge of the plants used by Apis mellifera L., 1758 (Hymenoptera: Apidae. The identification of the pollen types was made by specialized literature and by field information. Two hundred pollen grains were studied in order to determine the percentage and the occurrence of each type. Forty three pollen types were identified, being considered as the predominant types Eucalyptus sp. (Myrtaceae, Mimosa verrucosa Benth. (Mimosaceae, M. scabrella Benth. (Mimosaceae and Bauhinia sp. (Caesalpiniaceae. The accessory pollen types were Alternanthera ficoidea R.Br. (Amaranthaceae, Compositae type (Asteraceae and Cecropia sp. (Moraceae. It is intense the participation of Mimosa sp. (Mimosaceae and other wild species in the honey composition of the six localities considered. Eucalyptus sp. (Myrtaceae is one of the dominant sources of bee food in some regions of Bahia State.

  17. Toxicological, Biochemical, and Histopathological Analyses Demonstrating That Cry1C and Cry2A Are Not Toxic to Larvae of the Honeybee, Apis mellifera.

    Science.gov (United States)

    Wang, Yuan-Yuan; Li, Yun-He; Huang, Zachary Y; Chen, Xiu-Ping; Romeis, Jörg; Dai, Ping-Li; Peng, Yu-Fa

    2015-07-15

    The honey bee, Apis mellifera, is commonly used as a test species for the regulatory risk assessment of insect-resistant genetically engineered (IRGE) plants. In the current study, a dietary exposure assay was developed, validated, and used to assess the potential toxicity of Cry1C and Cry2A proteins from Bacillus thuringiensis (Bt) to A. mellifera larvae; Cry1C and Cry2A are produced by different IRGE crops. The assay, which uses the soybean trypsin inhibitor (SBTI) as a positive control and bovine serum albumin (BSA) as a negative control, was used to measure the responses of A. mellifera larvae to high concentrations of Cry1C and Cry2A. Survival was reduced and development was delayed when larvae were fed SBTI (1 mg/g diet) but were unaffected when larvae were fed BSA (400 μg/g), Cry1C (50 μg/g), or Cry2A (400 μg/g). The enzymatic activities of A. mellifera larvae were not altered and their midgut brush border membranes (BBMs) were not damaged after being fed with diets containing BSA, Cry1C, or Cry2A; however, enzymatic activities were increased and BBMs were damaged when diets contained SBTI. The study confirms that Cry1C and Cry2A have no acute toxicity to A. mellifera larvae at concentrations >10 times higher than those detected in pollen from Bt plants.

  18. Development of biomarkers of exposure to xenobiotics in the honey bee Apis mellifera: application to the systemic insecticide thiamethoxam.

    Science.gov (United States)

    Badiou-Bénéteau, Alexandra; Carvalho, Stephan M; Brunet, Jean-Luc; Carvalho, Geraldo A; Buleté, Audrey; Giroud, Barbara; Belzunces, Luc P

    2012-08-01

    This study describes the development of acetylcholinesterase (AChE), carboxylesterases (CaE1, CaE2, CaE3), glutathion-S-transferase (GST), alkaline phosphatase (ALP) and catalase (CAT) as enzyme biomarkers of exposure to xenobiotics such as thiamethoxam in the honey bee Apis mellifera. Extraction efficiency, stability under freezing and biological variability were studied. The extraction procedure achieved good recovery rates in one extraction step and ranged from 65 percent (AChE) to 97.3 percent (GST). Most of the enzymes were stable at -20°C, except ALP that displayed a slight but progressive decrease in its activity. Modifications of enzyme activities were considered after exposure to thiamethoxam at the lethal dose 50 percent (LD(50), 51.16 ng bee(-1)) and two sublethal doses, LD(50)/10 (5.12 ng bee(-1)) and LD(50)/20 (2.56 ng bee(-1)). The biomarker responses revealed that, even at the lowest dose used, exposure to thiamethoxam elicited sublethal effects and modified the activity of CaEs, GST, CAT and ALP. Different patterns of biomarker responses were observed: no response for AChE, an increase for GST and CAT, and differential effects for CaEs isoforms with a decrease in CaE1 and CaE3 and an increase in CaE2. ALP and CaE3 displayed contrasting variations but only at 2.56 ng bee(-1). We consider that this profile of biomarker variation could represent a useful fingerprint to characterise exposure to thiamethoxam in the honey bee A. mellifera. This battery of honey bee biomarkers might be a promising option to biomonitor the health of aerial and terrestrial ecosystems and to generate valuable information on the modes of action of pesticides.

  19. Evaluación ecotoxicológica del FitoMas-H en lombriz de tierra y abejas

    Directory of Open Access Journals (Sweden)

    Axel Mancebo

    2008-01-01

    Full Text Available Aunque constituye una necesidad el aumento de las producciones agrícolas, y actualmente se estimula la disminución del uso de productos químicos, mediante su sustitución por fertilizantes orgánicos y biológicos, es preciso evaluar el impacto de éstos sobre las especies del ecosistema en el cual se liberan. Con el objetivo de realizar la evaluación ecotoxicológica en sistemas terrestres del FitoMas-H, se realizaron los ensayos de toxicidad aguda en lombriz de tierra (Eisenia foetida y de toxicidad aguda por contacto en abejas (Apis mellifera. Se evaluó una concentración de 1000 mg de FitoMas-H /Kg de suelo artificial en el primer caso, mientras en el ensayo con abejas se utilizó una dosis de 100 g de FitoMas - H/animal. El ensayo en lombrices culminó con un 97,5 % de supervivencia en el grupo Tratado, sin diferencias significativas en la mortalidad y la variación de biomasa del grupo Control contra el Tratado. Por otra parte, el estudio por contacto en abejas terminó con una supervivencia del 95.45%, sin diferencias entre la mortalidad del grupo Control contra el Tratado. En ambos casos, se pudo concluir que la exposición al FitoMas-H no produce efectos tóxicos en los invertebrados terrestres utilizados.

  20. Next generation sequencing of Apis mellifera syriaca identifies genes for Varroa resistance and beneficial bee keeping traits.

    Science.gov (United States)

    Haddad, Nizar; Mahmud Batainh, Ahmed; Suleiman Migdadi, Osama; Saini, Deepti; Krishnamurthy, Venkatesh; Parameswaran, Sriram; Alhamuri, Zaid

    2016-08-01

    Apis mellifera syriaca exhibits a high degree of tolerance to pests and pathogens including varroa mites. This native honey bee subspecies of Jordan expresses behavioral adaptations to high temperature and dry seasons typical of the region. However, persistent honey bee imports of commercial breeder lines are endangering local honey bee population. This study reports the use of next-generation sequencing (NGS) technology to study the A. m. syriaca genome and to identify genetic factors possibly contributing toward mite resistance and other favorable traits. We obtained a total of 46.2 million raw reads by applying the NGS to sequence A. m. syriaca and used extensive bioinformatics approach to identify several candidate genes for Varroa mite resistance, behavioral and immune responses characteristic for these bees. As a part of characterizing the functional regulation of molecular genetic pathway, we have mapped the pathway genes potentially involved using information from Drosophila melanogaster and present possible functional changes implicated in responses to Varroa destructor mite infestation toward this. We performed in-depth functional annotation methods to identify ∼600 candidates that are relevant, genes involved in pathways such as microbial recognition and phagocytosis, peptidoglycan recognition protein family, Gram negative binding protein family, phagocytosis receptors, serpins, Toll signaling pathway, Imd pathway, Tnf, JAK-STAT and MAPK pathway, heamatopioesis and cellular response pathways, antiviral, RNAi pathway, stress factors, etc. were selected. Finally, we have cataloged function-specific polymorphisms between A. mellifera and A. m. syriaca that could give better understanding of varroa mite resistance mechanisms and assist in breeding. We have identified immune related embryonic development (Cactus, Relish, dorsal, Ank2, baz), Varroa hygiene (NorpA2, Zasp, LanA, gasp, impl3) and Varroa resistance (Pug, pcmt, elk, elf3-s10, Dscam2, Dhc64C, gro

  1. Fluctuating asymmetry in Apis mellifera (Hymenoptera: Apidae) as bioindicator of anthropogenic environments.

    Science.gov (United States)

    Nunes, Lorena Andrade; de Araújo, Edilson Divino; Marchini, Luís Carlos

    2015-09-01

    The successful distribution of A. mellifera is due to their ability to adjust to seasonal variations, considerable control over their internal physical environment and exploration of different resources. However, their populations have experienced different forms and levels of environmental pressure. This research aimed to verify the phenotypic plasticity in both size and shape of wings in A. mellifera using fluctuating asymmetry, based on geometric morphometrics from apiaries located in sites with high and low levels of anthropization. We sampled 16 locations throughout all five geographic regions of Brazil. At each site, samples were collected from 20 beehives installed in apiaries: 10 installed near high anthropogenic environments (Cassilandia - MS, Fortaleza - CE, Maringá - PR, Aquidauana - MS, Rolim de Moura - RO, Riachuelo - SE, Ubiratã - PR and Piracicaba - SP), and 10 in sites with low levels of human disturbance (Cassilândia - MS, Itapiúna CE, União da Vitória - PR, Aquidauana - MS, Rolim de Moura - RO, Pacatuba - SE, Erval Seco - RS, Rio Claro - SP). A sample of 10 individuals was taken in each hive, totaling 200 per location, for a total of 1,600 individuals. We used fluctuating asymmetry (FA) in size and shape of the forewing through geometric morphometrics. The FA analysis was conducted in order to check bilateral differences. The indexes of size and shape were submitted to analysis of variance (ANOVA), where the characters evaluated were used as factors to verify the size and shape differences. The results indicated an asymmetry on the shape of the wing (P mellifera demonstrated that this feature undergoes more variation during ontogeny compared to the variation in size. We concluded that bee samples collected from colonies with higher levels of human disturbance had higher wing-shape asymmetry; the variation of fluctuating asymmetry in the wing shape of honeybees can be used as an indicator of the degree of environmental anthropization.

  2. GENÉTICA DEL COMPORTAMIENTO: ABEJAS, un ejemplo.

    Directory of Open Access Journals (Sweden)

    Nates Parra Guiomar

    2011-12-01

    Full Text Available El concepto de que el comportamiento de los animales esta determinado genéticamente no es nuevo si se considera que ya Darwin en su famosa obra El origen del hombre, en 1871 mencionaba que… “los rasgos del temperamento de los animales son heredados”. Pero solo hasta hace casi 50 años fue que la genética del comportamiento surgió como una especialidad importante dentro de la Genética; desde esa época muchos son los avances que refuerzan la idea generalmente aceptada de que todos los patrones comportamentales están determinados por componentes tanto ambientales como genotípicos. El análisis del control genético de un determinado comportamiento es complicado por el hecho de que las acciones primarias de un gene pueden afectar: 1. Los órganos sensoriales, cambiando la información recibida. 2. Sistemas intermedios (nervioso, endocrino, alterando capacidades de coordinación y percepción y 3. Órganos efectores, alterando la respuesta. Las mutaciones inducidas, que bloquean o alteran los patrones normales de comportamiento, proporcionan una herramienta muy útil para entender como los genes influencian la conducta (Hall et al, 1982. Al respecto hay muchos ejemplos, cuyo conocimiento ha servido para controlar o seleccionar caracteres indeseables o deseables (respectivamente, importantes para el mejoramiento en algunas especies animales. Por ejemplo, con la llegada de la abeja africanizada a América del Sur (Brasil,1958 (Kerr, 1967 llegaron también varios inconvenientes generados por el fuerte comportamiento defensivo de la nueva subespecie introducida (Apis mellifera scutellata , lo cual hizo que se iniciaran programas de investigación tendientes a conocer la biología y el comportamiento de la nueva especie introducida, de manera que se pudieran establecer cepas de abejas menos defensivas, conjuntamente con otras características como productividad o comportamiento higiénico. El establecimiento de las bases

  3. 西方蜜蜂(Apis mellifera L.)sRNA的富集与文库检测%Separation and Enrichment of sRNAs from Honeybee(Apis mellifera L.)and Its Quality Detection by Library Construction

    Institute of Scientific and Technical Information of China (English)

    陈璇; 俞晓敏; 郑火青; 蔡亦梅; 胡福良

    2009-01-01

    [目的]提取及扩增蜜蜂(Apis mellifera L)sRNA,并构建文库检测富集结果是否满足高通量测序研究要求.[方法]取蜜蜂3个级型不同发育阶段个体作为材料,分别提取总RNA后混合,从中分离出15~40nt的sRNA,反转成cDNA后构建文库,进行蓝白斑筛选.挑选288个单克隆进行测序,对测序结果进行分析.[结果]有效序列为214条,插入的cDNA片段大小范围为15~39 bp.其中,sme-miR-71c miRNA 65条,ncRNA(包括tm-RNA,intron-ghI、5.8s rRNA)5条,tRNA 28条,siRNA及其他sRNA 33条,CDS 1条,未知序列82条.[结论]本实验采用的方法能有效富集蜜蜂sRNA,能够满足高通量测序从中识别出蜜蜂miRNA的研究.

  4. APIs

    CERN Document Server

    Jacobson, Daniel; Woods, Dan

    2011-01-01

    Programmers used to be the only people excited about APIs, but now a growing number of companies see them as a hot new product channel. This concise guide describes the tremendous business potential of APIs, and demonstrates how you can use them to provide valuable services to clients, partners, or the public via the Internet. You'll learn all the steps necessary for building a cohesive API business strategy from experts in the trenches. Facebook and Twitter APIs continue to be extremely successful, and many other companies find that API demand greatly exceeds website traffic. This book offe

  5. MEMORIA Y APRENDIZAJE EN LA ESCOGENCIA FLORAL DE LAS ABEJAS Memory And Learning In Bees' Floral Choices

    Directory of Open Access Journals (Sweden)

    MARISOL AMAYA MÁRQUEZ

    Full Text Available Los polinizadores altamente especializados en su dieta, no hacen escogencias florales, ellos visitan un recurso específico siguiendo el dictado de la información almacenada en sus genes. En contraste, para la abeja social Apis mellifera una escogencia floral implica, la toma de una decisión, usualmente con criterio económico, basada en información aprendida y almacenada en alguna forma de memoria. Aunque existen numerosos estudios y modelos sobre la escogencia floral en abejas, la gran mayoría de éstos, han derivado sus conclusiones a partir de condiciones temporalmente fijas de la interacción. Muy pocos estudios han abordado la dinámica propia del contexto ecológico, en el cual el mercado floral de las abejas cambia con las estaciones del año y con los patrones diarios de antesis floral. Este cambio en la disponibilidad de especies florales enfrenta a los polinizadores, a realizar escogencias secuenciales acerca del alimento a explotar. En este trabajo abordo el tema del forrajeo secuencial en parches florales heterospecíficos, enfocándome en el uso que la abeja melífera hace de la información previamente aprendida en un contexto, cuando se enfrenta a la explotación de alimento en un contexto ecológicamente diferente. He realizado experimentos sobre escogencia floral simulando las condiciones de cambio del paisaje floral, exponiendo abejas individuales de A. mellifera a decidir sobre cuales especies forrajear en cada parche. Los resultados indican que la abeja invierte en procesos de aprendizaje en un muestreo inicial, pero una vez almacenada la información, utiliza una pieza de la información previamente aprendida (color para explotar parches florales heteroespecíficos siguiendo una imagen de búsqueda de color. En esta revisión discuto situaciones biológicas de la interacción planta-abeja, las cuales apoyan la idea que en la naturaleza el uso de imágenes de búsqueda de color por parte de abejas sociales puede ser m

  6. Evaluation of the distribution and impacts of parasites, pathogens, and pesticides on honey bee (Apis mellifera populations in East Africa.

    Directory of Open Access Journals (Sweden)

    Elliud Muli

    Full Text Available In East Africa, honey bees (Apis mellifera provide critical pollination services and income for small-holder farmers and rural families. While honey bee populations in North America and Europe are in decline, little is known about the status of honey bee populations in Africa. We initiated a nationwide survey encompassing 24 locations across Kenya in 2010 to evaluate the numbers and sizes of honey bee colonies, assess the presence of parasites (Varroa mites and Nosema microsporidia and viruses, identify and quantify pesticide contaminants in hives, and assay for levels of hygienic behavior. Varroa mites were present throughout Kenya, except in the remote north. Levels of Varroa were positively correlated with elevation, suggesting that environmental factors may play a role in honey bee host-parasite interactions. Levels of Varroa were negatively correlated with levels of hygienic behavior: however, while Varroa infestation dramatically reduces honey bee colony survival in the US and Europe, in Kenya Varroa presence alone does not appear to impact colony size. Nosema apis was found at three sites along the coast and one interior site. Only a small number of pesticides at low concentrations were found. Of the seven common US/European honey bee viruses, only three were identified but, like Varroa, were absent from northern Kenya. The number of viruses present was positively correlated with Varroa levels, but was not correlated with colony size or hygienic behavior. Our results suggest that Varroa, the three viruses, and Nosema have been relatively recently introduced into Kenya, but these factors do not yet appear to be impacting Kenyan bee populations. Thus chemical control for Varroa and Nosema are not necessary for Kenyan bees at this time. This study provides baseline data for future analyses of the possible mechanisms underlying resistance to and the long-term impacts of these factors on African bee populations.

  7. Evaluation of the distribution and impacts of parasites, pathogens, and pesticides on honey bee (Apis mellifera) populations in East Africa.

    Science.gov (United States)

    Muli, Elliud; Patch, Harland; Frazier, Maryann; Frazier, James; Torto, Baldwyn; Baumgarten, Tracey; Kilonzo, Joseph; Kimani, James Ng'ang'a; Mumoki, Fiona; Masiga, Daniel; Tumlinson, James; Grozinger, Christina

    2014-01-01

    In East Africa, honey bees (Apis mellifera) provide critical pollination services and income for small-holder farmers and rural families. While honey bee populations in North America and Europe are in decline, little is known about the status of honey bee populations in Africa. We initiated a nationwide survey encompassing 24 locations across Kenya in 2010 to evaluate the numbers and sizes of honey bee colonies, assess the presence of parasites (Varroa mites and Nosema microsporidia) and viruses, identify and quantify pesticide contaminants in hives, and assay for levels of hygienic behavior. Varroa mites were present throughout Kenya, except in the remote north. Levels of Varroa were positively correlated with elevation, suggesting that environmental factors may play a role in honey bee host-parasite interactions. Levels of Varroa were negatively correlated with levels of hygienic behavior: however, while Varroa infestation dramatically reduces honey bee colony survival in the US and Europe, in Kenya Varroa presence alone does not appear to impact colony size. Nosema apis was found at three sites along the coast and one interior site. Only a small number of pesticides at low concentrations were found. Of the seven common US/European honey bee viruses, only three were identified but, like Varroa, were absent from northern Kenya. The number of viruses present was positively correlated with Varroa levels, but was not correlated with colony size or hygienic behavior. Our results suggest that Varroa, the three viruses, and Nosema have been relatively recently introduced into Kenya, but these factors do not yet appear to be impacting Kenyan bee populations. Thus chemical control for Varroa and Nosema are not necessary for Kenyan bees at this time. This study provides baseline data for future analyses of the possible mechanisms underlying resistance to and the long-term impacts of these factors on African bee populations.

  8. Expression analysis of putative vitellogenin and lipophorin receptors in honey bee (Apis mellifera L.) queens and workers.

    Science.gov (United States)

    Guidugli-Lazzarini, Karina Rosa; do Nascimento, Adriana Mendes; Tanaka, Erica Donato; Piulachs, Maria Dolors; Hartfelder, Klaus; Bitondi, Márcia Gentile; Simões, Zilá Luz Paulino

    2008-07-01

    Two members of the low density lipoprotein receptor (LDLR) family were identified as putative orthologs for a vitellogenin receptor (Amvgr) and a lipophorin receptor (Amlpr) in the Apis mellifera genome. Both receptor sequences have the structural motifs characteristic of LDLR family members and show a high degree of similarity with sequences of other insects. RT-PCR analysis of Amvgr and Amlpr expression detected the presence of both transcripts in different tissues of adult female (ovary, fat body, midgut, head and specifically hypopharyngeal gland), as well as in embryos. In the head RNA samples we found two variant forms of AmLpR: a full length one and a shorter one lacking 29 amino acids in the O-linked sugar domain. In ovaries the expression levels of the two honey bee LDLR members showed opposing trends: whereas Amvgr expression was upregulated as the ovaries became activated, Amlpr transcript levels gradually declined. In situ hybridization analysis performed on ovaries detected Amvgr mRNA exclusively in germ line cells and corroborated the qPCR results showing an increase in Amvgr gene expression concomitant with follicle growth.

  9. The Effect of Prebiotic and Probiotic Feed Supplementation on the Wax Glands of Worker Bees (Apis Mellifera

    Directory of Open Access Journals (Sweden)

    Silvia Pătruică

    2012-10-01

    Full Text Available This paper presents the effects of acidifying substances (lactic acid or acetic acid, Enterobiotics products(Lactobacillus acidophilus LA-14 and Bifidobacterium lactis BI-04 and Enterolactis Plus (Lactobacillus casei onthe wax glands of worker bees. The research was conducted in Timis County, Romania, between March 25 and April20, 2011, on 110 colonies of bees (Apis mellifera carpatica, allocated to 11 experimental treatment groups. Coloniesin the experimental groups were given three weekly feeds of sugar syrup supplemented with acidifying substances(lactic acid or cider vinegar and/or probiotic products (Enterobiotics or Enterolactis Plus. Three weeks after theadministration of the experimental diets, 10 worker bees from each treatment group were sampled for histologicalexamination of their wax glands. Gland development was shown to be influenced by administration of prebioticand/or probiotic supplements. Wax gland cell sizes ranged from 25.1 microns for the control group to between 27.8and 31.8 microns in the group fed with acidifying substances and between 26.9 and 29.2 microns in bees fed withprobiotic products. Bees supplemented with both lactic acid and probiotic product (group LE9 and LE10 showedmean wax cell sizes of 31.8 microns.

  10. Potential exposure of bees, Apis mellifera L., to particulate matter and pesticides derived from seed dressing during maize sowing.

    Science.gov (United States)

    Pochi, Daniele; Biocca, Marcello; Fanigliulo, Roberto; Pulcini, Patrizio; Conte, Elisa

    2012-08-01

    This paper assessed the potential exposure of bees (Apis mellifera L.) to pesticides during maize (Zea mays L.) sowing with pneumatic drills. Data were derived from tests carried out in field tests, comparing two configurations of a pneumatic precision drill: conventional drill; drill with air deflectors. In addition, static tests simulating the sowing under controlled conditions, were performed on the drill equipped with an innovative system developed at CRA-ING. During the field tests, the concentrations in the air of the active ingredients of four insecticides used in maize seed dressing (imidacloprid, clothianidin, thiamethoxam and fipronil) were recorded. The concentrations of active ingredients in the air were used for assessing the quantities of active ingredients that a bee might intercept as it flies in a sort of virtual tunnel, the dimensions of which were dependent upon the bee body cross-section and the length of flight. The results of the field tests show that the air deflectors were not completely effective in reducing the amount of active ingredients dispersed in the air. The results of the static tests with drill equipped with the prototype indicated reductions of the active ingredient air concentrations ranging from 72 % up to 95 %, with reference to the conventional drill. Such ratios were applied to the amounts of active ingredients intercepted by the bees in the virtual tunnel contributing to a consistent reduction of the probability that sub-lethal effects can occur.

  11. Effect of Olfactory Stimulus on the Flight Course of a Honeybee, Apis mellifera, in a Wind Tunnel

    Directory of Open Access Journals (Sweden)

    Hidetoshi Ikeno

    2013-12-01

    Full Text Available It is known that the honeybee, Apis mellifera, uses olfactory stimulus as important information for orienting to food sources. Several studies on olfactory-induced orientation flight have been conducted in wind tunnels and in the field. From these studies, optical sensing is used as the main information with the addition of olfactory signals and the navigational course followed by these sensory information. However, it is not clear how olfactory information is reflected in the navigation of flight. In this study, we analyzed the detailed properties of flight when oriented to an odor source in a wind tunnel. We recorded flying bees with a video camera to analyze the flight area, speed, angular velocity and trajectory. After bees were trained to be attracted to a feeder, the flight trajectories with or without the olfactory stimulus located upwind of the feeder were compared. The results showed that honeybees flew back and forth in the proximity of the odor source, and the search range corresponded approximately to the odor spread area. It was also shown that the angular velocity was different inside and outside the odor spread area, and trajectories tended to be bent or curved just outside the area.

  12. DETERMINING THE ACUTE TOXIC EFFECTS OF POLY(VINYLFERROCENIUM SUPPORTED PLATINUM NANOPARTICLE (PT/PVF+ NPS ON APIS MELLIFERA

    Directory of Open Access Journals (Sweden)

    Yeşim Dağlıoğlu

    2016-12-01

    Full Text Available The use of engineering nanomaterials on a large scale along with their production, and their potential effects on the environment and on human health as well as their environmental emission have increased these concerns. For this reason, nanoparticles which are released into the environment are necessary determine the toxicity by using indicator organisms. With this study, it was aimed that the acute toxic effects of Polyvinylferrocene (PVF+- supported platinum (Pt nanoparticle (Pt/PVF+ NPs, Poly(vinylferrocenium (PVF+ and K2PtCl4 be evaluted comparatively by using the honey bees (Apis Mellifera. LC50 values for 48 and 96 hours of these substances respectively; 713.290 ve 6.899 mg/l for K2PtCl4; 12458374.000 ve 178.262 mg/l for Pt/PVF+ NPs and 148.153 ve 0.344 mg/l for PVF+. When we look at this value, the toxic effect for all three substance had increased on a serious level, depending on the exposure time.

  13. Moving without a purpose: an experimental study of swarm guidance in the Western honey bee, Apis mellifera.

    Science.gov (United States)

    Makinson, James C; Beekman, Madeleine

    2014-06-01

    During reproductive swarming, honey bee scouts perform two very important functions. Firstly, they find new nesting locations and return to the swarm cluster to communicate their discoveries. Secondly, once the swarm is ready to depart, informed scout bees act as guides, leading the swarm to its final destination. We have previously hypothesised that the two processes, selecting a new nest site and swarm guidance, are tightly linked in honey bees. When swarms can be laissez faire about where they nest, reaching directional consensus prior to lift off seems unnecessary. If, in contrast, it is essential that the swarm reaches a precise location, either directional consensus must be near unanimous prior to swarm departure or only a select subgroup of the scouts guide the swarm. Here, we tested experimentally whether directional consensus is necessary for the successful guidance of swarms of the Western honey bee Apis mellifera by forcing swarms into the air prior to the completion of the decision-making process. Our results show that swarms were unable to guide themselves prior to the swarm reaching the pre-flight buzzing phase of the decision-making process, even when directional consensus was high. We therefore suggest that not all scouts involved in the decision-making process attempt to guide the swarm.

  14. An assessment of fixed interval timing in free-flying honey bees (Apis mellifera ligustica: an analysis of individual performance.

    Directory of Open Access Journals (Sweden)

    David Philip Arthur Craig

    Full Text Available Interval timing is a key element of foraging theory, models of predator avoidance, and competitive interactions. Although interval timing is well documented in vertebrate species, it is virtually unstudied in invertebrates. In the present experiment, we used free-flying honey bees (Apis mellifera ligustica as a model for timing behaviors. Subjects were trained to enter a hole in an automated artificial flower to receive a nectar reinforcer (i.e. reward. Responses were continuously reinforced prior to exposure to either a fixed interval (FI 15-sec, FI 30-sec, FI 60-sec, or FI 120-sec reinforcement schedule. We measured response rate and post-reinforcement pause within each fixed interval trial between reinforcers. Honey bees responded at higher frequencies earlier in the fixed interval suggesting subject responding did not come under traditional forms of temporal control. Response rates were lower during FI conditions compared to performance on continuous reinforcement schedules, and responding was more resistant to extinction when previously reinforced on FI schedules. However, no "scalloped" or "break-and-run" patterns of group or individual responses reinforced on FI schedules were observed; no traditional evidence of temporal control was found. Finally, longer FI schedules eventually caused all subjects to cease returning to the operant chamber indicating subjects did not tolerate the longer FI schedules.

  15. Effect of Olfactory Stimulus on the Flight Course of a Honeybee, Apis mellifera, in a Wind Tunnel.

    Science.gov (United States)

    Ikeno, Hidetoshi; Akamatsu, Tadaaki; Hasegawa, Yuji; Ai, Hiroyuki

    2013-12-31

    It is known that the honeybee, Apis mellifera, uses olfactory stimulus as important information for orienting to food sources. Several studies on olfactory-induced orientation flight have been conducted in wind tunnels and in the field. From these studies, optical sensing is used as the main information with the addition of olfactory signals and the navigational course followed by these sensory information. However, it is not clear how olfactory information is reflected in the navigation of flight. In this study, we analyzed the detailed properties of flight when oriented to an odor source in a wind tunnel. We recorded flying bees with a video camera to analyze the flight area, speed, angular velocity and trajectory. After bees were trained to be attracted to a feeder, the flight trajectories with or without the olfactory stimulus located upwind of the feeder were compared. The results showed that honeybees flew back and forth in the proximity of the odor source, and the search range corresponded approximately to the odor spread area. It was also shown that the angular velocity was different inside and outside the odor spread area, and trajectories tended to be bent or curved just outside the area.

  16. Side-effects of thiamethoxam on the brain andmidgut of the africanized honeybee Apis mellifera (Hymenopptera: Apidae).

    Science.gov (United States)

    Oliveira, Regiane Alves; Roat, Thaisa Cristina; Carvalho, Stephan Malfitano; Malaspina, Osmar

    2014-10-01

    The development of agricultural activities coincides with the increased use of pesticides to control pests, which can also be harmful to nontarget insects such as bees. Thus, the goal of this work was assess the toxic effects of thiamethoxam on newly emerged worker bees of Apis mellifera (africanized honeybee-AHB). Initially, we determined that the lethal concentration 50 (LC50 ) of thiamethoxam was 4.28 ng a.i./μL of diet. To determine the lethal time 50 (LT50 ), a survival assay was conducted using diets containing sublethal doses of thiamethoxam equal to 1/10 and 1/100 of the LC50. The group of bees exposed to 1/10 of the LC50 had a 41.2% reduction of lifespan. When AHB samples were analyzed by morphological technique we found the presence of condensed cells in the mushroom bodies and optical lobes in exposed honeybees. Through Xylidine Ponceau technique, we found cells which stained more intensely in groups exposed to thiamethoxam. The digestive and regenerative cells of the midgut from exposed bees also showed morphological and histochemical alterations, like cytoplasm vacuolization, increased apocrine secretion and increased cell elimination. Thus, intoxication with a sublethal doses of thiamethoxam can cause impairment in the brain and midgut of AHB and contribute to the honeybee lifespan reduction.

  17. Analysis of moisture content, acidity and contamination by yeast and molds in Apis mellifera L. honey from central Brazil

    Directory of Open Access Journals (Sweden)

    Karla Rubia Ananias

    2013-09-01

    Full Text Available The development of mold of environmental origin in honey affects its quality and leads to its deterioration, so yeasts and molds counts have been used as an important indicator of hygiene levels during its processing, transportation and storage. The aim of this study was to evaluate the levels of yeasts and molds contamination and their correlation with moisture and acidity levels in Apis mellifera L. honey from central Brazil. In 20% of the samples, the yeasts and molds counts exceeded the limit established by legislation for the marketing of honey in the MERCOSUR, while 42.8% and 5.7% presented above-standard acidity and moisture levels, respectively. Although samples showed yeasts and molds counts over 1.0 x 10² UFC.g-1, there was no correlation between moisture content and the number of microorganisms, since, in part of the samples with above-standard counts, the moisture level was below 20%. In some samples the acidity level was higher than that established by legislation, but only one sample presented a yeasts and molds count above the limit established by MERCOSUR, which would suggest the influence of the floral source on this parameter. In general, of the 35 samples analyzed, the quality was considered inadequate in 45.7% of cases.

  18. Mating frequencies of honey bee queens (Apis mellifera L. in a population of feral colonies in the Northeastern United States.

    Directory of Open Access Journals (Sweden)

    David R Tarpy

    Full Text Available Across their introduced range in North America, populations of feral honey bee (Apis mellifera L. colonies have supposedly declined in recent decades as a result of exotic parasites, most notably the ectoparasitic mite Varroa destructor. Nonetheless, recent studies have documented several wild populations of colonies that have persisted. The extreme polyandry of honey bee queens-and the increased intracolony genetic diversity it confers-has been attributed, in part, to improved disease resistance and may be a factor in the survival of these populations of feral colonies. We estimated the mating frequencies of queens in feral colonies in the Arnot Forest in New York State to determine if the level of polyandry of these queens is especially high and so might contribute to their survival success. We genotyped the worker offspring from 10 feral colonies in the Arnot Forest of upstate New York, as well as those from 20 managed colonies closest to this forest. We found no significant differences in mean mating frequency between the feral and managed queens, suggesting that queens in the remote, low-density population of colonies in the Arnot Forest are neither mate-limited nor adapted to mate at an especially high frequency. These findings support the hypothesis that the hyperpolyandry of honey bees has been shaped on an evolutionary timescale rather than on an ecological one.

  19. Expression of the Prophenoloxidase Gene and Phenoloxidase Activity, During the Development of Apis Mellifera Brood Infected with Varroa Destructor

    Directory of Open Access Journals (Sweden)

    Zaobidna Ewa A.

    2015-12-01

    Full Text Available The pathogenesis of varroasis has not been fully explained despite intensive research. Earlier studies suggested that parasitic infections caused by Varroa destructor mites were accompanied by immunosuppression in the host organism. The objective of this study was to analyse the influence of varroasis on one of the immune pathway in Apis mellifera measured by the expression of the prophenoloxidase (proPO gene and the enzymatic activity of this gene’s product, phenoloxidase (EC 1.14.18.1. An evaluation was done of five developmental stages of honey bee workers and drones. The relative expression of proPO decreased in infected individuals. The only exceptions were worker prepupae (PP and drone pupae with brown eyes and dark brown thorax (P5 where propo gene expression was 1.8-fold and 1.5-fold higher, respectively, than in the control. Phenoloxidase (PO activity was 2.8-fold higher in infected pp workers and 2-fold higher in p5 drones in comparison with uninfected bees. Phenoloxidase activity was reduced in the remaining developmental stages of infected workers and drones. The relative expression of proPO was positively correlated with the relative PO activity in both workers (r = 0.988 and drones (r = 0.996. The results of the study indicate that V. destructor significantly influences the phenoloxidase-dependent immune pathway in honey bees.

  20. New insights into honey bee (Apis mellifera pheromone communication. Is the queen mandibular pheromone alone in colony regulation?

    Directory of Open Access Journals (Sweden)

    Plettner Erika

    2010-06-01

    Full Text Available Abstract Background In social insects, the queen is essential to the functioning and homeostasis of the colony. This influence has been demonstrated to be mediated through pheromone communication. However, the only social insect for which any queen pheromone has been identified is the honey bee (Apis mellifera with its well-known queen mandibular pheromone (QMP. Although pleiotropic effects on colony regulation are accredited to the QMP, this pheromone does not trigger the full behavioral and physiological response observed in the presence of the queen, suggesting the presence of additional compounds. We tested the hypothesis of a pheromone redundancy in honey bee queens by comparing the influence of queens with and without mandibular glands on worker behavior and physiology. Results Demandibulated queens had no detectable (E-9-oxodec-2-enoic acid (9-ODA, the major compound in QMP, yet they controlled worker behavior (cell construction and queen retinue and physiology (ovary inhibition as efficiently as intact queens. Conclusions We demonstrated that the queen uses other pheromones as powerful as QMP to control the colony. It follows that queens appear to have multiple active compounds with similar functions in the colony (pheromone redundancy. Our findings support two hypotheses in the biology of social insects: (1 that multiple semiochemicals with synonymous meaning exist in the honey bee, (2 that this extensive semiochemical vocabulary exists because it confers an evolutionary advantage to the colony.

  1. Analysis of moisture content, acidity and contamination by yeast and molds in Apis mellifera L. honey from central Brazil.

    Science.gov (United States)

    Ananias, Karla Rubia; de Melo, Adriane Alexandre Machado; de Moura, Celso José

    2013-01-01

    The development of mold of environmental origin in honey affects its quality and leads to its deterioration, so yeasts and molds counts have been used as an important indicator of hygiene levels during its processing, transportation and storage. The aim of this study was to evaluate the levels of yeasts and molds contamination and their correlation with moisture and acidity levels in Apis mellifera L. honey from central Brazil. In 20% of the samples, the yeasts and molds counts exceeded the limit established by legislation for the marketing of honey in the MERCOSUR, while 42.8% and 5.7% presented above-standard acidity and moisture levels, respectively. Although samples showed yeasts and molds counts over 1.0 × 10(2) UFC.g(-1), there was no correlation between moisture content and the number of microorganisms, since, in part of the samples with above-standard counts, the moisture level was below 20%. In some samples the acidity level was higher than that established by legislation, but only one sample presented a yeasts and molds count above the limit established by MERCOSUR, which would suggest the influence of the floral source on this parameter. In general, of the 35 samples analyzed, the quality was considered inadequate in 45.7% of cases.

  2. Regulation of genes related to immune signaling and detoxification in Apis mellifera by an inhibitor of histone deacetylation

    Science.gov (United States)

    Hu, Yee-Tung; Wu, Tsai-Chin; Yang, En-Cheng; Wu, Pei-Chi; Lin, Po-Tse; Wu, Yueh-Lung

    2017-01-01

    The western honeybee (Apis mellifera) is essential for the global economy due to its important role in ecosystems and agriculture as a pollinator of numerous flowering plants and crops. Pesticide abuse has greatly impacted honeybees and caused tremendous loss of honeybee colonies worldwide. The reasons for colony loss remain unclear, but involvement of pesticides and pathogen-pesticide interactions has been hypothesized. Histone deacetylase inhibitors (HDACis) inhibit the activity of histone acetylase, which causes the hyperacetylation of histone cores and influences gene expression. In this study, sodium butyrate, an HDACi, was used as a dietary supplement for honeybees; after treatment, gene expression profiles were analyzed using quantitative PCR. The results showed that sodium butyrate up-regulated genes involved in anti-pathogen and detoxification pathways. The bioassay results showed that honeybees treated with sodium butyrate were more tolerant to imidacloprid. Additionally, sodium butyrate strengthened the immune response of honeybees to invasions of Nosema ceranae and viral infections. We also performed a bioassay in which honeybees were exposed to pesticides and pathogens. Our results provide additional data regarding the mechanism by which honeybees react to stress and the potential application of HDACis in beekeeping. PMID:28112264

  3. Effects of seasonal variations and collection methods on the mineral composition of propolis from Apis mellifera Linnaeus Beehives

    Directory of Open Access Journals (Sweden)

    E. A. Souza

    Full Text Available Abstract The effects of seasonal variations and the methods of collection of propolis produced by Africanized honey bees Apis mellifera Linnaeus, 1758, on the composition of constituent minerals such as magnesium (Mg, zinc (Zn, iron (Fe, sodium (Na, calcium (Ca, copper (Cu, and potassium (K were evaluated. Propolis was harvested from 25 beehives by scraping or by means of propolis collectors (screen, “intelligent” collector propolis [ICP], lateral opening of the super [LOS], and underlay method. During the one-year study, the propolis produced was harvested each month, ground, homogenized, and stored in a freezer at -10 ºC. Seasonal analyses of the mineral composition were carried out by atomic absorption spectrophotometry and the results were evaluated by analysis of variance (ANOVA, followed by Tukey-Kramer’s test to compare the mean values (p<0.05. The results showed that seasonal variations influence the contents of 5 minerals (Mg, Fe, Na, Ca, and Cu, and the propolis harvesting method affects the contents of 4 minerals (Mg, Zn, Fe, and Ca.

  4. The Effect of an Organic Pesticide on Mortality and Learning in Africanized Honey Bees (Apis mellifera L. in Brasil

    Directory of Open Access Journals (Sweden)

    Charles I.   Abramson

    2006-01-01

    Full Text Available Seven experiments were conducted. First, the influence of the consumption of different concentrations of the organic pesticide Bioganic® on mortality was assessed at 11 different time intervals in Africanized honey bees (Apis mellifera L. as was direct application of the pesticide to the abdomen. Results indicated that the pesticide was not lethal to bees regardless of concentration at any intervals tested whether consumed directly or applied to the abdomen. Second, the effects of different concentrations of the pesticide on Pavlovian conditioning and complex learning were examined in harnessed foragers. Results suggest that the pesticide affected learning; however, this conclusion may be erroneous because the bees would not feed on the pesticide, thus making it impossible to properly assess Pavlovian conditioning and complex learning. Consequently, the effect of the agrochemical on complex learning was examined in free flying bees trained to land on targets. The results of free flying experiments indicated that bees did not avoid a target associated with the smell of the pesticide but did avoid the target if they had to drink the pesticide.

  5. Supplementing with vitamin C the diet of honeybees (Apis mellifera carnica) parasitized with Varroa destructor: effects on antioxidative status.

    Science.gov (United States)

    Farjan, Marek; Łopieńska-Biernat, Elżbieta; Lipiński, Zbigniew; Dmitryjuk, Małgorzata; Żółtowska, Krystyna

    2014-05-01

    We studied a total of eight developmental stages of capped brood and newly emerged workers of Apis mellifera carnica colonies naturally parasitized with Varroa destructor. During winter and early spring four colonies were fed syrup containing 1.8 mg vitamin C kg(-1) (ascorbic acid group; group AA) while four colonies were fed syrup without the vitamin C (control group C). Selected elements of the antioxidative system were analysed including total antioxidant status (TAS), glutathione content and antioxidative enzyme activities (superoxide dismutase, catalase, peroxidase and glutathione S-transferase). Body weight, protein content and indices of infestation were also determined. The prevalence (8.11%) and intensity (1·15 parasite per bee) of the infestation were lower in group AA compared with group C (11.3% and 1.21, respectively). Changes in the indicators of antioxidative stress were evidence for the strengthening of the antioxidative system in the brood by administration of vitamin C. In freshly emerged worker bees of group AA, despite the infestation, protein content, TAS, and the activity of all antioxidative enzymes had significantly higher values in relation to group C.

  6. Acaricidal and insecticidal activity of essential oils on Varroa destructor (Acari: Varroidae) and Apis mellifera (Hymenoptera: Apidae).

    Science.gov (United States)

    Damiani, Natalia; Gende, Liesel B; Bailac, Pedro; Marcangeli, Jorge A; Eguaras, Martín J

    2009-12-01

    Varroa destructor is an external parasitic mite that is a serious pest of honeybees and has caused severe losses of colonies worldwide. One of the feasible alternative treatments being used for their control is essential oils. The aim of this work was to evaluate the bioactivity of some essential oils on V. destructor and Apis mellifera in relation with their chemical composition and physicochemical properties. Lavender, lavendin and laurel essential oils showed linalool as main compound in their composition. 1,8-Cineole was also present as a predominant component in the laurel essential oil. However, thyme oil was characterized by a high concentration of thymol. Mites and bees toxicity was tested by means of complete exposure method. For mites, LC(50) values for laurel, lavender and lavendin essential oil did not show significant variation throughout all observation times. However, the LC(50) values for thyme oil at 48 and 72 h were lower than at 24 h. Bee mortality was evident only in treatment with thyme oil. At 48 and 72 h, lavender essential oil presented better selectivity indexes. In this research, all essential oils caused mite mortality without severe harmful effects on adult bees. The simultaneous evaluation of the physicochemical analysis of the essential oils, the characterization of the dosage response relationships among them, and the mortality effects on mite and bees, give us the possibility to obtain comparative results for future research in Varroa control.

  7. ULTRASTRUCURAL STUDY OF BEE LOUSE VARROA DESTRUCTOR ANDERSON & TRUEMAN 2000 (ACARI: VARROIDAE) WITH RESISTANCE MODELS FROM APIS MELLIFERA L.

    Science.gov (United States)

    Ammar, Khalaf Nour Abd El-Wahed

    2015-08-01

    The ectoparasitic mite Varroa destructor is the most dangerous pest of honeybee Egyptian race Apis mellifera L., as it causes many losses in apiculture worldwide. Adult female mites are flattened with a dome-shaped dorsal shield. The present SEM study revealed that the flat ventral surface is composed of series of plates. There are 5 rows of small, chemoreceptor papillae posterior to the genito-ventro anal shield, and a unique respiratory structure (peritreme) is located laterally above Coxa III. Peritreme is a chitinized elongated area surrounding stigma opening, provided by a lid that looks like a rose with a curly thick inner membrane which has numerous teeth-like projections. Mite' legs appeared to be modified for parasitism and each is tipped by one distal empodium. The pretarsus of the first pair of legs becomes a concave sucker and the pretarsus of the 3 pairs of the posterior legs consists of membranous amblacral pad (the caruncle). The mouthparts appeared well modified for its diet on bee hernolymph with its' powerful pedipalp for host attachment. High magnification revealed different types of setae distributed on the body, the mechano-receptor pedipalp short. and long anal setae and dorsal shield sensory simple setae.

  8. Differential responses of Africanized and European honey bees (Apis mellifera) to viral replication following mechanical transmission or Varroa destructor parasitism.

    Science.gov (United States)

    Hamiduzzaman, Mollah Md; Guzman-Novoa, Ernesto; Goodwin, Paul H; Reyes-Quintana, Mariana; Koleoglu, Gun; Correa-Benítez, Adriana; Petukhova, Tatiana

    2015-03-01

    For the first time, adults and brood of Africanized and European honey bees (Apis mellifera) were compared for relative virus levels over 48 h following Varroa destructor parasitism or injection of V. destructor homogenate. Rates of increase of deformed wing virus (DWV) for Africanized versus European bees were temporarily lowered for 12h with parasitism and sustainably lowered over the entire experiment (48 h) with homogenate injection in adults. The rates were also temporarily lowered for 24h with parasitism but were not affected by homogenate injection in brood. Rates of increase of black queen cell virus (BQCV) for Africanized versus European bees were similar with parasitism but sustainably lowered over the entire experiment with homogenate injection in adults and were similar for parasitism and homogenate injection in brood. Analyses of sac brood bee virus and Israeli acute paralysis virus were limited as detection did not occur after both homogenate injection and parasitism treatment, or levels were not significantly higher than those following control buffer injection. Lower rates of replication of DWV and BQCV in Africanized bees shows that they may have greater viral resistance, at least early after treatment.

  9. Africanized honey bees (Apis mellifera) have low infestation levels of the mite Varroa destructor in different ecological regions in Mexico.

    Science.gov (United States)

    Medina-Flores, C A; Guzmán-Novoa, E; Hamiduzzaman, M M; Aréchiga-Flores, C F; López-Carlos, M A

    2014-02-21

    Honey bee (Apis mellifera) colonies of African and European descent were compared for levels of Varroa destructor infestation in 3 different ecological regions in Mexico. The 300 colonies that were studied were located in subtropical, temperate sub-humid, and temperate dry climates. The morphotype and mitotype of adult bees as well as their rates of infestation by varroa mites were determined. Additionally, the number of combs with brood and covered with bees was recorded for each colony. The highest frequency of colonies that were classified as African-derived was found in the subtropical environment, whereas the lowest occurred in the temperate dry region. Overall, the colonies of African genotype had significantly lower mite infestation rates (3.5±0.34%) than the colonies of European genotype (4.7±0.49%) regardless of the region sampled. Significant effects of genotype and region on Varroa infestation rates were evident, and there were no differences in bee population or capped brood between genotypes. Mite infestation levels were significantly lower in the colonies of the temperate dry region than in the colonies of the other 2 regions. These results are discussed within the context of results from studies that were previously conducted in Brazil. This is the first study that demonstrates the effects of Africanization and ecological environment on V. destructor infestation rates in honey bee colonies in North America.

  10. Towards a better understanding of Apis mellifera and Varroa destructor microbiomes: introducing 'phyloh' as a novel phylogenetic diversity analysis tool.

    Science.gov (United States)

    Sandionigi, A; Vicario, S; Prosdocimi, E M; Galimberti, A; Ferri, E; Bruno, A; Balech, B; Mezzasalma, V; Casiraghi, M

    2015-07-01

    The study of diversity in biological communities is an intriguing field. Huge amount of data are nowadays available (provided by the innovative DNA sequencing techniques), and management, analysis and display of results are not trivial. Here, we propose for the first time the use of phylogenetic entropy as a measure of bacterial diversity in studies of microbial community structure. We then compared our new method (i.e. the web tool phyloh) for partitioning phylogenetic diversity with the traditional approach in diversity analyses of bacteria communities. We tested phyloh to characterize microbiome in the honeybee (Apis mellifera, Insecta: Hymenoptera) and its parasitic mite varroa (Varroa destructor, Arachnida: Parasitiformes). The rationale is that the comparative analysis of honeybee and varroa microbiomes could open new perspectives concerning the role of the parasites on honeybee colonies health. Our results showed a dramatic change of the honeybee microbiome when varroa occurs, suggesting that this parasite is able to influence host microbiome. Among the different approaches used, only the entropy method, in conjunction with phylogenetic constraint as implemented in phyloh, was able to discriminate varroa microbiome from that of parasitized honeybees. In conclusion, we foresee that the use of phylogenetic entropy could become a new standard in the analyses of community structure, in particular to prove the contribution of each biological entity to the overall diversity.

  11. Antimicrobial activity of apitoxin, melittin and phospholipase A2 of honey bee (Apis mellifera venom against oral pathogens

    Directory of Open Access Journals (Sweden)

    Luís F. Leandro

    2015-03-01

    Full Text Available In this work, we used the Minimum Inhibitory Concentration (MIC technique to evaluate the antibacterial potential of the apitoxin produced by Apis mellifera bees against the causative agents of tooth decay. Apitoxin was assayed in naturaand in the commercially available form. The antibacterial actions of the main components of this apitoxin, phospholipase A2, and melittin were also assessed, alone and in combination. The following bacteria were tested: Streptococcus salivarius, S. sobrinus, S. mutans, S. mitis, S. sanguinis, Lactobacillus casei, and Enterococcus faecalis. The MIC results obtained for the commercially available apitoxin and for the apitoxin in natura were close and lay between 20 and 40µg / mL, which indicated good antibacterial activity. Melittin was the most active component in apitoxin; it displayed very promising MIC values, from 4 to 40µg / mL. Phospholipase A2 presented MIC values higher than 400µg / mL. Association of mellitin with phospholipase A2 yielded MIC values ranging between 6 and 80µg / mL. Considering that tooth decay affects people's health, apitoxin and its component melittin have potential application against oral pathogens.

  12. Coenzyme Q10 treatments influence the lifespan and key biochemical resistance systems in the honeybee, Apis mellifera.

    Science.gov (United States)

    Strachecka, Aneta; Olszewski, Krzysztof; Paleolog, Jerzy; Borsuk, Grzegorz; Bajda, Milena; Krauze, Magdalena; Merska, Malwina; Chobotow, Jacek

    2014-07-01

    Natural bioactive preparations that will boost apian resistance, aid body detoxification, or fight crucial bee diseases are in demand. Therefore, we examined the influence of coenzyme Q10 (CoQ10, 2,3-dimethoxy, 5-methyl, 6-decaprenyl benzoquinone) treatment on honeybee lifespan, Nosema resistance, the activity/concentration of antioxidants, proteases and protease inhibitors, and biomarkers. CoQ10 slows age-related metabolic processes. Workers that consumed CoQ10 lived longer than untreated controls and were less infested with Nosema spp. Relative to controls, the CoQ10-treated workers had higher protein concentrations that increased with age but then they decreased in older bees. CoQ10 treatments increased the activities of antioxidant enzymes (superoxide dismutase, GPx, catalase, glutathione S-transferase), protease inhibitors, biomarkers (aspartate aminotransferase, alkaline phosphatase, alanine aminotransferase), the total antioxidant potential level, and concentrations of uric acid and creatinine. The activities of acidic, neutral, and alkaline proteases, and concentrations of albumin and urea were lower in the bees that were administered CoQ10. CoQ10 could be taken into consideration as a natural diet supplement in early spring before pollen sources become available in the temperate Central European climate. A response to CoQ10 administration that is similar to mammals supports our view that Apis mellifera is a model organism for biochemical gerontology.

  13. Starvation stress during larval development facilitates an adaptive response in adult worker honey bees (Apis mellifera L.).

    Science.gov (United States)

    Wang, Ying; Kaftanoglu, Osman; Brent, Colin S; Page, Robert E; Amdam, Gro V

    2016-04-01

    Most organisms are constantly faced with environmental changes and stressors. In diverse organisms, there is an anticipatory mechanism during development that can program adult phenotypes. The adult phenotype would be adapted to the predicted environment that occurred during organism maturation. However, whether this anticipatory mechanism is present in eusocial species is questionable because eusocial organisms are largely shielded from exogenous conditions by their stable nest environment. In this study, we tested whether food deprivation during development of the honey bee (Apis mellifera), a eusocial insect model, can shift adult phenotypes to better cope with nutritional stress. After subjecting fifth instar worker larvae to short-term starvation, we measured nutrition-related morphology, starvation resistance, physiology, endocrinology and behavior in the adults. We found that the larval starvation caused adult honey bees to become more resilient toward starvation. Moreover, the adult bees were characterized by reduced ovary size, elevated glycogen stores and juvenile hormone (JH) titers, and decreased sugar sensitivity. These changes, in general, can help adult insects survive and reproduce in food-poor environments. Overall, we found for the first time support for an anticipatory mechanism in a eusocial species, the honey bee. Our results suggest that this mechanism may play a role in honey bee queen-worker differentiation and worker division of labor, both of which are related to the responses to nutritional stress.

  14. Genome Characterization, Prevalence and Distribution of a Macula-Like Virus from Apis mellifera and Varroa destructor.

    Science.gov (United States)

    de Miranda, Joachim R; Cornman, R Scott; Evans, Jay D; Semberg, Emilia; Haddad, Nizar; Neumann, Peter; Gauthier, Laurent

    2015-07-06

    Around 14 distinct virus species-complexes have been detected in honeybees, each with one or more strains or sub-species. Here we present the initial characterization of an entirely new virus species-complex discovered in honeybee (Apis mellifera L.) and varroa mite (Varroa destructor) samples from Europe and the USA. The virus has a naturally poly-adenylated RNA genome of about 6500 nucleotides with a genome organization and sequence similar to the Tymoviridae (Tymovirales; Tymoviridae), a predominantly plant-infecting virus family. Literature and laboratory analyses indicated that the virus had not previously been described. The virus is very common in French apiaries, mirroring the results from an extensive Belgian survey, but could not be detected in equally-extensive Swedish and Norwegian bee disease surveys. The virus appears to be closely linked to varroa, with the highest prevalence found in varroa samples and a clear seasonal distribution peaking in autumn, coinciding with the natural varroa population development. Sub-genomic RNA analyses show that bees are definite hosts, while varroa is a possible host and likely vector. The tentative name of Bee Macula-like virus (BeeMLV) is therefore proposed. A second, distantly related Tymoviridae-like virus was also discovered in varroa transcriptomes, tentatively named Varroa Tymo-like virus (VTLV).

  15. Cloning and functional expression of intracellular loop variants of the honey bee (Apis mellifera) RDL GABA receptor.

    Science.gov (United States)

    Taylor-Wells, Jennina; Hawkins, Joseph; Colombo, Claudia; Bermudez, Isabel; Jones, Andrew K

    2016-06-08

    The insect GABA receptor, RDL (resistance to dieldrin), plays central roles in neuronal signalling and is the target of several classes of insecticides. To study the GABA receptor from an important pollinator species, we cloned Rdl cDNA from the honey bee, Apis mellifera. Three Rdl variants were identified, arising from differential use of splice acceptor sites in the large intracellular loop between transmembrane regions 3 and 4. These variants were renamed from previously, as Amel_RDLvar1, Amel_RDLvar2 and Amel_RDLvar3. When expressed in Xenopus laevis oocytes, the three variants showed no difference in sensitivity to the agonist, GABA, with EC50s of 29μM, 20μM and 29μM respectively. Also, the potencies of the antagonists, fipronil and imidacloprid, were similar on all three variants. Fipronil IC50 values were 0.18μM, 0.31μM and 0.20μM whereas 100μM imidacloprid reduced the GABA response by 17%, 24% and 31%. The possibility that differential splicing of the RDL intracellular loop may represent a species-specific mechanism leading to insensitivity to insecticides is discussed.

  16. Differences in Varroa destructor infestation rates of two indigenous subspecies of Apis mellifera in the Republic of South Africa.

    Science.gov (United States)

    Mortensen, Ashley N; Schmehl, Daniel R; Allsopp, Mike; Bustamante, Tomas A; Kimmel, Chase B; Dykes, Mark E; Ellis, James D

    2016-04-01

    Varroa destructor Anderson & Trueman (Varroa) is a damaging pest of the Western honey bee, Apis mellifera, in North America, Europe, and Asia. However, Varroa infestations have not produced equivalent colony losses of African subspecies of honey bee throughout Africa and parts of the Americas. We surveyed the Varroa infestation rates (number of Varroa per 100 adult honey bees) in colonies of A. m. scutellata, A. m. capensis, and hybrids of the two subspecies throughout the Republic of South Africa in the fall of 2014. We found that A. m. scutellata colonies had significantly higher Varroa infestations than did A. m. capensis colonies. Furthermore, hybridized colonies of the two subspecies had Varroa infestations intermediate to those of A. m. scutellata and A. m. capensis. This is the first documentation of a clear difference in Varroa infestation rates of A. m. scutellata, A. m. capensis, and hybridized colonies in South Africa. Furthermore, our data confirm that Varroa populations in A. m. scutellata colonies are within the range of populations that are damaging to European honey bees.

  17. Induced thiacloprid insensitivity in honeybees (Apis mellifera L.) is associated with up-regulation of detoxification genes.

    Science.gov (United States)

    Alptekin, S; Bass, C; Nicholls, C; Paine, M J I; Clark, S J; Field, L; Moores, G D

    2016-04-01

    Honey bees, Apis mellifera, are markedly less sensitive to neonicotinoid insecticides containing a cyanoimino pharmacophore than to those with a nitroimino group. Although previous work has suggested that this results from enhanced metabolism of the former by detoxification enzymes, the specific enzyme(s) involved remain to be characterized. In this work, a pretreatment of honey bees with a sublethal dose of thiacloprid resulted in induced insensitivity to the same compound immediately following thiacloprid feeding. A longer pretreatment time resulted in no, or increased, sensitivity. Transcriptome profiling, using microarrays, identified a number of genes encoding detoxification enzymes that were over-expressed significantly in insecticide-treated bees compared with untreated controls. These included five P450s, CYP6BE1, CYP305D1, CYP6AS5, CYP315A1, CYP301A1, and a carboxyl/cholinesterase (CCE) CCE8. Four of these P450s were functionally expressed in Escherichia coli and their ability to metabolize thiacloprid examined by liquid chromatography-mass spectrometry (LC-MS) analysis.

  18. Dynamics of Apis mellifera Filamentous Virus (AmFV) Infections in Honey Bees and Relationships with Other Parasites.

    Science.gov (United States)

    Hartmann, Ulrike; Forsgren, Eva; Charrière, Jean-Daniel; Neumann, Peter; Gauthier, Laurent

    2015-05-22

    Apis mellifera filamentous virus (AmFV) is a large double stranded DNA virus of honey bees, but its relationship with other parasites and prevalence are poorly known. We analyzed individual honey bees from three colonies at different times post emergence in order to monitor the dynamics of the AmFV gut colonization under natural conditions. Prevalence and loads of microsporidia and trypanosomes were also recorded, as well as five common honey bee RNA viruses. The results show that a high proportion of bees get infected with AmFV during the first week post-emergence (75%) and that AmFV DNA levels remained constant. A similar pattern was observed for microsporidia while trypanosomes seem to require more time to colonize the gut. No significant associations between these three infections were found, but significant positive correlations were observed between AmFV and RNA viruses. In parallel, the prevalence of AmFV in France and Sweden was assessed from pooled honey bee workers. The data indicate that AmFV is almost ubiquitous, and does not seem to follow seasonal patterns, although higher viral loads were significantly detected in spring. A high prevalence of AmFV was also found in winter bees, without obvious impact on overwintering of the colonies.

  19. Defensive behaviour of Apis mellifera against Vespa velutina in France: testing whether European honeybees can develop an effective collective defence against a new predator.

    Science.gov (United States)

    Arca, Mariangela; Papachristoforou, Alexandros; Mougel, Florence; Rortais, Agnès; Monceau, Karine; Bonnard, Olivier; Tardy, Pascal; Thiéry, Denis; Silvain, Jean-François; Arnold, Gérard

    2014-07-01

    We investigated the prey-predator interactions between the European honeybee, Apis mellifera, and the invasive yellow-legged hornet, Vespa velutina, which first invaded France in 2004 and thereafter spread to neighbouring European countries (Spain, Portugal and Italy). Our goal was to determine how successfully honeybees are able to defend their colonies against their new predator in Europe. Experiments were conducted in the southwest of France-the point of entry of the hornet in Europe-under natural and semi-controlled field conditions. We investigated a total of eight apiaries and 95 colonies subjected to either low or high levels of predation. We analyzed hornet predatory behaviour and collective response of colonies under attack. The results showed that A. mellifera in France exhibit an inefficient and unorganized defence against V. velutina, unlike in other regions of Europe and other areas around the globe where honeybees have co-evolved with their natural Vespa predators.

  20. Genome sequencing and analysis of the first complete genome of Lactobacillus kunkeei strain MP2, an Apis mellifera gut isolate

    Directory of Open Access Journals (Sweden)

    Freddy Asenjo

    2016-04-01

    Full Text Available Background. The honey bee (Apis mellifera is the most important pollinator in agriculture worldwide. However, the number of honey bees has fallen significantly since 2006, becoming a huge ecological problem nowadays. The principal cause is CCD, or Colony Collapse Disorder, characterized by the seemingly spontaneous abandonment of hives by their workers. One of the characteristics of CCD in honey bees is the alteration of the bacterial communities in their gastrointestinal tract, mainly due to the decrease of Firmicutes populations, such as the Lactobacilli. At this time, the causes of these alterations remain unknown. We recently isolated a strain of Lactobacillus kunkeei (L. kunkeei strain MP2 from the gut of Chilean honey bees. L. kunkeei, is one of the most commonly isolated bacterium from the honey bee gut and is highly versatile in different ecological niches. In this study, we aimed to elucidate in detail, the L. kunkeei genetic background and perform a comparative genome analysis with other Lactobacillus species. Methods. L. kunkeei MP2 was originally isolated from the guts of Chilean A. mellifera individuals. Genome sequencing was done using Pacific Biosciences single-molecule real-time sequencing technology. De novo assembly was performed using Celera assembler. The genome was annotated using Prokka, and functional information was added using the EggNOG 3.1 database. In addition, genomic islands were predicted using IslandViewer, and pro-phage sequences using PHAST. Comparisons between L. kunkeei MP2 with other L. kunkeei, and Lactobacillus strains were done using Roary. Results. The complete genome of L. kunkeei MP2 comprises one circular chromosome of 1,614,522 nt. with a GC content of 36,9%. Pangenome analysis with 16 L. kunkeei strains, identified 113 unique genes, most of them related to phage insertions. A large and unique region of L. kunkeei MP2 genome contains several genes that encode for phage structural protein and

  1. Genome sequencing and analysis of the first complete genome of Lactobacillus kunkeei strain MP2, an Apis mellifera gut isolate.

    Science.gov (United States)

    Asenjo, Freddy; Olmos, Alejandro; Henríquez-Piskulich, Patricia; Polanco, Victor; Aldea, Patricia; Ugalde, Juan A; Trombert, Annette N

    2016-01-01

    Background. The honey bee (Apis mellifera) is the most important pollinator in agriculture worldwide. However, the number of honey bees has fallen significantly since 2006, becoming a huge ecological problem nowadays. The principal cause is CCD, or Colony Collapse Disorder, characterized by the seemingly spontaneous abandonment of hives by their workers. One of the characteristics of CCD in honey bees is the alteration of the bacterial communities in their gastrointestinal tract, mainly due to the decrease of Firmicutes populations, such as the Lactobacilli. At this time, the causes of these alterations remain unknown. We recently isolated a strain of Lactobacillus kunkeei (L. kunkeei strain MP2) from the gut of Chilean honey bees. L. kunkeei, is one of the most commonly isolated bacterium from the honey bee gut and is highly versatile in different ecological niches. In this study, we aimed to elucidate in detail, the L. kunkeei genetic background and perform a comparative genome analysis with other Lactobacillus species. Methods. L. kunkeei MP2 was originally isolated from the guts of Chilean A. mellifera individuals. Genome sequencing was done using Pacific Biosciences single-molecule real-time sequencing technology. De novo assembly was performed using Celera assembler. The genome was annotated using Prokka, and functional information was added using the EggNOG 3.1 database. In addition, genomic islands were predicted using IslandViewer, and pro-phage sequences using PHAST. Comparisons between L. kunkeei MP2 with other L. kunkeei, and Lactobacillus strains were done using Roary. Results. The complete genome of L. kunkeei MP2 comprises one circular chromosome of 1,614,522 nt. with a GC content of 36,9%. Pangenome analysis with 16 L. kunkeei strains, identified 113 unique genes, most of them related to phage insertions. A large and unique region of L. kunkeei MP2 genome contains several genes that encode for phage structural protein and replication components

  2. Genome sequencing and analysis of the first complete genome of Lactobacillus kunkeei strain MP2, an Apis mellifera gut isolate

    Science.gov (United States)

    Asenjo, Freddy; Olmos, Alejandro; Henríquez-Piskulich, Patricia; Polanco, Victor; Aldea, Patricia

    2016-01-01

    Background. The honey bee (Apis mellifera) is the most important pollinator in agriculture worldwide. However, the number of honey bees has fallen significantly since 2006, becoming a huge ecological problem nowadays. The principal cause is CCD, or Colony Collapse Disorder, characterized by the seemingly spontaneous abandonment of hives by their workers. One of the characteristics of CCD in honey bees is the alteration of the bacterial communities in their gastrointestinal tract, mainly due to the decrease of Firmicutes populations, such as the Lactobacilli. At this time, the causes of these alterations remain unknown. We recently isolated a strain of Lactobacillus kunkeei (L. kunkeei strain MP2) from the gut of Chilean honey bees. L. kunkeei, is one of the most commonly isolated bacterium from the honey bee gut and is highly versatile in different ecological niches. In this study, we aimed to elucidate in detail, the L. kunkeei genetic background and perform a comparative genome analysis with other Lactobacillus species. Methods. L. kunkeei MP2 was originally isolated from the guts of Chilean A. mellifera individuals. Genome sequencing was done using Pacific Biosciences single-molecule real-time sequencing technology. De novo assembly was performed using Celera assembler. The genome was annotated using Prokka, and functional information was added using the EggNOG 3.1 database. In addition, genomic islands were predicted using IslandViewer, and pro-phage sequences using PHAST. Comparisons between L. kunkeei MP2 with other L. kunkeei, and Lactobacillus strains were done using Roary. Results. The complete genome of L. kunkeei MP2 comprises one circular chromosome of 1,614,522 nt. with a GC content of 36,9%. Pangenome analysis with 16 L. kunkeei strains, identified 113 unique genes, most of them related to phage insertions. A large and unique region of L. kunkeei MP2 genome contains several genes that encode for phage structural protein and replication components

  3. Longevity of africanized worker honey bees (Apis mellifera carrying eye color mutant alleles Longevidade de operárias Apis mellifera africanizadas portadoras de mutações para a cor dos olhos

    Directory of Open Access Journals (Sweden)

    Rosana de Almeida

    2003-01-01

    Full Text Available The dark coloration of insects eyes is attributed to the accumulation of the brown pigment insectorubin, a mixture of ommochromes, xanthommatin and several ommins, biosynthesized from tryptophan. When any of the events in the synthesis chain is interrupted, formation and accumulation of pigments other than insectorubin occurs, and a new eye color will appear. The aim of the present work is to evaluate the longevity of worker honey bees Apis mellifera, homozygous and heterozygous for the mutant alleles cream (cr, snow-laranja (s la and brick (bk. Eye pigmentation and average longetivity of bees are very closely related. Mutant bees carrying lighter eye pigmentation are unable to return to the hive; there is, therefore, a close association between the eye pigmentation and honey bees lifespan. Experiments ran in confinement cages confirm the orientation problems of mutant honey bees, which kept in a limited space, were able to return to the hive and had an extended lifespan in comparison to that observed in the nature, and did not present statistical difference (P>0.05 relative to the control group. Confinement to restricted areas improves honey bees orientation abilities and facilitates return to the hive.Os olhos das abelhas selvagens adultas apresentam coloração marrom-escura, devido à presença de pigmentos denominados omocromos-xantominas e diferentes tipos de ominas. Os principais passos da cadeia metabólica que determinam a biossíntese desses pigmentos iniciam-se a partir do triptofano e qualquer interrupção em um dos seus passos fará com que a cor marrom-escura seja substituída por uma nova cor. Estudou-se a longevidade de operárias de Apis mellifera portadoras dos alelos mutantes para a cor dos olhos cream (cr, snow-laranja (s la e brick (bk. Existe nítida relação entre o grau de pigmentação dos olhos e a longevidade média das abelhas. As abelhas mutantes que apresentam a cor dos olhos mais clara perdem-se no campo, quando

  4. Características das colônias de abelhas africanizadas (Apis mellifera L., coletadas de alojamentos naturais em Jaboticabal, Estado de São Paulo Characteristics of african honeybee colonies (Apis mellifera L. in nature, in Jaboticabal - SP

    Directory of Open Access Journals (Sweden)

    Regina Helena Nogueira-Couto

    2002-04-01

    Full Text Available No presente experimento analisou-se as características de 70 enxames de abelhas africanizadas, Apis mellifera L. (Hymenoptera Apidae, coletados na natureza, durante 16 anos (1981 a 1996, em Jaboticabal, Estado de São Paulo e arredores. Durante a coleta foram feitas avaliações sobre o enxame quanto à: localização, posição (favos expostos ou em cavidades, presença de rainha, defensividade, áreas de cria e alimento e quantidade de abelhas presentes. Foi observada a posição dos favos em relação à entrada da colônia, classificando-os em perpendicular e paralelo. Observou-se que metade dos enxames (51,4% foi coletada dentro do Câmpus da Faculdade de Ciências Agrárias e Veterinárias de Jaboticabal - Unesp, especialmente na área de reflorestamento e no horto. Apenas 18,6% dos enxames coletados estavam expostos ao ar livre, estando preferencialmente em galhos, e 81,4% estavam alojados no interior de cavidades. Foi observado que, nos alojados em cavidades, as abelhas preferiram instalar seus enxames sob telhados (30%, ocos de árvores (20%, dentro de cavidades de cimento (12,9% e buracos no solo (10%. Observou-se que as abelhas não foram consideradas defensivas em 86,2% dos enxames coletados e que preferiram construir seus favos em posição perpendicular (70,4% à entrada da colméia, em relação à posição paralela (29,6%. Em relação à quantidade de indivíduos, cria e alimento, observou-se que 54,7% dos 70 enxames tinham grande quantidade de abelhas, 43,9% tinham área de cria considerada média e 51,7% apresentaram pouco alimento estocado. A rainha foi observada em 56,4% dos enxames coletados.The experiment was conducted to observe characteristics of African honey bee, Apis mellifera L. (Hymenoptera Apidae swarms collected in nature, for 16 years (1981 to 1996, in Jaboticabal, state of São Paulo -Brasil. During the collection, location, presence of queen, position of the swarms in the nature (exposed or housed, brood and

  5. 毒死蜱和吡虫啉对意大利工蜂(Apis mellifera L.)的慢性经口毒性%Chronic Oral Toxicity of Chlorpyrifos and Imidacloprid to Adult Honey Bees (Apis mellifera L.)

    Institute of Scientific and Technical Information of China (English)

    程燕; 谭丽超; 卜元卿; 葛春男; 周军英; 单正军

    2016-01-01

    文章以毒死蜱和吡虫啉为受试农药,以4日龄内的意大利工蜂(Apis mellifera L.)为受试生物,研究2种农药对意大利工蜂的10 d经口慢性毒性.结果显示:参比物质乐果对意大利工蜂的10 d半致死浓度(10 d-LC50)为0.550 μg a.i.·g-1食物,平均每天半致死剂量(LDD50)为0.019μg a.i.·蜂-1·天-1;在有效试验条件下,毒死蜱对意大利工蜂的10 d LC50为0.582 μg a.i.·g-1食物,LDD50为0.021 μg a.i.·蜂-1·天-1;吡虫啉对意大利工蜂的10 d LC50为0.055 μg a.i.·g-1食物,LDD50为1.542 ng a.i.·蜂-1·天-1.试验结果可为毒死蜱和吡虫啉的安全使用提供科学参考,同时可促进我国农药对蜜蜂的安全性评价体系的完善.

  6. Determinación geográfica y botánica de miel de abeja (Apis mellifera L.) del Estado de Tabasco, México

    OpenAIRE

    Córdova Córdova, Claudia Ivette

    2012-01-01

    Para caracterizar la miel existen diferentes métodos destructivos y no destructivos, donde se puede obtener información útil sobre las sustancias que la componen. Los métodos destructivos que se utilizaron en esta investigación fueron el análisis fisicoquímico y el análisis melisopalinológico. El objetivo de este trabajo fue caracterizar mieles tabasqueñas procedentes de diferentes regiones geográficas y diferente vegetación, mediante las técnicas antes mencionadas. Se analizaron 12 ti...

  7. Prevalence of the microsporidian Nosema ceranae in honeybee (Apis mellifera apiaries in Central Italy

    Directory of Open Access Journals (Sweden)

    Roberto Papini

    2017-07-01

    Full Text Available Nosema ceranae and Nosema apis are microsporidia which play an important role in the epidemiology of honeybee microsporidiosis worldwide. Nosemiasis reduces honeybee population size and causes significant losses in honey production. To the best of our knowledge, limited information is available about the prevalence of nosemiasis in Italy. In this research, we determined the occurrence of Nosema infection in Central Italy. Thirty-eight seemingly healthy apiaries (2 to 4 hives each were randomly selected and screened from April to September 2014 (n = 11 or from May to September 2015 (n = 27. The apiaries were located in six areas of Central Italy, including Lucca (n = 11, Massa Carrara (n = 9, Pisa (n = 9, Leghorn (n = 7, Florence (n = 1, and Prato (n = 1 provinces. Light microscopy was carried out according to current OIE recommendations to screen the presence of microsporidiosis in adult worker honeybees. Since the morphological characteristics of N. ceranae and N. apis spores are similar and can hardly be distinguished by optical microscopy, all samples were also screened by multiplex polymerase chain reaction (M-PCR assay based on 16S rRNA-gene-targeted species-specific primers to differentiate N. ceranae from N. apis. Furthermore, PCR-positive samples were also sequenced to confirm the species of amplified Nosema DNA. Notably, Nosema spores were detected in samples from 24 out of 38 (63.2%, 95% CI: 47.8–78.5% apiaries. Positivity rates in single provinces were 10/11, 8/9, 3/9, 1/7, or 1/1 (n = 2. A full agreement (Cohen's Kappa = 1 was assessed between microscopy and M-PCR. Based on M-PCR and DNA sequencing results, only N. ceranae was found. Overall, our results highlighted that N. ceranae infection occurs frequently in the cohort of honeybee populations that was examined despite the lack of clinical signs. These findings suggest that colony disease outbreaks might result from environmental factors that lead to higher

  8. Estudo das glândulas mandibulares e ovários de operárias de Apis mellifera L. (Hymenoptera, Apidae mantidas em condiçoes artificiais

    Directory of Open Access Journals (Sweden)

    Claudia Regina de Salvo

    1988-01-01

    Full Text Available Foram estudados os ovários e as glândulas mandibulares de Apis mellifera mantidas em condições artificiais e foi observado que em pequenos grupos (menos de 20 abelhas os órgãos analisados não se desenvolveram.The ovaries and mandibular glands in workers of Apis mellifera under artificial conditions were studied and was observed that in small groups (less than 20 bees the analyzed organs did not develop.

  9. Efecto antiinflamatorio de apitoxina de Apis mellifera sobre prostaglandina E2 del fluido crevicular gingival de pacientes con y sin enfermedad periodontal, sometidos a apiterapia: ensayo preliminar

    OpenAIRE

    W Faúndez Poblete; Narváez Carrasco,CG; Burgos Arias,A

    2011-01-01

    Introducción: La apitoxina que es producida por la Apis mellifera posee efecto antiinflamatorio sobre una serie de marcadores biológicos. La prostaglandina E2 forma parte de ellos, estando presente en el fluido gingival crevicular (FGC). La prostaglandina E2 es evidenciada en la enfermedad periodontal. Objetivo: En este estudio se evaluó el efecto antiinflamatorio de la apitoxina sobre la concentración de prostaglandina E2 del FGC de un paciente sin enfermedad periodontal (SEP) y otro con enf...

  10. cDNA Cloning and Bioinformatic Prediction of TPI Gene from Apis mellifera%蜜蜂TPI基因克隆与生物信息学预测

    Institute of Scientific and Technical Information of China (English)

    王琦; 李玮妮; 王荣

    2011-01-01

    利用电子克隆方法获得蜜蜂(Apis mellifera)磷酸甘油醛异构酶(triosephosphate isomerase,TPI)基因,并采用生物信息学方法对该基因编码蛋白从等电点、疏水性/亲水性、二级结构等进行了预测,以及试验验证,结果表明蜜蜂TPI基因全长为1 768 bp,具有完整的开放阅读框架(ORF),并得到了试验证实.

  11. Genomic survey of the ectoparasitic mite Varroa destructor, a major pest of the honey bee Apis mellifera

    Directory of Open Access Journals (Sweden)

    Elsik Chris

    2010-10-01

    Full Text Available Abstract Background The ectoparasitic mite Varroa destructor has emerged as the primary pest of domestic honey bees (Apis mellifera. Here we present an initial survey of the V. destructor genome carried out to advance our understanding of Varroa biology and to identify new avenues for mite control. This sequence survey provides immediate resources for molecular and population-genetic analyses of Varroa-Apis interactions and defines the challenges ahead for a comprehensive Varroa genome project. Results The genome size was estimated by flow cytometry to be 565 Mbp, larger than most sequenced insects but modest relative to some other Acari. Genomic DNA pooled from ~1,000 mites was sequenced to 4.3× coverage with 454 pyrosequencing. The 2.4 Gbp of sequencing reads were assembled into 184,094 contigs with an N50 of 2,262 bp, totaling 294 Mbp of sequence after filtering. Genic sequences with homology to other eukaryotic genomes were identified on 13,031 of these contigs, totaling 31.3 Mbp. Alignment of protein sequence blocks conserved among V. destructor and four other arthropod genomes indicated a higher level of sequence divergence within this mite lineage relative to the tick Ixodes scapularis. A number of microbes potentially associated with V. destructor were identified in the sequence survey, including ~300 Kbp of sequence deriving from one or more bacterial species of the Actinomycetales. The presence of this bacterium was confirmed in individual mites by PCR assay, but varied significantly by age and sex of mites. Fragments of a novel virus related to the Baculoviridae were also identified in the survey. The rate of single nucleotide polymorphisms (SNPs in the pooled mites was estimated to be 6.2 × 10-5per bp, a low rate consistent with the historical demography and life history of the species. Conclusions This survey has provided general tools for the research community and novel directions for investigating the biology and control of

  12. Honey bee (Apis mellifera) drones survive oxidative stress due to increased tolerance instead of avoidance or repair of oxidative damage.

    Science.gov (United States)

    Li-Byarlay, Hongmei; Huang, Ming Hua; Simone-Finstrom, Michael; Strand, Micheline K; Tarpy, David R; Rueppell, Olav

    2016-10-01

    Oxidative stress can lead to premature aging symptoms and cause acute mortality at higher doses in a range of organisms. Oxidative stress resistance and longevity are mechanistically and phenotypically linked; considerable variation in oxidative stress resistance exists among and within species and typically covaries with life expectancy. However, it is unclear whether stress-resistant, long-lived individuals avoid, repair, or tolerate molecular damage to survive longer than others. The honey bee (Apis mellifera L.) is an emerging model system that is well-suited to address this question. Furthermore, this species is the most economically important pollinator, whose health may be compromised by pesticide exposure, including oxidative stressors. Here, we develop a protocol for inducing oxidative stress in honey bee males (drones) via Paraquat injection. After injection, individuals from different colony sources were kept in common social conditions to monitor their survival compared to saline-injected controls. Oxidative stress was measured in susceptible and resistant individuals. Paraquat drastically reduced survival but individuals varied in their resistance to treatment within and among colony sources. Longer-lived individuals exhibited higher levels of lipid peroxidation than individuals dying early. In contrast, the level of protein carbonylation was not significantly different between the two groups. This first study of oxidative stress in male honey bees suggests that survival of an acute oxidative stressor is due to tolerance, not prevention or repair, of oxidative damage to lipids. It also demonstrates colony differences in oxidative stress resistance that might be useful for breeding stress-resistant honey bees. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. The expression and phylogenetics of the Inhibitor Cysteine Knot peptide OCLP1 in the honey bee Apis mellifera.

    Science.gov (United States)

    Bloch, Guy; Cohen, Mira

    2014-06-01

    Small cysteine-rich peptides have diverse functions in insects including antimicrobial defense, phenoloxidase activity regulation, and toxic inhibition of ion channels of prey or predator. We combined bioinformatics and measurements of transcript abundance to start characterizing AmOCLP1, a recently discovered Inhibitor Cysteine Knot peptide in the honey bee Apis mellifera. We found that the genomes of ants, bees, and the wasp Nasonia vitripennis encode orthologous sequences indicating that OCLP1 is a conserved peptide and not unique to the honey bee. Search of available EST libraries and quantitative real time PCR analyses indicate that the transcript of AmOCLP1 is ubiquitous with expression in life stages ranging from embryos to adults and in all tested tissues. In worker honey bees AmOCLP1 expression was not associated with age or task and did not show clear enrichment in any of the tested tissues. There was however a consistent trend toward higher transcript levels in the abdomen of foragers relative to levels in the head or thorax, and compared to levels in the abdomen of younger worker bees. By contrast, in drones AmOCLP1 transcript levels appeared higher in the head relative to the abdomen. Finer analyses of the head and abdomen indicated that the AmOCLP1 transcript is not enriched in the stinger and the associated venom sac or in cephalic exocrine glands. The evolutionary conservation in the Hymenoptera, the ubiquitous expression, and the lack of enrichment in the venom gland, stinger, exocrine glands, and the brain are not consistent with the hypotheses that OCLP1 is a secreted honeybee toxin or an endotoxin acting in the central nervous system. Rather we hypothesize that OCLP1 is a conserved antimicrobial or phenoloxidase inhibitor peptide.

  14. Impacts of Dietary Phytochemicals in the Presence and Absence of Pesticides on Longevity of Honey Bees (Apis mellifera

    Directory of Open Access Journals (Sweden)

    Ling-Hsiu Liao

    2017-02-01

    Full Text Available Because certain flavonols and phenolic acids are found in pollen and nectar of most angiosperms, they are routinely ingested by Apis mellifera, the western honey bee. The flavonol quercetin and the phenolic acid p-coumaric acid are known to upregulate detoxification enzymes in adult bees; their presence or absence in the diet may thus affect the toxicity of ingested pesticides. We conducted a series of longevity assays with one-day-old adult workers to test if dietary phytochemicals enhance longevity and pesticide tolerance. One-day-old bees were maintained on sugar syrup with or without casein (a phytochemical-free protein source in the presence or absence of quercetin and p-coumaric acid as well as in the presence or absence of two pyrethroid insecticides, bifenthrin and β-cyfluthrin. Dietary quercetin (hazard ratio, HR = 0.82, p-coumaric acid (HR = 0.91 and casein (HR = 0.74 were associated with extended lifespan and the two pyrethroid insecticides, 4 ppm bifenthrin (HR = 9.17 and 0.5 ppm β-cyfluthrin (HR = 1.34, reduced lifespan. Dietary quercetin enhanced tolerance of both pyrethroids; p-coumaric acid had a similar effect trend, although of reduced magnitude. Casein in the diet appears to eliminate the life-prolonging effect of p-coumaric acid in the absence of quercetin. Collectively, these assays demonstrate that dietary phytochemicals influence honey bee longevity and pesticide stress; substituting sugar syrups for honey or yeast/soy flour patties may thus have hitherto unrecognized impacts on adult bee health.

  15. Acute exposure to selenium disrupts associative conditioning and long-term memory recall in honey bees (Apis mellifera).

    Science.gov (United States)

    Burden, Christina M; Elmore, Christopher; Hladun, Kristen R; Trumble, John T; Smith, Brian H

    2016-05-01

    A plethora of toxic compounds - including pesticides, heavy metals, and metalloids - have been detected in honey bees (Apis mellifera) and their colonies. One such compound is selenium, which bees are exposed to by consuming nectar and pollen from flowers grown in contaminated areas. Though selenium is lethal at high concentrations, sublethal exposure may also impair honey bees' ability to function normally. Examining the effect of selenium exposure on learning and memory provides a sensitive assay with which to identify sublethal effects on honey bee health and behavior. To determine whether sublethal selenium exposure causes learning and memory deficits, we used proboscis extension reflex conditioning coupled with recall tests 30min and 24h post-conditioning. We exposed forager honey bees to a single sublethal dose of selenium, and 3h later we used an olfactory conditioning assay to train the bees to discriminate between one odor associated with sucrose-reinforcement and a second unreinforced odor. Following conditioning we tested short- and long-term recall of the task. Acute exposure to as little as 1.8ng of an inorganic form of selenium (sodium selenate) before conditioning caused a reduction in behavioral performance during conditioning. And, exposure to 18ng of either an inorganic form (sodium selenate) or an organic form (methylseleno-l-cysteine) of selenium caused a reduction in the bees' performance during the long-term recall test. These concentrations of selenium are lower than those found in the nectar of plants grown in selenium-contaminated soil, indicating that even low-grade selenium toxicity produces significant learning and memory impairments. This may reduce foragers' ability to effectively gather resources for the colony or nurse bees' ability to care for and maintain a healthy colony.

  16. The Effects of Fat Body Tyramine Level on Gustatory Responsiveness of Honeybees (Apis mellifera Differ between Behavioral Castes

    Directory of Open Access Journals (Sweden)

    Ricarda Scheiner

    2017-08-01

    Full Text Available Division of labor is a hallmark of social insects. In the honeybee (Apis mellifera each sterile female worker performs a series of social tasks. The most drastic changes in behavior occur when a nurse bee, who takes care of the brood and the queen in the hive, transitions to foraging behavior. Foragers provision the colony with pollen, nectar or water. Nurse bees and foragers differ in numerous behaviors, including responsiveness to gustatory stimuli. Differences in gustatory responsiveness, in turn, might be involved in regulating division of labor through differential sensory response thresholds. Biogenic amines are important modulators of behavior. Tyramine and octopamine have been shown to increase gustatory responsiveness in honeybees when injected into the thorax, thereby possibly triggering social organization. So far, most of the experiments investigating the role of amines on gustatory responsiveness have focused on the brain. The potential role of the fat body in regulating sensory responsiveness and division of labor has large been neglected. We here investigated the role of the fat body in modulating gustatory responsiveness through tyramine signaling in different social roles of honeybees. We quantified levels of tyramine, tyramine receptor gene expression and the effect of elevating fat body tyramine titers on gustatory responsiveness in both nurse bees and foragers. Our data suggest that elevating the tyramine titer in the fat body pharmacologically increases gustatory responsiveness in foragers, but not in nurse bees. This differential effect of tyramine on gustatory responsiveness correlates with a higher natural gustatory responsiveness of foragers, with a higher tyramine receptor (Amtar1 mRNA expression in fat bodies of foragers and with lower baseline tyramine titers in fat bodies of foragers compared to those of nurse bees. We suggest that differential tyramine signaling in the fat body has an important role in the

  17. Organophosphorus insecticides in honey, pollen and bees (Apis mellifera L.) and their potential hazard to bee colonies in Egypt.

    Science.gov (United States)

    Al Naggar, Yahya; Codling, Garry; Vogt, Anja; Naiem, Elsaied; Mona, Mohamed; Seif, Amal; Giesy, John P

    2015-04-01

    There is no clear single factor to date that explains colony loss in bees, but one factor proposed is the wide-spread application of agrochemicals. Concentrations of 14 organophosphorous insecticides (OPs) in honey bees (Apis mellifera) and hive matrices (honey and pollen) were measured to assess their hazard to honey bees. Samples were collected during spring and summer of 2013, from 5 provinces in the middle delta of Egypt. LC/MS-MS was used to identify and quantify individual OPs by use of a modified Quick Easy Cheap Effective Rugged Safe (QuEChERS) method. Pesticides were detected more frequently in samples collected during summer. Pollen contained the greatest concentrations of OPs. Profenofos, chlorpyrifos, malation and diazinon were the most frequently detected OPs. In contrast, ethoprop, phorate, coumaphos and chlorpyrifos-oxon were not detected. A toxic units approach, with lethality as the endpoint was used in an additive model to assess the cumulative potential for adverse effects posed by OPs. Hazard quotients (HQs) in honey and pollen ranged from 0.01-0.05 during spring and from 0.02-0.08 during summer, respectively. HQs based on lethality due to direct exposure of adult worker bees to OPs during spring and summer ranged from 0.04 to 0.1 for best and worst case respectively. It is concluded that direct exposure and/or dietary exposure to OPs in honey and pollen pose little threat due to lethality of bees in Egypt. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Predicting acute contact toxicity of pesticides in honeybees (Apis mellifera) through a k-nearest neighbor model.

    Science.gov (United States)

    Como, F; Carnesecchi, E; Volani, S; Dorne, J L; Richardson, J; Bassan, A; Pavan, M; Benfenati, E

    2017-01-01

    Ecological risk assessment of plant protection products (PPPs) requires an understanding of both the toxicity and the extent of exposure to assess risks for a range of taxa of ecological importance including target and non-target species. Non-target species such as honey bees (Apis mellifera), solitary bees and bumble bees are of utmost importance because of their vital ecological services as pollinators of wild plants and crops. To improve risk assessment of PPPs in bee species, computational models predicting the acute and chronic toxicity of a range of PPPs and contaminants can play a major role in providing structural and physico-chemical properties for the prioritisation of compounds of concern and future risk assessments. Over the last three decades, scientific advisory bodies and the research community have developed toxicological databases and quantitative structure-activity relationship (QSAR) models that are proving invaluable to predict toxicity using historical data and reduce animal testing. This paper describes the development and validation of a k-Nearest Neighbor (k-NN) model using in-house software for the prediction of acute contact toxicity of pesticides on honey bees. Acute contact toxicity data were collected from different sources for 256 pesticides, which were divided into training and test sets. The k-NN models were validated with good prediction, with an accuracy of 70% for all compounds and of 65% for highly toxic compounds, suggesting that they might reliably predict the toxicity of structurally diverse pesticides and could be used to screen and prioritise new pesticides. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Effects of abamectin and deltamethrin to the foragers honeybee workers of Apis mellifera jemenatica (Hymenoptera: Apidae under laboratory conditions

    Directory of Open Access Journals (Sweden)

    Dalal Musleh Aljedani

    2017-07-01

    Full Text Available This study aimed at evaluating the toxicity of some insecticides (abamectin and deltamethrin on the lethal time (LT50 and midgut of foragers honeybee workers of Apis mellifera jemenatica were studied under laboratory conditions. The bees were provided with water, food, natural protein and sugar solution with insecticide (concentration: 2.50 ppm deltamethrin and 0.1 ppm abamectin. The control group was not treated with any kind of insecticides. The mortality was assessed at 1, 2, 4, 6, 12, 24, 48, and 72 hour (h after insecticides treatment and period to calculate the value of lethal time (LT50. But the samples the histology study of midgut collected after 24 h were conducted by Scanning Electron Microscope. The results showed the effects of insecticides on the current results show that abamectin has an adverse effect on honeybees, there is a clear impact on the lethal time (LT50 was the abamectin faster in the death of honeybee workers compared to deltamethrin. Where have reached to abamectin (LT50 = 21.026 h, deltamethrin (LT50 = 72.011 h. However, abamectin also effects on cytotoxic midgut cells that may cause digestive disorders in the midgut, epithelial tissue is formed during morphological alterations when digestive cells die. The extends into the internal cavity, and at the top, there is epithelial cell striated border that has many holes and curves, abamectin seems to have crushed the layers of muscle. Through the current results can say abamectin most toxicity on honeybees colony health and vitality, especially foragers honeybee workers.

  20. Sequential social experiences interact to modulate aggression but not brain gene expression in the honey bee (Apis mellifera).

    Science.gov (United States)

    Rittschof, Clare C

    2017-01-01

    In highly structured societies, individuals behave flexibly and cooperatively in order to achieve a particular group-level outcome. However, even in social species, environmental inputs can have long lasting effects on individual behavior, and variable experiences can even result in consistent individual differences and constrained behavioral flexibility. Despite the fact that such constraints on behavior could have implications for behavioral optimization at the social group level, few studies have explored how social experiences accumulate over time, and the mechanistic basis of these effects. In the current study, I evaluate how sequential social experiences affect individual and group level aggressive phenotypes, and individual brain gene expression, in the highly social honey bee (Apis mellifera). To do this, I combine a whole colony chronic predator disturbance treatment with a lab-based manipulation of social group composition. Compared to the undisturbed control, chronically disturbed individuals show lower aggression levels overall, but also enhanced behavioral flexibility in the second, lab-based social context. Disturbed bees display aggression levels that decline with increasing numbers of more aggressive, undisturbed group members. However, group level aggressive phenotypes are similar regardless of the behavioral tendencies of the individuals that make up the group, suggesting a combination of underlying behavioral tendency and negative social feedback influences the aggressive behaviors displayed, particularly in the case of disturbed individuals. An analysis of brain gene expression showed that aggression related biomarker genes reflect an individual's disturbance history, but not subsequent social group experience or behavioral outcomes. In highly social animals with collective behavioral phenotypes, social context may mask underlying variation in individual behavioral tendencies. Moreover, gene expression patterns may reflect

  1. Genetic analysis of Apis mellifera macedonica (type rodopica populations selectively reared for purposive production of honey bee queens in Bulgaria

    Directory of Open Access Journals (Sweden)

    VIDA H. GEORGIEVA

    2016-04-01

    Full Text Available The genetic polymorphism in selectively reared in Bulgaria, local honey bee populations of Apis mellifera macedonica subspecies (type rodopica, has been studied, using analysis of six enzyme systems (MDH-1, ME, EST-3, ALP, PGM and HK corresponding to 6 loci. Totally 458 worker bees from 12 bee breeding bases for artificially inseminated queens were used for this study. All these stations are part of the National Bee Breeding Association which officially implements a National Program for sustainable beekeeping in Bulgaria. All of the six loci were found to be polymorphic. Only EST-3 locus was established as fixed in one of the investigated populations. Polymorphism with three alleles was ascertained for MDH, ME, ALP, PGM and HK loci and with five alleles for EST-3 locus. The most common alleles in almost all of the populations were MDH-1 100, ME 100, EST-3 100, PGM 100 and HK 100. Two private alleles (frequency < 0.05 were found for two of the populations. The calculated level of polymorphism was 88.33% in only one of the populations and 100% - in all others. The observed and expected heterozygosities (Ho and He ranged from 0.157 to 0.250 and from 0.206 to 0.272, respectively. The estimated mean FST value from allozyme data was 0.035. On the bases of the allele frequencies of the studied allozyme loci the Nei's (1972 genetic distance was estimated. It ranged between 0.002 and 0.060 among the populations studied.

  2. The Effects of Fat Body Tyramine Level on Gustatory Responsiveness of Honeybees (Apis mellifera) Differ between Behavioral Castes.

    Science.gov (United States)

    Scheiner, Ricarda; Entler, Brian V; Barron, Andrew B; Scholl, Christina; Thamm, Markus

    2017-01-01

    Division of labor is a hallmark of social insects. In the honeybee (Apis mellifera) each sterile female worker performs a series of social tasks. The most drastic changes in behavior occur when a nurse bee, who takes care of the brood and the queen in the hive, transitions to foraging behavior. Foragers provision the colony with pollen, nectar or water. Nurse bees and foragers differ in numerous behaviors, including responsiveness to gustatory stimuli. Differences in gustatory responsiveness, in turn, might be involved in regulating division of labor through differential sensory response thresholds. Biogenic amines are important modulators of behavior. Tyramine and octopamine have been shown to increase gustatory responsiveness in honeybees when injected into the thorax, thereby possibly triggering social organization. So far, most of the experiments investigating the role of amines on gustatory responsiveness have focused on the brain. The potential role of the fat body in regulating sensory responsiveness and division of labor has large been neglected. We here investigated the role of the fat body in modulating gustatory responsiveness through tyramine signaling in different social roles of honeybees. We quantified levels of tyramine, tyramine receptor gene expression and the effect of elevating fat body tyramine titers on gustatory responsiveness in both nurse bees and foragers. Our data suggest that elevating the tyramine titer in the fat body pharmacologically increases gustatory responsiveness in foragers, but not in nurse bees. This differential effect of tyramine on gustatory responsiveness correlates with a higher natural gustatory responsiveness of foragers, with a higher tyramine receptor (Amtar1) mRNA expression in fat bodies of foragers and with lower baseline tyramine titers in fat bodies of foragers compared to those of nurse bees. We suggest that differential tyramine signaling in the fat body has an important role in the plasticity of division of

  3. Effect of stacked insecticidal Cry proteins from maize pollen on nurse bees (Apis mellifera carnica and their gut bacteria.

    Directory of Open Access Journals (Sweden)

    Harmen P Hendriksma

    Full Text Available Honey bee pollination is a key ecosystem service to nature and agriculture. However, biosafety research on genetically modified crops rarely considers effects on nurse bees from intact colonies, even though they receive and primarily process the largest amount of pollen. The objective of this study was to analyze the response of nurse bees and their gut bacteria to pollen from Bt maize expressing three different insecticidal Cry proteins (Cry1A.105, Cry2Ab2, and Cry3Bb1. Naturally Cry proteins are produced by bacteria (Bacillus thuringiensis. Colonies of Apis mellifera carnica were kept during anthesis in flight cages on field plots with the Bt maize, two different conventionally bred maize varieties, and without cages, 1-km outside of the experimental maize field to allow ad libitum foraging to mixed pollen sources. During their 10-days life span, the consumption of Bt maize pollen had no effect on their survival rate, body weight and rates of pollen digestion compared to the conventional maize varieties. As indicated by ELISA-quantification of Cry1A.105 and Cry3Bb1, more than 98% of the recombinant proteins were degraded. Bacterial population sizes in the gut were not affected by the genetic modification. Bt-maize, conventional varieties and mixed pollen sources selected for significantly different bacterial communities which were, however, composed of the same dominant members, including Proteobacteria in the midgut and Lactobacillus sp. and Bifidobacterium sp. in the hindgut. Surprisingly, Cry proteins from natural sources, most likely B. thuringiensis, were detected in bees with no exposure to Bt maize. The natural occurrence of Cry proteins and the lack of detectable effects on nurse bees and their gut bacteria give no indication for harmful effects of this Bt maize on nurse honey bees.

  4. Removal of drone brood from Apis mellifera (Hymenoptera: Apidae) colonies to control Varroa destructor (Acari: Varroidae) and retain adult drones.

    Science.gov (United States)

    Wantuch, Holly A; Tarpy, David R

    2009-12-01

    The parasitic mite Varroa destructor Anderson & Trueman (Acari: Varroidae) has plagued European honey bees, Apis mellifera L. (Hymenoptera: Apidae), in the Americas since its introduction in the 1980s. For many years, these mites were sufficiently controlled using synthetic acaricides. Recently, however, beekeepers have experienced increased resistance by mites to chemical pesticides, which are also known to leave residues in hive products such as wax and honey. Thus there has been increased emphasis on nonchemical integrated pest management control tactics for Varroa. Because mites preferentially reproduce in drone brood (pupal males), we developed a treatment strategy focusing on salvaging parasitized drones while removing mites from them. We removed drone brood from colonies in which there was no acaricidal application and banked them in separate "drone-brood receiving" colonies treated with pesticides to kill mites emerging with drones. We tested 20 colonies divided into three groups: 1) negative control (no mite treatment), 2) positive control (treatment with acaricides), and 3) drone-brood removal and placement into drone-brood receiving colonies. We found that drone-brood trapping significantly lowered mite numbers during the early months of the season, eliminating the need for additional control measures in the spring. However, mite levels in the drone-brood removal group increased later in the summer, suggesting that this benefit does not persist throughout the entire season. Our results suggest that this method of drone-brood trapping can be used as an element of an integrated control strategy to control varroa mites, eliminating a large portion of the Varroa population with limited chemical treatments while retaining the benefits of maintaining adult drones in the population.

  5. The Effect of Application Rate of GF-120 (Spinosad) and Malathion on the Mortality of Apis mellifera (Hymenoptera: Apidae) Foragers.

    Science.gov (United States)

    Cabrera-Marín, Nina Vanessa; Liedo, Pablo; Sánchez, Daniel

    2016-04-01

    Beneficial organisms like the honey bee, Apis mellifera L. (Hymenoptera: Apidae), are heavily affected by pest control practices that incorporate insecticides. Safer alternatives as the spinosad-based formulation GF-120 have been developed to overcome this issue. Though both the low concentration of spinosad and the ultra-low-volume application rate of GF-120 are supposed to have a low acute toxicity in honey bee foragers, to our knowledge such claims have not been explicitly proven. We thus carried out a series of experiments to assess the effect of GF-120, malathion, and Spintor (spinosad) on honey bee foragers when applied at two concentrations (80 and 1,500 ppm) and two application rates (low density rate [LDR]—80 drops of 5 mm diameter per square meter; high density rate [HDR]—thousands of 200 -µm-diameter droplets per square meter). Interestingly, the three pesticides caused low mortality on foragers when applied at LDR-80, LDR-1,500, or HDR-80. However, HDR-1,500 caused a very high mortality. Based upon these results, we developed a computer program to estimate the average number of foragers that are exposed at LDR and HDR. We found that more foragers receive a lethal dose when exposed at HDR than at the other rates. Our results support the hypothesis that the impact of GF-120 and malathion upon honey bees is minimal when applied at LDR and that computer simulation can help greatly in understanding the effects of pesticides upon nontarget species.

  6. Individual precocity, temporal persistence, and task-specialization of hygienic bees from selected colonies of Apis mellifera

    Directory of Open Access Journals (Sweden)

    Scannapieco Alejandra C.

    2016-06-01

    Full Text Available Hygienic behaviour is a complex trait that gives Apis mellifera L. resistance against brood diseases. Variability in the expression of hygienic behaviour is evidenced at the colony-level and is explained by the proportion and propensity of individual worker bees that engage in hygienic activities. We investigated the temporal performance and the dynamics of task-specialisation of individual bees over time, both in selected hygienic (H and non-hygienic (NH colonies. Then we evaluated the impact of these behavioural aspects on the colony performance. Bees that perform hygienic behaviour (hygienic bees in our H colonies were more persistent in the hygienic activities throughout the days of the investigation. Such bees were more efficient in the removal of pin-killed brood than hygienic bees in the NH colonies. Hygienic bees in the H colonies were also specialist in the sub-tasks involved in the detection of odour stimulus from dead brood and continued to perform these activities throughout the days of the investigation (temporal persistence. Age-distribution of hygienic bees in the H colonies was asymmetrical, with a larger proportion of these bees performing hygienic activities early in life. At a colony-level, H showed higher efficiency compared to the NH colonies. The present results highlight the fact that individual behaviour may influence the collective dynamics of the hygienic behaviour in honeybee colonies. The results also note that the selection for highly hygienic colonies would result in changes in individual bees that improve the performance of the behaviour at the colony level. The relevance of task-partitioning and age-specialisation of hygienic bees on social immunity is discussed.

  7. Characterizing the Impact of Commercial Pollen Substitute Diets on the Level of Nosema spp. in Honey Bees (Apis mellifera L.).

    Science.gov (United States)

    Fleming, James C; Schmehl, Daniel R; Ellis, James D

    2015-01-01

    Western honey bee (Apis mellifera L.) populations face declines commonly attributed to pesticide, pathogen, and parasite stress. One way beekeepers combat these stressors is by providing supplemental protein diets to honey bee colonies to ensure adequate colony nutrition. However Nosema spp., a microsporidian parasite of the honey bee, is thought to be associated closely with a colony's nutritional intake, thus possibly negating any benefit the bees otherwise would have received from a nutritional supplement. Through three objectives, we examined how adult bees' consumption of wildflower pollen or commercial pollen substitute diets affected Nosema levels in the bees' midguts. For our first objective, we investigated how method of inoculation with Nosema affects infection levels in inoculated bees. Bees were infected with spores of Nosema four days after emergence. On day 15, bees were collected from the cages and Nosema spores were quantified. We found that inoculation through the pollen diet resulted in the highest Nosema levels in inoculated bees. In our second and third objectives, we provided the test diets to caged, newly emerged bees for a period of 15 days. Bees consuming pollen and a sucrose solution had more Nosema in their midguts than did bees consuming the sucrose solution alone (control). The overall volume of diet consumed by the bees did not correlate with the level of Nosema in their midguts. The level of Nosema was higher in bees fed certain commercial pollen substitute diets than in bees fed wildflower pollen. Our study illustrates how providing nutritional supplements to adult honey bees can impact the intensity of Nosema in their midguts.

  8. Characterizing the Impact of Commercial Pollen Substitute Diets on the Level of Nosema spp. in Honey Bees (Apis mellifera L..

    Directory of Open Access Journals (Sweden)

    James C Fleming

    Full Text Available Western honey bee (Apis mellifera L. populations face declines commonly attributed to pesticide, pathogen, and parasite stress. One way beekeepers combat these stressors is by providing supplemental protein diets to honey bee colonies to ensure adequate colony nutrition. However Nosema spp., a microsporidian parasite of the honey bee, is thought to be associated closely with a colony's nutritional intake, thus possibly negating any benefit the bees otherwise would have received from a nutritional supplement. Through three objectives, we examined how adult bees' consumption of wildflower pollen or commercial pollen substitute diets affected Nosema levels in the bees' midguts. For our first objective, we investigated how method of inoculation with Nosema affects infection levels in inoculated bees. Bees were infected with spores of Nosema four days after emergence. On day 15, bees were collected from the cages and Nosema spores were quantified. We found that inoculation through the pollen diet resulted in the highest Nosema levels in inoculated bees. In our second and third objectives, we provided the test diets to caged, newly emerged bees for a period of 15 days. Bees consuming pollen and a sucrose solution had more Nosema in their midguts than did bees consuming the sucrose solution alone (control. The overall volume of diet consumed by the bees did not correlate with the level of Nosema in their midguts. The level of Nosema was higher in bees fed certain commercial pollen substitute diets than in bees fed wildflower pollen. Our study illustrates how providing nutritional supplements to adult honey bees can impact the intensity of Nosema in their midguts.

  9. RNAi-mediated silencing of vitellogenin gene function turns honeybee ( Apis mellifera) workers into extremely precocious foragers

    Science.gov (United States)

    Marco Antonio, David Santos; Guidugli-Lazzarini, Karina Rosa; Do Nascimento, Adriana Mendes; Simões, Zilá Luz Paulino; Hartfelder, Klaus

    2008-10-01

    The switch from within-hive activities to foraging behavior is a major transition in the life cycle of a honeybee ( Apis mellifera) worker. A prominent regulatory role in this switch has long been attributed to juvenile hormone (JH), but recent evidence also points to the yolk precursor protein vitellogenin as a major player in behavioral development. In the present study, we injected vitellogenin double-stranded RNA (dsVg) into newly emerged worker bees of Africanized genetic origin and introduced them together with controls into observation hives to record flight behavior. RNA interference-mediated silencing of vitellogenin gene function shifted the onset of long-duration flights (>10 min) to earlier in life (by 3 4 days) when compared with sham and untreated control bees. In fact, dsVg bees were observed conducting such flights extremely precociously, when only 3 days old. Short-duration flights (<10 min), which bees usually perform for orientation and cleaning, were not affected. Additionally, we found that the JH titer in dsVg bees collected after 7 days was not significantly different from the controls. The finding that depletion of the vitellogenin titer can drive young bees to become extremely precocious foragers could imply that vitellogenin is the primary switch signal. At this young age, downregulation of vitellogenin gene activity apparently had little effect on the JH titer. As this unexpected finding stands in contrast with previous results on the vitellogenin/JH interaction at a later age, when bees normally become foragers, we propose a three-step sequence in the constellation of physiological parameters underlying behavioral development.

  10. Africanization of a feral honey bee (Apis mellifera) population in South Texas: does a decade make a difference?

    Science.gov (United States)

    Rangel, Juliana; Giresi, Melissa; Pinto, Maria Alice; Baum, Kristen A; Rubink, William L; Coulson, Robert N; Johnston, John Spencer

    2016-04-01

    The arrival to the United States of the Africanized honey bee, a hybrid between European subspecies and the African subspecies Apis mellifera scutellata, is a remarkable model for the study of biological invasions. This immigration has created an opportunity to study the dynamics of secondary contact of honey bee subspecies from African and European lineages in a feral population in South Texas. An 11-year survey of this population (1991-2001) showed that mitochondrial haplotype frequencies changed drastically over time from a resident population of eastern and western European maternal ancestry, to a population dominated by the African haplotype. A subsequent study of the nuclear genome showed that the Africanization process included bidirectional gene flow between European and Africanized honey bees, giving rise to a new panmictic mixture of A. m. scutellata- and European-derived genes. In this study, we examined gene flow patterns in the same population 23 years after the first hybridization event occurred. We found 28 active colonies inhabiting 92 tree cavities surveyed in a 5.14 km(2) area, resulting in a colony density of 5.4 colonies/km(2). Of these 28 colonies, 25 were of A. m. scutellata maternal ancestry, and three were of western European maternal ancestry. No colonies of eastern European maternal ancestry were detected, although they were present in the earlier samples. Nuclear DNA revealed little change in the introgression of A. m. scutellata-derived genes into the population compared to previous surveys. Our results suggest this feral population remains an admixed swarm with continued low levels of European ancestry and a greater presence of African-derived mitochondrial genetic composition.

  11. RNAi-Mediated Functional Analysis of Bursicon Genes Related to Adult Cuticle Formation and Tanning in the Honeybee, Apis mellifera

    Science.gov (United States)

    Elias-Neto, Moysés; Falcon, Tiago; Dallacqua, Rodrigo Pires; Martins, Juliana Ramos; Bitondi, Marcia Maria Gentile

    2016-01-01

    Bursicon is a heterodimeric neurohormone that acts through a G protein-coupled receptor named rickets (rk), thus inducing an increase in cAMP and the activation of tyrosine hydroxylase, the rate-limiting enzyme in the cuticular tanning pathway. In insects, the role of bursicon in the post-ecdysial tanning of the adult cuticle and wing expansion is well characterized. Here we investigated the roles of the genes encoding the bursicon subunits during the adult cuticle development in the honeybee, Apis mellifera. RNAi-mediated knockdown of AmBurs α and AmBurs β bursicon genes prevented the complete formation and tanning (melanization/sclerotization) of the adult cuticle. A thinner, much less tanned cuticle was produced, and ecdysis toward adult stage was impaired. Consistent with these results, the knockdown of bursicon transcripts also interfered in the expression of genes encoding its receptor, AmRk, structural cuticular proteins, and enzymes in the melanization/sclerotization pathway, thus evidencing roles for bursicon in adult cuticle formation and tanning. Moreover, the expression of AmBurs α, AmBurs β and AmRk is contingent on the declining ecdysteroid titer that triggers the onset of adult cuticle synthesis and deposition. The search for transcripts of AmBurs α, AmBurs β and candidate targets in RNA-seq libraries prepared with brains and integuments strengthened our data on transcript quantification through RT-qPCR. Together, our results support our premise that bursicon has roles in adult cuticle formation and tanning, and are in agreement with other recent studies pointing for roles during the pharate-adult stage, in addition to the classical post-ecdysial ones. PMID:27907116

  12. Resistencia a la enfermedad de cría yesificada por colonias de Apis mellifera con eficiente comportamiento higiénico (Hymenoptera, Apidae

    Directory of Open Access Journals (Sweden)

    Invernizzi Ciro

    2001-01-01

    Full Text Available In an apiary composed of 14 hygienic and 7 non-hygienic colonies of Apis mellifera Linnaeus, 1758 the presence of visible and capped mummies was recorded, one hygienic and 4 non-hygienic colonies showed symptoms of chalkbrood. Twenty-eight days after a massive contamination of the colonies with pollen patties containing Ascosphaera apis Olive & Spiltoir, 1955, the situation was almost identical to that at the beginning: the same 4 non-hygienic colonies still were infected and one hygienic colony that was healthy became infected. The high proportion of hygienic colonies that eliminated the disease symptoms suggests that they could maintain themselves healthy in spite of the presence of colonies with chalkbrood in the apiary.

  13. Physiological and behavioral changes in honey bees (Apis mellifera induced by Nosema ceranae infection.

    Directory of Open Access Journals (Sweden)

    Mike Goblirsch

    Full Text Available Persistent exposure to mite pests, poor nutrition, pesticides, and pathogens threaten honey bee survival. In healthy colonies, the interaction of the yolk precursor protein, vitellogenin (Vg, and endocrine factor, juvenile hormone (JH, functions as a pacemaker driving the sequence of behaviors that workers perform throughout their lives. Young bees perform nursing duties within the hive and have high Vg and low JH; as older bees transition to foraging, this trend reverses. Pathogens and parasites can alter this regulatory network. For example, infection with the microsporidian, Nosema apis, has been shown to advance behavioral maturation in workers. We investigated the effects of infection with a recent honey bee pathogen on physiological factors underlying the division of labor in workers. Bees infected with N. ceranae were nearly twice as likely to engage in precocious foraging and lived 9 days less, on average, compared to controls. We also show that Vg transcript was low, while JH titer spiked, in infected nurse-aged bees in cages. This pattern of expression is atypical and the reverse of what would be expected for healthy, non-infected bees. Disruption of the basic underpinnings of temporal polyethism due to infection may be a contributing factor to recent high colony mortality, as workers may lose flexibility in their response to colony demands.

  14. Direct effect of acaricides on pathogen loads and gene expression levels in honey bees Apis mellifera.

    Science.gov (United States)

    Boncristiani, Humberto; Underwood, Robyn; Schwarz, Ryan; Evans, Jay D; Pettis, Jeffery; vanEngelsdorp, Dennis

    2012-05-01

    The effect of using acaricides to control varroa mites has long been a concern to the beekeeping industry due to unintended negative impacts on honey bee health. Irregular ontogenesis, suppression of immune defenses, and impairment of normal behavior have been linked to pesticide use. External stressors, including parasites and the pathogens they vector, can confound studies on the effects of pesticides on the metabolism of honey bees. This is the case of Varroa destructor, a mite that negatively affects honey bee health on many levels, from direct parasitism, which diminishes honey bee productivity, to vectoring and/or activating other pathogens, including many viruses. Here we present a gene expression profile comprising genes acting on diverse metabolic levels (detoxification, immunity, and development) in a honey bee population that lacks the influence of varroa mites. We present data for hives treated with five different acaricides; Apiguard (thymol), Apistan (tau-fluvalinate), Checkmite (coumaphos), Miteaway (formic acid) and ApiVar (amitraz). The results indicate that thymol, coumaphos and formic acid are able to alter some metabolic responses. These include detoxification gene expression pathways, components of the immune system responsible for cellular response and the c-Jun amino-terminal kinase (JNK) pathway, and developmental genes. These could potentially interfere with the health of individual honey bees and entire colonies. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Physiological and behavioral changes in honey bees (Apis mellifera) induced by Nosema ceranae infection.

    Science.gov (United States)

    Goblirsch, Mike; Huang, Zachary Y; Spivak, Marla

    2013-01-01

    Persistent exposure to mite pests, poor nutrition, pesticides, and pathogens threaten honey bee survival. In healthy colonies, the interaction of the yolk precursor protein, vitellogenin (Vg), and endocrine factor, juvenile hormone (JH), functions as a pacemaker driving the sequence of behaviors that workers perform throughout their lives. Young bees perform nursing duties within the hive and have high Vg and low JH; as older bees transition to foraging, this trend reverses. Pathogens and parasites can alter this regulatory network. For example, infection with the microsporidian, Nosema apis, has been shown to advance behavioral maturation in workers. We investigated the effects of infection with a recent honey bee pathogen on physiological factors underlying the division of labor in workers. Bees infected with N. ceranae were nearly twice as likely to engage in precocious foraging and lived 9 days less, on average, compared to controls. We also show that Vg transcript was low, while JH titer spiked, in infected nurse-aged bees in cages. This pattern of expression is atypical and the reverse of what would be expected for healthy, non-infected bees. Disruption of the basic underpinnings of temporal polyethism due to infection may be a contributing factor to recent high colony mortality, as workers may lose flexibility in their response to colony demands.

  16. Spectroscopic study of honey from Apis mellifera from different regions in Mexico.

    Science.gov (United States)

    Frausto-Reyes, C; Casillas-Peñuelas, R; Quintanar-Stephano, J L; Macías-López, E; Bujdud-Pérez, J M; Medina-Ramírez, I

    2017-02-07

    The objective of this study was to analyze by Raman and UV-Vis-NIR Spectroscopic techniques, Mexican honey from Apis Mellífera, using representative samples with different botanic origins (unifloral and multifloral) and diverse climates. Using Raman spectroscopy together with principal components analysis, the results obtained represent the possibility to use them for determination of floral origin of honey, independently of the region of sampling. For this, the effect of heat up the honey was analyzed in relation that it was possible to greatly reduce the fluorescence background in Raman spectra, which allowed the visualization of fructose and glucose peaks. Using UV-Vis-NIR, spectroscopy, a characteristic spectrum profile of transmittance was obtained for each honey type. In addition, to have an objective characterization of color, a CIE Yxy and CIE L*a*b* colorimetric register was realized for each honey type. Applying the principal component analysis and their correlation with chromaticity coordinates allowed classifying the honey samples in one plot as: cutoff wavelength, maximum transmittance, tones and lightness. The results show that it is possible to obtain a spectroscopic record of honeys with specific characteristics by reducing the effects of fluorescence.

  17. Mitosis and cell death in the optic lobes of workers, queens and drones of the honey bee (Apis mellifera) during metamorphosis

    Indian Academy of Sciences (India)

    Thaisa Cristina Roat; Carminda Da Cruz Landim

    2010-09-01

    Colonies of the honey bee, Apis mellifera, consist of males and two female castes: workers and queens. The castes and males from A. mellifera have a distinct morphology, physiology and behaviour that correlate with their roles in the society and are characterized by some brain polymorphisms. Compound eyes are one of the characteristics that differ among the castes and sexes. A. mellifera is a holometabolous insect; therefore, the development of adult organs during metamorphosis, which will produce these differences, requires the precise coordination of three main programmed cellular processes: proliferation, differentiation and death. These processes take place simultaneously during pupation. Our purpose was to investigate cell division and death in the optic lobes (OL) of workers, queens and males during pupation to identify how the differences in the compound eyes in adults of these classes are achieved. The results showed that OL differentiation follows a similar pattern in the three classes of individuals studied, without structural differences in their development. The main non-structural differences involve cell division, mortality rates and timing. The results suggest a modelling of the brain during differentiation, which contributes to the specific functions of each individual class.

  18. Mitosis and cell death in the optic lobes of workers, queens and drones of the honey bee (Apis mellifera) during metamorphosis.

    Science.gov (United States)

    Roat, Thaisa Cristina; Landim, Carminda da Cruz

    2010-09-01

    Colonies of the honey bee, Apis mellifera, consist of males and two female castes: workers and queens. The castes and males from A. mellifera have a distinct morphology, physiology and behaviour that correlate with their roles in the society and are characterized by some brain polymorphisms. Compound eyes are one of the characteristics that differ among the castes and sexes. A. mellifera is a holometabolous insect; therefore, the development of adult organs during metamorphosis, which will produce these differences, requires the precise coordination of three main programmed cellular processes: proliferation, differentiation and death. These processes take place simultaneously during pupation. Our purpose was to investigate cell division and death in the optic lobes (OL) of workers, queens and males during pupation to identify how the differences in the compound eyes in adults of these classes are achieved. The results showed that OL differentiation follows a similar pattern in the three classes of individuals studied, without structural differences in their development. The main non-structural differences involve cell division, mortality rates and timing. The results suggest a modelling of the brain during differentiation, which contributes to the specific functions of each individual class.

  19. Characterization of Two Species of Trypanosomatidae from the Honey Bee Apis mellifera: Crithidia mellificae Langridge and McGhee, and Lotmaria passim n. gen., n. sp.

    Science.gov (United States)

    Schwarz, Ryan S; Bauchan, Gary R; Murphy, Charles A; Ravoet, Jorgen; de Graaf, Dirk C; Evans, Jay D

    2015-01-01

    Trypanosomatids are increasingly recognized as prevalent in European honey bees (Apis mellifera) and by default are attributed to one recognized species, Crithidia mellificae Langridge and McGhee, 1967. We provide reference genetic and ultrastructural data for type isolates of C. mellificae (ATCC 30254 and 30862) in comparison with two recent isolates from A. mellifera (BRL and SF). Phylogenetics unambiguously identify strains BRL/SF as a novel taxonomic unit distinct from C. mellificae strains 30254/30862 and assign all four strains as lineages of a novel clade within the subfamily Leishmaniinae. In vivo analyses show strains BRL/SF preferably colonize the hindgut, lining the lumen as adherent spheroids in a manner identical to previous descriptions from C. mellificae. Microscopy images show motile forms of C. mellificae are distinct from strains BRL/SF. We propose the binomial Lotmaria passim n. gen., n. sp. for this previously undescribed taxon. Analyses of new and previously accessioned genetic data show C. mellificae is still extant in bee populations, however, L. passim n. gen., n. sp. is currently the predominant trypanosomatid in A. mellifera globally. Our findings require that previous reports of C. mellificae be reconsidered and that subsequent trypanosomatid species designations from Hymenoptera provide genetic support.

  20. Similar Comparative Low and High Doses of Deltamethrin and Acetamiprid Differently Impair the Retrieval of the Proboscis Extension Reflex in the Forager Honey Bee (Apis mellifera)

    Science.gov (United States)

    Thany, Steeve H.; Bourdin, Céline M.; Graton, Jérôme; Laurent, Adèle D.; Mathé-Allainmat, Monique; Lebreton, Jacques; Le Questel, Jean-Yves

    2015-01-01

    In the present study, the effects of low (10 ng/bee) and high (100 ng/bee) doses of acetamiprid and deltamethrin insecticides on multi-trial learning and retrieval were evaluated in the honey bee Apis mellifera. After oral application, acetamiprid and deltamethrin at the concentrations used were not able to impair learning sessions. When the retention tests were performed 1 h, 6 h, and 24 h after learning, we found a significant difference between bees after learning sessions when drugs were applied 24 h before learning. Deltamethrin-treated bees were found to be more sensitive at 10 ng/bee and 100 ng/bee doses compared to acetamiprid-treated bees, only with amounts of 100 ng/bee and at 6 h and 24 h delays. When insecticides were applied during learning sessions, none of the tested insecticides was able to impair learning performance at 10 ng/bee or 100 ng/bee but retention performance was altered 24 h after learning sessions. Acetamiprid was the only one to impair retrieval at 10 ng/bee, whereas at 100 ng/bee an impairment of retrieval was found with both insecticides. The present results therefore suggest that acetamiprid and deltamethrin are able to impair retrieval performance in the honey bee Apis mellifera. PMID:26466901

  1. Influence of agrochemicals fipronil and imidacloprid on the learning behavior of Apis mellifera L. honeybees - doi: 10.4025/actascianimsci.v35i4.18683

    Directory of Open Access Journals (Sweden)

    Marcela Pedraza Carrillo

    2013-10-01

    Full Text Available Agrochemicals on crop cultivated areas is a source of contamination for bees and may cause physiological and behavioral disorders and mortality. The LD50 of the pesticides fipronil and imidacloprid was determined and their effect on the learning behavior of Apis mellifera L. honeybee evaluated. LD50 was determined by the ingestion of contaminated food with different concentrations of insecticide concentrations: Fipronil (0, 0.8, 0.4, 0.2, 0.1 and 0.05 µg bee-1 and imidacloprid (0, 0.4, 0.2, 0.1, 0.05 and 0.025 µg bee-1. The method of proboscis extension reflection (PER and learning through citral odor evaluated their responses to food stimulation. LD50 obtained were 0.28 ± 0.11 and 0.10 ± 0.04 µg bee-1 for fipronil and imidacloprid, respectively. The PER test showed no significant difference (p Apis mellifera bees.  

  2. Similar Comparative Low and High Doses of Deltamethrin and Acetamiprid Differently Impair the Retrieval of the Proboscis Extension Reflex in the Forager Honey Bee (Apis mellifera

    Directory of Open Access Journals (Sweden)

    Steeve H. Thany

    2015-09-01

    Full Text Available In the present study, the effects of low (10 ng/bee and high (100 ng/bee doses of acetamiprid and deltamethrin insecticides on multi-trial learning and retrieval were evaluated in the honey bee Apis mellifera. After oral application, acetamiprid and deltamethrin at the concentrations used were not able to impair learning sessions. When the retention tests were performed 1 h, 6 h, and 24 h after learning, we found a significant difference between bees after learning sessions when drugs were applied 24 h before learning. Deltamethrin-treated bees were found to be more sensitive at 10 ng/bee and 100 ng/bee doses compared to acetamiprid-treated bees, only with amounts of 100 ng/bee and at 6 h and 24 h delays. When insecticides were applied during learning sessions, none of the tested insecticides was able to impair learning performance at 10 ng/bee or 100 ng/bee but retention performance was altered 24 h after learning sessions. Acetamiprid was the only one to impair retrieval at 10 ng/bee, whereas at 100 ng/bee an impairment of retrieval was found with both insecticides. The present results therefore suggest that acetamiprid and deltamethrin are able to impair retrieval performance in the honey bee Apis mellifera.

  3. Similar Comparative Low and High Doses of Deltamethrin and Acetamiprid Differently Impair the Retrieval of the Proboscis Extension Reflex in the Forager Honey Bee (Apis mellifera).

    Science.gov (United States)

    Thany, Steeve H; Bourdin, Céline M; Graton, Jérôme; Laurent, Adèle D; Mathé-Allainmat, Monique; Lebreton, Jacques; Questel, Jean-Yves le

    2015-09-28

    In the present study, the effects of low (10 ng/bee) and high (100 ng/bee) doses of acetamiprid and deltamethrin insecticides on multi-trial learning and retrieval were evaluated in the honey bee Apis mellifera. After oral application, acetamiprid and deltamethrin at the concentrations used were not able to impair learning sessions. When the retention tests were performed 1 h, 6 h, and 24 h after learning, we found a significant difference between bees after learning sessions when drugs were applied 24 h before learning. Deltamethrin-treated bees were found to be more sensitive at 10 ng/bee and 100 ng/bee doses compared to acetamiprid-treated bees, only with amounts of 100 ng/bee and at 6 h and 24 h delays. When insecticides were applied during learning sessions, none of the tested insecticides was able to impair learning performance at 10 ng/bee or 100 ng/bee but retention performance was altered 24 h after learning sessions. Acetamiprid was the only one to impair retrieval at 10 ng/bee, whereas at 100 ng/bee an impairment of retrieval was found with both insecticides. The present results therefore suggest that acetamiprid and deltamethrin are able to impair retrieval performance in the honey bee Apis mellifera.

  4. Daily number of bee louse (Braula coeca) in honey bee (Apis mellifera camica and A. m. syriaca) colonies maintained under semi-arid conditions

    Institute of Scientific and Technical Information of China (English)

    Shahera Zaitoun; Abd AI-Majeed AI-Ghzawi

    2008-01-01

    Experimental work was conducted at two apiaries located in Irbid district and in Shuna North, Jordan, during the years 2004-2006. The aims of these investigations were to estimate the seasonal changes in the infestation rates of the bee louse (Braula sp.) and to develop an easy and rapid method of estimating the infestation rate on workers with bee Braula. Two major honey bee subspecies are reared in Jordan; Apis mellifera carnica and Apis mellifera syriaca were used in this study. The results showed that the infestation rate began to increase rapidly in May, reaching the season's maximum rate of 16.2%, 15.8% and 17.4% forA. ra. carnica and 22.6%, 23.9% and 22.9% forA. m. syr/aca in December of 2004,2005 and 2006, respectively. The maximum adult numbers of bees were found in April and June, whereas the minimum for the year was in January in both honey bee subspecies colonies during the study period. The actual population of the bee louse could be estimated by counting the daily dropped lice and multiplying by a factor of 158. This factor is valid for the experimental colonies of both subspecies kept for 3 years under semi-arid Mediterranean conditions.

  5. Study of gamma radiation from {sup 60}Co effects on Apis mellifera venom: biochemical, pharmacological and immunological aspects; Estudo dos efeitos da radiacao gama de {sup 60}Co na peconha de Apis mellifera: aspectos bioquimicos, farmacologicos e imunologicos

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Helena

    2001-07-01

    Africanized honeybees are very common insects in Brazil and frequently cause accidents followed by important immunological reactions and even deaths. Their venoms are composed of a complex mixture of substances of general biological actions. Ionizing radiation is able to modify molecular structures affecting the biological properties of proteins. It decreases toxic and enzymatic activities and so, it appears promising as a venom detoxification tool. The main objective of this work was to study the effects of gamma radiation on bee venom, regarding biochemical, pharmacological and immunological aspects. Africanized Apis mellifera whole venom (2 mg/ml) in 0.15 M NaCl solution was irradiated with 2 kGy in a {sup 60}Co source. Native and irradiated bee venoms were submitted to high performance size exclusion chromatography (Tosohaas G2000SW column), high performance reversed phase chromatography in a C-18 column under water/acetonitrile gradient, SDS-PAGE. For both venoms studies have been carried out in UV absorption spectrum, protein concentration, hemolytic activity, and PLA{sub 2} activity analysis, lethality assay (LD{sub 50}). Biodistribution studies was carried out after labelling native and irradiated bee venom with {sup 99m}Tc. The results showed that gamma radiation did not change the protein concentration nor its immunogenicity, although it could be observed that irradiated bee venom UV spectrum and SDS-PAGE profile presented differences when compared to native bee venom. This suggests that some structural alterations in bee venom components could have occurred after irradiation. HPLC-RP profiles showed that gamma radiation could have caused conformational changes, such as unfolding of molecule chains, changing their hydrophobic groups exposuring. The hemolytic and the PLA{sub 2} activities of irradiated bee venom were smaller than the native ones. The gamma radiation diminished the toxicity of bee venom, but did not abolish its bioactivity, like hemolysis

  6. 五种农药对中华蜜蜂和意大利蜜蜂工蜂的经口毒性比较%Oral toxicity of five pesticides to Apis cerana cerana and Apis mellifera

    Institute of Scientific and Technical Information of China (English)

    王瀛寰; 张艳峰; 张旭; 李建中; 王会利

    2012-01-01

    Two methods " small breaker" and " feeding tube" were used to measure the oral toxicity of five pesticides to Apis cerana cerana Fab. and Apis mellifera L.. The relative merits of the two methods and the sensitivity of the two kinds of honeybees to the toxicants were compared. The results showed that the LC50 values determined by " small breaker" method were lower than that by " feeding tube" method. Furthermore, comparing with A. mellifera, A. cerana cerana was more sensitive to pesticides tested, which suggested that A. cerana cerana might be more suitable for use in the toxicological evaluation of pesticides.%分别采用“小烧杯法”和“饲喂管法”测定了5种农药对中华蜜蜂和意大利蜜蜂工蜂的经口毒性.比较了2种方法的优缺点以及2个蜂种对农药毒性的敏感程度差异.结果表明:无论是“意蜂”还是“中蜂”,“小烧杯法”得到的半致死浓度( LC50)均不同程度地低于“饲喂管法”;与“意蜂”相比,“中蜂”对药剂更敏感,可能更适用于农药的毒理评价实验.

  7. Genetic integrity of the Dark European honey bee (Apis mellifera mellifera) from protected populations: a genome-wide assessment using SNPs and mtDNA sequence data

    DEFF Research Database (Denmark)

    Pinto, M Alice; Henriques, Dora; Chávez-Galarza, Julio

    2014-01-01

    to preserve the genetic integrity of A. m. mellifera, protected populations had a measurable component of their gene pool derived from commercial C-lineage honey bees. Here we used both sequence data from the tRNAleu-cox2 intergenic mtDNA region and a genome-wide scan, with over 1183 single nucleotide...

  8. Genetic integrity of the Dark European honey bee (Apis mellifera mellifera) from protected populations: a genome-wide assessment using SNPs and mtDNA sequence data

    DEFF Research Database (Denmark)

    Pinto, M Alice; Henriques, Dora; Chávez-Galarza, Julio

    2014-01-01

    to preserve the genetic integrity of A. m. mellifera, protected populations had a measurable component of their gene pool derived from commercial C-lineage honey bees. Here we used both sequence data from the tRNAleu-cox2 intergenic mtDNA region and a genome-wide scan, with over 1183 single nucleotide...

  9. Observations on the removal of brood inoculated with Tropilaelaps mercedesae (Acari: Laelapidae) and the mite's reproductive success in Apis mellifera colonies.

    Science.gov (United States)

    Khongphinitbunjong, Kitiphong; de Guzman, Lilia I; Buawangpong, Ninat; Rinderer, Thomas E; Frake, Amanda M; Chantawannakul, Panuwan

    2014-01-01

    This study assessed the response of Apis mellifera to brood deliberately infested with Tropilaelaps mercedesae. The reproductive success of T. mercedesae in mite-inoculated and naturally infested brood was also compared. The presence of T. mercedesae inside brood cells significantly affected brood removal. Thai A. mellifera removed 52.6 ± 8.2 % of the brood inoculated with T. mercedesae as compared to 17.2 ± 1.8 and 5.7 ± 1.1 % removal rates for the groups of brood with their cell cappings opened and closed without mite inoculation and the control brood (undisturbed, no mite inoculation), respectively. Brood removal peaked during the second and third days post inoculation when test brood was at the prepupal stage. Overall, non-reproduction (NR) of foundress T. mercedesae was high. However, when NR was measured based on the criteria used for Varroa, the naturally infested pupae (NIP) supported the highest NR (92.8 %). Newly sealed larvae inoculated with Tropilaelaps collected from newly sealed larvae (NSL) had 78.2 % NR and those inoculated with Tropilaelaps collected from tan-bodied pupae (TBP) had 76.8 % NR. Since Tropilaelaps is known to have a short development period and nearly all progeny reach adulthood by the time of host emergence, we also used two Tropilaelaps-specific criteria to determine NR. Foundresses that did not produce progeny and those that produced only one progeny were considered NR. Using these two criteria, NR decreased tremendously but showed similar trends with means of 65, 40 and 33 % for NIP, NSL and TBP, respectively. High NR in the NIP group may indicate increased hygienic behavior in Thai A. mellifera colonies. The removal of infested prepupae or tan-bodied pupae will likely decrease the reproductive potential of Tropilaelaps. Our study suggests that brood removal may be one of the resistance mechanisms towards T. mercedesae by naturally adapted Thai A. mellifera.

  10. 西方蜜蜂正反交苹果酸脱氢酶II基因的遗传差异%Genetic Differences of MDH II Genes in Reciprocal Crosses of Apis mellifera

    Institute of Scientific and Technical Information of China (English)

    刘艳荷; 陈盛禄; 童富淡

    2001-01-01

    @@ 西方蜜蜂(Apis mellifera)中,苹果酸脱氢酶(malate dehydrogenase,MDH)II由a、b、c三个等位基因编码,具有aa、bb、cc、ab、bc、ac六种基因型.在酶谱上,纯合子为一条带,杂合子三条带.

  11. Evaluation of pollen collected by honey bee, Apis mellifera L. colonies at Fayoum Governorate, Egypt. Part 1: Botanical origin

    Directory of Open Access Journals (Sweden)

    Abdel-Halim M. Ismail

    2013-06-01

    Full Text Available The present work is the 1st part of 3-part study carried out at Fayoum Governorate, Egypt to evaluate the pollen species collected by honey bee, Apis mellifera L., colonies during two successive years, 2009 and 2010. Obtained results showed that, in 2009, total amount of trapped pollen (fresh weight was 2354.89 g/colony/year (mean 588.72 g/colony/season, with peaks in summer and spring, while declined in autumn and winter. Correlation between mean maximum and minimum temperatures and weekly pollen weights was highly positive, while it was insignificant for relative humidity. In 2010, total amount of trapped pollen decreased to 1635.36 g/colony/year (mean 408.84 g/colony/season. The largest amounts were collected in summer followed by winter then spring, while least ones were in autumn. Correlation was highly positive between weekly mean of pollen weights and maximum temperature, while it was insignificant for minimum temperature or relative humidity. There were 24 plant species of 16 botanical families from which bees collected pollen. These sources were ranked according to their predominant quantities in the 1st and 2nd years by two numbers, respectively as the following: sesame 1 and 1, maize 2 and 2, clover 3 and 7, sunflower 4 and 8, wild mustard 5 and 3, casuarina 6 and 13, olive 7 and 11, eucalyptus 8 and 4, pumpkin 9 and 9, cocklebur 10 and 5, date palm 11 and 10, chamomile 12 and 12, field bindweed 13 and 6, pepper 14 and 20, coriander 15 and 16, acacia 16 and 24, citrus 17 and 0, marigold 18 and 0, common red 19 and 17, Christ’s thorn 20 and 22, tooth pick 21 and 21, brood bean 22 and 15, belladonna 23 and 23, pea 0 and 14, marjoram 0 and 18 and fennel 0 and 19. The 1st five plants seem to be the main pollen sources for honey bee colonies and consequently pollen producing during the whole year in the tested region. These sources represented 75.61% and 66.95% of the total annual yield in the two surveyed years, respectively.

  12. Silencing the Honey Bee (Apis mellifera) Naked Cuticle Gene (nkd) Improves Host Immune Function and Reduces Nosema ceranae Infections.

    Science.gov (United States)

    Li, Wenfeng; Evans, Jay D; Huang, Qiang; Rodríguez-García, Cristina; Liu, Jie; Hamilton, Michele; Grozinger, Christina M; Webster, Thomas C; Su, Songkun; Chen, Yan Ping

    2016-11-15

    Nosema ceranae is a new and emerging microsporidian parasite of European honey bees, Apis mellifera, that has been implicated in colony losses worldwide. RNA interference (RNAi), a posttranscriptional gene silencing mechanism, has emerged as a potent and specific strategy for controlling infections of parasites and pathogens in honey bees. While previous studies have focused on the silencing of parasite/pathogen virulence factors, we explore here the possibility of silencing a host factor as a mechanism for reducing parasite load. Specifically, we used an RNAi strategy to reduce the expression of a honey bee gene, naked cuticle (nkd), which is a negative regulator of host immune function. Our studies found that nkd mRNA levels in adult bees were upregulated by N. ceranae infection (and thus, the parasite may use this mechanism to suppress host immune function) and that ingestion of double-stranded RNA (dsRNA) specific to nkd efficiently silenced its expression. Furthermore, we found that RNAi-mediated knockdown of nkd transcripts in Nosema-infected bees resulted in upregulation of the expression of several immune genes (Abaecin, Apidaecin, Defensin-1, and PGRP-S2), reduction of Nosema spore loads, and extension of honey bee life span. The results of our studies clearly indicate that silencing the host nkd gene can activate honey bee immune responses, suppress the reproduction of N. ceranae, and improve the overall health of honey bees. This study represents a novel host-derived therapeutic for honey bee disease treatment that merits further exploration. Given the critical role of honey bees in the pollination of agricultural crops, it is urgent to develop strategies to prevent the colony decline induced by the infection of parasites/pathogens. Targeting parasites and pathogens directly by RNAi has been proven to be useful for controlling infections in honey bees, but little is known about the disease impacts of RNAi silencing of host factors. Here, we demonstrate

  13. 中蜂与意蜂营养杂交对其后代抗农药性能的影响%The Effect of Nutritional Crossbreeding between Apis cerana cerana and Apis mellifera ligustica on Anti-pesticide Performance

    Institute of Scientific and Technical Information of China (English)

    汪志平; 何旭江; 陈利华; 颜伟玉

    2011-01-01

    通过人工添加中华蜜蜂王浆来培育江山2号意蜂与法国意蜂的杂交蜂王,并检测了敌敌畏对江山2号意蜂、高加索蜜蜂、营养杂交子一代(F1)和子四代(F4)群势的影响,同时检测了江山2号意蜂、中华蜜蜂、F1代和F4代工蜂对敌百虫、啶虫脒和桃病康的抗性.结果表明:营养杂交意蜂敌敌畏中毒后群势削减率显著低于江山2号意蜂与高加索蜜蜂;营养杂交意蜂F4代对敌百虫的抗性均显著强于中蜂与江山2号.营养杂交意蜂F1代和F4代工蜂对啶虫脒和高剂量的桃病康抗性均显著强于中蜂与江山2号,且F4代显著强于F1代.中意蜂营养杂交的意蜂对敌敌畏、敌百虫、啶虫脒和桃病康等农药的抗性显著增强.%The hybridized queens were bred with Jiangshan Honey Bee No. 2 and French Apis mellifera ligustica by feeding the royal jelly of Apis cerana cerana artificially. The effcet of dichlorvos poisoning on the population of Jiangshan Honey Bee No. 2, Apis mellifera caucasicag, first and forth genernation of nutritional crossbred colony( F1 and F4 ) was measured. And the effcets of dichlorvos, trichlorfon, acetamiprid and Tao Bing Kang poisoning on workers of Jiangshan Honey Bee No. 2, Apis cerana cerana, F1 and F4 were measured.The results showed that the population reduction rates of F1 and F4 were significant lower than those of Jiangshan Honey Bee No. 2 and Apis cerana cerana fed with dichlorvos; while by trichlorfon poisoning, the mortality rate of F4 was significant lower than those of others. The resistance of F1 and F4 was significant stronger than those of Jiangshan Honey Bee No. 2 and Apis cerana cerana to acetamiprid and high dose of Tao Bing Kang poisoning, and the resistance of F4 was stronger than that of F1. The resistance of the offspring of nutritional crossbreed Apis mellifera ligustica to pesticides-dichlorvos, trichlorfon, acetamiprid and Tao Bing Kang was enhanced significantly.

  14. Influência de essências na alimentação artificial energética na atratividade de Abelhas Apis mellifera

    Directory of Open Access Journals (Sweden)

    I. P. Almeida Neto

    2015-09-01

    Full Text Available O objetivo desse trabalho foi avaliar a atratividade de diferentes aromas adicionados a alimentação artificial energética de abelhas Apis mellifera. O delineamento experimental usado foi DIC no qual constou de 11 tratamentos e quatro repetições, sendo os tratamentos os aromas tutti-frutte, erva-doce, maracujá, café, baunilha, morango, amarula, menta, cereja, coco e testemunha (sem aroma e as repetições foram considerados os dias de coleta de dados. Foram feitas observações do fluxo de abelhas a cada cinco minutos fazendo o registro fotográfico para contagem das mesmas. O período de observação ao longo do dia foi de 20 minutos sendo realizado no horário da manhã. Observamos que no decorrer do trabalho o fluxo das abelhas foi aumentando gradativamente em todas as essências a cada repetição sendo que essência que mais atraiu as abelhas foi a amarula (em media 147 abelhas, não deferindo da essência da baunilha, porém a baunilha não diferiu das demais essências.Influence of essences in energy artificial food the bees attractiveness Apis melliferaAbstract: The aim of this study was to evaluate the attractiveness of Apis mellifera by energy added artificial feeding of different aromas. The experimental design used was DIC in which consisted of 11 treatments and four replications, and the treatments the tutti-frutte aromas, fennel, passion fruit, coffee, vanilla, strawberry, amarula, mint, cherry, coconut and control (without aroma and repetitions were considered the days of data collection. Observations of bees stream samples were collected every five minutes making the photographic record to count them. The observation period throughout the day was 20 minutes being held in the morning hours. We note that during the work flow of bees has been increasing gradually in all essences with each repetition being that essence that attracted the bees was amarula (on average 147 bees, not deferring the essence of vanilla, but vanilla

  15. Efecto antiinflamatorio de apitoxina de Apis mellifera sobre prostaglandina E2 del fluido crevicular gingival de pacientes con y sin enfermedad periodontal, sometidos a apiterapia: ensayo preliminar Anti-inflammatory effect of apitoxin and Apis mellifera on prostaglandin E2 in gingival crevicular fluid of patients with and without periodontal disease, submitted to apitherapy: preliminary test

    OpenAIRE

    W Faúndez Poblete; CG Narváez Carrasco; A Burgos Arias

    2011-01-01

    Introducción: La apitoxina que es producida por la Apis mellifera posee efecto antiinflamatorio sobre una serie de marcadores biológicos. La prostaglandina E2 forma parte de ellos, estando presente en el fluido gingival crevicular (FGC). La prostaglandina E2 es evidenciada en la enfermedad periodontal. Objetivo: En este estudio se evaluó el efecto antiinflamatorio de la apitoxina sobre la concentración de prostaglandina E2 del FGC de un paciente sin enfermedad periodontal (SEP) y otro con enf...

  16. Mujeres mayas, abejas mayas

    OpenAIRE

    Negrín Muñoz, Eduardo

    2016-01-01

    El cultivo de las abejas sin aguijón (meliponas) se ha practicado en la península de Yucatán (México) desde tiempos remotos como lo indican diversas evidencias arqueológicas y documentales. Llama la atención que en la gran mayoría de la vasta literatura histórica que aborda el tema, no se haga mención de la mujer como participante de esa práctica; acaso debido a que, al igual que otros trabajos del campo y de muchos otros ámbitos, ha estado reservado exclusivamente para el hombre. Es hasta ti...

  17. Observation of the Mating Behavior of Honey Bee (Apis mellifera L.) Queens Using Radio-Frequency Identification (RFID): Factors Influencing the Duration and Frequency of Nuptial Flights.

    Science.gov (United States)

    Heidinger, Ina Monika Margret; Meixner, Marina Doris; Berg, Stefan; Büchler, Ralph

    2014-07-01

    We used radio-frequency identification (RFID) to record the duration and frequency of nuptial flights of honey bee queens (Apis mellifera carnica) at two mainland mating apiaries. We investigated the effect of a number of factors on flight duration and frequency: mating apiary, number of drone colonies, queen's age and temperature. We found significant differences between the two locations concerning the number of flights on the first three days. We also observed an effect of the ambient temperature, with queens flying less often but longer at high temperatures compared to lower temperatures. Increasing the number of drone colonies from 33 to 80 colonies had no effect on the duration or on the frequency of nuptial flights. Since our results agree well with the results of previous studies, we suggest RFID as an appropriate tool to investigate the mating behavior of honey bee queens.

  18. Origin and function of the major royal jelly proteins of the honeybee (Apis mellifera) as members of the yellow gene family.

    Science.gov (United States)

    Buttstedt, Anja; Moritz, Robin F A; Erler, Silvio

    2014-05-01

    In the honeybee, Apis mellifera, the queen larvae are fed with a diet exclusively composed of royal jelly (RJ), a secretion of the hypopharyngeal gland of young worker bees that nurse the brood. Up to 15% of RJ is composed of proteins, the nine most abundant of which have been termed major royal jelly proteins (MRJPs). Although it is widely accepted that RJ somehow determines the fate of a female larva and in spite of considerable research efforts, there are surprisingly few studies that address the biochemical characterisation and functions of these MRJPs. Here we review the research on MRJPs not only in honeybees but in hymenopteran insects in general and provide metadata analyses on genome organisation of mrjp genes, corroborating previous reports that MRJPs have important functions for insect development and not just a nutritional value for developing honeybee larvae.

  19. Expressão do gene aqp-4-like no trato digestório de operárias de Apis mellifera (Hymenoptera: Apidae)

    OpenAIRE

    Souza, Débora Linhares Lino

    2014-01-01

    O polietismo etário das operárias de Apis mellifera está relacionado a alterações morfofisiológicas de diversos sistemas, incluindo o sistema digestório, e à mudança da dieta das abelhas, sendo que operárias mais jovens consomem principalmente pólen e as mais velhas mel. As aquaporinas são proteínas de membrana identificadas em diferentes órgãos do trato digestório de insetos e são responsáveis pelo transporte transmembrana de água. Este trabalho avaliou se há diferença na expressão de aqp-4-...

  20. Deformed wing virus in western honey bees (Apis mellifera) from Atlantic Canada and the first description of an overtly-infected emerging queen.

    Science.gov (United States)

    Williams, Geoffrey R; Rogers, Richard E L; Kalkstein, Abby L; Taylor, Benjamin A; Shutler, Dave; Ostiguy, Nancy

    2009-04-01

    Deformed wing virus (DWV) in western honey bees (Apis mellifera) often remains asymptomatic in workers and drones, and symptoms have never been described from queens. However, intense infections linked to parasitism by the mite Varroa destructor can cause worker wing deformity and death within 67 h of emergence. Ten workers (eight with deformed wings and two with normal wings) and three drones (two with deformed wings and one with normal wings) from two colonies infected with V. destructor from Nova Scotia, Canada, and two newly-emerged queens (one with deformed wings and one with normal wings) from two colonies infected with V. destructor from Prince Edward Island, Canada, were genetically analyzed for DWV. We detected DWV in all workers and drones, regardless of wing morphology, but only in the deformed-winged queen. This is the first report of DWV from Atlantic Canada and the first detection of a symptomatic queen with DWV from anywhere.